* gcc.dg/vect/vect-82_64.c: Skip on AIX.
[official-gcc.git] / gcc / emit-rtl.c
blob2c70fb1841daecee753b11852e189b5495e0c222
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 /* Middle-to-low level generation of rtx code and insns.
23 This file contains support functions for creating rtl expressions
24 and manipulating them in the doubly-linked chain of insns.
26 The patterns of the insns are created by machine-dependent
27 routines in insn-emit.c, which is generated automatically from
28 the machine description. These routines make the individual rtx's
29 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
30 which are automatically generated from rtl.def; what is machine
31 dependent is the kind of rtx's they make and what arguments they
32 use. */
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "tm.h"
38 #include "diagnostic-core.h"
39 #include "rtl.h"
40 #include "tree.h"
41 #include "tm_p.h"
42 #include "flags.h"
43 #include "function.h"
44 #include "expr.h"
45 #include "regs.h"
46 #include "hard-reg-set.h"
47 #include "hashtab.h"
48 #include "insn-config.h"
49 #include "recog.h"
50 #include "bitmap.h"
51 #include "basic-block.h"
52 #include "ggc.h"
53 #include "debug.h"
54 #include "langhooks.h"
55 #include "df.h"
56 #include "params.h"
57 #include "target.h"
59 struct target_rtl default_target_rtl;
60 #if SWITCHABLE_TARGET
61 struct target_rtl *this_target_rtl = &default_target_rtl;
62 #endif
64 #define initial_regno_reg_rtx (this_target_rtl->x_initial_regno_reg_rtx)
66 /* Commonly used modes. */
68 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
69 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
70 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
71 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
73 /* Datastructures maintained for currently processed function in RTL form. */
75 struct rtl_data x_rtl;
77 /* Indexed by pseudo register number, gives the rtx for that pseudo.
78 Allocated in parallel with regno_pointer_align.
79 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
80 with length attribute nested in top level structures. */
82 rtx * regno_reg_rtx;
84 /* This is *not* reset after each function. It gives each CODE_LABEL
85 in the entire compilation a unique label number. */
87 static GTY(()) int label_num = 1;
89 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
90 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
91 record a copy of const[012]_rtx and constm1_rtx. CONSTM1_RTX
92 is set only for MODE_INT and MODE_VECTOR_INT modes. */
94 rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE];
96 rtx const_true_rtx;
98 REAL_VALUE_TYPE dconst0;
99 REAL_VALUE_TYPE dconst1;
100 REAL_VALUE_TYPE dconst2;
101 REAL_VALUE_TYPE dconstm1;
102 REAL_VALUE_TYPE dconsthalf;
104 /* Record fixed-point constant 0 and 1. */
105 FIXED_VALUE_TYPE fconst0[MAX_FCONST0];
106 FIXED_VALUE_TYPE fconst1[MAX_FCONST1];
108 /* We make one copy of (const_int C) where C is in
109 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
110 to save space during the compilation and simplify comparisons of
111 integers. */
113 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
115 /* Standard pieces of rtx, to be substituted directly into things. */
116 rtx pc_rtx;
117 rtx ret_rtx;
118 rtx simple_return_rtx;
119 rtx cc0_rtx;
121 /* A hash table storing CONST_INTs whose absolute value is greater
122 than MAX_SAVED_CONST_INT. */
124 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
125 htab_t const_int_htab;
127 /* A hash table storing memory attribute structures. */
128 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
129 htab_t mem_attrs_htab;
131 /* A hash table storing register attribute structures. */
132 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
133 htab_t reg_attrs_htab;
135 /* A hash table storing all CONST_DOUBLEs. */
136 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
137 htab_t const_double_htab;
139 /* A hash table storing all CONST_FIXEDs. */
140 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
141 htab_t const_fixed_htab;
143 #define cur_insn_uid (crtl->emit.x_cur_insn_uid)
144 #define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid)
145 #define first_label_num (crtl->emit.x_first_label_num)
147 static rtx change_address_1 (rtx, enum machine_mode, rtx, int);
148 static void set_used_decls (tree);
149 static void mark_label_nuses (rtx);
150 static hashval_t const_int_htab_hash (const void *);
151 static int const_int_htab_eq (const void *, const void *);
152 static hashval_t const_double_htab_hash (const void *);
153 static int const_double_htab_eq (const void *, const void *);
154 static rtx lookup_const_double (rtx);
155 static hashval_t const_fixed_htab_hash (const void *);
156 static int const_fixed_htab_eq (const void *, const void *);
157 static rtx lookup_const_fixed (rtx);
158 static hashval_t mem_attrs_htab_hash (const void *);
159 static int mem_attrs_htab_eq (const void *, const void *);
160 static hashval_t reg_attrs_htab_hash (const void *);
161 static int reg_attrs_htab_eq (const void *, const void *);
162 static reg_attrs *get_reg_attrs (tree, int);
163 static rtx gen_const_vector (enum machine_mode, int);
164 static void copy_rtx_if_shared_1 (rtx *orig);
166 /* Probability of the conditional branch currently proceeded by try_split.
167 Set to -1 otherwise. */
168 int split_branch_probability = -1;
170 /* Returns a hash code for X (which is a really a CONST_INT). */
172 static hashval_t
173 const_int_htab_hash (const void *x)
175 return (hashval_t) INTVAL ((const_rtx) x);
178 /* Returns nonzero if the value represented by X (which is really a
179 CONST_INT) is the same as that given by Y (which is really a
180 HOST_WIDE_INT *). */
182 static int
183 const_int_htab_eq (const void *x, const void *y)
185 return (INTVAL ((const_rtx) x) == *((const HOST_WIDE_INT *) y));
188 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
189 static hashval_t
190 const_double_htab_hash (const void *x)
192 const_rtx const value = (const_rtx) x;
193 hashval_t h;
195 if (GET_MODE (value) == VOIDmode)
196 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
197 else
199 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
200 /* MODE is used in the comparison, so it should be in the hash. */
201 h ^= GET_MODE (value);
203 return h;
206 /* Returns nonzero if the value represented by X (really a ...)
207 is the same as that represented by Y (really a ...) */
208 static int
209 const_double_htab_eq (const void *x, const void *y)
211 const_rtx const a = (const_rtx)x, b = (const_rtx)y;
213 if (GET_MODE (a) != GET_MODE (b))
214 return 0;
215 if (GET_MODE (a) == VOIDmode)
216 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
217 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
218 else
219 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
220 CONST_DOUBLE_REAL_VALUE (b));
223 /* Returns a hash code for X (which is really a CONST_FIXED). */
225 static hashval_t
226 const_fixed_htab_hash (const void *x)
228 const_rtx const value = (const_rtx) x;
229 hashval_t h;
231 h = fixed_hash (CONST_FIXED_VALUE (value));
232 /* MODE is used in the comparison, so it should be in the hash. */
233 h ^= GET_MODE (value);
234 return h;
237 /* Returns nonzero if the value represented by X (really a ...)
238 is the same as that represented by Y (really a ...). */
240 static int
241 const_fixed_htab_eq (const void *x, const void *y)
243 const_rtx const a = (const_rtx) x, b = (const_rtx) y;
245 if (GET_MODE (a) != GET_MODE (b))
246 return 0;
247 return fixed_identical (CONST_FIXED_VALUE (a), CONST_FIXED_VALUE (b));
250 /* Returns a hash code for X (which is a really a mem_attrs *). */
252 static hashval_t
253 mem_attrs_htab_hash (const void *x)
255 const mem_attrs *const p = (const mem_attrs *) x;
257 return (p->alias ^ (p->align * 1000)
258 ^ (p->addrspace * 4000)
259 ^ ((p->offset_known_p ? p->offset : 0) * 50000)
260 ^ ((p->size_known_p ? p->size : 0) * 2500000)
261 ^ (size_t) iterative_hash_expr (p->expr, 0));
264 /* Return true if the given memory attributes are equal. */
266 static bool
267 mem_attrs_eq_p (const struct mem_attrs *p, const struct mem_attrs *q)
269 return (p->alias == q->alias
270 && p->offset_known_p == q->offset_known_p
271 && (!p->offset_known_p || p->offset == q->offset)
272 && p->size_known_p == q->size_known_p
273 && (!p->size_known_p || p->size == q->size)
274 && p->align == q->align
275 && p->addrspace == q->addrspace
276 && (p->expr == q->expr
277 || (p->expr != NULL_TREE && q->expr != NULL_TREE
278 && operand_equal_p (p->expr, q->expr, 0))));
281 /* Returns nonzero if the value represented by X (which is really a
282 mem_attrs *) is the same as that given by Y (which is also really a
283 mem_attrs *). */
285 static int
286 mem_attrs_htab_eq (const void *x, const void *y)
288 return mem_attrs_eq_p ((const mem_attrs *) x, (const mem_attrs *) y);
291 /* Set MEM's memory attributes so that they are the same as ATTRS. */
293 static void
294 set_mem_attrs (rtx mem, mem_attrs *attrs)
296 void **slot;
298 /* If everything is the default, we can just clear the attributes. */
299 if (mem_attrs_eq_p (attrs, mode_mem_attrs[(int) GET_MODE (mem)]))
301 MEM_ATTRS (mem) = 0;
302 return;
305 slot = htab_find_slot (mem_attrs_htab, attrs, INSERT);
306 if (*slot == 0)
308 *slot = ggc_alloc_mem_attrs ();
309 memcpy (*slot, attrs, sizeof (mem_attrs));
312 MEM_ATTRS (mem) = (mem_attrs *) *slot;
315 /* Returns a hash code for X (which is a really a reg_attrs *). */
317 static hashval_t
318 reg_attrs_htab_hash (const void *x)
320 const reg_attrs *const p = (const reg_attrs *) x;
322 return ((p->offset * 1000) ^ (intptr_t) p->decl);
325 /* Returns nonzero if the value represented by X (which is really a
326 reg_attrs *) is the same as that given by Y (which is also really a
327 reg_attrs *). */
329 static int
330 reg_attrs_htab_eq (const void *x, const void *y)
332 const reg_attrs *const p = (const reg_attrs *) x;
333 const reg_attrs *const q = (const reg_attrs *) y;
335 return (p->decl == q->decl && p->offset == q->offset);
337 /* Allocate a new reg_attrs structure and insert it into the hash table if
338 one identical to it is not already in the table. We are doing this for
339 MEM of mode MODE. */
341 static reg_attrs *
342 get_reg_attrs (tree decl, int offset)
344 reg_attrs attrs;
345 void **slot;
347 /* If everything is the default, we can just return zero. */
348 if (decl == 0 && offset == 0)
349 return 0;
351 attrs.decl = decl;
352 attrs.offset = offset;
354 slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
355 if (*slot == 0)
357 *slot = ggc_alloc_reg_attrs ();
358 memcpy (*slot, &attrs, sizeof (reg_attrs));
361 return (reg_attrs *) *slot;
365 #if !HAVE_blockage
366 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule,
367 and to block register equivalences to be seen across this insn. */
370 gen_blockage (void)
372 rtx x = gen_rtx_ASM_INPUT (VOIDmode, "");
373 MEM_VOLATILE_P (x) = true;
374 return x;
376 #endif
379 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
380 don't attempt to share with the various global pieces of rtl (such as
381 frame_pointer_rtx). */
384 gen_raw_REG (enum machine_mode mode, int regno)
386 rtx x = gen_rtx_raw_REG (mode, regno);
387 ORIGINAL_REGNO (x) = regno;
388 return x;
391 /* There are some RTL codes that require special attention; the generation
392 functions do the raw handling. If you add to this list, modify
393 special_rtx in gengenrtl.c as well. */
396 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
398 void **slot;
400 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
401 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
403 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
404 if (const_true_rtx && arg == STORE_FLAG_VALUE)
405 return const_true_rtx;
406 #endif
408 /* Look up the CONST_INT in the hash table. */
409 slot = htab_find_slot_with_hash (const_int_htab, &arg,
410 (hashval_t) arg, INSERT);
411 if (*slot == 0)
412 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
414 return (rtx) *slot;
418 gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
420 return GEN_INT (trunc_int_for_mode (c, mode));
423 /* CONST_DOUBLEs might be created from pairs of integers, or from
424 REAL_VALUE_TYPEs. Also, their length is known only at run time,
425 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
427 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
428 hash table. If so, return its counterpart; otherwise add it
429 to the hash table and return it. */
430 static rtx
431 lookup_const_double (rtx real)
433 void **slot = htab_find_slot (const_double_htab, real, INSERT);
434 if (*slot == 0)
435 *slot = real;
437 return (rtx) *slot;
440 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
441 VALUE in mode MODE. */
443 const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
445 rtx real = rtx_alloc (CONST_DOUBLE);
446 PUT_MODE (real, mode);
448 real->u.rv = value;
450 return lookup_const_double (real);
453 /* Determine whether FIXED, a CONST_FIXED, already exists in the
454 hash table. If so, return its counterpart; otherwise add it
455 to the hash table and return it. */
457 static rtx
458 lookup_const_fixed (rtx fixed)
460 void **slot = htab_find_slot (const_fixed_htab, fixed, INSERT);
461 if (*slot == 0)
462 *slot = fixed;
464 return (rtx) *slot;
467 /* Return a CONST_FIXED rtx for a fixed-point value specified by
468 VALUE in mode MODE. */
471 const_fixed_from_fixed_value (FIXED_VALUE_TYPE value, enum machine_mode mode)
473 rtx fixed = rtx_alloc (CONST_FIXED);
474 PUT_MODE (fixed, mode);
476 fixed->u.fv = value;
478 return lookup_const_fixed (fixed);
481 /* Constructs double_int from rtx CST. */
483 double_int
484 rtx_to_double_int (const_rtx cst)
486 double_int r;
488 if (CONST_INT_P (cst))
489 r = double_int::from_shwi (INTVAL (cst));
490 else if (CONST_DOUBLE_AS_INT_P (cst))
492 r.low = CONST_DOUBLE_LOW (cst);
493 r.high = CONST_DOUBLE_HIGH (cst);
495 else
496 gcc_unreachable ();
498 return r;
502 /* Return a CONST_DOUBLE or CONST_INT for a value specified as
503 a double_int. */
506 immed_double_int_const (double_int i, enum machine_mode mode)
508 return immed_double_const (i.low, i.high, mode);
511 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
512 of ints: I0 is the low-order word and I1 is the high-order word.
513 For values that are larger than HOST_BITS_PER_DOUBLE_INT, the
514 implied upper bits are copies of the high bit of i1. The value
515 itself is neither signed nor unsigned. Do not use this routine for
516 non-integer modes; convert to REAL_VALUE_TYPE and use
517 CONST_DOUBLE_FROM_REAL_VALUE. */
520 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
522 rtx value;
523 unsigned int i;
525 /* There are the following cases (note that there are no modes with
526 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < HOST_BITS_PER_DOUBLE_INT):
528 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
529 gen_int_mode.
530 2) If the value of the integer fits into HOST_WIDE_INT anyway
531 (i.e., i1 consists only from copies of the sign bit, and sign
532 of i0 and i1 are the same), then we return a CONST_INT for i0.
533 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
534 if (mode != VOIDmode)
536 gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
537 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
538 /* We can get a 0 for an error mark. */
539 || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
540 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT);
542 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
543 return gen_int_mode (i0, mode);
546 /* If this integer fits in one word, return a CONST_INT. */
547 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
548 return GEN_INT (i0);
550 /* We use VOIDmode for integers. */
551 value = rtx_alloc (CONST_DOUBLE);
552 PUT_MODE (value, VOIDmode);
554 CONST_DOUBLE_LOW (value) = i0;
555 CONST_DOUBLE_HIGH (value) = i1;
557 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
558 XWINT (value, i) = 0;
560 return lookup_const_double (value);
564 gen_rtx_REG (enum machine_mode mode, unsigned int regno)
566 /* In case the MD file explicitly references the frame pointer, have
567 all such references point to the same frame pointer. This is
568 used during frame pointer elimination to distinguish the explicit
569 references to these registers from pseudos that happened to be
570 assigned to them.
572 If we have eliminated the frame pointer or arg pointer, we will
573 be using it as a normal register, for example as a spill
574 register. In such cases, we might be accessing it in a mode that
575 is not Pmode and therefore cannot use the pre-allocated rtx.
577 Also don't do this when we are making new REGs in reload, since
578 we don't want to get confused with the real pointers. */
580 if (mode == Pmode && !reload_in_progress && !lra_in_progress)
582 if (regno == FRAME_POINTER_REGNUM
583 && (!reload_completed || frame_pointer_needed))
584 return frame_pointer_rtx;
585 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
586 if (regno == HARD_FRAME_POINTER_REGNUM
587 && (!reload_completed || frame_pointer_needed))
588 return hard_frame_pointer_rtx;
589 #endif
590 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && !HARD_FRAME_POINTER_IS_ARG_POINTER
591 if (regno == ARG_POINTER_REGNUM)
592 return arg_pointer_rtx;
593 #endif
594 #ifdef RETURN_ADDRESS_POINTER_REGNUM
595 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
596 return return_address_pointer_rtx;
597 #endif
598 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
599 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
600 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
601 return pic_offset_table_rtx;
602 if (regno == STACK_POINTER_REGNUM)
603 return stack_pointer_rtx;
606 #if 0
607 /* If the per-function register table has been set up, try to re-use
608 an existing entry in that table to avoid useless generation of RTL.
610 This code is disabled for now until we can fix the various backends
611 which depend on having non-shared hard registers in some cases. Long
612 term we want to re-enable this code as it can significantly cut down
613 on the amount of useless RTL that gets generated.
615 We'll also need to fix some code that runs after reload that wants to
616 set ORIGINAL_REGNO. */
618 if (cfun
619 && cfun->emit
620 && regno_reg_rtx
621 && regno < FIRST_PSEUDO_REGISTER
622 && reg_raw_mode[regno] == mode)
623 return regno_reg_rtx[regno];
624 #endif
626 return gen_raw_REG (mode, regno);
630 gen_rtx_MEM (enum machine_mode mode, rtx addr)
632 rtx rt = gen_rtx_raw_MEM (mode, addr);
634 /* This field is not cleared by the mere allocation of the rtx, so
635 we clear it here. */
636 MEM_ATTRS (rt) = 0;
638 return rt;
641 /* Generate a memory referring to non-trapping constant memory. */
644 gen_const_mem (enum machine_mode mode, rtx addr)
646 rtx mem = gen_rtx_MEM (mode, addr);
647 MEM_READONLY_P (mem) = 1;
648 MEM_NOTRAP_P (mem) = 1;
649 return mem;
652 /* Generate a MEM referring to fixed portions of the frame, e.g., register
653 save areas. */
656 gen_frame_mem (enum machine_mode mode, rtx addr)
658 rtx mem = gen_rtx_MEM (mode, addr);
659 MEM_NOTRAP_P (mem) = 1;
660 set_mem_alias_set (mem, get_frame_alias_set ());
661 return mem;
664 /* Generate a MEM referring to a temporary use of the stack, not part
665 of the fixed stack frame. For example, something which is pushed
666 by a target splitter. */
668 gen_tmp_stack_mem (enum machine_mode mode, rtx addr)
670 rtx mem = gen_rtx_MEM (mode, addr);
671 MEM_NOTRAP_P (mem) = 1;
672 if (!cfun->calls_alloca)
673 set_mem_alias_set (mem, get_frame_alias_set ());
674 return mem;
677 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
678 this construct would be valid, and false otherwise. */
680 bool
681 validate_subreg (enum machine_mode omode, enum machine_mode imode,
682 const_rtx reg, unsigned int offset)
684 unsigned int isize = GET_MODE_SIZE (imode);
685 unsigned int osize = GET_MODE_SIZE (omode);
687 /* All subregs must be aligned. */
688 if (offset % osize != 0)
689 return false;
691 /* The subreg offset cannot be outside the inner object. */
692 if (offset >= isize)
693 return false;
695 /* ??? This should not be here. Temporarily continue to allow word_mode
696 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
697 Generally, backends are doing something sketchy but it'll take time to
698 fix them all. */
699 if (omode == word_mode)
701 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
702 is the culprit here, and not the backends. */
703 else if (osize >= UNITS_PER_WORD && isize >= osize)
705 /* Allow component subregs of complex and vector. Though given the below
706 extraction rules, it's not always clear what that means. */
707 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
708 && GET_MODE_INNER (imode) == omode)
710 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
711 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
712 represent this. It's questionable if this ought to be represented at
713 all -- why can't this all be hidden in post-reload splitters that make
714 arbitrarily mode changes to the registers themselves. */
715 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
717 /* Subregs involving floating point modes are not allowed to
718 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
719 (subreg:SI (reg:DF) 0) isn't. */
720 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
722 if (! (isize == osize
723 /* LRA can use subreg to store a floating point value in
724 an integer mode. Although the floating point and the
725 integer modes need the same number of hard registers,
726 the size of floating point mode can be less than the
727 integer mode. LRA also uses subregs for a register
728 should be used in different mode in on insn. */
729 || lra_in_progress))
730 return false;
733 /* Paradoxical subregs must have offset zero. */
734 if (osize > isize)
735 return offset == 0;
737 /* This is a normal subreg. Verify that the offset is representable. */
739 /* For hard registers, we already have most of these rules collected in
740 subreg_offset_representable_p. */
741 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
743 unsigned int regno = REGNO (reg);
745 #ifdef CANNOT_CHANGE_MODE_CLASS
746 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
747 && GET_MODE_INNER (imode) == omode)
749 else if (REG_CANNOT_CHANGE_MODE_P (regno, imode, omode))
750 return false;
751 #endif
753 return subreg_offset_representable_p (regno, imode, offset, omode);
756 /* For pseudo registers, we want most of the same checks. Namely:
757 If the register no larger than a word, the subreg must be lowpart.
758 If the register is larger than a word, the subreg must be the lowpart
759 of a subword. A subreg does *not* perform arbitrary bit extraction.
760 Given that we've already checked mode/offset alignment, we only have
761 to check subword subregs here. */
762 if (osize < UNITS_PER_WORD
763 && ! (lra_in_progress && (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))))
765 enum machine_mode wmode = isize > UNITS_PER_WORD ? word_mode : imode;
766 unsigned int low_off = subreg_lowpart_offset (omode, wmode);
767 if (offset % UNITS_PER_WORD != low_off)
768 return false;
770 return true;
774 gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
776 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
777 return gen_rtx_raw_SUBREG (mode, reg, offset);
780 /* Generate a SUBREG representing the least-significant part of REG if MODE
781 is smaller than mode of REG, otherwise paradoxical SUBREG. */
784 gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
786 enum machine_mode inmode;
788 inmode = GET_MODE (reg);
789 if (inmode == VOIDmode)
790 inmode = mode;
791 return gen_rtx_SUBREG (mode, reg,
792 subreg_lowpart_offset (mode, inmode));
796 /* Create an rtvec and stores within it the RTXen passed in the arguments. */
798 rtvec
799 gen_rtvec (int n, ...)
801 int i;
802 rtvec rt_val;
803 va_list p;
805 va_start (p, n);
807 /* Don't allocate an empty rtvec... */
808 if (n == 0)
810 va_end (p);
811 return NULL_RTVEC;
814 rt_val = rtvec_alloc (n);
816 for (i = 0; i < n; i++)
817 rt_val->elem[i] = va_arg (p, rtx);
819 va_end (p);
820 return rt_val;
823 rtvec
824 gen_rtvec_v (int n, rtx *argp)
826 int i;
827 rtvec rt_val;
829 /* Don't allocate an empty rtvec... */
830 if (n == 0)
831 return NULL_RTVEC;
833 rt_val = rtvec_alloc (n);
835 for (i = 0; i < n; i++)
836 rt_val->elem[i] = *argp++;
838 return rt_val;
841 /* Return the number of bytes between the start of an OUTER_MODE
842 in-memory value and the start of an INNER_MODE in-memory value,
843 given that the former is a lowpart of the latter. It may be a
844 paradoxical lowpart, in which case the offset will be negative
845 on big-endian targets. */
848 byte_lowpart_offset (enum machine_mode outer_mode,
849 enum machine_mode inner_mode)
851 if (GET_MODE_SIZE (outer_mode) < GET_MODE_SIZE (inner_mode))
852 return subreg_lowpart_offset (outer_mode, inner_mode);
853 else
854 return -subreg_lowpart_offset (inner_mode, outer_mode);
857 /* Generate a REG rtx for a new pseudo register of mode MODE.
858 This pseudo is assigned the next sequential register number. */
861 gen_reg_rtx (enum machine_mode mode)
863 rtx val;
864 unsigned int align = GET_MODE_ALIGNMENT (mode);
866 gcc_assert (can_create_pseudo_p ());
868 /* If a virtual register with bigger mode alignment is generated,
869 increase stack alignment estimation because it might be spilled
870 to stack later. */
871 if (SUPPORTS_STACK_ALIGNMENT
872 && crtl->stack_alignment_estimated < align
873 && !crtl->stack_realign_processed)
875 unsigned int min_align = MINIMUM_ALIGNMENT (NULL, mode, align);
876 if (crtl->stack_alignment_estimated < min_align)
877 crtl->stack_alignment_estimated = min_align;
880 if (generating_concat_p
881 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
882 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
884 /* For complex modes, don't make a single pseudo.
885 Instead, make a CONCAT of two pseudos.
886 This allows noncontiguous allocation of the real and imaginary parts,
887 which makes much better code. Besides, allocating DCmode
888 pseudos overstrains reload on some machines like the 386. */
889 rtx realpart, imagpart;
890 enum machine_mode partmode = GET_MODE_INNER (mode);
892 realpart = gen_reg_rtx (partmode);
893 imagpart = gen_reg_rtx (partmode);
894 return gen_rtx_CONCAT (mode, realpart, imagpart);
897 /* Make sure regno_pointer_align, and regno_reg_rtx are large
898 enough to have an element for this pseudo reg number. */
900 if (reg_rtx_no == crtl->emit.regno_pointer_align_length)
902 int old_size = crtl->emit.regno_pointer_align_length;
903 char *tmp;
904 rtx *new1;
906 tmp = XRESIZEVEC (char, crtl->emit.regno_pointer_align, old_size * 2);
907 memset (tmp + old_size, 0, old_size);
908 crtl->emit.regno_pointer_align = (unsigned char *) tmp;
910 new1 = GGC_RESIZEVEC (rtx, regno_reg_rtx, old_size * 2);
911 memset (new1 + old_size, 0, old_size * sizeof (rtx));
912 regno_reg_rtx = new1;
914 crtl->emit.regno_pointer_align_length = old_size * 2;
917 val = gen_raw_REG (mode, reg_rtx_no);
918 regno_reg_rtx[reg_rtx_no++] = val;
919 return val;
922 /* Return TRUE if REG is a PARM_DECL, FALSE otherwise. */
924 bool
925 reg_is_parm_p (rtx reg)
927 tree decl;
929 gcc_assert (REG_P (reg));
930 decl = REG_EXPR (reg);
931 return (decl && TREE_CODE (decl) == PARM_DECL);
934 /* Update NEW with the same attributes as REG, but with OFFSET added
935 to the REG_OFFSET. */
937 static void
938 update_reg_offset (rtx new_rtx, rtx reg, int offset)
940 REG_ATTRS (new_rtx) = get_reg_attrs (REG_EXPR (reg),
941 REG_OFFSET (reg) + offset);
944 /* Generate a register with same attributes as REG, but with OFFSET
945 added to the REG_OFFSET. */
948 gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno,
949 int offset)
951 rtx new_rtx = gen_rtx_REG (mode, regno);
953 update_reg_offset (new_rtx, reg, offset);
954 return new_rtx;
957 /* Generate a new pseudo-register with the same attributes as REG, but
958 with OFFSET added to the REG_OFFSET. */
961 gen_reg_rtx_offset (rtx reg, enum machine_mode mode, int offset)
963 rtx new_rtx = gen_reg_rtx (mode);
965 update_reg_offset (new_rtx, reg, offset);
966 return new_rtx;
969 /* Adjust REG in-place so that it has mode MODE. It is assumed that the
970 new register is a (possibly paradoxical) lowpart of the old one. */
972 void
973 adjust_reg_mode (rtx reg, enum machine_mode mode)
975 update_reg_offset (reg, reg, byte_lowpart_offset (mode, GET_MODE (reg)));
976 PUT_MODE (reg, mode);
979 /* Copy REG's attributes from X, if X has any attributes. If REG and X
980 have different modes, REG is a (possibly paradoxical) lowpart of X. */
982 void
983 set_reg_attrs_from_value (rtx reg, rtx x)
985 int offset;
986 bool can_be_reg_pointer = true;
988 /* Don't call mark_reg_pointer for incompatible pointer sign
989 extension. */
990 while (GET_CODE (x) == SIGN_EXTEND
991 || GET_CODE (x) == ZERO_EXTEND
992 || GET_CODE (x) == TRUNCATE
993 || (GET_CODE (x) == SUBREG && subreg_lowpart_p (x)))
995 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
996 if ((GET_CODE (x) == SIGN_EXTEND && POINTERS_EXTEND_UNSIGNED)
997 || (GET_CODE (x) != SIGN_EXTEND && ! POINTERS_EXTEND_UNSIGNED))
998 can_be_reg_pointer = false;
999 #endif
1000 x = XEXP (x, 0);
1003 /* Hard registers can be reused for multiple purposes within the same
1004 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
1005 on them is wrong. */
1006 if (HARD_REGISTER_P (reg))
1007 return;
1009 offset = byte_lowpart_offset (GET_MODE (reg), GET_MODE (x));
1010 if (MEM_P (x))
1012 if (MEM_OFFSET_KNOWN_P (x))
1013 REG_ATTRS (reg) = get_reg_attrs (MEM_EXPR (x),
1014 MEM_OFFSET (x) + offset);
1015 if (can_be_reg_pointer && MEM_POINTER (x))
1016 mark_reg_pointer (reg, 0);
1018 else if (REG_P (x))
1020 if (REG_ATTRS (x))
1021 update_reg_offset (reg, x, offset);
1022 if (can_be_reg_pointer && REG_POINTER (x))
1023 mark_reg_pointer (reg, REGNO_POINTER_ALIGN (REGNO (x)));
1027 /* Generate a REG rtx for a new pseudo register, copying the mode
1028 and attributes from X. */
1031 gen_reg_rtx_and_attrs (rtx x)
1033 rtx reg = gen_reg_rtx (GET_MODE (x));
1034 set_reg_attrs_from_value (reg, x);
1035 return reg;
1038 /* Set the register attributes for registers contained in PARM_RTX.
1039 Use needed values from memory attributes of MEM. */
1041 void
1042 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
1044 if (REG_P (parm_rtx))
1045 set_reg_attrs_from_value (parm_rtx, mem);
1046 else if (GET_CODE (parm_rtx) == PARALLEL)
1048 /* Check for a NULL entry in the first slot, used to indicate that the
1049 parameter goes both on the stack and in registers. */
1050 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
1051 for (; i < XVECLEN (parm_rtx, 0); i++)
1053 rtx x = XVECEXP (parm_rtx, 0, i);
1054 if (REG_P (XEXP (x, 0)))
1055 REG_ATTRS (XEXP (x, 0))
1056 = get_reg_attrs (MEM_EXPR (mem),
1057 INTVAL (XEXP (x, 1)));
1062 /* Set the REG_ATTRS for registers in value X, given that X represents
1063 decl T. */
1065 void
1066 set_reg_attrs_for_decl_rtl (tree t, rtx x)
1068 if (GET_CODE (x) == SUBREG)
1070 gcc_assert (subreg_lowpart_p (x));
1071 x = SUBREG_REG (x);
1073 if (REG_P (x))
1074 REG_ATTRS (x)
1075 = get_reg_attrs (t, byte_lowpart_offset (GET_MODE (x),
1076 DECL_MODE (t)));
1077 if (GET_CODE (x) == CONCAT)
1079 if (REG_P (XEXP (x, 0)))
1080 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1081 if (REG_P (XEXP (x, 1)))
1082 REG_ATTRS (XEXP (x, 1))
1083 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1085 if (GET_CODE (x) == PARALLEL)
1087 int i, start;
1089 /* Check for a NULL entry, used to indicate that the parameter goes
1090 both on the stack and in registers. */
1091 if (XEXP (XVECEXP (x, 0, 0), 0))
1092 start = 0;
1093 else
1094 start = 1;
1096 for (i = start; i < XVECLEN (x, 0); i++)
1098 rtx y = XVECEXP (x, 0, i);
1099 if (REG_P (XEXP (y, 0)))
1100 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1105 /* Assign the RTX X to declaration T. */
1107 void
1108 set_decl_rtl (tree t, rtx x)
1110 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
1111 if (x)
1112 set_reg_attrs_for_decl_rtl (t, x);
1115 /* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1116 if the ABI requires the parameter to be passed by reference. */
1118 void
1119 set_decl_incoming_rtl (tree t, rtx x, bool by_reference_p)
1121 DECL_INCOMING_RTL (t) = x;
1122 if (x && !by_reference_p)
1123 set_reg_attrs_for_decl_rtl (t, x);
1126 /* Identify REG (which may be a CONCAT) as a user register. */
1128 void
1129 mark_user_reg (rtx reg)
1131 if (GET_CODE (reg) == CONCAT)
1133 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1134 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1136 else
1138 gcc_assert (REG_P (reg));
1139 REG_USERVAR_P (reg) = 1;
1143 /* Identify REG as a probable pointer register and show its alignment
1144 as ALIGN, if nonzero. */
1146 void
1147 mark_reg_pointer (rtx reg, int align)
1149 if (! REG_POINTER (reg))
1151 REG_POINTER (reg) = 1;
1153 if (align)
1154 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1156 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
1157 /* We can no-longer be sure just how aligned this pointer is. */
1158 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1161 /* Return 1 plus largest pseudo reg number used in the current function. */
1164 max_reg_num (void)
1166 return reg_rtx_no;
1169 /* Return 1 + the largest label number used so far in the current function. */
1172 max_label_num (void)
1174 return label_num;
1177 /* Return first label number used in this function (if any were used). */
1180 get_first_label_num (void)
1182 return first_label_num;
1185 /* If the rtx for label was created during the expansion of a nested
1186 function, then first_label_num won't include this label number.
1187 Fix this now so that array indices work later. */
1189 void
1190 maybe_set_first_label_num (rtx x)
1192 if (CODE_LABEL_NUMBER (x) < first_label_num)
1193 first_label_num = CODE_LABEL_NUMBER (x);
1196 /* Return a value representing some low-order bits of X, where the number
1197 of low-order bits is given by MODE. Note that no conversion is done
1198 between floating-point and fixed-point values, rather, the bit
1199 representation is returned.
1201 This function handles the cases in common between gen_lowpart, below,
1202 and two variants in cse.c and combine.c. These are the cases that can
1203 be safely handled at all points in the compilation.
1205 If this is not a case we can handle, return 0. */
1208 gen_lowpart_common (enum machine_mode mode, rtx x)
1210 int msize = GET_MODE_SIZE (mode);
1211 int xsize;
1212 int offset = 0;
1213 enum machine_mode innermode;
1215 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1216 so we have to make one up. Yuk. */
1217 innermode = GET_MODE (x);
1218 if (CONST_INT_P (x)
1219 && msize * BITS_PER_UNIT <= HOST_BITS_PER_WIDE_INT)
1220 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1221 else if (innermode == VOIDmode)
1222 innermode = mode_for_size (HOST_BITS_PER_DOUBLE_INT, MODE_INT, 0);
1224 xsize = GET_MODE_SIZE (innermode);
1226 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
1228 if (innermode == mode)
1229 return x;
1231 /* MODE must occupy no more words than the mode of X. */
1232 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1233 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1234 return 0;
1236 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1237 if (SCALAR_FLOAT_MODE_P (mode) && msize > xsize)
1238 return 0;
1240 offset = subreg_lowpart_offset (mode, innermode);
1242 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1243 && (GET_MODE_CLASS (mode) == MODE_INT
1244 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1246 /* If we are getting the low-order part of something that has been
1247 sign- or zero-extended, we can either just use the object being
1248 extended or make a narrower extension. If we want an even smaller
1249 piece than the size of the object being extended, call ourselves
1250 recursively.
1252 This case is used mostly by combine and cse. */
1254 if (GET_MODE (XEXP (x, 0)) == mode)
1255 return XEXP (x, 0);
1256 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1257 return gen_lowpart_common (mode, XEXP (x, 0));
1258 else if (msize < xsize)
1259 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1261 else if (GET_CODE (x) == SUBREG || REG_P (x)
1262 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1263 || CONST_DOUBLE_AS_FLOAT_P (x) || CONST_SCALAR_INT_P (x))
1264 return simplify_gen_subreg (mode, x, innermode, offset);
1266 /* Otherwise, we can't do this. */
1267 return 0;
1271 gen_highpart (enum machine_mode mode, rtx x)
1273 unsigned int msize = GET_MODE_SIZE (mode);
1274 rtx result;
1276 /* This case loses if X is a subreg. To catch bugs early,
1277 complain if an invalid MODE is used even in other cases. */
1278 gcc_assert (msize <= UNITS_PER_WORD
1279 || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
1281 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1282 subreg_highpart_offset (mode, GET_MODE (x)));
1283 gcc_assert (result);
1285 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1286 the target if we have a MEM. gen_highpart must return a valid operand,
1287 emitting code if necessary to do so. */
1288 if (MEM_P (result))
1290 result = validize_mem (result);
1291 gcc_assert (result);
1294 return result;
1297 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1298 be VOIDmode constant. */
1300 gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
1302 if (GET_MODE (exp) != VOIDmode)
1304 gcc_assert (GET_MODE (exp) == innermode);
1305 return gen_highpart (outermode, exp);
1307 return simplify_gen_subreg (outermode, exp, innermode,
1308 subreg_highpart_offset (outermode, innermode));
1311 /* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
1313 unsigned int
1314 subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1316 unsigned int offset = 0;
1317 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1319 if (difference > 0)
1321 if (WORDS_BIG_ENDIAN)
1322 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1323 if (BYTES_BIG_ENDIAN)
1324 offset += difference % UNITS_PER_WORD;
1327 return offset;
1330 /* Return offset in bytes to get OUTERMODE high part
1331 of the value in mode INNERMODE stored in memory in target format. */
1332 unsigned int
1333 subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1335 unsigned int offset = 0;
1336 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1338 gcc_assert (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode));
1340 if (difference > 0)
1342 if (! WORDS_BIG_ENDIAN)
1343 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1344 if (! BYTES_BIG_ENDIAN)
1345 offset += difference % UNITS_PER_WORD;
1348 return offset;
1351 /* Return 1 iff X, assumed to be a SUBREG,
1352 refers to the least significant part of its containing reg.
1353 If X is not a SUBREG, always return 1 (it is its own low part!). */
1356 subreg_lowpart_p (const_rtx x)
1358 if (GET_CODE (x) != SUBREG)
1359 return 1;
1360 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1361 return 0;
1363 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1364 == SUBREG_BYTE (x));
1367 /* Return true if X is a paradoxical subreg, false otherwise. */
1368 bool
1369 paradoxical_subreg_p (const_rtx x)
1371 if (GET_CODE (x) != SUBREG)
1372 return false;
1373 return (GET_MODE_PRECISION (GET_MODE (x))
1374 > GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x))));
1377 /* Return subword OFFSET of operand OP.
1378 The word number, OFFSET, is interpreted as the word number starting
1379 at the low-order address. OFFSET 0 is the low-order word if not
1380 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1382 If we cannot extract the required word, we return zero. Otherwise,
1383 an rtx corresponding to the requested word will be returned.
1385 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1386 reload has completed, a valid address will always be returned. After
1387 reload, if a valid address cannot be returned, we return zero.
1389 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1390 it is the responsibility of the caller.
1392 MODE is the mode of OP in case it is a CONST_INT.
1394 ??? This is still rather broken for some cases. The problem for the
1395 moment is that all callers of this thing provide no 'goal mode' to
1396 tell us to work with. This exists because all callers were written
1397 in a word based SUBREG world.
1398 Now use of this function can be deprecated by simplify_subreg in most
1399 cases.
1403 operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
1405 if (mode == VOIDmode)
1406 mode = GET_MODE (op);
1408 gcc_assert (mode != VOIDmode);
1410 /* If OP is narrower than a word, fail. */
1411 if (mode != BLKmode
1412 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1413 return 0;
1415 /* If we want a word outside OP, return zero. */
1416 if (mode != BLKmode
1417 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1418 return const0_rtx;
1420 /* Form a new MEM at the requested address. */
1421 if (MEM_P (op))
1423 rtx new_rtx = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1425 if (! validate_address)
1426 return new_rtx;
1428 else if (reload_completed)
1430 if (! strict_memory_address_addr_space_p (word_mode,
1431 XEXP (new_rtx, 0),
1432 MEM_ADDR_SPACE (op)))
1433 return 0;
1435 else
1436 return replace_equiv_address (new_rtx, XEXP (new_rtx, 0));
1439 /* Rest can be handled by simplify_subreg. */
1440 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1443 /* Similar to `operand_subword', but never return 0. If we can't
1444 extract the required subword, put OP into a register and try again.
1445 The second attempt must succeed. We always validate the address in
1446 this case.
1448 MODE is the mode of OP, in case it is CONST_INT. */
1451 operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
1453 rtx result = operand_subword (op, offset, 1, mode);
1455 if (result)
1456 return result;
1458 if (mode != BLKmode && mode != VOIDmode)
1460 /* If this is a register which can not be accessed by words, copy it
1461 to a pseudo register. */
1462 if (REG_P (op))
1463 op = copy_to_reg (op);
1464 else
1465 op = force_reg (mode, op);
1468 result = operand_subword (op, offset, 1, mode);
1469 gcc_assert (result);
1471 return result;
1474 /* Returns 1 if both MEM_EXPR can be considered equal
1475 and 0 otherwise. */
1478 mem_expr_equal_p (const_tree expr1, const_tree expr2)
1480 if (expr1 == expr2)
1481 return 1;
1483 if (! expr1 || ! expr2)
1484 return 0;
1486 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1487 return 0;
1489 return operand_equal_p (expr1, expr2, 0);
1492 /* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1493 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1494 -1 if not known. */
1497 get_mem_align_offset (rtx mem, unsigned int align)
1499 tree expr;
1500 unsigned HOST_WIDE_INT offset;
1502 /* This function can't use
1503 if (!MEM_EXPR (mem) || !MEM_OFFSET_KNOWN_P (mem)
1504 || (MAX (MEM_ALIGN (mem),
1505 MAX (align, get_object_alignment (MEM_EXPR (mem))))
1506 < align))
1507 return -1;
1508 else
1509 return (- MEM_OFFSET (mem)) & (align / BITS_PER_UNIT - 1);
1510 for two reasons:
1511 - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1512 for <variable>. get_inner_reference doesn't handle it and
1513 even if it did, the alignment in that case needs to be determined
1514 from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1515 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1516 isn't sufficiently aligned, the object it is in might be. */
1517 gcc_assert (MEM_P (mem));
1518 expr = MEM_EXPR (mem);
1519 if (expr == NULL_TREE || !MEM_OFFSET_KNOWN_P (mem))
1520 return -1;
1522 offset = MEM_OFFSET (mem);
1523 if (DECL_P (expr))
1525 if (DECL_ALIGN (expr) < align)
1526 return -1;
1528 else if (INDIRECT_REF_P (expr))
1530 if (TYPE_ALIGN (TREE_TYPE (expr)) < (unsigned int) align)
1531 return -1;
1533 else if (TREE_CODE (expr) == COMPONENT_REF)
1535 while (1)
1537 tree inner = TREE_OPERAND (expr, 0);
1538 tree field = TREE_OPERAND (expr, 1);
1539 tree byte_offset = component_ref_field_offset (expr);
1540 tree bit_offset = DECL_FIELD_BIT_OFFSET (field);
1542 if (!byte_offset
1543 || !host_integerp (byte_offset, 1)
1544 || !host_integerp (bit_offset, 1))
1545 return -1;
1547 offset += tree_low_cst (byte_offset, 1);
1548 offset += tree_low_cst (bit_offset, 1) / BITS_PER_UNIT;
1550 if (inner == NULL_TREE)
1552 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field))
1553 < (unsigned int) align)
1554 return -1;
1555 break;
1557 else if (DECL_P (inner))
1559 if (DECL_ALIGN (inner) < align)
1560 return -1;
1561 break;
1563 else if (TREE_CODE (inner) != COMPONENT_REF)
1564 return -1;
1565 expr = inner;
1568 else
1569 return -1;
1571 return offset & ((align / BITS_PER_UNIT) - 1);
1574 /* Given REF (a MEM) and T, either the type of X or the expression
1575 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1576 if we are making a new object of this type. BITPOS is nonzero if
1577 there is an offset outstanding on T that will be applied later. */
1579 void
1580 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1581 HOST_WIDE_INT bitpos)
1583 HOST_WIDE_INT apply_bitpos = 0;
1584 tree type;
1585 struct mem_attrs attrs, *defattrs, *refattrs;
1586 addr_space_t as;
1588 /* It can happen that type_for_mode was given a mode for which there
1589 is no language-level type. In which case it returns NULL, which
1590 we can see here. */
1591 if (t == NULL_TREE)
1592 return;
1594 type = TYPE_P (t) ? t : TREE_TYPE (t);
1595 if (type == error_mark_node)
1596 return;
1598 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1599 wrong answer, as it assumes that DECL_RTL already has the right alias
1600 info. Callers should not set DECL_RTL until after the call to
1601 set_mem_attributes. */
1602 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
1604 memset (&attrs, 0, sizeof (attrs));
1606 /* Get the alias set from the expression or type (perhaps using a
1607 front-end routine) and use it. */
1608 attrs.alias = get_alias_set (t);
1610 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1611 MEM_POINTER (ref) = POINTER_TYPE_P (type);
1613 /* Default values from pre-existing memory attributes if present. */
1614 refattrs = MEM_ATTRS (ref);
1615 if (refattrs)
1617 /* ??? Can this ever happen? Calling this routine on a MEM that
1618 already carries memory attributes should probably be invalid. */
1619 attrs.expr = refattrs->expr;
1620 attrs.offset_known_p = refattrs->offset_known_p;
1621 attrs.offset = refattrs->offset;
1622 attrs.size_known_p = refattrs->size_known_p;
1623 attrs.size = refattrs->size;
1624 attrs.align = refattrs->align;
1627 /* Otherwise, default values from the mode of the MEM reference. */
1628 else
1630 defattrs = mode_mem_attrs[(int) GET_MODE (ref)];
1631 gcc_assert (!defattrs->expr);
1632 gcc_assert (!defattrs->offset_known_p);
1634 /* Respect mode size. */
1635 attrs.size_known_p = defattrs->size_known_p;
1636 attrs.size = defattrs->size;
1637 /* ??? Is this really necessary? We probably should always get
1638 the size from the type below. */
1640 /* Respect mode alignment for STRICT_ALIGNMENT targets if T is a type;
1641 if T is an object, always compute the object alignment below. */
1642 if (TYPE_P (t))
1643 attrs.align = defattrs->align;
1644 else
1645 attrs.align = BITS_PER_UNIT;
1646 /* ??? If T is a type, respecting mode alignment may *also* be wrong
1647 e.g. if the type carries an alignment attribute. Should we be
1648 able to simply always use TYPE_ALIGN? */
1651 /* We can set the alignment from the type if we are making an object,
1652 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1653 if (objectp || TREE_CODE (t) == INDIRECT_REF || TYPE_ALIGN_OK (type))
1654 attrs.align = MAX (attrs.align, TYPE_ALIGN (type));
1656 else if (TREE_CODE (t) == MEM_REF)
1658 tree op0 = TREE_OPERAND (t, 0);
1659 if (TREE_CODE (op0) == ADDR_EXPR
1660 && (DECL_P (TREE_OPERAND (op0, 0))
1661 || CONSTANT_CLASS_P (TREE_OPERAND (op0, 0))))
1663 if (DECL_P (TREE_OPERAND (op0, 0)))
1664 attrs.align = DECL_ALIGN (TREE_OPERAND (op0, 0));
1665 else if (CONSTANT_CLASS_P (TREE_OPERAND (op0, 0)))
1667 attrs.align = TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (op0, 0)));
1668 #ifdef CONSTANT_ALIGNMENT
1669 attrs.align = CONSTANT_ALIGNMENT (TREE_OPERAND (op0, 0),
1670 attrs.align);
1671 #endif
1673 if (TREE_INT_CST_LOW (TREE_OPERAND (t, 1)) != 0)
1675 unsigned HOST_WIDE_INT ioff
1676 = TREE_INT_CST_LOW (TREE_OPERAND (t, 1));
1677 unsigned HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1678 attrs.align = MIN (aoff, attrs.align);
1681 else
1682 /* ??? This isn't fully correct, we can't set the alignment from the
1683 type in all cases. */
1684 attrs.align = MAX (attrs.align, TYPE_ALIGN (type));
1687 else if (TREE_CODE (t) == TARGET_MEM_REF)
1688 /* ??? This isn't fully correct, we can't set the alignment from the
1689 type in all cases. */
1690 attrs.align = MAX (attrs.align, TYPE_ALIGN (type));
1692 /* If the size is known, we can set that. */
1693 tree new_size = TYPE_SIZE_UNIT (type);
1695 /* If T is not a type, we may be able to deduce some more information about
1696 the expression. */
1697 if (! TYPE_P (t))
1699 tree base;
1700 bool align_computed = false;
1702 if (TREE_THIS_VOLATILE (t))
1703 MEM_VOLATILE_P (ref) = 1;
1705 /* Now remove any conversions: they don't change what the underlying
1706 object is. Likewise for SAVE_EXPR. */
1707 while (CONVERT_EXPR_P (t)
1708 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1709 || TREE_CODE (t) == SAVE_EXPR)
1710 t = TREE_OPERAND (t, 0);
1712 /* Note whether this expression can trap. */
1713 MEM_NOTRAP_P (ref) = !tree_could_trap_p (t);
1715 base = get_base_address (t);
1716 if (base)
1718 if (DECL_P (base)
1719 && TREE_READONLY (base)
1720 && (TREE_STATIC (base) || DECL_EXTERNAL (base))
1721 && !TREE_THIS_VOLATILE (base))
1722 MEM_READONLY_P (ref) = 1;
1724 /* Mark static const strings readonly as well. */
1725 if (TREE_CODE (base) == STRING_CST
1726 && TREE_READONLY (base)
1727 && TREE_STATIC (base))
1728 MEM_READONLY_P (ref) = 1;
1730 if (TREE_CODE (base) == MEM_REF
1731 || TREE_CODE (base) == TARGET_MEM_REF)
1732 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (base,
1733 0))));
1734 else
1735 as = TYPE_ADDR_SPACE (TREE_TYPE (base));
1737 else
1738 as = TYPE_ADDR_SPACE (type);
1740 /* If this expression uses it's parent's alias set, mark it such
1741 that we won't change it. */
1742 if (component_uses_parent_alias_set (t))
1743 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1745 /* If this is a decl, set the attributes of the MEM from it. */
1746 if (DECL_P (t))
1748 attrs.expr = t;
1749 attrs.offset_known_p = true;
1750 attrs.offset = 0;
1751 apply_bitpos = bitpos;
1752 new_size = DECL_SIZE_UNIT (t);
1753 attrs.align = DECL_ALIGN (t);
1754 align_computed = true;
1757 /* If this is a constant, we know the alignment. */
1758 else if (CONSTANT_CLASS_P (t))
1760 attrs.align = TYPE_ALIGN (type);
1761 #ifdef CONSTANT_ALIGNMENT
1762 attrs.align = CONSTANT_ALIGNMENT (t, attrs.align);
1763 #endif
1764 align_computed = true;
1767 /* If this is a field reference, record it. */
1768 else if (TREE_CODE (t) == COMPONENT_REF)
1770 attrs.expr = t;
1771 attrs.offset_known_p = true;
1772 attrs.offset = 0;
1773 apply_bitpos = bitpos;
1774 if (DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1775 new_size = DECL_SIZE_UNIT (TREE_OPERAND (t, 1));
1778 /* If this is an array reference, look for an outer field reference. */
1779 else if (TREE_CODE (t) == ARRAY_REF)
1781 tree off_tree = size_zero_node;
1782 /* We can't modify t, because we use it at the end of the
1783 function. */
1784 tree t2 = t;
1788 tree index = TREE_OPERAND (t2, 1);
1789 tree low_bound = array_ref_low_bound (t2);
1790 tree unit_size = array_ref_element_size (t2);
1792 /* We assume all arrays have sizes that are a multiple of a byte.
1793 First subtract the lower bound, if any, in the type of the
1794 index, then convert to sizetype and multiply by the size of
1795 the array element. */
1796 if (! integer_zerop (low_bound))
1797 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
1798 index, low_bound);
1800 off_tree = size_binop (PLUS_EXPR,
1801 size_binop (MULT_EXPR,
1802 fold_convert (sizetype,
1803 index),
1804 unit_size),
1805 off_tree);
1806 t2 = TREE_OPERAND (t2, 0);
1808 while (TREE_CODE (t2) == ARRAY_REF);
1810 if (DECL_P (t2))
1812 attrs.expr = t2;
1813 attrs.offset_known_p = false;
1814 if (host_integerp (off_tree, 1))
1816 HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
1817 HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1818 attrs.align = DECL_ALIGN (t2);
1819 if (aoff && (unsigned HOST_WIDE_INT) aoff < attrs.align)
1820 attrs.align = aoff;
1821 align_computed = true;
1822 attrs.offset_known_p = true;
1823 attrs.offset = ioff;
1824 apply_bitpos = bitpos;
1827 else if (TREE_CODE (t2) == COMPONENT_REF)
1829 attrs.expr = t2;
1830 attrs.offset_known_p = false;
1831 if (host_integerp (off_tree, 1))
1833 attrs.offset_known_p = true;
1834 attrs.offset = tree_low_cst (off_tree, 1);
1835 apply_bitpos = bitpos;
1837 /* ??? Any reason the field size would be different than
1838 the size we got from the type? */
1842 /* If this is an indirect reference, record it. */
1843 else if (TREE_CODE (t) == MEM_REF
1844 || TREE_CODE (t) == TARGET_MEM_REF)
1846 attrs.expr = t;
1847 attrs.offset_known_p = true;
1848 attrs.offset = 0;
1849 apply_bitpos = bitpos;
1852 if (!align_computed)
1854 unsigned int obj_align;
1855 unsigned HOST_WIDE_INT obj_bitpos;
1856 get_object_alignment_1 (t, &obj_align, &obj_bitpos);
1857 obj_bitpos = (obj_bitpos - bitpos) & (obj_align - 1);
1858 if (obj_bitpos != 0)
1859 obj_align = (obj_bitpos & -obj_bitpos);
1860 attrs.align = MAX (attrs.align, obj_align);
1863 else
1864 as = TYPE_ADDR_SPACE (type);
1866 if (host_integerp (new_size, 1))
1868 attrs.size_known_p = true;
1869 attrs.size = tree_low_cst (new_size, 1);
1872 /* If we modified OFFSET based on T, then subtract the outstanding
1873 bit position offset. Similarly, increase the size of the accessed
1874 object to contain the negative offset. */
1875 if (apply_bitpos)
1877 gcc_assert (attrs.offset_known_p);
1878 attrs.offset -= apply_bitpos / BITS_PER_UNIT;
1879 if (attrs.size_known_p)
1880 attrs.size += apply_bitpos / BITS_PER_UNIT;
1883 /* Now set the attributes we computed above. */
1884 attrs.addrspace = as;
1885 set_mem_attrs (ref, &attrs);
1888 void
1889 set_mem_attributes (rtx ref, tree t, int objectp)
1891 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1894 /* Set the alias set of MEM to SET. */
1896 void
1897 set_mem_alias_set (rtx mem, alias_set_type set)
1899 struct mem_attrs attrs;
1901 /* If the new and old alias sets don't conflict, something is wrong. */
1902 gcc_checking_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
1903 attrs = *get_mem_attrs (mem);
1904 attrs.alias = set;
1905 set_mem_attrs (mem, &attrs);
1908 /* Set the address space of MEM to ADDRSPACE (target-defined). */
1910 void
1911 set_mem_addr_space (rtx mem, addr_space_t addrspace)
1913 struct mem_attrs attrs;
1915 attrs = *get_mem_attrs (mem);
1916 attrs.addrspace = addrspace;
1917 set_mem_attrs (mem, &attrs);
1920 /* Set the alignment of MEM to ALIGN bits. */
1922 void
1923 set_mem_align (rtx mem, unsigned int align)
1925 struct mem_attrs attrs;
1927 attrs = *get_mem_attrs (mem);
1928 attrs.align = align;
1929 set_mem_attrs (mem, &attrs);
1932 /* Set the expr for MEM to EXPR. */
1934 void
1935 set_mem_expr (rtx mem, tree expr)
1937 struct mem_attrs attrs;
1939 attrs = *get_mem_attrs (mem);
1940 attrs.expr = expr;
1941 set_mem_attrs (mem, &attrs);
1944 /* Set the offset of MEM to OFFSET. */
1946 void
1947 set_mem_offset (rtx mem, HOST_WIDE_INT offset)
1949 struct mem_attrs attrs;
1951 attrs = *get_mem_attrs (mem);
1952 attrs.offset_known_p = true;
1953 attrs.offset = offset;
1954 set_mem_attrs (mem, &attrs);
1957 /* Clear the offset of MEM. */
1959 void
1960 clear_mem_offset (rtx mem)
1962 struct mem_attrs attrs;
1964 attrs = *get_mem_attrs (mem);
1965 attrs.offset_known_p = false;
1966 set_mem_attrs (mem, &attrs);
1969 /* Set the size of MEM to SIZE. */
1971 void
1972 set_mem_size (rtx mem, HOST_WIDE_INT size)
1974 struct mem_attrs attrs;
1976 attrs = *get_mem_attrs (mem);
1977 attrs.size_known_p = true;
1978 attrs.size = size;
1979 set_mem_attrs (mem, &attrs);
1982 /* Clear the size of MEM. */
1984 void
1985 clear_mem_size (rtx mem)
1987 struct mem_attrs attrs;
1989 attrs = *get_mem_attrs (mem);
1990 attrs.size_known_p = false;
1991 set_mem_attrs (mem, &attrs);
1994 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1995 and its address changed to ADDR. (VOIDmode means don't change the mode.
1996 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1997 returned memory location is required to be valid. The memory
1998 attributes are not changed. */
2000 static rtx
2001 change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate)
2003 addr_space_t as;
2004 rtx new_rtx;
2006 gcc_assert (MEM_P (memref));
2007 as = MEM_ADDR_SPACE (memref);
2008 if (mode == VOIDmode)
2009 mode = GET_MODE (memref);
2010 if (addr == 0)
2011 addr = XEXP (memref, 0);
2012 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
2013 && (!validate || memory_address_addr_space_p (mode, addr, as)))
2014 return memref;
2016 if (validate)
2018 if (reload_in_progress || reload_completed)
2019 gcc_assert (memory_address_addr_space_p (mode, addr, as));
2020 else
2021 addr = memory_address_addr_space (mode, addr, as);
2024 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
2025 return memref;
2027 new_rtx = gen_rtx_MEM (mode, addr);
2028 MEM_COPY_ATTRIBUTES (new_rtx, memref);
2029 return new_rtx;
2032 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
2033 way we are changing MEMREF, so we only preserve the alias set. */
2036 change_address (rtx memref, enum machine_mode mode, rtx addr)
2038 rtx new_rtx = change_address_1 (memref, mode, addr, 1);
2039 enum machine_mode mmode = GET_MODE (new_rtx);
2040 struct mem_attrs attrs, *defattrs;
2042 attrs = *get_mem_attrs (memref);
2043 defattrs = mode_mem_attrs[(int) mmode];
2044 attrs.expr = NULL_TREE;
2045 attrs.offset_known_p = false;
2046 attrs.size_known_p = defattrs->size_known_p;
2047 attrs.size = defattrs->size;
2048 attrs.align = defattrs->align;
2050 /* If there are no changes, just return the original memory reference. */
2051 if (new_rtx == memref)
2053 if (mem_attrs_eq_p (get_mem_attrs (memref), &attrs))
2054 return new_rtx;
2056 new_rtx = gen_rtx_MEM (mmode, XEXP (memref, 0));
2057 MEM_COPY_ATTRIBUTES (new_rtx, memref);
2060 set_mem_attrs (new_rtx, &attrs);
2061 return new_rtx;
2064 /* Return a memory reference like MEMREF, but with its mode changed
2065 to MODE and its address offset by OFFSET bytes. If VALIDATE is
2066 nonzero, the memory address is forced to be valid.
2067 If ADJUST_ADDRESS is zero, OFFSET is only used to update MEM_ATTRS
2068 and the caller is responsible for adjusting MEMREF base register.
2069 If ADJUST_OBJECT is zero, the underlying object associated with the
2070 memory reference is left unchanged and the caller is responsible for
2071 dealing with it. Otherwise, if the new memory reference is outside
2072 the underlying object, even partially, then the object is dropped.
2073 SIZE, if nonzero, is the size of an access in cases where MODE
2074 has no inherent size. */
2077 adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
2078 int validate, int adjust_address, int adjust_object,
2079 HOST_WIDE_INT size)
2081 rtx addr = XEXP (memref, 0);
2082 rtx new_rtx;
2083 enum machine_mode address_mode;
2084 int pbits;
2085 struct mem_attrs attrs = *get_mem_attrs (memref), *defattrs;
2086 unsigned HOST_WIDE_INT max_align;
2087 #ifdef POINTERS_EXTEND_UNSIGNED
2088 enum machine_mode pointer_mode
2089 = targetm.addr_space.pointer_mode (attrs.addrspace);
2090 #endif
2092 /* VOIDmode means no mode change for change_address_1. */
2093 if (mode == VOIDmode)
2094 mode = GET_MODE (memref);
2096 /* Take the size of non-BLKmode accesses from the mode. */
2097 defattrs = mode_mem_attrs[(int) mode];
2098 if (defattrs->size_known_p)
2099 size = defattrs->size;
2101 /* If there are no changes, just return the original memory reference. */
2102 if (mode == GET_MODE (memref) && !offset
2103 && (size == 0 || (attrs.size_known_p && attrs.size == size))
2104 && (!validate || memory_address_addr_space_p (mode, addr,
2105 attrs.addrspace)))
2106 return memref;
2108 /* ??? Prefer to create garbage instead of creating shared rtl.
2109 This may happen even if offset is nonzero -- consider
2110 (plus (plus reg reg) const_int) -- so do this always. */
2111 addr = copy_rtx (addr);
2113 /* Convert a possibly large offset to a signed value within the
2114 range of the target address space. */
2115 address_mode = get_address_mode (memref);
2116 pbits = GET_MODE_BITSIZE (address_mode);
2117 if (HOST_BITS_PER_WIDE_INT > pbits)
2119 int shift = HOST_BITS_PER_WIDE_INT - pbits;
2120 offset = (((HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) offset << shift))
2121 >> shift);
2124 if (adjust_address)
2126 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2127 object, we can merge it into the LO_SUM. */
2128 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
2129 && offset >= 0
2130 && (unsigned HOST_WIDE_INT) offset
2131 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
2132 addr = gen_rtx_LO_SUM (address_mode, XEXP (addr, 0),
2133 plus_constant (address_mode,
2134 XEXP (addr, 1), offset));
2135 #ifdef POINTERS_EXTEND_UNSIGNED
2136 /* If MEMREF is a ZERO_EXTEND from pointer_mode and the offset is valid
2137 in that mode, we merge it into the ZERO_EXTEND. We take advantage of
2138 the fact that pointers are not allowed to overflow. */
2139 else if (POINTERS_EXTEND_UNSIGNED > 0
2140 && GET_CODE (addr) == ZERO_EXTEND
2141 && GET_MODE (XEXP (addr, 0)) == pointer_mode
2142 && trunc_int_for_mode (offset, pointer_mode) == offset)
2143 addr = gen_rtx_ZERO_EXTEND (address_mode,
2144 plus_constant (pointer_mode,
2145 XEXP (addr, 0), offset));
2146 #endif
2147 else
2148 addr = plus_constant (address_mode, addr, offset);
2151 new_rtx = change_address_1 (memref, mode, addr, validate);
2153 /* If the address is a REG, change_address_1 rightfully returns memref,
2154 but this would destroy memref's MEM_ATTRS. */
2155 if (new_rtx == memref && offset != 0)
2156 new_rtx = copy_rtx (new_rtx);
2158 /* Conservatively drop the object if we don't know where we start from. */
2159 if (adjust_object && (!attrs.offset_known_p || !attrs.size_known_p))
2161 attrs.expr = NULL_TREE;
2162 attrs.alias = 0;
2165 /* Compute the new values of the memory attributes due to this adjustment.
2166 We add the offsets and update the alignment. */
2167 if (attrs.offset_known_p)
2169 attrs.offset += offset;
2171 /* Drop the object if the new left end is not within its bounds. */
2172 if (adjust_object && attrs.offset < 0)
2174 attrs.expr = NULL_TREE;
2175 attrs.alias = 0;
2179 /* Compute the new alignment by taking the MIN of the alignment and the
2180 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2181 if zero. */
2182 if (offset != 0)
2184 max_align = (offset & -offset) * BITS_PER_UNIT;
2185 attrs.align = MIN (attrs.align, max_align);
2188 if (size)
2190 /* Drop the object if the new right end is not within its bounds. */
2191 if (adjust_object && (offset + size) > attrs.size)
2193 attrs.expr = NULL_TREE;
2194 attrs.alias = 0;
2196 attrs.size_known_p = true;
2197 attrs.size = size;
2199 else if (attrs.size_known_p)
2201 gcc_assert (!adjust_object);
2202 attrs.size -= offset;
2203 /* ??? The store_by_pieces machinery generates negative sizes,
2204 so don't assert for that here. */
2207 set_mem_attrs (new_rtx, &attrs);
2209 return new_rtx;
2212 /* Return a memory reference like MEMREF, but with its mode changed
2213 to MODE and its address changed to ADDR, which is assumed to be
2214 MEMREF offset by OFFSET bytes. If VALIDATE is
2215 nonzero, the memory address is forced to be valid. */
2218 adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
2219 HOST_WIDE_INT offset, int validate)
2221 memref = change_address_1 (memref, VOIDmode, addr, validate);
2222 return adjust_address_1 (memref, mode, offset, validate, 0, 0, 0);
2225 /* Return a memory reference like MEMREF, but whose address is changed by
2226 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2227 known to be in OFFSET (possibly 1). */
2230 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
2232 rtx new_rtx, addr = XEXP (memref, 0);
2233 enum machine_mode address_mode;
2234 struct mem_attrs attrs, *defattrs;
2236 attrs = *get_mem_attrs (memref);
2237 address_mode = get_address_mode (memref);
2238 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2240 /* At this point we don't know _why_ the address is invalid. It
2241 could have secondary memory references, multiplies or anything.
2243 However, if we did go and rearrange things, we can wind up not
2244 being able to recognize the magic around pic_offset_table_rtx.
2245 This stuff is fragile, and is yet another example of why it is
2246 bad to expose PIC machinery too early. */
2247 if (! memory_address_addr_space_p (GET_MODE (memref), new_rtx,
2248 attrs.addrspace)
2249 && GET_CODE (addr) == PLUS
2250 && XEXP (addr, 0) == pic_offset_table_rtx)
2252 addr = force_reg (GET_MODE (addr), addr);
2253 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2256 update_temp_slot_address (XEXP (memref, 0), new_rtx);
2257 new_rtx = change_address_1 (memref, VOIDmode, new_rtx, 1);
2259 /* If there are no changes, just return the original memory reference. */
2260 if (new_rtx == memref)
2261 return new_rtx;
2263 /* Update the alignment to reflect the offset. Reset the offset, which
2264 we don't know. */
2265 defattrs = mode_mem_attrs[(int) GET_MODE (new_rtx)];
2266 attrs.offset_known_p = false;
2267 attrs.size_known_p = defattrs->size_known_p;
2268 attrs.size = defattrs->size;
2269 attrs.align = MIN (attrs.align, pow2 * BITS_PER_UNIT);
2270 set_mem_attrs (new_rtx, &attrs);
2271 return new_rtx;
2274 /* Return a memory reference like MEMREF, but with its address changed to
2275 ADDR. The caller is asserting that the actual piece of memory pointed
2276 to is the same, just the form of the address is being changed, such as
2277 by putting something into a register. */
2280 replace_equiv_address (rtx memref, rtx addr)
2282 /* change_address_1 copies the memory attribute structure without change
2283 and that's exactly what we want here. */
2284 update_temp_slot_address (XEXP (memref, 0), addr);
2285 return change_address_1 (memref, VOIDmode, addr, 1);
2288 /* Likewise, but the reference is not required to be valid. */
2291 replace_equiv_address_nv (rtx memref, rtx addr)
2293 return change_address_1 (memref, VOIDmode, addr, 0);
2296 /* Return a memory reference like MEMREF, but with its mode widened to
2297 MODE and offset by OFFSET. This would be used by targets that e.g.
2298 cannot issue QImode memory operations and have to use SImode memory
2299 operations plus masking logic. */
2302 widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
2304 rtx new_rtx = adjust_address_1 (memref, mode, offset, 1, 1, 0, 0);
2305 struct mem_attrs attrs;
2306 unsigned int size = GET_MODE_SIZE (mode);
2308 /* If there are no changes, just return the original memory reference. */
2309 if (new_rtx == memref)
2310 return new_rtx;
2312 attrs = *get_mem_attrs (new_rtx);
2314 /* If we don't know what offset we were at within the expression, then
2315 we can't know if we've overstepped the bounds. */
2316 if (! attrs.offset_known_p)
2317 attrs.expr = NULL_TREE;
2319 while (attrs.expr)
2321 if (TREE_CODE (attrs.expr) == COMPONENT_REF)
2323 tree field = TREE_OPERAND (attrs.expr, 1);
2324 tree offset = component_ref_field_offset (attrs.expr);
2326 if (! DECL_SIZE_UNIT (field))
2328 attrs.expr = NULL_TREE;
2329 break;
2332 /* Is the field at least as large as the access? If so, ok,
2333 otherwise strip back to the containing structure. */
2334 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2335 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2336 && attrs.offset >= 0)
2337 break;
2339 if (! host_integerp (offset, 1))
2341 attrs.expr = NULL_TREE;
2342 break;
2345 attrs.expr = TREE_OPERAND (attrs.expr, 0);
2346 attrs.offset += tree_low_cst (offset, 1);
2347 attrs.offset += (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2348 / BITS_PER_UNIT);
2350 /* Similarly for the decl. */
2351 else if (DECL_P (attrs.expr)
2352 && DECL_SIZE_UNIT (attrs.expr)
2353 && TREE_CODE (DECL_SIZE_UNIT (attrs.expr)) == INTEGER_CST
2354 && compare_tree_int (DECL_SIZE_UNIT (attrs.expr), size) >= 0
2355 && (! attrs.offset_known_p || attrs.offset >= 0))
2356 break;
2357 else
2359 /* The widened memory access overflows the expression, which means
2360 that it could alias another expression. Zap it. */
2361 attrs.expr = NULL_TREE;
2362 break;
2366 if (! attrs.expr)
2367 attrs.offset_known_p = false;
2369 /* The widened memory may alias other stuff, so zap the alias set. */
2370 /* ??? Maybe use get_alias_set on any remaining expression. */
2371 attrs.alias = 0;
2372 attrs.size_known_p = true;
2373 attrs.size = size;
2374 set_mem_attrs (new_rtx, &attrs);
2375 return new_rtx;
2378 /* A fake decl that is used as the MEM_EXPR of spill slots. */
2379 static GTY(()) tree spill_slot_decl;
2381 tree
2382 get_spill_slot_decl (bool force_build_p)
2384 tree d = spill_slot_decl;
2385 rtx rd;
2386 struct mem_attrs attrs;
2388 if (d || !force_build_p)
2389 return d;
2391 d = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
2392 VAR_DECL, get_identifier ("%sfp"), void_type_node);
2393 DECL_ARTIFICIAL (d) = 1;
2394 DECL_IGNORED_P (d) = 1;
2395 TREE_USED (d) = 1;
2396 spill_slot_decl = d;
2398 rd = gen_rtx_MEM (BLKmode, frame_pointer_rtx);
2399 MEM_NOTRAP_P (rd) = 1;
2400 attrs = *mode_mem_attrs[(int) BLKmode];
2401 attrs.alias = new_alias_set ();
2402 attrs.expr = d;
2403 set_mem_attrs (rd, &attrs);
2404 SET_DECL_RTL (d, rd);
2406 return d;
2409 /* Given MEM, a result from assign_stack_local, fill in the memory
2410 attributes as appropriate for a register allocator spill slot.
2411 These slots are not aliasable by other memory. We arrange for
2412 them all to use a single MEM_EXPR, so that the aliasing code can
2413 work properly in the case of shared spill slots. */
2415 void
2416 set_mem_attrs_for_spill (rtx mem)
2418 struct mem_attrs attrs;
2419 rtx addr;
2421 attrs = *get_mem_attrs (mem);
2422 attrs.expr = get_spill_slot_decl (true);
2423 attrs.alias = MEM_ALIAS_SET (DECL_RTL (attrs.expr));
2424 attrs.addrspace = ADDR_SPACE_GENERIC;
2426 /* We expect the incoming memory to be of the form:
2427 (mem:MODE (plus (reg sfp) (const_int offset)))
2428 with perhaps the plus missing for offset = 0. */
2429 addr = XEXP (mem, 0);
2430 attrs.offset_known_p = true;
2431 attrs.offset = 0;
2432 if (GET_CODE (addr) == PLUS
2433 && CONST_INT_P (XEXP (addr, 1)))
2434 attrs.offset = INTVAL (XEXP (addr, 1));
2436 set_mem_attrs (mem, &attrs);
2437 MEM_NOTRAP_P (mem) = 1;
2440 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2443 gen_label_rtx (void)
2445 return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
2446 NULL, label_num++, NULL);
2449 /* For procedure integration. */
2451 /* Install new pointers to the first and last insns in the chain.
2452 Also, set cur_insn_uid to one higher than the last in use.
2453 Used for an inline-procedure after copying the insn chain. */
2455 void
2456 set_new_first_and_last_insn (rtx first, rtx last)
2458 rtx insn;
2460 set_first_insn (first);
2461 set_last_insn (last);
2462 cur_insn_uid = 0;
2464 if (MIN_NONDEBUG_INSN_UID || MAY_HAVE_DEBUG_INSNS)
2466 int debug_count = 0;
2468 cur_insn_uid = MIN_NONDEBUG_INSN_UID - 1;
2469 cur_debug_insn_uid = 0;
2471 for (insn = first; insn; insn = NEXT_INSN (insn))
2472 if (INSN_UID (insn) < MIN_NONDEBUG_INSN_UID)
2473 cur_debug_insn_uid = MAX (cur_debug_insn_uid, INSN_UID (insn));
2474 else
2476 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2477 if (DEBUG_INSN_P (insn))
2478 debug_count++;
2481 if (debug_count)
2482 cur_debug_insn_uid = MIN_NONDEBUG_INSN_UID + debug_count;
2483 else
2484 cur_debug_insn_uid++;
2486 else
2487 for (insn = first; insn; insn = NEXT_INSN (insn))
2488 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2490 cur_insn_uid++;
2493 /* Go through all the RTL insn bodies and copy any invalid shared
2494 structure. This routine should only be called once. */
2496 static void
2497 unshare_all_rtl_1 (rtx insn)
2499 /* Unshare just about everything else. */
2500 unshare_all_rtl_in_chain (insn);
2502 /* Make sure the addresses of stack slots found outside the insn chain
2503 (such as, in DECL_RTL of a variable) are not shared
2504 with the insn chain.
2506 This special care is necessary when the stack slot MEM does not
2507 actually appear in the insn chain. If it does appear, its address
2508 is unshared from all else at that point. */
2509 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2512 /* Go through all the RTL insn bodies and copy any invalid shared
2513 structure, again. This is a fairly expensive thing to do so it
2514 should be done sparingly. */
2516 void
2517 unshare_all_rtl_again (rtx insn)
2519 rtx p;
2520 tree decl;
2522 for (p = insn; p; p = NEXT_INSN (p))
2523 if (INSN_P (p))
2525 reset_used_flags (PATTERN (p));
2526 reset_used_flags (REG_NOTES (p));
2527 if (CALL_P (p))
2528 reset_used_flags (CALL_INSN_FUNCTION_USAGE (p));
2531 /* Make sure that virtual stack slots are not shared. */
2532 set_used_decls (DECL_INITIAL (cfun->decl));
2534 /* Make sure that virtual parameters are not shared. */
2535 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = DECL_CHAIN (decl))
2536 set_used_flags (DECL_RTL (decl));
2538 reset_used_flags (stack_slot_list);
2540 unshare_all_rtl_1 (insn);
2543 unsigned int
2544 unshare_all_rtl (void)
2546 unshare_all_rtl_1 (get_insns ());
2547 return 0;
2551 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2552 Recursively does the same for subexpressions. */
2554 static void
2555 verify_rtx_sharing (rtx orig, rtx insn)
2557 rtx x = orig;
2558 int i;
2559 enum rtx_code code;
2560 const char *format_ptr;
2562 if (x == 0)
2563 return;
2565 code = GET_CODE (x);
2567 /* These types may be freely shared. */
2569 switch (code)
2571 case REG:
2572 case DEBUG_EXPR:
2573 case VALUE:
2574 CASE_CONST_ANY:
2575 case SYMBOL_REF:
2576 case LABEL_REF:
2577 case CODE_LABEL:
2578 case PC:
2579 case CC0:
2580 case RETURN:
2581 case SIMPLE_RETURN:
2582 case SCRATCH:
2583 return;
2584 /* SCRATCH must be shared because they represent distinct values. */
2585 case CLOBBER:
2586 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2587 return;
2588 break;
2590 case CONST:
2591 if (shared_const_p (orig))
2592 return;
2593 break;
2595 case MEM:
2596 /* A MEM is allowed to be shared if its address is constant. */
2597 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2598 || reload_completed || reload_in_progress)
2599 return;
2601 break;
2603 default:
2604 break;
2607 /* This rtx may not be shared. If it has already been seen,
2608 replace it with a copy of itself. */
2609 #ifdef ENABLE_CHECKING
2610 if (RTX_FLAG (x, used))
2612 error ("invalid rtl sharing found in the insn");
2613 debug_rtx (insn);
2614 error ("shared rtx");
2615 debug_rtx (x);
2616 internal_error ("internal consistency failure");
2618 #endif
2619 gcc_assert (!RTX_FLAG (x, used));
2621 RTX_FLAG (x, used) = 1;
2623 /* Now scan the subexpressions recursively. */
2625 format_ptr = GET_RTX_FORMAT (code);
2627 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2629 switch (*format_ptr++)
2631 case 'e':
2632 verify_rtx_sharing (XEXP (x, i), insn);
2633 break;
2635 case 'E':
2636 if (XVEC (x, i) != NULL)
2638 int j;
2639 int len = XVECLEN (x, i);
2641 for (j = 0; j < len; j++)
2643 /* We allow sharing of ASM_OPERANDS inside single
2644 instruction. */
2645 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2646 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2647 == ASM_OPERANDS))
2648 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2649 else
2650 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2653 break;
2656 return;
2659 /* Go through all the RTL insn bodies and check that there is no unexpected
2660 sharing in between the subexpressions. */
2662 DEBUG_FUNCTION void
2663 verify_rtl_sharing (void)
2665 rtx p;
2667 timevar_push (TV_VERIFY_RTL_SHARING);
2669 for (p = get_insns (); p; p = NEXT_INSN (p))
2670 if (INSN_P (p))
2672 reset_used_flags (PATTERN (p));
2673 reset_used_flags (REG_NOTES (p));
2674 if (CALL_P (p))
2675 reset_used_flags (CALL_INSN_FUNCTION_USAGE (p));
2676 if (GET_CODE (PATTERN (p)) == SEQUENCE)
2678 int i;
2679 rtx q, sequence = PATTERN (p);
2681 for (i = 0; i < XVECLEN (sequence, 0); i++)
2683 q = XVECEXP (sequence, 0, i);
2684 gcc_assert (INSN_P (q));
2685 reset_used_flags (PATTERN (q));
2686 reset_used_flags (REG_NOTES (q));
2687 if (CALL_P (q))
2688 reset_used_flags (CALL_INSN_FUNCTION_USAGE (q));
2693 for (p = get_insns (); p; p = NEXT_INSN (p))
2694 if (INSN_P (p))
2696 verify_rtx_sharing (PATTERN (p), p);
2697 verify_rtx_sharing (REG_NOTES (p), p);
2698 if (CALL_P (p))
2699 verify_rtx_sharing (CALL_INSN_FUNCTION_USAGE (p), p);
2702 timevar_pop (TV_VERIFY_RTL_SHARING);
2705 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2706 Assumes the mark bits are cleared at entry. */
2708 void
2709 unshare_all_rtl_in_chain (rtx insn)
2711 for (; insn; insn = NEXT_INSN (insn))
2712 if (INSN_P (insn))
2714 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2715 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2716 if (CALL_P (insn))
2717 CALL_INSN_FUNCTION_USAGE (insn)
2718 = copy_rtx_if_shared (CALL_INSN_FUNCTION_USAGE (insn));
2722 /* Go through all virtual stack slots of a function and mark them as
2723 shared. We never replace the DECL_RTLs themselves with a copy,
2724 but expressions mentioned into a DECL_RTL cannot be shared with
2725 expressions in the instruction stream.
2727 Note that reload may convert pseudo registers into memories in-place.
2728 Pseudo registers are always shared, but MEMs never are. Thus if we
2729 reset the used flags on MEMs in the instruction stream, we must set
2730 them again on MEMs that appear in DECL_RTLs. */
2732 static void
2733 set_used_decls (tree blk)
2735 tree t;
2737 /* Mark decls. */
2738 for (t = BLOCK_VARS (blk); t; t = DECL_CHAIN (t))
2739 if (DECL_RTL_SET_P (t))
2740 set_used_flags (DECL_RTL (t));
2742 /* Now process sub-blocks. */
2743 for (t = BLOCK_SUBBLOCKS (blk); t; t = BLOCK_CHAIN (t))
2744 set_used_decls (t);
2747 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2748 Recursively does the same for subexpressions. Uses
2749 copy_rtx_if_shared_1 to reduce stack space. */
2752 copy_rtx_if_shared (rtx orig)
2754 copy_rtx_if_shared_1 (&orig);
2755 return orig;
2758 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2759 use. Recursively does the same for subexpressions. */
2761 static void
2762 copy_rtx_if_shared_1 (rtx *orig1)
2764 rtx x;
2765 int i;
2766 enum rtx_code code;
2767 rtx *last_ptr;
2768 const char *format_ptr;
2769 int copied = 0;
2770 int length;
2772 /* Repeat is used to turn tail-recursion into iteration. */
2773 repeat:
2774 x = *orig1;
2776 if (x == 0)
2777 return;
2779 code = GET_CODE (x);
2781 /* These types may be freely shared. */
2783 switch (code)
2785 case REG:
2786 case DEBUG_EXPR:
2787 case VALUE:
2788 CASE_CONST_ANY:
2789 case SYMBOL_REF:
2790 case LABEL_REF:
2791 case CODE_LABEL:
2792 case PC:
2793 case CC0:
2794 case RETURN:
2795 case SIMPLE_RETURN:
2796 case SCRATCH:
2797 /* SCRATCH must be shared because they represent distinct values. */
2798 return;
2799 case CLOBBER:
2800 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2801 return;
2802 break;
2804 case CONST:
2805 if (shared_const_p (x))
2806 return;
2807 break;
2809 case DEBUG_INSN:
2810 case INSN:
2811 case JUMP_INSN:
2812 case CALL_INSN:
2813 case NOTE:
2814 case BARRIER:
2815 /* The chain of insns is not being copied. */
2816 return;
2818 default:
2819 break;
2822 /* This rtx may not be shared. If it has already been seen,
2823 replace it with a copy of itself. */
2825 if (RTX_FLAG (x, used))
2827 x = shallow_copy_rtx (x);
2828 copied = 1;
2830 RTX_FLAG (x, used) = 1;
2832 /* Now scan the subexpressions recursively.
2833 We can store any replaced subexpressions directly into X
2834 since we know X is not shared! Any vectors in X
2835 must be copied if X was copied. */
2837 format_ptr = GET_RTX_FORMAT (code);
2838 length = GET_RTX_LENGTH (code);
2839 last_ptr = NULL;
2841 for (i = 0; i < length; i++)
2843 switch (*format_ptr++)
2845 case 'e':
2846 if (last_ptr)
2847 copy_rtx_if_shared_1 (last_ptr);
2848 last_ptr = &XEXP (x, i);
2849 break;
2851 case 'E':
2852 if (XVEC (x, i) != NULL)
2854 int j;
2855 int len = XVECLEN (x, i);
2857 /* Copy the vector iff I copied the rtx and the length
2858 is nonzero. */
2859 if (copied && len > 0)
2860 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2862 /* Call recursively on all inside the vector. */
2863 for (j = 0; j < len; j++)
2865 if (last_ptr)
2866 copy_rtx_if_shared_1 (last_ptr);
2867 last_ptr = &XVECEXP (x, i, j);
2870 break;
2873 *orig1 = x;
2874 if (last_ptr)
2876 orig1 = last_ptr;
2877 goto repeat;
2879 return;
2882 /* Set the USED bit in X and its non-shareable subparts to FLAG. */
2884 static void
2885 mark_used_flags (rtx x, int flag)
2887 int i, j;
2888 enum rtx_code code;
2889 const char *format_ptr;
2890 int length;
2892 /* Repeat is used to turn tail-recursion into iteration. */
2893 repeat:
2894 if (x == 0)
2895 return;
2897 code = GET_CODE (x);
2899 /* These types may be freely shared so we needn't do any resetting
2900 for them. */
2902 switch (code)
2904 case REG:
2905 case DEBUG_EXPR:
2906 case VALUE:
2907 CASE_CONST_ANY:
2908 case SYMBOL_REF:
2909 case CODE_LABEL:
2910 case PC:
2911 case CC0:
2912 case RETURN:
2913 case SIMPLE_RETURN:
2914 return;
2916 case DEBUG_INSN:
2917 case INSN:
2918 case JUMP_INSN:
2919 case CALL_INSN:
2920 case NOTE:
2921 case LABEL_REF:
2922 case BARRIER:
2923 /* The chain of insns is not being copied. */
2924 return;
2926 default:
2927 break;
2930 RTX_FLAG (x, used) = flag;
2932 format_ptr = GET_RTX_FORMAT (code);
2933 length = GET_RTX_LENGTH (code);
2935 for (i = 0; i < length; i++)
2937 switch (*format_ptr++)
2939 case 'e':
2940 if (i == length-1)
2942 x = XEXP (x, i);
2943 goto repeat;
2945 mark_used_flags (XEXP (x, i), flag);
2946 break;
2948 case 'E':
2949 for (j = 0; j < XVECLEN (x, i); j++)
2950 mark_used_flags (XVECEXP (x, i, j), flag);
2951 break;
2956 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2957 to look for shared sub-parts. */
2959 void
2960 reset_used_flags (rtx x)
2962 mark_used_flags (x, 0);
2965 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2966 to look for shared sub-parts. */
2968 void
2969 set_used_flags (rtx x)
2971 mark_used_flags (x, 1);
2974 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2975 Return X or the rtx for the pseudo reg the value of X was copied into.
2976 OTHER must be valid as a SET_DEST. */
2979 make_safe_from (rtx x, rtx other)
2981 while (1)
2982 switch (GET_CODE (other))
2984 case SUBREG:
2985 other = SUBREG_REG (other);
2986 break;
2987 case STRICT_LOW_PART:
2988 case SIGN_EXTEND:
2989 case ZERO_EXTEND:
2990 other = XEXP (other, 0);
2991 break;
2992 default:
2993 goto done;
2995 done:
2996 if ((MEM_P (other)
2997 && ! CONSTANT_P (x)
2998 && !REG_P (x)
2999 && GET_CODE (x) != SUBREG)
3000 || (REG_P (other)
3001 && (REGNO (other) < FIRST_PSEUDO_REGISTER
3002 || reg_mentioned_p (other, x))))
3004 rtx temp = gen_reg_rtx (GET_MODE (x));
3005 emit_move_insn (temp, x);
3006 return temp;
3008 return x;
3011 /* Emission of insns (adding them to the doubly-linked list). */
3013 /* Return the last insn emitted, even if it is in a sequence now pushed. */
3016 get_last_insn_anywhere (void)
3018 struct sequence_stack *stack;
3019 if (get_last_insn ())
3020 return get_last_insn ();
3021 for (stack = seq_stack; stack; stack = stack->next)
3022 if (stack->last != 0)
3023 return stack->last;
3024 return 0;
3027 /* Return the first nonnote insn emitted in current sequence or current
3028 function. This routine looks inside SEQUENCEs. */
3031 get_first_nonnote_insn (void)
3033 rtx insn = get_insns ();
3035 if (insn)
3037 if (NOTE_P (insn))
3038 for (insn = next_insn (insn);
3039 insn && NOTE_P (insn);
3040 insn = next_insn (insn))
3041 continue;
3042 else
3044 if (NONJUMP_INSN_P (insn)
3045 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3046 insn = XVECEXP (PATTERN (insn), 0, 0);
3050 return insn;
3053 /* Return the last nonnote insn emitted in current sequence or current
3054 function. This routine looks inside SEQUENCEs. */
3057 get_last_nonnote_insn (void)
3059 rtx insn = get_last_insn ();
3061 if (insn)
3063 if (NOTE_P (insn))
3064 for (insn = previous_insn (insn);
3065 insn && NOTE_P (insn);
3066 insn = previous_insn (insn))
3067 continue;
3068 else
3070 if (NONJUMP_INSN_P (insn)
3071 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3072 insn = XVECEXP (PATTERN (insn), 0,
3073 XVECLEN (PATTERN (insn), 0) - 1);
3077 return insn;
3080 /* Return the number of actual (non-debug) insns emitted in this
3081 function. */
3084 get_max_insn_count (void)
3086 int n = cur_insn_uid;
3088 /* The table size must be stable across -g, to avoid codegen
3089 differences due to debug insns, and not be affected by
3090 -fmin-insn-uid, to avoid excessive table size and to simplify
3091 debugging of -fcompare-debug failures. */
3092 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3093 n -= cur_debug_insn_uid;
3094 else
3095 n -= MIN_NONDEBUG_INSN_UID;
3097 return n;
3101 /* Return the next insn. If it is a SEQUENCE, return the first insn
3102 of the sequence. */
3105 next_insn (rtx insn)
3107 if (insn)
3109 insn = NEXT_INSN (insn);
3110 if (insn && NONJUMP_INSN_P (insn)
3111 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3112 insn = XVECEXP (PATTERN (insn), 0, 0);
3115 return insn;
3118 /* Return the previous insn. If it is a SEQUENCE, return the last insn
3119 of the sequence. */
3122 previous_insn (rtx insn)
3124 if (insn)
3126 insn = PREV_INSN (insn);
3127 if (insn && NONJUMP_INSN_P (insn)
3128 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3129 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
3132 return insn;
3135 /* Return the next insn after INSN that is not a NOTE. This routine does not
3136 look inside SEQUENCEs. */
3139 next_nonnote_insn (rtx insn)
3141 while (insn)
3143 insn = NEXT_INSN (insn);
3144 if (insn == 0 || !NOTE_P (insn))
3145 break;
3148 return insn;
3151 /* Return the next insn after INSN that is not a NOTE, but stop the
3152 search before we enter another basic block. This routine does not
3153 look inside SEQUENCEs. */
3156 next_nonnote_insn_bb (rtx insn)
3158 while (insn)
3160 insn = NEXT_INSN (insn);
3161 if (insn == 0 || !NOTE_P (insn))
3162 break;
3163 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3164 return NULL_RTX;
3167 return insn;
3170 /* Return the previous insn before INSN that is not a NOTE. This routine does
3171 not look inside SEQUENCEs. */
3174 prev_nonnote_insn (rtx insn)
3176 while (insn)
3178 insn = PREV_INSN (insn);
3179 if (insn == 0 || !NOTE_P (insn))
3180 break;
3183 return insn;
3186 /* Return the previous insn before INSN that is not a NOTE, but stop
3187 the search before we enter another basic block. This routine does
3188 not look inside SEQUENCEs. */
3191 prev_nonnote_insn_bb (rtx insn)
3193 while (insn)
3195 insn = PREV_INSN (insn);
3196 if (insn == 0 || !NOTE_P (insn))
3197 break;
3198 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3199 return NULL_RTX;
3202 return insn;
3205 /* Return the next insn after INSN that is not a DEBUG_INSN. This
3206 routine does not look inside SEQUENCEs. */
3209 next_nondebug_insn (rtx insn)
3211 while (insn)
3213 insn = NEXT_INSN (insn);
3214 if (insn == 0 || !DEBUG_INSN_P (insn))
3215 break;
3218 return insn;
3221 /* Return the previous insn before INSN that is not a DEBUG_INSN.
3222 This routine does not look inside SEQUENCEs. */
3225 prev_nondebug_insn (rtx insn)
3227 while (insn)
3229 insn = PREV_INSN (insn);
3230 if (insn == 0 || !DEBUG_INSN_P (insn))
3231 break;
3234 return insn;
3237 /* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN.
3238 This routine does not look inside SEQUENCEs. */
3241 next_nonnote_nondebug_insn (rtx insn)
3243 while (insn)
3245 insn = NEXT_INSN (insn);
3246 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3247 break;
3250 return insn;
3253 /* Return the previous insn before INSN that is not a NOTE nor DEBUG_INSN.
3254 This routine does not look inside SEQUENCEs. */
3257 prev_nonnote_nondebug_insn (rtx insn)
3259 while (insn)
3261 insn = PREV_INSN (insn);
3262 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3263 break;
3266 return insn;
3269 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3270 or 0, if there is none. This routine does not look inside
3271 SEQUENCEs. */
3274 next_real_insn (rtx insn)
3276 while (insn)
3278 insn = NEXT_INSN (insn);
3279 if (insn == 0 || INSN_P (insn))
3280 break;
3283 return insn;
3286 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3287 or 0, if there is none. This routine does not look inside
3288 SEQUENCEs. */
3291 prev_real_insn (rtx insn)
3293 while (insn)
3295 insn = PREV_INSN (insn);
3296 if (insn == 0 || INSN_P (insn))
3297 break;
3300 return insn;
3303 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3304 This routine does not look inside SEQUENCEs. */
3307 last_call_insn (void)
3309 rtx insn;
3311 for (insn = get_last_insn ();
3312 insn && !CALL_P (insn);
3313 insn = PREV_INSN (insn))
3316 return insn;
3319 /* Find the next insn after INSN that really does something. This routine
3320 does not look inside SEQUENCEs. After reload this also skips over
3321 standalone USE and CLOBBER insn. */
3324 active_insn_p (const_rtx insn)
3326 return (CALL_P (insn) || JUMP_P (insn)
3327 || (NONJUMP_INSN_P (insn)
3328 && (! reload_completed
3329 || (GET_CODE (PATTERN (insn)) != USE
3330 && GET_CODE (PATTERN (insn)) != CLOBBER))));
3334 next_active_insn (rtx insn)
3336 while (insn)
3338 insn = NEXT_INSN (insn);
3339 if (insn == 0 || active_insn_p (insn))
3340 break;
3343 return insn;
3346 /* Find the last insn before INSN that really does something. This routine
3347 does not look inside SEQUENCEs. After reload this also skips over
3348 standalone USE and CLOBBER insn. */
3351 prev_active_insn (rtx insn)
3353 while (insn)
3355 insn = PREV_INSN (insn);
3356 if (insn == 0 || active_insn_p (insn))
3357 break;
3360 return insn;
3363 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
3366 next_label (rtx insn)
3368 while (insn)
3370 insn = NEXT_INSN (insn);
3371 if (insn == 0 || LABEL_P (insn))
3372 break;
3375 return insn;
3378 /* Return the last label to mark the same position as LABEL. Return LABEL
3379 itself if it is null or any return rtx. */
3382 skip_consecutive_labels (rtx label)
3384 rtx insn;
3386 if (label && ANY_RETURN_P (label))
3387 return label;
3389 for (insn = label; insn != 0 && !INSN_P (insn); insn = NEXT_INSN (insn))
3390 if (LABEL_P (insn))
3391 label = insn;
3393 return label;
3396 #ifdef HAVE_cc0
3397 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3398 and REG_CC_USER notes so we can find it. */
3400 void
3401 link_cc0_insns (rtx insn)
3403 rtx user = next_nonnote_insn (insn);
3405 if (NONJUMP_INSN_P (user) && GET_CODE (PATTERN (user)) == SEQUENCE)
3406 user = XVECEXP (PATTERN (user), 0, 0);
3408 add_reg_note (user, REG_CC_SETTER, insn);
3409 add_reg_note (insn, REG_CC_USER, user);
3412 /* Return the next insn that uses CC0 after INSN, which is assumed to
3413 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3414 applied to the result of this function should yield INSN).
3416 Normally, this is simply the next insn. However, if a REG_CC_USER note
3417 is present, it contains the insn that uses CC0.
3419 Return 0 if we can't find the insn. */
3422 next_cc0_user (rtx insn)
3424 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3426 if (note)
3427 return XEXP (note, 0);
3429 insn = next_nonnote_insn (insn);
3430 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3431 insn = XVECEXP (PATTERN (insn), 0, 0);
3433 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3434 return insn;
3436 return 0;
3439 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3440 note, it is the previous insn. */
3443 prev_cc0_setter (rtx insn)
3445 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3447 if (note)
3448 return XEXP (note, 0);
3450 insn = prev_nonnote_insn (insn);
3451 gcc_assert (sets_cc0_p (PATTERN (insn)));
3453 return insn;
3455 #endif
3457 #ifdef AUTO_INC_DEC
3458 /* Find a RTX_AUTOINC class rtx which matches DATA. */
3460 static int
3461 find_auto_inc (rtx *xp, void *data)
3463 rtx x = *xp;
3464 rtx reg = (rtx) data;
3466 if (GET_RTX_CLASS (GET_CODE (x)) != RTX_AUTOINC)
3467 return 0;
3469 switch (GET_CODE (x))
3471 case PRE_DEC:
3472 case PRE_INC:
3473 case POST_DEC:
3474 case POST_INC:
3475 case PRE_MODIFY:
3476 case POST_MODIFY:
3477 if (rtx_equal_p (reg, XEXP (x, 0)))
3478 return 1;
3479 break;
3481 default:
3482 gcc_unreachable ();
3484 return -1;
3486 #endif
3488 /* Increment the label uses for all labels present in rtx. */
3490 static void
3491 mark_label_nuses (rtx x)
3493 enum rtx_code code;
3494 int i, j;
3495 const char *fmt;
3497 code = GET_CODE (x);
3498 if (code == LABEL_REF && LABEL_P (XEXP (x, 0)))
3499 LABEL_NUSES (XEXP (x, 0))++;
3501 fmt = GET_RTX_FORMAT (code);
3502 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3504 if (fmt[i] == 'e')
3505 mark_label_nuses (XEXP (x, i));
3506 else if (fmt[i] == 'E')
3507 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3508 mark_label_nuses (XVECEXP (x, i, j));
3513 /* Try splitting insns that can be split for better scheduling.
3514 PAT is the pattern which might split.
3515 TRIAL is the insn providing PAT.
3516 LAST is nonzero if we should return the last insn of the sequence produced.
3518 If this routine succeeds in splitting, it returns the first or last
3519 replacement insn depending on the value of LAST. Otherwise, it
3520 returns TRIAL. If the insn to be returned can be split, it will be. */
3523 try_split (rtx pat, rtx trial, int last)
3525 rtx before = PREV_INSN (trial);
3526 rtx after = NEXT_INSN (trial);
3527 int has_barrier = 0;
3528 rtx note, seq, tem;
3529 int probability;
3530 rtx insn_last, insn;
3531 int njumps = 0;
3533 /* We're not good at redistributing frame information. */
3534 if (RTX_FRAME_RELATED_P (trial))
3535 return trial;
3537 if (any_condjump_p (trial)
3538 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3539 split_branch_probability = INTVAL (XEXP (note, 0));
3540 probability = split_branch_probability;
3542 seq = split_insns (pat, trial);
3544 split_branch_probability = -1;
3546 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3547 We may need to handle this specially. */
3548 if (after && BARRIER_P (after))
3550 has_barrier = 1;
3551 after = NEXT_INSN (after);
3554 if (!seq)
3555 return trial;
3557 /* Avoid infinite loop if any insn of the result matches
3558 the original pattern. */
3559 insn_last = seq;
3560 while (1)
3562 if (INSN_P (insn_last)
3563 && rtx_equal_p (PATTERN (insn_last), pat))
3564 return trial;
3565 if (!NEXT_INSN (insn_last))
3566 break;
3567 insn_last = NEXT_INSN (insn_last);
3570 /* We will be adding the new sequence to the function. The splitters
3571 may have introduced invalid RTL sharing, so unshare the sequence now. */
3572 unshare_all_rtl_in_chain (seq);
3574 /* Mark labels. */
3575 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3577 if (JUMP_P (insn))
3579 mark_jump_label (PATTERN (insn), insn, 0);
3580 njumps++;
3581 if (probability != -1
3582 && any_condjump_p (insn)
3583 && !find_reg_note (insn, REG_BR_PROB, 0))
3585 /* We can preserve the REG_BR_PROB notes only if exactly
3586 one jump is created, otherwise the machine description
3587 is responsible for this step using
3588 split_branch_probability variable. */
3589 gcc_assert (njumps == 1);
3590 add_reg_note (insn, REG_BR_PROB, GEN_INT (probability));
3595 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3596 in SEQ and copy any additional information across. */
3597 if (CALL_P (trial))
3599 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3600 if (CALL_P (insn))
3602 rtx next, *p;
3604 /* Add the old CALL_INSN_FUNCTION_USAGE to whatever the
3605 target may have explicitly specified. */
3606 p = &CALL_INSN_FUNCTION_USAGE (insn);
3607 while (*p)
3608 p = &XEXP (*p, 1);
3609 *p = CALL_INSN_FUNCTION_USAGE (trial);
3611 /* If the old call was a sibling call, the new one must
3612 be too. */
3613 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3615 /* If the new call is the last instruction in the sequence,
3616 it will effectively replace the old call in-situ. Otherwise
3617 we must move any following NOTE_INSN_CALL_ARG_LOCATION note
3618 so that it comes immediately after the new call. */
3619 if (NEXT_INSN (insn))
3620 for (next = NEXT_INSN (trial);
3621 next && NOTE_P (next);
3622 next = NEXT_INSN (next))
3623 if (NOTE_KIND (next) == NOTE_INSN_CALL_ARG_LOCATION)
3625 remove_insn (next);
3626 add_insn_after (next, insn, NULL);
3627 break;
3632 /* Copy notes, particularly those related to the CFG. */
3633 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3635 switch (REG_NOTE_KIND (note))
3637 case REG_EH_REGION:
3638 copy_reg_eh_region_note_backward (note, insn_last, NULL);
3639 break;
3641 case REG_NORETURN:
3642 case REG_SETJMP:
3643 case REG_TM:
3644 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3646 if (CALL_P (insn))
3647 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3649 break;
3651 case REG_NON_LOCAL_GOTO:
3652 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3654 if (JUMP_P (insn))
3655 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3657 break;
3659 #ifdef AUTO_INC_DEC
3660 case REG_INC:
3661 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3663 rtx reg = XEXP (note, 0);
3664 if (!FIND_REG_INC_NOTE (insn, reg)
3665 && for_each_rtx (&PATTERN (insn), find_auto_inc, reg) > 0)
3666 add_reg_note (insn, REG_INC, reg);
3668 break;
3669 #endif
3671 case REG_ARGS_SIZE:
3672 fixup_args_size_notes (NULL_RTX, insn_last, INTVAL (XEXP (note, 0)));
3673 break;
3675 default:
3676 break;
3680 /* If there are LABELS inside the split insns increment the
3681 usage count so we don't delete the label. */
3682 if (INSN_P (trial))
3684 insn = insn_last;
3685 while (insn != NULL_RTX)
3687 /* JUMP_P insns have already been "marked" above. */
3688 if (NONJUMP_INSN_P (insn))
3689 mark_label_nuses (PATTERN (insn));
3691 insn = PREV_INSN (insn);
3695 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATION (trial));
3697 delete_insn (trial);
3698 if (has_barrier)
3699 emit_barrier_after (tem);
3701 /* Recursively call try_split for each new insn created; by the
3702 time control returns here that insn will be fully split, so
3703 set LAST and continue from the insn after the one returned.
3704 We can't use next_active_insn here since AFTER may be a note.
3705 Ignore deleted insns, which can be occur if not optimizing. */
3706 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3707 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3708 tem = try_split (PATTERN (tem), tem, 1);
3710 /* Return either the first or the last insn, depending on which was
3711 requested. */
3712 return last
3713 ? (after ? PREV_INSN (after) : get_last_insn ())
3714 : NEXT_INSN (before);
3717 /* Make and return an INSN rtx, initializing all its slots.
3718 Store PATTERN in the pattern slots. */
3721 make_insn_raw (rtx pattern)
3723 rtx insn;
3725 insn = rtx_alloc (INSN);
3727 INSN_UID (insn) = cur_insn_uid++;
3728 PATTERN (insn) = pattern;
3729 INSN_CODE (insn) = -1;
3730 REG_NOTES (insn) = NULL;
3731 INSN_LOCATION (insn) = curr_insn_location ();
3732 BLOCK_FOR_INSN (insn) = NULL;
3734 #ifdef ENABLE_RTL_CHECKING
3735 if (insn
3736 && INSN_P (insn)
3737 && (returnjump_p (insn)
3738 || (GET_CODE (insn) == SET
3739 && SET_DEST (insn) == pc_rtx)))
3741 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3742 debug_rtx (insn);
3744 #endif
3746 return insn;
3749 /* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn. */
3751 static rtx
3752 make_debug_insn_raw (rtx pattern)
3754 rtx insn;
3756 insn = rtx_alloc (DEBUG_INSN);
3757 INSN_UID (insn) = cur_debug_insn_uid++;
3758 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3759 INSN_UID (insn) = cur_insn_uid++;
3761 PATTERN (insn) = pattern;
3762 INSN_CODE (insn) = -1;
3763 REG_NOTES (insn) = NULL;
3764 INSN_LOCATION (insn) = curr_insn_location ();
3765 BLOCK_FOR_INSN (insn) = NULL;
3767 return insn;
3770 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3772 static rtx
3773 make_jump_insn_raw (rtx pattern)
3775 rtx insn;
3777 insn = rtx_alloc (JUMP_INSN);
3778 INSN_UID (insn) = cur_insn_uid++;
3780 PATTERN (insn) = pattern;
3781 INSN_CODE (insn) = -1;
3782 REG_NOTES (insn) = NULL;
3783 JUMP_LABEL (insn) = NULL;
3784 INSN_LOCATION (insn) = curr_insn_location ();
3785 BLOCK_FOR_INSN (insn) = NULL;
3787 return insn;
3790 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3792 static rtx
3793 make_call_insn_raw (rtx pattern)
3795 rtx insn;
3797 insn = rtx_alloc (CALL_INSN);
3798 INSN_UID (insn) = cur_insn_uid++;
3800 PATTERN (insn) = pattern;
3801 INSN_CODE (insn) = -1;
3802 REG_NOTES (insn) = NULL;
3803 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3804 INSN_LOCATION (insn) = curr_insn_location ();
3805 BLOCK_FOR_INSN (insn) = NULL;
3807 return insn;
3810 /* Add INSN to the end of the doubly-linked list.
3811 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3813 void
3814 add_insn (rtx insn)
3816 PREV_INSN (insn) = get_last_insn();
3817 NEXT_INSN (insn) = 0;
3819 if (NULL != get_last_insn())
3820 NEXT_INSN (get_last_insn ()) = insn;
3822 if (NULL == get_insns ())
3823 set_first_insn (insn);
3825 set_last_insn (insn);
3828 /* Add INSN into the doubly-linked list after insn AFTER. This and
3829 the next should be the only functions called to insert an insn once
3830 delay slots have been filled since only they know how to update a
3831 SEQUENCE. */
3833 void
3834 add_insn_after (rtx insn, rtx after, basic_block bb)
3836 rtx next = NEXT_INSN (after);
3838 gcc_assert (!optimize || !INSN_DELETED_P (after));
3840 NEXT_INSN (insn) = next;
3841 PREV_INSN (insn) = after;
3843 if (next)
3845 PREV_INSN (next) = insn;
3846 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3847 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3849 else if (get_last_insn () == after)
3850 set_last_insn (insn);
3851 else
3853 struct sequence_stack *stack = seq_stack;
3854 /* Scan all pending sequences too. */
3855 for (; stack; stack = stack->next)
3856 if (after == stack->last)
3858 stack->last = insn;
3859 break;
3862 gcc_assert (stack);
3865 if (!BARRIER_P (after)
3866 && !BARRIER_P (insn)
3867 && (bb = BLOCK_FOR_INSN (after)))
3869 set_block_for_insn (insn, bb);
3870 if (INSN_P (insn))
3871 df_insn_rescan (insn);
3872 /* Should not happen as first in the BB is always
3873 either NOTE or LABEL. */
3874 if (BB_END (bb) == after
3875 /* Avoid clobbering of structure when creating new BB. */
3876 && !BARRIER_P (insn)
3877 && !NOTE_INSN_BASIC_BLOCK_P (insn))
3878 BB_END (bb) = insn;
3881 NEXT_INSN (after) = insn;
3882 if (NONJUMP_INSN_P (after) && GET_CODE (PATTERN (after)) == SEQUENCE)
3884 rtx sequence = PATTERN (after);
3885 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3889 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3890 the previous should be the only functions called to insert an insn
3891 once delay slots have been filled since only they know how to
3892 update a SEQUENCE. If BB is NULL, an attempt is made to infer the
3893 bb from before. */
3895 void
3896 add_insn_before (rtx insn, rtx before, basic_block bb)
3898 rtx prev = PREV_INSN (before);
3900 gcc_assert (!optimize || !INSN_DELETED_P (before));
3902 PREV_INSN (insn) = prev;
3903 NEXT_INSN (insn) = before;
3905 if (prev)
3907 NEXT_INSN (prev) = insn;
3908 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3910 rtx sequence = PATTERN (prev);
3911 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3914 else if (get_insns () == before)
3915 set_first_insn (insn);
3916 else
3918 struct sequence_stack *stack = seq_stack;
3919 /* Scan all pending sequences too. */
3920 for (; stack; stack = stack->next)
3921 if (before == stack->first)
3923 stack->first = insn;
3924 break;
3927 gcc_assert (stack);
3930 if (!bb
3931 && !BARRIER_P (before)
3932 && !BARRIER_P (insn))
3933 bb = BLOCK_FOR_INSN (before);
3935 if (bb)
3937 set_block_for_insn (insn, bb);
3938 if (INSN_P (insn))
3939 df_insn_rescan (insn);
3940 /* Should not happen as first in the BB is always either NOTE or
3941 LABEL. */
3942 gcc_assert (BB_HEAD (bb) != insn
3943 /* Avoid clobbering of structure when creating new BB. */
3944 || BARRIER_P (insn)
3945 || NOTE_INSN_BASIC_BLOCK_P (insn));
3948 PREV_INSN (before) = insn;
3949 if (NONJUMP_INSN_P (before) && GET_CODE (PATTERN (before)) == SEQUENCE)
3950 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3954 /* Replace insn with an deleted instruction note. */
3956 void
3957 set_insn_deleted (rtx insn)
3959 df_insn_delete (BLOCK_FOR_INSN (insn), INSN_UID (insn));
3960 PUT_CODE (insn, NOTE);
3961 NOTE_KIND (insn) = NOTE_INSN_DELETED;
3965 /* Remove an insn from its doubly-linked list. This function knows how
3966 to handle sequences. */
3967 void
3968 remove_insn (rtx insn)
3970 rtx next = NEXT_INSN (insn);
3971 rtx prev = PREV_INSN (insn);
3972 basic_block bb;
3974 /* Later in the code, the block will be marked dirty. */
3975 df_insn_delete (NULL, INSN_UID (insn));
3977 if (prev)
3979 NEXT_INSN (prev) = next;
3980 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3982 rtx sequence = PATTERN (prev);
3983 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3986 else if (get_insns () == insn)
3988 if (next)
3989 PREV_INSN (next) = NULL;
3990 set_first_insn (next);
3992 else
3994 struct sequence_stack *stack = seq_stack;
3995 /* Scan all pending sequences too. */
3996 for (; stack; stack = stack->next)
3997 if (insn == stack->first)
3999 stack->first = next;
4000 break;
4003 gcc_assert (stack);
4006 if (next)
4008 PREV_INSN (next) = prev;
4009 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
4010 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
4012 else if (get_last_insn () == insn)
4013 set_last_insn (prev);
4014 else
4016 struct sequence_stack *stack = seq_stack;
4017 /* Scan all pending sequences too. */
4018 for (; stack; stack = stack->next)
4019 if (insn == stack->last)
4021 stack->last = prev;
4022 break;
4025 gcc_assert (stack);
4027 if (!BARRIER_P (insn)
4028 && (bb = BLOCK_FOR_INSN (insn)))
4030 if (NONDEBUG_INSN_P (insn))
4031 df_set_bb_dirty (bb);
4032 if (BB_HEAD (bb) == insn)
4034 /* Never ever delete the basic block note without deleting whole
4035 basic block. */
4036 gcc_assert (!NOTE_P (insn));
4037 BB_HEAD (bb) = next;
4039 if (BB_END (bb) == insn)
4040 BB_END (bb) = prev;
4044 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
4046 void
4047 add_function_usage_to (rtx call_insn, rtx call_fusage)
4049 gcc_assert (call_insn && CALL_P (call_insn));
4051 /* Put the register usage information on the CALL. If there is already
4052 some usage information, put ours at the end. */
4053 if (CALL_INSN_FUNCTION_USAGE (call_insn))
4055 rtx link;
4057 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
4058 link = XEXP (link, 1))
4061 XEXP (link, 1) = call_fusage;
4063 else
4064 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
4067 /* Delete all insns made since FROM.
4068 FROM becomes the new last instruction. */
4070 void
4071 delete_insns_since (rtx from)
4073 if (from == 0)
4074 set_first_insn (0);
4075 else
4076 NEXT_INSN (from) = 0;
4077 set_last_insn (from);
4080 /* This function is deprecated, please use sequences instead.
4082 Move a consecutive bunch of insns to a different place in the chain.
4083 The insns to be moved are those between FROM and TO.
4084 They are moved to a new position after the insn AFTER.
4085 AFTER must not be FROM or TO or any insn in between.
4087 This function does not know about SEQUENCEs and hence should not be
4088 called after delay-slot filling has been done. */
4090 void
4091 reorder_insns_nobb (rtx from, rtx to, rtx after)
4093 #ifdef ENABLE_CHECKING
4094 rtx x;
4095 for (x = from; x != to; x = NEXT_INSN (x))
4096 gcc_assert (after != x);
4097 gcc_assert (after != to);
4098 #endif
4100 /* Splice this bunch out of where it is now. */
4101 if (PREV_INSN (from))
4102 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
4103 if (NEXT_INSN (to))
4104 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
4105 if (get_last_insn () == to)
4106 set_last_insn (PREV_INSN (from));
4107 if (get_insns () == from)
4108 set_first_insn (NEXT_INSN (to));
4110 /* Make the new neighbors point to it and it to them. */
4111 if (NEXT_INSN (after))
4112 PREV_INSN (NEXT_INSN (after)) = to;
4114 NEXT_INSN (to) = NEXT_INSN (after);
4115 PREV_INSN (from) = after;
4116 NEXT_INSN (after) = from;
4117 if (after == get_last_insn())
4118 set_last_insn (to);
4121 /* Same as function above, but take care to update BB boundaries. */
4122 void
4123 reorder_insns (rtx from, rtx to, rtx after)
4125 rtx prev = PREV_INSN (from);
4126 basic_block bb, bb2;
4128 reorder_insns_nobb (from, to, after);
4130 if (!BARRIER_P (after)
4131 && (bb = BLOCK_FOR_INSN (after)))
4133 rtx x;
4134 df_set_bb_dirty (bb);
4136 if (!BARRIER_P (from)
4137 && (bb2 = BLOCK_FOR_INSN (from)))
4139 if (BB_END (bb2) == to)
4140 BB_END (bb2) = prev;
4141 df_set_bb_dirty (bb2);
4144 if (BB_END (bb) == after)
4145 BB_END (bb) = to;
4147 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
4148 if (!BARRIER_P (x))
4149 df_insn_change_bb (x, bb);
4154 /* Emit insn(s) of given code and pattern
4155 at a specified place within the doubly-linked list.
4157 All of the emit_foo global entry points accept an object
4158 X which is either an insn list or a PATTERN of a single
4159 instruction.
4161 There are thus a few canonical ways to generate code and
4162 emit it at a specific place in the instruction stream. For
4163 example, consider the instruction named SPOT and the fact that
4164 we would like to emit some instructions before SPOT. We might
4165 do it like this:
4167 start_sequence ();
4168 ... emit the new instructions ...
4169 insns_head = get_insns ();
4170 end_sequence ();
4172 emit_insn_before (insns_head, SPOT);
4174 It used to be common to generate SEQUENCE rtl instead, but that
4175 is a relic of the past which no longer occurs. The reason is that
4176 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4177 generated would almost certainly die right after it was created. */
4179 static rtx
4180 emit_pattern_before_noloc (rtx x, rtx before, rtx last, basic_block bb,
4181 rtx (*make_raw) (rtx))
4183 rtx insn;
4185 gcc_assert (before);
4187 if (x == NULL_RTX)
4188 return last;
4190 switch (GET_CODE (x))
4192 case DEBUG_INSN:
4193 case INSN:
4194 case JUMP_INSN:
4195 case CALL_INSN:
4196 case CODE_LABEL:
4197 case BARRIER:
4198 case NOTE:
4199 insn = x;
4200 while (insn)
4202 rtx next = NEXT_INSN (insn);
4203 add_insn_before (insn, before, bb);
4204 last = insn;
4205 insn = next;
4207 break;
4209 #ifdef ENABLE_RTL_CHECKING
4210 case SEQUENCE:
4211 gcc_unreachable ();
4212 break;
4213 #endif
4215 default:
4216 last = (*make_raw) (x);
4217 add_insn_before (last, before, bb);
4218 break;
4221 return last;
4224 /* Make X be output before the instruction BEFORE. */
4227 emit_insn_before_noloc (rtx x, rtx before, basic_block bb)
4229 return emit_pattern_before_noloc (x, before, before, bb, make_insn_raw);
4232 /* Make an instruction with body X and code JUMP_INSN
4233 and output it before the instruction BEFORE. */
4236 emit_jump_insn_before_noloc (rtx x, rtx before)
4238 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4239 make_jump_insn_raw);
4242 /* Make an instruction with body X and code CALL_INSN
4243 and output it before the instruction BEFORE. */
4246 emit_call_insn_before_noloc (rtx x, rtx before)
4248 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4249 make_call_insn_raw);
4252 /* Make an instruction with body X and code DEBUG_INSN
4253 and output it before the instruction BEFORE. */
4256 emit_debug_insn_before_noloc (rtx x, rtx before)
4258 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4259 make_debug_insn_raw);
4262 /* Make an insn of code BARRIER
4263 and output it before the insn BEFORE. */
4266 emit_barrier_before (rtx before)
4268 rtx insn = rtx_alloc (BARRIER);
4270 INSN_UID (insn) = cur_insn_uid++;
4272 add_insn_before (insn, before, NULL);
4273 return insn;
4276 /* Emit the label LABEL before the insn BEFORE. */
4279 emit_label_before (rtx label, rtx before)
4281 gcc_checking_assert (INSN_UID (label) == 0);
4282 INSN_UID (label) = cur_insn_uid++;
4283 add_insn_before (label, before, NULL);
4284 return label;
4287 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4290 emit_note_before (enum insn_note subtype, rtx before)
4292 rtx note = rtx_alloc (NOTE);
4293 INSN_UID (note) = cur_insn_uid++;
4294 NOTE_KIND (note) = subtype;
4295 BLOCK_FOR_INSN (note) = NULL;
4296 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4298 add_insn_before (note, before, NULL);
4299 return note;
4302 /* Helper for emit_insn_after, handles lists of instructions
4303 efficiently. */
4305 static rtx
4306 emit_insn_after_1 (rtx first, rtx after, basic_block bb)
4308 rtx last;
4309 rtx after_after;
4310 if (!bb && !BARRIER_P (after))
4311 bb = BLOCK_FOR_INSN (after);
4313 if (bb)
4315 df_set_bb_dirty (bb);
4316 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4317 if (!BARRIER_P (last))
4319 set_block_for_insn (last, bb);
4320 df_insn_rescan (last);
4322 if (!BARRIER_P (last))
4324 set_block_for_insn (last, bb);
4325 df_insn_rescan (last);
4327 if (BB_END (bb) == after)
4328 BB_END (bb) = last;
4330 else
4331 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4332 continue;
4334 after_after = NEXT_INSN (after);
4336 NEXT_INSN (after) = first;
4337 PREV_INSN (first) = after;
4338 NEXT_INSN (last) = after_after;
4339 if (after_after)
4340 PREV_INSN (after_after) = last;
4342 if (after == get_last_insn())
4343 set_last_insn (last);
4345 return last;
4348 static rtx
4349 emit_pattern_after_noloc (rtx x, rtx after, basic_block bb,
4350 rtx (*make_raw)(rtx))
4352 rtx last = after;
4354 gcc_assert (after);
4356 if (x == NULL_RTX)
4357 return last;
4359 switch (GET_CODE (x))
4361 case DEBUG_INSN:
4362 case INSN:
4363 case JUMP_INSN:
4364 case CALL_INSN:
4365 case CODE_LABEL:
4366 case BARRIER:
4367 case NOTE:
4368 last = emit_insn_after_1 (x, after, bb);
4369 break;
4371 #ifdef ENABLE_RTL_CHECKING
4372 case SEQUENCE:
4373 gcc_unreachable ();
4374 break;
4375 #endif
4377 default:
4378 last = (*make_raw) (x);
4379 add_insn_after (last, after, bb);
4380 break;
4383 return last;
4386 /* Make X be output after the insn AFTER and set the BB of insn. If
4387 BB is NULL, an attempt is made to infer the BB from AFTER. */
4390 emit_insn_after_noloc (rtx x, rtx after, basic_block bb)
4392 return emit_pattern_after_noloc (x, after, bb, make_insn_raw);
4396 /* Make an insn of code JUMP_INSN with body X
4397 and output it after the insn AFTER. */
4400 emit_jump_insn_after_noloc (rtx x, rtx after)
4402 return emit_pattern_after_noloc (x, after, NULL, make_jump_insn_raw);
4405 /* Make an instruction with body X and code CALL_INSN
4406 and output it after the instruction AFTER. */
4409 emit_call_insn_after_noloc (rtx x, rtx after)
4411 return emit_pattern_after_noloc (x, after, NULL, make_call_insn_raw);
4414 /* Make an instruction with body X and code CALL_INSN
4415 and output it after the instruction AFTER. */
4418 emit_debug_insn_after_noloc (rtx x, rtx after)
4420 return emit_pattern_after_noloc (x, after, NULL, make_debug_insn_raw);
4423 /* Make an insn of code BARRIER
4424 and output it after the insn AFTER. */
4427 emit_barrier_after (rtx after)
4429 rtx insn = rtx_alloc (BARRIER);
4431 INSN_UID (insn) = cur_insn_uid++;
4433 add_insn_after (insn, after, NULL);
4434 return insn;
4437 /* Emit the label LABEL after the insn AFTER. */
4440 emit_label_after (rtx label, rtx after)
4442 gcc_checking_assert (INSN_UID (label) == 0);
4443 INSN_UID (label) = cur_insn_uid++;
4444 add_insn_after (label, after, NULL);
4445 return label;
4448 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4451 emit_note_after (enum insn_note subtype, rtx after)
4453 rtx note = rtx_alloc (NOTE);
4454 INSN_UID (note) = cur_insn_uid++;
4455 NOTE_KIND (note) = subtype;
4456 BLOCK_FOR_INSN (note) = NULL;
4457 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4458 add_insn_after (note, after, NULL);
4459 return note;
4462 /* Insert PATTERN after AFTER, setting its INSN_LOCATION to LOC.
4463 MAKE_RAW indicates how to turn PATTERN into a real insn. */
4465 static rtx
4466 emit_pattern_after_setloc (rtx pattern, rtx after, int loc,
4467 rtx (*make_raw) (rtx))
4469 rtx last = emit_pattern_after_noloc (pattern, after, NULL, make_raw);
4471 if (pattern == NULL_RTX || !loc)
4472 return last;
4474 after = NEXT_INSN (after);
4475 while (1)
4477 if (active_insn_p (after) && !INSN_LOCATION (after))
4478 INSN_LOCATION (after) = loc;
4479 if (after == last)
4480 break;
4481 after = NEXT_INSN (after);
4483 return last;
4486 /* Insert PATTERN after AFTER. MAKE_RAW indicates how to turn PATTERN
4487 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert after
4488 any DEBUG_INSNs. */
4490 static rtx
4491 emit_pattern_after (rtx pattern, rtx after, bool skip_debug_insns,
4492 rtx (*make_raw) (rtx))
4494 rtx prev = after;
4496 if (skip_debug_insns)
4497 while (DEBUG_INSN_P (prev))
4498 prev = PREV_INSN (prev);
4500 if (INSN_P (prev))
4501 return emit_pattern_after_setloc (pattern, after, INSN_LOCATION (prev),
4502 make_raw);
4503 else
4504 return emit_pattern_after_noloc (pattern, after, NULL, make_raw);
4507 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4509 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4511 return emit_pattern_after_setloc (pattern, after, loc, make_insn_raw);
4514 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4516 emit_insn_after (rtx pattern, rtx after)
4518 return emit_pattern_after (pattern, after, true, make_insn_raw);
4521 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4523 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4525 return emit_pattern_after_setloc (pattern, after, loc, make_jump_insn_raw);
4528 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4530 emit_jump_insn_after (rtx pattern, rtx after)
4532 return emit_pattern_after (pattern, after, true, make_jump_insn_raw);
4535 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4537 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4539 return emit_pattern_after_setloc (pattern, after, loc, make_call_insn_raw);
4542 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4544 emit_call_insn_after (rtx pattern, rtx after)
4546 return emit_pattern_after (pattern, after, true, make_call_insn_raw);
4549 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4551 emit_debug_insn_after_setloc (rtx pattern, rtx after, int loc)
4553 return emit_pattern_after_setloc (pattern, after, loc, make_debug_insn_raw);
4556 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4558 emit_debug_insn_after (rtx pattern, rtx after)
4560 return emit_pattern_after (pattern, after, false, make_debug_insn_raw);
4563 /* Insert PATTERN before BEFORE, setting its INSN_LOCATION to LOC.
4564 MAKE_RAW indicates how to turn PATTERN into a real insn. INSNP
4565 indicates if PATTERN is meant for an INSN as opposed to a JUMP_INSN,
4566 CALL_INSN, etc. */
4568 static rtx
4569 emit_pattern_before_setloc (rtx pattern, rtx before, int loc, bool insnp,
4570 rtx (*make_raw) (rtx))
4572 rtx first = PREV_INSN (before);
4573 rtx last = emit_pattern_before_noloc (pattern, before,
4574 insnp ? before : NULL_RTX,
4575 NULL, make_raw);
4577 if (pattern == NULL_RTX || !loc)
4578 return last;
4580 if (!first)
4581 first = get_insns ();
4582 else
4583 first = NEXT_INSN (first);
4584 while (1)
4586 if (active_insn_p (first) && !INSN_LOCATION (first))
4587 INSN_LOCATION (first) = loc;
4588 if (first == last)
4589 break;
4590 first = NEXT_INSN (first);
4592 return last;
4595 /* Insert PATTERN before BEFORE. MAKE_RAW indicates how to turn PATTERN
4596 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert
4597 before any DEBUG_INSNs. INSNP indicates if PATTERN is meant for an
4598 INSN as opposed to a JUMP_INSN, CALL_INSN, etc. */
4600 static rtx
4601 emit_pattern_before (rtx pattern, rtx before, bool skip_debug_insns,
4602 bool insnp, rtx (*make_raw) (rtx))
4604 rtx next = before;
4606 if (skip_debug_insns)
4607 while (DEBUG_INSN_P (next))
4608 next = PREV_INSN (next);
4610 if (INSN_P (next))
4611 return emit_pattern_before_setloc (pattern, before, INSN_LOCATION (next),
4612 insnp, make_raw);
4613 else
4614 return emit_pattern_before_noloc (pattern, before,
4615 insnp ? before : NULL_RTX,
4616 NULL, make_raw);
4619 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4621 emit_insn_before_setloc (rtx pattern, rtx before, int loc)
4623 return emit_pattern_before_setloc (pattern, before, loc, true,
4624 make_insn_raw);
4627 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4629 emit_insn_before (rtx pattern, rtx before)
4631 return emit_pattern_before (pattern, before, true, true, make_insn_raw);
4634 /* like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4636 emit_jump_insn_before_setloc (rtx pattern, rtx before, int loc)
4638 return emit_pattern_before_setloc (pattern, before, loc, false,
4639 make_jump_insn_raw);
4642 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4644 emit_jump_insn_before (rtx pattern, rtx before)
4646 return emit_pattern_before (pattern, before, true, false,
4647 make_jump_insn_raw);
4650 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4652 emit_call_insn_before_setloc (rtx pattern, rtx before, int loc)
4654 return emit_pattern_before_setloc (pattern, before, loc, false,
4655 make_call_insn_raw);
4658 /* Like emit_call_insn_before_noloc,
4659 but set insn_location according to BEFORE. */
4661 emit_call_insn_before (rtx pattern, rtx before)
4663 return emit_pattern_before (pattern, before, true, false,
4664 make_call_insn_raw);
4667 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4669 emit_debug_insn_before_setloc (rtx pattern, rtx before, int loc)
4671 return emit_pattern_before_setloc (pattern, before, loc, false,
4672 make_debug_insn_raw);
4675 /* Like emit_debug_insn_before_noloc,
4676 but set insn_location according to BEFORE. */
4678 emit_debug_insn_before (rtx pattern, rtx before)
4680 return emit_pattern_before (pattern, before, false, false,
4681 make_debug_insn_raw);
4684 /* Take X and emit it at the end of the doubly-linked
4685 INSN list.
4687 Returns the last insn emitted. */
4690 emit_insn (rtx x)
4692 rtx last = get_last_insn();
4693 rtx insn;
4695 if (x == NULL_RTX)
4696 return last;
4698 switch (GET_CODE (x))
4700 case DEBUG_INSN:
4701 case INSN:
4702 case JUMP_INSN:
4703 case CALL_INSN:
4704 case CODE_LABEL:
4705 case BARRIER:
4706 case NOTE:
4707 insn = x;
4708 while (insn)
4710 rtx next = NEXT_INSN (insn);
4711 add_insn (insn);
4712 last = insn;
4713 insn = next;
4715 break;
4717 #ifdef ENABLE_RTL_CHECKING
4718 case SEQUENCE:
4719 gcc_unreachable ();
4720 break;
4721 #endif
4723 default:
4724 last = make_insn_raw (x);
4725 add_insn (last);
4726 break;
4729 return last;
4732 /* Make an insn of code DEBUG_INSN with pattern X
4733 and add it to the end of the doubly-linked list. */
4736 emit_debug_insn (rtx x)
4738 rtx last = get_last_insn();
4739 rtx insn;
4741 if (x == NULL_RTX)
4742 return last;
4744 switch (GET_CODE (x))
4746 case DEBUG_INSN:
4747 case INSN:
4748 case JUMP_INSN:
4749 case CALL_INSN:
4750 case CODE_LABEL:
4751 case BARRIER:
4752 case NOTE:
4753 insn = x;
4754 while (insn)
4756 rtx next = NEXT_INSN (insn);
4757 add_insn (insn);
4758 last = insn;
4759 insn = next;
4761 break;
4763 #ifdef ENABLE_RTL_CHECKING
4764 case SEQUENCE:
4765 gcc_unreachable ();
4766 break;
4767 #endif
4769 default:
4770 last = make_debug_insn_raw (x);
4771 add_insn (last);
4772 break;
4775 return last;
4778 /* Make an insn of code JUMP_INSN with pattern X
4779 and add it to the end of the doubly-linked list. */
4782 emit_jump_insn (rtx x)
4784 rtx last = NULL_RTX, insn;
4786 switch (GET_CODE (x))
4788 case DEBUG_INSN:
4789 case INSN:
4790 case JUMP_INSN:
4791 case CALL_INSN:
4792 case CODE_LABEL:
4793 case BARRIER:
4794 case NOTE:
4795 insn = x;
4796 while (insn)
4798 rtx next = NEXT_INSN (insn);
4799 add_insn (insn);
4800 last = insn;
4801 insn = next;
4803 break;
4805 #ifdef ENABLE_RTL_CHECKING
4806 case SEQUENCE:
4807 gcc_unreachable ();
4808 break;
4809 #endif
4811 default:
4812 last = make_jump_insn_raw (x);
4813 add_insn (last);
4814 break;
4817 return last;
4820 /* Make an insn of code CALL_INSN with pattern X
4821 and add it to the end of the doubly-linked list. */
4824 emit_call_insn (rtx x)
4826 rtx insn;
4828 switch (GET_CODE (x))
4830 case DEBUG_INSN:
4831 case INSN:
4832 case JUMP_INSN:
4833 case CALL_INSN:
4834 case CODE_LABEL:
4835 case BARRIER:
4836 case NOTE:
4837 insn = emit_insn (x);
4838 break;
4840 #ifdef ENABLE_RTL_CHECKING
4841 case SEQUENCE:
4842 gcc_unreachable ();
4843 break;
4844 #endif
4846 default:
4847 insn = make_call_insn_raw (x);
4848 add_insn (insn);
4849 break;
4852 return insn;
4855 /* Add the label LABEL to the end of the doubly-linked list. */
4858 emit_label (rtx label)
4860 gcc_checking_assert (INSN_UID (label) == 0);
4861 INSN_UID (label) = cur_insn_uid++;
4862 add_insn (label);
4863 return label;
4866 /* Make an insn of code BARRIER
4867 and add it to the end of the doubly-linked list. */
4870 emit_barrier (void)
4872 rtx barrier = rtx_alloc (BARRIER);
4873 INSN_UID (barrier) = cur_insn_uid++;
4874 add_insn (barrier);
4875 return barrier;
4878 /* Emit a copy of note ORIG. */
4881 emit_note_copy (rtx orig)
4883 rtx note;
4885 note = rtx_alloc (NOTE);
4887 INSN_UID (note) = cur_insn_uid++;
4888 NOTE_DATA (note) = NOTE_DATA (orig);
4889 NOTE_KIND (note) = NOTE_KIND (orig);
4890 BLOCK_FOR_INSN (note) = NULL;
4891 add_insn (note);
4893 return note;
4896 /* Make an insn of code NOTE or type NOTE_NO
4897 and add it to the end of the doubly-linked list. */
4900 emit_note (enum insn_note kind)
4902 rtx note;
4904 note = rtx_alloc (NOTE);
4905 INSN_UID (note) = cur_insn_uid++;
4906 NOTE_KIND (note) = kind;
4907 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4908 BLOCK_FOR_INSN (note) = NULL;
4909 add_insn (note);
4910 return note;
4913 /* Emit a clobber of lvalue X. */
4916 emit_clobber (rtx x)
4918 /* CONCATs should not appear in the insn stream. */
4919 if (GET_CODE (x) == CONCAT)
4921 emit_clobber (XEXP (x, 0));
4922 return emit_clobber (XEXP (x, 1));
4924 return emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
4927 /* Return a sequence of insns to clobber lvalue X. */
4930 gen_clobber (rtx x)
4932 rtx seq;
4934 start_sequence ();
4935 emit_clobber (x);
4936 seq = get_insns ();
4937 end_sequence ();
4938 return seq;
4941 /* Emit a use of rvalue X. */
4944 emit_use (rtx x)
4946 /* CONCATs should not appear in the insn stream. */
4947 if (GET_CODE (x) == CONCAT)
4949 emit_use (XEXP (x, 0));
4950 return emit_use (XEXP (x, 1));
4952 return emit_insn (gen_rtx_USE (VOIDmode, x));
4955 /* Return a sequence of insns to use rvalue X. */
4958 gen_use (rtx x)
4960 rtx seq;
4962 start_sequence ();
4963 emit_use (x);
4964 seq = get_insns ();
4965 end_sequence ();
4966 return seq;
4969 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4970 note of this type already exists, remove it first. */
4973 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
4975 rtx note = find_reg_note (insn, kind, NULL_RTX);
4977 switch (kind)
4979 case REG_EQUAL:
4980 case REG_EQUIV:
4981 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4982 has multiple sets (some callers assume single_set
4983 means the insn only has one set, when in fact it
4984 means the insn only has one * useful * set). */
4985 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
4987 gcc_assert (!note);
4988 return NULL_RTX;
4991 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4992 It serves no useful purpose and breaks eliminate_regs. */
4993 if (GET_CODE (datum) == ASM_OPERANDS)
4994 return NULL_RTX;
4996 if (note)
4998 XEXP (note, 0) = datum;
4999 df_notes_rescan (insn);
5000 return note;
5002 break;
5004 default:
5005 if (note)
5007 XEXP (note, 0) = datum;
5008 return note;
5010 break;
5013 add_reg_note (insn, kind, datum);
5015 switch (kind)
5017 case REG_EQUAL:
5018 case REG_EQUIV:
5019 df_notes_rescan (insn);
5020 break;
5021 default:
5022 break;
5025 return REG_NOTES (insn);
5028 /* Like set_unique_reg_note, but don't do anything unless INSN sets DST. */
5030 set_dst_reg_note (rtx insn, enum reg_note kind, rtx datum, rtx dst)
5032 rtx set = single_set (insn);
5034 if (set && SET_DEST (set) == dst)
5035 return set_unique_reg_note (insn, kind, datum);
5036 return NULL_RTX;
5039 /* Return an indication of which type of insn should have X as a body.
5040 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
5042 static enum rtx_code
5043 classify_insn (rtx x)
5045 if (LABEL_P (x))
5046 return CODE_LABEL;
5047 if (GET_CODE (x) == CALL)
5048 return CALL_INSN;
5049 if (ANY_RETURN_P (x))
5050 return JUMP_INSN;
5051 if (GET_CODE (x) == SET)
5053 if (SET_DEST (x) == pc_rtx)
5054 return JUMP_INSN;
5055 else if (GET_CODE (SET_SRC (x)) == CALL)
5056 return CALL_INSN;
5057 else
5058 return INSN;
5060 if (GET_CODE (x) == PARALLEL)
5062 int j;
5063 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
5064 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
5065 return CALL_INSN;
5066 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5067 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
5068 return JUMP_INSN;
5069 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5070 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
5071 return CALL_INSN;
5073 return INSN;
5076 /* Emit the rtl pattern X as an appropriate kind of insn.
5077 If X is a label, it is simply added into the insn chain. */
5080 emit (rtx x)
5082 enum rtx_code code = classify_insn (x);
5084 switch (code)
5086 case CODE_LABEL:
5087 return emit_label (x);
5088 case INSN:
5089 return emit_insn (x);
5090 case JUMP_INSN:
5092 rtx insn = emit_jump_insn (x);
5093 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
5094 return emit_barrier ();
5095 return insn;
5097 case CALL_INSN:
5098 return emit_call_insn (x);
5099 case DEBUG_INSN:
5100 return emit_debug_insn (x);
5101 default:
5102 gcc_unreachable ();
5106 /* Space for free sequence stack entries. */
5107 static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
5109 /* Begin emitting insns to a sequence. If this sequence will contain
5110 something that might cause the compiler to pop arguments to function
5111 calls (because those pops have previously been deferred; see
5112 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
5113 before calling this function. That will ensure that the deferred
5114 pops are not accidentally emitted in the middle of this sequence. */
5116 void
5117 start_sequence (void)
5119 struct sequence_stack *tem;
5121 if (free_sequence_stack != NULL)
5123 tem = free_sequence_stack;
5124 free_sequence_stack = tem->next;
5126 else
5127 tem = ggc_alloc_sequence_stack ();
5129 tem->next = seq_stack;
5130 tem->first = get_insns ();
5131 tem->last = get_last_insn ();
5133 seq_stack = tem;
5135 set_first_insn (0);
5136 set_last_insn (0);
5139 /* Set up the insn chain starting with FIRST as the current sequence,
5140 saving the previously current one. See the documentation for
5141 start_sequence for more information about how to use this function. */
5143 void
5144 push_to_sequence (rtx first)
5146 rtx last;
5148 start_sequence ();
5150 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last))
5153 set_first_insn (first);
5154 set_last_insn (last);
5157 /* Like push_to_sequence, but take the last insn as an argument to avoid
5158 looping through the list. */
5160 void
5161 push_to_sequence2 (rtx first, rtx last)
5163 start_sequence ();
5165 set_first_insn (first);
5166 set_last_insn (last);
5169 /* Set up the outer-level insn chain
5170 as the current sequence, saving the previously current one. */
5172 void
5173 push_topmost_sequence (void)
5175 struct sequence_stack *stack, *top = NULL;
5177 start_sequence ();
5179 for (stack = seq_stack; stack; stack = stack->next)
5180 top = stack;
5182 set_first_insn (top->first);
5183 set_last_insn (top->last);
5186 /* After emitting to the outer-level insn chain, update the outer-level
5187 insn chain, and restore the previous saved state. */
5189 void
5190 pop_topmost_sequence (void)
5192 struct sequence_stack *stack, *top = NULL;
5194 for (stack = seq_stack; stack; stack = stack->next)
5195 top = stack;
5197 top->first = get_insns ();
5198 top->last = get_last_insn ();
5200 end_sequence ();
5203 /* After emitting to a sequence, restore previous saved state.
5205 To get the contents of the sequence just made, you must call
5206 `get_insns' *before* calling here.
5208 If the compiler might have deferred popping arguments while
5209 generating this sequence, and this sequence will not be immediately
5210 inserted into the instruction stream, use do_pending_stack_adjust
5211 before calling get_insns. That will ensure that the deferred
5212 pops are inserted into this sequence, and not into some random
5213 location in the instruction stream. See INHIBIT_DEFER_POP for more
5214 information about deferred popping of arguments. */
5216 void
5217 end_sequence (void)
5219 struct sequence_stack *tem = seq_stack;
5221 set_first_insn (tem->first);
5222 set_last_insn (tem->last);
5223 seq_stack = tem->next;
5225 memset (tem, 0, sizeof (*tem));
5226 tem->next = free_sequence_stack;
5227 free_sequence_stack = tem;
5230 /* Return 1 if currently emitting into a sequence. */
5233 in_sequence_p (void)
5235 return seq_stack != 0;
5238 /* Put the various virtual registers into REGNO_REG_RTX. */
5240 static void
5241 init_virtual_regs (void)
5243 regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5244 regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5245 regno_reg_rtx[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5246 regno_reg_rtx[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5247 regno_reg_rtx[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
5248 regno_reg_rtx[VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM]
5249 = virtual_preferred_stack_boundary_rtx;
5253 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5254 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5255 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5256 static int copy_insn_n_scratches;
5258 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5259 copied an ASM_OPERANDS.
5260 In that case, it is the original input-operand vector. */
5261 static rtvec orig_asm_operands_vector;
5263 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5264 copied an ASM_OPERANDS.
5265 In that case, it is the copied input-operand vector. */
5266 static rtvec copy_asm_operands_vector;
5268 /* Likewise for the constraints vector. */
5269 static rtvec orig_asm_constraints_vector;
5270 static rtvec copy_asm_constraints_vector;
5272 /* Recursively create a new copy of an rtx for copy_insn.
5273 This function differs from copy_rtx in that it handles SCRATCHes and
5274 ASM_OPERANDs properly.
5275 Normally, this function is not used directly; use copy_insn as front end.
5276 However, you could first copy an insn pattern with copy_insn and then use
5277 this function afterwards to properly copy any REG_NOTEs containing
5278 SCRATCHes. */
5281 copy_insn_1 (rtx orig)
5283 rtx copy;
5284 int i, j;
5285 RTX_CODE code;
5286 const char *format_ptr;
5288 if (orig == NULL)
5289 return NULL;
5291 code = GET_CODE (orig);
5293 switch (code)
5295 case REG:
5296 case DEBUG_EXPR:
5297 CASE_CONST_ANY:
5298 case SYMBOL_REF:
5299 case CODE_LABEL:
5300 case PC:
5301 case CC0:
5302 case RETURN:
5303 case SIMPLE_RETURN:
5304 return orig;
5305 case CLOBBER:
5306 if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER)
5307 return orig;
5308 break;
5310 case SCRATCH:
5311 for (i = 0; i < copy_insn_n_scratches; i++)
5312 if (copy_insn_scratch_in[i] == orig)
5313 return copy_insn_scratch_out[i];
5314 break;
5316 case CONST:
5317 if (shared_const_p (orig))
5318 return orig;
5319 break;
5321 /* A MEM with a constant address is not sharable. The problem is that
5322 the constant address may need to be reloaded. If the mem is shared,
5323 then reloading one copy of this mem will cause all copies to appear
5324 to have been reloaded. */
5326 default:
5327 break;
5330 /* Copy the various flags, fields, and other information. We assume
5331 that all fields need copying, and then clear the fields that should
5332 not be copied. That is the sensible default behavior, and forces
5333 us to explicitly document why we are *not* copying a flag. */
5334 copy = shallow_copy_rtx (orig);
5336 /* We do not copy the USED flag, which is used as a mark bit during
5337 walks over the RTL. */
5338 RTX_FLAG (copy, used) = 0;
5340 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5341 if (INSN_P (orig))
5343 RTX_FLAG (copy, jump) = 0;
5344 RTX_FLAG (copy, call) = 0;
5345 RTX_FLAG (copy, frame_related) = 0;
5348 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5350 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5351 switch (*format_ptr++)
5353 case 'e':
5354 if (XEXP (orig, i) != NULL)
5355 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5356 break;
5358 case 'E':
5359 case 'V':
5360 if (XVEC (orig, i) == orig_asm_constraints_vector)
5361 XVEC (copy, i) = copy_asm_constraints_vector;
5362 else if (XVEC (orig, i) == orig_asm_operands_vector)
5363 XVEC (copy, i) = copy_asm_operands_vector;
5364 else if (XVEC (orig, i) != NULL)
5366 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5367 for (j = 0; j < XVECLEN (copy, i); j++)
5368 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5370 break;
5372 case 't':
5373 case 'w':
5374 case 'i':
5375 case 's':
5376 case 'S':
5377 case 'u':
5378 case '0':
5379 /* These are left unchanged. */
5380 break;
5382 default:
5383 gcc_unreachable ();
5386 if (code == SCRATCH)
5388 i = copy_insn_n_scratches++;
5389 gcc_assert (i < MAX_RECOG_OPERANDS);
5390 copy_insn_scratch_in[i] = orig;
5391 copy_insn_scratch_out[i] = copy;
5393 else if (code == ASM_OPERANDS)
5395 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5396 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5397 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5398 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5401 return copy;
5404 /* Create a new copy of an rtx.
5405 This function differs from copy_rtx in that it handles SCRATCHes and
5406 ASM_OPERANDs properly.
5407 INSN doesn't really have to be a full INSN; it could be just the
5408 pattern. */
5410 copy_insn (rtx insn)
5412 copy_insn_n_scratches = 0;
5413 orig_asm_operands_vector = 0;
5414 orig_asm_constraints_vector = 0;
5415 copy_asm_operands_vector = 0;
5416 copy_asm_constraints_vector = 0;
5417 return copy_insn_1 (insn);
5420 /* Return a copy of INSN that can be used in a SEQUENCE delay slot,
5421 on that assumption that INSN itself remains in its original place. */
5424 copy_delay_slot_insn (rtx insn)
5426 /* Copy INSN with its rtx_code, all its notes, location etc. */
5427 insn = copy_rtx (insn);
5428 INSN_UID (insn) = cur_insn_uid++;
5429 return insn;
5432 /* Initialize data structures and variables in this file
5433 before generating rtl for each function. */
5435 void
5436 init_emit (void)
5438 set_first_insn (NULL);
5439 set_last_insn (NULL);
5440 if (MIN_NONDEBUG_INSN_UID)
5441 cur_insn_uid = MIN_NONDEBUG_INSN_UID;
5442 else
5443 cur_insn_uid = 1;
5444 cur_debug_insn_uid = 1;
5445 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5446 first_label_num = label_num;
5447 seq_stack = NULL;
5449 /* Init the tables that describe all the pseudo regs. */
5451 crtl->emit.regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5453 crtl->emit.regno_pointer_align
5454 = XCNEWVEC (unsigned char, crtl->emit.regno_pointer_align_length);
5456 regno_reg_rtx = ggc_alloc_vec_rtx (crtl->emit.regno_pointer_align_length);
5458 /* Put copies of all the hard registers into regno_reg_rtx. */
5459 memcpy (regno_reg_rtx,
5460 initial_regno_reg_rtx,
5461 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5463 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5464 init_virtual_regs ();
5466 /* Indicate that the virtual registers and stack locations are
5467 all pointers. */
5468 REG_POINTER (stack_pointer_rtx) = 1;
5469 REG_POINTER (frame_pointer_rtx) = 1;
5470 REG_POINTER (hard_frame_pointer_rtx) = 1;
5471 REG_POINTER (arg_pointer_rtx) = 1;
5473 REG_POINTER (virtual_incoming_args_rtx) = 1;
5474 REG_POINTER (virtual_stack_vars_rtx) = 1;
5475 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5476 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5477 REG_POINTER (virtual_cfa_rtx) = 1;
5479 #ifdef STACK_BOUNDARY
5480 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5481 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5482 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5483 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5485 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5486 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5487 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5488 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5489 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5490 #endif
5492 #ifdef INIT_EXPANDERS
5493 INIT_EXPANDERS;
5494 #endif
5497 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5499 static rtx
5500 gen_const_vector (enum machine_mode mode, int constant)
5502 rtx tem;
5503 rtvec v;
5504 int units, i;
5505 enum machine_mode inner;
5507 units = GET_MODE_NUNITS (mode);
5508 inner = GET_MODE_INNER (mode);
5510 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
5512 v = rtvec_alloc (units);
5514 /* We need to call this function after we set the scalar const_tiny_rtx
5515 entries. */
5516 gcc_assert (const_tiny_rtx[constant][(int) inner]);
5518 for (i = 0; i < units; ++i)
5519 RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner];
5521 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5522 return tem;
5525 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5526 all elements are zero, and the one vector when all elements are one. */
5528 gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
5530 enum machine_mode inner = GET_MODE_INNER (mode);
5531 int nunits = GET_MODE_NUNITS (mode);
5532 rtx x;
5533 int i;
5535 /* Check to see if all of the elements have the same value. */
5536 x = RTVEC_ELT (v, nunits - 1);
5537 for (i = nunits - 2; i >= 0; i--)
5538 if (RTVEC_ELT (v, i) != x)
5539 break;
5541 /* If the values are all the same, check to see if we can use one of the
5542 standard constant vectors. */
5543 if (i == -1)
5545 if (x == CONST0_RTX (inner))
5546 return CONST0_RTX (mode);
5547 else if (x == CONST1_RTX (inner))
5548 return CONST1_RTX (mode);
5549 else if (x == CONSTM1_RTX (inner))
5550 return CONSTM1_RTX (mode);
5553 return gen_rtx_raw_CONST_VECTOR (mode, v);
5556 /* Initialise global register information required by all functions. */
5558 void
5559 init_emit_regs (void)
5561 int i;
5562 enum machine_mode mode;
5563 mem_attrs *attrs;
5565 /* Reset register attributes */
5566 htab_empty (reg_attrs_htab);
5568 /* We need reg_raw_mode, so initialize the modes now. */
5569 init_reg_modes_target ();
5571 /* Assign register numbers to the globally defined register rtx. */
5572 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5573 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5574 hard_frame_pointer_rtx = gen_raw_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
5575 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5576 virtual_incoming_args_rtx =
5577 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5578 virtual_stack_vars_rtx =
5579 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5580 virtual_stack_dynamic_rtx =
5581 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5582 virtual_outgoing_args_rtx =
5583 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5584 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5585 virtual_preferred_stack_boundary_rtx =
5586 gen_raw_REG (Pmode, VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM);
5588 /* Initialize RTL for commonly used hard registers. These are
5589 copied into regno_reg_rtx as we begin to compile each function. */
5590 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5591 initial_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5593 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5594 return_address_pointer_rtx
5595 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5596 #endif
5598 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5599 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5600 else
5601 pic_offset_table_rtx = NULL_RTX;
5603 for (i = 0; i < (int) MAX_MACHINE_MODE; i++)
5605 mode = (enum machine_mode) i;
5606 attrs = ggc_alloc_cleared_mem_attrs ();
5607 attrs->align = BITS_PER_UNIT;
5608 attrs->addrspace = ADDR_SPACE_GENERIC;
5609 if (mode != BLKmode)
5611 attrs->size_known_p = true;
5612 attrs->size = GET_MODE_SIZE (mode);
5613 if (STRICT_ALIGNMENT)
5614 attrs->align = GET_MODE_ALIGNMENT (mode);
5616 mode_mem_attrs[i] = attrs;
5620 /* Create some permanent unique rtl objects shared between all functions. */
5622 void
5623 init_emit_once (void)
5625 int i;
5626 enum machine_mode mode;
5627 enum machine_mode double_mode;
5629 /* Initialize the CONST_INT, CONST_DOUBLE, CONST_FIXED, and memory attribute
5630 hash tables. */
5631 const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5632 const_int_htab_eq, NULL);
5634 const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5635 const_double_htab_eq, NULL);
5637 const_fixed_htab = htab_create_ggc (37, const_fixed_htab_hash,
5638 const_fixed_htab_eq, NULL);
5640 mem_attrs_htab = htab_create_ggc (37, mem_attrs_htab_hash,
5641 mem_attrs_htab_eq, NULL);
5642 reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5643 reg_attrs_htab_eq, NULL);
5645 /* Compute the word and byte modes. */
5647 byte_mode = VOIDmode;
5648 word_mode = VOIDmode;
5649 double_mode = VOIDmode;
5651 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5652 mode != VOIDmode;
5653 mode = GET_MODE_WIDER_MODE (mode))
5655 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5656 && byte_mode == VOIDmode)
5657 byte_mode = mode;
5659 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5660 && word_mode == VOIDmode)
5661 word_mode = mode;
5664 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5665 mode != VOIDmode;
5666 mode = GET_MODE_WIDER_MODE (mode))
5668 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5669 && double_mode == VOIDmode)
5670 double_mode = mode;
5673 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5675 #ifdef INIT_EXPANDERS
5676 /* This is to initialize {init|mark|free}_machine_status before the first
5677 call to push_function_context_to. This is needed by the Chill front
5678 end which calls push_function_context_to before the first call to
5679 init_function_start. */
5680 INIT_EXPANDERS;
5681 #endif
5683 /* Create the unique rtx's for certain rtx codes and operand values. */
5685 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5686 tries to use these variables. */
5687 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5688 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5689 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5691 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5692 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5693 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5694 else
5695 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5697 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode);
5698 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode);
5699 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode);
5701 dconstm1 = dconst1;
5702 dconstm1.sign = 1;
5704 dconsthalf = dconst1;
5705 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
5707 for (i = 0; i < 3; i++)
5709 const REAL_VALUE_TYPE *const r =
5710 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5712 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5713 mode != VOIDmode;
5714 mode = GET_MODE_WIDER_MODE (mode))
5715 const_tiny_rtx[i][(int) mode] =
5716 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5718 for (mode = GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT);
5719 mode != VOIDmode;
5720 mode = GET_MODE_WIDER_MODE (mode))
5721 const_tiny_rtx[i][(int) mode] =
5722 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5724 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5726 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5727 mode != VOIDmode;
5728 mode = GET_MODE_WIDER_MODE (mode))
5729 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5731 for (mode = MIN_MODE_PARTIAL_INT;
5732 mode <= MAX_MODE_PARTIAL_INT;
5733 mode = (enum machine_mode)((int)(mode) + 1))
5734 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5737 const_tiny_rtx[3][(int) VOIDmode] = constm1_rtx;
5739 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5740 mode != VOIDmode;
5741 mode = GET_MODE_WIDER_MODE (mode))
5742 const_tiny_rtx[3][(int) mode] = constm1_rtx;
5744 for (mode = MIN_MODE_PARTIAL_INT;
5745 mode <= MAX_MODE_PARTIAL_INT;
5746 mode = (enum machine_mode)((int)(mode) + 1))
5747 const_tiny_rtx[3][(int) mode] = constm1_rtx;
5749 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_INT);
5750 mode != VOIDmode;
5751 mode = GET_MODE_WIDER_MODE (mode))
5753 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5754 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5757 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
5758 mode != VOIDmode;
5759 mode = GET_MODE_WIDER_MODE (mode))
5761 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5762 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5765 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5766 mode != VOIDmode;
5767 mode = GET_MODE_WIDER_MODE (mode))
5769 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5770 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5771 const_tiny_rtx[3][(int) mode] = gen_const_vector (mode, 3);
5774 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5775 mode != VOIDmode;
5776 mode = GET_MODE_WIDER_MODE (mode))
5778 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5779 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5782 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FRACT);
5783 mode != VOIDmode;
5784 mode = GET_MODE_WIDER_MODE (mode))
5786 FCONST0(mode).data.high = 0;
5787 FCONST0(mode).data.low = 0;
5788 FCONST0(mode).mode = mode;
5789 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5790 FCONST0 (mode), mode);
5793 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UFRACT);
5794 mode != VOIDmode;
5795 mode = GET_MODE_WIDER_MODE (mode))
5797 FCONST0(mode).data.high = 0;
5798 FCONST0(mode).data.low = 0;
5799 FCONST0(mode).mode = mode;
5800 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5801 FCONST0 (mode), mode);
5804 for (mode = GET_CLASS_NARROWEST_MODE (MODE_ACCUM);
5805 mode != VOIDmode;
5806 mode = GET_MODE_WIDER_MODE (mode))
5808 FCONST0(mode).data.high = 0;
5809 FCONST0(mode).data.low = 0;
5810 FCONST0(mode).mode = mode;
5811 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5812 FCONST0 (mode), mode);
5814 /* We store the value 1. */
5815 FCONST1(mode).data.high = 0;
5816 FCONST1(mode).data.low = 0;
5817 FCONST1(mode).mode = mode;
5818 FCONST1(mode).data
5819 = double_int_one.lshift (GET_MODE_FBIT (mode),
5820 HOST_BITS_PER_DOUBLE_INT,
5821 SIGNED_FIXED_POINT_MODE_P (mode));
5822 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5823 FCONST1 (mode), mode);
5826 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UACCUM);
5827 mode != VOIDmode;
5828 mode = GET_MODE_WIDER_MODE (mode))
5830 FCONST0(mode).data.high = 0;
5831 FCONST0(mode).data.low = 0;
5832 FCONST0(mode).mode = mode;
5833 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5834 FCONST0 (mode), mode);
5836 /* We store the value 1. */
5837 FCONST1(mode).data.high = 0;
5838 FCONST1(mode).data.low = 0;
5839 FCONST1(mode).mode = mode;
5840 FCONST1(mode).data
5841 = double_int_one.lshift (GET_MODE_FBIT (mode),
5842 HOST_BITS_PER_DOUBLE_INT,
5843 SIGNED_FIXED_POINT_MODE_P (mode));
5844 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5845 FCONST1 (mode), mode);
5848 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FRACT);
5849 mode != VOIDmode;
5850 mode = GET_MODE_WIDER_MODE (mode))
5852 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5855 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UFRACT);
5856 mode != VOIDmode;
5857 mode = GET_MODE_WIDER_MODE (mode))
5859 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5862 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_ACCUM);
5863 mode != VOIDmode;
5864 mode = GET_MODE_WIDER_MODE (mode))
5866 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5867 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5870 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UACCUM);
5871 mode != VOIDmode;
5872 mode = GET_MODE_WIDER_MODE (mode))
5874 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5875 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5878 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5879 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5880 const_tiny_rtx[0][i] = const0_rtx;
5882 const_tiny_rtx[0][(int) BImode] = const0_rtx;
5883 if (STORE_FLAG_VALUE == 1)
5884 const_tiny_rtx[1][(int) BImode] = const1_rtx;
5886 pc_rtx = gen_rtx_fmt_ (PC, VOIDmode);
5887 ret_rtx = gen_rtx_fmt_ (RETURN, VOIDmode);
5888 simple_return_rtx = gen_rtx_fmt_ (SIMPLE_RETURN, VOIDmode);
5889 cc0_rtx = gen_rtx_fmt_ (CC0, VOIDmode);
5892 /* Produce exact duplicate of insn INSN after AFTER.
5893 Care updating of libcall regions if present. */
5896 emit_copy_of_insn_after (rtx insn, rtx after)
5898 rtx new_rtx, link;
5900 switch (GET_CODE (insn))
5902 case INSN:
5903 new_rtx = emit_insn_after (copy_insn (PATTERN (insn)), after);
5904 break;
5906 case JUMP_INSN:
5907 new_rtx = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
5908 break;
5910 case DEBUG_INSN:
5911 new_rtx = emit_debug_insn_after (copy_insn (PATTERN (insn)), after);
5912 break;
5914 case CALL_INSN:
5915 new_rtx = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
5916 if (CALL_INSN_FUNCTION_USAGE (insn))
5917 CALL_INSN_FUNCTION_USAGE (new_rtx)
5918 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
5919 SIBLING_CALL_P (new_rtx) = SIBLING_CALL_P (insn);
5920 RTL_CONST_CALL_P (new_rtx) = RTL_CONST_CALL_P (insn);
5921 RTL_PURE_CALL_P (new_rtx) = RTL_PURE_CALL_P (insn);
5922 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx)
5923 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn);
5924 break;
5926 default:
5927 gcc_unreachable ();
5930 /* Update LABEL_NUSES. */
5931 mark_jump_label (PATTERN (new_rtx), new_rtx, 0);
5933 INSN_LOCATION (new_rtx) = INSN_LOCATION (insn);
5935 /* If the old insn is frame related, then so is the new one. This is
5936 primarily needed for IA-64 unwind info which marks epilogue insns,
5937 which may be duplicated by the basic block reordering code. */
5938 RTX_FRAME_RELATED_P (new_rtx) = RTX_FRAME_RELATED_P (insn);
5940 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
5941 will make them. REG_LABEL_TARGETs are created there too, but are
5942 supposed to be sticky, so we copy them. */
5943 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5944 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND)
5946 if (GET_CODE (link) == EXPR_LIST)
5947 add_reg_note (new_rtx, REG_NOTE_KIND (link),
5948 copy_insn_1 (XEXP (link, 0)));
5949 else
5950 add_reg_note (new_rtx, REG_NOTE_KIND (link), XEXP (link, 0));
5953 INSN_CODE (new_rtx) = INSN_CODE (insn);
5954 return new_rtx;
5957 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
5959 gen_hard_reg_clobber (enum machine_mode mode, unsigned int regno)
5961 if (hard_reg_clobbers[mode][regno])
5962 return hard_reg_clobbers[mode][regno];
5963 else
5964 return (hard_reg_clobbers[mode][regno] =
5965 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
5968 location_t prologue_location;
5969 location_t epilogue_location;
5971 /* Hold current location information and last location information, so the
5972 datastructures are built lazily only when some instructions in given
5973 place are needed. */
5974 static location_t curr_location;
5976 /* Allocate insn location datastructure. */
5977 void
5978 insn_locations_init (void)
5980 prologue_location = epilogue_location = 0;
5981 curr_location = UNKNOWN_LOCATION;
5984 /* At the end of emit stage, clear current location. */
5985 void
5986 insn_locations_finalize (void)
5988 epilogue_location = curr_location;
5989 curr_location = UNKNOWN_LOCATION;
5992 /* Set current location. */
5993 void
5994 set_curr_insn_location (location_t location)
5996 curr_location = location;
5999 /* Get current location. */
6000 location_t
6001 curr_insn_location (void)
6003 return curr_location;
6006 /* Return lexical scope block insn belongs to. */
6007 tree
6008 insn_scope (const_rtx insn)
6010 return LOCATION_BLOCK (INSN_LOCATION (insn));
6013 /* Return line number of the statement that produced this insn. */
6015 insn_line (const_rtx insn)
6017 return LOCATION_LINE (INSN_LOCATION (insn));
6020 /* Return source file of the statement that produced this insn. */
6021 const char *
6022 insn_file (const_rtx insn)
6024 return LOCATION_FILE (INSN_LOCATION (insn));
6027 /* Return true if memory model MODEL requires a pre-operation (release-style)
6028 barrier or a post-operation (acquire-style) barrier. While not universal,
6029 this function matches behavior of several targets. */
6031 bool
6032 need_atomic_barrier_p (enum memmodel model, bool pre)
6034 switch (model & MEMMODEL_MASK)
6036 case MEMMODEL_RELAXED:
6037 case MEMMODEL_CONSUME:
6038 return false;
6039 case MEMMODEL_RELEASE:
6040 return pre;
6041 case MEMMODEL_ACQUIRE:
6042 return !pre;
6043 case MEMMODEL_ACQ_REL:
6044 case MEMMODEL_SEQ_CST:
6045 return true;
6046 default:
6047 gcc_unreachable ();
6051 #include "gt-emit-rtl.h"