hppa: Revise REG+D address support to allow long displacements before reload
[official-gcc.git] / gcc / ada / libgnarl / s-taasde.adb
blobf11be3ef0c0b27f6688f18b976ebec264c603616
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT RUN-TIME LIBRARY (GNARL) COMPONENTS --
4 -- --
5 -- S Y S T E M . T A S K I N G . A S Y N C _ D E L A Y S --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1998-2023, Free Software Foundation, Inc. --
10 -- --
11 -- GNARL is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. --
17 -- --
18 -- As a special exception under Section 7 of GPL version 3, you are granted --
19 -- additional permissions described in the GCC Runtime Library Exception, --
20 -- version 3.1, as published by the Free Software Foundation. --
21 -- --
22 -- You should have received a copy of the GNU General Public License and --
23 -- a copy of the GCC Runtime Library Exception along with this program; --
24 -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
25 -- <http://www.gnu.org/licenses/>. --
26 -- --
27 -- GNARL was developed by the GNARL team at Florida State University. --
28 -- Extensive contributions were provided by Ada Core Technologies, Inc. --
29 -- --
30 ------------------------------------------------------------------------------
32 with Ada.Unchecked_Conversion;
33 with Ada.Task_Identification;
35 with System.Task_Primitives.Operations;
36 with System.Tasking.Utilities;
37 with System.Tasking.Initialization;
38 with System.Tasking.Debug;
39 with System.OS_Primitives;
40 with System.Interrupt_Management.Operations;
42 package body System.Tasking.Async_Delays is
44 package STPO renames System.Task_Primitives.Operations;
45 package ST renames System.Tasking;
46 package STU renames System.Tasking.Utilities;
47 package STI renames System.Tasking.Initialization;
48 package OSP renames System.OS_Primitives;
50 function To_System is new Ada.Unchecked_Conversion
51 (Ada.Task_Identification.Task_Id, Task_Id);
53 Timer_Attention : Boolean := False;
54 pragma Atomic (Timer_Attention);
56 task Timer_Server is
57 pragma Interrupt_Priority (System.Any_Priority'Last);
58 end Timer_Server;
60 Timer_Server_ID : constant ST.Task_Id := To_System (Timer_Server'Identity);
62 -- The timer queue is a circular doubly linked list, ordered by absolute
63 -- wakeup time. The first item in the queue is Timer_Queue.Succ.
64 -- It is given a Resume_Time that is larger than any legitimate wakeup
65 -- time, so that the ordered insertion will always stop searching when it
66 -- gets back to the queue header block.
68 Timer_Queue : aliased Delay_Block;
70 package Init_Timer_Queue is end Init_Timer_Queue;
71 pragma Unreferenced (Init_Timer_Queue);
72 -- Initialize the Timer_Queue. This is a package to work around the
73 -- fact that statements are syntactically illegal here. We want this
74 -- initialization to happen before the Timer_Server is activated. A
75 -- build-in-place function would also work, but that's not supported
76 -- on all platforms (e.g. cil).
78 package body Init_Timer_Queue is
79 begin
80 Timer_Queue.Succ := Timer_Queue'Unchecked_Access;
81 Timer_Queue.Pred := Timer_Queue'Unchecked_Access;
82 Timer_Queue.Resume_Time := Duration'Last;
83 end Init_Timer_Queue;
85 ------------------------
86 -- Cancel_Async_Delay --
87 ------------------------
89 -- This should (only) be called from the compiler-generated cleanup routine
90 -- for an async. select statement with delay statement as trigger. The
91 -- effect should be to remove the delay from the timer queue, and exit one
92 -- ATC nesting level.
94 -- The usage and logic are similar to Cancel_Protected_Entry_Call, but
95 -- simplified because this is not a true entry call.
97 procedure Cancel_Async_Delay (D : Delay_Block_Access) is
98 Dpred : Delay_Block_Access;
99 Dsucc : Delay_Block_Access;
101 begin
102 -- A delay block level of Level_No_Pending_Abort indicates the delay
103 -- has been canceled. If the delay has already been canceled, there is
104 -- nothing more to be done.
106 if D.Level = Level_No_Pending_Abort then
107 return;
108 end if;
110 D.Level := Level_No_Pending_Abort;
112 -- Remove self from timer queue
114 STI.Defer_Abort_Nestable (D.Self_Id);
115 STPO.Write_Lock (Timer_Server_ID);
116 Dpred := D.Pred;
117 Dsucc := D.Succ;
118 Dpred.Succ := Dsucc;
119 Dsucc.Pred := Dpred;
120 D.Succ := D;
121 D.Pred := D;
122 STPO.Unlock (Timer_Server_ID);
124 -- Note that the above deletion code is required to be
125 -- idempotent, since the block may have been dequeued
126 -- previously by the Timer_Server.
128 -- leave the asynchronous select
130 STPO.Write_Lock (D.Self_Id);
131 STU.Exit_One_ATC_Level (D.Self_Id);
132 STPO.Unlock (D.Self_Id);
133 STI.Undefer_Abort_Nestable (D.Self_Id);
134 end Cancel_Async_Delay;
136 ----------------------
137 -- Enqueue_Duration --
138 ----------------------
140 function Enqueue_Duration
141 (T : Duration;
142 D : Delay_Block_Access) return Boolean
144 begin
145 if T <= 0.0 then
146 D.Timed_Out := True;
147 STPO.Yield;
148 return False;
150 else
151 -- The corresponding call to Undefer_Abort is performed by the
152 -- expanded code (see exp_ch9).
154 STI.Defer_Abort (STPO.Self);
155 Time_Enqueue
156 (STPO.Monotonic_Clock
157 + Duration'Min (T, OSP.Max_Sensible_Delay), D);
158 return True;
159 end if;
160 end Enqueue_Duration;
162 ------------------
163 -- Time_Enqueue --
164 ------------------
166 -- Allocate a queue element for the wakeup time T and put it in the
167 -- queue in wakeup time order. Assume we are on an asynchronous
168 -- select statement with delay trigger. Put the calling task to
169 -- sleep until either the delay expires or is canceled.
171 -- We use one entry call record for this delay, since we have
172 -- to increment the ATC nesting level, but since it is not a
173 -- real entry call we do not need to use any of the fields of
174 -- the call record. The following code implements a subset of
175 -- the actions for the asynchronous case of Protected_Entry_Call,
176 -- much simplified since we know this never blocks, and does not
177 -- have the full semantics of a protected entry call.
179 procedure Time_Enqueue
180 (T : Duration;
181 D : Delay_Block_Access)
183 Self_Id : constant Task_Id := STPO.Self;
184 Q : Delay_Block_Access;
186 begin
187 pragma Debug (Debug.Trace (Self_Id, "Async_Delay", 'P'));
188 pragma Assert (Self_Id.Deferral_Level = 1,
189 "async delay from within abort-deferred region");
191 if Self_Id.ATC_Nesting_Level = ATC_Level'Last then
192 raise Storage_Error with "not enough ATC nesting levels";
193 end if;
195 Self_Id.ATC_Nesting_Level := Self_Id.ATC_Nesting_Level + 1;
197 pragma Debug
198 (Debug.Trace (Self_Id, "ASD: entered ATC level: " &
199 ATC_Level'Image (Self_Id.ATC_Nesting_Level), 'A'));
201 D.Level := Self_Id.ATC_Nesting_Level;
202 D.Self_Id := Self_Id;
203 D.Resume_Time := T;
204 STPO.Write_Lock (Timer_Server_ID);
206 -- Previously, there was code here to dynamically create
207 -- the Timer_Server task, if one did not already exist.
208 -- That code had a timing window that could allow multiple
209 -- timer servers to be created. Luckily, the need for
210 -- postponing creation of the timer server should now be
211 -- gone, since this package will only be linked in if
212 -- there are calls to enqueue calls on the timer server.
214 -- Insert D in the timer queue, at the position determined
215 -- by the wakeup time T.
217 Q := Timer_Queue.Succ;
219 while Q.Resume_Time < T loop
220 Q := Q.Succ;
221 end loop;
223 -- Q is the block that has Resume_Time equal to or greater than
224 -- T. After the insertion we want Q to be the successor of D.
226 D.Succ := Q;
227 D.Pred := Q.Pred;
228 D.Pred.Succ := D;
229 Q.Pred := D;
231 -- If the new element became the head of the queue,
232 -- signal the Timer_Server to wake up.
234 if Timer_Queue.Succ = D then
235 Timer_Attention := True;
236 STPO.Wakeup (Timer_Server_ID, ST.Timer_Server_Sleep);
237 end if;
239 STPO.Unlock (Timer_Server_ID);
240 end Time_Enqueue;
242 ---------------
243 -- Timed_Out --
244 ---------------
246 function Timed_Out (D : Delay_Block_Access) return Boolean is
247 begin
248 return D.Timed_Out;
249 end Timed_Out;
251 ------------------
252 -- Timer_Server --
253 ------------------
255 task body Timer_Server is
256 Ignore : constant Boolean := STU.Make_Independent;
258 -- Local Declarations
260 Next_Wakeup_Time : Duration := Duration'Last;
261 Timedout : Boolean;
262 Yielded : Boolean;
263 Now : Duration;
264 Dequeued : Delay_Block_Access;
265 Dequeued_Task : Task_Id;
267 begin
268 pragma Assert (Timer_Server_ID = STPO.Self);
270 -- Since this package may be elaborated before System.Interrupt,
271 -- we need to call Setup_Interrupt_Mask explicitly to ensure that
272 -- this task has the proper signal mask.
274 Interrupt_Management.Operations.Setup_Interrupt_Mask;
276 -- Initialize the timer queue to empty, and make the wakeup time of the
277 -- header node be larger than any real wakeup time we will ever use.
279 loop
280 STI.Defer_Abort (Timer_Server_ID);
281 STPO.Write_Lock (Timer_Server_ID);
283 -- The timer server needs to catch pending aborts after finalization
284 -- of library packages. If it doesn't poll for it, the server will
285 -- sometimes hang.
287 if not Timer_Attention then
288 Timer_Server_ID.Common.State := ST.Timer_Server_Sleep;
290 if Next_Wakeup_Time = Duration'Last then
291 Timer_Server_ID.User_State := 1;
292 Next_Wakeup_Time :=
293 STPO.Monotonic_Clock + OSP.Max_Sensible_Delay;
295 else
296 Timer_Server_ID.User_State := 2;
297 end if;
299 STPO.Timed_Sleep
300 (Timer_Server_ID, Next_Wakeup_Time,
301 OSP.Absolute_RT, ST.Timer_Server_Sleep,
302 Timedout, Yielded);
303 Timer_Server_ID.Common.State := ST.Runnable;
304 end if;
306 -- Service all of the wakeup requests on the queue whose times have
307 -- been reached, and update Next_Wakeup_Time to next wakeup time
308 -- after that (the wakeup time of the head of the queue if any, else
309 -- a time far in the future).
311 Timer_Server_ID.User_State := 3;
312 Timer_Attention := False;
314 Now := STPO.Monotonic_Clock;
315 while Timer_Queue.Succ.Resume_Time <= Now loop
317 -- Dequeue the waiting task from the front of the queue
319 pragma Debug (System.Tasking.Debug.Trace
320 (Timer_Server_ID, "Timer service: waking up waiting task", 'E'));
322 Dequeued := Timer_Queue.Succ;
323 Timer_Queue.Succ := Dequeued.Succ;
324 Dequeued.Succ.Pred := Dequeued.Pred;
325 Dequeued.Succ := Dequeued;
326 Dequeued.Pred := Dequeued;
328 -- We want to abort the queued task to the level of the async.
329 -- select statement with the delay. To do that, we need to lock
330 -- the ATCB of that task, but to avoid deadlock we need to release
331 -- the lock of the Timer_Server. This leaves a window in which
332 -- another task might perform an enqueue or dequeue operation on
333 -- the timer queue, but that is OK because we always restart the
334 -- next iteration at the head of the queue.
336 STPO.Unlock (Timer_Server_ID);
337 STPO.Write_Lock (Dequeued.Self_Id);
338 Dequeued_Task := Dequeued.Self_Id;
339 Dequeued.Timed_Out := True;
340 STI.Locked_Abort_To_Level
341 (Timer_Server_ID, Dequeued_Task, Dequeued.Level - 1);
342 STPO.Unlock (Dequeued_Task);
343 STPO.Write_Lock (Timer_Server_ID);
344 end loop;
346 Next_Wakeup_Time := Timer_Queue.Succ.Resume_Time;
348 -- Service returns the Next_Wakeup_Time.
349 -- The Next_Wakeup_Time is either an infinity (no delay request)
350 -- or the wakeup time of the queue head. This value is used for
351 -- an actual delay in this server.
353 STPO.Unlock (Timer_Server_ID);
354 STI.Undefer_Abort (Timer_Server_ID);
355 end loop;
356 end Timer_Server;
358 end System.Tasking.Async_Delays;