2014-03-18 Richard Biener <rguenther@suse.de>
[official-gcc.git] / gcc / gcse.c
blob2bb0b5fec1e762ae186f365aa60ddc3f4a7ee1c5
1 /* Partial redundancy elimination / Hoisting for RTL.
2 Copyright (C) 1997-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* TODO
21 - reordering of memory allocation and freeing to be more space efficient
22 - calc rough register pressure information and use the info to drive all
23 kinds of code motion (including code hoisting) in a unified way.
26 /* References searched while implementing this.
28 Compilers Principles, Techniques and Tools
29 Aho, Sethi, Ullman
30 Addison-Wesley, 1988
32 Global Optimization by Suppression of Partial Redundancies
33 E. Morel, C. Renvoise
34 communications of the acm, Vol. 22, Num. 2, Feb. 1979
36 A Portable Machine-Independent Global Optimizer - Design and Measurements
37 Frederick Chow
38 Stanford Ph.D. thesis, Dec. 1983
40 A Fast Algorithm for Code Movement Optimization
41 D.M. Dhamdhere
42 SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988
44 A Solution to a Problem with Morel and Renvoise's
45 Global Optimization by Suppression of Partial Redundancies
46 K-H Drechsler, M.P. Stadel
47 ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988
49 Practical Adaptation of the Global Optimization
50 Algorithm of Morel and Renvoise
51 D.M. Dhamdhere
52 ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991
54 Efficiently Computing Static Single Assignment Form and the Control
55 Dependence Graph
56 R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
57 ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991
59 Lazy Code Motion
60 J. Knoop, O. Ruthing, B. Steffen
61 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
63 What's In a Region? Or Computing Control Dependence Regions in Near-Linear
64 Time for Reducible Flow Control
65 Thomas Ball
66 ACM Letters on Programming Languages and Systems,
67 Vol. 2, Num. 1-4, Mar-Dec 1993
69 An Efficient Representation for Sparse Sets
70 Preston Briggs, Linda Torczon
71 ACM Letters on Programming Languages and Systems,
72 Vol. 2, Num. 1-4, Mar-Dec 1993
74 A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
75 K-H Drechsler, M.P. Stadel
76 ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993
78 Partial Dead Code Elimination
79 J. Knoop, O. Ruthing, B. Steffen
80 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
82 Effective Partial Redundancy Elimination
83 P. Briggs, K.D. Cooper
84 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
86 The Program Structure Tree: Computing Control Regions in Linear Time
87 R. Johnson, D. Pearson, K. Pingali
88 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
90 Optimal Code Motion: Theory and Practice
91 J. Knoop, O. Ruthing, B. Steffen
92 ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994
94 The power of assignment motion
95 J. Knoop, O. Ruthing, B. Steffen
96 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
98 Global code motion / global value numbering
99 C. Click
100 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
102 Value Driven Redundancy Elimination
103 L.T. Simpson
104 Rice University Ph.D. thesis, Apr. 1996
106 Value Numbering
107 L.T. Simpson
108 Massively Scalar Compiler Project, Rice University, Sep. 1996
110 High Performance Compilers for Parallel Computing
111 Michael Wolfe
112 Addison-Wesley, 1996
114 Advanced Compiler Design and Implementation
115 Steven Muchnick
116 Morgan Kaufmann, 1997
118 Building an Optimizing Compiler
119 Robert Morgan
120 Digital Press, 1998
122 People wishing to speed up the code here should read:
123 Elimination Algorithms for Data Flow Analysis
124 B.G. Ryder, M.C. Paull
125 ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986
127 How to Analyze Large Programs Efficiently and Informatively
128 D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
129 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
131 People wishing to do something different can find various possibilities
132 in the above papers and elsewhere.
135 #include "config.h"
136 #include "system.h"
137 #include "coretypes.h"
138 #include "tm.h"
139 #include "diagnostic-core.h"
140 #include "toplev.h"
142 #include "hard-reg-set.h"
143 #include "rtl.h"
144 #include "tree.h"
145 #include "tm_p.h"
146 #include "regs.h"
147 #include "ira.h"
148 #include "flags.h"
149 #include "insn-config.h"
150 #include "recog.h"
151 #include "basic-block.h"
152 #include "function.h"
153 #include "expr.h"
154 #include "except.h"
155 #include "ggc.h"
156 #include "params.h"
157 #include "cselib.h"
158 #include "intl.h"
159 #include "obstack.h"
160 #include "tree-pass.h"
161 #include "hash-table.h"
162 #include "df.h"
163 #include "dbgcnt.h"
164 #include "target.h"
165 #include "gcse.h"
167 /* We support GCSE via Partial Redundancy Elimination. PRE optimizations
168 are a superset of those done by classic GCSE.
170 Two passes of copy/constant propagation are done around PRE or hoisting
171 because the first one enables more GCSE and the second one helps to clean
172 up the copies that PRE and HOIST create. This is needed more for PRE than
173 for HOIST because code hoisting will try to use an existing register
174 containing the common subexpression rather than create a new one. This is
175 harder to do for PRE because of the code motion (which HOIST doesn't do).
177 Expressions we are interested in GCSE-ing are of the form
178 (set (pseudo-reg) (expression)).
179 Function want_to_gcse_p says what these are.
181 In addition, expressions in REG_EQUAL notes are candidates for GCSE-ing.
182 This allows PRE to hoist expressions that are expressed in multiple insns,
183 such as complex address calculations (e.g. for PIC code, or loads with a
184 high part and a low part).
186 PRE handles moving invariant expressions out of loops (by treating them as
187 partially redundant).
189 **********************
191 We used to support multiple passes but there are diminishing returns in
192 doing so. The first pass usually makes 90% of the changes that are doable.
193 A second pass can make a few more changes made possible by the first pass.
194 Experiments show any further passes don't make enough changes to justify
195 the expense.
197 A study of spec92 using an unlimited number of passes:
198 [1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
199 [6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
200 [12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1
202 It was found doing copy propagation between each pass enables further
203 substitutions.
205 This study was done before expressions in REG_EQUAL notes were added as
206 candidate expressions for optimization, and before the GIMPLE optimizers
207 were added. Probably, multiple passes is even less efficient now than
208 at the time when the study was conducted.
210 PRE is quite expensive in complicated functions because the DFA can take
211 a while to converge. Hence we only perform one pass.
213 **********************
215 The steps for PRE are:
217 1) Build the hash table of expressions we wish to GCSE (expr_hash_table).
219 2) Perform the data flow analysis for PRE.
221 3) Delete the redundant instructions
223 4) Insert the required copies [if any] that make the partially
224 redundant instructions fully redundant.
226 5) For other reaching expressions, insert an instruction to copy the value
227 to a newly created pseudo that will reach the redundant instruction.
229 The deletion is done first so that when we do insertions we
230 know which pseudo reg to use.
232 Various papers have argued that PRE DFA is expensive (O(n^2)) and others
233 argue it is not. The number of iterations for the algorithm to converge
234 is typically 2-4 so I don't view it as that expensive (relatively speaking).
236 PRE GCSE depends heavily on the second CPROP pass to clean up the copies
237 we create. To make an expression reach the place where it's redundant,
238 the result of the expression is copied to a new register, and the redundant
239 expression is deleted by replacing it with this new register. Classic GCSE
240 doesn't have this problem as much as it computes the reaching defs of
241 each register in each block and thus can try to use an existing
242 register. */
244 /* GCSE global vars. */
246 struct target_gcse default_target_gcse;
247 #if SWITCHABLE_TARGET
248 struct target_gcse *this_target_gcse = &default_target_gcse;
249 #endif
251 /* Set to non-zero if CSE should run after all GCSE optimizations are done. */
252 int flag_rerun_cse_after_global_opts;
254 /* An obstack for our working variables. */
255 static struct obstack gcse_obstack;
257 /* Hash table of expressions. */
259 struct expr
261 /* The expression. */
262 rtx expr;
263 /* Index in the available expression bitmaps. */
264 int bitmap_index;
265 /* Next entry with the same hash. */
266 struct expr *next_same_hash;
267 /* List of anticipatable occurrences in basic blocks in the function.
268 An "anticipatable occurrence" is one that is the first occurrence in the
269 basic block, the operands are not modified in the basic block prior
270 to the occurrence and the output is not used between the start of
271 the block and the occurrence. */
272 struct occr *antic_occr;
273 /* List of available occurrence in basic blocks in the function.
274 An "available occurrence" is one that is the last occurrence in the
275 basic block and the operands are not modified by following statements in
276 the basic block [including this insn]. */
277 struct occr *avail_occr;
278 /* Non-null if the computation is PRE redundant.
279 The value is the newly created pseudo-reg to record a copy of the
280 expression in all the places that reach the redundant copy. */
281 rtx reaching_reg;
282 /* Maximum distance in instructions this expression can travel.
283 We avoid moving simple expressions for more than a few instructions
284 to keep register pressure under control.
285 A value of "0" removes restrictions on how far the expression can
286 travel. */
287 int max_distance;
290 /* Occurrence of an expression.
291 There is one per basic block. If a pattern appears more than once the
292 last appearance is used [or first for anticipatable expressions]. */
294 struct occr
296 /* Next occurrence of this expression. */
297 struct occr *next;
298 /* The insn that computes the expression. */
299 rtx insn;
300 /* Nonzero if this [anticipatable] occurrence has been deleted. */
301 char deleted_p;
302 /* Nonzero if this [available] occurrence has been copied to
303 reaching_reg. */
304 /* ??? This is mutually exclusive with deleted_p, so they could share
305 the same byte. */
306 char copied_p;
309 typedef struct occr *occr_t;
311 /* Expression hash tables.
312 Each hash table is an array of buckets.
313 ??? It is known that if it were an array of entries, structure elements
314 `next_same_hash' and `bitmap_index' wouldn't be necessary. However, it is
315 not clear whether in the final analysis a sufficient amount of memory would
316 be saved as the size of the available expression bitmaps would be larger
317 [one could build a mapping table without holes afterwards though].
318 Someday I'll perform the computation and figure it out. */
320 struct hash_table_d
322 /* The table itself.
323 This is an array of `expr_hash_table_size' elements. */
324 struct expr **table;
326 /* Size of the hash table, in elements. */
327 unsigned int size;
329 /* Number of hash table elements. */
330 unsigned int n_elems;
333 /* Expression hash table. */
334 static struct hash_table_d expr_hash_table;
336 /* This is a list of expressions which are MEMs and will be used by load
337 or store motion.
338 Load motion tracks MEMs which aren't killed by anything except itself,
339 i.e. loads and stores to a single location.
340 We can then allow movement of these MEM refs with a little special
341 allowance. (all stores copy the same value to the reaching reg used
342 for the loads). This means all values used to store into memory must have
343 no side effects so we can re-issue the setter value. */
345 struct ls_expr
347 struct expr * expr; /* Gcse expression reference for LM. */
348 rtx pattern; /* Pattern of this mem. */
349 rtx pattern_regs; /* List of registers mentioned by the mem. */
350 rtx loads; /* INSN list of loads seen. */
351 rtx stores; /* INSN list of stores seen. */
352 struct ls_expr * next; /* Next in the list. */
353 int invalid; /* Invalid for some reason. */
354 int index; /* If it maps to a bitmap index. */
355 unsigned int hash_index; /* Index when in a hash table. */
356 rtx reaching_reg; /* Register to use when re-writing. */
359 /* Head of the list of load/store memory refs. */
360 static struct ls_expr * pre_ldst_mems = NULL;
362 struct pre_ldst_expr_hasher : typed_noop_remove <ls_expr>
364 typedef ls_expr value_type;
365 typedef value_type compare_type;
366 static inline hashval_t hash (const value_type *);
367 static inline bool equal (const value_type *, const compare_type *);
370 /* Hashtable helpers. */
371 inline hashval_t
372 pre_ldst_expr_hasher::hash (const value_type *x)
374 int do_not_record_p = 0;
375 return
376 hash_rtx (x->pattern, GET_MODE (x->pattern), &do_not_record_p, NULL, false);
379 static int expr_equiv_p (const_rtx, const_rtx);
381 inline bool
382 pre_ldst_expr_hasher::equal (const value_type *ptr1,
383 const compare_type *ptr2)
385 return expr_equiv_p (ptr1->pattern, ptr2->pattern);
388 /* Hashtable for the load/store memory refs. */
389 static hash_table <pre_ldst_expr_hasher> pre_ldst_table;
391 /* Bitmap containing one bit for each register in the program.
392 Used when performing GCSE to track which registers have been set since
393 the start of the basic block. */
394 static regset reg_set_bitmap;
396 /* Array, indexed by basic block number for a list of insns which modify
397 memory within that block. */
398 static vec<rtx> *modify_mem_list;
399 static bitmap modify_mem_list_set;
401 typedef struct modify_pair_s
403 rtx dest; /* A MEM. */
404 rtx dest_addr; /* The canonical address of `dest'. */
405 } modify_pair;
408 /* This array parallels modify_mem_list, except that it stores MEMs
409 being set and their canonicalized memory addresses. */
410 static vec<modify_pair> *canon_modify_mem_list;
412 /* Bitmap indexed by block numbers to record which blocks contain
413 function calls. */
414 static bitmap blocks_with_calls;
416 /* Various variables for statistics gathering. */
418 /* Memory used in a pass.
419 This isn't intended to be absolutely precise. Its intent is only
420 to keep an eye on memory usage. */
421 static int bytes_used;
423 /* GCSE substitutions made. */
424 static int gcse_subst_count;
425 /* Number of copy instructions created. */
426 static int gcse_create_count;
428 /* Doing code hoisting. */
429 static bool doing_code_hoisting_p = false;
431 /* For available exprs */
432 static sbitmap *ae_kill;
434 /* Data stored for each basic block. */
435 struct bb_data
437 /* Maximal register pressure inside basic block for given register class
438 (defined only for the pressure classes). */
439 int max_reg_pressure[N_REG_CLASSES];
440 /* Recorded register pressure of basic block before trying to hoist
441 an expression. Will be used to restore the register pressure
442 if the expression should not be hoisted. */
443 int old_pressure;
444 /* Recorded register live_in info of basic block during code hoisting
445 process. BACKUP is used to record live_in info before trying to
446 hoist an expression, and will be used to restore LIVE_IN if the
447 expression should not be hoisted. */
448 bitmap live_in, backup;
451 #define BB_DATA(bb) ((struct bb_data *) (bb)->aux)
453 static basic_block curr_bb;
455 /* Current register pressure for each pressure class. */
456 static int curr_reg_pressure[N_REG_CLASSES];
459 static void compute_can_copy (void);
460 static void *gmalloc (size_t) ATTRIBUTE_MALLOC;
461 static void *gcalloc (size_t, size_t) ATTRIBUTE_MALLOC;
462 static void *gcse_alloc (unsigned long);
463 static void alloc_gcse_mem (void);
464 static void free_gcse_mem (void);
465 static void hash_scan_insn (rtx, struct hash_table_d *);
466 static void hash_scan_set (rtx, rtx, struct hash_table_d *);
467 static void hash_scan_clobber (rtx, rtx, struct hash_table_d *);
468 static void hash_scan_call (rtx, rtx, struct hash_table_d *);
469 static int want_to_gcse_p (rtx, int *);
470 static int oprs_unchanged_p (const_rtx, const_rtx, int);
471 static int oprs_anticipatable_p (const_rtx, const_rtx);
472 static int oprs_available_p (const_rtx, const_rtx);
473 static void insert_expr_in_table (rtx, enum machine_mode, rtx, int, int, int,
474 struct hash_table_d *);
475 static unsigned int hash_expr (const_rtx, enum machine_mode, int *, int);
476 static void record_last_reg_set_info (rtx, int);
477 static void record_last_mem_set_info (rtx);
478 static void record_last_set_info (rtx, const_rtx, void *);
479 static void compute_hash_table (struct hash_table_d *);
480 static void alloc_hash_table (struct hash_table_d *);
481 static void free_hash_table (struct hash_table_d *);
482 static void compute_hash_table_work (struct hash_table_d *);
483 static void dump_hash_table (FILE *, const char *, struct hash_table_d *);
484 static void compute_transp (const_rtx, int, sbitmap *);
485 static void compute_local_properties (sbitmap *, sbitmap *, sbitmap *,
486 struct hash_table_d *);
487 static void mems_conflict_for_gcse_p (rtx, const_rtx, void *);
488 static int load_killed_in_block_p (const_basic_block, int, const_rtx, int);
489 static void canon_list_insert (rtx, const_rtx, void *);
490 static void alloc_pre_mem (int, int);
491 static void free_pre_mem (void);
492 static struct edge_list *compute_pre_data (void);
493 static int pre_expr_reaches_here_p (basic_block, struct expr *,
494 basic_block);
495 static void insert_insn_end_basic_block (struct expr *, basic_block);
496 static void pre_insert_copy_insn (struct expr *, rtx);
497 static void pre_insert_copies (void);
498 static int pre_delete (void);
499 static int pre_gcse (struct edge_list *);
500 static int one_pre_gcse_pass (void);
501 static void add_label_notes (rtx, rtx);
502 static void alloc_code_hoist_mem (int, int);
503 static void free_code_hoist_mem (void);
504 static void compute_code_hoist_vbeinout (void);
505 static void compute_code_hoist_data (void);
506 static int should_hoist_expr_to_dom (basic_block, struct expr *, basic_block,
507 sbitmap, int, int *, enum reg_class,
508 int *, bitmap, rtx);
509 static int hoist_code (void);
510 static enum reg_class get_regno_pressure_class (int regno, int *nregs);
511 static enum reg_class get_pressure_class_and_nregs (rtx insn, int *nregs);
512 static int one_code_hoisting_pass (void);
513 static rtx process_insert_insn (struct expr *);
514 static int pre_edge_insert (struct edge_list *, struct expr **);
515 static int pre_expr_reaches_here_p_work (basic_block, struct expr *,
516 basic_block, char *);
517 static struct ls_expr * ldst_entry (rtx);
518 static void free_ldst_entry (struct ls_expr *);
519 static void free_ld_motion_mems (void);
520 static void print_ldst_list (FILE *);
521 static struct ls_expr * find_rtx_in_ldst (rtx);
522 static int simple_mem (const_rtx);
523 static void invalidate_any_buried_refs (rtx);
524 static void compute_ld_motion_mems (void);
525 static void trim_ld_motion_mems (void);
526 static void update_ld_motion_stores (struct expr *);
527 static void clear_modify_mem_tables (void);
528 static void free_modify_mem_tables (void);
529 static rtx gcse_emit_move_after (rtx, rtx, rtx);
530 static bool is_too_expensive (const char *);
532 #define GNEW(T) ((T *) gmalloc (sizeof (T)))
533 #define GCNEW(T) ((T *) gcalloc (1, sizeof (T)))
535 #define GNEWVEC(T, N) ((T *) gmalloc (sizeof (T) * (N)))
536 #define GCNEWVEC(T, N) ((T *) gcalloc ((N), sizeof (T)))
538 #define GNEWVAR(T, S) ((T *) gmalloc ((S)))
539 #define GCNEWVAR(T, S) ((T *) gcalloc (1, (S)))
541 #define GOBNEW(T) ((T *) gcse_alloc (sizeof (T)))
542 #define GOBNEWVAR(T, S) ((T *) gcse_alloc ((S)))
544 /* Misc. utilities. */
546 #define can_copy \
547 (this_target_gcse->x_can_copy)
548 #define can_copy_init_p \
549 (this_target_gcse->x_can_copy_init_p)
551 /* Compute which modes support reg/reg copy operations. */
553 static void
554 compute_can_copy (void)
556 int i;
557 #ifndef AVOID_CCMODE_COPIES
558 rtx reg, insn;
559 #endif
560 memset (can_copy, 0, NUM_MACHINE_MODES);
562 start_sequence ();
563 for (i = 0; i < NUM_MACHINE_MODES; i++)
564 if (GET_MODE_CLASS (i) == MODE_CC)
566 #ifdef AVOID_CCMODE_COPIES
567 can_copy[i] = 0;
568 #else
569 reg = gen_rtx_REG ((enum machine_mode) i, LAST_VIRTUAL_REGISTER + 1);
570 insn = emit_insn (gen_rtx_SET (VOIDmode, reg, reg));
571 if (recog (PATTERN (insn), insn, NULL) >= 0)
572 can_copy[i] = 1;
573 #endif
575 else
576 can_copy[i] = 1;
578 end_sequence ();
581 /* Returns whether the mode supports reg/reg copy operations. */
583 bool
584 can_copy_p (enum machine_mode mode)
586 if (! can_copy_init_p)
588 compute_can_copy ();
589 can_copy_init_p = true;
592 return can_copy[mode] != 0;
595 /* Cover function to xmalloc to record bytes allocated. */
597 static void *
598 gmalloc (size_t size)
600 bytes_used += size;
601 return xmalloc (size);
604 /* Cover function to xcalloc to record bytes allocated. */
606 static void *
607 gcalloc (size_t nelem, size_t elsize)
609 bytes_used += nelem * elsize;
610 return xcalloc (nelem, elsize);
613 /* Cover function to obstack_alloc. */
615 static void *
616 gcse_alloc (unsigned long size)
618 bytes_used += size;
619 return obstack_alloc (&gcse_obstack, size);
622 /* Allocate memory for the reg/memory set tracking tables.
623 This is called at the start of each pass. */
625 static void
626 alloc_gcse_mem (void)
628 /* Allocate vars to track sets of regs. */
629 reg_set_bitmap = ALLOC_REG_SET (NULL);
631 /* Allocate array to keep a list of insns which modify memory in each
632 basic block. The two typedefs are needed to work around the
633 pre-processor limitation with template types in macro arguments. */
634 typedef vec<rtx> vec_rtx_heap;
635 typedef vec<modify_pair> vec_modify_pair_heap;
636 modify_mem_list = GCNEWVEC (vec_rtx_heap, last_basic_block_for_fn (cfun));
637 canon_modify_mem_list = GCNEWVEC (vec_modify_pair_heap,
638 last_basic_block_for_fn (cfun));
639 modify_mem_list_set = BITMAP_ALLOC (NULL);
640 blocks_with_calls = BITMAP_ALLOC (NULL);
643 /* Free memory allocated by alloc_gcse_mem. */
645 static void
646 free_gcse_mem (void)
648 FREE_REG_SET (reg_set_bitmap);
650 free_modify_mem_tables ();
651 BITMAP_FREE (modify_mem_list_set);
652 BITMAP_FREE (blocks_with_calls);
655 /* Compute the local properties of each recorded expression.
657 Local properties are those that are defined by the block, irrespective of
658 other blocks.
660 An expression is transparent in a block if its operands are not modified
661 in the block.
663 An expression is computed (locally available) in a block if it is computed
664 at least once and expression would contain the same value if the
665 computation was moved to the end of the block.
667 An expression is locally anticipatable in a block if it is computed at
668 least once and expression would contain the same value if the computation
669 was moved to the beginning of the block.
671 We call this routine for pre and code hoisting. They all compute
672 basically the same information and thus can easily share this code.
674 TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local
675 properties. If NULL, then it is not necessary to compute or record that
676 particular property.
678 TABLE controls which hash table to look at. */
680 static void
681 compute_local_properties (sbitmap *transp, sbitmap *comp, sbitmap *antloc,
682 struct hash_table_d *table)
684 unsigned int i;
686 /* Initialize any bitmaps that were passed in. */
687 if (transp)
689 bitmap_vector_ones (transp, last_basic_block_for_fn (cfun));
692 if (comp)
693 bitmap_vector_clear (comp, last_basic_block_for_fn (cfun));
694 if (antloc)
695 bitmap_vector_clear (antloc, last_basic_block_for_fn (cfun));
697 for (i = 0; i < table->size; i++)
699 struct expr *expr;
701 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
703 int indx = expr->bitmap_index;
704 struct occr *occr;
706 /* The expression is transparent in this block if it is not killed.
707 We start by assuming all are transparent [none are killed], and
708 then reset the bits for those that are. */
709 if (transp)
710 compute_transp (expr->expr, indx, transp);
712 /* The occurrences recorded in antic_occr are exactly those that
713 we want to set to nonzero in ANTLOC. */
714 if (antloc)
715 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
717 bitmap_set_bit (antloc[BLOCK_FOR_INSN (occr->insn)->index], indx);
719 /* While we're scanning the table, this is a good place to
720 initialize this. */
721 occr->deleted_p = 0;
724 /* The occurrences recorded in avail_occr are exactly those that
725 we want to set to nonzero in COMP. */
726 if (comp)
727 for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
729 bitmap_set_bit (comp[BLOCK_FOR_INSN (occr->insn)->index], indx);
731 /* While we're scanning the table, this is a good place to
732 initialize this. */
733 occr->copied_p = 0;
736 /* While we're scanning the table, this is a good place to
737 initialize this. */
738 expr->reaching_reg = 0;
743 /* Hash table support. */
745 struct reg_avail_info
747 basic_block last_bb;
748 int first_set;
749 int last_set;
752 static struct reg_avail_info *reg_avail_info;
753 static basic_block current_bb;
755 /* See whether X, the source of a set, is something we want to consider for
756 GCSE. */
758 static int
759 want_to_gcse_p (rtx x, int *max_distance_ptr)
761 #ifdef STACK_REGS
762 /* On register stack architectures, don't GCSE constants from the
763 constant pool, as the benefits are often swamped by the overhead
764 of shuffling the register stack between basic blocks. */
765 if (IS_STACK_MODE (GET_MODE (x)))
766 x = avoid_constant_pool_reference (x);
767 #endif
769 /* GCSE'ing constants:
771 We do not specifically distinguish between constant and non-constant
772 expressions in PRE and Hoist. We use set_src_cost below to limit
773 the maximum distance simple expressions can travel.
775 Nevertheless, constants are much easier to GCSE, and, hence,
776 it is easy to overdo the optimizations. Usually, excessive PRE and
777 Hoisting of constant leads to increased register pressure.
779 RA can deal with this by rematerialing some of the constants.
780 Therefore, it is important that the back-end generates sets of constants
781 in a way that allows reload rematerialize them under high register
782 pressure, i.e., a pseudo register with REG_EQUAL to constant
783 is set only once. Failing to do so will result in IRA/reload
784 spilling such constants under high register pressure instead of
785 rematerializing them. */
787 switch (GET_CODE (x))
789 case REG:
790 case SUBREG:
791 case CALL:
792 return 0;
794 CASE_CONST_ANY:
795 if (!doing_code_hoisting_p)
796 /* Do not PRE constants. */
797 return 0;
799 /* FALLTHRU */
801 default:
802 if (doing_code_hoisting_p)
803 /* PRE doesn't implement max_distance restriction. */
805 int cost;
806 int max_distance;
808 gcc_assert (!optimize_function_for_speed_p (cfun)
809 && optimize_function_for_size_p (cfun));
810 cost = set_src_cost (x, 0);
812 if (cost < COSTS_N_INSNS (GCSE_UNRESTRICTED_COST))
814 max_distance = (GCSE_COST_DISTANCE_RATIO * cost) / 10;
815 if (max_distance == 0)
816 return 0;
818 gcc_assert (max_distance > 0);
820 else
821 max_distance = 0;
823 if (max_distance_ptr)
824 *max_distance_ptr = max_distance;
827 return can_assign_to_reg_without_clobbers_p (x);
831 /* Used internally by can_assign_to_reg_without_clobbers_p. */
833 static GTY(()) rtx test_insn;
835 /* Return true if we can assign X to a pseudo register such that the
836 resulting insn does not result in clobbering a hard register as a
837 side-effect.
839 Additionally, if the target requires it, check that the resulting insn
840 can be copied. If it cannot, this means that X is special and probably
841 has hidden side-effects we don't want to mess with.
843 This function is typically used by code motion passes, to verify
844 that it is safe to insert an insn without worrying about clobbering
845 maybe live hard regs. */
847 bool
848 can_assign_to_reg_without_clobbers_p (rtx x)
850 int num_clobbers = 0;
851 int icode;
853 /* If this is a valid operand, we are OK. If it's VOIDmode, we aren't. */
854 if (general_operand (x, GET_MODE (x)))
855 return 1;
856 else if (GET_MODE (x) == VOIDmode)
857 return 0;
859 /* Otherwise, check if we can make a valid insn from it. First initialize
860 our test insn if we haven't already. */
861 if (test_insn == 0)
863 test_insn
864 = make_insn_raw (gen_rtx_SET (VOIDmode,
865 gen_rtx_REG (word_mode,
866 FIRST_PSEUDO_REGISTER * 2),
867 const0_rtx));
868 NEXT_INSN (test_insn) = PREV_INSN (test_insn) = 0;
871 /* Now make an insn like the one we would make when GCSE'ing and see if
872 valid. */
873 PUT_MODE (SET_DEST (PATTERN (test_insn)), GET_MODE (x));
874 SET_SRC (PATTERN (test_insn)) = x;
876 icode = recog (PATTERN (test_insn), test_insn, &num_clobbers);
877 if (icode < 0)
878 return false;
880 if (num_clobbers > 0 && added_clobbers_hard_reg_p (icode))
881 return false;
883 if (targetm.cannot_copy_insn_p && targetm.cannot_copy_insn_p (test_insn))
884 return false;
886 return true;
889 /* Return nonzero if the operands of expression X are unchanged from the
890 start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
891 or from INSN to the end of INSN's basic block (if AVAIL_P != 0). */
893 static int
894 oprs_unchanged_p (const_rtx x, const_rtx insn, int avail_p)
896 int i, j;
897 enum rtx_code code;
898 const char *fmt;
900 if (x == 0)
901 return 1;
903 code = GET_CODE (x);
904 switch (code)
906 case REG:
908 struct reg_avail_info *info = &reg_avail_info[REGNO (x)];
910 if (info->last_bb != current_bb)
911 return 1;
912 if (avail_p)
913 return info->last_set < DF_INSN_LUID (insn);
914 else
915 return info->first_set >= DF_INSN_LUID (insn);
918 case MEM:
919 if (! flag_gcse_lm
920 || load_killed_in_block_p (current_bb, DF_INSN_LUID (insn),
921 x, avail_p))
922 return 0;
923 else
924 return oprs_unchanged_p (XEXP (x, 0), insn, avail_p);
926 case PRE_DEC:
927 case PRE_INC:
928 case POST_DEC:
929 case POST_INC:
930 case PRE_MODIFY:
931 case POST_MODIFY:
932 return 0;
934 case PC:
935 case CC0: /*FIXME*/
936 case CONST:
937 CASE_CONST_ANY:
938 case SYMBOL_REF:
939 case LABEL_REF:
940 case ADDR_VEC:
941 case ADDR_DIFF_VEC:
942 return 1;
944 default:
945 break;
948 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
950 if (fmt[i] == 'e')
952 /* If we are about to do the last recursive call needed at this
953 level, change it into iteration. This function is called enough
954 to be worth it. */
955 if (i == 0)
956 return oprs_unchanged_p (XEXP (x, i), insn, avail_p);
958 else if (! oprs_unchanged_p (XEXP (x, i), insn, avail_p))
959 return 0;
961 else if (fmt[i] == 'E')
962 for (j = 0; j < XVECLEN (x, i); j++)
963 if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, avail_p))
964 return 0;
967 return 1;
970 /* Info passed from load_killed_in_block_p to mems_conflict_for_gcse_p. */
972 struct mem_conflict_info
974 /* A memory reference for a load instruction, mems_conflict_for_gcse_p will
975 see if a memory store conflicts with this memory load. */
976 const_rtx mem;
978 /* True if mems_conflict_for_gcse_p finds a conflict between two memory
979 references. */
980 bool conflict;
983 /* DEST is the output of an instruction. If it is a memory reference and
984 possibly conflicts with the load found in DATA, then communicate this
985 information back through DATA. */
987 static void
988 mems_conflict_for_gcse_p (rtx dest, const_rtx setter ATTRIBUTE_UNUSED,
989 void *data)
991 struct mem_conflict_info *mci = (struct mem_conflict_info *) data;
993 while (GET_CODE (dest) == SUBREG
994 || GET_CODE (dest) == ZERO_EXTRACT
995 || GET_CODE (dest) == STRICT_LOW_PART)
996 dest = XEXP (dest, 0);
998 /* If DEST is not a MEM, then it will not conflict with the load. Note
999 that function calls are assumed to clobber memory, but are handled
1000 elsewhere. */
1001 if (! MEM_P (dest))
1002 return;
1004 /* If we are setting a MEM in our list of specially recognized MEMs,
1005 don't mark as killed this time. */
1006 if (pre_ldst_mems != NULL && expr_equiv_p (dest, mci->mem))
1008 if (!find_rtx_in_ldst (dest))
1009 mci->conflict = true;
1010 return;
1013 if (true_dependence (dest, GET_MODE (dest), mci->mem))
1014 mci->conflict = true;
1017 /* Return nonzero if the expression in X (a memory reference) is killed
1018 in block BB before or after the insn with the LUID in UID_LIMIT.
1019 AVAIL_P is nonzero for kills after UID_LIMIT, and zero for kills
1020 before UID_LIMIT.
1022 To check the entire block, set UID_LIMIT to max_uid + 1 and
1023 AVAIL_P to 0. */
1025 static int
1026 load_killed_in_block_p (const_basic_block bb, int uid_limit, const_rtx x,
1027 int avail_p)
1029 vec<rtx> list = modify_mem_list[bb->index];
1030 rtx setter;
1031 unsigned ix;
1033 /* If this is a readonly then we aren't going to be changing it. */
1034 if (MEM_READONLY_P (x))
1035 return 0;
1037 FOR_EACH_VEC_ELT_REVERSE (list, ix, setter)
1039 struct mem_conflict_info mci;
1041 /* Ignore entries in the list that do not apply. */
1042 if ((avail_p
1043 && DF_INSN_LUID (setter) < uid_limit)
1044 || (! avail_p
1045 && DF_INSN_LUID (setter) > uid_limit))
1046 continue;
1048 /* If SETTER is a call everything is clobbered. Note that calls
1049 to pure functions are never put on the list, so we need not
1050 worry about them. */
1051 if (CALL_P (setter))
1052 return 1;
1054 /* SETTER must be an INSN of some kind that sets memory. Call
1055 note_stores to examine each hunk of memory that is modified. */
1056 mci.mem = x;
1057 mci.conflict = false;
1058 note_stores (PATTERN (setter), mems_conflict_for_gcse_p, &mci);
1059 if (mci.conflict)
1060 return 1;
1062 return 0;
1065 /* Return nonzero if the operands of expression X are unchanged from
1066 the start of INSN's basic block up to but not including INSN. */
1068 static int
1069 oprs_anticipatable_p (const_rtx x, const_rtx insn)
1071 return oprs_unchanged_p (x, insn, 0);
1074 /* Return nonzero if the operands of expression X are unchanged from
1075 INSN to the end of INSN's basic block. */
1077 static int
1078 oprs_available_p (const_rtx x, const_rtx insn)
1080 return oprs_unchanged_p (x, insn, 1);
1083 /* Hash expression X.
1085 MODE is only used if X is a CONST_INT. DO_NOT_RECORD_P is a boolean
1086 indicating if a volatile operand is found or if the expression contains
1087 something we don't want to insert in the table. HASH_TABLE_SIZE is
1088 the current size of the hash table to be probed. */
1090 static unsigned int
1091 hash_expr (const_rtx x, enum machine_mode mode, int *do_not_record_p,
1092 int hash_table_size)
1094 unsigned int hash;
1096 *do_not_record_p = 0;
1098 hash = hash_rtx (x, mode, do_not_record_p, NULL, /*have_reg_qty=*/false);
1099 return hash % hash_table_size;
1102 /* Return nonzero if exp1 is equivalent to exp2. */
1104 static int
1105 expr_equiv_p (const_rtx x, const_rtx y)
1107 return exp_equiv_p (x, y, 0, true);
1110 /* Insert expression X in INSN in the hash TABLE.
1111 If it is already present, record it as the last occurrence in INSN's
1112 basic block.
1114 MODE is the mode of the value X is being stored into.
1115 It is only used if X is a CONST_INT.
1117 ANTIC_P is nonzero if X is an anticipatable expression.
1118 AVAIL_P is nonzero if X is an available expression.
1120 MAX_DISTANCE is the maximum distance in instructions this expression can
1121 be moved. */
1123 static void
1124 insert_expr_in_table (rtx x, enum machine_mode mode, rtx insn, int antic_p,
1125 int avail_p, int max_distance, struct hash_table_d *table)
1127 int found, do_not_record_p;
1128 unsigned int hash;
1129 struct expr *cur_expr, *last_expr = NULL;
1130 struct occr *antic_occr, *avail_occr;
1132 hash = hash_expr (x, mode, &do_not_record_p, table->size);
1134 /* Do not insert expression in table if it contains volatile operands,
1135 or if hash_expr determines the expression is something we don't want
1136 to or can't handle. */
1137 if (do_not_record_p)
1138 return;
1140 cur_expr = table->table[hash];
1141 found = 0;
1143 while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
1145 /* If the expression isn't found, save a pointer to the end of
1146 the list. */
1147 last_expr = cur_expr;
1148 cur_expr = cur_expr->next_same_hash;
1151 if (! found)
1153 cur_expr = GOBNEW (struct expr);
1154 bytes_used += sizeof (struct expr);
1155 if (table->table[hash] == NULL)
1156 /* This is the first pattern that hashed to this index. */
1157 table->table[hash] = cur_expr;
1158 else
1159 /* Add EXPR to end of this hash chain. */
1160 last_expr->next_same_hash = cur_expr;
1162 /* Set the fields of the expr element. */
1163 cur_expr->expr = x;
1164 cur_expr->bitmap_index = table->n_elems++;
1165 cur_expr->next_same_hash = NULL;
1166 cur_expr->antic_occr = NULL;
1167 cur_expr->avail_occr = NULL;
1168 gcc_assert (max_distance >= 0);
1169 cur_expr->max_distance = max_distance;
1171 else
1172 gcc_assert (cur_expr->max_distance == max_distance);
1174 /* Now record the occurrence(s). */
1175 if (antic_p)
1177 antic_occr = cur_expr->antic_occr;
1179 if (antic_occr
1180 && BLOCK_FOR_INSN (antic_occr->insn) != BLOCK_FOR_INSN (insn))
1181 antic_occr = NULL;
1183 if (antic_occr)
1184 /* Found another instance of the expression in the same basic block.
1185 Prefer the currently recorded one. We want the first one in the
1186 block and the block is scanned from start to end. */
1187 ; /* nothing to do */
1188 else
1190 /* First occurrence of this expression in this basic block. */
1191 antic_occr = GOBNEW (struct occr);
1192 bytes_used += sizeof (struct occr);
1193 antic_occr->insn = insn;
1194 antic_occr->next = cur_expr->antic_occr;
1195 antic_occr->deleted_p = 0;
1196 cur_expr->antic_occr = antic_occr;
1200 if (avail_p)
1202 avail_occr = cur_expr->avail_occr;
1204 if (avail_occr
1205 && BLOCK_FOR_INSN (avail_occr->insn) == BLOCK_FOR_INSN (insn))
1207 /* Found another instance of the expression in the same basic block.
1208 Prefer this occurrence to the currently recorded one. We want
1209 the last one in the block and the block is scanned from start
1210 to end. */
1211 avail_occr->insn = insn;
1213 else
1215 /* First occurrence of this expression in this basic block. */
1216 avail_occr = GOBNEW (struct occr);
1217 bytes_used += sizeof (struct occr);
1218 avail_occr->insn = insn;
1219 avail_occr->next = cur_expr->avail_occr;
1220 avail_occr->deleted_p = 0;
1221 cur_expr->avail_occr = avail_occr;
1226 /* Scan SET present in INSN and add an entry to the hash TABLE. */
1228 static void
1229 hash_scan_set (rtx set, rtx insn, struct hash_table_d *table)
1231 rtx src = SET_SRC (set);
1232 rtx dest = SET_DEST (set);
1233 rtx note;
1235 if (GET_CODE (src) == CALL)
1236 hash_scan_call (src, insn, table);
1238 else if (REG_P (dest))
1240 unsigned int regno = REGNO (dest);
1241 int max_distance = 0;
1243 /* See if a REG_EQUAL note shows this equivalent to a simpler expression.
1245 This allows us to do a single GCSE pass and still eliminate
1246 redundant constants, addresses or other expressions that are
1247 constructed with multiple instructions.
1249 However, keep the original SRC if INSN is a simple reg-reg move.
1250 In this case, there will almost always be a REG_EQUAL note on the
1251 insn that sets SRC. By recording the REG_EQUAL value here as SRC
1252 for INSN, we miss copy propagation opportunities and we perform the
1253 same PRE GCSE operation repeatedly on the same REG_EQUAL value if we
1254 do more than one PRE GCSE pass.
1256 Note that this does not impede profitable constant propagations. We
1257 "look through" reg-reg sets in lookup_avail_set. */
1258 note = find_reg_equal_equiv_note (insn);
1259 if (note != 0
1260 && REG_NOTE_KIND (note) == REG_EQUAL
1261 && !REG_P (src)
1262 && want_to_gcse_p (XEXP (note, 0), NULL))
1263 src = XEXP (note, 0), set = gen_rtx_SET (VOIDmode, dest, src);
1265 /* Only record sets of pseudo-regs in the hash table. */
1266 if (regno >= FIRST_PSEUDO_REGISTER
1267 /* Don't GCSE something if we can't do a reg/reg copy. */
1268 && can_copy_p (GET_MODE (dest))
1269 /* GCSE commonly inserts instruction after the insn. We can't
1270 do that easily for EH edges so disable GCSE on these for now. */
1271 /* ??? We can now easily create new EH landing pads at the
1272 gimple level, for splitting edges; there's no reason we
1273 can't do the same thing at the rtl level. */
1274 && !can_throw_internal (insn)
1275 /* Is SET_SRC something we want to gcse? */
1276 && want_to_gcse_p (src, &max_distance)
1277 /* Don't CSE a nop. */
1278 && ! set_noop_p (set)
1279 /* Don't GCSE if it has attached REG_EQUIV note.
1280 At this point this only function parameters should have
1281 REG_EQUIV notes and if the argument slot is used somewhere
1282 explicitly, it means address of parameter has been taken,
1283 so we should not extend the lifetime of the pseudo. */
1284 && (note == NULL_RTX || ! MEM_P (XEXP (note, 0))))
1286 /* An expression is not anticipatable if its operands are
1287 modified before this insn or if this is not the only SET in
1288 this insn. The latter condition does not have to mean that
1289 SRC itself is not anticipatable, but we just will not be
1290 able to handle code motion of insns with multiple sets. */
1291 int antic_p = oprs_anticipatable_p (src, insn)
1292 && !multiple_sets (insn);
1293 /* An expression is not available if its operands are
1294 subsequently modified, including this insn. It's also not
1295 available if this is a branch, because we can't insert
1296 a set after the branch. */
1297 int avail_p = (oprs_available_p (src, insn)
1298 && ! JUMP_P (insn));
1300 insert_expr_in_table (src, GET_MODE (dest), insn, antic_p, avail_p,
1301 max_distance, table);
1304 /* In case of store we want to consider the memory value as available in
1305 the REG stored in that memory. This makes it possible to remove
1306 redundant loads from due to stores to the same location. */
1307 else if (flag_gcse_las && REG_P (src) && MEM_P (dest))
1309 unsigned int regno = REGNO (src);
1310 int max_distance = 0;
1312 /* Only record sets of pseudo-regs in the hash table. */
1313 if (regno >= FIRST_PSEUDO_REGISTER
1314 /* Don't GCSE something if we can't do a reg/reg copy. */
1315 && can_copy_p (GET_MODE (src))
1316 /* GCSE commonly inserts instruction after the insn. We can't
1317 do that easily for EH edges so disable GCSE on these for now. */
1318 && !can_throw_internal (insn)
1319 /* Is SET_DEST something we want to gcse? */
1320 && want_to_gcse_p (dest, &max_distance)
1321 /* Don't CSE a nop. */
1322 && ! set_noop_p (set)
1323 /* Don't GCSE if it has attached REG_EQUIV note.
1324 At this point this only function parameters should have
1325 REG_EQUIV notes and if the argument slot is used somewhere
1326 explicitly, it means address of parameter has been taken,
1327 so we should not extend the lifetime of the pseudo. */
1328 && ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) == 0
1329 || ! MEM_P (XEXP (note, 0))))
1331 /* Stores are never anticipatable. */
1332 int antic_p = 0;
1333 /* An expression is not available if its operands are
1334 subsequently modified, including this insn. It's also not
1335 available if this is a branch, because we can't insert
1336 a set after the branch. */
1337 int avail_p = oprs_available_p (dest, insn)
1338 && ! JUMP_P (insn);
1340 /* Record the memory expression (DEST) in the hash table. */
1341 insert_expr_in_table (dest, GET_MODE (dest), insn,
1342 antic_p, avail_p, max_distance, table);
1347 static void
1348 hash_scan_clobber (rtx x ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED,
1349 struct hash_table_d *table ATTRIBUTE_UNUSED)
1351 /* Currently nothing to do. */
1354 static void
1355 hash_scan_call (rtx x ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED,
1356 struct hash_table_d *table ATTRIBUTE_UNUSED)
1358 /* Currently nothing to do. */
1361 /* Process INSN and add hash table entries as appropriate. */
1363 static void
1364 hash_scan_insn (rtx insn, struct hash_table_d *table)
1366 rtx pat = PATTERN (insn);
1367 int i;
1369 /* Pick out the sets of INSN and for other forms of instructions record
1370 what's been modified. */
1372 if (GET_CODE (pat) == SET)
1373 hash_scan_set (pat, insn, table);
1375 else if (GET_CODE (pat) == CLOBBER)
1376 hash_scan_clobber (pat, insn, table);
1378 else if (GET_CODE (pat) == CALL)
1379 hash_scan_call (pat, insn, table);
1381 else if (GET_CODE (pat) == PARALLEL)
1382 for (i = 0; i < XVECLEN (pat, 0); i++)
1384 rtx x = XVECEXP (pat, 0, i);
1386 if (GET_CODE (x) == SET)
1387 hash_scan_set (x, insn, table);
1388 else if (GET_CODE (x) == CLOBBER)
1389 hash_scan_clobber (x, insn, table);
1390 else if (GET_CODE (x) == CALL)
1391 hash_scan_call (x, insn, table);
1395 /* Dump the hash table TABLE to file FILE under the name NAME. */
1397 static void
1398 dump_hash_table (FILE *file, const char *name, struct hash_table_d *table)
1400 int i;
1401 /* Flattened out table, so it's printed in proper order. */
1402 struct expr **flat_table;
1403 unsigned int *hash_val;
1404 struct expr *expr;
1406 flat_table = XCNEWVEC (struct expr *, table->n_elems);
1407 hash_val = XNEWVEC (unsigned int, table->n_elems);
1409 for (i = 0; i < (int) table->size; i++)
1410 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
1412 flat_table[expr->bitmap_index] = expr;
1413 hash_val[expr->bitmap_index] = i;
1416 fprintf (file, "%s hash table (%d buckets, %d entries)\n",
1417 name, table->size, table->n_elems);
1419 for (i = 0; i < (int) table->n_elems; i++)
1420 if (flat_table[i] != 0)
1422 expr = flat_table[i];
1423 fprintf (file, "Index %d (hash value %d; max distance %d)\n ",
1424 expr->bitmap_index, hash_val[i], expr->max_distance);
1425 print_rtl (file, expr->expr);
1426 fprintf (file, "\n");
1429 fprintf (file, "\n");
1431 free (flat_table);
1432 free (hash_val);
1435 /* Record register first/last/block set information for REGNO in INSN.
1437 first_set records the first place in the block where the register
1438 is set and is used to compute "anticipatability".
1440 last_set records the last place in the block where the register
1441 is set and is used to compute "availability".
1443 last_bb records the block for which first_set and last_set are
1444 valid, as a quick test to invalidate them. */
1446 static void
1447 record_last_reg_set_info (rtx insn, int regno)
1449 struct reg_avail_info *info = &reg_avail_info[regno];
1450 int luid = DF_INSN_LUID (insn);
1452 info->last_set = luid;
1453 if (info->last_bb != current_bb)
1455 info->last_bb = current_bb;
1456 info->first_set = luid;
1460 /* Record all of the canonicalized MEMs of record_last_mem_set_info's insn.
1461 Note we store a pair of elements in the list, so they have to be
1462 taken off pairwise. */
1464 static void
1465 canon_list_insert (rtx dest ATTRIBUTE_UNUSED, const_rtx x ATTRIBUTE_UNUSED,
1466 void * v_insn)
1468 rtx dest_addr, insn;
1469 int bb;
1470 modify_pair pair;
1472 while (GET_CODE (dest) == SUBREG
1473 || GET_CODE (dest) == ZERO_EXTRACT
1474 || GET_CODE (dest) == STRICT_LOW_PART)
1475 dest = XEXP (dest, 0);
1477 /* If DEST is not a MEM, then it will not conflict with a load. Note
1478 that function calls are assumed to clobber memory, but are handled
1479 elsewhere. */
1481 if (! MEM_P (dest))
1482 return;
1484 dest_addr = get_addr (XEXP (dest, 0));
1485 dest_addr = canon_rtx (dest_addr);
1486 insn = (rtx) v_insn;
1487 bb = BLOCK_FOR_INSN (insn)->index;
1489 pair.dest = dest;
1490 pair.dest_addr = dest_addr;
1491 canon_modify_mem_list[bb].safe_push (pair);
1494 /* Record memory modification information for INSN. We do not actually care
1495 about the memory location(s) that are set, or even how they are set (consider
1496 a CALL_INSN). We merely need to record which insns modify memory. */
1498 static void
1499 record_last_mem_set_info (rtx insn)
1501 int bb;
1503 if (! flag_gcse_lm)
1504 return;
1506 /* load_killed_in_block_p will handle the case of calls clobbering
1507 everything. */
1508 bb = BLOCK_FOR_INSN (insn)->index;
1509 modify_mem_list[bb].safe_push (insn);
1510 bitmap_set_bit (modify_mem_list_set, bb);
1512 if (CALL_P (insn))
1513 bitmap_set_bit (blocks_with_calls, bb);
1514 else
1515 note_stores (PATTERN (insn), canon_list_insert, (void*) insn);
1518 /* Called from compute_hash_table via note_stores to handle one
1519 SET or CLOBBER in an insn. DATA is really the instruction in which
1520 the SET is taking place. */
1522 static void
1523 record_last_set_info (rtx dest, const_rtx setter ATTRIBUTE_UNUSED, void *data)
1525 rtx last_set_insn = (rtx) data;
1527 if (GET_CODE (dest) == SUBREG)
1528 dest = SUBREG_REG (dest);
1530 if (REG_P (dest))
1531 record_last_reg_set_info (last_set_insn, REGNO (dest));
1532 else if (MEM_P (dest)
1533 /* Ignore pushes, they clobber nothing. */
1534 && ! push_operand (dest, GET_MODE (dest)))
1535 record_last_mem_set_info (last_set_insn);
1538 /* Top level function to create an expression hash table.
1540 Expression entries are placed in the hash table if
1541 - they are of the form (set (pseudo-reg) src),
1542 - src is something we want to perform GCSE on,
1543 - none of the operands are subsequently modified in the block
1545 Currently src must be a pseudo-reg or a const_int.
1547 TABLE is the table computed. */
1549 static void
1550 compute_hash_table_work (struct hash_table_d *table)
1552 int i;
1554 /* re-Cache any INSN_LIST nodes we have allocated. */
1555 clear_modify_mem_tables ();
1556 /* Some working arrays used to track first and last set in each block. */
1557 reg_avail_info = GNEWVEC (struct reg_avail_info, max_reg_num ());
1559 for (i = 0; i < max_reg_num (); ++i)
1560 reg_avail_info[i].last_bb = NULL;
1562 FOR_EACH_BB_FN (current_bb, cfun)
1564 rtx insn;
1565 unsigned int regno;
1567 /* First pass over the instructions records information used to
1568 determine when registers and memory are first and last set. */
1569 FOR_BB_INSNS (current_bb, insn)
1571 if (!NONDEBUG_INSN_P (insn))
1572 continue;
1574 if (CALL_P (insn))
1576 hard_reg_set_iterator hrsi;
1577 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call,
1578 0, regno, hrsi)
1579 record_last_reg_set_info (insn, regno);
1581 if (! RTL_CONST_OR_PURE_CALL_P (insn))
1582 record_last_mem_set_info (insn);
1585 note_stores (PATTERN (insn), record_last_set_info, insn);
1588 /* The next pass builds the hash table. */
1589 FOR_BB_INSNS (current_bb, insn)
1590 if (NONDEBUG_INSN_P (insn))
1591 hash_scan_insn (insn, table);
1594 free (reg_avail_info);
1595 reg_avail_info = NULL;
1598 /* Allocate space for the set/expr hash TABLE.
1599 It is used to determine the number of buckets to use. */
1601 static void
1602 alloc_hash_table (struct hash_table_d *table)
1604 int n;
1606 n = get_max_insn_count ();
1608 table->size = n / 4;
1609 if (table->size < 11)
1610 table->size = 11;
1612 /* Attempt to maintain efficient use of hash table.
1613 Making it an odd number is simplest for now.
1614 ??? Later take some measurements. */
1615 table->size |= 1;
1616 n = table->size * sizeof (struct expr *);
1617 table->table = GNEWVAR (struct expr *, n);
1620 /* Free things allocated by alloc_hash_table. */
1622 static void
1623 free_hash_table (struct hash_table_d *table)
1625 free (table->table);
1628 /* Compute the expression hash table TABLE. */
1630 static void
1631 compute_hash_table (struct hash_table_d *table)
1633 /* Initialize count of number of entries in hash table. */
1634 table->n_elems = 0;
1635 memset (table->table, 0, table->size * sizeof (struct expr *));
1637 compute_hash_table_work (table);
1640 /* Expression tracking support. */
1642 /* Clear canon_modify_mem_list and modify_mem_list tables. */
1643 static void
1644 clear_modify_mem_tables (void)
1646 unsigned i;
1647 bitmap_iterator bi;
1649 EXECUTE_IF_SET_IN_BITMAP (modify_mem_list_set, 0, i, bi)
1651 modify_mem_list[i].release ();
1652 canon_modify_mem_list[i].release ();
1654 bitmap_clear (modify_mem_list_set);
1655 bitmap_clear (blocks_with_calls);
1658 /* Release memory used by modify_mem_list_set. */
1660 static void
1661 free_modify_mem_tables (void)
1663 clear_modify_mem_tables ();
1664 free (modify_mem_list);
1665 free (canon_modify_mem_list);
1666 modify_mem_list = 0;
1667 canon_modify_mem_list = 0;
1670 /* For each block, compute whether X is transparent. X is either an
1671 expression or an assignment [though we don't care which, for this context
1672 an assignment is treated as an expression]. For each block where an
1673 element of X is modified, reset the INDX bit in BMAP. */
1675 static void
1676 compute_transp (const_rtx x, int indx, sbitmap *bmap)
1678 int i, j;
1679 enum rtx_code code;
1680 const char *fmt;
1682 /* repeat is used to turn tail-recursion into iteration since GCC
1683 can't do it when there's no return value. */
1684 repeat:
1686 if (x == 0)
1687 return;
1689 code = GET_CODE (x);
1690 switch (code)
1692 case REG:
1694 df_ref def;
1695 for (def = DF_REG_DEF_CHAIN (REGNO (x));
1696 def;
1697 def = DF_REF_NEXT_REG (def))
1698 bitmap_clear_bit (bmap[DF_REF_BB (def)->index], indx);
1701 return;
1703 case MEM:
1704 if (! MEM_READONLY_P (x))
1706 bitmap_iterator bi;
1707 unsigned bb_index;
1708 rtx x_addr;
1710 x_addr = get_addr (XEXP (x, 0));
1711 x_addr = canon_rtx (x_addr);
1713 /* First handle all the blocks with calls. We don't need to
1714 do any list walking for them. */
1715 EXECUTE_IF_SET_IN_BITMAP (blocks_with_calls, 0, bb_index, bi)
1717 bitmap_clear_bit (bmap[bb_index], indx);
1720 /* Now iterate over the blocks which have memory modifications
1721 but which do not have any calls. */
1722 EXECUTE_IF_AND_COMPL_IN_BITMAP (modify_mem_list_set,
1723 blocks_with_calls,
1724 0, bb_index, bi)
1726 vec<modify_pair> list
1727 = canon_modify_mem_list[bb_index];
1728 modify_pair *pair;
1729 unsigned ix;
1731 FOR_EACH_VEC_ELT_REVERSE (list, ix, pair)
1733 rtx dest = pair->dest;
1734 rtx dest_addr = pair->dest_addr;
1736 if (canon_true_dependence (dest, GET_MODE (dest),
1737 dest_addr, x, x_addr))
1739 bitmap_clear_bit (bmap[bb_index], indx);
1740 break;
1746 x = XEXP (x, 0);
1747 goto repeat;
1749 case PC:
1750 case CC0: /*FIXME*/
1751 case CONST:
1752 CASE_CONST_ANY:
1753 case SYMBOL_REF:
1754 case LABEL_REF:
1755 case ADDR_VEC:
1756 case ADDR_DIFF_VEC:
1757 return;
1759 default:
1760 break;
1763 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
1765 if (fmt[i] == 'e')
1767 /* If we are about to do the last recursive call
1768 needed at this level, change it into iteration.
1769 This function is called enough to be worth it. */
1770 if (i == 0)
1772 x = XEXP (x, i);
1773 goto repeat;
1776 compute_transp (XEXP (x, i), indx, bmap);
1778 else if (fmt[i] == 'E')
1779 for (j = 0; j < XVECLEN (x, i); j++)
1780 compute_transp (XVECEXP (x, i, j), indx, bmap);
1784 /* Compute PRE+LCM working variables. */
1786 /* Local properties of expressions. */
1788 /* Nonzero for expressions that are transparent in the block. */
1789 static sbitmap *transp;
1791 /* Nonzero for expressions that are computed (available) in the block. */
1792 static sbitmap *comp;
1794 /* Nonzero for expressions that are locally anticipatable in the block. */
1795 static sbitmap *antloc;
1797 /* Nonzero for expressions where this block is an optimal computation
1798 point. */
1799 static sbitmap *pre_optimal;
1801 /* Nonzero for expressions which are redundant in a particular block. */
1802 static sbitmap *pre_redundant;
1804 /* Nonzero for expressions which should be inserted on a specific edge. */
1805 static sbitmap *pre_insert_map;
1807 /* Nonzero for expressions which should be deleted in a specific block. */
1808 static sbitmap *pre_delete_map;
1810 /* Allocate vars used for PRE analysis. */
1812 static void
1813 alloc_pre_mem (int n_blocks, int n_exprs)
1815 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
1816 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
1817 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
1819 pre_optimal = NULL;
1820 pre_redundant = NULL;
1821 pre_insert_map = NULL;
1822 pre_delete_map = NULL;
1823 ae_kill = sbitmap_vector_alloc (n_blocks, n_exprs);
1825 /* pre_insert and pre_delete are allocated later. */
1828 /* Free vars used for PRE analysis. */
1830 static void
1831 free_pre_mem (void)
1833 sbitmap_vector_free (transp);
1834 sbitmap_vector_free (comp);
1836 /* ANTLOC and AE_KILL are freed just after pre_lcm finishes. */
1838 if (pre_optimal)
1839 sbitmap_vector_free (pre_optimal);
1840 if (pre_redundant)
1841 sbitmap_vector_free (pre_redundant);
1842 if (pre_insert_map)
1843 sbitmap_vector_free (pre_insert_map);
1844 if (pre_delete_map)
1845 sbitmap_vector_free (pre_delete_map);
1847 transp = comp = NULL;
1848 pre_optimal = pre_redundant = pre_insert_map = pre_delete_map = NULL;
1851 /* Remove certain expressions from anticipatable and transparent
1852 sets of basic blocks that have incoming abnormal edge.
1853 For PRE remove potentially trapping expressions to avoid placing
1854 them on abnormal edges. For hoisting remove memory references that
1855 can be clobbered by calls. */
1857 static void
1858 prune_expressions (bool pre_p)
1860 sbitmap prune_exprs;
1861 struct expr *expr;
1862 unsigned int ui;
1863 basic_block bb;
1865 prune_exprs = sbitmap_alloc (expr_hash_table.n_elems);
1866 bitmap_clear (prune_exprs);
1867 for (ui = 0; ui < expr_hash_table.size; ui++)
1869 for (expr = expr_hash_table.table[ui]; expr; expr = expr->next_same_hash)
1871 /* Note potentially trapping expressions. */
1872 if (may_trap_p (expr->expr))
1874 bitmap_set_bit (prune_exprs, expr->bitmap_index);
1875 continue;
1878 if (!pre_p && MEM_P (expr->expr))
1879 /* Note memory references that can be clobbered by a call.
1880 We do not split abnormal edges in hoisting, so would
1881 a memory reference get hoisted along an abnormal edge,
1882 it would be placed /before/ the call. Therefore, only
1883 constant memory references can be hoisted along abnormal
1884 edges. */
1886 if (GET_CODE (XEXP (expr->expr, 0)) == SYMBOL_REF
1887 && CONSTANT_POOL_ADDRESS_P (XEXP (expr->expr, 0)))
1888 continue;
1890 if (MEM_READONLY_P (expr->expr)
1891 && !MEM_VOLATILE_P (expr->expr)
1892 && MEM_NOTRAP_P (expr->expr))
1893 /* Constant memory reference, e.g., a PIC address. */
1894 continue;
1896 /* ??? Optimally, we would use interprocedural alias
1897 analysis to determine if this mem is actually killed
1898 by this call. */
1900 bitmap_set_bit (prune_exprs, expr->bitmap_index);
1905 FOR_EACH_BB_FN (bb, cfun)
1907 edge e;
1908 edge_iterator ei;
1910 /* If the current block is the destination of an abnormal edge, we
1911 kill all trapping (for PRE) and memory (for hoist) expressions
1912 because we won't be able to properly place the instruction on
1913 the edge. So make them neither anticipatable nor transparent.
1914 This is fairly conservative.
1916 ??? For hoisting it may be necessary to check for set-and-jump
1917 instructions here, not just for abnormal edges. The general problem
1918 is that when an expression cannot not be placed right at the end of
1919 a basic block we should account for any side-effects of a subsequent
1920 jump instructions that could clobber the expression. It would
1921 be best to implement this check along the lines of
1922 should_hoist_expr_to_dom where the target block is already known
1923 and, hence, there's no need to conservatively prune expressions on
1924 "intermediate" set-and-jump instructions. */
1925 FOR_EACH_EDGE (e, ei, bb->preds)
1926 if ((e->flags & EDGE_ABNORMAL)
1927 && (pre_p || CALL_P (BB_END (e->src))))
1929 bitmap_and_compl (antloc[bb->index],
1930 antloc[bb->index], prune_exprs);
1931 bitmap_and_compl (transp[bb->index],
1932 transp[bb->index], prune_exprs);
1933 break;
1937 sbitmap_free (prune_exprs);
1940 /* It may be necessary to insert a large number of insns on edges to
1941 make the existing occurrences of expressions fully redundant. This
1942 routine examines the set of insertions and deletions and if the ratio
1943 of insertions to deletions is too high for a particular expression, then
1944 the expression is removed from the insertion/deletion sets.
1946 N_ELEMS is the number of elements in the hash table. */
1948 static void
1949 prune_insertions_deletions (int n_elems)
1951 sbitmap_iterator sbi;
1952 sbitmap prune_exprs;
1954 /* We always use I to iterate over blocks/edges and J to iterate over
1955 expressions. */
1956 unsigned int i, j;
1958 /* Counts for the number of times an expression needs to be inserted and
1959 number of times an expression can be removed as a result. */
1960 int *insertions = GCNEWVEC (int, n_elems);
1961 int *deletions = GCNEWVEC (int, n_elems);
1963 /* Set of expressions which require too many insertions relative to
1964 the number of deletions achieved. We will prune these out of the
1965 insertion/deletion sets. */
1966 prune_exprs = sbitmap_alloc (n_elems);
1967 bitmap_clear (prune_exprs);
1969 /* Iterate over the edges counting the number of times each expression
1970 needs to be inserted. */
1971 for (i = 0; i < (unsigned) n_edges_for_fn (cfun); i++)
1973 EXECUTE_IF_SET_IN_BITMAP (pre_insert_map[i], 0, j, sbi)
1974 insertions[j]++;
1977 /* Similarly for deletions, but those occur in blocks rather than on
1978 edges. */
1979 for (i = 0; i < (unsigned) last_basic_block_for_fn (cfun); i++)
1981 EXECUTE_IF_SET_IN_BITMAP (pre_delete_map[i], 0, j, sbi)
1982 deletions[j]++;
1985 /* Now that we have accurate counts, iterate over the elements in the
1986 hash table and see if any need too many insertions relative to the
1987 number of evaluations that can be removed. If so, mark them in
1988 PRUNE_EXPRS. */
1989 for (j = 0; j < (unsigned) n_elems; j++)
1990 if (deletions[j]
1991 && ((unsigned) insertions[j] / deletions[j]) > MAX_GCSE_INSERTION_RATIO)
1992 bitmap_set_bit (prune_exprs, j);
1994 /* Now prune PRE_INSERT_MAP and PRE_DELETE_MAP based on PRUNE_EXPRS. */
1995 EXECUTE_IF_SET_IN_BITMAP (prune_exprs, 0, j, sbi)
1997 for (i = 0; i < (unsigned) n_edges_for_fn (cfun); i++)
1998 bitmap_clear_bit (pre_insert_map[i], j);
2000 for (i = 0; i < (unsigned) last_basic_block_for_fn (cfun); i++)
2001 bitmap_clear_bit (pre_delete_map[i], j);
2004 sbitmap_free (prune_exprs);
2005 free (insertions);
2006 free (deletions);
2009 /* Top level routine to do the dataflow analysis needed by PRE. */
2011 static struct edge_list *
2012 compute_pre_data (void)
2014 struct edge_list *edge_list;
2015 basic_block bb;
2017 compute_local_properties (transp, comp, antloc, &expr_hash_table);
2018 prune_expressions (true);
2019 bitmap_vector_clear (ae_kill, last_basic_block_for_fn (cfun));
2021 /* Compute ae_kill for each basic block using:
2023 ~(TRANSP | COMP)
2026 FOR_EACH_BB_FN (bb, cfun)
2028 bitmap_ior (ae_kill[bb->index], transp[bb->index], comp[bb->index]);
2029 bitmap_not (ae_kill[bb->index], ae_kill[bb->index]);
2032 edge_list = pre_edge_lcm (expr_hash_table.n_elems, transp, comp, antloc,
2033 ae_kill, &pre_insert_map, &pre_delete_map);
2034 sbitmap_vector_free (antloc);
2035 antloc = NULL;
2036 sbitmap_vector_free (ae_kill);
2037 ae_kill = NULL;
2039 prune_insertions_deletions (expr_hash_table.n_elems);
2041 return edge_list;
2044 /* PRE utilities */
2046 /* Return nonzero if an occurrence of expression EXPR in OCCR_BB would reach
2047 block BB.
2049 VISITED is a pointer to a working buffer for tracking which BB's have
2050 been visited. It is NULL for the top-level call.
2052 We treat reaching expressions that go through blocks containing the same
2053 reaching expression as "not reaching". E.g. if EXPR is generated in blocks
2054 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
2055 2 as not reaching. The intent is to improve the probability of finding
2056 only one reaching expression and to reduce register lifetimes by picking
2057 the closest such expression. */
2059 static int
2060 pre_expr_reaches_here_p_work (basic_block occr_bb, struct expr *expr,
2061 basic_block bb, char *visited)
2063 edge pred;
2064 edge_iterator ei;
2066 FOR_EACH_EDGE (pred, ei, bb->preds)
2068 basic_block pred_bb = pred->src;
2070 if (pred->src == ENTRY_BLOCK_PTR_FOR_FN (cfun)
2071 /* Has predecessor has already been visited? */
2072 || visited[pred_bb->index])
2073 ;/* Nothing to do. */
2075 /* Does this predecessor generate this expression? */
2076 else if (bitmap_bit_p (comp[pred_bb->index], expr->bitmap_index))
2078 /* Is this the occurrence we're looking for?
2079 Note that there's only one generating occurrence per block
2080 so we just need to check the block number. */
2081 if (occr_bb == pred_bb)
2082 return 1;
2084 visited[pred_bb->index] = 1;
2086 /* Ignore this predecessor if it kills the expression. */
2087 else if (! bitmap_bit_p (transp[pred_bb->index], expr->bitmap_index))
2088 visited[pred_bb->index] = 1;
2090 /* Neither gen nor kill. */
2091 else
2093 visited[pred_bb->index] = 1;
2094 if (pre_expr_reaches_here_p_work (occr_bb, expr, pred_bb, visited))
2095 return 1;
2099 /* All paths have been checked. */
2100 return 0;
2103 /* The wrapper for pre_expr_reaches_here_work that ensures that any
2104 memory allocated for that function is returned. */
2106 static int
2107 pre_expr_reaches_here_p (basic_block occr_bb, struct expr *expr, basic_block bb)
2109 int rval;
2110 char *visited = XCNEWVEC (char, last_basic_block_for_fn (cfun));
2112 rval = pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited);
2114 free (visited);
2115 return rval;
2118 /* Generate RTL to copy an EXPR to its `reaching_reg' and return it. */
2120 static rtx
2121 process_insert_insn (struct expr *expr)
2123 rtx reg = expr->reaching_reg;
2124 /* Copy the expression to make sure we don't have any sharing issues. */
2125 rtx exp = copy_rtx (expr->expr);
2126 rtx pat;
2128 start_sequence ();
2130 /* If the expression is something that's an operand, like a constant,
2131 just copy it to a register. */
2132 if (general_operand (exp, GET_MODE (reg)))
2133 emit_move_insn (reg, exp);
2135 /* Otherwise, make a new insn to compute this expression and make sure the
2136 insn will be recognized (this also adds any needed CLOBBERs). */
2137 else
2139 rtx insn = emit_insn (gen_rtx_SET (VOIDmode, reg, exp));
2141 if (insn_invalid_p (insn, false))
2142 gcc_unreachable ();
2145 pat = get_insns ();
2146 end_sequence ();
2148 return pat;
2151 /* Add EXPR to the end of basic block BB.
2153 This is used by both the PRE and code hoisting. */
2155 static void
2156 insert_insn_end_basic_block (struct expr *expr, basic_block bb)
2158 rtx insn = BB_END (bb);
2159 rtx new_insn;
2160 rtx reg = expr->reaching_reg;
2161 int regno = REGNO (reg);
2162 rtx pat, pat_end;
2164 pat = process_insert_insn (expr);
2165 gcc_assert (pat && INSN_P (pat));
2167 pat_end = pat;
2168 while (NEXT_INSN (pat_end) != NULL_RTX)
2169 pat_end = NEXT_INSN (pat_end);
2171 /* If the last insn is a jump, insert EXPR in front [taking care to
2172 handle cc0, etc. properly]. Similarly we need to care trapping
2173 instructions in presence of non-call exceptions. */
2175 if (JUMP_P (insn)
2176 || (NONJUMP_INSN_P (insn)
2177 && (!single_succ_p (bb)
2178 || single_succ_edge (bb)->flags & EDGE_ABNORMAL)))
2180 #ifdef HAVE_cc0
2181 /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
2182 if cc0 isn't set. */
2183 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2184 if (note)
2185 insn = XEXP (note, 0);
2186 else
2188 rtx maybe_cc0_setter = prev_nonnote_insn (insn);
2189 if (maybe_cc0_setter
2190 && INSN_P (maybe_cc0_setter)
2191 && sets_cc0_p (PATTERN (maybe_cc0_setter)))
2192 insn = maybe_cc0_setter;
2194 #endif
2195 /* FIXME: What if something in cc0/jump uses value set in new insn? */
2196 new_insn = emit_insn_before_noloc (pat, insn, bb);
2199 /* Likewise if the last insn is a call, as will happen in the presence
2200 of exception handling. */
2201 else if (CALL_P (insn)
2202 && (!single_succ_p (bb)
2203 || single_succ_edge (bb)->flags & EDGE_ABNORMAL))
2205 /* Keeping in mind targets with small register classes and parameters
2206 in registers, we search backward and place the instructions before
2207 the first parameter is loaded. Do this for everyone for consistency
2208 and a presumption that we'll get better code elsewhere as well. */
2210 /* Since different machines initialize their parameter registers
2211 in different orders, assume nothing. Collect the set of all
2212 parameter registers. */
2213 insn = find_first_parameter_load (insn, BB_HEAD (bb));
2215 /* If we found all the parameter loads, then we want to insert
2216 before the first parameter load.
2218 If we did not find all the parameter loads, then we might have
2219 stopped on the head of the block, which could be a CODE_LABEL.
2220 If we inserted before the CODE_LABEL, then we would be putting
2221 the insn in the wrong basic block. In that case, put the insn
2222 after the CODE_LABEL. Also, respect NOTE_INSN_BASIC_BLOCK. */
2223 while (LABEL_P (insn)
2224 || NOTE_INSN_BASIC_BLOCK_P (insn))
2225 insn = NEXT_INSN (insn);
2227 new_insn = emit_insn_before_noloc (pat, insn, bb);
2229 else
2230 new_insn = emit_insn_after_noloc (pat, insn, bb);
2232 while (1)
2234 if (INSN_P (pat))
2235 add_label_notes (PATTERN (pat), new_insn);
2236 if (pat == pat_end)
2237 break;
2238 pat = NEXT_INSN (pat);
2241 gcse_create_count++;
2243 if (dump_file)
2245 fprintf (dump_file, "PRE/HOIST: end of bb %d, insn %d, ",
2246 bb->index, INSN_UID (new_insn));
2247 fprintf (dump_file, "copying expression %d to reg %d\n",
2248 expr->bitmap_index, regno);
2252 /* Insert partially redundant expressions on edges in the CFG to make
2253 the expressions fully redundant. */
2255 static int
2256 pre_edge_insert (struct edge_list *edge_list, struct expr **index_map)
2258 int e, i, j, num_edges, set_size, did_insert = 0;
2259 sbitmap *inserted;
2261 /* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge
2262 if it reaches any of the deleted expressions. */
2264 set_size = pre_insert_map[0]->size;
2265 num_edges = NUM_EDGES (edge_list);
2266 inserted = sbitmap_vector_alloc (num_edges, expr_hash_table.n_elems);
2267 bitmap_vector_clear (inserted, num_edges);
2269 for (e = 0; e < num_edges; e++)
2271 int indx;
2272 basic_block bb = INDEX_EDGE_PRED_BB (edge_list, e);
2274 for (i = indx = 0; i < set_size; i++, indx += SBITMAP_ELT_BITS)
2276 SBITMAP_ELT_TYPE insert = pre_insert_map[e]->elms[i];
2278 for (j = indx;
2279 insert && j < (int) expr_hash_table.n_elems;
2280 j++, insert >>= 1)
2281 if ((insert & 1) != 0 && index_map[j]->reaching_reg != NULL_RTX)
2283 struct expr *expr = index_map[j];
2284 struct occr *occr;
2286 /* Now look at each deleted occurrence of this expression. */
2287 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2289 if (! occr->deleted_p)
2290 continue;
2292 /* Insert this expression on this edge if it would
2293 reach the deleted occurrence in BB. */
2294 if (!bitmap_bit_p (inserted[e], j))
2296 rtx insn;
2297 edge eg = INDEX_EDGE (edge_list, e);
2299 /* We can't insert anything on an abnormal and
2300 critical edge, so we insert the insn at the end of
2301 the previous block. There are several alternatives
2302 detailed in Morgans book P277 (sec 10.5) for
2303 handling this situation. This one is easiest for
2304 now. */
2306 if (eg->flags & EDGE_ABNORMAL)
2307 insert_insn_end_basic_block (index_map[j], bb);
2308 else
2310 insn = process_insert_insn (index_map[j]);
2311 insert_insn_on_edge (insn, eg);
2314 if (dump_file)
2316 fprintf (dump_file, "PRE: edge (%d,%d), ",
2317 bb->index,
2318 INDEX_EDGE_SUCC_BB (edge_list, e)->index);
2319 fprintf (dump_file, "copy expression %d\n",
2320 expr->bitmap_index);
2323 update_ld_motion_stores (expr);
2324 bitmap_set_bit (inserted[e], j);
2325 did_insert = 1;
2326 gcse_create_count++;
2333 sbitmap_vector_free (inserted);
2334 return did_insert;
2337 /* Copy the result of EXPR->EXPR generated by INSN to EXPR->REACHING_REG.
2338 Given "old_reg <- expr" (INSN), instead of adding after it
2339 reaching_reg <- old_reg
2340 it's better to do the following:
2341 reaching_reg <- expr
2342 old_reg <- reaching_reg
2343 because this way copy propagation can discover additional PRE
2344 opportunities. But if this fails, we try the old way.
2345 When "expr" is a store, i.e.
2346 given "MEM <- old_reg", instead of adding after it
2347 reaching_reg <- old_reg
2348 it's better to add it before as follows:
2349 reaching_reg <- old_reg
2350 MEM <- reaching_reg. */
2352 static void
2353 pre_insert_copy_insn (struct expr *expr, rtx insn)
2355 rtx reg = expr->reaching_reg;
2356 int regno = REGNO (reg);
2357 int indx = expr->bitmap_index;
2358 rtx pat = PATTERN (insn);
2359 rtx set, first_set, new_insn;
2360 rtx old_reg;
2361 int i;
2363 /* This block matches the logic in hash_scan_insn. */
2364 switch (GET_CODE (pat))
2366 case SET:
2367 set = pat;
2368 break;
2370 case PARALLEL:
2371 /* Search through the parallel looking for the set whose
2372 source was the expression that we're interested in. */
2373 first_set = NULL_RTX;
2374 set = NULL_RTX;
2375 for (i = 0; i < XVECLEN (pat, 0); i++)
2377 rtx x = XVECEXP (pat, 0, i);
2378 if (GET_CODE (x) == SET)
2380 /* If the source was a REG_EQUAL or REG_EQUIV note, we
2381 may not find an equivalent expression, but in this
2382 case the PARALLEL will have a single set. */
2383 if (first_set == NULL_RTX)
2384 first_set = x;
2385 if (expr_equiv_p (SET_SRC (x), expr->expr))
2387 set = x;
2388 break;
2393 gcc_assert (first_set);
2394 if (set == NULL_RTX)
2395 set = first_set;
2396 break;
2398 default:
2399 gcc_unreachable ();
2402 if (REG_P (SET_DEST (set)))
2404 old_reg = SET_DEST (set);
2405 /* Check if we can modify the set destination in the original insn. */
2406 if (validate_change (insn, &SET_DEST (set), reg, 0))
2408 new_insn = gen_move_insn (old_reg, reg);
2409 new_insn = emit_insn_after (new_insn, insn);
2411 else
2413 new_insn = gen_move_insn (reg, old_reg);
2414 new_insn = emit_insn_after (new_insn, insn);
2417 else /* This is possible only in case of a store to memory. */
2419 old_reg = SET_SRC (set);
2420 new_insn = gen_move_insn (reg, old_reg);
2422 /* Check if we can modify the set source in the original insn. */
2423 if (validate_change (insn, &SET_SRC (set), reg, 0))
2424 new_insn = emit_insn_before (new_insn, insn);
2425 else
2426 new_insn = emit_insn_after (new_insn, insn);
2429 gcse_create_count++;
2431 if (dump_file)
2432 fprintf (dump_file,
2433 "PRE: bb %d, insn %d, copy expression %d in insn %d to reg %d\n",
2434 BLOCK_FOR_INSN (insn)->index, INSN_UID (new_insn), indx,
2435 INSN_UID (insn), regno);
2438 /* Copy available expressions that reach the redundant expression
2439 to `reaching_reg'. */
2441 static void
2442 pre_insert_copies (void)
2444 unsigned int i, added_copy;
2445 struct expr *expr;
2446 struct occr *occr;
2447 struct occr *avail;
2449 /* For each available expression in the table, copy the result to
2450 `reaching_reg' if the expression reaches a deleted one.
2452 ??? The current algorithm is rather brute force.
2453 Need to do some profiling. */
2455 for (i = 0; i < expr_hash_table.size; i++)
2456 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2458 /* If the basic block isn't reachable, PPOUT will be TRUE. However,
2459 we don't want to insert a copy here because the expression may not
2460 really be redundant. So only insert an insn if the expression was
2461 deleted. This test also avoids further processing if the
2462 expression wasn't deleted anywhere. */
2463 if (expr->reaching_reg == NULL)
2464 continue;
2466 /* Set when we add a copy for that expression. */
2467 added_copy = 0;
2469 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2471 if (! occr->deleted_p)
2472 continue;
2474 for (avail = expr->avail_occr; avail != NULL; avail = avail->next)
2476 rtx insn = avail->insn;
2478 /* No need to handle this one if handled already. */
2479 if (avail->copied_p)
2480 continue;
2482 /* Don't handle this one if it's a redundant one. */
2483 if (INSN_DELETED_P (insn))
2484 continue;
2486 /* Or if the expression doesn't reach the deleted one. */
2487 if (! pre_expr_reaches_here_p (BLOCK_FOR_INSN (avail->insn),
2488 expr,
2489 BLOCK_FOR_INSN (occr->insn)))
2490 continue;
2492 added_copy = 1;
2494 /* Copy the result of avail to reaching_reg. */
2495 pre_insert_copy_insn (expr, insn);
2496 avail->copied_p = 1;
2500 if (added_copy)
2501 update_ld_motion_stores (expr);
2505 /* Emit move from SRC to DEST noting the equivalence with expression computed
2506 in INSN. */
2508 static rtx
2509 gcse_emit_move_after (rtx dest, rtx src, rtx insn)
2511 rtx new_rtx;
2512 rtx set = single_set (insn), set2;
2513 rtx note;
2514 rtx eqv = NULL_RTX;
2516 /* This should never fail since we're creating a reg->reg copy
2517 we've verified to be valid. */
2519 new_rtx = emit_insn_after (gen_move_insn (dest, src), insn);
2521 /* Note the equivalence for local CSE pass. Take the note from the old
2522 set if there was one. Otherwise record the SET_SRC from the old set
2523 unless DEST is also an operand of the SET_SRC. */
2524 set2 = single_set (new_rtx);
2525 if (!set2 || !rtx_equal_p (SET_DEST (set2), dest))
2526 return new_rtx;
2527 if ((note = find_reg_equal_equiv_note (insn)))
2528 eqv = XEXP (note, 0);
2529 else if (! REG_P (dest)
2530 || ! reg_mentioned_p (dest, SET_SRC (set)))
2531 eqv = SET_SRC (set);
2533 if (eqv != NULL_RTX)
2534 set_unique_reg_note (new_rtx, REG_EQUAL, copy_insn_1 (eqv));
2536 return new_rtx;
2539 /* Delete redundant computations.
2540 Deletion is done by changing the insn to copy the `reaching_reg' of
2541 the expression into the result of the SET. It is left to later passes
2542 to propagate the copy or eliminate it.
2544 Return nonzero if a change is made. */
2546 static int
2547 pre_delete (void)
2549 unsigned int i;
2550 int changed;
2551 struct expr *expr;
2552 struct occr *occr;
2554 changed = 0;
2555 for (i = 0; i < expr_hash_table.size; i++)
2556 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2558 int indx = expr->bitmap_index;
2560 /* We only need to search antic_occr since we require ANTLOC != 0. */
2561 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2563 rtx insn = occr->insn;
2564 rtx set;
2565 basic_block bb = BLOCK_FOR_INSN (insn);
2567 /* We only delete insns that have a single_set. */
2568 if (bitmap_bit_p (pre_delete_map[bb->index], indx)
2569 && (set = single_set (insn)) != 0
2570 && dbg_cnt (pre_insn))
2572 /* Create a pseudo-reg to store the result of reaching
2573 expressions into. Get the mode for the new pseudo from
2574 the mode of the original destination pseudo. */
2575 if (expr->reaching_reg == NULL)
2576 expr->reaching_reg = gen_reg_rtx_and_attrs (SET_DEST (set));
2578 gcse_emit_move_after (SET_DEST (set), expr->reaching_reg, insn);
2579 delete_insn (insn);
2580 occr->deleted_p = 1;
2581 changed = 1;
2582 gcse_subst_count++;
2584 if (dump_file)
2586 fprintf (dump_file,
2587 "PRE: redundant insn %d (expression %d) in ",
2588 INSN_UID (insn), indx);
2589 fprintf (dump_file, "bb %d, reaching reg is %d\n",
2590 bb->index, REGNO (expr->reaching_reg));
2596 return changed;
2599 /* Perform GCSE optimizations using PRE.
2600 This is called by one_pre_gcse_pass after all the dataflow analysis
2601 has been done.
2603 This is based on the original Morel-Renvoise paper Fred Chow's thesis, and
2604 lazy code motion from Knoop, Ruthing and Steffen as described in Advanced
2605 Compiler Design and Implementation.
2607 ??? A new pseudo reg is created to hold the reaching expression. The nice
2608 thing about the classical approach is that it would try to use an existing
2609 reg. If the register can't be adequately optimized [i.e. we introduce
2610 reload problems], one could add a pass here to propagate the new register
2611 through the block.
2613 ??? We don't handle single sets in PARALLELs because we're [currently] not
2614 able to copy the rest of the parallel when we insert copies to create full
2615 redundancies from partial redundancies. However, there's no reason why we
2616 can't handle PARALLELs in the cases where there are no partial
2617 redundancies. */
2619 static int
2620 pre_gcse (struct edge_list *edge_list)
2622 unsigned int i;
2623 int did_insert, changed;
2624 struct expr **index_map;
2625 struct expr *expr;
2627 /* Compute a mapping from expression number (`bitmap_index') to
2628 hash table entry. */
2630 index_map = XCNEWVEC (struct expr *, expr_hash_table.n_elems);
2631 for (i = 0; i < expr_hash_table.size; i++)
2632 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2633 index_map[expr->bitmap_index] = expr;
2635 /* Delete the redundant insns first so that
2636 - we know what register to use for the new insns and for the other
2637 ones with reaching expressions
2638 - we know which insns are redundant when we go to create copies */
2640 changed = pre_delete ();
2641 did_insert = pre_edge_insert (edge_list, index_map);
2643 /* In other places with reaching expressions, copy the expression to the
2644 specially allocated pseudo-reg that reaches the redundant expr. */
2645 pre_insert_copies ();
2646 if (did_insert)
2648 commit_edge_insertions ();
2649 changed = 1;
2652 free (index_map);
2653 return changed;
2656 /* Top level routine to perform one PRE GCSE pass.
2658 Return nonzero if a change was made. */
2660 static int
2661 one_pre_gcse_pass (void)
2663 int changed = 0;
2665 gcse_subst_count = 0;
2666 gcse_create_count = 0;
2668 /* Return if there's nothing to do, or it is too expensive. */
2669 if (n_basic_blocks_for_fn (cfun) <= NUM_FIXED_BLOCKS + 1
2670 || is_too_expensive (_("PRE disabled")))
2671 return 0;
2673 /* We need alias. */
2674 init_alias_analysis ();
2676 bytes_used = 0;
2677 gcc_obstack_init (&gcse_obstack);
2678 alloc_gcse_mem ();
2680 alloc_hash_table (&expr_hash_table);
2681 add_noreturn_fake_exit_edges ();
2682 if (flag_gcse_lm)
2683 compute_ld_motion_mems ();
2685 compute_hash_table (&expr_hash_table);
2686 if (flag_gcse_lm)
2687 trim_ld_motion_mems ();
2688 if (dump_file)
2689 dump_hash_table (dump_file, "Expression", &expr_hash_table);
2691 if (expr_hash_table.n_elems > 0)
2693 struct edge_list *edge_list;
2694 alloc_pre_mem (last_basic_block_for_fn (cfun), expr_hash_table.n_elems);
2695 edge_list = compute_pre_data ();
2696 changed |= pre_gcse (edge_list);
2697 free_edge_list (edge_list);
2698 free_pre_mem ();
2701 if (flag_gcse_lm)
2702 free_ld_motion_mems ();
2703 remove_fake_exit_edges ();
2704 free_hash_table (&expr_hash_table);
2706 free_gcse_mem ();
2707 obstack_free (&gcse_obstack, NULL);
2709 /* We are finished with alias. */
2710 end_alias_analysis ();
2712 if (dump_file)
2714 fprintf (dump_file, "PRE GCSE of %s, %d basic blocks, %d bytes needed, ",
2715 current_function_name (), n_basic_blocks_for_fn (cfun),
2716 bytes_used);
2717 fprintf (dump_file, "%d substs, %d insns created\n",
2718 gcse_subst_count, gcse_create_count);
2721 return changed;
2724 /* If X contains any LABEL_REF's, add REG_LABEL_OPERAND notes for them
2725 to INSN. If such notes are added to an insn which references a
2726 CODE_LABEL, the LABEL_NUSES count is incremented. We have to add
2727 that note, because the following loop optimization pass requires
2728 them. */
2730 /* ??? If there was a jump optimization pass after gcse and before loop,
2731 then we would not need to do this here, because jump would add the
2732 necessary REG_LABEL_OPERAND and REG_LABEL_TARGET notes. */
2734 static void
2735 add_label_notes (rtx x, rtx insn)
2737 enum rtx_code code = GET_CODE (x);
2738 int i, j;
2739 const char *fmt;
2741 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
2743 /* This code used to ignore labels that referred to dispatch tables to
2744 avoid flow generating (slightly) worse code.
2746 We no longer ignore such label references (see LABEL_REF handling in
2747 mark_jump_label for additional information). */
2749 /* There's no reason for current users to emit jump-insns with
2750 such a LABEL_REF, so we don't have to handle REG_LABEL_TARGET
2751 notes. */
2752 gcc_assert (!JUMP_P (insn));
2753 add_reg_note (insn, REG_LABEL_OPERAND, XEXP (x, 0));
2755 if (LABEL_P (XEXP (x, 0)))
2756 LABEL_NUSES (XEXP (x, 0))++;
2758 return;
2761 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2763 if (fmt[i] == 'e')
2764 add_label_notes (XEXP (x, i), insn);
2765 else if (fmt[i] == 'E')
2766 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2767 add_label_notes (XVECEXP (x, i, j), insn);
2771 /* Code Hoisting variables and subroutines. */
2773 /* Very busy expressions. */
2774 static sbitmap *hoist_vbein;
2775 static sbitmap *hoist_vbeout;
2777 /* ??? We could compute post dominators and run this algorithm in
2778 reverse to perform tail merging, doing so would probably be
2779 more effective than the tail merging code in jump.c.
2781 It's unclear if tail merging could be run in parallel with
2782 code hoisting. It would be nice. */
2784 /* Allocate vars used for code hoisting analysis. */
2786 static void
2787 alloc_code_hoist_mem (int n_blocks, int n_exprs)
2789 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
2790 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
2791 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
2793 hoist_vbein = sbitmap_vector_alloc (n_blocks, n_exprs);
2794 hoist_vbeout = sbitmap_vector_alloc (n_blocks, n_exprs);
2797 /* Free vars used for code hoisting analysis. */
2799 static void
2800 free_code_hoist_mem (void)
2802 sbitmap_vector_free (antloc);
2803 sbitmap_vector_free (transp);
2804 sbitmap_vector_free (comp);
2806 sbitmap_vector_free (hoist_vbein);
2807 sbitmap_vector_free (hoist_vbeout);
2809 free_dominance_info (CDI_DOMINATORS);
2812 /* Compute the very busy expressions at entry/exit from each block.
2814 An expression is very busy if all paths from a given point
2815 compute the expression. */
2817 static void
2818 compute_code_hoist_vbeinout (void)
2820 int changed, passes;
2821 basic_block bb;
2823 bitmap_vector_clear (hoist_vbeout, last_basic_block_for_fn (cfun));
2824 bitmap_vector_clear (hoist_vbein, last_basic_block_for_fn (cfun));
2826 passes = 0;
2827 changed = 1;
2829 while (changed)
2831 changed = 0;
2833 /* We scan the blocks in the reverse order to speed up
2834 the convergence. */
2835 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2837 if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
2839 bitmap_intersection_of_succs (hoist_vbeout[bb->index],
2840 hoist_vbein, bb);
2842 /* Include expressions in VBEout that are calculated
2843 in BB and available at its end. */
2844 bitmap_ior (hoist_vbeout[bb->index],
2845 hoist_vbeout[bb->index], comp[bb->index]);
2848 changed |= bitmap_or_and (hoist_vbein[bb->index],
2849 antloc[bb->index],
2850 hoist_vbeout[bb->index],
2851 transp[bb->index]);
2854 passes++;
2857 if (dump_file)
2859 fprintf (dump_file, "hoisting vbeinout computation: %d passes\n", passes);
2861 FOR_EACH_BB_FN (bb, cfun)
2863 fprintf (dump_file, "vbein (%d): ", bb->index);
2864 dump_bitmap_file (dump_file, hoist_vbein[bb->index]);
2865 fprintf (dump_file, "vbeout(%d): ", bb->index);
2866 dump_bitmap_file (dump_file, hoist_vbeout[bb->index]);
2871 /* Top level routine to do the dataflow analysis needed by code hoisting. */
2873 static void
2874 compute_code_hoist_data (void)
2876 compute_local_properties (transp, comp, antloc, &expr_hash_table);
2877 prune_expressions (false);
2878 compute_code_hoist_vbeinout ();
2879 calculate_dominance_info (CDI_DOMINATORS);
2880 if (dump_file)
2881 fprintf (dump_file, "\n");
2884 /* Update register pressure for BB when hoisting an expression from
2885 instruction FROM, if live ranges of inputs are shrunk. Also
2886 maintain live_in information if live range of register referred
2887 in FROM is shrunk.
2889 Return 0 if register pressure doesn't change, otherwise return
2890 the number by which register pressure is decreased.
2892 NOTE: Register pressure won't be increased in this function. */
2894 static int
2895 update_bb_reg_pressure (basic_block bb, rtx from)
2897 rtx dreg, insn;
2898 basic_block succ_bb;
2899 df_ref *op, op_ref;
2900 edge succ;
2901 edge_iterator ei;
2902 int decreased_pressure = 0;
2903 int nregs;
2904 enum reg_class pressure_class;
2906 for (op = DF_INSN_USES (from); *op; op++)
2908 dreg = DF_REF_REAL_REG (*op);
2909 /* The live range of register is shrunk only if it isn't:
2910 1. referred on any path from the end of this block to EXIT, or
2911 2. referred by insns other than FROM in this block. */
2912 FOR_EACH_EDGE (succ, ei, bb->succs)
2914 succ_bb = succ->dest;
2915 if (succ_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
2916 continue;
2918 if (bitmap_bit_p (BB_DATA (succ_bb)->live_in, REGNO (dreg)))
2919 break;
2921 if (succ != NULL)
2922 continue;
2924 op_ref = DF_REG_USE_CHAIN (REGNO (dreg));
2925 for (; op_ref; op_ref = DF_REF_NEXT_REG (op_ref))
2927 if (!DF_REF_INSN_INFO (op_ref))
2928 continue;
2930 insn = DF_REF_INSN (op_ref);
2931 if (BLOCK_FOR_INSN (insn) == bb
2932 && NONDEBUG_INSN_P (insn) && insn != from)
2933 break;
2936 pressure_class = get_regno_pressure_class (REGNO (dreg), &nregs);
2937 /* Decrease register pressure and update live_in information for
2938 this block. */
2939 if (!op_ref && pressure_class != NO_REGS)
2941 decreased_pressure += nregs;
2942 BB_DATA (bb)->max_reg_pressure[pressure_class] -= nregs;
2943 bitmap_clear_bit (BB_DATA (bb)->live_in, REGNO (dreg));
2946 return decreased_pressure;
2949 /* Determine if the expression EXPR should be hoisted to EXPR_BB up in
2950 flow graph, if it can reach BB unimpared. Stop the search if the
2951 expression would need to be moved more than DISTANCE instructions.
2953 DISTANCE is the number of instructions through which EXPR can be
2954 hoisted up in flow graph.
2956 BB_SIZE points to an array which contains the number of instructions
2957 for each basic block.
2959 PRESSURE_CLASS and NREGS are register class and number of hard registers
2960 for storing EXPR.
2962 HOISTED_BBS points to a bitmap indicating basic blocks through which
2963 EXPR is hoisted.
2965 FROM is the instruction from which EXPR is hoisted.
2967 It's unclear exactly what Muchnick meant by "unimpared". It seems
2968 to me that the expression must either be computed or transparent in
2969 *every* block in the path(s) from EXPR_BB to BB. Any other definition
2970 would allow the expression to be hoisted out of loops, even if
2971 the expression wasn't a loop invariant.
2973 Contrast this to reachability for PRE where an expression is
2974 considered reachable if *any* path reaches instead of *all*
2975 paths. */
2977 static int
2978 should_hoist_expr_to_dom (basic_block expr_bb, struct expr *expr,
2979 basic_block bb, sbitmap visited, int distance,
2980 int *bb_size, enum reg_class pressure_class,
2981 int *nregs, bitmap hoisted_bbs, rtx from)
2983 unsigned int i;
2984 edge pred;
2985 edge_iterator ei;
2986 sbitmap_iterator sbi;
2987 int visited_allocated_locally = 0;
2988 int decreased_pressure = 0;
2990 if (flag_ira_hoist_pressure)
2992 /* Record old information of basic block BB when it is visited
2993 at the first time. */
2994 if (!bitmap_bit_p (hoisted_bbs, bb->index))
2996 struct bb_data *data = BB_DATA (bb);
2997 bitmap_copy (data->backup, data->live_in);
2998 data->old_pressure = data->max_reg_pressure[pressure_class];
3000 decreased_pressure = update_bb_reg_pressure (bb, from);
3002 /* Terminate the search if distance, for which EXPR is allowed to move,
3003 is exhausted. */
3004 if (distance > 0)
3006 if (flag_ira_hoist_pressure)
3008 /* Prefer to hoist EXPR if register pressure is decreased. */
3009 if (decreased_pressure > *nregs)
3010 distance += bb_size[bb->index];
3011 /* Let EXPR be hoisted through basic block at no cost if one
3012 of following conditions is satisfied:
3014 1. The basic block has low register pressure.
3015 2. Register pressure won't be increases after hoisting EXPR.
3017 Constant expressions is handled conservatively, because
3018 hoisting constant expression aggressively results in worse
3019 code. This decision is made by the observation of CSiBE
3020 on ARM target, while it has no obvious effect on other
3021 targets like x86, x86_64, mips and powerpc. */
3022 else if (CONST_INT_P (expr->expr)
3023 || (BB_DATA (bb)->max_reg_pressure[pressure_class]
3024 >= ira_class_hard_regs_num[pressure_class]
3025 && decreased_pressure < *nregs))
3026 distance -= bb_size[bb->index];
3028 else
3029 distance -= bb_size[bb->index];
3031 if (distance <= 0)
3032 return 0;
3034 else
3035 gcc_assert (distance == 0);
3037 if (visited == NULL)
3039 visited_allocated_locally = 1;
3040 visited = sbitmap_alloc (last_basic_block_for_fn (cfun));
3041 bitmap_clear (visited);
3044 FOR_EACH_EDGE (pred, ei, bb->preds)
3046 basic_block pred_bb = pred->src;
3048 if (pred->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
3049 break;
3050 else if (pred_bb == expr_bb)
3051 continue;
3052 else if (bitmap_bit_p (visited, pred_bb->index))
3053 continue;
3054 else if (! bitmap_bit_p (transp[pred_bb->index], expr->bitmap_index))
3055 break;
3056 /* Not killed. */
3057 else
3059 bitmap_set_bit (visited, pred_bb->index);
3060 if (! should_hoist_expr_to_dom (expr_bb, expr, pred_bb,
3061 visited, distance, bb_size,
3062 pressure_class, nregs,
3063 hoisted_bbs, from))
3064 break;
3067 if (visited_allocated_locally)
3069 /* If EXPR can be hoisted to expr_bb, record basic blocks through
3070 which EXPR is hoisted in hoisted_bbs. */
3071 if (flag_ira_hoist_pressure && !pred)
3073 /* Record the basic block from which EXPR is hoisted. */
3074 bitmap_set_bit (visited, bb->index);
3075 EXECUTE_IF_SET_IN_BITMAP (visited, 0, i, sbi)
3076 bitmap_set_bit (hoisted_bbs, i);
3078 sbitmap_free (visited);
3081 return (pred == NULL);
3084 /* Find occurrence in BB. */
3086 static struct occr *
3087 find_occr_in_bb (struct occr *occr, basic_block bb)
3089 /* Find the right occurrence of this expression. */
3090 while (occr && BLOCK_FOR_INSN (occr->insn) != bb)
3091 occr = occr->next;
3093 return occr;
3096 /* Actually perform code hoisting.
3098 The code hoisting pass can hoist multiple computations of the same
3099 expression along dominated path to a dominating basic block, like
3100 from b2/b3 to b1 as depicted below:
3102 b1 ------
3103 /\ |
3104 / \ |
3105 bx by distance
3106 / \ |
3107 / \ |
3108 b2 b3 ------
3110 Unfortunately code hoisting generally extends the live range of an
3111 output pseudo register, which increases register pressure and hurts
3112 register allocation. To address this issue, an attribute MAX_DISTANCE
3113 is computed and attached to each expression. The attribute is computed
3114 from rtx cost of the corresponding expression and it's used to control
3115 how long the expression can be hoisted up in flow graph. As the
3116 expression is hoisted up in flow graph, GCC decreases its DISTANCE
3117 and stops the hoist if DISTANCE reaches 0. Code hoisting can decrease
3118 register pressure if live ranges of inputs are shrunk.
3120 Option "-fira-hoist-pressure" implements register pressure directed
3121 hoist based on upper method. The rationale is:
3122 1. Calculate register pressure for each basic block by reusing IRA
3123 facility.
3124 2. When expression is hoisted through one basic block, GCC checks
3125 the change of live ranges for inputs/output. The basic block's
3126 register pressure will be increased because of extended live
3127 range of output. However, register pressure will be decreased
3128 if the live ranges of inputs are shrunk.
3129 3. After knowing how hoisting affects register pressure, GCC prefers
3130 to hoist the expression if it can decrease register pressure, by
3131 increasing DISTANCE of the corresponding expression.
3132 4. If hoisting the expression increases register pressure, GCC checks
3133 register pressure of the basic block and decrease DISTANCE only if
3134 the register pressure is high. In other words, expression will be
3135 hoisted through at no cost if the basic block has low register
3136 pressure.
3137 5. Update register pressure information for basic blocks through
3138 which expression is hoisted. */
3140 static int
3141 hoist_code (void)
3143 basic_block bb, dominated;
3144 vec<basic_block> dom_tree_walk;
3145 unsigned int dom_tree_walk_index;
3146 vec<basic_block> domby;
3147 unsigned int i, j, k;
3148 struct expr **index_map;
3149 struct expr *expr;
3150 int *to_bb_head;
3151 int *bb_size;
3152 int changed = 0;
3153 struct bb_data *data;
3154 /* Basic blocks that have occurrences reachable from BB. */
3155 bitmap from_bbs;
3156 /* Basic blocks through which expr is hoisted. */
3157 bitmap hoisted_bbs = NULL;
3158 bitmap_iterator bi;
3160 /* Compute a mapping from expression number (`bitmap_index') to
3161 hash table entry. */
3163 index_map = XCNEWVEC (struct expr *, expr_hash_table.n_elems);
3164 for (i = 0; i < expr_hash_table.size; i++)
3165 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
3166 index_map[expr->bitmap_index] = expr;
3168 /* Calculate sizes of basic blocks and note how far
3169 each instruction is from the start of its block. We then use this
3170 data to restrict distance an expression can travel. */
3172 to_bb_head = XCNEWVEC (int, get_max_uid ());
3173 bb_size = XCNEWVEC (int, last_basic_block_for_fn (cfun));
3175 FOR_EACH_BB_FN (bb, cfun)
3177 rtx insn;
3178 int to_head;
3180 to_head = 0;
3181 FOR_BB_INSNS (bb, insn)
3183 /* Don't count debug instructions to avoid them affecting
3184 decision choices. */
3185 if (NONDEBUG_INSN_P (insn))
3186 to_bb_head[INSN_UID (insn)] = to_head++;
3189 bb_size[bb->index] = to_head;
3192 gcc_assert (EDGE_COUNT (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs) == 1
3193 && (EDGE_SUCC (ENTRY_BLOCK_PTR_FOR_FN (cfun), 0)->dest
3194 == ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb));
3196 from_bbs = BITMAP_ALLOC (NULL);
3197 if (flag_ira_hoist_pressure)
3198 hoisted_bbs = BITMAP_ALLOC (NULL);
3200 dom_tree_walk = get_all_dominated_blocks (CDI_DOMINATORS,
3201 ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb);
3203 /* Walk over each basic block looking for potentially hoistable
3204 expressions, nothing gets hoisted from the entry block. */
3205 FOR_EACH_VEC_ELT (dom_tree_walk, dom_tree_walk_index, bb)
3207 domby = get_dominated_to_depth (CDI_DOMINATORS, bb, MAX_HOIST_DEPTH);
3209 if (domby.length () == 0)
3210 continue;
3212 /* Examine each expression that is very busy at the exit of this
3213 block. These are the potentially hoistable expressions. */
3214 for (i = 0; i < SBITMAP_SIZE (hoist_vbeout[bb->index]); i++)
3216 if (bitmap_bit_p (hoist_vbeout[bb->index], i))
3218 int nregs = 0;
3219 enum reg_class pressure_class = NO_REGS;
3220 /* Current expression. */
3221 struct expr *expr = index_map[i];
3222 /* Number of occurrences of EXPR that can be hoisted to BB. */
3223 int hoistable = 0;
3224 /* Occurrences reachable from BB. */
3225 vec<occr_t> occrs_to_hoist = vNULL;
3226 /* We want to insert the expression into BB only once, so
3227 note when we've inserted it. */
3228 int insn_inserted_p;
3229 occr_t occr;
3231 /* If an expression is computed in BB and is available at end of
3232 BB, hoist all occurrences dominated by BB to BB. */
3233 if (bitmap_bit_p (comp[bb->index], i))
3235 occr = find_occr_in_bb (expr->antic_occr, bb);
3237 if (occr)
3239 /* An occurrence might've been already deleted
3240 while processing a dominator of BB. */
3241 if (!occr->deleted_p)
3243 gcc_assert (NONDEBUG_INSN_P (occr->insn));
3244 hoistable++;
3247 else
3248 hoistable++;
3251 /* We've found a potentially hoistable expression, now
3252 we look at every block BB dominates to see if it
3253 computes the expression. */
3254 FOR_EACH_VEC_ELT (domby, j, dominated)
3256 int max_distance;
3258 /* Ignore self dominance. */
3259 if (bb == dominated)
3260 continue;
3261 /* We've found a dominated block, now see if it computes
3262 the busy expression and whether or not moving that
3263 expression to the "beginning" of that block is safe. */
3264 if (!bitmap_bit_p (antloc[dominated->index], i))
3265 continue;
3267 occr = find_occr_in_bb (expr->antic_occr, dominated);
3268 gcc_assert (occr);
3270 /* An occurrence might've been already deleted
3271 while processing a dominator of BB. */
3272 if (occr->deleted_p)
3273 continue;
3274 gcc_assert (NONDEBUG_INSN_P (occr->insn));
3276 max_distance = expr->max_distance;
3277 if (max_distance > 0)
3278 /* Adjust MAX_DISTANCE to account for the fact that
3279 OCCR won't have to travel all of DOMINATED, but
3280 only part of it. */
3281 max_distance += (bb_size[dominated->index]
3282 - to_bb_head[INSN_UID (occr->insn)]);
3284 pressure_class = get_pressure_class_and_nregs (occr->insn,
3285 &nregs);
3287 /* Note if the expression should be hoisted from the dominated
3288 block to BB if it can reach DOMINATED unimpared.
3290 Keep track of how many times this expression is hoistable
3291 from a dominated block into BB. */
3292 if (should_hoist_expr_to_dom (bb, expr, dominated, NULL,
3293 max_distance, bb_size,
3294 pressure_class, &nregs,
3295 hoisted_bbs, occr->insn))
3297 hoistable++;
3298 occrs_to_hoist.safe_push (occr);
3299 bitmap_set_bit (from_bbs, dominated->index);
3303 /* If we found more than one hoistable occurrence of this
3304 expression, then note it in the vector of expressions to
3305 hoist. It makes no sense to hoist things which are computed
3306 in only one BB, and doing so tends to pessimize register
3307 allocation. One could increase this value to try harder
3308 to avoid any possible code expansion due to register
3309 allocation issues; however experiments have shown that
3310 the vast majority of hoistable expressions are only movable
3311 from two successors, so raising this threshold is likely
3312 to nullify any benefit we get from code hoisting. */
3313 if (hoistable > 1 && dbg_cnt (hoist_insn))
3315 /* If (hoistable != vec::length), then there is
3316 an occurrence of EXPR in BB itself. Don't waste
3317 time looking for LCA in this case. */
3318 if ((unsigned) hoistable == occrs_to_hoist.length ())
3320 basic_block lca;
3322 lca = nearest_common_dominator_for_set (CDI_DOMINATORS,
3323 from_bbs);
3324 if (lca != bb)
3325 /* Punt, it's better to hoist these occurrences to
3326 LCA. */
3327 occrs_to_hoist.release ();
3330 else
3331 /* Punt, no point hoisting a single occurrence. */
3332 occrs_to_hoist.release ();
3334 if (flag_ira_hoist_pressure
3335 && !occrs_to_hoist.is_empty ())
3337 /* Increase register pressure of basic blocks to which
3338 expr is hoisted because of extended live range of
3339 output. */
3340 data = BB_DATA (bb);
3341 data->max_reg_pressure[pressure_class] += nregs;
3342 EXECUTE_IF_SET_IN_BITMAP (hoisted_bbs, 0, k, bi)
3344 data = BB_DATA (BASIC_BLOCK_FOR_FN (cfun, k));
3345 data->max_reg_pressure[pressure_class] += nregs;
3348 else if (flag_ira_hoist_pressure)
3350 /* Restore register pressure and live_in info for basic
3351 blocks recorded in hoisted_bbs when expr will not be
3352 hoisted. */
3353 EXECUTE_IF_SET_IN_BITMAP (hoisted_bbs, 0, k, bi)
3355 data = BB_DATA (BASIC_BLOCK_FOR_FN (cfun, k));
3356 bitmap_copy (data->live_in, data->backup);
3357 data->max_reg_pressure[pressure_class]
3358 = data->old_pressure;
3362 if (flag_ira_hoist_pressure)
3363 bitmap_clear (hoisted_bbs);
3365 insn_inserted_p = 0;
3367 /* Walk through occurrences of I'th expressions we want
3368 to hoist to BB and make the transformations. */
3369 FOR_EACH_VEC_ELT (occrs_to_hoist, j, occr)
3371 rtx insn;
3372 rtx set;
3374 gcc_assert (!occr->deleted_p);
3376 insn = occr->insn;
3377 set = single_set (insn);
3378 gcc_assert (set);
3380 /* Create a pseudo-reg to store the result of reaching
3381 expressions into. Get the mode for the new pseudo
3382 from the mode of the original destination pseudo.
3384 It is important to use new pseudos whenever we
3385 emit a set. This will allow reload to use
3386 rematerialization for such registers. */
3387 if (!insn_inserted_p)
3388 expr->reaching_reg
3389 = gen_reg_rtx_and_attrs (SET_DEST (set));
3391 gcse_emit_move_after (SET_DEST (set), expr->reaching_reg,
3392 insn);
3393 delete_insn (insn);
3394 occr->deleted_p = 1;
3395 changed = 1;
3396 gcse_subst_count++;
3398 if (!insn_inserted_p)
3400 insert_insn_end_basic_block (expr, bb);
3401 insn_inserted_p = 1;
3405 occrs_to_hoist.release ();
3406 bitmap_clear (from_bbs);
3409 domby.release ();
3412 dom_tree_walk.release ();
3413 BITMAP_FREE (from_bbs);
3414 if (flag_ira_hoist_pressure)
3415 BITMAP_FREE (hoisted_bbs);
3417 free (bb_size);
3418 free (to_bb_head);
3419 free (index_map);
3421 return changed;
3424 /* Return pressure class and number of needed hard registers (through
3425 *NREGS) of register REGNO. */
3426 static enum reg_class
3427 get_regno_pressure_class (int regno, int *nregs)
3429 if (regno >= FIRST_PSEUDO_REGISTER)
3431 enum reg_class pressure_class;
3433 pressure_class = reg_allocno_class (regno);
3434 pressure_class = ira_pressure_class_translate[pressure_class];
3435 *nregs
3436 = ira_reg_class_max_nregs[pressure_class][PSEUDO_REGNO_MODE (regno)];
3437 return pressure_class;
3439 else if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno)
3440 && ! TEST_HARD_REG_BIT (eliminable_regset, regno))
3442 *nregs = 1;
3443 return ira_pressure_class_translate[REGNO_REG_CLASS (regno)];
3445 else
3447 *nregs = 0;
3448 return NO_REGS;
3452 /* Return pressure class and number of hard registers (through *NREGS)
3453 for destination of INSN. */
3454 static enum reg_class
3455 get_pressure_class_and_nregs (rtx insn, int *nregs)
3457 rtx reg;
3458 enum reg_class pressure_class;
3459 rtx set = single_set (insn);
3461 /* Considered invariant insns have only one set. */
3462 gcc_assert (set != NULL_RTX);
3463 reg = SET_DEST (set);
3464 if (GET_CODE (reg) == SUBREG)
3465 reg = SUBREG_REG (reg);
3466 if (MEM_P (reg))
3468 *nregs = 0;
3469 pressure_class = NO_REGS;
3471 else
3473 gcc_assert (REG_P (reg));
3474 pressure_class = reg_allocno_class (REGNO (reg));
3475 pressure_class = ira_pressure_class_translate[pressure_class];
3476 *nregs
3477 = ira_reg_class_max_nregs[pressure_class][GET_MODE (SET_SRC (set))];
3479 return pressure_class;
3482 /* Increase (if INCR_P) or decrease current register pressure for
3483 register REGNO. */
3484 static void
3485 change_pressure (int regno, bool incr_p)
3487 int nregs;
3488 enum reg_class pressure_class;
3490 pressure_class = get_regno_pressure_class (regno, &nregs);
3491 if (! incr_p)
3492 curr_reg_pressure[pressure_class] -= nregs;
3493 else
3495 curr_reg_pressure[pressure_class] += nregs;
3496 if (BB_DATA (curr_bb)->max_reg_pressure[pressure_class]
3497 < curr_reg_pressure[pressure_class])
3498 BB_DATA (curr_bb)->max_reg_pressure[pressure_class]
3499 = curr_reg_pressure[pressure_class];
3503 /* Calculate register pressure for each basic block by walking insns
3504 from last to first. */
3505 static void
3506 calculate_bb_reg_pressure (void)
3508 int i;
3509 unsigned int j;
3510 rtx insn;
3511 basic_block bb;
3512 bitmap curr_regs_live;
3513 bitmap_iterator bi;
3516 ira_setup_eliminable_regset ();
3517 curr_regs_live = BITMAP_ALLOC (&reg_obstack);
3518 FOR_EACH_BB_FN (bb, cfun)
3520 curr_bb = bb;
3521 BB_DATA (bb)->live_in = BITMAP_ALLOC (NULL);
3522 BB_DATA (bb)->backup = BITMAP_ALLOC (NULL);
3523 bitmap_copy (BB_DATA (bb)->live_in, df_get_live_in (bb));
3524 bitmap_copy (curr_regs_live, df_get_live_out (bb));
3525 for (i = 0; i < ira_pressure_classes_num; i++)
3526 curr_reg_pressure[ira_pressure_classes[i]] = 0;
3527 EXECUTE_IF_SET_IN_BITMAP (curr_regs_live, 0, j, bi)
3528 change_pressure (j, true);
3530 FOR_BB_INSNS_REVERSE (bb, insn)
3532 rtx dreg;
3533 int regno;
3534 df_ref *def_rec, *use_rec;
3536 if (! NONDEBUG_INSN_P (insn))
3537 continue;
3539 for (def_rec = DF_INSN_DEFS (insn); *def_rec; def_rec++)
3541 dreg = DF_REF_REAL_REG (*def_rec);
3542 gcc_assert (REG_P (dreg));
3543 regno = REGNO (dreg);
3544 if (!(DF_REF_FLAGS (*def_rec)
3545 & (DF_REF_PARTIAL | DF_REF_CONDITIONAL)))
3547 if (bitmap_clear_bit (curr_regs_live, regno))
3548 change_pressure (regno, false);
3552 for (use_rec = DF_INSN_USES (insn); *use_rec; use_rec++)
3554 dreg = DF_REF_REAL_REG (*use_rec);
3555 gcc_assert (REG_P (dreg));
3556 regno = REGNO (dreg);
3557 if (bitmap_set_bit (curr_regs_live, regno))
3558 change_pressure (regno, true);
3562 BITMAP_FREE (curr_regs_live);
3564 if (dump_file == NULL)
3565 return;
3567 fprintf (dump_file, "\nRegister Pressure: \n");
3568 FOR_EACH_BB_FN (bb, cfun)
3570 fprintf (dump_file, " Basic block %d: \n", bb->index);
3571 for (i = 0; (int) i < ira_pressure_classes_num; i++)
3573 enum reg_class pressure_class;
3575 pressure_class = ira_pressure_classes[i];
3576 if (BB_DATA (bb)->max_reg_pressure[pressure_class] == 0)
3577 continue;
3579 fprintf (dump_file, " %s=%d\n", reg_class_names[pressure_class],
3580 BB_DATA (bb)->max_reg_pressure[pressure_class]);
3583 fprintf (dump_file, "\n");
3586 /* Top level routine to perform one code hoisting (aka unification) pass
3588 Return nonzero if a change was made. */
3590 static int
3591 one_code_hoisting_pass (void)
3593 int changed = 0;
3595 gcse_subst_count = 0;
3596 gcse_create_count = 0;
3598 /* Return if there's nothing to do, or it is too expensive. */
3599 if (n_basic_blocks_for_fn (cfun) <= NUM_FIXED_BLOCKS + 1
3600 || is_too_expensive (_("GCSE disabled")))
3601 return 0;
3603 doing_code_hoisting_p = true;
3605 /* Calculate register pressure for each basic block. */
3606 if (flag_ira_hoist_pressure)
3608 regstat_init_n_sets_and_refs ();
3609 ira_set_pseudo_classes (false, dump_file);
3610 alloc_aux_for_blocks (sizeof (struct bb_data));
3611 calculate_bb_reg_pressure ();
3612 regstat_free_n_sets_and_refs ();
3615 /* We need alias. */
3616 init_alias_analysis ();
3618 bytes_used = 0;
3619 gcc_obstack_init (&gcse_obstack);
3620 alloc_gcse_mem ();
3622 alloc_hash_table (&expr_hash_table);
3623 compute_hash_table (&expr_hash_table);
3624 if (dump_file)
3625 dump_hash_table (dump_file, "Code Hosting Expressions", &expr_hash_table);
3627 if (expr_hash_table.n_elems > 0)
3629 alloc_code_hoist_mem (last_basic_block_for_fn (cfun),
3630 expr_hash_table.n_elems);
3631 compute_code_hoist_data ();
3632 changed = hoist_code ();
3633 free_code_hoist_mem ();
3636 if (flag_ira_hoist_pressure)
3638 free_aux_for_blocks ();
3639 free_reg_info ();
3641 free_hash_table (&expr_hash_table);
3642 free_gcse_mem ();
3643 obstack_free (&gcse_obstack, NULL);
3645 /* We are finished with alias. */
3646 end_alias_analysis ();
3648 if (dump_file)
3650 fprintf (dump_file, "HOIST of %s, %d basic blocks, %d bytes needed, ",
3651 current_function_name (), n_basic_blocks_for_fn (cfun),
3652 bytes_used);
3653 fprintf (dump_file, "%d substs, %d insns created\n",
3654 gcse_subst_count, gcse_create_count);
3657 doing_code_hoisting_p = false;
3659 return changed;
3662 /* Here we provide the things required to do store motion towards the exit.
3663 In order for this to be effective, gcse also needed to be taught how to
3664 move a load when it is killed only by a store to itself.
3666 int i;
3667 float a[10];
3669 void foo(float scale)
3671 for (i=0; i<10; i++)
3672 a[i] *= scale;
3675 'i' is both loaded and stored to in the loop. Normally, gcse cannot move
3676 the load out since its live around the loop, and stored at the bottom
3677 of the loop.
3679 The 'Load Motion' referred to and implemented in this file is
3680 an enhancement to gcse which when using edge based LCM, recognizes
3681 this situation and allows gcse to move the load out of the loop.
3683 Once gcse has hoisted the load, store motion can then push this
3684 load towards the exit, and we end up with no loads or stores of 'i'
3685 in the loop. */
3687 /* This will search the ldst list for a matching expression. If it
3688 doesn't find one, we create one and initialize it. */
3690 static struct ls_expr *
3691 ldst_entry (rtx x)
3693 int do_not_record_p = 0;
3694 struct ls_expr * ptr;
3695 unsigned int hash;
3696 ls_expr **slot;
3697 struct ls_expr e;
3699 hash = hash_rtx (x, GET_MODE (x), &do_not_record_p,
3700 NULL, /*have_reg_qty=*/false);
3702 e.pattern = x;
3703 slot = pre_ldst_table.find_slot_with_hash (&e, hash, INSERT);
3704 if (*slot)
3705 return *slot;
3707 ptr = XNEW (struct ls_expr);
3709 ptr->next = pre_ldst_mems;
3710 ptr->expr = NULL;
3711 ptr->pattern = x;
3712 ptr->pattern_regs = NULL_RTX;
3713 ptr->loads = NULL_RTX;
3714 ptr->stores = NULL_RTX;
3715 ptr->reaching_reg = NULL_RTX;
3716 ptr->invalid = 0;
3717 ptr->index = 0;
3718 ptr->hash_index = hash;
3719 pre_ldst_mems = ptr;
3720 *slot = ptr;
3722 return ptr;
3725 /* Free up an individual ldst entry. */
3727 static void
3728 free_ldst_entry (struct ls_expr * ptr)
3730 free_INSN_LIST_list (& ptr->loads);
3731 free_INSN_LIST_list (& ptr->stores);
3733 free (ptr);
3736 /* Free up all memory associated with the ldst list. */
3738 static void
3739 free_ld_motion_mems (void)
3741 if (pre_ldst_table.is_created ())
3742 pre_ldst_table.dispose ();
3744 while (pre_ldst_mems)
3746 struct ls_expr * tmp = pre_ldst_mems;
3748 pre_ldst_mems = pre_ldst_mems->next;
3750 free_ldst_entry (tmp);
3753 pre_ldst_mems = NULL;
3756 /* Dump debugging info about the ldst list. */
3758 static void
3759 print_ldst_list (FILE * file)
3761 struct ls_expr * ptr;
3763 fprintf (file, "LDST list: \n");
3765 for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
3767 fprintf (file, " Pattern (%3d): ", ptr->index);
3769 print_rtl (file, ptr->pattern);
3771 fprintf (file, "\n Loads : ");
3773 if (ptr->loads)
3774 print_rtl (file, ptr->loads);
3775 else
3776 fprintf (file, "(nil)");
3778 fprintf (file, "\n Stores : ");
3780 if (ptr->stores)
3781 print_rtl (file, ptr->stores);
3782 else
3783 fprintf (file, "(nil)");
3785 fprintf (file, "\n\n");
3788 fprintf (file, "\n");
3791 /* Returns 1 if X is in the list of ldst only expressions. */
3793 static struct ls_expr *
3794 find_rtx_in_ldst (rtx x)
3796 struct ls_expr e;
3797 ls_expr **slot;
3798 if (!pre_ldst_table.is_created ())
3799 return NULL;
3800 e.pattern = x;
3801 slot = pre_ldst_table.find_slot (&e, NO_INSERT);
3802 if (!slot || (*slot)->invalid)
3803 return NULL;
3804 return *slot;
3807 /* Load Motion for loads which only kill themselves. */
3809 /* Return true if x, a MEM, is a simple access with no side effects.
3810 These are the types of loads we consider for the ld_motion list,
3811 otherwise we let the usual aliasing take care of it. */
3813 static int
3814 simple_mem (const_rtx x)
3816 if (MEM_VOLATILE_P (x))
3817 return 0;
3819 if (GET_MODE (x) == BLKmode)
3820 return 0;
3822 /* If we are handling exceptions, we must be careful with memory references
3823 that may trap. If we are not, the behavior is undefined, so we may just
3824 continue. */
3825 if (cfun->can_throw_non_call_exceptions && may_trap_p (x))
3826 return 0;
3828 if (side_effects_p (x))
3829 return 0;
3831 /* Do not consider function arguments passed on stack. */
3832 if (reg_mentioned_p (stack_pointer_rtx, x))
3833 return 0;
3835 if (flag_float_store && FLOAT_MODE_P (GET_MODE (x)))
3836 return 0;
3838 return 1;
3841 /* Make sure there isn't a buried reference in this pattern anywhere.
3842 If there is, invalidate the entry for it since we're not capable
3843 of fixing it up just yet.. We have to be sure we know about ALL
3844 loads since the aliasing code will allow all entries in the
3845 ld_motion list to not-alias itself. If we miss a load, we will get
3846 the wrong value since gcse might common it and we won't know to
3847 fix it up. */
3849 static void
3850 invalidate_any_buried_refs (rtx x)
3852 const char * fmt;
3853 int i, j;
3854 struct ls_expr * ptr;
3856 /* Invalidate it in the list. */
3857 if (MEM_P (x) && simple_mem (x))
3859 ptr = ldst_entry (x);
3860 ptr->invalid = 1;
3863 /* Recursively process the insn. */
3864 fmt = GET_RTX_FORMAT (GET_CODE (x));
3866 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3868 if (fmt[i] == 'e')
3869 invalidate_any_buried_refs (XEXP (x, i));
3870 else if (fmt[i] == 'E')
3871 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3872 invalidate_any_buried_refs (XVECEXP (x, i, j));
3876 /* Find all the 'simple' MEMs which are used in LOADs and STORES. Simple
3877 being defined as MEM loads and stores to symbols, with no side effects
3878 and no registers in the expression. For a MEM destination, we also
3879 check that the insn is still valid if we replace the destination with a
3880 REG, as is done in update_ld_motion_stores. If there are any uses/defs
3881 which don't match this criteria, they are invalidated and trimmed out
3882 later. */
3884 static void
3885 compute_ld_motion_mems (void)
3887 struct ls_expr * ptr;
3888 basic_block bb;
3889 rtx insn;
3891 pre_ldst_mems = NULL;
3892 pre_ldst_table.create (13);
3894 FOR_EACH_BB_FN (bb, cfun)
3896 FOR_BB_INSNS (bb, insn)
3898 if (NONDEBUG_INSN_P (insn))
3900 if (GET_CODE (PATTERN (insn)) == SET)
3902 rtx src = SET_SRC (PATTERN (insn));
3903 rtx dest = SET_DEST (PATTERN (insn));
3904 rtx note = find_reg_equal_equiv_note (insn);
3905 rtx src_eq;
3907 /* Check for a simple LOAD... */
3908 if (MEM_P (src) && simple_mem (src))
3910 ptr = ldst_entry (src);
3911 if (REG_P (dest))
3912 ptr->loads = alloc_INSN_LIST (insn, ptr->loads);
3913 else
3914 ptr->invalid = 1;
3916 else
3918 /* Make sure there isn't a buried load somewhere. */
3919 invalidate_any_buried_refs (src);
3922 if (note != 0 && REG_NOTE_KIND (note) == REG_EQUAL)
3923 src_eq = XEXP (note, 0);
3924 else
3925 src_eq = NULL_RTX;
3927 if (src_eq != NULL_RTX
3928 && !(MEM_P (src_eq) && simple_mem (src_eq)))
3929 invalidate_any_buried_refs (src_eq);
3931 /* Check for stores. Don't worry about aliased ones, they
3932 will block any movement we might do later. We only care
3933 about this exact pattern since those are the only
3934 circumstance that we will ignore the aliasing info. */
3935 if (MEM_P (dest) && simple_mem (dest))
3937 ptr = ldst_entry (dest);
3939 if (! MEM_P (src)
3940 && GET_CODE (src) != ASM_OPERANDS
3941 /* Check for REG manually since want_to_gcse_p
3942 returns 0 for all REGs. */
3943 && can_assign_to_reg_without_clobbers_p (src))
3944 ptr->stores = alloc_INSN_LIST (insn, ptr->stores);
3945 else
3946 ptr->invalid = 1;
3949 else
3950 invalidate_any_buried_refs (PATTERN (insn));
3956 /* Remove any references that have been either invalidated or are not in the
3957 expression list for pre gcse. */
3959 static void
3960 trim_ld_motion_mems (void)
3962 struct ls_expr * * last = & pre_ldst_mems;
3963 struct ls_expr * ptr = pre_ldst_mems;
3965 while (ptr != NULL)
3967 struct expr * expr;
3969 /* Delete if entry has been made invalid. */
3970 if (! ptr->invalid)
3972 /* Delete if we cannot find this mem in the expression list. */
3973 unsigned int hash = ptr->hash_index % expr_hash_table.size;
3975 for (expr = expr_hash_table.table[hash];
3976 expr != NULL;
3977 expr = expr->next_same_hash)
3978 if (expr_equiv_p (expr->expr, ptr->pattern))
3979 break;
3981 else
3982 expr = (struct expr *) 0;
3984 if (expr)
3986 /* Set the expression field if we are keeping it. */
3987 ptr->expr = expr;
3988 last = & ptr->next;
3989 ptr = ptr->next;
3991 else
3993 *last = ptr->next;
3994 pre_ldst_table.remove_elt_with_hash (ptr, ptr->hash_index);
3995 free_ldst_entry (ptr);
3996 ptr = * last;
4000 /* Show the world what we've found. */
4001 if (dump_file && pre_ldst_mems != NULL)
4002 print_ldst_list (dump_file);
4005 /* This routine will take an expression which we are replacing with
4006 a reaching register, and update any stores that are needed if
4007 that expression is in the ld_motion list. Stores are updated by
4008 copying their SRC to the reaching register, and then storing
4009 the reaching register into the store location. These keeps the
4010 correct value in the reaching register for the loads. */
4012 static void
4013 update_ld_motion_stores (struct expr * expr)
4015 struct ls_expr * mem_ptr;
4017 if ((mem_ptr = find_rtx_in_ldst (expr->expr)))
4019 /* We can try to find just the REACHED stores, but is shouldn't
4020 matter to set the reaching reg everywhere... some might be
4021 dead and should be eliminated later. */
4023 /* We replace (set mem expr) with (set reg expr) (set mem reg)
4024 where reg is the reaching reg used in the load. We checked in
4025 compute_ld_motion_mems that we can replace (set mem expr) with
4026 (set reg expr) in that insn. */
4027 rtx list = mem_ptr->stores;
4029 for ( ; list != NULL_RTX; list = XEXP (list, 1))
4031 rtx insn = XEXP (list, 0);
4032 rtx pat = PATTERN (insn);
4033 rtx src = SET_SRC (pat);
4034 rtx reg = expr->reaching_reg;
4035 rtx copy;
4037 /* If we've already copied it, continue. */
4038 if (expr->reaching_reg == src)
4039 continue;
4041 if (dump_file)
4043 fprintf (dump_file, "PRE: store updated with reaching reg ");
4044 print_rtl (dump_file, reg);
4045 fprintf (dump_file, ":\n ");
4046 print_inline_rtx (dump_file, insn, 8);
4047 fprintf (dump_file, "\n");
4050 copy = gen_move_insn (reg, copy_rtx (SET_SRC (pat)));
4051 emit_insn_before (copy, insn);
4052 SET_SRC (pat) = reg;
4053 df_insn_rescan (insn);
4055 /* un-recognize this pattern since it's probably different now. */
4056 INSN_CODE (insn) = -1;
4057 gcse_create_count++;
4062 /* Return true if the graph is too expensive to optimize. PASS is the
4063 optimization about to be performed. */
4065 static bool
4066 is_too_expensive (const char *pass)
4068 /* Trying to perform global optimizations on flow graphs which have
4069 a high connectivity will take a long time and is unlikely to be
4070 particularly useful.
4072 In normal circumstances a cfg should have about twice as many
4073 edges as blocks. But we do not want to punish small functions
4074 which have a couple switch statements. Rather than simply
4075 threshold the number of blocks, uses something with a more
4076 graceful degradation. */
4077 if (n_edges_for_fn (cfun) > 20000 + n_basic_blocks_for_fn (cfun) * 4)
4079 warning (OPT_Wdisabled_optimization,
4080 "%s: %d basic blocks and %d edges/basic block",
4081 pass, n_basic_blocks_for_fn (cfun),
4082 n_edges_for_fn (cfun) / n_basic_blocks_for_fn (cfun));
4084 return true;
4087 /* If allocating memory for the dataflow bitmaps would take up too much
4088 storage it's better just to disable the optimization. */
4089 if ((n_basic_blocks_for_fn (cfun)
4090 * SBITMAP_SET_SIZE (max_reg_num ())
4091 * sizeof (SBITMAP_ELT_TYPE)) > MAX_GCSE_MEMORY)
4093 warning (OPT_Wdisabled_optimization,
4094 "%s: %d basic blocks and %d registers",
4095 pass, n_basic_blocks_for_fn (cfun), max_reg_num ());
4097 return true;
4100 return false;
4103 /* All the passes implemented in this file. Each pass has its
4104 own gate and execute function, and at the end of the file a
4105 pass definition for passes.c.
4107 We do not construct an accurate cfg in functions which call
4108 setjmp, so none of these passes runs if the function calls
4109 setjmp.
4110 FIXME: Should just handle setjmp via REG_SETJMP notes. */
4112 static bool
4113 gate_rtl_pre (void)
4115 return optimize > 0 && flag_gcse
4116 && !cfun->calls_setjmp
4117 && optimize_function_for_speed_p (cfun)
4118 && dbg_cnt (pre);
4121 static unsigned int
4122 execute_rtl_pre (void)
4124 int changed;
4125 delete_unreachable_blocks ();
4126 df_analyze ();
4127 changed = one_pre_gcse_pass ();
4128 flag_rerun_cse_after_global_opts |= changed;
4129 if (changed)
4130 cleanup_cfg (0);
4131 return 0;
4134 static bool
4135 gate_rtl_hoist (void)
4137 return optimize > 0 && flag_gcse
4138 && !cfun->calls_setjmp
4139 /* It does not make sense to run code hoisting unless we are optimizing
4140 for code size -- it rarely makes programs faster, and can make then
4141 bigger if we did PRE (when optimizing for space, we don't run PRE). */
4142 && optimize_function_for_size_p (cfun)
4143 && dbg_cnt (hoist);
4146 static unsigned int
4147 execute_rtl_hoist (void)
4149 int changed;
4150 delete_unreachable_blocks ();
4151 df_analyze ();
4152 changed = one_code_hoisting_pass ();
4153 flag_rerun_cse_after_global_opts |= changed;
4154 if (changed)
4155 cleanup_cfg (0);
4156 return 0;
4159 namespace {
4161 const pass_data pass_data_rtl_pre =
4163 RTL_PASS, /* type */
4164 "rtl pre", /* name */
4165 OPTGROUP_NONE, /* optinfo_flags */
4166 true, /* has_gate */
4167 true, /* has_execute */
4168 TV_PRE, /* tv_id */
4169 PROP_cfglayout, /* properties_required */
4170 0, /* properties_provided */
4171 0, /* properties_destroyed */
4172 0, /* todo_flags_start */
4173 ( TODO_df_finish | TODO_verify_rtl_sharing
4174 | TODO_verify_flow ), /* todo_flags_finish */
4177 class pass_rtl_pre : public rtl_opt_pass
4179 public:
4180 pass_rtl_pre (gcc::context *ctxt)
4181 : rtl_opt_pass (pass_data_rtl_pre, ctxt)
4184 /* opt_pass methods: */
4185 bool gate () { return gate_rtl_pre (); }
4186 unsigned int execute () { return execute_rtl_pre (); }
4188 }; // class pass_rtl_pre
4190 } // anon namespace
4192 rtl_opt_pass *
4193 make_pass_rtl_pre (gcc::context *ctxt)
4195 return new pass_rtl_pre (ctxt);
4198 namespace {
4200 const pass_data pass_data_rtl_hoist =
4202 RTL_PASS, /* type */
4203 "hoist", /* name */
4204 OPTGROUP_NONE, /* optinfo_flags */
4205 true, /* has_gate */
4206 true, /* has_execute */
4207 TV_HOIST, /* tv_id */
4208 PROP_cfglayout, /* properties_required */
4209 0, /* properties_provided */
4210 0, /* properties_destroyed */
4211 0, /* todo_flags_start */
4212 ( TODO_df_finish | TODO_verify_rtl_sharing
4213 | TODO_verify_flow ), /* todo_flags_finish */
4216 class pass_rtl_hoist : public rtl_opt_pass
4218 public:
4219 pass_rtl_hoist (gcc::context *ctxt)
4220 : rtl_opt_pass (pass_data_rtl_hoist, ctxt)
4223 /* opt_pass methods: */
4224 bool gate () { return gate_rtl_hoist (); }
4225 unsigned int execute () { return execute_rtl_hoist (); }
4227 }; // class pass_rtl_hoist
4229 } // anon namespace
4231 rtl_opt_pass *
4232 make_pass_rtl_hoist (gcc::context *ctxt)
4234 return new pass_rtl_hoist (ctxt);
4237 #include "gt-gcse.h"