* download_ecj: Remove.
[official-gcc.git] / gcc / tree-loop-distribution.c
bloba38cf7e752b05dc4ce16886c95f0eab5ed973b2c
1 /* Loop distribution.
2 Copyright (C) 2006-2017 Free Software Foundation, Inc.
3 Contributed by Georges-Andre Silber <Georges-Andre.Silber@ensmp.fr>
4 and Sebastian Pop <sebastian.pop@amd.com>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published by the
10 Free Software Foundation; either version 3, or (at your option) any
11 later version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This pass performs loop distribution: for example, the loop
24 |DO I = 2, N
25 | A(I) = B(I) + C
26 | D(I) = A(I-1)*E
27 |ENDDO
29 is transformed to
31 |DOALL I = 2, N
32 | A(I) = B(I) + C
33 |ENDDO
35 |DOALL I = 2, N
36 | D(I) = A(I-1)*E
37 |ENDDO
39 This pass uses an RDG, Reduced Dependence Graph built on top of the
40 data dependence relations. The RDG is then topologically sorted to
41 obtain a map of information producers/consumers based on which it
42 generates the new loops. */
44 #include "config.h"
45 #include "system.h"
46 #include "coretypes.h"
47 #include "backend.h"
48 #include "tree.h"
49 #include "gimple.h"
50 #include "cfghooks.h"
51 #include "tree-pass.h"
52 #include "ssa.h"
53 #include "gimple-pretty-print.h"
54 #include "fold-const.h"
55 #include "cfganal.h"
56 #include "gimple-iterator.h"
57 #include "gimplify-me.h"
58 #include "stor-layout.h"
59 #include "tree-cfg.h"
60 #include "tree-ssa-loop-manip.h"
61 #include "tree-ssa-loop.h"
62 #include "tree-into-ssa.h"
63 #include "tree-ssa.h"
64 #include "cfgloop.h"
65 #include "tree-scalar-evolution.h"
66 #include "tree-vectorizer.h"
69 /* A Reduced Dependence Graph (RDG) vertex representing a statement. */
70 struct rdg_vertex
72 /* The statement represented by this vertex. */
73 gimple *stmt;
75 /* Vector of data-references in this statement. */
76 vec<data_reference_p> datarefs;
78 /* True when the statement contains a write to memory. */
79 bool has_mem_write;
81 /* True when the statement contains a read from memory. */
82 bool has_mem_reads;
85 #define RDGV_STMT(V) ((struct rdg_vertex *) ((V)->data))->stmt
86 #define RDGV_DATAREFS(V) ((struct rdg_vertex *) ((V)->data))->datarefs
87 #define RDGV_HAS_MEM_WRITE(V) ((struct rdg_vertex *) ((V)->data))->has_mem_write
88 #define RDGV_HAS_MEM_READS(V) ((struct rdg_vertex *) ((V)->data))->has_mem_reads
89 #define RDG_STMT(RDG, I) RDGV_STMT (&(RDG->vertices[I]))
90 #define RDG_DATAREFS(RDG, I) RDGV_DATAREFS (&(RDG->vertices[I]))
91 #define RDG_MEM_WRITE_STMT(RDG, I) RDGV_HAS_MEM_WRITE (&(RDG->vertices[I]))
92 #define RDG_MEM_READS_STMT(RDG, I) RDGV_HAS_MEM_READS (&(RDG->vertices[I]))
94 /* Data dependence type. */
96 enum rdg_dep_type
98 /* Read After Write (RAW). */
99 flow_dd = 'f',
101 /* Control dependence (execute conditional on). */
102 control_dd = 'c'
105 /* Dependence information attached to an edge of the RDG. */
107 struct rdg_edge
109 /* Type of the dependence. */
110 enum rdg_dep_type type;
113 #define RDGE_TYPE(E) ((struct rdg_edge *) ((E)->data))->type
115 /* Dump vertex I in RDG to FILE. */
117 static void
118 dump_rdg_vertex (FILE *file, struct graph *rdg, int i)
120 struct vertex *v = &(rdg->vertices[i]);
121 struct graph_edge *e;
123 fprintf (file, "(vertex %d: (%s%s) (in:", i,
124 RDG_MEM_WRITE_STMT (rdg, i) ? "w" : "",
125 RDG_MEM_READS_STMT (rdg, i) ? "r" : "");
127 if (v->pred)
128 for (e = v->pred; e; e = e->pred_next)
129 fprintf (file, " %d", e->src);
131 fprintf (file, ") (out:");
133 if (v->succ)
134 for (e = v->succ; e; e = e->succ_next)
135 fprintf (file, " %d", e->dest);
137 fprintf (file, ")\n");
138 print_gimple_stmt (file, RDGV_STMT (v), 0, TDF_VOPS|TDF_MEMSYMS);
139 fprintf (file, ")\n");
142 /* Call dump_rdg_vertex on stderr. */
144 DEBUG_FUNCTION void
145 debug_rdg_vertex (struct graph *rdg, int i)
147 dump_rdg_vertex (stderr, rdg, i);
150 /* Dump the reduced dependence graph RDG to FILE. */
152 static void
153 dump_rdg (FILE *file, struct graph *rdg)
155 fprintf (file, "(rdg\n");
156 for (int i = 0; i < rdg->n_vertices; i++)
157 dump_rdg_vertex (file, rdg, i);
158 fprintf (file, ")\n");
161 /* Call dump_rdg on stderr. */
163 DEBUG_FUNCTION void
164 debug_rdg (struct graph *rdg)
166 dump_rdg (stderr, rdg);
169 static void
170 dot_rdg_1 (FILE *file, struct graph *rdg)
172 int i;
173 pretty_printer buffer;
174 pp_needs_newline (&buffer) = false;
175 buffer.buffer->stream = file;
177 fprintf (file, "digraph RDG {\n");
179 for (i = 0; i < rdg->n_vertices; i++)
181 struct vertex *v = &(rdg->vertices[i]);
182 struct graph_edge *e;
184 fprintf (file, "%d [label=\"[%d] ", i, i);
185 pp_gimple_stmt_1 (&buffer, RDGV_STMT (v), 0, TDF_SLIM);
186 pp_flush (&buffer);
187 fprintf (file, "\"]\n");
189 /* Highlight reads from memory. */
190 if (RDG_MEM_READS_STMT (rdg, i))
191 fprintf (file, "%d [style=filled, fillcolor=green]\n", i);
193 /* Highlight stores to memory. */
194 if (RDG_MEM_WRITE_STMT (rdg, i))
195 fprintf (file, "%d [style=filled, fillcolor=red]\n", i);
197 if (v->succ)
198 for (e = v->succ; e; e = e->succ_next)
199 switch (RDGE_TYPE (e))
201 case flow_dd:
202 /* These are the most common dependences: don't print these. */
203 fprintf (file, "%d -> %d \n", i, e->dest);
204 break;
206 case control_dd:
207 fprintf (file, "%d -> %d [label=control] \n", i, e->dest);
208 break;
210 default:
211 gcc_unreachable ();
215 fprintf (file, "}\n\n");
218 /* Display the Reduced Dependence Graph using dotty. */
220 DEBUG_FUNCTION void
221 dot_rdg (struct graph *rdg)
223 /* When debugging, you may want to enable the following code. */
224 #ifdef HAVE_POPEN
225 FILE *file = popen ("dot -Tx11", "w");
226 if (!file)
227 return;
228 dot_rdg_1 (file, rdg);
229 fflush (file);
230 close (fileno (file));
231 pclose (file);
232 #else
233 dot_rdg_1 (stderr, rdg);
234 #endif
237 /* Returns the index of STMT in RDG. */
239 static int
240 rdg_vertex_for_stmt (struct graph *rdg ATTRIBUTE_UNUSED, gimple *stmt)
242 int index = gimple_uid (stmt);
243 gcc_checking_assert (index == -1 || RDG_STMT (rdg, index) == stmt);
244 return index;
247 /* Creates dependence edges in RDG for all the uses of DEF. IDEF is
248 the index of DEF in RDG. */
250 static void
251 create_rdg_edges_for_scalar (struct graph *rdg, tree def, int idef)
253 use_operand_p imm_use_p;
254 imm_use_iterator iterator;
256 FOR_EACH_IMM_USE_FAST (imm_use_p, iterator, def)
258 struct graph_edge *e;
259 int use = rdg_vertex_for_stmt (rdg, USE_STMT (imm_use_p));
261 if (use < 0)
262 continue;
264 e = add_edge (rdg, idef, use);
265 e->data = XNEW (struct rdg_edge);
266 RDGE_TYPE (e) = flow_dd;
270 /* Creates an edge for the control dependences of BB to the vertex V. */
272 static void
273 create_edge_for_control_dependence (struct graph *rdg, basic_block bb,
274 int v, control_dependences *cd)
276 bitmap_iterator bi;
277 unsigned edge_n;
278 EXECUTE_IF_SET_IN_BITMAP (cd->get_edges_dependent_on (bb->index),
279 0, edge_n, bi)
281 basic_block cond_bb = cd->get_edge_src (edge_n);
282 gimple *stmt = last_stmt (cond_bb);
283 if (stmt && is_ctrl_stmt (stmt))
285 struct graph_edge *e;
286 int c = rdg_vertex_for_stmt (rdg, stmt);
287 if (c < 0)
288 continue;
290 e = add_edge (rdg, c, v);
291 e->data = XNEW (struct rdg_edge);
292 RDGE_TYPE (e) = control_dd;
297 /* Creates the edges of the reduced dependence graph RDG. */
299 static void
300 create_rdg_flow_edges (struct graph *rdg)
302 int i;
303 def_operand_p def_p;
304 ssa_op_iter iter;
306 for (i = 0; i < rdg->n_vertices; i++)
307 FOR_EACH_PHI_OR_STMT_DEF (def_p, RDG_STMT (rdg, i),
308 iter, SSA_OP_DEF)
309 create_rdg_edges_for_scalar (rdg, DEF_FROM_PTR (def_p), i);
312 /* Creates the edges of the reduced dependence graph RDG. */
314 static void
315 create_rdg_cd_edges (struct graph *rdg, control_dependences *cd, loop_p loop)
317 int i;
319 for (i = 0; i < rdg->n_vertices; i++)
321 gimple *stmt = RDG_STMT (rdg, i);
322 if (gimple_code (stmt) == GIMPLE_PHI)
324 edge_iterator ei;
325 edge e;
326 FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->preds)
327 if (flow_bb_inside_loop_p (loop, e->src))
328 create_edge_for_control_dependence (rdg, e->src, i, cd);
330 else
331 create_edge_for_control_dependence (rdg, gimple_bb (stmt), i, cd);
335 /* Build the vertices of the reduced dependence graph RDG. Return false
336 if that failed. */
338 static bool
339 create_rdg_vertices (struct graph *rdg, vec<gimple *> stmts, loop_p loop,
340 vec<data_reference_p> *datarefs)
342 int i;
343 gimple *stmt;
345 FOR_EACH_VEC_ELT (stmts, i, stmt)
347 struct vertex *v = &(rdg->vertices[i]);
349 /* Record statement to vertex mapping. */
350 gimple_set_uid (stmt, i);
352 v->data = XNEW (struct rdg_vertex);
353 RDGV_STMT (v) = stmt;
354 RDGV_DATAREFS (v).create (0);
355 RDGV_HAS_MEM_WRITE (v) = false;
356 RDGV_HAS_MEM_READS (v) = false;
357 if (gimple_code (stmt) == GIMPLE_PHI)
358 continue;
360 unsigned drp = datarefs->length ();
361 if (!find_data_references_in_stmt (loop, stmt, datarefs))
362 return false;
363 for (unsigned j = drp; j < datarefs->length (); ++j)
365 data_reference_p dr = (*datarefs)[j];
366 if (DR_IS_READ (dr))
367 RDGV_HAS_MEM_READS (v) = true;
368 else
369 RDGV_HAS_MEM_WRITE (v) = true;
370 RDGV_DATAREFS (v).safe_push (dr);
373 return true;
376 /* Initialize STMTS with all the statements of LOOP. The order in
377 which we discover statements is important as
378 generate_loops_for_partition is using the same traversal for
379 identifying statements in loop copies. */
381 static void
382 stmts_from_loop (struct loop *loop, vec<gimple *> *stmts)
384 unsigned int i;
385 basic_block *bbs = get_loop_body_in_dom_order (loop);
387 for (i = 0; i < loop->num_nodes; i++)
389 basic_block bb = bbs[i];
391 for (gphi_iterator bsi = gsi_start_phis (bb); !gsi_end_p (bsi);
392 gsi_next (&bsi))
393 if (!virtual_operand_p (gimple_phi_result (bsi.phi ())))
394 stmts->safe_push (bsi.phi ());
396 for (gimple_stmt_iterator bsi = gsi_start_bb (bb); !gsi_end_p (bsi);
397 gsi_next (&bsi))
399 gimple *stmt = gsi_stmt (bsi);
400 if (gimple_code (stmt) != GIMPLE_LABEL && !is_gimple_debug (stmt))
401 stmts->safe_push (stmt);
405 free (bbs);
408 /* Free the reduced dependence graph RDG. */
410 static void
411 free_rdg (struct graph *rdg)
413 int i;
415 for (i = 0; i < rdg->n_vertices; i++)
417 struct vertex *v = &(rdg->vertices[i]);
418 struct graph_edge *e;
420 for (e = v->succ; e; e = e->succ_next)
421 free (e->data);
423 if (v->data)
425 gimple_set_uid (RDGV_STMT (v), -1);
426 free_data_refs (RDGV_DATAREFS (v));
427 free (v->data);
431 free_graph (rdg);
434 /* Build the Reduced Dependence Graph (RDG) with one vertex per
435 statement of the loop nest LOOP_NEST, and one edge per data dependence or
436 scalar dependence. */
438 static struct graph *
439 build_rdg (vec<loop_p> loop_nest, control_dependences *cd)
441 struct graph *rdg;
442 vec<data_reference_p> datarefs;
444 /* Create the RDG vertices from the stmts of the loop nest. */
445 auto_vec<gimple *, 10> stmts;
446 stmts_from_loop (loop_nest[0], &stmts);
447 rdg = new_graph (stmts.length ());
448 datarefs.create (10);
449 if (!create_rdg_vertices (rdg, stmts, loop_nest[0], &datarefs))
451 datarefs.release ();
452 free_rdg (rdg);
453 return NULL;
455 stmts.release ();
457 create_rdg_flow_edges (rdg);
458 if (cd)
459 create_rdg_cd_edges (rdg, cd, loop_nest[0]);
461 datarefs.release ();
463 return rdg;
468 enum partition_kind {
469 PKIND_NORMAL, PKIND_MEMSET, PKIND_MEMCPY, PKIND_MEMMOVE
472 struct partition
474 bitmap stmts;
475 bitmap loops;
476 bool reduction_p;
477 enum partition_kind kind;
478 /* data-references a kind != PKIND_NORMAL partition is about. */
479 data_reference_p main_dr;
480 data_reference_p secondary_dr;
481 tree niter;
482 bool plus_one;
486 /* Allocate and initialize a partition from BITMAP. */
488 static partition *
489 partition_alloc (bitmap stmts, bitmap loops)
491 partition *partition = XCNEW (struct partition);
492 partition->stmts = stmts ? stmts : BITMAP_ALLOC (NULL);
493 partition->loops = loops ? loops : BITMAP_ALLOC (NULL);
494 partition->reduction_p = false;
495 partition->kind = PKIND_NORMAL;
496 return partition;
499 /* Free PARTITION. */
501 static void
502 partition_free (partition *partition)
504 BITMAP_FREE (partition->stmts);
505 BITMAP_FREE (partition->loops);
506 free (partition);
509 /* Returns true if the partition can be generated as a builtin. */
511 static bool
512 partition_builtin_p (partition *partition)
514 return partition->kind != PKIND_NORMAL;
517 /* Returns true if the partition contains a reduction. */
519 static bool
520 partition_reduction_p (partition *partition)
522 return partition->reduction_p;
525 /* Merge PARTITION into the partition DEST. */
527 static void
528 partition_merge_into (partition *dest, partition *partition)
530 dest->kind = PKIND_NORMAL;
531 bitmap_ior_into (dest->stmts, partition->stmts);
532 if (partition_reduction_p (partition))
533 dest->reduction_p = true;
537 /* Returns true when DEF is an SSA_NAME defined in LOOP and used after
538 the LOOP. */
540 static bool
541 ssa_name_has_uses_outside_loop_p (tree def, loop_p loop)
543 imm_use_iterator imm_iter;
544 use_operand_p use_p;
546 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, def)
548 gimple *use_stmt = USE_STMT (use_p);
549 if (!is_gimple_debug (use_stmt)
550 && loop != loop_containing_stmt (use_stmt))
551 return true;
554 return false;
557 /* Returns true when STMT defines a scalar variable used after the
558 loop LOOP. */
560 static bool
561 stmt_has_scalar_dependences_outside_loop (loop_p loop, gimple *stmt)
563 def_operand_p def_p;
564 ssa_op_iter op_iter;
566 if (gimple_code (stmt) == GIMPLE_PHI)
567 return ssa_name_has_uses_outside_loop_p (gimple_phi_result (stmt), loop);
569 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, op_iter, SSA_OP_DEF)
570 if (ssa_name_has_uses_outside_loop_p (DEF_FROM_PTR (def_p), loop))
571 return true;
573 return false;
576 /* Return a copy of LOOP placed before LOOP. */
578 static struct loop *
579 copy_loop_before (struct loop *loop)
581 struct loop *res;
582 edge preheader = loop_preheader_edge (loop);
584 initialize_original_copy_tables ();
585 res = slpeel_tree_duplicate_loop_to_edge_cfg (loop, NULL, preheader);
586 gcc_assert (res != NULL);
587 free_original_copy_tables ();
588 delete_update_ssa ();
590 return res;
593 /* Creates an empty basic block after LOOP. */
595 static void
596 create_bb_after_loop (struct loop *loop)
598 edge exit = single_exit (loop);
600 if (!exit)
601 return;
603 split_edge (exit);
606 /* Generate code for PARTITION from the code in LOOP. The loop is
607 copied when COPY_P is true. All the statements not flagged in the
608 PARTITION bitmap are removed from the loop or from its copy. The
609 statements are indexed in sequence inside a basic block, and the
610 basic blocks of a loop are taken in dom order. */
612 static void
613 generate_loops_for_partition (struct loop *loop, partition *partition,
614 bool copy_p)
616 unsigned i;
617 basic_block *bbs;
619 if (copy_p)
621 loop = copy_loop_before (loop);
622 gcc_assert (loop != NULL);
623 create_preheader (loop, CP_SIMPLE_PREHEADERS);
624 create_bb_after_loop (loop);
627 /* Remove stmts not in the PARTITION bitmap. */
628 bbs = get_loop_body_in_dom_order (loop);
630 if (MAY_HAVE_DEBUG_STMTS)
631 for (i = 0; i < loop->num_nodes; i++)
633 basic_block bb = bbs[i];
635 for (gphi_iterator bsi = gsi_start_phis (bb); !gsi_end_p (bsi);
636 gsi_next (&bsi))
638 gphi *phi = bsi.phi ();
639 if (!virtual_operand_p (gimple_phi_result (phi))
640 && !bitmap_bit_p (partition->stmts, gimple_uid (phi)))
641 reset_debug_uses (phi);
644 for (gimple_stmt_iterator bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
646 gimple *stmt = gsi_stmt (bsi);
647 if (gimple_code (stmt) != GIMPLE_LABEL
648 && !is_gimple_debug (stmt)
649 && !bitmap_bit_p (partition->stmts, gimple_uid (stmt)))
650 reset_debug_uses (stmt);
654 for (i = 0; i < loop->num_nodes; i++)
656 basic_block bb = bbs[i];
658 for (gphi_iterator bsi = gsi_start_phis (bb); !gsi_end_p (bsi);)
660 gphi *phi = bsi.phi ();
661 if (!virtual_operand_p (gimple_phi_result (phi))
662 && !bitmap_bit_p (partition->stmts, gimple_uid (phi)))
663 remove_phi_node (&bsi, true);
664 else
665 gsi_next (&bsi);
668 for (gimple_stmt_iterator bsi = gsi_start_bb (bb); !gsi_end_p (bsi);)
670 gimple *stmt = gsi_stmt (bsi);
671 if (gimple_code (stmt) != GIMPLE_LABEL
672 && !is_gimple_debug (stmt)
673 && !bitmap_bit_p (partition->stmts, gimple_uid (stmt)))
675 /* Choose an arbitrary path through the empty CFG part
676 that this unnecessary control stmt controls. */
677 if (gcond *cond_stmt = dyn_cast <gcond *> (stmt))
679 gimple_cond_make_false (cond_stmt);
680 update_stmt (stmt);
682 else if (gimple_code (stmt) == GIMPLE_SWITCH)
684 gswitch *switch_stmt = as_a <gswitch *> (stmt);
685 gimple_switch_set_index
686 (switch_stmt, CASE_LOW (gimple_switch_label (switch_stmt, 1)));
687 update_stmt (stmt);
689 else
691 unlink_stmt_vdef (stmt);
692 gsi_remove (&bsi, true);
693 release_defs (stmt);
694 continue;
697 gsi_next (&bsi);
701 free (bbs);
704 /* Build the size argument for a memory operation call. */
706 static tree
707 build_size_arg_loc (location_t loc, data_reference_p dr, tree nb_iter,
708 bool plus_one)
710 tree size = fold_convert_loc (loc, sizetype, nb_iter);
711 if (plus_one)
712 size = size_binop (PLUS_EXPR, size, size_one_node);
713 size = fold_build2_loc (loc, MULT_EXPR, sizetype, size,
714 TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr))));
715 size = fold_convert_loc (loc, size_type_node, size);
716 return size;
719 /* Build an address argument for a memory operation call. */
721 static tree
722 build_addr_arg_loc (location_t loc, data_reference_p dr, tree nb_bytes)
724 tree addr_base;
726 addr_base = size_binop_loc (loc, PLUS_EXPR, DR_OFFSET (dr), DR_INIT (dr));
727 addr_base = fold_convert_loc (loc, sizetype, addr_base);
729 /* Test for a negative stride, iterating over every element. */
730 if (tree_int_cst_sgn (DR_STEP (dr)) == -1)
732 addr_base = size_binop_loc (loc, MINUS_EXPR, addr_base,
733 fold_convert_loc (loc, sizetype, nb_bytes));
734 addr_base = size_binop_loc (loc, PLUS_EXPR, addr_base,
735 TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr))));
738 return fold_build_pointer_plus_loc (loc, DR_BASE_ADDRESS (dr), addr_base);
741 /* If VAL memory representation contains the same value in all bytes,
742 return that value, otherwise return -1.
743 E.g. for 0x24242424 return 0x24, for IEEE double
744 747708026454360457216.0 return 0x44, etc. */
746 static int
747 const_with_all_bytes_same (tree val)
749 unsigned char buf[64];
750 int i, len;
752 if (integer_zerop (val)
753 || (TREE_CODE (val) == CONSTRUCTOR
754 && !TREE_CLOBBER_P (val)
755 && CONSTRUCTOR_NELTS (val) == 0))
756 return 0;
758 if (real_zerop (val))
760 /* Only return 0 for +0.0, not for -0.0, which doesn't have
761 an all bytes same memory representation. Don't transform
762 -0.0 stores into +0.0 even for !HONOR_SIGNED_ZEROS. */
763 switch (TREE_CODE (val))
765 case REAL_CST:
766 if (!real_isneg (TREE_REAL_CST_PTR (val)))
767 return 0;
768 break;
769 case COMPLEX_CST:
770 if (!const_with_all_bytes_same (TREE_REALPART (val))
771 && !const_with_all_bytes_same (TREE_IMAGPART (val)))
772 return 0;
773 break;
774 case VECTOR_CST:
775 unsigned int j;
776 for (j = 0; j < VECTOR_CST_NELTS (val); ++j)
777 if (const_with_all_bytes_same (VECTOR_CST_ELT (val, j)))
778 break;
779 if (j == VECTOR_CST_NELTS (val))
780 return 0;
781 break;
782 default:
783 break;
787 if (CHAR_BIT != 8 || BITS_PER_UNIT != 8)
788 return -1;
790 len = native_encode_expr (val, buf, sizeof (buf));
791 if (len == 0)
792 return -1;
793 for (i = 1; i < len; i++)
794 if (buf[i] != buf[0])
795 return -1;
796 return buf[0];
799 /* Generate a call to memset for PARTITION in LOOP. */
801 static void
802 generate_memset_builtin (struct loop *loop, partition *partition)
804 gimple_stmt_iterator gsi;
805 gimple *stmt, *fn_call;
806 tree mem, fn, nb_bytes;
807 location_t loc;
808 tree val;
810 stmt = DR_STMT (partition->main_dr);
811 loc = gimple_location (stmt);
813 /* The new statements will be placed before LOOP. */
814 gsi = gsi_last_bb (loop_preheader_edge (loop)->src);
816 nb_bytes = build_size_arg_loc (loc, partition->main_dr, partition->niter,
817 partition->plus_one);
818 nb_bytes = force_gimple_operand_gsi (&gsi, nb_bytes, true, NULL_TREE,
819 false, GSI_CONTINUE_LINKING);
820 mem = build_addr_arg_loc (loc, partition->main_dr, nb_bytes);
821 mem = force_gimple_operand_gsi (&gsi, mem, true, NULL_TREE,
822 false, GSI_CONTINUE_LINKING);
824 /* This exactly matches the pattern recognition in classify_partition. */
825 val = gimple_assign_rhs1 (stmt);
826 /* Handle constants like 0x15151515 and similarly
827 floating point constants etc. where all bytes are the same. */
828 int bytev = const_with_all_bytes_same (val);
829 if (bytev != -1)
830 val = build_int_cst (integer_type_node, bytev);
831 else if (TREE_CODE (val) == INTEGER_CST)
832 val = fold_convert (integer_type_node, val);
833 else if (!useless_type_conversion_p (integer_type_node, TREE_TYPE (val)))
835 tree tem = make_ssa_name (integer_type_node);
836 gimple *cstmt = gimple_build_assign (tem, NOP_EXPR, val);
837 gsi_insert_after (&gsi, cstmt, GSI_CONTINUE_LINKING);
838 val = tem;
841 fn = build_fold_addr_expr (builtin_decl_implicit (BUILT_IN_MEMSET));
842 fn_call = gimple_build_call (fn, 3, mem, val, nb_bytes);
843 gsi_insert_after (&gsi, fn_call, GSI_CONTINUE_LINKING);
845 if (dump_file && (dump_flags & TDF_DETAILS))
847 fprintf (dump_file, "generated memset");
848 if (bytev == 0)
849 fprintf (dump_file, " zero\n");
850 else
851 fprintf (dump_file, "\n");
855 /* Generate a call to memcpy for PARTITION in LOOP. */
857 static void
858 generate_memcpy_builtin (struct loop *loop, partition *partition)
860 gimple_stmt_iterator gsi;
861 gimple *stmt, *fn_call;
862 tree dest, src, fn, nb_bytes;
863 location_t loc;
864 enum built_in_function kind;
866 stmt = DR_STMT (partition->main_dr);
867 loc = gimple_location (stmt);
869 /* The new statements will be placed before LOOP. */
870 gsi = gsi_last_bb (loop_preheader_edge (loop)->src);
872 nb_bytes = build_size_arg_loc (loc, partition->main_dr, partition->niter,
873 partition->plus_one);
874 nb_bytes = force_gimple_operand_gsi (&gsi, nb_bytes, true, NULL_TREE,
875 false, GSI_CONTINUE_LINKING);
876 dest = build_addr_arg_loc (loc, partition->main_dr, nb_bytes);
877 src = build_addr_arg_loc (loc, partition->secondary_dr, nb_bytes);
878 if (partition->kind == PKIND_MEMCPY
879 || ! ptr_derefs_may_alias_p (dest, src))
880 kind = BUILT_IN_MEMCPY;
881 else
882 kind = BUILT_IN_MEMMOVE;
884 dest = force_gimple_operand_gsi (&gsi, dest, true, NULL_TREE,
885 false, GSI_CONTINUE_LINKING);
886 src = force_gimple_operand_gsi (&gsi, src, true, NULL_TREE,
887 false, GSI_CONTINUE_LINKING);
888 fn = build_fold_addr_expr (builtin_decl_implicit (kind));
889 fn_call = gimple_build_call (fn, 3, dest, src, nb_bytes);
890 gsi_insert_after (&gsi, fn_call, GSI_CONTINUE_LINKING);
892 if (dump_file && (dump_flags & TDF_DETAILS))
894 if (kind == BUILT_IN_MEMCPY)
895 fprintf (dump_file, "generated memcpy\n");
896 else
897 fprintf (dump_file, "generated memmove\n");
901 /* Remove and destroy the loop LOOP. */
903 static void
904 destroy_loop (struct loop *loop)
906 unsigned nbbs = loop->num_nodes;
907 edge exit = single_exit (loop);
908 basic_block src = loop_preheader_edge (loop)->src, dest = exit->dest;
909 basic_block *bbs;
910 unsigned i;
912 bbs = get_loop_body_in_dom_order (loop);
914 redirect_edge_pred (exit, src);
915 exit->flags &= ~(EDGE_TRUE_VALUE|EDGE_FALSE_VALUE);
916 exit->flags |= EDGE_FALLTHRU;
917 cancel_loop_tree (loop);
918 rescan_loop_exit (exit, false, true);
920 i = nbbs;
923 /* We have made sure to not leave any dangling uses of SSA
924 names defined in the loop. With the exception of virtuals.
925 Make sure we replace all uses of virtual defs that will remain
926 outside of the loop with the bare symbol as delete_basic_block
927 will release them. */
928 --i;
929 for (gphi_iterator gsi = gsi_start_phis (bbs[i]); !gsi_end_p (gsi);
930 gsi_next (&gsi))
932 gphi *phi = gsi.phi ();
933 if (virtual_operand_p (gimple_phi_result (phi)))
934 mark_virtual_phi_result_for_renaming (phi);
936 for (gimple_stmt_iterator gsi = gsi_start_bb (bbs[i]); !gsi_end_p (gsi);
937 gsi_next (&gsi))
939 gimple *stmt = gsi_stmt (gsi);
940 tree vdef = gimple_vdef (stmt);
941 if (vdef && TREE_CODE (vdef) == SSA_NAME)
942 mark_virtual_operand_for_renaming (vdef);
944 delete_basic_block (bbs[i]);
946 while (i != 0);
948 free (bbs);
950 set_immediate_dominator (CDI_DOMINATORS, dest,
951 recompute_dominator (CDI_DOMINATORS, dest));
954 /* Generates code for PARTITION. Return whether LOOP needs to be destroyed. */
956 static bool
957 generate_code_for_partition (struct loop *loop,
958 partition *partition, bool copy_p)
960 switch (partition->kind)
962 case PKIND_NORMAL:
963 /* Reductions all have to be in the last partition. */
964 gcc_assert (!partition_reduction_p (partition)
965 || !copy_p);
966 generate_loops_for_partition (loop, partition, copy_p);
967 return false;
969 case PKIND_MEMSET:
970 generate_memset_builtin (loop, partition);
971 break;
973 case PKIND_MEMCPY:
974 case PKIND_MEMMOVE:
975 generate_memcpy_builtin (loop, partition);
976 break;
978 default:
979 gcc_unreachable ();
982 /* Common tail for partitions we turn into a call. If this was the last
983 partition for which we generate code, we have to destroy the loop. */
984 if (!copy_p)
985 return true;
986 return false;
990 /* Returns a partition with all the statements needed for computing
991 the vertex V of the RDG, also including the loop exit conditions. */
993 static partition *
994 build_rdg_partition_for_vertex (struct graph *rdg, int v)
996 partition *partition = partition_alloc (NULL, NULL);
997 auto_vec<int, 3> nodes;
998 unsigned i;
999 int x;
1001 graphds_dfs (rdg, &v, 1, &nodes, false, NULL);
1003 FOR_EACH_VEC_ELT (nodes, i, x)
1005 bitmap_set_bit (partition->stmts, x);
1006 bitmap_set_bit (partition->loops,
1007 loop_containing_stmt (RDG_STMT (rdg, x))->num);
1010 return partition;
1013 /* Classifies the builtin kind we can generate for PARTITION of RDG and LOOP.
1014 For the moment we detect only the memset zero pattern. */
1016 static void
1017 classify_partition (loop_p loop, struct graph *rdg, partition *partition)
1019 bitmap_iterator bi;
1020 unsigned i;
1021 tree nb_iter;
1022 data_reference_p single_load, single_store;
1023 bool volatiles_p = false;
1024 bool plus_one = false;
1026 partition->kind = PKIND_NORMAL;
1027 partition->main_dr = NULL;
1028 partition->secondary_dr = NULL;
1029 partition->niter = NULL_TREE;
1030 partition->plus_one = false;
1032 EXECUTE_IF_SET_IN_BITMAP (partition->stmts, 0, i, bi)
1034 gimple *stmt = RDG_STMT (rdg, i);
1036 if (gimple_has_volatile_ops (stmt))
1037 volatiles_p = true;
1039 /* If the stmt has uses outside of the loop mark it as reduction. */
1040 if (stmt_has_scalar_dependences_outside_loop (loop, stmt))
1042 partition->reduction_p = true;
1043 return;
1047 /* Perform general partition disqualification for builtins. */
1048 if (volatiles_p
1049 || !flag_tree_loop_distribute_patterns)
1050 return;
1052 /* Detect memset and memcpy. */
1053 single_load = NULL;
1054 single_store = NULL;
1055 EXECUTE_IF_SET_IN_BITMAP (partition->stmts, 0, i, bi)
1057 gimple *stmt = RDG_STMT (rdg, i);
1058 data_reference_p dr;
1059 unsigned j;
1061 if (gimple_code (stmt) == GIMPLE_PHI)
1062 continue;
1064 /* Any scalar stmts are ok. */
1065 if (!gimple_vuse (stmt))
1066 continue;
1068 /* Otherwise just regular loads/stores. */
1069 if (!gimple_assign_single_p (stmt))
1070 return;
1072 /* But exactly one store and/or load. */
1073 for (j = 0; RDG_DATAREFS (rdg, i).iterate (j, &dr); ++j)
1075 if (DR_IS_READ (dr))
1077 if (single_load != NULL)
1078 return;
1079 single_load = dr;
1081 else
1083 if (single_store != NULL)
1084 return;
1085 single_store = dr;
1090 if (!single_store)
1091 return;
1093 nb_iter = number_of_latch_executions (loop);
1094 if (!nb_iter || nb_iter == chrec_dont_know)
1095 return;
1096 if (dominated_by_p (CDI_DOMINATORS, single_exit (loop)->src,
1097 gimple_bb (DR_STMT (single_store))))
1098 plus_one = true;
1100 if (single_store && !single_load)
1102 gimple *stmt = DR_STMT (single_store);
1103 tree rhs = gimple_assign_rhs1 (stmt);
1104 if (const_with_all_bytes_same (rhs) == -1
1105 && (!INTEGRAL_TYPE_P (TREE_TYPE (rhs))
1106 || (TYPE_MODE (TREE_TYPE (rhs))
1107 != TYPE_MODE (unsigned_char_type_node))))
1108 return;
1109 if (TREE_CODE (rhs) == SSA_NAME
1110 && !SSA_NAME_IS_DEFAULT_DEF (rhs)
1111 && flow_bb_inside_loop_p (loop, gimple_bb (SSA_NAME_DEF_STMT (rhs))))
1112 return;
1113 if (!adjacent_dr_p (single_store)
1114 || !dominated_by_p (CDI_DOMINATORS,
1115 loop->latch, gimple_bb (stmt)))
1116 return;
1117 partition->kind = PKIND_MEMSET;
1118 partition->main_dr = single_store;
1119 partition->niter = nb_iter;
1120 partition->plus_one = plus_one;
1122 else if (single_store && single_load)
1124 gimple *store = DR_STMT (single_store);
1125 gimple *load = DR_STMT (single_load);
1126 /* Direct aggregate copy or via an SSA name temporary. */
1127 if (load != store
1128 && gimple_assign_lhs (load) != gimple_assign_rhs1 (store))
1129 return;
1130 if (!adjacent_dr_p (single_store)
1131 || !adjacent_dr_p (single_load)
1132 || !operand_equal_p (DR_STEP (single_store),
1133 DR_STEP (single_load), 0)
1134 || !dominated_by_p (CDI_DOMINATORS,
1135 loop->latch, gimple_bb (store)))
1136 return;
1137 /* Now check that if there is a dependence this dependence is
1138 of a suitable form for memmove. */
1139 vec<loop_p> loops = vNULL;
1140 ddr_p ddr;
1141 loops.safe_push (loop);
1142 ddr = initialize_data_dependence_relation (single_load, single_store,
1143 loops);
1144 compute_affine_dependence (ddr, loop);
1145 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
1147 free_dependence_relation (ddr);
1148 loops.release ();
1149 return;
1151 if (DDR_ARE_DEPENDENT (ddr) != chrec_known)
1153 if (DDR_NUM_DIST_VECTS (ddr) == 0)
1155 free_dependence_relation (ddr);
1156 loops.release ();
1157 return;
1159 lambda_vector dist_v;
1160 FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, dist_v)
1162 int dist = dist_v[index_in_loop_nest (loop->num,
1163 DDR_LOOP_NEST (ddr))];
1164 if (dist > 0 && !DDR_REVERSED_P (ddr))
1166 free_dependence_relation (ddr);
1167 loops.release ();
1168 return;
1171 partition->kind = PKIND_MEMMOVE;
1173 else
1174 partition->kind = PKIND_MEMCPY;
1175 free_dependence_relation (ddr);
1176 loops.release ();
1177 partition->main_dr = single_store;
1178 partition->secondary_dr = single_load;
1179 partition->niter = nb_iter;
1180 partition->plus_one = plus_one;
1184 /* For a data reference REF, return the declaration of its base
1185 address or NULL_TREE if the base is not determined. */
1187 static tree
1188 ref_base_address (data_reference_p dr)
1190 tree base_address = DR_BASE_ADDRESS (dr);
1191 if (base_address
1192 && TREE_CODE (base_address) == ADDR_EXPR)
1193 return TREE_OPERAND (base_address, 0);
1195 return base_address;
1198 /* Returns true when PARTITION1 and PARTITION2 have similar memory
1199 accesses in RDG. */
1201 static bool
1202 similar_memory_accesses (struct graph *rdg, partition *partition1,
1203 partition *partition2)
1205 unsigned i, j, k, l;
1206 bitmap_iterator bi, bj;
1207 data_reference_p ref1, ref2;
1209 /* First check whether in the intersection of the two partitions are
1210 any loads or stores. Common loads are the situation that happens
1211 most often. */
1212 EXECUTE_IF_AND_IN_BITMAP (partition1->stmts, partition2->stmts, 0, i, bi)
1213 if (RDG_MEM_WRITE_STMT (rdg, i)
1214 || RDG_MEM_READS_STMT (rdg, i))
1215 return true;
1217 /* Then check all data-references against each other. */
1218 EXECUTE_IF_SET_IN_BITMAP (partition1->stmts, 0, i, bi)
1219 if (RDG_MEM_WRITE_STMT (rdg, i)
1220 || RDG_MEM_READS_STMT (rdg, i))
1221 EXECUTE_IF_SET_IN_BITMAP (partition2->stmts, 0, j, bj)
1222 if (RDG_MEM_WRITE_STMT (rdg, j)
1223 || RDG_MEM_READS_STMT (rdg, j))
1225 FOR_EACH_VEC_ELT (RDG_DATAREFS (rdg, i), k, ref1)
1227 tree base1 = ref_base_address (ref1);
1228 if (base1)
1229 FOR_EACH_VEC_ELT (RDG_DATAREFS (rdg, j), l, ref2)
1230 if (base1 == ref_base_address (ref2))
1231 return true;
1235 return false;
1238 /* Aggregate several components into a useful partition that is
1239 registered in the PARTITIONS vector. Partitions will be
1240 distributed in different loops. */
1242 static void
1243 rdg_build_partitions (struct graph *rdg,
1244 vec<gimple *> starting_stmts,
1245 vec<partition *> *partitions)
1247 bitmap processed = BITMAP_ALLOC (NULL);
1248 int i;
1249 gimple *stmt;
1251 FOR_EACH_VEC_ELT (starting_stmts, i, stmt)
1253 int v = rdg_vertex_for_stmt (rdg, stmt);
1255 if (dump_file && (dump_flags & TDF_DETAILS))
1256 fprintf (dump_file,
1257 "ldist asked to generate code for vertex %d\n", v);
1259 /* If the vertex is already contained in another partition so
1260 is the partition rooted at it. */
1261 if (bitmap_bit_p (processed, v))
1262 continue;
1264 partition *partition = build_rdg_partition_for_vertex (rdg, v);
1265 bitmap_ior_into (processed, partition->stmts);
1267 if (dump_file && (dump_flags & TDF_DETAILS))
1269 fprintf (dump_file, "ldist useful partition:\n");
1270 dump_bitmap (dump_file, partition->stmts);
1273 partitions->safe_push (partition);
1276 /* All vertices should have been assigned to at least one partition now,
1277 other than vertices belonging to dead code. */
1279 BITMAP_FREE (processed);
1282 /* Dump to FILE the PARTITIONS. */
1284 static void
1285 dump_rdg_partitions (FILE *file, vec<partition *> partitions)
1287 int i;
1288 partition *partition;
1290 FOR_EACH_VEC_ELT (partitions, i, partition)
1291 debug_bitmap_file (file, partition->stmts);
1294 /* Debug PARTITIONS. */
1295 extern void debug_rdg_partitions (vec<partition *> );
1297 DEBUG_FUNCTION void
1298 debug_rdg_partitions (vec<partition *> partitions)
1300 dump_rdg_partitions (stderr, partitions);
1303 /* Returns the number of read and write operations in the RDG. */
1305 static int
1306 number_of_rw_in_rdg (struct graph *rdg)
1308 int i, res = 0;
1310 for (i = 0; i < rdg->n_vertices; i++)
1312 if (RDG_MEM_WRITE_STMT (rdg, i))
1313 ++res;
1315 if (RDG_MEM_READS_STMT (rdg, i))
1316 ++res;
1319 return res;
1322 /* Returns the number of read and write operations in a PARTITION of
1323 the RDG. */
1325 static int
1326 number_of_rw_in_partition (struct graph *rdg, partition *partition)
1328 int res = 0;
1329 unsigned i;
1330 bitmap_iterator ii;
1332 EXECUTE_IF_SET_IN_BITMAP (partition->stmts, 0, i, ii)
1334 if (RDG_MEM_WRITE_STMT (rdg, i))
1335 ++res;
1337 if (RDG_MEM_READS_STMT (rdg, i))
1338 ++res;
1341 return res;
1344 /* Returns true when one of the PARTITIONS contains all the read or
1345 write operations of RDG. */
1347 static bool
1348 partition_contains_all_rw (struct graph *rdg,
1349 vec<partition *> partitions)
1351 int i;
1352 partition *partition;
1353 int nrw = number_of_rw_in_rdg (rdg);
1355 FOR_EACH_VEC_ELT (partitions, i, partition)
1356 if (nrw == number_of_rw_in_partition (rdg, partition))
1357 return true;
1359 return false;
1362 /* Compute partition dependence created by the data references in DRS1
1363 and DRS2 and modify and return DIR according to that. */
1365 static int
1366 pg_add_dependence_edges (struct graph *rdg, vec<loop_p> loops, int dir,
1367 vec<data_reference_p> drs1,
1368 vec<data_reference_p> drs2)
1370 data_reference_p dr1, dr2;
1372 /* dependence direction - 0 is no dependence, -1 is back,
1373 1 is forth, 2 is both (we can stop then, merging will occur). */
1374 for (int ii = 0; drs1.iterate (ii, &dr1); ++ii)
1375 for (int jj = 0; drs2.iterate (jj, &dr2); ++jj)
1377 data_reference_p saved_dr1 = dr1;
1378 int this_dir = 1;
1379 ddr_p ddr;
1380 /* Re-shuffle data-refs to be in dominator order. */
1381 if (rdg_vertex_for_stmt (rdg, DR_STMT (dr1))
1382 > rdg_vertex_for_stmt (rdg, DR_STMT (dr2)))
1384 std::swap (dr1, dr2);
1385 this_dir = -this_dir;
1387 ddr = initialize_data_dependence_relation (dr1, dr2, loops);
1388 compute_affine_dependence (ddr, loops[0]);
1389 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
1390 this_dir = 2;
1391 else if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE)
1393 if (DDR_REVERSED_P (ddr))
1395 std::swap (dr1, dr2);
1396 this_dir = -this_dir;
1398 /* Known dependences can still be unordered througout the
1399 iteration space, see gcc.dg/tree-ssa/ldist-16.c. */
1400 if (DDR_NUM_DIST_VECTS (ddr) != 1)
1401 this_dir = 2;
1402 /* If the overlap is exact preserve stmt order. */
1403 else if (lambda_vector_zerop (DDR_DIST_VECT (ddr, 0), 1))
1405 else
1407 /* Else as the distance vector is lexicographic positive
1408 swap the dependence direction. */
1409 this_dir = -this_dir;
1412 else
1413 this_dir = 0;
1414 free_dependence_relation (ddr);
1415 if (this_dir == 2)
1416 return 2;
1417 else if (dir == 0)
1418 dir = this_dir;
1419 else if (this_dir != 0 && dir != this_dir)
1420 return 2;
1421 /* Shuffle "back" dr1. */
1422 dr1 = saved_dr1;
1424 return dir;
1427 /* Compare postorder number of the partition graph vertices V1 and V2. */
1429 static int
1430 pgcmp (const void *v1_, const void *v2_)
1432 const vertex *v1 = (const vertex *)v1_;
1433 const vertex *v2 = (const vertex *)v2_;
1434 return v2->post - v1->post;
1437 /* Distributes the code from LOOP in such a way that producer
1438 statements are placed before consumer statements. Tries to separate
1439 only the statements from STMTS into separate loops.
1440 Returns the number of distributed loops. Set *DESTROY_P to whether
1441 LOOP needs to be destroyed. */
1443 static int
1444 distribute_loop (struct loop *loop, vec<gimple *> stmts,
1445 control_dependences *cd, int *nb_calls, bool *destroy_p)
1447 struct graph *rdg;
1448 partition *partition;
1449 bool any_builtin;
1450 int i, nbp;
1451 graph *pg = NULL;
1452 int num_sccs = 1;
1454 *destroy_p = false;
1455 *nb_calls = 0;
1456 auto_vec<loop_p, 3> loop_nest;
1457 if (!find_loop_nest (loop, &loop_nest))
1458 return 0;
1460 rdg = build_rdg (loop_nest, cd);
1461 if (!rdg)
1463 if (dump_file && (dump_flags & TDF_DETAILS))
1464 fprintf (dump_file,
1465 "Loop %d not distributed: failed to build the RDG.\n",
1466 loop->num);
1468 return 0;
1471 if (dump_file && (dump_flags & TDF_DETAILS))
1472 dump_rdg (dump_file, rdg);
1474 auto_vec<struct partition *, 3> partitions;
1475 rdg_build_partitions (rdg, stmts, &partitions);
1477 any_builtin = false;
1478 FOR_EACH_VEC_ELT (partitions, i, partition)
1480 classify_partition (loop, rdg, partition);
1481 any_builtin |= partition_builtin_p (partition);
1484 /* If we are only distributing patterns but did not detect any,
1485 simply bail out. */
1486 if (!flag_tree_loop_distribution
1487 && !any_builtin)
1489 nbp = 0;
1490 goto ldist_done;
1493 /* If we are only distributing patterns fuse all partitions that
1494 were not classified as builtins. This also avoids chopping
1495 a loop into pieces, separated by builtin calls. That is, we
1496 only want no or a single loop body remaining. */
1497 struct partition *into;
1498 if (!flag_tree_loop_distribution)
1500 for (i = 0; partitions.iterate (i, &into); ++i)
1501 if (!partition_builtin_p (into))
1502 break;
1503 for (++i; partitions.iterate (i, &partition); ++i)
1504 if (!partition_builtin_p (partition))
1506 if (dump_file && (dump_flags & TDF_DETAILS))
1508 fprintf (dump_file, "fusing non-builtin partitions\n");
1509 dump_bitmap (dump_file, into->stmts);
1510 dump_bitmap (dump_file, partition->stmts);
1512 partition_merge_into (into, partition);
1513 partitions.unordered_remove (i);
1514 partition_free (partition);
1515 i--;
1519 /* Due to limitations in the transform phase we have to fuse all
1520 reduction partitions into the last partition so the existing
1521 loop will contain all loop-closed PHI nodes. */
1522 for (i = 0; partitions.iterate (i, &into); ++i)
1523 if (partition_reduction_p (into))
1524 break;
1525 for (i = i + 1; partitions.iterate (i, &partition); ++i)
1526 if (partition_reduction_p (partition))
1528 if (dump_file && (dump_flags & TDF_DETAILS))
1530 fprintf (dump_file, "fusing partitions\n");
1531 dump_bitmap (dump_file, into->stmts);
1532 dump_bitmap (dump_file, partition->stmts);
1533 fprintf (dump_file, "because they have reductions\n");
1535 partition_merge_into (into, partition);
1536 partitions.unordered_remove (i);
1537 partition_free (partition);
1538 i--;
1541 /* Apply our simple cost model - fuse partitions with similar
1542 memory accesses. */
1543 for (i = 0; partitions.iterate (i, &into); ++i)
1545 bool changed = false;
1546 if (partition_builtin_p (into))
1547 continue;
1548 for (int j = i + 1;
1549 partitions.iterate (j, &partition); ++j)
1551 if (!partition_builtin_p (partition)
1552 && similar_memory_accesses (rdg, into, partition))
1554 if (dump_file && (dump_flags & TDF_DETAILS))
1556 fprintf (dump_file, "fusing partitions\n");
1557 dump_bitmap (dump_file, into->stmts);
1558 dump_bitmap (dump_file, partition->stmts);
1559 fprintf (dump_file, "because they have similar "
1560 "memory accesses\n");
1562 partition_merge_into (into, partition);
1563 partitions.unordered_remove (j);
1564 partition_free (partition);
1565 j--;
1566 changed = true;
1569 /* If we fused 0 1 2 in step 1 to 0,2 1 as 0 and 2 have similar
1570 accesses when 1 and 2 have similar accesses but not 0 and 1
1571 then in the next iteration we will fail to consider merging
1572 1 into 0,2. So try again if we did any merging into 0. */
1573 if (changed)
1574 i--;
1577 /* Build the partition dependency graph. */
1578 if (partitions.length () > 1)
1580 pg = new_graph (partitions.length ());
1581 struct pgdata {
1582 struct partition *partition;
1583 vec<data_reference_p> writes;
1584 vec<data_reference_p> reads;
1586 #define PGDATA(i) ((pgdata *)(pg->vertices[i].data))
1587 for (i = 0; partitions.iterate (i, &partition); ++i)
1589 vertex *v = &pg->vertices[i];
1590 pgdata *data = new pgdata;
1591 data_reference_p dr;
1592 /* FIXME - leaks. */
1593 v->data = data;
1594 bitmap_iterator bi;
1595 unsigned j;
1596 data->partition = partition;
1597 data->reads = vNULL;
1598 data->writes = vNULL;
1599 EXECUTE_IF_SET_IN_BITMAP (partition->stmts, 0, j, bi)
1600 for (int k = 0; RDG_DATAREFS (rdg, j).iterate (k, &dr); ++k)
1601 if (DR_IS_READ (dr))
1602 data->reads.safe_push (dr);
1603 else
1604 data->writes.safe_push (dr);
1606 struct partition *partition1, *partition2;
1607 for (i = 0; partitions.iterate (i, &partition1); ++i)
1608 for (int j = i + 1; partitions.iterate (j, &partition2); ++j)
1610 /* dependence direction - 0 is no dependence, -1 is back,
1611 1 is forth, 2 is both (we can stop then, merging will occur). */
1612 int dir = 0;
1613 dir = pg_add_dependence_edges (rdg, loop_nest, dir,
1614 PGDATA(i)->writes,
1615 PGDATA(j)->reads);
1616 if (dir != 2)
1617 dir = pg_add_dependence_edges (rdg, loop_nest, dir,
1618 PGDATA(i)->reads,
1619 PGDATA(j)->writes);
1620 if (dir != 2)
1621 dir = pg_add_dependence_edges (rdg, loop_nest, dir,
1622 PGDATA(i)->writes,
1623 PGDATA(j)->writes);
1624 if (dir == 1 || dir == 2)
1625 add_edge (pg, i, j);
1626 if (dir == -1 || dir == 2)
1627 add_edge (pg, j, i);
1630 /* Add edges to the reduction partition (if any) to force it last. */
1631 unsigned j;
1632 for (j = 0; partitions.iterate (j, &partition); ++j)
1633 if (partition_reduction_p (partition))
1634 break;
1635 if (j < partitions.length ())
1637 for (unsigned i = 0; partitions.iterate (i, &partition); ++i)
1638 if (i != j)
1639 add_edge (pg, i, j);
1642 /* Compute partitions we cannot separate and fuse them. */
1643 num_sccs = graphds_scc (pg, NULL);
1644 for (i = 0; i < num_sccs; ++i)
1646 struct partition *first;
1647 int j;
1648 for (j = 0; partitions.iterate (j, &first); ++j)
1649 if (pg->vertices[j].component == i)
1650 break;
1651 for (j = j + 1; partitions.iterate (j, &partition); ++j)
1652 if (pg->vertices[j].component == i)
1654 if (dump_file && (dump_flags & TDF_DETAILS))
1656 fprintf (dump_file, "fusing partitions\n");
1657 dump_bitmap (dump_file, first->stmts);
1658 dump_bitmap (dump_file, partition->stmts);
1659 fprintf (dump_file, "because they are in the same "
1660 "dependence SCC\n");
1662 partition_merge_into (first, partition);
1663 partitions[j] = NULL;
1664 partition_free (partition);
1665 PGDATA (j)->partition = NULL;
1669 /* Now order the remaining nodes in postorder. */
1670 qsort (pg->vertices, pg->n_vertices, sizeof (vertex), pgcmp);
1671 partitions.truncate (0);
1672 for (i = 0; i < pg->n_vertices; ++i)
1674 pgdata *data = PGDATA (i);
1675 if (data->partition)
1676 partitions.safe_push (data->partition);
1677 data->reads.release ();
1678 data->writes.release ();
1679 delete data;
1681 gcc_assert (partitions.length () == (unsigned)num_sccs);
1682 free_graph (pg);
1685 nbp = partitions.length ();
1686 if (nbp == 0
1687 || (nbp == 1 && !partition_builtin_p (partitions[0]))
1688 || (nbp > 1 && partition_contains_all_rw (rdg, partitions)))
1690 nbp = 0;
1691 goto ldist_done;
1694 if (dump_file && (dump_flags & TDF_DETAILS))
1695 dump_rdg_partitions (dump_file, partitions);
1697 FOR_EACH_VEC_ELT (partitions, i, partition)
1699 if (partition_builtin_p (partition))
1700 (*nb_calls)++;
1701 *destroy_p |= generate_code_for_partition (loop, partition, i < nbp - 1);
1704 ldist_done:
1706 FOR_EACH_VEC_ELT (partitions, i, partition)
1707 partition_free (partition);
1709 free_rdg (rdg);
1710 return nbp - *nb_calls;
1713 /* Distribute all loops in the current function. */
1715 namespace {
1717 const pass_data pass_data_loop_distribution =
1719 GIMPLE_PASS, /* type */
1720 "ldist", /* name */
1721 OPTGROUP_LOOP, /* optinfo_flags */
1722 TV_TREE_LOOP_DISTRIBUTION, /* tv_id */
1723 ( PROP_cfg | PROP_ssa ), /* properties_required */
1724 0, /* properties_provided */
1725 0, /* properties_destroyed */
1726 0, /* todo_flags_start */
1727 0, /* todo_flags_finish */
1730 class pass_loop_distribution : public gimple_opt_pass
1732 public:
1733 pass_loop_distribution (gcc::context *ctxt)
1734 : gimple_opt_pass (pass_data_loop_distribution, ctxt)
1737 /* opt_pass methods: */
1738 virtual bool gate (function *)
1740 return flag_tree_loop_distribution
1741 || flag_tree_loop_distribute_patterns;
1744 virtual unsigned int execute (function *);
1746 }; // class pass_loop_distribution
1748 unsigned int
1749 pass_loop_distribution::execute (function *fun)
1751 struct loop *loop;
1752 bool changed = false;
1753 basic_block bb;
1754 control_dependences *cd = NULL;
1755 auto_vec<loop_p> loops_to_be_destroyed;
1757 FOR_ALL_BB_FN (bb, fun)
1759 gimple_stmt_iterator gsi;
1760 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1761 gimple_set_uid (gsi_stmt (gsi), -1);
1762 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1763 gimple_set_uid (gsi_stmt (gsi), -1);
1766 /* We can at the moment only distribute non-nested loops, thus restrict
1767 walking to innermost loops. */
1768 FOR_EACH_LOOP (loop, LI_ONLY_INNERMOST)
1770 auto_vec<gimple *> work_list;
1771 basic_block *bbs;
1772 int num = loop->num;
1773 unsigned int i;
1775 /* If the loop doesn't have a single exit we will fail anyway,
1776 so do that early. */
1777 if (!single_exit (loop))
1778 continue;
1780 /* Only optimize hot loops. */
1781 if (!optimize_loop_for_speed_p (loop))
1782 continue;
1784 /* Initialize the worklist with stmts we seed the partitions with. */
1785 bbs = get_loop_body_in_dom_order (loop);
1786 for (i = 0; i < loop->num_nodes; ++i)
1788 for (gphi_iterator gsi = gsi_start_phis (bbs[i]);
1789 !gsi_end_p (gsi);
1790 gsi_next (&gsi))
1792 gphi *phi = gsi.phi ();
1793 if (virtual_operand_p (gimple_phi_result (phi)))
1794 continue;
1795 /* Distribute stmts which have defs that are used outside of
1796 the loop. */
1797 if (!stmt_has_scalar_dependences_outside_loop (loop, phi))
1798 continue;
1799 work_list.safe_push (phi);
1801 for (gimple_stmt_iterator gsi = gsi_start_bb (bbs[i]);
1802 !gsi_end_p (gsi);
1803 gsi_next (&gsi))
1805 gimple *stmt = gsi_stmt (gsi);
1807 /* If there is a stmt with side-effects bail out - we
1808 cannot and should not distribute this loop. */
1809 if (gimple_has_side_effects (stmt))
1811 work_list.truncate (0);
1812 goto out;
1815 /* Distribute stmts which have defs that are used outside of
1816 the loop. */
1817 if (stmt_has_scalar_dependences_outside_loop (loop, stmt))
1819 /* Otherwise only distribute stores for now. */
1820 else if (!gimple_vdef (stmt))
1821 continue;
1823 work_list.safe_push (stmt);
1826 out:
1827 free (bbs);
1829 int nb_generated_loops = 0;
1830 int nb_generated_calls = 0;
1831 location_t loc = find_loop_location (loop);
1832 if (work_list.length () > 0)
1834 if (!cd)
1836 calculate_dominance_info (CDI_DOMINATORS);
1837 calculate_dominance_info (CDI_POST_DOMINATORS);
1838 cd = new control_dependences ();
1839 free_dominance_info (CDI_POST_DOMINATORS);
1841 bool destroy_p;
1842 nb_generated_loops = distribute_loop (loop, work_list, cd,
1843 &nb_generated_calls,
1844 &destroy_p);
1845 if (destroy_p)
1846 loops_to_be_destroyed.safe_push (loop);
1849 if (nb_generated_loops + nb_generated_calls > 0)
1851 changed = true;
1852 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS,
1853 loc, "Loop %d distributed: split to %d loops "
1854 "and %d library calls.\n",
1855 num, nb_generated_loops, nb_generated_calls);
1857 else if (dump_file && (dump_flags & TDF_DETAILS))
1858 fprintf (dump_file, "Loop %d is the same.\n", num);
1861 if (cd)
1862 delete cd;
1864 if (changed)
1866 /* Destroy loop bodies that could not be reused. Do this late as we
1867 otherwise can end up refering to stale data in control dependences. */
1868 unsigned i;
1869 FOR_EACH_VEC_ELT (loops_to_be_destroyed, i, loop)
1870 destroy_loop (loop);
1872 /* Cached scalar evolutions now may refer to wrong or non-existing
1873 loops. */
1874 scev_reset_htab ();
1875 mark_virtual_operands_for_renaming (fun);
1876 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
1879 checking_verify_loop_structure ();
1881 return 0;
1884 } // anon namespace
1886 gimple_opt_pass *
1887 make_pass_loop_distribution (gcc::context *ctxt)
1889 return new pass_loop_distribution (ctxt);