1 /* Lower complex number operations to scalar operations.
2 Copyright (C) 2004-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
22 #include "coretypes.h"
25 #include "stor-layout.h"
27 #include "basic-block.h"
28 #include "tree-ssa-alias.h"
29 #include "internal-fn.h"
31 #include "gimple-expr.h"
35 #include "gimple-iterator.h"
36 #include "gimplify-me.h"
37 #include "gimple-ssa.h"
39 #include "tree-phinodes.h"
40 #include "ssa-iterators.h"
41 #include "stringpool.h"
42 #include "tree-ssanames.h"
46 #include "tree-iterator.h"
47 #include "tree-pass.h"
48 #include "tree-ssa-propagate.h"
49 #include "tree-hasher.h"
53 /* For each complex ssa name, a lattice value. We're interested in finding
54 out whether a complex number is degenerate in some way, having only real
55 or only complex parts. */
65 /* The type complex_lattice_t holds combinations of the above
67 typedef int complex_lattice_t
;
69 #define PAIR(a, b) ((a) << 2 | (b))
72 static vec
<complex_lattice_t
> complex_lattice_values
;
74 /* For each complex variable, a pair of variables for the components exists in
76 static int_tree_htab_type complex_variable_components
;
78 /* For each complex SSA_NAME, a pair of ssa names for the components. */
79 static vec
<tree
> complex_ssa_name_components
;
81 /* Lookup UID in the complex_variable_components hashtable and return the
84 cvc_lookup (unsigned int uid
)
86 struct int_tree_map
*h
, in
;
88 h
= complex_variable_components
.find_with_hash (&in
, uid
);
89 return h
? h
->to
: NULL
;
92 /* Insert the pair UID, TO into the complex_variable_components hashtable. */
95 cvc_insert (unsigned int uid
, tree to
)
97 struct int_tree_map
*h
;
100 h
= XNEW (struct int_tree_map
);
103 loc
= complex_variable_components
.find_slot_with_hash (h
, uid
, INSERT
);
107 /* Return true if T is not a zero constant. In the case of real values,
108 we're only interested in +0.0. */
111 some_nonzerop (tree t
)
115 /* Operations with real or imaginary part of a complex number zero
116 cannot be treated the same as operations with a real or imaginary
117 operand if we care about the signs of zeros in the result. */
118 if (TREE_CODE (t
) == REAL_CST
&& !flag_signed_zeros
)
119 zerop
= REAL_VALUES_IDENTICAL (TREE_REAL_CST (t
), dconst0
);
120 else if (TREE_CODE (t
) == FIXED_CST
)
121 zerop
= fixed_zerop (t
);
122 else if (TREE_CODE (t
) == INTEGER_CST
)
123 zerop
= integer_zerop (t
);
129 /* Compute a lattice value from the components of a complex type REAL
132 static complex_lattice_t
133 find_lattice_value_parts (tree real
, tree imag
)
136 complex_lattice_t ret
;
138 r
= some_nonzerop (real
);
139 i
= some_nonzerop (imag
);
140 ret
= r
* ONLY_REAL
+ i
* ONLY_IMAG
;
142 /* ??? On occasion we could do better than mapping 0+0i to real, but we
143 certainly don't want to leave it UNINITIALIZED, which eventually gets
144 mapped to VARYING. */
145 if (ret
== UNINITIALIZED
)
152 /* Compute a lattice value from gimple_val T. */
154 static complex_lattice_t
155 find_lattice_value (tree t
)
159 switch (TREE_CODE (t
))
162 return complex_lattice_values
[SSA_NAME_VERSION (t
)];
165 real
= TREE_REALPART (t
);
166 imag
= TREE_IMAGPART (t
);
173 return find_lattice_value_parts (real
, imag
);
176 /* Determine if LHS is something for which we're interested in seeing
177 simulation results. */
180 is_complex_reg (tree lhs
)
182 return TREE_CODE (TREE_TYPE (lhs
)) == COMPLEX_TYPE
&& is_gimple_reg (lhs
);
185 /* Mark the incoming parameters to the function as VARYING. */
188 init_parameter_lattice_values (void)
192 for (parm
= DECL_ARGUMENTS (cfun
->decl
); parm
; parm
= DECL_CHAIN (parm
))
193 if (is_complex_reg (parm
)
194 && (ssa_name
= ssa_default_def (cfun
, parm
)) != NULL_TREE
)
195 complex_lattice_values
[SSA_NAME_VERSION (ssa_name
)] = VARYING
;
198 /* Initialize simulation state for each statement. Return false if we
199 found no statements we want to simulate, and thus there's nothing
200 for the entire pass to do. */
203 init_dont_simulate_again (void)
206 gimple_stmt_iterator gsi
;
208 bool saw_a_complex_op
= false;
210 FOR_EACH_BB_FN (bb
, cfun
)
212 for (gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
214 phi
= gsi_stmt (gsi
);
215 prop_set_simulate_again (phi
,
216 is_complex_reg (gimple_phi_result (phi
)));
219 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
225 stmt
= gsi_stmt (gsi
);
226 op0
= op1
= NULL_TREE
;
228 /* Most control-altering statements must be initially
229 simulated, else we won't cover the entire cfg. */
230 sim_again_p
= stmt_ends_bb_p (stmt
);
232 switch (gimple_code (stmt
))
235 if (gimple_call_lhs (stmt
))
236 sim_again_p
= is_complex_reg (gimple_call_lhs (stmt
));
240 sim_again_p
= is_complex_reg (gimple_assign_lhs (stmt
));
241 if (gimple_assign_rhs_code (stmt
) == REALPART_EXPR
242 || gimple_assign_rhs_code (stmt
) == IMAGPART_EXPR
)
243 op0
= TREE_OPERAND (gimple_assign_rhs1 (stmt
), 0);
245 op0
= gimple_assign_rhs1 (stmt
);
246 if (gimple_num_ops (stmt
) > 2)
247 op1
= gimple_assign_rhs2 (stmt
);
251 op0
= gimple_cond_lhs (stmt
);
252 op1
= gimple_cond_rhs (stmt
);
260 switch (gimple_expr_code (stmt
))
272 if (TREE_CODE (TREE_TYPE (op0
)) == COMPLEX_TYPE
273 || TREE_CODE (TREE_TYPE (op1
)) == COMPLEX_TYPE
)
274 saw_a_complex_op
= true;
279 if (TREE_CODE (TREE_TYPE (op0
)) == COMPLEX_TYPE
)
280 saw_a_complex_op
= true;
285 /* The total store transformation performed during
286 gimplification creates such uninitialized loads
287 and we need to lower the statement to be able
289 if (TREE_CODE (op0
) == SSA_NAME
290 && ssa_undefined_value_p (op0
))
291 saw_a_complex_op
= true;
298 prop_set_simulate_again (stmt
, sim_again_p
);
302 return saw_a_complex_op
;
306 /* Evaluate statement STMT against the complex lattice defined above. */
308 static enum ssa_prop_result
309 complex_visit_stmt (gimple stmt
, edge
*taken_edge_p ATTRIBUTE_UNUSED
,
312 complex_lattice_t new_l
, old_l
, op1_l
, op2_l
;
316 lhs
= gimple_get_lhs (stmt
);
317 /* Skip anything but GIMPLE_ASSIGN and GIMPLE_CALL with a lhs. */
319 return SSA_PROP_VARYING
;
321 /* These conditions should be satisfied due to the initial filter
322 set up in init_dont_simulate_again. */
323 gcc_assert (TREE_CODE (lhs
) == SSA_NAME
);
324 gcc_assert (TREE_CODE (TREE_TYPE (lhs
)) == COMPLEX_TYPE
);
327 ver
= SSA_NAME_VERSION (lhs
);
328 old_l
= complex_lattice_values
[ver
];
330 switch (gimple_expr_code (stmt
))
334 new_l
= find_lattice_value (gimple_assign_rhs1 (stmt
));
338 new_l
= find_lattice_value_parts (gimple_assign_rhs1 (stmt
),
339 gimple_assign_rhs2 (stmt
));
344 op1_l
= find_lattice_value (gimple_assign_rhs1 (stmt
));
345 op2_l
= find_lattice_value (gimple_assign_rhs2 (stmt
));
347 /* We've set up the lattice values such that IOR neatly
349 new_l
= op1_l
| op2_l
;
358 op1_l
= find_lattice_value (gimple_assign_rhs1 (stmt
));
359 op2_l
= find_lattice_value (gimple_assign_rhs2 (stmt
));
361 /* Obviously, if either varies, so does the result. */
362 if (op1_l
== VARYING
|| op2_l
== VARYING
)
364 /* Don't prematurely promote variables if we've not yet seen
366 else if (op1_l
== UNINITIALIZED
)
368 else if (op2_l
== UNINITIALIZED
)
372 /* At this point both numbers have only one component. If the
373 numbers are of opposite kind, the result is imaginary,
374 otherwise the result is real. The add/subtract translates
375 the real/imag from/to 0/1; the ^ performs the comparison. */
376 new_l
= ((op1_l
- ONLY_REAL
) ^ (op2_l
- ONLY_REAL
)) + ONLY_REAL
;
378 /* Don't allow the lattice value to flip-flop indefinitely. */
385 new_l
= find_lattice_value (gimple_assign_rhs1 (stmt
));
393 /* If nothing changed this round, let the propagator know. */
395 return SSA_PROP_NOT_INTERESTING
;
397 complex_lattice_values
[ver
] = new_l
;
398 return new_l
== VARYING
? SSA_PROP_VARYING
: SSA_PROP_INTERESTING
;
401 /* Evaluate a PHI node against the complex lattice defined above. */
403 static enum ssa_prop_result
404 complex_visit_phi (gimple phi
)
406 complex_lattice_t new_l
, old_l
;
411 lhs
= gimple_phi_result (phi
);
413 /* This condition should be satisfied due to the initial filter
414 set up in init_dont_simulate_again. */
415 gcc_assert (TREE_CODE (TREE_TYPE (lhs
)) == COMPLEX_TYPE
);
417 /* We've set up the lattice values such that IOR neatly models PHI meet. */
418 new_l
= UNINITIALIZED
;
419 for (i
= gimple_phi_num_args (phi
) - 1; i
>= 0; --i
)
420 new_l
|= find_lattice_value (gimple_phi_arg_def (phi
, i
));
422 ver
= SSA_NAME_VERSION (lhs
);
423 old_l
= complex_lattice_values
[ver
];
426 return SSA_PROP_NOT_INTERESTING
;
428 complex_lattice_values
[ver
] = new_l
;
429 return new_l
== VARYING
? SSA_PROP_VARYING
: SSA_PROP_INTERESTING
;
432 /* Create one backing variable for a complex component of ORIG. */
435 create_one_component_var (tree type
, tree orig
, const char *prefix
,
436 const char *suffix
, enum tree_code code
)
438 tree r
= create_tmp_var (type
, prefix
);
440 DECL_SOURCE_LOCATION (r
) = DECL_SOURCE_LOCATION (orig
);
441 DECL_ARTIFICIAL (r
) = 1;
443 if (DECL_NAME (orig
) && !DECL_IGNORED_P (orig
))
445 const char *name
= IDENTIFIER_POINTER (DECL_NAME (orig
));
447 DECL_NAME (r
) = get_identifier (ACONCAT ((name
, suffix
, NULL
)));
449 SET_DECL_DEBUG_EXPR (r
, build1 (code
, type
, orig
));
450 DECL_HAS_DEBUG_EXPR_P (r
) = 1;
451 DECL_IGNORED_P (r
) = 0;
452 TREE_NO_WARNING (r
) = TREE_NO_WARNING (orig
);
456 DECL_IGNORED_P (r
) = 1;
457 TREE_NO_WARNING (r
) = 1;
463 /* Retrieve a value for a complex component of VAR. */
466 get_component_var (tree var
, bool imag_p
)
468 size_t decl_index
= DECL_UID (var
) * 2 + imag_p
;
469 tree ret
= cvc_lookup (decl_index
);
473 ret
= create_one_component_var (TREE_TYPE (TREE_TYPE (var
)), var
,
474 imag_p
? "CI" : "CR",
475 imag_p
? "$imag" : "$real",
476 imag_p
? IMAGPART_EXPR
: REALPART_EXPR
);
477 cvc_insert (decl_index
, ret
);
483 /* Retrieve a value for a complex component of SSA_NAME. */
486 get_component_ssa_name (tree ssa_name
, bool imag_p
)
488 complex_lattice_t lattice
= find_lattice_value (ssa_name
);
489 size_t ssa_name_index
;
492 if (lattice
== (imag_p
? ONLY_REAL
: ONLY_IMAG
))
494 tree inner_type
= TREE_TYPE (TREE_TYPE (ssa_name
));
495 if (SCALAR_FLOAT_TYPE_P (inner_type
))
496 return build_real (inner_type
, dconst0
);
498 return build_int_cst (inner_type
, 0);
501 ssa_name_index
= SSA_NAME_VERSION (ssa_name
) * 2 + imag_p
;
502 ret
= complex_ssa_name_components
[ssa_name_index
];
505 if (SSA_NAME_VAR (ssa_name
))
506 ret
= get_component_var (SSA_NAME_VAR (ssa_name
), imag_p
);
508 ret
= TREE_TYPE (TREE_TYPE (ssa_name
));
509 ret
= make_ssa_name (ret
, NULL
);
511 /* Copy some properties from the original. In particular, whether it
512 is used in an abnormal phi, and whether it's uninitialized. */
513 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ret
)
514 = SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name
);
515 if (SSA_NAME_IS_DEFAULT_DEF (ssa_name
)
516 && TREE_CODE (SSA_NAME_VAR (ssa_name
)) == VAR_DECL
)
518 SSA_NAME_DEF_STMT (ret
) = SSA_NAME_DEF_STMT (ssa_name
);
519 set_ssa_default_def (cfun
, SSA_NAME_VAR (ret
), ret
);
522 complex_ssa_name_components
[ssa_name_index
] = ret
;
528 /* Set a value for a complex component of SSA_NAME, return a
529 gimple_seq of stuff that needs doing. */
532 set_component_ssa_name (tree ssa_name
, bool imag_p
, tree value
)
534 complex_lattice_t lattice
= find_lattice_value (ssa_name
);
535 size_t ssa_name_index
;
540 /* We know the value must be zero, else there's a bug in our lattice
541 analysis. But the value may well be a variable known to contain
542 zero. We should be safe ignoring it. */
543 if (lattice
== (imag_p
? ONLY_REAL
: ONLY_IMAG
))
546 /* If we've already assigned an SSA_NAME to this component, then this
547 means that our walk of the basic blocks found a use before the set.
548 This is fine. Now we should create an initialization for the value
549 we created earlier. */
550 ssa_name_index
= SSA_NAME_VERSION (ssa_name
) * 2 + imag_p
;
551 comp
= complex_ssa_name_components
[ssa_name_index
];
555 /* If we've nothing assigned, and the value we're given is already stable,
556 then install that as the value for this SSA_NAME. This preemptively
557 copy-propagates the value, which avoids unnecessary memory allocation. */
558 else if (is_gimple_min_invariant (value
)
559 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name
))
561 complex_ssa_name_components
[ssa_name_index
] = value
;
564 else if (TREE_CODE (value
) == SSA_NAME
565 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name
))
567 /* Replace an anonymous base value with the variable from cvc_lookup.
568 This should result in better debug info. */
569 if (SSA_NAME_VAR (ssa_name
)
570 && (!SSA_NAME_VAR (value
) || DECL_IGNORED_P (SSA_NAME_VAR (value
)))
571 && !DECL_IGNORED_P (SSA_NAME_VAR (ssa_name
)))
573 comp
= get_component_var (SSA_NAME_VAR (ssa_name
), imag_p
);
574 replace_ssa_name_symbol (value
, comp
);
577 complex_ssa_name_components
[ssa_name_index
] = value
;
581 /* Finally, we need to stabilize the result by installing the value into
584 comp
= get_component_ssa_name (ssa_name
, imag_p
);
586 /* Do all the work to assign VALUE to COMP. */
588 value
= force_gimple_operand (value
, &list
, false, NULL
);
589 last
= gimple_build_assign (comp
, value
);
590 gimple_seq_add_stmt (&list
, last
);
591 gcc_assert (SSA_NAME_DEF_STMT (comp
) == last
);
596 /* Extract the real or imaginary part of a complex variable or constant.
597 Make sure that it's a proper gimple_val and gimplify it if not.
598 Emit any new code before gsi. */
601 extract_component (gimple_stmt_iterator
*gsi
, tree t
, bool imagpart_p
,
604 switch (TREE_CODE (t
))
607 return imagpart_p
? TREE_IMAGPART (t
) : TREE_REALPART (t
);
617 case VIEW_CONVERT_EXPR
:
620 tree inner_type
= TREE_TYPE (TREE_TYPE (t
));
622 t
= build1 ((imagpart_p
? IMAGPART_EXPR
: REALPART_EXPR
),
623 inner_type
, unshare_expr (t
));
626 t
= force_gimple_operand_gsi (gsi
, t
, true, NULL
, true,
633 return get_component_ssa_name (t
, imagpart_p
);
640 /* Update the complex components of the ssa name on the lhs of STMT. */
643 update_complex_components (gimple_stmt_iterator
*gsi
, gimple stmt
, tree r
,
649 lhs
= gimple_get_lhs (stmt
);
651 list
= set_component_ssa_name (lhs
, false, r
);
653 gsi_insert_seq_after (gsi
, list
, GSI_CONTINUE_LINKING
);
655 list
= set_component_ssa_name (lhs
, true, i
);
657 gsi_insert_seq_after (gsi
, list
, GSI_CONTINUE_LINKING
);
661 update_complex_components_on_edge (edge e
, tree lhs
, tree r
, tree i
)
665 list
= set_component_ssa_name (lhs
, false, r
);
667 gsi_insert_seq_on_edge (e
, list
);
669 list
= set_component_ssa_name (lhs
, true, i
);
671 gsi_insert_seq_on_edge (e
, list
);
675 /* Update an assignment to a complex variable in place. */
678 update_complex_assignment (gimple_stmt_iterator
*gsi
, tree r
, tree i
)
682 gimple_assign_set_rhs_with_ops (gsi
, COMPLEX_EXPR
, r
, i
);
683 stmt
= gsi_stmt (*gsi
);
685 if (maybe_clean_eh_stmt (stmt
))
686 gimple_purge_dead_eh_edges (gimple_bb (stmt
));
688 if (gimple_in_ssa_p (cfun
))
689 update_complex_components (gsi
, gsi_stmt (*gsi
), r
, i
);
693 /* Generate code at the entry point of the function to initialize the
694 component variables for a complex parameter. */
697 update_parameter_components (void)
699 edge entry_edge
= single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun
));
702 for (parm
= DECL_ARGUMENTS (cfun
->decl
); parm
; parm
= DECL_CHAIN (parm
))
704 tree type
= TREE_TYPE (parm
);
707 if (TREE_CODE (type
) != COMPLEX_TYPE
|| !is_gimple_reg (parm
))
710 type
= TREE_TYPE (type
);
711 ssa_name
= ssa_default_def (cfun
, parm
);
715 r
= build1 (REALPART_EXPR
, type
, ssa_name
);
716 i
= build1 (IMAGPART_EXPR
, type
, ssa_name
);
717 update_complex_components_on_edge (entry_edge
, ssa_name
, r
, i
);
721 /* Generate code to set the component variables of a complex variable
722 to match the PHI statements in block BB. */
725 update_phi_components (basic_block bb
)
727 gimple_stmt_iterator gsi
;
729 for (gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
731 gimple phi
= gsi_stmt (gsi
);
733 if (is_complex_reg (gimple_phi_result (phi
)))
736 gimple pr
= NULL
, pi
= NULL
;
739 lr
= get_component_ssa_name (gimple_phi_result (phi
), false);
740 if (TREE_CODE (lr
) == SSA_NAME
)
741 pr
= create_phi_node (lr
, bb
);
743 li
= get_component_ssa_name (gimple_phi_result (phi
), true);
744 if (TREE_CODE (li
) == SSA_NAME
)
745 pi
= create_phi_node (li
, bb
);
747 for (i
= 0, n
= gimple_phi_num_args (phi
); i
< n
; ++i
)
749 tree comp
, arg
= gimple_phi_arg_def (phi
, i
);
752 comp
= extract_component (NULL
, arg
, false, false);
753 SET_PHI_ARG_DEF (pr
, i
, comp
);
757 comp
= extract_component (NULL
, arg
, true, false);
758 SET_PHI_ARG_DEF (pi
, i
, comp
);
765 /* Expand a complex move to scalars. */
768 expand_complex_move (gimple_stmt_iterator
*gsi
, tree type
)
770 tree inner_type
= TREE_TYPE (type
);
772 gimple stmt
= gsi_stmt (*gsi
);
774 if (is_gimple_assign (stmt
))
776 lhs
= gimple_assign_lhs (stmt
);
777 if (gimple_num_ops (stmt
) == 2)
778 rhs
= gimple_assign_rhs1 (stmt
);
782 else if (is_gimple_call (stmt
))
784 lhs
= gimple_call_lhs (stmt
);
790 if (TREE_CODE (lhs
) == SSA_NAME
)
792 if (is_ctrl_altering_stmt (stmt
))
796 /* The value is not assigned on the exception edges, so we need not
797 concern ourselves there. We do need to update on the fallthru
799 e
= find_fallthru_edge (gsi_bb (*gsi
)->succs
);
803 r
= build1 (REALPART_EXPR
, inner_type
, lhs
);
804 i
= build1 (IMAGPART_EXPR
, inner_type
, lhs
);
805 update_complex_components_on_edge (e
, lhs
, r
, i
);
807 else if (is_gimple_call (stmt
)
808 || gimple_has_side_effects (stmt
)
809 || gimple_assign_rhs_code (stmt
) == PAREN_EXPR
)
811 r
= build1 (REALPART_EXPR
, inner_type
, lhs
);
812 i
= build1 (IMAGPART_EXPR
, inner_type
, lhs
);
813 update_complex_components (gsi
, stmt
, r
, i
);
817 if (gimple_assign_rhs_code (stmt
) != COMPLEX_EXPR
)
819 r
= extract_component (gsi
, rhs
, 0, true);
820 i
= extract_component (gsi
, rhs
, 1, true);
824 r
= gimple_assign_rhs1 (stmt
);
825 i
= gimple_assign_rhs2 (stmt
);
827 update_complex_assignment (gsi
, r
, i
);
830 else if (rhs
&& TREE_CODE (rhs
) == SSA_NAME
&& !TREE_SIDE_EFFECTS (lhs
))
835 r
= extract_component (gsi
, rhs
, 0, false);
836 i
= extract_component (gsi
, rhs
, 1, false);
838 x
= build1 (REALPART_EXPR
, inner_type
, unshare_expr (lhs
));
839 t
= gimple_build_assign (x
, r
);
840 gsi_insert_before (gsi
, t
, GSI_SAME_STMT
);
842 if (stmt
== gsi_stmt (*gsi
))
844 x
= build1 (IMAGPART_EXPR
, inner_type
, unshare_expr (lhs
));
845 gimple_assign_set_lhs (stmt
, x
);
846 gimple_assign_set_rhs1 (stmt
, i
);
850 x
= build1 (IMAGPART_EXPR
, inner_type
, unshare_expr (lhs
));
851 t
= gimple_build_assign (x
, i
);
852 gsi_insert_before (gsi
, t
, GSI_SAME_STMT
);
854 stmt
= gsi_stmt (*gsi
);
855 gcc_assert (gimple_code (stmt
) == GIMPLE_RETURN
);
856 gimple_return_set_retval (stmt
, lhs
);
863 /* Expand complex addition to scalars:
864 a + b = (ar + br) + i(ai + bi)
865 a - b = (ar - br) + i(ai + bi)
869 expand_complex_addition (gimple_stmt_iterator
*gsi
, tree inner_type
,
870 tree ar
, tree ai
, tree br
, tree bi
,
872 complex_lattice_t al
, complex_lattice_t bl
)
876 switch (PAIR (al
, bl
))
878 case PAIR (ONLY_REAL
, ONLY_REAL
):
879 rr
= gimplify_build2 (gsi
, code
, inner_type
, ar
, br
);
883 case PAIR (ONLY_REAL
, ONLY_IMAG
):
885 if (code
== MINUS_EXPR
)
886 ri
= gimplify_build2 (gsi
, MINUS_EXPR
, inner_type
, ai
, bi
);
891 case PAIR (ONLY_IMAG
, ONLY_REAL
):
892 if (code
== MINUS_EXPR
)
893 rr
= gimplify_build2 (gsi
, MINUS_EXPR
, inner_type
, ar
, br
);
899 case PAIR (ONLY_IMAG
, ONLY_IMAG
):
901 ri
= gimplify_build2 (gsi
, code
, inner_type
, ai
, bi
);
904 case PAIR (VARYING
, ONLY_REAL
):
905 rr
= gimplify_build2 (gsi
, code
, inner_type
, ar
, br
);
909 case PAIR (VARYING
, ONLY_IMAG
):
911 ri
= gimplify_build2 (gsi
, code
, inner_type
, ai
, bi
);
914 case PAIR (ONLY_REAL
, VARYING
):
915 if (code
== MINUS_EXPR
)
917 rr
= gimplify_build2 (gsi
, code
, inner_type
, ar
, br
);
921 case PAIR (ONLY_IMAG
, VARYING
):
922 if (code
== MINUS_EXPR
)
925 ri
= gimplify_build2 (gsi
, code
, inner_type
, ai
, bi
);
928 case PAIR (VARYING
, VARYING
):
930 rr
= gimplify_build2 (gsi
, code
, inner_type
, ar
, br
);
931 ri
= gimplify_build2 (gsi
, code
, inner_type
, ai
, bi
);
938 update_complex_assignment (gsi
, rr
, ri
);
941 /* Expand a complex multiplication or division to a libcall to the c99
942 compliant routines. */
945 expand_complex_libcall (gimple_stmt_iterator
*gsi
, tree ar
, tree ai
,
946 tree br
, tree bi
, enum tree_code code
)
948 enum machine_mode mode
;
949 enum built_in_function bcode
;
951 gimple old_stmt
, stmt
;
953 old_stmt
= gsi_stmt (*gsi
);
954 lhs
= gimple_assign_lhs (old_stmt
);
955 type
= TREE_TYPE (lhs
);
957 mode
= TYPE_MODE (type
);
958 gcc_assert (GET_MODE_CLASS (mode
) == MODE_COMPLEX_FLOAT
);
960 if (code
== MULT_EXPR
)
961 bcode
= ((enum built_in_function
)
962 (BUILT_IN_COMPLEX_MUL_MIN
+ mode
- MIN_MODE_COMPLEX_FLOAT
));
963 else if (code
== RDIV_EXPR
)
964 bcode
= ((enum built_in_function
)
965 (BUILT_IN_COMPLEX_DIV_MIN
+ mode
- MIN_MODE_COMPLEX_FLOAT
));
968 fn
= builtin_decl_explicit (bcode
);
970 stmt
= gimple_build_call (fn
, 4, ar
, ai
, br
, bi
);
971 gimple_call_set_lhs (stmt
, lhs
);
973 gsi_replace (gsi
, stmt
, false);
975 if (maybe_clean_or_replace_eh_stmt (old_stmt
, stmt
))
976 gimple_purge_dead_eh_edges (gsi_bb (*gsi
));
978 if (gimple_in_ssa_p (cfun
))
980 type
= TREE_TYPE (type
);
981 update_complex_components (gsi
, stmt
,
982 build1 (REALPART_EXPR
, type
, lhs
),
983 build1 (IMAGPART_EXPR
, type
, lhs
));
984 SSA_NAME_DEF_STMT (lhs
) = stmt
;
988 /* Expand complex multiplication to scalars:
989 a * b = (ar*br - ai*bi) + i(ar*bi + br*ai)
993 expand_complex_multiplication (gimple_stmt_iterator
*gsi
, tree inner_type
,
994 tree ar
, tree ai
, tree br
, tree bi
,
995 complex_lattice_t al
, complex_lattice_t bl
)
1001 complex_lattice_t tl
;
1002 rr
= ar
, ar
= br
, br
= rr
;
1003 ri
= ai
, ai
= bi
, bi
= ri
;
1004 tl
= al
, al
= bl
, bl
= tl
;
1007 switch (PAIR (al
, bl
))
1009 case PAIR (ONLY_REAL
, ONLY_REAL
):
1010 rr
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ar
, br
);
1014 case PAIR (ONLY_IMAG
, ONLY_REAL
):
1016 if (TREE_CODE (ai
) == REAL_CST
1017 && REAL_VALUES_IDENTICAL (TREE_REAL_CST (ai
), dconst1
))
1020 ri
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ai
, br
);
1023 case PAIR (ONLY_IMAG
, ONLY_IMAG
):
1024 rr
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ai
, bi
);
1025 rr
= gimplify_build1 (gsi
, NEGATE_EXPR
, inner_type
, rr
);
1029 case PAIR (VARYING
, ONLY_REAL
):
1030 rr
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ar
, br
);
1031 ri
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ai
, br
);
1034 case PAIR (VARYING
, ONLY_IMAG
):
1035 rr
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ai
, bi
);
1036 rr
= gimplify_build1 (gsi
, NEGATE_EXPR
, inner_type
, rr
);
1037 ri
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ar
, bi
);
1040 case PAIR (VARYING
, VARYING
):
1041 if (flag_complex_method
== 2 && SCALAR_FLOAT_TYPE_P (inner_type
))
1043 expand_complex_libcall (gsi
, ar
, ai
, br
, bi
, MULT_EXPR
);
1048 tree t1
, t2
, t3
, t4
;
1050 t1
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ar
, br
);
1051 t2
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ai
, bi
);
1052 t3
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ar
, bi
);
1054 /* Avoid expanding redundant multiplication for the common
1055 case of squaring a complex number. */
1056 if (ar
== br
&& ai
== bi
)
1059 t4
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ai
, br
);
1061 rr
= gimplify_build2 (gsi
, MINUS_EXPR
, inner_type
, t1
, t2
);
1062 ri
= gimplify_build2 (gsi
, PLUS_EXPR
, inner_type
, t3
, t4
);
1070 update_complex_assignment (gsi
, rr
, ri
);
1073 /* Keep this algorithm in sync with fold-const.c:const_binop().
1075 Expand complex division to scalars, straightforward algorithm.
1076 a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t)
1081 expand_complex_div_straight (gimple_stmt_iterator
*gsi
, tree inner_type
,
1082 tree ar
, tree ai
, tree br
, tree bi
,
1083 enum tree_code code
)
1085 tree rr
, ri
, div
, t1
, t2
, t3
;
1087 t1
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, br
, br
);
1088 t2
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, bi
, bi
);
1089 div
= gimplify_build2 (gsi
, PLUS_EXPR
, inner_type
, t1
, t2
);
1091 t1
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ar
, br
);
1092 t2
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ai
, bi
);
1093 t3
= gimplify_build2 (gsi
, PLUS_EXPR
, inner_type
, t1
, t2
);
1094 rr
= gimplify_build2 (gsi
, code
, inner_type
, t3
, div
);
1096 t1
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ai
, br
);
1097 t2
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ar
, bi
);
1098 t3
= gimplify_build2 (gsi
, MINUS_EXPR
, inner_type
, t1
, t2
);
1099 ri
= gimplify_build2 (gsi
, code
, inner_type
, t3
, div
);
1101 update_complex_assignment (gsi
, rr
, ri
);
1104 /* Keep this algorithm in sync with fold-const.c:const_binop().
1106 Expand complex division to scalars, modified algorithm to minimize
1107 overflow with wide input ranges. */
1110 expand_complex_div_wide (gimple_stmt_iterator
*gsi
, tree inner_type
,
1111 tree ar
, tree ai
, tree br
, tree bi
,
1112 enum tree_code code
)
1114 tree rr
, ri
, ratio
, div
, t1
, t2
, tr
, ti
, compare
;
1115 basic_block bb_cond
, bb_true
, bb_false
, bb_join
;
1118 /* Examine |br| < |bi|, and branch. */
1119 t1
= gimplify_build1 (gsi
, ABS_EXPR
, inner_type
, br
);
1120 t2
= gimplify_build1 (gsi
, ABS_EXPR
, inner_type
, bi
);
1121 compare
= fold_build2_loc (gimple_location (gsi_stmt (*gsi
)),
1122 LT_EXPR
, boolean_type_node
, t1
, t2
);
1123 STRIP_NOPS (compare
);
1125 bb_cond
= bb_true
= bb_false
= bb_join
= NULL
;
1126 rr
= ri
= tr
= ti
= NULL
;
1127 if (TREE_CODE (compare
) != INTEGER_CST
)
1133 tmp
= create_tmp_var (boolean_type_node
, NULL
);
1134 stmt
= gimple_build_assign (tmp
, compare
);
1135 if (gimple_in_ssa_p (cfun
))
1137 tmp
= make_ssa_name (tmp
, stmt
);
1138 gimple_assign_set_lhs (stmt
, tmp
);
1141 gsi_insert_before (gsi
, stmt
, GSI_SAME_STMT
);
1143 cond
= fold_build2_loc (gimple_location (stmt
),
1144 EQ_EXPR
, boolean_type_node
, tmp
, boolean_true_node
);
1145 stmt
= gimple_build_cond_from_tree (cond
, NULL_TREE
, NULL_TREE
);
1146 gsi_insert_before (gsi
, stmt
, GSI_SAME_STMT
);
1148 /* Split the original block, and create the TRUE and FALSE blocks. */
1149 e
= split_block (gsi_bb (*gsi
), stmt
);
1152 bb_true
= create_empty_bb (bb_cond
);
1153 bb_false
= create_empty_bb (bb_true
);
1155 /* Wire the blocks together. */
1156 e
->flags
= EDGE_TRUE_VALUE
;
1157 redirect_edge_succ (e
, bb_true
);
1158 make_edge (bb_cond
, bb_false
, EDGE_FALSE_VALUE
);
1159 make_edge (bb_true
, bb_join
, EDGE_FALLTHRU
);
1160 make_edge (bb_false
, bb_join
, EDGE_FALLTHRU
);
1163 add_bb_to_loop (bb_true
, bb_cond
->loop_father
);
1164 add_bb_to_loop (bb_false
, bb_cond
->loop_father
);
1167 /* Update dominance info. Note that bb_join's data was
1168 updated by split_block. */
1169 if (dom_info_available_p (CDI_DOMINATORS
))
1171 set_immediate_dominator (CDI_DOMINATORS
, bb_true
, bb_cond
);
1172 set_immediate_dominator (CDI_DOMINATORS
, bb_false
, bb_cond
);
1175 rr
= create_tmp_reg (inner_type
, NULL
);
1176 ri
= create_tmp_reg (inner_type
, NULL
);
1179 /* In the TRUE branch, we compute
1181 div = (br * ratio) + bi;
1182 tr = (ar * ratio) + ai;
1183 ti = (ai * ratio) - ar;
1186 if (bb_true
|| integer_nonzerop (compare
))
1190 *gsi
= gsi_last_bb (bb_true
);
1191 gsi_insert_after (gsi
, gimple_build_nop (), GSI_NEW_STMT
);
1194 ratio
= gimplify_build2 (gsi
, code
, inner_type
, br
, bi
);
1196 t1
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, br
, ratio
);
1197 div
= gimplify_build2 (gsi
, PLUS_EXPR
, inner_type
, t1
, bi
);
1199 t1
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ar
, ratio
);
1200 tr
= gimplify_build2 (gsi
, PLUS_EXPR
, inner_type
, t1
, ai
);
1202 t1
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ai
, ratio
);
1203 ti
= gimplify_build2 (gsi
, MINUS_EXPR
, inner_type
, t1
, ar
);
1205 tr
= gimplify_build2 (gsi
, code
, inner_type
, tr
, div
);
1206 ti
= gimplify_build2 (gsi
, code
, inner_type
, ti
, div
);
1210 stmt
= gimple_build_assign (rr
, tr
);
1211 gsi_insert_before (gsi
, stmt
, GSI_SAME_STMT
);
1212 stmt
= gimple_build_assign (ri
, ti
);
1213 gsi_insert_before (gsi
, stmt
, GSI_SAME_STMT
);
1214 gsi_remove (gsi
, true);
1218 /* In the FALSE branch, we compute
1220 divisor = (d * ratio) + c;
1221 tr = (b * ratio) + a;
1222 ti = b - (a * ratio);
1225 if (bb_false
|| integer_zerop (compare
))
1229 *gsi
= gsi_last_bb (bb_false
);
1230 gsi_insert_after (gsi
, gimple_build_nop (), GSI_NEW_STMT
);
1233 ratio
= gimplify_build2 (gsi
, code
, inner_type
, bi
, br
);
1235 t1
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, bi
, ratio
);
1236 div
= gimplify_build2 (gsi
, PLUS_EXPR
, inner_type
, t1
, br
);
1238 t1
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ai
, ratio
);
1239 tr
= gimplify_build2 (gsi
, PLUS_EXPR
, inner_type
, t1
, ar
);
1241 t1
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ar
, ratio
);
1242 ti
= gimplify_build2 (gsi
, MINUS_EXPR
, inner_type
, ai
, t1
);
1244 tr
= gimplify_build2 (gsi
, code
, inner_type
, tr
, div
);
1245 ti
= gimplify_build2 (gsi
, code
, inner_type
, ti
, div
);
1249 stmt
= gimple_build_assign (rr
, tr
);
1250 gsi_insert_before (gsi
, stmt
, GSI_SAME_STMT
);
1251 stmt
= gimple_build_assign (ri
, ti
);
1252 gsi_insert_before (gsi
, stmt
, GSI_SAME_STMT
);
1253 gsi_remove (gsi
, true);
1258 *gsi
= gsi_start_bb (bb_join
);
1262 update_complex_assignment (gsi
, rr
, ri
);
1265 /* Expand complex division to scalars. */
1268 expand_complex_division (gimple_stmt_iterator
*gsi
, tree inner_type
,
1269 tree ar
, tree ai
, tree br
, tree bi
,
1270 enum tree_code code
,
1271 complex_lattice_t al
, complex_lattice_t bl
)
1275 switch (PAIR (al
, bl
))
1277 case PAIR (ONLY_REAL
, ONLY_REAL
):
1278 rr
= gimplify_build2 (gsi
, code
, inner_type
, ar
, br
);
1282 case PAIR (ONLY_REAL
, ONLY_IMAG
):
1284 ri
= gimplify_build2 (gsi
, code
, inner_type
, ar
, bi
);
1285 ri
= gimplify_build1 (gsi
, NEGATE_EXPR
, inner_type
, ri
);
1288 case PAIR (ONLY_IMAG
, ONLY_REAL
):
1290 ri
= gimplify_build2 (gsi
, code
, inner_type
, ai
, br
);
1293 case PAIR (ONLY_IMAG
, ONLY_IMAG
):
1294 rr
= gimplify_build2 (gsi
, code
, inner_type
, ai
, bi
);
1298 case PAIR (VARYING
, ONLY_REAL
):
1299 rr
= gimplify_build2 (gsi
, code
, inner_type
, ar
, br
);
1300 ri
= gimplify_build2 (gsi
, code
, inner_type
, ai
, br
);
1303 case PAIR (VARYING
, ONLY_IMAG
):
1304 rr
= gimplify_build2 (gsi
, code
, inner_type
, ai
, bi
);
1305 ri
= gimplify_build2 (gsi
, code
, inner_type
, ar
, bi
);
1306 ri
= gimplify_build1 (gsi
, NEGATE_EXPR
, inner_type
, ri
);
1308 case PAIR (ONLY_REAL
, VARYING
):
1309 case PAIR (ONLY_IMAG
, VARYING
):
1310 case PAIR (VARYING
, VARYING
):
1311 switch (flag_complex_method
)
1314 /* straightforward implementation of complex divide acceptable. */
1315 expand_complex_div_straight (gsi
, inner_type
, ar
, ai
, br
, bi
, code
);
1319 if (SCALAR_FLOAT_TYPE_P (inner_type
))
1321 expand_complex_libcall (gsi
, ar
, ai
, br
, bi
, code
);
1327 /* wide ranges of inputs must work for complex divide. */
1328 expand_complex_div_wide (gsi
, inner_type
, ar
, ai
, br
, bi
, code
);
1340 update_complex_assignment (gsi
, rr
, ri
);
1343 /* Expand complex negation to scalars:
1348 expand_complex_negation (gimple_stmt_iterator
*gsi
, tree inner_type
,
1353 rr
= gimplify_build1 (gsi
, NEGATE_EXPR
, inner_type
, ar
);
1354 ri
= gimplify_build1 (gsi
, NEGATE_EXPR
, inner_type
, ai
);
1356 update_complex_assignment (gsi
, rr
, ri
);
1359 /* Expand complex conjugate to scalars:
1364 expand_complex_conjugate (gimple_stmt_iterator
*gsi
, tree inner_type
,
1369 ri
= gimplify_build1 (gsi
, NEGATE_EXPR
, inner_type
, ai
);
1371 update_complex_assignment (gsi
, ar
, ri
);
1374 /* Expand complex comparison (EQ or NE only). */
1377 expand_complex_comparison (gimple_stmt_iterator
*gsi
, tree ar
, tree ai
,
1378 tree br
, tree bi
, enum tree_code code
)
1380 tree cr
, ci
, cc
, type
;
1383 cr
= gimplify_build2 (gsi
, code
, boolean_type_node
, ar
, br
);
1384 ci
= gimplify_build2 (gsi
, code
, boolean_type_node
, ai
, bi
);
1385 cc
= gimplify_build2 (gsi
,
1386 (code
== EQ_EXPR
? TRUTH_AND_EXPR
: TRUTH_OR_EXPR
),
1387 boolean_type_node
, cr
, ci
);
1389 stmt
= gsi_stmt (*gsi
);
1391 switch (gimple_code (stmt
))
1394 type
= TREE_TYPE (gimple_return_retval (stmt
));
1395 gimple_return_set_retval (stmt
, fold_convert (type
, cc
));
1399 type
= TREE_TYPE (gimple_assign_lhs (stmt
));
1400 gimple_assign_set_rhs_from_tree (gsi
, fold_convert (type
, cc
));
1401 stmt
= gsi_stmt (*gsi
);
1405 gimple_cond_set_code (stmt
, EQ_EXPR
);
1406 gimple_cond_set_lhs (stmt
, cc
);
1407 gimple_cond_set_rhs (stmt
, boolean_true_node
);
1417 /* Expand inline asm that sets some complex SSA_NAMEs. */
1420 expand_complex_asm (gimple_stmt_iterator
*gsi
)
1422 gimple stmt
= gsi_stmt (*gsi
);
1425 for (i
= 0; i
< gimple_asm_noutputs (stmt
); ++i
)
1427 tree link
= gimple_asm_output_op (stmt
, i
);
1428 tree op
= TREE_VALUE (link
);
1429 if (TREE_CODE (op
) == SSA_NAME
1430 && TREE_CODE (TREE_TYPE (op
)) == COMPLEX_TYPE
)
1432 tree type
= TREE_TYPE (op
);
1433 tree inner_type
= TREE_TYPE (type
);
1434 tree r
= build1 (REALPART_EXPR
, inner_type
, op
);
1435 tree i
= build1 (IMAGPART_EXPR
, inner_type
, op
);
1436 gimple_seq list
= set_component_ssa_name (op
, false, r
);
1439 gsi_insert_seq_after (gsi
, list
, GSI_CONTINUE_LINKING
);
1441 list
= set_component_ssa_name (op
, true, i
);
1443 gsi_insert_seq_after (gsi
, list
, GSI_CONTINUE_LINKING
);
1448 /* Process one statement. If we identify a complex operation, expand it. */
1451 expand_complex_operations_1 (gimple_stmt_iterator
*gsi
)
1453 gimple stmt
= gsi_stmt (*gsi
);
1454 tree type
, inner_type
, lhs
;
1455 tree ac
, ar
, ai
, bc
, br
, bi
;
1456 complex_lattice_t al
, bl
;
1457 enum tree_code code
;
1459 if (gimple_code (stmt
) == GIMPLE_ASM
)
1461 expand_complex_asm (gsi
);
1465 lhs
= gimple_get_lhs (stmt
);
1466 if (!lhs
&& gimple_code (stmt
) != GIMPLE_COND
)
1469 type
= TREE_TYPE (gimple_op (stmt
, 0));
1470 code
= gimple_expr_code (stmt
);
1472 /* Initial filter for operations we handle. */
1478 case TRUNC_DIV_EXPR
:
1480 case FLOOR_DIV_EXPR
:
1481 case ROUND_DIV_EXPR
:
1485 if (TREE_CODE (type
) != COMPLEX_TYPE
)
1487 inner_type
= TREE_TYPE (type
);
1492 /* Note, both GIMPLE_ASSIGN and GIMPLE_COND may have an EQ_EXPR
1493 subcode, so we need to access the operands using gimple_op. */
1494 inner_type
= TREE_TYPE (gimple_op (stmt
, 1));
1495 if (TREE_CODE (inner_type
) != COMPLEX_TYPE
)
1503 /* GIMPLE_COND may also fallthru here, but we do not need to
1504 do anything with it. */
1505 if (gimple_code (stmt
) == GIMPLE_COND
)
1508 if (TREE_CODE (type
) == COMPLEX_TYPE
)
1509 expand_complex_move (gsi
, type
);
1510 else if (is_gimple_assign (stmt
)
1511 && (gimple_assign_rhs_code (stmt
) == REALPART_EXPR
1512 || gimple_assign_rhs_code (stmt
) == IMAGPART_EXPR
)
1513 && TREE_CODE (lhs
) == SSA_NAME
)
1515 rhs
= gimple_assign_rhs1 (stmt
);
1516 rhs
= extract_component (gsi
, TREE_OPERAND (rhs
, 0),
1517 gimple_assign_rhs_code (stmt
)
1520 gimple_assign_set_rhs_from_tree (gsi
, rhs
);
1521 stmt
= gsi_stmt (*gsi
);
1528 /* Extract the components of the two complex values. Make sure and
1529 handle the common case of the same value used twice specially. */
1530 if (is_gimple_assign (stmt
))
1532 ac
= gimple_assign_rhs1 (stmt
);
1533 bc
= (gimple_num_ops (stmt
) > 2) ? gimple_assign_rhs2 (stmt
) : NULL
;
1535 /* GIMPLE_CALL can not get here. */
1538 ac
= gimple_cond_lhs (stmt
);
1539 bc
= gimple_cond_rhs (stmt
);
1542 ar
= extract_component (gsi
, ac
, false, true);
1543 ai
= extract_component (gsi
, ac
, true, true);
1549 br
= extract_component (gsi
, bc
, 0, true);
1550 bi
= extract_component (gsi
, bc
, 1, true);
1553 br
= bi
= NULL_TREE
;
1555 if (gimple_in_ssa_p (cfun
))
1557 al
= find_lattice_value (ac
);
1558 if (al
== UNINITIALIZED
)
1561 if (TREE_CODE_CLASS (code
) == tcc_unary
)
1567 bl
= find_lattice_value (bc
);
1568 if (bl
== UNINITIALIZED
)
1579 expand_complex_addition (gsi
, inner_type
, ar
, ai
, br
, bi
, code
, al
, bl
);
1583 expand_complex_multiplication (gsi
, inner_type
, ar
, ai
, br
, bi
, al
, bl
);
1586 case TRUNC_DIV_EXPR
:
1588 case FLOOR_DIV_EXPR
:
1589 case ROUND_DIV_EXPR
:
1591 expand_complex_division (gsi
, inner_type
, ar
, ai
, br
, bi
, code
, al
, bl
);
1595 expand_complex_negation (gsi
, inner_type
, ar
, ai
);
1599 expand_complex_conjugate (gsi
, inner_type
, ar
, ai
);
1604 expand_complex_comparison (gsi
, ar
, ai
, br
, bi
, code
);
1613 /* Entry point for complex operation lowering during optimization. */
1616 tree_lower_complex (void)
1618 int old_last_basic_block
;
1619 gimple_stmt_iterator gsi
;
1622 if (!init_dont_simulate_again ())
1625 complex_lattice_values
.create (num_ssa_names
);
1626 complex_lattice_values
.safe_grow_cleared (num_ssa_names
);
1628 init_parameter_lattice_values ();
1629 ssa_propagate (complex_visit_stmt
, complex_visit_phi
);
1631 complex_variable_components
.create (10);
1633 complex_ssa_name_components
.create (2 * num_ssa_names
);
1634 complex_ssa_name_components
.safe_grow_cleared (2 * num_ssa_names
);
1636 update_parameter_components ();
1638 /* ??? Ideally we'd traverse the blocks in breadth-first order. */
1639 old_last_basic_block
= last_basic_block_for_fn (cfun
);
1640 FOR_EACH_BB_FN (bb
, cfun
)
1642 if (bb
->index
>= old_last_basic_block
)
1645 update_phi_components (bb
);
1646 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1647 expand_complex_operations_1 (&gsi
);
1650 gsi_commit_edge_inserts ();
1652 complex_variable_components
.dispose ();
1653 complex_ssa_name_components
.release ();
1654 complex_lattice_values
.release ();
1660 const pass_data pass_data_lower_complex
=
1662 GIMPLE_PASS
, /* type */
1663 "cplxlower", /* name */
1664 OPTGROUP_NONE
, /* optinfo_flags */
1665 false, /* has_gate */
1666 true, /* has_execute */
1667 TV_NONE
, /* tv_id */
1668 PROP_ssa
, /* properties_required */
1669 PROP_gimple_lcx
, /* properties_provided */
1670 0, /* properties_destroyed */
1671 0, /* todo_flags_start */
1672 ( TODO_update_ssa
| TODO_verify_stmts
), /* todo_flags_finish */
1675 class pass_lower_complex
: public gimple_opt_pass
1678 pass_lower_complex (gcc::context
*ctxt
)
1679 : gimple_opt_pass (pass_data_lower_complex
, ctxt
)
1682 /* opt_pass methods: */
1683 opt_pass
* clone () { return new pass_lower_complex (m_ctxt
); }
1684 unsigned int execute () { return tree_lower_complex (); }
1686 }; // class pass_lower_complex
1691 make_pass_lower_complex (gcc::context
*ctxt
)
1693 return new pass_lower_complex (ctxt
);
1698 gate_no_optimization (void)
1700 /* With errors, normal optimization passes are not run. If we don't
1701 lower complex operations at all, rtl expansion will abort. */
1702 return !(cfun
->curr_properties
& PROP_gimple_lcx
);
1707 const pass_data pass_data_lower_complex_O0
=
1709 GIMPLE_PASS
, /* type */
1710 "cplxlower0", /* name */
1711 OPTGROUP_NONE
, /* optinfo_flags */
1712 true, /* has_gate */
1713 true, /* has_execute */
1714 TV_NONE
, /* tv_id */
1715 PROP_cfg
, /* properties_required */
1716 PROP_gimple_lcx
, /* properties_provided */
1717 0, /* properties_destroyed */
1718 0, /* todo_flags_start */
1719 ( TODO_update_ssa
| TODO_verify_stmts
), /* todo_flags_finish */
1722 class pass_lower_complex_O0
: public gimple_opt_pass
1725 pass_lower_complex_O0 (gcc::context
*ctxt
)
1726 : gimple_opt_pass (pass_data_lower_complex_O0
, ctxt
)
1729 /* opt_pass methods: */
1730 bool gate () { return gate_no_optimization (); }
1731 unsigned int execute () { return tree_lower_complex (); }
1733 }; // class pass_lower_complex_O0
1738 make_pass_lower_complex_O0 (gcc::context
*ctxt
)
1740 return new pass_lower_complex_O0 (ctxt
);