* i386.c (dimode_scalar_chain::compute_convert_gain): Use
[official-gcc.git] / gcc / loop-unroll.c
blob816302b9e70d85029b43151275b1428fb4ab142b
1 /* Loop unrolling.
2 Copyright (C) 2002-2017 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "cfghooks.h"
28 #include "memmodel.h"
29 #include "optabs.h"
30 #include "emit-rtl.h"
31 #include "recog.h"
32 #include "profile.h"
33 #include "cfgrtl.h"
34 #include "cfgloop.h"
35 #include "params.h"
36 #include "dojump.h"
37 #include "expr.h"
38 #include "dumpfile.h"
40 /* This pass performs loop unrolling. We only perform this
41 optimization on innermost loops (with single exception) because
42 the impact on performance is greatest here, and we want to avoid
43 unnecessary code size growth. The gain is caused by greater sequentiality
44 of code, better code to optimize for further passes and in some cases
45 by fewer testings of exit conditions. The main problem is code growth,
46 that impacts performance negatively due to effect of caches.
48 What we do:
50 -- unrolling of loops that roll constant times; this is almost always
51 win, as we get rid of exit condition tests.
52 -- unrolling of loops that roll number of times that we can compute
53 in runtime; we also get rid of exit condition tests here, but there
54 is the extra expense for calculating the number of iterations
55 -- simple unrolling of remaining loops; this is performed only if we
56 are asked to, as the gain is questionable in this case and often
57 it may even slow down the code
58 For more detailed descriptions of each of those, see comments at
59 appropriate function below.
61 There is a lot of parameters (defined and described in params.def) that
62 control how much we unroll.
64 ??? A great problem is that we don't have a good way how to determine
65 how many times we should unroll the loop; the experiments I have made
66 showed that this choice may affect performance in order of several %.
69 /* Information about induction variables to split. */
71 struct iv_to_split
73 rtx_insn *insn; /* The insn in that the induction variable occurs. */
74 rtx orig_var; /* The variable (register) for the IV before split. */
75 rtx base_var; /* The variable on that the values in the further
76 iterations are based. */
77 rtx step; /* Step of the induction variable. */
78 struct iv_to_split *next; /* Next entry in walking order. */
81 /* Information about accumulators to expand. */
83 struct var_to_expand
85 rtx_insn *insn; /* The insn in that the variable expansion occurs. */
86 rtx reg; /* The accumulator which is expanded. */
87 vec<rtx> var_expansions; /* The copies of the accumulator which is expanded. */
88 struct var_to_expand *next; /* Next entry in walking order. */
89 enum rtx_code op; /* The type of the accumulation - addition, subtraction
90 or multiplication. */
91 int expansion_count; /* Count the number of expansions generated so far. */
92 int reuse_expansion; /* The expansion we intend to reuse to expand
93 the accumulator. If REUSE_EXPANSION is 0 reuse
94 the original accumulator. Else use
95 var_expansions[REUSE_EXPANSION - 1]. */
98 /* Hashtable helper for iv_to_split. */
100 struct iv_split_hasher : free_ptr_hash <iv_to_split>
102 static inline hashval_t hash (const iv_to_split *);
103 static inline bool equal (const iv_to_split *, const iv_to_split *);
107 /* A hash function for information about insns to split. */
109 inline hashval_t
110 iv_split_hasher::hash (const iv_to_split *ivts)
112 return (hashval_t) INSN_UID (ivts->insn);
115 /* An equality functions for information about insns to split. */
117 inline bool
118 iv_split_hasher::equal (const iv_to_split *i1, const iv_to_split *i2)
120 return i1->insn == i2->insn;
123 /* Hashtable helper for iv_to_split. */
125 struct var_expand_hasher : free_ptr_hash <var_to_expand>
127 static inline hashval_t hash (const var_to_expand *);
128 static inline bool equal (const var_to_expand *, const var_to_expand *);
131 /* Return a hash for VES. */
133 inline hashval_t
134 var_expand_hasher::hash (const var_to_expand *ves)
136 return (hashval_t) INSN_UID (ves->insn);
139 /* Return true if I1 and I2 refer to the same instruction. */
141 inline bool
142 var_expand_hasher::equal (const var_to_expand *i1, const var_to_expand *i2)
144 return i1->insn == i2->insn;
147 /* Information about optimization applied in
148 the unrolled loop. */
150 struct opt_info
152 hash_table<iv_split_hasher> *insns_to_split; /* A hashtable of insns to
153 split. */
154 struct iv_to_split *iv_to_split_head; /* The first iv to split. */
155 struct iv_to_split **iv_to_split_tail; /* Pointer to the tail of the list. */
156 hash_table<var_expand_hasher> *insns_with_var_to_expand; /* A hashtable of
157 insns with accumulators to expand. */
158 struct var_to_expand *var_to_expand_head; /* The first var to expand. */
159 struct var_to_expand **var_to_expand_tail; /* Pointer to the tail of the list. */
160 unsigned first_new_block; /* The first basic block that was
161 duplicated. */
162 basic_block loop_exit; /* The loop exit basic block. */
163 basic_block loop_preheader; /* The loop preheader basic block. */
166 static void decide_unroll_stupid (struct loop *, int);
167 static void decide_unroll_constant_iterations (struct loop *, int);
168 static void decide_unroll_runtime_iterations (struct loop *, int);
169 static void unroll_loop_stupid (struct loop *);
170 static void decide_unrolling (int);
171 static void unroll_loop_constant_iterations (struct loop *);
172 static void unroll_loop_runtime_iterations (struct loop *);
173 static struct opt_info *analyze_insns_in_loop (struct loop *);
174 static void opt_info_start_duplication (struct opt_info *);
175 static void apply_opt_in_copies (struct opt_info *, unsigned, bool, bool);
176 static void free_opt_info (struct opt_info *);
177 static struct var_to_expand *analyze_insn_to_expand_var (struct loop*, rtx_insn *);
178 static bool referenced_in_one_insn_in_loop_p (struct loop *, rtx, int *);
179 static struct iv_to_split *analyze_iv_to_split_insn (rtx_insn *);
180 static void expand_var_during_unrolling (struct var_to_expand *, rtx_insn *);
181 static void insert_var_expansion_initialization (struct var_to_expand *,
182 basic_block);
183 static void combine_var_copies_in_loop_exit (struct var_to_expand *,
184 basic_block);
185 static rtx get_expansion (struct var_to_expand *);
187 /* Emit a message summarizing the unroll that will be
188 performed for LOOP, along with the loop's location LOCUS, if
189 appropriate given the dump or -fopt-info settings. */
191 static void
192 report_unroll (struct loop *loop, location_t locus)
194 dump_flags_t report_flags = MSG_OPTIMIZED_LOCATIONS | TDF_DETAILS;
196 if (loop->lpt_decision.decision == LPT_NONE)
197 return;
199 if (!dump_enabled_p ())
200 return;
202 dump_printf_loc (report_flags, locus,
203 "loop unrolled %d times",
204 loop->lpt_decision.times);
205 if (profile_info && loop->header->count.initialized_p ())
206 dump_printf (report_flags,
207 " (header execution count %d)",
208 (int)loop->header->count.to_gcov_type ());
210 dump_printf (report_flags, "\n");
213 /* Decide whether unroll loops and how much. */
214 static void
215 decide_unrolling (int flags)
217 struct loop *loop;
219 /* Scan the loops, inner ones first. */
220 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
222 loop->lpt_decision.decision = LPT_NONE;
223 location_t locus = get_loop_location (loop);
225 if (dump_enabled_p ())
226 dump_printf_loc (MSG_NOTE, locus,
227 ";; *** Considering loop %d at BB %d for "
228 "unrolling ***\n",
229 loop->num, loop->header->index);
231 /* Do not peel cold areas. */
232 if (optimize_loop_for_size_p (loop))
234 if (dump_file)
235 fprintf (dump_file, ";; Not considering loop, cold area\n");
236 continue;
239 /* Can the loop be manipulated? */
240 if (!can_duplicate_loop_p (loop))
242 if (dump_file)
243 fprintf (dump_file,
244 ";; Not considering loop, cannot duplicate\n");
245 continue;
248 /* Skip non-innermost loops. */
249 if (loop->inner)
251 if (dump_file)
252 fprintf (dump_file, ";; Not considering loop, is not innermost\n");
253 continue;
256 loop->ninsns = num_loop_insns (loop);
257 loop->av_ninsns = average_num_loop_insns (loop);
259 /* Try transformations one by one in decreasing order of
260 priority. */
262 decide_unroll_constant_iterations (loop, flags);
263 if (loop->lpt_decision.decision == LPT_NONE)
264 decide_unroll_runtime_iterations (loop, flags);
265 if (loop->lpt_decision.decision == LPT_NONE)
266 decide_unroll_stupid (loop, flags);
268 report_unroll (loop, locus);
272 /* Unroll LOOPS. */
273 void
274 unroll_loops (int flags)
276 struct loop *loop;
277 bool changed = false;
279 /* Now decide rest of unrolling. */
280 decide_unrolling (flags);
282 /* Scan the loops, inner ones first. */
283 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
285 /* And perform the appropriate transformations. */
286 switch (loop->lpt_decision.decision)
288 case LPT_UNROLL_CONSTANT:
289 unroll_loop_constant_iterations (loop);
290 changed = true;
291 break;
292 case LPT_UNROLL_RUNTIME:
293 unroll_loop_runtime_iterations (loop);
294 changed = true;
295 break;
296 case LPT_UNROLL_STUPID:
297 unroll_loop_stupid (loop);
298 changed = true;
299 break;
300 case LPT_NONE:
301 break;
302 default:
303 gcc_unreachable ();
307 if (changed)
309 calculate_dominance_info (CDI_DOMINATORS);
310 fix_loop_structure (NULL);
313 iv_analysis_done ();
316 /* Check whether exit of the LOOP is at the end of loop body. */
318 static bool
319 loop_exit_at_end_p (struct loop *loop)
321 struct niter_desc *desc = get_simple_loop_desc (loop);
322 rtx_insn *insn;
324 /* We should never have conditional in latch block. */
325 gcc_assert (desc->in_edge->dest != loop->header);
327 if (desc->in_edge->dest != loop->latch)
328 return false;
330 /* Check that the latch is empty. */
331 FOR_BB_INSNS (loop->latch, insn)
333 if (INSN_P (insn) && active_insn_p (insn))
334 return false;
337 return true;
340 /* Decide whether to unroll LOOP iterating constant number of times
341 and how much. */
343 static void
344 decide_unroll_constant_iterations (struct loop *loop, int flags)
346 unsigned nunroll, nunroll_by_av, best_copies, best_unroll = 0, n_copies, i;
347 struct niter_desc *desc;
348 widest_int iterations;
350 if (!(flags & UAP_UNROLL))
352 /* We were not asked to, just return back silently. */
353 return;
356 if (dump_file)
357 fprintf (dump_file,
358 "\n;; Considering unrolling loop with constant "
359 "number of iterations\n");
361 /* nunroll = total number of copies of the original loop body in
362 unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
363 nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
364 nunroll_by_av
365 = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
366 if (nunroll > nunroll_by_av)
367 nunroll = nunroll_by_av;
368 if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
369 nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
371 if (targetm.loop_unroll_adjust)
372 nunroll = targetm.loop_unroll_adjust (nunroll, loop);
374 /* Skip big loops. */
375 if (nunroll <= 1)
377 if (dump_file)
378 fprintf (dump_file, ";; Not considering loop, is too big\n");
379 return;
382 /* Check for simple loops. */
383 desc = get_simple_loop_desc (loop);
385 /* Check number of iterations. */
386 if (!desc->simple_p || !desc->const_iter || desc->assumptions)
388 if (dump_file)
389 fprintf (dump_file,
390 ";; Unable to prove that the loop iterates constant times\n");
391 return;
394 /* Check whether the loop rolls enough to consider.
395 Consult also loop bounds and profile; in the case the loop has more
396 than one exit it may well loop less than determined maximal number
397 of iterations. */
398 if (desc->niter < 2 * nunroll
399 || ((get_estimated_loop_iterations (loop, &iterations)
400 || get_likely_max_loop_iterations (loop, &iterations))
401 && wi::ltu_p (iterations, 2 * nunroll)))
403 if (dump_file)
404 fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
405 return;
408 /* Success; now compute number of iterations to unroll. We alter
409 nunroll so that as few as possible copies of loop body are
410 necessary, while still not decreasing the number of unrollings
411 too much (at most by 1). */
412 best_copies = 2 * nunroll + 10;
414 i = 2 * nunroll + 2;
415 if (i - 1 >= desc->niter)
416 i = desc->niter - 2;
418 for (; i >= nunroll - 1; i--)
420 unsigned exit_mod = desc->niter % (i + 1);
422 if (!loop_exit_at_end_p (loop))
423 n_copies = exit_mod + i + 1;
424 else if (exit_mod != (unsigned) i
425 || desc->noloop_assumptions != NULL_RTX)
426 n_copies = exit_mod + i + 2;
427 else
428 n_copies = i + 1;
430 if (n_copies < best_copies)
432 best_copies = n_copies;
433 best_unroll = i;
437 loop->lpt_decision.decision = LPT_UNROLL_CONSTANT;
438 loop->lpt_decision.times = best_unroll;
441 /* Unroll LOOP with constant number of iterations LOOP->LPT_DECISION.TIMES times.
442 The transformation does this:
444 for (i = 0; i < 102; i++)
445 body;
447 ==> (LOOP->LPT_DECISION.TIMES == 3)
449 i = 0;
450 body; i++;
451 body; i++;
452 while (i < 102)
454 body; i++;
455 body; i++;
456 body; i++;
457 body; i++;
460 static void
461 unroll_loop_constant_iterations (struct loop *loop)
463 unsigned HOST_WIDE_INT niter;
464 unsigned exit_mod;
465 unsigned i;
466 edge e;
467 unsigned max_unroll = loop->lpt_decision.times;
468 struct niter_desc *desc = get_simple_loop_desc (loop);
469 bool exit_at_end = loop_exit_at_end_p (loop);
470 struct opt_info *opt_info = NULL;
471 bool ok;
473 niter = desc->niter;
475 /* Should not get here (such loop should be peeled instead). */
476 gcc_assert (niter > max_unroll + 1);
478 exit_mod = niter % (max_unroll + 1);
480 auto_sbitmap wont_exit (max_unroll + 1);
481 bitmap_ones (wont_exit);
483 auto_vec<edge> remove_edges;
484 if (flag_split_ivs_in_unroller
485 || flag_variable_expansion_in_unroller)
486 opt_info = analyze_insns_in_loop (loop);
488 if (!exit_at_end)
490 /* The exit is not at the end of the loop; leave exit test
491 in the first copy, so that the loops that start with test
492 of exit condition have continuous body after unrolling. */
494 if (dump_file)
495 fprintf (dump_file, ";; Condition at beginning of loop.\n");
497 /* Peel exit_mod iterations. */
498 bitmap_clear_bit (wont_exit, 0);
499 if (desc->noloop_assumptions)
500 bitmap_clear_bit (wont_exit, 1);
502 if (exit_mod)
504 opt_info_start_duplication (opt_info);
505 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
506 exit_mod,
507 wont_exit, desc->out_edge,
508 &remove_edges,
509 DLTHE_FLAG_UPDATE_FREQ
510 | (opt_info && exit_mod > 1
511 ? DLTHE_RECORD_COPY_NUMBER
512 : 0));
513 gcc_assert (ok);
515 if (opt_info && exit_mod > 1)
516 apply_opt_in_copies (opt_info, exit_mod, false, false);
518 desc->noloop_assumptions = NULL_RTX;
519 desc->niter -= exit_mod;
520 loop->nb_iterations_upper_bound -= exit_mod;
521 if (loop->any_estimate
522 && wi::leu_p (exit_mod, loop->nb_iterations_estimate))
523 loop->nb_iterations_estimate -= exit_mod;
524 else
525 loop->any_estimate = false;
526 if (loop->any_likely_upper_bound
527 && wi::leu_p (exit_mod, loop->nb_iterations_likely_upper_bound))
528 loop->nb_iterations_likely_upper_bound -= exit_mod;
529 else
530 loop->any_likely_upper_bound = false;
533 bitmap_set_bit (wont_exit, 1);
535 else
537 /* Leave exit test in last copy, for the same reason as above if
538 the loop tests the condition at the end of loop body. */
540 if (dump_file)
541 fprintf (dump_file, ";; Condition at end of loop.\n");
543 /* We know that niter >= max_unroll + 2; so we do not need to care of
544 case when we would exit before reaching the loop. So just peel
545 exit_mod + 1 iterations. */
546 if (exit_mod != max_unroll
547 || desc->noloop_assumptions)
549 bitmap_clear_bit (wont_exit, 0);
550 if (desc->noloop_assumptions)
551 bitmap_clear_bit (wont_exit, 1);
553 opt_info_start_duplication (opt_info);
554 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
555 exit_mod + 1,
556 wont_exit, desc->out_edge,
557 &remove_edges,
558 DLTHE_FLAG_UPDATE_FREQ
559 | (opt_info && exit_mod > 0
560 ? DLTHE_RECORD_COPY_NUMBER
561 : 0));
562 gcc_assert (ok);
564 if (opt_info && exit_mod > 0)
565 apply_opt_in_copies (opt_info, exit_mod + 1, false, false);
567 desc->niter -= exit_mod + 1;
568 loop->nb_iterations_upper_bound -= exit_mod + 1;
569 if (loop->any_estimate
570 && wi::leu_p (exit_mod + 1, loop->nb_iterations_estimate))
571 loop->nb_iterations_estimate -= exit_mod + 1;
572 else
573 loop->any_estimate = false;
574 if (loop->any_likely_upper_bound
575 && wi::leu_p (exit_mod + 1, loop->nb_iterations_likely_upper_bound))
576 loop->nb_iterations_likely_upper_bound -= exit_mod + 1;
577 else
578 loop->any_likely_upper_bound = false;
579 desc->noloop_assumptions = NULL_RTX;
581 bitmap_set_bit (wont_exit, 0);
582 bitmap_set_bit (wont_exit, 1);
585 bitmap_clear_bit (wont_exit, max_unroll);
588 /* Now unroll the loop. */
590 opt_info_start_duplication (opt_info);
591 ok = duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
592 max_unroll,
593 wont_exit, desc->out_edge,
594 &remove_edges,
595 DLTHE_FLAG_UPDATE_FREQ
596 | (opt_info
597 ? DLTHE_RECORD_COPY_NUMBER
598 : 0));
599 gcc_assert (ok);
601 if (opt_info)
603 apply_opt_in_copies (opt_info, max_unroll, true, true);
604 free_opt_info (opt_info);
607 if (exit_at_end)
609 basic_block exit_block = get_bb_copy (desc->in_edge->src);
610 /* Find a new in and out edge; they are in the last copy we have made. */
612 if (EDGE_SUCC (exit_block, 0)->dest == desc->out_edge->dest)
614 desc->out_edge = EDGE_SUCC (exit_block, 0);
615 desc->in_edge = EDGE_SUCC (exit_block, 1);
617 else
619 desc->out_edge = EDGE_SUCC (exit_block, 1);
620 desc->in_edge = EDGE_SUCC (exit_block, 0);
624 desc->niter /= max_unroll + 1;
625 loop->nb_iterations_upper_bound
626 = wi::udiv_trunc (loop->nb_iterations_upper_bound, max_unroll + 1);
627 if (loop->any_estimate)
628 loop->nb_iterations_estimate
629 = wi::udiv_trunc (loop->nb_iterations_estimate, max_unroll + 1);
630 if (loop->any_likely_upper_bound)
631 loop->nb_iterations_likely_upper_bound
632 = wi::udiv_trunc (loop->nb_iterations_likely_upper_bound, max_unroll + 1);
633 desc->niter_expr = GEN_INT (desc->niter);
635 /* Remove the edges. */
636 FOR_EACH_VEC_ELT (remove_edges, i, e)
637 remove_path (e);
639 if (dump_file)
640 fprintf (dump_file,
641 ";; Unrolled loop %d times, constant # of iterations %i insns\n",
642 max_unroll, num_loop_insns (loop));
645 /* Decide whether to unroll LOOP iterating runtime computable number of times
646 and how much. */
647 static void
648 decide_unroll_runtime_iterations (struct loop *loop, int flags)
650 unsigned nunroll, nunroll_by_av, i;
651 struct niter_desc *desc;
652 widest_int iterations;
654 if (!(flags & UAP_UNROLL))
656 /* We were not asked to, just return back silently. */
657 return;
660 if (dump_file)
661 fprintf (dump_file,
662 "\n;; Considering unrolling loop with runtime "
663 "computable number of iterations\n");
665 /* nunroll = total number of copies of the original loop body in
666 unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
667 nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
668 nunroll_by_av = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
669 if (nunroll > nunroll_by_av)
670 nunroll = nunroll_by_av;
671 if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
672 nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
674 if (targetm.loop_unroll_adjust)
675 nunroll = targetm.loop_unroll_adjust (nunroll, loop);
677 /* Skip big loops. */
678 if (nunroll <= 1)
680 if (dump_file)
681 fprintf (dump_file, ";; Not considering loop, is too big\n");
682 return;
685 /* Check for simple loops. */
686 desc = get_simple_loop_desc (loop);
688 /* Check simpleness. */
689 if (!desc->simple_p || desc->assumptions)
691 if (dump_file)
692 fprintf (dump_file,
693 ";; Unable to prove that the number of iterations "
694 "can be counted in runtime\n");
695 return;
698 if (desc->const_iter)
700 if (dump_file)
701 fprintf (dump_file, ";; Loop iterates constant times\n");
702 return;
705 /* Check whether the loop rolls. */
706 if ((get_estimated_loop_iterations (loop, &iterations)
707 || get_likely_max_loop_iterations (loop, &iterations))
708 && wi::ltu_p (iterations, 2 * nunroll))
710 if (dump_file)
711 fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
712 return;
715 /* Success; now force nunroll to be power of 2, as we are unable to
716 cope with overflows in computation of number of iterations. */
717 for (i = 1; 2 * i <= nunroll; i *= 2)
718 continue;
720 loop->lpt_decision.decision = LPT_UNROLL_RUNTIME;
721 loop->lpt_decision.times = i - 1;
724 /* Splits edge E and inserts the sequence of instructions INSNS on it, and
725 returns the newly created block. If INSNS is NULL_RTX, nothing is changed
726 and NULL is returned instead. */
728 basic_block
729 split_edge_and_insert (edge e, rtx_insn *insns)
731 basic_block bb;
733 if (!insns)
734 return NULL;
735 bb = split_edge (e);
736 emit_insn_after (insns, BB_END (bb));
738 /* ??? We used to assume that INSNS can contain control flow insns, and
739 that we had to try to find sub basic blocks in BB to maintain a valid
740 CFG. For this purpose we used to set the BB_SUPERBLOCK flag on BB
741 and call break_superblocks when going out of cfglayout mode. But it
742 turns out that this never happens; and that if it does ever happen,
743 the verify_flow_info at the end of the RTL loop passes would fail.
745 There are two reasons why we expected we could have control flow insns
746 in INSNS. The first is when a comparison has to be done in parts, and
747 the second is when the number of iterations is computed for loops with
748 the number of iterations known at runtime. In both cases, test cases
749 to get control flow in INSNS appear to be impossible to construct:
751 * If do_compare_rtx_and_jump needs several branches to do comparison
752 in a mode that needs comparison by parts, we cannot analyze the
753 number of iterations of the loop, and we never get to unrolling it.
755 * The code in expand_divmod that was suspected to cause creation of
756 branching code seems to be only accessed for signed division. The
757 divisions used by # of iterations analysis are always unsigned.
758 Problems might arise on architectures that emits branching code
759 for some operations that may appear in the unroller (especially
760 for division), but we have no such architectures.
762 Considering all this, it was decided that we should for now assume
763 that INSNS can in theory contain control flow insns, but in practice
764 it never does. So we don't handle the theoretical case, and should
765 a real failure ever show up, we have a pretty good clue for how to
766 fix it. */
768 return bb;
771 /* Prepare a sequence comparing OP0 with OP1 using COMP and jumping to LABEL if
772 true, with probability PROB. If CINSN is not NULL, it is the insn to copy
773 in order to create a jump. */
775 static rtx_insn *
776 compare_and_jump_seq (rtx op0, rtx op1, enum rtx_code comp,
777 rtx_code_label *label, profile_probability prob,
778 rtx_insn *cinsn)
780 rtx_insn *seq;
781 rtx_jump_insn *jump;
782 rtx cond;
783 machine_mode mode;
785 mode = GET_MODE (op0);
786 if (mode == VOIDmode)
787 mode = GET_MODE (op1);
789 start_sequence ();
790 if (GET_MODE_CLASS (mode) == MODE_CC)
792 /* A hack -- there seems to be no easy generic way how to make a
793 conditional jump from a ccmode comparison. */
794 gcc_assert (cinsn);
795 cond = XEXP (SET_SRC (pc_set (cinsn)), 0);
796 gcc_assert (GET_CODE (cond) == comp);
797 gcc_assert (rtx_equal_p (op0, XEXP (cond, 0)));
798 gcc_assert (rtx_equal_p (op1, XEXP (cond, 1)));
799 emit_jump_insn (copy_insn (PATTERN (cinsn)));
800 jump = as_a <rtx_jump_insn *> (get_last_insn ());
801 JUMP_LABEL (jump) = JUMP_LABEL (cinsn);
802 LABEL_NUSES (JUMP_LABEL (jump))++;
803 redirect_jump (jump, label, 0);
805 else
807 gcc_assert (!cinsn);
809 op0 = force_operand (op0, NULL_RTX);
810 op1 = force_operand (op1, NULL_RTX);
811 do_compare_rtx_and_jump (op0, op1, comp, 0,
812 mode, NULL_RTX, NULL, label,
813 profile_probability::uninitialized ());
814 jump = as_a <rtx_jump_insn *> (get_last_insn ());
815 jump->set_jump_target (label);
816 LABEL_NUSES (label)++;
818 if (prob.initialized_p ())
819 add_reg_br_prob_note (jump, prob);
821 seq = get_insns ();
822 end_sequence ();
824 return seq;
827 /* Unroll LOOP for which we are able to count number of iterations in runtime
828 LOOP->LPT_DECISION.TIMES times. The transformation does this (with some
829 extra care for case n < 0):
831 for (i = 0; i < n; i++)
832 body;
834 ==> (LOOP->LPT_DECISION.TIMES == 3)
836 i = 0;
837 mod = n % 4;
839 switch (mod)
841 case 3:
842 body; i++;
843 case 2:
844 body; i++;
845 case 1:
846 body; i++;
847 case 0: ;
850 while (i < n)
852 body; i++;
853 body; i++;
854 body; i++;
855 body; i++;
858 static void
859 unroll_loop_runtime_iterations (struct loop *loop)
861 rtx old_niter, niter, tmp;
862 rtx_insn *init_code, *branch_code;
863 unsigned i, j;
864 profile_probability p;
865 basic_block preheader, *body, swtch, ezc_swtch = NULL;
866 int may_exit_copy, iter_freq, new_freq;
867 profile_count iter_count, new_count;
868 unsigned n_peel;
869 edge e;
870 bool extra_zero_check, last_may_exit;
871 unsigned max_unroll = loop->lpt_decision.times;
872 struct niter_desc *desc = get_simple_loop_desc (loop);
873 bool exit_at_end = loop_exit_at_end_p (loop);
874 struct opt_info *opt_info = NULL;
875 bool ok;
877 if (flag_split_ivs_in_unroller
878 || flag_variable_expansion_in_unroller)
879 opt_info = analyze_insns_in_loop (loop);
881 /* Remember blocks whose dominators will have to be updated. */
882 auto_vec<basic_block> dom_bbs;
884 body = get_loop_body (loop);
885 for (i = 0; i < loop->num_nodes; i++)
887 vec<basic_block> ldom;
888 basic_block bb;
890 ldom = get_dominated_by (CDI_DOMINATORS, body[i]);
891 FOR_EACH_VEC_ELT (ldom, j, bb)
892 if (!flow_bb_inside_loop_p (loop, bb))
893 dom_bbs.safe_push (bb);
895 ldom.release ();
897 free (body);
899 if (!exit_at_end)
901 /* Leave exit in first copy (for explanation why see comment in
902 unroll_loop_constant_iterations). */
903 may_exit_copy = 0;
904 n_peel = max_unroll - 1;
905 extra_zero_check = true;
906 last_may_exit = false;
908 else
910 /* Leave exit in last copy (for explanation why see comment in
911 unroll_loop_constant_iterations). */
912 may_exit_copy = max_unroll;
913 n_peel = max_unroll;
914 extra_zero_check = false;
915 last_may_exit = true;
918 /* Get expression for number of iterations. */
919 start_sequence ();
920 old_niter = niter = gen_reg_rtx (desc->mode);
921 tmp = force_operand (copy_rtx (desc->niter_expr), niter);
922 if (tmp != niter)
923 emit_move_insn (niter, tmp);
925 /* For loops that exit at end and whose number of iterations is reliable,
926 add one to niter to account for first pass through loop body before
927 reaching exit test. */
928 if (exit_at_end && !desc->noloop_assumptions)
930 niter = expand_simple_binop (desc->mode, PLUS,
931 niter, const1_rtx,
932 NULL_RTX, 0, OPTAB_LIB_WIDEN);
933 old_niter = niter;
936 /* Count modulo by ANDing it with max_unroll; we use the fact that
937 the number of unrollings is a power of two, and thus this is correct
938 even if there is overflow in the computation. */
939 niter = expand_simple_binop (desc->mode, AND,
940 niter, gen_int_mode (max_unroll, desc->mode),
941 NULL_RTX, 0, OPTAB_LIB_WIDEN);
943 init_code = get_insns ();
944 end_sequence ();
945 unshare_all_rtl_in_chain (init_code);
947 /* Precondition the loop. */
948 split_edge_and_insert (loop_preheader_edge (loop), init_code);
950 auto_vec<edge> remove_edges;
952 auto_sbitmap wont_exit (max_unroll + 2);
954 if (extra_zero_check || desc->noloop_assumptions)
956 /* Peel the first copy of loop body. Leave the exit test if the number
957 of iterations is not reliable. Also record the place of the extra zero
958 check. */
959 bitmap_clear (wont_exit);
960 if (!desc->noloop_assumptions)
961 bitmap_set_bit (wont_exit, 1);
962 ezc_swtch = loop_preheader_edge (loop)->src;
963 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
964 1, wont_exit, desc->out_edge,
965 &remove_edges,
966 DLTHE_FLAG_UPDATE_FREQ);
967 gcc_assert (ok);
970 /* Record the place where switch will be built for preconditioning. */
971 swtch = split_edge (loop_preheader_edge (loop));
973 /* Compute frequency/count increments for each switch block and initialize
974 innermost switch block. Switch blocks and peeled loop copies are built
975 from innermost outward. */
976 iter_freq = new_freq = swtch->frequency / (max_unroll + 1);
977 iter_count = new_count = swtch->count.apply_scale (1, max_unroll + 1);
978 swtch->frequency = new_freq;
979 swtch->count = new_count;
981 for (i = 0; i < n_peel; i++)
983 /* Peel the copy. */
984 bitmap_clear (wont_exit);
985 if (i != n_peel - 1 || !last_may_exit)
986 bitmap_set_bit (wont_exit, 1);
987 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
988 1, wont_exit, desc->out_edge,
989 &remove_edges,
990 DLTHE_FLAG_UPDATE_FREQ);
991 gcc_assert (ok);
993 /* Create item for switch. */
994 j = n_peel - i - (extra_zero_check ? 0 : 1);
995 p = profile_probability::always ().apply_scale (1, i + 2);
997 preheader = split_edge (loop_preheader_edge (loop));
998 /* Add in frequency/count of edge from switch block. */
999 preheader->frequency += iter_freq;
1000 preheader->count += iter_count;
1001 branch_code = compare_and_jump_seq (copy_rtx (niter), GEN_INT (j), EQ,
1002 block_label (preheader), p,
1003 NULL);
1005 /* We rely on the fact that the compare and jump cannot be optimized out,
1006 and hence the cfg we create is correct. */
1007 gcc_assert (branch_code != NULL_RTX);
1009 swtch = split_edge_and_insert (single_pred_edge (swtch), branch_code);
1010 set_immediate_dominator (CDI_DOMINATORS, preheader, swtch);
1011 single_succ_edge (swtch)->probability = p.invert ();
1012 new_freq += iter_freq;
1013 new_count += iter_count;
1014 swtch->frequency = new_freq;
1015 swtch->count = new_count;
1016 e = make_edge (swtch, preheader,
1017 single_succ_edge (swtch)->flags & EDGE_IRREDUCIBLE_LOOP);
1018 e->probability = p;
1021 if (extra_zero_check)
1023 /* Add branch for zero iterations. */
1024 p = profile_probability::always ().apply_scale (1, max_unroll + 1);
1025 swtch = ezc_swtch;
1026 preheader = split_edge (loop_preheader_edge (loop));
1027 /* Recompute frequency/count adjustments since initial peel copy may
1028 have exited and reduced those values that were computed above. */
1029 iter_freq = swtch->frequency / (max_unroll + 1);
1030 iter_count = swtch->count.apply_scale (1, max_unroll + 1);
1031 /* Add in frequency/count of edge from switch block. */
1032 preheader->frequency += iter_freq;
1033 preheader->count += iter_count;
1034 branch_code = compare_and_jump_seq (copy_rtx (niter), const0_rtx, EQ,
1035 block_label (preheader), p,
1036 NULL);
1037 gcc_assert (branch_code != NULL_RTX);
1039 swtch = split_edge_and_insert (single_succ_edge (swtch), branch_code);
1040 set_immediate_dominator (CDI_DOMINATORS, preheader, swtch);
1041 single_succ_edge (swtch)->probability = p.invert ();
1042 e = make_edge (swtch, preheader,
1043 single_succ_edge (swtch)->flags & EDGE_IRREDUCIBLE_LOOP);
1044 e->probability = p;
1047 /* Recount dominators for outer blocks. */
1048 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false);
1050 /* And unroll loop. */
1052 bitmap_ones (wont_exit);
1053 bitmap_clear_bit (wont_exit, may_exit_copy);
1054 opt_info_start_duplication (opt_info);
1056 ok = duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
1057 max_unroll,
1058 wont_exit, desc->out_edge,
1059 &remove_edges,
1060 DLTHE_FLAG_UPDATE_FREQ
1061 | (opt_info
1062 ? DLTHE_RECORD_COPY_NUMBER
1063 : 0));
1064 gcc_assert (ok);
1066 if (opt_info)
1068 apply_opt_in_copies (opt_info, max_unroll, true, true);
1069 free_opt_info (opt_info);
1072 if (exit_at_end)
1074 basic_block exit_block = get_bb_copy (desc->in_edge->src);
1075 /* Find a new in and out edge; they are in the last copy we have
1076 made. */
1078 if (EDGE_SUCC (exit_block, 0)->dest == desc->out_edge->dest)
1080 desc->out_edge = EDGE_SUCC (exit_block, 0);
1081 desc->in_edge = EDGE_SUCC (exit_block, 1);
1083 else
1085 desc->out_edge = EDGE_SUCC (exit_block, 1);
1086 desc->in_edge = EDGE_SUCC (exit_block, 0);
1090 /* Remove the edges. */
1091 FOR_EACH_VEC_ELT (remove_edges, i, e)
1092 remove_path (e);
1094 /* We must be careful when updating the number of iterations due to
1095 preconditioning and the fact that the value must be valid at entry
1096 of the loop. After passing through the above code, we see that
1097 the correct new number of iterations is this: */
1098 gcc_assert (!desc->const_iter);
1099 desc->niter_expr =
1100 simplify_gen_binary (UDIV, desc->mode, old_niter,
1101 gen_int_mode (max_unroll + 1, desc->mode));
1102 loop->nb_iterations_upper_bound
1103 = wi::udiv_trunc (loop->nb_iterations_upper_bound, max_unroll + 1);
1104 if (loop->any_estimate)
1105 loop->nb_iterations_estimate
1106 = wi::udiv_trunc (loop->nb_iterations_estimate, max_unroll + 1);
1107 if (loop->any_likely_upper_bound)
1108 loop->nb_iterations_likely_upper_bound
1109 = wi::udiv_trunc (loop->nb_iterations_likely_upper_bound, max_unroll + 1);
1110 if (exit_at_end)
1112 desc->niter_expr =
1113 simplify_gen_binary (MINUS, desc->mode, desc->niter_expr, const1_rtx);
1114 desc->noloop_assumptions = NULL_RTX;
1115 --loop->nb_iterations_upper_bound;
1116 if (loop->any_estimate
1117 && loop->nb_iterations_estimate != 0)
1118 --loop->nb_iterations_estimate;
1119 else
1120 loop->any_estimate = false;
1121 if (loop->any_likely_upper_bound
1122 && loop->nb_iterations_likely_upper_bound != 0)
1123 --loop->nb_iterations_likely_upper_bound;
1124 else
1125 loop->any_likely_upper_bound = false;
1128 if (dump_file)
1129 fprintf (dump_file,
1130 ";; Unrolled loop %d times, counting # of iterations "
1131 "in runtime, %i insns\n",
1132 max_unroll, num_loop_insns (loop));
1135 /* Decide whether to unroll LOOP stupidly and how much. */
1136 static void
1137 decide_unroll_stupid (struct loop *loop, int flags)
1139 unsigned nunroll, nunroll_by_av, i;
1140 struct niter_desc *desc;
1141 widest_int iterations;
1143 if (!(flags & UAP_UNROLL_ALL))
1145 /* We were not asked to, just return back silently. */
1146 return;
1149 if (dump_file)
1150 fprintf (dump_file, "\n;; Considering unrolling loop stupidly\n");
1152 /* nunroll = total number of copies of the original loop body in
1153 unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
1154 nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
1155 nunroll_by_av
1156 = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
1157 if (nunroll > nunroll_by_av)
1158 nunroll = nunroll_by_av;
1159 if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
1160 nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
1162 if (targetm.loop_unroll_adjust)
1163 nunroll = targetm.loop_unroll_adjust (nunroll, loop);
1165 /* Skip big loops. */
1166 if (nunroll <= 1)
1168 if (dump_file)
1169 fprintf (dump_file, ";; Not considering loop, is too big\n");
1170 return;
1173 /* Check for simple loops. */
1174 desc = get_simple_loop_desc (loop);
1176 /* Check simpleness. */
1177 if (desc->simple_p && !desc->assumptions)
1179 if (dump_file)
1180 fprintf (dump_file, ";; The loop is simple\n");
1181 return;
1184 /* Do not unroll loops with branches inside -- it increases number
1185 of mispredicts.
1186 TODO: this heuristic needs tunning; call inside the loop body
1187 is also relatively good reason to not unroll. */
1188 if (num_loop_branches (loop) > 1)
1190 if (dump_file)
1191 fprintf (dump_file, ";; Not unrolling, contains branches\n");
1192 return;
1195 /* Check whether the loop rolls. */
1196 if ((get_estimated_loop_iterations (loop, &iterations)
1197 || get_likely_max_loop_iterations (loop, &iterations))
1198 && wi::ltu_p (iterations, 2 * nunroll))
1200 if (dump_file)
1201 fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
1202 return;
1205 /* Success. Now force nunroll to be power of 2, as it seems that this
1206 improves results (partially because of better alignments, partially
1207 because of some dark magic). */
1208 for (i = 1; 2 * i <= nunroll; i *= 2)
1209 continue;
1211 loop->lpt_decision.decision = LPT_UNROLL_STUPID;
1212 loop->lpt_decision.times = i - 1;
1215 /* Unroll a LOOP LOOP->LPT_DECISION.TIMES times. The transformation does this:
1217 while (cond)
1218 body;
1220 ==> (LOOP->LPT_DECISION.TIMES == 3)
1222 while (cond)
1224 body;
1225 if (!cond) break;
1226 body;
1227 if (!cond) break;
1228 body;
1229 if (!cond) break;
1230 body;
1233 static void
1234 unroll_loop_stupid (struct loop *loop)
1236 unsigned nunroll = loop->lpt_decision.times;
1237 struct niter_desc *desc = get_simple_loop_desc (loop);
1238 struct opt_info *opt_info = NULL;
1239 bool ok;
1241 if (flag_split_ivs_in_unroller
1242 || flag_variable_expansion_in_unroller)
1243 opt_info = analyze_insns_in_loop (loop);
1245 auto_sbitmap wont_exit (nunroll + 1);
1246 bitmap_clear (wont_exit);
1247 opt_info_start_duplication (opt_info);
1249 ok = duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
1250 nunroll, wont_exit,
1251 NULL, NULL,
1252 DLTHE_FLAG_UPDATE_FREQ
1253 | (opt_info
1254 ? DLTHE_RECORD_COPY_NUMBER
1255 : 0));
1256 gcc_assert (ok);
1258 if (opt_info)
1260 apply_opt_in_copies (opt_info, nunroll, true, true);
1261 free_opt_info (opt_info);
1264 if (desc->simple_p)
1266 /* We indeed may get here provided that there are nontrivial assumptions
1267 for a loop to be really simple. We could update the counts, but the
1268 problem is that we are unable to decide which exit will be taken
1269 (not really true in case the number of iterations is constant,
1270 but no one will do anything with this information, so we do not
1271 worry about it). */
1272 desc->simple_p = false;
1275 if (dump_file)
1276 fprintf (dump_file, ";; Unrolled loop %d times, %i insns\n",
1277 nunroll, num_loop_insns (loop));
1280 /* Returns true if REG is referenced in one nondebug insn in LOOP.
1281 Set *DEBUG_USES to the number of debug insns that reference the
1282 variable. */
1284 static bool
1285 referenced_in_one_insn_in_loop_p (struct loop *loop, rtx reg,
1286 int *debug_uses)
1288 basic_block *body, bb;
1289 unsigned i;
1290 int count_ref = 0;
1291 rtx_insn *insn;
1293 body = get_loop_body (loop);
1294 for (i = 0; i < loop->num_nodes; i++)
1296 bb = body[i];
1298 FOR_BB_INSNS (bb, insn)
1299 if (!rtx_referenced_p (reg, insn))
1300 continue;
1301 else if (DEBUG_INSN_P (insn))
1302 ++*debug_uses;
1303 else if (++count_ref > 1)
1304 break;
1306 free (body);
1307 return (count_ref == 1);
1310 /* Reset the DEBUG_USES debug insns in LOOP that reference REG. */
1312 static void
1313 reset_debug_uses_in_loop (struct loop *loop, rtx reg, int debug_uses)
1315 basic_block *body, bb;
1316 unsigned i;
1317 rtx_insn *insn;
1319 body = get_loop_body (loop);
1320 for (i = 0; debug_uses && i < loop->num_nodes; i++)
1322 bb = body[i];
1324 FOR_BB_INSNS (bb, insn)
1325 if (!DEBUG_INSN_P (insn) || !rtx_referenced_p (reg, insn))
1326 continue;
1327 else
1329 validate_change (insn, &INSN_VAR_LOCATION_LOC (insn),
1330 gen_rtx_UNKNOWN_VAR_LOC (), 0);
1331 if (!--debug_uses)
1332 break;
1335 free (body);
1338 /* Determine whether INSN contains an accumulator
1339 which can be expanded into separate copies,
1340 one for each copy of the LOOP body.
1342 for (i = 0 ; i < n; i++)
1343 sum += a[i];
1347 sum += a[i]
1348 ....
1349 i = i+1;
1350 sum1 += a[i]
1351 ....
1352 i = i+1
1353 sum2 += a[i];
1354 ....
1356 Return NULL if INSN contains no opportunity for expansion of accumulator.
1357 Otherwise, allocate a VAR_TO_EXPAND structure, fill it with the relevant
1358 information and return a pointer to it.
1361 static struct var_to_expand *
1362 analyze_insn_to_expand_var (struct loop *loop, rtx_insn *insn)
1364 rtx set, dest, src;
1365 struct var_to_expand *ves;
1366 unsigned accum_pos;
1367 enum rtx_code code;
1368 int debug_uses = 0;
1370 set = single_set (insn);
1371 if (!set)
1372 return NULL;
1374 dest = SET_DEST (set);
1375 src = SET_SRC (set);
1376 code = GET_CODE (src);
1378 if (code != PLUS && code != MINUS && code != MULT && code != FMA)
1379 return NULL;
1381 if (FLOAT_MODE_P (GET_MODE (dest)))
1383 if (!flag_associative_math)
1384 return NULL;
1385 /* In the case of FMA, we're also changing the rounding. */
1386 if (code == FMA && !flag_unsafe_math_optimizations)
1387 return NULL;
1390 /* Hmm, this is a bit paradoxical. We know that INSN is a valid insn
1391 in MD. But if there is no optab to generate the insn, we can not
1392 perform the variable expansion. This can happen if an MD provides
1393 an insn but not a named pattern to generate it, for example to avoid
1394 producing code that needs additional mode switches like for x87/mmx.
1396 So we check have_insn_for which looks for an optab for the operation
1397 in SRC. If it doesn't exist, we can't perform the expansion even
1398 though INSN is valid. */
1399 if (!have_insn_for (code, GET_MODE (src)))
1400 return NULL;
1402 if (!REG_P (dest)
1403 && !(GET_CODE (dest) == SUBREG
1404 && REG_P (SUBREG_REG (dest))))
1405 return NULL;
1407 /* Find the accumulator use within the operation. */
1408 if (code == FMA)
1410 /* We only support accumulation via FMA in the ADD position. */
1411 if (!rtx_equal_p (dest, XEXP (src, 2)))
1412 return NULL;
1413 accum_pos = 2;
1415 else if (rtx_equal_p (dest, XEXP (src, 0)))
1416 accum_pos = 0;
1417 else if (rtx_equal_p (dest, XEXP (src, 1)))
1419 /* The method of expansion that we are using; which includes the
1420 initialization of the expansions with zero and the summation of
1421 the expansions at the end of the computation will yield wrong
1422 results for (x = something - x) thus avoid using it in that case. */
1423 if (code == MINUS)
1424 return NULL;
1425 accum_pos = 1;
1427 else
1428 return NULL;
1430 /* It must not otherwise be used. */
1431 if (code == FMA)
1433 if (rtx_referenced_p (dest, XEXP (src, 0))
1434 || rtx_referenced_p (dest, XEXP (src, 1)))
1435 return NULL;
1437 else if (rtx_referenced_p (dest, XEXP (src, 1 - accum_pos)))
1438 return NULL;
1440 /* It must be used in exactly one insn. */
1441 if (!referenced_in_one_insn_in_loop_p (loop, dest, &debug_uses))
1442 return NULL;
1444 if (dump_file)
1446 fprintf (dump_file, "\n;; Expanding Accumulator ");
1447 print_rtl (dump_file, dest);
1448 fprintf (dump_file, "\n");
1451 if (debug_uses)
1452 /* Instead of resetting the debug insns, we could replace each
1453 debug use in the loop with the sum or product of all expanded
1454 accumulators. Since we'll only know of all expansions at the
1455 end, we'd have to keep track of which vars_to_expand a debug
1456 insn in the loop references, take note of each copy of the
1457 debug insn during unrolling, and when it's all done, compute
1458 the sum or product of each variable and adjust the original
1459 debug insn and each copy thereof. What a pain! */
1460 reset_debug_uses_in_loop (loop, dest, debug_uses);
1462 /* Record the accumulator to expand. */
1463 ves = XNEW (struct var_to_expand);
1464 ves->insn = insn;
1465 ves->reg = copy_rtx (dest);
1466 ves->var_expansions.create (1);
1467 ves->next = NULL;
1468 ves->op = GET_CODE (src);
1469 ves->expansion_count = 0;
1470 ves->reuse_expansion = 0;
1471 return ves;
1474 /* Determine whether there is an induction variable in INSN that
1475 we would like to split during unrolling.
1477 I.e. replace
1479 i = i + 1;
1481 i = i + 1;
1483 i = i + 1;
1486 type chains by
1488 i0 = i + 1
1490 i = i0 + 1
1492 i = i0 + 2
1495 Return NULL if INSN contains no interesting IVs. Otherwise, allocate
1496 an IV_TO_SPLIT structure, fill it with the relevant information and return a
1497 pointer to it. */
1499 static struct iv_to_split *
1500 analyze_iv_to_split_insn (rtx_insn *insn)
1502 rtx set, dest;
1503 struct rtx_iv iv;
1504 struct iv_to_split *ivts;
1505 scalar_int_mode mode;
1506 bool ok;
1508 /* For now we just split the basic induction variables. Later this may be
1509 extended for example by selecting also addresses of memory references. */
1510 set = single_set (insn);
1511 if (!set)
1512 return NULL;
1514 dest = SET_DEST (set);
1515 if (!REG_P (dest) || !is_a <scalar_int_mode> (GET_MODE (dest), &mode))
1516 return NULL;
1518 if (!biv_p (insn, mode, dest))
1519 return NULL;
1521 ok = iv_analyze_result (insn, dest, &iv);
1523 /* This used to be an assert under the assumption that if biv_p returns
1524 true that iv_analyze_result must also return true. However, that
1525 assumption is not strictly correct as evidenced by pr25569.
1527 Returning NULL when iv_analyze_result returns false is safe and
1528 avoids the problems in pr25569 until the iv_analyze_* routines
1529 can be fixed, which is apparently hard and time consuming
1530 according to their author. */
1531 if (! ok)
1532 return NULL;
1534 if (iv.step == const0_rtx
1535 || iv.mode != iv.extend_mode)
1536 return NULL;
1538 /* Record the insn to split. */
1539 ivts = XNEW (struct iv_to_split);
1540 ivts->insn = insn;
1541 ivts->orig_var = dest;
1542 ivts->base_var = NULL_RTX;
1543 ivts->step = iv.step;
1544 ivts->next = NULL;
1546 return ivts;
1549 /* Determines which of insns in LOOP can be optimized.
1550 Return a OPT_INFO struct with the relevant hash tables filled
1551 with all insns to be optimized. The FIRST_NEW_BLOCK field
1552 is undefined for the return value. */
1554 static struct opt_info *
1555 analyze_insns_in_loop (struct loop *loop)
1557 basic_block *body, bb;
1558 unsigned i;
1559 struct opt_info *opt_info = XCNEW (struct opt_info);
1560 rtx_insn *insn;
1561 struct iv_to_split *ivts = NULL;
1562 struct var_to_expand *ves = NULL;
1563 iv_to_split **slot1;
1564 var_to_expand **slot2;
1565 vec<edge> edges = get_loop_exit_edges (loop);
1566 edge exit;
1567 bool can_apply = false;
1569 iv_analysis_loop_init (loop);
1571 body = get_loop_body (loop);
1573 if (flag_split_ivs_in_unroller)
1575 opt_info->insns_to_split
1576 = new hash_table<iv_split_hasher> (5 * loop->num_nodes);
1577 opt_info->iv_to_split_head = NULL;
1578 opt_info->iv_to_split_tail = &opt_info->iv_to_split_head;
1581 /* Record the loop exit bb and loop preheader before the unrolling. */
1582 opt_info->loop_preheader = loop_preheader_edge (loop)->src;
1584 if (edges.length () == 1)
1586 exit = edges[0];
1587 if (!(exit->flags & EDGE_COMPLEX))
1589 opt_info->loop_exit = split_edge (exit);
1590 can_apply = true;
1594 if (flag_variable_expansion_in_unroller
1595 && can_apply)
1597 opt_info->insns_with_var_to_expand
1598 = new hash_table<var_expand_hasher> (5 * loop->num_nodes);
1599 opt_info->var_to_expand_head = NULL;
1600 opt_info->var_to_expand_tail = &opt_info->var_to_expand_head;
1603 for (i = 0; i < loop->num_nodes; i++)
1605 bb = body[i];
1606 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
1607 continue;
1609 FOR_BB_INSNS (bb, insn)
1611 if (!INSN_P (insn))
1612 continue;
1614 if (opt_info->insns_to_split)
1615 ivts = analyze_iv_to_split_insn (insn);
1617 if (ivts)
1619 slot1 = opt_info->insns_to_split->find_slot (ivts, INSERT);
1620 gcc_assert (*slot1 == NULL);
1621 *slot1 = ivts;
1622 *opt_info->iv_to_split_tail = ivts;
1623 opt_info->iv_to_split_tail = &ivts->next;
1624 continue;
1627 if (opt_info->insns_with_var_to_expand)
1628 ves = analyze_insn_to_expand_var (loop, insn);
1630 if (ves)
1632 slot2 = opt_info->insns_with_var_to_expand->find_slot (ves, INSERT);
1633 gcc_assert (*slot2 == NULL);
1634 *slot2 = ves;
1635 *opt_info->var_to_expand_tail = ves;
1636 opt_info->var_to_expand_tail = &ves->next;
1641 edges.release ();
1642 free (body);
1643 return opt_info;
1646 /* Called just before loop duplication. Records start of duplicated area
1647 to OPT_INFO. */
1649 static void
1650 opt_info_start_duplication (struct opt_info *opt_info)
1652 if (opt_info)
1653 opt_info->first_new_block = last_basic_block_for_fn (cfun);
1656 /* Determine the number of iterations between initialization of the base
1657 variable and the current copy (N_COPY). N_COPIES is the total number
1658 of newly created copies. UNROLLING is true if we are unrolling
1659 (not peeling) the loop. */
1661 static unsigned
1662 determine_split_iv_delta (unsigned n_copy, unsigned n_copies, bool unrolling)
1664 if (unrolling)
1666 /* If we are unrolling, initialization is done in the original loop
1667 body (number 0). */
1668 return n_copy;
1670 else
1672 /* If we are peeling, the copy in that the initialization occurs has
1673 number 1. The original loop (number 0) is the last. */
1674 if (n_copy)
1675 return n_copy - 1;
1676 else
1677 return n_copies;
1681 /* Allocate basic variable for the induction variable chain. */
1683 static void
1684 allocate_basic_variable (struct iv_to_split *ivts)
1686 rtx expr = SET_SRC (single_set (ivts->insn));
1688 ivts->base_var = gen_reg_rtx (GET_MODE (expr));
1691 /* Insert initialization of basic variable of IVTS before INSN, taking
1692 the initial value from INSN. */
1694 static void
1695 insert_base_initialization (struct iv_to_split *ivts, rtx_insn *insn)
1697 rtx expr = copy_rtx (SET_SRC (single_set (insn)));
1698 rtx_insn *seq;
1700 start_sequence ();
1701 expr = force_operand (expr, ivts->base_var);
1702 if (expr != ivts->base_var)
1703 emit_move_insn (ivts->base_var, expr);
1704 seq = get_insns ();
1705 end_sequence ();
1707 emit_insn_before (seq, insn);
1710 /* Replace the use of induction variable described in IVTS in INSN
1711 by base variable + DELTA * step. */
1713 static void
1714 split_iv (struct iv_to_split *ivts, rtx_insn *insn, unsigned delta)
1716 rtx expr, *loc, incr, var;
1717 rtx_insn *seq;
1718 machine_mode mode = GET_MODE (ivts->base_var);
1719 rtx src, dest, set;
1721 /* Construct base + DELTA * step. */
1722 if (!delta)
1723 expr = ivts->base_var;
1724 else
1726 incr = simplify_gen_binary (MULT, mode,
1727 copy_rtx (ivts->step),
1728 gen_int_mode (delta, mode));
1729 expr = simplify_gen_binary (PLUS, GET_MODE (ivts->base_var),
1730 ivts->base_var, incr);
1733 /* Figure out where to do the replacement. */
1734 loc = &SET_SRC (single_set (insn));
1736 /* If we can make the replacement right away, we're done. */
1737 if (validate_change (insn, loc, expr, 0))
1738 return;
1740 /* Otherwise, force EXPR into a register and try again. */
1741 start_sequence ();
1742 var = gen_reg_rtx (mode);
1743 expr = force_operand (expr, var);
1744 if (expr != var)
1745 emit_move_insn (var, expr);
1746 seq = get_insns ();
1747 end_sequence ();
1748 emit_insn_before (seq, insn);
1750 if (validate_change (insn, loc, var, 0))
1751 return;
1753 /* The last chance. Try recreating the assignment in insn
1754 completely from scratch. */
1755 set = single_set (insn);
1756 gcc_assert (set);
1758 start_sequence ();
1759 *loc = var;
1760 src = copy_rtx (SET_SRC (set));
1761 dest = copy_rtx (SET_DEST (set));
1762 src = force_operand (src, dest);
1763 if (src != dest)
1764 emit_move_insn (dest, src);
1765 seq = get_insns ();
1766 end_sequence ();
1768 emit_insn_before (seq, insn);
1769 delete_insn (insn);
1773 /* Return one expansion of the accumulator recorded in struct VE. */
1775 static rtx
1776 get_expansion (struct var_to_expand *ve)
1778 rtx reg;
1780 if (ve->reuse_expansion == 0)
1781 reg = ve->reg;
1782 else
1783 reg = ve->var_expansions[ve->reuse_expansion - 1];
1785 if (ve->var_expansions.length () == (unsigned) ve->reuse_expansion)
1786 ve->reuse_expansion = 0;
1787 else
1788 ve->reuse_expansion++;
1790 return reg;
1794 /* Given INSN replace the uses of the accumulator recorded in VE
1795 with a new register. */
1797 static void
1798 expand_var_during_unrolling (struct var_to_expand *ve, rtx_insn *insn)
1800 rtx new_reg, set;
1801 bool really_new_expansion = false;
1803 set = single_set (insn);
1804 gcc_assert (set);
1806 /* Generate a new register only if the expansion limit has not been
1807 reached. Else reuse an already existing expansion. */
1808 if (PARAM_VALUE (PARAM_MAX_VARIABLE_EXPANSIONS) > ve->expansion_count)
1810 really_new_expansion = true;
1811 new_reg = gen_reg_rtx (GET_MODE (ve->reg));
1813 else
1814 new_reg = get_expansion (ve);
1816 validate_replace_rtx_group (SET_DEST (set), new_reg, insn);
1817 if (apply_change_group ())
1818 if (really_new_expansion)
1820 ve->var_expansions.safe_push (new_reg);
1821 ve->expansion_count++;
1825 /* Initialize the variable expansions in loop preheader. PLACE is the
1826 loop-preheader basic block where the initialization of the
1827 expansions should take place. The expansions are initialized with
1828 (-0) when the operation is plus or minus to honor sign zero. This
1829 way we can prevent cases where the sign of the final result is
1830 effected by the sign of the expansion. Here is an example to
1831 demonstrate this:
1833 for (i = 0 ; i < n; i++)
1834 sum += something;
1838 sum += something
1839 ....
1840 i = i+1;
1841 sum1 += something
1842 ....
1843 i = i+1
1844 sum2 += something;
1845 ....
1847 When SUM is initialized with -zero and SOMETHING is also -zero; the
1848 final result of sum should be -zero thus the expansions sum1 and sum2
1849 should be initialized with -zero as well (otherwise we will get +zero
1850 as the final result). */
1852 static void
1853 insert_var_expansion_initialization (struct var_to_expand *ve,
1854 basic_block place)
1856 rtx_insn *seq;
1857 rtx var, zero_init;
1858 unsigned i;
1859 machine_mode mode = GET_MODE (ve->reg);
1860 bool honor_signed_zero_p = HONOR_SIGNED_ZEROS (mode);
1862 if (ve->var_expansions.length () == 0)
1863 return;
1865 start_sequence ();
1866 switch (ve->op)
1868 case FMA:
1869 /* Note that we only accumulate FMA via the ADD operand. */
1870 case PLUS:
1871 case MINUS:
1872 FOR_EACH_VEC_ELT (ve->var_expansions, i, var)
1874 if (honor_signed_zero_p)
1875 zero_init = simplify_gen_unary (NEG, mode, CONST0_RTX (mode), mode);
1876 else
1877 zero_init = CONST0_RTX (mode);
1878 emit_move_insn (var, zero_init);
1880 break;
1882 case MULT:
1883 FOR_EACH_VEC_ELT (ve->var_expansions, i, var)
1885 zero_init = CONST1_RTX (GET_MODE (var));
1886 emit_move_insn (var, zero_init);
1888 break;
1890 default:
1891 gcc_unreachable ();
1894 seq = get_insns ();
1895 end_sequence ();
1897 emit_insn_after (seq, BB_END (place));
1900 /* Combine the variable expansions at the loop exit. PLACE is the
1901 loop exit basic block where the summation of the expansions should
1902 take place. */
1904 static void
1905 combine_var_copies_in_loop_exit (struct var_to_expand *ve, basic_block place)
1907 rtx sum = ve->reg;
1908 rtx expr, var;
1909 rtx_insn *seq, *insn;
1910 unsigned i;
1912 if (ve->var_expansions.length () == 0)
1913 return;
1915 /* ve->reg might be SUBREG or some other non-shareable RTL, and we use
1916 it both here and as the destination of the assignment. */
1917 sum = copy_rtx (sum);
1918 start_sequence ();
1919 switch (ve->op)
1921 case FMA:
1922 /* Note that we only accumulate FMA via the ADD operand. */
1923 case PLUS:
1924 case MINUS:
1925 FOR_EACH_VEC_ELT (ve->var_expansions, i, var)
1926 sum = simplify_gen_binary (PLUS, GET_MODE (ve->reg), var, sum);
1927 break;
1929 case MULT:
1930 FOR_EACH_VEC_ELT (ve->var_expansions, i, var)
1931 sum = simplify_gen_binary (MULT, GET_MODE (ve->reg), var, sum);
1932 break;
1934 default:
1935 gcc_unreachable ();
1938 expr = force_operand (sum, ve->reg);
1939 if (expr != ve->reg)
1940 emit_move_insn (ve->reg, expr);
1941 seq = get_insns ();
1942 end_sequence ();
1944 insn = BB_HEAD (place);
1945 while (!NOTE_INSN_BASIC_BLOCK_P (insn))
1946 insn = NEXT_INSN (insn);
1948 emit_insn_after (seq, insn);
1951 /* Strip away REG_EQUAL notes for IVs we're splitting.
1953 Updating REG_EQUAL notes for IVs we split is tricky: We
1954 cannot tell until after unrolling, DF-rescanning, and liveness
1955 updating, whether an EQ_USE is reached by the split IV while
1956 the IV reg is still live. See PR55006.
1958 ??? We cannot use remove_reg_equal_equiv_notes_for_regno,
1959 because RTL loop-iv requires us to defer rescanning insns and
1960 any notes attached to them. So resort to old techniques... */
1962 static void
1963 maybe_strip_eq_note_for_split_iv (struct opt_info *opt_info, rtx_insn *insn)
1965 struct iv_to_split *ivts;
1966 rtx note = find_reg_equal_equiv_note (insn);
1967 if (! note)
1968 return;
1969 for (ivts = opt_info->iv_to_split_head; ivts; ivts = ivts->next)
1970 if (reg_mentioned_p (ivts->orig_var, note))
1972 remove_note (insn, note);
1973 return;
1977 /* Apply loop optimizations in loop copies using the
1978 data which gathered during the unrolling. Structure
1979 OPT_INFO record that data.
1981 UNROLLING is true if we unrolled (not peeled) the loop.
1982 REWRITE_ORIGINAL_BODY is true if we should also rewrite the original body of
1983 the loop (as it should happen in complete unrolling, but not in ordinary
1984 peeling of the loop). */
1986 static void
1987 apply_opt_in_copies (struct opt_info *opt_info,
1988 unsigned n_copies, bool unrolling,
1989 bool rewrite_original_loop)
1991 unsigned i, delta;
1992 basic_block bb, orig_bb;
1993 rtx_insn *insn, *orig_insn, *next;
1994 struct iv_to_split ivts_templ, *ivts;
1995 struct var_to_expand ve_templ, *ves;
1997 /* Sanity check -- we need to put initialization in the original loop
1998 body. */
1999 gcc_assert (!unrolling || rewrite_original_loop);
2001 /* Allocate the basic variables (i0). */
2002 if (opt_info->insns_to_split)
2003 for (ivts = opt_info->iv_to_split_head; ivts; ivts = ivts->next)
2004 allocate_basic_variable (ivts);
2006 for (i = opt_info->first_new_block;
2007 i < (unsigned) last_basic_block_for_fn (cfun);
2008 i++)
2010 bb = BASIC_BLOCK_FOR_FN (cfun, i);
2011 orig_bb = get_bb_original (bb);
2013 /* bb->aux holds position in copy sequence initialized by
2014 duplicate_loop_to_header_edge. */
2015 delta = determine_split_iv_delta ((size_t)bb->aux, n_copies,
2016 unrolling);
2017 bb->aux = 0;
2018 orig_insn = BB_HEAD (orig_bb);
2019 FOR_BB_INSNS_SAFE (bb, insn, next)
2021 if (!INSN_P (insn)
2022 || (DEBUG_INSN_P (insn)
2023 && TREE_CODE (INSN_VAR_LOCATION_DECL (insn)) == LABEL_DECL))
2024 continue;
2026 while (!INSN_P (orig_insn)
2027 || (DEBUG_INSN_P (orig_insn)
2028 && (TREE_CODE (INSN_VAR_LOCATION_DECL (orig_insn))
2029 == LABEL_DECL)))
2030 orig_insn = NEXT_INSN (orig_insn);
2032 ivts_templ.insn = orig_insn;
2033 ve_templ.insn = orig_insn;
2035 /* Apply splitting iv optimization. */
2036 if (opt_info->insns_to_split)
2038 maybe_strip_eq_note_for_split_iv (opt_info, insn);
2040 ivts = opt_info->insns_to_split->find (&ivts_templ);
2042 if (ivts)
2044 gcc_assert (GET_CODE (PATTERN (insn))
2045 == GET_CODE (PATTERN (orig_insn)));
2047 if (!delta)
2048 insert_base_initialization (ivts, insn);
2049 split_iv (ivts, insn, delta);
2052 /* Apply variable expansion optimization. */
2053 if (unrolling && opt_info->insns_with_var_to_expand)
2055 ves = (struct var_to_expand *)
2056 opt_info->insns_with_var_to_expand->find (&ve_templ);
2057 if (ves)
2059 gcc_assert (GET_CODE (PATTERN (insn))
2060 == GET_CODE (PATTERN (orig_insn)));
2061 expand_var_during_unrolling (ves, insn);
2064 orig_insn = NEXT_INSN (orig_insn);
2068 if (!rewrite_original_loop)
2069 return;
2071 /* Initialize the variable expansions in the loop preheader
2072 and take care of combining them at the loop exit. */
2073 if (opt_info->insns_with_var_to_expand)
2075 for (ves = opt_info->var_to_expand_head; ves; ves = ves->next)
2076 insert_var_expansion_initialization (ves, opt_info->loop_preheader);
2077 for (ves = opt_info->var_to_expand_head; ves; ves = ves->next)
2078 combine_var_copies_in_loop_exit (ves, opt_info->loop_exit);
2081 /* Rewrite also the original loop body. Find them as originals of the blocks
2082 in the last copied iteration, i.e. those that have
2083 get_bb_copy (get_bb_original (bb)) == bb. */
2084 for (i = opt_info->first_new_block;
2085 i < (unsigned) last_basic_block_for_fn (cfun);
2086 i++)
2088 bb = BASIC_BLOCK_FOR_FN (cfun, i);
2089 orig_bb = get_bb_original (bb);
2090 if (get_bb_copy (orig_bb) != bb)
2091 continue;
2093 delta = determine_split_iv_delta (0, n_copies, unrolling);
2094 for (orig_insn = BB_HEAD (orig_bb);
2095 orig_insn != NEXT_INSN (BB_END (bb));
2096 orig_insn = next)
2098 next = NEXT_INSN (orig_insn);
2100 if (!INSN_P (orig_insn))
2101 continue;
2103 ivts_templ.insn = orig_insn;
2104 if (opt_info->insns_to_split)
2106 maybe_strip_eq_note_for_split_iv (opt_info, orig_insn);
2108 ivts = (struct iv_to_split *)
2109 opt_info->insns_to_split->find (&ivts_templ);
2110 if (ivts)
2112 if (!delta)
2113 insert_base_initialization (ivts, orig_insn);
2114 split_iv (ivts, orig_insn, delta);
2115 continue;
2123 /* Release OPT_INFO. */
2125 static void
2126 free_opt_info (struct opt_info *opt_info)
2128 delete opt_info->insns_to_split;
2129 opt_info->insns_to_split = NULL;
2130 if (opt_info->insns_with_var_to_expand)
2132 struct var_to_expand *ves;
2134 for (ves = opt_info->var_to_expand_head; ves; ves = ves->next)
2135 ves->var_expansions.release ();
2136 delete opt_info->insns_with_var_to_expand;
2137 opt_info->insns_with_var_to_expand = NULL;
2139 free (opt_info);