1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file handles the generation of rtl code from tree structure
21 at the level of the function as a whole.
22 It creates the rtl expressions for parameters and auto variables
23 and has full responsibility for allocating stack slots.
25 `expand_function_start' is called at the beginning of a function,
26 before the function body is parsed, and `expand_function_end' is
27 called after parsing the body.
29 Call `assign_stack_local' to allocate a stack slot for a local variable.
30 This is usually done during the RTL generation for the function body,
31 but it can also be done in the reload pass when a pseudo-register does
32 not get a hard register. */
36 #include "coretypes.h"
38 #include "rtl-error.h"
40 #include "stor-layout.h"
42 #include "stringpool.h"
50 #include "hard-reg-set.h"
51 #include "insn-config.h"
56 #include "langhooks.h"
58 #include "common/common-target.h"
59 #include "gimple-expr.h"
61 #include "tree-pass.h"
66 #include "bb-reorder.h"
68 /* So we can assign to cfun in this file. */
71 #ifndef STACK_ALIGNMENT_NEEDED
72 #define STACK_ALIGNMENT_NEEDED 1
75 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
77 /* Round a value to the lowest integer less than it that is a multiple of
78 the required alignment. Avoid using division in case the value is
79 negative. Assume the alignment is a power of two. */
80 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
82 /* Similar, but round to the next highest integer that meets the
84 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
86 /* Nonzero once virtual register instantiation has been done.
87 assign_stack_local uses frame_pointer_rtx when this is nonzero.
88 calls.c:emit_library_call_value_1 uses it to set up
89 post-instantiation libcalls. */
90 int virtuals_instantiated
;
92 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
93 static GTY(()) int funcdef_no
;
95 /* These variables hold pointers to functions to create and destroy
96 target specific, per-function data structures. */
97 struct machine_function
* (*init_machine_status
) (void);
99 /* The currently compiled function. */
100 struct function
*cfun
= 0;
102 /* These hashes record the prologue and epilogue insns. */
103 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def
)))
104 htab_t prologue_insn_hash
;
105 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def
)))
106 htab_t epilogue_insn_hash
;
109 htab_t types_used_by_vars_hash
= NULL
;
110 vec
<tree
, va_gc
> *types_used_by_cur_var_decl
;
112 /* Forward declarations. */
114 static struct temp_slot
*find_temp_slot_from_address (rtx
);
115 static void pad_to_arg_alignment (struct args_size
*, int, struct args_size
*);
116 static void pad_below (struct args_size
*, enum machine_mode
, tree
);
117 static void reorder_blocks_1 (rtx
, tree
, vec
<tree
> *);
118 static int all_blocks (tree
, tree
*);
119 static tree
*get_block_vector (tree
, int *);
120 extern tree
debug_find_var_in_block_tree (tree
, tree
);
121 /* We always define `record_insns' even if it's not used so that we
122 can always export `prologue_epilogue_contains'. */
123 static void record_insns (rtx
, rtx
, htab_t
*) ATTRIBUTE_UNUSED
;
124 static bool contains (const_rtx
, htab_t
);
125 static void prepare_function_start (void);
126 static void do_clobber_return_reg (rtx
, void *);
127 static void do_use_return_reg (rtx
, void *);
129 /* Stack of nested functions. */
130 /* Keep track of the cfun stack. */
132 typedef struct function
*function_p
;
134 static vec
<function_p
> function_context_stack
;
136 /* Save the current context for compilation of a nested function.
137 This is called from language-specific code. */
140 push_function_context (void)
143 allocate_struct_function (NULL
, false);
145 function_context_stack
.safe_push (cfun
);
149 /* Restore the last saved context, at the end of a nested function.
150 This function is called from language-specific code. */
153 pop_function_context (void)
155 struct function
*p
= function_context_stack
.pop ();
157 current_function_decl
= p
->decl
;
159 /* Reset variables that have known state during rtx generation. */
160 virtuals_instantiated
= 0;
161 generating_concat_p
= 1;
164 /* Clear out all parts of the state in F that can safely be discarded
165 after the function has been parsed, but not compiled, to let
166 garbage collection reclaim the memory. */
169 free_after_parsing (struct function
*f
)
174 /* Clear out all parts of the state in F that can safely be discarded
175 after the function has been compiled, to let garbage collection
176 reclaim the memory. */
179 free_after_compilation (struct function
*f
)
181 prologue_insn_hash
= NULL
;
182 epilogue_insn_hash
= NULL
;
184 free (crtl
->emit
.regno_pointer_align
);
186 memset (crtl
, 0, sizeof (struct rtl_data
));
191 regno_reg_rtx
= NULL
;
194 /* Return size needed for stack frame based on slots so far allocated.
195 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
196 the caller may have to do that. */
199 get_frame_size (void)
201 if (FRAME_GROWS_DOWNWARD
)
202 return -frame_offset
;
207 /* Issue an error message and return TRUE if frame OFFSET overflows in
208 the signed target pointer arithmetics for function FUNC. Otherwise
212 frame_offset_overflow (HOST_WIDE_INT offset
, tree func
)
214 unsigned HOST_WIDE_INT size
= FRAME_GROWS_DOWNWARD
? -offset
: offset
;
216 if (size
> ((unsigned HOST_WIDE_INT
) 1 << (GET_MODE_BITSIZE (Pmode
) - 1))
217 /* Leave room for the fixed part of the frame. */
218 - 64 * UNITS_PER_WORD
)
220 error_at (DECL_SOURCE_LOCATION (func
),
221 "total size of local objects too large");
228 /* Return stack slot alignment in bits for TYPE and MODE. */
231 get_stack_local_alignment (tree type
, enum machine_mode mode
)
233 unsigned int alignment
;
236 alignment
= BIGGEST_ALIGNMENT
;
238 alignment
= GET_MODE_ALIGNMENT (mode
);
240 /* Allow the frond-end to (possibly) increase the alignment of this
243 type
= lang_hooks
.types
.type_for_mode (mode
, 0);
245 return STACK_SLOT_ALIGNMENT (type
, mode
, alignment
);
248 /* Determine whether it is possible to fit a stack slot of size SIZE and
249 alignment ALIGNMENT into an area in the stack frame that starts at
250 frame offset START and has a length of LENGTH. If so, store the frame
251 offset to be used for the stack slot in *POFFSET and return true;
252 return false otherwise. This function will extend the frame size when
253 given a start/length pair that lies at the end of the frame. */
256 try_fit_stack_local (HOST_WIDE_INT start
, HOST_WIDE_INT length
,
257 HOST_WIDE_INT size
, unsigned int alignment
,
258 HOST_WIDE_INT
*poffset
)
260 HOST_WIDE_INT this_frame_offset
;
261 int frame_off
, frame_alignment
, frame_phase
;
263 /* Calculate how many bytes the start of local variables is off from
265 frame_alignment
= PREFERRED_STACK_BOUNDARY
/ BITS_PER_UNIT
;
266 frame_off
= STARTING_FRAME_OFFSET
% frame_alignment
;
267 frame_phase
= frame_off
? frame_alignment
- frame_off
: 0;
269 /* Round the frame offset to the specified alignment. */
271 /* We must be careful here, since FRAME_OFFSET might be negative and
272 division with a negative dividend isn't as well defined as we might
273 like. So we instead assume that ALIGNMENT is a power of two and
274 use logical operations which are unambiguous. */
275 if (FRAME_GROWS_DOWNWARD
)
277 = (FLOOR_ROUND (start
+ length
- size
- frame_phase
,
278 (unsigned HOST_WIDE_INT
) alignment
)
282 = (CEIL_ROUND (start
- frame_phase
,
283 (unsigned HOST_WIDE_INT
) alignment
)
286 /* See if it fits. If this space is at the edge of the frame,
287 consider extending the frame to make it fit. Our caller relies on
288 this when allocating a new slot. */
289 if (frame_offset
== start
&& this_frame_offset
< frame_offset
)
290 frame_offset
= this_frame_offset
;
291 else if (this_frame_offset
< start
)
293 else if (start
+ length
== frame_offset
294 && this_frame_offset
+ size
> start
+ length
)
295 frame_offset
= this_frame_offset
+ size
;
296 else if (this_frame_offset
+ size
> start
+ length
)
299 *poffset
= this_frame_offset
;
303 /* Create a new frame_space structure describing free space in the stack
304 frame beginning at START and ending at END, and chain it into the
305 function's frame_space_list. */
308 add_frame_space (HOST_WIDE_INT start
, HOST_WIDE_INT end
)
310 struct frame_space
*space
= ggc_alloc_frame_space ();
311 space
->next
= crtl
->frame_space_list
;
312 crtl
->frame_space_list
= space
;
313 space
->start
= start
;
314 space
->length
= end
- start
;
317 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
318 with machine mode MODE.
320 ALIGN controls the amount of alignment for the address of the slot:
321 0 means according to MODE,
322 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
323 -2 means use BITS_PER_UNIT,
324 positive specifies alignment boundary in bits.
326 KIND has ASLK_REDUCE_ALIGN bit set if it is OK to reduce
327 alignment and ASLK_RECORD_PAD bit set if we should remember
328 extra space we allocated for alignment purposes. When we are
329 called from assign_stack_temp_for_type, it is not set so we don't
330 track the same stack slot in two independent lists.
332 We do not round to stack_boundary here. */
335 assign_stack_local_1 (enum machine_mode mode
, HOST_WIDE_INT size
,
339 int bigend_correction
= 0;
340 HOST_WIDE_INT slot_offset
= 0, old_frame_offset
;
341 unsigned int alignment
, alignment_in_bits
;
345 alignment
= get_stack_local_alignment (NULL
, mode
);
346 alignment
/= BITS_PER_UNIT
;
348 else if (align
== -1)
350 alignment
= BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
;
351 size
= CEIL_ROUND (size
, alignment
);
353 else if (align
== -2)
354 alignment
= 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
356 alignment
= align
/ BITS_PER_UNIT
;
358 alignment_in_bits
= alignment
* BITS_PER_UNIT
;
360 /* Ignore alignment if it exceeds MAX_SUPPORTED_STACK_ALIGNMENT. */
361 if (alignment_in_bits
> MAX_SUPPORTED_STACK_ALIGNMENT
)
363 alignment_in_bits
= MAX_SUPPORTED_STACK_ALIGNMENT
;
364 alignment
= alignment_in_bits
/ BITS_PER_UNIT
;
367 if (SUPPORTS_STACK_ALIGNMENT
)
369 if (crtl
->stack_alignment_estimated
< alignment_in_bits
)
371 if (!crtl
->stack_realign_processed
)
372 crtl
->stack_alignment_estimated
= alignment_in_bits
;
375 /* If stack is realigned and stack alignment value
376 hasn't been finalized, it is OK not to increase
377 stack_alignment_estimated. The bigger alignment
378 requirement is recorded in stack_alignment_needed
380 gcc_assert (!crtl
->stack_realign_finalized
);
381 if (!crtl
->stack_realign_needed
)
383 /* It is OK to reduce the alignment as long as the
384 requested size is 0 or the estimated stack
385 alignment >= mode alignment. */
386 gcc_assert ((kind
& ASLK_REDUCE_ALIGN
)
388 || (crtl
->stack_alignment_estimated
389 >= GET_MODE_ALIGNMENT (mode
)));
390 alignment_in_bits
= crtl
->stack_alignment_estimated
;
391 alignment
= alignment_in_bits
/ BITS_PER_UNIT
;
397 if (crtl
->stack_alignment_needed
< alignment_in_bits
)
398 crtl
->stack_alignment_needed
= alignment_in_bits
;
399 if (crtl
->max_used_stack_slot_alignment
< alignment_in_bits
)
400 crtl
->max_used_stack_slot_alignment
= alignment_in_bits
;
402 if (mode
!= BLKmode
|| size
!= 0)
404 if (kind
& ASLK_RECORD_PAD
)
406 struct frame_space
**psp
;
408 for (psp
= &crtl
->frame_space_list
; *psp
; psp
= &(*psp
)->next
)
410 struct frame_space
*space
= *psp
;
411 if (!try_fit_stack_local (space
->start
, space
->length
, size
,
412 alignment
, &slot_offset
))
415 if (slot_offset
> space
->start
)
416 add_frame_space (space
->start
, slot_offset
);
417 if (slot_offset
+ size
< space
->start
+ space
->length
)
418 add_frame_space (slot_offset
+ size
,
419 space
->start
+ space
->length
);
424 else if (!STACK_ALIGNMENT_NEEDED
)
426 slot_offset
= frame_offset
;
430 old_frame_offset
= frame_offset
;
432 if (FRAME_GROWS_DOWNWARD
)
434 frame_offset
-= size
;
435 try_fit_stack_local (frame_offset
, size
, size
, alignment
, &slot_offset
);
437 if (kind
& ASLK_RECORD_PAD
)
439 if (slot_offset
> frame_offset
)
440 add_frame_space (frame_offset
, slot_offset
);
441 if (slot_offset
+ size
< old_frame_offset
)
442 add_frame_space (slot_offset
+ size
, old_frame_offset
);
447 frame_offset
+= size
;
448 try_fit_stack_local (old_frame_offset
, size
, size
, alignment
, &slot_offset
);
450 if (kind
& ASLK_RECORD_PAD
)
452 if (slot_offset
> old_frame_offset
)
453 add_frame_space (old_frame_offset
, slot_offset
);
454 if (slot_offset
+ size
< frame_offset
)
455 add_frame_space (slot_offset
+ size
, frame_offset
);
460 /* On a big-endian machine, if we are allocating more space than we will use,
461 use the least significant bytes of those that are allocated. */
462 if (BYTES_BIG_ENDIAN
&& mode
!= BLKmode
&& GET_MODE_SIZE (mode
) < size
)
463 bigend_correction
= size
- GET_MODE_SIZE (mode
);
465 /* If we have already instantiated virtual registers, return the actual
466 address relative to the frame pointer. */
467 if (virtuals_instantiated
)
468 addr
= plus_constant (Pmode
, frame_pointer_rtx
,
470 (slot_offset
+ bigend_correction
471 + STARTING_FRAME_OFFSET
, Pmode
));
473 addr
= plus_constant (Pmode
, virtual_stack_vars_rtx
,
475 (slot_offset
+ bigend_correction
,
478 x
= gen_rtx_MEM (mode
, addr
);
479 set_mem_align (x
, alignment_in_bits
);
480 MEM_NOTRAP_P (x
) = 1;
483 = gen_rtx_EXPR_LIST (VOIDmode
, x
, stack_slot_list
);
485 if (frame_offset_overflow (frame_offset
, current_function_decl
))
491 /* Wrap up assign_stack_local_1 with last parameter as false. */
494 assign_stack_local (enum machine_mode mode
, HOST_WIDE_INT size
, int align
)
496 return assign_stack_local_1 (mode
, size
, align
, ASLK_RECORD_PAD
);
499 /* In order to evaluate some expressions, such as function calls returning
500 structures in memory, we need to temporarily allocate stack locations.
501 We record each allocated temporary in the following structure.
503 Associated with each temporary slot is a nesting level. When we pop up
504 one level, all temporaries associated with the previous level are freed.
505 Normally, all temporaries are freed after the execution of the statement
506 in which they were created. However, if we are inside a ({...}) grouping,
507 the result may be in a temporary and hence must be preserved. If the
508 result could be in a temporary, we preserve it if we can determine which
509 one it is in. If we cannot determine which temporary may contain the
510 result, all temporaries are preserved. A temporary is preserved by
511 pretending it was allocated at the previous nesting level. */
513 struct GTY(()) temp_slot
{
514 /* Points to next temporary slot. */
515 struct temp_slot
*next
;
516 /* Points to previous temporary slot. */
517 struct temp_slot
*prev
;
518 /* The rtx to used to reference the slot. */
520 /* The size, in units, of the slot. */
522 /* The type of the object in the slot, or zero if it doesn't correspond
523 to a type. We use this to determine whether a slot can be reused.
524 It can be reused if objects of the type of the new slot will always
525 conflict with objects of the type of the old slot. */
527 /* The alignment (in bits) of the slot. */
529 /* Nonzero if this temporary is currently in use. */
531 /* Nesting level at which this slot is being used. */
533 /* The offset of the slot from the frame_pointer, including extra space
534 for alignment. This info is for combine_temp_slots. */
535 HOST_WIDE_INT base_offset
;
536 /* The size of the slot, including extra space for alignment. This
537 info is for combine_temp_slots. */
538 HOST_WIDE_INT full_size
;
541 /* A table of addresses that represent a stack slot. The table is a mapping
542 from address RTXen to a temp slot. */
543 static GTY((param_is(struct temp_slot_address_entry
))) htab_t temp_slot_address_table
;
544 static size_t n_temp_slots_in_use
;
546 /* Entry for the above hash table. */
547 struct GTY(()) temp_slot_address_entry
{
550 struct temp_slot
*temp_slot
;
553 /* Removes temporary slot TEMP from LIST. */
556 cut_slot_from_list (struct temp_slot
*temp
, struct temp_slot
**list
)
559 temp
->next
->prev
= temp
->prev
;
561 temp
->prev
->next
= temp
->next
;
565 temp
->prev
= temp
->next
= NULL
;
568 /* Inserts temporary slot TEMP to LIST. */
571 insert_slot_to_list (struct temp_slot
*temp
, struct temp_slot
**list
)
575 (*list
)->prev
= temp
;
580 /* Returns the list of used temp slots at LEVEL. */
582 static struct temp_slot
**
583 temp_slots_at_level (int level
)
585 if (level
>= (int) vec_safe_length (used_temp_slots
))
586 vec_safe_grow_cleared (used_temp_slots
, level
+ 1);
588 return &(*used_temp_slots
)[level
];
591 /* Returns the maximal temporary slot level. */
594 max_slot_level (void)
596 if (!used_temp_slots
)
599 return used_temp_slots
->length () - 1;
602 /* Moves temporary slot TEMP to LEVEL. */
605 move_slot_to_level (struct temp_slot
*temp
, int level
)
607 cut_slot_from_list (temp
, temp_slots_at_level (temp
->level
));
608 insert_slot_to_list (temp
, temp_slots_at_level (level
));
612 /* Make temporary slot TEMP available. */
615 make_slot_available (struct temp_slot
*temp
)
617 cut_slot_from_list (temp
, temp_slots_at_level (temp
->level
));
618 insert_slot_to_list (temp
, &avail_temp_slots
);
621 n_temp_slots_in_use
--;
624 /* Compute the hash value for an address -> temp slot mapping.
625 The value is cached on the mapping entry. */
627 temp_slot_address_compute_hash (struct temp_slot_address_entry
*t
)
629 int do_not_record
= 0;
630 return hash_rtx (t
->address
, GET_MODE (t
->address
),
631 &do_not_record
, NULL
, false);
634 /* Return the hash value for an address -> temp slot mapping. */
636 temp_slot_address_hash (const void *p
)
638 const struct temp_slot_address_entry
*t
;
639 t
= (const struct temp_slot_address_entry
*) p
;
643 /* Compare two address -> temp slot mapping entries. */
645 temp_slot_address_eq (const void *p1
, const void *p2
)
647 const struct temp_slot_address_entry
*t1
, *t2
;
648 t1
= (const struct temp_slot_address_entry
*) p1
;
649 t2
= (const struct temp_slot_address_entry
*) p2
;
650 return exp_equiv_p (t1
->address
, t2
->address
, 0, true);
653 /* Add ADDRESS as an alias of TEMP_SLOT to the addess -> temp slot mapping. */
655 insert_temp_slot_address (rtx address
, struct temp_slot
*temp_slot
)
658 struct temp_slot_address_entry
*t
= ggc_alloc_temp_slot_address_entry ();
659 t
->address
= address
;
660 t
->temp_slot
= temp_slot
;
661 t
->hash
= temp_slot_address_compute_hash (t
);
662 slot
= htab_find_slot_with_hash (temp_slot_address_table
, t
, t
->hash
, INSERT
);
666 /* Remove an address -> temp slot mapping entry if the temp slot is
667 not in use anymore. Callback for remove_unused_temp_slot_addresses. */
669 remove_unused_temp_slot_addresses_1 (void **slot
, void *data ATTRIBUTE_UNUSED
)
671 const struct temp_slot_address_entry
*t
;
672 t
= (const struct temp_slot_address_entry
*) *slot
;
673 if (! t
->temp_slot
->in_use
)
674 htab_clear_slot (temp_slot_address_table
, slot
);
678 /* Remove all mappings of addresses to unused temp slots. */
680 remove_unused_temp_slot_addresses (void)
682 /* Use quicker clearing if there aren't any active temp slots. */
683 if (n_temp_slots_in_use
)
684 htab_traverse (temp_slot_address_table
,
685 remove_unused_temp_slot_addresses_1
,
688 htab_empty (temp_slot_address_table
);
691 /* Find the temp slot corresponding to the object at address X. */
693 static struct temp_slot
*
694 find_temp_slot_from_address (rtx x
)
697 struct temp_slot_address_entry tmp
, *t
;
699 /* First try the easy way:
700 See if X exists in the address -> temp slot mapping. */
702 tmp
.temp_slot
= NULL
;
703 tmp
.hash
= temp_slot_address_compute_hash (&tmp
);
704 t
= (struct temp_slot_address_entry
*)
705 htab_find_with_hash (temp_slot_address_table
, &tmp
, tmp
.hash
);
709 /* If we have a sum involving a register, see if it points to a temp
711 if (GET_CODE (x
) == PLUS
&& REG_P (XEXP (x
, 0))
712 && (p
= find_temp_slot_from_address (XEXP (x
, 0))) != 0)
714 else if (GET_CODE (x
) == PLUS
&& REG_P (XEXP (x
, 1))
715 && (p
= find_temp_slot_from_address (XEXP (x
, 1))) != 0)
718 /* Last resort: Address is a virtual stack var address. */
719 if (GET_CODE (x
) == PLUS
720 && XEXP (x
, 0) == virtual_stack_vars_rtx
721 && CONST_INT_P (XEXP (x
, 1)))
724 for (i
= max_slot_level (); i
>= 0; i
--)
725 for (p
= *temp_slots_at_level (i
); p
; p
= p
->next
)
727 if (INTVAL (XEXP (x
, 1)) >= p
->base_offset
728 && INTVAL (XEXP (x
, 1)) < p
->base_offset
+ p
->full_size
)
736 /* Allocate a temporary stack slot and record it for possible later
739 MODE is the machine mode to be given to the returned rtx.
741 SIZE is the size in units of the space required. We do no rounding here
742 since assign_stack_local will do any required rounding.
744 TYPE is the type that will be used for the stack slot. */
747 assign_stack_temp_for_type (enum machine_mode mode
, HOST_WIDE_INT size
,
751 struct temp_slot
*p
, *best_p
= 0, *selected
= NULL
, **pp
;
754 /* If SIZE is -1 it means that somebody tried to allocate a temporary
755 of a variable size. */
756 gcc_assert (size
!= -1);
758 align
= get_stack_local_alignment (type
, mode
);
760 /* Try to find an available, already-allocated temporary of the proper
761 mode which meets the size and alignment requirements. Choose the
762 smallest one with the closest alignment.
764 If assign_stack_temp is called outside of the tree->rtl expansion,
765 we cannot reuse the stack slots (that may still refer to
766 VIRTUAL_STACK_VARS_REGNUM). */
767 if (!virtuals_instantiated
)
769 for (p
= avail_temp_slots
; p
; p
= p
->next
)
771 if (p
->align
>= align
&& p
->size
>= size
772 && GET_MODE (p
->slot
) == mode
773 && objects_must_conflict_p (p
->type
, type
)
774 && (best_p
== 0 || best_p
->size
> p
->size
775 || (best_p
->size
== p
->size
&& best_p
->align
> p
->align
)))
777 if (p
->align
== align
&& p
->size
== size
)
780 cut_slot_from_list (selected
, &avail_temp_slots
);
789 /* Make our best, if any, the one to use. */
793 cut_slot_from_list (selected
, &avail_temp_slots
);
795 /* If there are enough aligned bytes left over, make them into a new
796 temp_slot so that the extra bytes don't get wasted. Do this only
797 for BLKmode slots, so that we can be sure of the alignment. */
798 if (GET_MODE (best_p
->slot
) == BLKmode
)
800 int alignment
= best_p
->align
/ BITS_PER_UNIT
;
801 HOST_WIDE_INT rounded_size
= CEIL_ROUND (size
, alignment
);
803 if (best_p
->size
- rounded_size
>= alignment
)
805 p
= ggc_alloc_temp_slot ();
807 p
->size
= best_p
->size
- rounded_size
;
808 p
->base_offset
= best_p
->base_offset
+ rounded_size
;
809 p
->full_size
= best_p
->full_size
- rounded_size
;
810 p
->slot
= adjust_address_nv (best_p
->slot
, BLKmode
, rounded_size
);
811 p
->align
= best_p
->align
;
812 p
->type
= best_p
->type
;
813 insert_slot_to_list (p
, &avail_temp_slots
);
815 stack_slot_list
= gen_rtx_EXPR_LIST (VOIDmode
, p
->slot
,
818 best_p
->size
= rounded_size
;
819 best_p
->full_size
= rounded_size
;
824 /* If we still didn't find one, make a new temporary. */
827 HOST_WIDE_INT frame_offset_old
= frame_offset
;
829 p
= ggc_alloc_temp_slot ();
831 /* We are passing an explicit alignment request to assign_stack_local.
832 One side effect of that is assign_stack_local will not round SIZE
833 to ensure the frame offset remains suitably aligned.
835 So for requests which depended on the rounding of SIZE, we go ahead
836 and round it now. We also make sure ALIGNMENT is at least
837 BIGGEST_ALIGNMENT. */
838 gcc_assert (mode
!= BLKmode
|| align
== BIGGEST_ALIGNMENT
);
839 p
->slot
= assign_stack_local_1 (mode
,
849 /* The following slot size computation is necessary because we don't
850 know the actual size of the temporary slot until assign_stack_local
851 has performed all the frame alignment and size rounding for the
852 requested temporary. Note that extra space added for alignment
853 can be either above or below this stack slot depending on which
854 way the frame grows. We include the extra space if and only if it
855 is above this slot. */
856 if (FRAME_GROWS_DOWNWARD
)
857 p
->size
= frame_offset_old
- frame_offset
;
861 /* Now define the fields used by combine_temp_slots. */
862 if (FRAME_GROWS_DOWNWARD
)
864 p
->base_offset
= frame_offset
;
865 p
->full_size
= frame_offset_old
- frame_offset
;
869 p
->base_offset
= frame_offset_old
;
870 p
->full_size
= frame_offset
- frame_offset_old
;
879 p
->level
= temp_slot_level
;
880 n_temp_slots_in_use
++;
882 pp
= temp_slots_at_level (p
->level
);
883 insert_slot_to_list (p
, pp
);
884 insert_temp_slot_address (XEXP (p
->slot
, 0), p
);
886 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
887 slot
= gen_rtx_MEM (mode
, XEXP (p
->slot
, 0));
888 stack_slot_list
= gen_rtx_EXPR_LIST (VOIDmode
, slot
, stack_slot_list
);
890 /* If we know the alias set for the memory that will be used, use
891 it. If there's no TYPE, then we don't know anything about the
892 alias set for the memory. */
893 set_mem_alias_set (slot
, type
? get_alias_set (type
) : 0);
894 set_mem_align (slot
, align
);
896 /* If a type is specified, set the relevant flags. */
898 MEM_VOLATILE_P (slot
) = TYPE_VOLATILE (type
);
899 MEM_NOTRAP_P (slot
) = 1;
904 /* Allocate a temporary stack slot and record it for possible later
905 reuse. First two arguments are same as in preceding function. */
908 assign_stack_temp (enum machine_mode mode
, HOST_WIDE_INT size
)
910 return assign_stack_temp_for_type (mode
, size
, NULL_TREE
);
913 /* Assign a temporary.
914 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
915 and so that should be used in error messages. In either case, we
916 allocate of the given type.
917 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
918 it is 0 if a register is OK.
919 DONT_PROMOTE is 1 if we should not promote values in register
923 assign_temp (tree type_or_decl
, int memory_required
,
924 int dont_promote ATTRIBUTE_UNUSED
)
927 enum machine_mode mode
;
932 if (DECL_P (type_or_decl
))
933 decl
= type_or_decl
, type
= TREE_TYPE (decl
);
935 decl
= NULL
, type
= type_or_decl
;
937 mode
= TYPE_MODE (type
);
939 unsignedp
= TYPE_UNSIGNED (type
);
942 if (mode
== BLKmode
|| memory_required
)
944 HOST_WIDE_INT size
= int_size_in_bytes (type
);
947 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
948 problems with allocating the stack space. */
952 /* Unfortunately, we don't yet know how to allocate variable-sized
953 temporaries. However, sometimes we can find a fixed upper limit on
954 the size, so try that instead. */
956 size
= max_int_size_in_bytes (type
);
958 /* The size of the temporary may be too large to fit into an integer. */
959 /* ??? Not sure this should happen except for user silliness, so limit
960 this to things that aren't compiler-generated temporaries. The
961 rest of the time we'll die in assign_stack_temp_for_type. */
962 if (decl
&& size
== -1
963 && TREE_CODE (TYPE_SIZE_UNIT (type
)) == INTEGER_CST
)
965 error ("size of variable %q+D is too large", decl
);
969 tmp
= assign_stack_temp_for_type (mode
, size
, type
);
975 mode
= promote_mode (type
, mode
, &unsignedp
);
978 return gen_reg_rtx (mode
);
981 /* Combine temporary stack slots which are adjacent on the stack.
983 This allows for better use of already allocated stack space. This is only
984 done for BLKmode slots because we can be sure that we won't have alignment
985 problems in this case. */
988 combine_temp_slots (void)
990 struct temp_slot
*p
, *q
, *next
, *next_q
;
993 /* We can't combine slots, because the information about which slot
994 is in which alias set will be lost. */
995 if (flag_strict_aliasing
)
998 /* If there are a lot of temp slots, don't do anything unless
999 high levels of optimization. */
1000 if (! flag_expensive_optimizations
)
1001 for (p
= avail_temp_slots
, num_slots
= 0; p
; p
= p
->next
, num_slots
++)
1002 if (num_slots
> 100 || (num_slots
> 10 && optimize
== 0))
1005 for (p
= avail_temp_slots
; p
; p
= next
)
1011 if (GET_MODE (p
->slot
) != BLKmode
)
1014 for (q
= p
->next
; q
; q
= next_q
)
1020 if (GET_MODE (q
->slot
) != BLKmode
)
1023 if (p
->base_offset
+ p
->full_size
== q
->base_offset
)
1025 /* Q comes after P; combine Q into P. */
1027 p
->full_size
+= q
->full_size
;
1030 else if (q
->base_offset
+ q
->full_size
== p
->base_offset
)
1032 /* P comes after Q; combine P into Q. */
1034 q
->full_size
+= p
->full_size
;
1039 cut_slot_from_list (q
, &avail_temp_slots
);
1042 /* Either delete P or advance past it. */
1044 cut_slot_from_list (p
, &avail_temp_slots
);
1048 /* Indicate that NEW_RTX is an alternate way of referring to the temp
1049 slot that previously was known by OLD_RTX. */
1052 update_temp_slot_address (rtx old_rtx
, rtx new_rtx
)
1054 struct temp_slot
*p
;
1056 if (rtx_equal_p (old_rtx
, new_rtx
))
1059 p
= find_temp_slot_from_address (old_rtx
);
1061 /* If we didn't find one, see if both OLD_RTX is a PLUS. If so, and
1062 NEW_RTX is a register, see if one operand of the PLUS is a
1063 temporary location. If so, NEW_RTX points into it. Otherwise,
1064 if both OLD_RTX and NEW_RTX are a PLUS and if there is a register
1065 in common between them. If so, try a recursive call on those
1069 if (GET_CODE (old_rtx
) != PLUS
)
1072 if (REG_P (new_rtx
))
1074 update_temp_slot_address (XEXP (old_rtx
, 0), new_rtx
);
1075 update_temp_slot_address (XEXP (old_rtx
, 1), new_rtx
);
1078 else if (GET_CODE (new_rtx
) != PLUS
)
1081 if (rtx_equal_p (XEXP (old_rtx
, 0), XEXP (new_rtx
, 0)))
1082 update_temp_slot_address (XEXP (old_rtx
, 1), XEXP (new_rtx
, 1));
1083 else if (rtx_equal_p (XEXP (old_rtx
, 1), XEXP (new_rtx
, 0)))
1084 update_temp_slot_address (XEXP (old_rtx
, 0), XEXP (new_rtx
, 1));
1085 else if (rtx_equal_p (XEXP (old_rtx
, 0), XEXP (new_rtx
, 1)))
1086 update_temp_slot_address (XEXP (old_rtx
, 1), XEXP (new_rtx
, 0));
1087 else if (rtx_equal_p (XEXP (old_rtx
, 1), XEXP (new_rtx
, 1)))
1088 update_temp_slot_address (XEXP (old_rtx
, 0), XEXP (new_rtx
, 0));
1093 /* Otherwise add an alias for the temp's address. */
1094 insert_temp_slot_address (new_rtx
, p
);
1097 /* If X could be a reference to a temporary slot, mark that slot as
1098 belonging to the to one level higher than the current level. If X
1099 matched one of our slots, just mark that one. Otherwise, we can't
1100 easily predict which it is, so upgrade all of them.
1102 This is called when an ({...}) construct occurs and a statement
1103 returns a value in memory. */
1106 preserve_temp_slots (rtx x
)
1108 struct temp_slot
*p
= 0, *next
;
1113 /* If X is a register that is being used as a pointer, see if we have
1114 a temporary slot we know it points to. */
1115 if (REG_P (x
) && REG_POINTER (x
))
1116 p
= find_temp_slot_from_address (x
);
1118 /* If X is not in memory or is at a constant address, it cannot be in
1119 a temporary slot. */
1120 if (p
== 0 && (!MEM_P (x
) || CONSTANT_P (XEXP (x
, 0))))
1123 /* First see if we can find a match. */
1125 p
= find_temp_slot_from_address (XEXP (x
, 0));
1129 if (p
->level
== temp_slot_level
)
1130 move_slot_to_level (p
, temp_slot_level
- 1);
1134 /* Otherwise, preserve all non-kept slots at this level. */
1135 for (p
= *temp_slots_at_level (temp_slot_level
); p
; p
= next
)
1138 move_slot_to_level (p
, temp_slot_level
- 1);
1142 /* Free all temporaries used so far. This is normally called at the
1143 end of generating code for a statement. */
1146 free_temp_slots (void)
1148 struct temp_slot
*p
, *next
;
1149 bool some_available
= false;
1151 for (p
= *temp_slots_at_level (temp_slot_level
); p
; p
= next
)
1154 make_slot_available (p
);
1155 some_available
= true;
1160 remove_unused_temp_slot_addresses ();
1161 combine_temp_slots ();
1165 /* Push deeper into the nesting level for stack temporaries. */
1168 push_temp_slots (void)
1173 /* Pop a temporary nesting level. All slots in use in the current level
1177 pop_temp_slots (void)
1183 /* Initialize temporary slots. */
1186 init_temp_slots (void)
1188 /* We have not allocated any temporaries yet. */
1189 avail_temp_slots
= 0;
1190 vec_alloc (used_temp_slots
, 0);
1191 temp_slot_level
= 0;
1192 n_temp_slots_in_use
= 0;
1194 /* Set up the table to map addresses to temp slots. */
1195 if (! temp_slot_address_table
)
1196 temp_slot_address_table
= htab_create_ggc (32,
1197 temp_slot_address_hash
,
1198 temp_slot_address_eq
,
1201 htab_empty (temp_slot_address_table
);
1204 /* Functions and data structures to keep track of the values hard regs
1205 had at the start of the function. */
1207 /* Private type used by get_hard_reg_initial_reg, get_hard_reg_initial_val,
1208 and has_hard_reg_initial_val.. */
1209 typedef struct GTY(()) initial_value_pair
{
1212 } initial_value_pair
;
1213 /* ??? This could be a VEC but there is currently no way to define an
1214 opaque VEC type. This could be worked around by defining struct
1215 initial_value_pair in function.h. */
1216 typedef struct GTY(()) initial_value_struct
{
1219 initial_value_pair
* GTY ((length ("%h.num_entries"))) entries
;
1220 } initial_value_struct
;
1222 /* If a pseudo represents an initial hard reg (or expression), return
1223 it, else return NULL_RTX. */
1226 get_hard_reg_initial_reg (rtx reg
)
1228 struct initial_value_struct
*ivs
= crtl
->hard_reg_initial_vals
;
1234 for (i
= 0; i
< ivs
->num_entries
; i
++)
1235 if (rtx_equal_p (ivs
->entries
[i
].pseudo
, reg
))
1236 return ivs
->entries
[i
].hard_reg
;
1241 /* Make sure that there's a pseudo register of mode MODE that stores the
1242 initial value of hard register REGNO. Return an rtx for such a pseudo. */
1245 get_hard_reg_initial_val (enum machine_mode mode
, unsigned int regno
)
1247 struct initial_value_struct
*ivs
;
1250 rv
= has_hard_reg_initial_val (mode
, regno
);
1254 ivs
= crtl
->hard_reg_initial_vals
;
1257 ivs
= ggc_alloc_initial_value_struct ();
1258 ivs
->num_entries
= 0;
1259 ivs
->max_entries
= 5;
1260 ivs
->entries
= ggc_alloc_vec_initial_value_pair (5);
1261 crtl
->hard_reg_initial_vals
= ivs
;
1264 if (ivs
->num_entries
>= ivs
->max_entries
)
1266 ivs
->max_entries
+= 5;
1267 ivs
->entries
= GGC_RESIZEVEC (initial_value_pair
, ivs
->entries
,
1271 ivs
->entries
[ivs
->num_entries
].hard_reg
= gen_rtx_REG (mode
, regno
);
1272 ivs
->entries
[ivs
->num_entries
].pseudo
= gen_reg_rtx (mode
);
1274 return ivs
->entries
[ivs
->num_entries
++].pseudo
;
1277 /* See if get_hard_reg_initial_val has been used to create a pseudo
1278 for the initial value of hard register REGNO in mode MODE. Return
1279 the associated pseudo if so, otherwise return NULL. */
1282 has_hard_reg_initial_val (enum machine_mode mode
, unsigned int regno
)
1284 struct initial_value_struct
*ivs
;
1287 ivs
= crtl
->hard_reg_initial_vals
;
1289 for (i
= 0; i
< ivs
->num_entries
; i
++)
1290 if (GET_MODE (ivs
->entries
[i
].hard_reg
) == mode
1291 && REGNO (ivs
->entries
[i
].hard_reg
) == regno
)
1292 return ivs
->entries
[i
].pseudo
;
1298 emit_initial_value_sets (void)
1300 struct initial_value_struct
*ivs
= crtl
->hard_reg_initial_vals
;
1308 for (i
= 0; i
< ivs
->num_entries
; i
++)
1309 emit_move_insn (ivs
->entries
[i
].pseudo
, ivs
->entries
[i
].hard_reg
);
1313 emit_insn_at_entry (seq
);
1317 /* Return the hardreg-pseudoreg initial values pair entry I and
1318 TRUE if I is a valid entry, or FALSE if I is not a valid entry. */
1320 initial_value_entry (int i
, rtx
*hreg
, rtx
*preg
)
1322 struct initial_value_struct
*ivs
= crtl
->hard_reg_initial_vals
;
1323 if (!ivs
|| i
>= ivs
->num_entries
)
1326 *hreg
= ivs
->entries
[i
].hard_reg
;
1327 *preg
= ivs
->entries
[i
].pseudo
;
1331 /* These routines are responsible for converting virtual register references
1332 to the actual hard register references once RTL generation is complete.
1334 The following four variables are used for communication between the
1335 routines. They contain the offsets of the virtual registers from their
1336 respective hard registers. */
1338 static int in_arg_offset
;
1339 static int var_offset
;
1340 static int dynamic_offset
;
1341 static int out_arg_offset
;
1342 static int cfa_offset
;
1344 /* In most machines, the stack pointer register is equivalent to the bottom
1347 #ifndef STACK_POINTER_OFFSET
1348 #define STACK_POINTER_OFFSET 0
1351 /* If not defined, pick an appropriate default for the offset of dynamically
1352 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1353 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1355 #ifndef STACK_DYNAMIC_OFFSET
1357 /* The bottom of the stack points to the actual arguments. If
1358 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1359 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1360 stack space for register parameters is not pushed by the caller, but
1361 rather part of the fixed stack areas and hence not included in
1362 `crtl->outgoing_args_size'. Nevertheless, we must allow
1363 for it when allocating stack dynamic objects. */
1365 #if defined(REG_PARM_STACK_SPACE)
1366 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1367 ((ACCUMULATE_OUTGOING_ARGS \
1368 ? (crtl->outgoing_args_size \
1369 + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
1370 : REG_PARM_STACK_SPACE (FNDECL))) \
1371 : 0) + (STACK_POINTER_OFFSET))
1373 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1374 ((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : 0) \
1375 + (STACK_POINTER_OFFSET))
1380 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1381 is a virtual register, return the equivalent hard register and set the
1382 offset indirectly through the pointer. Otherwise, return 0. */
1385 instantiate_new_reg (rtx x
, HOST_WIDE_INT
*poffset
)
1388 HOST_WIDE_INT offset
;
1390 if (x
== virtual_incoming_args_rtx
)
1392 if (stack_realign_drap
)
1394 /* Replace virtual_incoming_args_rtx with internal arg
1395 pointer if DRAP is used to realign stack. */
1396 new_rtx
= crtl
->args
.internal_arg_pointer
;
1400 new_rtx
= arg_pointer_rtx
, offset
= in_arg_offset
;
1402 else if (x
== virtual_stack_vars_rtx
)
1403 new_rtx
= frame_pointer_rtx
, offset
= var_offset
;
1404 else if (x
== virtual_stack_dynamic_rtx
)
1405 new_rtx
= stack_pointer_rtx
, offset
= dynamic_offset
;
1406 else if (x
== virtual_outgoing_args_rtx
)
1407 new_rtx
= stack_pointer_rtx
, offset
= out_arg_offset
;
1408 else if (x
== virtual_cfa_rtx
)
1410 #ifdef FRAME_POINTER_CFA_OFFSET
1411 new_rtx
= frame_pointer_rtx
;
1413 new_rtx
= arg_pointer_rtx
;
1415 offset
= cfa_offset
;
1417 else if (x
== virtual_preferred_stack_boundary_rtx
)
1419 new_rtx
= GEN_INT (crtl
->preferred_stack_boundary
/ BITS_PER_UNIT
);
1429 /* A subroutine of instantiate_virtual_regs, called via for_each_rtx.
1430 Instantiate any virtual registers present inside of *LOC. The expression
1431 is simplified, as much as possible, but is not to be considered "valid"
1432 in any sense implied by the target. If any change is made, set CHANGED
1436 instantiate_virtual_regs_in_rtx (rtx
*loc
, void *data
)
1438 HOST_WIDE_INT offset
;
1439 bool *changed
= (bool *) data
;
1446 switch (GET_CODE (x
))
1449 new_rtx
= instantiate_new_reg (x
, &offset
);
1452 *loc
= plus_constant (GET_MODE (x
), new_rtx
, offset
);
1459 new_rtx
= instantiate_new_reg (XEXP (x
, 0), &offset
);
1462 new_rtx
= plus_constant (GET_MODE (x
), new_rtx
, offset
);
1463 *loc
= simplify_gen_binary (PLUS
, GET_MODE (x
), new_rtx
, XEXP (x
, 1));
1469 /* FIXME -- from old code */
1470 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1471 we can commute the PLUS and SUBREG because pointers into the
1472 frame are well-behaved. */
1482 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1483 matches the predicate for insn CODE operand OPERAND. */
1486 safe_insn_predicate (int code
, int operand
, rtx x
)
1488 return code
< 0 || insn_operand_matches ((enum insn_code
) code
, operand
, x
);
1491 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1492 registers present inside of insn. The result will be a valid insn. */
1495 instantiate_virtual_regs_in_insn (rtx insn
)
1497 HOST_WIDE_INT offset
;
1499 bool any_change
= false;
1500 rtx set
, new_rtx
, x
, seq
;
1502 /* There are some special cases to be handled first. */
1503 set
= single_set (insn
);
1506 /* We're allowed to assign to a virtual register. This is interpreted
1507 to mean that the underlying register gets assigned the inverse
1508 transformation. This is used, for example, in the handling of
1510 new_rtx
= instantiate_new_reg (SET_DEST (set
), &offset
);
1515 for_each_rtx (&SET_SRC (set
), instantiate_virtual_regs_in_rtx
, NULL
);
1516 x
= simplify_gen_binary (PLUS
, GET_MODE (new_rtx
), SET_SRC (set
),
1517 gen_int_mode (-offset
, GET_MODE (new_rtx
)));
1518 x
= force_operand (x
, new_rtx
);
1520 emit_move_insn (new_rtx
, x
);
1525 emit_insn_before (seq
, insn
);
1530 /* Handle a straight copy from a virtual register by generating a
1531 new add insn. The difference between this and falling through
1532 to the generic case is avoiding a new pseudo and eliminating a
1533 move insn in the initial rtl stream. */
1534 new_rtx
= instantiate_new_reg (SET_SRC (set
), &offset
);
1535 if (new_rtx
&& offset
!= 0
1536 && REG_P (SET_DEST (set
))
1537 && REGNO (SET_DEST (set
)) > LAST_VIRTUAL_REGISTER
)
1541 x
= expand_simple_binop (GET_MODE (SET_DEST (set
)), PLUS
, new_rtx
,
1542 gen_int_mode (offset
,
1543 GET_MODE (SET_DEST (set
))),
1544 SET_DEST (set
), 1, OPTAB_LIB_WIDEN
);
1545 if (x
!= SET_DEST (set
))
1546 emit_move_insn (SET_DEST (set
), x
);
1551 emit_insn_before (seq
, insn
);
1556 extract_insn (insn
);
1557 insn_code
= INSN_CODE (insn
);
1559 /* Handle a plus involving a virtual register by determining if the
1560 operands remain valid if they're modified in place. */
1561 if (GET_CODE (SET_SRC (set
)) == PLUS
1562 && recog_data
.n_operands
>= 3
1563 && recog_data
.operand_loc
[1] == &XEXP (SET_SRC (set
), 0)
1564 && recog_data
.operand_loc
[2] == &XEXP (SET_SRC (set
), 1)
1565 && CONST_INT_P (recog_data
.operand
[2])
1566 && (new_rtx
= instantiate_new_reg (recog_data
.operand
[1], &offset
)))
1568 offset
+= INTVAL (recog_data
.operand
[2]);
1570 /* If the sum is zero, then replace with a plain move. */
1572 && REG_P (SET_DEST (set
))
1573 && REGNO (SET_DEST (set
)) > LAST_VIRTUAL_REGISTER
)
1576 emit_move_insn (SET_DEST (set
), new_rtx
);
1580 emit_insn_before (seq
, insn
);
1585 x
= gen_int_mode (offset
, recog_data
.operand_mode
[2]);
1587 /* Using validate_change and apply_change_group here leaves
1588 recog_data in an invalid state. Since we know exactly what
1589 we want to check, do those two by hand. */
1590 if (safe_insn_predicate (insn_code
, 1, new_rtx
)
1591 && safe_insn_predicate (insn_code
, 2, x
))
1593 *recog_data
.operand_loc
[1] = recog_data
.operand
[1] = new_rtx
;
1594 *recog_data
.operand_loc
[2] = recog_data
.operand
[2] = x
;
1597 /* Fall through into the regular operand fixup loop in
1598 order to take care of operands other than 1 and 2. */
1604 extract_insn (insn
);
1605 insn_code
= INSN_CODE (insn
);
1608 /* In the general case, we expect virtual registers to appear only in
1609 operands, and then only as either bare registers or inside memories. */
1610 for (i
= 0; i
< recog_data
.n_operands
; ++i
)
1612 x
= recog_data
.operand
[i
];
1613 switch (GET_CODE (x
))
1617 rtx addr
= XEXP (x
, 0);
1618 bool changed
= false;
1620 for_each_rtx (&addr
, instantiate_virtual_regs_in_rtx
, &changed
);
1625 x
= replace_equiv_address (x
, addr
);
1626 /* It may happen that the address with the virtual reg
1627 was valid (e.g. based on the virtual stack reg, which might
1628 be acceptable to the predicates with all offsets), whereas
1629 the address now isn't anymore, for instance when the address
1630 is still offsetted, but the base reg isn't virtual-stack-reg
1631 anymore. Below we would do a force_reg on the whole operand,
1632 but this insn might actually only accept memory. Hence,
1633 before doing that last resort, try to reload the address into
1634 a register, so this operand stays a MEM. */
1635 if (!safe_insn_predicate (insn_code
, i
, x
))
1637 addr
= force_reg (GET_MODE (addr
), addr
);
1638 x
= replace_equiv_address (x
, addr
);
1643 emit_insn_before (seq
, insn
);
1648 new_rtx
= instantiate_new_reg (x
, &offset
);
1649 if (new_rtx
== NULL
)
1657 /* Careful, special mode predicates may have stuff in
1658 insn_data[insn_code].operand[i].mode that isn't useful
1659 to us for computing a new value. */
1660 /* ??? Recognize address_operand and/or "p" constraints
1661 to see if (plus new offset) is a valid before we put
1662 this through expand_simple_binop. */
1663 x
= expand_simple_binop (GET_MODE (x
), PLUS
, new_rtx
,
1664 gen_int_mode (offset
, GET_MODE (x
)),
1665 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
1668 emit_insn_before (seq
, insn
);
1673 new_rtx
= instantiate_new_reg (SUBREG_REG (x
), &offset
);
1674 if (new_rtx
== NULL
)
1679 new_rtx
= expand_simple_binop
1680 (GET_MODE (new_rtx
), PLUS
, new_rtx
,
1681 gen_int_mode (offset
, GET_MODE (new_rtx
)),
1682 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
1685 emit_insn_before (seq
, insn
);
1687 x
= simplify_gen_subreg (recog_data
.operand_mode
[i
], new_rtx
,
1688 GET_MODE (new_rtx
), SUBREG_BYTE (x
));
1696 /* At this point, X contains the new value for the operand.
1697 Validate the new value vs the insn predicate. Note that
1698 asm insns will have insn_code -1 here. */
1699 if (!safe_insn_predicate (insn_code
, i
, x
))
1704 gcc_assert (REGNO (x
) <= LAST_VIRTUAL_REGISTER
);
1705 x
= copy_to_reg (x
);
1708 x
= force_reg (insn_data
[insn_code
].operand
[i
].mode
, x
);
1712 emit_insn_before (seq
, insn
);
1715 *recog_data
.operand_loc
[i
] = recog_data
.operand
[i
] = x
;
1721 /* Propagate operand changes into the duplicates. */
1722 for (i
= 0; i
< recog_data
.n_dups
; ++i
)
1723 *recog_data
.dup_loc
[i
]
1724 = copy_rtx (recog_data
.operand
[(unsigned)recog_data
.dup_num
[i
]]);
1726 /* Force re-recognition of the instruction for validation. */
1727 INSN_CODE (insn
) = -1;
1730 if (asm_noperands (PATTERN (insn
)) >= 0)
1732 if (!check_asm_operands (PATTERN (insn
)))
1734 error_for_asm (insn
, "impossible constraint in %<asm%>");
1735 /* For asm goto, instead of fixing up all the edges
1736 just clear the template and clear input operands
1737 (asm goto doesn't have any output operands). */
1740 rtx asm_op
= extract_asm_operands (PATTERN (insn
));
1741 ASM_OPERANDS_TEMPLATE (asm_op
) = ggc_strdup ("");
1742 ASM_OPERANDS_INPUT_VEC (asm_op
) = rtvec_alloc (0);
1743 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (asm_op
) = rtvec_alloc (0);
1751 if (recog_memoized (insn
) < 0)
1752 fatal_insn_not_found (insn
);
1756 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1757 do any instantiation required. */
1760 instantiate_decl_rtl (rtx x
)
1767 /* If this is a CONCAT, recurse for the pieces. */
1768 if (GET_CODE (x
) == CONCAT
)
1770 instantiate_decl_rtl (XEXP (x
, 0));
1771 instantiate_decl_rtl (XEXP (x
, 1));
1775 /* If this is not a MEM, no need to do anything. Similarly if the
1776 address is a constant or a register that is not a virtual register. */
1781 if (CONSTANT_P (addr
)
1783 && (REGNO (addr
) < FIRST_VIRTUAL_REGISTER
1784 || REGNO (addr
) > LAST_VIRTUAL_REGISTER
)))
1787 for_each_rtx (&XEXP (x
, 0), instantiate_virtual_regs_in_rtx
, NULL
);
1790 /* Helper for instantiate_decls called via walk_tree: Process all decls
1791 in the given DECL_VALUE_EXPR. */
1794 instantiate_expr (tree
*tp
, int *walk_subtrees
, void *data ATTRIBUTE_UNUSED
)
1802 if (DECL_RTL_SET_P (t
))
1803 instantiate_decl_rtl (DECL_RTL (t
));
1804 if (TREE_CODE (t
) == PARM_DECL
&& DECL_NAMELESS (t
)
1805 && DECL_INCOMING_RTL (t
))
1806 instantiate_decl_rtl (DECL_INCOMING_RTL (t
));
1807 if ((TREE_CODE (t
) == VAR_DECL
1808 || TREE_CODE (t
) == RESULT_DECL
)
1809 && DECL_HAS_VALUE_EXPR_P (t
))
1811 tree v
= DECL_VALUE_EXPR (t
);
1812 walk_tree (&v
, instantiate_expr
, NULL
, NULL
);
1819 /* Subroutine of instantiate_decls: Process all decls in the given
1820 BLOCK node and all its subblocks. */
1823 instantiate_decls_1 (tree let
)
1827 for (t
= BLOCK_VARS (let
); t
; t
= DECL_CHAIN (t
))
1829 if (DECL_RTL_SET_P (t
))
1830 instantiate_decl_rtl (DECL_RTL (t
));
1831 if (TREE_CODE (t
) == VAR_DECL
&& DECL_HAS_VALUE_EXPR_P (t
))
1833 tree v
= DECL_VALUE_EXPR (t
);
1834 walk_tree (&v
, instantiate_expr
, NULL
, NULL
);
1838 /* Process all subblocks. */
1839 for (t
= BLOCK_SUBBLOCKS (let
); t
; t
= BLOCK_CHAIN (t
))
1840 instantiate_decls_1 (t
);
1843 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1844 all virtual registers in their DECL_RTL's. */
1847 instantiate_decls (tree fndecl
)
1852 /* Process all parameters of the function. */
1853 for (decl
= DECL_ARGUMENTS (fndecl
); decl
; decl
= DECL_CHAIN (decl
))
1855 instantiate_decl_rtl (DECL_RTL (decl
));
1856 instantiate_decl_rtl (DECL_INCOMING_RTL (decl
));
1857 if (DECL_HAS_VALUE_EXPR_P (decl
))
1859 tree v
= DECL_VALUE_EXPR (decl
);
1860 walk_tree (&v
, instantiate_expr
, NULL
, NULL
);
1864 if ((decl
= DECL_RESULT (fndecl
))
1865 && TREE_CODE (decl
) == RESULT_DECL
)
1867 if (DECL_RTL_SET_P (decl
))
1868 instantiate_decl_rtl (DECL_RTL (decl
));
1869 if (DECL_HAS_VALUE_EXPR_P (decl
))
1871 tree v
= DECL_VALUE_EXPR (decl
);
1872 walk_tree (&v
, instantiate_expr
, NULL
, NULL
);
1876 /* Now process all variables defined in the function or its subblocks. */
1877 instantiate_decls_1 (DECL_INITIAL (fndecl
));
1879 FOR_EACH_LOCAL_DECL (cfun
, ix
, decl
)
1880 if (DECL_RTL_SET_P (decl
))
1881 instantiate_decl_rtl (DECL_RTL (decl
));
1882 vec_free (cfun
->local_decls
);
1885 /* Pass through the INSNS of function FNDECL and convert virtual register
1886 references to hard register references. */
1889 instantiate_virtual_regs (void)
1893 /* Compute the offsets to use for this function. */
1894 in_arg_offset
= FIRST_PARM_OFFSET (current_function_decl
);
1895 var_offset
= STARTING_FRAME_OFFSET
;
1896 dynamic_offset
= STACK_DYNAMIC_OFFSET (current_function_decl
);
1897 out_arg_offset
= STACK_POINTER_OFFSET
;
1898 #ifdef FRAME_POINTER_CFA_OFFSET
1899 cfa_offset
= FRAME_POINTER_CFA_OFFSET (current_function_decl
);
1901 cfa_offset
= ARG_POINTER_CFA_OFFSET (current_function_decl
);
1904 /* Initialize recognition, indicating that volatile is OK. */
1907 /* Scan through all the insns, instantiating every virtual register still
1909 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
1912 /* These patterns in the instruction stream can never be recognized.
1913 Fortunately, they shouldn't contain virtual registers either. */
1914 if (GET_CODE (PATTERN (insn
)) == USE
1915 || GET_CODE (PATTERN (insn
)) == CLOBBER
1916 || GET_CODE (PATTERN (insn
)) == ASM_INPUT
)
1918 else if (DEBUG_INSN_P (insn
))
1919 for_each_rtx (&INSN_VAR_LOCATION (insn
),
1920 instantiate_virtual_regs_in_rtx
, NULL
);
1922 instantiate_virtual_regs_in_insn (insn
);
1924 if (INSN_DELETED_P (insn
))
1927 for_each_rtx (®_NOTES (insn
), instantiate_virtual_regs_in_rtx
, NULL
);
1929 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1931 for_each_rtx (&CALL_INSN_FUNCTION_USAGE (insn
),
1932 instantiate_virtual_regs_in_rtx
, NULL
);
1935 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1936 instantiate_decls (current_function_decl
);
1938 targetm
.instantiate_decls ();
1940 /* Indicate that, from now on, assign_stack_local should use
1941 frame_pointer_rtx. */
1942 virtuals_instantiated
= 1;
1949 const pass_data pass_data_instantiate_virtual_regs
=
1951 RTL_PASS
, /* type */
1953 OPTGROUP_NONE
, /* optinfo_flags */
1954 false, /* has_gate */
1955 true, /* has_execute */
1956 TV_NONE
, /* tv_id */
1957 0, /* properties_required */
1958 0, /* properties_provided */
1959 0, /* properties_destroyed */
1960 0, /* todo_flags_start */
1961 0, /* todo_flags_finish */
1964 class pass_instantiate_virtual_regs
: public rtl_opt_pass
1967 pass_instantiate_virtual_regs (gcc::context
*ctxt
)
1968 : rtl_opt_pass (pass_data_instantiate_virtual_regs
, ctxt
)
1971 /* opt_pass methods: */
1972 unsigned int execute () { return instantiate_virtual_regs (); }
1974 }; // class pass_instantiate_virtual_regs
1979 make_pass_instantiate_virtual_regs (gcc::context
*ctxt
)
1981 return new pass_instantiate_virtual_regs (ctxt
);
1985 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1986 This means a type for which function calls must pass an address to the
1987 function or get an address back from the function.
1988 EXP may be a type node or an expression (whose type is tested). */
1991 aggregate_value_p (const_tree exp
, const_tree fntype
)
1993 const_tree type
= (TYPE_P (exp
)) ? exp
: TREE_TYPE (exp
);
1994 int i
, regno
, nregs
;
1998 switch (TREE_CODE (fntype
))
2002 tree fndecl
= get_callee_fndecl (fntype
);
2004 ? TREE_TYPE (fndecl
)
2005 : TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (fntype
))));
2009 fntype
= TREE_TYPE (fntype
);
2014 case IDENTIFIER_NODE
:
2018 /* We don't expect other tree types here. */
2022 if (VOID_TYPE_P (type
))
2025 /* If a record should be passed the same as its first (and only) member
2026 don't pass it as an aggregate. */
2027 if (TREE_CODE (type
) == RECORD_TYPE
&& TYPE_TRANSPARENT_AGGR (type
))
2028 return aggregate_value_p (first_field (type
), fntype
);
2030 /* If the front end has decided that this needs to be passed by
2031 reference, do so. */
2032 if ((TREE_CODE (exp
) == PARM_DECL
|| TREE_CODE (exp
) == RESULT_DECL
)
2033 && DECL_BY_REFERENCE (exp
))
2036 /* Function types that are TREE_ADDRESSABLE force return in memory. */
2037 if (fntype
&& TREE_ADDRESSABLE (fntype
))
2040 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
2041 and thus can't be returned in registers. */
2042 if (TREE_ADDRESSABLE (type
))
2045 if (flag_pcc_struct_return
&& AGGREGATE_TYPE_P (type
))
2048 if (targetm
.calls
.return_in_memory (type
, fntype
))
2051 /* Make sure we have suitable call-clobbered regs to return
2052 the value in; if not, we must return it in memory. */
2053 reg
= hard_function_value (type
, 0, fntype
, 0);
2055 /* If we have something other than a REG (e.g. a PARALLEL), then assume
2060 regno
= REGNO (reg
);
2061 nregs
= hard_regno_nregs
[regno
][TYPE_MODE (type
)];
2062 for (i
= 0; i
< nregs
; i
++)
2063 if (! call_used_regs
[regno
+ i
])
2069 /* Return true if we should assign DECL a pseudo register; false if it
2070 should live on the local stack. */
2073 use_register_for_decl (const_tree decl
)
2075 if (!targetm
.calls
.allocate_stack_slots_for_args ())
2078 /* Honor volatile. */
2079 if (TREE_SIDE_EFFECTS (decl
))
2082 /* Honor addressability. */
2083 if (TREE_ADDRESSABLE (decl
))
2086 /* Only register-like things go in registers. */
2087 if (DECL_MODE (decl
) == BLKmode
)
2090 /* If -ffloat-store specified, don't put explicit float variables
2092 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
2093 propagates values across these stores, and it probably shouldn't. */
2094 if (flag_float_store
&& FLOAT_TYPE_P (TREE_TYPE (decl
)))
2097 /* If we're not interested in tracking debugging information for
2098 this decl, then we can certainly put it in a register. */
2099 if (DECL_IGNORED_P (decl
))
2105 if (!DECL_REGISTER (decl
))
2108 switch (TREE_CODE (TREE_TYPE (decl
)))
2112 case QUAL_UNION_TYPE
:
2113 /* When not optimizing, disregard register keyword for variables with
2114 types containing methods, otherwise the methods won't be callable
2115 from the debugger. */
2116 if (TYPE_METHODS (TREE_TYPE (decl
)))
2126 /* Return true if TYPE should be passed by invisible reference. */
2129 pass_by_reference (CUMULATIVE_ARGS
*ca
, enum machine_mode mode
,
2130 tree type
, bool named_arg
)
2134 /* If this type contains non-trivial constructors, then it is
2135 forbidden for the middle-end to create any new copies. */
2136 if (TREE_ADDRESSABLE (type
))
2139 /* GCC post 3.4 passes *all* variable sized types by reference. */
2140 if (!TYPE_SIZE (type
) || TREE_CODE (TYPE_SIZE (type
)) != INTEGER_CST
)
2143 /* If a record type should be passed the same as its first (and only)
2144 member, use the type and mode of that member. */
2145 if (TREE_CODE (type
) == RECORD_TYPE
&& TYPE_TRANSPARENT_AGGR (type
))
2147 type
= TREE_TYPE (first_field (type
));
2148 mode
= TYPE_MODE (type
);
2152 return targetm
.calls
.pass_by_reference (pack_cumulative_args (ca
), mode
,
2156 /* Return true if TYPE, which is passed by reference, should be callee
2157 copied instead of caller copied. */
2160 reference_callee_copied (CUMULATIVE_ARGS
*ca
, enum machine_mode mode
,
2161 tree type
, bool named_arg
)
2163 if (type
&& TREE_ADDRESSABLE (type
))
2165 return targetm
.calls
.callee_copies (pack_cumulative_args (ca
), mode
, type
,
2169 /* Structures to communicate between the subroutines of assign_parms.
2170 The first holds data persistent across all parameters, the second
2171 is cleared out for each parameter. */
2173 struct assign_parm_data_all
2175 /* When INIT_CUMULATIVE_ARGS gets revamped, allocating CUMULATIVE_ARGS
2176 should become a job of the target or otherwise encapsulated. */
2177 CUMULATIVE_ARGS args_so_far_v
;
2178 cumulative_args_t args_so_far
;
2179 struct args_size stack_args_size
;
2180 tree function_result_decl
;
2182 rtx first_conversion_insn
;
2183 rtx last_conversion_insn
;
2184 HOST_WIDE_INT pretend_args_size
;
2185 HOST_WIDE_INT extra_pretend_bytes
;
2186 int reg_parm_stack_space
;
2189 struct assign_parm_data_one
2195 enum machine_mode nominal_mode
;
2196 enum machine_mode passed_mode
;
2197 enum machine_mode promoted_mode
;
2198 struct locate_and_pad_arg_data locate
;
2200 BOOL_BITFIELD named_arg
: 1;
2201 BOOL_BITFIELD passed_pointer
: 1;
2202 BOOL_BITFIELD on_stack
: 1;
2203 BOOL_BITFIELD loaded_in_reg
: 1;
2206 /* A subroutine of assign_parms. Initialize ALL. */
2209 assign_parms_initialize_all (struct assign_parm_data_all
*all
)
2211 tree fntype ATTRIBUTE_UNUSED
;
2213 memset (all
, 0, sizeof (*all
));
2215 fntype
= TREE_TYPE (current_function_decl
);
2217 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2218 INIT_CUMULATIVE_INCOMING_ARGS (all
->args_so_far_v
, fntype
, NULL_RTX
);
2220 INIT_CUMULATIVE_ARGS (all
->args_so_far_v
, fntype
, NULL_RTX
,
2221 current_function_decl
, -1);
2223 all
->args_so_far
= pack_cumulative_args (&all
->args_so_far_v
);
2225 #ifdef REG_PARM_STACK_SPACE
2226 all
->reg_parm_stack_space
= REG_PARM_STACK_SPACE (current_function_decl
);
2230 /* If ARGS contains entries with complex types, split the entry into two
2231 entries of the component type. Return a new list of substitutions are
2232 needed, else the old list. */
2235 split_complex_args (vec
<tree
> *args
)
2240 FOR_EACH_VEC_ELT (*args
, i
, p
)
2242 tree type
= TREE_TYPE (p
);
2243 if (TREE_CODE (type
) == COMPLEX_TYPE
2244 && targetm
.calls
.split_complex_arg (type
))
2247 tree subtype
= TREE_TYPE (type
);
2248 bool addressable
= TREE_ADDRESSABLE (p
);
2250 /* Rewrite the PARM_DECL's type with its component. */
2252 TREE_TYPE (p
) = subtype
;
2253 DECL_ARG_TYPE (p
) = TREE_TYPE (DECL_ARG_TYPE (p
));
2254 DECL_MODE (p
) = VOIDmode
;
2255 DECL_SIZE (p
) = NULL
;
2256 DECL_SIZE_UNIT (p
) = NULL
;
2257 /* If this arg must go in memory, put it in a pseudo here.
2258 We can't allow it to go in memory as per normal parms,
2259 because the usual place might not have the imag part
2260 adjacent to the real part. */
2261 DECL_ARTIFICIAL (p
) = addressable
;
2262 DECL_IGNORED_P (p
) = addressable
;
2263 TREE_ADDRESSABLE (p
) = 0;
2267 /* Build a second synthetic decl. */
2268 decl
= build_decl (EXPR_LOCATION (p
),
2269 PARM_DECL
, NULL_TREE
, subtype
);
2270 DECL_ARG_TYPE (decl
) = DECL_ARG_TYPE (p
);
2271 DECL_ARTIFICIAL (decl
) = addressable
;
2272 DECL_IGNORED_P (decl
) = addressable
;
2273 layout_decl (decl
, 0);
2274 args
->safe_insert (++i
, decl
);
2279 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2280 the hidden struct return argument, and (abi willing) complex args.
2281 Return the new parameter list. */
2284 assign_parms_augmented_arg_list (struct assign_parm_data_all
*all
)
2286 tree fndecl
= current_function_decl
;
2287 tree fntype
= TREE_TYPE (fndecl
);
2288 vec
<tree
> fnargs
= vNULL
;
2291 for (arg
= DECL_ARGUMENTS (fndecl
); arg
; arg
= DECL_CHAIN (arg
))
2292 fnargs
.safe_push (arg
);
2294 all
->orig_fnargs
= DECL_ARGUMENTS (fndecl
);
2296 /* If struct value address is treated as the first argument, make it so. */
2297 if (aggregate_value_p (DECL_RESULT (fndecl
), fndecl
)
2298 && ! cfun
->returns_pcc_struct
2299 && targetm
.calls
.struct_value_rtx (TREE_TYPE (fndecl
), 1) == 0)
2301 tree type
= build_pointer_type (TREE_TYPE (fntype
));
2304 decl
= build_decl (DECL_SOURCE_LOCATION (fndecl
),
2305 PARM_DECL
, get_identifier (".result_ptr"), type
);
2306 DECL_ARG_TYPE (decl
) = type
;
2307 DECL_ARTIFICIAL (decl
) = 1;
2308 DECL_NAMELESS (decl
) = 1;
2309 TREE_CONSTANT (decl
) = 1;
2311 DECL_CHAIN (decl
) = all
->orig_fnargs
;
2312 all
->orig_fnargs
= decl
;
2313 fnargs
.safe_insert (0, decl
);
2315 all
->function_result_decl
= decl
;
2318 /* If the target wants to split complex arguments into scalars, do so. */
2319 if (targetm
.calls
.split_complex_arg
)
2320 split_complex_args (&fnargs
);
2325 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2326 data for the parameter. Incorporate ABI specifics such as pass-by-
2327 reference and type promotion. */
2330 assign_parm_find_data_types (struct assign_parm_data_all
*all
, tree parm
,
2331 struct assign_parm_data_one
*data
)
2333 tree nominal_type
, passed_type
;
2334 enum machine_mode nominal_mode
, passed_mode
, promoted_mode
;
2337 memset (data
, 0, sizeof (*data
));
2339 /* NAMED_ARG is a misnomer. We really mean 'non-variadic'. */
2341 data
->named_arg
= 1; /* No variadic parms. */
2342 else if (DECL_CHAIN (parm
))
2343 data
->named_arg
= 1; /* Not the last non-variadic parm. */
2344 else if (targetm
.calls
.strict_argument_naming (all
->args_so_far
))
2345 data
->named_arg
= 1; /* Only variadic ones are unnamed. */
2347 data
->named_arg
= 0; /* Treat as variadic. */
2349 nominal_type
= TREE_TYPE (parm
);
2350 passed_type
= DECL_ARG_TYPE (parm
);
2352 /* Look out for errors propagating this far. Also, if the parameter's
2353 type is void then its value doesn't matter. */
2354 if (TREE_TYPE (parm
) == error_mark_node
2355 /* This can happen after weird syntax errors
2356 or if an enum type is defined among the parms. */
2357 || TREE_CODE (parm
) != PARM_DECL
2358 || passed_type
== NULL
2359 || VOID_TYPE_P (nominal_type
))
2361 nominal_type
= passed_type
= void_type_node
;
2362 nominal_mode
= passed_mode
= promoted_mode
= VOIDmode
;
2366 /* Find mode of arg as it is passed, and mode of arg as it should be
2367 during execution of this function. */
2368 passed_mode
= TYPE_MODE (passed_type
);
2369 nominal_mode
= TYPE_MODE (nominal_type
);
2371 /* If the parm is to be passed as a transparent union or record, use the
2372 type of the first field for the tests below. We have already verified
2373 that the modes are the same. */
2374 if ((TREE_CODE (passed_type
) == UNION_TYPE
2375 || TREE_CODE (passed_type
) == RECORD_TYPE
)
2376 && TYPE_TRANSPARENT_AGGR (passed_type
))
2377 passed_type
= TREE_TYPE (first_field (passed_type
));
2379 /* See if this arg was passed by invisible reference. */
2380 if (pass_by_reference (&all
->args_so_far_v
, passed_mode
,
2381 passed_type
, data
->named_arg
))
2383 passed_type
= nominal_type
= build_pointer_type (passed_type
);
2384 data
->passed_pointer
= true;
2385 passed_mode
= nominal_mode
= TYPE_MODE (nominal_type
);
2388 /* Find mode as it is passed by the ABI. */
2389 unsignedp
= TYPE_UNSIGNED (passed_type
);
2390 promoted_mode
= promote_function_mode (passed_type
, passed_mode
, &unsignedp
,
2391 TREE_TYPE (current_function_decl
), 0);
2394 data
->nominal_type
= nominal_type
;
2395 data
->passed_type
= passed_type
;
2396 data
->nominal_mode
= nominal_mode
;
2397 data
->passed_mode
= passed_mode
;
2398 data
->promoted_mode
= promoted_mode
;
2401 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2404 assign_parms_setup_varargs (struct assign_parm_data_all
*all
,
2405 struct assign_parm_data_one
*data
, bool no_rtl
)
2407 int varargs_pretend_bytes
= 0;
2409 targetm
.calls
.setup_incoming_varargs (all
->args_so_far
,
2410 data
->promoted_mode
,
2412 &varargs_pretend_bytes
, no_rtl
);
2414 /* If the back-end has requested extra stack space, record how much is
2415 needed. Do not change pretend_args_size otherwise since it may be
2416 nonzero from an earlier partial argument. */
2417 if (varargs_pretend_bytes
> 0)
2418 all
->pretend_args_size
= varargs_pretend_bytes
;
2421 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2422 the incoming location of the current parameter. */
2425 assign_parm_find_entry_rtl (struct assign_parm_data_all
*all
,
2426 struct assign_parm_data_one
*data
)
2428 HOST_WIDE_INT pretend_bytes
= 0;
2432 if (data
->promoted_mode
== VOIDmode
)
2434 data
->entry_parm
= data
->stack_parm
= const0_rtx
;
2438 entry_parm
= targetm
.calls
.function_incoming_arg (all
->args_so_far
,
2439 data
->promoted_mode
,
2443 if (entry_parm
== 0)
2444 data
->promoted_mode
= data
->passed_mode
;
2446 /* Determine parm's home in the stack, in case it arrives in the stack
2447 or we should pretend it did. Compute the stack position and rtx where
2448 the argument arrives and its size.
2450 There is one complexity here: If this was a parameter that would
2451 have been passed in registers, but wasn't only because it is
2452 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2453 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2454 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2455 as it was the previous time. */
2456 in_regs
= entry_parm
!= 0;
2457 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2460 if (!in_regs
&& !data
->named_arg
)
2462 if (targetm
.calls
.pretend_outgoing_varargs_named (all
->args_so_far
))
2465 tem
= targetm
.calls
.function_incoming_arg (all
->args_so_far
,
2466 data
->promoted_mode
,
2467 data
->passed_type
, true);
2468 in_regs
= tem
!= NULL
;
2472 /* If this parameter was passed both in registers and in the stack, use
2473 the copy on the stack. */
2474 if (targetm
.calls
.must_pass_in_stack (data
->promoted_mode
,
2482 partial
= targetm
.calls
.arg_partial_bytes (all
->args_so_far
,
2483 data
->promoted_mode
,
2486 data
->partial
= partial
;
2488 /* The caller might already have allocated stack space for the
2489 register parameters. */
2490 if (partial
!= 0 && all
->reg_parm_stack_space
== 0)
2492 /* Part of this argument is passed in registers and part
2493 is passed on the stack. Ask the prologue code to extend
2494 the stack part so that we can recreate the full value.
2496 PRETEND_BYTES is the size of the registers we need to store.
2497 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2498 stack space that the prologue should allocate.
2500 Internally, gcc assumes that the argument pointer is aligned
2501 to STACK_BOUNDARY bits. This is used both for alignment
2502 optimizations (see init_emit) and to locate arguments that are
2503 aligned to more than PARM_BOUNDARY bits. We must preserve this
2504 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2505 a stack boundary. */
2507 /* We assume at most one partial arg, and it must be the first
2508 argument on the stack. */
2509 gcc_assert (!all
->extra_pretend_bytes
&& !all
->pretend_args_size
);
2511 pretend_bytes
= partial
;
2512 all
->pretend_args_size
= CEIL_ROUND (pretend_bytes
, STACK_BYTES
);
2514 /* We want to align relative to the actual stack pointer, so
2515 don't include this in the stack size until later. */
2516 all
->extra_pretend_bytes
= all
->pretend_args_size
;
2520 locate_and_pad_parm (data
->promoted_mode
, data
->passed_type
, in_regs
,
2521 all
->reg_parm_stack_space
,
2522 entry_parm
? data
->partial
: 0, current_function_decl
,
2523 &all
->stack_args_size
, &data
->locate
);
2525 /* Update parm_stack_boundary if this parameter is passed in the
2527 if (!in_regs
&& crtl
->parm_stack_boundary
< data
->locate
.boundary
)
2528 crtl
->parm_stack_boundary
= data
->locate
.boundary
;
2530 /* Adjust offsets to include the pretend args. */
2531 pretend_bytes
= all
->extra_pretend_bytes
- pretend_bytes
;
2532 data
->locate
.slot_offset
.constant
+= pretend_bytes
;
2533 data
->locate
.offset
.constant
+= pretend_bytes
;
2535 data
->entry_parm
= entry_parm
;
2538 /* A subroutine of assign_parms. If there is actually space on the stack
2539 for this parm, count it in stack_args_size and return true. */
2542 assign_parm_is_stack_parm (struct assign_parm_data_all
*all
,
2543 struct assign_parm_data_one
*data
)
2545 /* Trivially true if we've no incoming register. */
2546 if (data
->entry_parm
== NULL
)
2548 /* Also true if we're partially in registers and partially not,
2549 since we've arranged to drop the entire argument on the stack. */
2550 else if (data
->partial
!= 0)
2552 /* Also true if the target says that it's passed in both registers
2553 and on the stack. */
2554 else if (GET_CODE (data
->entry_parm
) == PARALLEL
2555 && XEXP (XVECEXP (data
->entry_parm
, 0, 0), 0) == NULL_RTX
)
2557 /* Also true if the target says that there's stack allocated for
2558 all register parameters. */
2559 else if (all
->reg_parm_stack_space
> 0)
2561 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2565 all
->stack_args_size
.constant
+= data
->locate
.size
.constant
;
2566 if (data
->locate
.size
.var
)
2567 ADD_PARM_SIZE (all
->stack_args_size
, data
->locate
.size
.var
);
2572 /* A subroutine of assign_parms. Given that this parameter is allocated
2573 stack space by the ABI, find it. */
2576 assign_parm_find_stack_rtl (tree parm
, struct assign_parm_data_one
*data
)
2578 rtx offset_rtx
, stack_parm
;
2579 unsigned int align
, boundary
;
2581 /* If we're passing this arg using a reg, make its stack home the
2582 aligned stack slot. */
2583 if (data
->entry_parm
)
2584 offset_rtx
= ARGS_SIZE_RTX (data
->locate
.slot_offset
);
2586 offset_rtx
= ARGS_SIZE_RTX (data
->locate
.offset
);
2588 stack_parm
= crtl
->args
.internal_arg_pointer
;
2589 if (offset_rtx
!= const0_rtx
)
2590 stack_parm
= gen_rtx_PLUS (Pmode
, stack_parm
, offset_rtx
);
2591 stack_parm
= gen_rtx_MEM (data
->promoted_mode
, stack_parm
);
2593 if (!data
->passed_pointer
)
2595 set_mem_attributes (stack_parm
, parm
, 1);
2596 /* set_mem_attributes could set MEM_SIZE to the passed mode's size,
2597 while promoted mode's size is needed. */
2598 if (data
->promoted_mode
!= BLKmode
2599 && data
->promoted_mode
!= DECL_MODE (parm
))
2601 set_mem_size (stack_parm
, GET_MODE_SIZE (data
->promoted_mode
));
2602 if (MEM_EXPR (stack_parm
) && MEM_OFFSET_KNOWN_P (stack_parm
))
2604 int offset
= subreg_lowpart_offset (DECL_MODE (parm
),
2605 data
->promoted_mode
);
2607 set_mem_offset (stack_parm
, MEM_OFFSET (stack_parm
) - offset
);
2612 boundary
= data
->locate
.boundary
;
2613 align
= BITS_PER_UNIT
;
2615 /* If we're padding upward, we know that the alignment of the slot
2616 is TARGET_FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2617 intentionally forcing upward padding. Otherwise we have to come
2618 up with a guess at the alignment based on OFFSET_RTX. */
2619 if (data
->locate
.where_pad
!= downward
|| data
->entry_parm
)
2621 else if (CONST_INT_P (offset_rtx
))
2623 align
= INTVAL (offset_rtx
) * BITS_PER_UNIT
| boundary
;
2624 align
= align
& -align
;
2626 set_mem_align (stack_parm
, align
);
2628 if (data
->entry_parm
)
2629 set_reg_attrs_for_parm (data
->entry_parm
, stack_parm
);
2631 data
->stack_parm
= stack_parm
;
2634 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2635 always valid and contiguous. */
2638 assign_parm_adjust_entry_rtl (struct assign_parm_data_one
*data
)
2640 rtx entry_parm
= data
->entry_parm
;
2641 rtx stack_parm
= data
->stack_parm
;
2643 /* If this parm was passed part in regs and part in memory, pretend it
2644 arrived entirely in memory by pushing the register-part onto the stack.
2645 In the special case of a DImode or DFmode that is split, we could put
2646 it together in a pseudoreg directly, but for now that's not worth
2648 if (data
->partial
!= 0)
2650 /* Handle calls that pass values in multiple non-contiguous
2651 locations. The Irix 6 ABI has examples of this. */
2652 if (GET_CODE (entry_parm
) == PARALLEL
)
2653 emit_group_store (validize_mem (stack_parm
), entry_parm
,
2655 int_size_in_bytes (data
->passed_type
));
2658 gcc_assert (data
->partial
% UNITS_PER_WORD
== 0);
2659 move_block_from_reg (REGNO (entry_parm
), validize_mem (stack_parm
),
2660 data
->partial
/ UNITS_PER_WORD
);
2663 entry_parm
= stack_parm
;
2666 /* If we didn't decide this parm came in a register, by default it came
2668 else if (entry_parm
== NULL
)
2669 entry_parm
= stack_parm
;
2671 /* When an argument is passed in multiple locations, we can't make use
2672 of this information, but we can save some copying if the whole argument
2673 is passed in a single register. */
2674 else if (GET_CODE (entry_parm
) == PARALLEL
2675 && data
->nominal_mode
!= BLKmode
2676 && data
->passed_mode
!= BLKmode
)
2678 size_t i
, len
= XVECLEN (entry_parm
, 0);
2680 for (i
= 0; i
< len
; i
++)
2681 if (XEXP (XVECEXP (entry_parm
, 0, i
), 0) != NULL_RTX
2682 && REG_P (XEXP (XVECEXP (entry_parm
, 0, i
), 0))
2683 && (GET_MODE (XEXP (XVECEXP (entry_parm
, 0, i
), 0))
2684 == data
->passed_mode
)
2685 && INTVAL (XEXP (XVECEXP (entry_parm
, 0, i
), 1)) == 0)
2687 entry_parm
= XEXP (XVECEXP (entry_parm
, 0, i
), 0);
2692 data
->entry_parm
= entry_parm
;
2695 /* A subroutine of assign_parms. Reconstitute any values which were
2696 passed in multiple registers and would fit in a single register. */
2699 assign_parm_remove_parallels (struct assign_parm_data_one
*data
)
2701 rtx entry_parm
= data
->entry_parm
;
2703 /* Convert the PARALLEL to a REG of the same mode as the parallel.
2704 This can be done with register operations rather than on the
2705 stack, even if we will store the reconstituted parameter on the
2707 if (GET_CODE (entry_parm
) == PARALLEL
&& GET_MODE (entry_parm
) != BLKmode
)
2709 rtx parmreg
= gen_reg_rtx (GET_MODE (entry_parm
));
2710 emit_group_store (parmreg
, entry_parm
, data
->passed_type
,
2711 GET_MODE_SIZE (GET_MODE (entry_parm
)));
2712 entry_parm
= parmreg
;
2715 data
->entry_parm
= entry_parm
;
2718 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2719 always valid and properly aligned. */
2722 assign_parm_adjust_stack_rtl (struct assign_parm_data_one
*data
)
2724 rtx stack_parm
= data
->stack_parm
;
2726 /* If we can't trust the parm stack slot to be aligned enough for its
2727 ultimate type, don't use that slot after entry. We'll make another
2728 stack slot, if we need one. */
2730 && ((STRICT_ALIGNMENT
2731 && GET_MODE_ALIGNMENT (data
->nominal_mode
) > MEM_ALIGN (stack_parm
))
2732 || (data
->nominal_type
2733 && TYPE_ALIGN (data
->nominal_type
) > MEM_ALIGN (stack_parm
)
2734 && MEM_ALIGN (stack_parm
) < PREFERRED_STACK_BOUNDARY
)))
2737 /* If parm was passed in memory, and we need to convert it on entry,
2738 don't store it back in that same slot. */
2739 else if (data
->entry_parm
== stack_parm
2740 && data
->nominal_mode
!= BLKmode
2741 && data
->nominal_mode
!= data
->passed_mode
)
2744 /* If stack protection is in effect for this function, don't leave any
2745 pointers in their passed stack slots. */
2746 else if (crtl
->stack_protect_guard
2747 && (flag_stack_protect
== 2
2748 || data
->passed_pointer
2749 || POINTER_TYPE_P (data
->nominal_type
)))
2752 data
->stack_parm
= stack_parm
;
2755 /* A subroutine of assign_parms. Return true if the current parameter
2756 should be stored as a BLKmode in the current frame. */
2759 assign_parm_setup_block_p (struct assign_parm_data_one
*data
)
2761 if (data
->nominal_mode
== BLKmode
)
2763 if (GET_MODE (data
->entry_parm
) == BLKmode
)
2766 #ifdef BLOCK_REG_PADDING
2767 /* Only assign_parm_setup_block knows how to deal with register arguments
2768 that are padded at the least significant end. */
2769 if (REG_P (data
->entry_parm
)
2770 && GET_MODE_SIZE (data
->promoted_mode
) < UNITS_PER_WORD
2771 && (BLOCK_REG_PADDING (data
->passed_mode
, data
->passed_type
, 1)
2772 == (BYTES_BIG_ENDIAN
? upward
: downward
)))
2779 /* A subroutine of assign_parms. Arrange for the parameter to be
2780 present and valid in DATA->STACK_RTL. */
2783 assign_parm_setup_block (struct assign_parm_data_all
*all
,
2784 tree parm
, struct assign_parm_data_one
*data
)
2786 rtx entry_parm
= data
->entry_parm
;
2787 rtx stack_parm
= data
->stack_parm
;
2789 HOST_WIDE_INT size_stored
;
2791 if (GET_CODE (entry_parm
) == PARALLEL
)
2792 entry_parm
= emit_group_move_into_temps (entry_parm
);
2794 size
= int_size_in_bytes (data
->passed_type
);
2795 size_stored
= CEIL_ROUND (size
, UNITS_PER_WORD
);
2796 if (stack_parm
== 0)
2798 DECL_ALIGN (parm
) = MAX (DECL_ALIGN (parm
), BITS_PER_WORD
);
2799 stack_parm
= assign_stack_local (BLKmode
, size_stored
,
2801 if (GET_MODE_SIZE (GET_MODE (entry_parm
)) == size
)
2802 PUT_MODE (stack_parm
, GET_MODE (entry_parm
));
2803 set_mem_attributes (stack_parm
, parm
, 1);
2806 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2807 calls that pass values in multiple non-contiguous locations. */
2808 if (REG_P (entry_parm
) || GET_CODE (entry_parm
) == PARALLEL
)
2812 /* Note that we will be storing an integral number of words.
2813 So we have to be careful to ensure that we allocate an
2814 integral number of words. We do this above when we call
2815 assign_stack_local if space was not allocated in the argument
2816 list. If it was, this will not work if PARM_BOUNDARY is not
2817 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2818 if it becomes a problem. Exception is when BLKmode arrives
2819 with arguments not conforming to word_mode. */
2821 if (data
->stack_parm
== 0)
2823 else if (GET_CODE (entry_parm
) == PARALLEL
)
2826 gcc_assert (!size
|| !(PARM_BOUNDARY
% BITS_PER_WORD
));
2828 mem
= validize_mem (stack_parm
);
2830 /* Handle values in multiple non-contiguous locations. */
2831 if (GET_CODE (entry_parm
) == PARALLEL
)
2833 push_to_sequence2 (all
->first_conversion_insn
,
2834 all
->last_conversion_insn
);
2835 emit_group_store (mem
, entry_parm
, data
->passed_type
, size
);
2836 all
->first_conversion_insn
= get_insns ();
2837 all
->last_conversion_insn
= get_last_insn ();
2844 /* If SIZE is that of a mode no bigger than a word, just use
2845 that mode's store operation. */
2846 else if (size
<= UNITS_PER_WORD
)
2848 enum machine_mode mode
2849 = mode_for_size (size
* BITS_PER_UNIT
, MODE_INT
, 0);
2852 #ifdef BLOCK_REG_PADDING
2853 && (size
== UNITS_PER_WORD
2854 || (BLOCK_REG_PADDING (mode
, data
->passed_type
, 1)
2855 != (BYTES_BIG_ENDIAN
? upward
: downward
)))
2861 /* We are really truncating a word_mode value containing
2862 SIZE bytes into a value of mode MODE. If such an
2863 operation requires no actual instructions, we can refer
2864 to the value directly in mode MODE, otherwise we must
2865 start with the register in word_mode and explicitly
2867 if (TRULY_NOOP_TRUNCATION (size
* BITS_PER_UNIT
, BITS_PER_WORD
))
2868 reg
= gen_rtx_REG (mode
, REGNO (entry_parm
));
2871 reg
= gen_rtx_REG (word_mode
, REGNO (entry_parm
));
2872 reg
= convert_to_mode (mode
, copy_to_reg (reg
), 1);
2874 emit_move_insn (change_address (mem
, mode
, 0), reg
);
2877 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2878 machine must be aligned to the left before storing
2879 to memory. Note that the previous test doesn't
2880 handle all cases (e.g. SIZE == 3). */
2881 else if (size
!= UNITS_PER_WORD
2882 #ifdef BLOCK_REG_PADDING
2883 && (BLOCK_REG_PADDING (mode
, data
->passed_type
, 1)
2891 int by
= (UNITS_PER_WORD
- size
) * BITS_PER_UNIT
;
2892 rtx reg
= gen_rtx_REG (word_mode
, REGNO (entry_parm
));
2894 x
= expand_shift (LSHIFT_EXPR
, word_mode
, reg
, by
, NULL_RTX
, 1);
2895 tem
= change_address (mem
, word_mode
, 0);
2896 emit_move_insn (tem
, x
);
2899 move_block_from_reg (REGNO (entry_parm
), mem
,
2900 size_stored
/ UNITS_PER_WORD
);
2903 move_block_from_reg (REGNO (entry_parm
), mem
,
2904 size_stored
/ UNITS_PER_WORD
);
2906 else if (data
->stack_parm
== 0)
2908 push_to_sequence2 (all
->first_conversion_insn
, all
->last_conversion_insn
);
2909 emit_block_move (stack_parm
, data
->entry_parm
, GEN_INT (size
),
2911 all
->first_conversion_insn
= get_insns ();
2912 all
->last_conversion_insn
= get_last_insn ();
2916 data
->stack_parm
= stack_parm
;
2917 SET_DECL_RTL (parm
, stack_parm
);
2920 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
2921 parameter. Get it there. Perform all ABI specified conversions. */
2924 assign_parm_setup_reg (struct assign_parm_data_all
*all
, tree parm
,
2925 struct assign_parm_data_one
*data
)
2927 rtx parmreg
, validated_mem
;
2928 rtx equiv_stack_parm
;
2929 enum machine_mode promoted_nominal_mode
;
2930 int unsignedp
= TYPE_UNSIGNED (TREE_TYPE (parm
));
2931 bool did_conversion
= false;
2932 bool need_conversion
, moved
;
2934 /* Store the parm in a pseudoregister during the function, but we may
2935 need to do it in a wider mode. Using 2 here makes the result
2936 consistent with promote_decl_mode and thus expand_expr_real_1. */
2937 promoted_nominal_mode
2938 = promote_function_mode (data
->nominal_type
, data
->nominal_mode
, &unsignedp
,
2939 TREE_TYPE (current_function_decl
), 2);
2941 parmreg
= gen_reg_rtx (promoted_nominal_mode
);
2943 if (!DECL_ARTIFICIAL (parm
))
2944 mark_user_reg (parmreg
);
2946 /* If this was an item that we received a pointer to,
2947 set DECL_RTL appropriately. */
2948 if (data
->passed_pointer
)
2950 rtx x
= gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data
->passed_type
)), parmreg
);
2951 set_mem_attributes (x
, parm
, 1);
2952 SET_DECL_RTL (parm
, x
);
2955 SET_DECL_RTL (parm
, parmreg
);
2957 assign_parm_remove_parallels (data
);
2959 /* Copy the value into the register, thus bridging between
2960 assign_parm_find_data_types and expand_expr_real_1. */
2962 equiv_stack_parm
= data
->stack_parm
;
2963 validated_mem
= validize_mem (data
->entry_parm
);
2965 need_conversion
= (data
->nominal_mode
!= data
->passed_mode
2966 || promoted_nominal_mode
!= data
->promoted_mode
);
2970 && GET_MODE_CLASS (data
->nominal_mode
) == MODE_INT
2971 && data
->nominal_mode
== data
->passed_mode
2972 && data
->nominal_mode
== GET_MODE (data
->entry_parm
))
2974 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2975 mode, by the caller. We now have to convert it to
2976 NOMINAL_MODE, if different. However, PARMREG may be in
2977 a different mode than NOMINAL_MODE if it is being stored
2980 If ENTRY_PARM is a hard register, it might be in a register
2981 not valid for operating in its mode (e.g., an odd-numbered
2982 register for a DFmode). In that case, moves are the only
2983 thing valid, so we can't do a convert from there. This
2984 occurs when the calling sequence allow such misaligned
2987 In addition, the conversion may involve a call, which could
2988 clobber parameters which haven't been copied to pseudo
2991 First, we try to emit an insn which performs the necessary
2992 conversion. We verify that this insn does not clobber any
2995 enum insn_code icode
;
2998 icode
= can_extend_p (promoted_nominal_mode
, data
->passed_mode
,
3002 op1
= validated_mem
;
3003 if (icode
!= CODE_FOR_nothing
3004 && insn_operand_matches (icode
, 0, op0
)
3005 && insn_operand_matches (icode
, 1, op1
))
3007 enum rtx_code code
= unsignedp
? ZERO_EXTEND
: SIGN_EXTEND
;
3008 rtx insn
, insns
, t
= op1
;
3009 HARD_REG_SET hardregs
;
3012 /* If op1 is a hard register that is likely spilled, first
3013 force it into a pseudo, otherwise combiner might extend
3014 its lifetime too much. */
3015 if (GET_CODE (t
) == SUBREG
)
3018 && HARD_REGISTER_P (t
)
3019 && ! TEST_HARD_REG_BIT (fixed_reg_set
, REGNO (t
))
3020 && targetm
.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (t
))))
3022 t
= gen_reg_rtx (GET_MODE (op1
));
3023 emit_move_insn (t
, op1
);
3027 insn
= gen_extend_insn (op0
, t
, promoted_nominal_mode
,
3028 data
->passed_mode
, unsignedp
);
3030 insns
= get_insns ();
3033 CLEAR_HARD_REG_SET (hardregs
);
3034 for (insn
= insns
; insn
&& moved
; insn
= NEXT_INSN (insn
))
3037 note_stores (PATTERN (insn
), record_hard_reg_sets
,
3039 if (!hard_reg_set_empty_p (hardregs
))
3048 if (equiv_stack_parm
!= NULL_RTX
)
3049 equiv_stack_parm
= gen_rtx_fmt_e (code
, GET_MODE (parmreg
),
3056 /* Nothing to do. */
3058 else if (need_conversion
)
3060 /* We did not have an insn to convert directly, or the sequence
3061 generated appeared unsafe. We must first copy the parm to a
3062 pseudo reg, and save the conversion until after all
3063 parameters have been moved. */
3066 rtx tempreg
= gen_reg_rtx (GET_MODE (data
->entry_parm
));
3068 emit_move_insn (tempreg
, validated_mem
);
3070 push_to_sequence2 (all
->first_conversion_insn
, all
->last_conversion_insn
);
3071 tempreg
= convert_to_mode (data
->nominal_mode
, tempreg
, unsignedp
);
3073 if (GET_CODE (tempreg
) == SUBREG
3074 && GET_MODE (tempreg
) == data
->nominal_mode
3075 && REG_P (SUBREG_REG (tempreg
))
3076 && data
->nominal_mode
== data
->passed_mode
3077 && GET_MODE (SUBREG_REG (tempreg
)) == GET_MODE (data
->entry_parm
)
3078 && GET_MODE_SIZE (GET_MODE (tempreg
))
3079 < GET_MODE_SIZE (GET_MODE (data
->entry_parm
)))
3081 /* The argument is already sign/zero extended, so note it
3083 SUBREG_PROMOTED_VAR_P (tempreg
) = 1;
3084 SUBREG_PROMOTED_UNSIGNED_SET (tempreg
, unsignedp
);
3087 /* TREE_USED gets set erroneously during expand_assignment. */
3088 save_tree_used
= TREE_USED (parm
);
3089 expand_assignment (parm
, make_tree (data
->nominal_type
, tempreg
), false);
3090 TREE_USED (parm
) = save_tree_used
;
3091 all
->first_conversion_insn
= get_insns ();
3092 all
->last_conversion_insn
= get_last_insn ();
3095 did_conversion
= true;
3098 emit_move_insn (parmreg
, validated_mem
);
3100 /* If we were passed a pointer but the actual value can safely live
3101 in a register, retrieve it and use it directly. */
3102 if (data
->passed_pointer
&& TYPE_MODE (TREE_TYPE (parm
)) != BLKmode
)
3104 /* We can't use nominal_mode, because it will have been set to
3105 Pmode above. We must use the actual mode of the parm. */
3106 if (use_register_for_decl (parm
))
3108 parmreg
= gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm
)));
3109 mark_user_reg (parmreg
);
3113 int align
= STACK_SLOT_ALIGNMENT (TREE_TYPE (parm
),
3114 TYPE_MODE (TREE_TYPE (parm
)),
3115 TYPE_ALIGN (TREE_TYPE (parm
)));
3117 = assign_stack_local (TYPE_MODE (TREE_TYPE (parm
)),
3118 GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (parm
))),
3120 set_mem_attributes (parmreg
, parm
, 1);
3123 if (GET_MODE (parmreg
) != GET_MODE (DECL_RTL (parm
)))
3125 rtx tempreg
= gen_reg_rtx (GET_MODE (DECL_RTL (parm
)));
3126 int unsigned_p
= TYPE_UNSIGNED (TREE_TYPE (parm
));
3128 push_to_sequence2 (all
->first_conversion_insn
,
3129 all
->last_conversion_insn
);
3130 emit_move_insn (tempreg
, DECL_RTL (parm
));
3131 tempreg
= convert_to_mode (GET_MODE (parmreg
), tempreg
, unsigned_p
);
3132 emit_move_insn (parmreg
, tempreg
);
3133 all
->first_conversion_insn
= get_insns ();
3134 all
->last_conversion_insn
= get_last_insn ();
3137 did_conversion
= true;
3140 emit_move_insn (parmreg
, DECL_RTL (parm
));
3142 SET_DECL_RTL (parm
, parmreg
);
3144 /* STACK_PARM is the pointer, not the parm, and PARMREG is
3146 data
->stack_parm
= NULL
;
3149 /* Mark the register as eliminable if we did no conversion and it was
3150 copied from memory at a fixed offset, and the arg pointer was not
3151 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
3152 offset formed an invalid address, such memory-equivalences as we
3153 make here would screw up life analysis for it. */
3154 if (data
->nominal_mode
== data
->passed_mode
3156 && data
->stack_parm
!= 0
3157 && MEM_P (data
->stack_parm
)
3158 && data
->locate
.offset
.var
== 0
3159 && reg_mentioned_p (virtual_incoming_args_rtx
,
3160 XEXP (data
->stack_parm
, 0)))
3162 rtx linsn
= get_last_insn ();
3165 /* Mark complex types separately. */
3166 if (GET_CODE (parmreg
) == CONCAT
)
3168 enum machine_mode submode
3169 = GET_MODE_INNER (GET_MODE (parmreg
));
3170 int regnor
= REGNO (XEXP (parmreg
, 0));
3171 int regnoi
= REGNO (XEXP (parmreg
, 1));
3172 rtx stackr
= adjust_address_nv (data
->stack_parm
, submode
, 0);
3173 rtx stacki
= adjust_address_nv (data
->stack_parm
, submode
,
3174 GET_MODE_SIZE (submode
));
3176 /* Scan backwards for the set of the real and
3178 for (sinsn
= linsn
; sinsn
!= 0;
3179 sinsn
= prev_nonnote_insn (sinsn
))
3181 set
= single_set (sinsn
);
3185 if (SET_DEST (set
) == regno_reg_rtx
[regnoi
])
3186 set_unique_reg_note (sinsn
, REG_EQUIV
, stacki
);
3187 else if (SET_DEST (set
) == regno_reg_rtx
[regnor
])
3188 set_unique_reg_note (sinsn
, REG_EQUIV
, stackr
);
3192 set_dst_reg_note (linsn
, REG_EQUIV
, equiv_stack_parm
, parmreg
);
3195 /* For pointer data type, suggest pointer register. */
3196 if (POINTER_TYPE_P (TREE_TYPE (parm
)))
3197 mark_reg_pointer (parmreg
,
3198 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm
))));
3201 /* A subroutine of assign_parms. Allocate stack space to hold the current
3202 parameter. Get it there. Perform all ABI specified conversions. */
3205 assign_parm_setup_stack (struct assign_parm_data_all
*all
, tree parm
,
3206 struct assign_parm_data_one
*data
)
3208 /* Value must be stored in the stack slot STACK_PARM during function
3210 bool to_conversion
= false;
3212 assign_parm_remove_parallels (data
);
3214 if (data
->promoted_mode
!= data
->nominal_mode
)
3216 /* Conversion is required. */
3217 rtx tempreg
= gen_reg_rtx (GET_MODE (data
->entry_parm
));
3219 emit_move_insn (tempreg
, validize_mem (data
->entry_parm
));
3221 push_to_sequence2 (all
->first_conversion_insn
, all
->last_conversion_insn
);
3222 to_conversion
= true;
3224 data
->entry_parm
= convert_to_mode (data
->nominal_mode
, tempreg
,
3225 TYPE_UNSIGNED (TREE_TYPE (parm
)));
3227 if (data
->stack_parm
)
3229 int offset
= subreg_lowpart_offset (data
->nominal_mode
,
3230 GET_MODE (data
->stack_parm
));
3231 /* ??? This may need a big-endian conversion on sparc64. */
3233 = adjust_address (data
->stack_parm
, data
->nominal_mode
, 0);
3234 if (offset
&& MEM_OFFSET_KNOWN_P (data
->stack_parm
))
3235 set_mem_offset (data
->stack_parm
,
3236 MEM_OFFSET (data
->stack_parm
) + offset
);
3240 if (data
->entry_parm
!= data
->stack_parm
)
3244 if (data
->stack_parm
== 0)
3246 int align
= STACK_SLOT_ALIGNMENT (data
->passed_type
,
3247 GET_MODE (data
->entry_parm
),
3248 TYPE_ALIGN (data
->passed_type
));
3250 = assign_stack_local (GET_MODE (data
->entry_parm
),
3251 GET_MODE_SIZE (GET_MODE (data
->entry_parm
)),
3253 set_mem_attributes (data
->stack_parm
, parm
, 1);
3256 dest
= validize_mem (data
->stack_parm
);
3257 src
= validize_mem (data
->entry_parm
);
3261 /* Use a block move to handle potentially misaligned entry_parm. */
3263 push_to_sequence2 (all
->first_conversion_insn
,
3264 all
->last_conversion_insn
);
3265 to_conversion
= true;
3267 emit_block_move (dest
, src
,
3268 GEN_INT (int_size_in_bytes (data
->passed_type
)),
3272 emit_move_insn (dest
, src
);
3277 all
->first_conversion_insn
= get_insns ();
3278 all
->last_conversion_insn
= get_last_insn ();
3282 SET_DECL_RTL (parm
, data
->stack_parm
);
3285 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
3286 undo the frobbing that we did in assign_parms_augmented_arg_list. */
3289 assign_parms_unsplit_complex (struct assign_parm_data_all
*all
,
3293 tree orig_fnargs
= all
->orig_fnargs
;
3296 for (parm
= orig_fnargs
; parm
; parm
= TREE_CHAIN (parm
), ++i
)
3298 if (TREE_CODE (TREE_TYPE (parm
)) == COMPLEX_TYPE
3299 && targetm
.calls
.split_complex_arg (TREE_TYPE (parm
)))
3301 rtx tmp
, real
, imag
;
3302 enum machine_mode inner
= GET_MODE_INNER (DECL_MODE (parm
));
3304 real
= DECL_RTL (fnargs
[i
]);
3305 imag
= DECL_RTL (fnargs
[i
+ 1]);
3306 if (inner
!= GET_MODE (real
))
3308 real
= gen_lowpart_SUBREG (inner
, real
);
3309 imag
= gen_lowpart_SUBREG (inner
, imag
);
3312 if (TREE_ADDRESSABLE (parm
))
3315 HOST_WIDE_INT size
= int_size_in_bytes (TREE_TYPE (parm
));
3316 int align
= STACK_SLOT_ALIGNMENT (TREE_TYPE (parm
),
3318 TYPE_ALIGN (TREE_TYPE (parm
)));
3320 /* split_complex_arg put the real and imag parts in
3321 pseudos. Move them to memory. */
3322 tmp
= assign_stack_local (DECL_MODE (parm
), size
, align
);
3323 set_mem_attributes (tmp
, parm
, 1);
3324 rmem
= adjust_address_nv (tmp
, inner
, 0);
3325 imem
= adjust_address_nv (tmp
, inner
, GET_MODE_SIZE (inner
));
3326 push_to_sequence2 (all
->first_conversion_insn
,
3327 all
->last_conversion_insn
);
3328 emit_move_insn (rmem
, real
);
3329 emit_move_insn (imem
, imag
);
3330 all
->first_conversion_insn
= get_insns ();
3331 all
->last_conversion_insn
= get_last_insn ();
3335 tmp
= gen_rtx_CONCAT (DECL_MODE (parm
), real
, imag
);
3336 SET_DECL_RTL (parm
, tmp
);
3338 real
= DECL_INCOMING_RTL (fnargs
[i
]);
3339 imag
= DECL_INCOMING_RTL (fnargs
[i
+ 1]);
3340 if (inner
!= GET_MODE (real
))
3342 real
= gen_lowpart_SUBREG (inner
, real
);
3343 imag
= gen_lowpart_SUBREG (inner
, imag
);
3345 tmp
= gen_rtx_CONCAT (DECL_MODE (parm
), real
, imag
);
3346 set_decl_incoming_rtl (parm
, tmp
, false);
3352 /* Assign RTL expressions to the function's parameters. This may involve
3353 copying them into registers and using those registers as the DECL_RTL. */
3356 assign_parms (tree fndecl
)
3358 struct assign_parm_data_all all
;
3363 crtl
->args
.internal_arg_pointer
3364 = targetm
.calls
.internal_arg_pointer ();
3366 assign_parms_initialize_all (&all
);
3367 fnargs
= assign_parms_augmented_arg_list (&all
);
3369 FOR_EACH_VEC_ELT (fnargs
, i
, parm
)
3371 struct assign_parm_data_one data
;
3373 /* Extract the type of PARM; adjust it according to ABI. */
3374 assign_parm_find_data_types (&all
, parm
, &data
);
3376 /* Early out for errors and void parameters. */
3377 if (data
.passed_mode
== VOIDmode
)
3379 SET_DECL_RTL (parm
, const0_rtx
);
3380 DECL_INCOMING_RTL (parm
) = DECL_RTL (parm
);
3384 /* Estimate stack alignment from parameter alignment. */
3385 if (SUPPORTS_STACK_ALIGNMENT
)
3388 = targetm
.calls
.function_arg_boundary (data
.promoted_mode
,
3390 align
= MINIMUM_ALIGNMENT (data
.passed_type
, data
.promoted_mode
,
3392 if (TYPE_ALIGN (data
.nominal_type
) > align
)
3393 align
= MINIMUM_ALIGNMENT (data
.nominal_type
,
3394 TYPE_MODE (data
.nominal_type
),
3395 TYPE_ALIGN (data
.nominal_type
));
3396 if (crtl
->stack_alignment_estimated
< align
)
3398 gcc_assert (!crtl
->stack_realign_processed
);
3399 crtl
->stack_alignment_estimated
= align
;
3403 if (cfun
->stdarg
&& !DECL_CHAIN (parm
))
3404 assign_parms_setup_varargs (&all
, &data
, false);
3406 /* Find out where the parameter arrives in this function. */
3407 assign_parm_find_entry_rtl (&all
, &data
);
3409 /* Find out where stack space for this parameter might be. */
3410 if (assign_parm_is_stack_parm (&all
, &data
))
3412 assign_parm_find_stack_rtl (parm
, &data
);
3413 assign_parm_adjust_entry_rtl (&data
);
3416 /* Record permanently how this parm was passed. */
3417 if (data
.passed_pointer
)
3420 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data
.passed_type
)),
3422 set_decl_incoming_rtl (parm
, incoming_rtl
, true);
3425 set_decl_incoming_rtl (parm
, data
.entry_parm
, false);
3427 /* Update info on where next arg arrives in registers. */
3428 targetm
.calls
.function_arg_advance (all
.args_so_far
, data
.promoted_mode
,
3429 data
.passed_type
, data
.named_arg
);
3431 assign_parm_adjust_stack_rtl (&data
);
3433 if (assign_parm_setup_block_p (&data
))
3434 assign_parm_setup_block (&all
, parm
, &data
);
3435 else if (data
.passed_pointer
|| use_register_for_decl (parm
))
3436 assign_parm_setup_reg (&all
, parm
, &data
);
3438 assign_parm_setup_stack (&all
, parm
, &data
);
3441 if (targetm
.calls
.split_complex_arg
)
3442 assign_parms_unsplit_complex (&all
, fnargs
);
3446 /* Output all parameter conversion instructions (possibly including calls)
3447 now that all parameters have been copied out of hard registers. */
3448 emit_insn (all
.first_conversion_insn
);
3450 /* Estimate reload stack alignment from scalar return mode. */
3451 if (SUPPORTS_STACK_ALIGNMENT
)
3453 if (DECL_RESULT (fndecl
))
3455 tree type
= TREE_TYPE (DECL_RESULT (fndecl
));
3456 enum machine_mode mode
= TYPE_MODE (type
);
3460 && !AGGREGATE_TYPE_P (type
))
3462 unsigned int align
= GET_MODE_ALIGNMENT (mode
);
3463 if (crtl
->stack_alignment_estimated
< align
)
3465 gcc_assert (!crtl
->stack_realign_processed
);
3466 crtl
->stack_alignment_estimated
= align
;
3472 /* If we are receiving a struct value address as the first argument, set up
3473 the RTL for the function result. As this might require code to convert
3474 the transmitted address to Pmode, we do this here to ensure that possible
3475 preliminary conversions of the address have been emitted already. */
3476 if (all
.function_result_decl
)
3478 tree result
= DECL_RESULT (current_function_decl
);
3479 rtx addr
= DECL_RTL (all
.function_result_decl
);
3482 if (DECL_BY_REFERENCE (result
))
3484 SET_DECL_VALUE_EXPR (result
, all
.function_result_decl
);
3489 SET_DECL_VALUE_EXPR (result
,
3490 build1 (INDIRECT_REF
, TREE_TYPE (result
),
3491 all
.function_result_decl
));
3492 addr
= convert_memory_address (Pmode
, addr
);
3493 x
= gen_rtx_MEM (DECL_MODE (result
), addr
);
3494 set_mem_attributes (x
, result
, 1);
3497 DECL_HAS_VALUE_EXPR_P (result
) = 1;
3499 SET_DECL_RTL (result
, x
);
3502 /* We have aligned all the args, so add space for the pretend args. */
3503 crtl
->args
.pretend_args_size
= all
.pretend_args_size
;
3504 all
.stack_args_size
.constant
+= all
.extra_pretend_bytes
;
3505 crtl
->args
.size
= all
.stack_args_size
.constant
;
3507 /* Adjust function incoming argument size for alignment and
3510 crtl
->args
.size
= MAX (crtl
->args
.size
, all
.reg_parm_stack_space
);
3511 crtl
->args
.size
= CEIL_ROUND (crtl
->args
.size
,
3512 PARM_BOUNDARY
/ BITS_PER_UNIT
);
3514 #ifdef ARGS_GROW_DOWNWARD
3515 crtl
->args
.arg_offset_rtx
3516 = (all
.stack_args_size
.var
== 0 ? GEN_INT (-all
.stack_args_size
.constant
)
3517 : expand_expr (size_diffop (all
.stack_args_size
.var
,
3518 size_int (-all
.stack_args_size
.constant
)),
3519 NULL_RTX
, VOIDmode
, EXPAND_NORMAL
));
3521 crtl
->args
.arg_offset_rtx
= ARGS_SIZE_RTX (all
.stack_args_size
);
3524 /* See how many bytes, if any, of its args a function should try to pop
3527 crtl
->args
.pops_args
= targetm
.calls
.return_pops_args (fndecl
,
3531 /* For stdarg.h function, save info about
3532 regs and stack space used by the named args. */
3534 crtl
->args
.info
= all
.args_so_far_v
;
3536 /* Set the rtx used for the function return value. Put this in its
3537 own variable so any optimizers that need this information don't have
3538 to include tree.h. Do this here so it gets done when an inlined
3539 function gets output. */
3542 = (DECL_RTL_SET_P (DECL_RESULT (fndecl
))
3543 ? DECL_RTL (DECL_RESULT (fndecl
)) : NULL_RTX
);
3545 /* If scalar return value was computed in a pseudo-reg, or was a named
3546 return value that got dumped to the stack, copy that to the hard
3548 if (DECL_RTL_SET_P (DECL_RESULT (fndecl
)))
3550 tree decl_result
= DECL_RESULT (fndecl
);
3551 rtx decl_rtl
= DECL_RTL (decl_result
);
3553 if (REG_P (decl_rtl
)
3554 ? REGNO (decl_rtl
) >= FIRST_PSEUDO_REGISTER
3555 : DECL_REGISTER (decl_result
))
3559 real_decl_rtl
= targetm
.calls
.function_value (TREE_TYPE (decl_result
),
3561 REG_FUNCTION_VALUE_P (real_decl_rtl
) = 1;
3562 /* The delay slot scheduler assumes that crtl->return_rtx
3563 holds the hard register containing the return value, not a
3564 temporary pseudo. */
3565 crtl
->return_rtx
= real_decl_rtl
;
3570 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3571 For all seen types, gimplify their sizes. */
3574 gimplify_parm_type (tree
*tp
, int *walk_subtrees
, void *data
)
3581 if (POINTER_TYPE_P (t
))
3583 else if (TYPE_SIZE (t
) && !TREE_CONSTANT (TYPE_SIZE (t
))
3584 && !TYPE_SIZES_GIMPLIFIED (t
))
3586 gimplify_type_sizes (t
, (gimple_seq
*) data
);
3594 /* Gimplify the parameter list for current_function_decl. This involves
3595 evaluating SAVE_EXPRs of variable sized parameters and generating code
3596 to implement callee-copies reference parameters. Returns a sequence of
3597 statements to add to the beginning of the function. */
3600 gimplify_parameters (void)
3602 struct assign_parm_data_all all
;
3604 gimple_seq stmts
= NULL
;
3608 assign_parms_initialize_all (&all
);
3609 fnargs
= assign_parms_augmented_arg_list (&all
);
3611 FOR_EACH_VEC_ELT (fnargs
, i
, parm
)
3613 struct assign_parm_data_one data
;
3615 /* Extract the type of PARM; adjust it according to ABI. */
3616 assign_parm_find_data_types (&all
, parm
, &data
);
3618 /* Early out for errors and void parameters. */
3619 if (data
.passed_mode
== VOIDmode
|| DECL_SIZE (parm
) == NULL
)
3622 /* Update info on where next arg arrives in registers. */
3623 targetm
.calls
.function_arg_advance (all
.args_so_far
, data
.promoted_mode
,
3624 data
.passed_type
, data
.named_arg
);
3626 /* ??? Once upon a time variable_size stuffed parameter list
3627 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3628 turned out to be less than manageable in the gimple world.
3629 Now we have to hunt them down ourselves. */
3630 walk_tree_without_duplicates (&data
.passed_type
,
3631 gimplify_parm_type
, &stmts
);
3633 if (TREE_CODE (DECL_SIZE_UNIT (parm
)) != INTEGER_CST
)
3635 gimplify_one_sizepos (&DECL_SIZE (parm
), &stmts
);
3636 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm
), &stmts
);
3639 if (data
.passed_pointer
)
3641 tree type
= TREE_TYPE (data
.passed_type
);
3642 if (reference_callee_copied (&all
.args_so_far_v
, TYPE_MODE (type
),
3643 type
, data
.named_arg
))
3647 /* For constant-sized objects, this is trivial; for
3648 variable-sized objects, we have to play games. */
3649 if (TREE_CODE (DECL_SIZE_UNIT (parm
)) == INTEGER_CST
3650 && !(flag_stack_check
== GENERIC_STACK_CHECK
3651 && compare_tree_int (DECL_SIZE_UNIT (parm
),
3652 STACK_CHECK_MAX_VAR_SIZE
) > 0))
3654 local
= create_tmp_var (type
, get_name (parm
));
3655 DECL_IGNORED_P (local
) = 0;
3656 /* If PARM was addressable, move that flag over
3657 to the local copy, as its address will be taken,
3658 not the PARMs. Keep the parms address taken
3659 as we'll query that flag during gimplification. */
3660 if (TREE_ADDRESSABLE (parm
))
3661 TREE_ADDRESSABLE (local
) = 1;
3662 else if (TREE_CODE (type
) == COMPLEX_TYPE
3663 || TREE_CODE (type
) == VECTOR_TYPE
)
3664 DECL_GIMPLE_REG_P (local
) = 1;
3668 tree ptr_type
, addr
;
3670 ptr_type
= build_pointer_type (type
);
3671 addr
= create_tmp_reg (ptr_type
, get_name (parm
));
3672 DECL_IGNORED_P (addr
) = 0;
3673 local
= build_fold_indirect_ref (addr
);
3675 t
= builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN
);
3676 t
= build_call_expr (t
, 2, DECL_SIZE_UNIT (parm
),
3677 size_int (DECL_ALIGN (parm
)));
3679 /* The call has been built for a variable-sized object. */
3680 CALL_ALLOCA_FOR_VAR_P (t
) = 1;
3681 t
= fold_convert (ptr_type
, t
);
3682 t
= build2 (MODIFY_EXPR
, TREE_TYPE (addr
), addr
, t
);
3683 gimplify_and_add (t
, &stmts
);
3686 gimplify_assign (local
, parm
, &stmts
);
3688 SET_DECL_VALUE_EXPR (parm
, local
);
3689 DECL_HAS_VALUE_EXPR_P (parm
) = 1;
3699 /* Compute the size and offset from the start of the stacked arguments for a
3700 parm passed in mode PASSED_MODE and with type TYPE.
3702 INITIAL_OFFSET_PTR points to the current offset into the stacked
3705 The starting offset and size for this parm are returned in
3706 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3707 nonzero, the offset is that of stack slot, which is returned in
3708 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3709 padding required from the initial offset ptr to the stack slot.
3711 IN_REGS is nonzero if the argument will be passed in registers. It will
3712 never be set if REG_PARM_STACK_SPACE is not defined.
3714 REG_PARM_STACK_SPACE is the number of bytes of stack space reserved
3715 for arguments which are passed in registers.
3717 FNDECL is the function in which the argument was defined.
3719 There are two types of rounding that are done. The first, controlled by
3720 TARGET_FUNCTION_ARG_BOUNDARY, forces the offset from the start of the
3721 argument list to be aligned to the specific boundary (in bits). This
3722 rounding affects the initial and starting offsets, but not the argument
3725 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3726 optionally rounds the size of the parm to PARM_BOUNDARY. The
3727 initial offset is not affected by this rounding, while the size always
3728 is and the starting offset may be. */
3730 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3731 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3732 callers pass in the total size of args so far as
3733 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3736 locate_and_pad_parm (enum machine_mode passed_mode
, tree type
, int in_regs
,
3737 int reg_parm_stack_space
, int partial
,
3738 tree fndecl ATTRIBUTE_UNUSED
,
3739 struct args_size
*initial_offset_ptr
,
3740 struct locate_and_pad_arg_data
*locate
)
3743 enum direction where_pad
;
3744 unsigned int boundary
, round_boundary
;
3745 int part_size_in_regs
;
3747 /* If we have found a stack parm before we reach the end of the
3748 area reserved for registers, skip that area. */
3751 if (reg_parm_stack_space
> 0)
3753 if (initial_offset_ptr
->var
)
3755 initial_offset_ptr
->var
3756 = size_binop (MAX_EXPR
, ARGS_SIZE_TREE (*initial_offset_ptr
),
3757 ssize_int (reg_parm_stack_space
));
3758 initial_offset_ptr
->constant
= 0;
3760 else if (initial_offset_ptr
->constant
< reg_parm_stack_space
)
3761 initial_offset_ptr
->constant
= reg_parm_stack_space
;
3765 part_size_in_regs
= (reg_parm_stack_space
== 0 ? partial
: 0);
3768 = type
? size_in_bytes (type
) : size_int (GET_MODE_SIZE (passed_mode
));
3769 where_pad
= FUNCTION_ARG_PADDING (passed_mode
, type
);
3770 boundary
= targetm
.calls
.function_arg_boundary (passed_mode
, type
);
3771 round_boundary
= targetm
.calls
.function_arg_round_boundary (passed_mode
,
3773 locate
->where_pad
= where_pad
;
3775 /* Alignment can't exceed MAX_SUPPORTED_STACK_ALIGNMENT. */
3776 if (boundary
> MAX_SUPPORTED_STACK_ALIGNMENT
)
3777 boundary
= MAX_SUPPORTED_STACK_ALIGNMENT
;
3779 locate
->boundary
= boundary
;
3781 if (SUPPORTS_STACK_ALIGNMENT
)
3783 /* stack_alignment_estimated can't change after stack has been
3785 if (crtl
->stack_alignment_estimated
< boundary
)
3787 if (!crtl
->stack_realign_processed
)
3788 crtl
->stack_alignment_estimated
= boundary
;
3791 /* If stack is realigned and stack alignment value
3792 hasn't been finalized, it is OK not to increase
3793 stack_alignment_estimated. The bigger alignment
3794 requirement is recorded in stack_alignment_needed
3796 gcc_assert (!crtl
->stack_realign_finalized
3797 && crtl
->stack_realign_needed
);
3802 /* Remember if the outgoing parameter requires extra alignment on the
3803 calling function side. */
3804 if (crtl
->stack_alignment_needed
< boundary
)
3805 crtl
->stack_alignment_needed
= boundary
;
3806 if (crtl
->preferred_stack_boundary
< boundary
)
3807 crtl
->preferred_stack_boundary
= boundary
;
3809 #ifdef ARGS_GROW_DOWNWARD
3810 locate
->slot_offset
.constant
= -initial_offset_ptr
->constant
;
3811 if (initial_offset_ptr
->var
)
3812 locate
->slot_offset
.var
= size_binop (MINUS_EXPR
, ssize_int (0),
3813 initial_offset_ptr
->var
);
3817 if (where_pad
!= none
3818 && (!tree_fits_uhwi_p (sizetree
)
3819 || (tree_to_uhwi (sizetree
) * BITS_PER_UNIT
) % round_boundary
))
3820 s2
= round_up (s2
, round_boundary
/ BITS_PER_UNIT
);
3821 SUB_PARM_SIZE (locate
->slot_offset
, s2
);
3824 locate
->slot_offset
.constant
+= part_size_in_regs
;
3826 if (!in_regs
|| reg_parm_stack_space
> 0)
3827 pad_to_arg_alignment (&locate
->slot_offset
, boundary
,
3828 &locate
->alignment_pad
);
3830 locate
->size
.constant
= (-initial_offset_ptr
->constant
3831 - locate
->slot_offset
.constant
);
3832 if (initial_offset_ptr
->var
)
3833 locate
->size
.var
= size_binop (MINUS_EXPR
,
3834 size_binop (MINUS_EXPR
,
3836 initial_offset_ptr
->var
),
3837 locate
->slot_offset
.var
);
3839 /* Pad_below needs the pre-rounded size to know how much to pad
3841 locate
->offset
= locate
->slot_offset
;
3842 if (where_pad
== downward
)
3843 pad_below (&locate
->offset
, passed_mode
, sizetree
);
3845 #else /* !ARGS_GROW_DOWNWARD */
3846 if (!in_regs
|| reg_parm_stack_space
> 0)
3847 pad_to_arg_alignment (initial_offset_ptr
, boundary
,
3848 &locate
->alignment_pad
);
3849 locate
->slot_offset
= *initial_offset_ptr
;
3851 #ifdef PUSH_ROUNDING
3852 if (passed_mode
!= BLKmode
)
3853 sizetree
= size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree
)));
3856 /* Pad_below needs the pre-rounded size to know how much to pad below
3857 so this must be done before rounding up. */
3858 locate
->offset
= locate
->slot_offset
;
3859 if (where_pad
== downward
)
3860 pad_below (&locate
->offset
, passed_mode
, sizetree
);
3862 if (where_pad
!= none
3863 && (!tree_fits_uhwi_p (sizetree
)
3864 || (tree_to_uhwi (sizetree
) * BITS_PER_UNIT
) % round_boundary
))
3865 sizetree
= round_up (sizetree
, round_boundary
/ BITS_PER_UNIT
);
3867 ADD_PARM_SIZE (locate
->size
, sizetree
);
3869 locate
->size
.constant
-= part_size_in_regs
;
3870 #endif /* ARGS_GROW_DOWNWARD */
3872 #ifdef FUNCTION_ARG_OFFSET
3873 locate
->offset
.constant
+= FUNCTION_ARG_OFFSET (passed_mode
, type
);
3877 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3878 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3881 pad_to_arg_alignment (struct args_size
*offset_ptr
, int boundary
,
3882 struct args_size
*alignment_pad
)
3884 tree save_var
= NULL_TREE
;
3885 HOST_WIDE_INT save_constant
= 0;
3886 int boundary_in_bytes
= boundary
/ BITS_PER_UNIT
;
3887 HOST_WIDE_INT sp_offset
= STACK_POINTER_OFFSET
;
3889 #ifdef SPARC_STACK_BOUNDARY_HACK
3890 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
3891 the real alignment of %sp. However, when it does this, the
3892 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
3893 if (SPARC_STACK_BOUNDARY_HACK
)
3897 if (boundary
> PARM_BOUNDARY
)
3899 save_var
= offset_ptr
->var
;
3900 save_constant
= offset_ptr
->constant
;
3903 alignment_pad
->var
= NULL_TREE
;
3904 alignment_pad
->constant
= 0;
3906 if (boundary
> BITS_PER_UNIT
)
3908 if (offset_ptr
->var
)
3910 tree sp_offset_tree
= ssize_int (sp_offset
);
3911 tree offset
= size_binop (PLUS_EXPR
,
3912 ARGS_SIZE_TREE (*offset_ptr
),
3914 #ifdef ARGS_GROW_DOWNWARD
3915 tree rounded
= round_down (offset
, boundary
/ BITS_PER_UNIT
);
3917 tree rounded
= round_up (offset
, boundary
/ BITS_PER_UNIT
);
3920 offset_ptr
->var
= size_binop (MINUS_EXPR
, rounded
, sp_offset_tree
);
3921 /* ARGS_SIZE_TREE includes constant term. */
3922 offset_ptr
->constant
= 0;
3923 if (boundary
> PARM_BOUNDARY
)
3924 alignment_pad
->var
= size_binop (MINUS_EXPR
, offset_ptr
->var
,
3929 offset_ptr
->constant
= -sp_offset
+
3930 #ifdef ARGS_GROW_DOWNWARD
3931 FLOOR_ROUND (offset_ptr
->constant
+ sp_offset
, boundary_in_bytes
);
3933 CEIL_ROUND (offset_ptr
->constant
+ sp_offset
, boundary_in_bytes
);
3935 if (boundary
> PARM_BOUNDARY
)
3936 alignment_pad
->constant
= offset_ptr
->constant
- save_constant
;
3942 pad_below (struct args_size
*offset_ptr
, enum machine_mode passed_mode
, tree sizetree
)
3944 if (passed_mode
!= BLKmode
)
3946 if (GET_MODE_BITSIZE (passed_mode
) % PARM_BOUNDARY
)
3947 offset_ptr
->constant
3948 += (((GET_MODE_BITSIZE (passed_mode
) + PARM_BOUNDARY
- 1)
3949 / PARM_BOUNDARY
* PARM_BOUNDARY
/ BITS_PER_UNIT
)
3950 - GET_MODE_SIZE (passed_mode
));
3954 if (TREE_CODE (sizetree
) != INTEGER_CST
3955 || (TREE_INT_CST_LOW (sizetree
) * BITS_PER_UNIT
) % PARM_BOUNDARY
)
3957 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3958 tree s2
= round_up (sizetree
, PARM_BOUNDARY
/ BITS_PER_UNIT
);
3960 ADD_PARM_SIZE (*offset_ptr
, s2
);
3961 SUB_PARM_SIZE (*offset_ptr
, sizetree
);
3967 /* True if register REGNO was alive at a place where `setjmp' was
3968 called and was set more than once or is an argument. Such regs may
3969 be clobbered by `longjmp'. */
3972 regno_clobbered_at_setjmp (bitmap setjmp_crosses
, int regno
)
3974 /* There appear to be cases where some local vars never reach the
3975 backend but have bogus regnos. */
3976 if (regno
>= max_reg_num ())
3979 return ((REG_N_SETS (regno
) > 1
3980 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR_FOR_FN (cfun
)),
3982 && REGNO_REG_SET_P (setjmp_crosses
, regno
));
3985 /* Walk the tree of blocks describing the binding levels within a
3986 function and warn about variables the might be killed by setjmp or
3987 vfork. This is done after calling flow_analysis before register
3988 allocation since that will clobber the pseudo-regs to hard
3992 setjmp_vars_warning (bitmap setjmp_crosses
, tree block
)
3996 for (decl
= BLOCK_VARS (block
); decl
; decl
= DECL_CHAIN (decl
))
3998 if (TREE_CODE (decl
) == VAR_DECL
3999 && DECL_RTL_SET_P (decl
)
4000 && REG_P (DECL_RTL (decl
))
4001 && regno_clobbered_at_setjmp (setjmp_crosses
, REGNO (DECL_RTL (decl
))))
4002 warning (OPT_Wclobbered
, "variable %q+D might be clobbered by"
4003 " %<longjmp%> or %<vfork%>", decl
);
4006 for (sub
= BLOCK_SUBBLOCKS (block
); sub
; sub
= BLOCK_CHAIN (sub
))
4007 setjmp_vars_warning (setjmp_crosses
, sub
);
4010 /* Do the appropriate part of setjmp_vars_warning
4011 but for arguments instead of local variables. */
4014 setjmp_args_warning (bitmap setjmp_crosses
)
4017 for (decl
= DECL_ARGUMENTS (current_function_decl
);
4018 decl
; decl
= DECL_CHAIN (decl
))
4019 if (DECL_RTL (decl
) != 0
4020 && REG_P (DECL_RTL (decl
))
4021 && regno_clobbered_at_setjmp (setjmp_crosses
, REGNO (DECL_RTL (decl
))))
4022 warning (OPT_Wclobbered
,
4023 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
4027 /* Generate warning messages for variables live across setjmp. */
4030 generate_setjmp_warnings (void)
4032 bitmap setjmp_crosses
= regstat_get_setjmp_crosses ();
4034 if (n_basic_blocks_for_fn (cfun
) == NUM_FIXED_BLOCKS
4035 || bitmap_empty_p (setjmp_crosses
))
4038 setjmp_vars_warning (setjmp_crosses
, DECL_INITIAL (current_function_decl
));
4039 setjmp_args_warning (setjmp_crosses
);
4043 /* Reverse the order of elements in the fragment chain T of blocks,
4044 and return the new head of the chain (old last element).
4045 In addition to that clear BLOCK_SAME_RANGE flags when needed
4046 and adjust BLOCK_SUPERCONTEXT from the super fragment to
4047 its super fragment origin. */
4050 block_fragments_nreverse (tree t
)
4052 tree prev
= 0, block
, next
, prev_super
= 0;
4053 tree super
= BLOCK_SUPERCONTEXT (t
);
4054 if (BLOCK_FRAGMENT_ORIGIN (super
))
4055 super
= BLOCK_FRAGMENT_ORIGIN (super
);
4056 for (block
= t
; block
; block
= next
)
4058 next
= BLOCK_FRAGMENT_CHAIN (block
);
4059 BLOCK_FRAGMENT_CHAIN (block
) = prev
;
4060 if ((prev
&& !BLOCK_SAME_RANGE (prev
))
4061 || (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (block
))
4063 BLOCK_SAME_RANGE (block
) = 0;
4064 prev_super
= BLOCK_SUPERCONTEXT (block
);
4065 BLOCK_SUPERCONTEXT (block
) = super
;
4068 t
= BLOCK_FRAGMENT_ORIGIN (t
);
4069 if (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (t
))
4071 BLOCK_SAME_RANGE (t
) = 0;
4072 BLOCK_SUPERCONTEXT (t
) = super
;
4076 /* Reverse the order of elements in the chain T of blocks,
4077 and return the new head of the chain (old last element).
4078 Also do the same on subblocks and reverse the order of elements
4079 in BLOCK_FRAGMENT_CHAIN as well. */
4082 blocks_nreverse_all (tree t
)
4084 tree prev
= 0, block
, next
;
4085 for (block
= t
; block
; block
= next
)
4087 next
= BLOCK_CHAIN (block
);
4088 BLOCK_CHAIN (block
) = prev
;
4089 if (BLOCK_FRAGMENT_CHAIN (block
)
4090 && BLOCK_FRAGMENT_ORIGIN (block
) == NULL_TREE
)
4092 BLOCK_FRAGMENT_CHAIN (block
)
4093 = block_fragments_nreverse (BLOCK_FRAGMENT_CHAIN (block
));
4094 if (!BLOCK_SAME_RANGE (BLOCK_FRAGMENT_CHAIN (block
)))
4095 BLOCK_SAME_RANGE (block
) = 0;
4097 BLOCK_SUBBLOCKS (block
) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block
));
4104 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
4105 and create duplicate blocks. */
4106 /* ??? Need an option to either create block fragments or to create
4107 abstract origin duplicates of a source block. It really depends
4108 on what optimization has been performed. */
4111 reorder_blocks (void)
4113 tree block
= DECL_INITIAL (current_function_decl
);
4115 if (block
== NULL_TREE
)
4118 auto_vec
<tree
, 10> block_stack
;
4120 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
4121 clear_block_marks (block
);
4123 /* Prune the old trees away, so that they don't get in the way. */
4124 BLOCK_SUBBLOCKS (block
) = NULL_TREE
;
4125 BLOCK_CHAIN (block
) = NULL_TREE
;
4127 /* Recreate the block tree from the note nesting. */
4128 reorder_blocks_1 (get_insns (), block
, &block_stack
);
4129 BLOCK_SUBBLOCKS (block
) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block
));
4132 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
4135 clear_block_marks (tree block
)
4139 TREE_ASM_WRITTEN (block
) = 0;
4140 clear_block_marks (BLOCK_SUBBLOCKS (block
));
4141 block
= BLOCK_CHAIN (block
);
4146 reorder_blocks_1 (rtx insns
, tree current_block
, vec
<tree
> *p_block_stack
)
4149 tree prev_beg
= NULL_TREE
, prev_end
= NULL_TREE
;
4151 for (insn
= insns
; insn
; insn
= NEXT_INSN (insn
))
4155 if (NOTE_KIND (insn
) == NOTE_INSN_BLOCK_BEG
)
4157 tree block
= NOTE_BLOCK (insn
);
4160 gcc_assert (BLOCK_FRAGMENT_ORIGIN (block
) == NULL_TREE
);
4164 BLOCK_SAME_RANGE (prev_end
) = 0;
4165 prev_end
= NULL_TREE
;
4167 /* If we have seen this block before, that means it now
4168 spans multiple address regions. Create a new fragment. */
4169 if (TREE_ASM_WRITTEN (block
))
4171 tree new_block
= copy_node (block
);
4173 BLOCK_SAME_RANGE (new_block
) = 0;
4174 BLOCK_FRAGMENT_ORIGIN (new_block
) = origin
;
4175 BLOCK_FRAGMENT_CHAIN (new_block
)
4176 = BLOCK_FRAGMENT_CHAIN (origin
);
4177 BLOCK_FRAGMENT_CHAIN (origin
) = new_block
;
4179 NOTE_BLOCK (insn
) = new_block
;
4183 if (prev_beg
== current_block
&& prev_beg
)
4184 BLOCK_SAME_RANGE (block
) = 1;
4188 BLOCK_SUBBLOCKS (block
) = 0;
4189 TREE_ASM_WRITTEN (block
) = 1;
4190 /* When there's only one block for the entire function,
4191 current_block == block and we mustn't do this, it
4192 will cause infinite recursion. */
4193 if (block
!= current_block
)
4196 if (block
!= origin
)
4197 gcc_assert (BLOCK_SUPERCONTEXT (origin
) == current_block
4198 || BLOCK_FRAGMENT_ORIGIN (BLOCK_SUPERCONTEXT
4201 if (p_block_stack
->is_empty ())
4202 super
= current_block
;
4205 super
= p_block_stack
->last ();
4206 gcc_assert (super
== current_block
4207 || BLOCK_FRAGMENT_ORIGIN (super
)
4210 BLOCK_SUPERCONTEXT (block
) = super
;
4211 BLOCK_CHAIN (block
) = BLOCK_SUBBLOCKS (current_block
);
4212 BLOCK_SUBBLOCKS (current_block
) = block
;
4213 current_block
= origin
;
4215 p_block_stack
->safe_push (block
);
4217 else if (NOTE_KIND (insn
) == NOTE_INSN_BLOCK_END
)
4219 NOTE_BLOCK (insn
) = p_block_stack
->pop ();
4220 current_block
= BLOCK_SUPERCONTEXT (current_block
);
4221 if (BLOCK_FRAGMENT_ORIGIN (current_block
))
4222 current_block
= BLOCK_FRAGMENT_ORIGIN (current_block
);
4223 prev_beg
= NULL_TREE
;
4224 prev_end
= BLOCK_SAME_RANGE (NOTE_BLOCK (insn
))
4225 ? NOTE_BLOCK (insn
) : NULL_TREE
;
4230 prev_beg
= NULL_TREE
;
4232 BLOCK_SAME_RANGE (prev_end
) = 0;
4233 prev_end
= NULL_TREE
;
4238 /* Reverse the order of elements in the chain T of blocks,
4239 and return the new head of the chain (old last element). */
4242 blocks_nreverse (tree t
)
4244 tree prev
= 0, block
, next
;
4245 for (block
= t
; block
; block
= next
)
4247 next
= BLOCK_CHAIN (block
);
4248 BLOCK_CHAIN (block
) = prev
;
4254 /* Concatenate two chains of blocks (chained through BLOCK_CHAIN)
4255 by modifying the last node in chain 1 to point to chain 2. */
4258 block_chainon (tree op1
, tree op2
)
4267 for (t1
= op1
; BLOCK_CHAIN (t1
); t1
= BLOCK_CHAIN (t1
))
4269 BLOCK_CHAIN (t1
) = op2
;
4271 #ifdef ENABLE_TREE_CHECKING
4274 for (t2
= op2
; t2
; t2
= BLOCK_CHAIN (t2
))
4275 gcc_assert (t2
!= t1
);
4282 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
4283 non-NULL, list them all into VECTOR, in a depth-first preorder
4284 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
4288 all_blocks (tree block
, tree
*vector
)
4294 TREE_ASM_WRITTEN (block
) = 0;
4296 /* Record this block. */
4298 vector
[n_blocks
] = block
;
4302 /* Record the subblocks, and their subblocks... */
4303 n_blocks
+= all_blocks (BLOCK_SUBBLOCKS (block
),
4304 vector
? vector
+ n_blocks
: 0);
4305 block
= BLOCK_CHAIN (block
);
4311 /* Return a vector containing all the blocks rooted at BLOCK. The
4312 number of elements in the vector is stored in N_BLOCKS_P. The
4313 vector is dynamically allocated; it is the caller's responsibility
4314 to call `free' on the pointer returned. */
4317 get_block_vector (tree block
, int *n_blocks_p
)
4321 *n_blocks_p
= all_blocks (block
, NULL
);
4322 block_vector
= XNEWVEC (tree
, *n_blocks_p
);
4323 all_blocks (block
, block_vector
);
4325 return block_vector
;
4328 static GTY(()) int next_block_index
= 2;
4330 /* Set BLOCK_NUMBER for all the blocks in FN. */
4333 number_blocks (tree fn
)
4339 /* For SDB and XCOFF debugging output, we start numbering the blocks
4340 from 1 within each function, rather than keeping a running
4342 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
4343 if (write_symbols
== SDB_DEBUG
|| write_symbols
== XCOFF_DEBUG
)
4344 next_block_index
= 1;
4347 block_vector
= get_block_vector (DECL_INITIAL (fn
), &n_blocks
);
4349 /* The top-level BLOCK isn't numbered at all. */
4350 for (i
= 1; i
< n_blocks
; ++i
)
4351 /* We number the blocks from two. */
4352 BLOCK_NUMBER (block_vector
[i
]) = next_block_index
++;
4354 free (block_vector
);
4359 /* If VAR is present in a subblock of BLOCK, return the subblock. */
4362 debug_find_var_in_block_tree (tree var
, tree block
)
4366 for (t
= BLOCK_VARS (block
); t
; t
= TREE_CHAIN (t
))
4370 for (t
= BLOCK_SUBBLOCKS (block
); t
; t
= TREE_CHAIN (t
))
4372 tree ret
= debug_find_var_in_block_tree (var
, t
);
4380 /* Keep track of whether we're in a dummy function context. If we are,
4381 we don't want to invoke the set_current_function hook, because we'll
4382 get into trouble if the hook calls target_reinit () recursively or
4383 when the initial initialization is not yet complete. */
4385 static bool in_dummy_function
;
4387 /* Invoke the target hook when setting cfun. Update the optimization options
4388 if the function uses different options than the default. */
4391 invoke_set_current_function_hook (tree fndecl
)
4393 if (!in_dummy_function
)
4395 tree opts
= ((fndecl
)
4396 ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl
)
4397 : optimization_default_node
);
4400 opts
= optimization_default_node
;
4402 /* Change optimization options if needed. */
4403 if (optimization_current_node
!= opts
)
4405 optimization_current_node
= opts
;
4406 cl_optimization_restore (&global_options
, TREE_OPTIMIZATION (opts
));
4409 targetm
.set_current_function (fndecl
);
4410 this_fn_optabs
= this_target_optabs
;
4412 if (opts
!= optimization_default_node
)
4414 init_tree_optimization_optabs (opts
);
4415 if (TREE_OPTIMIZATION_OPTABS (opts
))
4416 this_fn_optabs
= (struct target_optabs
*)
4417 TREE_OPTIMIZATION_OPTABS (opts
);
4422 /* cfun should never be set directly; use this function. */
4425 set_cfun (struct function
*new_cfun
)
4427 if (cfun
!= new_cfun
)
4430 invoke_set_current_function_hook (new_cfun
? new_cfun
->decl
: NULL_TREE
);
4434 /* Initialized with NOGC, making this poisonous to the garbage collector. */
4436 static vec
<function_p
> cfun_stack
;
4438 /* Push the current cfun onto the stack, and set cfun to new_cfun. Also set
4439 current_function_decl accordingly. */
4442 push_cfun (struct function
*new_cfun
)
4444 gcc_assert ((!cfun
&& !current_function_decl
)
4445 || (cfun
&& current_function_decl
== cfun
->decl
));
4446 cfun_stack
.safe_push (cfun
);
4447 current_function_decl
= new_cfun
? new_cfun
->decl
: NULL_TREE
;
4448 set_cfun (new_cfun
);
4451 /* Pop cfun from the stack. Also set current_function_decl accordingly. */
4456 struct function
*new_cfun
= cfun_stack
.pop ();
4457 /* When in_dummy_function, we do have a cfun but current_function_decl is
4458 NULL. We also allow pushing NULL cfun and subsequently changing
4459 current_function_decl to something else and have both restored by
4461 gcc_checking_assert (in_dummy_function
4463 || current_function_decl
== cfun
->decl
);
4464 set_cfun (new_cfun
);
4465 current_function_decl
= new_cfun
? new_cfun
->decl
: NULL_TREE
;
4468 /* Return value of funcdef and increase it. */
4471 get_next_funcdef_no (void)
4473 return funcdef_no
++;
4476 /* Restore funcdef_no to FN. */
4479 set_funcdef_no (int fn
)
4484 /* Reset the funcdef number. */
4487 reset_funcdef_no (void)
4492 /* Return value of funcdef. */
4494 get_last_funcdef_no (void)
4499 /* Allocate a function structure for FNDECL and set its contents
4500 to the defaults. Set cfun to the newly-allocated object.
4501 Some of the helper functions invoked during initialization assume
4502 that cfun has already been set. Therefore, assign the new object
4503 directly into cfun and invoke the back end hook explicitly at the
4504 very end, rather than initializing a temporary and calling set_cfun
4507 ABSTRACT_P is true if this is a function that will never be seen by
4508 the middle-end. Such functions are front-end concepts (like C++
4509 function templates) that do not correspond directly to functions
4510 placed in object files. */
4513 allocate_struct_function (tree fndecl
, bool abstract_p
)
4515 tree fntype
= fndecl
? TREE_TYPE (fndecl
) : NULL_TREE
;
4517 cfun
= ggc_alloc_cleared_function ();
4519 init_eh_for_function ();
4521 if (init_machine_status
)
4522 cfun
->machine
= (*init_machine_status
) ();
4524 #ifdef OVERRIDE_ABI_FORMAT
4525 OVERRIDE_ABI_FORMAT (fndecl
);
4528 if (fndecl
!= NULL_TREE
)
4530 DECL_STRUCT_FUNCTION (fndecl
) = cfun
;
4531 cfun
->decl
= fndecl
;
4532 current_function_funcdef_no
= get_next_funcdef_no ();
4533 cfun
->module_id
= current_module_id
;
4536 invoke_set_current_function_hook (fndecl
);
4538 if (fndecl
!= NULL_TREE
)
4540 tree result
= DECL_RESULT (fndecl
);
4541 if (!abstract_p
&& aggregate_value_p (result
, fndecl
))
4543 #ifdef PCC_STATIC_STRUCT_RETURN
4544 cfun
->returns_pcc_struct
= 1;
4546 cfun
->returns_struct
= 1;
4549 cfun
->stdarg
= stdarg_p (fntype
);
4551 /* Assume all registers in stdarg functions need to be saved. */
4552 cfun
->va_list_gpr_size
= VA_LIST_MAX_GPR_SIZE
;
4553 cfun
->va_list_fpr_size
= VA_LIST_MAX_FPR_SIZE
;
4555 /* ??? This could be set on a per-function basis by the front-end
4556 but is this worth the hassle? */
4557 cfun
->can_throw_non_call_exceptions
= flag_non_call_exceptions
;
4561 /* This is like allocate_struct_function, but pushes a new cfun for FNDECL
4562 instead of just setting it. */
4565 push_struct_function (tree fndecl
)
4567 /* When in_dummy_function we might be in the middle of a pop_cfun and
4568 current_function_decl and cfun may not match. */
4569 gcc_assert (in_dummy_function
4570 || (!cfun
&& !current_function_decl
)
4571 || (cfun
&& current_function_decl
== cfun
->decl
));
4572 cfun_stack
.safe_push (cfun
);
4573 current_function_decl
= fndecl
;
4574 allocate_struct_function (fndecl
, false);
4577 /* Reset crtl and other non-struct-function variables to defaults as
4578 appropriate for emitting rtl at the start of a function. */
4581 prepare_function_start (void)
4583 gcc_assert (!crtl
->emit
.x_last_insn
);
4586 init_varasm_status ();
4588 default_rtl_profile ();
4590 if (flag_stack_usage_info
)
4592 cfun
->su
= ggc_alloc_cleared_stack_usage ();
4593 cfun
->su
->static_stack_size
= -1;
4596 cse_not_expected
= ! optimize
;
4598 /* Caller save not needed yet. */
4599 caller_save_needed
= 0;
4601 /* We haven't done register allocation yet. */
4604 /* Indicate that we have not instantiated virtual registers yet. */
4605 virtuals_instantiated
= 0;
4607 /* Indicate that we want CONCATs now. */
4608 generating_concat_p
= 1;
4610 /* Indicate we have no need of a frame pointer yet. */
4611 frame_pointer_needed
= 0;
4614 /* Initialize the rtl expansion mechanism so that we can do simple things
4615 like generate sequences. This is used to provide a context during global
4616 initialization of some passes. You must call expand_dummy_function_end
4617 to exit this context. */
4620 init_dummy_function_start (void)
4622 gcc_assert (!in_dummy_function
);
4623 in_dummy_function
= true;
4624 push_struct_function (NULL_TREE
);
4625 prepare_function_start ();
4628 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
4629 and initialize static variables for generating RTL for the statements
4633 init_function_start (tree subr
)
4635 if (subr
&& DECL_STRUCT_FUNCTION (subr
))
4636 set_cfun (DECL_STRUCT_FUNCTION (subr
));
4638 allocate_struct_function (subr
, false);
4639 prepare_function_start ();
4640 decide_function_section (subr
);
4642 /* Warn if this value is an aggregate type,
4643 regardless of which calling convention we are using for it. */
4644 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr
))))
4645 warning (OPT_Waggregate_return
, "function returns an aggregate");
4648 /* Expand code to verify the stack_protect_guard. This is invoked at
4649 the end of a function to be protected. */
4651 #ifndef HAVE_stack_protect_test
4652 # define HAVE_stack_protect_test 0
4653 # define gen_stack_protect_test(x, y, z) (gcc_unreachable (), NULL_RTX)
4657 stack_protect_epilogue (void)
4659 tree guard_decl
= targetm
.stack_protect_guard ();
4660 rtx label
= gen_label_rtx ();
4663 x
= expand_normal (crtl
->stack_protect_guard
);
4664 y
= expand_normal (guard_decl
);
4666 /* Allow the target to compare Y with X without leaking either into
4668 switch (HAVE_stack_protect_test
!= 0)
4671 tmp
= gen_stack_protect_test (x
, y
, label
);
4680 emit_cmp_and_jump_insns (x
, y
, EQ
, NULL_RTX
, ptr_mode
, 1, label
);
4684 /* The noreturn predictor has been moved to the tree level. The rtl-level
4685 predictors estimate this branch about 20%, which isn't enough to get
4686 things moved out of line. Since this is the only extant case of adding
4687 a noreturn function at the rtl level, it doesn't seem worth doing ought
4688 except adding the prediction by hand. */
4689 tmp
= get_last_insn ();
4691 predict_insn_def (tmp
, PRED_NORETURN
, TAKEN
);
4693 expand_call (targetm
.stack_protect_fail (), NULL_RTX
, /*ignore=*/true);
4698 /* Start the RTL for a new function, and set variables used for
4700 SUBR is the FUNCTION_DECL node.
4701 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4702 the function's parameters, which must be run at any return statement. */
4705 expand_function_start (tree subr
)
4707 /* Make sure volatile mem refs aren't considered
4708 valid operands of arithmetic insns. */
4709 init_recog_no_volatile ();
4713 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr
));
4716 = (stack_limit_rtx
!= NULL_RTX
&& ! DECL_NO_LIMIT_STACK (subr
));
4718 /* Make the label for return statements to jump to. Do not special
4719 case machines with special return instructions -- they will be
4720 handled later during jump, ifcvt, or epilogue creation. */
4721 return_label
= gen_label_rtx ();
4723 /* Initialize rtx used to return the value. */
4724 /* Do this before assign_parms so that we copy the struct value address
4725 before any library calls that assign parms might generate. */
4727 /* Decide whether to return the value in memory or in a register. */
4728 if (aggregate_value_p (DECL_RESULT (subr
), subr
))
4730 /* Returning something that won't go in a register. */
4731 rtx value_address
= 0;
4733 #ifdef PCC_STATIC_STRUCT_RETURN
4734 if (cfun
->returns_pcc_struct
)
4736 int size
= int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr
)));
4737 value_address
= assemble_static_space (size
);
4742 rtx sv
= targetm
.calls
.struct_value_rtx (TREE_TYPE (subr
), 2);
4743 /* Expect to be passed the address of a place to store the value.
4744 If it is passed as an argument, assign_parms will take care of
4748 value_address
= gen_reg_rtx (Pmode
);
4749 emit_move_insn (value_address
, sv
);
4754 rtx x
= value_address
;
4755 if (!DECL_BY_REFERENCE (DECL_RESULT (subr
)))
4757 x
= gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr
)), x
);
4758 set_mem_attributes (x
, DECL_RESULT (subr
), 1);
4760 SET_DECL_RTL (DECL_RESULT (subr
), x
);
4763 else if (DECL_MODE (DECL_RESULT (subr
)) == VOIDmode
)
4764 /* If return mode is void, this decl rtl should not be used. */
4765 SET_DECL_RTL (DECL_RESULT (subr
), NULL_RTX
);
4768 /* Compute the return values into a pseudo reg, which we will copy
4769 into the true return register after the cleanups are done. */
4770 tree return_type
= TREE_TYPE (DECL_RESULT (subr
));
4771 if (TYPE_MODE (return_type
) != BLKmode
4772 && targetm
.calls
.return_in_msb (return_type
))
4773 /* expand_function_end will insert the appropriate padding in
4774 this case. Use the return value's natural (unpadded) mode
4775 within the function proper. */
4776 SET_DECL_RTL (DECL_RESULT (subr
),
4777 gen_reg_rtx (TYPE_MODE (return_type
)));
4780 /* In order to figure out what mode to use for the pseudo, we
4781 figure out what the mode of the eventual return register will
4782 actually be, and use that. */
4783 rtx hard_reg
= hard_function_value (return_type
, subr
, 0, 1);
4785 /* Structures that are returned in registers are not
4786 aggregate_value_p, so we may see a PARALLEL or a REG. */
4787 if (REG_P (hard_reg
))
4788 SET_DECL_RTL (DECL_RESULT (subr
),
4789 gen_reg_rtx (GET_MODE (hard_reg
)));
4792 gcc_assert (GET_CODE (hard_reg
) == PARALLEL
);
4793 SET_DECL_RTL (DECL_RESULT (subr
), gen_group_rtx (hard_reg
));
4797 /* Set DECL_REGISTER flag so that expand_function_end will copy the
4798 result to the real return register(s). */
4799 DECL_REGISTER (DECL_RESULT (subr
)) = 1;
4802 /* Initialize rtx for parameters and local variables.
4803 In some cases this requires emitting insns. */
4804 assign_parms (subr
);
4806 /* If function gets a static chain arg, store it. */
4807 if (cfun
->static_chain_decl
)
4809 tree parm
= cfun
->static_chain_decl
;
4810 rtx local
, chain
, insn
;
4812 local
= gen_reg_rtx (Pmode
);
4813 chain
= targetm
.calls
.static_chain (current_function_decl
, true);
4815 set_decl_incoming_rtl (parm
, chain
, false);
4816 SET_DECL_RTL (parm
, local
);
4817 mark_reg_pointer (local
, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm
))));
4819 insn
= emit_move_insn (local
, chain
);
4821 /* Mark the register as eliminable, similar to parameters. */
4823 && reg_mentioned_p (arg_pointer_rtx
, XEXP (chain
, 0)))
4824 set_dst_reg_note (insn
, REG_EQUIV
, chain
, local
);
4827 /* If the function receives a non-local goto, then store the
4828 bits we need to restore the frame pointer. */
4829 if (cfun
->nonlocal_goto_save_area
)
4834 tree var
= TREE_OPERAND (cfun
->nonlocal_goto_save_area
, 0);
4835 gcc_assert (DECL_RTL_SET_P (var
));
4837 t_save
= build4 (ARRAY_REF
,
4838 TREE_TYPE (TREE_TYPE (cfun
->nonlocal_goto_save_area
)),
4839 cfun
->nonlocal_goto_save_area
,
4840 integer_zero_node
, NULL_TREE
, NULL_TREE
);
4841 r_save
= expand_expr (t_save
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
4842 gcc_assert (GET_MODE (r_save
) == Pmode
);
4844 emit_move_insn (r_save
, targetm
.builtin_setjmp_frame_value ());
4845 update_nonlocal_goto_save_area ();
4848 /* The following was moved from init_function_start.
4849 The move is supposed to make sdb output more accurate. */
4850 /* Indicate the beginning of the function body,
4851 as opposed to parm setup. */
4852 emit_note (NOTE_INSN_FUNCTION_BEG
);
4854 gcc_assert (NOTE_P (get_last_insn ()));
4856 parm_birth_insn
= get_last_insn ();
4861 PROFILE_HOOK (current_function_funcdef_no
);
4865 /* If we are doing generic stack checking, the probe should go here. */
4866 if (flag_stack_check
== GENERIC_STACK_CHECK
)
4867 stack_check_probe_note
= emit_note (NOTE_INSN_DELETED
);
4870 /* Undo the effects of init_dummy_function_start. */
4872 expand_dummy_function_end (void)
4874 gcc_assert (in_dummy_function
);
4876 /* End any sequences that failed to be closed due to syntax errors. */
4877 while (in_sequence_p ())
4880 /* Outside function body, can't compute type's actual size
4881 until next function's body starts. */
4883 free_after_parsing (cfun
);
4884 free_after_compilation (cfun
);
4886 in_dummy_function
= false;
4889 /* Call DOIT for each hard register used as a return value from
4890 the current function. */
4893 diddle_return_value (void (*doit
) (rtx
, void *), void *arg
)
4895 rtx outgoing
= crtl
->return_rtx
;
4900 if (REG_P (outgoing
))
4901 (*doit
) (outgoing
, arg
);
4902 else if (GET_CODE (outgoing
) == PARALLEL
)
4906 for (i
= 0; i
< XVECLEN (outgoing
, 0); i
++)
4908 rtx x
= XEXP (XVECEXP (outgoing
, 0, i
), 0);
4910 if (REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
4917 do_clobber_return_reg (rtx reg
, void *arg ATTRIBUTE_UNUSED
)
4923 clobber_return_register (void)
4925 diddle_return_value (do_clobber_return_reg
, NULL
);
4927 /* In case we do use pseudo to return value, clobber it too. */
4928 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl
)))
4930 tree decl_result
= DECL_RESULT (current_function_decl
);
4931 rtx decl_rtl
= DECL_RTL (decl_result
);
4932 if (REG_P (decl_rtl
) && REGNO (decl_rtl
) >= FIRST_PSEUDO_REGISTER
)
4934 do_clobber_return_reg (decl_rtl
, NULL
);
4940 do_use_return_reg (rtx reg
, void *arg ATTRIBUTE_UNUSED
)
4946 use_return_register (void)
4948 diddle_return_value (do_use_return_reg
, NULL
);
4951 /* Possibly warn about unused parameters. */
4953 do_warn_unused_parameter (tree fn
)
4957 for (decl
= DECL_ARGUMENTS (fn
);
4958 decl
; decl
= DECL_CHAIN (decl
))
4959 if (!TREE_USED (decl
) && TREE_CODE (decl
) == PARM_DECL
4960 && DECL_NAME (decl
) && !DECL_ARTIFICIAL (decl
)
4961 && !TREE_NO_WARNING (decl
))
4962 warning (OPT_Wunused_parameter
, "unused parameter %q+D", decl
);
4965 /* Set the location of the insn chain starting at INSN to LOC. */
4968 set_insn_locations (rtx insn
, int loc
)
4970 while (insn
!= NULL_RTX
)
4973 INSN_LOCATION (insn
) = loc
;
4974 insn
= NEXT_INSN (insn
);
4978 /* Generate RTL for the end of the current function. */
4981 expand_function_end (void)
4985 /* If arg_pointer_save_area was referenced only from a nested
4986 function, we will not have initialized it yet. Do that now. */
4987 if (arg_pointer_save_area
&& ! crtl
->arg_pointer_save_area_init
)
4988 get_arg_pointer_save_area ();
4990 /* If we are doing generic stack checking and this function makes calls,
4991 do a stack probe at the start of the function to ensure we have enough
4992 space for another stack frame. */
4993 if (flag_stack_check
== GENERIC_STACK_CHECK
)
4997 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
5000 rtx max_frame_size
= GEN_INT (STACK_CHECK_MAX_FRAME_SIZE
);
5002 if (STACK_CHECK_MOVING_SP
)
5003 anti_adjust_stack_and_probe (max_frame_size
, true);
5005 probe_stack_range (STACK_OLD_CHECK_PROTECT
, max_frame_size
);
5008 set_insn_locations (seq
, prologue_location
);
5009 emit_insn_before (seq
, stack_check_probe_note
);
5014 /* End any sequences that failed to be closed due to syntax errors. */
5015 while (in_sequence_p ())
5018 clear_pending_stack_adjust ();
5019 do_pending_stack_adjust ();
5021 /* Output a linenumber for the end of the function.
5022 SDB depends on this. */
5023 set_curr_insn_location (input_location
);
5025 /* Before the return label (if any), clobber the return
5026 registers so that they are not propagated live to the rest of
5027 the function. This can only happen with functions that drop
5028 through; if there had been a return statement, there would
5029 have either been a return rtx, or a jump to the return label.
5031 We delay actual code generation after the current_function_value_rtx
5033 clobber_after
= get_last_insn ();
5035 /* Output the label for the actual return from the function. */
5036 emit_label (return_label
);
5038 if (targetm_common
.except_unwind_info (&global_options
) == UI_SJLJ
)
5040 /* Let except.c know where it should emit the call to unregister
5041 the function context for sjlj exceptions. */
5042 if (flag_exceptions
)
5043 sjlj_emit_function_exit_after (get_last_insn ());
5047 /* We want to ensure that instructions that may trap are not
5048 moved into the epilogue by scheduling, because we don't
5049 always emit unwind information for the epilogue. */
5050 if (cfun
->can_throw_non_call_exceptions
)
5051 emit_insn (gen_blockage ());
5054 /* If this is an implementation of throw, do what's necessary to
5055 communicate between __builtin_eh_return and the epilogue. */
5056 expand_eh_return ();
5058 /* If scalar return value was computed in a pseudo-reg, or was a named
5059 return value that got dumped to the stack, copy that to the hard
5061 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl
)))
5063 tree decl_result
= DECL_RESULT (current_function_decl
);
5064 rtx decl_rtl
= DECL_RTL (decl_result
);
5066 if (REG_P (decl_rtl
)
5067 ? REGNO (decl_rtl
) >= FIRST_PSEUDO_REGISTER
5068 : DECL_REGISTER (decl_result
))
5070 rtx real_decl_rtl
= crtl
->return_rtx
;
5072 /* This should be set in assign_parms. */
5073 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl
));
5075 /* If this is a BLKmode structure being returned in registers,
5076 then use the mode computed in expand_return. Note that if
5077 decl_rtl is memory, then its mode may have been changed,
5078 but that crtl->return_rtx has not. */
5079 if (GET_MODE (real_decl_rtl
) == BLKmode
)
5080 PUT_MODE (real_decl_rtl
, GET_MODE (decl_rtl
));
5082 /* If a non-BLKmode return value should be padded at the least
5083 significant end of the register, shift it left by the appropriate
5084 amount. BLKmode results are handled using the group load/store
5086 if (TYPE_MODE (TREE_TYPE (decl_result
)) != BLKmode
5087 && REG_P (real_decl_rtl
)
5088 && targetm
.calls
.return_in_msb (TREE_TYPE (decl_result
)))
5090 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl
),
5091 REGNO (real_decl_rtl
)),
5093 shift_return_value (GET_MODE (decl_rtl
), true, real_decl_rtl
);
5095 /* If a named return value dumped decl_return to memory, then
5096 we may need to re-do the PROMOTE_MODE signed/unsigned
5098 else if (GET_MODE (real_decl_rtl
) != GET_MODE (decl_rtl
))
5100 int unsignedp
= TYPE_UNSIGNED (TREE_TYPE (decl_result
));
5101 promote_function_mode (TREE_TYPE (decl_result
),
5102 GET_MODE (decl_rtl
), &unsignedp
,
5103 TREE_TYPE (current_function_decl
), 1);
5105 convert_move (real_decl_rtl
, decl_rtl
, unsignedp
);
5107 else if (GET_CODE (real_decl_rtl
) == PARALLEL
)
5109 /* If expand_function_start has created a PARALLEL for decl_rtl,
5110 move the result to the real return registers. Otherwise, do
5111 a group load from decl_rtl for a named return. */
5112 if (GET_CODE (decl_rtl
) == PARALLEL
)
5113 emit_group_move (real_decl_rtl
, decl_rtl
);
5115 emit_group_load (real_decl_rtl
, decl_rtl
,
5116 TREE_TYPE (decl_result
),
5117 int_size_in_bytes (TREE_TYPE (decl_result
)));
5119 /* In the case of complex integer modes smaller than a word, we'll
5120 need to generate some non-trivial bitfield insertions. Do that
5121 on a pseudo and not the hard register. */
5122 else if (GET_CODE (decl_rtl
) == CONCAT
5123 && GET_MODE_CLASS (GET_MODE (decl_rtl
)) == MODE_COMPLEX_INT
5124 && GET_MODE_BITSIZE (GET_MODE (decl_rtl
)) <= BITS_PER_WORD
)
5126 int old_generating_concat_p
;
5129 old_generating_concat_p
= generating_concat_p
;
5130 generating_concat_p
= 0;
5131 tmp
= gen_reg_rtx (GET_MODE (decl_rtl
));
5132 generating_concat_p
= old_generating_concat_p
;
5134 emit_move_insn (tmp
, decl_rtl
);
5135 emit_move_insn (real_decl_rtl
, tmp
);
5138 emit_move_insn (real_decl_rtl
, decl_rtl
);
5142 /* If returning a structure, arrange to return the address of the value
5143 in a place where debuggers expect to find it.
5145 If returning a structure PCC style,
5146 the caller also depends on this value.
5147 And cfun->returns_pcc_struct is not necessarily set. */
5148 if (cfun
->returns_struct
5149 || cfun
->returns_pcc_struct
)
5151 rtx value_address
= DECL_RTL (DECL_RESULT (current_function_decl
));
5152 tree type
= TREE_TYPE (DECL_RESULT (current_function_decl
));
5155 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl
)))
5156 type
= TREE_TYPE (type
);
5158 value_address
= XEXP (value_address
, 0);
5160 outgoing
= targetm
.calls
.function_value (build_pointer_type (type
),
5161 current_function_decl
, true);
5163 /* Mark this as a function return value so integrate will delete the
5164 assignment and USE below when inlining this function. */
5165 REG_FUNCTION_VALUE_P (outgoing
) = 1;
5167 /* The address may be ptr_mode and OUTGOING may be Pmode. */
5168 value_address
= convert_memory_address (GET_MODE (outgoing
),
5171 emit_move_insn (outgoing
, value_address
);
5173 /* Show return register used to hold result (in this case the address
5175 crtl
->return_rtx
= outgoing
;
5178 /* Emit the actual code to clobber return register. Don't emit
5179 it if clobber_after is a barrier, then the previous basic block
5180 certainly doesn't fall thru into the exit block. */
5181 if (!BARRIER_P (clobber_after
))
5186 clobber_return_register ();
5190 emit_insn_after (seq
, clobber_after
);
5193 /* Output the label for the naked return from the function. */
5194 if (naked_return_label
)
5195 emit_label (naked_return_label
);
5197 /* @@@ This is a kludge. We want to ensure that instructions that
5198 may trap are not moved into the epilogue by scheduling, because
5199 we don't always emit unwind information for the epilogue. */
5200 if (cfun
->can_throw_non_call_exceptions
5201 && targetm_common
.except_unwind_info (&global_options
) != UI_SJLJ
)
5202 emit_insn (gen_blockage ());
5204 /* If stack protection is enabled for this function, check the guard. */
5205 if (crtl
->stack_protect_guard
)
5206 stack_protect_epilogue ();
5208 /* If we had calls to alloca, and this machine needs
5209 an accurate stack pointer to exit the function,
5210 insert some code to save and restore the stack pointer. */
5211 if (! EXIT_IGNORE_STACK
5212 && cfun
->calls_alloca
)
5217 emit_stack_save (SAVE_FUNCTION
, &tem
);
5220 emit_insn_before (seq
, parm_birth_insn
);
5222 emit_stack_restore (SAVE_FUNCTION
, tem
);
5225 /* ??? This should no longer be necessary since stupid is no longer with
5226 us, but there are some parts of the compiler (eg reload_combine, and
5227 sh mach_dep_reorg) that still try and compute their own lifetime info
5228 instead of using the general framework. */
5229 use_return_register ();
5233 get_arg_pointer_save_area (void)
5235 rtx ret
= arg_pointer_save_area
;
5239 ret
= assign_stack_local (Pmode
, GET_MODE_SIZE (Pmode
), 0);
5240 arg_pointer_save_area
= ret
;
5243 if (! crtl
->arg_pointer_save_area_init
)
5247 /* Save the arg pointer at the beginning of the function. The
5248 generated stack slot may not be a valid memory address, so we
5249 have to check it and fix it if necessary. */
5251 emit_move_insn (validize_mem (ret
),
5252 crtl
->args
.internal_arg_pointer
);
5256 push_topmost_sequence ();
5257 emit_insn_after (seq
, entry_of_function ());
5258 pop_topmost_sequence ();
5260 crtl
->arg_pointer_save_area_init
= true;
5266 /* Add a list of INSNS to the hash HASHP, possibly allocating HASHP
5267 for the first time. */
5270 record_insns (rtx insns
, rtx end
, htab_t
*hashp
)
5273 htab_t hash
= *hashp
;
5277 = htab_create_ggc (17, htab_hash_pointer
, htab_eq_pointer
, NULL
);
5279 for (tmp
= insns
; tmp
!= end
; tmp
= NEXT_INSN (tmp
))
5281 void **slot
= htab_find_slot (hash
, tmp
, INSERT
);
5282 gcc_assert (*slot
== NULL
);
5287 /* INSN has been duplicated or replaced by as COPY, perhaps by duplicating a
5288 basic block, splitting or peepholes. If INSN is a prologue or epilogue
5289 insn, then record COPY as well. */
5292 maybe_copy_prologue_epilogue_insn (rtx insn
, rtx copy
)
5297 hash
= epilogue_insn_hash
;
5298 if (!hash
|| !htab_find (hash
, insn
))
5300 hash
= prologue_insn_hash
;
5301 if (!hash
|| !htab_find (hash
, insn
))
5305 slot
= htab_find_slot (hash
, copy
, INSERT
);
5306 gcc_assert (*slot
== NULL
);
5310 /* Determine if any INSNs in HASH are, or are part of, INSN. Because
5311 we can be running after reorg, SEQUENCE rtl is possible. */
5314 contains (const_rtx insn
, htab_t hash
)
5319 if (NONJUMP_INSN_P (insn
) && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
5322 for (i
= XVECLEN (PATTERN (insn
), 0) - 1; i
>= 0; i
--)
5323 if (htab_find (hash
, XVECEXP (PATTERN (insn
), 0, i
)))
5328 return htab_find (hash
, insn
) != NULL
;
5332 prologue_epilogue_contains (const_rtx insn
)
5334 if (contains (insn
, prologue_insn_hash
))
5336 if (contains (insn
, epilogue_insn_hash
))
5341 #ifdef HAVE_simple_return
5343 /* Return true if INSN requires the stack frame to be set up.
5344 PROLOGUE_USED contains the hard registers used in the function
5345 prologue. SET_UP_BY_PROLOGUE is the set of registers we expect the
5346 prologue to set up for the function. */
5348 requires_stack_frame_p (rtx insn
, HARD_REG_SET prologue_used
,
5349 HARD_REG_SET set_up_by_prologue
)
5352 HARD_REG_SET hardregs
;
5356 return !SIBLING_CALL_P (insn
);
5358 /* We need a frame to get the unique CFA expected by the unwinder. */
5359 if (cfun
->can_throw_non_call_exceptions
&& can_throw_internal (insn
))
5362 CLEAR_HARD_REG_SET (hardregs
);
5363 for (df_rec
= DF_INSN_DEFS (insn
); *df_rec
; df_rec
++)
5365 rtx dreg
= DF_REF_REG (*df_rec
);
5370 add_to_hard_reg_set (&hardregs
, GET_MODE (dreg
),
5373 if (hard_reg_set_intersect_p (hardregs
, prologue_used
))
5375 AND_COMPL_HARD_REG_SET (hardregs
, call_used_reg_set
);
5376 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
; regno
++)
5377 if (TEST_HARD_REG_BIT (hardregs
, regno
)
5378 && df_regs_ever_live_p (regno
))
5381 for (df_rec
= DF_INSN_USES (insn
); *df_rec
; df_rec
++)
5383 rtx reg
= DF_REF_REG (*df_rec
);
5388 add_to_hard_reg_set (&hardregs
, GET_MODE (reg
),
5391 if (hard_reg_set_intersect_p (hardregs
, set_up_by_prologue
))
5397 /* See whether BB has a single successor that uses [REGNO, END_REGNO),
5398 and if BB is its only predecessor. Return that block if so,
5399 otherwise return null. */
5402 next_block_for_reg (basic_block bb
, int regno
, int end_regno
)
5410 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5412 live
= df_get_live_in (e
->dest
);
5413 for (i
= regno
; i
< end_regno
; i
++)
5414 if (REGNO_REG_SET_P (live
, i
))
5416 if (live_edge
&& live_edge
!= e
)
5422 /* We can sometimes encounter dead code. Don't try to move it
5423 into the exit block. */
5424 if (!live_edge
|| live_edge
->dest
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
5427 /* Reject targets of abnormal edges. This is needed for correctness
5428 on ports like Alpha and MIPS, whose pic_offset_table_rtx can die on
5429 exception edges even though it is generally treated as call-saved
5430 for the majority of the compilation. Moving across abnormal edges
5431 isn't going to be interesting for shrink-wrap usage anyway. */
5432 if (live_edge
->flags
& EDGE_ABNORMAL
)
5435 if (EDGE_COUNT (live_edge
->dest
->preds
) > 1)
5438 return live_edge
->dest
;
5441 /* Try to move INSN from BB to a successor. Return true on success.
5442 USES and DEFS are the set of registers that are used and defined
5443 after INSN in BB. */
5446 move_insn_for_shrink_wrap (basic_block bb
, rtx insn
,
5447 const HARD_REG_SET uses
,
5448 const HARD_REG_SET defs
)
5451 bitmap live_out
, live_in
, bb_uses
, bb_defs
;
5452 unsigned int i
, dregno
, end_dregno
, sregno
, end_sregno
;
5453 basic_block next_block
;
5455 /* Look for a simple register copy. */
5456 set
= single_set (insn
);
5459 src
= SET_SRC (set
);
5460 dest
= SET_DEST (set
);
5461 if (!REG_P (dest
) || !REG_P (src
))
5464 /* Make sure that the source register isn't defined later in BB. */
5465 sregno
= REGNO (src
);
5466 end_sregno
= END_REGNO (src
);
5467 if (overlaps_hard_reg_set_p (defs
, GET_MODE (src
), sregno
))
5470 /* Make sure that the destination register isn't referenced later in BB. */
5471 dregno
= REGNO (dest
);
5472 end_dregno
= END_REGNO (dest
);
5473 if (overlaps_hard_reg_set_p (uses
, GET_MODE (dest
), dregno
)
5474 || overlaps_hard_reg_set_p (defs
, GET_MODE (dest
), dregno
))
5477 /* See whether there is a successor block to which we could move INSN. */
5478 next_block
= next_block_for_reg (bb
, dregno
, end_dregno
);
5482 /* At this point we are committed to moving INSN, but let's try to
5483 move it as far as we can. */
5486 live_out
= df_get_live_out (bb
);
5487 live_in
= df_get_live_in (next_block
);
5490 /* Check whether BB uses DEST or clobbers DEST. We need to add
5491 INSN to BB if so. Either way, DEST is no longer live on entry,
5492 except for any part that overlaps SRC (next loop). */
5493 bb_uses
= &DF_LR_BB_INFO (bb
)->use
;
5494 bb_defs
= &DF_LR_BB_INFO (bb
)->def
;
5497 for (i
= dregno
; i
< end_dregno
; i
++)
5499 if (REGNO_REG_SET_P (bb_uses
, i
) || REGNO_REG_SET_P (bb_defs
, i
)
5500 || REGNO_REG_SET_P (&DF_LIVE_BB_INFO (bb
)->gen
, i
))
5502 CLEAR_REGNO_REG_SET (live_out
, i
);
5503 CLEAR_REGNO_REG_SET (live_in
, i
);
5506 /* Check whether BB clobbers SRC. We need to add INSN to BB if so.
5507 Either way, SRC is now live on entry. */
5508 for (i
= sregno
; i
< end_sregno
; i
++)
5510 if (REGNO_REG_SET_P (bb_defs
, i
)
5511 || REGNO_REG_SET_P (&DF_LIVE_BB_INFO (bb
)->gen
, i
))
5513 SET_REGNO_REG_SET (live_out
, i
);
5514 SET_REGNO_REG_SET (live_in
, i
);
5519 /* DF_LR_BB_INFO (bb)->def does not comprise the DF_REF_PARTIAL and
5520 DF_REF_CONDITIONAL defs. So if DF_LIVE doesn't exist, i.e.
5521 at -O1, just give up searching NEXT_BLOCK. */
5523 for (i
= dregno
; i
< end_dregno
; i
++)
5525 CLEAR_REGNO_REG_SET (live_out
, i
);
5526 CLEAR_REGNO_REG_SET (live_in
, i
);
5529 for (i
= sregno
; i
< end_sregno
; i
++)
5531 SET_REGNO_REG_SET (live_out
, i
);
5532 SET_REGNO_REG_SET (live_in
, i
);
5536 /* If we don't need to add the move to BB, look for a single
5539 next_block
= next_block_for_reg (next_block
, dregno
, end_dregno
);
5543 /* BB now defines DEST. It only uses the parts of DEST that overlap SRC
5545 for (i
= dregno
; i
< end_dregno
; i
++)
5547 CLEAR_REGNO_REG_SET (bb_uses
, i
);
5548 SET_REGNO_REG_SET (bb_defs
, i
);
5551 /* BB now uses SRC. */
5552 for (i
= sregno
; i
< end_sregno
; i
++)
5553 SET_REGNO_REG_SET (bb_uses
, i
);
5555 emit_insn_after (PATTERN (insn
), bb_note (bb
));
5560 /* Look for register copies in the first block of the function, and move
5561 them down into successor blocks if the register is used only on one
5562 path. This exposes more opportunities for shrink-wrapping. These
5563 kinds of sets often occur when incoming argument registers are moved
5564 to call-saved registers because their values are live across one or
5565 more calls during the function. */
5568 prepare_shrink_wrap (basic_block entry_block
)
5571 HARD_REG_SET uses
, defs
;
5574 CLEAR_HARD_REG_SET (uses
);
5575 CLEAR_HARD_REG_SET (defs
);
5576 FOR_BB_INSNS_REVERSE_SAFE (entry_block
, insn
, curr
)
5577 if (NONDEBUG_INSN_P (insn
)
5578 && !move_insn_for_shrink_wrap (entry_block
, insn
, uses
, defs
))
5580 /* Add all defined registers to DEFs. */
5581 for (ref
= DF_INSN_DEFS (insn
); *ref
; ref
++)
5583 x
= DF_REF_REG (*ref
);
5584 if (REG_P (x
) && HARD_REGISTER_P (x
))
5585 SET_HARD_REG_BIT (defs
, REGNO (x
));
5588 /* Add all used registers to USESs. */
5589 for (ref
= DF_INSN_USES (insn
); *ref
; ref
++)
5591 x
= DF_REF_REG (*ref
);
5592 if (REG_P (x
) && HARD_REGISTER_P (x
))
5593 SET_HARD_REG_BIT (uses
, REGNO (x
));
5601 /* Insert use of return register before the end of BB. */
5604 emit_use_return_register_into_block (basic_block bb
)
5608 use_return_register ();
5613 if (reg_mentioned_p (cc0_rtx
, PATTERN (insn
)))
5614 insn
= prev_cc0_setter (insn
);
5616 emit_insn_before (seq
, insn
);
5620 /* Create a return pattern, either simple_return or return, depending on
5624 gen_return_pattern (bool simple_p
)
5626 #ifdef HAVE_simple_return
5627 return simple_p
? gen_simple_return () : gen_return ();
5629 gcc_assert (!simple_p
);
5630 return gen_return ();
5634 /* Insert an appropriate return pattern at the end of block BB. This
5635 also means updating block_for_insn appropriately. SIMPLE_P is
5636 the same as in gen_return_pattern and passed to it. */
5639 emit_return_into_block (bool simple_p
, basic_block bb
)
5642 jump
= emit_jump_insn_after (gen_return_pattern (simple_p
), BB_END (bb
));
5643 pat
= PATTERN (jump
);
5644 if (GET_CODE (pat
) == PARALLEL
)
5645 pat
= XVECEXP (pat
, 0, 0);
5646 gcc_assert (ANY_RETURN_P (pat
));
5647 JUMP_LABEL (jump
) = pat
;
5651 /* Set JUMP_LABEL for a return insn. */
5654 set_return_jump_label (rtx returnjump
)
5656 rtx pat
= PATTERN (returnjump
);
5657 if (GET_CODE (pat
) == PARALLEL
)
5658 pat
= XVECEXP (pat
, 0, 0);
5659 if (ANY_RETURN_P (pat
))
5660 JUMP_LABEL (returnjump
) = pat
;
5662 JUMP_LABEL (returnjump
) = ret_rtx
;
5665 #ifdef HAVE_simple_return
5666 /* Create a copy of BB instructions and insert at BEFORE. Redirect
5667 preds of BB to COPY_BB if they don't appear in NEED_PROLOGUE. */
5669 dup_block_and_redirect (basic_block bb
, basic_block copy_bb
, rtx before
,
5670 bitmap_head
*need_prologue
)
5674 rtx insn
= BB_END (bb
);
5676 /* We know BB has a single successor, so there is no need to copy a
5677 simple jump at the end of BB. */
5678 if (simplejump_p (insn
))
5679 insn
= PREV_INSN (insn
);
5682 duplicate_insn_chain (BB_HEAD (bb
), insn
);
5686 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
5687 if (active_insn_p (insn
))
5689 fprintf (dump_file
, "Duplicating bb %d to bb %d, %u active insns.\n",
5690 bb
->index
, copy_bb
->index
, count
);
5692 insn
= get_insns ();
5694 emit_insn_before (insn
, before
);
5696 /* Redirect all the paths that need no prologue into copy_bb. */
5697 for (ei
= ei_start (bb
->preds
); (e
= ei_safe_edge (ei
)); )
5698 if (!bitmap_bit_p (need_prologue
, e
->src
->index
))
5700 int freq
= EDGE_FREQUENCY (e
);
5701 copy_bb
->count
+= e
->count
;
5702 copy_bb
->frequency
+= EDGE_FREQUENCY (e
);
5703 e
->dest
->count
-= e
->count
;
5704 if (e
->dest
->count
< 0)
5706 e
->dest
->frequency
-= freq
;
5707 if (e
->dest
->frequency
< 0)
5708 e
->dest
->frequency
= 0;
5709 redirect_edge_and_branch_force (e
, copy_bb
);
5717 #if defined (HAVE_return) || defined (HAVE_simple_return)
5718 /* Return true if there are any active insns between HEAD and TAIL. */
5720 active_insn_between (rtx head
, rtx tail
)
5724 if (active_insn_p (tail
))
5728 tail
= PREV_INSN (tail
);
5733 /* LAST_BB is a block that exits, and empty of active instructions.
5734 Examine its predecessors for jumps that can be converted to
5735 (conditional) returns. */
5737 convert_jumps_to_returns (basic_block last_bb
, bool simple_p
,
5738 vec
<edge
> unconverted ATTRIBUTE_UNUSED
)
5745 auto_vec
<basic_block
> src_bbs (EDGE_COUNT (last_bb
->preds
));
5747 FOR_EACH_EDGE (e
, ei
, last_bb
->preds
)
5748 if (e
->src
!= ENTRY_BLOCK_PTR_FOR_FN (cfun
))
5749 src_bbs
.quick_push (e
->src
);
5751 label
= BB_HEAD (last_bb
);
5753 FOR_EACH_VEC_ELT (src_bbs
, i
, bb
)
5755 rtx jump
= BB_END (bb
);
5757 if (!JUMP_P (jump
) || JUMP_LABEL (jump
) != label
)
5760 e
= find_edge (bb
, last_bb
);
5762 /* If we have an unconditional jump, we can replace that
5763 with a simple return instruction. */
5764 if (simplejump_p (jump
))
5766 /* The use of the return register might be present in the exit
5767 fallthru block. Either:
5768 - removing the use is safe, and we should remove the use in
5769 the exit fallthru block, or
5770 - removing the use is not safe, and we should add it here.
5771 For now, we conservatively choose the latter. Either of the
5772 2 helps in crossjumping. */
5773 emit_use_return_register_into_block (bb
);
5775 emit_return_into_block (simple_p
, bb
);
5779 /* If we have a conditional jump branching to the last
5780 block, we can try to replace that with a conditional
5781 return instruction. */
5782 else if (condjump_p (jump
))
5787 dest
= simple_return_rtx
;
5790 if (!redirect_jump (jump
, dest
, 0))
5792 #ifdef HAVE_simple_return
5797 "Failed to redirect bb %d branch.\n", bb
->index
);
5798 unconverted
.safe_push (e
);
5804 /* See comment in simplejump_p case above. */
5805 emit_use_return_register_into_block (bb
);
5807 /* If this block has only one successor, it both jumps
5808 and falls through to the fallthru block, so we can't
5810 if (single_succ_p (bb
))
5815 #ifdef HAVE_simple_return
5820 "Failed to redirect bb %d branch.\n", bb
->index
);
5821 unconverted
.safe_push (e
);
5827 /* Fix up the CFG for the successful change we just made. */
5828 redirect_edge_succ (e
, EXIT_BLOCK_PTR_FOR_FN (cfun
));
5829 e
->flags
&= ~EDGE_CROSSING
;
5835 /* Emit a return insn for the exit fallthru block. */
5837 emit_return_for_exit (edge exit_fallthru_edge
, bool simple_p
)
5839 basic_block last_bb
= exit_fallthru_edge
->src
;
5841 if (JUMP_P (BB_END (last_bb
)))
5843 last_bb
= split_edge (exit_fallthru_edge
);
5844 exit_fallthru_edge
= single_succ_edge (last_bb
);
5846 emit_barrier_after (BB_END (last_bb
));
5847 emit_return_into_block (simple_p
, last_bb
);
5848 exit_fallthru_edge
->flags
&= ~EDGE_FALLTHRU
;
5854 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
5855 this into place with notes indicating where the prologue ends and where
5856 the epilogue begins. Update the basic block information when possible.
5858 Notes on epilogue placement:
5859 There are several kinds of edges to the exit block:
5860 * a single fallthru edge from LAST_BB
5861 * possibly, edges from blocks containing sibcalls
5862 * possibly, fake edges from infinite loops
5864 The epilogue is always emitted on the fallthru edge from the last basic
5865 block in the function, LAST_BB, into the exit block.
5867 If LAST_BB is empty except for a label, it is the target of every
5868 other basic block in the function that ends in a return. If a
5869 target has a return or simple_return pattern (possibly with
5870 conditional variants), these basic blocks can be changed so that a
5871 return insn is emitted into them, and their target is adjusted to
5872 the real exit block.
5874 Notes on shrink wrapping: We implement a fairly conservative
5875 version of shrink-wrapping rather than the textbook one. We only
5876 generate a single prologue and a single epilogue. This is
5877 sufficient to catch a number of interesting cases involving early
5880 First, we identify the blocks that require the prologue to occur before
5881 them. These are the ones that modify a call-saved register, or reference
5882 any of the stack or frame pointer registers. To simplify things, we then
5883 mark everything reachable from these blocks as also requiring a prologue.
5884 This takes care of loops automatically, and avoids the need to examine
5885 whether MEMs reference the frame, since it is sufficient to check for
5886 occurrences of the stack or frame pointer.
5888 We then compute the set of blocks for which the need for a prologue
5889 is anticipatable (borrowing terminology from the shrink-wrapping
5890 description in Muchnick's book). These are the blocks which either
5891 require a prologue themselves, or those that have only successors
5892 where the prologue is anticipatable. The prologue needs to be
5893 inserted on all edges from BB1->BB2 where BB2 is in ANTIC and BB1
5894 is not. For the moment, we ensure that only one such edge exists.
5896 The epilogue is placed as described above, but we make a
5897 distinction between inserting return and simple_return patterns
5898 when modifying other blocks that end in a return. Blocks that end
5899 in a sibcall omit the sibcall_epilogue if the block is not in
5903 thread_prologue_and_epilogue_insns (void)
5906 #ifdef HAVE_simple_return
5907 vec
<edge
> unconverted_simple_returns
= vNULL
;
5908 bool nonempty_prologue
;
5909 bitmap_head bb_flags
;
5910 unsigned max_grow_size
;
5913 rtx seq ATTRIBUTE_UNUSED
, epilogue_end ATTRIBUTE_UNUSED
;
5914 rtx prologue_seq ATTRIBUTE_UNUSED
, split_prologue_seq ATTRIBUTE_UNUSED
;
5915 edge e
, entry_edge
, orig_entry_edge
, exit_fallthru_edge
;
5920 rtl_profile_for_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun
));
5924 epilogue_end
= NULL_RTX
;
5925 returnjump
= NULL_RTX
;
5927 /* Can't deal with multiple successors of the entry block at the
5928 moment. Function should always have at least one entry
5930 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR_FOR_FN (cfun
)));
5931 entry_edge
= single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun
));
5932 orig_entry_edge
= entry_edge
;
5934 split_prologue_seq
= NULL_RTX
;
5935 if (flag_split_stack
5936 && (lookup_attribute ("no_split_stack", DECL_ATTRIBUTES (cfun
->decl
))
5939 #ifndef HAVE_split_stack_prologue
5942 gcc_assert (HAVE_split_stack_prologue
);
5945 emit_insn (gen_split_stack_prologue ());
5946 split_prologue_seq
= get_insns ();
5949 record_insns (split_prologue_seq
, NULL
, &prologue_insn_hash
);
5950 set_insn_locations (split_prologue_seq
, prologue_location
);
5954 prologue_seq
= NULL_RTX
;
5955 #ifdef HAVE_prologue
5959 seq
= gen_prologue ();
5962 /* Insert an explicit USE for the frame pointer
5963 if the profiling is on and the frame pointer is required. */
5964 if (crtl
->profile
&& frame_pointer_needed
)
5965 emit_use (hard_frame_pointer_rtx
);
5967 /* Retain a map of the prologue insns. */
5968 record_insns (seq
, NULL
, &prologue_insn_hash
);
5969 emit_note (NOTE_INSN_PROLOGUE_END
);
5971 /* Ensure that instructions are not moved into the prologue when
5972 profiling is on. The call to the profiling routine can be
5973 emitted within the live range of a call-clobbered register. */
5974 if (!targetm
.profile_before_prologue () && crtl
->profile
)
5975 emit_insn (gen_blockage ());
5977 prologue_seq
= get_insns ();
5979 set_insn_locations (prologue_seq
, prologue_location
);
5983 #ifdef HAVE_simple_return
5984 bitmap_initialize (&bb_flags
, &bitmap_default_obstack
);
5986 /* Try to perform a kind of shrink-wrapping, making sure the
5987 prologue/epilogue is emitted only around those parts of the
5988 function that require it. */
5990 nonempty_prologue
= false;
5991 for (seq
= prologue_seq
; seq
; seq
= NEXT_INSN (seq
))
5992 if (!NOTE_P (seq
) || NOTE_KIND (seq
) != NOTE_INSN_PROLOGUE_END
)
5994 nonempty_prologue
= true;
5998 if (flag_shrink_wrap
&& HAVE_simple_return
5999 && (targetm
.profile_before_prologue () || !crtl
->profile
)
6000 && nonempty_prologue
&& !crtl
->calls_eh_return
)
6002 HARD_REG_SET prologue_clobbered
, prologue_used
, live_on_edge
;
6003 struct hard_reg_set_container set_up_by_prologue
;
6005 vec
<basic_block
> vec
;
6007 bitmap_head bb_antic_flags
;
6008 bitmap_head bb_on_list
;
6009 bitmap_head bb_tail
;
6012 fprintf (dump_file
, "Attempting shrink-wrapping optimization.\n");
6014 /* Compute the registers set and used in the prologue. */
6015 CLEAR_HARD_REG_SET (prologue_clobbered
);
6016 CLEAR_HARD_REG_SET (prologue_used
);
6017 for (p_insn
= prologue_seq
; p_insn
; p_insn
= NEXT_INSN (p_insn
))
6019 HARD_REG_SET this_used
;
6020 if (!NONDEBUG_INSN_P (p_insn
))
6023 CLEAR_HARD_REG_SET (this_used
);
6024 note_uses (&PATTERN (p_insn
), record_hard_reg_uses
,
6026 AND_COMPL_HARD_REG_SET (this_used
, prologue_clobbered
);
6027 IOR_HARD_REG_SET (prologue_used
, this_used
);
6028 note_stores (PATTERN (p_insn
), record_hard_reg_sets
,
6029 &prologue_clobbered
);
6032 prepare_shrink_wrap (entry_edge
->dest
);
6034 bitmap_initialize (&bb_antic_flags
, &bitmap_default_obstack
);
6035 bitmap_initialize (&bb_on_list
, &bitmap_default_obstack
);
6036 bitmap_initialize (&bb_tail
, &bitmap_default_obstack
);
6038 /* Find the set of basic blocks that require a stack frame,
6039 and blocks that are too big to be duplicated. */
6041 vec
.create (n_basic_blocks_for_fn (cfun
));
6043 CLEAR_HARD_REG_SET (set_up_by_prologue
.set
);
6044 add_to_hard_reg_set (&set_up_by_prologue
.set
, Pmode
,
6045 STACK_POINTER_REGNUM
);
6046 add_to_hard_reg_set (&set_up_by_prologue
.set
, Pmode
, ARG_POINTER_REGNUM
);
6047 if (frame_pointer_needed
)
6048 add_to_hard_reg_set (&set_up_by_prologue
.set
, Pmode
,
6049 HARD_FRAME_POINTER_REGNUM
);
6050 if (pic_offset_table_rtx
)
6051 add_to_hard_reg_set (&set_up_by_prologue
.set
, Pmode
,
6052 PIC_OFFSET_TABLE_REGNUM
);
6054 add_to_hard_reg_set (&set_up_by_prologue
.set
,
6055 GET_MODE (crtl
->drap_reg
),
6056 REGNO (crtl
->drap_reg
));
6057 if (targetm
.set_up_by_prologue
)
6058 targetm
.set_up_by_prologue (&set_up_by_prologue
);
6060 /* We don't use a different max size depending on
6061 optimize_bb_for_speed_p because increasing shrink-wrapping
6062 opportunities by duplicating tail blocks can actually result
6063 in an overall decrease in code size. */
6064 max_grow_size
= get_uncond_jump_length ();
6065 max_grow_size
*= PARAM_VALUE (PARAM_MAX_GROW_COPY_BB_INSNS
);
6067 FOR_EACH_BB_FN (bb
, cfun
)
6072 FOR_BB_INSNS (bb
, insn
)
6073 if (NONDEBUG_INSN_P (insn
))
6075 if (requires_stack_frame_p (insn
, prologue_used
,
6076 set_up_by_prologue
.set
))
6078 if (bb
== entry_edge
->dest
)
6079 goto fail_shrinkwrap
;
6080 bitmap_set_bit (&bb_flags
, bb
->index
);
6081 vec
.quick_push (bb
);
6084 else if (size
<= max_grow_size
)
6086 size
+= get_attr_min_length (insn
);
6087 if (size
> max_grow_size
)
6088 bitmap_set_bit (&bb_on_list
, bb
->index
);
6093 /* Blocks that really need a prologue, or are too big for tails. */
6094 bitmap_ior_into (&bb_on_list
, &bb_flags
);
6096 /* For every basic block that needs a prologue, mark all blocks
6097 reachable from it, so as to ensure they are also seen as
6098 requiring a prologue. */
6099 while (!vec
.is_empty ())
6101 basic_block tmp_bb
= vec
.pop ();
6103 FOR_EACH_EDGE (e
, ei
, tmp_bb
->succs
)
6104 if (e
->dest
!= EXIT_BLOCK_PTR_FOR_FN (cfun
)
6105 && bitmap_set_bit (&bb_flags
, e
->dest
->index
))
6106 vec
.quick_push (e
->dest
);
6109 /* Find the set of basic blocks that need no prologue, have a
6110 single successor, can be duplicated, meet a max size
6111 requirement, and go to the exit via like blocks. */
6112 vec
.quick_push (EXIT_BLOCK_PTR_FOR_FN (cfun
));
6113 while (!vec
.is_empty ())
6115 basic_block tmp_bb
= vec
.pop ();
6117 FOR_EACH_EDGE (e
, ei
, tmp_bb
->preds
)
6118 if (single_succ_p (e
->src
)
6119 && !bitmap_bit_p (&bb_on_list
, e
->src
->index
)
6120 && can_duplicate_block_p (e
->src
))
6125 /* If there is predecessor of e->src which doesn't
6126 need prologue and the edge is complex,
6127 we might not be able to redirect the branch
6128 to a copy of e->src. */
6129 FOR_EACH_EDGE (pe
, pei
, e
->src
->preds
)
6130 if ((pe
->flags
& EDGE_COMPLEX
) != 0
6131 && !bitmap_bit_p (&bb_flags
, pe
->src
->index
))
6133 if (pe
== NULL
&& bitmap_set_bit (&bb_tail
, e
->src
->index
))
6134 vec
.quick_push (e
->src
);
6138 /* Now walk backwards from every block that is marked as needing
6139 a prologue to compute the bb_antic_flags bitmap. Exclude
6140 tail blocks; They can be duplicated to be used on paths not
6141 needing a prologue. */
6142 bitmap_clear (&bb_on_list
);
6143 bitmap_and_compl (&bb_antic_flags
, &bb_flags
, &bb_tail
);
6144 FOR_EACH_BB_FN (bb
, cfun
)
6146 if (!bitmap_bit_p (&bb_antic_flags
, bb
->index
))
6148 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
6149 if (!bitmap_bit_p (&bb_antic_flags
, e
->src
->index
)
6150 && bitmap_set_bit (&bb_on_list
, e
->src
->index
))
6151 vec
.quick_push (e
->src
);
6153 while (!vec
.is_empty ())
6155 basic_block tmp_bb
= vec
.pop ();
6156 bool all_set
= true;
6158 bitmap_clear_bit (&bb_on_list
, tmp_bb
->index
);
6159 FOR_EACH_EDGE (e
, ei
, tmp_bb
->succs
)
6160 if (!bitmap_bit_p (&bb_antic_flags
, e
->dest
->index
))
6168 bitmap_set_bit (&bb_antic_flags
, tmp_bb
->index
);
6169 FOR_EACH_EDGE (e
, ei
, tmp_bb
->preds
)
6170 if (!bitmap_bit_p (&bb_antic_flags
, e
->src
->index
)
6171 && bitmap_set_bit (&bb_on_list
, e
->src
->index
))
6172 vec
.quick_push (e
->src
);
6175 /* Find exactly one edge that leads to a block in ANTIC from
6176 a block that isn't. */
6177 if (!bitmap_bit_p (&bb_antic_flags
, entry_edge
->dest
->index
))
6178 FOR_EACH_BB_FN (bb
, cfun
)
6180 if (!bitmap_bit_p (&bb_antic_flags
, bb
->index
))
6182 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
6183 if (!bitmap_bit_p (&bb_antic_flags
, e
->src
->index
))
6185 if (entry_edge
!= orig_entry_edge
)
6187 entry_edge
= orig_entry_edge
;
6189 fprintf (dump_file
, "More than one candidate edge.\n");
6190 goto fail_shrinkwrap
;
6193 fprintf (dump_file
, "Found candidate edge for "
6194 "shrink-wrapping, %d->%d.\n", e
->src
->index
,
6200 if (entry_edge
!= orig_entry_edge
)
6202 /* Test whether the prologue is known to clobber any register
6203 (other than FP or SP) which are live on the edge. */
6204 CLEAR_HARD_REG_BIT (prologue_clobbered
, STACK_POINTER_REGNUM
);
6205 if (frame_pointer_needed
)
6206 CLEAR_HARD_REG_BIT (prologue_clobbered
, HARD_FRAME_POINTER_REGNUM
);
6207 REG_SET_TO_HARD_REG_SET (live_on_edge
,
6208 df_get_live_in (entry_edge
->dest
));
6209 if (hard_reg_set_intersect_p (live_on_edge
, prologue_clobbered
))
6211 entry_edge
= orig_entry_edge
;
6214 "Shrink-wrapping aborted due to clobber.\n");
6217 if (entry_edge
!= orig_entry_edge
)
6219 crtl
->shrink_wrapped
= true;
6221 fprintf (dump_file
, "Performing shrink-wrapping.\n");
6223 /* Find tail blocks reachable from both blocks needing a
6224 prologue and blocks not needing a prologue. */
6225 if (!bitmap_empty_p (&bb_tail
))
6226 FOR_EACH_BB_FN (bb
, cfun
)
6228 bool some_pro
, some_no_pro
;
6229 if (!bitmap_bit_p (&bb_tail
, bb
->index
))
6231 some_pro
= some_no_pro
= false;
6232 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
6234 if (bitmap_bit_p (&bb_flags
, e
->src
->index
))
6239 if (some_pro
&& some_no_pro
)
6240 vec
.quick_push (bb
);
6242 bitmap_clear_bit (&bb_tail
, bb
->index
);
6244 /* Find the head of each tail. */
6245 while (!vec
.is_empty ())
6247 basic_block tbb
= vec
.pop ();
6249 if (!bitmap_bit_p (&bb_tail
, tbb
->index
))
6252 while (single_succ_p (tbb
))
6254 tbb
= single_succ (tbb
);
6255 bitmap_clear_bit (&bb_tail
, tbb
->index
);
6258 /* Now duplicate the tails. */
6259 if (!bitmap_empty_p (&bb_tail
))
6260 FOR_EACH_BB_REVERSE_FN (bb
, cfun
)
6262 basic_block copy_bb
, tbb
;
6266 if (!bitmap_clear_bit (&bb_tail
, bb
->index
))
6269 /* Create a copy of BB, instructions and all, for
6270 use on paths that don't need a prologue.
6271 Ideal placement of the copy is on a fall-thru edge
6272 or after a block that would jump to the copy. */
6273 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
6274 if (!bitmap_bit_p (&bb_flags
, e
->src
->index
)
6275 && single_succ_p (e
->src
))
6279 /* Make sure we insert after any barriers. */
6280 rtx end
= get_last_bb_insn (e
->src
);
6281 copy_bb
= create_basic_block (NEXT_INSN (end
),
6283 BB_COPY_PARTITION (copy_bb
, e
->src
);
6287 /* Otherwise put the copy at the end of the function. */
6288 copy_bb
= create_basic_block (NULL_RTX
, NULL_RTX
,
6289 EXIT_BLOCK_PTR_FOR_FN (cfun
)->prev_bb
);
6290 BB_COPY_PARTITION (copy_bb
, bb
);
6293 insert_point
= emit_note_after (NOTE_INSN_DELETED
,
6295 emit_barrier_after (BB_END (copy_bb
));
6300 dup_block_and_redirect (tbb
, copy_bb
, insert_point
,
6302 tbb
= single_succ (tbb
);
6303 if (tbb
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
6305 e
= split_block (copy_bb
, PREV_INSN (insert_point
));
6309 /* Quiet verify_flow_info by (ab)using EDGE_FAKE.
6310 We have yet to add a simple_return to the tails,
6311 as we'd like to first convert_jumps_to_returns in
6312 case the block is no longer used after that. */
6314 if (CALL_P (PREV_INSN (insert_point
))
6315 && SIBLING_CALL_P (PREV_INSN (insert_point
)))
6316 eflags
= EDGE_SIBCALL
| EDGE_ABNORMAL
;
6317 make_single_succ_edge (copy_bb
, EXIT_BLOCK_PTR_FOR_FN (cfun
),
6320 /* verify_flow_info doesn't like a note after a
6322 delete_insn (insert_point
);
6323 if (bitmap_empty_p (&bb_tail
))
6329 bitmap_clear (&bb_tail
);
6330 bitmap_clear (&bb_antic_flags
);
6331 bitmap_clear (&bb_on_list
);
6336 if (split_prologue_seq
!= NULL_RTX
)
6338 insert_insn_on_edge (split_prologue_seq
, orig_entry_edge
);
6341 if (prologue_seq
!= NULL_RTX
)
6343 insert_insn_on_edge (prologue_seq
, entry_edge
);
6347 /* If the exit block has no non-fake predecessors, we don't need
6349 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR_FOR_FN (cfun
)->preds
)
6350 if ((e
->flags
& EDGE_FAKE
) == 0)
6355 rtl_profile_for_bb (EXIT_BLOCK_PTR_FOR_FN (cfun
));
6357 exit_fallthru_edge
= find_fallthru_edge (EXIT_BLOCK_PTR_FOR_FN (cfun
)->preds
);
6359 /* If we're allowed to generate a simple return instruction, then by
6360 definition we don't need a full epilogue. If the last basic
6361 block before the exit block does not contain active instructions,
6362 examine its predecessors and try to emit (conditional) return
6364 #ifdef HAVE_simple_return
6365 if (entry_edge
!= orig_entry_edge
)
6371 /* convert_jumps_to_returns may add to preds of the exit block
6372 (but won't remove). Stop at end of current preds. */
6373 last
= EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (cfun
)->preds
);
6374 for (i
= 0; i
< last
; i
++)
6376 e
= EDGE_I (EXIT_BLOCK_PTR_FOR_FN (cfun
)->preds
, i
);
6377 if (LABEL_P (BB_HEAD (e
->src
))
6378 && !bitmap_bit_p (&bb_flags
, e
->src
->index
)
6379 && !active_insn_between (BB_HEAD (e
->src
), BB_END (e
->src
)))
6380 unconverted_simple_returns
6381 = convert_jumps_to_returns (e
->src
, true,
6382 unconverted_simple_returns
);
6386 if (exit_fallthru_edge
!= NULL
6387 && EDGE_COUNT (exit_fallthru_edge
->src
->preds
) != 0
6388 && !bitmap_bit_p (&bb_flags
, exit_fallthru_edge
->src
->index
))
6390 basic_block last_bb
;
6392 last_bb
= emit_return_for_exit (exit_fallthru_edge
, true);
6393 returnjump
= BB_END (last_bb
);
6394 exit_fallthru_edge
= NULL
;
6401 if (exit_fallthru_edge
== NULL
)
6406 basic_block last_bb
= exit_fallthru_edge
->src
;
6408 if (LABEL_P (BB_HEAD (last_bb
))
6409 && !active_insn_between (BB_HEAD (last_bb
), BB_END (last_bb
)))
6410 convert_jumps_to_returns (last_bb
, false, vNULL
);
6412 if (EDGE_COUNT (last_bb
->preds
) != 0
6413 && single_succ_p (last_bb
))
6415 last_bb
= emit_return_for_exit (exit_fallthru_edge
, false);
6416 epilogue_end
= returnjump
= BB_END (last_bb
);
6417 #ifdef HAVE_simple_return
6418 /* Emitting the return may add a basic block.
6419 Fix bb_flags for the added block. */
6420 if (last_bb
!= exit_fallthru_edge
->src
)
6421 bitmap_set_bit (&bb_flags
, last_bb
->index
);
6429 /* A small fib -- epilogue is not yet completed, but we wish to re-use
6430 this marker for the splits of EH_RETURN patterns, and nothing else
6431 uses the flag in the meantime. */
6432 epilogue_completed
= 1;
6434 #ifdef HAVE_eh_return
6435 /* Find non-fallthru edges that end with EH_RETURN instructions. On
6436 some targets, these get split to a special version of the epilogue
6437 code. In order to be able to properly annotate these with unwind
6438 info, try to split them now. If we get a valid split, drop an
6439 EPILOGUE_BEG note and mark the insns as epilogue insns. */
6440 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR_FOR_FN (cfun
)->preds
)
6442 rtx prev
, last
, trial
;
6444 if (e
->flags
& EDGE_FALLTHRU
)
6446 last
= BB_END (e
->src
);
6447 if (!eh_returnjump_p (last
))
6450 prev
= PREV_INSN (last
);
6451 trial
= try_split (PATTERN (last
), last
, 1);
6455 record_insns (NEXT_INSN (prev
), NEXT_INSN (trial
), &epilogue_insn_hash
);
6456 emit_note_after (NOTE_INSN_EPILOGUE_BEG
, prev
);
6460 /* If nothing falls through into the exit block, we don't need an
6463 if (exit_fallthru_edge
== NULL
)
6466 #ifdef HAVE_epilogue
6470 epilogue_end
= emit_note (NOTE_INSN_EPILOGUE_BEG
);
6471 seq
= gen_epilogue ();
6473 emit_jump_insn (seq
);
6475 /* Retain a map of the epilogue insns. */
6476 record_insns (seq
, NULL
, &epilogue_insn_hash
);
6477 set_insn_locations (seq
, epilogue_location
);
6480 returnjump
= get_last_insn ();
6483 insert_insn_on_edge (seq
, exit_fallthru_edge
);
6486 if (JUMP_P (returnjump
))
6487 set_return_jump_label (returnjump
);
6494 if (! next_active_insn (BB_END (exit_fallthru_edge
->src
)))
6496 /* We have a fall-through edge to the exit block, the source is not
6497 at the end of the function, and there will be an assembler epilogue
6498 at the end of the function.
6499 We can't use force_nonfallthru here, because that would try to
6500 use return. Inserting a jump 'by hand' is extremely messy, so
6501 we take advantage of cfg_layout_finalize using
6502 fixup_fallthru_exit_predecessor. */
6503 cfg_layout_initialize (0);
6504 FOR_EACH_BB_FN (cur_bb
, cfun
)
6505 if (cur_bb
->index
>= NUM_FIXED_BLOCKS
6506 && cur_bb
->next_bb
->index
>= NUM_FIXED_BLOCKS
)
6507 cur_bb
->aux
= cur_bb
->next_bb
;
6508 cfg_layout_finalize ();
6513 default_rtl_profile ();
6519 commit_edge_insertions ();
6521 /* Look for basic blocks within the prologue insns. */
6522 blocks
= sbitmap_alloc (last_basic_block_for_fn (cfun
));
6523 bitmap_clear (blocks
);
6524 bitmap_set_bit (blocks
, entry_edge
->dest
->index
);
6525 bitmap_set_bit (blocks
, orig_entry_edge
->dest
->index
);
6526 find_many_sub_basic_blocks (blocks
);
6527 sbitmap_free (blocks
);
6529 /* The epilogue insns we inserted may cause the exit edge to no longer
6531 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR_FOR_FN (cfun
)->preds
)
6533 if (((e
->flags
& EDGE_FALLTHRU
) != 0)
6534 && returnjump_p (BB_END (e
->src
)))
6535 e
->flags
&= ~EDGE_FALLTHRU
;
6539 #ifdef HAVE_simple_return
6540 /* If there were branches to an empty LAST_BB which we tried to
6541 convert to conditional simple_returns, but couldn't for some
6542 reason, create a block to hold a simple_return insn and redirect
6543 those remaining edges. */
6544 if (!unconverted_simple_returns
.is_empty ())
6546 basic_block simple_return_block_hot
= NULL
;
6547 basic_block simple_return_block_cold
= NULL
;
6548 edge pending_edge_hot
= NULL
;
6549 edge pending_edge_cold
= NULL
;
6550 basic_block exit_pred
;
6553 gcc_assert (entry_edge
!= orig_entry_edge
);
6555 /* See if we can reuse the last insn that was emitted for the
6557 if (returnjump
!= NULL_RTX
6558 && JUMP_LABEL (returnjump
) == simple_return_rtx
)
6560 e
= split_block (BLOCK_FOR_INSN (returnjump
), PREV_INSN (returnjump
));
6561 if (BB_PARTITION (e
->src
) == BB_HOT_PARTITION
)
6562 simple_return_block_hot
= e
->dest
;
6564 simple_return_block_cold
= e
->dest
;
6567 /* Also check returns we might need to add to tail blocks. */
6568 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR_FOR_FN (cfun
)->preds
)
6569 if (EDGE_COUNT (e
->src
->preds
) != 0
6570 && (e
->flags
& EDGE_FAKE
) != 0
6571 && !bitmap_bit_p (&bb_flags
, e
->src
->index
))
6573 if (BB_PARTITION (e
->src
) == BB_HOT_PARTITION
)
6574 pending_edge_hot
= e
;
6576 pending_edge_cold
= e
;
6579 /* Save a pointer to the exit's predecessor BB for use in
6580 inserting new BBs at the end of the function. Do this
6581 after the call to split_block above which may split
6582 the original exit pred. */
6583 exit_pred
= EXIT_BLOCK_PTR_FOR_FN (cfun
)->prev_bb
;
6585 FOR_EACH_VEC_ELT (unconverted_simple_returns
, i
, e
)
6587 basic_block
*pdest_bb
;
6590 if (BB_PARTITION (e
->src
) == BB_HOT_PARTITION
)
6592 pdest_bb
= &simple_return_block_hot
;
6593 pending
= pending_edge_hot
;
6597 pdest_bb
= &simple_return_block_cold
;
6598 pending
= pending_edge_cold
;
6601 if (*pdest_bb
== NULL
&& pending
!= NULL
)
6603 emit_return_into_block (true, pending
->src
);
6604 pending
->flags
&= ~(EDGE_FALLTHRU
| EDGE_FAKE
);
6605 *pdest_bb
= pending
->src
;
6607 else if (*pdest_bb
== NULL
)
6612 bb
= create_basic_block (NULL
, NULL
, exit_pred
);
6613 BB_COPY_PARTITION (bb
, e
->src
);
6614 start
= emit_jump_insn_after (gen_simple_return (),
6616 JUMP_LABEL (start
) = simple_return_rtx
;
6617 emit_barrier_after (start
);
6620 make_edge (bb
, EXIT_BLOCK_PTR_FOR_FN (cfun
), 0);
6622 redirect_edge_and_branch_force (e
, *pdest_bb
);
6624 unconverted_simple_returns
.release ();
6627 if (entry_edge
!= orig_entry_edge
)
6629 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR_FOR_FN (cfun
)->preds
)
6630 if (EDGE_COUNT (e
->src
->preds
) != 0
6631 && (e
->flags
& EDGE_FAKE
) != 0
6632 && !bitmap_bit_p (&bb_flags
, e
->src
->index
))
6634 emit_return_into_block (true, e
->src
);
6635 e
->flags
&= ~(EDGE_FALLTHRU
| EDGE_FAKE
);
6640 #ifdef HAVE_sibcall_epilogue
6641 /* Emit sibling epilogues before any sibling call sites. */
6642 for (ei
= ei_start (EXIT_BLOCK_PTR_FOR_FN (cfun
)->preds
); (e
=
6646 basic_block bb
= e
->src
;
6647 rtx insn
= BB_END (bb
);
6651 || ! SIBLING_CALL_P (insn
)
6652 #ifdef HAVE_simple_return
6653 || (entry_edge
!= orig_entry_edge
6654 && !bitmap_bit_p (&bb_flags
, bb
->index
))
6662 ep_seq
= gen_sibcall_epilogue ();
6666 emit_note (NOTE_INSN_EPILOGUE_BEG
);
6671 /* Retain a map of the epilogue insns. Used in life analysis to
6672 avoid getting rid of sibcall epilogue insns. Do this before we
6673 actually emit the sequence. */
6674 record_insns (seq
, NULL
, &epilogue_insn_hash
);
6675 set_insn_locations (seq
, epilogue_location
);
6677 emit_insn_before (seq
, insn
);
6683 #ifdef HAVE_epilogue
6688 /* Similarly, move any line notes that appear after the epilogue.
6689 There is no need, however, to be quite so anal about the existence
6690 of such a note. Also possibly move
6691 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
6693 for (insn
= epilogue_end
; insn
; insn
= next
)
6695 next
= NEXT_INSN (insn
);
6697 && (NOTE_KIND (insn
) == NOTE_INSN_FUNCTION_BEG
))
6698 reorder_insns (insn
, insn
, PREV_INSN (epilogue_end
));
6703 #ifdef HAVE_simple_return
6704 bitmap_clear (&bb_flags
);
6707 /* Threading the prologue and epilogue changes the artificial refs
6708 in the entry and exit blocks. */
6709 epilogue_completed
= 1;
6710 df_update_entry_exit_and_calls ();
6713 /* Reposition the prologue-end and epilogue-begin notes after
6714 instruction scheduling. */
6717 reposition_prologue_and_epilogue_notes (void)
6719 #if defined (HAVE_prologue) || defined (HAVE_epilogue) \
6720 || defined (HAVE_sibcall_epilogue)
6721 /* Since the hash table is created on demand, the fact that it is
6722 non-null is a signal that it is non-empty. */
6723 if (prologue_insn_hash
!= NULL
)
6725 size_t len
= htab_elements (prologue_insn_hash
);
6726 rtx insn
, last
= NULL
, note
= NULL
;
6728 /* Scan from the beginning until we reach the last prologue insn. */
6729 /* ??? While we do have the CFG intact, there are two problems:
6730 (1) The prologue can contain loops (typically probing the stack),
6731 which means that the end of the prologue isn't in the first bb.
6732 (2) Sometimes the PROLOGUE_END note gets pushed into the next bb. */
6733 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
6737 if (NOTE_KIND (insn
) == NOTE_INSN_PROLOGUE_END
)
6740 else if (contains (insn
, prologue_insn_hash
))
6752 /* Scan forward looking for the PROLOGUE_END note. It should
6753 be right at the beginning of the block, possibly with other
6754 insn notes that got moved there. */
6755 for (note
= NEXT_INSN (last
); ; note
= NEXT_INSN (note
))
6758 && NOTE_KIND (note
) == NOTE_INSN_PROLOGUE_END
)
6763 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
6765 last
= NEXT_INSN (last
);
6766 reorder_insns (note
, note
, last
);
6770 if (epilogue_insn_hash
!= NULL
)
6775 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR_FOR_FN (cfun
)->preds
)
6777 rtx insn
, first
= NULL
, note
= NULL
;
6778 basic_block bb
= e
->src
;
6780 /* Scan from the beginning until we reach the first epilogue insn. */
6781 FOR_BB_INSNS (bb
, insn
)
6785 if (NOTE_KIND (insn
) == NOTE_INSN_EPILOGUE_BEG
)
6792 else if (first
== NULL
&& contains (insn
, epilogue_insn_hash
))
6802 /* If the function has a single basic block, and no real
6803 epilogue insns (e.g. sibcall with no cleanup), the
6804 epilogue note can get scheduled before the prologue
6805 note. If we have frame related prologue insns, having
6806 them scanned during the epilogue will result in a crash.
6807 In this case re-order the epilogue note to just before
6808 the last insn in the block. */
6810 first
= BB_END (bb
);
6812 if (PREV_INSN (first
) != note
)
6813 reorder_insns (note
, note
, PREV_INSN (first
));
6817 #endif /* HAVE_prologue or HAVE_epilogue */
6820 /* Returns the name of function declared by FNDECL. */
6822 fndecl_name (tree fndecl
)
6826 return lang_hooks
.decl_printable_name (fndecl
, 2);
6829 /* Returns the name of function FN. */
6831 function_name (struct function
*fn
)
6833 tree fndecl
= (fn
== NULL
) ? NULL
: fn
->decl
;
6834 return fndecl_name (fndecl
);
6837 /* Returns the name of the current function. */
6839 current_function_name (void)
6841 return function_name (cfun
);
6846 rest_of_handle_check_leaf_regs (void)
6848 #ifdef LEAF_REGISTERS
6849 crtl
->uses_only_leaf_regs
6850 = optimize
> 0 && only_leaf_regs_used () && leaf_function_p ();
6855 /* Insert a TYPE into the used types hash table of CFUN. */
6858 used_types_insert_helper (tree type
, struct function
*func
)
6860 if (type
!= NULL
&& func
!= NULL
)
6864 if (func
->used_types_hash
== NULL
)
6865 func
->used_types_hash
= htab_create_ggc (37, htab_hash_pointer
,
6866 htab_eq_pointer
, NULL
);
6867 slot
= htab_find_slot (func
->used_types_hash
, type
, INSERT
);
6873 /* Given a type, insert it into the used hash table in cfun. */
6875 used_types_insert (tree t
)
6877 while (POINTER_TYPE_P (t
) || TREE_CODE (t
) == ARRAY_TYPE
)
6882 if (TREE_CODE (t
) == ERROR_MARK
)
6884 if (TYPE_NAME (t
) == NULL_TREE
6885 || TYPE_NAME (t
) == TYPE_NAME (TYPE_MAIN_VARIANT (t
)))
6886 t
= TYPE_MAIN_VARIANT (t
);
6887 if (debug_info_level
> DINFO_LEVEL_NONE
)
6890 used_types_insert_helper (t
, cfun
);
6893 /* So this might be a type referenced by a global variable.
6894 Record that type so that we can later decide to emit its
6895 debug information. */
6896 vec_safe_push (types_used_by_cur_var_decl
, t
);
6901 /* Helper to Hash a struct types_used_by_vars_entry. */
6904 hash_types_used_by_vars_entry (const struct types_used_by_vars_entry
*entry
)
6906 gcc_assert (entry
&& entry
->var_decl
&& entry
->type
);
6908 return iterative_hash_object (entry
->type
,
6909 iterative_hash_object (entry
->var_decl
, 0));
6912 /* Hash function of the types_used_by_vars_entry hash table. */
6915 types_used_by_vars_do_hash (const void *x
)
6917 const struct types_used_by_vars_entry
*entry
=
6918 (const struct types_used_by_vars_entry
*) x
;
6920 return hash_types_used_by_vars_entry (entry
);
6923 /*Equality function of the types_used_by_vars_entry hash table. */
6926 types_used_by_vars_eq (const void *x1
, const void *x2
)
6928 const struct types_used_by_vars_entry
*e1
=
6929 (const struct types_used_by_vars_entry
*) x1
;
6930 const struct types_used_by_vars_entry
*e2
=
6931 (const struct types_used_by_vars_entry
*)x2
;
6933 return (e1
->var_decl
== e2
->var_decl
&& e1
->type
== e2
->type
);
6936 /* Inserts an entry into the types_used_by_vars_hash hash table. */
6939 types_used_by_var_decl_insert (tree type
, tree var_decl
)
6941 if (type
!= NULL
&& var_decl
!= NULL
)
6944 struct types_used_by_vars_entry e
;
6945 e
.var_decl
= var_decl
;
6947 if (types_used_by_vars_hash
== NULL
)
6948 types_used_by_vars_hash
=
6949 htab_create_ggc (37, types_used_by_vars_do_hash
,
6950 types_used_by_vars_eq
, NULL
);
6951 slot
= htab_find_slot_with_hash (types_used_by_vars_hash
, &e
,
6952 hash_types_used_by_vars_entry (&e
), INSERT
);
6955 struct types_used_by_vars_entry
*entry
;
6956 entry
= ggc_alloc_types_used_by_vars_entry ();
6958 entry
->var_decl
= var_decl
;
6966 const pass_data pass_data_leaf_regs
=
6968 RTL_PASS
, /* type */
6969 "*leaf_regs", /* name */
6970 OPTGROUP_NONE
, /* optinfo_flags */
6971 false, /* has_gate */
6972 true, /* has_execute */
6973 TV_NONE
, /* tv_id */
6974 0, /* properties_required */
6975 0, /* properties_provided */
6976 0, /* properties_destroyed */
6977 0, /* todo_flags_start */
6978 0, /* todo_flags_finish */
6981 class pass_leaf_regs
: public rtl_opt_pass
6984 pass_leaf_regs (gcc::context
*ctxt
)
6985 : rtl_opt_pass (pass_data_leaf_regs
, ctxt
)
6988 /* opt_pass methods: */
6989 unsigned int execute () { return rest_of_handle_check_leaf_regs (); }
6991 }; // class pass_leaf_regs
6996 make_pass_leaf_regs (gcc::context
*ctxt
)
6998 return new pass_leaf_regs (ctxt
);
7002 rest_of_handle_thread_prologue_and_epilogue (void)
7005 cleanup_cfg (CLEANUP_EXPENSIVE
);
7007 /* On some machines, the prologue and epilogue code, or parts thereof,
7008 can be represented as RTL. Doing so lets us schedule insns between
7009 it and the rest of the code and also allows delayed branch
7010 scheduling to operate in the epilogue. */
7011 thread_prologue_and_epilogue_insns ();
7013 /* Shrink-wrapping can result in unreachable edges in the epilogue,
7017 /* The stack usage info is finalized during prologue expansion. */
7018 if (flag_stack_usage_info
)
7019 output_stack_usage ();
7026 const pass_data pass_data_thread_prologue_and_epilogue
=
7028 RTL_PASS
, /* type */
7029 "pro_and_epilogue", /* name */
7030 OPTGROUP_NONE
, /* optinfo_flags */
7031 false, /* has_gate */
7032 true, /* has_execute */
7033 TV_THREAD_PROLOGUE_AND_EPILOGUE
, /* tv_id */
7034 0, /* properties_required */
7035 0, /* properties_provided */
7036 0, /* properties_destroyed */
7037 TODO_verify_flow
, /* todo_flags_start */
7038 ( TODO_df_verify
| TODO_df_finish
7039 | TODO_verify_rtl_sharing
), /* todo_flags_finish */
7042 class pass_thread_prologue_and_epilogue
: public rtl_opt_pass
7045 pass_thread_prologue_and_epilogue (gcc::context
*ctxt
)
7046 : rtl_opt_pass (pass_data_thread_prologue_and_epilogue
, ctxt
)
7049 /* opt_pass methods: */
7050 unsigned int execute () {
7051 return rest_of_handle_thread_prologue_and_epilogue ();
7054 }; // class pass_thread_prologue_and_epilogue
7059 make_pass_thread_prologue_and_epilogue (gcc::context
*ctxt
)
7061 return new pass_thread_prologue_and_epilogue (ctxt
);
7065 /* This mini-pass fixes fall-out from SSA in asm statements that have
7066 in-out constraints. Say you start with
7069 asm ("": "+mr" (inout));
7072 which is transformed very early to use explicit output and match operands:
7075 asm ("": "=mr" (inout) : "0" (inout));
7078 Or, after SSA and copyprop,
7080 asm ("": "=mr" (inout_2) : "0" (inout_1));
7083 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
7084 they represent two separate values, so they will get different pseudo
7085 registers during expansion. Then, since the two operands need to match
7086 per the constraints, but use different pseudo registers, reload can
7087 only register a reload for these operands. But reloads can only be
7088 satisfied by hardregs, not by memory, so we need a register for this
7089 reload, just because we are presented with non-matching operands.
7090 So, even though we allow memory for this operand, no memory can be
7091 used for it, just because the two operands don't match. This can
7092 cause reload failures on register-starved targets.
7094 So it's a symptom of reload not being able to use memory for reloads
7095 or, alternatively it's also a symptom of both operands not coming into
7096 reload as matching (in which case the pseudo could go to memory just
7097 fine, as the alternative allows it, and no reload would be necessary).
7098 We fix the latter problem here, by transforming
7100 asm ("": "=mr" (inout_2) : "0" (inout_1));
7105 asm ("": "=mr" (inout_2) : "0" (inout_2)); */
7108 match_asm_constraints_1 (rtx insn
, rtx
*p_sets
, int noutputs
)
7111 bool changed
= false;
7112 rtx op
= SET_SRC (p_sets
[0]);
7113 int ninputs
= ASM_OPERANDS_INPUT_LENGTH (op
);
7114 rtvec inputs
= ASM_OPERANDS_INPUT_VEC (op
);
7115 bool *output_matched
= XALLOCAVEC (bool, noutputs
);
7117 memset (output_matched
, 0, noutputs
* sizeof (bool));
7118 for (i
= 0; i
< ninputs
; i
++)
7120 rtx input
, output
, insns
;
7121 const char *constraint
= ASM_OPERANDS_INPUT_CONSTRAINT (op
, i
);
7125 if (*constraint
== '%')
7128 match
= strtoul (constraint
, &end
, 10);
7129 if (end
== constraint
)
7132 gcc_assert (match
< noutputs
);
7133 output
= SET_DEST (p_sets
[match
]);
7134 input
= RTVEC_ELT (inputs
, i
);
7135 /* Only do the transformation for pseudos. */
7136 if (! REG_P (output
)
7137 || rtx_equal_p (output
, input
)
7138 || (GET_MODE (input
) != VOIDmode
7139 && GET_MODE (input
) != GET_MODE (output
)))
7142 /* We can't do anything if the output is also used as input,
7143 as we're going to overwrite it. */
7144 for (j
= 0; j
< ninputs
; j
++)
7145 if (reg_overlap_mentioned_p (output
, RTVEC_ELT (inputs
, j
)))
7150 /* Avoid changing the same input several times. For
7151 asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in));
7152 only change in once (to out1), rather than changing it
7153 first to out1 and afterwards to out2. */
7156 for (j
= 0; j
< noutputs
; j
++)
7157 if (output_matched
[j
] && input
== SET_DEST (p_sets
[j
]))
7162 output_matched
[match
] = true;
7165 emit_move_insn (output
, input
);
7166 insns
= get_insns ();
7168 emit_insn_before (insns
, insn
);
7170 /* Now replace all mentions of the input with output. We can't
7171 just replace the occurrence in inputs[i], as the register might
7172 also be used in some other input (or even in an address of an
7173 output), which would mean possibly increasing the number of
7174 inputs by one (namely 'output' in addition), which might pose
7175 a too complicated problem for reload to solve. E.g. this situation:
7177 asm ("" : "=r" (output), "=m" (input) : "0" (input))
7179 Here 'input' is used in two occurrences as input (once for the
7180 input operand, once for the address in the second output operand).
7181 If we would replace only the occurrence of the input operand (to
7182 make the matching) we would be left with this:
7185 asm ("" : "=r" (output), "=m" (input) : "0" (output))
7187 Now we suddenly have two different input values (containing the same
7188 value, but different pseudos) where we formerly had only one.
7189 With more complicated asms this might lead to reload failures
7190 which wouldn't have happen without this pass. So, iterate over
7191 all operands and replace all occurrences of the register used. */
7192 for (j
= 0; j
< noutputs
; j
++)
7193 if (!rtx_equal_p (SET_DEST (p_sets
[j
]), input
)
7194 && reg_overlap_mentioned_p (input
, SET_DEST (p_sets
[j
])))
7195 SET_DEST (p_sets
[j
]) = replace_rtx (SET_DEST (p_sets
[j
]),
7197 for (j
= 0; j
< ninputs
; j
++)
7198 if (reg_overlap_mentioned_p (input
, RTVEC_ELT (inputs
, j
)))
7199 RTVEC_ELT (inputs
, j
) = replace_rtx (RTVEC_ELT (inputs
, j
),
7206 df_insn_rescan (insn
);
7210 rest_of_match_asm_constraints (void)
7213 rtx insn
, pat
, *p_sets
;
7216 if (!crtl
->has_asm_statement
)
7219 df_set_flags (DF_DEFER_INSN_RESCAN
);
7220 FOR_EACH_BB_FN (bb
, cfun
)
7222 FOR_BB_INSNS (bb
, insn
)
7227 pat
= PATTERN (insn
);
7228 if (GET_CODE (pat
) == PARALLEL
)
7229 p_sets
= &XVECEXP (pat
, 0, 0), noutputs
= XVECLEN (pat
, 0);
7230 else if (GET_CODE (pat
) == SET
)
7231 p_sets
= &PATTERN (insn
), noutputs
= 1;
7235 if (GET_CODE (*p_sets
) == SET
7236 && GET_CODE (SET_SRC (*p_sets
)) == ASM_OPERANDS
)
7237 match_asm_constraints_1 (insn
, p_sets
, noutputs
);
7241 return TODO_df_finish
;
7246 const pass_data pass_data_match_asm_constraints
=
7248 RTL_PASS
, /* type */
7249 "asmcons", /* name */
7250 OPTGROUP_NONE
, /* optinfo_flags */
7251 false, /* has_gate */
7252 true, /* has_execute */
7253 TV_NONE
, /* tv_id */
7254 0, /* properties_required */
7255 0, /* properties_provided */
7256 0, /* properties_destroyed */
7257 0, /* todo_flags_start */
7258 0, /* todo_flags_finish */
7261 class pass_match_asm_constraints
: public rtl_opt_pass
7264 pass_match_asm_constraints (gcc::context
*ctxt
)
7265 : rtl_opt_pass (pass_data_match_asm_constraints
, ctxt
)
7268 /* opt_pass methods: */
7269 unsigned int execute () { return rest_of_match_asm_constraints (); }
7271 }; // class pass_match_asm_constraints
7276 make_pass_match_asm_constraints (gcc::context
*ctxt
)
7278 return new pass_match_asm_constraints (ctxt
);
7282 #include "gt-function.h"