2014-03-18 Richard Biener <rguenther@suse.de>
[official-gcc.git] / gcc / tree-cfg.c
blob56b6c3595b864d9c04ba46849947305b3cf8f7b8
1 /* Control flow functions for trees.
2 Copyright (C) 2001-2014 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "hash-table.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "trans-mem.h"
28 #include "stor-layout.h"
29 #include "print-tree.h"
30 #include "tm_p.h"
31 #include "basic-block.h"
32 #include "flags.h"
33 #include "function.h"
34 #include "gimple-pretty-print.h"
35 #include "pointer-set.h"
36 #include "tree-ssa-alias.h"
37 #include "internal-fn.h"
38 #include "gimple-fold.h"
39 #include "tree-eh.h"
40 #include "gimple-expr.h"
41 #include "is-a.h"
42 #include "gimple.h"
43 #include "gimple-iterator.h"
44 #include "gimplify-me.h"
45 #include "gimple-walk.h"
46 #include "gimple-ssa.h"
47 #include "cgraph.h"
48 #include "tree-cfg.h"
49 #include "tree-phinodes.h"
50 #include "ssa-iterators.h"
51 #include "stringpool.h"
52 #include "tree-ssanames.h"
53 #include "tree-ssa-loop-manip.h"
54 #include "tree-ssa-loop-niter.h"
55 #include "tree-into-ssa.h"
56 #include "expr.h"
57 #include "tree-dfa.h"
58 #include "tree-ssa.h"
59 #include "tree-dump.h"
60 #include "tree-pass.h"
61 #include "diagnostic-core.h"
62 #include "except.h"
63 #include "cfgloop.h"
64 #include "tree-ssa-propagate.h"
65 #include "value-prof.h"
66 #include "tree-inline.h"
67 #include "target.h"
68 #include "tree-ssa-live.h"
69 #include "omp-low.h"
70 #include "tree-cfgcleanup.h"
72 /* This file contains functions for building the Control Flow Graph (CFG)
73 for a function tree. */
75 /* Local declarations. */
77 /* Initial capacity for the basic block array. */
78 static const int initial_cfg_capacity = 20;
80 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
81 which use a particular edge. The CASE_LABEL_EXPRs are chained together
82 via their CASE_CHAIN field, which we clear after we're done with the
83 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
85 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
86 update the case vector in response to edge redirections.
88 Right now this table is set up and torn down at key points in the
89 compilation process. It would be nice if we could make the table
90 more persistent. The key is getting notification of changes to
91 the CFG (particularly edge removal, creation and redirection). */
93 static struct pointer_map_t *edge_to_cases;
95 /* If we record edge_to_cases, this bitmap will hold indexes
96 of basic blocks that end in a GIMPLE_SWITCH which we touched
97 due to edge manipulations. */
99 static bitmap touched_switch_bbs;
101 /* CFG statistics. */
102 struct cfg_stats_d
104 long num_merged_labels;
107 static struct cfg_stats_d cfg_stats;
109 /* Hash table to store last discriminator assigned for each locus. */
110 struct locus_discrim_map
112 location_t locus;
113 int discriminator;
116 /* Hashtable helpers. */
118 struct locus_discrim_hasher : typed_free_remove <locus_discrim_map>
120 typedef locus_discrim_map value_type;
121 typedef locus_discrim_map compare_type;
122 static inline hashval_t hash (const value_type *);
123 static inline bool equal (const value_type *, const compare_type *);
126 /* Trivial hash function for a location_t. ITEM is a pointer to
127 a hash table entry that maps a location_t to a discriminator. */
129 inline hashval_t
130 locus_discrim_hasher::hash (const value_type *item)
132 return LOCATION_LINE (item->locus);
135 /* Equality function for the locus-to-discriminator map. A and B
136 point to the two hash table entries to compare. */
138 inline bool
139 locus_discrim_hasher::equal (const value_type *a, const compare_type *b)
141 return LOCATION_LINE (a->locus) == LOCATION_LINE (b->locus);
144 static hash_table <locus_discrim_hasher> discriminator_per_locus;
146 /* Basic blocks and flowgraphs. */
147 static void make_blocks (gimple_seq);
149 /* Edges. */
150 static void make_edges (void);
151 static void assign_discriminators (void);
152 static void make_cond_expr_edges (basic_block);
153 static void make_gimple_switch_edges (basic_block);
154 static bool make_goto_expr_edges (basic_block);
155 static void make_gimple_asm_edges (basic_block);
156 static edge gimple_redirect_edge_and_branch (edge, basic_block);
157 static edge gimple_try_redirect_by_replacing_jump (edge, basic_block);
159 /* Various helpers. */
160 static inline bool stmt_starts_bb_p (gimple, gimple);
161 static int gimple_verify_flow_info (void);
162 static void gimple_make_forwarder_block (edge);
163 static gimple first_non_label_stmt (basic_block);
164 static bool verify_gimple_transaction (gimple);
166 /* Flowgraph optimization and cleanup. */
167 static void gimple_merge_blocks (basic_block, basic_block);
168 static bool gimple_can_merge_blocks_p (basic_block, basic_block);
169 static void remove_bb (basic_block);
170 static edge find_taken_edge_computed_goto (basic_block, tree);
171 static edge find_taken_edge_cond_expr (basic_block, tree);
172 static edge find_taken_edge_switch_expr (basic_block, tree);
173 static tree find_case_label_for_value (gimple, tree);
175 void
176 init_empty_tree_cfg_for_function (struct function *fn)
178 /* Initialize the basic block array. */
179 init_flow (fn);
180 profile_status_for_fn (fn) = PROFILE_ABSENT;
181 n_basic_blocks_for_fn (fn) = NUM_FIXED_BLOCKS;
182 last_basic_block_for_fn (fn) = NUM_FIXED_BLOCKS;
183 vec_alloc (basic_block_info_for_fn (fn), initial_cfg_capacity);
184 vec_safe_grow_cleared (basic_block_info_for_fn (fn),
185 initial_cfg_capacity);
187 /* Build a mapping of labels to their associated blocks. */
188 vec_alloc (label_to_block_map_for_fn (fn), initial_cfg_capacity);
189 vec_safe_grow_cleared (label_to_block_map_for_fn (fn),
190 initial_cfg_capacity);
192 SET_BASIC_BLOCK_FOR_FN (fn, ENTRY_BLOCK, ENTRY_BLOCK_PTR_FOR_FN (fn));
193 SET_BASIC_BLOCK_FOR_FN (fn, EXIT_BLOCK, EXIT_BLOCK_PTR_FOR_FN (fn));
195 ENTRY_BLOCK_PTR_FOR_FN (fn)->next_bb
196 = EXIT_BLOCK_PTR_FOR_FN (fn);
197 EXIT_BLOCK_PTR_FOR_FN (fn)->prev_bb
198 = ENTRY_BLOCK_PTR_FOR_FN (fn);
201 void
202 init_empty_tree_cfg (void)
204 init_empty_tree_cfg_for_function (cfun);
207 /*---------------------------------------------------------------------------
208 Create basic blocks
209 ---------------------------------------------------------------------------*/
211 /* Entry point to the CFG builder for trees. SEQ is the sequence of
212 statements to be added to the flowgraph. */
214 static void
215 build_gimple_cfg (gimple_seq seq)
217 /* Register specific gimple functions. */
218 gimple_register_cfg_hooks ();
220 memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));
222 init_empty_tree_cfg ();
224 make_blocks (seq);
226 /* Make sure there is always at least one block, even if it's empty. */
227 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
228 create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun));
230 /* Adjust the size of the array. */
231 if (basic_block_info_for_fn (cfun)->length ()
232 < (size_t) n_basic_blocks_for_fn (cfun))
233 vec_safe_grow_cleared (basic_block_info_for_fn (cfun),
234 n_basic_blocks_for_fn (cfun));
236 /* To speed up statement iterator walks, we first purge dead labels. */
237 cleanup_dead_labels ();
239 /* Group case nodes to reduce the number of edges.
240 We do this after cleaning up dead labels because otherwise we miss
241 a lot of obvious case merging opportunities. */
242 group_case_labels ();
244 /* Create the edges of the flowgraph. */
245 discriminator_per_locus.create (13);
246 make_edges ();
247 assign_discriminators ();
248 cleanup_dead_labels ();
249 discriminator_per_locus.dispose ();
253 /* Search for ANNOTATE call with annot_expr_ivdep_kind; if found, remove
254 it and set loop->safelen to INT_MAX. We assume that the annotation
255 comes immediately before the condition. */
257 static void
258 replace_loop_annotate ()
260 struct loop *loop;
261 basic_block bb;
262 gimple_stmt_iterator gsi;
263 gimple stmt;
265 FOR_EACH_LOOP (loop, 0)
267 gsi = gsi_last_bb (loop->header);
268 stmt = gsi_stmt (gsi);
269 if (stmt && gimple_code (stmt) == GIMPLE_COND)
271 gsi_prev_nondebug (&gsi);
272 if (gsi_end_p (gsi))
273 continue;
274 stmt = gsi_stmt (gsi);
275 if (gimple_code (stmt) != GIMPLE_CALL)
276 continue;
277 if (!gimple_call_internal_p (stmt)
278 || gimple_call_internal_fn (stmt) != IFN_ANNOTATE)
279 continue;
280 if ((annot_expr_kind) tree_to_shwi (gimple_call_arg (stmt, 1))
281 != annot_expr_ivdep_kind)
282 continue;
283 stmt = gimple_build_assign (gimple_call_lhs (stmt),
284 gimple_call_arg (stmt, 0));
285 gsi_replace (&gsi, stmt, true);
286 loop->safelen = INT_MAX;
290 /* Remove IFN_ANNOTATE. Safeguard for the case loop->latch == NULL. */
291 FOR_EACH_BB_FN (bb, cfun)
293 gsi = gsi_last_bb (bb);
294 stmt = gsi_stmt (gsi);
295 if (stmt && gimple_code (stmt) == GIMPLE_COND)
296 gsi_prev_nondebug (&gsi);
297 if (gsi_end_p (gsi))
298 continue;
299 stmt = gsi_stmt (gsi);
300 if (gimple_code (stmt) != GIMPLE_CALL)
301 continue;
302 if (!gimple_call_internal_p (stmt)
303 || gimple_call_internal_fn (stmt) != IFN_ANNOTATE)
304 continue;
305 if ((annot_expr_kind) tree_to_shwi (gimple_call_arg (stmt, 1))
306 != annot_expr_ivdep_kind)
307 continue;
308 warning_at (gimple_location (stmt), 0, "ignoring %<GCC ivdep%> "
309 "annotation");
310 stmt = gimple_build_assign (gimple_call_lhs (stmt),
311 gimple_call_arg (stmt, 0));
312 gsi_replace (&gsi, stmt, true);
317 static unsigned int
318 execute_build_cfg (void)
320 gimple_seq body = gimple_body (current_function_decl);
322 build_gimple_cfg (body);
323 gimple_set_body (current_function_decl, NULL);
324 if (dump_file && (dump_flags & TDF_DETAILS))
326 fprintf (dump_file, "Scope blocks:\n");
327 dump_scope_blocks (dump_file, dump_flags);
329 cleanup_tree_cfg ();
330 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
331 replace_loop_annotate ();
332 return 0;
335 namespace {
337 const pass_data pass_data_build_cfg =
339 GIMPLE_PASS, /* type */
340 "cfg", /* name */
341 OPTGROUP_NONE, /* optinfo_flags */
342 false, /* has_gate */
343 true, /* has_execute */
344 TV_TREE_CFG, /* tv_id */
345 PROP_gimple_leh, /* properties_required */
346 ( PROP_cfg | PROP_loops ), /* properties_provided */
347 0, /* properties_destroyed */
348 0, /* todo_flags_start */
349 TODO_verify_stmts, /* todo_flags_finish */
352 class pass_build_cfg : public gimple_opt_pass
354 public:
355 pass_build_cfg (gcc::context *ctxt)
356 : gimple_opt_pass (pass_data_build_cfg, ctxt)
359 /* opt_pass methods: */
360 unsigned int execute () { return execute_build_cfg (); }
362 }; // class pass_build_cfg
364 } // anon namespace
366 gimple_opt_pass *
367 make_pass_build_cfg (gcc::context *ctxt)
369 return new pass_build_cfg (ctxt);
373 /* Return true if T is a computed goto. */
375 bool
376 computed_goto_p (gimple t)
378 return (gimple_code (t) == GIMPLE_GOTO
379 && TREE_CODE (gimple_goto_dest (t)) != LABEL_DECL);
382 /* Returns true for edge E where e->src ends with a GIMPLE_COND and
383 the other edge points to a bb with just __builtin_unreachable ().
384 I.e. return true for C->M edge in:
385 <bb C>:
387 if (something)
388 goto <bb N>;
389 else
390 goto <bb M>;
391 <bb N>:
392 __builtin_unreachable ();
393 <bb M>: */
395 bool
396 assert_unreachable_fallthru_edge_p (edge e)
398 basic_block pred_bb = e->src;
399 gimple last = last_stmt (pred_bb);
400 if (last && gimple_code (last) == GIMPLE_COND)
402 basic_block other_bb = EDGE_SUCC (pred_bb, 0)->dest;
403 if (other_bb == e->dest)
404 other_bb = EDGE_SUCC (pred_bb, 1)->dest;
405 if (EDGE_COUNT (other_bb->succs) == 0)
407 gimple_stmt_iterator gsi = gsi_after_labels (other_bb);
408 gimple stmt;
410 if (gsi_end_p (gsi))
411 return false;
412 stmt = gsi_stmt (gsi);
413 while (is_gimple_debug (stmt) || gimple_clobber_p (stmt))
415 gsi_next (&gsi);
416 if (gsi_end_p (gsi))
417 return false;
418 stmt = gsi_stmt (gsi);
420 return gimple_call_builtin_p (stmt, BUILT_IN_UNREACHABLE);
423 return false;
427 /* Build a flowgraph for the sequence of stmts SEQ. */
429 static void
430 make_blocks (gimple_seq seq)
432 gimple_stmt_iterator i = gsi_start (seq);
433 gimple stmt = NULL;
434 bool start_new_block = true;
435 bool first_stmt_of_seq = true;
436 basic_block bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
438 while (!gsi_end_p (i))
440 gimple prev_stmt;
442 prev_stmt = stmt;
443 stmt = gsi_stmt (i);
445 /* If the statement starts a new basic block or if we have determined
446 in a previous pass that we need to create a new block for STMT, do
447 so now. */
448 if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
450 if (!first_stmt_of_seq)
451 gsi_split_seq_before (&i, &seq);
452 bb = create_basic_block (seq, NULL, bb);
453 start_new_block = false;
456 /* Now add STMT to BB and create the subgraphs for special statement
457 codes. */
458 gimple_set_bb (stmt, bb);
460 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
461 next iteration. */
462 if (stmt_ends_bb_p (stmt))
464 /* If the stmt can make abnormal goto use a new temporary
465 for the assignment to the LHS. This makes sure the old value
466 of the LHS is available on the abnormal edge. Otherwise
467 we will end up with overlapping life-ranges for abnormal
468 SSA names. */
469 if (gimple_has_lhs (stmt)
470 && stmt_can_make_abnormal_goto (stmt)
471 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
473 tree lhs = gimple_get_lhs (stmt);
474 tree tmp = create_tmp_var (TREE_TYPE (lhs), NULL);
475 gimple s = gimple_build_assign (lhs, tmp);
476 gimple_set_location (s, gimple_location (stmt));
477 gimple_set_block (s, gimple_block (stmt));
478 gimple_set_lhs (stmt, tmp);
479 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
480 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
481 DECL_GIMPLE_REG_P (tmp) = 1;
482 gsi_insert_after (&i, s, GSI_SAME_STMT);
484 start_new_block = true;
487 gsi_next (&i);
488 first_stmt_of_seq = false;
493 /* Create and return a new empty basic block after bb AFTER. */
495 static basic_block
496 create_bb (void *h, void *e, basic_block after)
498 basic_block bb;
500 gcc_assert (!e);
502 /* Create and initialize a new basic block. Since alloc_block uses
503 GC allocation that clears memory to allocate a basic block, we do
504 not have to clear the newly allocated basic block here. */
505 bb = alloc_block ();
507 bb->index = last_basic_block_for_fn (cfun);
508 bb->flags = BB_NEW;
509 set_bb_seq (bb, h ? (gimple_seq) h : NULL);
511 /* Add the new block to the linked list of blocks. */
512 link_block (bb, after);
514 /* Grow the basic block array if needed. */
515 if ((size_t) last_basic_block_for_fn (cfun)
516 == basic_block_info_for_fn (cfun)->length ())
518 size_t new_size =
519 (last_basic_block_for_fn (cfun)
520 + (last_basic_block_for_fn (cfun) + 3) / 4);
521 vec_safe_grow_cleared (basic_block_info_for_fn (cfun), new_size);
524 /* Add the newly created block to the array. */
525 SET_BASIC_BLOCK_FOR_FN (cfun, last_basic_block_for_fn (cfun), bb);
527 n_basic_blocks_for_fn (cfun)++;
528 last_basic_block_for_fn (cfun)++;
530 return bb;
534 /*---------------------------------------------------------------------------
535 Edge creation
536 ---------------------------------------------------------------------------*/
538 /* Fold COND_EXPR_COND of each COND_EXPR. */
540 void
541 fold_cond_expr_cond (void)
543 basic_block bb;
545 FOR_EACH_BB_FN (bb, cfun)
547 gimple stmt = last_stmt (bb);
549 if (stmt && gimple_code (stmt) == GIMPLE_COND)
551 location_t loc = gimple_location (stmt);
552 tree cond;
553 bool zerop, onep;
555 fold_defer_overflow_warnings ();
556 cond = fold_binary_loc (loc, gimple_cond_code (stmt), boolean_type_node,
557 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
558 if (cond)
560 zerop = integer_zerop (cond);
561 onep = integer_onep (cond);
563 else
564 zerop = onep = false;
566 fold_undefer_overflow_warnings (zerop || onep,
567 stmt,
568 WARN_STRICT_OVERFLOW_CONDITIONAL);
569 if (zerop)
570 gimple_cond_make_false (stmt);
571 else if (onep)
572 gimple_cond_make_true (stmt);
577 /* If basic block BB has an abnormal edge to a basic block
578 containing IFN_ABNORMAL_DISPATCHER internal call, return
579 that the dispatcher's basic block, otherwise return NULL. */
581 basic_block
582 get_abnormal_succ_dispatcher (basic_block bb)
584 edge e;
585 edge_iterator ei;
587 FOR_EACH_EDGE (e, ei, bb->succs)
588 if ((e->flags & (EDGE_ABNORMAL | EDGE_EH)) == EDGE_ABNORMAL)
590 gimple_stmt_iterator gsi
591 = gsi_start_nondebug_after_labels_bb (e->dest);
592 gimple g = gsi_stmt (gsi);
593 if (g
594 && is_gimple_call (g)
595 && gimple_call_internal_p (g)
596 && gimple_call_internal_fn (g) == IFN_ABNORMAL_DISPATCHER)
597 return e->dest;
599 return NULL;
602 /* Helper function for make_edges. Create a basic block with
603 with ABNORMAL_DISPATCHER internal call in it if needed, and
604 create abnormal edges from BBS to it and from it to FOR_BB
605 if COMPUTED_GOTO is false, otherwise factor the computed gotos. */
607 static void
608 handle_abnormal_edges (basic_block *dispatcher_bbs,
609 basic_block for_bb, int *bb_to_omp_idx,
610 auto_vec<basic_block> *bbs, bool computed_goto)
612 basic_block *dispatcher = dispatcher_bbs + (computed_goto ? 1 : 0);
613 unsigned int idx = 0;
614 basic_block bb;
615 bool inner = false;
617 if (bb_to_omp_idx)
619 dispatcher = dispatcher_bbs + 2 * bb_to_omp_idx[for_bb->index];
620 if (bb_to_omp_idx[for_bb->index] != 0)
621 inner = true;
624 /* If the dispatcher has been created already, then there are basic
625 blocks with abnormal edges to it, so just make a new edge to
626 for_bb. */
627 if (*dispatcher == NULL)
629 /* Check if there are any basic blocks that need to have
630 abnormal edges to this dispatcher. If there are none, return
631 early. */
632 if (bb_to_omp_idx == NULL)
634 if (bbs->is_empty ())
635 return;
637 else
639 FOR_EACH_VEC_ELT (*bbs, idx, bb)
640 if (bb_to_omp_idx[bb->index] == bb_to_omp_idx[for_bb->index])
641 break;
642 if (bb == NULL)
643 return;
646 /* Create the dispatcher bb. */
647 *dispatcher = create_basic_block (NULL, NULL, for_bb);
648 if (computed_goto)
650 /* Factor computed gotos into a common computed goto site. Also
651 record the location of that site so that we can un-factor the
652 gotos after we have converted back to normal form. */
653 gimple_stmt_iterator gsi = gsi_start_bb (*dispatcher);
655 /* Create the destination of the factored goto. Each original
656 computed goto will put its desired destination into this
657 variable and jump to the label we create immediately below. */
658 tree var = create_tmp_var (ptr_type_node, "gotovar");
660 /* Build a label for the new block which will contain the
661 factored computed goto. */
662 tree factored_label_decl
663 = create_artificial_label (UNKNOWN_LOCATION);
664 gimple factored_computed_goto_label
665 = gimple_build_label (factored_label_decl);
666 gsi_insert_after (&gsi, factored_computed_goto_label, GSI_NEW_STMT);
668 /* Build our new computed goto. */
669 gimple factored_computed_goto = gimple_build_goto (var);
670 gsi_insert_after (&gsi, factored_computed_goto, GSI_NEW_STMT);
672 FOR_EACH_VEC_ELT (*bbs, idx, bb)
674 if (bb_to_omp_idx
675 && bb_to_omp_idx[bb->index] != bb_to_omp_idx[for_bb->index])
676 continue;
678 gsi = gsi_last_bb (bb);
679 gimple last = gsi_stmt (gsi);
681 gcc_assert (computed_goto_p (last));
683 /* Copy the original computed goto's destination into VAR. */
684 gimple assignment
685 = gimple_build_assign (var, gimple_goto_dest (last));
686 gsi_insert_before (&gsi, assignment, GSI_SAME_STMT);
688 edge e = make_edge (bb, *dispatcher, EDGE_FALLTHRU);
689 e->goto_locus = gimple_location (last);
690 gsi_remove (&gsi, true);
693 else
695 tree arg = inner ? boolean_true_node : boolean_false_node;
696 gimple g = gimple_build_call_internal (IFN_ABNORMAL_DISPATCHER,
697 1, arg);
698 gimple_stmt_iterator gsi = gsi_after_labels (*dispatcher);
699 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
701 /* Create predecessor edges of the dispatcher. */
702 FOR_EACH_VEC_ELT (*bbs, idx, bb)
704 if (bb_to_omp_idx
705 && bb_to_omp_idx[bb->index] != bb_to_omp_idx[for_bb->index])
706 continue;
707 make_edge (bb, *dispatcher, EDGE_ABNORMAL);
712 make_edge (*dispatcher, for_bb, EDGE_ABNORMAL);
715 /* Join all the blocks in the flowgraph. */
717 static void
718 make_edges (void)
720 basic_block bb;
721 struct omp_region *cur_region = NULL;
722 auto_vec<basic_block> ab_edge_goto;
723 auto_vec<basic_block> ab_edge_call;
724 int *bb_to_omp_idx = NULL;
725 int cur_omp_region_idx = 0;
727 /* Create an edge from entry to the first block with executable
728 statements in it. */
729 make_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun),
730 BASIC_BLOCK_FOR_FN (cfun, NUM_FIXED_BLOCKS),
731 EDGE_FALLTHRU);
733 /* Traverse the basic block array placing edges. */
734 FOR_EACH_BB_FN (bb, cfun)
736 gimple last = last_stmt (bb);
737 bool fallthru;
739 if (bb_to_omp_idx)
740 bb_to_omp_idx[bb->index] = cur_omp_region_idx;
742 if (last)
744 enum gimple_code code = gimple_code (last);
745 switch (code)
747 case GIMPLE_GOTO:
748 if (make_goto_expr_edges (bb))
749 ab_edge_goto.safe_push (bb);
750 fallthru = false;
751 break;
752 case GIMPLE_RETURN:
753 make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
754 fallthru = false;
755 break;
756 case GIMPLE_COND:
757 make_cond_expr_edges (bb);
758 fallthru = false;
759 break;
760 case GIMPLE_SWITCH:
761 make_gimple_switch_edges (bb);
762 fallthru = false;
763 break;
764 case GIMPLE_RESX:
765 make_eh_edges (last);
766 fallthru = false;
767 break;
768 case GIMPLE_EH_DISPATCH:
769 fallthru = make_eh_dispatch_edges (last);
770 break;
772 case GIMPLE_CALL:
773 /* If this function receives a nonlocal goto, then we need to
774 make edges from this call site to all the nonlocal goto
775 handlers. */
776 if (stmt_can_make_abnormal_goto (last))
777 ab_edge_call.safe_push (bb);
779 /* If this statement has reachable exception handlers, then
780 create abnormal edges to them. */
781 make_eh_edges (last);
783 /* BUILTIN_RETURN is really a return statement. */
784 if (gimple_call_builtin_p (last, BUILT_IN_RETURN))
786 make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
787 fallthru = false;
789 /* Some calls are known not to return. */
790 else
791 fallthru = !(gimple_call_flags (last) & ECF_NORETURN);
792 break;
794 case GIMPLE_ASSIGN:
795 /* A GIMPLE_ASSIGN may throw internally and thus be considered
796 control-altering. */
797 if (is_ctrl_altering_stmt (last))
798 make_eh_edges (last);
799 fallthru = true;
800 break;
802 case GIMPLE_ASM:
803 make_gimple_asm_edges (bb);
804 fallthru = true;
805 break;
807 CASE_GIMPLE_OMP:
808 fallthru = make_gimple_omp_edges (bb, &cur_region,
809 &cur_omp_region_idx);
810 if (cur_region && bb_to_omp_idx == NULL)
811 bb_to_omp_idx = XCNEWVEC (int, n_basic_blocks_for_fn (cfun));
812 break;
814 case GIMPLE_TRANSACTION:
816 tree abort_label = gimple_transaction_label (last);
817 if (abort_label)
818 make_edge (bb, label_to_block (abort_label), EDGE_TM_ABORT);
819 fallthru = true;
821 break;
823 default:
824 gcc_assert (!stmt_ends_bb_p (last));
825 fallthru = true;
828 else
829 fallthru = true;
831 if (fallthru)
832 make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
835 /* Computed gotos are hell to deal with, especially if there are
836 lots of them with a large number of destinations. So we factor
837 them to a common computed goto location before we build the
838 edge list. After we convert back to normal form, we will un-factor
839 the computed gotos since factoring introduces an unwanted jump.
840 For non-local gotos and abnormal edges from calls to calls that return
841 twice or forced labels, factor the abnormal edges too, by having all
842 abnormal edges from the calls go to a common artificial basic block
843 with ABNORMAL_DISPATCHER internal call and abnormal edges from that
844 basic block to all forced labels and calls returning twice.
845 We do this per-OpenMP structured block, because those regions
846 are guaranteed to be single entry single exit by the standard,
847 so it is not allowed to enter or exit such regions abnormally this way,
848 thus all computed gotos, non-local gotos and setjmp/longjmp calls
849 must not transfer control across SESE region boundaries. */
850 if (!ab_edge_goto.is_empty () || !ab_edge_call.is_empty ())
852 gimple_stmt_iterator gsi;
853 basic_block dispatcher_bb_array[2] = { NULL, NULL };
854 basic_block *dispatcher_bbs = dispatcher_bb_array;
855 int count = n_basic_blocks_for_fn (cfun);
857 if (bb_to_omp_idx)
858 dispatcher_bbs = XCNEWVEC (basic_block, 2 * count);
860 FOR_EACH_BB_FN (bb, cfun)
862 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
864 gimple label_stmt = gsi_stmt (gsi);
865 tree target;
867 if (gimple_code (label_stmt) != GIMPLE_LABEL)
868 break;
870 target = gimple_label_label (label_stmt);
872 /* Make an edge to every label block that has been marked as a
873 potential target for a computed goto or a non-local goto. */
874 if (FORCED_LABEL (target))
875 handle_abnormal_edges (dispatcher_bbs, bb, bb_to_omp_idx,
876 &ab_edge_goto, true);
877 if (DECL_NONLOCAL (target))
879 handle_abnormal_edges (dispatcher_bbs, bb, bb_to_omp_idx,
880 &ab_edge_call, false);
881 break;
885 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
886 gsi_next_nondebug (&gsi);
887 if (!gsi_end_p (gsi))
889 /* Make an edge to every setjmp-like call. */
890 gimple call_stmt = gsi_stmt (gsi);
891 if (is_gimple_call (call_stmt)
892 && ((gimple_call_flags (call_stmt) & ECF_RETURNS_TWICE)
893 || gimple_call_builtin_p (call_stmt,
894 BUILT_IN_SETJMP_RECEIVER)))
895 handle_abnormal_edges (dispatcher_bbs, bb, bb_to_omp_idx,
896 &ab_edge_call, false);
900 if (bb_to_omp_idx)
901 XDELETE (dispatcher_bbs);
904 XDELETE (bb_to_omp_idx);
906 free_omp_regions ();
908 /* Fold COND_EXPR_COND of each COND_EXPR. */
909 fold_cond_expr_cond ();
912 /* Find the next available discriminator value for LOCUS. The
913 discriminator distinguishes among several basic blocks that
914 share a common locus, allowing for more accurate sample-based
915 profiling. */
917 static int
918 next_discriminator_for_locus (location_t locus)
920 struct locus_discrim_map item;
921 struct locus_discrim_map **slot;
923 item.locus = locus;
924 item.discriminator = 0;
925 slot = discriminator_per_locus.find_slot_with_hash (
926 &item, LOCATION_LINE (locus), INSERT);
927 gcc_assert (slot);
928 if (*slot == HTAB_EMPTY_ENTRY)
930 *slot = XNEW (struct locus_discrim_map);
931 gcc_assert (*slot);
932 (*slot)->locus = locus;
933 (*slot)->discriminator = 0;
935 (*slot)->discriminator++;
936 return (*slot)->discriminator;
939 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
941 static bool
942 same_line_p (location_t locus1, location_t locus2)
944 expanded_location from, to;
946 if (locus1 == locus2)
947 return true;
949 from = expand_location (locus1);
950 to = expand_location (locus2);
952 if (from.line != to.line)
953 return false;
954 if (from.file == to.file)
955 return true;
956 return (from.file != NULL
957 && to.file != NULL
958 && filename_cmp (from.file, to.file) == 0);
961 /* Assign discriminators to each basic block. */
963 static void
964 assign_discriminators (void)
966 basic_block bb;
968 FOR_EACH_BB_FN (bb, cfun)
970 edge e;
971 edge_iterator ei;
972 gimple last = last_stmt (bb);
973 location_t locus = last ? gimple_location (last) : UNKNOWN_LOCATION;
975 if (locus == UNKNOWN_LOCATION)
976 continue;
978 FOR_EACH_EDGE (e, ei, bb->succs)
980 gimple first = first_non_label_stmt (e->dest);
981 gimple last = last_stmt (e->dest);
982 if ((first && same_line_p (locus, gimple_location (first)))
983 || (last && same_line_p (locus, gimple_location (last))))
985 if (e->dest->discriminator != 0 && bb->discriminator == 0)
986 bb->discriminator = next_discriminator_for_locus (locus);
987 else
988 e->dest->discriminator = next_discriminator_for_locus (locus);
994 /* Create the edges for a GIMPLE_COND starting at block BB. */
996 static void
997 make_cond_expr_edges (basic_block bb)
999 gimple entry = last_stmt (bb);
1000 gimple then_stmt, else_stmt;
1001 basic_block then_bb, else_bb;
1002 tree then_label, else_label;
1003 edge e;
1005 gcc_assert (entry);
1006 gcc_assert (gimple_code (entry) == GIMPLE_COND);
1008 /* Entry basic blocks for each component. */
1009 then_label = gimple_cond_true_label (entry);
1010 else_label = gimple_cond_false_label (entry);
1011 then_bb = label_to_block (then_label);
1012 else_bb = label_to_block (else_label);
1013 then_stmt = first_stmt (then_bb);
1014 else_stmt = first_stmt (else_bb);
1016 e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
1017 e->goto_locus = gimple_location (then_stmt);
1018 e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
1019 if (e)
1020 e->goto_locus = gimple_location (else_stmt);
1022 /* We do not need the labels anymore. */
1023 gimple_cond_set_true_label (entry, NULL_TREE);
1024 gimple_cond_set_false_label (entry, NULL_TREE);
1028 /* Called for each element in the hash table (P) as we delete the
1029 edge to cases hash table.
1031 Clear all the TREE_CHAINs to prevent problems with copying of
1032 SWITCH_EXPRs and structure sharing rules, then free the hash table
1033 element. */
1035 static bool
1036 edge_to_cases_cleanup (const void *key ATTRIBUTE_UNUSED, void **value,
1037 void *data ATTRIBUTE_UNUSED)
1039 tree t, next;
1041 for (t = (tree) *value; t; t = next)
1043 next = CASE_CHAIN (t);
1044 CASE_CHAIN (t) = NULL;
1047 *value = NULL;
1048 return true;
1051 /* Start recording information mapping edges to case labels. */
1053 void
1054 start_recording_case_labels (void)
1056 gcc_assert (edge_to_cases == NULL);
1057 edge_to_cases = pointer_map_create ();
1058 touched_switch_bbs = BITMAP_ALLOC (NULL);
1061 /* Return nonzero if we are recording information for case labels. */
1063 static bool
1064 recording_case_labels_p (void)
1066 return (edge_to_cases != NULL);
1069 /* Stop recording information mapping edges to case labels and
1070 remove any information we have recorded. */
1071 void
1072 end_recording_case_labels (void)
1074 bitmap_iterator bi;
1075 unsigned i;
1076 pointer_map_traverse (edge_to_cases, edge_to_cases_cleanup, NULL);
1077 pointer_map_destroy (edge_to_cases);
1078 edge_to_cases = NULL;
1079 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs, 0, i, bi)
1081 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
1082 if (bb)
1084 gimple stmt = last_stmt (bb);
1085 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1086 group_case_labels_stmt (stmt);
1089 BITMAP_FREE (touched_switch_bbs);
1092 /* If we are inside a {start,end}_recording_cases block, then return
1093 a chain of CASE_LABEL_EXPRs from T which reference E.
1095 Otherwise return NULL. */
1097 static tree
1098 get_cases_for_edge (edge e, gimple t)
1100 void **slot;
1101 size_t i, n;
1103 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
1104 chains available. Return NULL so the caller can detect this case. */
1105 if (!recording_case_labels_p ())
1106 return NULL;
1108 slot = pointer_map_contains (edge_to_cases, e);
1109 if (slot)
1110 return (tree) *slot;
1112 /* If we did not find E in the hash table, then this must be the first
1113 time we have been queried for information about E & T. Add all the
1114 elements from T to the hash table then perform the query again. */
1116 n = gimple_switch_num_labels (t);
1117 for (i = 0; i < n; i++)
1119 tree elt = gimple_switch_label (t, i);
1120 tree lab = CASE_LABEL (elt);
1121 basic_block label_bb = label_to_block (lab);
1122 edge this_edge = find_edge (e->src, label_bb);
1124 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
1125 a new chain. */
1126 slot = pointer_map_insert (edge_to_cases, this_edge);
1127 CASE_CHAIN (elt) = (tree) *slot;
1128 *slot = elt;
1131 return (tree) *pointer_map_contains (edge_to_cases, e);
1134 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
1136 static void
1137 make_gimple_switch_edges (basic_block bb)
1139 gimple entry = last_stmt (bb);
1140 size_t i, n;
1142 n = gimple_switch_num_labels (entry);
1144 for (i = 0; i < n; ++i)
1146 tree lab = CASE_LABEL (gimple_switch_label (entry, i));
1147 basic_block label_bb = label_to_block (lab);
1148 make_edge (bb, label_bb, 0);
1153 /* Return the basic block holding label DEST. */
1155 basic_block
1156 label_to_block_fn (struct function *ifun, tree dest)
1158 int uid = LABEL_DECL_UID (dest);
1160 /* We would die hard when faced by an undefined label. Emit a label to
1161 the very first basic block. This will hopefully make even the dataflow
1162 and undefined variable warnings quite right. */
1163 if (seen_error () && uid < 0)
1165 gimple_stmt_iterator gsi =
1166 gsi_start_bb (BASIC_BLOCK_FOR_FN (cfun, NUM_FIXED_BLOCKS));
1167 gimple stmt;
1169 stmt = gimple_build_label (dest);
1170 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
1171 uid = LABEL_DECL_UID (dest);
1173 if (vec_safe_length (ifun->cfg->x_label_to_block_map) <= (unsigned int) uid)
1174 return NULL;
1175 return (*ifun->cfg->x_label_to_block_map)[uid];
1178 /* Create edges for a goto statement at block BB. Returns true
1179 if abnormal edges should be created. */
1181 static bool
1182 make_goto_expr_edges (basic_block bb)
1184 gimple_stmt_iterator last = gsi_last_bb (bb);
1185 gimple goto_t = gsi_stmt (last);
1187 /* A simple GOTO creates normal edges. */
1188 if (simple_goto_p (goto_t))
1190 tree dest = gimple_goto_dest (goto_t);
1191 basic_block label_bb = label_to_block (dest);
1192 edge e = make_edge (bb, label_bb, EDGE_FALLTHRU);
1193 e->goto_locus = gimple_location (goto_t);
1194 gsi_remove (&last, true);
1195 return false;
1198 /* A computed GOTO creates abnormal edges. */
1199 return true;
1202 /* Create edges for an asm statement with labels at block BB. */
1204 static void
1205 make_gimple_asm_edges (basic_block bb)
1207 gimple stmt = last_stmt (bb);
1208 int i, n = gimple_asm_nlabels (stmt);
1210 for (i = 0; i < n; ++i)
1212 tree label = TREE_VALUE (gimple_asm_label_op (stmt, i));
1213 basic_block label_bb = label_to_block (label);
1214 make_edge (bb, label_bb, 0);
1218 /*---------------------------------------------------------------------------
1219 Flowgraph analysis
1220 ---------------------------------------------------------------------------*/
1222 /* Cleanup useless labels in basic blocks. This is something we wish
1223 to do early because it allows us to group case labels before creating
1224 the edges for the CFG, and it speeds up block statement iterators in
1225 all passes later on.
1226 We rerun this pass after CFG is created, to get rid of the labels that
1227 are no longer referenced. After then we do not run it any more, since
1228 (almost) no new labels should be created. */
1230 /* A map from basic block index to the leading label of that block. */
1231 static struct label_record
1233 /* The label. */
1234 tree label;
1236 /* True if the label is referenced from somewhere. */
1237 bool used;
1238 } *label_for_bb;
1240 /* Given LABEL return the first label in the same basic block. */
1242 static tree
1243 main_block_label (tree label)
1245 basic_block bb = label_to_block (label);
1246 tree main_label = label_for_bb[bb->index].label;
1248 /* label_to_block possibly inserted undefined label into the chain. */
1249 if (!main_label)
1251 label_for_bb[bb->index].label = label;
1252 main_label = label;
1255 label_for_bb[bb->index].used = true;
1256 return main_label;
1259 /* Clean up redundant labels within the exception tree. */
1261 static void
1262 cleanup_dead_labels_eh (void)
1264 eh_landing_pad lp;
1265 eh_region r;
1266 tree lab;
1267 int i;
1269 if (cfun->eh == NULL)
1270 return;
1272 for (i = 1; vec_safe_iterate (cfun->eh->lp_array, i, &lp); ++i)
1273 if (lp && lp->post_landing_pad)
1275 lab = main_block_label (lp->post_landing_pad);
1276 if (lab != lp->post_landing_pad)
1278 EH_LANDING_PAD_NR (lp->post_landing_pad) = 0;
1279 EH_LANDING_PAD_NR (lab) = lp->index;
1283 FOR_ALL_EH_REGION (r)
1284 switch (r->type)
1286 case ERT_CLEANUP:
1287 case ERT_MUST_NOT_THROW:
1288 break;
1290 case ERT_TRY:
1292 eh_catch c;
1293 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
1295 lab = c->label;
1296 if (lab)
1297 c->label = main_block_label (lab);
1300 break;
1302 case ERT_ALLOWED_EXCEPTIONS:
1303 lab = r->u.allowed.label;
1304 if (lab)
1305 r->u.allowed.label = main_block_label (lab);
1306 break;
1311 /* Cleanup redundant labels. This is a three-step process:
1312 1) Find the leading label for each block.
1313 2) Redirect all references to labels to the leading labels.
1314 3) Cleanup all useless labels. */
1316 void
1317 cleanup_dead_labels (void)
1319 basic_block bb;
1320 label_for_bb = XCNEWVEC (struct label_record, last_basic_block_for_fn (cfun));
1322 /* Find a suitable label for each block. We use the first user-defined
1323 label if there is one, or otherwise just the first label we see. */
1324 FOR_EACH_BB_FN (bb, cfun)
1326 gimple_stmt_iterator i;
1328 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
1330 tree label;
1331 gimple stmt = gsi_stmt (i);
1333 if (gimple_code (stmt) != GIMPLE_LABEL)
1334 break;
1336 label = gimple_label_label (stmt);
1338 /* If we have not yet seen a label for the current block,
1339 remember this one and see if there are more labels. */
1340 if (!label_for_bb[bb->index].label)
1342 label_for_bb[bb->index].label = label;
1343 continue;
1346 /* If we did see a label for the current block already, but it
1347 is an artificially created label, replace it if the current
1348 label is a user defined label. */
1349 if (!DECL_ARTIFICIAL (label)
1350 && DECL_ARTIFICIAL (label_for_bb[bb->index].label))
1352 label_for_bb[bb->index].label = label;
1353 break;
1358 /* Now redirect all jumps/branches to the selected label.
1359 First do so for each block ending in a control statement. */
1360 FOR_EACH_BB_FN (bb, cfun)
1362 gimple stmt = last_stmt (bb);
1363 tree label, new_label;
1365 if (!stmt)
1366 continue;
1368 switch (gimple_code (stmt))
1370 case GIMPLE_COND:
1371 label = gimple_cond_true_label (stmt);
1372 if (label)
1374 new_label = main_block_label (label);
1375 if (new_label != label)
1376 gimple_cond_set_true_label (stmt, new_label);
1379 label = gimple_cond_false_label (stmt);
1380 if (label)
1382 new_label = main_block_label (label);
1383 if (new_label != label)
1384 gimple_cond_set_false_label (stmt, new_label);
1386 break;
1388 case GIMPLE_SWITCH:
1390 size_t i, n = gimple_switch_num_labels (stmt);
1392 /* Replace all destination labels. */
1393 for (i = 0; i < n; ++i)
1395 tree case_label = gimple_switch_label (stmt, i);
1396 label = CASE_LABEL (case_label);
1397 new_label = main_block_label (label);
1398 if (new_label != label)
1399 CASE_LABEL (case_label) = new_label;
1401 break;
1404 case GIMPLE_ASM:
1406 int i, n = gimple_asm_nlabels (stmt);
1408 for (i = 0; i < n; ++i)
1410 tree cons = gimple_asm_label_op (stmt, i);
1411 tree label = main_block_label (TREE_VALUE (cons));
1412 TREE_VALUE (cons) = label;
1414 break;
1417 /* We have to handle gotos until they're removed, and we don't
1418 remove them until after we've created the CFG edges. */
1419 case GIMPLE_GOTO:
1420 if (!computed_goto_p (stmt))
1422 label = gimple_goto_dest (stmt);
1423 new_label = main_block_label (label);
1424 if (new_label != label)
1425 gimple_goto_set_dest (stmt, new_label);
1427 break;
1429 case GIMPLE_TRANSACTION:
1431 tree label = gimple_transaction_label (stmt);
1432 if (label)
1434 tree new_label = main_block_label (label);
1435 if (new_label != label)
1436 gimple_transaction_set_label (stmt, new_label);
1439 break;
1441 default:
1442 break;
1446 /* Do the same for the exception region tree labels. */
1447 cleanup_dead_labels_eh ();
1449 /* Finally, purge dead labels. All user-defined labels and labels that
1450 can be the target of non-local gotos and labels which have their
1451 address taken are preserved. */
1452 FOR_EACH_BB_FN (bb, cfun)
1454 gimple_stmt_iterator i;
1455 tree label_for_this_bb = label_for_bb[bb->index].label;
1457 if (!label_for_this_bb)
1458 continue;
1460 /* If the main label of the block is unused, we may still remove it. */
1461 if (!label_for_bb[bb->index].used)
1462 label_for_this_bb = NULL;
1464 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
1466 tree label;
1467 gimple stmt = gsi_stmt (i);
1469 if (gimple_code (stmt) != GIMPLE_LABEL)
1470 break;
1472 label = gimple_label_label (stmt);
1474 if (label == label_for_this_bb
1475 || !DECL_ARTIFICIAL (label)
1476 || DECL_NONLOCAL (label)
1477 || FORCED_LABEL (label))
1478 gsi_next (&i);
1479 else
1480 gsi_remove (&i, true);
1484 free (label_for_bb);
1487 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
1488 the ones jumping to the same label.
1489 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1491 void
1492 group_case_labels_stmt (gimple stmt)
1494 int old_size = gimple_switch_num_labels (stmt);
1495 int i, j, new_size = old_size;
1496 basic_block default_bb = NULL;
1498 default_bb = label_to_block (CASE_LABEL (gimple_switch_default_label (stmt)));
1500 /* Look for possible opportunities to merge cases. */
1501 i = 1;
1502 while (i < old_size)
1504 tree base_case, base_high;
1505 basic_block base_bb;
1507 base_case = gimple_switch_label (stmt, i);
1509 gcc_assert (base_case);
1510 base_bb = label_to_block (CASE_LABEL (base_case));
1512 /* Discard cases that have the same destination as the
1513 default case. */
1514 if (base_bb == default_bb)
1516 gimple_switch_set_label (stmt, i, NULL_TREE);
1517 i++;
1518 new_size--;
1519 continue;
1522 base_high = CASE_HIGH (base_case)
1523 ? CASE_HIGH (base_case)
1524 : CASE_LOW (base_case);
1525 i++;
1527 /* Try to merge case labels. Break out when we reach the end
1528 of the label vector or when we cannot merge the next case
1529 label with the current one. */
1530 while (i < old_size)
1532 tree merge_case = gimple_switch_label (stmt, i);
1533 basic_block merge_bb = label_to_block (CASE_LABEL (merge_case));
1534 double_int bhp1 = tree_to_double_int (base_high) + double_int_one;
1536 /* Merge the cases if they jump to the same place,
1537 and their ranges are consecutive. */
1538 if (merge_bb == base_bb
1539 && tree_to_double_int (CASE_LOW (merge_case)) == bhp1)
1541 base_high = CASE_HIGH (merge_case) ?
1542 CASE_HIGH (merge_case) : CASE_LOW (merge_case);
1543 CASE_HIGH (base_case) = base_high;
1544 gimple_switch_set_label (stmt, i, NULL_TREE);
1545 new_size--;
1546 i++;
1548 else
1549 break;
1553 /* Compress the case labels in the label vector, and adjust the
1554 length of the vector. */
1555 for (i = 0, j = 0; i < new_size; i++)
1557 while (! gimple_switch_label (stmt, j))
1558 j++;
1559 gimple_switch_set_label (stmt, i,
1560 gimple_switch_label (stmt, j++));
1563 gcc_assert (new_size <= old_size);
1564 gimple_switch_set_num_labels (stmt, new_size);
1567 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
1568 and scan the sorted vector of cases. Combine the ones jumping to the
1569 same label. */
1571 void
1572 group_case_labels (void)
1574 basic_block bb;
1576 FOR_EACH_BB_FN (bb, cfun)
1578 gimple stmt = last_stmt (bb);
1579 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1580 group_case_labels_stmt (stmt);
1584 /* Checks whether we can merge block B into block A. */
1586 static bool
1587 gimple_can_merge_blocks_p (basic_block a, basic_block b)
1589 gimple stmt;
1590 gimple_stmt_iterator gsi;
1592 if (!single_succ_p (a))
1593 return false;
1595 if (single_succ_edge (a)->flags & EDGE_COMPLEX)
1596 return false;
1598 if (single_succ (a) != b)
1599 return false;
1601 if (!single_pred_p (b))
1602 return false;
1604 if (b == EXIT_BLOCK_PTR_FOR_FN (cfun))
1605 return false;
1607 /* If A ends by a statement causing exceptions or something similar, we
1608 cannot merge the blocks. */
1609 stmt = last_stmt (a);
1610 if (stmt && stmt_ends_bb_p (stmt))
1611 return false;
1613 /* Do not allow a block with only a non-local label to be merged. */
1614 if (stmt
1615 && gimple_code (stmt) == GIMPLE_LABEL
1616 && DECL_NONLOCAL (gimple_label_label (stmt)))
1617 return false;
1619 /* Examine the labels at the beginning of B. */
1620 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi); gsi_next (&gsi))
1622 tree lab;
1623 stmt = gsi_stmt (gsi);
1624 if (gimple_code (stmt) != GIMPLE_LABEL)
1625 break;
1626 lab = gimple_label_label (stmt);
1628 /* Do not remove user forced labels or for -O0 any user labels. */
1629 if (!DECL_ARTIFICIAL (lab) && (!optimize || FORCED_LABEL (lab)))
1630 return false;
1633 /* Protect the loop latches. */
1634 if (current_loops && b->loop_father->latch == b)
1635 return false;
1637 /* It must be possible to eliminate all phi nodes in B. If ssa form
1638 is not up-to-date and a name-mapping is registered, we cannot eliminate
1639 any phis. Symbols marked for renaming are never a problem though. */
1640 for (gsi = gsi_start_phis (b); !gsi_end_p (gsi); gsi_next (&gsi))
1642 gimple phi = gsi_stmt (gsi);
1643 /* Technically only new names matter. */
1644 if (name_registered_for_update_p (PHI_RESULT (phi)))
1645 return false;
1648 /* When not optimizing, don't merge if we'd lose goto_locus. */
1649 if (!optimize
1650 && single_succ_edge (a)->goto_locus != UNKNOWN_LOCATION)
1652 location_t goto_locus = single_succ_edge (a)->goto_locus;
1653 gimple_stmt_iterator prev, next;
1654 prev = gsi_last_nondebug_bb (a);
1655 next = gsi_after_labels (b);
1656 if (!gsi_end_p (next) && is_gimple_debug (gsi_stmt (next)))
1657 gsi_next_nondebug (&next);
1658 if ((gsi_end_p (prev)
1659 || gimple_location (gsi_stmt (prev)) != goto_locus)
1660 && (gsi_end_p (next)
1661 || gimple_location (gsi_stmt (next)) != goto_locus))
1662 return false;
1665 return true;
1668 /* Replaces all uses of NAME by VAL. */
1670 void
1671 replace_uses_by (tree name, tree val)
1673 imm_use_iterator imm_iter;
1674 use_operand_p use;
1675 gimple stmt;
1676 edge e;
1678 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
1680 /* Mark the block if we change the last stmt in it. */
1681 if (cfgcleanup_altered_bbs
1682 && stmt_ends_bb_p (stmt))
1683 bitmap_set_bit (cfgcleanup_altered_bbs, gimple_bb (stmt)->index);
1685 FOR_EACH_IMM_USE_ON_STMT (use, imm_iter)
1687 replace_exp (use, val);
1689 if (gimple_code (stmt) == GIMPLE_PHI)
1691 e = gimple_phi_arg_edge (stmt, PHI_ARG_INDEX_FROM_USE (use));
1692 if (e->flags & EDGE_ABNORMAL)
1694 /* This can only occur for virtual operands, since
1695 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1696 would prevent replacement. */
1697 gcc_checking_assert (virtual_operand_p (name));
1698 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
1703 if (gimple_code (stmt) != GIMPLE_PHI)
1705 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
1706 gimple orig_stmt = stmt;
1707 size_t i;
1709 /* FIXME. It shouldn't be required to keep TREE_CONSTANT
1710 on ADDR_EXPRs up-to-date on GIMPLE. Propagation will
1711 only change sth from non-invariant to invariant, and only
1712 when propagating constants. */
1713 if (is_gimple_min_invariant (val))
1714 for (i = 0; i < gimple_num_ops (stmt); i++)
1716 tree op = gimple_op (stmt, i);
1717 /* Operands may be empty here. For example, the labels
1718 of a GIMPLE_COND are nulled out following the creation
1719 of the corresponding CFG edges. */
1720 if (op && TREE_CODE (op) == ADDR_EXPR)
1721 recompute_tree_invariant_for_addr_expr (op);
1724 if (fold_stmt (&gsi))
1725 stmt = gsi_stmt (gsi);
1727 if (maybe_clean_or_replace_eh_stmt (orig_stmt, stmt))
1728 gimple_purge_dead_eh_edges (gimple_bb (stmt));
1730 update_stmt (stmt);
1734 gcc_checking_assert (has_zero_uses (name));
1736 /* Also update the trees stored in loop structures. */
1737 if (current_loops)
1739 struct loop *loop;
1741 FOR_EACH_LOOP (loop, 0)
1743 substitute_in_loop_info (loop, name, val);
1748 /* Merge block B into block A. */
1750 static void
1751 gimple_merge_blocks (basic_block a, basic_block b)
1753 gimple_stmt_iterator last, gsi, psi;
1755 if (dump_file)
1756 fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);
1758 /* Remove all single-valued PHI nodes from block B of the form
1759 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
1760 gsi = gsi_last_bb (a);
1761 for (psi = gsi_start_phis (b); !gsi_end_p (psi); )
1763 gimple phi = gsi_stmt (psi);
1764 tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0);
1765 gimple copy;
1766 bool may_replace_uses = (virtual_operand_p (def)
1767 || may_propagate_copy (def, use));
1769 /* In case we maintain loop closed ssa form, do not propagate arguments
1770 of loop exit phi nodes. */
1771 if (current_loops
1772 && loops_state_satisfies_p (LOOP_CLOSED_SSA)
1773 && !virtual_operand_p (def)
1774 && TREE_CODE (use) == SSA_NAME
1775 && a->loop_father != b->loop_father)
1776 may_replace_uses = false;
1778 if (!may_replace_uses)
1780 gcc_assert (!virtual_operand_p (def));
1782 /* Note that just emitting the copies is fine -- there is no problem
1783 with ordering of phi nodes. This is because A is the single
1784 predecessor of B, therefore results of the phi nodes cannot
1785 appear as arguments of the phi nodes. */
1786 copy = gimple_build_assign (def, use);
1787 gsi_insert_after (&gsi, copy, GSI_NEW_STMT);
1788 remove_phi_node (&psi, false);
1790 else
1792 /* If we deal with a PHI for virtual operands, we can simply
1793 propagate these without fussing with folding or updating
1794 the stmt. */
1795 if (virtual_operand_p (def))
1797 imm_use_iterator iter;
1798 use_operand_p use_p;
1799 gimple stmt;
1801 FOR_EACH_IMM_USE_STMT (stmt, iter, def)
1802 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
1803 SET_USE (use_p, use);
1805 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def))
1806 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use) = 1;
1808 else
1809 replace_uses_by (def, use);
1811 remove_phi_node (&psi, true);
1815 /* Ensure that B follows A. */
1816 move_block_after (b, a);
1818 gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
1819 gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));
1821 /* Remove labels from B and set gimple_bb to A for other statements. */
1822 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi);)
1824 gimple stmt = gsi_stmt (gsi);
1825 if (gimple_code (stmt) == GIMPLE_LABEL)
1827 tree label = gimple_label_label (stmt);
1828 int lp_nr;
1830 gsi_remove (&gsi, false);
1832 /* Now that we can thread computed gotos, we might have
1833 a situation where we have a forced label in block B
1834 However, the label at the start of block B might still be
1835 used in other ways (think about the runtime checking for
1836 Fortran assigned gotos). So we can not just delete the
1837 label. Instead we move the label to the start of block A. */
1838 if (FORCED_LABEL (label))
1840 gimple_stmt_iterator dest_gsi = gsi_start_bb (a);
1841 gsi_insert_before (&dest_gsi, stmt, GSI_NEW_STMT);
1843 /* Other user labels keep around in a form of a debug stmt. */
1844 else if (!DECL_ARTIFICIAL (label) && MAY_HAVE_DEBUG_STMTS)
1846 gimple dbg = gimple_build_debug_bind (label,
1847 integer_zero_node,
1848 stmt);
1849 gimple_debug_bind_reset_value (dbg);
1850 gsi_insert_before (&gsi, dbg, GSI_SAME_STMT);
1853 lp_nr = EH_LANDING_PAD_NR (label);
1854 if (lp_nr)
1856 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
1857 lp->post_landing_pad = NULL;
1860 else
1862 gimple_set_bb (stmt, a);
1863 gsi_next (&gsi);
1867 /* Merge the sequences. */
1868 last = gsi_last_bb (a);
1869 gsi_insert_seq_after (&last, bb_seq (b), GSI_NEW_STMT);
1870 set_bb_seq (b, NULL);
1872 if (cfgcleanup_altered_bbs)
1873 bitmap_set_bit (cfgcleanup_altered_bbs, a->index);
1877 /* Return the one of two successors of BB that is not reachable by a
1878 complex edge, if there is one. Else, return BB. We use
1879 this in optimizations that use post-dominators for their heuristics,
1880 to catch the cases in C++ where function calls are involved. */
1882 basic_block
1883 single_noncomplex_succ (basic_block bb)
1885 edge e0, e1;
1886 if (EDGE_COUNT (bb->succs) != 2)
1887 return bb;
1889 e0 = EDGE_SUCC (bb, 0);
1890 e1 = EDGE_SUCC (bb, 1);
1891 if (e0->flags & EDGE_COMPLEX)
1892 return e1->dest;
1893 if (e1->flags & EDGE_COMPLEX)
1894 return e0->dest;
1896 return bb;
1899 /* T is CALL_EXPR. Set current_function_calls_* flags. */
1901 void
1902 notice_special_calls (gimple call)
1904 int flags = gimple_call_flags (call);
1906 if (flags & ECF_MAY_BE_ALLOCA)
1907 cfun->calls_alloca = true;
1908 if (flags & ECF_RETURNS_TWICE)
1909 cfun->calls_setjmp = true;
1913 /* Clear flags set by notice_special_calls. Used by dead code removal
1914 to update the flags. */
1916 void
1917 clear_special_calls (void)
1919 cfun->calls_alloca = false;
1920 cfun->calls_setjmp = false;
1923 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
1925 static void
1926 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
1928 /* Since this block is no longer reachable, we can just delete all
1929 of its PHI nodes. */
1930 remove_phi_nodes (bb);
1932 /* Remove edges to BB's successors. */
1933 while (EDGE_COUNT (bb->succs) > 0)
1934 remove_edge (EDGE_SUCC (bb, 0));
1938 /* Remove statements of basic block BB. */
1940 static void
1941 remove_bb (basic_block bb)
1943 gimple_stmt_iterator i;
1945 if (dump_file)
1947 fprintf (dump_file, "Removing basic block %d\n", bb->index);
1948 if (dump_flags & TDF_DETAILS)
1950 dump_bb (dump_file, bb, 0, dump_flags);
1951 fprintf (dump_file, "\n");
1955 if (current_loops)
1957 struct loop *loop = bb->loop_father;
1959 /* If a loop gets removed, clean up the information associated
1960 with it. */
1961 if (loop->latch == bb
1962 || loop->header == bb)
1963 free_numbers_of_iterations_estimates_loop (loop);
1966 /* Remove all the instructions in the block. */
1967 if (bb_seq (bb) != NULL)
1969 /* Walk backwards so as to get a chance to substitute all
1970 released DEFs into debug stmts. See
1971 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
1972 details. */
1973 for (i = gsi_last_bb (bb); !gsi_end_p (i);)
1975 gimple stmt = gsi_stmt (i);
1976 if (gimple_code (stmt) == GIMPLE_LABEL
1977 && (FORCED_LABEL (gimple_label_label (stmt))
1978 || DECL_NONLOCAL (gimple_label_label (stmt))))
1980 basic_block new_bb;
1981 gimple_stmt_iterator new_gsi;
1983 /* A non-reachable non-local label may still be referenced.
1984 But it no longer needs to carry the extra semantics of
1985 non-locality. */
1986 if (DECL_NONLOCAL (gimple_label_label (stmt)))
1988 DECL_NONLOCAL (gimple_label_label (stmt)) = 0;
1989 FORCED_LABEL (gimple_label_label (stmt)) = 1;
1992 new_bb = bb->prev_bb;
1993 new_gsi = gsi_start_bb (new_bb);
1994 gsi_remove (&i, false);
1995 gsi_insert_before (&new_gsi, stmt, GSI_NEW_STMT);
1997 else
1999 /* Release SSA definitions if we are in SSA. Note that we
2000 may be called when not in SSA. For example,
2001 final_cleanup calls this function via
2002 cleanup_tree_cfg. */
2003 if (gimple_in_ssa_p (cfun))
2004 release_defs (stmt);
2006 gsi_remove (&i, true);
2009 if (gsi_end_p (i))
2010 i = gsi_last_bb (bb);
2011 else
2012 gsi_prev (&i);
2016 remove_phi_nodes_and_edges_for_unreachable_block (bb);
2017 bb->il.gimple.seq = NULL;
2018 bb->il.gimple.phi_nodes = NULL;
2022 /* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
2023 predicate VAL, return the edge that will be taken out of the block.
2024 If VAL does not match a unique edge, NULL is returned. */
2026 edge
2027 find_taken_edge (basic_block bb, tree val)
2029 gimple stmt;
2031 stmt = last_stmt (bb);
2033 gcc_assert (stmt);
2034 gcc_assert (is_ctrl_stmt (stmt));
2036 if (val == NULL)
2037 return NULL;
2039 if (!is_gimple_min_invariant (val))
2040 return NULL;
2042 if (gimple_code (stmt) == GIMPLE_COND)
2043 return find_taken_edge_cond_expr (bb, val);
2045 if (gimple_code (stmt) == GIMPLE_SWITCH)
2046 return find_taken_edge_switch_expr (bb, val);
2048 if (computed_goto_p (stmt))
2050 /* Only optimize if the argument is a label, if the argument is
2051 not a label then we can not construct a proper CFG.
2053 It may be the case that we only need to allow the LABEL_REF to
2054 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
2055 appear inside a LABEL_EXPR just to be safe. */
2056 if ((TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR)
2057 && TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL)
2058 return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0));
2059 return NULL;
2062 gcc_unreachable ();
2065 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
2066 statement, determine which of the outgoing edges will be taken out of the
2067 block. Return NULL if either edge may be taken. */
2069 static edge
2070 find_taken_edge_computed_goto (basic_block bb, tree val)
2072 basic_block dest;
2073 edge e = NULL;
2075 dest = label_to_block (val);
2076 if (dest)
2078 e = find_edge (bb, dest);
2079 gcc_assert (e != NULL);
2082 return e;
2085 /* Given a constant value VAL and the entry block BB to a COND_EXPR
2086 statement, determine which of the two edges will be taken out of the
2087 block. Return NULL if either edge may be taken. */
2089 static edge
2090 find_taken_edge_cond_expr (basic_block bb, tree val)
2092 edge true_edge, false_edge;
2094 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
2096 gcc_assert (TREE_CODE (val) == INTEGER_CST);
2097 return (integer_zerop (val) ? false_edge : true_edge);
2100 /* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
2101 statement, determine which edge will be taken out of the block. Return
2102 NULL if any edge may be taken. */
2104 static edge
2105 find_taken_edge_switch_expr (basic_block bb, tree val)
2107 basic_block dest_bb;
2108 edge e;
2109 gimple switch_stmt;
2110 tree taken_case;
2112 switch_stmt = last_stmt (bb);
2113 taken_case = find_case_label_for_value (switch_stmt, val);
2114 dest_bb = label_to_block (CASE_LABEL (taken_case));
2116 e = find_edge (bb, dest_bb);
2117 gcc_assert (e);
2118 return e;
2122 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
2123 We can make optimal use here of the fact that the case labels are
2124 sorted: We can do a binary search for a case matching VAL. */
2126 static tree
2127 find_case_label_for_value (gimple switch_stmt, tree val)
2129 size_t low, high, n = gimple_switch_num_labels (switch_stmt);
2130 tree default_case = gimple_switch_default_label (switch_stmt);
2132 for (low = 0, high = n; high - low > 1; )
2134 size_t i = (high + low) / 2;
2135 tree t = gimple_switch_label (switch_stmt, i);
2136 int cmp;
2138 /* Cache the result of comparing CASE_LOW and val. */
2139 cmp = tree_int_cst_compare (CASE_LOW (t), val);
2141 if (cmp > 0)
2142 high = i;
2143 else
2144 low = i;
2146 if (CASE_HIGH (t) == NULL)
2148 /* A singe-valued case label. */
2149 if (cmp == 0)
2150 return t;
2152 else
2154 /* A case range. We can only handle integer ranges. */
2155 if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
2156 return t;
2160 return default_case;
2164 /* Dump a basic block on stderr. */
2166 void
2167 gimple_debug_bb (basic_block bb)
2169 dump_bb (stderr, bb, 0, TDF_VOPS|TDF_MEMSYMS|TDF_BLOCKS);
2173 /* Dump basic block with index N on stderr. */
2175 basic_block
2176 gimple_debug_bb_n (int n)
2178 gimple_debug_bb (BASIC_BLOCK_FOR_FN (cfun, n));
2179 return BASIC_BLOCK_FOR_FN (cfun, n);
2183 /* Dump the CFG on stderr.
2185 FLAGS are the same used by the tree dumping functions
2186 (see TDF_* in dumpfile.h). */
2188 void
2189 gimple_debug_cfg (int flags)
2191 gimple_dump_cfg (stderr, flags);
2195 /* Dump the program showing basic block boundaries on the given FILE.
2197 FLAGS are the same used by the tree dumping functions (see TDF_* in
2198 tree.h). */
2200 void
2201 gimple_dump_cfg (FILE *file, int flags)
2203 if (flags & TDF_DETAILS)
2205 dump_function_header (file, current_function_decl, flags);
2206 fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2207 n_basic_blocks_for_fn (cfun), n_edges_for_fn (cfun),
2208 last_basic_block_for_fn (cfun));
2210 brief_dump_cfg (file, flags | TDF_COMMENT);
2211 fprintf (file, "\n");
2214 if (flags & TDF_STATS)
2215 dump_cfg_stats (file);
2217 dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
2221 /* Dump CFG statistics on FILE. */
2223 void
2224 dump_cfg_stats (FILE *file)
2226 static long max_num_merged_labels = 0;
2227 unsigned long size, total = 0;
2228 long num_edges;
2229 basic_block bb;
2230 const char * const fmt_str = "%-30s%-13s%12s\n";
2231 const char * const fmt_str_1 = "%-30s%13d%11lu%c\n";
2232 const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n";
2233 const char * const fmt_str_3 = "%-43s%11lu%c\n";
2234 const char *funcname = current_function_name ();
2236 fprintf (file, "\nCFG Statistics for %s\n\n", funcname);
2238 fprintf (file, "---------------------------------------------------------\n");
2239 fprintf (file, fmt_str, "", " Number of ", "Memory");
2240 fprintf (file, fmt_str, "", " instances ", "used ");
2241 fprintf (file, "---------------------------------------------------------\n");
2243 size = n_basic_blocks_for_fn (cfun) * sizeof (struct basic_block_def);
2244 total += size;
2245 fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks_for_fn (cfun),
2246 SCALE (size), LABEL (size));
2248 num_edges = 0;
2249 FOR_EACH_BB_FN (bb, cfun)
2250 num_edges += EDGE_COUNT (bb->succs);
2251 size = num_edges * sizeof (struct edge_def);
2252 total += size;
2253 fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size));
2255 fprintf (file, "---------------------------------------------------------\n");
2256 fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total),
2257 LABEL (total));
2258 fprintf (file, "---------------------------------------------------------\n");
2259 fprintf (file, "\n");
2261 if (cfg_stats.num_merged_labels > max_num_merged_labels)
2262 max_num_merged_labels = cfg_stats.num_merged_labels;
2264 fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2265 cfg_stats.num_merged_labels, max_num_merged_labels);
2267 fprintf (file, "\n");
2271 /* Dump CFG statistics on stderr. Keep extern so that it's always
2272 linked in the final executable. */
2274 DEBUG_FUNCTION void
2275 debug_cfg_stats (void)
2277 dump_cfg_stats (stderr);
2280 /*---------------------------------------------------------------------------
2281 Miscellaneous helpers
2282 ---------------------------------------------------------------------------*/
2284 /* Return true if T, a GIMPLE_CALL, can make an abnormal transfer of control
2285 flow. Transfers of control flow associated with EH are excluded. */
2287 static bool
2288 call_can_make_abnormal_goto (gimple t)
2290 /* If the function has no non-local labels, then a call cannot make an
2291 abnormal transfer of control. */
2292 if (!cfun->has_nonlocal_label
2293 && !cfun->calls_setjmp)
2294 return false;
2296 /* Likewise if the call has no side effects. */
2297 if (!gimple_has_side_effects (t))
2298 return false;
2300 /* Likewise if the called function is leaf. */
2301 if (gimple_call_flags (t) & ECF_LEAF)
2302 return false;
2304 return true;
2308 /* Return true if T can make an abnormal transfer of control flow.
2309 Transfers of control flow associated with EH are excluded. */
2311 bool
2312 stmt_can_make_abnormal_goto (gimple t)
2314 if (computed_goto_p (t))
2315 return true;
2316 if (is_gimple_call (t))
2317 return call_can_make_abnormal_goto (t);
2318 return false;
2322 /* Return true if T represents a stmt that always transfers control. */
2324 bool
2325 is_ctrl_stmt (gimple t)
2327 switch (gimple_code (t))
2329 case GIMPLE_COND:
2330 case GIMPLE_SWITCH:
2331 case GIMPLE_GOTO:
2332 case GIMPLE_RETURN:
2333 case GIMPLE_RESX:
2334 return true;
2335 default:
2336 return false;
2341 /* Return true if T is a statement that may alter the flow of control
2342 (e.g., a call to a non-returning function). */
2344 bool
2345 is_ctrl_altering_stmt (gimple t)
2347 gcc_assert (t);
2349 switch (gimple_code (t))
2351 case GIMPLE_CALL:
2353 int flags = gimple_call_flags (t);
2355 /* A call alters control flow if it can make an abnormal goto. */
2356 if (call_can_make_abnormal_goto (t))
2357 return true;
2359 /* A call also alters control flow if it does not return. */
2360 if (flags & ECF_NORETURN)
2361 return true;
2363 /* TM ending statements have backedges out of the transaction.
2364 Return true so we split the basic block containing them.
2365 Note that the TM_BUILTIN test is merely an optimization. */
2366 if ((flags & ECF_TM_BUILTIN)
2367 && is_tm_ending_fndecl (gimple_call_fndecl (t)))
2368 return true;
2370 /* BUILT_IN_RETURN call is same as return statement. */
2371 if (gimple_call_builtin_p (t, BUILT_IN_RETURN))
2372 return true;
2374 break;
2376 case GIMPLE_EH_DISPATCH:
2377 /* EH_DISPATCH branches to the individual catch handlers at
2378 this level of a try or allowed-exceptions region. It can
2379 fallthru to the next statement as well. */
2380 return true;
2382 case GIMPLE_ASM:
2383 if (gimple_asm_nlabels (t) > 0)
2384 return true;
2385 break;
2387 CASE_GIMPLE_OMP:
2388 /* OpenMP directives alter control flow. */
2389 return true;
2391 case GIMPLE_TRANSACTION:
2392 /* A transaction start alters control flow. */
2393 return true;
2395 default:
2396 break;
2399 /* If a statement can throw, it alters control flow. */
2400 return stmt_can_throw_internal (t);
2404 /* Return true if T is a simple local goto. */
2406 bool
2407 simple_goto_p (gimple t)
2409 return (gimple_code (t) == GIMPLE_GOTO
2410 && TREE_CODE (gimple_goto_dest (t)) == LABEL_DECL);
2414 /* Return true if STMT should start a new basic block. PREV_STMT is
2415 the statement preceding STMT. It is used when STMT is a label or a
2416 case label. Labels should only start a new basic block if their
2417 previous statement wasn't a label. Otherwise, sequence of labels
2418 would generate unnecessary basic blocks that only contain a single
2419 label. */
2421 static inline bool
2422 stmt_starts_bb_p (gimple stmt, gimple prev_stmt)
2424 if (stmt == NULL)
2425 return false;
2427 /* Labels start a new basic block only if the preceding statement
2428 wasn't a label of the same type. This prevents the creation of
2429 consecutive blocks that have nothing but a single label. */
2430 if (gimple_code (stmt) == GIMPLE_LABEL)
2432 /* Nonlocal and computed GOTO targets always start a new block. */
2433 if (DECL_NONLOCAL (gimple_label_label (stmt))
2434 || FORCED_LABEL (gimple_label_label (stmt)))
2435 return true;
2437 if (prev_stmt && gimple_code (prev_stmt) == GIMPLE_LABEL)
2439 if (DECL_NONLOCAL (gimple_label_label (prev_stmt)))
2440 return true;
2442 cfg_stats.num_merged_labels++;
2443 return false;
2445 else
2446 return true;
2448 else if (gimple_code (stmt) == GIMPLE_CALL
2449 && gimple_call_flags (stmt) & ECF_RETURNS_TWICE)
2450 /* setjmp acts similar to a nonlocal GOTO target and thus should
2451 start a new block. */
2452 return true;
2454 return false;
2458 /* Return true if T should end a basic block. */
2460 bool
2461 stmt_ends_bb_p (gimple t)
2463 return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
2466 /* Remove block annotations and other data structures. */
2468 void
2469 delete_tree_cfg_annotations (void)
2471 vec_free (label_to_block_map_for_fn (cfun));
2475 /* Return the first statement in basic block BB. */
2477 gimple
2478 first_stmt (basic_block bb)
2480 gimple_stmt_iterator i = gsi_start_bb (bb);
2481 gimple stmt = NULL;
2483 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2485 gsi_next (&i);
2486 stmt = NULL;
2488 return stmt;
2491 /* Return the first non-label statement in basic block BB. */
2493 static gimple
2494 first_non_label_stmt (basic_block bb)
2496 gimple_stmt_iterator i = gsi_start_bb (bb);
2497 while (!gsi_end_p (i) && gimple_code (gsi_stmt (i)) == GIMPLE_LABEL)
2498 gsi_next (&i);
2499 return !gsi_end_p (i) ? gsi_stmt (i) : NULL;
2502 /* Return the last statement in basic block BB. */
2504 gimple
2505 last_stmt (basic_block bb)
2507 gimple_stmt_iterator i = gsi_last_bb (bb);
2508 gimple stmt = NULL;
2510 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2512 gsi_prev (&i);
2513 stmt = NULL;
2515 return stmt;
2518 /* Return the last statement of an otherwise empty block. Return NULL
2519 if the block is totally empty, or if it contains more than one
2520 statement. */
2522 gimple
2523 last_and_only_stmt (basic_block bb)
2525 gimple_stmt_iterator i = gsi_last_nondebug_bb (bb);
2526 gimple last, prev;
2528 if (gsi_end_p (i))
2529 return NULL;
2531 last = gsi_stmt (i);
2532 gsi_prev_nondebug (&i);
2533 if (gsi_end_p (i))
2534 return last;
2536 /* Empty statements should no longer appear in the instruction stream.
2537 Everything that might have appeared before should be deleted by
2538 remove_useless_stmts, and the optimizers should just gsi_remove
2539 instead of smashing with build_empty_stmt.
2541 Thus the only thing that should appear here in a block containing
2542 one executable statement is a label. */
2543 prev = gsi_stmt (i);
2544 if (gimple_code (prev) == GIMPLE_LABEL)
2545 return last;
2546 else
2547 return NULL;
2550 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2552 static void
2553 reinstall_phi_args (edge new_edge, edge old_edge)
2555 edge_var_map_vector *v;
2556 edge_var_map *vm;
2557 int i;
2558 gimple_stmt_iterator phis;
2560 v = redirect_edge_var_map_vector (old_edge);
2561 if (!v)
2562 return;
2564 for (i = 0, phis = gsi_start_phis (new_edge->dest);
2565 v->iterate (i, &vm) && !gsi_end_p (phis);
2566 i++, gsi_next (&phis))
2568 gimple phi = gsi_stmt (phis);
2569 tree result = redirect_edge_var_map_result (vm);
2570 tree arg = redirect_edge_var_map_def (vm);
2572 gcc_assert (result == gimple_phi_result (phi));
2574 add_phi_arg (phi, arg, new_edge, redirect_edge_var_map_location (vm));
2577 redirect_edge_var_map_clear (old_edge);
2580 /* Returns the basic block after which the new basic block created
2581 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2582 near its "logical" location. This is of most help to humans looking
2583 at debugging dumps. */
2585 static basic_block
2586 split_edge_bb_loc (edge edge_in)
2588 basic_block dest = edge_in->dest;
2589 basic_block dest_prev = dest->prev_bb;
2591 if (dest_prev)
2593 edge e = find_edge (dest_prev, dest);
2594 if (e && !(e->flags & EDGE_COMPLEX))
2595 return edge_in->src;
2597 return dest_prev;
2600 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2601 Abort on abnormal edges. */
2603 static basic_block
2604 gimple_split_edge (edge edge_in)
2606 basic_block new_bb, after_bb, dest;
2607 edge new_edge, e;
2609 /* Abnormal edges cannot be split. */
2610 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
2612 dest = edge_in->dest;
2614 after_bb = split_edge_bb_loc (edge_in);
2616 new_bb = create_empty_bb (after_bb);
2617 new_bb->frequency = EDGE_FREQUENCY (edge_in);
2618 new_bb->count = edge_in->count;
2619 new_edge = make_edge (new_bb, dest, EDGE_FALLTHRU);
2620 new_edge->probability = REG_BR_PROB_BASE;
2621 new_edge->count = edge_in->count;
2623 e = redirect_edge_and_branch (edge_in, new_bb);
2624 gcc_assert (e == edge_in);
2625 reinstall_phi_args (new_edge, e);
2627 return new_bb;
2631 /* Verify properties of the address expression T with base object BASE. */
2633 static tree
2634 verify_address (tree t, tree base)
2636 bool old_constant;
2637 bool old_side_effects;
2638 bool new_constant;
2639 bool new_side_effects;
2641 old_constant = TREE_CONSTANT (t);
2642 old_side_effects = TREE_SIDE_EFFECTS (t);
2644 recompute_tree_invariant_for_addr_expr (t);
2645 new_side_effects = TREE_SIDE_EFFECTS (t);
2646 new_constant = TREE_CONSTANT (t);
2648 if (old_constant != new_constant)
2650 error ("constant not recomputed when ADDR_EXPR changed");
2651 return t;
2653 if (old_side_effects != new_side_effects)
2655 error ("side effects not recomputed when ADDR_EXPR changed");
2656 return t;
2659 if (!(TREE_CODE (base) == VAR_DECL
2660 || TREE_CODE (base) == PARM_DECL
2661 || TREE_CODE (base) == RESULT_DECL))
2662 return NULL_TREE;
2664 if (DECL_GIMPLE_REG_P (base))
2666 error ("DECL_GIMPLE_REG_P set on a variable with address taken");
2667 return base;
2670 return NULL_TREE;
2673 /* Callback for walk_tree, check that all elements with address taken are
2674 properly noticed as such. The DATA is an int* that is 1 if TP was seen
2675 inside a PHI node. */
2677 static tree
2678 verify_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
2680 tree t = *tp, x;
2682 if (TYPE_P (t))
2683 *walk_subtrees = 0;
2685 /* Check operand N for being valid GIMPLE and give error MSG if not. */
2686 #define CHECK_OP(N, MSG) \
2687 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
2688 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
2690 switch (TREE_CODE (t))
2692 case SSA_NAME:
2693 if (SSA_NAME_IN_FREE_LIST (t))
2695 error ("SSA name in freelist but still referenced");
2696 return *tp;
2698 break;
2700 case INDIRECT_REF:
2701 error ("INDIRECT_REF in gimple IL");
2702 return t;
2704 case MEM_REF:
2705 x = TREE_OPERAND (t, 0);
2706 if (!POINTER_TYPE_P (TREE_TYPE (x))
2707 || !is_gimple_mem_ref_addr (x))
2709 error ("invalid first operand of MEM_REF");
2710 return x;
2712 if (TREE_CODE (TREE_OPERAND (t, 1)) != INTEGER_CST
2713 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 1))))
2715 error ("invalid offset operand of MEM_REF");
2716 return TREE_OPERAND (t, 1);
2718 if (TREE_CODE (x) == ADDR_EXPR
2719 && (x = verify_address (x, TREE_OPERAND (x, 0))))
2720 return x;
2721 *walk_subtrees = 0;
2722 break;
2724 case ASSERT_EXPR:
2725 x = fold (ASSERT_EXPR_COND (t));
2726 if (x == boolean_false_node)
2728 error ("ASSERT_EXPR with an always-false condition");
2729 return *tp;
2731 break;
2733 case MODIFY_EXPR:
2734 error ("MODIFY_EXPR not expected while having tuples");
2735 return *tp;
2737 case ADDR_EXPR:
2739 tree tem;
2741 gcc_assert (is_gimple_address (t));
2743 /* Skip any references (they will be checked when we recurse down the
2744 tree) and ensure that any variable used as a prefix is marked
2745 addressable. */
2746 for (x = TREE_OPERAND (t, 0);
2747 handled_component_p (x);
2748 x = TREE_OPERAND (x, 0))
2751 if ((tem = verify_address (t, x)))
2752 return tem;
2754 if (!(TREE_CODE (x) == VAR_DECL
2755 || TREE_CODE (x) == PARM_DECL
2756 || TREE_CODE (x) == RESULT_DECL))
2757 return NULL;
2759 if (!TREE_ADDRESSABLE (x))
2761 error ("address taken, but ADDRESSABLE bit not set");
2762 return x;
2765 break;
2768 case COND_EXPR:
2769 x = COND_EXPR_COND (t);
2770 if (!INTEGRAL_TYPE_P (TREE_TYPE (x)))
2772 error ("non-integral used in condition");
2773 return x;
2775 if (!is_gimple_condexpr (x))
2777 error ("invalid conditional operand");
2778 return x;
2780 break;
2782 case NON_LVALUE_EXPR:
2783 case TRUTH_NOT_EXPR:
2784 gcc_unreachable ();
2786 CASE_CONVERT:
2787 case FIX_TRUNC_EXPR:
2788 case FLOAT_EXPR:
2789 case NEGATE_EXPR:
2790 case ABS_EXPR:
2791 case BIT_NOT_EXPR:
2792 CHECK_OP (0, "invalid operand to unary operator");
2793 break;
2795 case REALPART_EXPR:
2796 case IMAGPART_EXPR:
2797 case BIT_FIELD_REF:
2798 if (!is_gimple_reg_type (TREE_TYPE (t)))
2800 error ("non-scalar BIT_FIELD_REF, IMAGPART_EXPR or REALPART_EXPR");
2801 return t;
2804 if (TREE_CODE (t) == BIT_FIELD_REF)
2806 tree t0 = TREE_OPERAND (t, 0);
2807 tree t1 = TREE_OPERAND (t, 1);
2808 tree t2 = TREE_OPERAND (t, 2);
2809 if (!tree_fits_uhwi_p (t1)
2810 || !tree_fits_uhwi_p (t2))
2812 error ("invalid position or size operand to BIT_FIELD_REF");
2813 return t;
2815 if (INTEGRAL_TYPE_P (TREE_TYPE (t))
2816 && (TYPE_PRECISION (TREE_TYPE (t))
2817 != tree_to_uhwi (t1)))
2819 error ("integral result type precision does not match "
2820 "field size of BIT_FIELD_REF");
2821 return t;
2823 else if (!INTEGRAL_TYPE_P (TREE_TYPE (t))
2824 && TYPE_MODE (TREE_TYPE (t)) != BLKmode
2825 && (GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (t)))
2826 != tree_to_uhwi (t1)))
2828 error ("mode precision of non-integral result does not "
2829 "match field size of BIT_FIELD_REF");
2830 return t;
2832 if (!AGGREGATE_TYPE_P (TREE_TYPE (t0))
2833 && (tree_to_uhwi (t1) + tree_to_uhwi (t2)
2834 > tree_to_uhwi (TYPE_SIZE (TREE_TYPE (t0)))))
2836 error ("position plus size exceeds size of referenced object in "
2837 "BIT_FIELD_REF");
2838 return t;
2841 t = TREE_OPERAND (t, 0);
2843 /* Fall-through. */
2844 case COMPONENT_REF:
2845 case ARRAY_REF:
2846 case ARRAY_RANGE_REF:
2847 case VIEW_CONVERT_EXPR:
2848 /* We have a nest of references. Verify that each of the operands
2849 that determine where to reference is either a constant or a variable,
2850 verify that the base is valid, and then show we've already checked
2851 the subtrees. */
2852 while (handled_component_p (t))
2854 if (TREE_CODE (t) == COMPONENT_REF && TREE_OPERAND (t, 2))
2855 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
2856 else if (TREE_CODE (t) == ARRAY_REF
2857 || TREE_CODE (t) == ARRAY_RANGE_REF)
2859 CHECK_OP (1, "invalid array index");
2860 if (TREE_OPERAND (t, 2))
2861 CHECK_OP (2, "invalid array lower bound");
2862 if (TREE_OPERAND (t, 3))
2863 CHECK_OP (3, "invalid array stride");
2865 else if (TREE_CODE (t) == BIT_FIELD_REF
2866 || TREE_CODE (t) == REALPART_EXPR
2867 || TREE_CODE (t) == IMAGPART_EXPR)
2869 error ("non-top-level BIT_FIELD_REF, IMAGPART_EXPR or "
2870 "REALPART_EXPR");
2871 return t;
2874 t = TREE_OPERAND (t, 0);
2877 if (!is_gimple_min_invariant (t) && !is_gimple_lvalue (t))
2879 error ("invalid reference prefix");
2880 return t;
2882 *walk_subtrees = 0;
2883 break;
2884 case PLUS_EXPR:
2885 case MINUS_EXPR:
2886 /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
2887 POINTER_PLUS_EXPR. */
2888 if (POINTER_TYPE_P (TREE_TYPE (t)))
2890 error ("invalid operand to plus/minus, type is a pointer");
2891 return t;
2893 CHECK_OP (0, "invalid operand to binary operator");
2894 CHECK_OP (1, "invalid operand to binary operator");
2895 break;
2897 case POINTER_PLUS_EXPR:
2898 /* Check to make sure the first operand is a pointer or reference type. */
2899 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 0))))
2901 error ("invalid operand to pointer plus, first operand is not a pointer");
2902 return t;
2904 /* Check to make sure the second operand is a ptrofftype. */
2905 if (!ptrofftype_p (TREE_TYPE (TREE_OPERAND (t, 1))))
2907 error ("invalid operand to pointer plus, second operand is not an "
2908 "integer type of appropriate width");
2909 return t;
2911 /* FALLTHROUGH */
2912 case LT_EXPR:
2913 case LE_EXPR:
2914 case GT_EXPR:
2915 case GE_EXPR:
2916 case EQ_EXPR:
2917 case NE_EXPR:
2918 case UNORDERED_EXPR:
2919 case ORDERED_EXPR:
2920 case UNLT_EXPR:
2921 case UNLE_EXPR:
2922 case UNGT_EXPR:
2923 case UNGE_EXPR:
2924 case UNEQ_EXPR:
2925 case LTGT_EXPR:
2926 case MULT_EXPR:
2927 case TRUNC_DIV_EXPR:
2928 case CEIL_DIV_EXPR:
2929 case FLOOR_DIV_EXPR:
2930 case ROUND_DIV_EXPR:
2931 case TRUNC_MOD_EXPR:
2932 case CEIL_MOD_EXPR:
2933 case FLOOR_MOD_EXPR:
2934 case ROUND_MOD_EXPR:
2935 case RDIV_EXPR:
2936 case EXACT_DIV_EXPR:
2937 case MIN_EXPR:
2938 case MAX_EXPR:
2939 case LSHIFT_EXPR:
2940 case RSHIFT_EXPR:
2941 case LROTATE_EXPR:
2942 case RROTATE_EXPR:
2943 case BIT_IOR_EXPR:
2944 case BIT_XOR_EXPR:
2945 case BIT_AND_EXPR:
2946 CHECK_OP (0, "invalid operand to binary operator");
2947 CHECK_OP (1, "invalid operand to binary operator");
2948 break;
2950 case CONSTRUCTOR:
2951 if (TREE_CONSTANT (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2952 *walk_subtrees = 0;
2953 break;
2955 case CASE_LABEL_EXPR:
2956 if (CASE_CHAIN (t))
2958 error ("invalid CASE_CHAIN");
2959 return t;
2961 break;
2963 default:
2964 break;
2966 return NULL;
2968 #undef CHECK_OP
2972 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
2973 Returns true if there is an error, otherwise false. */
2975 static bool
2976 verify_types_in_gimple_min_lval (tree expr)
2978 tree op;
2980 if (is_gimple_id (expr))
2981 return false;
2983 if (TREE_CODE (expr) != TARGET_MEM_REF
2984 && TREE_CODE (expr) != MEM_REF)
2986 error ("invalid expression for min lvalue");
2987 return true;
2990 /* TARGET_MEM_REFs are strange beasts. */
2991 if (TREE_CODE (expr) == TARGET_MEM_REF)
2992 return false;
2994 op = TREE_OPERAND (expr, 0);
2995 if (!is_gimple_val (op))
2997 error ("invalid operand in indirect reference");
2998 debug_generic_stmt (op);
2999 return true;
3001 /* Memory references now generally can involve a value conversion. */
3003 return false;
3006 /* Verify if EXPR is a valid GIMPLE reference expression. If
3007 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
3008 if there is an error, otherwise false. */
3010 static bool
3011 verify_types_in_gimple_reference (tree expr, bool require_lvalue)
3013 while (handled_component_p (expr))
3015 tree op = TREE_OPERAND (expr, 0);
3017 if (TREE_CODE (expr) == ARRAY_REF
3018 || TREE_CODE (expr) == ARRAY_RANGE_REF)
3020 if (!is_gimple_val (TREE_OPERAND (expr, 1))
3021 || (TREE_OPERAND (expr, 2)
3022 && !is_gimple_val (TREE_OPERAND (expr, 2)))
3023 || (TREE_OPERAND (expr, 3)
3024 && !is_gimple_val (TREE_OPERAND (expr, 3))))
3026 error ("invalid operands to array reference");
3027 debug_generic_stmt (expr);
3028 return true;
3032 /* Verify if the reference array element types are compatible. */
3033 if (TREE_CODE (expr) == ARRAY_REF
3034 && !useless_type_conversion_p (TREE_TYPE (expr),
3035 TREE_TYPE (TREE_TYPE (op))))
3037 error ("type mismatch in array reference");
3038 debug_generic_stmt (TREE_TYPE (expr));
3039 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3040 return true;
3042 if (TREE_CODE (expr) == ARRAY_RANGE_REF
3043 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr)),
3044 TREE_TYPE (TREE_TYPE (op))))
3046 error ("type mismatch in array range reference");
3047 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr)));
3048 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3049 return true;
3052 if ((TREE_CODE (expr) == REALPART_EXPR
3053 || TREE_CODE (expr) == IMAGPART_EXPR)
3054 && !useless_type_conversion_p (TREE_TYPE (expr),
3055 TREE_TYPE (TREE_TYPE (op))))
3057 error ("type mismatch in real/imagpart reference");
3058 debug_generic_stmt (TREE_TYPE (expr));
3059 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3060 return true;
3063 if (TREE_CODE (expr) == COMPONENT_REF
3064 && !useless_type_conversion_p (TREE_TYPE (expr),
3065 TREE_TYPE (TREE_OPERAND (expr, 1))))
3067 error ("type mismatch in component reference");
3068 debug_generic_stmt (TREE_TYPE (expr));
3069 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr, 1)));
3070 return true;
3073 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
3075 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
3076 that their operand is not an SSA name or an invariant when
3077 requiring an lvalue (this usually means there is a SRA or IPA-SRA
3078 bug). Otherwise there is nothing to verify, gross mismatches at
3079 most invoke undefined behavior. */
3080 if (require_lvalue
3081 && (TREE_CODE (op) == SSA_NAME
3082 || is_gimple_min_invariant (op)))
3084 error ("conversion of an SSA_NAME on the left hand side");
3085 debug_generic_stmt (expr);
3086 return true;
3088 else if (TREE_CODE (op) == SSA_NAME
3089 && TYPE_SIZE (TREE_TYPE (expr)) != TYPE_SIZE (TREE_TYPE (op)))
3091 error ("conversion of register to a different size");
3092 debug_generic_stmt (expr);
3093 return true;
3095 else if (!handled_component_p (op))
3096 return false;
3099 expr = op;
3102 if (TREE_CODE (expr) == MEM_REF)
3104 if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr, 0)))
3106 error ("invalid address operand in MEM_REF");
3107 debug_generic_stmt (expr);
3108 return true;
3110 if (TREE_CODE (TREE_OPERAND (expr, 1)) != INTEGER_CST
3111 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1))))
3113 error ("invalid offset operand in MEM_REF");
3114 debug_generic_stmt (expr);
3115 return true;
3118 else if (TREE_CODE (expr) == TARGET_MEM_REF)
3120 if (!TMR_BASE (expr)
3121 || !is_gimple_mem_ref_addr (TMR_BASE (expr)))
3123 error ("invalid address operand in TARGET_MEM_REF");
3124 return true;
3126 if (!TMR_OFFSET (expr)
3127 || TREE_CODE (TMR_OFFSET (expr)) != INTEGER_CST
3128 || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr))))
3130 error ("invalid offset operand in TARGET_MEM_REF");
3131 debug_generic_stmt (expr);
3132 return true;
3136 return ((require_lvalue || !is_gimple_min_invariant (expr))
3137 && verify_types_in_gimple_min_lval (expr));
3140 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
3141 list of pointer-to types that is trivially convertible to DEST. */
3143 static bool
3144 one_pointer_to_useless_type_conversion_p (tree dest, tree src_obj)
3146 tree src;
3148 if (!TYPE_POINTER_TO (src_obj))
3149 return true;
3151 for (src = TYPE_POINTER_TO (src_obj); src; src = TYPE_NEXT_PTR_TO (src))
3152 if (useless_type_conversion_p (dest, src))
3153 return true;
3155 return false;
3158 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3159 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3161 static bool
3162 valid_fixed_convert_types_p (tree type1, tree type2)
3164 return (FIXED_POINT_TYPE_P (type1)
3165 && (INTEGRAL_TYPE_P (type2)
3166 || SCALAR_FLOAT_TYPE_P (type2)
3167 || FIXED_POINT_TYPE_P (type2)));
3170 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3171 is a problem, otherwise false. */
3173 static bool
3174 verify_gimple_call (gimple stmt)
3176 tree fn = gimple_call_fn (stmt);
3177 tree fntype, fndecl;
3178 unsigned i;
3180 if (gimple_call_internal_p (stmt))
3182 if (fn)
3184 error ("gimple call has two targets");
3185 debug_generic_stmt (fn);
3186 return true;
3189 else
3191 if (!fn)
3193 error ("gimple call has no target");
3194 return true;
3198 if (fn && !is_gimple_call_addr (fn))
3200 error ("invalid function in gimple call");
3201 debug_generic_stmt (fn);
3202 return true;
3205 if (fn
3206 && (!POINTER_TYPE_P (TREE_TYPE (fn))
3207 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != FUNCTION_TYPE
3208 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != METHOD_TYPE)))
3210 error ("non-function in gimple call");
3211 return true;
3214 fndecl = gimple_call_fndecl (stmt);
3215 if (fndecl
3216 && TREE_CODE (fndecl) == FUNCTION_DECL
3217 && DECL_LOOPING_CONST_OR_PURE_P (fndecl)
3218 && !DECL_PURE_P (fndecl)
3219 && !TREE_READONLY (fndecl))
3221 error ("invalid pure const state for function");
3222 return true;
3225 if (gimple_call_lhs (stmt)
3226 && (!is_gimple_lvalue (gimple_call_lhs (stmt))
3227 || verify_types_in_gimple_reference (gimple_call_lhs (stmt), true)))
3229 error ("invalid LHS in gimple call");
3230 return true;
3233 if (gimple_call_lhs (stmt) && gimple_call_noreturn_p (stmt))
3235 error ("LHS in noreturn call");
3236 return true;
3239 fntype = gimple_call_fntype (stmt);
3240 if (fntype
3241 && gimple_call_lhs (stmt)
3242 && !useless_type_conversion_p (TREE_TYPE (gimple_call_lhs (stmt)),
3243 TREE_TYPE (fntype))
3244 /* ??? At least C++ misses conversions at assignments from
3245 void * call results.
3246 ??? Java is completely off. Especially with functions
3247 returning java.lang.Object.
3248 For now simply allow arbitrary pointer type conversions. */
3249 && !(POINTER_TYPE_P (TREE_TYPE (gimple_call_lhs (stmt)))
3250 && POINTER_TYPE_P (TREE_TYPE (fntype))))
3252 error ("invalid conversion in gimple call");
3253 debug_generic_stmt (TREE_TYPE (gimple_call_lhs (stmt)));
3254 debug_generic_stmt (TREE_TYPE (fntype));
3255 return true;
3258 if (gimple_call_chain (stmt)
3259 && !is_gimple_val (gimple_call_chain (stmt)))
3261 error ("invalid static chain in gimple call");
3262 debug_generic_stmt (gimple_call_chain (stmt));
3263 return true;
3266 /* If there is a static chain argument, this should not be an indirect
3267 call, and the decl should have DECL_STATIC_CHAIN set. */
3268 if (gimple_call_chain (stmt))
3270 if (!gimple_call_fndecl (stmt))
3272 error ("static chain in indirect gimple call");
3273 return true;
3275 fn = TREE_OPERAND (fn, 0);
3277 if (!DECL_STATIC_CHAIN (fn))
3279 error ("static chain with function that doesn%'t use one");
3280 return true;
3284 /* ??? The C frontend passes unpromoted arguments in case it
3285 didn't see a function declaration before the call. So for now
3286 leave the call arguments mostly unverified. Once we gimplify
3287 unit-at-a-time we have a chance to fix this. */
3289 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3291 tree arg = gimple_call_arg (stmt, i);
3292 if ((is_gimple_reg_type (TREE_TYPE (arg))
3293 && !is_gimple_val (arg))
3294 || (!is_gimple_reg_type (TREE_TYPE (arg))
3295 && !is_gimple_lvalue (arg)))
3297 error ("invalid argument to gimple call");
3298 debug_generic_expr (arg);
3299 return true;
3303 return false;
3306 /* Verifies the gimple comparison with the result type TYPE and
3307 the operands OP0 and OP1. */
3309 static bool
3310 verify_gimple_comparison (tree type, tree op0, tree op1)
3312 tree op0_type = TREE_TYPE (op0);
3313 tree op1_type = TREE_TYPE (op1);
3315 if (!is_gimple_val (op0) || !is_gimple_val (op1))
3317 error ("invalid operands in gimple comparison");
3318 return true;
3321 /* For comparisons we do not have the operations type as the
3322 effective type the comparison is carried out in. Instead
3323 we require that either the first operand is trivially
3324 convertible into the second, or the other way around.
3325 Because we special-case pointers to void we allow
3326 comparisons of pointers with the same mode as well. */
3327 if (!useless_type_conversion_p (op0_type, op1_type)
3328 && !useless_type_conversion_p (op1_type, op0_type)
3329 && (!POINTER_TYPE_P (op0_type)
3330 || !POINTER_TYPE_P (op1_type)
3331 || TYPE_MODE (op0_type) != TYPE_MODE (op1_type)))
3333 error ("mismatching comparison operand types");
3334 debug_generic_expr (op0_type);
3335 debug_generic_expr (op1_type);
3336 return true;
3339 /* The resulting type of a comparison may be an effective boolean type. */
3340 if (INTEGRAL_TYPE_P (type)
3341 && (TREE_CODE (type) == BOOLEAN_TYPE
3342 || TYPE_PRECISION (type) == 1))
3344 if (TREE_CODE (op0_type) == VECTOR_TYPE
3345 || TREE_CODE (op1_type) == VECTOR_TYPE)
3347 error ("vector comparison returning a boolean");
3348 debug_generic_expr (op0_type);
3349 debug_generic_expr (op1_type);
3350 return true;
3353 /* Or an integer vector type with the same size and element count
3354 as the comparison operand types. */
3355 else if (TREE_CODE (type) == VECTOR_TYPE
3356 && TREE_CODE (TREE_TYPE (type)) == INTEGER_TYPE)
3358 if (TREE_CODE (op0_type) != VECTOR_TYPE
3359 || TREE_CODE (op1_type) != VECTOR_TYPE)
3361 error ("non-vector operands in vector comparison");
3362 debug_generic_expr (op0_type);
3363 debug_generic_expr (op1_type);
3364 return true;
3367 if (TYPE_VECTOR_SUBPARTS (type) != TYPE_VECTOR_SUBPARTS (op0_type)
3368 || (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (type)))
3369 != GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (op0_type))))
3370 /* The result of a vector comparison is of signed
3371 integral type. */
3372 || TYPE_UNSIGNED (TREE_TYPE (type)))
3374 error ("invalid vector comparison resulting type");
3375 debug_generic_expr (type);
3376 return true;
3379 else
3381 error ("bogus comparison result type");
3382 debug_generic_expr (type);
3383 return true;
3386 return false;
3389 /* Verify a gimple assignment statement STMT with an unary rhs.
3390 Returns true if anything is wrong. */
3392 static bool
3393 verify_gimple_assign_unary (gimple stmt)
3395 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3396 tree lhs = gimple_assign_lhs (stmt);
3397 tree lhs_type = TREE_TYPE (lhs);
3398 tree rhs1 = gimple_assign_rhs1 (stmt);
3399 tree rhs1_type = TREE_TYPE (rhs1);
3401 if (!is_gimple_reg (lhs))
3403 error ("non-register as LHS of unary operation");
3404 return true;
3407 if (!is_gimple_val (rhs1))
3409 error ("invalid operand in unary operation");
3410 return true;
3413 /* First handle conversions. */
3414 switch (rhs_code)
3416 CASE_CONVERT:
3418 /* Allow conversions from pointer type to integral type only if
3419 there is no sign or zero extension involved.
3420 For targets were the precision of ptrofftype doesn't match that
3421 of pointers we need to allow arbitrary conversions to ptrofftype. */
3422 if ((POINTER_TYPE_P (lhs_type)
3423 && INTEGRAL_TYPE_P (rhs1_type))
3424 || (POINTER_TYPE_P (rhs1_type)
3425 && INTEGRAL_TYPE_P (lhs_type)
3426 && (TYPE_PRECISION (rhs1_type) >= TYPE_PRECISION (lhs_type)
3427 || ptrofftype_p (sizetype))))
3428 return false;
3430 /* Allow conversion from integral to offset type and vice versa. */
3431 if ((TREE_CODE (lhs_type) == OFFSET_TYPE
3432 && INTEGRAL_TYPE_P (rhs1_type))
3433 || (INTEGRAL_TYPE_P (lhs_type)
3434 && TREE_CODE (rhs1_type) == OFFSET_TYPE))
3435 return false;
3437 /* Otherwise assert we are converting between types of the
3438 same kind. */
3439 if (INTEGRAL_TYPE_P (lhs_type) != INTEGRAL_TYPE_P (rhs1_type))
3441 error ("invalid types in nop conversion");
3442 debug_generic_expr (lhs_type);
3443 debug_generic_expr (rhs1_type);
3444 return true;
3447 return false;
3450 case ADDR_SPACE_CONVERT_EXPR:
3452 if (!POINTER_TYPE_P (rhs1_type) || !POINTER_TYPE_P (lhs_type)
3453 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type))
3454 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type))))
3456 error ("invalid types in address space conversion");
3457 debug_generic_expr (lhs_type);
3458 debug_generic_expr (rhs1_type);
3459 return true;
3462 return false;
3465 case FIXED_CONVERT_EXPR:
3467 if (!valid_fixed_convert_types_p (lhs_type, rhs1_type)
3468 && !valid_fixed_convert_types_p (rhs1_type, lhs_type))
3470 error ("invalid types in fixed-point conversion");
3471 debug_generic_expr (lhs_type);
3472 debug_generic_expr (rhs1_type);
3473 return true;
3476 return false;
3479 case FLOAT_EXPR:
3481 if ((!INTEGRAL_TYPE_P (rhs1_type) || !SCALAR_FLOAT_TYPE_P (lhs_type))
3482 && (!VECTOR_INTEGER_TYPE_P (rhs1_type)
3483 || !VECTOR_FLOAT_TYPE_P (lhs_type)))
3485 error ("invalid types in conversion to floating point");
3486 debug_generic_expr (lhs_type);
3487 debug_generic_expr (rhs1_type);
3488 return true;
3491 return false;
3494 case FIX_TRUNC_EXPR:
3496 if ((!INTEGRAL_TYPE_P (lhs_type) || !SCALAR_FLOAT_TYPE_P (rhs1_type))
3497 && (!VECTOR_INTEGER_TYPE_P (lhs_type)
3498 || !VECTOR_FLOAT_TYPE_P (rhs1_type)))
3500 error ("invalid types in conversion to integer");
3501 debug_generic_expr (lhs_type);
3502 debug_generic_expr (rhs1_type);
3503 return true;
3506 return false;
3509 case VEC_UNPACK_HI_EXPR:
3510 case VEC_UNPACK_LO_EXPR:
3511 case REDUC_MAX_EXPR:
3512 case REDUC_MIN_EXPR:
3513 case REDUC_PLUS_EXPR:
3514 case VEC_UNPACK_FLOAT_HI_EXPR:
3515 case VEC_UNPACK_FLOAT_LO_EXPR:
3516 /* FIXME. */
3517 return false;
3519 case NEGATE_EXPR:
3520 case ABS_EXPR:
3521 case BIT_NOT_EXPR:
3522 case PAREN_EXPR:
3523 case NON_LVALUE_EXPR:
3524 case CONJ_EXPR:
3525 break;
3527 default:
3528 gcc_unreachable ();
3531 /* For the remaining codes assert there is no conversion involved. */
3532 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3534 error ("non-trivial conversion in unary operation");
3535 debug_generic_expr (lhs_type);
3536 debug_generic_expr (rhs1_type);
3537 return true;
3540 return false;
3543 /* Verify a gimple assignment statement STMT with a binary rhs.
3544 Returns true if anything is wrong. */
3546 static bool
3547 verify_gimple_assign_binary (gimple stmt)
3549 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3550 tree lhs = gimple_assign_lhs (stmt);
3551 tree lhs_type = TREE_TYPE (lhs);
3552 tree rhs1 = gimple_assign_rhs1 (stmt);
3553 tree rhs1_type = TREE_TYPE (rhs1);
3554 tree rhs2 = gimple_assign_rhs2 (stmt);
3555 tree rhs2_type = TREE_TYPE (rhs2);
3557 if (!is_gimple_reg (lhs))
3559 error ("non-register as LHS of binary operation");
3560 return true;
3563 if (!is_gimple_val (rhs1)
3564 || !is_gimple_val (rhs2))
3566 error ("invalid operands in binary operation");
3567 return true;
3570 /* First handle operations that involve different types. */
3571 switch (rhs_code)
3573 case COMPLEX_EXPR:
3575 if (TREE_CODE (lhs_type) != COMPLEX_TYPE
3576 || !(INTEGRAL_TYPE_P (rhs1_type)
3577 || SCALAR_FLOAT_TYPE_P (rhs1_type))
3578 || !(INTEGRAL_TYPE_P (rhs2_type)
3579 || SCALAR_FLOAT_TYPE_P (rhs2_type)))
3581 error ("type mismatch in complex expression");
3582 debug_generic_expr (lhs_type);
3583 debug_generic_expr (rhs1_type);
3584 debug_generic_expr (rhs2_type);
3585 return true;
3588 return false;
3591 case LSHIFT_EXPR:
3592 case RSHIFT_EXPR:
3593 case LROTATE_EXPR:
3594 case RROTATE_EXPR:
3596 /* Shifts and rotates are ok on integral types, fixed point
3597 types and integer vector types. */
3598 if ((!INTEGRAL_TYPE_P (rhs1_type)
3599 && !FIXED_POINT_TYPE_P (rhs1_type)
3600 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3601 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))))
3602 || (!INTEGRAL_TYPE_P (rhs2_type)
3603 /* Vector shifts of vectors are also ok. */
3604 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3605 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3606 && TREE_CODE (rhs2_type) == VECTOR_TYPE
3607 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3608 || !useless_type_conversion_p (lhs_type, rhs1_type))
3610 error ("type mismatch in shift expression");
3611 debug_generic_expr (lhs_type);
3612 debug_generic_expr (rhs1_type);
3613 debug_generic_expr (rhs2_type);
3614 return true;
3617 return false;
3620 case VEC_LSHIFT_EXPR:
3621 case VEC_RSHIFT_EXPR:
3623 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3624 || !(INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3625 || POINTER_TYPE_P (TREE_TYPE (rhs1_type))
3626 || FIXED_POINT_TYPE_P (TREE_TYPE (rhs1_type))
3627 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type)))
3628 || (!INTEGRAL_TYPE_P (rhs2_type)
3629 && (TREE_CODE (rhs2_type) != VECTOR_TYPE
3630 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3631 || !useless_type_conversion_p (lhs_type, rhs1_type))
3633 error ("type mismatch in vector shift expression");
3634 debug_generic_expr (lhs_type);
3635 debug_generic_expr (rhs1_type);
3636 debug_generic_expr (rhs2_type);
3637 return true;
3639 /* For shifting a vector of non-integral components we
3640 only allow shifting by a constant multiple of the element size. */
3641 if (!INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3642 && (TREE_CODE (rhs2) != INTEGER_CST
3643 || !div_if_zero_remainder (EXACT_DIV_EXPR, rhs2,
3644 TYPE_SIZE (TREE_TYPE (rhs1_type)))))
3646 error ("non-element sized vector shift of floating point vector");
3647 return true;
3650 return false;
3653 case WIDEN_LSHIFT_EXPR:
3655 if (!INTEGRAL_TYPE_P (lhs_type)
3656 || !INTEGRAL_TYPE_P (rhs1_type)
3657 || TREE_CODE (rhs2) != INTEGER_CST
3658 || (2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)))
3660 error ("type mismatch in widening vector shift expression");
3661 debug_generic_expr (lhs_type);
3662 debug_generic_expr (rhs1_type);
3663 debug_generic_expr (rhs2_type);
3664 return true;
3667 return false;
3670 case VEC_WIDEN_LSHIFT_HI_EXPR:
3671 case VEC_WIDEN_LSHIFT_LO_EXPR:
3673 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3674 || TREE_CODE (lhs_type) != VECTOR_TYPE
3675 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3676 || !INTEGRAL_TYPE_P (TREE_TYPE (lhs_type))
3677 || TREE_CODE (rhs2) != INTEGER_CST
3678 || (2 * TYPE_PRECISION (TREE_TYPE (rhs1_type))
3679 > TYPE_PRECISION (TREE_TYPE (lhs_type))))
3681 error ("type mismatch in widening vector shift expression");
3682 debug_generic_expr (lhs_type);
3683 debug_generic_expr (rhs1_type);
3684 debug_generic_expr (rhs2_type);
3685 return true;
3688 return false;
3691 case PLUS_EXPR:
3692 case MINUS_EXPR:
3694 tree lhs_etype = lhs_type;
3695 tree rhs1_etype = rhs1_type;
3696 tree rhs2_etype = rhs2_type;
3697 if (TREE_CODE (lhs_type) == VECTOR_TYPE)
3699 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3700 || TREE_CODE (rhs2_type) != VECTOR_TYPE)
3702 error ("invalid non-vector operands to vector valued plus");
3703 return true;
3705 lhs_etype = TREE_TYPE (lhs_type);
3706 rhs1_etype = TREE_TYPE (rhs1_type);
3707 rhs2_etype = TREE_TYPE (rhs2_type);
3709 if (POINTER_TYPE_P (lhs_etype)
3710 || POINTER_TYPE_P (rhs1_etype)
3711 || POINTER_TYPE_P (rhs2_etype))
3713 error ("invalid (pointer) operands to plus/minus");
3714 return true;
3717 /* Continue with generic binary expression handling. */
3718 break;
3721 case POINTER_PLUS_EXPR:
3723 if (!POINTER_TYPE_P (rhs1_type)
3724 || !useless_type_conversion_p (lhs_type, rhs1_type)
3725 || !ptrofftype_p (rhs2_type))
3727 error ("type mismatch in pointer plus expression");
3728 debug_generic_stmt (lhs_type);
3729 debug_generic_stmt (rhs1_type);
3730 debug_generic_stmt (rhs2_type);
3731 return true;
3734 return false;
3737 case TRUTH_ANDIF_EXPR:
3738 case TRUTH_ORIF_EXPR:
3739 case TRUTH_AND_EXPR:
3740 case TRUTH_OR_EXPR:
3741 case TRUTH_XOR_EXPR:
3743 gcc_unreachable ();
3745 case LT_EXPR:
3746 case LE_EXPR:
3747 case GT_EXPR:
3748 case GE_EXPR:
3749 case EQ_EXPR:
3750 case NE_EXPR:
3751 case UNORDERED_EXPR:
3752 case ORDERED_EXPR:
3753 case UNLT_EXPR:
3754 case UNLE_EXPR:
3755 case UNGT_EXPR:
3756 case UNGE_EXPR:
3757 case UNEQ_EXPR:
3758 case LTGT_EXPR:
3759 /* Comparisons are also binary, but the result type is not
3760 connected to the operand types. */
3761 return verify_gimple_comparison (lhs_type, rhs1, rhs2);
3763 case WIDEN_MULT_EXPR:
3764 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
3765 return true;
3766 return ((2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type))
3767 || (TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type)));
3769 case WIDEN_SUM_EXPR:
3770 case VEC_WIDEN_MULT_HI_EXPR:
3771 case VEC_WIDEN_MULT_LO_EXPR:
3772 case VEC_WIDEN_MULT_EVEN_EXPR:
3773 case VEC_WIDEN_MULT_ODD_EXPR:
3774 case VEC_PACK_TRUNC_EXPR:
3775 case VEC_PACK_SAT_EXPR:
3776 case VEC_PACK_FIX_TRUNC_EXPR:
3777 /* FIXME. */
3778 return false;
3780 case MULT_EXPR:
3781 case MULT_HIGHPART_EXPR:
3782 case TRUNC_DIV_EXPR:
3783 case CEIL_DIV_EXPR:
3784 case FLOOR_DIV_EXPR:
3785 case ROUND_DIV_EXPR:
3786 case TRUNC_MOD_EXPR:
3787 case CEIL_MOD_EXPR:
3788 case FLOOR_MOD_EXPR:
3789 case ROUND_MOD_EXPR:
3790 case RDIV_EXPR:
3791 case EXACT_DIV_EXPR:
3792 case MIN_EXPR:
3793 case MAX_EXPR:
3794 case BIT_IOR_EXPR:
3795 case BIT_XOR_EXPR:
3796 case BIT_AND_EXPR:
3797 /* Continue with generic binary expression handling. */
3798 break;
3800 default:
3801 gcc_unreachable ();
3804 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3805 || !useless_type_conversion_p (lhs_type, rhs2_type))
3807 error ("type mismatch in binary expression");
3808 debug_generic_stmt (lhs_type);
3809 debug_generic_stmt (rhs1_type);
3810 debug_generic_stmt (rhs2_type);
3811 return true;
3814 return false;
3817 /* Verify a gimple assignment statement STMT with a ternary rhs.
3818 Returns true if anything is wrong. */
3820 static bool
3821 verify_gimple_assign_ternary (gimple stmt)
3823 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3824 tree lhs = gimple_assign_lhs (stmt);
3825 tree lhs_type = TREE_TYPE (lhs);
3826 tree rhs1 = gimple_assign_rhs1 (stmt);
3827 tree rhs1_type = TREE_TYPE (rhs1);
3828 tree rhs2 = gimple_assign_rhs2 (stmt);
3829 tree rhs2_type = TREE_TYPE (rhs2);
3830 tree rhs3 = gimple_assign_rhs3 (stmt);
3831 tree rhs3_type = TREE_TYPE (rhs3);
3833 if (!is_gimple_reg (lhs))
3835 error ("non-register as LHS of ternary operation");
3836 return true;
3839 if (((rhs_code == VEC_COND_EXPR || rhs_code == COND_EXPR)
3840 ? !is_gimple_condexpr (rhs1) : !is_gimple_val (rhs1))
3841 || !is_gimple_val (rhs2)
3842 || !is_gimple_val (rhs3))
3844 error ("invalid operands in ternary operation");
3845 return true;
3848 /* First handle operations that involve different types. */
3849 switch (rhs_code)
3851 case WIDEN_MULT_PLUS_EXPR:
3852 case WIDEN_MULT_MINUS_EXPR:
3853 if ((!INTEGRAL_TYPE_P (rhs1_type)
3854 && !FIXED_POINT_TYPE_P (rhs1_type))
3855 || !useless_type_conversion_p (rhs1_type, rhs2_type)
3856 || !useless_type_conversion_p (lhs_type, rhs3_type)
3857 || 2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)
3858 || TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type))
3860 error ("type mismatch in widening multiply-accumulate expression");
3861 debug_generic_expr (lhs_type);
3862 debug_generic_expr (rhs1_type);
3863 debug_generic_expr (rhs2_type);
3864 debug_generic_expr (rhs3_type);
3865 return true;
3867 break;
3869 case FMA_EXPR:
3870 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3871 || !useless_type_conversion_p (lhs_type, rhs2_type)
3872 || !useless_type_conversion_p (lhs_type, rhs3_type))
3874 error ("type mismatch in fused multiply-add expression");
3875 debug_generic_expr (lhs_type);
3876 debug_generic_expr (rhs1_type);
3877 debug_generic_expr (rhs2_type);
3878 debug_generic_expr (rhs3_type);
3879 return true;
3881 break;
3883 case COND_EXPR:
3884 case VEC_COND_EXPR:
3885 if (!useless_type_conversion_p (lhs_type, rhs2_type)
3886 || !useless_type_conversion_p (lhs_type, rhs3_type))
3888 error ("type mismatch in conditional expression");
3889 debug_generic_expr (lhs_type);
3890 debug_generic_expr (rhs2_type);
3891 debug_generic_expr (rhs3_type);
3892 return true;
3894 break;
3896 case VEC_PERM_EXPR:
3897 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3898 || !useless_type_conversion_p (lhs_type, rhs2_type))
3900 error ("type mismatch in vector permute expression");
3901 debug_generic_expr (lhs_type);
3902 debug_generic_expr (rhs1_type);
3903 debug_generic_expr (rhs2_type);
3904 debug_generic_expr (rhs3_type);
3905 return true;
3908 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3909 || TREE_CODE (rhs2_type) != VECTOR_TYPE
3910 || TREE_CODE (rhs3_type) != VECTOR_TYPE)
3912 error ("vector types expected in vector permute expression");
3913 debug_generic_expr (lhs_type);
3914 debug_generic_expr (rhs1_type);
3915 debug_generic_expr (rhs2_type);
3916 debug_generic_expr (rhs3_type);
3917 return true;
3920 if (TYPE_VECTOR_SUBPARTS (rhs1_type) != TYPE_VECTOR_SUBPARTS (rhs2_type)
3921 || TYPE_VECTOR_SUBPARTS (rhs2_type)
3922 != TYPE_VECTOR_SUBPARTS (rhs3_type)
3923 || TYPE_VECTOR_SUBPARTS (rhs3_type)
3924 != TYPE_VECTOR_SUBPARTS (lhs_type))
3926 error ("vectors with different element number found "
3927 "in vector permute expression");
3928 debug_generic_expr (lhs_type);
3929 debug_generic_expr (rhs1_type);
3930 debug_generic_expr (rhs2_type);
3931 debug_generic_expr (rhs3_type);
3932 return true;
3935 if (TREE_CODE (TREE_TYPE (rhs3_type)) != INTEGER_TYPE
3936 || GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs3_type)))
3937 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs1_type))))
3939 error ("invalid mask type in vector permute expression");
3940 debug_generic_expr (lhs_type);
3941 debug_generic_expr (rhs1_type);
3942 debug_generic_expr (rhs2_type);
3943 debug_generic_expr (rhs3_type);
3944 return true;
3947 return false;
3949 case DOT_PROD_EXPR:
3950 case REALIGN_LOAD_EXPR:
3951 /* FIXME. */
3952 return false;
3954 default:
3955 gcc_unreachable ();
3957 return false;
3960 /* Verify a gimple assignment statement STMT with a single rhs.
3961 Returns true if anything is wrong. */
3963 static bool
3964 verify_gimple_assign_single (gimple stmt)
3966 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3967 tree lhs = gimple_assign_lhs (stmt);
3968 tree lhs_type = TREE_TYPE (lhs);
3969 tree rhs1 = gimple_assign_rhs1 (stmt);
3970 tree rhs1_type = TREE_TYPE (rhs1);
3971 bool res = false;
3973 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3975 error ("non-trivial conversion at assignment");
3976 debug_generic_expr (lhs_type);
3977 debug_generic_expr (rhs1_type);
3978 return true;
3981 if (gimple_clobber_p (stmt)
3982 && !(DECL_P (lhs) || TREE_CODE (lhs) == MEM_REF))
3984 error ("non-decl/MEM_REF LHS in clobber statement");
3985 debug_generic_expr (lhs);
3986 return true;
3989 if (handled_component_p (lhs)
3990 || TREE_CODE (lhs) == MEM_REF
3991 || TREE_CODE (lhs) == TARGET_MEM_REF)
3992 res |= verify_types_in_gimple_reference (lhs, true);
3994 /* Special codes we cannot handle via their class. */
3995 switch (rhs_code)
3997 case ADDR_EXPR:
3999 tree op = TREE_OPERAND (rhs1, 0);
4000 if (!is_gimple_addressable (op))
4002 error ("invalid operand in unary expression");
4003 return true;
4006 /* Technically there is no longer a need for matching types, but
4007 gimple hygiene asks for this check. In LTO we can end up
4008 combining incompatible units and thus end up with addresses
4009 of globals that change their type to a common one. */
4010 if (!in_lto_p
4011 && !types_compatible_p (TREE_TYPE (op),
4012 TREE_TYPE (TREE_TYPE (rhs1)))
4013 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1),
4014 TREE_TYPE (op)))
4016 error ("type mismatch in address expression");
4017 debug_generic_stmt (TREE_TYPE (rhs1));
4018 debug_generic_stmt (TREE_TYPE (op));
4019 return true;
4022 return verify_types_in_gimple_reference (op, true);
4025 /* tcc_reference */
4026 case INDIRECT_REF:
4027 error ("INDIRECT_REF in gimple IL");
4028 return true;
4030 case COMPONENT_REF:
4031 case BIT_FIELD_REF:
4032 case ARRAY_REF:
4033 case ARRAY_RANGE_REF:
4034 case VIEW_CONVERT_EXPR:
4035 case REALPART_EXPR:
4036 case IMAGPART_EXPR:
4037 case TARGET_MEM_REF:
4038 case MEM_REF:
4039 if (!is_gimple_reg (lhs)
4040 && is_gimple_reg_type (TREE_TYPE (lhs)))
4042 error ("invalid rhs for gimple memory store");
4043 debug_generic_stmt (lhs);
4044 debug_generic_stmt (rhs1);
4045 return true;
4047 return res || verify_types_in_gimple_reference (rhs1, false);
4049 /* tcc_constant */
4050 case SSA_NAME:
4051 case INTEGER_CST:
4052 case REAL_CST:
4053 case FIXED_CST:
4054 case COMPLEX_CST:
4055 case VECTOR_CST:
4056 case STRING_CST:
4057 return res;
4059 /* tcc_declaration */
4060 case CONST_DECL:
4061 return res;
4062 case VAR_DECL:
4063 case PARM_DECL:
4064 if (!is_gimple_reg (lhs)
4065 && !is_gimple_reg (rhs1)
4066 && is_gimple_reg_type (TREE_TYPE (lhs)))
4068 error ("invalid rhs for gimple memory store");
4069 debug_generic_stmt (lhs);
4070 debug_generic_stmt (rhs1);
4071 return true;
4073 return res;
4075 case CONSTRUCTOR:
4076 if (TREE_CODE (rhs1_type) == VECTOR_TYPE)
4078 unsigned int i;
4079 tree elt_i, elt_v, elt_t = NULL_TREE;
4081 if (CONSTRUCTOR_NELTS (rhs1) == 0)
4082 return res;
4083 /* For vector CONSTRUCTORs we require that either it is empty
4084 CONSTRUCTOR, or it is a CONSTRUCTOR of smaller vector elements
4085 (then the element count must be correct to cover the whole
4086 outer vector and index must be NULL on all elements, or it is
4087 a CONSTRUCTOR of scalar elements, where we as an exception allow
4088 smaller number of elements (assuming zero filling) and
4089 consecutive indexes as compared to NULL indexes (such
4090 CONSTRUCTORs can appear in the IL from FEs). */
4091 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (rhs1), i, elt_i, elt_v)
4093 if (elt_t == NULL_TREE)
4095 elt_t = TREE_TYPE (elt_v);
4096 if (TREE_CODE (elt_t) == VECTOR_TYPE)
4098 tree elt_t = TREE_TYPE (elt_v);
4099 if (!useless_type_conversion_p (TREE_TYPE (rhs1_type),
4100 TREE_TYPE (elt_t)))
4102 error ("incorrect type of vector CONSTRUCTOR"
4103 " elements");
4104 debug_generic_stmt (rhs1);
4105 return true;
4107 else if (CONSTRUCTOR_NELTS (rhs1)
4108 * TYPE_VECTOR_SUBPARTS (elt_t)
4109 != TYPE_VECTOR_SUBPARTS (rhs1_type))
4111 error ("incorrect number of vector CONSTRUCTOR"
4112 " elements");
4113 debug_generic_stmt (rhs1);
4114 return true;
4117 else if (!useless_type_conversion_p (TREE_TYPE (rhs1_type),
4118 elt_t))
4120 error ("incorrect type of vector CONSTRUCTOR elements");
4121 debug_generic_stmt (rhs1);
4122 return true;
4124 else if (CONSTRUCTOR_NELTS (rhs1)
4125 > TYPE_VECTOR_SUBPARTS (rhs1_type))
4127 error ("incorrect number of vector CONSTRUCTOR elements");
4128 debug_generic_stmt (rhs1);
4129 return true;
4132 else if (!useless_type_conversion_p (elt_t, TREE_TYPE (elt_v)))
4134 error ("incorrect type of vector CONSTRUCTOR elements");
4135 debug_generic_stmt (rhs1);
4136 return true;
4138 if (elt_i != NULL_TREE
4139 && (TREE_CODE (elt_t) == VECTOR_TYPE
4140 || TREE_CODE (elt_i) != INTEGER_CST
4141 || compare_tree_int (elt_i, i) != 0))
4143 error ("vector CONSTRUCTOR with non-NULL element index");
4144 debug_generic_stmt (rhs1);
4145 return true;
4149 return res;
4150 case OBJ_TYPE_REF:
4151 case ASSERT_EXPR:
4152 case WITH_SIZE_EXPR:
4153 /* FIXME. */
4154 return res;
4156 default:;
4159 return res;
4162 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
4163 is a problem, otherwise false. */
4165 static bool
4166 verify_gimple_assign (gimple stmt)
4168 switch (gimple_assign_rhs_class (stmt))
4170 case GIMPLE_SINGLE_RHS:
4171 return verify_gimple_assign_single (stmt);
4173 case GIMPLE_UNARY_RHS:
4174 return verify_gimple_assign_unary (stmt);
4176 case GIMPLE_BINARY_RHS:
4177 return verify_gimple_assign_binary (stmt);
4179 case GIMPLE_TERNARY_RHS:
4180 return verify_gimple_assign_ternary (stmt);
4182 default:
4183 gcc_unreachable ();
4187 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
4188 is a problem, otherwise false. */
4190 static bool
4191 verify_gimple_return (gimple stmt)
4193 tree op = gimple_return_retval (stmt);
4194 tree restype = TREE_TYPE (TREE_TYPE (cfun->decl));
4196 /* We cannot test for present return values as we do not fix up missing
4197 return values from the original source. */
4198 if (op == NULL)
4199 return false;
4201 if (!is_gimple_val (op)
4202 && TREE_CODE (op) != RESULT_DECL)
4204 error ("invalid operand in return statement");
4205 debug_generic_stmt (op);
4206 return true;
4209 if ((TREE_CODE (op) == RESULT_DECL
4210 && DECL_BY_REFERENCE (op))
4211 || (TREE_CODE (op) == SSA_NAME
4212 && SSA_NAME_VAR (op)
4213 && TREE_CODE (SSA_NAME_VAR (op)) == RESULT_DECL
4214 && DECL_BY_REFERENCE (SSA_NAME_VAR (op))))
4215 op = TREE_TYPE (op);
4217 if (!useless_type_conversion_p (restype, TREE_TYPE (op)))
4219 error ("invalid conversion in return statement");
4220 debug_generic_stmt (restype);
4221 debug_generic_stmt (TREE_TYPE (op));
4222 return true;
4225 return false;
4229 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
4230 is a problem, otherwise false. */
4232 static bool
4233 verify_gimple_goto (gimple stmt)
4235 tree dest = gimple_goto_dest (stmt);
4237 /* ??? We have two canonical forms of direct goto destinations, a
4238 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
4239 if (TREE_CODE (dest) != LABEL_DECL
4240 && (!is_gimple_val (dest)
4241 || !POINTER_TYPE_P (TREE_TYPE (dest))))
4243 error ("goto destination is neither a label nor a pointer");
4244 return true;
4247 return false;
4250 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
4251 is a problem, otherwise false. */
4253 static bool
4254 verify_gimple_switch (gimple stmt)
4256 unsigned int i, n;
4257 tree elt, prev_upper_bound = NULL_TREE;
4258 tree index_type, elt_type = NULL_TREE;
4260 if (!is_gimple_val (gimple_switch_index (stmt)))
4262 error ("invalid operand to switch statement");
4263 debug_generic_stmt (gimple_switch_index (stmt));
4264 return true;
4267 index_type = TREE_TYPE (gimple_switch_index (stmt));
4268 if (! INTEGRAL_TYPE_P (index_type))
4270 error ("non-integral type switch statement");
4271 debug_generic_expr (index_type);
4272 return true;
4275 elt = gimple_switch_label (stmt, 0);
4276 if (CASE_LOW (elt) != NULL_TREE || CASE_HIGH (elt) != NULL_TREE)
4278 error ("invalid default case label in switch statement");
4279 debug_generic_expr (elt);
4280 return true;
4283 n = gimple_switch_num_labels (stmt);
4284 for (i = 1; i < n; i++)
4286 elt = gimple_switch_label (stmt, i);
4288 if (! CASE_LOW (elt))
4290 error ("invalid case label in switch statement");
4291 debug_generic_expr (elt);
4292 return true;
4294 if (CASE_HIGH (elt)
4295 && ! tree_int_cst_lt (CASE_LOW (elt), CASE_HIGH (elt)))
4297 error ("invalid case range in switch statement");
4298 debug_generic_expr (elt);
4299 return true;
4302 if (elt_type)
4304 if (TREE_TYPE (CASE_LOW (elt)) != elt_type
4305 || (CASE_HIGH (elt) && TREE_TYPE (CASE_HIGH (elt)) != elt_type))
4307 error ("type mismatch for case label in switch statement");
4308 debug_generic_expr (elt);
4309 return true;
4312 else
4314 elt_type = TREE_TYPE (CASE_LOW (elt));
4315 if (TYPE_PRECISION (index_type) < TYPE_PRECISION (elt_type))
4317 error ("type precision mismatch in switch statement");
4318 return true;
4322 if (prev_upper_bound)
4324 if (! tree_int_cst_lt (prev_upper_bound, CASE_LOW (elt)))
4326 error ("case labels not sorted in switch statement");
4327 return true;
4331 prev_upper_bound = CASE_HIGH (elt);
4332 if (! prev_upper_bound)
4333 prev_upper_bound = CASE_LOW (elt);
4336 return false;
4339 /* Verify a gimple debug statement STMT.
4340 Returns true if anything is wrong. */
4342 static bool
4343 verify_gimple_debug (gimple stmt ATTRIBUTE_UNUSED)
4345 /* There isn't much that could be wrong in a gimple debug stmt. A
4346 gimple debug bind stmt, for example, maps a tree, that's usually
4347 a VAR_DECL or a PARM_DECL, but that could also be some scalarized
4348 component or member of an aggregate type, to another tree, that
4349 can be an arbitrary expression. These stmts expand into debug
4350 insns, and are converted to debug notes by var-tracking.c. */
4351 return false;
4354 /* Verify a gimple label statement STMT.
4355 Returns true if anything is wrong. */
4357 static bool
4358 verify_gimple_label (gimple stmt)
4360 tree decl = gimple_label_label (stmt);
4361 int uid;
4362 bool err = false;
4364 if (TREE_CODE (decl) != LABEL_DECL)
4365 return true;
4366 if (!DECL_NONLOCAL (decl) && !FORCED_LABEL (decl)
4367 && DECL_CONTEXT (decl) != current_function_decl)
4369 error ("label's context is not the current function decl");
4370 err |= true;
4373 uid = LABEL_DECL_UID (decl);
4374 if (cfun->cfg
4375 && (uid == -1
4376 || (*label_to_block_map_for_fn (cfun))[uid] != gimple_bb (stmt)))
4378 error ("incorrect entry in label_to_block_map");
4379 err |= true;
4382 uid = EH_LANDING_PAD_NR (decl);
4383 if (uid)
4385 eh_landing_pad lp = get_eh_landing_pad_from_number (uid);
4386 if (decl != lp->post_landing_pad)
4388 error ("incorrect setting of landing pad number");
4389 err |= true;
4393 return err;
4396 /* Verify the GIMPLE statement STMT. Returns true if there is an
4397 error, otherwise false. */
4399 static bool
4400 verify_gimple_stmt (gimple stmt)
4402 switch (gimple_code (stmt))
4404 case GIMPLE_ASSIGN:
4405 return verify_gimple_assign (stmt);
4407 case GIMPLE_LABEL:
4408 return verify_gimple_label (stmt);
4410 case GIMPLE_CALL:
4411 return verify_gimple_call (stmt);
4413 case GIMPLE_COND:
4414 if (TREE_CODE_CLASS (gimple_cond_code (stmt)) != tcc_comparison)
4416 error ("invalid comparison code in gimple cond");
4417 return true;
4419 if (!(!gimple_cond_true_label (stmt)
4420 || TREE_CODE (gimple_cond_true_label (stmt)) == LABEL_DECL)
4421 || !(!gimple_cond_false_label (stmt)
4422 || TREE_CODE (gimple_cond_false_label (stmt)) == LABEL_DECL))
4424 error ("invalid labels in gimple cond");
4425 return true;
4428 return verify_gimple_comparison (boolean_type_node,
4429 gimple_cond_lhs (stmt),
4430 gimple_cond_rhs (stmt));
4432 case GIMPLE_GOTO:
4433 return verify_gimple_goto (stmt);
4435 case GIMPLE_SWITCH:
4436 return verify_gimple_switch (stmt);
4438 case GIMPLE_RETURN:
4439 return verify_gimple_return (stmt);
4441 case GIMPLE_ASM:
4442 return false;
4444 case GIMPLE_TRANSACTION:
4445 return verify_gimple_transaction (stmt);
4447 /* Tuples that do not have tree operands. */
4448 case GIMPLE_NOP:
4449 case GIMPLE_PREDICT:
4450 case GIMPLE_RESX:
4451 case GIMPLE_EH_DISPATCH:
4452 case GIMPLE_EH_MUST_NOT_THROW:
4453 return false;
4455 CASE_GIMPLE_OMP:
4456 /* OpenMP directives are validated by the FE and never operated
4457 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4458 non-gimple expressions when the main index variable has had
4459 its address taken. This does not affect the loop itself
4460 because the header of an GIMPLE_OMP_FOR is merely used to determine
4461 how to setup the parallel iteration. */
4462 return false;
4464 case GIMPLE_DEBUG:
4465 return verify_gimple_debug (stmt);
4467 default:
4468 gcc_unreachable ();
4472 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
4473 and false otherwise. */
4475 static bool
4476 verify_gimple_phi (gimple phi)
4478 bool err = false;
4479 unsigned i;
4480 tree phi_result = gimple_phi_result (phi);
4481 bool virtual_p;
4483 if (!phi_result)
4485 error ("invalid PHI result");
4486 return true;
4489 virtual_p = virtual_operand_p (phi_result);
4490 if (TREE_CODE (phi_result) != SSA_NAME
4491 || (virtual_p
4492 && SSA_NAME_VAR (phi_result) != gimple_vop (cfun)))
4494 error ("invalid PHI result");
4495 err = true;
4498 for (i = 0; i < gimple_phi_num_args (phi); i++)
4500 tree t = gimple_phi_arg_def (phi, i);
4502 if (!t)
4504 error ("missing PHI def");
4505 err |= true;
4506 continue;
4508 /* Addressable variables do have SSA_NAMEs but they
4509 are not considered gimple values. */
4510 else if ((TREE_CODE (t) == SSA_NAME
4511 && virtual_p != virtual_operand_p (t))
4512 || (virtual_p
4513 && (TREE_CODE (t) != SSA_NAME
4514 || SSA_NAME_VAR (t) != gimple_vop (cfun)))
4515 || (!virtual_p
4516 && !is_gimple_val (t)))
4518 error ("invalid PHI argument");
4519 debug_generic_expr (t);
4520 err |= true;
4522 #ifdef ENABLE_TYPES_CHECKING
4523 if (!useless_type_conversion_p (TREE_TYPE (phi_result), TREE_TYPE (t)))
4525 error ("incompatible types in PHI argument %u", i);
4526 debug_generic_stmt (TREE_TYPE (phi_result));
4527 debug_generic_stmt (TREE_TYPE (t));
4528 err |= true;
4530 #endif
4533 return err;
4536 /* Verify the GIMPLE statements inside the sequence STMTS. */
4538 static bool
4539 verify_gimple_in_seq_2 (gimple_seq stmts)
4541 gimple_stmt_iterator ittr;
4542 bool err = false;
4544 for (ittr = gsi_start (stmts); !gsi_end_p (ittr); gsi_next (&ittr))
4546 gimple stmt = gsi_stmt (ittr);
4548 switch (gimple_code (stmt))
4550 case GIMPLE_BIND:
4551 err |= verify_gimple_in_seq_2 (gimple_bind_body (stmt));
4552 break;
4554 case GIMPLE_TRY:
4555 err |= verify_gimple_in_seq_2 (gimple_try_eval (stmt));
4556 err |= verify_gimple_in_seq_2 (gimple_try_cleanup (stmt));
4557 break;
4559 case GIMPLE_EH_FILTER:
4560 err |= verify_gimple_in_seq_2 (gimple_eh_filter_failure (stmt));
4561 break;
4563 case GIMPLE_EH_ELSE:
4564 err |= verify_gimple_in_seq_2 (gimple_eh_else_n_body (stmt));
4565 err |= verify_gimple_in_seq_2 (gimple_eh_else_e_body (stmt));
4566 break;
4568 case GIMPLE_CATCH:
4569 err |= verify_gimple_in_seq_2 (gimple_catch_handler (stmt));
4570 break;
4572 case GIMPLE_TRANSACTION:
4573 err |= verify_gimple_transaction (stmt);
4574 break;
4576 default:
4578 bool err2 = verify_gimple_stmt (stmt);
4579 if (err2)
4580 debug_gimple_stmt (stmt);
4581 err |= err2;
4586 return err;
4589 /* Verify the contents of a GIMPLE_TRANSACTION. Returns true if there
4590 is a problem, otherwise false. */
4592 static bool
4593 verify_gimple_transaction (gimple stmt)
4595 tree lab = gimple_transaction_label (stmt);
4596 if (lab != NULL && TREE_CODE (lab) != LABEL_DECL)
4597 return true;
4598 return verify_gimple_in_seq_2 (gimple_transaction_body (stmt));
4602 /* Verify the GIMPLE statements inside the statement list STMTS. */
4604 DEBUG_FUNCTION void
4605 verify_gimple_in_seq (gimple_seq stmts)
4607 timevar_push (TV_TREE_STMT_VERIFY);
4608 if (verify_gimple_in_seq_2 (stmts))
4609 internal_error ("verify_gimple failed");
4610 timevar_pop (TV_TREE_STMT_VERIFY);
4613 /* Return true when the T can be shared. */
4615 static bool
4616 tree_node_can_be_shared (tree t)
4618 if (IS_TYPE_OR_DECL_P (t)
4619 || is_gimple_min_invariant (t)
4620 || TREE_CODE (t) == SSA_NAME
4621 || t == error_mark_node
4622 || TREE_CODE (t) == IDENTIFIER_NODE)
4623 return true;
4625 if (TREE_CODE (t) == CASE_LABEL_EXPR)
4626 return true;
4628 if (DECL_P (t))
4629 return true;
4631 return false;
4634 /* Called via walk_tree. Verify tree sharing. */
4636 static tree
4637 verify_node_sharing_1 (tree *tp, int *walk_subtrees, void *data)
4639 struct pointer_set_t *visited = (struct pointer_set_t *) data;
4641 if (tree_node_can_be_shared (*tp))
4643 *walk_subtrees = false;
4644 return NULL;
4647 if (pointer_set_insert (visited, *tp))
4648 return *tp;
4650 return NULL;
4653 /* Called via walk_gimple_stmt. Verify tree sharing. */
4655 static tree
4656 verify_node_sharing (tree *tp, int *walk_subtrees, void *data)
4658 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4659 return verify_node_sharing_1 (tp, walk_subtrees, wi->info);
4662 static bool eh_error_found;
4663 static int
4664 verify_eh_throw_stmt_node (void **slot, void *data)
4666 struct throw_stmt_node *node = (struct throw_stmt_node *)*slot;
4667 struct pointer_set_t *visited = (struct pointer_set_t *) data;
4669 if (!pointer_set_contains (visited, node->stmt))
4671 error ("dead STMT in EH table");
4672 debug_gimple_stmt (node->stmt);
4673 eh_error_found = true;
4675 return 1;
4678 /* Verify if the location LOCs block is in BLOCKS. */
4680 static bool
4681 verify_location (pointer_set_t *blocks, location_t loc)
4683 tree block = LOCATION_BLOCK (loc);
4684 if (block != NULL_TREE
4685 && !pointer_set_contains (blocks, block))
4687 error ("location references block not in block tree");
4688 return true;
4690 if (block != NULL_TREE)
4691 return verify_location (blocks, BLOCK_SOURCE_LOCATION (block));
4692 return false;
4695 /* Called via walk_tree. Verify that expressions have no blocks. */
4697 static tree
4698 verify_expr_no_block (tree *tp, int *walk_subtrees, void *)
4700 if (!EXPR_P (*tp))
4702 *walk_subtrees = false;
4703 return NULL;
4706 location_t loc = EXPR_LOCATION (*tp);
4707 if (LOCATION_BLOCK (loc) != NULL)
4708 return *tp;
4710 return NULL;
4713 /* Called via walk_tree. Verify locations of expressions. */
4715 static tree
4716 verify_expr_location_1 (tree *tp, int *walk_subtrees, void *data)
4718 struct pointer_set_t *blocks = (struct pointer_set_t *) data;
4720 if (TREE_CODE (*tp) == VAR_DECL
4721 && DECL_HAS_DEBUG_EXPR_P (*tp))
4723 tree t = DECL_DEBUG_EXPR (*tp);
4724 tree addr = walk_tree (&t, verify_expr_no_block, NULL, NULL);
4725 if (addr)
4726 return addr;
4728 if ((TREE_CODE (*tp) == VAR_DECL
4729 || TREE_CODE (*tp) == PARM_DECL
4730 || TREE_CODE (*tp) == RESULT_DECL)
4731 && DECL_HAS_VALUE_EXPR_P (*tp))
4733 tree t = DECL_VALUE_EXPR (*tp);
4734 tree addr = walk_tree (&t, verify_expr_no_block, NULL, NULL);
4735 if (addr)
4736 return addr;
4739 if (!EXPR_P (*tp))
4741 *walk_subtrees = false;
4742 return NULL;
4745 location_t loc = EXPR_LOCATION (*tp);
4746 if (verify_location (blocks, loc))
4747 return *tp;
4749 return NULL;
4752 /* Called via walk_gimple_op. Verify locations of expressions. */
4754 static tree
4755 verify_expr_location (tree *tp, int *walk_subtrees, void *data)
4757 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4758 return verify_expr_location_1 (tp, walk_subtrees, wi->info);
4761 /* Insert all subblocks of BLOCK into BLOCKS and recurse. */
4763 static void
4764 collect_subblocks (pointer_set_t *blocks, tree block)
4766 tree t;
4767 for (t = BLOCK_SUBBLOCKS (block); t; t = BLOCK_CHAIN (t))
4769 pointer_set_insert (blocks, t);
4770 collect_subblocks (blocks, t);
4774 /* Verify the GIMPLE statements in the CFG of FN. */
4776 DEBUG_FUNCTION void
4777 verify_gimple_in_cfg (struct function *fn)
4779 basic_block bb;
4780 bool err = false;
4781 struct pointer_set_t *visited, *visited_stmts, *blocks;
4783 timevar_push (TV_TREE_STMT_VERIFY);
4784 visited = pointer_set_create ();
4785 visited_stmts = pointer_set_create ();
4787 /* Collect all BLOCKs referenced by the BLOCK tree of FN. */
4788 blocks = pointer_set_create ();
4789 if (DECL_INITIAL (fn->decl))
4791 pointer_set_insert (blocks, DECL_INITIAL (fn->decl));
4792 collect_subblocks (blocks, DECL_INITIAL (fn->decl));
4795 FOR_EACH_BB_FN (bb, fn)
4797 gimple_stmt_iterator gsi;
4799 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4801 gimple phi = gsi_stmt (gsi);
4802 bool err2 = false;
4803 unsigned i;
4805 pointer_set_insert (visited_stmts, phi);
4807 if (gimple_bb (phi) != bb)
4809 error ("gimple_bb (phi) is set to a wrong basic block");
4810 err2 = true;
4813 err2 |= verify_gimple_phi (phi);
4815 /* Only PHI arguments have locations. */
4816 if (gimple_location (phi) != UNKNOWN_LOCATION)
4818 error ("PHI node with location");
4819 err2 = true;
4822 for (i = 0; i < gimple_phi_num_args (phi); i++)
4824 tree arg = gimple_phi_arg_def (phi, i);
4825 tree addr = walk_tree (&arg, verify_node_sharing_1,
4826 visited, NULL);
4827 if (addr)
4829 error ("incorrect sharing of tree nodes");
4830 debug_generic_expr (addr);
4831 err2 |= true;
4833 location_t loc = gimple_phi_arg_location (phi, i);
4834 if (virtual_operand_p (gimple_phi_result (phi))
4835 && loc != UNKNOWN_LOCATION)
4837 error ("virtual PHI with argument locations");
4838 err2 = true;
4840 addr = walk_tree (&arg, verify_expr_location_1, blocks, NULL);
4841 if (addr)
4843 debug_generic_expr (addr);
4844 err2 = true;
4846 err2 |= verify_location (blocks, loc);
4849 if (err2)
4850 debug_gimple_stmt (phi);
4851 err |= err2;
4854 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4856 gimple stmt = gsi_stmt (gsi);
4857 bool err2 = false;
4858 struct walk_stmt_info wi;
4859 tree addr;
4860 int lp_nr;
4862 pointer_set_insert (visited_stmts, stmt);
4864 if (gimple_bb (stmt) != bb)
4866 error ("gimple_bb (stmt) is set to a wrong basic block");
4867 err2 = true;
4870 err2 |= verify_gimple_stmt (stmt);
4871 err2 |= verify_location (blocks, gimple_location (stmt));
4873 memset (&wi, 0, sizeof (wi));
4874 wi.info = (void *) visited;
4875 addr = walk_gimple_op (stmt, verify_node_sharing, &wi);
4876 if (addr)
4878 error ("incorrect sharing of tree nodes");
4879 debug_generic_expr (addr);
4880 err2 |= true;
4883 memset (&wi, 0, sizeof (wi));
4884 wi.info = (void *) blocks;
4885 addr = walk_gimple_op (stmt, verify_expr_location, &wi);
4886 if (addr)
4888 debug_generic_expr (addr);
4889 err2 |= true;
4892 /* ??? Instead of not checking these stmts at all the walker
4893 should know its context via wi. */
4894 if (!is_gimple_debug (stmt)
4895 && !is_gimple_omp (stmt))
4897 memset (&wi, 0, sizeof (wi));
4898 addr = walk_gimple_op (stmt, verify_expr, &wi);
4899 if (addr)
4901 debug_generic_expr (addr);
4902 inform (gimple_location (stmt), "in statement");
4903 err2 |= true;
4907 /* If the statement is marked as part of an EH region, then it is
4908 expected that the statement could throw. Verify that when we
4909 have optimizations that simplify statements such that we prove
4910 that they cannot throw, that we update other data structures
4911 to match. */
4912 lp_nr = lookup_stmt_eh_lp (stmt);
4913 if (lp_nr != 0)
4915 if (!stmt_could_throw_p (stmt))
4917 error ("statement marked for throw, but doesn%'t");
4918 err2 |= true;
4920 else if (lp_nr > 0
4921 && !gsi_one_before_end_p (gsi)
4922 && stmt_can_throw_internal (stmt))
4924 error ("statement marked for throw in middle of block");
4925 err2 |= true;
4929 if (err2)
4930 debug_gimple_stmt (stmt);
4931 err |= err2;
4935 eh_error_found = false;
4936 if (get_eh_throw_stmt_table (cfun))
4937 htab_traverse (get_eh_throw_stmt_table (cfun),
4938 verify_eh_throw_stmt_node,
4939 visited_stmts);
4941 if (err || eh_error_found)
4942 internal_error ("verify_gimple failed");
4944 pointer_set_destroy (visited);
4945 pointer_set_destroy (visited_stmts);
4946 pointer_set_destroy (blocks);
4947 verify_histograms ();
4948 timevar_pop (TV_TREE_STMT_VERIFY);
4952 /* Verifies that the flow information is OK. */
4954 static int
4955 gimple_verify_flow_info (void)
4957 int err = 0;
4958 basic_block bb;
4959 gimple_stmt_iterator gsi;
4960 gimple stmt;
4961 edge e;
4962 edge_iterator ei;
4964 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->il.gimple.seq
4965 || ENTRY_BLOCK_PTR_FOR_FN (cfun)->il.gimple.phi_nodes)
4967 error ("ENTRY_BLOCK has IL associated with it");
4968 err = 1;
4971 if (EXIT_BLOCK_PTR_FOR_FN (cfun)->il.gimple.seq
4972 || EXIT_BLOCK_PTR_FOR_FN (cfun)->il.gimple.phi_nodes)
4974 error ("EXIT_BLOCK has IL associated with it");
4975 err = 1;
4978 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
4979 if (e->flags & EDGE_FALLTHRU)
4981 error ("fallthru to exit from bb %d", e->src->index);
4982 err = 1;
4985 FOR_EACH_BB_FN (bb, cfun)
4987 bool found_ctrl_stmt = false;
4989 stmt = NULL;
4991 /* Skip labels on the start of basic block. */
4992 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4994 tree label;
4995 gimple prev_stmt = stmt;
4997 stmt = gsi_stmt (gsi);
4999 if (gimple_code (stmt) != GIMPLE_LABEL)
5000 break;
5002 label = gimple_label_label (stmt);
5003 if (prev_stmt && DECL_NONLOCAL (label))
5005 error ("nonlocal label ");
5006 print_generic_expr (stderr, label, 0);
5007 fprintf (stderr, " is not first in a sequence of labels in bb %d",
5008 bb->index);
5009 err = 1;
5012 if (prev_stmt && EH_LANDING_PAD_NR (label) != 0)
5014 error ("EH landing pad label ");
5015 print_generic_expr (stderr, label, 0);
5016 fprintf (stderr, " is not first in a sequence of labels in bb %d",
5017 bb->index);
5018 err = 1;
5021 if (label_to_block (label) != bb)
5023 error ("label ");
5024 print_generic_expr (stderr, label, 0);
5025 fprintf (stderr, " to block does not match in bb %d",
5026 bb->index);
5027 err = 1;
5030 if (decl_function_context (label) != current_function_decl)
5032 error ("label ");
5033 print_generic_expr (stderr, label, 0);
5034 fprintf (stderr, " has incorrect context in bb %d",
5035 bb->index);
5036 err = 1;
5040 /* Verify that body of basic block BB is free of control flow. */
5041 for (; !gsi_end_p (gsi); gsi_next (&gsi))
5043 gimple stmt = gsi_stmt (gsi);
5045 if (found_ctrl_stmt)
5047 error ("control flow in the middle of basic block %d",
5048 bb->index);
5049 err = 1;
5052 if (stmt_ends_bb_p (stmt))
5053 found_ctrl_stmt = true;
5055 if (gimple_code (stmt) == GIMPLE_LABEL)
5057 error ("label ");
5058 print_generic_expr (stderr, gimple_label_label (stmt), 0);
5059 fprintf (stderr, " in the middle of basic block %d", bb->index);
5060 err = 1;
5064 gsi = gsi_last_bb (bb);
5065 if (gsi_end_p (gsi))
5066 continue;
5068 stmt = gsi_stmt (gsi);
5070 if (gimple_code (stmt) == GIMPLE_LABEL)
5071 continue;
5073 err |= verify_eh_edges (stmt);
5075 if (is_ctrl_stmt (stmt))
5077 FOR_EACH_EDGE (e, ei, bb->succs)
5078 if (e->flags & EDGE_FALLTHRU)
5080 error ("fallthru edge after a control statement in bb %d",
5081 bb->index);
5082 err = 1;
5086 if (gimple_code (stmt) != GIMPLE_COND)
5088 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
5089 after anything else but if statement. */
5090 FOR_EACH_EDGE (e, ei, bb->succs)
5091 if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
5093 error ("true/false edge after a non-GIMPLE_COND in bb %d",
5094 bb->index);
5095 err = 1;
5099 switch (gimple_code (stmt))
5101 case GIMPLE_COND:
5103 edge true_edge;
5104 edge false_edge;
5106 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
5108 if (!true_edge
5109 || !false_edge
5110 || !(true_edge->flags & EDGE_TRUE_VALUE)
5111 || !(false_edge->flags & EDGE_FALSE_VALUE)
5112 || (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
5113 || (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
5114 || EDGE_COUNT (bb->succs) >= 3)
5116 error ("wrong outgoing edge flags at end of bb %d",
5117 bb->index);
5118 err = 1;
5121 break;
5123 case GIMPLE_GOTO:
5124 if (simple_goto_p (stmt))
5126 error ("explicit goto at end of bb %d", bb->index);
5127 err = 1;
5129 else
5131 /* FIXME. We should double check that the labels in the
5132 destination blocks have their address taken. */
5133 FOR_EACH_EDGE (e, ei, bb->succs)
5134 if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE
5135 | EDGE_FALSE_VALUE))
5136 || !(e->flags & EDGE_ABNORMAL))
5138 error ("wrong outgoing edge flags at end of bb %d",
5139 bb->index);
5140 err = 1;
5143 break;
5145 case GIMPLE_CALL:
5146 if (!gimple_call_builtin_p (stmt, BUILT_IN_RETURN))
5147 break;
5148 /* ... fallthru ... */
5149 case GIMPLE_RETURN:
5150 if (!single_succ_p (bb)
5151 || (single_succ_edge (bb)->flags
5152 & (EDGE_FALLTHRU | EDGE_ABNORMAL
5153 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
5155 error ("wrong outgoing edge flags at end of bb %d", bb->index);
5156 err = 1;
5158 if (single_succ (bb) != EXIT_BLOCK_PTR_FOR_FN (cfun))
5160 error ("return edge does not point to exit in bb %d",
5161 bb->index);
5162 err = 1;
5164 break;
5166 case GIMPLE_SWITCH:
5168 tree prev;
5169 edge e;
5170 size_t i, n;
5172 n = gimple_switch_num_labels (stmt);
5174 /* Mark all the destination basic blocks. */
5175 for (i = 0; i < n; ++i)
5177 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
5178 basic_block label_bb = label_to_block (lab);
5179 gcc_assert (!label_bb->aux || label_bb->aux == (void *)1);
5180 label_bb->aux = (void *)1;
5183 /* Verify that the case labels are sorted. */
5184 prev = gimple_switch_label (stmt, 0);
5185 for (i = 1; i < n; ++i)
5187 tree c = gimple_switch_label (stmt, i);
5188 if (!CASE_LOW (c))
5190 error ("found default case not at the start of "
5191 "case vector");
5192 err = 1;
5193 continue;
5195 if (CASE_LOW (prev)
5196 && !tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c)))
5198 error ("case labels not sorted: ");
5199 print_generic_expr (stderr, prev, 0);
5200 fprintf (stderr," is greater than ");
5201 print_generic_expr (stderr, c, 0);
5202 fprintf (stderr," but comes before it.\n");
5203 err = 1;
5205 prev = c;
5207 /* VRP will remove the default case if it can prove it will
5208 never be executed. So do not verify there always exists
5209 a default case here. */
5211 FOR_EACH_EDGE (e, ei, bb->succs)
5213 if (!e->dest->aux)
5215 error ("extra outgoing edge %d->%d",
5216 bb->index, e->dest->index);
5217 err = 1;
5220 e->dest->aux = (void *)2;
5221 if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL
5222 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
5224 error ("wrong outgoing edge flags at end of bb %d",
5225 bb->index);
5226 err = 1;
5230 /* Check that we have all of them. */
5231 for (i = 0; i < n; ++i)
5233 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
5234 basic_block label_bb = label_to_block (lab);
5236 if (label_bb->aux != (void *)2)
5238 error ("missing edge %i->%i", bb->index, label_bb->index);
5239 err = 1;
5243 FOR_EACH_EDGE (e, ei, bb->succs)
5244 e->dest->aux = (void *)0;
5246 break;
5248 case GIMPLE_EH_DISPATCH:
5249 err |= verify_eh_dispatch_edge (stmt);
5250 break;
5252 default:
5253 break;
5257 if (dom_info_state (CDI_DOMINATORS) >= DOM_NO_FAST_QUERY)
5258 verify_dominators (CDI_DOMINATORS);
5260 return err;
5264 /* Updates phi nodes after creating a forwarder block joined
5265 by edge FALLTHRU. */
5267 static void
5268 gimple_make_forwarder_block (edge fallthru)
5270 edge e;
5271 edge_iterator ei;
5272 basic_block dummy, bb;
5273 tree var;
5274 gimple_stmt_iterator gsi;
5276 dummy = fallthru->src;
5277 bb = fallthru->dest;
5279 if (single_pred_p (bb))
5280 return;
5282 /* If we redirected a branch we must create new PHI nodes at the
5283 start of BB. */
5284 for (gsi = gsi_start_phis (dummy); !gsi_end_p (gsi); gsi_next (&gsi))
5286 gimple phi, new_phi;
5288 phi = gsi_stmt (gsi);
5289 var = gimple_phi_result (phi);
5290 new_phi = create_phi_node (var, bb);
5291 gimple_phi_set_result (phi, copy_ssa_name (var, phi));
5292 add_phi_arg (new_phi, gimple_phi_result (phi), fallthru,
5293 UNKNOWN_LOCATION);
5296 /* Add the arguments we have stored on edges. */
5297 FOR_EACH_EDGE (e, ei, bb->preds)
5299 if (e == fallthru)
5300 continue;
5302 flush_pending_stmts (e);
5307 /* Return a non-special label in the head of basic block BLOCK.
5308 Create one if it doesn't exist. */
5310 tree
5311 gimple_block_label (basic_block bb)
5313 gimple_stmt_iterator i, s = gsi_start_bb (bb);
5314 bool first = true;
5315 tree label;
5316 gimple stmt;
5318 for (i = s; !gsi_end_p (i); first = false, gsi_next (&i))
5320 stmt = gsi_stmt (i);
5321 if (gimple_code (stmt) != GIMPLE_LABEL)
5322 break;
5323 label = gimple_label_label (stmt);
5324 if (!DECL_NONLOCAL (label))
5326 if (!first)
5327 gsi_move_before (&i, &s);
5328 return label;
5332 label = create_artificial_label (UNKNOWN_LOCATION);
5333 stmt = gimple_build_label (label);
5334 gsi_insert_before (&s, stmt, GSI_NEW_STMT);
5335 return label;
5339 /* Attempt to perform edge redirection by replacing a possibly complex
5340 jump instruction by a goto or by removing the jump completely.
5341 This can apply only if all edges now point to the same block. The
5342 parameters and return values are equivalent to
5343 redirect_edge_and_branch. */
5345 static edge
5346 gimple_try_redirect_by_replacing_jump (edge e, basic_block target)
5348 basic_block src = e->src;
5349 gimple_stmt_iterator i;
5350 gimple stmt;
5352 /* We can replace or remove a complex jump only when we have exactly
5353 two edges. */
5354 if (EDGE_COUNT (src->succs) != 2
5355 /* Verify that all targets will be TARGET. Specifically, the
5356 edge that is not E must also go to TARGET. */
5357 || EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target)
5358 return NULL;
5360 i = gsi_last_bb (src);
5361 if (gsi_end_p (i))
5362 return NULL;
5364 stmt = gsi_stmt (i);
5366 if (gimple_code (stmt) == GIMPLE_COND || gimple_code (stmt) == GIMPLE_SWITCH)
5368 gsi_remove (&i, true);
5369 e = ssa_redirect_edge (e, target);
5370 e->flags = EDGE_FALLTHRU;
5371 return e;
5374 return NULL;
5378 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
5379 edge representing the redirected branch. */
5381 static edge
5382 gimple_redirect_edge_and_branch (edge e, basic_block dest)
5384 basic_block bb = e->src;
5385 gimple_stmt_iterator gsi;
5386 edge ret;
5387 gimple stmt;
5389 if (e->flags & EDGE_ABNORMAL)
5390 return NULL;
5392 if (e->dest == dest)
5393 return NULL;
5395 if (e->flags & EDGE_EH)
5396 return redirect_eh_edge (e, dest);
5398 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
5400 ret = gimple_try_redirect_by_replacing_jump (e, dest);
5401 if (ret)
5402 return ret;
5405 gsi = gsi_last_bb (bb);
5406 stmt = gsi_end_p (gsi) ? NULL : gsi_stmt (gsi);
5408 switch (stmt ? gimple_code (stmt) : GIMPLE_ERROR_MARK)
5410 case GIMPLE_COND:
5411 /* For COND_EXPR, we only need to redirect the edge. */
5412 break;
5414 case GIMPLE_GOTO:
5415 /* No non-abnormal edges should lead from a non-simple goto, and
5416 simple ones should be represented implicitly. */
5417 gcc_unreachable ();
5419 case GIMPLE_SWITCH:
5421 tree label = gimple_block_label (dest);
5422 tree cases = get_cases_for_edge (e, stmt);
5424 /* If we have a list of cases associated with E, then use it
5425 as it's a lot faster than walking the entire case vector. */
5426 if (cases)
5428 edge e2 = find_edge (e->src, dest);
5429 tree last, first;
5431 first = cases;
5432 while (cases)
5434 last = cases;
5435 CASE_LABEL (cases) = label;
5436 cases = CASE_CHAIN (cases);
5439 /* If there was already an edge in the CFG, then we need
5440 to move all the cases associated with E to E2. */
5441 if (e2)
5443 tree cases2 = get_cases_for_edge (e2, stmt);
5445 CASE_CHAIN (last) = CASE_CHAIN (cases2);
5446 CASE_CHAIN (cases2) = first;
5448 bitmap_set_bit (touched_switch_bbs, gimple_bb (stmt)->index);
5450 else
5452 size_t i, n = gimple_switch_num_labels (stmt);
5454 for (i = 0; i < n; i++)
5456 tree elt = gimple_switch_label (stmt, i);
5457 if (label_to_block (CASE_LABEL (elt)) == e->dest)
5458 CASE_LABEL (elt) = label;
5462 break;
5464 case GIMPLE_ASM:
5466 int i, n = gimple_asm_nlabels (stmt);
5467 tree label = NULL;
5469 for (i = 0; i < n; ++i)
5471 tree cons = gimple_asm_label_op (stmt, i);
5472 if (label_to_block (TREE_VALUE (cons)) == e->dest)
5474 if (!label)
5475 label = gimple_block_label (dest);
5476 TREE_VALUE (cons) = label;
5480 /* If we didn't find any label matching the former edge in the
5481 asm labels, we must be redirecting the fallthrough
5482 edge. */
5483 gcc_assert (label || (e->flags & EDGE_FALLTHRU));
5485 break;
5487 case GIMPLE_RETURN:
5488 gsi_remove (&gsi, true);
5489 e->flags |= EDGE_FALLTHRU;
5490 break;
5492 case GIMPLE_OMP_RETURN:
5493 case GIMPLE_OMP_CONTINUE:
5494 case GIMPLE_OMP_SECTIONS_SWITCH:
5495 case GIMPLE_OMP_FOR:
5496 /* The edges from OMP constructs can be simply redirected. */
5497 break;
5499 case GIMPLE_EH_DISPATCH:
5500 if (!(e->flags & EDGE_FALLTHRU))
5501 redirect_eh_dispatch_edge (stmt, e, dest);
5502 break;
5504 case GIMPLE_TRANSACTION:
5505 /* The ABORT edge has a stored label associated with it, otherwise
5506 the edges are simply redirectable. */
5507 if (e->flags == 0)
5508 gimple_transaction_set_label (stmt, gimple_block_label (dest));
5509 break;
5511 default:
5512 /* Otherwise it must be a fallthru edge, and we don't need to
5513 do anything besides redirecting it. */
5514 gcc_assert (e->flags & EDGE_FALLTHRU);
5515 break;
5518 /* Update/insert PHI nodes as necessary. */
5520 /* Now update the edges in the CFG. */
5521 e = ssa_redirect_edge (e, dest);
5523 return e;
5526 /* Returns true if it is possible to remove edge E by redirecting
5527 it to the destination of the other edge from E->src. */
5529 static bool
5530 gimple_can_remove_branch_p (const_edge e)
5532 if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
5533 return false;
5535 return true;
5538 /* Simple wrapper, as we can always redirect fallthru edges. */
5540 static basic_block
5541 gimple_redirect_edge_and_branch_force (edge e, basic_block dest)
5543 e = gimple_redirect_edge_and_branch (e, dest);
5544 gcc_assert (e);
5546 return NULL;
5550 /* Splits basic block BB after statement STMT (but at least after the
5551 labels). If STMT is NULL, BB is split just after the labels. */
5553 static basic_block
5554 gimple_split_block (basic_block bb, void *stmt)
5556 gimple_stmt_iterator gsi;
5557 gimple_stmt_iterator gsi_tgt;
5558 gimple act;
5559 gimple_seq list;
5560 basic_block new_bb;
5561 edge e;
5562 edge_iterator ei;
5564 new_bb = create_empty_bb (bb);
5566 /* Redirect the outgoing edges. */
5567 new_bb->succs = bb->succs;
5568 bb->succs = NULL;
5569 FOR_EACH_EDGE (e, ei, new_bb->succs)
5570 e->src = new_bb;
5572 if (stmt && gimple_code ((gimple) stmt) == GIMPLE_LABEL)
5573 stmt = NULL;
5575 /* Move everything from GSI to the new basic block. */
5576 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5578 act = gsi_stmt (gsi);
5579 if (gimple_code (act) == GIMPLE_LABEL)
5580 continue;
5582 if (!stmt)
5583 break;
5585 if (stmt == act)
5587 gsi_next (&gsi);
5588 break;
5592 if (gsi_end_p (gsi))
5593 return new_bb;
5595 /* Split the statement list - avoid re-creating new containers as this
5596 brings ugly quadratic memory consumption in the inliner.
5597 (We are still quadratic since we need to update stmt BB pointers,
5598 sadly.) */
5599 gsi_split_seq_before (&gsi, &list);
5600 set_bb_seq (new_bb, list);
5601 for (gsi_tgt = gsi_start (list);
5602 !gsi_end_p (gsi_tgt); gsi_next (&gsi_tgt))
5603 gimple_set_bb (gsi_stmt (gsi_tgt), new_bb);
5605 return new_bb;
5609 /* Moves basic block BB after block AFTER. */
5611 static bool
5612 gimple_move_block_after (basic_block bb, basic_block after)
5614 if (bb->prev_bb == after)
5615 return true;
5617 unlink_block (bb);
5618 link_block (bb, after);
5620 return true;
5624 /* Return TRUE if block BB has no executable statements, otherwise return
5625 FALSE. */
5627 static bool
5628 gimple_empty_block_p (basic_block bb)
5630 /* BB must have no executable statements. */
5631 gimple_stmt_iterator gsi = gsi_after_labels (bb);
5632 if (phi_nodes (bb))
5633 return false;
5634 if (gsi_end_p (gsi))
5635 return true;
5636 if (is_gimple_debug (gsi_stmt (gsi)))
5637 gsi_next_nondebug (&gsi);
5638 return gsi_end_p (gsi);
5642 /* Split a basic block if it ends with a conditional branch and if the
5643 other part of the block is not empty. */
5645 static basic_block
5646 gimple_split_block_before_cond_jump (basic_block bb)
5648 gimple last, split_point;
5649 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
5650 if (gsi_end_p (gsi))
5651 return NULL;
5652 last = gsi_stmt (gsi);
5653 if (gimple_code (last) != GIMPLE_COND
5654 && gimple_code (last) != GIMPLE_SWITCH)
5655 return NULL;
5656 gsi_prev_nondebug (&gsi);
5657 split_point = gsi_stmt (gsi);
5658 return split_block (bb, split_point)->dest;
5662 /* Return true if basic_block can be duplicated. */
5664 static bool
5665 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED)
5667 return true;
5670 /* Create a duplicate of the basic block BB. NOTE: This does not
5671 preserve SSA form. */
5673 static basic_block
5674 gimple_duplicate_bb (basic_block bb)
5676 basic_block new_bb;
5677 gimple_stmt_iterator gsi, gsi_tgt;
5678 gimple_seq phis = phi_nodes (bb);
5679 gimple phi, stmt, copy;
5681 new_bb = create_empty_bb (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb);
5683 /* Copy the PHI nodes. We ignore PHI node arguments here because
5684 the incoming edges have not been setup yet. */
5685 for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
5687 phi = gsi_stmt (gsi);
5688 copy = create_phi_node (NULL_TREE, new_bb);
5689 create_new_def_for (gimple_phi_result (phi), copy,
5690 gimple_phi_result_ptr (copy));
5691 gimple_set_uid (copy, gimple_uid (phi));
5694 gsi_tgt = gsi_start_bb (new_bb);
5695 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5697 def_operand_p def_p;
5698 ssa_op_iter op_iter;
5699 tree lhs;
5701 stmt = gsi_stmt (gsi);
5702 if (gimple_code (stmt) == GIMPLE_LABEL)
5703 continue;
5705 /* Don't duplicate label debug stmts. */
5706 if (gimple_debug_bind_p (stmt)
5707 && TREE_CODE (gimple_debug_bind_get_var (stmt))
5708 == LABEL_DECL)
5709 continue;
5711 /* Create a new copy of STMT and duplicate STMT's virtual
5712 operands. */
5713 copy = gimple_copy (stmt);
5714 gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT);
5716 maybe_duplicate_eh_stmt (copy, stmt);
5717 gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);
5719 /* When copying around a stmt writing into a local non-user
5720 aggregate, make sure it won't share stack slot with other
5721 vars. */
5722 lhs = gimple_get_lhs (stmt);
5723 if (lhs && TREE_CODE (lhs) != SSA_NAME)
5725 tree base = get_base_address (lhs);
5726 if (base
5727 && (TREE_CODE (base) == VAR_DECL
5728 || TREE_CODE (base) == RESULT_DECL)
5729 && DECL_IGNORED_P (base)
5730 && !TREE_STATIC (base)
5731 && !DECL_EXTERNAL (base)
5732 && (TREE_CODE (base) != VAR_DECL
5733 || !DECL_HAS_VALUE_EXPR_P (base)))
5734 DECL_NONSHAREABLE (base) = 1;
5737 /* Create new names for all the definitions created by COPY and
5738 add replacement mappings for each new name. */
5739 FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
5740 create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p);
5743 return new_bb;
5746 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
5748 static void
5749 add_phi_args_after_copy_edge (edge e_copy)
5751 basic_block bb, bb_copy = e_copy->src, dest;
5752 edge e;
5753 edge_iterator ei;
5754 gimple phi, phi_copy;
5755 tree def;
5756 gimple_stmt_iterator psi, psi_copy;
5758 if (gimple_seq_empty_p (phi_nodes (e_copy->dest)))
5759 return;
5761 bb = bb_copy->flags & BB_DUPLICATED ? get_bb_original (bb_copy) : bb_copy;
5763 if (e_copy->dest->flags & BB_DUPLICATED)
5764 dest = get_bb_original (e_copy->dest);
5765 else
5766 dest = e_copy->dest;
5768 e = find_edge (bb, dest);
5769 if (!e)
5771 /* During loop unrolling the target of the latch edge is copied.
5772 In this case we are not looking for edge to dest, but to
5773 duplicated block whose original was dest. */
5774 FOR_EACH_EDGE (e, ei, bb->succs)
5776 if ((e->dest->flags & BB_DUPLICATED)
5777 && get_bb_original (e->dest) == dest)
5778 break;
5781 gcc_assert (e != NULL);
5784 for (psi = gsi_start_phis (e->dest),
5785 psi_copy = gsi_start_phis (e_copy->dest);
5786 !gsi_end_p (psi);
5787 gsi_next (&psi), gsi_next (&psi_copy))
5789 phi = gsi_stmt (psi);
5790 phi_copy = gsi_stmt (psi_copy);
5791 def = PHI_ARG_DEF_FROM_EDGE (phi, e);
5792 add_phi_arg (phi_copy, def, e_copy,
5793 gimple_phi_arg_location_from_edge (phi, e));
5798 /* Basic block BB_COPY was created by code duplication. Add phi node
5799 arguments for edges going out of BB_COPY. The blocks that were
5800 duplicated have BB_DUPLICATED set. */
5802 void
5803 add_phi_args_after_copy_bb (basic_block bb_copy)
5805 edge e_copy;
5806 edge_iterator ei;
5808 FOR_EACH_EDGE (e_copy, ei, bb_copy->succs)
5810 add_phi_args_after_copy_edge (e_copy);
5814 /* Blocks in REGION_COPY array of length N_REGION were created by
5815 duplication of basic blocks. Add phi node arguments for edges
5816 going from these blocks. If E_COPY is not NULL, also add
5817 phi node arguments for its destination.*/
5819 void
5820 add_phi_args_after_copy (basic_block *region_copy, unsigned n_region,
5821 edge e_copy)
5823 unsigned i;
5825 for (i = 0; i < n_region; i++)
5826 region_copy[i]->flags |= BB_DUPLICATED;
5828 for (i = 0; i < n_region; i++)
5829 add_phi_args_after_copy_bb (region_copy[i]);
5830 if (e_copy)
5831 add_phi_args_after_copy_edge (e_copy);
5833 for (i = 0; i < n_region; i++)
5834 region_copy[i]->flags &= ~BB_DUPLICATED;
5837 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
5838 important exit edge EXIT. By important we mean that no SSA name defined
5839 inside region is live over the other exit edges of the region. All entry
5840 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
5841 to the duplicate of the region. Dominance and loop information is
5842 updated if UPDATE_DOMINANCE is true, but not the SSA web. If
5843 UPDATE_DOMINANCE is false then we assume that the caller will update the
5844 dominance information after calling this function. The new basic
5845 blocks are stored to REGION_COPY in the same order as they had in REGION,
5846 provided that REGION_COPY is not NULL.
5847 The function returns false if it is unable to copy the region,
5848 true otherwise. */
5850 bool
5851 gimple_duplicate_sese_region (edge entry, edge exit,
5852 basic_block *region, unsigned n_region,
5853 basic_block *region_copy,
5854 bool update_dominance)
5856 unsigned i;
5857 bool free_region_copy = false, copying_header = false;
5858 struct loop *loop = entry->dest->loop_father;
5859 edge exit_copy;
5860 vec<basic_block> doms;
5861 edge redirected;
5862 int total_freq = 0, entry_freq = 0;
5863 gcov_type total_count = 0, entry_count = 0;
5865 if (!can_copy_bbs_p (region, n_region))
5866 return false;
5868 /* Some sanity checking. Note that we do not check for all possible
5869 missuses of the functions. I.e. if you ask to copy something weird,
5870 it will work, but the state of structures probably will not be
5871 correct. */
5872 for (i = 0; i < n_region; i++)
5874 /* We do not handle subloops, i.e. all the blocks must belong to the
5875 same loop. */
5876 if (region[i]->loop_father != loop)
5877 return false;
5879 if (region[i] != entry->dest
5880 && region[i] == loop->header)
5881 return false;
5884 /* In case the function is used for loop header copying (which is the primary
5885 use), ensure that EXIT and its copy will be new latch and entry edges. */
5886 if (loop->header == entry->dest)
5888 copying_header = true;
5890 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
5891 return false;
5893 for (i = 0; i < n_region; i++)
5894 if (region[i] != exit->src
5895 && dominated_by_p (CDI_DOMINATORS, region[i], exit->src))
5896 return false;
5899 initialize_original_copy_tables ();
5901 if (copying_header)
5902 set_loop_copy (loop, loop_outer (loop));
5903 else
5904 set_loop_copy (loop, loop);
5906 if (!region_copy)
5908 region_copy = XNEWVEC (basic_block, n_region);
5909 free_region_copy = true;
5912 /* Record blocks outside the region that are dominated by something
5913 inside. */
5914 if (update_dominance)
5916 doms.create (0);
5917 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5920 if (entry->dest->count)
5922 total_count = entry->dest->count;
5923 entry_count = entry->count;
5924 /* Fix up corner cases, to avoid division by zero or creation of negative
5925 frequencies. */
5926 if (entry_count > total_count)
5927 entry_count = total_count;
5929 else
5931 total_freq = entry->dest->frequency;
5932 entry_freq = EDGE_FREQUENCY (entry);
5933 /* Fix up corner cases, to avoid division by zero or creation of negative
5934 frequencies. */
5935 if (total_freq == 0)
5936 total_freq = 1;
5937 else if (entry_freq > total_freq)
5938 entry_freq = total_freq;
5941 copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop,
5942 split_edge_bb_loc (entry), update_dominance);
5943 if (total_count)
5945 scale_bbs_frequencies_gcov_type (region, n_region,
5946 total_count - entry_count,
5947 total_count);
5948 scale_bbs_frequencies_gcov_type (region_copy, n_region, entry_count,
5949 total_count);
5951 else
5953 scale_bbs_frequencies_int (region, n_region, total_freq - entry_freq,
5954 total_freq);
5955 scale_bbs_frequencies_int (region_copy, n_region, entry_freq, total_freq);
5958 if (copying_header)
5960 loop->header = exit->dest;
5961 loop->latch = exit->src;
5964 /* Redirect the entry and add the phi node arguments. */
5965 redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest));
5966 gcc_assert (redirected != NULL);
5967 flush_pending_stmts (entry);
5969 /* Concerning updating of dominators: We must recount dominators
5970 for entry block and its copy. Anything that is outside of the
5971 region, but was dominated by something inside needs recounting as
5972 well. */
5973 if (update_dominance)
5975 set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src);
5976 doms.safe_push (get_bb_original (entry->dest));
5977 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5978 doms.release ();
5981 /* Add the other PHI node arguments. */
5982 add_phi_args_after_copy (region_copy, n_region, NULL);
5984 if (free_region_copy)
5985 free (region_copy);
5987 free_original_copy_tables ();
5988 return true;
5991 /* Checks if BB is part of the region defined by N_REGION BBS. */
5992 static bool
5993 bb_part_of_region_p (basic_block bb, basic_block* bbs, unsigned n_region)
5995 unsigned int n;
5997 for (n = 0; n < n_region; n++)
5999 if (bb == bbs[n])
6000 return true;
6002 return false;
6005 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
6006 are stored to REGION_COPY in the same order in that they appear
6007 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
6008 the region, EXIT an exit from it. The condition guarding EXIT
6009 is moved to ENTRY. Returns true if duplication succeeds, false
6010 otherwise.
6012 For example,
6014 some_code;
6015 if (cond)
6017 else
6020 is transformed to
6022 if (cond)
6024 some_code;
6027 else
6029 some_code;
6034 bool
6035 gimple_duplicate_sese_tail (edge entry ATTRIBUTE_UNUSED, edge exit ATTRIBUTE_UNUSED,
6036 basic_block *region ATTRIBUTE_UNUSED, unsigned n_region ATTRIBUTE_UNUSED,
6037 basic_block *region_copy ATTRIBUTE_UNUSED)
6039 unsigned i;
6040 bool free_region_copy = false;
6041 struct loop *loop = exit->dest->loop_father;
6042 struct loop *orig_loop = entry->dest->loop_father;
6043 basic_block switch_bb, entry_bb, nentry_bb;
6044 vec<basic_block> doms;
6045 int total_freq = 0, exit_freq = 0;
6046 gcov_type total_count = 0, exit_count = 0;
6047 edge exits[2], nexits[2], e;
6048 gimple_stmt_iterator gsi;
6049 gimple cond_stmt;
6050 edge sorig, snew;
6051 basic_block exit_bb;
6052 gimple_stmt_iterator psi;
6053 gimple phi;
6054 tree def;
6055 struct loop *target, *aloop, *cloop;
6057 gcc_assert (EDGE_COUNT (exit->src->succs) == 2);
6058 exits[0] = exit;
6059 exits[1] = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit);
6061 if (!can_copy_bbs_p (region, n_region))
6062 return false;
6064 initialize_original_copy_tables ();
6065 set_loop_copy (orig_loop, loop);
6067 target= loop;
6068 for (aloop = orig_loop->inner; aloop; aloop = aloop->next)
6070 if (bb_part_of_region_p (aloop->header, region, n_region))
6072 cloop = duplicate_loop (aloop, target);
6073 duplicate_subloops (aloop, cloop);
6077 if (!region_copy)
6079 region_copy = XNEWVEC (basic_block, n_region);
6080 free_region_copy = true;
6083 gcc_assert (!need_ssa_update_p (cfun));
6085 /* Record blocks outside the region that are dominated by something
6086 inside. */
6087 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
6089 if (exit->src->count)
6091 total_count = exit->src->count;
6092 exit_count = exit->count;
6093 /* Fix up corner cases, to avoid division by zero or creation of negative
6094 frequencies. */
6095 if (exit_count > total_count)
6096 exit_count = total_count;
6098 else
6100 total_freq = exit->src->frequency;
6101 exit_freq = EDGE_FREQUENCY (exit);
6102 /* Fix up corner cases, to avoid division by zero or creation of negative
6103 frequencies. */
6104 if (total_freq == 0)
6105 total_freq = 1;
6106 if (exit_freq > total_freq)
6107 exit_freq = total_freq;
6110 copy_bbs (region, n_region, region_copy, exits, 2, nexits, orig_loop,
6111 split_edge_bb_loc (exit), true);
6112 if (total_count)
6114 scale_bbs_frequencies_gcov_type (region, n_region,
6115 total_count - exit_count,
6116 total_count);
6117 scale_bbs_frequencies_gcov_type (region_copy, n_region, exit_count,
6118 total_count);
6120 else
6122 scale_bbs_frequencies_int (region, n_region, total_freq - exit_freq,
6123 total_freq);
6124 scale_bbs_frequencies_int (region_copy, n_region, exit_freq, total_freq);
6127 /* Create the switch block, and put the exit condition to it. */
6128 entry_bb = entry->dest;
6129 nentry_bb = get_bb_copy (entry_bb);
6130 if (!last_stmt (entry->src)
6131 || !stmt_ends_bb_p (last_stmt (entry->src)))
6132 switch_bb = entry->src;
6133 else
6134 switch_bb = split_edge (entry);
6135 set_immediate_dominator (CDI_DOMINATORS, nentry_bb, switch_bb);
6137 gsi = gsi_last_bb (switch_bb);
6138 cond_stmt = last_stmt (exit->src);
6139 gcc_assert (gimple_code (cond_stmt) == GIMPLE_COND);
6140 cond_stmt = gimple_copy (cond_stmt);
6142 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
6144 sorig = single_succ_edge (switch_bb);
6145 sorig->flags = exits[1]->flags;
6146 snew = make_edge (switch_bb, nentry_bb, exits[0]->flags);
6148 /* Register the new edge from SWITCH_BB in loop exit lists. */
6149 rescan_loop_exit (snew, true, false);
6151 /* Add the PHI node arguments. */
6152 add_phi_args_after_copy (region_copy, n_region, snew);
6154 /* Get rid of now superfluous conditions and associated edges (and phi node
6155 arguments). */
6156 exit_bb = exit->dest;
6158 e = redirect_edge_and_branch (exits[0], exits[1]->dest);
6159 PENDING_STMT (e) = NULL;
6161 /* The latch of ORIG_LOOP was copied, and so was the backedge
6162 to the original header. We redirect this backedge to EXIT_BB. */
6163 for (i = 0; i < n_region; i++)
6164 if (get_bb_original (region_copy[i]) == orig_loop->latch)
6166 gcc_assert (single_succ_edge (region_copy[i]));
6167 e = redirect_edge_and_branch (single_succ_edge (region_copy[i]), exit_bb);
6168 PENDING_STMT (e) = NULL;
6169 for (psi = gsi_start_phis (exit_bb);
6170 !gsi_end_p (psi);
6171 gsi_next (&psi))
6173 phi = gsi_stmt (psi);
6174 def = PHI_ARG_DEF (phi, nexits[0]->dest_idx);
6175 add_phi_arg (phi, def, e, gimple_phi_arg_location_from_edge (phi, e));
6178 e = redirect_edge_and_branch (nexits[1], nexits[0]->dest);
6179 PENDING_STMT (e) = NULL;
6181 /* Anything that is outside of the region, but was dominated by something
6182 inside needs to update dominance info. */
6183 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
6184 doms.release ();
6185 /* Update the SSA web. */
6186 update_ssa (TODO_update_ssa);
6188 if (free_region_copy)
6189 free (region_copy);
6191 free_original_copy_tables ();
6192 return true;
6195 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
6196 adding blocks when the dominator traversal reaches EXIT. This
6197 function silently assumes that ENTRY strictly dominates EXIT. */
6199 void
6200 gather_blocks_in_sese_region (basic_block entry, basic_block exit,
6201 vec<basic_block> *bbs_p)
6203 basic_block son;
6205 for (son = first_dom_son (CDI_DOMINATORS, entry);
6206 son;
6207 son = next_dom_son (CDI_DOMINATORS, son))
6209 bbs_p->safe_push (son);
6210 if (son != exit)
6211 gather_blocks_in_sese_region (son, exit, bbs_p);
6215 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
6216 The duplicates are recorded in VARS_MAP. */
6218 static void
6219 replace_by_duplicate_decl (tree *tp, struct pointer_map_t *vars_map,
6220 tree to_context)
6222 tree t = *tp, new_t;
6223 struct function *f = DECL_STRUCT_FUNCTION (to_context);
6224 void **loc;
6226 if (DECL_CONTEXT (t) == to_context)
6227 return;
6229 loc = pointer_map_contains (vars_map, t);
6231 if (!loc)
6233 loc = pointer_map_insert (vars_map, t);
6235 if (SSA_VAR_P (t))
6237 new_t = copy_var_decl (t, DECL_NAME (t), TREE_TYPE (t));
6238 add_local_decl (f, new_t);
6240 else
6242 gcc_assert (TREE_CODE (t) == CONST_DECL);
6243 new_t = copy_node (t);
6245 DECL_CONTEXT (new_t) = to_context;
6247 *loc = new_t;
6249 else
6250 new_t = (tree) *loc;
6252 *tp = new_t;
6256 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
6257 VARS_MAP maps old ssa names and var_decls to the new ones. */
6259 static tree
6260 replace_ssa_name (tree name, struct pointer_map_t *vars_map,
6261 tree to_context)
6263 void **loc;
6264 tree new_name;
6266 gcc_assert (!virtual_operand_p (name));
6268 loc = pointer_map_contains (vars_map, name);
6270 if (!loc)
6272 tree decl = SSA_NAME_VAR (name);
6273 if (decl)
6275 replace_by_duplicate_decl (&decl, vars_map, to_context);
6276 new_name = make_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context),
6277 decl, SSA_NAME_DEF_STMT (name));
6278 if (SSA_NAME_IS_DEFAULT_DEF (name))
6279 set_ssa_default_def (DECL_STRUCT_FUNCTION (to_context),
6280 decl, new_name);
6282 else
6283 new_name = copy_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context),
6284 name, SSA_NAME_DEF_STMT (name));
6286 loc = pointer_map_insert (vars_map, name);
6287 *loc = new_name;
6289 else
6290 new_name = (tree) *loc;
6292 return new_name;
6295 struct move_stmt_d
6297 tree orig_block;
6298 tree new_block;
6299 tree from_context;
6300 tree to_context;
6301 struct pointer_map_t *vars_map;
6302 htab_t new_label_map;
6303 struct pointer_map_t *eh_map;
6304 bool remap_decls_p;
6307 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
6308 contained in *TP if it has been ORIG_BLOCK previously and change the
6309 DECL_CONTEXT of every local variable referenced in *TP. */
6311 static tree
6312 move_stmt_op (tree *tp, int *walk_subtrees, void *data)
6314 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
6315 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
6316 tree t = *tp;
6318 if (EXPR_P (t))
6320 tree block = TREE_BLOCK (t);
6321 if (block == p->orig_block
6322 || (p->orig_block == NULL_TREE
6323 && block != NULL_TREE))
6324 TREE_SET_BLOCK (t, p->new_block);
6325 #ifdef ENABLE_CHECKING
6326 else if (block != NULL_TREE)
6328 while (block && TREE_CODE (block) == BLOCK && block != p->orig_block)
6329 block = BLOCK_SUPERCONTEXT (block);
6330 gcc_assert (block == p->orig_block);
6332 #endif
6334 else if (DECL_P (t) || TREE_CODE (t) == SSA_NAME)
6336 if (TREE_CODE (t) == SSA_NAME)
6337 *tp = replace_ssa_name (t, p->vars_map, p->to_context);
6338 else if (TREE_CODE (t) == LABEL_DECL)
6340 if (p->new_label_map)
6342 struct tree_map in, *out;
6343 in.base.from = t;
6344 out = (struct tree_map *)
6345 htab_find_with_hash (p->new_label_map, &in, DECL_UID (t));
6346 if (out)
6347 *tp = t = out->to;
6350 DECL_CONTEXT (t) = p->to_context;
6352 else if (p->remap_decls_p)
6354 /* Replace T with its duplicate. T should no longer appear in the
6355 parent function, so this looks wasteful; however, it may appear
6356 in referenced_vars, and more importantly, as virtual operands of
6357 statements, and in alias lists of other variables. It would be
6358 quite difficult to expunge it from all those places. ??? It might
6359 suffice to do this for addressable variables. */
6360 if ((TREE_CODE (t) == VAR_DECL
6361 && !is_global_var (t))
6362 || TREE_CODE (t) == CONST_DECL)
6363 replace_by_duplicate_decl (tp, p->vars_map, p->to_context);
6365 *walk_subtrees = 0;
6367 else if (TYPE_P (t))
6368 *walk_subtrees = 0;
6370 return NULL_TREE;
6373 /* Helper for move_stmt_r. Given an EH region number for the source
6374 function, map that to the duplicate EH regio number in the dest. */
6376 static int
6377 move_stmt_eh_region_nr (int old_nr, struct move_stmt_d *p)
6379 eh_region old_r, new_r;
6380 void **slot;
6382 old_r = get_eh_region_from_number (old_nr);
6383 slot = pointer_map_contains (p->eh_map, old_r);
6384 new_r = (eh_region) *slot;
6386 return new_r->index;
6389 /* Similar, but operate on INTEGER_CSTs. */
6391 static tree
6392 move_stmt_eh_region_tree_nr (tree old_t_nr, struct move_stmt_d *p)
6394 int old_nr, new_nr;
6396 old_nr = tree_to_shwi (old_t_nr);
6397 new_nr = move_stmt_eh_region_nr (old_nr, p);
6399 return build_int_cst (integer_type_node, new_nr);
6402 /* Like move_stmt_op, but for gimple statements.
6404 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
6405 contained in the current statement in *GSI_P and change the
6406 DECL_CONTEXT of every local variable referenced in the current
6407 statement. */
6409 static tree
6410 move_stmt_r (gimple_stmt_iterator *gsi_p, bool *handled_ops_p,
6411 struct walk_stmt_info *wi)
6413 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
6414 gimple stmt = gsi_stmt (*gsi_p);
6415 tree block = gimple_block (stmt);
6417 if (block == p->orig_block
6418 || (p->orig_block == NULL_TREE
6419 && block != NULL_TREE))
6420 gimple_set_block (stmt, p->new_block);
6422 switch (gimple_code (stmt))
6424 case GIMPLE_CALL:
6425 /* Remap the region numbers for __builtin_eh_{pointer,filter}. */
6427 tree r, fndecl = gimple_call_fndecl (stmt);
6428 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
6429 switch (DECL_FUNCTION_CODE (fndecl))
6431 case BUILT_IN_EH_COPY_VALUES:
6432 r = gimple_call_arg (stmt, 1);
6433 r = move_stmt_eh_region_tree_nr (r, p);
6434 gimple_call_set_arg (stmt, 1, r);
6435 /* FALLTHRU */
6437 case BUILT_IN_EH_POINTER:
6438 case BUILT_IN_EH_FILTER:
6439 r = gimple_call_arg (stmt, 0);
6440 r = move_stmt_eh_region_tree_nr (r, p);
6441 gimple_call_set_arg (stmt, 0, r);
6442 break;
6444 default:
6445 break;
6448 break;
6450 case GIMPLE_RESX:
6452 int r = gimple_resx_region (stmt);
6453 r = move_stmt_eh_region_nr (r, p);
6454 gimple_resx_set_region (stmt, r);
6456 break;
6458 case GIMPLE_EH_DISPATCH:
6460 int r = gimple_eh_dispatch_region (stmt);
6461 r = move_stmt_eh_region_nr (r, p);
6462 gimple_eh_dispatch_set_region (stmt, r);
6464 break;
6466 case GIMPLE_OMP_RETURN:
6467 case GIMPLE_OMP_CONTINUE:
6468 break;
6469 default:
6470 if (is_gimple_omp (stmt))
6472 /* Do not remap variables inside OMP directives. Variables
6473 referenced in clauses and directive header belong to the
6474 parent function and should not be moved into the child
6475 function. */
6476 bool save_remap_decls_p = p->remap_decls_p;
6477 p->remap_decls_p = false;
6478 *handled_ops_p = true;
6480 walk_gimple_seq_mod (gimple_omp_body_ptr (stmt), move_stmt_r,
6481 move_stmt_op, wi);
6483 p->remap_decls_p = save_remap_decls_p;
6485 break;
6488 return NULL_TREE;
6491 /* Move basic block BB from function CFUN to function DEST_FN. The
6492 block is moved out of the original linked list and placed after
6493 block AFTER in the new list. Also, the block is removed from the
6494 original array of blocks and placed in DEST_FN's array of blocks.
6495 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
6496 updated to reflect the moved edges.
6498 The local variables are remapped to new instances, VARS_MAP is used
6499 to record the mapping. */
6501 static void
6502 move_block_to_fn (struct function *dest_cfun, basic_block bb,
6503 basic_block after, bool update_edge_count_p,
6504 struct move_stmt_d *d)
6506 struct control_flow_graph *cfg;
6507 edge_iterator ei;
6508 edge e;
6509 gimple_stmt_iterator si;
6510 unsigned old_len, new_len;
6512 /* Remove BB from dominance structures. */
6513 delete_from_dominance_info (CDI_DOMINATORS, bb);
6515 /* Move BB from its current loop to the copy in the new function. */
6516 if (current_loops)
6518 struct loop *new_loop = (struct loop *)bb->loop_father->aux;
6519 if (new_loop)
6520 bb->loop_father = new_loop;
6523 /* Link BB to the new linked list. */
6524 move_block_after (bb, after);
6526 /* Update the edge count in the corresponding flowgraphs. */
6527 if (update_edge_count_p)
6528 FOR_EACH_EDGE (e, ei, bb->succs)
6530 cfun->cfg->x_n_edges--;
6531 dest_cfun->cfg->x_n_edges++;
6534 /* Remove BB from the original basic block array. */
6535 (*cfun->cfg->x_basic_block_info)[bb->index] = NULL;
6536 cfun->cfg->x_n_basic_blocks--;
6538 /* Grow DEST_CFUN's basic block array if needed. */
6539 cfg = dest_cfun->cfg;
6540 cfg->x_n_basic_blocks++;
6541 if (bb->index >= cfg->x_last_basic_block)
6542 cfg->x_last_basic_block = bb->index + 1;
6544 old_len = vec_safe_length (cfg->x_basic_block_info);
6545 if ((unsigned) cfg->x_last_basic_block >= old_len)
6547 new_len = cfg->x_last_basic_block + (cfg->x_last_basic_block + 3) / 4;
6548 vec_safe_grow_cleared (cfg->x_basic_block_info, new_len);
6551 (*cfg->x_basic_block_info)[bb->index] = bb;
6553 /* Remap the variables in phi nodes. */
6554 for (si = gsi_start_phis (bb); !gsi_end_p (si); )
6556 gimple phi = gsi_stmt (si);
6557 use_operand_p use;
6558 tree op = PHI_RESULT (phi);
6559 ssa_op_iter oi;
6560 unsigned i;
6562 if (virtual_operand_p (op))
6564 /* Remove the phi nodes for virtual operands (alias analysis will be
6565 run for the new function, anyway). */
6566 remove_phi_node (&si, true);
6567 continue;
6570 SET_PHI_RESULT (phi,
6571 replace_ssa_name (op, d->vars_map, dest_cfun->decl));
6572 FOR_EACH_PHI_ARG (use, phi, oi, SSA_OP_USE)
6574 op = USE_FROM_PTR (use);
6575 if (TREE_CODE (op) == SSA_NAME)
6576 SET_USE (use, replace_ssa_name (op, d->vars_map, dest_cfun->decl));
6579 for (i = 0; i < EDGE_COUNT (bb->preds); i++)
6581 location_t locus = gimple_phi_arg_location (phi, i);
6582 tree block = LOCATION_BLOCK (locus);
6584 if (locus == UNKNOWN_LOCATION)
6585 continue;
6586 if (d->orig_block == NULL_TREE || block == d->orig_block)
6588 if (d->new_block == NULL_TREE)
6589 locus = LOCATION_LOCUS (locus);
6590 else
6591 locus = COMBINE_LOCATION_DATA (line_table, locus, d->new_block);
6592 gimple_phi_arg_set_location (phi, i, locus);
6596 gsi_next (&si);
6599 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6601 gimple stmt = gsi_stmt (si);
6602 struct walk_stmt_info wi;
6604 memset (&wi, 0, sizeof (wi));
6605 wi.info = d;
6606 walk_gimple_stmt (&si, move_stmt_r, move_stmt_op, &wi);
6608 if (gimple_code (stmt) == GIMPLE_LABEL)
6610 tree label = gimple_label_label (stmt);
6611 int uid = LABEL_DECL_UID (label);
6613 gcc_assert (uid > -1);
6615 old_len = vec_safe_length (cfg->x_label_to_block_map);
6616 if (old_len <= (unsigned) uid)
6618 new_len = 3 * uid / 2 + 1;
6619 vec_safe_grow_cleared (cfg->x_label_to_block_map, new_len);
6622 (*cfg->x_label_to_block_map)[uid] = bb;
6623 (*cfun->cfg->x_label_to_block_map)[uid] = NULL;
6625 gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl);
6627 if (uid >= dest_cfun->cfg->last_label_uid)
6628 dest_cfun->cfg->last_label_uid = uid + 1;
6631 maybe_duplicate_eh_stmt_fn (dest_cfun, stmt, cfun, stmt, d->eh_map, 0);
6632 remove_stmt_from_eh_lp_fn (cfun, stmt);
6634 gimple_duplicate_stmt_histograms (dest_cfun, stmt, cfun, stmt);
6635 gimple_remove_stmt_histograms (cfun, stmt);
6637 /* We cannot leave any operands allocated from the operand caches of
6638 the current function. */
6639 free_stmt_operands (cfun, stmt);
6640 push_cfun (dest_cfun);
6641 update_stmt (stmt);
6642 pop_cfun ();
6645 FOR_EACH_EDGE (e, ei, bb->succs)
6646 if (e->goto_locus != UNKNOWN_LOCATION)
6648 tree block = LOCATION_BLOCK (e->goto_locus);
6649 if (d->orig_block == NULL_TREE
6650 || block == d->orig_block)
6651 e->goto_locus = d->new_block ?
6652 COMBINE_LOCATION_DATA (line_table, e->goto_locus, d->new_block) :
6653 LOCATION_LOCUS (e->goto_locus);
6657 /* Examine the statements in BB (which is in SRC_CFUN); find and return
6658 the outermost EH region. Use REGION as the incoming base EH region. */
6660 static eh_region
6661 find_outermost_region_in_block (struct function *src_cfun,
6662 basic_block bb, eh_region region)
6664 gimple_stmt_iterator si;
6666 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6668 gimple stmt = gsi_stmt (si);
6669 eh_region stmt_region;
6670 int lp_nr;
6672 lp_nr = lookup_stmt_eh_lp_fn (src_cfun, stmt);
6673 stmt_region = get_eh_region_from_lp_number_fn (src_cfun, lp_nr);
6674 if (stmt_region)
6676 if (region == NULL)
6677 region = stmt_region;
6678 else if (stmt_region != region)
6680 region = eh_region_outermost (src_cfun, stmt_region, region);
6681 gcc_assert (region != NULL);
6686 return region;
6689 static tree
6690 new_label_mapper (tree decl, void *data)
6692 htab_t hash = (htab_t) data;
6693 struct tree_map *m;
6694 void **slot;
6696 gcc_assert (TREE_CODE (decl) == LABEL_DECL);
6698 m = XNEW (struct tree_map);
6699 m->hash = DECL_UID (decl);
6700 m->base.from = decl;
6701 m->to = create_artificial_label (UNKNOWN_LOCATION);
6702 LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl);
6703 if (LABEL_DECL_UID (m->to) >= cfun->cfg->last_label_uid)
6704 cfun->cfg->last_label_uid = LABEL_DECL_UID (m->to) + 1;
6706 slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT);
6707 gcc_assert (*slot == NULL);
6709 *slot = m;
6711 return m->to;
6714 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
6715 subblocks. */
6717 static void
6718 replace_block_vars_by_duplicates (tree block, struct pointer_map_t *vars_map,
6719 tree to_context)
6721 tree *tp, t;
6723 for (tp = &BLOCK_VARS (block); *tp; tp = &DECL_CHAIN (*tp))
6725 t = *tp;
6726 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != CONST_DECL)
6727 continue;
6728 replace_by_duplicate_decl (&t, vars_map, to_context);
6729 if (t != *tp)
6731 if (TREE_CODE (*tp) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (*tp))
6733 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (*tp));
6734 DECL_HAS_VALUE_EXPR_P (t) = 1;
6736 DECL_CHAIN (t) = DECL_CHAIN (*tp);
6737 *tp = t;
6741 for (block = BLOCK_SUBBLOCKS (block); block; block = BLOCK_CHAIN (block))
6742 replace_block_vars_by_duplicates (block, vars_map, to_context);
6745 /* Fixup the loop arrays and numbers after moving LOOP and its subloops
6746 from FN1 to FN2. */
6748 static void
6749 fixup_loop_arrays_after_move (struct function *fn1, struct function *fn2,
6750 struct loop *loop)
6752 /* Discard it from the old loop array. */
6753 (*get_loops (fn1))[loop->num] = NULL;
6755 /* Place it in the new loop array, assigning it a new number. */
6756 loop->num = number_of_loops (fn2);
6757 vec_safe_push (loops_for_fn (fn2)->larray, loop);
6759 /* Recurse to children. */
6760 for (loop = loop->inner; loop; loop = loop->next)
6761 fixup_loop_arrays_after_move (fn1, fn2, loop);
6764 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
6765 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
6766 single basic block in the original CFG and the new basic block is
6767 returned. DEST_CFUN must not have a CFG yet.
6769 Note that the region need not be a pure SESE region. Blocks inside
6770 the region may contain calls to abort/exit. The only restriction
6771 is that ENTRY_BB should be the only entry point and it must
6772 dominate EXIT_BB.
6774 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
6775 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
6776 to the new function.
6778 All local variables referenced in the region are assumed to be in
6779 the corresponding BLOCK_VARS and unexpanded variable lists
6780 associated with DEST_CFUN. */
6782 basic_block
6783 move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb,
6784 basic_block exit_bb, tree orig_block)
6786 vec<basic_block> bbs, dom_bbs;
6787 basic_block dom_entry = get_immediate_dominator (CDI_DOMINATORS, entry_bb);
6788 basic_block after, bb, *entry_pred, *exit_succ, abb;
6789 struct function *saved_cfun = cfun;
6790 int *entry_flag, *exit_flag;
6791 unsigned *entry_prob, *exit_prob;
6792 unsigned i, num_entry_edges, num_exit_edges, num_nodes;
6793 edge e;
6794 edge_iterator ei;
6795 htab_t new_label_map;
6796 struct pointer_map_t *vars_map, *eh_map;
6797 struct loop *loop = entry_bb->loop_father;
6798 struct loop *loop0 = get_loop (saved_cfun, 0);
6799 struct move_stmt_d d;
6801 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
6802 region. */
6803 gcc_assert (entry_bb != exit_bb
6804 && (!exit_bb
6805 || dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb)));
6807 /* Collect all the blocks in the region. Manually add ENTRY_BB
6808 because it won't be added by dfs_enumerate_from. */
6809 bbs.create (0);
6810 bbs.safe_push (entry_bb);
6811 gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs);
6813 /* The blocks that used to be dominated by something in BBS will now be
6814 dominated by the new block. */
6815 dom_bbs = get_dominated_by_region (CDI_DOMINATORS,
6816 bbs.address (),
6817 bbs.length ());
6819 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
6820 the predecessor edges to ENTRY_BB and the successor edges to
6821 EXIT_BB so that we can re-attach them to the new basic block that
6822 will replace the region. */
6823 num_entry_edges = EDGE_COUNT (entry_bb->preds);
6824 entry_pred = XNEWVEC (basic_block, num_entry_edges);
6825 entry_flag = XNEWVEC (int, num_entry_edges);
6826 entry_prob = XNEWVEC (unsigned, num_entry_edges);
6827 i = 0;
6828 for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;)
6830 entry_prob[i] = e->probability;
6831 entry_flag[i] = e->flags;
6832 entry_pred[i++] = e->src;
6833 remove_edge (e);
6836 if (exit_bb)
6838 num_exit_edges = EDGE_COUNT (exit_bb->succs);
6839 exit_succ = XNEWVEC (basic_block, num_exit_edges);
6840 exit_flag = XNEWVEC (int, num_exit_edges);
6841 exit_prob = XNEWVEC (unsigned, num_exit_edges);
6842 i = 0;
6843 for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;)
6845 exit_prob[i] = e->probability;
6846 exit_flag[i] = e->flags;
6847 exit_succ[i++] = e->dest;
6848 remove_edge (e);
6851 else
6853 num_exit_edges = 0;
6854 exit_succ = NULL;
6855 exit_flag = NULL;
6856 exit_prob = NULL;
6859 /* Switch context to the child function to initialize DEST_FN's CFG. */
6860 gcc_assert (dest_cfun->cfg == NULL);
6861 push_cfun (dest_cfun);
6863 init_empty_tree_cfg ();
6865 /* Initialize EH information for the new function. */
6866 eh_map = NULL;
6867 new_label_map = NULL;
6868 if (saved_cfun->eh)
6870 eh_region region = NULL;
6872 FOR_EACH_VEC_ELT (bbs, i, bb)
6873 region = find_outermost_region_in_block (saved_cfun, bb, region);
6875 init_eh_for_function ();
6876 if (region != NULL)
6878 new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free);
6879 eh_map = duplicate_eh_regions (saved_cfun, region, 0,
6880 new_label_mapper, new_label_map);
6884 /* Initialize an empty loop tree. */
6885 struct loops *loops = ggc_alloc_cleared_loops ();
6886 init_loops_structure (dest_cfun, loops, 1);
6887 loops->state = LOOPS_MAY_HAVE_MULTIPLE_LATCHES;
6888 set_loops_for_fn (dest_cfun, loops);
6890 /* Move the outlined loop tree part. */
6891 num_nodes = bbs.length ();
6892 FOR_EACH_VEC_ELT (bbs, i, bb)
6894 if (bb->loop_father->header == bb)
6896 struct loop *this_loop = bb->loop_father;
6897 struct loop *outer = loop_outer (this_loop);
6898 if (outer == loop
6899 /* If the SESE region contains some bbs ending with
6900 a noreturn call, those are considered to belong
6901 to the outermost loop in saved_cfun, rather than
6902 the entry_bb's loop_father. */
6903 || outer == loop0)
6905 if (outer != loop)
6906 num_nodes -= this_loop->num_nodes;
6907 flow_loop_tree_node_remove (bb->loop_father);
6908 flow_loop_tree_node_add (get_loop (dest_cfun, 0), this_loop);
6909 fixup_loop_arrays_after_move (saved_cfun, cfun, this_loop);
6912 else if (bb->loop_father == loop0 && loop0 != loop)
6913 num_nodes--;
6915 /* Remove loop exits from the outlined region. */
6916 if (loops_for_fn (saved_cfun)->exits)
6917 FOR_EACH_EDGE (e, ei, bb->succs)
6919 void **slot = htab_find_slot_with_hash
6920 (loops_for_fn (saved_cfun)->exits, e,
6921 htab_hash_pointer (e), NO_INSERT);
6922 if (slot)
6923 htab_clear_slot (loops_for_fn (saved_cfun)->exits, slot);
6928 /* Adjust the number of blocks in the tree root of the outlined part. */
6929 get_loop (dest_cfun, 0)->num_nodes = bbs.length () + 2;
6931 /* Setup a mapping to be used by move_block_to_fn. */
6932 loop->aux = current_loops->tree_root;
6933 loop0->aux = current_loops->tree_root;
6935 pop_cfun ();
6937 /* Move blocks from BBS into DEST_CFUN. */
6938 gcc_assert (bbs.length () >= 2);
6939 after = dest_cfun->cfg->x_entry_block_ptr;
6940 vars_map = pointer_map_create ();
6942 memset (&d, 0, sizeof (d));
6943 d.orig_block = orig_block;
6944 d.new_block = DECL_INITIAL (dest_cfun->decl);
6945 d.from_context = cfun->decl;
6946 d.to_context = dest_cfun->decl;
6947 d.vars_map = vars_map;
6948 d.new_label_map = new_label_map;
6949 d.eh_map = eh_map;
6950 d.remap_decls_p = true;
6952 FOR_EACH_VEC_ELT (bbs, i, bb)
6954 /* No need to update edge counts on the last block. It has
6955 already been updated earlier when we detached the region from
6956 the original CFG. */
6957 move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, &d);
6958 after = bb;
6961 loop->aux = NULL;
6962 loop0->aux = NULL;
6963 /* Loop sizes are no longer correct, fix them up. */
6964 loop->num_nodes -= num_nodes;
6965 for (struct loop *outer = loop_outer (loop);
6966 outer; outer = loop_outer (outer))
6967 outer->num_nodes -= num_nodes;
6968 loop0->num_nodes -= bbs.length () - num_nodes;
6970 if (saved_cfun->has_simduid_loops || saved_cfun->has_force_vect_loops)
6972 struct loop *aloop;
6973 for (i = 0; vec_safe_iterate (loops->larray, i, &aloop); i++)
6974 if (aloop != NULL)
6976 if (aloop->simduid)
6978 replace_by_duplicate_decl (&aloop->simduid, d.vars_map,
6979 d.to_context);
6980 dest_cfun->has_simduid_loops = true;
6982 if (aloop->force_vect)
6983 dest_cfun->has_force_vect_loops = true;
6987 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
6988 if (orig_block)
6990 tree block;
6991 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6992 == NULL_TREE);
6993 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6994 = BLOCK_SUBBLOCKS (orig_block);
6995 for (block = BLOCK_SUBBLOCKS (orig_block);
6996 block; block = BLOCK_CHAIN (block))
6997 BLOCK_SUPERCONTEXT (block) = DECL_INITIAL (dest_cfun->decl);
6998 BLOCK_SUBBLOCKS (orig_block) = NULL_TREE;
7001 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun->decl),
7002 vars_map, dest_cfun->decl);
7004 if (new_label_map)
7005 htab_delete (new_label_map);
7006 if (eh_map)
7007 pointer_map_destroy (eh_map);
7008 pointer_map_destroy (vars_map);
7010 /* Rewire the entry and exit blocks. The successor to the entry
7011 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
7012 the child function. Similarly, the predecessor of DEST_FN's
7013 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
7014 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
7015 various CFG manipulation function get to the right CFG.
7017 FIXME, this is silly. The CFG ought to become a parameter to
7018 these helpers. */
7019 push_cfun (dest_cfun);
7020 make_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun), entry_bb, EDGE_FALLTHRU);
7021 if (exit_bb)
7022 make_edge (exit_bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
7023 pop_cfun ();
7025 /* Back in the original function, the SESE region has disappeared,
7026 create a new basic block in its place. */
7027 bb = create_empty_bb (entry_pred[0]);
7028 if (current_loops)
7029 add_bb_to_loop (bb, loop);
7030 for (i = 0; i < num_entry_edges; i++)
7032 e = make_edge (entry_pred[i], bb, entry_flag[i]);
7033 e->probability = entry_prob[i];
7036 for (i = 0; i < num_exit_edges; i++)
7038 e = make_edge (bb, exit_succ[i], exit_flag[i]);
7039 e->probability = exit_prob[i];
7042 set_immediate_dominator (CDI_DOMINATORS, bb, dom_entry);
7043 FOR_EACH_VEC_ELT (dom_bbs, i, abb)
7044 set_immediate_dominator (CDI_DOMINATORS, abb, bb);
7045 dom_bbs.release ();
7047 if (exit_bb)
7049 free (exit_prob);
7050 free (exit_flag);
7051 free (exit_succ);
7053 free (entry_prob);
7054 free (entry_flag);
7055 free (entry_pred);
7056 bbs.release ();
7058 return bb;
7062 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in dumpfile.h)
7065 void
7066 dump_function_to_file (tree fndecl, FILE *file, int flags)
7068 tree arg, var, old_current_fndecl = current_function_decl;
7069 struct function *dsf;
7070 bool ignore_topmost_bind = false, any_var = false;
7071 basic_block bb;
7072 tree chain;
7073 bool tmclone = (TREE_CODE (fndecl) == FUNCTION_DECL
7074 && decl_is_tm_clone (fndecl));
7075 struct function *fun = DECL_STRUCT_FUNCTION (fndecl);
7077 current_function_decl = fndecl;
7078 fprintf (file, "%s %s(", function_name (fun), tmclone ? "[tm-clone] " : "");
7080 arg = DECL_ARGUMENTS (fndecl);
7081 while (arg)
7083 print_generic_expr (file, TREE_TYPE (arg), dump_flags);
7084 fprintf (file, " ");
7085 print_generic_expr (file, arg, dump_flags);
7086 if (flags & TDF_VERBOSE)
7087 print_node (file, "", arg, 4);
7088 if (DECL_CHAIN (arg))
7089 fprintf (file, ", ");
7090 arg = DECL_CHAIN (arg);
7092 fprintf (file, ")\n");
7094 if (flags & TDF_VERBOSE)
7095 print_node (file, "", fndecl, 2);
7097 dsf = DECL_STRUCT_FUNCTION (fndecl);
7098 if (dsf && (flags & TDF_EH))
7099 dump_eh_tree (file, dsf);
7101 if (flags & TDF_RAW && !gimple_has_body_p (fndecl))
7103 dump_node (fndecl, TDF_SLIM | flags, file);
7104 current_function_decl = old_current_fndecl;
7105 return;
7108 /* When GIMPLE is lowered, the variables are no longer available in
7109 BIND_EXPRs, so display them separately. */
7110 if (fun && fun->decl == fndecl && (fun->curr_properties & PROP_gimple_lcf))
7112 unsigned ix;
7113 ignore_topmost_bind = true;
7115 fprintf (file, "{\n");
7116 if (!vec_safe_is_empty (fun->local_decls))
7117 FOR_EACH_LOCAL_DECL (fun, ix, var)
7119 print_generic_decl (file, var, flags);
7120 if (flags & TDF_VERBOSE)
7121 print_node (file, "", var, 4);
7122 fprintf (file, "\n");
7124 any_var = true;
7126 if (gimple_in_ssa_p (cfun))
7127 for (ix = 1; ix < num_ssa_names; ++ix)
7129 tree name = ssa_name (ix);
7130 if (name && !SSA_NAME_VAR (name))
7132 fprintf (file, " ");
7133 print_generic_expr (file, TREE_TYPE (name), flags);
7134 fprintf (file, " ");
7135 print_generic_expr (file, name, flags);
7136 fprintf (file, ";\n");
7138 any_var = true;
7143 if (fun && fun->decl == fndecl
7144 && fun->cfg
7145 && basic_block_info_for_fn (fun))
7147 /* If the CFG has been built, emit a CFG-based dump. */
7148 if (!ignore_topmost_bind)
7149 fprintf (file, "{\n");
7151 if (any_var && n_basic_blocks_for_fn (fun))
7152 fprintf (file, "\n");
7154 FOR_EACH_BB_FN (bb, fun)
7155 dump_bb (file, bb, 2, flags | TDF_COMMENT);
7157 fprintf (file, "}\n");
7159 else if (DECL_SAVED_TREE (fndecl) == NULL)
7161 /* The function is now in GIMPLE form but the CFG has not been
7162 built yet. Emit the single sequence of GIMPLE statements
7163 that make up its body. */
7164 gimple_seq body = gimple_body (fndecl);
7166 if (gimple_seq_first_stmt (body)
7167 && gimple_seq_first_stmt (body) == gimple_seq_last_stmt (body)
7168 && gimple_code (gimple_seq_first_stmt (body)) == GIMPLE_BIND)
7169 print_gimple_seq (file, body, 0, flags);
7170 else
7172 if (!ignore_topmost_bind)
7173 fprintf (file, "{\n");
7175 if (any_var)
7176 fprintf (file, "\n");
7178 print_gimple_seq (file, body, 2, flags);
7179 fprintf (file, "}\n");
7182 else
7184 int indent;
7186 /* Make a tree based dump. */
7187 chain = DECL_SAVED_TREE (fndecl);
7188 if (chain && TREE_CODE (chain) == BIND_EXPR)
7190 if (ignore_topmost_bind)
7192 chain = BIND_EXPR_BODY (chain);
7193 indent = 2;
7195 else
7196 indent = 0;
7198 else
7200 if (!ignore_topmost_bind)
7201 fprintf (file, "{\n");
7202 indent = 2;
7205 if (any_var)
7206 fprintf (file, "\n");
7208 print_generic_stmt_indented (file, chain, flags, indent);
7209 if (ignore_topmost_bind)
7210 fprintf (file, "}\n");
7213 if (flags & TDF_ENUMERATE_LOCALS)
7214 dump_enumerated_decls (file, flags);
7215 fprintf (file, "\n\n");
7217 current_function_decl = old_current_fndecl;
7220 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
7222 DEBUG_FUNCTION void
7223 debug_function (tree fn, int flags)
7225 dump_function_to_file (fn, stderr, flags);
7229 /* Print on FILE the indexes for the predecessors of basic_block BB. */
7231 static void
7232 print_pred_bbs (FILE *file, basic_block bb)
7234 edge e;
7235 edge_iterator ei;
7237 FOR_EACH_EDGE (e, ei, bb->preds)
7238 fprintf (file, "bb_%d ", e->src->index);
7242 /* Print on FILE the indexes for the successors of basic_block BB. */
7244 static void
7245 print_succ_bbs (FILE *file, basic_block bb)
7247 edge e;
7248 edge_iterator ei;
7250 FOR_EACH_EDGE (e, ei, bb->succs)
7251 fprintf (file, "bb_%d ", e->dest->index);
7254 /* Print to FILE the basic block BB following the VERBOSITY level. */
7256 void
7257 print_loops_bb (FILE *file, basic_block bb, int indent, int verbosity)
7259 char *s_indent = (char *) alloca ((size_t) indent + 1);
7260 memset ((void *) s_indent, ' ', (size_t) indent);
7261 s_indent[indent] = '\0';
7263 /* Print basic_block's header. */
7264 if (verbosity >= 2)
7266 fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index);
7267 print_pred_bbs (file, bb);
7268 fprintf (file, "}, succs = {");
7269 print_succ_bbs (file, bb);
7270 fprintf (file, "})\n");
7273 /* Print basic_block's body. */
7274 if (verbosity >= 3)
7276 fprintf (file, "%s {\n", s_indent);
7277 dump_bb (file, bb, indent + 4, TDF_VOPS|TDF_MEMSYMS);
7278 fprintf (file, "%s }\n", s_indent);
7282 static void print_loop_and_siblings (FILE *, struct loop *, int, int);
7284 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
7285 VERBOSITY level this outputs the contents of the loop, or just its
7286 structure. */
7288 static void
7289 print_loop (FILE *file, struct loop *loop, int indent, int verbosity)
7291 char *s_indent;
7292 basic_block bb;
7294 if (loop == NULL)
7295 return;
7297 s_indent = (char *) alloca ((size_t) indent + 1);
7298 memset ((void *) s_indent, ' ', (size_t) indent);
7299 s_indent[indent] = '\0';
7301 /* Print loop's header. */
7302 fprintf (file, "%sloop_%d (", s_indent, loop->num);
7303 if (loop->header)
7304 fprintf (file, "header = %d", loop->header->index);
7305 else
7307 fprintf (file, "deleted)\n");
7308 return;
7310 if (loop->latch)
7311 fprintf (file, ", latch = %d", loop->latch->index);
7312 else
7313 fprintf (file, ", multiple latches");
7314 fprintf (file, ", niter = ");
7315 print_generic_expr (file, loop->nb_iterations, 0);
7317 if (loop->any_upper_bound)
7319 fprintf (file, ", upper_bound = ");
7320 dump_double_int (file, loop->nb_iterations_upper_bound, true);
7323 if (loop->any_estimate)
7325 fprintf (file, ", estimate = ");
7326 dump_double_int (file, loop->nb_iterations_estimate, true);
7328 fprintf (file, ")\n");
7330 /* Print loop's body. */
7331 if (verbosity >= 1)
7333 fprintf (file, "%s{\n", s_indent);
7334 FOR_EACH_BB_FN (bb, cfun)
7335 if (bb->loop_father == loop)
7336 print_loops_bb (file, bb, indent, verbosity);
7338 print_loop_and_siblings (file, loop->inner, indent + 2, verbosity);
7339 fprintf (file, "%s}\n", s_indent);
7343 /* Print the LOOP and its sibling loops on FILE, indented INDENT
7344 spaces. Following VERBOSITY level this outputs the contents of the
7345 loop, or just its structure. */
7347 static void
7348 print_loop_and_siblings (FILE *file, struct loop *loop, int indent,
7349 int verbosity)
7351 if (loop == NULL)
7352 return;
7354 print_loop (file, loop, indent, verbosity);
7355 print_loop_and_siblings (file, loop->next, indent, verbosity);
7358 /* Follow a CFG edge from the entry point of the program, and on entry
7359 of a loop, pretty print the loop structure on FILE. */
7361 void
7362 print_loops (FILE *file, int verbosity)
7364 basic_block bb;
7366 bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
7367 if (bb && bb->loop_father)
7368 print_loop_and_siblings (file, bb->loop_father, 0, verbosity);
7371 /* Dump a loop. */
7373 DEBUG_FUNCTION void
7374 debug (struct loop &ref)
7376 print_loop (stderr, &ref, 0, /*verbosity*/0);
7379 DEBUG_FUNCTION void
7380 debug (struct loop *ptr)
7382 if (ptr)
7383 debug (*ptr);
7384 else
7385 fprintf (stderr, "<nil>\n");
7388 /* Dump a loop verbosely. */
7390 DEBUG_FUNCTION void
7391 debug_verbose (struct loop &ref)
7393 print_loop (stderr, &ref, 0, /*verbosity*/3);
7396 DEBUG_FUNCTION void
7397 debug_verbose (struct loop *ptr)
7399 if (ptr)
7400 debug (*ptr);
7401 else
7402 fprintf (stderr, "<nil>\n");
7406 /* Debugging loops structure at tree level, at some VERBOSITY level. */
7408 DEBUG_FUNCTION void
7409 debug_loops (int verbosity)
7411 print_loops (stderr, verbosity);
7414 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
7416 DEBUG_FUNCTION void
7417 debug_loop (struct loop *loop, int verbosity)
7419 print_loop (stderr, loop, 0, verbosity);
7422 /* Print on stderr the code of loop number NUM, at some VERBOSITY
7423 level. */
7425 DEBUG_FUNCTION void
7426 debug_loop_num (unsigned num, int verbosity)
7428 debug_loop (get_loop (cfun, num), verbosity);
7431 /* Return true if BB ends with a call, possibly followed by some
7432 instructions that must stay with the call. Return false,
7433 otherwise. */
7435 static bool
7436 gimple_block_ends_with_call_p (basic_block bb)
7438 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
7439 return !gsi_end_p (gsi) && is_gimple_call (gsi_stmt (gsi));
7443 /* Return true if BB ends with a conditional branch. Return false,
7444 otherwise. */
7446 static bool
7447 gimple_block_ends_with_condjump_p (const_basic_block bb)
7449 gimple stmt = last_stmt (CONST_CAST_BB (bb));
7450 return (stmt && gimple_code (stmt) == GIMPLE_COND);
7454 /* Return true if we need to add fake edge to exit at statement T.
7455 Helper function for gimple_flow_call_edges_add. */
7457 static bool
7458 need_fake_edge_p (gimple t)
7460 tree fndecl = NULL_TREE;
7461 int call_flags = 0;
7463 /* NORETURN and LONGJMP calls already have an edge to exit.
7464 CONST and PURE calls do not need one.
7465 We don't currently check for CONST and PURE here, although
7466 it would be a good idea, because those attributes are
7467 figured out from the RTL in mark_constant_function, and
7468 the counter incrementation code from -fprofile-arcs
7469 leads to different results from -fbranch-probabilities. */
7470 if (is_gimple_call (t))
7472 fndecl = gimple_call_fndecl (t);
7473 call_flags = gimple_call_flags (t);
7476 if (is_gimple_call (t)
7477 && fndecl
7478 && DECL_BUILT_IN (fndecl)
7479 && (call_flags & ECF_NOTHROW)
7480 && !(call_flags & ECF_RETURNS_TWICE)
7481 /* fork() doesn't really return twice, but the effect of
7482 wrapping it in __gcov_fork() which calls __gcov_flush()
7483 and clears the counters before forking has the same
7484 effect as returning twice. Force a fake edge. */
7485 && !(DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
7486 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FORK))
7487 return false;
7489 if (is_gimple_call (t))
7491 edge_iterator ei;
7492 edge e;
7493 basic_block bb;
7495 if (!(call_flags & ECF_NORETURN))
7496 return true;
7498 bb = gimple_bb (t);
7499 FOR_EACH_EDGE (e, ei, bb->succs)
7500 if ((e->flags & EDGE_FAKE) == 0)
7501 return true;
7504 if (gimple_code (t) == GIMPLE_ASM
7505 && (gimple_asm_volatile_p (t) || gimple_asm_input_p (t)))
7506 return true;
7508 return false;
7512 /* Add fake edges to the function exit for any non constant and non
7513 noreturn calls (or noreturn calls with EH/abnormal edges),
7514 volatile inline assembly in the bitmap of blocks specified by BLOCKS
7515 or to the whole CFG if BLOCKS is zero. Return the number of blocks
7516 that were split.
7518 The goal is to expose cases in which entering a basic block does
7519 not imply that all subsequent instructions must be executed. */
7521 static int
7522 gimple_flow_call_edges_add (sbitmap blocks)
7524 int i;
7525 int blocks_split = 0;
7526 int last_bb = last_basic_block_for_fn (cfun);
7527 bool check_last_block = false;
7529 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
7530 return 0;
7532 if (! blocks)
7533 check_last_block = true;
7534 else
7535 check_last_block = bitmap_bit_p (blocks,
7536 EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb->index);
7538 /* In the last basic block, before epilogue generation, there will be
7539 a fallthru edge to EXIT. Special care is required if the last insn
7540 of the last basic block is a call because make_edge folds duplicate
7541 edges, which would result in the fallthru edge also being marked
7542 fake, which would result in the fallthru edge being removed by
7543 remove_fake_edges, which would result in an invalid CFG.
7545 Moreover, we can't elide the outgoing fake edge, since the block
7546 profiler needs to take this into account in order to solve the minimal
7547 spanning tree in the case that the call doesn't return.
7549 Handle this by adding a dummy instruction in a new last basic block. */
7550 if (check_last_block)
7552 basic_block bb = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
7553 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
7554 gimple t = NULL;
7556 if (!gsi_end_p (gsi))
7557 t = gsi_stmt (gsi);
7559 if (t && need_fake_edge_p (t))
7561 edge e;
7563 e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun));
7564 if (e)
7566 gsi_insert_on_edge (e, gimple_build_nop ());
7567 gsi_commit_edge_inserts ();
7572 /* Now add fake edges to the function exit for any non constant
7573 calls since there is no way that we can determine if they will
7574 return or not... */
7575 for (i = 0; i < last_bb; i++)
7577 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
7578 gimple_stmt_iterator gsi;
7579 gimple stmt, last_stmt;
7581 if (!bb)
7582 continue;
7584 if (blocks && !bitmap_bit_p (blocks, i))
7585 continue;
7587 gsi = gsi_last_nondebug_bb (bb);
7588 if (!gsi_end_p (gsi))
7590 last_stmt = gsi_stmt (gsi);
7593 stmt = gsi_stmt (gsi);
7594 if (need_fake_edge_p (stmt))
7596 edge e;
7598 /* The handling above of the final block before the
7599 epilogue should be enough to verify that there is
7600 no edge to the exit block in CFG already.
7601 Calling make_edge in such case would cause us to
7602 mark that edge as fake and remove it later. */
7603 #ifdef ENABLE_CHECKING
7604 if (stmt == last_stmt)
7606 e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun));
7607 gcc_assert (e == NULL);
7609 #endif
7611 /* Note that the following may create a new basic block
7612 and renumber the existing basic blocks. */
7613 if (stmt != last_stmt)
7615 e = split_block (bb, stmt);
7616 if (e)
7617 blocks_split++;
7619 make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), EDGE_FAKE);
7621 gsi_prev (&gsi);
7623 while (!gsi_end_p (gsi));
7627 if (blocks_split)
7628 verify_flow_info ();
7630 return blocks_split;
7633 /* Removes edge E and all the blocks dominated by it, and updates dominance
7634 information. The IL in E->src needs to be updated separately.
7635 If dominance info is not available, only the edge E is removed.*/
7637 void
7638 remove_edge_and_dominated_blocks (edge e)
7640 vec<basic_block> bbs_to_remove = vNULL;
7641 vec<basic_block> bbs_to_fix_dom = vNULL;
7642 bitmap df, df_idom;
7643 edge f;
7644 edge_iterator ei;
7645 bool none_removed = false;
7646 unsigned i;
7647 basic_block bb, dbb;
7648 bitmap_iterator bi;
7650 if (!dom_info_available_p (CDI_DOMINATORS))
7652 remove_edge (e);
7653 return;
7656 /* No updating is needed for edges to exit. */
7657 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
7659 if (cfgcleanup_altered_bbs)
7660 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
7661 remove_edge (e);
7662 return;
7665 /* First, we find the basic blocks to remove. If E->dest has a predecessor
7666 that is not dominated by E->dest, then this set is empty. Otherwise,
7667 all the basic blocks dominated by E->dest are removed.
7669 Also, to DF_IDOM we store the immediate dominators of the blocks in
7670 the dominance frontier of E (i.e., of the successors of the
7671 removed blocks, if there are any, and of E->dest otherwise). */
7672 FOR_EACH_EDGE (f, ei, e->dest->preds)
7674 if (f == e)
7675 continue;
7677 if (!dominated_by_p (CDI_DOMINATORS, f->src, e->dest))
7679 none_removed = true;
7680 break;
7684 df = BITMAP_ALLOC (NULL);
7685 df_idom = BITMAP_ALLOC (NULL);
7687 if (none_removed)
7688 bitmap_set_bit (df_idom,
7689 get_immediate_dominator (CDI_DOMINATORS, e->dest)->index);
7690 else
7692 bbs_to_remove = get_all_dominated_blocks (CDI_DOMINATORS, e->dest);
7693 FOR_EACH_VEC_ELT (bbs_to_remove, i, bb)
7695 FOR_EACH_EDGE (f, ei, bb->succs)
7697 if (f->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
7698 bitmap_set_bit (df, f->dest->index);
7701 FOR_EACH_VEC_ELT (bbs_to_remove, i, bb)
7702 bitmap_clear_bit (df, bb->index);
7704 EXECUTE_IF_SET_IN_BITMAP (df, 0, i, bi)
7706 bb = BASIC_BLOCK_FOR_FN (cfun, i);
7707 bitmap_set_bit (df_idom,
7708 get_immediate_dominator (CDI_DOMINATORS, bb)->index);
7712 if (cfgcleanup_altered_bbs)
7714 /* Record the set of the altered basic blocks. */
7715 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
7716 bitmap_ior_into (cfgcleanup_altered_bbs, df);
7719 /* Remove E and the cancelled blocks. */
7720 if (none_removed)
7721 remove_edge (e);
7722 else
7724 /* Walk backwards so as to get a chance to substitute all
7725 released DEFs into debug stmts. See
7726 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
7727 details. */
7728 for (i = bbs_to_remove.length (); i-- > 0; )
7729 delete_basic_block (bbs_to_remove[i]);
7732 /* Update the dominance information. The immediate dominator may change only
7733 for blocks whose immediate dominator belongs to DF_IDOM:
7735 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
7736 removal. Let Z the arbitrary block such that idom(Z) = Y and
7737 Z dominates X after the removal. Before removal, there exists a path P
7738 from Y to X that avoids Z. Let F be the last edge on P that is
7739 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
7740 dominates W, and because of P, Z does not dominate W), and W belongs to
7741 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
7742 EXECUTE_IF_SET_IN_BITMAP (df_idom, 0, i, bi)
7744 bb = BASIC_BLOCK_FOR_FN (cfun, i);
7745 for (dbb = first_dom_son (CDI_DOMINATORS, bb);
7746 dbb;
7747 dbb = next_dom_son (CDI_DOMINATORS, dbb))
7748 bbs_to_fix_dom.safe_push (dbb);
7751 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
7753 BITMAP_FREE (df);
7754 BITMAP_FREE (df_idom);
7755 bbs_to_remove.release ();
7756 bbs_to_fix_dom.release ();
7759 /* Purge dead EH edges from basic block BB. */
7761 bool
7762 gimple_purge_dead_eh_edges (basic_block bb)
7764 bool changed = false;
7765 edge e;
7766 edge_iterator ei;
7767 gimple stmt = last_stmt (bb);
7769 if (stmt && stmt_can_throw_internal (stmt))
7770 return false;
7772 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
7774 if (e->flags & EDGE_EH)
7776 remove_edge_and_dominated_blocks (e);
7777 changed = true;
7779 else
7780 ei_next (&ei);
7783 return changed;
7786 /* Purge dead EH edges from basic block listed in BLOCKS. */
7788 bool
7789 gimple_purge_all_dead_eh_edges (const_bitmap blocks)
7791 bool changed = false;
7792 unsigned i;
7793 bitmap_iterator bi;
7795 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
7797 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
7799 /* Earlier gimple_purge_dead_eh_edges could have removed
7800 this basic block already. */
7801 gcc_assert (bb || changed);
7802 if (bb != NULL)
7803 changed |= gimple_purge_dead_eh_edges (bb);
7806 return changed;
7809 /* Purge dead abnormal call edges from basic block BB. */
7811 bool
7812 gimple_purge_dead_abnormal_call_edges (basic_block bb)
7814 bool changed = false;
7815 edge e;
7816 edge_iterator ei;
7817 gimple stmt = last_stmt (bb);
7819 if (!cfun->has_nonlocal_label
7820 && !cfun->calls_setjmp)
7821 return false;
7823 if (stmt && stmt_can_make_abnormal_goto (stmt))
7824 return false;
7826 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
7828 if (e->flags & EDGE_ABNORMAL)
7830 if (e->flags & EDGE_FALLTHRU)
7831 e->flags &= ~EDGE_ABNORMAL;
7832 else
7833 remove_edge_and_dominated_blocks (e);
7834 changed = true;
7836 else
7837 ei_next (&ei);
7840 return changed;
7843 /* Purge dead abnormal call edges from basic block listed in BLOCKS. */
7845 bool
7846 gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks)
7848 bool changed = false;
7849 unsigned i;
7850 bitmap_iterator bi;
7852 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
7854 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
7856 /* Earlier gimple_purge_dead_abnormal_call_edges could have removed
7857 this basic block already. */
7858 gcc_assert (bb || changed);
7859 if (bb != NULL)
7860 changed |= gimple_purge_dead_abnormal_call_edges (bb);
7863 return changed;
7866 /* This function is called whenever a new edge is created or
7867 redirected. */
7869 static void
7870 gimple_execute_on_growing_pred (edge e)
7872 basic_block bb = e->dest;
7874 if (!gimple_seq_empty_p (phi_nodes (bb)))
7875 reserve_phi_args_for_new_edge (bb);
7878 /* This function is called immediately before edge E is removed from
7879 the edge vector E->dest->preds. */
7881 static void
7882 gimple_execute_on_shrinking_pred (edge e)
7884 if (!gimple_seq_empty_p (phi_nodes (e->dest)))
7885 remove_phi_args (e);
7888 /*---------------------------------------------------------------------------
7889 Helper functions for Loop versioning
7890 ---------------------------------------------------------------------------*/
7892 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
7893 of 'first'. Both of them are dominated by 'new_head' basic block. When
7894 'new_head' was created by 'second's incoming edge it received phi arguments
7895 on the edge by split_edge(). Later, additional edge 'e' was created to
7896 connect 'new_head' and 'first'. Now this routine adds phi args on this
7897 additional edge 'e' that new_head to second edge received as part of edge
7898 splitting. */
7900 static void
7901 gimple_lv_adjust_loop_header_phi (basic_block first, basic_block second,
7902 basic_block new_head, edge e)
7904 gimple phi1, phi2;
7905 gimple_stmt_iterator psi1, psi2;
7906 tree def;
7907 edge e2 = find_edge (new_head, second);
7909 /* Because NEW_HEAD has been created by splitting SECOND's incoming
7910 edge, we should always have an edge from NEW_HEAD to SECOND. */
7911 gcc_assert (e2 != NULL);
7913 /* Browse all 'second' basic block phi nodes and add phi args to
7914 edge 'e' for 'first' head. PHI args are always in correct order. */
7916 for (psi2 = gsi_start_phis (second),
7917 psi1 = gsi_start_phis (first);
7918 !gsi_end_p (psi2) && !gsi_end_p (psi1);
7919 gsi_next (&psi2), gsi_next (&psi1))
7921 phi1 = gsi_stmt (psi1);
7922 phi2 = gsi_stmt (psi2);
7923 def = PHI_ARG_DEF (phi2, e2->dest_idx);
7924 add_phi_arg (phi1, def, e, gimple_phi_arg_location_from_edge (phi2, e2));
7929 /* Adds a if else statement to COND_BB with condition COND_EXPR.
7930 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
7931 the destination of the ELSE part. */
7933 static void
7934 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED,
7935 basic_block second_head ATTRIBUTE_UNUSED,
7936 basic_block cond_bb, void *cond_e)
7938 gimple_stmt_iterator gsi;
7939 gimple new_cond_expr;
7940 tree cond_expr = (tree) cond_e;
7941 edge e0;
7943 /* Build new conditional expr */
7944 new_cond_expr = gimple_build_cond_from_tree (cond_expr,
7945 NULL_TREE, NULL_TREE);
7947 /* Add new cond in cond_bb. */
7948 gsi = gsi_last_bb (cond_bb);
7949 gsi_insert_after (&gsi, new_cond_expr, GSI_NEW_STMT);
7951 /* Adjust edges appropriately to connect new head with first head
7952 as well as second head. */
7953 e0 = single_succ_edge (cond_bb);
7954 e0->flags &= ~EDGE_FALLTHRU;
7955 e0->flags |= EDGE_FALSE_VALUE;
7959 /* Do book-keeping of basic block BB for the profile consistency checker.
7960 If AFTER_PASS is 0, do pre-pass accounting, or if AFTER_PASS is 1
7961 then do post-pass accounting. Store the counting in RECORD. */
7962 static void
7963 gimple_account_profile_record (basic_block bb, int after_pass,
7964 struct profile_record *record)
7966 gimple_stmt_iterator i;
7967 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
7969 record->size[after_pass]
7970 += estimate_num_insns (gsi_stmt (i), &eni_size_weights);
7971 if (profile_status_for_fn (cfun) == PROFILE_READ)
7972 record->time[after_pass]
7973 += estimate_num_insns (gsi_stmt (i),
7974 &eni_time_weights) * bb->count;
7975 else if (profile_status_for_fn (cfun) == PROFILE_GUESSED)
7976 record->time[after_pass]
7977 += estimate_num_insns (gsi_stmt (i),
7978 &eni_time_weights) * bb->frequency;
7982 struct cfg_hooks gimple_cfg_hooks = {
7983 "gimple",
7984 gimple_verify_flow_info,
7985 gimple_dump_bb, /* dump_bb */
7986 gimple_dump_bb_for_graph, /* dump_bb_for_graph */
7987 create_bb, /* create_basic_block */
7988 gimple_redirect_edge_and_branch, /* redirect_edge_and_branch */
7989 gimple_redirect_edge_and_branch_force, /* redirect_edge_and_branch_force */
7990 gimple_can_remove_branch_p, /* can_remove_branch_p */
7991 remove_bb, /* delete_basic_block */
7992 gimple_split_block, /* split_block */
7993 gimple_move_block_after, /* move_block_after */
7994 gimple_can_merge_blocks_p, /* can_merge_blocks_p */
7995 gimple_merge_blocks, /* merge_blocks */
7996 gimple_predict_edge, /* predict_edge */
7997 gimple_predicted_by_p, /* predicted_by_p */
7998 gimple_can_duplicate_bb_p, /* can_duplicate_block_p */
7999 gimple_duplicate_bb, /* duplicate_block */
8000 gimple_split_edge, /* split_edge */
8001 gimple_make_forwarder_block, /* make_forward_block */
8002 NULL, /* tidy_fallthru_edge */
8003 NULL, /* force_nonfallthru */
8004 gimple_block_ends_with_call_p,/* block_ends_with_call_p */
8005 gimple_block_ends_with_condjump_p, /* block_ends_with_condjump_p */
8006 gimple_flow_call_edges_add, /* flow_call_edges_add */
8007 gimple_execute_on_growing_pred, /* execute_on_growing_pred */
8008 gimple_execute_on_shrinking_pred, /* execute_on_shrinking_pred */
8009 gimple_duplicate_loop_to_header_edge, /* duplicate loop for trees */
8010 gimple_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
8011 gimple_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/
8012 extract_true_false_edges_from_block, /* extract_cond_bb_edges */
8013 flush_pending_stmts, /* flush_pending_stmts */
8014 gimple_empty_block_p, /* block_empty_p */
8015 gimple_split_block_before_cond_jump, /* split_block_before_cond_jump */
8016 gimple_account_profile_record,
8020 /* Split all critical edges. */
8022 unsigned int
8023 split_critical_edges (void)
8025 basic_block bb;
8026 edge e;
8027 edge_iterator ei;
8029 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
8030 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
8031 mappings around the calls to split_edge. */
8032 start_recording_case_labels ();
8033 FOR_ALL_BB_FN (bb, cfun)
8035 FOR_EACH_EDGE (e, ei, bb->succs)
8037 if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL))
8038 split_edge (e);
8039 /* PRE inserts statements to edges and expects that
8040 since split_critical_edges was done beforehand, committing edge
8041 insertions will not split more edges. In addition to critical
8042 edges we must split edges that have multiple successors and
8043 end by control flow statements, such as RESX.
8044 Go ahead and split them too. This matches the logic in
8045 gimple_find_edge_insert_loc. */
8046 else if ((!single_pred_p (e->dest)
8047 || !gimple_seq_empty_p (phi_nodes (e->dest))
8048 || e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
8049 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
8050 && !(e->flags & EDGE_ABNORMAL))
8052 gimple_stmt_iterator gsi;
8054 gsi = gsi_last_bb (e->src);
8055 if (!gsi_end_p (gsi)
8056 && stmt_ends_bb_p (gsi_stmt (gsi))
8057 && (gimple_code (gsi_stmt (gsi)) != GIMPLE_RETURN
8058 && !gimple_call_builtin_p (gsi_stmt (gsi),
8059 BUILT_IN_RETURN)))
8060 split_edge (e);
8064 end_recording_case_labels ();
8065 return 0;
8068 namespace {
8070 const pass_data pass_data_split_crit_edges =
8072 GIMPLE_PASS, /* type */
8073 "crited", /* name */
8074 OPTGROUP_NONE, /* optinfo_flags */
8075 false, /* has_gate */
8076 true, /* has_execute */
8077 TV_TREE_SPLIT_EDGES, /* tv_id */
8078 PROP_cfg, /* properties_required */
8079 PROP_no_crit_edges, /* properties_provided */
8080 0, /* properties_destroyed */
8081 0, /* todo_flags_start */
8082 TODO_verify_flow, /* todo_flags_finish */
8085 class pass_split_crit_edges : public gimple_opt_pass
8087 public:
8088 pass_split_crit_edges (gcc::context *ctxt)
8089 : gimple_opt_pass (pass_data_split_crit_edges, ctxt)
8092 /* opt_pass methods: */
8093 unsigned int execute () { return split_critical_edges (); }
8095 opt_pass * clone () { return new pass_split_crit_edges (m_ctxt); }
8096 }; // class pass_split_crit_edges
8098 } // anon namespace
8100 gimple_opt_pass *
8101 make_pass_split_crit_edges (gcc::context *ctxt)
8103 return new pass_split_crit_edges (ctxt);
8107 /* Build a ternary operation and gimplify it. Emit code before GSI.
8108 Return the gimple_val holding the result. */
8110 tree
8111 gimplify_build3 (gimple_stmt_iterator *gsi, enum tree_code code,
8112 tree type, tree a, tree b, tree c)
8114 tree ret;
8115 location_t loc = gimple_location (gsi_stmt (*gsi));
8117 ret = fold_build3_loc (loc, code, type, a, b, c);
8118 STRIP_NOPS (ret);
8120 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
8121 GSI_SAME_STMT);
8124 /* Build a binary operation and gimplify it. Emit code before GSI.
8125 Return the gimple_val holding the result. */
8127 tree
8128 gimplify_build2 (gimple_stmt_iterator *gsi, enum tree_code code,
8129 tree type, tree a, tree b)
8131 tree ret;
8133 ret = fold_build2_loc (gimple_location (gsi_stmt (*gsi)), code, type, a, b);
8134 STRIP_NOPS (ret);
8136 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
8137 GSI_SAME_STMT);
8140 /* Build a unary operation and gimplify it. Emit code before GSI.
8141 Return the gimple_val holding the result. */
8143 tree
8144 gimplify_build1 (gimple_stmt_iterator *gsi, enum tree_code code, tree type,
8145 tree a)
8147 tree ret;
8149 ret = fold_build1_loc (gimple_location (gsi_stmt (*gsi)), code, type, a);
8150 STRIP_NOPS (ret);
8152 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
8153 GSI_SAME_STMT);
8158 /* Emit return warnings. */
8160 static unsigned int
8161 execute_warn_function_return (void)
8163 source_location location;
8164 gimple last;
8165 edge e;
8166 edge_iterator ei;
8168 if (!targetm.warn_func_return (cfun->decl))
8169 return 0;
8171 /* If we have a path to EXIT, then we do return. */
8172 if (TREE_THIS_VOLATILE (cfun->decl)
8173 && EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds) > 0)
8175 location = UNKNOWN_LOCATION;
8176 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
8178 last = last_stmt (e->src);
8179 if ((gimple_code (last) == GIMPLE_RETURN
8180 || gimple_call_builtin_p (last, BUILT_IN_RETURN))
8181 && (location = gimple_location (last)) != UNKNOWN_LOCATION)
8182 break;
8184 if (location == UNKNOWN_LOCATION)
8185 location = cfun->function_end_locus;
8186 warning_at (location, 0, "%<noreturn%> function does return");
8189 /* If we see "return;" in some basic block, then we do reach the end
8190 without returning a value. */
8191 else if (warn_return_type
8192 && !TREE_NO_WARNING (cfun->decl)
8193 && EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds) > 0
8194 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (cfun->decl))))
8196 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
8198 gimple last = last_stmt (e->src);
8199 if (gimple_code (last) == GIMPLE_RETURN
8200 && gimple_return_retval (last) == NULL
8201 && !gimple_no_warning_p (last))
8203 location = gimple_location (last);
8204 if (location == UNKNOWN_LOCATION)
8205 location = cfun->function_end_locus;
8206 warning_at (location, OPT_Wreturn_type, "control reaches end of non-void function");
8207 TREE_NO_WARNING (cfun->decl) = 1;
8208 break;
8212 return 0;
8216 /* Given a basic block B which ends with a conditional and has
8217 precisely two successors, determine which of the edges is taken if
8218 the conditional is true and which is taken if the conditional is
8219 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
8221 void
8222 extract_true_false_edges_from_block (basic_block b,
8223 edge *true_edge,
8224 edge *false_edge)
8226 edge e = EDGE_SUCC (b, 0);
8228 if (e->flags & EDGE_TRUE_VALUE)
8230 *true_edge = e;
8231 *false_edge = EDGE_SUCC (b, 1);
8233 else
8235 *false_edge = e;
8236 *true_edge = EDGE_SUCC (b, 1);
8240 namespace {
8242 const pass_data pass_data_warn_function_return =
8244 GIMPLE_PASS, /* type */
8245 "*warn_function_return", /* name */
8246 OPTGROUP_NONE, /* optinfo_flags */
8247 false, /* has_gate */
8248 true, /* has_execute */
8249 TV_NONE, /* tv_id */
8250 PROP_cfg, /* properties_required */
8251 0, /* properties_provided */
8252 0, /* properties_destroyed */
8253 0, /* todo_flags_start */
8254 0, /* todo_flags_finish */
8257 class pass_warn_function_return : public gimple_opt_pass
8259 public:
8260 pass_warn_function_return (gcc::context *ctxt)
8261 : gimple_opt_pass (pass_data_warn_function_return, ctxt)
8264 /* opt_pass methods: */
8265 unsigned int execute () { return execute_warn_function_return (); }
8267 }; // class pass_warn_function_return
8269 } // anon namespace
8271 gimple_opt_pass *
8272 make_pass_warn_function_return (gcc::context *ctxt)
8274 return new pass_warn_function_return (ctxt);
8277 /* Walk a gimplified function and warn for functions whose return value is
8278 ignored and attribute((warn_unused_result)) is set. This is done before
8279 inlining, so we don't have to worry about that. */
8281 static void
8282 do_warn_unused_result (gimple_seq seq)
8284 tree fdecl, ftype;
8285 gimple_stmt_iterator i;
8287 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
8289 gimple g = gsi_stmt (i);
8291 switch (gimple_code (g))
8293 case GIMPLE_BIND:
8294 do_warn_unused_result (gimple_bind_body (g));
8295 break;
8296 case GIMPLE_TRY:
8297 do_warn_unused_result (gimple_try_eval (g));
8298 do_warn_unused_result (gimple_try_cleanup (g));
8299 break;
8300 case GIMPLE_CATCH:
8301 do_warn_unused_result (gimple_catch_handler (g));
8302 break;
8303 case GIMPLE_EH_FILTER:
8304 do_warn_unused_result (gimple_eh_filter_failure (g));
8305 break;
8307 case GIMPLE_CALL:
8308 if (gimple_call_lhs (g))
8309 break;
8310 if (gimple_call_internal_p (g))
8311 break;
8313 /* This is a naked call, as opposed to a GIMPLE_CALL with an
8314 LHS. All calls whose value is ignored should be
8315 represented like this. Look for the attribute. */
8316 fdecl = gimple_call_fndecl (g);
8317 ftype = gimple_call_fntype (g);
8319 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype)))
8321 location_t loc = gimple_location (g);
8323 if (fdecl)
8324 warning_at (loc, OPT_Wunused_result,
8325 "ignoring return value of %qD, "
8326 "declared with attribute warn_unused_result",
8327 fdecl);
8328 else
8329 warning_at (loc, OPT_Wunused_result,
8330 "ignoring return value of function "
8331 "declared with attribute warn_unused_result");
8333 break;
8335 default:
8336 /* Not a container, not a call, or a call whose value is used. */
8337 break;
8342 static unsigned int
8343 run_warn_unused_result (void)
8345 do_warn_unused_result (gimple_body (current_function_decl));
8346 return 0;
8349 static bool
8350 gate_warn_unused_result (void)
8352 return flag_warn_unused_result;
8355 namespace {
8357 const pass_data pass_data_warn_unused_result =
8359 GIMPLE_PASS, /* type */
8360 "*warn_unused_result", /* name */
8361 OPTGROUP_NONE, /* optinfo_flags */
8362 true, /* has_gate */
8363 true, /* has_execute */
8364 TV_NONE, /* tv_id */
8365 PROP_gimple_any, /* properties_required */
8366 0, /* properties_provided */
8367 0, /* properties_destroyed */
8368 0, /* todo_flags_start */
8369 0, /* todo_flags_finish */
8372 class pass_warn_unused_result : public gimple_opt_pass
8374 public:
8375 pass_warn_unused_result (gcc::context *ctxt)
8376 : gimple_opt_pass (pass_data_warn_unused_result, ctxt)
8379 /* opt_pass methods: */
8380 bool gate () { return gate_warn_unused_result (); }
8381 unsigned int execute () { return run_warn_unused_result (); }
8383 }; // class pass_warn_unused_result
8385 } // anon namespace
8387 gimple_opt_pass *
8388 make_pass_warn_unused_result (gcc::context *ctxt)
8390 return new pass_warn_unused_result (ctxt);
8393 /* IPA passes, compilation of earlier functions or inlining
8394 might have changed some properties, such as marked functions nothrow,
8395 pure, const or noreturn.
8396 Remove redundant edges and basic blocks, and create new ones if necessary.
8398 This pass can't be executed as stand alone pass from pass manager, because
8399 in between inlining and this fixup the verify_flow_info would fail. */
8401 unsigned int
8402 execute_fixup_cfg (void)
8404 basic_block bb;
8405 gimple_stmt_iterator gsi;
8406 int todo = gimple_in_ssa_p (cfun) ? TODO_verify_ssa : 0;
8407 gcov_type count_scale;
8408 edge e;
8409 edge_iterator ei;
8411 count_scale
8412 = GCOV_COMPUTE_SCALE (cgraph_get_node (current_function_decl)->count,
8413 ENTRY_BLOCK_PTR_FOR_FN (cfun)->count);
8415 ENTRY_BLOCK_PTR_FOR_FN (cfun)->count =
8416 cgraph_get_node (current_function_decl)->count;
8417 EXIT_BLOCK_PTR_FOR_FN (cfun)->count =
8418 apply_scale (EXIT_BLOCK_PTR_FOR_FN (cfun)->count,
8419 count_scale);
8421 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
8422 e->count = apply_scale (e->count, count_scale);
8424 FOR_EACH_BB_FN (bb, cfun)
8426 bb->count = apply_scale (bb->count, count_scale);
8427 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
8429 gimple stmt = gsi_stmt (gsi);
8430 tree decl = is_gimple_call (stmt)
8431 ? gimple_call_fndecl (stmt)
8432 : NULL;
8433 if (decl)
8435 int flags = gimple_call_flags (stmt);
8436 if (flags & (ECF_CONST | ECF_PURE | ECF_LOOPING_CONST_OR_PURE))
8438 if (gimple_purge_dead_abnormal_call_edges (bb))
8439 todo |= TODO_cleanup_cfg;
8441 if (gimple_in_ssa_p (cfun))
8443 todo |= TODO_update_ssa | TODO_cleanup_cfg;
8444 update_stmt (stmt);
8448 if (flags & ECF_NORETURN
8449 && fixup_noreturn_call (stmt))
8450 todo |= TODO_cleanup_cfg;
8453 if (maybe_clean_eh_stmt (stmt)
8454 && gimple_purge_dead_eh_edges (bb))
8455 todo |= TODO_cleanup_cfg;
8458 FOR_EACH_EDGE (e, ei, bb->succs)
8459 e->count = apply_scale (e->count, count_scale);
8461 /* If we have a basic block with no successors that does not
8462 end with a control statement or a noreturn call end it with
8463 a call to __builtin_unreachable. This situation can occur
8464 when inlining a noreturn call that does in fact return. */
8465 if (EDGE_COUNT (bb->succs) == 0)
8467 gimple stmt = last_stmt (bb);
8468 if (!stmt
8469 || (!is_ctrl_stmt (stmt)
8470 && (!is_gimple_call (stmt)
8471 || (gimple_call_flags (stmt) & ECF_NORETURN) == 0)))
8473 stmt = gimple_build_call
8474 (builtin_decl_implicit (BUILT_IN_UNREACHABLE), 0);
8475 gimple_stmt_iterator gsi = gsi_last_bb (bb);
8476 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
8480 if (count_scale != REG_BR_PROB_BASE)
8481 compute_function_frequency ();
8483 /* We just processed all calls. */
8484 if (cfun->gimple_df)
8485 vec_free (MODIFIED_NORETURN_CALLS (cfun));
8487 /* Dump a textual representation of the flowgraph. */
8488 if (dump_file)
8489 gimple_dump_cfg (dump_file, dump_flags);
8491 if (current_loops
8492 && (todo & TODO_cleanup_cfg))
8493 loops_state_set (LOOPS_NEED_FIXUP);
8495 return todo;
8498 namespace {
8500 const pass_data pass_data_fixup_cfg =
8502 GIMPLE_PASS, /* type */
8503 "*free_cfg_annotations", /* name */
8504 OPTGROUP_NONE, /* optinfo_flags */
8505 false, /* has_gate */
8506 true, /* has_execute */
8507 TV_NONE, /* tv_id */
8508 PROP_cfg, /* properties_required */
8509 0, /* properties_provided */
8510 0, /* properties_destroyed */
8511 0, /* todo_flags_start */
8512 0, /* todo_flags_finish */
8515 class pass_fixup_cfg : public gimple_opt_pass
8517 public:
8518 pass_fixup_cfg (gcc::context *ctxt)
8519 : gimple_opt_pass (pass_data_fixup_cfg, ctxt)
8522 /* opt_pass methods: */
8523 opt_pass * clone () { return new pass_fixup_cfg (m_ctxt); }
8524 unsigned int execute () { return execute_fixup_cfg (); }
8526 }; // class pass_fixup_cfg
8528 } // anon namespace
8530 gimple_opt_pass *
8531 make_pass_fixup_cfg (gcc::context *ctxt)
8533 return new pass_fixup_cfg (ctxt);
8536 /* Garbage collection support for edge_def. */
8538 extern void gt_ggc_mx (tree&);
8539 extern void gt_ggc_mx (gimple&);
8540 extern void gt_ggc_mx (rtx&);
8541 extern void gt_ggc_mx (basic_block&);
8543 void
8544 gt_ggc_mx (edge_def *e)
8546 tree block = LOCATION_BLOCK (e->goto_locus);
8547 gt_ggc_mx (e->src);
8548 gt_ggc_mx (e->dest);
8549 if (current_ir_type () == IR_GIMPLE)
8550 gt_ggc_mx (e->insns.g);
8551 else
8552 gt_ggc_mx (e->insns.r);
8553 gt_ggc_mx (block);
8556 /* PCH support for edge_def. */
8558 extern void gt_pch_nx (tree&);
8559 extern void gt_pch_nx (gimple&);
8560 extern void gt_pch_nx (rtx&);
8561 extern void gt_pch_nx (basic_block&);
8563 void
8564 gt_pch_nx (edge_def *e)
8566 tree block = LOCATION_BLOCK (e->goto_locus);
8567 gt_pch_nx (e->src);
8568 gt_pch_nx (e->dest);
8569 if (current_ir_type () == IR_GIMPLE)
8570 gt_pch_nx (e->insns.g);
8571 else
8572 gt_pch_nx (e->insns.r);
8573 gt_pch_nx (block);
8576 void
8577 gt_pch_nx (edge_def *e, gt_pointer_operator op, void *cookie)
8579 tree block = LOCATION_BLOCK (e->goto_locus);
8580 op (&(e->src), cookie);
8581 op (&(e->dest), cookie);
8582 if (current_ir_type () == IR_GIMPLE)
8583 op (&(e->insns.g), cookie);
8584 else
8585 op (&(e->insns.r), cookie);
8586 op (&(block), cookie);