1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 2000-2023, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 -- This package does front-end layout of types and objects. The result is
27 -- to annotate the tree with information on size and alignment of types
28 -- and objects. How much layout is performed depends on the setting of the
29 -- target dependent parameter Frontend_Layout.
31 with Types
; use Types
;
35 -- The following procedures are called from Freeze, so all entities for
36 -- types and objects that get frozen (i.e. all types and objects seen by
37 -- the back end) will get laid out by one of these two procedures.
39 procedure Layout_Type
(E
: Entity_Id
);
40 -- This procedure may set or adjust the fields Esize, RM_Size and
41 -- Alignment in the non-generic type or subtype entity E. If the
42 -- Frontend_Layout switch is True, then it is guaranteed that all
43 -- three fields will be properly set on return. Regardless of the
44 -- Frontend_Layout value, it is guaranteed that all discrete types
45 -- will have both Esize and RM_Size fields set on return (since
46 -- these are static values). Note that Layout_Type is not called
47 -- for generic types, since these play no part in code generation,
48 -- and hence representation aspects are irrelevant.
50 procedure Layout_Object
(E
: Entity_Id
);
51 -- E is either a variable (E_Variable), a constant (E_Constant),
52 -- a loop parameter (E_Loop_Parameter), or a formal parameter of
53 -- a non-generic subprogram (E_In_Parameter, E_In_Out_Parameter,
54 -- or E_Out_Parameter). This procedure may set or adjust the
55 -- Esize and Alignment fields of E. If Frontend_Layout is True,
56 -- then it is guaranteed that both fields will be properly set
57 -- on return. If the Esize is still unknown in the latter case,
58 -- it means that the object must be allocated dynamically, since
59 -- its length is not known at compile time.
61 -- The following are utility routines, called from various places
63 procedure Adjust_Esize_Alignment
(E
: Entity_Id
);
64 -- E is the entity for a type or object. This procedure checks that the
65 -- size and alignment are compatible, and if not either gives an error
66 -- message if they cannot be adjusted or else adjusts them appropriately.
68 procedure Set_Discrete_RM_Size
(Def_Id
: Entity_Id
);
69 -- Set proper RM_Size for discrete size, this is normally the minimum
70 -- number of bits to accommodate the range given, except in the case
71 -- where the subtype statically matches the first subtype, in which
72 -- case the size must be copied from the first subtype. For generic
73 -- types, the RM_Size is simply set to zero. This routine also sets
74 -- the Is_Constrained flag in Def_Id.
76 procedure Set_Elem_Alignment
(E
: Entity_Id
; Align
: Nat
:= 0);
77 -- The front end always sets alignments for elementary types by calling
78 -- this procedure. Note that we have to do this for discrete types (since
79 -- the Alignment attribute is static), so we might as well do it for all
80 -- elementary types, as the processing is the same. If Align is nonzero,
81 -- it is an external alignment setting that we must respect.