* cse.c, tree-ssa-operands.c: Fix comment typos.
[official-gcc.git] / gcc / expmed.c
blobeeab02fadcfd9799d48c567e8c75b7776830a026
1 /* Medium-level subroutines: convert bit-field store and extract
2 and shifts, multiplies and divides to rtl instructions.
3 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "tm.h"
28 #include "toplev.h"
29 #include "rtl.h"
30 #include "tree.h"
31 #include "tm_p.h"
32 #include "flags.h"
33 #include "insn-config.h"
34 #include "expr.h"
35 #include "optabs.h"
36 #include "real.h"
37 #include "recog.h"
38 #include "langhooks.h"
40 static void store_fixed_bit_field (rtx, unsigned HOST_WIDE_INT,
41 unsigned HOST_WIDE_INT,
42 unsigned HOST_WIDE_INT, rtx);
43 static void store_split_bit_field (rtx, unsigned HOST_WIDE_INT,
44 unsigned HOST_WIDE_INT, rtx);
45 static rtx extract_fixed_bit_field (enum machine_mode, rtx,
46 unsigned HOST_WIDE_INT,
47 unsigned HOST_WIDE_INT,
48 unsigned HOST_WIDE_INT, rtx, int);
49 static rtx mask_rtx (enum machine_mode, int, int, int);
50 static rtx lshift_value (enum machine_mode, rtx, int, int);
51 static rtx extract_split_bit_field (rtx, unsigned HOST_WIDE_INT,
52 unsigned HOST_WIDE_INT, int);
53 static void do_cmp_and_jump (rtx, rtx, enum rtx_code, enum machine_mode, rtx);
54 static rtx expand_smod_pow2 (enum machine_mode, rtx, HOST_WIDE_INT);
55 static rtx expand_sdiv_pow2 (enum machine_mode, rtx, HOST_WIDE_INT);
57 /* Nonzero means divides or modulus operations are relatively cheap for
58 powers of two, so don't use branches; emit the operation instead.
59 Usually, this will mean that the MD file will emit non-branch
60 sequences. */
62 static bool sdiv_pow2_cheap[NUM_MACHINE_MODES];
63 static bool smod_pow2_cheap[NUM_MACHINE_MODES];
65 #ifndef SLOW_UNALIGNED_ACCESS
66 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
67 #endif
69 /* For compilers that support multiple targets with different word sizes,
70 MAX_BITS_PER_WORD contains the biggest value of BITS_PER_WORD. An example
71 is the H8/300(H) compiler. */
73 #ifndef MAX_BITS_PER_WORD
74 #define MAX_BITS_PER_WORD BITS_PER_WORD
75 #endif
77 /* Reduce conditional compilation elsewhere. */
78 #ifndef HAVE_insv
79 #define HAVE_insv 0
80 #define CODE_FOR_insv CODE_FOR_nothing
81 #define gen_insv(a,b,c,d) NULL_RTX
82 #endif
83 #ifndef HAVE_extv
84 #define HAVE_extv 0
85 #define CODE_FOR_extv CODE_FOR_nothing
86 #define gen_extv(a,b,c,d) NULL_RTX
87 #endif
88 #ifndef HAVE_extzv
89 #define HAVE_extzv 0
90 #define CODE_FOR_extzv CODE_FOR_nothing
91 #define gen_extzv(a,b,c,d) NULL_RTX
92 #endif
94 /* Cost of various pieces of RTL. Note that some of these are indexed by
95 shift count and some by mode. */
96 static int zero_cost;
97 static int add_cost[NUM_MACHINE_MODES];
98 static int neg_cost[NUM_MACHINE_MODES];
99 static int shift_cost[NUM_MACHINE_MODES][MAX_BITS_PER_WORD];
100 static int shiftadd_cost[NUM_MACHINE_MODES][MAX_BITS_PER_WORD];
101 static int shiftsub_cost[NUM_MACHINE_MODES][MAX_BITS_PER_WORD];
102 static int mul_cost[NUM_MACHINE_MODES];
103 static int div_cost[NUM_MACHINE_MODES];
104 static int mul_widen_cost[NUM_MACHINE_MODES];
105 static int mul_highpart_cost[NUM_MACHINE_MODES];
107 void
108 init_expmed (void)
110 struct
112 struct rtx_def reg; rtunion reg_fld[2];
113 struct rtx_def plus; rtunion plus_fld1;
114 struct rtx_def neg;
115 struct rtx_def udiv; rtunion udiv_fld1;
116 struct rtx_def mult; rtunion mult_fld1;
117 struct rtx_def div; rtunion div_fld1;
118 struct rtx_def mod; rtunion mod_fld1;
119 struct rtx_def zext;
120 struct rtx_def wide_mult; rtunion wide_mult_fld1;
121 struct rtx_def wide_lshr; rtunion wide_lshr_fld1;
122 struct rtx_def wide_trunc;
123 struct rtx_def shift; rtunion shift_fld1;
124 struct rtx_def shift_mult; rtunion shift_mult_fld1;
125 struct rtx_def shift_add; rtunion shift_add_fld1;
126 struct rtx_def shift_sub; rtunion shift_sub_fld1;
127 } all;
129 rtx pow2[MAX_BITS_PER_WORD];
130 rtx cint[MAX_BITS_PER_WORD];
131 int m, n;
132 enum machine_mode mode, wider_mode;
134 zero_cost = rtx_cost (const0_rtx, 0);
136 for (m = 1; m < MAX_BITS_PER_WORD; m++)
138 pow2[m] = GEN_INT ((HOST_WIDE_INT) 1 << m);
139 cint[m] = GEN_INT (m);
142 memset (&all, 0, sizeof all);
144 PUT_CODE (&all.reg, REG);
145 REGNO (&all.reg) = 10000;
147 PUT_CODE (&all.plus, PLUS);
148 XEXP (&all.plus, 0) = &all.reg;
149 XEXP (&all.plus, 1) = &all.reg;
151 PUT_CODE (&all.neg, NEG);
152 XEXP (&all.neg, 0) = &all.reg;
154 PUT_CODE (&all.udiv, UDIV);
155 XEXP (&all.udiv, 0) = &all.reg;
156 XEXP (&all.udiv, 1) = &all.reg;
158 PUT_CODE (&all.mult, MULT);
159 XEXP (&all.mult, 0) = &all.reg;
160 XEXP (&all.mult, 1) = &all.reg;
162 PUT_CODE (&all.div, DIV);
163 XEXP (&all.div, 0) = &all.reg;
164 XEXP (&all.div, 1) = 32 < MAX_BITS_PER_WORD ? cint[32] : GEN_INT (32);
166 PUT_CODE (&all.mod, MOD);
167 XEXP (&all.mod, 0) = &all.reg;
168 XEXP (&all.mod, 1) = XEXP (&all.div, 1);
170 PUT_CODE (&all.zext, ZERO_EXTEND);
171 XEXP (&all.zext, 0) = &all.reg;
173 PUT_CODE (&all.wide_mult, MULT);
174 XEXP (&all.wide_mult, 0) = &all.zext;
175 XEXP (&all.wide_mult, 1) = &all.zext;
177 PUT_CODE (&all.wide_lshr, LSHIFTRT);
178 XEXP (&all.wide_lshr, 0) = &all.wide_mult;
180 PUT_CODE (&all.wide_trunc, TRUNCATE);
181 XEXP (&all.wide_trunc, 0) = &all.wide_lshr;
183 PUT_CODE (&all.shift, ASHIFT);
184 XEXP (&all.shift, 0) = &all.reg;
186 PUT_CODE (&all.shift_mult, MULT);
187 XEXP (&all.shift_mult, 0) = &all.reg;
189 PUT_CODE (&all.shift_add, PLUS);
190 XEXP (&all.shift_add, 0) = &all.shift_mult;
191 XEXP (&all.shift_add, 1) = &all.reg;
193 PUT_CODE (&all.shift_sub, MINUS);
194 XEXP (&all.shift_sub, 0) = &all.shift_mult;
195 XEXP (&all.shift_sub, 1) = &all.reg;
197 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
198 mode != VOIDmode;
199 mode = GET_MODE_WIDER_MODE (mode))
201 PUT_MODE (&all.reg, mode);
202 PUT_MODE (&all.plus, mode);
203 PUT_MODE (&all.neg, mode);
204 PUT_MODE (&all.udiv, mode);
205 PUT_MODE (&all.mult, mode);
206 PUT_MODE (&all.div, mode);
207 PUT_MODE (&all.mod, mode);
208 PUT_MODE (&all.wide_trunc, mode);
209 PUT_MODE (&all.shift, mode);
210 PUT_MODE (&all.shift_mult, mode);
211 PUT_MODE (&all.shift_add, mode);
212 PUT_MODE (&all.shift_sub, mode);
214 add_cost[mode] = rtx_cost (&all.plus, SET);
215 neg_cost[mode] = rtx_cost (&all.neg, SET);
216 div_cost[mode] = rtx_cost (&all.udiv, SET);
217 mul_cost[mode] = rtx_cost (&all.mult, SET);
219 sdiv_pow2_cheap[mode] = (rtx_cost (&all.div, SET) <= 2 * add_cost[mode]);
220 smod_pow2_cheap[mode] = (rtx_cost (&all.mod, SET) <= 4 * add_cost[mode]);
222 wider_mode = GET_MODE_WIDER_MODE (mode);
223 if (wider_mode != VOIDmode)
225 PUT_MODE (&all.zext, wider_mode);
226 PUT_MODE (&all.wide_mult, wider_mode);
227 PUT_MODE (&all.wide_lshr, wider_mode);
228 XEXP (&all.wide_lshr, 1) = GEN_INT (GET_MODE_BITSIZE (mode));
230 mul_widen_cost[wider_mode] = rtx_cost (&all.wide_mult, SET);
231 mul_highpart_cost[mode] = rtx_cost (&all.wide_trunc, SET);
234 shift_cost[mode][0] = 0;
235 shiftadd_cost[mode][0] = shiftsub_cost[mode][0] = add_cost[mode];
237 n = MIN (MAX_BITS_PER_WORD, GET_MODE_BITSIZE (mode));
238 for (m = 1; m < n; m++)
240 XEXP (&all.shift, 1) = cint[m];
241 XEXP (&all.shift_mult, 1) = pow2[m];
243 shift_cost[mode][m] = rtx_cost (&all.shift, SET);
244 shiftadd_cost[mode][m] = rtx_cost (&all.shift_add, SET);
245 shiftsub_cost[mode][m] = rtx_cost (&all.shift_sub, SET);
250 /* Return an rtx representing minus the value of X.
251 MODE is the intended mode of the result,
252 useful if X is a CONST_INT. */
255 negate_rtx (enum machine_mode mode, rtx x)
257 rtx result = simplify_unary_operation (NEG, mode, x, mode);
259 if (result == 0)
260 result = expand_unop (mode, neg_optab, x, NULL_RTX, 0);
262 return result;
265 /* Report on the availability of insv/extv/extzv and the desired mode
266 of each of their operands. Returns MAX_MACHINE_MODE if HAVE_foo
267 is false; else the mode of the specified operand. If OPNO is -1,
268 all the caller cares about is whether the insn is available. */
269 enum machine_mode
270 mode_for_extraction (enum extraction_pattern pattern, int opno)
272 const struct insn_data *data;
274 switch (pattern)
276 case EP_insv:
277 if (HAVE_insv)
279 data = &insn_data[CODE_FOR_insv];
280 break;
282 return MAX_MACHINE_MODE;
284 case EP_extv:
285 if (HAVE_extv)
287 data = &insn_data[CODE_FOR_extv];
288 break;
290 return MAX_MACHINE_MODE;
292 case EP_extzv:
293 if (HAVE_extzv)
295 data = &insn_data[CODE_FOR_extzv];
296 break;
298 return MAX_MACHINE_MODE;
300 default:
301 gcc_unreachable ();
304 if (opno == -1)
305 return VOIDmode;
307 /* Everyone who uses this function used to follow it with
308 if (result == VOIDmode) result = word_mode; */
309 if (data->operand[opno].mode == VOIDmode)
310 return word_mode;
311 return data->operand[opno].mode;
315 /* Generate code to store value from rtx VALUE
316 into a bit-field within structure STR_RTX
317 containing BITSIZE bits starting at bit BITNUM.
318 FIELDMODE is the machine-mode of the FIELD_DECL node for this field.
319 ALIGN is the alignment that STR_RTX is known to have.
320 TOTAL_SIZE is the size of the structure in bytes, or -1 if varying. */
322 /* ??? Note that there are two different ideas here for how
323 to determine the size to count bits within, for a register.
324 One is BITS_PER_WORD, and the other is the size of operand 3
325 of the insv pattern.
327 If operand 3 of the insv pattern is VOIDmode, then we will use BITS_PER_WORD
328 else, we use the mode of operand 3. */
331 store_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
332 unsigned HOST_WIDE_INT bitnum, enum machine_mode fieldmode,
333 rtx value)
335 unsigned int unit
336 = (MEM_P (str_rtx)) ? BITS_PER_UNIT : BITS_PER_WORD;
337 unsigned HOST_WIDE_INT offset = bitnum / unit;
338 unsigned HOST_WIDE_INT bitpos = bitnum % unit;
339 rtx op0 = str_rtx;
340 int byte_offset;
341 rtx orig_value;
343 enum machine_mode op_mode = mode_for_extraction (EP_insv, 3);
345 while (GET_CODE (op0) == SUBREG)
347 /* The following line once was done only if WORDS_BIG_ENDIAN,
348 but I think that is a mistake. WORDS_BIG_ENDIAN is
349 meaningful at a much higher level; when structures are copied
350 between memory and regs, the higher-numbered regs
351 always get higher addresses. */
352 offset += (SUBREG_BYTE (op0) / UNITS_PER_WORD);
353 /* We used to adjust BITPOS here, but now we do the whole adjustment
354 right after the loop. */
355 op0 = SUBREG_REG (op0);
358 /* Use vec_set patterns for inserting parts of vectors whenever
359 available. */
360 if (VECTOR_MODE_P (GET_MODE (op0))
361 && !MEM_P (op0)
362 && (vec_set_optab->handlers[GET_MODE (op0)].insn_code
363 != CODE_FOR_nothing)
364 && fieldmode == GET_MODE_INNER (GET_MODE (op0))
365 && bitsize == GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))
366 && !(bitnum % GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))))
368 enum machine_mode outermode = GET_MODE (op0);
369 enum machine_mode innermode = GET_MODE_INNER (outermode);
370 int icode = (int) vec_set_optab->handlers[outermode].insn_code;
371 int pos = bitnum / GET_MODE_BITSIZE (innermode);
372 rtx rtxpos = GEN_INT (pos);
373 rtx src = value;
374 rtx dest = op0;
375 rtx pat, seq;
376 enum machine_mode mode0 = insn_data[icode].operand[0].mode;
377 enum machine_mode mode1 = insn_data[icode].operand[1].mode;
378 enum machine_mode mode2 = insn_data[icode].operand[2].mode;
380 start_sequence ();
382 if (! (*insn_data[icode].operand[1].predicate) (src, mode1))
383 src = copy_to_mode_reg (mode1, src);
385 if (! (*insn_data[icode].operand[2].predicate) (rtxpos, mode2))
386 rtxpos = copy_to_mode_reg (mode1, rtxpos);
388 /* We could handle this, but we should always be called with a pseudo
389 for our targets and all insns should take them as outputs. */
390 gcc_assert ((*insn_data[icode].operand[0].predicate) (dest, mode0)
391 && (*insn_data[icode].operand[1].predicate) (src, mode1)
392 && (*insn_data[icode].operand[2].predicate) (rtxpos, mode2));
393 pat = GEN_FCN (icode) (dest, src, rtxpos);
394 seq = get_insns ();
395 end_sequence ();
396 if (pat)
398 emit_insn (seq);
399 emit_insn (pat);
400 return dest;
404 if (flag_force_mem)
406 int old_generating_concat_p = generating_concat_p;
407 generating_concat_p = 0;
408 value = force_not_mem (value);
409 generating_concat_p = old_generating_concat_p;
412 /* If the target is a register, overwriting the entire object, or storing
413 a full-word or multi-word field can be done with just a SUBREG.
415 If the target is memory, storing any naturally aligned field can be
416 done with a simple store. For targets that support fast unaligned
417 memory, any naturally sized, unit aligned field can be done directly. */
419 byte_offset = (bitnum % BITS_PER_WORD) / BITS_PER_UNIT
420 + (offset * UNITS_PER_WORD);
422 if (bitpos == 0
423 && bitsize == GET_MODE_BITSIZE (fieldmode)
424 && (!MEM_P (op0)
425 ? ((GET_MODE_SIZE (fieldmode) >= UNITS_PER_WORD
426 || GET_MODE_SIZE (GET_MODE (op0)) == GET_MODE_SIZE (fieldmode))
427 && byte_offset % GET_MODE_SIZE (fieldmode) == 0)
428 : (! SLOW_UNALIGNED_ACCESS (fieldmode, MEM_ALIGN (op0))
429 || (offset * BITS_PER_UNIT % bitsize == 0
430 && MEM_ALIGN (op0) % GET_MODE_BITSIZE (fieldmode) == 0))))
432 if (GET_MODE (op0) != fieldmode)
434 if (GET_CODE (op0) == SUBREG)
436 /* Else we've got some float mode source being extracted
437 into a different float mode destination -- this
438 combination of subregs results in Severe Tire
439 Damage. */
440 gcc_assert (GET_MODE (SUBREG_REG (op0)) == fieldmode
441 || GET_MODE_CLASS (fieldmode) == MODE_INT
442 || GET_MODE_CLASS (fieldmode) == MODE_PARTIAL_INT);
443 op0 = SUBREG_REG (op0);
445 if (REG_P (op0))
446 op0 = gen_rtx_SUBREG (fieldmode, op0, byte_offset);
447 else
448 op0 = adjust_address (op0, fieldmode, offset);
450 emit_move_insn (op0, value);
451 return value;
454 /* Make sure we are playing with integral modes. Pun with subregs
455 if we aren't. This must come after the entire register case above,
456 since that case is valid for any mode. The following cases are only
457 valid for integral modes. */
459 enum machine_mode imode = int_mode_for_mode (GET_MODE (op0));
460 if (imode != GET_MODE (op0))
462 if (MEM_P (op0))
463 op0 = adjust_address (op0, imode, 0);
464 else
466 gcc_assert (imode != BLKmode);
467 op0 = gen_lowpart (imode, op0);
472 /* We may be accessing data outside the field, which means
473 we can alias adjacent data. */
474 if (MEM_P (op0))
476 op0 = shallow_copy_rtx (op0);
477 set_mem_alias_set (op0, 0);
478 set_mem_expr (op0, 0);
481 /* If OP0 is a register, BITPOS must count within a word.
482 But as we have it, it counts within whatever size OP0 now has.
483 On a bigendian machine, these are not the same, so convert. */
484 if (BYTES_BIG_ENDIAN
485 && !MEM_P (op0)
486 && unit > GET_MODE_BITSIZE (GET_MODE (op0)))
487 bitpos += unit - GET_MODE_BITSIZE (GET_MODE (op0));
489 /* Storing an lsb-aligned field in a register
490 can be done with a movestrict instruction. */
492 if (!MEM_P (op0)
493 && (BYTES_BIG_ENDIAN ? bitpos + bitsize == unit : bitpos == 0)
494 && bitsize == GET_MODE_BITSIZE (fieldmode)
495 && (movstrict_optab->handlers[fieldmode].insn_code
496 != CODE_FOR_nothing))
498 int icode = movstrict_optab->handlers[fieldmode].insn_code;
500 /* Get appropriate low part of the value being stored. */
501 if (GET_CODE (value) == CONST_INT || REG_P (value))
502 value = gen_lowpart (fieldmode, value);
503 else if (!(GET_CODE (value) == SYMBOL_REF
504 || GET_CODE (value) == LABEL_REF
505 || GET_CODE (value) == CONST))
506 value = convert_to_mode (fieldmode, value, 0);
508 if (! (*insn_data[icode].operand[1].predicate) (value, fieldmode))
509 value = copy_to_mode_reg (fieldmode, value);
511 if (GET_CODE (op0) == SUBREG)
513 /* Else we've got some float mode source being extracted into
514 a different float mode destination -- this combination of
515 subregs results in Severe Tire Damage. */
516 gcc_assert (GET_MODE (SUBREG_REG (op0)) == fieldmode
517 || GET_MODE_CLASS (fieldmode) == MODE_INT
518 || GET_MODE_CLASS (fieldmode) == MODE_PARTIAL_INT);
519 op0 = SUBREG_REG (op0);
522 emit_insn (GEN_FCN (icode)
523 (gen_rtx_SUBREG (fieldmode, op0,
524 (bitnum % BITS_PER_WORD) / BITS_PER_UNIT
525 + (offset * UNITS_PER_WORD)),
526 value));
528 return value;
531 /* Handle fields bigger than a word. */
533 if (bitsize > BITS_PER_WORD)
535 /* Here we transfer the words of the field
536 in the order least significant first.
537 This is because the most significant word is the one which may
538 be less than full.
539 However, only do that if the value is not BLKmode. */
541 unsigned int backwards = WORDS_BIG_ENDIAN && fieldmode != BLKmode;
542 unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
543 unsigned int i;
545 /* This is the mode we must force value to, so that there will be enough
546 subwords to extract. Note that fieldmode will often (always?) be
547 VOIDmode, because that is what store_field uses to indicate that this
548 is a bit field, but passing VOIDmode to operand_subword_force will
549 result in an abort. */
550 fieldmode = GET_MODE (value);
551 if (fieldmode == VOIDmode)
552 fieldmode = smallest_mode_for_size (nwords * BITS_PER_WORD, MODE_INT);
554 for (i = 0; i < nwords; i++)
556 /* If I is 0, use the low-order word in both field and target;
557 if I is 1, use the next to lowest word; and so on. */
558 unsigned int wordnum = (backwards ? nwords - i - 1 : i);
559 unsigned int bit_offset = (backwards
560 ? MAX ((int) bitsize - ((int) i + 1)
561 * BITS_PER_WORD,
563 : (int) i * BITS_PER_WORD);
565 store_bit_field (op0, MIN (BITS_PER_WORD,
566 bitsize - i * BITS_PER_WORD),
567 bitnum + bit_offset, word_mode,
568 operand_subword_force (value, wordnum, fieldmode));
570 return value;
573 /* From here on we can assume that the field to be stored in is
574 a full-word (whatever type that is), since it is shorter than a word. */
576 /* OFFSET is the number of words or bytes (UNIT says which)
577 from STR_RTX to the first word or byte containing part of the field. */
579 if (!MEM_P (op0))
581 if (offset != 0
582 || GET_MODE_SIZE (GET_MODE (op0)) > UNITS_PER_WORD)
584 if (!REG_P (op0))
586 /* Since this is a destination (lvalue), we can't copy it to a
587 pseudo. We can trivially remove a SUBREG that does not
588 change the size of the operand. Such a SUBREG may have been
589 added above. Otherwise, abort. */
590 gcc_assert (GET_CODE (op0) == SUBREG
591 && (GET_MODE_SIZE (GET_MODE (op0))
592 == GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))));
593 op0 = SUBREG_REG (op0);
595 op0 = gen_rtx_SUBREG (mode_for_size (BITS_PER_WORD, MODE_INT, 0),
596 op0, (offset * UNITS_PER_WORD));
598 offset = 0;
601 /* If VALUE is a floating-point mode, access it as an integer of the
602 corresponding size. This can occur on a machine with 64 bit registers
603 that uses SFmode for float. This can also occur for unaligned float
604 structure fields. */
605 orig_value = value;
606 if (GET_MODE_CLASS (GET_MODE (value)) != MODE_INT
607 && GET_MODE_CLASS (GET_MODE (value)) != MODE_PARTIAL_INT)
608 value = gen_lowpart ((GET_MODE (value) == VOIDmode
609 ? word_mode : int_mode_for_mode (GET_MODE (value))),
610 value);
612 /* Now OFFSET is nonzero only if OP0 is memory
613 and is therefore always measured in bytes. */
615 if (HAVE_insv
616 && GET_MODE (value) != BLKmode
617 && !(bitsize == 1 && GET_CODE (value) == CONST_INT)
618 /* Ensure insv's size is wide enough for this field. */
619 && (GET_MODE_BITSIZE (op_mode) >= bitsize)
620 && ! ((REG_P (op0) || GET_CODE (op0) == SUBREG)
621 && (bitsize + bitpos > GET_MODE_BITSIZE (op_mode))))
623 int xbitpos = bitpos;
624 rtx value1;
625 rtx xop0 = op0;
626 rtx last = get_last_insn ();
627 rtx pat;
628 enum machine_mode maxmode = mode_for_extraction (EP_insv, 3);
629 int save_volatile_ok = volatile_ok;
631 volatile_ok = 1;
633 /* If this machine's insv can only insert into a register, copy OP0
634 into a register and save it back later. */
635 /* This used to check flag_force_mem, but that was a serious
636 de-optimization now that flag_force_mem is enabled by -O2. */
637 if (MEM_P (op0)
638 && ! ((*insn_data[(int) CODE_FOR_insv].operand[0].predicate)
639 (op0, VOIDmode)))
641 rtx tempreg;
642 enum machine_mode bestmode;
644 /* Get the mode to use for inserting into this field. If OP0 is
645 BLKmode, get the smallest mode consistent with the alignment. If
646 OP0 is a non-BLKmode object that is no wider than MAXMODE, use its
647 mode. Otherwise, use the smallest mode containing the field. */
649 if (GET_MODE (op0) == BLKmode
650 || GET_MODE_SIZE (GET_MODE (op0)) > GET_MODE_SIZE (maxmode))
651 bestmode
652 = get_best_mode (bitsize, bitnum, MEM_ALIGN (op0), maxmode,
653 MEM_VOLATILE_P (op0));
654 else
655 bestmode = GET_MODE (op0);
657 if (bestmode == VOIDmode
658 || (SLOW_UNALIGNED_ACCESS (bestmode, MEM_ALIGN (op0))
659 && GET_MODE_BITSIZE (bestmode) > MEM_ALIGN (op0)))
660 goto insv_loses;
662 /* Adjust address to point to the containing unit of that mode.
663 Compute offset as multiple of this unit, counting in bytes. */
664 unit = GET_MODE_BITSIZE (bestmode);
665 offset = (bitnum / unit) * GET_MODE_SIZE (bestmode);
666 bitpos = bitnum % unit;
667 op0 = adjust_address (op0, bestmode, offset);
669 /* Fetch that unit, store the bitfield in it, then store
670 the unit. */
671 tempreg = copy_to_reg (op0);
672 store_bit_field (tempreg, bitsize, bitpos, fieldmode, orig_value);
673 emit_move_insn (op0, tempreg);
674 return value;
676 volatile_ok = save_volatile_ok;
678 /* Add OFFSET into OP0's address. */
679 if (MEM_P (xop0))
680 xop0 = adjust_address (xop0, byte_mode, offset);
682 /* If xop0 is a register, we need it in MAXMODE
683 to make it acceptable to the format of insv. */
684 if (GET_CODE (xop0) == SUBREG)
685 /* We can't just change the mode, because this might clobber op0,
686 and we will need the original value of op0 if insv fails. */
687 xop0 = gen_rtx_SUBREG (maxmode, SUBREG_REG (xop0), SUBREG_BYTE (xop0));
688 if (REG_P (xop0) && GET_MODE (xop0) != maxmode)
689 xop0 = gen_rtx_SUBREG (maxmode, xop0, 0);
691 /* On big-endian machines, we count bits from the most significant.
692 If the bit field insn does not, we must invert. */
694 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
695 xbitpos = unit - bitsize - xbitpos;
697 /* We have been counting XBITPOS within UNIT.
698 Count instead within the size of the register. */
699 if (BITS_BIG_ENDIAN && !MEM_P (xop0))
700 xbitpos += GET_MODE_BITSIZE (maxmode) - unit;
702 unit = GET_MODE_BITSIZE (maxmode);
704 /* Convert VALUE to maxmode (which insv insn wants) in VALUE1. */
705 value1 = value;
706 if (GET_MODE (value) != maxmode)
708 if (GET_MODE_BITSIZE (GET_MODE (value)) >= bitsize)
710 /* Optimization: Don't bother really extending VALUE
711 if it has all the bits we will actually use. However,
712 if we must narrow it, be sure we do it correctly. */
714 if (GET_MODE_SIZE (GET_MODE (value)) < GET_MODE_SIZE (maxmode))
716 rtx tmp;
718 tmp = simplify_subreg (maxmode, value1, GET_MODE (value), 0);
719 if (! tmp)
720 tmp = simplify_gen_subreg (maxmode,
721 force_reg (GET_MODE (value),
722 value1),
723 GET_MODE (value), 0);
724 value1 = tmp;
726 else
727 value1 = gen_lowpart (maxmode, value1);
729 else if (GET_CODE (value) == CONST_INT)
730 value1 = gen_int_mode (INTVAL (value), maxmode);
731 else
732 /* Parse phase is supposed to make VALUE's data type
733 match that of the component reference, which is a type
734 at least as wide as the field; so VALUE should have
735 a mode that corresponds to that type. */
736 gcc_assert (CONSTANT_P (value));
739 /* If this machine's insv insists on a register,
740 get VALUE1 into a register. */
741 if (! ((*insn_data[(int) CODE_FOR_insv].operand[3].predicate)
742 (value1, maxmode)))
743 value1 = force_reg (maxmode, value1);
745 pat = gen_insv (xop0, GEN_INT (bitsize), GEN_INT (xbitpos), value1);
746 if (pat)
747 emit_insn (pat);
748 else
750 delete_insns_since (last);
751 store_fixed_bit_field (op0, offset, bitsize, bitpos, value);
754 else
755 insv_loses:
756 /* Insv is not available; store using shifts and boolean ops. */
757 store_fixed_bit_field (op0, offset, bitsize, bitpos, value);
758 return value;
761 /* Use shifts and boolean operations to store VALUE
762 into a bit field of width BITSIZE
763 in a memory location specified by OP0 except offset by OFFSET bytes.
764 (OFFSET must be 0 if OP0 is a register.)
765 The field starts at position BITPOS within the byte.
766 (If OP0 is a register, it may be a full word or a narrower mode,
767 but BITPOS still counts within a full word,
768 which is significant on bigendian machines.) */
770 static void
771 store_fixed_bit_field (rtx op0, unsigned HOST_WIDE_INT offset,
772 unsigned HOST_WIDE_INT bitsize,
773 unsigned HOST_WIDE_INT bitpos, rtx value)
775 enum machine_mode mode;
776 unsigned int total_bits = BITS_PER_WORD;
777 rtx subtarget, temp;
778 int all_zero = 0;
779 int all_one = 0;
781 /* There is a case not handled here:
782 a structure with a known alignment of just a halfword
783 and a field split across two aligned halfwords within the structure.
784 Or likewise a structure with a known alignment of just a byte
785 and a field split across two bytes.
786 Such cases are not supposed to be able to occur. */
788 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
790 gcc_assert (!offset);
791 /* Special treatment for a bit field split across two registers. */
792 if (bitsize + bitpos > BITS_PER_WORD)
794 store_split_bit_field (op0, bitsize, bitpos, value);
795 return;
798 else
800 /* Get the proper mode to use for this field. We want a mode that
801 includes the entire field. If such a mode would be larger than
802 a word, we won't be doing the extraction the normal way.
803 We don't want a mode bigger than the destination. */
805 mode = GET_MODE (op0);
806 if (GET_MODE_BITSIZE (mode) == 0
807 || GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (word_mode))
808 mode = word_mode;
809 mode = get_best_mode (bitsize, bitpos + offset * BITS_PER_UNIT,
810 MEM_ALIGN (op0), mode, MEM_VOLATILE_P (op0));
812 if (mode == VOIDmode)
814 /* The only way this should occur is if the field spans word
815 boundaries. */
816 store_split_bit_field (op0, bitsize, bitpos + offset * BITS_PER_UNIT,
817 value);
818 return;
821 total_bits = GET_MODE_BITSIZE (mode);
823 /* Make sure bitpos is valid for the chosen mode. Adjust BITPOS to
824 be in the range 0 to total_bits-1, and put any excess bytes in
825 OFFSET. */
826 if (bitpos >= total_bits)
828 offset += (bitpos / total_bits) * (total_bits / BITS_PER_UNIT);
829 bitpos -= ((bitpos / total_bits) * (total_bits / BITS_PER_UNIT)
830 * BITS_PER_UNIT);
833 /* Get ref to an aligned byte, halfword, or word containing the field.
834 Adjust BITPOS to be position within a word,
835 and OFFSET to be the offset of that word.
836 Then alter OP0 to refer to that word. */
837 bitpos += (offset % (total_bits / BITS_PER_UNIT)) * BITS_PER_UNIT;
838 offset -= (offset % (total_bits / BITS_PER_UNIT));
839 op0 = adjust_address (op0, mode, offset);
842 mode = GET_MODE (op0);
844 /* Now MODE is either some integral mode for a MEM as OP0,
845 or is a full-word for a REG as OP0. TOTAL_BITS corresponds.
846 The bit field is contained entirely within OP0.
847 BITPOS is the starting bit number within OP0.
848 (OP0's mode may actually be narrower than MODE.) */
850 if (BYTES_BIG_ENDIAN)
851 /* BITPOS is the distance between our msb
852 and that of the containing datum.
853 Convert it to the distance from the lsb. */
854 bitpos = total_bits - bitsize - bitpos;
856 /* Now BITPOS is always the distance between our lsb
857 and that of OP0. */
859 /* Shift VALUE left by BITPOS bits. If VALUE is not constant,
860 we must first convert its mode to MODE. */
862 if (GET_CODE (value) == CONST_INT)
864 HOST_WIDE_INT v = INTVAL (value);
866 if (bitsize < HOST_BITS_PER_WIDE_INT)
867 v &= ((HOST_WIDE_INT) 1 << bitsize) - 1;
869 if (v == 0)
870 all_zero = 1;
871 else if ((bitsize < HOST_BITS_PER_WIDE_INT
872 && v == ((HOST_WIDE_INT) 1 << bitsize) - 1)
873 || (bitsize == HOST_BITS_PER_WIDE_INT && v == -1))
874 all_one = 1;
876 value = lshift_value (mode, value, bitpos, bitsize);
878 else
880 int must_and = (GET_MODE_BITSIZE (GET_MODE (value)) != bitsize
881 && bitpos + bitsize != GET_MODE_BITSIZE (mode));
883 if (GET_MODE (value) != mode)
885 if ((REG_P (value) || GET_CODE (value) == SUBREG)
886 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (value)))
887 value = gen_lowpart (mode, value);
888 else
889 value = convert_to_mode (mode, value, 1);
892 if (must_and)
893 value = expand_binop (mode, and_optab, value,
894 mask_rtx (mode, 0, bitsize, 0),
895 NULL_RTX, 1, OPTAB_LIB_WIDEN);
896 if (bitpos > 0)
897 value = expand_shift (LSHIFT_EXPR, mode, value,
898 build_int_cst (NULL_TREE, bitpos), NULL_RTX, 1);
901 /* Now clear the chosen bits in OP0,
902 except that if VALUE is -1 we need not bother. */
904 subtarget = (REG_P (op0) || ! flag_force_mem) ? op0 : 0;
906 if (! all_one)
908 temp = expand_binop (mode, and_optab, op0,
909 mask_rtx (mode, bitpos, bitsize, 1),
910 subtarget, 1, OPTAB_LIB_WIDEN);
911 subtarget = temp;
913 else
914 temp = op0;
916 /* Now logical-or VALUE into OP0, unless it is zero. */
918 if (! all_zero)
919 temp = expand_binop (mode, ior_optab, temp, value,
920 subtarget, 1, OPTAB_LIB_WIDEN);
921 if (op0 != temp)
922 emit_move_insn (op0, temp);
925 /* Store a bit field that is split across multiple accessible memory objects.
927 OP0 is the REG, SUBREG or MEM rtx for the first of the objects.
928 BITSIZE is the field width; BITPOS the position of its first bit
929 (within the word).
930 VALUE is the value to store.
932 This does not yet handle fields wider than BITS_PER_WORD. */
934 static void
935 store_split_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
936 unsigned HOST_WIDE_INT bitpos, rtx value)
938 unsigned int unit;
939 unsigned int bitsdone = 0;
941 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
942 much at a time. */
943 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
944 unit = BITS_PER_WORD;
945 else
946 unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);
948 /* If VALUE is a constant other than a CONST_INT, get it into a register in
949 WORD_MODE. If we can do this using gen_lowpart_common, do so. Note
950 that VALUE might be a floating-point constant. */
951 if (CONSTANT_P (value) && GET_CODE (value) != CONST_INT)
953 rtx word = gen_lowpart_common (word_mode, value);
955 if (word && (value != word))
956 value = word;
957 else
958 value = gen_lowpart_common (word_mode,
959 force_reg (GET_MODE (value) != VOIDmode
960 ? GET_MODE (value)
961 : word_mode, value));
964 while (bitsdone < bitsize)
966 unsigned HOST_WIDE_INT thissize;
967 rtx part, word;
968 unsigned HOST_WIDE_INT thispos;
969 unsigned HOST_WIDE_INT offset;
971 offset = (bitpos + bitsdone) / unit;
972 thispos = (bitpos + bitsdone) % unit;
974 /* THISSIZE must not overrun a word boundary. Otherwise,
975 store_fixed_bit_field will call us again, and we will mutually
976 recurse forever. */
977 thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
978 thissize = MIN (thissize, unit - thispos);
980 if (BYTES_BIG_ENDIAN)
982 int total_bits;
984 /* We must do an endian conversion exactly the same way as it is
985 done in extract_bit_field, so that the two calls to
986 extract_fixed_bit_field will have comparable arguments. */
987 if (!MEM_P (value) || GET_MODE (value) == BLKmode)
988 total_bits = BITS_PER_WORD;
989 else
990 total_bits = GET_MODE_BITSIZE (GET_MODE (value));
992 /* Fetch successively less significant portions. */
993 if (GET_CODE (value) == CONST_INT)
994 part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
995 >> (bitsize - bitsdone - thissize))
996 & (((HOST_WIDE_INT) 1 << thissize) - 1));
997 else
998 /* The args are chosen so that the last part includes the
999 lsb. Give extract_bit_field the value it needs (with
1000 endianness compensation) to fetch the piece we want. */
1001 part = extract_fixed_bit_field (word_mode, value, 0, thissize,
1002 total_bits - bitsize + bitsdone,
1003 NULL_RTX, 1);
1005 else
1007 /* Fetch successively more significant portions. */
1008 if (GET_CODE (value) == CONST_INT)
1009 part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
1010 >> bitsdone)
1011 & (((HOST_WIDE_INT) 1 << thissize) - 1));
1012 else
1013 part = extract_fixed_bit_field (word_mode, value, 0, thissize,
1014 bitsdone, NULL_RTX, 1);
1017 /* If OP0 is a register, then handle OFFSET here.
1019 When handling multiword bitfields, extract_bit_field may pass
1020 down a word_mode SUBREG of a larger REG for a bitfield that actually
1021 crosses a word boundary. Thus, for a SUBREG, we must find
1022 the current word starting from the base register. */
1023 if (GET_CODE (op0) == SUBREG)
1025 int word_offset = (SUBREG_BYTE (op0) / UNITS_PER_WORD) + offset;
1026 word = operand_subword_force (SUBREG_REG (op0), word_offset,
1027 GET_MODE (SUBREG_REG (op0)));
1028 offset = 0;
1030 else if (REG_P (op0))
1032 word = operand_subword_force (op0, offset, GET_MODE (op0));
1033 offset = 0;
1035 else
1036 word = op0;
1038 /* OFFSET is in UNITs, and UNIT is in bits.
1039 store_fixed_bit_field wants offset in bytes. */
1040 store_fixed_bit_field (word, offset * unit / BITS_PER_UNIT, thissize,
1041 thispos, part);
1042 bitsdone += thissize;
1046 /* Generate code to extract a byte-field from STR_RTX
1047 containing BITSIZE bits, starting at BITNUM,
1048 and put it in TARGET if possible (if TARGET is nonzero).
1049 Regardless of TARGET, we return the rtx for where the value is placed.
1051 STR_RTX is the structure containing the byte (a REG or MEM).
1052 UNSIGNEDP is nonzero if this is an unsigned bit field.
1053 MODE is the natural mode of the field value once extracted.
1054 TMODE is the mode the caller would like the value to have;
1055 but the value may be returned with type MODE instead.
1057 TOTAL_SIZE is the size in bytes of the containing structure,
1058 or -1 if varying.
1060 If a TARGET is specified and we can store in it at no extra cost,
1061 we do so, and return TARGET.
1062 Otherwise, we return a REG of mode TMODE or MODE, with TMODE preferred
1063 if they are equally easy. */
1066 extract_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
1067 unsigned HOST_WIDE_INT bitnum, int unsignedp, rtx target,
1068 enum machine_mode mode, enum machine_mode tmode)
1070 unsigned int unit
1071 = (MEM_P (str_rtx)) ? BITS_PER_UNIT : BITS_PER_WORD;
1072 unsigned HOST_WIDE_INT offset = bitnum / unit;
1073 unsigned HOST_WIDE_INT bitpos = bitnum % unit;
1074 rtx op0 = str_rtx;
1075 rtx spec_target = target;
1076 rtx spec_target_subreg = 0;
1077 enum machine_mode int_mode;
1078 enum machine_mode extv_mode = mode_for_extraction (EP_extv, 0);
1079 enum machine_mode extzv_mode = mode_for_extraction (EP_extzv, 0);
1080 enum machine_mode mode1;
1081 int byte_offset;
1083 if (tmode == VOIDmode)
1084 tmode = mode;
1086 while (GET_CODE (op0) == SUBREG)
1088 bitpos += SUBREG_BYTE (op0) * BITS_PER_UNIT;
1089 if (bitpos > unit)
1091 offset += (bitpos / unit);
1092 bitpos %= unit;
1094 op0 = SUBREG_REG (op0);
1097 if (REG_P (op0)
1098 && mode == GET_MODE (op0)
1099 && bitnum == 0
1100 && bitsize == GET_MODE_BITSIZE (GET_MODE (op0)))
1102 /* We're trying to extract a full register from itself. */
1103 return op0;
1106 /* Use vec_extract patterns for extracting parts of vectors whenever
1107 available. */
1108 if (VECTOR_MODE_P (GET_MODE (op0))
1109 && !MEM_P (op0)
1110 && (vec_extract_optab->handlers[GET_MODE (op0)].insn_code
1111 != CODE_FOR_nothing)
1112 && ((bitnum + bitsize - 1) / GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))
1113 == bitnum / GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))))
1115 enum machine_mode outermode = GET_MODE (op0);
1116 enum machine_mode innermode = GET_MODE_INNER (outermode);
1117 int icode = (int) vec_extract_optab->handlers[outermode].insn_code;
1118 unsigned HOST_WIDE_INT pos = bitnum / GET_MODE_BITSIZE (innermode);
1119 rtx rtxpos = GEN_INT (pos);
1120 rtx src = op0;
1121 rtx dest = NULL, pat, seq;
1122 enum machine_mode mode0 = insn_data[icode].operand[0].mode;
1123 enum machine_mode mode1 = insn_data[icode].operand[1].mode;
1124 enum machine_mode mode2 = insn_data[icode].operand[2].mode;
1126 if (innermode == tmode || innermode == mode)
1127 dest = target;
1129 if (!dest)
1130 dest = gen_reg_rtx (innermode);
1132 start_sequence ();
1134 if (! (*insn_data[icode].operand[0].predicate) (dest, mode0))
1135 dest = copy_to_mode_reg (mode0, dest);
1137 if (! (*insn_data[icode].operand[1].predicate) (src, mode1))
1138 src = copy_to_mode_reg (mode1, src);
1140 if (! (*insn_data[icode].operand[2].predicate) (rtxpos, mode2))
1141 rtxpos = copy_to_mode_reg (mode1, rtxpos);
1143 /* We could handle this, but we should always be called with a pseudo
1144 for our targets and all insns should take them as outputs. */
1145 gcc_assert ((*insn_data[icode].operand[0].predicate) (dest, mode0)
1146 && (*insn_data[icode].operand[1].predicate) (src, mode1)
1147 && (*insn_data[icode].operand[2].predicate) (rtxpos, mode2));
1149 pat = GEN_FCN (icode) (dest, src, rtxpos);
1150 seq = get_insns ();
1151 end_sequence ();
1152 if (pat)
1154 emit_insn (seq);
1155 emit_insn (pat);
1156 return dest;
1160 /* Make sure we are playing with integral modes. Pun with subregs
1161 if we aren't. */
1163 enum machine_mode imode = int_mode_for_mode (GET_MODE (op0));
1164 if (imode != GET_MODE (op0))
1166 if (MEM_P (op0))
1167 op0 = adjust_address (op0, imode, 0);
1168 else
1170 gcc_assert (imode != BLKmode);
1171 op0 = gen_lowpart (imode, op0);
1176 /* We may be accessing data outside the field, which means
1177 we can alias adjacent data. */
1178 if (MEM_P (op0))
1180 op0 = shallow_copy_rtx (op0);
1181 set_mem_alias_set (op0, 0);
1182 set_mem_expr (op0, 0);
1185 /* Extraction of a full-word or multi-word value from a structure
1186 in a register or aligned memory can be done with just a SUBREG.
1187 A subword value in the least significant part of a register
1188 can also be extracted with a SUBREG. For this, we need the
1189 byte offset of the value in op0. */
1191 byte_offset = bitpos / BITS_PER_UNIT + offset * UNITS_PER_WORD;
1193 /* If OP0 is a register, BITPOS must count within a word.
1194 But as we have it, it counts within whatever size OP0 now has.
1195 On a bigendian machine, these are not the same, so convert. */
1196 if (BYTES_BIG_ENDIAN
1197 && !MEM_P (op0)
1198 && unit > GET_MODE_BITSIZE (GET_MODE (op0)))
1199 bitpos += unit - GET_MODE_BITSIZE (GET_MODE (op0));
1201 /* ??? We currently assume TARGET is at least as big as BITSIZE.
1202 If that's wrong, the solution is to test for it and set TARGET to 0
1203 if needed. */
1205 /* Only scalar integer modes can be converted via subregs. There is an
1206 additional problem for FP modes here in that they can have a precision
1207 which is different from the size. mode_for_size uses precision, but
1208 we want a mode based on the size, so we must avoid calling it for FP
1209 modes. */
1210 mode1 = (SCALAR_INT_MODE_P (tmode)
1211 ? mode_for_size (bitsize, GET_MODE_CLASS (tmode), 0)
1212 : mode);
1214 if (((bitsize >= BITS_PER_WORD && bitsize == GET_MODE_BITSIZE (mode)
1215 && bitpos % BITS_PER_WORD == 0)
1216 || (mode1 != BLKmode
1217 /* ??? The big endian test here is wrong. This is correct
1218 if the value is in a register, and if mode_for_size is not
1219 the same mode as op0. This causes us to get unnecessarily
1220 inefficient code from the Thumb port when -mbig-endian. */
1221 && (BYTES_BIG_ENDIAN
1222 ? bitpos + bitsize == BITS_PER_WORD
1223 : bitpos == 0)))
1224 && ((!MEM_P (op0)
1225 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
1226 GET_MODE_BITSIZE (GET_MODE (op0)))
1227 && GET_MODE_SIZE (mode1) != 0
1228 && byte_offset % GET_MODE_SIZE (mode1) == 0)
1229 || (MEM_P (op0)
1230 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (op0))
1231 || (offset * BITS_PER_UNIT % bitsize == 0
1232 && MEM_ALIGN (op0) % bitsize == 0)))))
1234 if (mode1 != GET_MODE (op0))
1236 if (MEM_P (op0))
1237 op0 = adjust_address (op0, mode1, offset);
1238 else
1240 rtx sub = simplify_gen_subreg (mode1, op0, GET_MODE (op0),
1241 byte_offset);
1242 if (sub == NULL)
1243 goto no_subreg_mode_swap;
1244 op0 = sub;
1247 if (mode1 != mode)
1248 return convert_to_mode (tmode, op0, unsignedp);
1249 return op0;
1251 no_subreg_mode_swap:
1253 /* Handle fields bigger than a word. */
1255 if (bitsize > BITS_PER_WORD)
1257 /* Here we transfer the words of the field
1258 in the order least significant first.
1259 This is because the most significant word is the one which may
1260 be less than full. */
1262 unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
1263 unsigned int i;
1265 if (target == 0 || !REG_P (target))
1266 target = gen_reg_rtx (mode);
1268 /* Indicate for flow that the entire target reg is being set. */
1269 emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
1271 for (i = 0; i < nwords; i++)
1273 /* If I is 0, use the low-order word in both field and target;
1274 if I is 1, use the next to lowest word; and so on. */
1275 /* Word number in TARGET to use. */
1276 unsigned int wordnum
1277 = (WORDS_BIG_ENDIAN
1278 ? GET_MODE_SIZE (GET_MODE (target)) / UNITS_PER_WORD - i - 1
1279 : i);
1280 /* Offset from start of field in OP0. */
1281 unsigned int bit_offset = (WORDS_BIG_ENDIAN
1282 ? MAX (0, ((int) bitsize - ((int) i + 1)
1283 * (int) BITS_PER_WORD))
1284 : (int) i * BITS_PER_WORD);
1285 rtx target_part = operand_subword (target, wordnum, 1, VOIDmode);
1286 rtx result_part
1287 = extract_bit_field (op0, MIN (BITS_PER_WORD,
1288 bitsize - i * BITS_PER_WORD),
1289 bitnum + bit_offset, 1, target_part, mode,
1290 word_mode);
1292 gcc_assert (target_part);
1294 if (result_part != target_part)
1295 emit_move_insn (target_part, result_part);
1298 if (unsignedp)
1300 /* Unless we've filled TARGET, the upper regs in a multi-reg value
1301 need to be zero'd out. */
1302 if (GET_MODE_SIZE (GET_MODE (target)) > nwords * UNITS_PER_WORD)
1304 unsigned int i, total_words;
1306 total_words = GET_MODE_SIZE (GET_MODE (target)) / UNITS_PER_WORD;
1307 for (i = nwords; i < total_words; i++)
1308 emit_move_insn
1309 (operand_subword (target,
1310 WORDS_BIG_ENDIAN ? total_words - i - 1 : i,
1311 1, VOIDmode),
1312 const0_rtx);
1314 return target;
1317 /* Signed bit field: sign-extend with two arithmetic shifts. */
1318 target = expand_shift (LSHIFT_EXPR, mode, target,
1319 build_int_cst (NULL_TREE,
1320 GET_MODE_BITSIZE (mode) - bitsize),
1321 NULL_RTX, 0);
1322 return expand_shift (RSHIFT_EXPR, mode, target,
1323 build_int_cst (NULL_TREE,
1324 GET_MODE_BITSIZE (mode) - bitsize),
1325 NULL_RTX, 0);
1328 /* From here on we know the desired field is smaller than a word. */
1330 /* Check if there is a correspondingly-sized integer field, so we can
1331 safely extract it as one size of integer, if necessary; then
1332 truncate or extend to the size that is wanted; then use SUBREGs or
1333 convert_to_mode to get one of the modes we really wanted. */
1335 int_mode = int_mode_for_mode (tmode);
1336 if (int_mode == BLKmode)
1337 int_mode = int_mode_for_mode (mode);
1338 /* Should probably push op0 out to memory and then do a load. */
1339 gcc_assert (int_mode != BLKmode);
1341 /* OFFSET is the number of words or bytes (UNIT says which)
1342 from STR_RTX to the first word or byte containing part of the field. */
1343 if (!MEM_P (op0))
1345 if (offset != 0
1346 || GET_MODE_SIZE (GET_MODE (op0)) > UNITS_PER_WORD)
1348 if (!REG_P (op0))
1349 op0 = copy_to_reg (op0);
1350 op0 = gen_rtx_SUBREG (mode_for_size (BITS_PER_WORD, MODE_INT, 0),
1351 op0, (offset * UNITS_PER_WORD));
1353 offset = 0;
1356 /* Now OFFSET is nonzero only for memory operands. */
1358 if (unsignedp)
1360 if (HAVE_extzv
1361 && (GET_MODE_BITSIZE (extzv_mode) >= bitsize)
1362 && ! ((REG_P (op0) || GET_CODE (op0) == SUBREG)
1363 && (bitsize + bitpos > GET_MODE_BITSIZE (extzv_mode))))
1365 unsigned HOST_WIDE_INT xbitpos = bitpos, xoffset = offset;
1366 rtx bitsize_rtx, bitpos_rtx;
1367 rtx last = get_last_insn ();
1368 rtx xop0 = op0;
1369 rtx xtarget = target;
1370 rtx xspec_target = spec_target;
1371 rtx xspec_target_subreg = spec_target_subreg;
1372 rtx pat;
1373 enum machine_mode maxmode = mode_for_extraction (EP_extzv, 0);
1375 if (MEM_P (xop0))
1377 int save_volatile_ok = volatile_ok;
1378 volatile_ok = 1;
1380 /* Is the memory operand acceptable? */
1381 if (! ((*insn_data[(int) CODE_FOR_extzv].operand[1].predicate)
1382 (xop0, GET_MODE (xop0))))
1384 /* No, load into a reg and extract from there. */
1385 enum machine_mode bestmode;
1387 /* Get the mode to use for inserting into this field. If
1388 OP0 is BLKmode, get the smallest mode consistent with the
1389 alignment. If OP0 is a non-BLKmode object that is no
1390 wider than MAXMODE, use its mode. Otherwise, use the
1391 smallest mode containing the field. */
1393 if (GET_MODE (xop0) == BLKmode
1394 || (GET_MODE_SIZE (GET_MODE (op0))
1395 > GET_MODE_SIZE (maxmode)))
1396 bestmode = get_best_mode (bitsize, bitnum,
1397 MEM_ALIGN (xop0), maxmode,
1398 MEM_VOLATILE_P (xop0));
1399 else
1400 bestmode = GET_MODE (xop0);
1402 if (bestmode == VOIDmode
1403 || (SLOW_UNALIGNED_ACCESS (bestmode, MEM_ALIGN (xop0))
1404 && GET_MODE_BITSIZE (bestmode) > MEM_ALIGN (xop0)))
1405 goto extzv_loses;
1407 /* Compute offset as multiple of this unit,
1408 counting in bytes. */
1409 unit = GET_MODE_BITSIZE (bestmode);
1410 xoffset = (bitnum / unit) * GET_MODE_SIZE (bestmode);
1411 xbitpos = bitnum % unit;
1412 xop0 = adjust_address (xop0, bestmode, xoffset);
1414 /* Fetch it to a register in that size. */
1415 xop0 = force_reg (bestmode, xop0);
1417 /* XBITPOS counts within UNIT, which is what is expected. */
1419 else
1420 /* Get ref to first byte containing part of the field. */
1421 xop0 = adjust_address (xop0, byte_mode, xoffset);
1423 volatile_ok = save_volatile_ok;
1426 /* If op0 is a register, we need it in MAXMODE (which is usually
1427 SImode). to make it acceptable to the format of extzv. */
1428 if (GET_CODE (xop0) == SUBREG && GET_MODE (xop0) != maxmode)
1429 goto extzv_loses;
1430 if (REG_P (xop0) && GET_MODE (xop0) != maxmode)
1431 xop0 = gen_rtx_SUBREG (maxmode, xop0, 0);
1433 /* On big-endian machines, we count bits from the most significant.
1434 If the bit field insn does not, we must invert. */
1435 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
1436 xbitpos = unit - bitsize - xbitpos;
1438 /* Now convert from counting within UNIT to counting in MAXMODE. */
1439 if (BITS_BIG_ENDIAN && !MEM_P (xop0))
1440 xbitpos += GET_MODE_BITSIZE (maxmode) - unit;
1442 unit = GET_MODE_BITSIZE (maxmode);
1444 if (xtarget == 0
1445 || (flag_force_mem && MEM_P (xtarget)))
1446 xtarget = xspec_target = gen_reg_rtx (tmode);
1448 if (GET_MODE (xtarget) != maxmode)
1450 if (REG_P (xtarget))
1452 int wider = (GET_MODE_SIZE (maxmode)
1453 > GET_MODE_SIZE (GET_MODE (xtarget)));
1454 xtarget = gen_lowpart (maxmode, xtarget);
1455 if (wider)
1456 xspec_target_subreg = xtarget;
1458 else
1459 xtarget = gen_reg_rtx (maxmode);
1462 /* If this machine's extzv insists on a register target,
1463 make sure we have one. */
1464 if (! ((*insn_data[(int) CODE_FOR_extzv].operand[0].predicate)
1465 (xtarget, maxmode)))
1466 xtarget = gen_reg_rtx (maxmode);
1468 bitsize_rtx = GEN_INT (bitsize);
1469 bitpos_rtx = GEN_INT (xbitpos);
1471 pat = gen_extzv (xtarget, xop0, bitsize_rtx, bitpos_rtx);
1472 if (pat)
1474 emit_insn (pat);
1475 target = xtarget;
1476 spec_target = xspec_target;
1477 spec_target_subreg = xspec_target_subreg;
1479 else
1481 delete_insns_since (last);
1482 target = extract_fixed_bit_field (int_mode, op0, offset, bitsize,
1483 bitpos, target, 1);
1486 else
1487 extzv_loses:
1488 target = extract_fixed_bit_field (int_mode, op0, offset, bitsize,
1489 bitpos, target, 1);
1491 else
1493 if (HAVE_extv
1494 && (GET_MODE_BITSIZE (extv_mode) >= bitsize)
1495 && ! ((REG_P (op0) || GET_CODE (op0) == SUBREG)
1496 && (bitsize + bitpos > GET_MODE_BITSIZE (extv_mode))))
1498 int xbitpos = bitpos, xoffset = offset;
1499 rtx bitsize_rtx, bitpos_rtx;
1500 rtx last = get_last_insn ();
1501 rtx xop0 = op0, xtarget = target;
1502 rtx xspec_target = spec_target;
1503 rtx xspec_target_subreg = spec_target_subreg;
1504 rtx pat;
1505 enum machine_mode maxmode = mode_for_extraction (EP_extv, 0);
1507 if (MEM_P (xop0))
1509 /* Is the memory operand acceptable? */
1510 if (! ((*insn_data[(int) CODE_FOR_extv].operand[1].predicate)
1511 (xop0, GET_MODE (xop0))))
1513 /* No, load into a reg and extract from there. */
1514 enum machine_mode bestmode;
1516 /* Get the mode to use for inserting into this field. If
1517 OP0 is BLKmode, get the smallest mode consistent with the
1518 alignment. If OP0 is a non-BLKmode object that is no
1519 wider than MAXMODE, use its mode. Otherwise, use the
1520 smallest mode containing the field. */
1522 if (GET_MODE (xop0) == BLKmode
1523 || (GET_MODE_SIZE (GET_MODE (op0))
1524 > GET_MODE_SIZE (maxmode)))
1525 bestmode = get_best_mode (bitsize, bitnum,
1526 MEM_ALIGN (xop0), maxmode,
1527 MEM_VOLATILE_P (xop0));
1528 else
1529 bestmode = GET_MODE (xop0);
1531 if (bestmode == VOIDmode
1532 || (SLOW_UNALIGNED_ACCESS (bestmode, MEM_ALIGN (xop0))
1533 && GET_MODE_BITSIZE (bestmode) > MEM_ALIGN (xop0)))
1534 goto extv_loses;
1536 /* Compute offset as multiple of this unit,
1537 counting in bytes. */
1538 unit = GET_MODE_BITSIZE (bestmode);
1539 xoffset = (bitnum / unit) * GET_MODE_SIZE (bestmode);
1540 xbitpos = bitnum % unit;
1541 xop0 = adjust_address (xop0, bestmode, xoffset);
1543 /* Fetch it to a register in that size. */
1544 xop0 = force_reg (bestmode, xop0);
1546 /* XBITPOS counts within UNIT, which is what is expected. */
1548 else
1549 /* Get ref to first byte containing part of the field. */
1550 xop0 = adjust_address (xop0, byte_mode, xoffset);
1553 /* If op0 is a register, we need it in MAXMODE (which is usually
1554 SImode) to make it acceptable to the format of extv. */
1555 if (GET_CODE (xop0) == SUBREG && GET_MODE (xop0) != maxmode)
1556 goto extv_loses;
1557 if (REG_P (xop0) && GET_MODE (xop0) != maxmode)
1558 xop0 = gen_rtx_SUBREG (maxmode, xop0, 0);
1560 /* On big-endian machines, we count bits from the most significant.
1561 If the bit field insn does not, we must invert. */
1562 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
1563 xbitpos = unit - bitsize - xbitpos;
1565 /* XBITPOS counts within a size of UNIT.
1566 Adjust to count within a size of MAXMODE. */
1567 if (BITS_BIG_ENDIAN && !MEM_P (xop0))
1568 xbitpos += (GET_MODE_BITSIZE (maxmode) - unit);
1570 unit = GET_MODE_BITSIZE (maxmode);
1572 if (xtarget == 0
1573 || (flag_force_mem && MEM_P (xtarget)))
1574 xtarget = xspec_target = gen_reg_rtx (tmode);
1576 if (GET_MODE (xtarget) != maxmode)
1578 if (REG_P (xtarget))
1580 int wider = (GET_MODE_SIZE (maxmode)
1581 > GET_MODE_SIZE (GET_MODE (xtarget)));
1582 xtarget = gen_lowpart (maxmode, xtarget);
1583 if (wider)
1584 xspec_target_subreg = xtarget;
1586 else
1587 xtarget = gen_reg_rtx (maxmode);
1590 /* If this machine's extv insists on a register target,
1591 make sure we have one. */
1592 if (! ((*insn_data[(int) CODE_FOR_extv].operand[0].predicate)
1593 (xtarget, maxmode)))
1594 xtarget = gen_reg_rtx (maxmode);
1596 bitsize_rtx = GEN_INT (bitsize);
1597 bitpos_rtx = GEN_INT (xbitpos);
1599 pat = gen_extv (xtarget, xop0, bitsize_rtx, bitpos_rtx);
1600 if (pat)
1602 emit_insn (pat);
1603 target = xtarget;
1604 spec_target = xspec_target;
1605 spec_target_subreg = xspec_target_subreg;
1607 else
1609 delete_insns_since (last);
1610 target = extract_fixed_bit_field (int_mode, op0, offset, bitsize,
1611 bitpos, target, 0);
1614 else
1615 extv_loses:
1616 target = extract_fixed_bit_field (int_mode, op0, offset, bitsize,
1617 bitpos, target, 0);
1619 if (target == spec_target)
1620 return target;
1621 if (target == spec_target_subreg)
1622 return spec_target;
1623 if (GET_MODE (target) != tmode && GET_MODE (target) != mode)
1625 /* If the target mode is complex, then extract the two scalar elements
1626 from the value now. Creating (subreg:SC (reg:DI) 0), as we would do
1627 with the clause below, will cause gen_realpart or gen_imagpart to
1628 fail, since those functions must return lvalues. */
1629 if (COMPLEX_MODE_P (tmode))
1631 rtx realpart, imagpart;
1632 enum machine_mode itmode = GET_MODE_INNER (tmode);
1634 target = convert_to_mode (mode_for_size (GET_MODE_BITSIZE (tmode),
1635 MODE_INT, 0),
1636 target, unsignedp);
1638 realpart = extract_bit_field (target, GET_MODE_BITSIZE (itmode), 0,
1639 unsignedp, NULL, itmode, itmode);
1640 imagpart = extract_bit_field (target, GET_MODE_BITSIZE (itmode),
1641 GET_MODE_BITSIZE (itmode), unsignedp,
1642 NULL, itmode, itmode);
1644 return gen_rtx_CONCAT (tmode, realpart, imagpart);
1647 /* If the target mode is not a scalar integral, first convert to the
1648 integer mode of that size and then access it as a floating-point
1649 value via a SUBREG. */
1650 if (!SCALAR_INT_MODE_P (tmode))
1652 enum machine_mode smode
1653 = mode_for_size (GET_MODE_BITSIZE (tmode), MODE_INT, 0);
1654 target = convert_to_mode (smode, target, unsignedp);
1655 target = force_reg (smode, target);
1656 return gen_lowpart (tmode, target);
1659 return convert_to_mode (tmode, target, unsignedp);
1661 return target;
1664 /* Extract a bit field using shifts and boolean operations
1665 Returns an rtx to represent the value.
1666 OP0 addresses a register (word) or memory (byte).
1667 BITPOS says which bit within the word or byte the bit field starts in.
1668 OFFSET says how many bytes farther the bit field starts;
1669 it is 0 if OP0 is a register.
1670 BITSIZE says how many bits long the bit field is.
1671 (If OP0 is a register, it may be narrower than a full word,
1672 but BITPOS still counts within a full word,
1673 which is significant on bigendian machines.)
1675 UNSIGNEDP is nonzero for an unsigned bit field (don't sign-extend value).
1676 If TARGET is nonzero, attempts to store the value there
1677 and return TARGET, but this is not guaranteed.
1678 If TARGET is not used, create a pseudo-reg of mode TMODE for the value. */
1680 static rtx
1681 extract_fixed_bit_field (enum machine_mode tmode, rtx op0,
1682 unsigned HOST_WIDE_INT offset,
1683 unsigned HOST_WIDE_INT bitsize,
1684 unsigned HOST_WIDE_INT bitpos, rtx target,
1685 int unsignedp)
1687 unsigned int total_bits = BITS_PER_WORD;
1688 enum machine_mode mode;
1690 if (GET_CODE (op0) == SUBREG || REG_P (op0))
1692 /* Special treatment for a bit field split across two registers. */
1693 if (bitsize + bitpos > BITS_PER_WORD)
1694 return extract_split_bit_field (op0, bitsize, bitpos, unsignedp);
1696 else
1698 /* Get the proper mode to use for this field. We want a mode that
1699 includes the entire field. If such a mode would be larger than
1700 a word, we won't be doing the extraction the normal way. */
1702 mode = get_best_mode (bitsize, bitpos + offset * BITS_PER_UNIT,
1703 MEM_ALIGN (op0), word_mode, MEM_VOLATILE_P (op0));
1705 if (mode == VOIDmode)
1706 /* The only way this should occur is if the field spans word
1707 boundaries. */
1708 return extract_split_bit_field (op0, bitsize,
1709 bitpos + offset * BITS_PER_UNIT,
1710 unsignedp);
1712 total_bits = GET_MODE_BITSIZE (mode);
1714 /* Make sure bitpos is valid for the chosen mode. Adjust BITPOS to
1715 be in the range 0 to total_bits-1, and put any excess bytes in
1716 OFFSET. */
1717 if (bitpos >= total_bits)
1719 offset += (bitpos / total_bits) * (total_bits / BITS_PER_UNIT);
1720 bitpos -= ((bitpos / total_bits) * (total_bits / BITS_PER_UNIT)
1721 * BITS_PER_UNIT);
1724 /* Get ref to an aligned byte, halfword, or word containing the field.
1725 Adjust BITPOS to be position within a word,
1726 and OFFSET to be the offset of that word.
1727 Then alter OP0 to refer to that word. */
1728 bitpos += (offset % (total_bits / BITS_PER_UNIT)) * BITS_PER_UNIT;
1729 offset -= (offset % (total_bits / BITS_PER_UNIT));
1730 op0 = adjust_address (op0, mode, offset);
1733 mode = GET_MODE (op0);
1735 if (BYTES_BIG_ENDIAN)
1736 /* BITPOS is the distance between our msb and that of OP0.
1737 Convert it to the distance from the lsb. */
1738 bitpos = total_bits - bitsize - bitpos;
1740 /* Now BITPOS is always the distance between the field's lsb and that of OP0.
1741 We have reduced the big-endian case to the little-endian case. */
1743 if (unsignedp)
1745 if (bitpos)
1747 /* If the field does not already start at the lsb,
1748 shift it so it does. */
1749 tree amount = build_int_cst (NULL_TREE, bitpos);
1750 /* Maybe propagate the target for the shift. */
1751 /* But not if we will return it--could confuse integrate.c. */
1752 rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
1753 if (tmode != mode) subtarget = 0;
1754 op0 = expand_shift (RSHIFT_EXPR, mode, op0, amount, subtarget, 1);
1756 /* Convert the value to the desired mode. */
1757 if (mode != tmode)
1758 op0 = convert_to_mode (tmode, op0, 1);
1760 /* Unless the msb of the field used to be the msb when we shifted,
1761 mask out the upper bits. */
1763 if (GET_MODE_BITSIZE (mode) != bitpos + bitsize)
1764 return expand_binop (GET_MODE (op0), and_optab, op0,
1765 mask_rtx (GET_MODE (op0), 0, bitsize, 0),
1766 target, 1, OPTAB_LIB_WIDEN);
1767 return op0;
1770 /* To extract a signed bit-field, first shift its msb to the msb of the word,
1771 then arithmetic-shift its lsb to the lsb of the word. */
1772 op0 = force_reg (mode, op0);
1773 if (mode != tmode)
1774 target = 0;
1776 /* Find the narrowest integer mode that contains the field. */
1778 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1779 mode = GET_MODE_WIDER_MODE (mode))
1780 if (GET_MODE_BITSIZE (mode) >= bitsize + bitpos)
1782 op0 = convert_to_mode (mode, op0, 0);
1783 break;
1786 if (GET_MODE_BITSIZE (mode) != (bitsize + bitpos))
1788 tree amount
1789 = build_int_cst (NULL_TREE,
1790 GET_MODE_BITSIZE (mode) - (bitsize + bitpos));
1791 /* Maybe propagate the target for the shift. */
1792 rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
1793 op0 = expand_shift (LSHIFT_EXPR, mode, op0, amount, subtarget, 1);
1796 return expand_shift (RSHIFT_EXPR, mode, op0,
1797 build_int_cst (NULL_TREE,
1798 GET_MODE_BITSIZE (mode) - bitsize),
1799 target, 0);
1802 /* Return a constant integer (CONST_INT or CONST_DOUBLE) mask value
1803 of mode MODE with BITSIZE ones followed by BITPOS zeros, or the
1804 complement of that if COMPLEMENT. The mask is truncated if
1805 necessary to the width of mode MODE. The mask is zero-extended if
1806 BITSIZE+BITPOS is too small for MODE. */
1808 static rtx
1809 mask_rtx (enum machine_mode mode, int bitpos, int bitsize, int complement)
1811 HOST_WIDE_INT masklow, maskhigh;
1813 if (bitsize == 0)
1814 masklow = 0;
1815 else if (bitpos < HOST_BITS_PER_WIDE_INT)
1816 masklow = (HOST_WIDE_INT) -1 << bitpos;
1817 else
1818 masklow = 0;
1820 if (bitpos + bitsize < HOST_BITS_PER_WIDE_INT)
1821 masklow &= ((unsigned HOST_WIDE_INT) -1
1822 >> (HOST_BITS_PER_WIDE_INT - bitpos - bitsize));
1824 if (bitpos <= HOST_BITS_PER_WIDE_INT)
1825 maskhigh = -1;
1826 else
1827 maskhigh = (HOST_WIDE_INT) -1 << (bitpos - HOST_BITS_PER_WIDE_INT);
1829 if (bitsize == 0)
1830 maskhigh = 0;
1831 else if (bitpos + bitsize > HOST_BITS_PER_WIDE_INT)
1832 maskhigh &= ((unsigned HOST_WIDE_INT) -1
1833 >> (2 * HOST_BITS_PER_WIDE_INT - bitpos - bitsize));
1834 else
1835 maskhigh = 0;
1837 if (complement)
1839 maskhigh = ~maskhigh;
1840 masklow = ~masklow;
1843 return immed_double_const (masklow, maskhigh, mode);
1846 /* Return a constant integer (CONST_INT or CONST_DOUBLE) rtx with the value
1847 VALUE truncated to BITSIZE bits and then shifted left BITPOS bits. */
1849 static rtx
1850 lshift_value (enum machine_mode mode, rtx value, int bitpos, int bitsize)
1852 unsigned HOST_WIDE_INT v = INTVAL (value);
1853 HOST_WIDE_INT low, high;
1855 if (bitsize < HOST_BITS_PER_WIDE_INT)
1856 v &= ~((HOST_WIDE_INT) -1 << bitsize);
1858 if (bitpos < HOST_BITS_PER_WIDE_INT)
1860 low = v << bitpos;
1861 high = (bitpos > 0 ? (v >> (HOST_BITS_PER_WIDE_INT - bitpos)) : 0);
1863 else
1865 low = 0;
1866 high = v << (bitpos - HOST_BITS_PER_WIDE_INT);
1869 return immed_double_const (low, high, mode);
1872 /* Extract a bit field from a memory by forcing the alignment of the
1873 memory. This efficient only if the field spans at least 4 boundaries.
1875 OP0 is the MEM.
1876 BITSIZE is the field width; BITPOS is the position of the first bit.
1877 UNSIGNEDP is true if the result should be zero-extended. */
1879 static rtx
1880 extract_force_align_mem_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
1881 unsigned HOST_WIDE_INT bitpos,
1882 int unsignedp)
1884 enum machine_mode mode, dmode;
1885 unsigned int m_bitsize, m_size;
1886 unsigned int sign_shift_up, sign_shift_dn;
1887 rtx base, a1, a2, v1, v2, comb, shift, result, start;
1889 /* Choose a mode that will fit BITSIZE. */
1890 mode = smallest_mode_for_size (bitsize, MODE_INT);
1891 m_size = GET_MODE_SIZE (mode);
1892 m_bitsize = GET_MODE_BITSIZE (mode);
1894 /* Choose a mode twice as wide. Fail if no such mode exists. */
1895 dmode = mode_for_size (m_bitsize * 2, MODE_INT, false);
1896 if (dmode == BLKmode)
1897 return NULL;
1899 do_pending_stack_adjust ();
1900 start = get_last_insn ();
1902 /* At the end, we'll need an additional shift to deal with sign/zero
1903 extension. By default this will be a left+right shift of the
1904 appropriate size. But we may be able to eliminate one of them. */
1905 sign_shift_up = sign_shift_dn = m_bitsize - bitsize;
1907 if (STRICT_ALIGNMENT)
1909 base = plus_constant (XEXP (op0, 0), bitpos / BITS_PER_UNIT);
1910 bitpos %= BITS_PER_UNIT;
1912 /* We load two values to be concatenate. There's an edge condition
1913 that bears notice -- an aligned value at the end of a page can
1914 only load one value lest we segfault. So the two values we load
1915 are at "base & -size" and "(base + size - 1) & -size". If base
1916 is unaligned, the addresses will be aligned and sequential; if
1917 base is aligned, the addresses will both be equal to base. */
1919 a1 = expand_simple_binop (Pmode, AND, force_operand (base, NULL),
1920 GEN_INT (-(HOST_WIDE_INT)m_size),
1921 NULL, true, OPTAB_LIB_WIDEN);
1922 mark_reg_pointer (a1, m_bitsize);
1923 v1 = gen_rtx_MEM (mode, a1);
1924 set_mem_align (v1, m_bitsize);
1925 v1 = force_reg (mode, validize_mem (v1));
1927 a2 = plus_constant (base, GET_MODE_SIZE (mode) - 1);
1928 a2 = expand_simple_binop (Pmode, AND, force_operand (a2, NULL),
1929 GEN_INT (-(HOST_WIDE_INT)m_size),
1930 NULL, true, OPTAB_LIB_WIDEN);
1931 v2 = gen_rtx_MEM (mode, a2);
1932 set_mem_align (v2, m_bitsize);
1933 v2 = force_reg (mode, validize_mem (v2));
1935 /* Combine these two values into a double-word value. */
1936 if (m_bitsize == BITS_PER_WORD)
1938 comb = gen_reg_rtx (dmode);
1939 emit_insn (gen_rtx_CLOBBER (VOIDmode, comb));
1940 emit_move_insn (gen_rtx_SUBREG (mode, comb, 0), v1);
1941 emit_move_insn (gen_rtx_SUBREG (mode, comb, m_size), v2);
1943 else
1945 if (BYTES_BIG_ENDIAN)
1946 comb = v1, v1 = v2, v2 = comb;
1947 v1 = convert_modes (dmode, mode, v1, true);
1948 if (v1 == NULL)
1949 goto fail;
1950 v2 = convert_modes (dmode, mode, v2, true);
1951 v2 = expand_simple_binop (dmode, ASHIFT, v2, GEN_INT (m_bitsize),
1952 NULL, true, OPTAB_LIB_WIDEN);
1953 if (v2 == NULL)
1954 goto fail;
1955 comb = expand_simple_binop (dmode, IOR, v1, v2, NULL,
1956 true, OPTAB_LIB_WIDEN);
1957 if (comb == NULL)
1958 goto fail;
1961 shift = expand_simple_binop (Pmode, AND, base, GEN_INT (m_size - 1),
1962 NULL, true, OPTAB_LIB_WIDEN);
1963 shift = expand_mult (Pmode, shift, GEN_INT (BITS_PER_UNIT), NULL, 1);
1965 if (bitpos != 0)
1967 if (sign_shift_up <= bitpos)
1968 bitpos -= sign_shift_up, sign_shift_up = 0;
1969 shift = expand_simple_binop (Pmode, PLUS, shift, GEN_INT (bitpos),
1970 NULL, true, OPTAB_LIB_WIDEN);
1973 else
1975 unsigned HOST_WIDE_INT offset = bitpos / BITS_PER_UNIT;
1976 bitpos %= BITS_PER_UNIT;
1978 /* When strict alignment is not required, we can just load directly
1979 from memory without masking. If the remaining BITPOS offset is
1980 small enough, we may be able to do all operations in MODE as
1981 opposed to DMODE. */
1982 if (bitpos + bitsize <= m_bitsize)
1983 dmode = mode;
1984 comb = adjust_address (op0, dmode, offset);
1986 if (sign_shift_up <= bitpos)
1987 bitpos -= sign_shift_up, sign_shift_up = 0;
1988 shift = GEN_INT (bitpos);
1991 /* Shift down the double-word such that the requested value is at bit 0. */
1992 if (shift != const0_rtx)
1993 comb = expand_simple_binop (dmode, unsignedp ? LSHIFTRT : ASHIFTRT,
1994 comb, shift, NULL, unsignedp, OPTAB_LIB_WIDEN);
1995 if (comb == NULL)
1996 goto fail;
1998 /* If the field exactly matches MODE, then all we need to do is return the
1999 lowpart. Otherwise, shift to get the sign bits set properly. */
2000 result = force_reg (mode, gen_lowpart (mode, comb));
2002 if (sign_shift_up)
2003 result = expand_simple_binop (mode, ASHIFT, result,
2004 GEN_INT (sign_shift_up),
2005 NULL_RTX, 0, OPTAB_LIB_WIDEN);
2006 if (sign_shift_dn)
2007 result = expand_simple_binop (mode, unsignedp ? LSHIFTRT : ASHIFTRT,
2008 result, GEN_INT (sign_shift_dn),
2009 NULL_RTX, 0, OPTAB_LIB_WIDEN);
2011 return result;
2013 fail:
2014 delete_insns_since (start);
2015 return NULL;
2018 /* Extract a bit field that is split across two words
2019 and return an RTX for the result.
2021 OP0 is the REG, SUBREG or MEM rtx for the first of the two words.
2022 BITSIZE is the field width; BITPOS, position of its first bit, in the word.
2023 UNSIGNEDP is 1 if should zero-extend the contents; else sign-extend. */
2025 static rtx
2026 extract_split_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
2027 unsigned HOST_WIDE_INT bitpos, int unsignedp)
2029 unsigned int unit;
2030 unsigned int bitsdone = 0;
2031 rtx result = NULL_RTX;
2032 int first = 1;
2034 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
2035 much at a time. */
2036 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
2037 unit = BITS_PER_WORD;
2038 else
2040 unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);
2041 if (0 && bitsize / unit > 2)
2043 rtx tmp = extract_force_align_mem_bit_field (op0, bitsize, bitpos,
2044 unsignedp);
2045 if (tmp)
2046 return tmp;
2050 while (bitsdone < bitsize)
2052 unsigned HOST_WIDE_INT thissize;
2053 rtx part, word;
2054 unsigned HOST_WIDE_INT thispos;
2055 unsigned HOST_WIDE_INT offset;
2057 offset = (bitpos + bitsdone) / unit;
2058 thispos = (bitpos + bitsdone) % unit;
2060 /* THISSIZE must not overrun a word boundary. Otherwise,
2061 extract_fixed_bit_field will call us again, and we will mutually
2062 recurse forever. */
2063 thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
2064 thissize = MIN (thissize, unit - thispos);
2066 /* If OP0 is a register, then handle OFFSET here.
2068 When handling multiword bitfields, extract_bit_field may pass
2069 down a word_mode SUBREG of a larger REG for a bitfield that actually
2070 crosses a word boundary. Thus, for a SUBREG, we must find
2071 the current word starting from the base register. */
2072 if (GET_CODE (op0) == SUBREG)
2074 int word_offset = (SUBREG_BYTE (op0) / UNITS_PER_WORD) + offset;
2075 word = operand_subword_force (SUBREG_REG (op0), word_offset,
2076 GET_MODE (SUBREG_REG (op0)));
2077 offset = 0;
2079 else if (REG_P (op0))
2081 word = operand_subword_force (op0, offset, GET_MODE (op0));
2082 offset = 0;
2084 else
2085 word = op0;
2087 /* Extract the parts in bit-counting order,
2088 whose meaning is determined by BYTES_PER_UNIT.
2089 OFFSET is in UNITs, and UNIT is in bits.
2090 extract_fixed_bit_field wants offset in bytes. */
2091 part = extract_fixed_bit_field (word_mode, word,
2092 offset * unit / BITS_PER_UNIT,
2093 thissize, thispos, 0, 1);
2094 bitsdone += thissize;
2096 /* Shift this part into place for the result. */
2097 if (BYTES_BIG_ENDIAN)
2099 if (bitsize != bitsdone)
2100 part = expand_shift (LSHIFT_EXPR, word_mode, part,
2101 build_int_cst (NULL_TREE, bitsize - bitsdone),
2102 0, 1);
2104 else
2106 if (bitsdone != thissize)
2107 part = expand_shift (LSHIFT_EXPR, word_mode, part,
2108 build_int_cst (NULL_TREE,
2109 bitsdone - thissize), 0, 1);
2112 if (first)
2113 result = part;
2114 else
2115 /* Combine the parts with bitwise or. This works
2116 because we extracted each part as an unsigned bit field. */
2117 result = expand_binop (word_mode, ior_optab, part, result, NULL_RTX, 1,
2118 OPTAB_LIB_WIDEN);
2120 first = 0;
2123 /* Unsigned bit field: we are done. */
2124 if (unsignedp)
2125 return result;
2126 /* Signed bit field: sign-extend with two arithmetic shifts. */
2127 result = expand_shift (LSHIFT_EXPR, word_mode, result,
2128 build_int_cst (NULL_TREE, BITS_PER_WORD - bitsize),
2129 NULL_RTX, 0);
2130 return expand_shift (RSHIFT_EXPR, word_mode, result,
2131 build_int_cst (NULL_TREE, BITS_PER_WORD - bitsize),
2132 NULL_RTX, 0);
2135 /* Add INC into TARGET. */
2137 void
2138 expand_inc (rtx target, rtx inc)
2140 rtx value = expand_binop (GET_MODE (target), add_optab,
2141 target, inc,
2142 target, 0, OPTAB_LIB_WIDEN);
2143 if (value != target)
2144 emit_move_insn (target, value);
2147 /* Subtract DEC from TARGET. */
2149 void
2150 expand_dec (rtx target, rtx dec)
2152 rtx value = expand_binop (GET_MODE (target), sub_optab,
2153 target, dec,
2154 target, 0, OPTAB_LIB_WIDEN);
2155 if (value != target)
2156 emit_move_insn (target, value);
2159 /* Output a shift instruction for expression code CODE,
2160 with SHIFTED being the rtx for the value to shift,
2161 and AMOUNT the tree for the amount to shift by.
2162 Store the result in the rtx TARGET, if that is convenient.
2163 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2164 Return the rtx for where the value is. */
2167 expand_shift (enum tree_code code, enum machine_mode mode, rtx shifted,
2168 tree amount, rtx target, int unsignedp)
2170 rtx op1, temp = 0;
2171 int left = (code == LSHIFT_EXPR || code == LROTATE_EXPR);
2172 int rotate = (code == LROTATE_EXPR || code == RROTATE_EXPR);
2173 int try;
2175 /* Previously detected shift-counts computed by NEGATE_EXPR
2176 and shifted in the other direction; but that does not work
2177 on all machines. */
2179 op1 = expand_expr (amount, NULL_RTX, VOIDmode, 0);
2181 if (SHIFT_COUNT_TRUNCATED)
2183 if (GET_CODE (op1) == CONST_INT
2184 && ((unsigned HOST_WIDE_INT) INTVAL (op1) >=
2185 (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode)))
2186 op1 = GEN_INT ((unsigned HOST_WIDE_INT) INTVAL (op1)
2187 % GET_MODE_BITSIZE (mode));
2188 else if (GET_CODE (op1) == SUBREG
2189 && subreg_lowpart_p (op1))
2190 op1 = SUBREG_REG (op1);
2193 if (op1 == const0_rtx)
2194 return shifted;
2196 /* Check whether its cheaper to implement a left shift by a constant
2197 bit count by a sequence of additions. */
2198 if (code == LSHIFT_EXPR
2199 && GET_CODE (op1) == CONST_INT
2200 && INTVAL (op1) > 0
2201 && INTVAL (op1) < GET_MODE_BITSIZE (mode)
2202 && shift_cost[mode][INTVAL (op1)] > INTVAL (op1) * add_cost[mode])
2204 int i;
2205 for (i = 0; i < INTVAL (op1); i++)
2207 temp = force_reg (mode, shifted);
2208 shifted = expand_binop (mode, add_optab, temp, temp, NULL_RTX,
2209 unsignedp, OPTAB_LIB_WIDEN);
2211 return shifted;
2214 for (try = 0; temp == 0 && try < 3; try++)
2216 enum optab_methods methods;
2218 if (try == 0)
2219 methods = OPTAB_DIRECT;
2220 else if (try == 1)
2221 methods = OPTAB_WIDEN;
2222 else
2223 methods = OPTAB_LIB_WIDEN;
2225 if (rotate)
2227 /* Widening does not work for rotation. */
2228 if (methods == OPTAB_WIDEN)
2229 continue;
2230 else if (methods == OPTAB_LIB_WIDEN)
2232 /* If we have been unable to open-code this by a rotation,
2233 do it as the IOR of two shifts. I.e., to rotate A
2234 by N bits, compute (A << N) | ((unsigned) A >> (C - N))
2235 where C is the bitsize of A.
2237 It is theoretically possible that the target machine might
2238 not be able to perform either shift and hence we would
2239 be making two libcalls rather than just the one for the
2240 shift (similarly if IOR could not be done). We will allow
2241 this extremely unlikely lossage to avoid complicating the
2242 code below. */
2244 rtx subtarget = target == shifted ? 0 : target;
2245 rtx temp1;
2246 tree type = TREE_TYPE (amount);
2247 tree new_amount = make_tree (type, op1);
2248 tree other_amount
2249 = fold (build2 (MINUS_EXPR, type, convert
2250 (type, build_int_cst
2251 (NULL_TREE, GET_MODE_BITSIZE (mode))),
2252 amount));
2254 shifted = force_reg (mode, shifted);
2256 temp = expand_shift (left ? LSHIFT_EXPR : RSHIFT_EXPR,
2257 mode, shifted, new_amount, subtarget, 1);
2258 temp1 = expand_shift (left ? RSHIFT_EXPR : LSHIFT_EXPR,
2259 mode, shifted, other_amount, 0, 1);
2260 return expand_binop (mode, ior_optab, temp, temp1, target,
2261 unsignedp, methods);
2264 temp = expand_binop (mode,
2265 left ? rotl_optab : rotr_optab,
2266 shifted, op1, target, unsignedp, methods);
2268 /* If we don't have the rotate, but we are rotating by a constant
2269 that is in range, try a rotate in the opposite direction. */
2271 if (temp == 0 && GET_CODE (op1) == CONST_INT
2272 && INTVAL (op1) > 0
2273 && (unsigned int) INTVAL (op1) < GET_MODE_BITSIZE (mode))
2274 temp = expand_binop (mode,
2275 left ? rotr_optab : rotl_optab,
2276 shifted,
2277 GEN_INT (GET_MODE_BITSIZE (mode)
2278 - INTVAL (op1)),
2279 target, unsignedp, methods);
2281 else if (unsignedp)
2282 temp = expand_binop (mode,
2283 left ? ashl_optab : lshr_optab,
2284 shifted, op1, target, unsignedp, methods);
2286 /* Do arithmetic shifts.
2287 Also, if we are going to widen the operand, we can just as well
2288 use an arithmetic right-shift instead of a logical one. */
2289 if (temp == 0 && ! rotate
2290 && (! unsignedp || (! left && methods == OPTAB_WIDEN)))
2292 enum optab_methods methods1 = methods;
2294 /* If trying to widen a log shift to an arithmetic shift,
2295 don't accept an arithmetic shift of the same size. */
2296 if (unsignedp)
2297 methods1 = OPTAB_MUST_WIDEN;
2299 /* Arithmetic shift */
2301 temp = expand_binop (mode,
2302 left ? ashl_optab : ashr_optab,
2303 shifted, op1, target, unsignedp, methods1);
2306 /* We used to try extzv here for logical right shifts, but that was
2307 only useful for one machine, the VAX, and caused poor code
2308 generation there for lshrdi3, so the code was deleted and a
2309 define_expand for lshrsi3 was added to vax.md. */
2312 gcc_assert (temp);
2313 return temp;
2316 enum alg_code { alg_unknown, alg_zero, alg_m, alg_shift,
2317 alg_add_t_m2, alg_sub_t_m2,
2318 alg_add_factor, alg_sub_factor,
2319 alg_add_t2_m, alg_sub_t2_m };
2321 /* This structure holds the "cost" of a multiply sequence. The
2322 "cost" field holds the total rtx_cost of every operator in the
2323 synthetic multiplication sequence, hence cost(a op b) is defined
2324 as rtx_cost(op) + cost(a) + cost(b), where cost(leaf) is zero.
2325 The "latency" field holds the minimum possible latency of the
2326 synthetic multiply, on a hypothetical infinitely parallel CPU.
2327 This is the critical path, or the maximum height, of the expression
2328 tree which is the sum of rtx_costs on the most expensive path from
2329 any leaf to the root. Hence latency(a op b) is defined as zero for
2330 leaves and rtx_cost(op) + max(latency(a), latency(b)) otherwise. */
2332 struct mult_cost {
2333 short cost; /* Total rtx_cost of the multiplication sequence. */
2334 short latency; /* The latency of the multiplication sequence. */
2337 /* This macro is used to compare a pointer to a mult_cost against an
2338 single integer "rtx_cost" value. This is equivalent to the macro
2339 CHEAPER_MULT_COST(X,Z) where Z = {Y,Y}. */
2340 #define MULT_COST_LESS(X,Y) ((X)->cost < (Y) \
2341 || ((X)->cost == (Y) && (X)->latency < (Y)))
2343 /* This macro is used to compare two pointers to mult_costs against
2344 each other. The macro returns true if X is cheaper than Y.
2345 Currently, the cheaper of two mult_costs is the one with the
2346 lower "cost". If "cost"s are tied, the lower latency is cheaper. */
2347 #define CHEAPER_MULT_COST(X,Y) ((X)->cost < (Y)->cost \
2348 || ((X)->cost == (Y)->cost \
2349 && (X)->latency < (Y)->latency))
2351 /* This structure records a sequence of operations.
2352 `ops' is the number of operations recorded.
2353 `cost' is their total cost.
2354 The operations are stored in `op' and the corresponding
2355 logarithms of the integer coefficients in `log'.
2357 These are the operations:
2358 alg_zero total := 0;
2359 alg_m total := multiplicand;
2360 alg_shift total := total * coeff
2361 alg_add_t_m2 total := total + multiplicand * coeff;
2362 alg_sub_t_m2 total := total - multiplicand * coeff;
2363 alg_add_factor total := total * coeff + total;
2364 alg_sub_factor total := total * coeff - total;
2365 alg_add_t2_m total := total * coeff + multiplicand;
2366 alg_sub_t2_m total := total * coeff - multiplicand;
2368 The first operand must be either alg_zero or alg_m. */
2370 struct algorithm
2372 struct mult_cost cost;
2373 short ops;
2374 /* The size of the OP and LOG fields are not directly related to the
2375 word size, but the worst-case algorithms will be if we have few
2376 consecutive ones or zeros, i.e., a multiplicand like 10101010101...
2377 In that case we will generate shift-by-2, add, shift-by-2, add,...,
2378 in total wordsize operations. */
2379 enum alg_code op[MAX_BITS_PER_WORD];
2380 char log[MAX_BITS_PER_WORD];
2383 /* The entry for our multiplication cache/hash table. */
2384 struct alg_hash_entry {
2385 /* The number we are multiplying by. */
2386 unsigned int t;
2388 /* The mode in which we are multiplying something by T. */
2389 enum machine_mode mode;
2391 /* The best multiplication algorithm for t. */
2392 enum alg_code alg;
2395 /* The number of cache/hash entries. */
2396 #define NUM_ALG_HASH_ENTRIES 307
2398 /* Each entry of ALG_HASH caches alg_code for some integer. This is
2399 actually a hash table. If we have a collision, that the older
2400 entry is kicked out. */
2401 static struct alg_hash_entry alg_hash[NUM_ALG_HASH_ENTRIES];
2403 /* Indicates the type of fixup needed after a constant multiplication.
2404 BASIC_VARIANT means no fixup is needed, NEGATE_VARIANT means that
2405 the result should be negated, and ADD_VARIANT means that the
2406 multiplicand should be added to the result. */
2407 enum mult_variant {basic_variant, negate_variant, add_variant};
2409 static void synth_mult (struct algorithm *, unsigned HOST_WIDE_INT,
2410 const struct mult_cost *, enum machine_mode mode);
2411 static bool choose_mult_variant (enum machine_mode, HOST_WIDE_INT,
2412 struct algorithm *, enum mult_variant *, int);
2413 static rtx expand_mult_const (enum machine_mode, rtx, HOST_WIDE_INT, rtx,
2414 const struct algorithm *, enum mult_variant);
2415 static unsigned HOST_WIDE_INT choose_multiplier (unsigned HOST_WIDE_INT, int,
2416 int, unsigned HOST_WIDE_INT *,
2417 int *, int *);
2418 static unsigned HOST_WIDE_INT invert_mod2n (unsigned HOST_WIDE_INT, int);
2419 static rtx extract_high_half (enum machine_mode, rtx);
2420 static rtx expand_mult_highpart_optab (enum machine_mode, rtx, rtx, rtx,
2421 int, int);
2422 /* Compute and return the best algorithm for multiplying by T.
2423 The algorithm must cost less than cost_limit
2424 If retval.cost >= COST_LIMIT, no algorithm was found and all
2425 other field of the returned struct are undefined.
2426 MODE is the machine mode of the multiplication. */
2428 static void
2429 synth_mult (struct algorithm *alg_out, unsigned HOST_WIDE_INT t,
2430 const struct mult_cost *cost_limit, enum machine_mode mode)
2432 int m;
2433 struct algorithm *alg_in, *best_alg;
2434 struct mult_cost best_cost;
2435 struct mult_cost new_limit;
2436 int op_cost, op_latency;
2437 unsigned HOST_WIDE_INT q;
2438 int maxm = MIN (BITS_PER_WORD, GET_MODE_BITSIZE (mode));
2439 int hash_index;
2440 bool cache_hit = false;
2441 enum alg_code cache_alg = alg_zero;
2443 /* Indicate that no algorithm is yet found. If no algorithm
2444 is found, this value will be returned and indicate failure. */
2445 alg_out->cost.cost = cost_limit->cost + 1;
2446 alg_out->cost.latency = cost_limit->latency + 1;
2448 if (cost_limit->cost < 0
2449 || (cost_limit->cost == 0 && cost_limit->latency <= 0))
2450 return;
2452 /* Restrict the bits of "t" to the multiplication's mode. */
2453 t &= GET_MODE_MASK (mode);
2455 /* t == 1 can be done in zero cost. */
2456 if (t == 1)
2458 alg_out->ops = 1;
2459 alg_out->cost.cost = 0;
2460 alg_out->cost.latency = 0;
2461 alg_out->op[0] = alg_m;
2462 return;
2465 /* t == 0 sometimes has a cost. If it does and it exceeds our limit,
2466 fail now. */
2467 if (t == 0)
2469 if (MULT_COST_LESS (cost_limit, zero_cost))
2470 return;
2471 else
2473 alg_out->ops = 1;
2474 alg_out->cost.cost = zero_cost;
2475 alg_out->cost.latency = zero_cost;
2476 alg_out->op[0] = alg_zero;
2477 return;
2481 /* We'll be needing a couple extra algorithm structures now. */
2483 alg_in = alloca (sizeof (struct algorithm));
2484 best_alg = alloca (sizeof (struct algorithm));
2485 best_cost = *cost_limit;
2487 /* Compute the hash index. */
2488 hash_index = (t ^ (unsigned int) mode) % NUM_ALG_HASH_ENTRIES;
2490 /* See if we already know what to do for T. */
2491 if (alg_hash[hash_index].t == t
2492 && alg_hash[hash_index].mode == mode
2493 && alg_hash[hash_index].alg != alg_unknown)
2495 cache_hit = true;
2496 cache_alg = alg_hash[hash_index].alg;
2497 switch (cache_alg)
2499 case alg_shift:
2500 goto do_alg_shift;
2502 case alg_add_t_m2:
2503 case alg_sub_t_m2:
2504 goto do_alg_addsub_t_m2;
2506 case alg_add_factor:
2507 case alg_sub_factor:
2508 goto do_alg_addsub_factor;
2510 case alg_add_t2_m:
2511 goto do_alg_add_t2_m;
2513 case alg_sub_t2_m:
2514 goto do_alg_sub_t2_m;
2516 default:
2517 gcc_unreachable ();
2521 /* If we have a group of zero bits at the low-order part of T, try
2522 multiplying by the remaining bits and then doing a shift. */
2524 if ((t & 1) == 0)
2526 do_alg_shift:
2527 m = floor_log2 (t & -t); /* m = number of low zero bits */
2528 if (m < maxm)
2530 q = t >> m;
2531 /* The function expand_shift will choose between a shift and
2532 a sequence of additions, so the observed cost is given as
2533 MIN (m * add_cost[mode], shift_cost[mode][m]). */
2534 op_cost = m * add_cost[mode];
2535 if (shift_cost[mode][m] < op_cost)
2536 op_cost = shift_cost[mode][m];
2537 new_limit.cost = best_cost.cost - op_cost;
2538 new_limit.latency = best_cost.latency - op_cost;
2539 synth_mult (alg_in, q, &new_limit, mode);
2541 alg_in->cost.cost += op_cost;
2542 alg_in->cost.latency += op_cost;
2543 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2545 struct algorithm *x;
2546 best_cost = alg_in->cost;
2547 x = alg_in, alg_in = best_alg, best_alg = x;
2548 best_alg->log[best_alg->ops] = m;
2549 best_alg->op[best_alg->ops] = alg_shift;
2552 if (cache_hit)
2553 goto done;
2556 /* If we have an odd number, add or subtract one. */
2557 if ((t & 1) != 0)
2559 unsigned HOST_WIDE_INT w;
2561 do_alg_addsub_t_m2:
2562 for (w = 1; (w & t) != 0; w <<= 1)
2564 /* If T was -1, then W will be zero after the loop. This is another
2565 case where T ends with ...111. Handling this with (T + 1) and
2566 subtract 1 produces slightly better code and results in algorithm
2567 selection much faster than treating it like the ...0111 case
2568 below. */
2569 if (w == 0
2570 || (w > 2
2571 /* Reject the case where t is 3.
2572 Thus we prefer addition in that case. */
2573 && t != 3))
2575 /* T ends with ...111. Multiply by (T + 1) and subtract 1. */
2577 op_cost = add_cost[mode];
2578 new_limit.cost = best_cost.cost - op_cost;
2579 new_limit.latency = best_cost.latency - op_cost;
2580 synth_mult (alg_in, t + 1, &new_limit, mode);
2582 alg_in->cost.cost += op_cost;
2583 alg_in->cost.latency += op_cost;
2584 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2586 struct algorithm *x;
2587 best_cost = alg_in->cost;
2588 x = alg_in, alg_in = best_alg, best_alg = x;
2589 best_alg->log[best_alg->ops] = 0;
2590 best_alg->op[best_alg->ops] = alg_sub_t_m2;
2593 else
2595 /* T ends with ...01 or ...011. Multiply by (T - 1) and add 1. */
2597 op_cost = add_cost[mode];
2598 new_limit.cost = best_cost.cost - op_cost;
2599 new_limit.latency = best_cost.latency - op_cost;
2600 synth_mult (alg_in, t - 1, &new_limit, mode);
2602 alg_in->cost.cost += op_cost;
2603 alg_in->cost.latency += op_cost;
2604 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2606 struct algorithm *x;
2607 best_cost = alg_in->cost;
2608 x = alg_in, alg_in = best_alg, best_alg = x;
2609 best_alg->log[best_alg->ops] = 0;
2610 best_alg->op[best_alg->ops] = alg_add_t_m2;
2613 if (cache_hit)
2614 goto done;
2617 /* Look for factors of t of the form
2618 t = q(2**m +- 1), 2 <= m <= floor(log2(t - 1)).
2619 If we find such a factor, we can multiply by t using an algorithm that
2620 multiplies by q, shift the result by m and add/subtract it to itself.
2622 We search for large factors first and loop down, even if large factors
2623 are less probable than small; if we find a large factor we will find a
2624 good sequence quickly, and therefore be able to prune (by decreasing
2625 COST_LIMIT) the search. */
2627 do_alg_addsub_factor:
2628 for (m = floor_log2 (t - 1); m >= 2; m--)
2630 unsigned HOST_WIDE_INT d;
2632 d = ((unsigned HOST_WIDE_INT) 1 << m) + 1;
2633 if (t % d == 0 && t > d && m < maxm
2634 && (!cache_hit || cache_alg == alg_add_factor))
2636 /* If the target has a cheap shift-and-add instruction use
2637 that in preference to a shift insn followed by an add insn.
2638 Assume that the shift-and-add is "atomic" with a latency
2639 equal to its cost, otherwise assume that on superscalar
2640 hardware the shift may be executed concurrently with the
2641 earlier steps in the algorithm. */
2642 op_cost = add_cost[mode] + shift_cost[mode][m];
2643 if (shiftadd_cost[mode][m] < op_cost)
2645 op_cost = shiftadd_cost[mode][m];
2646 op_latency = op_cost;
2648 else
2649 op_latency = add_cost[mode];
2651 new_limit.cost = best_cost.cost - op_cost;
2652 new_limit.latency = best_cost.latency - op_latency;
2653 synth_mult (alg_in, t / d, &new_limit, mode);
2655 alg_in->cost.cost += op_cost;
2656 alg_in->cost.latency += op_latency;
2657 if (alg_in->cost.latency < op_cost)
2658 alg_in->cost.latency = op_cost;
2659 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2661 struct algorithm *x;
2662 best_cost = alg_in->cost;
2663 x = alg_in, alg_in = best_alg, best_alg = x;
2664 best_alg->log[best_alg->ops] = m;
2665 best_alg->op[best_alg->ops] = alg_add_factor;
2667 /* Other factors will have been taken care of in the recursion. */
2668 break;
2671 d = ((unsigned HOST_WIDE_INT) 1 << m) - 1;
2672 if (t % d == 0 && t > d && m < maxm
2673 && (!cache_hit || cache_alg == alg_sub_factor))
2675 /* If the target has a cheap shift-and-subtract insn use
2676 that in preference to a shift insn followed by a sub insn.
2677 Assume that the shift-and-sub is "atomic" with a latency
2678 equal to it's cost, otherwise assume that on superscalar
2679 hardware the shift may be executed concurrently with the
2680 earlier steps in the algorithm. */
2681 op_cost = add_cost[mode] + shift_cost[mode][m];
2682 if (shiftsub_cost[mode][m] < op_cost)
2684 op_cost = shiftsub_cost[mode][m];
2685 op_latency = op_cost;
2687 else
2688 op_latency = add_cost[mode];
2690 new_limit.cost = best_cost.cost - op_cost;
2691 new_limit.cost = best_cost.cost - op_latency;
2692 synth_mult (alg_in, t / d, &new_limit, mode);
2694 alg_in->cost.cost += op_cost;
2695 alg_in->cost.latency += op_latency;
2696 if (alg_in->cost.latency < op_cost)
2697 alg_in->cost.latency = op_cost;
2698 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2700 struct algorithm *x;
2701 best_cost = alg_in->cost;
2702 x = alg_in, alg_in = best_alg, best_alg = x;
2703 best_alg->log[best_alg->ops] = m;
2704 best_alg->op[best_alg->ops] = alg_sub_factor;
2706 break;
2709 if (cache_hit)
2710 goto done;
2712 /* Try shift-and-add (load effective address) instructions,
2713 i.e. do a*3, a*5, a*9. */
2714 if ((t & 1) != 0)
2716 do_alg_add_t2_m:
2717 q = t - 1;
2718 q = q & -q;
2719 m = exact_log2 (q);
2720 if (m >= 0 && m < maxm)
2722 op_cost = shiftadd_cost[mode][m];
2723 new_limit.cost = best_cost.cost - op_cost;
2724 new_limit.latency = best_cost.latency - op_cost;
2725 synth_mult (alg_in, (t - 1) >> m, &new_limit, mode);
2727 alg_in->cost.cost += op_cost;
2728 alg_in->cost.latency += op_cost;
2729 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2731 struct algorithm *x;
2732 best_cost = alg_in->cost;
2733 x = alg_in, alg_in = best_alg, best_alg = x;
2734 best_alg->log[best_alg->ops] = m;
2735 best_alg->op[best_alg->ops] = alg_add_t2_m;
2738 if (cache_hit)
2739 goto done;
2741 do_alg_sub_t2_m:
2742 q = t + 1;
2743 q = q & -q;
2744 m = exact_log2 (q);
2745 if (m >= 0 && m < maxm)
2747 op_cost = shiftsub_cost[mode][m];
2748 new_limit.cost = best_cost.cost - op_cost;
2749 new_limit.latency = best_cost.latency - op_cost;
2750 synth_mult (alg_in, (t + 1) >> m, &new_limit, mode);
2752 alg_in->cost.cost += op_cost;
2753 alg_in->cost.latency += op_cost;
2754 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2756 struct algorithm *x;
2757 best_cost = alg_in->cost;
2758 x = alg_in, alg_in = best_alg, best_alg = x;
2759 best_alg->log[best_alg->ops] = m;
2760 best_alg->op[best_alg->ops] = alg_sub_t2_m;
2763 if (cache_hit)
2764 goto done;
2767 done:
2768 /* If best_cost has not decreased, we have not found any algorithm. */
2769 if (!CHEAPER_MULT_COST (&best_cost, cost_limit))
2770 return;
2772 /* Cache the result. */
2773 if (!cache_hit)
2775 alg_hash[hash_index].t = t;
2776 alg_hash[hash_index].mode = mode;
2777 alg_hash[hash_index].alg = best_alg->op[best_alg->ops];
2780 /* If we are getting a too long sequence for `struct algorithm'
2781 to record, make this search fail. */
2782 if (best_alg->ops == MAX_BITS_PER_WORD)
2783 return;
2785 /* Copy the algorithm from temporary space to the space at alg_out.
2786 We avoid using structure assignment because the majority of
2787 best_alg is normally undefined, and this is a critical function. */
2788 alg_out->ops = best_alg->ops + 1;
2789 alg_out->cost = best_cost;
2790 memcpy (alg_out->op, best_alg->op,
2791 alg_out->ops * sizeof *alg_out->op);
2792 memcpy (alg_out->log, best_alg->log,
2793 alg_out->ops * sizeof *alg_out->log);
2796 /* Find the cheapest way of multiplying a value of mode MODE by VAL.
2797 Try three variations:
2799 - a shift/add sequence based on VAL itself
2800 - a shift/add sequence based on -VAL, followed by a negation
2801 - a shift/add sequence based on VAL - 1, followed by an addition.
2803 Return true if the cheapest of these cost less than MULT_COST,
2804 describing the algorithm in *ALG and final fixup in *VARIANT. */
2806 static bool
2807 choose_mult_variant (enum machine_mode mode, HOST_WIDE_INT val,
2808 struct algorithm *alg, enum mult_variant *variant,
2809 int mult_cost)
2811 struct algorithm alg2;
2812 struct mult_cost limit;
2813 int op_cost;
2815 *variant = basic_variant;
2816 limit.cost = mult_cost;
2817 limit.latency = mult_cost;
2818 synth_mult (alg, val, &limit, mode);
2820 /* This works only if the inverted value actually fits in an
2821 `unsigned int' */
2822 if (HOST_BITS_PER_INT >= GET_MODE_BITSIZE (mode))
2824 op_cost = neg_cost[mode];
2825 if (MULT_COST_LESS (&alg->cost, mult_cost))
2827 limit.cost = alg->cost.cost - op_cost;
2828 limit.latency = alg->cost.latency - op_cost;
2830 else
2832 limit.cost = mult_cost - op_cost;
2833 limit.latency = mult_cost - op_cost;
2836 synth_mult (&alg2, -val, &limit, mode);
2837 alg2.cost.cost += op_cost;
2838 alg2.cost.latency += op_cost;
2839 if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
2840 *alg = alg2, *variant = negate_variant;
2843 /* This proves very useful for division-by-constant. */
2844 op_cost = add_cost[mode];
2845 if (MULT_COST_LESS (&alg->cost, mult_cost))
2847 limit.cost = alg->cost.cost - op_cost;
2848 limit.latency = alg->cost.latency - op_cost;
2850 else
2852 limit.cost = mult_cost - op_cost;
2853 limit.latency = mult_cost - op_cost;
2856 synth_mult (&alg2, val - 1, &limit, mode);
2857 alg2.cost.cost += op_cost;
2858 alg2.cost.latency += op_cost;
2859 if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
2860 *alg = alg2, *variant = add_variant;
2862 return MULT_COST_LESS (&alg->cost, mult_cost);
2865 /* A subroutine of expand_mult, used for constant multiplications.
2866 Multiply OP0 by VAL in mode MODE, storing the result in TARGET if
2867 convenient. Use the shift/add sequence described by ALG and apply
2868 the final fixup specified by VARIANT. */
2870 static rtx
2871 expand_mult_const (enum machine_mode mode, rtx op0, HOST_WIDE_INT val,
2872 rtx target, const struct algorithm *alg,
2873 enum mult_variant variant)
2875 HOST_WIDE_INT val_so_far;
2876 rtx insn, accum, tem;
2877 int opno;
2878 enum machine_mode nmode;
2880 /* Avoid referencing memory over and over.
2881 For speed, but also for correctness when mem is volatile. */
2882 if (MEM_P (op0))
2883 op0 = force_reg (mode, op0);
2885 /* ACCUM starts out either as OP0 or as a zero, depending on
2886 the first operation. */
2888 if (alg->op[0] == alg_zero)
2890 accum = copy_to_mode_reg (mode, const0_rtx);
2891 val_so_far = 0;
2893 else if (alg->op[0] == alg_m)
2895 accum = copy_to_mode_reg (mode, op0);
2896 val_so_far = 1;
2898 else
2899 gcc_unreachable ();
2901 for (opno = 1; opno < alg->ops; opno++)
2903 int log = alg->log[opno];
2904 rtx shift_subtarget = optimize ? 0 : accum;
2905 rtx add_target
2906 = (opno == alg->ops - 1 && target != 0 && variant != add_variant
2907 && !optimize)
2908 ? target : 0;
2909 rtx accum_target = optimize ? 0 : accum;
2911 switch (alg->op[opno])
2913 case alg_shift:
2914 accum = expand_shift (LSHIFT_EXPR, mode, accum,
2915 build_int_cst (NULL_TREE, log),
2916 NULL_RTX, 0);
2917 val_so_far <<= log;
2918 break;
2920 case alg_add_t_m2:
2921 tem = expand_shift (LSHIFT_EXPR, mode, op0,
2922 build_int_cst (NULL_TREE, log),
2923 NULL_RTX, 0);
2924 accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
2925 add_target ? add_target : accum_target);
2926 val_so_far += (HOST_WIDE_INT) 1 << log;
2927 break;
2929 case alg_sub_t_m2:
2930 tem = expand_shift (LSHIFT_EXPR, mode, op0,
2931 build_int_cst (NULL_TREE, log),
2932 NULL_RTX, 0);
2933 accum = force_operand (gen_rtx_MINUS (mode, accum, tem),
2934 add_target ? add_target : accum_target);
2935 val_so_far -= (HOST_WIDE_INT) 1 << log;
2936 break;
2938 case alg_add_t2_m:
2939 accum = expand_shift (LSHIFT_EXPR, mode, accum,
2940 build_int_cst (NULL_TREE, log),
2941 shift_subtarget,
2943 accum = force_operand (gen_rtx_PLUS (mode, accum, op0),
2944 add_target ? add_target : accum_target);
2945 val_so_far = (val_so_far << log) + 1;
2946 break;
2948 case alg_sub_t2_m:
2949 accum = expand_shift (LSHIFT_EXPR, mode, accum,
2950 build_int_cst (NULL_TREE, log),
2951 shift_subtarget, 0);
2952 accum = force_operand (gen_rtx_MINUS (mode, accum, op0),
2953 add_target ? add_target : accum_target);
2954 val_so_far = (val_so_far << log) - 1;
2955 break;
2957 case alg_add_factor:
2958 tem = expand_shift (LSHIFT_EXPR, mode, accum,
2959 build_int_cst (NULL_TREE, log),
2960 NULL_RTX, 0);
2961 accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
2962 add_target ? add_target : accum_target);
2963 val_so_far += val_so_far << log;
2964 break;
2966 case alg_sub_factor:
2967 tem = expand_shift (LSHIFT_EXPR, mode, accum,
2968 build_int_cst (NULL_TREE, log),
2969 NULL_RTX, 0);
2970 accum = force_operand (gen_rtx_MINUS (mode, tem, accum),
2971 (add_target
2972 ? add_target : (optimize ? 0 : tem)));
2973 val_so_far = (val_so_far << log) - val_so_far;
2974 break;
2976 default:
2977 gcc_unreachable ();
2980 /* Write a REG_EQUAL note on the last insn so that we can cse
2981 multiplication sequences. Note that if ACCUM is a SUBREG,
2982 we've set the inner register and must properly indicate
2983 that. */
2985 tem = op0, nmode = mode;
2986 if (GET_CODE (accum) == SUBREG)
2988 nmode = GET_MODE (SUBREG_REG (accum));
2989 tem = gen_lowpart (nmode, op0);
2992 insn = get_last_insn ();
2993 set_unique_reg_note (insn, REG_EQUAL,
2994 gen_rtx_MULT (nmode, tem, GEN_INT (val_so_far)));
2997 if (variant == negate_variant)
2999 val_so_far = -val_so_far;
3000 accum = expand_unop (mode, neg_optab, accum, target, 0);
3002 else if (variant == add_variant)
3004 val_so_far = val_so_far + 1;
3005 accum = force_operand (gen_rtx_PLUS (mode, accum, op0), target);
3008 /* Compare only the bits of val and val_so_far that are significant
3009 in the result mode, to avoid sign-/zero-extension confusion. */
3010 val &= GET_MODE_MASK (mode);
3011 val_so_far &= GET_MODE_MASK (mode);
3012 gcc_assert (val == val_so_far);
3014 return accum;
3017 /* Perform a multiplication and return an rtx for the result.
3018 MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
3019 TARGET is a suggestion for where to store the result (an rtx).
3021 We check specially for a constant integer as OP1.
3022 If you want this check for OP0 as well, then before calling
3023 you should swap the two operands if OP0 would be constant. */
3026 expand_mult (enum machine_mode mode, rtx op0, rtx op1, rtx target,
3027 int unsignedp)
3029 rtx const_op1 = op1;
3030 enum mult_variant variant;
3031 struct algorithm algorithm;
3033 /* synth_mult does an `unsigned int' multiply. As long as the mode is
3034 less than or equal in size to `unsigned int' this doesn't matter.
3035 If the mode is larger than `unsigned int', then synth_mult works only
3036 if the constant value exactly fits in an `unsigned int' without any
3037 truncation. This means that multiplying by negative values does
3038 not work; results are off by 2^32 on a 32 bit machine. */
3040 /* If we are multiplying in DImode, it may still be a win
3041 to try to work with shifts and adds. */
3042 if (GET_CODE (op1) == CONST_DOUBLE
3043 && GET_MODE_CLASS (GET_MODE (op1)) == MODE_INT
3044 && HOST_BITS_PER_INT >= BITS_PER_WORD
3045 && CONST_DOUBLE_HIGH (op1) == 0)
3046 const_op1 = GEN_INT (CONST_DOUBLE_LOW (op1));
3047 else if (HOST_BITS_PER_INT < GET_MODE_BITSIZE (mode)
3048 && GET_CODE (op1) == CONST_INT
3049 && INTVAL (op1) < 0)
3050 const_op1 = 0;
3052 /* We used to test optimize here, on the grounds that it's better to
3053 produce a smaller program when -O is not used.
3054 But this causes such a terrible slowdown sometimes
3055 that it seems better to use synth_mult always. */
3057 if (const_op1 && GET_CODE (const_op1) == CONST_INT
3058 && (unsignedp || !flag_trapv))
3060 int mult_cost = rtx_cost (gen_rtx_MULT (mode, op0, op1), SET);
3062 if (choose_mult_variant (mode, INTVAL (const_op1), &algorithm, &variant,
3063 mult_cost))
3064 return expand_mult_const (mode, op0, INTVAL (const_op1), target,
3065 &algorithm, variant);
3068 if (GET_CODE (op0) == CONST_DOUBLE)
3070 rtx temp = op0;
3071 op0 = op1;
3072 op1 = temp;
3075 /* Expand x*2.0 as x+x. */
3076 if (GET_CODE (op1) == CONST_DOUBLE
3077 && GET_MODE_CLASS (mode) == MODE_FLOAT)
3079 REAL_VALUE_TYPE d;
3080 REAL_VALUE_FROM_CONST_DOUBLE (d, op1);
3082 if (REAL_VALUES_EQUAL (d, dconst2))
3084 op0 = force_reg (GET_MODE (op0), op0);
3085 return expand_binop (mode, add_optab, op0, op0,
3086 target, unsignedp, OPTAB_LIB_WIDEN);
3090 /* This used to use umul_optab if unsigned, but for non-widening multiply
3091 there is no difference between signed and unsigned. */
3092 op0 = expand_binop (mode,
3093 ! unsignedp
3094 && flag_trapv && (GET_MODE_CLASS(mode) == MODE_INT)
3095 ? smulv_optab : smul_optab,
3096 op0, op1, target, unsignedp, OPTAB_LIB_WIDEN);
3097 gcc_assert (op0);
3098 return op0;
3101 /* Return the smallest n such that 2**n >= X. */
3104 ceil_log2 (unsigned HOST_WIDE_INT x)
3106 return floor_log2 (x - 1) + 1;
3109 /* Choose a minimal N + 1 bit approximation to 1/D that can be used to
3110 replace division by D, and put the least significant N bits of the result
3111 in *MULTIPLIER_PTR and return the most significant bit.
3113 The width of operations is N (should be <= HOST_BITS_PER_WIDE_INT), the
3114 needed precision is in PRECISION (should be <= N).
3116 PRECISION should be as small as possible so this function can choose
3117 multiplier more freely.
3119 The rounded-up logarithm of D is placed in *lgup_ptr. A shift count that
3120 is to be used for a final right shift is placed in *POST_SHIFT_PTR.
3122 Using this function, x/D will be equal to (x * m) >> (*POST_SHIFT_PTR),
3123 where m is the full HOST_BITS_PER_WIDE_INT + 1 bit multiplier. */
3125 static
3126 unsigned HOST_WIDE_INT
3127 choose_multiplier (unsigned HOST_WIDE_INT d, int n, int precision,
3128 unsigned HOST_WIDE_INT *multiplier_ptr,
3129 int *post_shift_ptr, int *lgup_ptr)
3131 HOST_WIDE_INT mhigh_hi, mlow_hi;
3132 unsigned HOST_WIDE_INT mhigh_lo, mlow_lo;
3133 int lgup, post_shift;
3134 int pow, pow2;
3135 unsigned HOST_WIDE_INT nl, dummy1;
3136 HOST_WIDE_INT nh, dummy2;
3138 /* lgup = ceil(log2(divisor)); */
3139 lgup = ceil_log2 (d);
3141 gcc_assert (lgup <= n);
3143 pow = n + lgup;
3144 pow2 = n + lgup - precision;
3146 /* We could handle this with some effort, but this case is much
3147 better handled directly with a scc insn, so rely on caller using
3148 that. */
3149 gcc_assert (pow != 2 * HOST_BITS_PER_WIDE_INT);
3151 /* mlow = 2^(N + lgup)/d */
3152 if (pow >= HOST_BITS_PER_WIDE_INT)
3154 nh = (HOST_WIDE_INT) 1 << (pow - HOST_BITS_PER_WIDE_INT);
3155 nl = 0;
3157 else
3159 nh = 0;
3160 nl = (unsigned HOST_WIDE_INT) 1 << pow;
3162 div_and_round_double (TRUNC_DIV_EXPR, 1, nl, nh, d, (HOST_WIDE_INT) 0,
3163 &mlow_lo, &mlow_hi, &dummy1, &dummy2);
3165 /* mhigh = (2^(N + lgup) + 2^N + lgup - precision)/d */
3166 if (pow2 >= HOST_BITS_PER_WIDE_INT)
3167 nh |= (HOST_WIDE_INT) 1 << (pow2 - HOST_BITS_PER_WIDE_INT);
3168 else
3169 nl |= (unsigned HOST_WIDE_INT) 1 << pow2;
3170 div_and_round_double (TRUNC_DIV_EXPR, 1, nl, nh, d, (HOST_WIDE_INT) 0,
3171 &mhigh_lo, &mhigh_hi, &dummy1, &dummy2);
3173 gcc_assert (!mhigh_hi || nh - d < d);
3174 gcc_assert (mhigh_hi <= 1 && mlow_hi <= 1);
3175 /* Assert that mlow < mhigh. */
3176 gcc_assert (mlow_hi < mhigh_hi
3177 || (mlow_hi == mhigh_hi && mlow_lo < mhigh_lo));
3179 /* If precision == N, then mlow, mhigh exceed 2^N
3180 (but they do not exceed 2^(N+1)). */
3182 /* Reduce to lowest terms. */
3183 for (post_shift = lgup; post_shift > 0; post_shift--)
3185 unsigned HOST_WIDE_INT ml_lo = (mlow_hi << (HOST_BITS_PER_WIDE_INT - 1)) | (mlow_lo >> 1);
3186 unsigned HOST_WIDE_INT mh_lo = (mhigh_hi << (HOST_BITS_PER_WIDE_INT - 1)) | (mhigh_lo >> 1);
3187 if (ml_lo >= mh_lo)
3188 break;
3190 mlow_hi = 0;
3191 mlow_lo = ml_lo;
3192 mhigh_hi = 0;
3193 mhigh_lo = mh_lo;
3196 *post_shift_ptr = post_shift;
3197 *lgup_ptr = lgup;
3198 if (n < HOST_BITS_PER_WIDE_INT)
3200 unsigned HOST_WIDE_INT mask = ((unsigned HOST_WIDE_INT) 1 << n) - 1;
3201 *multiplier_ptr = mhigh_lo & mask;
3202 return mhigh_lo >= mask;
3204 else
3206 *multiplier_ptr = mhigh_lo;
3207 return mhigh_hi;
3211 /* Compute the inverse of X mod 2**n, i.e., find Y such that X * Y is
3212 congruent to 1 (mod 2**N). */
3214 static unsigned HOST_WIDE_INT
3215 invert_mod2n (unsigned HOST_WIDE_INT x, int n)
3217 /* Solve x*y == 1 (mod 2^n), where x is odd. Return y. */
3219 /* The algorithm notes that the choice y = x satisfies
3220 x*y == 1 mod 2^3, since x is assumed odd.
3221 Each iteration doubles the number of bits of significance in y. */
3223 unsigned HOST_WIDE_INT mask;
3224 unsigned HOST_WIDE_INT y = x;
3225 int nbit = 3;
3227 mask = (n == HOST_BITS_PER_WIDE_INT
3228 ? ~(unsigned HOST_WIDE_INT) 0
3229 : ((unsigned HOST_WIDE_INT) 1 << n) - 1);
3231 while (nbit < n)
3233 y = y * (2 - x*y) & mask; /* Modulo 2^N */
3234 nbit *= 2;
3236 return y;
3239 /* Emit code to adjust ADJ_OPERAND after multiplication of wrong signedness
3240 flavor of OP0 and OP1. ADJ_OPERAND is already the high half of the
3241 product OP0 x OP1. If UNSIGNEDP is nonzero, adjust the signed product
3242 to become unsigned, if UNSIGNEDP is zero, adjust the unsigned product to
3243 become signed.
3245 The result is put in TARGET if that is convenient.
3247 MODE is the mode of operation. */
3250 expand_mult_highpart_adjust (enum machine_mode mode, rtx adj_operand, rtx op0,
3251 rtx op1, rtx target, int unsignedp)
3253 rtx tem;
3254 enum rtx_code adj_code = unsignedp ? PLUS : MINUS;
3256 tem = expand_shift (RSHIFT_EXPR, mode, op0,
3257 build_int_cst (NULL_TREE, GET_MODE_BITSIZE (mode) - 1),
3258 NULL_RTX, 0);
3259 tem = expand_and (mode, tem, op1, NULL_RTX);
3260 adj_operand
3261 = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
3262 adj_operand);
3264 tem = expand_shift (RSHIFT_EXPR, mode, op1,
3265 build_int_cst (NULL_TREE, GET_MODE_BITSIZE (mode) - 1),
3266 NULL_RTX, 0);
3267 tem = expand_and (mode, tem, op0, NULL_RTX);
3268 target = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
3269 target);
3271 return target;
3274 /* Subroutine of expand_mult_highpart. Return the MODE high part of OP. */
3276 static rtx
3277 extract_high_half (enum machine_mode mode, rtx op)
3279 enum machine_mode wider_mode;
3281 if (mode == word_mode)
3282 return gen_highpart (mode, op);
3284 wider_mode = GET_MODE_WIDER_MODE (mode);
3285 op = expand_shift (RSHIFT_EXPR, wider_mode, op,
3286 build_int_cst (NULL_TREE, GET_MODE_BITSIZE (mode)), 0, 1);
3287 return convert_modes (mode, wider_mode, op, 0);
3290 /* Like expand_mult_highpart, but only consider using a multiplication
3291 optab. OP1 is an rtx for the constant operand. */
3293 static rtx
3294 expand_mult_highpart_optab (enum machine_mode mode, rtx op0, rtx op1,
3295 rtx target, int unsignedp, int max_cost)
3297 rtx narrow_op1 = gen_int_mode (INTVAL (op1), mode);
3298 enum machine_mode wider_mode;
3299 optab moptab;
3300 rtx tem;
3301 int size;
3303 wider_mode = GET_MODE_WIDER_MODE (mode);
3304 size = GET_MODE_BITSIZE (mode);
3306 /* Firstly, try using a multiplication insn that only generates the needed
3307 high part of the product, and in the sign flavor of unsignedp. */
3308 if (mul_highpart_cost[mode] < max_cost)
3310 moptab = unsignedp ? umul_highpart_optab : smul_highpart_optab;
3311 tem = expand_binop (mode, moptab, op0, narrow_op1, target,
3312 unsignedp, OPTAB_DIRECT);
3313 if (tem)
3314 return tem;
3317 /* Secondly, same as above, but use sign flavor opposite of unsignedp.
3318 Need to adjust the result after the multiplication. */
3319 if (size - 1 < BITS_PER_WORD
3320 && (mul_highpart_cost[mode] + 2 * shift_cost[mode][size-1]
3321 + 4 * add_cost[mode] < max_cost))
3323 moptab = unsignedp ? smul_highpart_optab : umul_highpart_optab;
3324 tem = expand_binop (mode, moptab, op0, narrow_op1, target,
3325 unsignedp, OPTAB_DIRECT);
3326 if (tem)
3327 /* We used the wrong signedness. Adjust the result. */
3328 return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1,
3329 tem, unsignedp);
3332 /* Try widening multiplication. */
3333 moptab = unsignedp ? umul_widen_optab : smul_widen_optab;
3334 if (moptab->handlers[wider_mode].insn_code != CODE_FOR_nothing
3335 && mul_widen_cost[wider_mode] < max_cost)
3337 tem = expand_binop (wider_mode, moptab, op0, narrow_op1, 0,
3338 unsignedp, OPTAB_WIDEN);
3339 if (tem)
3340 return extract_high_half (mode, tem);
3343 /* Try widening the mode and perform a non-widening multiplication. */
3344 moptab = smul_optab;
3345 if (smul_optab->handlers[wider_mode].insn_code != CODE_FOR_nothing
3346 && size - 1 < BITS_PER_WORD
3347 && mul_cost[wider_mode] + shift_cost[mode][size-1] < max_cost)
3349 tem = expand_binop (wider_mode, moptab, op0, op1, 0,
3350 unsignedp, OPTAB_WIDEN);
3351 if (tem)
3352 return extract_high_half (mode, tem);
3355 /* Try widening multiplication of opposite signedness, and adjust. */
3356 moptab = unsignedp ? smul_widen_optab : umul_widen_optab;
3357 if (moptab->handlers[wider_mode].insn_code != CODE_FOR_nothing
3358 && size - 1 < BITS_PER_WORD
3359 && (mul_widen_cost[wider_mode] + 2 * shift_cost[mode][size-1]
3360 + 4 * add_cost[mode] < max_cost))
3362 tem = expand_binop (wider_mode, moptab, op0, narrow_op1,
3363 NULL_RTX, ! unsignedp, OPTAB_WIDEN);
3364 if (tem != 0)
3366 tem = extract_high_half (mode, tem);
3367 /* We used the wrong signedness. Adjust the result. */
3368 return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1,
3369 target, unsignedp);
3373 return 0;
3376 /* Emit code to multiply OP0 and CNST1, putting the high half of the result
3377 in TARGET if that is convenient, and return where the result is. If the
3378 operation can not be performed, 0 is returned.
3380 MODE is the mode of operation and result.
3382 UNSIGNEDP nonzero means unsigned multiply.
3384 MAX_COST is the total allowed cost for the expanded RTL. */
3387 expand_mult_highpart (enum machine_mode mode, rtx op0,
3388 unsigned HOST_WIDE_INT cnst1, rtx target,
3389 int unsignedp, int max_cost)
3391 enum machine_mode wider_mode = GET_MODE_WIDER_MODE (mode);
3392 int extra_cost;
3393 bool sign_adjust = false;
3394 enum mult_variant variant;
3395 struct algorithm alg;
3396 rtx op1, tem;
3398 /* We can't support modes wider than HOST_BITS_PER_INT. */
3399 gcc_assert (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT);
3401 op1 = gen_int_mode (cnst1, wider_mode);
3402 cnst1 &= GET_MODE_MASK (mode);
3404 /* We can't optimize modes wider than BITS_PER_WORD.
3405 ??? We might be able to perform double-word arithmetic if
3406 mode == word_mode, however all the cost calculations in
3407 synth_mult etc. assume single-word operations. */
3408 if (GET_MODE_BITSIZE (wider_mode) > BITS_PER_WORD)
3409 return expand_mult_highpart_optab (mode, op0, op1, target,
3410 unsignedp, max_cost);
3412 extra_cost = shift_cost[mode][GET_MODE_BITSIZE (mode) - 1];
3414 /* Check whether we try to multiply by a negative constant. */
3415 if (!unsignedp && ((cnst1 >> (GET_MODE_BITSIZE (mode) - 1)) & 1))
3417 sign_adjust = true;
3418 extra_cost += add_cost[mode];
3421 /* See whether shift/add multiplication is cheap enough. */
3422 if (choose_mult_variant (wider_mode, cnst1, &alg, &variant,
3423 max_cost - extra_cost))
3425 /* See whether the specialized multiplication optabs are
3426 cheaper than the shift/add version. */
3427 tem = expand_mult_highpart_optab (mode, op0, op1, target, unsignedp,
3428 alg.cost.cost + extra_cost);
3429 if (tem)
3430 return tem;
3432 tem = convert_to_mode (wider_mode, op0, unsignedp);
3433 tem = expand_mult_const (wider_mode, tem, cnst1, 0, &alg, variant);
3434 tem = extract_high_half (mode, tem);
3436 /* Adjust result for signedness. */
3437 if (sign_adjust)
3438 tem = force_operand (gen_rtx_MINUS (mode, tem, op0), tem);
3440 return tem;
3442 return expand_mult_highpart_optab (mode, op0, op1, target,
3443 unsignedp, max_cost);
3447 /* Expand signed modulus of OP0 by a power of two D in mode MODE. */
3449 static rtx
3450 expand_smod_pow2 (enum machine_mode mode, rtx op0, HOST_WIDE_INT d)
3452 unsigned HOST_WIDE_INT masklow, maskhigh;
3453 rtx result, temp, shift, label;
3454 int logd;
3456 logd = floor_log2 (d);
3457 result = gen_reg_rtx (mode);
3459 /* Avoid conditional branches when they're expensive. */
3460 if (BRANCH_COST >= 2
3461 && !optimize_size)
3463 rtx signmask = emit_store_flag (result, LT, op0, const0_rtx,
3464 mode, 0, -1);
3465 if (signmask)
3467 signmask = force_reg (mode, signmask);
3468 masklow = ((HOST_WIDE_INT) 1 << logd) - 1;
3469 shift = GEN_INT (GET_MODE_BITSIZE (mode) - logd);
3471 /* Use the rtx_cost of a LSHIFTRT instruction to determine
3472 which instruction sequence to use. If logical right shifts
3473 are expensive the use 2 XORs, 2 SUBs and an AND, otherwise
3474 use a LSHIFTRT, 1 ADD, 1 SUB and an AND. */
3476 temp = gen_rtx_LSHIFTRT (mode, result, shift);
3477 if (lshr_optab->handlers[mode].insn_code == CODE_FOR_nothing
3478 || rtx_cost (temp, SET) > COSTS_N_INSNS (2))
3480 temp = expand_binop (mode, xor_optab, op0, signmask,
3481 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3482 temp = expand_binop (mode, sub_optab, temp, signmask,
3483 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3484 temp = expand_binop (mode, and_optab, temp, GEN_INT (masklow),
3485 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3486 temp = expand_binop (mode, xor_optab, temp, signmask,
3487 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3488 temp = expand_binop (mode, sub_optab, temp, signmask,
3489 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3491 else
3493 signmask = expand_binop (mode, lshr_optab, signmask, shift,
3494 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3495 signmask = force_reg (mode, signmask);
3497 temp = expand_binop (mode, add_optab, op0, signmask,
3498 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3499 temp = expand_binop (mode, and_optab, temp, GEN_INT (masklow),
3500 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3501 temp = expand_binop (mode, sub_optab, temp, signmask,
3502 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3504 return temp;
3508 /* Mask contains the mode's signbit and the significant bits of the
3509 modulus. By including the signbit in the operation, many targets
3510 can avoid an explicit compare operation in the following comparison
3511 against zero. */
3513 masklow = ((HOST_WIDE_INT) 1 << logd) - 1;
3514 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
3516 masklow |= (HOST_WIDE_INT) -1 << (GET_MODE_BITSIZE (mode) - 1);
3517 maskhigh = -1;
3519 else
3520 maskhigh = (HOST_WIDE_INT) -1
3521 << (GET_MODE_BITSIZE (mode) - HOST_BITS_PER_WIDE_INT - 1);
3523 temp = expand_binop (mode, and_optab, op0,
3524 immed_double_const (masklow, maskhigh, mode),
3525 result, 1, OPTAB_LIB_WIDEN);
3526 if (temp != result)
3527 emit_move_insn (result, temp);
3529 label = gen_label_rtx ();
3530 do_cmp_and_jump (result, const0_rtx, GE, mode, label);
3532 temp = expand_binop (mode, sub_optab, result, const1_rtx, result,
3533 0, OPTAB_LIB_WIDEN);
3534 masklow = (HOST_WIDE_INT) -1 << logd;
3535 maskhigh = -1;
3536 temp = expand_binop (mode, ior_optab, temp,
3537 immed_double_const (masklow, maskhigh, mode),
3538 result, 1, OPTAB_LIB_WIDEN);
3539 temp = expand_binop (mode, add_optab, temp, const1_rtx, result,
3540 0, OPTAB_LIB_WIDEN);
3541 if (temp != result)
3542 emit_move_insn (result, temp);
3543 emit_label (label);
3544 return result;
3547 /* Expand signed division of OP0 by a power of two D in mode MODE.
3548 This routine is only called for positive values of D. */
3550 static rtx
3551 expand_sdiv_pow2 (enum machine_mode mode, rtx op0, HOST_WIDE_INT d)
3553 rtx temp, label;
3554 tree shift;
3555 int logd;
3557 logd = floor_log2 (d);
3558 shift = build_int_cst (NULL_TREE, logd);
3560 if (d == 2 && BRANCH_COST >= 1)
3562 temp = gen_reg_rtx (mode);
3563 temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, 1);
3564 temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
3565 0, OPTAB_LIB_WIDEN);
3566 return expand_shift (RSHIFT_EXPR, mode, temp, shift, NULL_RTX, 0);
3569 #ifdef HAVE_conditional_move
3570 if (BRANCH_COST >= 2)
3572 rtx temp2;
3574 /* ??? emit_conditional_move forces a stack adjustment via
3575 compare_from_rtx so, if the sequence is discarded, it will
3576 be lost. Do it now instead. */
3577 do_pending_stack_adjust ();
3579 start_sequence ();
3580 temp2 = copy_to_mode_reg (mode, op0);
3581 temp = expand_binop (mode, add_optab, temp2, GEN_INT (d-1),
3582 NULL_RTX, 0, OPTAB_LIB_WIDEN);
3583 temp = force_reg (mode, temp);
3585 /* Construct "temp2 = (temp2 < 0) ? temp : temp2". */
3586 temp2 = emit_conditional_move (temp2, LT, temp2, const0_rtx,
3587 mode, temp, temp2, mode, 0);
3588 if (temp2)
3590 rtx seq = get_insns ();
3591 end_sequence ();
3592 emit_insn (seq);
3593 return expand_shift (RSHIFT_EXPR, mode, temp2, shift, NULL_RTX, 0);
3595 end_sequence ();
3597 #endif
3599 if (BRANCH_COST >= 2)
3601 int ushift = GET_MODE_BITSIZE (mode) - logd;
3603 temp = gen_reg_rtx (mode);
3604 temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, -1);
3605 if (shift_cost[mode][ushift] > COSTS_N_INSNS (1))
3606 temp = expand_binop (mode, and_optab, temp, GEN_INT (d - 1),
3607 NULL_RTX, 0, OPTAB_LIB_WIDEN);
3608 else
3609 temp = expand_shift (RSHIFT_EXPR, mode, temp,
3610 build_int_cst (NULL_TREE, ushift),
3611 NULL_RTX, 1);
3612 temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
3613 0, OPTAB_LIB_WIDEN);
3614 return expand_shift (RSHIFT_EXPR, mode, temp, shift, NULL_RTX, 0);
3617 label = gen_label_rtx ();
3618 temp = copy_to_mode_reg (mode, op0);
3619 do_cmp_and_jump (temp, const0_rtx, GE, mode, label);
3620 expand_inc (temp, GEN_INT (d - 1));
3621 emit_label (label);
3622 return expand_shift (RSHIFT_EXPR, mode, temp, shift, NULL_RTX, 0);
3625 /* Emit the code to divide OP0 by OP1, putting the result in TARGET
3626 if that is convenient, and returning where the result is.
3627 You may request either the quotient or the remainder as the result;
3628 specify REM_FLAG nonzero to get the remainder.
3630 CODE is the expression code for which kind of division this is;
3631 it controls how rounding is done. MODE is the machine mode to use.
3632 UNSIGNEDP nonzero means do unsigned division. */
3634 /* ??? For CEIL_MOD_EXPR, can compute incorrect remainder with ANDI
3635 and then correct it by or'ing in missing high bits
3636 if result of ANDI is nonzero.
3637 For ROUND_MOD_EXPR, can use ANDI and then sign-extend the result.
3638 This could optimize to a bfexts instruction.
3639 But C doesn't use these operations, so their optimizations are
3640 left for later. */
3641 /* ??? For modulo, we don't actually need the highpart of the first product,
3642 the low part will do nicely. And for small divisors, the second multiply
3643 can also be a low-part only multiply or even be completely left out.
3644 E.g. to calculate the remainder of a division by 3 with a 32 bit
3645 multiply, multiply with 0x55555556 and extract the upper two bits;
3646 the result is exact for inputs up to 0x1fffffff.
3647 The input range can be reduced by using cross-sum rules.
3648 For odd divisors >= 3, the following table gives right shift counts
3649 so that if a number is shifted by an integer multiple of the given
3650 amount, the remainder stays the same:
3651 2, 4, 3, 6, 10, 12, 4, 8, 18, 6, 11, 20, 18, 0, 5, 10, 12, 0, 12, 20,
3652 14, 12, 23, 21, 8, 0, 20, 18, 0, 0, 6, 12, 0, 22, 0, 18, 20, 30, 0, 0,
3653 0, 8, 0, 11, 12, 10, 36, 0, 30, 0, 0, 12, 0, 0, 0, 0, 44, 12, 24, 0,
3654 20, 0, 7, 14, 0, 18, 36, 0, 0, 46, 60, 0, 42, 0, 15, 24, 20, 0, 0, 33,
3655 0, 20, 0, 0, 18, 0, 60, 0, 0, 0, 0, 0, 40, 18, 0, 0, 12
3657 Cross-sum rules for even numbers can be derived by leaving as many bits
3658 to the right alone as the divisor has zeros to the right.
3659 E.g. if x is an unsigned 32 bit number:
3660 (x mod 12) == (((x & 1023) + ((x >> 8) & ~3)) * 0x15555558 >> 2 * 3) >> 28
3663 #define EXACT_POWER_OF_2_OR_ZERO_P(x) (((x) & ((x) - 1)) == 0)
3666 expand_divmod (int rem_flag, enum tree_code code, enum machine_mode mode,
3667 rtx op0, rtx op1, rtx target, int unsignedp)
3669 enum machine_mode compute_mode;
3670 rtx tquotient;
3671 rtx quotient = 0, remainder = 0;
3672 rtx last;
3673 int size;
3674 rtx insn, set;
3675 optab optab1, optab2;
3676 int op1_is_constant, op1_is_pow2 = 0;
3677 int max_cost, extra_cost;
3678 static HOST_WIDE_INT last_div_const = 0;
3679 static HOST_WIDE_INT ext_op1;
3681 op1_is_constant = GET_CODE (op1) == CONST_INT;
3682 if (op1_is_constant)
3684 ext_op1 = INTVAL (op1);
3685 if (unsignedp)
3686 ext_op1 &= GET_MODE_MASK (mode);
3687 op1_is_pow2 = ((EXACT_POWER_OF_2_OR_ZERO_P (ext_op1)
3688 || (! unsignedp && EXACT_POWER_OF_2_OR_ZERO_P (-ext_op1))));
3692 This is the structure of expand_divmod:
3694 First comes code to fix up the operands so we can perform the operations
3695 correctly and efficiently.
3697 Second comes a switch statement with code specific for each rounding mode.
3698 For some special operands this code emits all RTL for the desired
3699 operation, for other cases, it generates only a quotient and stores it in
3700 QUOTIENT. The case for trunc division/remainder might leave quotient = 0,
3701 to indicate that it has not done anything.
3703 Last comes code that finishes the operation. If QUOTIENT is set and
3704 REM_FLAG is set, the remainder is computed as OP0 - QUOTIENT * OP1. If
3705 QUOTIENT is not set, it is computed using trunc rounding.
3707 We try to generate special code for division and remainder when OP1 is a
3708 constant. If |OP1| = 2**n we can use shifts and some other fast
3709 operations. For other values of OP1, we compute a carefully selected
3710 fixed-point approximation m = 1/OP1, and generate code that multiplies OP0
3711 by m.
3713 In all cases but EXACT_DIV_EXPR, this multiplication requires the upper
3714 half of the product. Different strategies for generating the product are
3715 implemented in expand_mult_highpart.
3717 If what we actually want is the remainder, we generate that by another
3718 by-constant multiplication and a subtraction. */
3720 /* We shouldn't be called with OP1 == const1_rtx, but some of the
3721 code below will malfunction if we are, so check here and handle
3722 the special case if so. */
3723 if (op1 == const1_rtx)
3724 return rem_flag ? const0_rtx : op0;
3726 /* When dividing by -1, we could get an overflow.
3727 negv_optab can handle overflows. */
3728 if (! unsignedp && op1 == constm1_rtx)
3730 if (rem_flag)
3731 return const0_rtx;
3732 return expand_unop (mode, flag_trapv && GET_MODE_CLASS(mode) == MODE_INT
3733 ? negv_optab : neg_optab, op0, target, 0);
3736 if (target
3737 /* Don't use the function value register as a target
3738 since we have to read it as well as write it,
3739 and function-inlining gets confused by this. */
3740 && ((REG_P (target) && REG_FUNCTION_VALUE_P (target))
3741 /* Don't clobber an operand while doing a multi-step calculation. */
3742 || ((rem_flag || op1_is_constant)
3743 && (reg_mentioned_p (target, op0)
3744 || (MEM_P (op0) && MEM_P (target))))
3745 || reg_mentioned_p (target, op1)
3746 || (MEM_P (op1) && MEM_P (target))))
3747 target = 0;
3749 /* Get the mode in which to perform this computation. Normally it will
3750 be MODE, but sometimes we can't do the desired operation in MODE.
3751 If so, pick a wider mode in which we can do the operation. Convert
3752 to that mode at the start to avoid repeated conversions.
3754 First see what operations we need. These depend on the expression
3755 we are evaluating. (We assume that divxx3 insns exist under the
3756 same conditions that modxx3 insns and that these insns don't normally
3757 fail. If these assumptions are not correct, we may generate less
3758 efficient code in some cases.)
3760 Then see if we find a mode in which we can open-code that operation
3761 (either a division, modulus, or shift). Finally, check for the smallest
3762 mode for which we can do the operation with a library call. */
3764 /* We might want to refine this now that we have division-by-constant
3765 optimization. Since expand_mult_highpart tries so many variants, it is
3766 not straightforward to generalize this. Maybe we should make an array
3767 of possible modes in init_expmed? Save this for GCC 2.7. */
3769 optab1 = ((op1_is_pow2 && op1 != const0_rtx)
3770 ? (unsignedp ? lshr_optab : ashr_optab)
3771 : (unsignedp ? udiv_optab : sdiv_optab));
3772 optab2 = ((op1_is_pow2 && op1 != const0_rtx)
3773 ? optab1
3774 : (unsignedp ? udivmod_optab : sdivmod_optab));
3776 for (compute_mode = mode; compute_mode != VOIDmode;
3777 compute_mode = GET_MODE_WIDER_MODE (compute_mode))
3778 if (optab1->handlers[compute_mode].insn_code != CODE_FOR_nothing
3779 || optab2->handlers[compute_mode].insn_code != CODE_FOR_nothing)
3780 break;
3782 if (compute_mode == VOIDmode)
3783 for (compute_mode = mode; compute_mode != VOIDmode;
3784 compute_mode = GET_MODE_WIDER_MODE (compute_mode))
3785 if (optab1->handlers[compute_mode].libfunc
3786 || optab2->handlers[compute_mode].libfunc)
3787 break;
3789 /* If we still couldn't find a mode, use MODE, but we'll probably abort
3790 in expand_binop. */
3791 if (compute_mode == VOIDmode)
3792 compute_mode = mode;
3794 if (target && GET_MODE (target) == compute_mode)
3795 tquotient = target;
3796 else
3797 tquotient = gen_reg_rtx (compute_mode);
3799 size = GET_MODE_BITSIZE (compute_mode);
3800 #if 0
3801 /* It should be possible to restrict the precision to GET_MODE_BITSIZE
3802 (mode), and thereby get better code when OP1 is a constant. Do that
3803 later. It will require going over all usages of SIZE below. */
3804 size = GET_MODE_BITSIZE (mode);
3805 #endif
3807 /* Only deduct something for a REM if the last divide done was
3808 for a different constant. Then set the constant of the last
3809 divide. */
3810 max_cost = div_cost[compute_mode]
3811 - (rem_flag && ! (last_div_const != 0 && op1_is_constant
3812 && INTVAL (op1) == last_div_const)
3813 ? mul_cost[compute_mode] + add_cost[compute_mode]
3814 : 0);
3816 last_div_const = ! rem_flag && op1_is_constant ? INTVAL (op1) : 0;
3818 /* Now convert to the best mode to use. */
3819 if (compute_mode != mode)
3821 op0 = convert_modes (compute_mode, mode, op0, unsignedp);
3822 op1 = convert_modes (compute_mode, mode, op1, unsignedp);
3824 /* convert_modes may have placed op1 into a register, so we
3825 must recompute the following. */
3826 op1_is_constant = GET_CODE (op1) == CONST_INT;
3827 op1_is_pow2 = (op1_is_constant
3828 && ((EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
3829 || (! unsignedp
3830 && EXACT_POWER_OF_2_OR_ZERO_P (-INTVAL (op1)))))) ;
3833 /* If one of the operands is a volatile MEM, copy it into a register. */
3835 if (MEM_P (op0) && MEM_VOLATILE_P (op0))
3836 op0 = force_reg (compute_mode, op0);
3837 if (MEM_P (op1) && MEM_VOLATILE_P (op1))
3838 op1 = force_reg (compute_mode, op1);
3840 /* If we need the remainder or if OP1 is constant, we need to
3841 put OP0 in a register in case it has any queued subexpressions. */
3842 if (rem_flag || op1_is_constant)
3843 op0 = force_reg (compute_mode, op0);
3845 last = get_last_insn ();
3847 /* Promote floor rounding to trunc rounding for unsigned operations. */
3848 if (unsignedp)
3850 if (code == FLOOR_DIV_EXPR)
3851 code = TRUNC_DIV_EXPR;
3852 if (code == FLOOR_MOD_EXPR)
3853 code = TRUNC_MOD_EXPR;
3854 if (code == EXACT_DIV_EXPR && op1_is_pow2)
3855 code = TRUNC_DIV_EXPR;
3858 if (op1 != const0_rtx)
3859 switch (code)
3861 case TRUNC_MOD_EXPR:
3862 case TRUNC_DIV_EXPR:
3863 if (op1_is_constant)
3865 if (unsignedp)
3867 unsigned HOST_WIDE_INT mh, ml;
3868 int pre_shift, post_shift;
3869 int dummy;
3870 unsigned HOST_WIDE_INT d = (INTVAL (op1)
3871 & GET_MODE_MASK (compute_mode));
3873 if (EXACT_POWER_OF_2_OR_ZERO_P (d))
3875 pre_shift = floor_log2 (d);
3876 if (rem_flag)
3878 remainder
3879 = expand_binop (compute_mode, and_optab, op0,
3880 GEN_INT (((HOST_WIDE_INT) 1 << pre_shift) - 1),
3881 remainder, 1,
3882 OPTAB_LIB_WIDEN);
3883 if (remainder)
3884 return gen_lowpart (mode, remainder);
3886 quotient = expand_shift (RSHIFT_EXPR, compute_mode, op0,
3887 build_int_cst (NULL_TREE,
3888 pre_shift),
3889 tquotient, 1);
3891 else if (size <= HOST_BITS_PER_WIDE_INT)
3893 if (d >= ((unsigned HOST_WIDE_INT) 1 << (size - 1)))
3895 /* Most significant bit of divisor is set; emit an scc
3896 insn. */
3897 quotient = emit_store_flag (tquotient, GEU, op0, op1,
3898 compute_mode, 1, 1);
3899 if (quotient == 0)
3900 goto fail1;
3902 else
3904 /* Find a suitable multiplier and right shift count
3905 instead of multiplying with D. */
3907 mh = choose_multiplier (d, size, size,
3908 &ml, &post_shift, &dummy);
3910 /* If the suggested multiplier is more than SIZE bits,
3911 we can do better for even divisors, using an
3912 initial right shift. */
3913 if (mh != 0 && (d & 1) == 0)
3915 pre_shift = floor_log2 (d & -d);
3916 mh = choose_multiplier (d >> pre_shift, size,
3917 size - pre_shift,
3918 &ml, &post_shift, &dummy);
3919 gcc_assert (!mh);
3921 else
3922 pre_shift = 0;
3924 if (mh != 0)
3926 rtx t1, t2, t3, t4;
3928 if (post_shift - 1 >= BITS_PER_WORD)
3929 goto fail1;
3931 extra_cost
3932 = (shift_cost[compute_mode][post_shift - 1]
3933 + shift_cost[compute_mode][1]
3934 + 2 * add_cost[compute_mode]);
3935 t1 = expand_mult_highpart (compute_mode, op0, ml,
3936 NULL_RTX, 1,
3937 max_cost - extra_cost);
3938 if (t1 == 0)
3939 goto fail1;
3940 t2 = force_operand (gen_rtx_MINUS (compute_mode,
3941 op0, t1),
3942 NULL_RTX);
3943 t3 = expand_shift
3944 (RSHIFT_EXPR, compute_mode, t2,
3945 build_int_cst (NULL_TREE, 1),
3946 NULL_RTX,1);
3947 t4 = force_operand (gen_rtx_PLUS (compute_mode,
3948 t1, t3),
3949 NULL_RTX);
3950 quotient = expand_shift
3951 (RSHIFT_EXPR, compute_mode, t4,
3952 build_int_cst (NULL_TREE, post_shift - 1),
3953 tquotient, 1);
3955 else
3957 rtx t1, t2;
3959 if (pre_shift >= BITS_PER_WORD
3960 || post_shift >= BITS_PER_WORD)
3961 goto fail1;
3963 t1 = expand_shift
3964 (RSHIFT_EXPR, compute_mode, op0,
3965 build_int_cst (NULL_TREE, pre_shift),
3966 NULL_RTX, 1);
3967 extra_cost
3968 = (shift_cost[compute_mode][pre_shift]
3969 + shift_cost[compute_mode][post_shift]);
3970 t2 = expand_mult_highpart (compute_mode, t1, ml,
3971 NULL_RTX, 1,
3972 max_cost - extra_cost);
3973 if (t2 == 0)
3974 goto fail1;
3975 quotient = expand_shift
3976 (RSHIFT_EXPR, compute_mode, t2,
3977 build_int_cst (NULL_TREE, post_shift),
3978 tquotient, 1);
3982 else /* Too wide mode to use tricky code */
3983 break;
3985 insn = get_last_insn ();
3986 if (insn != last
3987 && (set = single_set (insn)) != 0
3988 && SET_DEST (set) == quotient)
3989 set_unique_reg_note (insn,
3990 REG_EQUAL,
3991 gen_rtx_UDIV (compute_mode, op0, op1));
3993 else /* TRUNC_DIV, signed */
3995 unsigned HOST_WIDE_INT ml;
3996 int lgup, post_shift;
3997 HOST_WIDE_INT d = INTVAL (op1);
3998 unsigned HOST_WIDE_INT abs_d = d >= 0 ? d : -d;
4000 /* n rem d = n rem -d */
4001 if (rem_flag && d < 0)
4003 d = abs_d;
4004 op1 = gen_int_mode (abs_d, compute_mode);
4007 if (d == 1)
4008 quotient = op0;
4009 else if (d == -1)
4010 quotient = expand_unop (compute_mode, neg_optab, op0,
4011 tquotient, 0);
4012 else if (abs_d == (unsigned HOST_WIDE_INT) 1 << (size - 1))
4014 /* This case is not handled correctly below. */
4015 quotient = emit_store_flag (tquotient, EQ, op0, op1,
4016 compute_mode, 1, 1);
4017 if (quotient == 0)
4018 goto fail1;
4020 else if (EXACT_POWER_OF_2_OR_ZERO_P (d)
4021 && (rem_flag ? smod_pow2_cheap[compute_mode]
4022 : sdiv_pow2_cheap[compute_mode])
4023 /* We assume that cheap metric is true if the
4024 optab has an expander for this mode. */
4025 && (((rem_flag ? smod_optab : sdiv_optab)
4026 ->handlers[compute_mode].insn_code
4027 != CODE_FOR_nothing)
4028 || (sdivmod_optab->handlers[compute_mode]
4029 .insn_code != CODE_FOR_nothing)))
4031 else if (EXACT_POWER_OF_2_OR_ZERO_P (abs_d))
4033 if (rem_flag)
4035 remainder = expand_smod_pow2 (compute_mode, op0, d);
4036 if (remainder)
4037 return gen_lowpart (mode, remainder);
4040 if (sdiv_pow2_cheap[compute_mode]
4041 && ((sdiv_optab->handlers[compute_mode].insn_code
4042 != CODE_FOR_nothing)
4043 || (sdivmod_optab->handlers[compute_mode].insn_code
4044 != CODE_FOR_nothing)))
4045 quotient = expand_divmod (0, TRUNC_DIV_EXPR,
4046 compute_mode, op0,
4047 gen_int_mode (abs_d,
4048 compute_mode),
4049 NULL_RTX, 0);
4050 else
4051 quotient = expand_sdiv_pow2 (compute_mode, op0, abs_d);
4053 /* We have computed OP0 / abs(OP1). If OP1 is negative,
4054 negate the quotient. */
4055 if (d < 0)
4057 insn = get_last_insn ();
4058 if (insn != last
4059 && (set = single_set (insn)) != 0
4060 && SET_DEST (set) == quotient
4061 && abs_d < ((unsigned HOST_WIDE_INT) 1
4062 << (HOST_BITS_PER_WIDE_INT - 1)))
4063 set_unique_reg_note (insn,
4064 REG_EQUAL,
4065 gen_rtx_DIV (compute_mode,
4066 op0,
4067 GEN_INT
4068 (trunc_int_for_mode
4069 (abs_d,
4070 compute_mode))));
4072 quotient = expand_unop (compute_mode, neg_optab,
4073 quotient, quotient, 0);
4076 else if (size <= HOST_BITS_PER_WIDE_INT)
4078 choose_multiplier (abs_d, size, size - 1,
4079 &ml, &post_shift, &lgup);
4080 if (ml < (unsigned HOST_WIDE_INT) 1 << (size - 1))
4082 rtx t1, t2, t3;
4084 if (post_shift >= BITS_PER_WORD
4085 || size - 1 >= BITS_PER_WORD)
4086 goto fail1;
4088 extra_cost = (shift_cost[compute_mode][post_shift]
4089 + shift_cost[compute_mode][size - 1]
4090 + add_cost[compute_mode]);
4091 t1 = expand_mult_highpart (compute_mode, op0, ml,
4092 NULL_RTX, 0,
4093 max_cost - extra_cost);
4094 if (t1 == 0)
4095 goto fail1;
4096 t2 = expand_shift
4097 (RSHIFT_EXPR, compute_mode, t1,
4098 build_int_cst (NULL_TREE, post_shift),
4099 NULL_RTX, 0);
4100 t3 = expand_shift
4101 (RSHIFT_EXPR, compute_mode, op0,
4102 build_int_cst (NULL_TREE, size - 1),
4103 NULL_RTX, 0);
4104 if (d < 0)
4105 quotient
4106 = force_operand (gen_rtx_MINUS (compute_mode,
4107 t3, t2),
4108 tquotient);
4109 else
4110 quotient
4111 = force_operand (gen_rtx_MINUS (compute_mode,
4112 t2, t3),
4113 tquotient);
4115 else
4117 rtx t1, t2, t3, t4;
4119 if (post_shift >= BITS_PER_WORD
4120 || size - 1 >= BITS_PER_WORD)
4121 goto fail1;
4123 ml |= (~(unsigned HOST_WIDE_INT) 0) << (size - 1);
4124 extra_cost = (shift_cost[compute_mode][post_shift]
4125 + shift_cost[compute_mode][size - 1]
4126 + 2 * add_cost[compute_mode]);
4127 t1 = expand_mult_highpart (compute_mode, op0, ml,
4128 NULL_RTX, 0,
4129 max_cost - extra_cost);
4130 if (t1 == 0)
4131 goto fail1;
4132 t2 = force_operand (gen_rtx_PLUS (compute_mode,
4133 t1, op0),
4134 NULL_RTX);
4135 t3 = expand_shift
4136 (RSHIFT_EXPR, compute_mode, t2,
4137 build_int_cst (NULL_TREE, post_shift),
4138 NULL_RTX, 0);
4139 t4 = expand_shift
4140 (RSHIFT_EXPR, compute_mode, op0,
4141 build_int_cst (NULL_TREE, size - 1),
4142 NULL_RTX, 0);
4143 if (d < 0)
4144 quotient
4145 = force_operand (gen_rtx_MINUS (compute_mode,
4146 t4, t3),
4147 tquotient);
4148 else
4149 quotient
4150 = force_operand (gen_rtx_MINUS (compute_mode,
4151 t3, t4),
4152 tquotient);
4155 else /* Too wide mode to use tricky code */
4156 break;
4158 insn = get_last_insn ();
4159 if (insn != last
4160 && (set = single_set (insn)) != 0
4161 && SET_DEST (set) == quotient)
4162 set_unique_reg_note (insn,
4163 REG_EQUAL,
4164 gen_rtx_DIV (compute_mode, op0, op1));
4166 break;
4168 fail1:
4169 delete_insns_since (last);
4170 break;
4172 case FLOOR_DIV_EXPR:
4173 case FLOOR_MOD_EXPR:
4174 /* We will come here only for signed operations. */
4175 if (op1_is_constant && HOST_BITS_PER_WIDE_INT >= size)
4177 unsigned HOST_WIDE_INT mh, ml;
4178 int pre_shift, lgup, post_shift;
4179 HOST_WIDE_INT d = INTVAL (op1);
4181 if (d > 0)
4183 /* We could just as easily deal with negative constants here,
4184 but it does not seem worth the trouble for GCC 2.6. */
4185 if (EXACT_POWER_OF_2_OR_ZERO_P (d))
4187 pre_shift = floor_log2 (d);
4188 if (rem_flag)
4190 remainder = expand_binop (compute_mode, and_optab, op0,
4191 GEN_INT (((HOST_WIDE_INT) 1 << pre_shift) - 1),
4192 remainder, 0, OPTAB_LIB_WIDEN);
4193 if (remainder)
4194 return gen_lowpart (mode, remainder);
4196 quotient = expand_shift
4197 (RSHIFT_EXPR, compute_mode, op0,
4198 build_int_cst (NULL_TREE, pre_shift),
4199 tquotient, 0);
4201 else
4203 rtx t1, t2, t3, t4;
4205 mh = choose_multiplier (d, size, size - 1,
4206 &ml, &post_shift, &lgup);
4207 gcc_assert (!mh);
4209 if (post_shift < BITS_PER_WORD
4210 && size - 1 < BITS_PER_WORD)
4212 t1 = expand_shift
4213 (RSHIFT_EXPR, compute_mode, op0,
4214 build_int_cst (NULL_TREE, size - 1),
4215 NULL_RTX, 0);
4216 t2 = expand_binop (compute_mode, xor_optab, op0, t1,
4217 NULL_RTX, 0, OPTAB_WIDEN);
4218 extra_cost = (shift_cost[compute_mode][post_shift]
4219 + shift_cost[compute_mode][size - 1]
4220 + 2 * add_cost[compute_mode]);
4221 t3 = expand_mult_highpart (compute_mode, t2, ml,
4222 NULL_RTX, 1,
4223 max_cost - extra_cost);
4224 if (t3 != 0)
4226 t4 = expand_shift
4227 (RSHIFT_EXPR, compute_mode, t3,
4228 build_int_cst (NULL_TREE, post_shift),
4229 NULL_RTX, 1);
4230 quotient = expand_binop (compute_mode, xor_optab,
4231 t4, t1, tquotient, 0,
4232 OPTAB_WIDEN);
4237 else
4239 rtx nsign, t1, t2, t3, t4;
4240 t1 = force_operand (gen_rtx_PLUS (compute_mode,
4241 op0, constm1_rtx), NULL_RTX);
4242 t2 = expand_binop (compute_mode, ior_optab, op0, t1, NULL_RTX,
4243 0, OPTAB_WIDEN);
4244 nsign = expand_shift
4245 (RSHIFT_EXPR, compute_mode, t2,
4246 build_int_cst (NULL_TREE, size - 1),
4247 NULL_RTX, 0);
4248 t3 = force_operand (gen_rtx_MINUS (compute_mode, t1, nsign),
4249 NULL_RTX);
4250 t4 = expand_divmod (0, TRUNC_DIV_EXPR, compute_mode, t3, op1,
4251 NULL_RTX, 0);
4252 if (t4)
4254 rtx t5;
4255 t5 = expand_unop (compute_mode, one_cmpl_optab, nsign,
4256 NULL_RTX, 0);
4257 quotient = force_operand (gen_rtx_PLUS (compute_mode,
4258 t4, t5),
4259 tquotient);
4264 if (quotient != 0)
4265 break;
4266 delete_insns_since (last);
4268 /* Try using an instruction that produces both the quotient and
4269 remainder, using truncation. We can easily compensate the quotient
4270 or remainder to get floor rounding, once we have the remainder.
4271 Notice that we compute also the final remainder value here,
4272 and return the result right away. */
4273 if (target == 0 || GET_MODE (target) != compute_mode)
4274 target = gen_reg_rtx (compute_mode);
4276 if (rem_flag)
4278 remainder
4279 = REG_P (target) ? target : gen_reg_rtx (compute_mode);
4280 quotient = gen_reg_rtx (compute_mode);
4282 else
4284 quotient
4285 = REG_P (target) ? target : gen_reg_rtx (compute_mode);
4286 remainder = gen_reg_rtx (compute_mode);
4289 if (expand_twoval_binop (sdivmod_optab, op0, op1,
4290 quotient, remainder, 0))
4292 /* This could be computed with a branch-less sequence.
4293 Save that for later. */
4294 rtx tem;
4295 rtx label = gen_label_rtx ();
4296 do_cmp_and_jump (remainder, const0_rtx, EQ, compute_mode, label);
4297 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4298 NULL_RTX, 0, OPTAB_WIDEN);
4299 do_cmp_and_jump (tem, const0_rtx, GE, compute_mode, label);
4300 expand_dec (quotient, const1_rtx);
4301 expand_inc (remainder, op1);
4302 emit_label (label);
4303 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4306 /* No luck with division elimination or divmod. Have to do it
4307 by conditionally adjusting op0 *and* the result. */
4309 rtx label1, label2, label3, label4, label5;
4310 rtx adjusted_op0;
4311 rtx tem;
4313 quotient = gen_reg_rtx (compute_mode);
4314 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4315 label1 = gen_label_rtx ();
4316 label2 = gen_label_rtx ();
4317 label3 = gen_label_rtx ();
4318 label4 = gen_label_rtx ();
4319 label5 = gen_label_rtx ();
4320 do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2);
4321 do_cmp_and_jump (adjusted_op0, const0_rtx, LT, compute_mode, label1);
4322 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4323 quotient, 0, OPTAB_LIB_WIDEN);
4324 if (tem != quotient)
4325 emit_move_insn (quotient, tem);
4326 emit_jump_insn (gen_jump (label5));
4327 emit_barrier ();
4328 emit_label (label1);
4329 expand_inc (adjusted_op0, const1_rtx);
4330 emit_jump_insn (gen_jump (label4));
4331 emit_barrier ();
4332 emit_label (label2);
4333 do_cmp_and_jump (adjusted_op0, const0_rtx, GT, compute_mode, label3);
4334 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4335 quotient, 0, OPTAB_LIB_WIDEN);
4336 if (tem != quotient)
4337 emit_move_insn (quotient, tem);
4338 emit_jump_insn (gen_jump (label5));
4339 emit_barrier ();
4340 emit_label (label3);
4341 expand_dec (adjusted_op0, const1_rtx);
4342 emit_label (label4);
4343 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4344 quotient, 0, OPTAB_LIB_WIDEN);
4345 if (tem != quotient)
4346 emit_move_insn (quotient, tem);
4347 expand_dec (quotient, const1_rtx);
4348 emit_label (label5);
4350 break;
4352 case CEIL_DIV_EXPR:
4353 case CEIL_MOD_EXPR:
4354 if (unsignedp)
4356 if (op1_is_constant && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1)))
4358 rtx t1, t2, t3;
4359 unsigned HOST_WIDE_INT d = INTVAL (op1);
4360 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4361 build_int_cst (NULL_TREE, floor_log2 (d)),
4362 tquotient, 1);
4363 t2 = expand_binop (compute_mode, and_optab, op0,
4364 GEN_INT (d - 1),
4365 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4366 t3 = gen_reg_rtx (compute_mode);
4367 t3 = emit_store_flag (t3, NE, t2, const0_rtx,
4368 compute_mode, 1, 1);
4369 if (t3 == 0)
4371 rtx lab;
4372 lab = gen_label_rtx ();
4373 do_cmp_and_jump (t2, const0_rtx, EQ, compute_mode, lab);
4374 expand_inc (t1, const1_rtx);
4375 emit_label (lab);
4376 quotient = t1;
4378 else
4379 quotient = force_operand (gen_rtx_PLUS (compute_mode,
4380 t1, t3),
4381 tquotient);
4382 break;
4385 /* Try using an instruction that produces both the quotient and
4386 remainder, using truncation. We can easily compensate the
4387 quotient or remainder to get ceiling rounding, once we have the
4388 remainder. Notice that we compute also the final remainder
4389 value here, and return the result right away. */
4390 if (target == 0 || GET_MODE (target) != compute_mode)
4391 target = gen_reg_rtx (compute_mode);
4393 if (rem_flag)
4395 remainder = (REG_P (target)
4396 ? target : gen_reg_rtx (compute_mode));
4397 quotient = gen_reg_rtx (compute_mode);
4399 else
4401 quotient = (REG_P (target)
4402 ? target : gen_reg_rtx (compute_mode));
4403 remainder = gen_reg_rtx (compute_mode);
4406 if (expand_twoval_binop (udivmod_optab, op0, op1, quotient,
4407 remainder, 1))
4409 /* This could be computed with a branch-less sequence.
4410 Save that for later. */
4411 rtx label = gen_label_rtx ();
4412 do_cmp_and_jump (remainder, const0_rtx, EQ,
4413 compute_mode, label);
4414 expand_inc (quotient, const1_rtx);
4415 expand_dec (remainder, op1);
4416 emit_label (label);
4417 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4420 /* No luck with division elimination or divmod. Have to do it
4421 by conditionally adjusting op0 *and* the result. */
4423 rtx label1, label2;
4424 rtx adjusted_op0, tem;
4426 quotient = gen_reg_rtx (compute_mode);
4427 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4428 label1 = gen_label_rtx ();
4429 label2 = gen_label_rtx ();
4430 do_cmp_and_jump (adjusted_op0, const0_rtx, NE,
4431 compute_mode, label1);
4432 emit_move_insn (quotient, const0_rtx);
4433 emit_jump_insn (gen_jump (label2));
4434 emit_barrier ();
4435 emit_label (label1);
4436 expand_dec (adjusted_op0, const1_rtx);
4437 tem = expand_binop (compute_mode, udiv_optab, adjusted_op0, op1,
4438 quotient, 1, OPTAB_LIB_WIDEN);
4439 if (tem != quotient)
4440 emit_move_insn (quotient, tem);
4441 expand_inc (quotient, const1_rtx);
4442 emit_label (label2);
4445 else /* signed */
4447 if (op1_is_constant && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
4448 && INTVAL (op1) >= 0)
4450 /* This is extremely similar to the code for the unsigned case
4451 above. For 2.7 we should merge these variants, but for
4452 2.6.1 I don't want to touch the code for unsigned since that
4453 get used in C. The signed case will only be used by other
4454 languages (Ada). */
4456 rtx t1, t2, t3;
4457 unsigned HOST_WIDE_INT d = INTVAL (op1);
4458 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4459 build_int_cst (NULL_TREE, floor_log2 (d)),
4460 tquotient, 0);
4461 t2 = expand_binop (compute_mode, and_optab, op0,
4462 GEN_INT (d - 1),
4463 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4464 t3 = gen_reg_rtx (compute_mode);
4465 t3 = emit_store_flag (t3, NE, t2, const0_rtx,
4466 compute_mode, 1, 1);
4467 if (t3 == 0)
4469 rtx lab;
4470 lab = gen_label_rtx ();
4471 do_cmp_and_jump (t2, const0_rtx, EQ, compute_mode, lab);
4472 expand_inc (t1, const1_rtx);
4473 emit_label (lab);
4474 quotient = t1;
4476 else
4477 quotient = force_operand (gen_rtx_PLUS (compute_mode,
4478 t1, t3),
4479 tquotient);
4480 break;
4483 /* Try using an instruction that produces both the quotient and
4484 remainder, using truncation. We can easily compensate the
4485 quotient or remainder to get ceiling rounding, once we have the
4486 remainder. Notice that we compute also the final remainder
4487 value here, and return the result right away. */
4488 if (target == 0 || GET_MODE (target) != compute_mode)
4489 target = gen_reg_rtx (compute_mode);
4490 if (rem_flag)
4492 remainder= (REG_P (target)
4493 ? target : gen_reg_rtx (compute_mode));
4494 quotient = gen_reg_rtx (compute_mode);
4496 else
4498 quotient = (REG_P (target)
4499 ? target : gen_reg_rtx (compute_mode));
4500 remainder = gen_reg_rtx (compute_mode);
4503 if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient,
4504 remainder, 0))
4506 /* This could be computed with a branch-less sequence.
4507 Save that for later. */
4508 rtx tem;
4509 rtx label = gen_label_rtx ();
4510 do_cmp_and_jump (remainder, const0_rtx, EQ,
4511 compute_mode, label);
4512 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4513 NULL_RTX, 0, OPTAB_WIDEN);
4514 do_cmp_and_jump (tem, const0_rtx, LT, compute_mode, label);
4515 expand_inc (quotient, const1_rtx);
4516 expand_dec (remainder, op1);
4517 emit_label (label);
4518 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4521 /* No luck with division elimination or divmod. Have to do it
4522 by conditionally adjusting op0 *and* the result. */
4524 rtx label1, label2, label3, label4, label5;
4525 rtx adjusted_op0;
4526 rtx tem;
4528 quotient = gen_reg_rtx (compute_mode);
4529 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4530 label1 = gen_label_rtx ();
4531 label2 = gen_label_rtx ();
4532 label3 = gen_label_rtx ();
4533 label4 = gen_label_rtx ();
4534 label5 = gen_label_rtx ();
4535 do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2);
4536 do_cmp_and_jump (adjusted_op0, const0_rtx, GT,
4537 compute_mode, label1);
4538 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4539 quotient, 0, OPTAB_LIB_WIDEN);
4540 if (tem != quotient)
4541 emit_move_insn (quotient, tem);
4542 emit_jump_insn (gen_jump (label5));
4543 emit_barrier ();
4544 emit_label (label1);
4545 expand_dec (adjusted_op0, const1_rtx);
4546 emit_jump_insn (gen_jump (label4));
4547 emit_barrier ();
4548 emit_label (label2);
4549 do_cmp_and_jump (adjusted_op0, const0_rtx, LT,
4550 compute_mode, label3);
4551 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4552 quotient, 0, OPTAB_LIB_WIDEN);
4553 if (tem != quotient)
4554 emit_move_insn (quotient, tem);
4555 emit_jump_insn (gen_jump (label5));
4556 emit_barrier ();
4557 emit_label (label3);
4558 expand_inc (adjusted_op0, const1_rtx);
4559 emit_label (label4);
4560 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4561 quotient, 0, OPTAB_LIB_WIDEN);
4562 if (tem != quotient)
4563 emit_move_insn (quotient, tem);
4564 expand_inc (quotient, const1_rtx);
4565 emit_label (label5);
4568 break;
4570 case EXACT_DIV_EXPR:
4571 if (op1_is_constant && HOST_BITS_PER_WIDE_INT >= size)
4573 HOST_WIDE_INT d = INTVAL (op1);
4574 unsigned HOST_WIDE_INT ml;
4575 int pre_shift;
4576 rtx t1;
4578 pre_shift = floor_log2 (d & -d);
4579 ml = invert_mod2n (d >> pre_shift, size);
4580 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4581 build_int_cst (NULL_TREE, pre_shift),
4582 NULL_RTX, unsignedp);
4583 quotient = expand_mult (compute_mode, t1,
4584 gen_int_mode (ml, compute_mode),
4585 NULL_RTX, 1);
4587 insn = get_last_insn ();
4588 set_unique_reg_note (insn,
4589 REG_EQUAL,
4590 gen_rtx_fmt_ee (unsignedp ? UDIV : DIV,
4591 compute_mode,
4592 op0, op1));
4594 break;
4596 case ROUND_DIV_EXPR:
4597 case ROUND_MOD_EXPR:
4598 if (unsignedp)
4600 rtx tem;
4601 rtx label;
4602 label = gen_label_rtx ();
4603 quotient = gen_reg_rtx (compute_mode);
4604 remainder = gen_reg_rtx (compute_mode);
4605 if (expand_twoval_binop (udivmod_optab, op0, op1, quotient, remainder, 1) == 0)
4607 rtx tem;
4608 quotient = expand_binop (compute_mode, udiv_optab, op0, op1,
4609 quotient, 1, OPTAB_LIB_WIDEN);
4610 tem = expand_mult (compute_mode, quotient, op1, NULL_RTX, 1);
4611 remainder = expand_binop (compute_mode, sub_optab, op0, tem,
4612 remainder, 1, OPTAB_LIB_WIDEN);
4614 tem = plus_constant (op1, -1);
4615 tem = expand_shift (RSHIFT_EXPR, compute_mode, tem,
4616 build_int_cst (NULL_TREE, 1),
4617 NULL_RTX, 1);
4618 do_cmp_and_jump (remainder, tem, LEU, compute_mode, label);
4619 expand_inc (quotient, const1_rtx);
4620 expand_dec (remainder, op1);
4621 emit_label (label);
4623 else
4625 rtx abs_rem, abs_op1, tem, mask;
4626 rtx label;
4627 label = gen_label_rtx ();
4628 quotient = gen_reg_rtx (compute_mode);
4629 remainder = gen_reg_rtx (compute_mode);
4630 if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient, remainder, 0) == 0)
4632 rtx tem;
4633 quotient = expand_binop (compute_mode, sdiv_optab, op0, op1,
4634 quotient, 0, OPTAB_LIB_WIDEN);
4635 tem = expand_mult (compute_mode, quotient, op1, NULL_RTX, 0);
4636 remainder = expand_binop (compute_mode, sub_optab, op0, tem,
4637 remainder, 0, OPTAB_LIB_WIDEN);
4639 abs_rem = expand_abs (compute_mode, remainder, NULL_RTX, 1, 0);
4640 abs_op1 = expand_abs (compute_mode, op1, NULL_RTX, 1, 0);
4641 tem = expand_shift (LSHIFT_EXPR, compute_mode, abs_rem,
4642 build_int_cst (NULL_TREE, 1),
4643 NULL_RTX, 1);
4644 do_cmp_and_jump (tem, abs_op1, LTU, compute_mode, label);
4645 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4646 NULL_RTX, 0, OPTAB_WIDEN);
4647 mask = expand_shift (RSHIFT_EXPR, compute_mode, tem,
4648 build_int_cst (NULL_TREE, size - 1),
4649 NULL_RTX, 0);
4650 tem = expand_binop (compute_mode, xor_optab, mask, const1_rtx,
4651 NULL_RTX, 0, OPTAB_WIDEN);
4652 tem = expand_binop (compute_mode, sub_optab, tem, mask,
4653 NULL_RTX, 0, OPTAB_WIDEN);
4654 expand_inc (quotient, tem);
4655 tem = expand_binop (compute_mode, xor_optab, mask, op1,
4656 NULL_RTX, 0, OPTAB_WIDEN);
4657 tem = expand_binop (compute_mode, sub_optab, tem, mask,
4658 NULL_RTX, 0, OPTAB_WIDEN);
4659 expand_dec (remainder, tem);
4660 emit_label (label);
4662 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4664 default:
4665 gcc_unreachable ();
4668 if (quotient == 0)
4670 if (target && GET_MODE (target) != compute_mode)
4671 target = 0;
4673 if (rem_flag)
4675 /* Try to produce the remainder without producing the quotient.
4676 If we seem to have a divmod pattern that does not require widening,
4677 don't try widening here. We should really have a WIDEN argument
4678 to expand_twoval_binop, since what we'd really like to do here is
4679 1) try a mod insn in compute_mode
4680 2) try a divmod insn in compute_mode
4681 3) try a div insn in compute_mode and multiply-subtract to get
4682 remainder
4683 4) try the same things with widening allowed. */
4684 remainder
4685 = sign_expand_binop (compute_mode, umod_optab, smod_optab,
4686 op0, op1, target,
4687 unsignedp,
4688 ((optab2->handlers[compute_mode].insn_code
4689 != CODE_FOR_nothing)
4690 ? OPTAB_DIRECT : OPTAB_WIDEN));
4691 if (remainder == 0)
4693 /* No luck there. Can we do remainder and divide at once
4694 without a library call? */
4695 remainder = gen_reg_rtx (compute_mode);
4696 if (! expand_twoval_binop ((unsignedp
4697 ? udivmod_optab
4698 : sdivmod_optab),
4699 op0, op1,
4700 NULL_RTX, remainder, unsignedp))
4701 remainder = 0;
4704 if (remainder)
4705 return gen_lowpart (mode, remainder);
4708 /* Produce the quotient. Try a quotient insn, but not a library call.
4709 If we have a divmod in this mode, use it in preference to widening
4710 the div (for this test we assume it will not fail). Note that optab2
4711 is set to the one of the two optabs that the call below will use. */
4712 quotient
4713 = sign_expand_binop (compute_mode, udiv_optab, sdiv_optab,
4714 op0, op1, rem_flag ? NULL_RTX : target,
4715 unsignedp,
4716 ((optab2->handlers[compute_mode].insn_code
4717 != CODE_FOR_nothing)
4718 ? OPTAB_DIRECT : OPTAB_WIDEN));
4720 if (quotient == 0)
4722 /* No luck there. Try a quotient-and-remainder insn,
4723 keeping the quotient alone. */
4724 quotient = gen_reg_rtx (compute_mode);
4725 if (! expand_twoval_binop (unsignedp ? udivmod_optab : sdivmod_optab,
4726 op0, op1,
4727 quotient, NULL_RTX, unsignedp))
4729 quotient = 0;
4730 if (! rem_flag)
4731 /* Still no luck. If we are not computing the remainder,
4732 use a library call for the quotient. */
4733 quotient = sign_expand_binop (compute_mode,
4734 udiv_optab, sdiv_optab,
4735 op0, op1, target,
4736 unsignedp, OPTAB_LIB_WIDEN);
4741 if (rem_flag)
4743 if (target && GET_MODE (target) != compute_mode)
4744 target = 0;
4746 if (quotient == 0)
4748 /* No divide instruction either. Use library for remainder. */
4749 remainder = sign_expand_binop (compute_mode, umod_optab, smod_optab,
4750 op0, op1, target,
4751 unsignedp, OPTAB_LIB_WIDEN);
4752 /* No remainder function. Try a quotient-and-remainder
4753 function, keeping the remainder. */
4754 if (!remainder)
4756 remainder = gen_reg_rtx (compute_mode);
4757 if (!expand_twoval_binop_libfunc
4758 (unsignedp ? udivmod_optab : sdivmod_optab,
4759 op0, op1,
4760 NULL_RTX, remainder,
4761 unsignedp ? UMOD : MOD))
4762 remainder = NULL_RTX;
4765 else
4767 /* We divided. Now finish doing X - Y * (X / Y). */
4768 remainder = expand_mult (compute_mode, quotient, op1,
4769 NULL_RTX, unsignedp);
4770 remainder = expand_binop (compute_mode, sub_optab, op0,
4771 remainder, target, unsignedp,
4772 OPTAB_LIB_WIDEN);
4776 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4779 /* Return a tree node with data type TYPE, describing the value of X.
4780 Usually this is an VAR_DECL, if there is no obvious better choice.
4781 X may be an expression, however we only support those expressions
4782 generated by loop.c. */
4784 tree
4785 make_tree (tree type, rtx x)
4787 tree t;
4789 switch (GET_CODE (x))
4791 case CONST_INT:
4793 HOST_WIDE_INT hi = 0;
4795 if (INTVAL (x) < 0
4796 && !(TYPE_UNSIGNED (type)
4797 && (GET_MODE_BITSIZE (TYPE_MODE (type))
4798 < HOST_BITS_PER_WIDE_INT)))
4799 hi = -1;
4801 t = build_int_cst_wide (type, INTVAL (x), hi);
4803 return t;
4806 case CONST_DOUBLE:
4807 if (GET_MODE (x) == VOIDmode)
4808 t = build_int_cst_wide (type,
4809 CONST_DOUBLE_LOW (x), CONST_DOUBLE_HIGH (x));
4810 else
4812 REAL_VALUE_TYPE d;
4814 REAL_VALUE_FROM_CONST_DOUBLE (d, x);
4815 t = build_real (type, d);
4818 return t;
4820 case CONST_VECTOR:
4822 int i, units;
4823 rtx elt;
4824 tree t = NULL_TREE;
4826 units = CONST_VECTOR_NUNITS (x);
4828 /* Build a tree with vector elements. */
4829 for (i = units - 1; i >= 0; --i)
4831 elt = CONST_VECTOR_ELT (x, i);
4832 t = tree_cons (NULL_TREE, make_tree (type, elt), t);
4835 return build_vector (type, t);
4838 case PLUS:
4839 return fold (build2 (PLUS_EXPR, type, make_tree (type, XEXP (x, 0)),
4840 make_tree (type, XEXP (x, 1))));
4842 case MINUS:
4843 return fold (build2 (MINUS_EXPR, type, make_tree (type, XEXP (x, 0)),
4844 make_tree (type, XEXP (x, 1))));
4846 case NEG:
4847 return fold (build1 (NEGATE_EXPR, type, make_tree (type, XEXP (x, 0))));
4849 case MULT:
4850 return fold (build2 (MULT_EXPR, type, make_tree (type, XEXP (x, 0)),
4851 make_tree (type, XEXP (x, 1))));
4853 case ASHIFT:
4854 return fold (build2 (LSHIFT_EXPR, type, make_tree (type, XEXP (x, 0)),
4855 make_tree (type, XEXP (x, 1))));
4857 case LSHIFTRT:
4858 t = lang_hooks.types.unsigned_type (type);
4859 return fold (convert (type,
4860 build2 (RSHIFT_EXPR, t,
4861 make_tree (t, XEXP (x, 0)),
4862 make_tree (type, XEXP (x, 1)))));
4864 case ASHIFTRT:
4865 t = lang_hooks.types.signed_type (type);
4866 return fold (convert (type,
4867 build2 (RSHIFT_EXPR, t,
4868 make_tree (t, XEXP (x, 0)),
4869 make_tree (type, XEXP (x, 1)))));
4871 case DIV:
4872 if (TREE_CODE (type) != REAL_TYPE)
4873 t = lang_hooks.types.signed_type (type);
4874 else
4875 t = type;
4877 return fold (convert (type,
4878 build2 (TRUNC_DIV_EXPR, t,
4879 make_tree (t, XEXP (x, 0)),
4880 make_tree (t, XEXP (x, 1)))));
4881 case UDIV:
4882 t = lang_hooks.types.unsigned_type (type);
4883 return fold (convert (type,
4884 build2 (TRUNC_DIV_EXPR, t,
4885 make_tree (t, XEXP (x, 0)),
4886 make_tree (t, XEXP (x, 1)))));
4888 case SIGN_EXTEND:
4889 case ZERO_EXTEND:
4890 t = lang_hooks.types.type_for_mode (GET_MODE (XEXP (x, 0)),
4891 GET_CODE (x) == ZERO_EXTEND);
4892 return fold (convert (type, make_tree (t, XEXP (x, 0))));
4894 default:
4895 t = build_decl (VAR_DECL, NULL_TREE, type);
4897 /* If TYPE is a POINTER_TYPE, X might be Pmode with TYPE_MODE being
4898 ptr_mode. So convert. */
4899 if (POINTER_TYPE_P (type))
4900 x = convert_memory_address (TYPE_MODE (type), x);
4902 /* Note that we do *not* use SET_DECL_RTL here, because we do not
4903 want set_decl_rtl to go adjusting REG_ATTRS for this temporary. */
4904 t->decl.rtl = x;
4906 return t;
4910 /* Check whether the multiplication X * MULT + ADD overflows.
4911 X, MULT and ADD must be CONST_*.
4912 MODE is the machine mode for the computation.
4913 X and MULT must have mode MODE. ADD may have a different mode.
4914 So can X (defaults to same as MODE).
4915 UNSIGNEDP is nonzero to do unsigned multiplication. */
4917 bool
4918 const_mult_add_overflow_p (rtx x, rtx mult, rtx add,
4919 enum machine_mode mode, int unsignedp)
4921 tree type, mult_type, add_type, result;
4923 type = lang_hooks.types.type_for_mode (mode, unsignedp);
4925 /* In order to get a proper overflow indication from an unsigned
4926 type, we have to pretend that it's a sizetype. */
4927 mult_type = type;
4928 if (unsignedp)
4930 /* FIXME:It would be nice if we could step directly from this
4931 type to its sizetype equivalent. */
4932 mult_type = build_distinct_type_copy (type);
4933 TYPE_IS_SIZETYPE (mult_type) = 1;
4936 add_type = (GET_MODE (add) == VOIDmode ? mult_type
4937 : lang_hooks.types.type_for_mode (GET_MODE (add), unsignedp));
4939 result = fold (build2 (PLUS_EXPR, mult_type,
4940 fold (build2 (MULT_EXPR, mult_type,
4941 make_tree (mult_type, x),
4942 make_tree (mult_type, mult))),
4943 make_tree (add_type, add)));
4945 return TREE_CONSTANT_OVERFLOW (result);
4948 /* Return an rtx representing the value of X * MULT + ADD.
4949 TARGET is a suggestion for where to store the result (an rtx).
4950 MODE is the machine mode for the computation.
4951 X and MULT must have mode MODE. ADD may have a different mode.
4952 So can X (defaults to same as MODE).
4953 UNSIGNEDP is nonzero to do unsigned multiplication.
4954 This may emit insns. */
4957 expand_mult_add (rtx x, rtx target, rtx mult, rtx add, enum machine_mode mode,
4958 int unsignedp)
4960 tree type = lang_hooks.types.type_for_mode (mode, unsignedp);
4961 tree add_type = (GET_MODE (add) == VOIDmode
4962 ? type: lang_hooks.types.type_for_mode (GET_MODE (add),
4963 unsignedp));
4964 tree result = fold (build2 (PLUS_EXPR, type,
4965 fold (build2 (MULT_EXPR, type,
4966 make_tree (type, x),
4967 make_tree (type, mult))),
4968 make_tree (add_type, add)));
4970 return expand_expr (result, target, VOIDmode, 0);
4973 /* Compute the logical-and of OP0 and OP1, storing it in TARGET
4974 and returning TARGET.
4976 If TARGET is 0, a pseudo-register or constant is returned. */
4979 expand_and (enum machine_mode mode, rtx op0, rtx op1, rtx target)
4981 rtx tem = 0;
4983 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
4984 tem = simplify_binary_operation (AND, mode, op0, op1);
4985 if (tem == 0)
4986 tem = expand_binop (mode, and_optab, op0, op1, target, 0, OPTAB_LIB_WIDEN);
4988 if (target == 0)
4989 target = tem;
4990 else if (tem != target)
4991 emit_move_insn (target, tem);
4992 return target;
4995 /* Emit a store-flags instruction for comparison CODE on OP0 and OP1
4996 and storing in TARGET. Normally return TARGET.
4997 Return 0 if that cannot be done.
4999 MODE is the mode to use for OP0 and OP1 should they be CONST_INTs. If
5000 it is VOIDmode, they cannot both be CONST_INT.
5002 UNSIGNEDP is for the case where we have to widen the operands
5003 to perform the operation. It says to use zero-extension.
5005 NORMALIZEP is 1 if we should convert the result to be either zero
5006 or one. Normalize is -1 if we should convert the result to be
5007 either zero or -1. If NORMALIZEP is zero, the result will be left
5008 "raw" out of the scc insn. */
5011 emit_store_flag (rtx target, enum rtx_code code, rtx op0, rtx op1,
5012 enum machine_mode mode, int unsignedp, int normalizep)
5014 rtx subtarget;
5015 enum insn_code icode;
5016 enum machine_mode compare_mode;
5017 enum machine_mode target_mode = GET_MODE (target);
5018 rtx tem;
5019 rtx last = get_last_insn ();
5020 rtx pattern, comparison;
5022 if (unsignedp)
5023 code = unsigned_condition (code);
5025 /* If one operand is constant, make it the second one. Only do this
5026 if the other operand is not constant as well. */
5028 if (swap_commutative_operands_p (op0, op1))
5030 tem = op0;
5031 op0 = op1;
5032 op1 = tem;
5033 code = swap_condition (code);
5036 if (mode == VOIDmode)
5037 mode = GET_MODE (op0);
5039 /* For some comparisons with 1 and -1, we can convert this to
5040 comparisons with zero. This will often produce more opportunities for
5041 store-flag insns. */
5043 switch (code)
5045 case LT:
5046 if (op1 == const1_rtx)
5047 op1 = const0_rtx, code = LE;
5048 break;
5049 case LE:
5050 if (op1 == constm1_rtx)
5051 op1 = const0_rtx, code = LT;
5052 break;
5053 case GE:
5054 if (op1 == const1_rtx)
5055 op1 = const0_rtx, code = GT;
5056 break;
5057 case GT:
5058 if (op1 == constm1_rtx)
5059 op1 = const0_rtx, code = GE;
5060 break;
5061 case GEU:
5062 if (op1 == const1_rtx)
5063 op1 = const0_rtx, code = NE;
5064 break;
5065 case LTU:
5066 if (op1 == const1_rtx)
5067 op1 = const0_rtx, code = EQ;
5068 break;
5069 default:
5070 break;
5073 /* If we are comparing a double-word integer with zero or -1, we can
5074 convert the comparison into one involving a single word. */
5075 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD * 2
5076 && GET_MODE_CLASS (mode) == MODE_INT
5077 && (!MEM_P (op0) || ! MEM_VOLATILE_P (op0)))
5079 if ((code == EQ || code == NE)
5080 && (op1 == const0_rtx || op1 == constm1_rtx))
5082 rtx op00, op01, op0both;
5084 /* Do a logical OR or AND of the two words and compare the result. */
5085 op00 = simplify_gen_subreg (word_mode, op0, mode, 0);
5086 op01 = simplify_gen_subreg (word_mode, op0, mode, UNITS_PER_WORD);
5087 op0both = expand_binop (word_mode,
5088 op1 == const0_rtx ? ior_optab : and_optab,
5089 op00, op01, NULL_RTX, unsignedp, OPTAB_DIRECT);
5091 if (op0both != 0)
5092 return emit_store_flag (target, code, op0both, op1, word_mode,
5093 unsignedp, normalizep);
5095 else if ((code == LT || code == GE) && op1 == const0_rtx)
5097 rtx op0h;
5099 /* If testing the sign bit, can just test on high word. */
5100 op0h = simplify_gen_subreg (word_mode, op0, mode,
5101 subreg_highpart_offset (word_mode, mode));
5102 return emit_store_flag (target, code, op0h, op1, word_mode,
5103 unsignedp, normalizep);
5107 /* From now on, we won't change CODE, so set ICODE now. */
5108 icode = setcc_gen_code[(int) code];
5110 /* If this is A < 0 or A >= 0, we can do this by taking the ones
5111 complement of A (for GE) and shifting the sign bit to the low bit. */
5112 if (op1 == const0_rtx && (code == LT || code == GE)
5113 && GET_MODE_CLASS (mode) == MODE_INT
5114 && (normalizep || STORE_FLAG_VALUE == 1
5115 || (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5116 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5117 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1)))))
5119 subtarget = target;
5121 /* If the result is to be wider than OP0, it is best to convert it
5122 first. If it is to be narrower, it is *incorrect* to convert it
5123 first. */
5124 if (GET_MODE_SIZE (target_mode) > GET_MODE_SIZE (mode))
5126 op0 = convert_modes (target_mode, mode, op0, 0);
5127 mode = target_mode;
5130 if (target_mode != mode)
5131 subtarget = 0;
5133 if (code == GE)
5134 op0 = expand_unop (mode, one_cmpl_optab, op0,
5135 ((STORE_FLAG_VALUE == 1 || normalizep)
5136 ? 0 : subtarget), 0);
5138 if (STORE_FLAG_VALUE == 1 || normalizep)
5139 /* If we are supposed to produce a 0/1 value, we want to do
5140 a logical shift from the sign bit to the low-order bit; for
5141 a -1/0 value, we do an arithmetic shift. */
5142 op0 = expand_shift (RSHIFT_EXPR, mode, op0,
5143 size_int (GET_MODE_BITSIZE (mode) - 1),
5144 subtarget, normalizep != -1);
5146 if (mode != target_mode)
5147 op0 = convert_modes (target_mode, mode, op0, 0);
5149 return op0;
5152 if (icode != CODE_FOR_nothing)
5154 insn_operand_predicate_fn pred;
5156 /* We think we may be able to do this with a scc insn. Emit the
5157 comparison and then the scc insn. */
5159 do_pending_stack_adjust ();
5160 last = get_last_insn ();
5162 comparison
5163 = compare_from_rtx (op0, op1, code, unsignedp, mode, NULL_RTX);
5164 if (CONSTANT_P (comparison))
5166 switch (GET_CODE (comparison))
5168 case CONST_INT:
5169 if (comparison == const0_rtx)
5170 return const0_rtx;
5171 break;
5173 #ifdef FLOAT_STORE_FLAG_VALUE
5174 case CONST_DOUBLE:
5175 if (comparison == CONST0_RTX (GET_MODE (comparison)))
5176 return const0_rtx;
5177 break;
5178 #endif
5179 default:
5180 gcc_unreachable ();
5183 if (normalizep == 1)
5184 return const1_rtx;
5185 if (normalizep == -1)
5186 return constm1_rtx;
5187 return const_true_rtx;
5190 /* The code of COMPARISON may not match CODE if compare_from_rtx
5191 decided to swap its operands and reverse the original code.
5193 We know that compare_from_rtx returns either a CONST_INT or
5194 a new comparison code, so it is safe to just extract the
5195 code from COMPARISON. */
5196 code = GET_CODE (comparison);
5198 /* Get a reference to the target in the proper mode for this insn. */
5199 compare_mode = insn_data[(int) icode].operand[0].mode;
5200 subtarget = target;
5201 pred = insn_data[(int) icode].operand[0].predicate;
5202 if (optimize || ! (*pred) (subtarget, compare_mode))
5203 subtarget = gen_reg_rtx (compare_mode);
5205 pattern = GEN_FCN (icode) (subtarget);
5206 if (pattern)
5208 emit_insn (pattern);
5210 /* If we are converting to a wider mode, first convert to
5211 TARGET_MODE, then normalize. This produces better combining
5212 opportunities on machines that have a SIGN_EXTRACT when we are
5213 testing a single bit. This mostly benefits the 68k.
5215 If STORE_FLAG_VALUE does not have the sign bit set when
5216 interpreted in COMPARE_MODE, we can do this conversion as
5217 unsigned, which is usually more efficient. */
5218 if (GET_MODE_SIZE (target_mode) > GET_MODE_SIZE (compare_mode))
5220 convert_move (target, subtarget,
5221 (GET_MODE_BITSIZE (compare_mode)
5222 <= HOST_BITS_PER_WIDE_INT)
5223 && 0 == (STORE_FLAG_VALUE
5224 & ((HOST_WIDE_INT) 1
5225 << (GET_MODE_BITSIZE (compare_mode) -1))));
5226 op0 = target;
5227 compare_mode = target_mode;
5229 else
5230 op0 = subtarget;
5232 /* If we want to keep subexpressions around, don't reuse our
5233 last target. */
5235 if (optimize)
5236 subtarget = 0;
5238 /* Now normalize to the proper value in COMPARE_MODE. Sometimes
5239 we don't have to do anything. */
5240 if (normalizep == 0 || normalizep == STORE_FLAG_VALUE)
5242 /* STORE_FLAG_VALUE might be the most negative number, so write
5243 the comparison this way to avoid a compiler-time warning. */
5244 else if (- normalizep == STORE_FLAG_VALUE)
5245 op0 = expand_unop (compare_mode, neg_optab, op0, subtarget, 0);
5247 /* We don't want to use STORE_FLAG_VALUE < 0 below since this
5248 makes it hard to use a value of just the sign bit due to
5249 ANSI integer constant typing rules. */
5250 else if (GET_MODE_BITSIZE (compare_mode) <= HOST_BITS_PER_WIDE_INT
5251 && (STORE_FLAG_VALUE
5252 & ((HOST_WIDE_INT) 1
5253 << (GET_MODE_BITSIZE (compare_mode) - 1))))
5254 op0 = expand_shift (RSHIFT_EXPR, compare_mode, op0,
5255 size_int (GET_MODE_BITSIZE (compare_mode) - 1),
5256 subtarget, normalizep == 1);
5257 else
5259 gcc_assert (STORE_FLAG_VALUE & 1);
5261 op0 = expand_and (compare_mode, op0, const1_rtx, subtarget);
5262 if (normalizep == -1)
5263 op0 = expand_unop (compare_mode, neg_optab, op0, op0, 0);
5266 /* If we were converting to a smaller mode, do the
5267 conversion now. */
5268 if (target_mode != compare_mode)
5270 convert_move (target, op0, 0);
5271 return target;
5273 else
5274 return op0;
5278 delete_insns_since (last);
5280 /* If optimizing, use different pseudo registers for each insn, instead
5281 of reusing the same pseudo. This leads to better CSE, but slows
5282 down the compiler, since there are more pseudos */
5283 subtarget = (!optimize
5284 && (target_mode == mode)) ? target : NULL_RTX;
5286 /* If we reached here, we can't do this with a scc insn. However, there
5287 are some comparisons that can be done directly. For example, if
5288 this is an equality comparison of integers, we can try to exclusive-or
5289 (or subtract) the two operands and use a recursive call to try the
5290 comparison with zero. Don't do any of these cases if branches are
5291 very cheap. */
5293 if (BRANCH_COST > 0
5294 && GET_MODE_CLASS (mode) == MODE_INT && (code == EQ || code == NE)
5295 && op1 != const0_rtx)
5297 tem = expand_binop (mode, xor_optab, op0, op1, subtarget, 1,
5298 OPTAB_WIDEN);
5300 if (tem == 0)
5301 tem = expand_binop (mode, sub_optab, op0, op1, subtarget, 1,
5302 OPTAB_WIDEN);
5303 if (tem != 0)
5304 tem = emit_store_flag (target, code, tem, const0_rtx,
5305 mode, unsignedp, normalizep);
5306 if (tem == 0)
5307 delete_insns_since (last);
5308 return tem;
5311 /* Some other cases we can do are EQ, NE, LE, and GT comparisons with
5312 the constant zero. Reject all other comparisons at this point. Only
5313 do LE and GT if branches are expensive since they are expensive on
5314 2-operand machines. */
5316 if (BRANCH_COST == 0
5317 || GET_MODE_CLASS (mode) != MODE_INT || op1 != const0_rtx
5318 || (code != EQ && code != NE
5319 && (BRANCH_COST <= 1 || (code != LE && code != GT))))
5320 return 0;
5322 /* See what we need to return. We can only return a 1, -1, or the
5323 sign bit. */
5325 if (normalizep == 0)
5327 if (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
5328 normalizep = STORE_FLAG_VALUE;
5330 else if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5331 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5332 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1)))
5334 else
5335 return 0;
5338 /* Try to put the result of the comparison in the sign bit. Assume we can't
5339 do the necessary operation below. */
5341 tem = 0;
5343 /* To see if A <= 0, compute (A | (A - 1)). A <= 0 iff that result has
5344 the sign bit set. */
5346 if (code == LE)
5348 /* This is destructive, so SUBTARGET can't be OP0. */
5349 if (rtx_equal_p (subtarget, op0))
5350 subtarget = 0;
5352 tem = expand_binop (mode, sub_optab, op0, const1_rtx, subtarget, 0,
5353 OPTAB_WIDEN);
5354 if (tem)
5355 tem = expand_binop (mode, ior_optab, op0, tem, subtarget, 0,
5356 OPTAB_WIDEN);
5359 /* To see if A > 0, compute (((signed) A) << BITS) - A, where BITS is the
5360 number of bits in the mode of OP0, minus one. */
5362 if (code == GT)
5364 if (rtx_equal_p (subtarget, op0))
5365 subtarget = 0;
5367 tem = expand_shift (RSHIFT_EXPR, mode, op0,
5368 size_int (GET_MODE_BITSIZE (mode) - 1),
5369 subtarget, 0);
5370 tem = expand_binop (mode, sub_optab, tem, op0, subtarget, 0,
5371 OPTAB_WIDEN);
5374 if (code == EQ || code == NE)
5376 /* For EQ or NE, one way to do the comparison is to apply an operation
5377 that converts the operand into a positive number if it is nonzero
5378 or zero if it was originally zero. Then, for EQ, we subtract 1 and
5379 for NE we negate. This puts the result in the sign bit. Then we
5380 normalize with a shift, if needed.
5382 Two operations that can do the above actions are ABS and FFS, so try
5383 them. If that doesn't work, and MODE is smaller than a full word,
5384 we can use zero-extension to the wider mode (an unsigned conversion)
5385 as the operation. */
5387 /* Note that ABS doesn't yield a positive number for INT_MIN, but
5388 that is compensated by the subsequent overflow when subtracting
5389 one / negating. */
5391 if (abs_optab->handlers[mode].insn_code != CODE_FOR_nothing)
5392 tem = expand_unop (mode, abs_optab, op0, subtarget, 1);
5393 else if (ffs_optab->handlers[mode].insn_code != CODE_FOR_nothing)
5394 tem = expand_unop (mode, ffs_optab, op0, subtarget, 1);
5395 else if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
5397 tem = convert_modes (word_mode, mode, op0, 1);
5398 mode = word_mode;
5401 if (tem != 0)
5403 if (code == EQ)
5404 tem = expand_binop (mode, sub_optab, tem, const1_rtx, subtarget,
5405 0, OPTAB_WIDEN);
5406 else
5407 tem = expand_unop (mode, neg_optab, tem, subtarget, 0);
5410 /* If we couldn't do it that way, for NE we can "or" the two's complement
5411 of the value with itself. For EQ, we take the one's complement of
5412 that "or", which is an extra insn, so we only handle EQ if branches
5413 are expensive. */
5415 if (tem == 0 && (code == NE || BRANCH_COST > 1))
5417 if (rtx_equal_p (subtarget, op0))
5418 subtarget = 0;
5420 tem = expand_unop (mode, neg_optab, op0, subtarget, 0);
5421 tem = expand_binop (mode, ior_optab, tem, op0, subtarget, 0,
5422 OPTAB_WIDEN);
5424 if (tem && code == EQ)
5425 tem = expand_unop (mode, one_cmpl_optab, tem, subtarget, 0);
5429 if (tem && normalizep)
5430 tem = expand_shift (RSHIFT_EXPR, mode, tem,
5431 size_int (GET_MODE_BITSIZE (mode) - 1),
5432 subtarget, normalizep == 1);
5434 if (tem)
5436 if (GET_MODE (tem) != target_mode)
5438 convert_move (target, tem, 0);
5439 tem = target;
5441 else if (!subtarget)
5443 emit_move_insn (target, tem);
5444 tem = target;
5447 else
5448 delete_insns_since (last);
5450 return tem;
5453 /* Like emit_store_flag, but always succeeds. */
5456 emit_store_flag_force (rtx target, enum rtx_code code, rtx op0, rtx op1,
5457 enum machine_mode mode, int unsignedp, int normalizep)
5459 rtx tem, label;
5461 /* First see if emit_store_flag can do the job. */
5462 tem = emit_store_flag (target, code, op0, op1, mode, unsignedp, normalizep);
5463 if (tem != 0)
5464 return tem;
5466 if (normalizep == 0)
5467 normalizep = 1;
5469 /* If this failed, we have to do this with set/compare/jump/set code. */
5471 if (!REG_P (target)
5472 || reg_mentioned_p (target, op0) || reg_mentioned_p (target, op1))
5473 target = gen_reg_rtx (GET_MODE (target));
5475 emit_move_insn (target, const1_rtx);
5476 label = gen_label_rtx ();
5477 do_compare_rtx_and_jump (op0, op1, code, unsignedp, mode, NULL_RTX,
5478 NULL_RTX, label);
5480 emit_move_insn (target, const0_rtx);
5481 emit_label (label);
5483 return target;
5486 /* Perform possibly multi-word comparison and conditional jump to LABEL
5487 if ARG1 OP ARG2 true where ARG1 and ARG2 are of mode MODE
5489 The algorithm is based on the code in expr.c:do_jump.
5491 Note that this does not perform a general comparison. Only variants
5492 generated within expmed.c are correctly handled, others abort (but could
5493 be handled if needed). */
5495 static void
5496 do_cmp_and_jump (rtx arg1, rtx arg2, enum rtx_code op, enum machine_mode mode,
5497 rtx label)
5499 /* If this mode is an integer too wide to compare properly,
5500 compare word by word. Rely on cse to optimize constant cases. */
5502 if (GET_MODE_CLASS (mode) == MODE_INT
5503 && ! can_compare_p (op, mode, ccp_jump))
5505 rtx label2 = gen_label_rtx ();
5507 switch (op)
5509 case LTU:
5510 do_jump_by_parts_greater_rtx (mode, 1, arg2, arg1, label2, label);
5511 break;
5513 case LEU:
5514 do_jump_by_parts_greater_rtx (mode, 1, arg1, arg2, label, label2);
5515 break;
5517 case LT:
5518 do_jump_by_parts_greater_rtx (mode, 0, arg2, arg1, label2, label);
5519 break;
5521 case GT:
5522 do_jump_by_parts_greater_rtx (mode, 0, arg1, arg2, label2, label);
5523 break;
5525 case GE:
5526 do_jump_by_parts_greater_rtx (mode, 0, arg2, arg1, label, label2);
5527 break;
5529 /* do_jump_by_parts_equality_rtx compares with zero. Luckily
5530 that's the only equality operations we do */
5531 case EQ:
5532 gcc_assert (arg2 == const0_rtx && mode == GET_MODE(arg1));
5533 do_jump_by_parts_equality_rtx (arg1, label2, label);
5534 break;
5536 case NE:
5537 gcc_assert (arg2 == const0_rtx && mode == GET_MODE(arg1));
5538 do_jump_by_parts_equality_rtx (arg1, label, label2);
5539 break;
5541 default:
5542 gcc_unreachable ();
5545 emit_label (label2);
5547 else
5548 emit_cmp_and_jump_insns (arg1, arg2, op, NULL_RTX, mode, 0, label);