Merged revisions 208012,208018-208019,208021,208023-208030,208033,208037,208040-20804...
[official-gcc.git] / main / libstdc++-v3 / include / bits / regex_executor.tcc
blob68a5e0490f9522524660738b4b8d137a4972a95b
1 // class template regex -*- C++ -*-
3 // Copyright (C) 2013-2014 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library.  This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 // GNU General Public License for more details.
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23 // <http://www.gnu.org/licenses/>.
25 /**
26  *  @file bits/regex_executor.tcc
27  *  This is an internal header file, included by other library headers.
28  *  Do not attempt to use it directly. @headername{regex}
29  */
31 namespace std _GLIBCXX_VISIBILITY(default)
33 namespace __detail
35 _GLIBCXX_BEGIN_NAMESPACE_VERSION
37   template<typename _BiIter, typename _Alloc, typename _TraitsT,
38     bool __dfs_mode>
39     bool _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
40     _M_search()
41     {
42       if (_M_flags & regex_constants::match_continuous)
43         return _M_search_from_first();
44       auto __cur = _M_begin;
45       do
46         {
47           _M_current = __cur;
48           if (_M_main<false>())
49             return true;
50         }
51       // Continue when __cur == _M_end
52       while (__cur++ != _M_end);
53       return false;
54     }
56   // This function operates in different modes, DFS mode or BFS mode, indicated
57   // by template parameter __dfs_mode. See _M_main for details.
58   //
59   // ------------------------------------------------------------
60   //
61   // DFS mode:
62   //
63   // It applies a Depth-First-Search (aka backtracking) on given NFA and input
64   // string.
65   // At the very beginning the executor stands in the start state, then it tries
66   // every possible state transition in current state recursively. Some state
67   // transitions consume input string, say, a single-char-matcher or a
68   // back-reference matcher; some don't, like assertion or other anchor nodes.
69   // When the input is exhausted and/or the current state is an accepting state,
70   // the whole executor returns true.
71   //
72   // TODO: This approach is exponentially slow for certain input.
73   //       Try to compile the NFA to a DFA.
74   //
75   // Time complexity: \Omega(match_length), O(2^(_M_nfa.size()))
76   // Space complexity: \theta(match_results.size() + match_length)
77   //
78   // ------------------------------------------------------------
79   //
80   // BFS mode:
81   //
82   // Russ Cox's article (http://swtch.com/~rsc/regexp/regexp1.html)
83   // explained this algorithm clearly.
84   //
85   // It first computes epsilon closure (states that can be achieved without
86   // consuming characters) for every state that's still matching,
87   // using the same DFS algorithm, but doesn't re-enter states (find a true in
88   // _M_visited), nor follows _S_opcode_match.
89   //
90   // Then apply DFS using every _S_opcode_match (in _M_match_queue) as the start
91   // state.
92   //
93   // It significantly reduces potential duplicate states, so has a better
94   // upper bound; but it requires more overhead.
95   //
96   // Time complexity: \Omega(match_length * match_results.size())
97   //                  O(match_length * _M_nfa.size() * match_results.size())
98   // Space complexity: \Omega(_M_nfa.size() + match_results.size())
99   //                   O(_M_nfa.size() * match_results.size())
100   template<typename _BiIter, typename _Alloc, typename _TraitsT,
101     bool __dfs_mode>
102   template<bool __match_mode>
103     bool _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
104     _M_main()
105     {
106       if (__dfs_mode)
107         {
108           _M_has_sol = false;
109           _M_cur_results = _M_results;
110           _M_dfs<__match_mode>(_M_start_state);
111           return _M_has_sol;
112         }
113       else
114         {
115           _M_match_queue->push_back(make_pair(_M_start_state, _M_results));
116           bool __ret = false;
117           while (1)
118             {
119               _M_has_sol = false;
120               if (_M_match_queue->empty())
121                 break;
122               _M_visited->assign(_M_visited->size(), false);
123               auto _M_old_queue = std::move(*_M_match_queue);
124               for (auto __task : _M_old_queue)
125                 {
126                   _M_cur_results = __task.second;
127                   _M_dfs<__match_mode>(__task.first);
128                 }
129               if (!__match_mode)
130                 __ret |= _M_has_sol;
131               if (_M_current == _M_end)
132                 break;
133               ++_M_current;
134             }
135           if (__match_mode)
136             __ret = _M_has_sol;
137           return __ret;
138         }
139     }
141   // Return whether now match the given sub-NFA.
142   template<typename _BiIter, typename _Alloc, typename _TraitsT,
143     bool __dfs_mode>
144     bool _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
145     _M_lookahead(_State<_TraitsT> __state)
146     {
147       _ResultsVec __what(_M_cur_results.size());
148       auto __sub = std::unique_ptr<_Executor>(new _Executor(_M_current,
149                                                             _M_end,
150                                                             __what,
151                                                             _M_re,
152                                                             _M_flags));
153       __sub->_M_start_state = __state._M_alt;
154       if (__sub->_M_search_from_first())
155         {
156           for (size_t __i = 0; __i < __what.size(); __i++)
157             if (__what[__i].matched)
158               _M_cur_results[__i] = __what[__i];
159           return true;
160         }
161       return false;
162     }
164   // TODO: Use a function vector to dispatch, instead of using switch-case.
165   template<typename _BiIter, typename _Alloc, typename _TraitsT,
166     bool __dfs_mode>
167   template<bool __match_mode>
168     void _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
169     _M_dfs(_StateIdT __i)
170     {
171       if (!__dfs_mode)
172         {
173           if ((*_M_visited)[__i])
174             return;
175           (*_M_visited)[__i] = true;
176         }
178       const auto& __state = _M_nfa[__i];
179       // Every change on _M_cur_results and _M_current will be rolled back after
180       // finishing the recursion step.
181       switch (__state._M_opcode)
182         {
183         // _M_alt branch is "match once more", while _M_next is "get me out
184         // of this quantifier". Executing _M_next first or _M_alt first don't
185         // mean the same thing, and we need to choose the correct order under
186         // given greedy mode.
187         case _S_opcode_alternative:
188           // Greedy.
189           if (!__state._M_neg)
190             {
191               // "Once more" is preferred in greedy mode.
192               _M_dfs<__match_mode>(__state._M_alt);
193               // If it's DFS executor and already accepted, we're done.
194               if (!__dfs_mode || !_M_has_sol)
195                 _M_dfs<__match_mode>(__state._M_next);
196             }
197           else // Non-greedy mode
198             {
199               if (__dfs_mode)
200                 {
201                   // vice-versa.
202                   _M_dfs<__match_mode>(__state._M_next);
203                   if (!_M_has_sol)
204                     _M_dfs<__match_mode>(__state._M_alt);
205                 }
206               else
207                 {
208                   // DON'T attempt anything, because there's already another
209                   // state with higher priority accepted. This state cannot be
210                   // better by attempting its next node.
211                   if (!_M_has_sol)
212                     {
213                       _M_dfs<__match_mode>(__state._M_next);
214                       // DON'T attempt anything if it's already accepted. An
215                       // accepted state *must* be better than a solution that
216                       // matches a non-greedy quantifier one more time.
217                       if (!_M_has_sol)
218                         _M_dfs<__match_mode>(__state._M_alt);
219                     }
220                 }
221             }
222           break;
223         case _S_opcode_subexpr_begin:
224           // If there's nothing changed since last visit, do NOT continue.
225           // This prevents the executor from get into infinite loop when using
226           // "()*" to match "".
227           if (!_M_cur_results[__state._M_subexpr].matched
228               || _M_cur_results[__state._M_subexpr].first != _M_current)
229             {
230               auto& __res = _M_cur_results[__state._M_subexpr];
231               auto __back = __res.first;
232               __res.first = _M_current;
233               _M_dfs<__match_mode>(__state._M_next);
234               __res.first = __back;
235             }
236           break;
237         case _S_opcode_subexpr_end:
238           if (_M_cur_results[__state._M_subexpr].second != _M_current
239               || _M_cur_results[__state._M_subexpr].matched != true)
240             {
241               auto& __res = _M_cur_results[__state._M_subexpr];
242               auto __back = __res;
243               __res.second = _M_current;
244               __res.matched = true;
245               _M_dfs<__match_mode>(__state._M_next);
246               __res = __back;
247             }
248           else
249             _M_dfs<__match_mode>(__state._M_next);
250           break;
251         case _S_opcode_line_begin_assertion:
252           if (_M_at_begin())
253             _M_dfs<__match_mode>(__state._M_next);
254           break;
255         case _S_opcode_line_end_assertion:
256           if (_M_at_end())
257             _M_dfs<__match_mode>(__state._M_next);
258           break;
259         case _S_opcode_word_boundary:
260           if (_M_word_boundary(__state) == !__state._M_neg)
261             _M_dfs<__match_mode>(__state._M_next);
262           break;
263         // Here __state._M_alt offers a single start node for a sub-NFA.
264         // We recursively invoke our algorithm to match the sub-NFA.
265         case _S_opcode_subexpr_lookahead:
266           if (_M_lookahead(__state) == !__state._M_neg)
267             _M_dfs<__match_mode>(__state._M_next);
268           break;
269         case _S_opcode_match:
270           if (__dfs_mode)
271             {
272               if (_M_current != _M_end && __state._M_matches(*_M_current))
273                 {
274                   ++_M_current;
275                   _M_dfs<__match_mode>(__state._M_next);
276                   --_M_current;
277                 }
278             }
279           else
280             if (__state._M_matches(*_M_current))
281               _M_match_queue->push_back(make_pair(__state._M_next,
282                                                   _M_cur_results));
283           break;
284         // First fetch the matched result from _M_cur_results as __submatch;
285         // then compare it with
286         // (_M_current, _M_current + (__submatch.second - __submatch.first)).
287         // If matched, keep going; else just return and try another state.
288         case _S_opcode_backref:
289           {
290             _GLIBCXX_DEBUG_ASSERT(__dfs_mode);
291             auto& __submatch = _M_cur_results[__state._M_backref_index];
292             if (!__submatch.matched)
293               break;
294             auto __last = _M_current;
295             for (auto __tmp = __submatch.first;
296                  __last != _M_end && __tmp != __submatch.second;
297                  ++__tmp)
298               ++__last;
299             if (_M_re._M_traits.transform(__submatch.first,
300                                                 __submatch.second)
301                 == _M_re._M_traits.transform(_M_current, __last))
302               {
303                 if (__last != _M_current)
304                   {
305                     auto __backup = _M_current;
306                     _M_current = __last;
307                     _M_dfs<__match_mode>(__state._M_next);
308                     _M_current = __backup;
309                   }
310                 else
311                   _M_dfs<__match_mode>(__state._M_next);
312               }
313           }
314           break;
315         case _S_opcode_accept:
316           if (__dfs_mode)
317             {
318               _GLIBCXX_DEBUG_ASSERT(!_M_has_sol);
319               if (__match_mode)
320                 _M_has_sol = _M_current == _M_end;
321               else
322                 _M_has_sol = true;
323               if (_M_current == _M_begin
324                   && (_M_flags & regex_constants::match_not_null))
325                 _M_has_sol = false;
326               if (_M_has_sol)
327                 _M_results = _M_cur_results;
328             }
329           else
330             {
331               if (_M_current == _M_begin
332                   && (_M_flags & regex_constants::match_not_null))
333                 break;
334               if (!__match_mode || _M_current == _M_end)
335                 if (!_M_has_sol)
336                   {
337                     _M_has_sol = true;
338                     _M_results = _M_cur_results;
339                   }
340             }
341           break;
342         default:
343           _GLIBCXX_DEBUG_ASSERT(false);
344         }
345     }
347   // Return whether now is at some word boundary.
348   template<typename _BiIter, typename _Alloc, typename _TraitsT,
349     bool __dfs_mode>
350     bool _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
351     _M_word_boundary(_State<_TraitsT> __state) const
352     {
353       // By definition.
354       bool __ans = false;
355       auto __pre = _M_current;
356       --__pre;
357       if (!(_M_at_begin() && _M_at_end()))
358         {
359           if (_M_at_begin())
360             __ans = _M_is_word(*_M_current)
361               && !(_M_flags & regex_constants::match_not_bow);
362           else if (_M_at_end())
363             __ans = _M_is_word(*__pre)
364               && !(_M_flags & regex_constants::match_not_eow);
365           else
366             __ans = _M_is_word(*_M_current)
367               != _M_is_word(*__pre);
368         }
369       return __ans;
370     }
372 _GLIBCXX_END_NAMESPACE_VERSION
373 } // namespace __detail
374 } // namespace