Merged revisions 208012,208018-208019,208021,208023-208030,208033,208037,208040-20804...
[official-gcc.git] / main / gcc / fortran / trans-array.c
blob8c4afb098bf7b2fe8eea2439821ef313bd69d71a
1 /* Array translation routines
2 Copyright (C) 2002-2014 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
4 and Steven Bosscher <s.bosscher@student.tudelft.nl>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* trans-array.c-- Various array related code, including scalarization,
23 allocation, initialization and other support routines. */
25 /* How the scalarizer works.
26 In gfortran, array expressions use the same core routines as scalar
27 expressions.
28 First, a Scalarization State (SS) chain is built. This is done by walking
29 the expression tree, and building a linear list of the terms in the
30 expression. As the tree is walked, scalar subexpressions are translated.
32 The scalarization parameters are stored in a gfc_loopinfo structure.
33 First the start and stride of each term is calculated by
34 gfc_conv_ss_startstride. During this process the expressions for the array
35 descriptors and data pointers are also translated.
37 If the expression is an assignment, we must then resolve any dependencies.
38 In Fortran all the rhs values of an assignment must be evaluated before
39 any assignments take place. This can require a temporary array to store the
40 values. We also require a temporary when we are passing array expressions
41 or vector subscripts as procedure parameters.
43 Array sections are passed without copying to a temporary. These use the
44 scalarizer to determine the shape of the section. The flag
45 loop->array_parameter tells the scalarizer that the actual values and loop
46 variables will not be required.
48 The function gfc_conv_loop_setup generates the scalarization setup code.
49 It determines the range of the scalarizing loop variables. If a temporary
50 is required, this is created and initialized. Code for scalar expressions
51 taken outside the loop is also generated at this time. Next the offset and
52 scaling required to translate from loop variables to array indices for each
53 term is calculated.
55 A call to gfc_start_scalarized_body marks the start of the scalarized
56 expression. This creates a scope and declares the loop variables. Before
57 calling this gfc_make_ss_chain_used must be used to indicate which terms
58 will be used inside this loop.
60 The scalar gfc_conv_* functions are then used to build the main body of the
61 scalarization loop. Scalarization loop variables and precalculated scalar
62 values are automatically substituted. Note that gfc_advance_se_ss_chain
63 must be used, rather than changing the se->ss directly.
65 For assignment expressions requiring a temporary two sub loops are
66 generated. The first stores the result of the expression in the temporary,
67 the second copies it to the result. A call to
68 gfc_trans_scalarized_loop_boundary marks the end of the main loop code and
69 the start of the copying loop. The temporary may be less than full rank.
71 Finally gfc_trans_scalarizing_loops is called to generate the implicit do
72 loops. The loops are added to the pre chain of the loopinfo. The post
73 chain may still contain cleanup code.
75 After the loop code has been added into its parent scope gfc_cleanup_loop
76 is called to free all the SS allocated by the scalarizer. */
78 #include "config.h"
79 #include "system.h"
80 #include "coretypes.h"
81 #include "tree.h"
82 #include "gimple-expr.h"
83 #include "diagnostic-core.h" /* For internal_error/fatal_error. */
84 #include "flags.h"
85 #include "gfortran.h"
86 #include "constructor.h"
87 #include "trans.h"
88 #include "trans-stmt.h"
89 #include "trans-types.h"
90 #include "trans-array.h"
91 #include "trans-const.h"
92 #include "dependency.h"
94 static bool gfc_get_array_constructor_size (mpz_t *, gfc_constructor_base);
96 /* The contents of this structure aren't actually used, just the address. */
97 static gfc_ss gfc_ss_terminator_var;
98 gfc_ss * const gfc_ss_terminator = &gfc_ss_terminator_var;
101 static tree
102 gfc_array_dataptr_type (tree desc)
104 return (GFC_TYPE_ARRAY_DATAPTR_TYPE (TREE_TYPE (desc)));
108 /* Build expressions to access the members of an array descriptor.
109 It's surprisingly easy to mess up here, so never access
110 an array descriptor by "brute force", always use these
111 functions. This also avoids problems if we change the format
112 of an array descriptor.
114 To understand these magic numbers, look at the comments
115 before gfc_build_array_type() in trans-types.c.
117 The code within these defines should be the only code which knows the format
118 of an array descriptor.
120 Any code just needing to read obtain the bounds of an array should use
121 gfc_conv_array_* rather than the following functions as these will return
122 know constant values, and work with arrays which do not have descriptors.
124 Don't forget to #undef these! */
126 #define DATA_FIELD 0
127 #define OFFSET_FIELD 1
128 #define DTYPE_FIELD 2
129 #define DIMENSION_FIELD 3
130 #define CAF_TOKEN_FIELD 4
132 #define STRIDE_SUBFIELD 0
133 #define LBOUND_SUBFIELD 1
134 #define UBOUND_SUBFIELD 2
136 /* This provides READ-ONLY access to the data field. The field itself
137 doesn't have the proper type. */
139 tree
140 gfc_conv_descriptor_data_get (tree desc)
142 tree field, type, t;
144 type = TREE_TYPE (desc);
145 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type));
147 field = TYPE_FIELDS (type);
148 gcc_assert (DATA_FIELD == 0);
150 t = fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (field), desc,
151 field, NULL_TREE);
152 t = fold_convert (GFC_TYPE_ARRAY_DATAPTR_TYPE (type), t);
154 return t;
157 /* This provides WRITE access to the data field.
159 TUPLES_P is true if we are generating tuples.
161 This function gets called through the following macros:
162 gfc_conv_descriptor_data_set
163 gfc_conv_descriptor_data_set. */
165 void
166 gfc_conv_descriptor_data_set (stmtblock_t *block, tree desc, tree value)
168 tree field, type, t;
170 type = TREE_TYPE (desc);
171 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type));
173 field = TYPE_FIELDS (type);
174 gcc_assert (DATA_FIELD == 0);
176 t = fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (field), desc,
177 field, NULL_TREE);
178 gfc_add_modify (block, t, fold_convert (TREE_TYPE (field), value));
182 /* This provides address access to the data field. This should only be
183 used by array allocation, passing this on to the runtime. */
185 tree
186 gfc_conv_descriptor_data_addr (tree desc)
188 tree field, type, t;
190 type = TREE_TYPE (desc);
191 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type));
193 field = TYPE_FIELDS (type);
194 gcc_assert (DATA_FIELD == 0);
196 t = fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (field), desc,
197 field, NULL_TREE);
198 return gfc_build_addr_expr (NULL_TREE, t);
201 static tree
202 gfc_conv_descriptor_offset (tree desc)
204 tree type;
205 tree field;
207 type = TREE_TYPE (desc);
208 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type));
210 field = gfc_advance_chain (TYPE_FIELDS (type), OFFSET_FIELD);
211 gcc_assert (field != NULL_TREE && TREE_TYPE (field) == gfc_array_index_type);
213 return fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (field),
214 desc, field, NULL_TREE);
217 tree
218 gfc_conv_descriptor_offset_get (tree desc)
220 return gfc_conv_descriptor_offset (desc);
223 void
224 gfc_conv_descriptor_offset_set (stmtblock_t *block, tree desc,
225 tree value)
227 tree t = gfc_conv_descriptor_offset (desc);
228 gfc_add_modify (block, t, fold_convert (TREE_TYPE (t), value));
232 tree
233 gfc_conv_descriptor_dtype (tree desc)
235 tree field;
236 tree type;
238 type = TREE_TYPE (desc);
239 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type));
241 field = gfc_advance_chain (TYPE_FIELDS (type), DTYPE_FIELD);
242 gcc_assert (field != NULL_TREE && TREE_TYPE (field) == gfc_array_index_type);
244 return fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (field),
245 desc, field, NULL_TREE);
249 tree
250 gfc_conv_descriptor_rank (tree desc)
252 tree tmp;
253 tree dtype;
255 dtype = gfc_conv_descriptor_dtype (desc);
256 tmp = build_int_cst (TREE_TYPE (dtype), GFC_DTYPE_RANK_MASK);
257 tmp = fold_build2_loc (input_location, BIT_AND_EXPR, TREE_TYPE (dtype),
258 dtype, tmp);
259 return fold_convert (gfc_get_int_type (gfc_default_integer_kind), tmp);
263 tree
264 gfc_get_descriptor_dimension (tree desc)
266 tree type, field;
268 type = TREE_TYPE (desc);
269 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type));
271 field = gfc_advance_chain (TYPE_FIELDS (type), DIMENSION_FIELD);
272 gcc_assert (field != NULL_TREE
273 && TREE_CODE (TREE_TYPE (field)) == ARRAY_TYPE
274 && TREE_CODE (TREE_TYPE (TREE_TYPE (field))) == RECORD_TYPE);
276 return fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (field),
277 desc, field, NULL_TREE);
281 static tree
282 gfc_conv_descriptor_dimension (tree desc, tree dim)
284 tree tmp;
286 tmp = gfc_get_descriptor_dimension (desc);
288 return gfc_build_array_ref (tmp, dim, NULL);
292 tree
293 gfc_conv_descriptor_token (tree desc)
295 tree type;
296 tree field;
298 type = TREE_TYPE (desc);
299 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type));
300 gcc_assert (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ALLOCATABLE);
301 gcc_assert (gfc_option.coarray == GFC_FCOARRAY_LIB);
302 field = gfc_advance_chain (TYPE_FIELDS (type), CAF_TOKEN_FIELD);
304 /* Should be a restricted pointer - except in the finalization wrapper. */
305 gcc_assert (field != NULL_TREE
306 && (TREE_TYPE (field) == prvoid_type_node
307 || TREE_TYPE (field) == pvoid_type_node));
309 return fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (field),
310 desc, field, NULL_TREE);
314 static tree
315 gfc_conv_descriptor_stride (tree desc, tree dim)
317 tree tmp;
318 tree field;
320 tmp = gfc_conv_descriptor_dimension (desc, dim);
321 field = TYPE_FIELDS (TREE_TYPE (tmp));
322 field = gfc_advance_chain (field, STRIDE_SUBFIELD);
323 gcc_assert (field != NULL_TREE && TREE_TYPE (field) == gfc_array_index_type);
325 tmp = fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (field),
326 tmp, field, NULL_TREE);
327 return tmp;
330 tree
331 gfc_conv_descriptor_stride_get (tree desc, tree dim)
333 tree type = TREE_TYPE (desc);
334 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type));
335 if (integer_zerop (dim)
336 && (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ALLOCATABLE
337 ||GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE_CONT
338 ||GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_RANK_CONT
339 ||GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_POINTER_CONT))
340 return gfc_index_one_node;
342 return gfc_conv_descriptor_stride (desc, dim);
345 void
346 gfc_conv_descriptor_stride_set (stmtblock_t *block, tree desc,
347 tree dim, tree value)
349 tree t = gfc_conv_descriptor_stride (desc, dim);
350 gfc_add_modify (block, t, fold_convert (TREE_TYPE (t), value));
353 static tree
354 gfc_conv_descriptor_lbound (tree desc, tree dim)
356 tree tmp;
357 tree field;
359 tmp = gfc_conv_descriptor_dimension (desc, dim);
360 field = TYPE_FIELDS (TREE_TYPE (tmp));
361 field = gfc_advance_chain (field, LBOUND_SUBFIELD);
362 gcc_assert (field != NULL_TREE && TREE_TYPE (field) == gfc_array_index_type);
364 tmp = fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (field),
365 tmp, field, NULL_TREE);
366 return tmp;
369 tree
370 gfc_conv_descriptor_lbound_get (tree desc, tree dim)
372 return gfc_conv_descriptor_lbound (desc, dim);
375 void
376 gfc_conv_descriptor_lbound_set (stmtblock_t *block, tree desc,
377 tree dim, tree value)
379 tree t = gfc_conv_descriptor_lbound (desc, dim);
380 gfc_add_modify (block, t, fold_convert (TREE_TYPE (t), value));
383 static tree
384 gfc_conv_descriptor_ubound (tree desc, tree dim)
386 tree tmp;
387 tree field;
389 tmp = gfc_conv_descriptor_dimension (desc, dim);
390 field = TYPE_FIELDS (TREE_TYPE (tmp));
391 field = gfc_advance_chain (field, UBOUND_SUBFIELD);
392 gcc_assert (field != NULL_TREE && TREE_TYPE (field) == gfc_array_index_type);
394 tmp = fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (field),
395 tmp, field, NULL_TREE);
396 return tmp;
399 tree
400 gfc_conv_descriptor_ubound_get (tree desc, tree dim)
402 return gfc_conv_descriptor_ubound (desc, dim);
405 void
406 gfc_conv_descriptor_ubound_set (stmtblock_t *block, tree desc,
407 tree dim, tree value)
409 tree t = gfc_conv_descriptor_ubound (desc, dim);
410 gfc_add_modify (block, t, fold_convert (TREE_TYPE (t), value));
413 /* Build a null array descriptor constructor. */
415 tree
416 gfc_build_null_descriptor (tree type)
418 tree field;
419 tree tmp;
421 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type));
422 gcc_assert (DATA_FIELD == 0);
423 field = TYPE_FIELDS (type);
425 /* Set a NULL data pointer. */
426 tmp = build_constructor_single (type, field, null_pointer_node);
427 TREE_CONSTANT (tmp) = 1;
428 /* All other fields are ignored. */
430 return tmp;
434 /* Modify a descriptor such that the lbound of a given dimension is the value
435 specified. This also updates ubound and offset accordingly. */
437 void
438 gfc_conv_shift_descriptor_lbound (stmtblock_t* block, tree desc,
439 int dim, tree new_lbound)
441 tree offs, ubound, lbound, stride;
442 tree diff, offs_diff;
444 new_lbound = fold_convert (gfc_array_index_type, new_lbound);
446 offs = gfc_conv_descriptor_offset_get (desc);
447 lbound = gfc_conv_descriptor_lbound_get (desc, gfc_rank_cst[dim]);
448 ubound = gfc_conv_descriptor_ubound_get (desc, gfc_rank_cst[dim]);
449 stride = gfc_conv_descriptor_stride_get (desc, gfc_rank_cst[dim]);
451 /* Get difference (new - old) by which to shift stuff. */
452 diff = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type,
453 new_lbound, lbound);
455 /* Shift ubound and offset accordingly. This has to be done before
456 updating the lbound, as they depend on the lbound expression! */
457 ubound = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type,
458 ubound, diff);
459 gfc_conv_descriptor_ubound_set (block, desc, gfc_rank_cst[dim], ubound);
460 offs_diff = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type,
461 diff, stride);
462 offs = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type,
463 offs, offs_diff);
464 gfc_conv_descriptor_offset_set (block, desc, offs);
466 /* Finally set lbound to value we want. */
467 gfc_conv_descriptor_lbound_set (block, desc, gfc_rank_cst[dim], new_lbound);
471 /* Cleanup those #defines. */
473 #undef DATA_FIELD
474 #undef OFFSET_FIELD
475 #undef DTYPE_FIELD
476 #undef DIMENSION_FIELD
477 #undef CAF_TOKEN_FIELD
478 #undef STRIDE_SUBFIELD
479 #undef LBOUND_SUBFIELD
480 #undef UBOUND_SUBFIELD
483 /* Mark a SS chain as used. Flags specifies in which loops the SS is used.
484 flags & 1 = Main loop body.
485 flags & 2 = temp copy loop. */
487 void
488 gfc_mark_ss_chain_used (gfc_ss * ss, unsigned flags)
490 for (; ss != gfc_ss_terminator; ss = ss->next)
491 ss->info->useflags = flags;
495 /* Free a gfc_ss chain. */
497 void
498 gfc_free_ss_chain (gfc_ss * ss)
500 gfc_ss *next;
502 while (ss != gfc_ss_terminator)
504 gcc_assert (ss != NULL);
505 next = ss->next;
506 gfc_free_ss (ss);
507 ss = next;
512 static void
513 free_ss_info (gfc_ss_info *ss_info)
515 int n;
517 ss_info->refcount--;
518 if (ss_info->refcount > 0)
519 return;
521 gcc_assert (ss_info->refcount == 0);
523 switch (ss_info->type)
525 case GFC_SS_SECTION:
526 for (n = 0; n < GFC_MAX_DIMENSIONS; n++)
527 if (ss_info->data.array.subscript[n])
528 gfc_free_ss_chain (ss_info->data.array.subscript[n]);
529 break;
531 default:
532 break;
535 free (ss_info);
539 /* Free a SS. */
541 void
542 gfc_free_ss (gfc_ss * ss)
544 free_ss_info (ss->info);
545 free (ss);
549 /* Creates and initializes an array type gfc_ss struct. */
551 gfc_ss *
552 gfc_get_array_ss (gfc_ss *next, gfc_expr *expr, int dimen, gfc_ss_type type)
554 gfc_ss *ss;
555 gfc_ss_info *ss_info;
556 int i;
558 ss_info = gfc_get_ss_info ();
559 ss_info->refcount++;
560 ss_info->type = type;
561 ss_info->expr = expr;
563 ss = gfc_get_ss ();
564 ss->info = ss_info;
565 ss->next = next;
566 ss->dimen = dimen;
567 for (i = 0; i < ss->dimen; i++)
568 ss->dim[i] = i;
570 return ss;
574 /* Creates and initializes a temporary type gfc_ss struct. */
576 gfc_ss *
577 gfc_get_temp_ss (tree type, tree string_length, int dimen)
579 gfc_ss *ss;
580 gfc_ss_info *ss_info;
581 int i;
583 ss_info = gfc_get_ss_info ();
584 ss_info->refcount++;
585 ss_info->type = GFC_SS_TEMP;
586 ss_info->string_length = string_length;
587 ss_info->data.temp.type = type;
589 ss = gfc_get_ss ();
590 ss->info = ss_info;
591 ss->next = gfc_ss_terminator;
592 ss->dimen = dimen;
593 for (i = 0; i < ss->dimen; i++)
594 ss->dim[i] = i;
596 return ss;
600 /* Creates and initializes a scalar type gfc_ss struct. */
602 gfc_ss *
603 gfc_get_scalar_ss (gfc_ss *next, gfc_expr *expr)
605 gfc_ss *ss;
606 gfc_ss_info *ss_info;
608 ss_info = gfc_get_ss_info ();
609 ss_info->refcount++;
610 ss_info->type = GFC_SS_SCALAR;
611 ss_info->expr = expr;
613 ss = gfc_get_ss ();
614 ss->info = ss_info;
615 ss->next = next;
617 return ss;
621 /* Free all the SS associated with a loop. */
623 void
624 gfc_cleanup_loop (gfc_loopinfo * loop)
626 gfc_loopinfo *loop_next, **ploop;
627 gfc_ss *ss;
628 gfc_ss *next;
630 ss = loop->ss;
631 while (ss != gfc_ss_terminator)
633 gcc_assert (ss != NULL);
634 next = ss->loop_chain;
635 gfc_free_ss (ss);
636 ss = next;
639 /* Remove reference to self in the parent loop. */
640 if (loop->parent)
641 for (ploop = &loop->parent->nested; *ploop; ploop = &(*ploop)->next)
642 if (*ploop == loop)
644 *ploop = loop->next;
645 break;
648 /* Free non-freed nested loops. */
649 for (loop = loop->nested; loop; loop = loop_next)
651 loop_next = loop->next;
652 gfc_cleanup_loop (loop);
653 free (loop);
658 static void
659 set_ss_loop (gfc_ss *ss, gfc_loopinfo *loop)
661 int n;
663 for (; ss != gfc_ss_terminator; ss = ss->next)
665 ss->loop = loop;
667 if (ss->info->type == GFC_SS_SCALAR
668 || ss->info->type == GFC_SS_REFERENCE
669 || ss->info->type == GFC_SS_TEMP)
670 continue;
672 for (n = 0; n < GFC_MAX_DIMENSIONS; n++)
673 if (ss->info->data.array.subscript[n] != NULL)
674 set_ss_loop (ss->info->data.array.subscript[n], loop);
679 /* Associate a SS chain with a loop. */
681 void
682 gfc_add_ss_to_loop (gfc_loopinfo * loop, gfc_ss * head)
684 gfc_ss *ss;
685 gfc_loopinfo *nested_loop;
687 if (head == gfc_ss_terminator)
688 return;
690 set_ss_loop (head, loop);
692 ss = head;
693 for (; ss && ss != gfc_ss_terminator; ss = ss->next)
695 if (ss->nested_ss)
697 nested_loop = ss->nested_ss->loop;
699 /* More than one ss can belong to the same loop. Hence, we add the
700 loop to the chain only if it is different from the previously
701 added one, to avoid duplicate nested loops. */
702 if (nested_loop != loop->nested)
704 gcc_assert (nested_loop->parent == NULL);
705 nested_loop->parent = loop;
707 gcc_assert (nested_loop->next == NULL);
708 nested_loop->next = loop->nested;
709 loop->nested = nested_loop;
711 else
712 gcc_assert (nested_loop->parent == loop);
715 if (ss->next == gfc_ss_terminator)
716 ss->loop_chain = loop->ss;
717 else
718 ss->loop_chain = ss->next;
720 gcc_assert (ss == gfc_ss_terminator);
721 loop->ss = head;
725 /* Generate an initializer for a static pointer or allocatable array. */
727 void
728 gfc_trans_static_array_pointer (gfc_symbol * sym)
730 tree type;
732 gcc_assert (TREE_STATIC (sym->backend_decl));
733 /* Just zero the data member. */
734 type = TREE_TYPE (sym->backend_decl);
735 DECL_INITIAL (sym->backend_decl) = gfc_build_null_descriptor (type);
739 /* If the bounds of SE's loop have not yet been set, see if they can be
740 determined from array spec AS, which is the array spec of a called
741 function. MAPPING maps the callee's dummy arguments to the values
742 that the caller is passing. Add any initialization and finalization
743 code to SE. */
745 void
746 gfc_set_loop_bounds_from_array_spec (gfc_interface_mapping * mapping,
747 gfc_se * se, gfc_array_spec * as)
749 int n, dim, total_dim;
750 gfc_se tmpse;
751 gfc_ss *ss;
752 tree lower;
753 tree upper;
754 tree tmp;
756 total_dim = 0;
758 if (!as || as->type != AS_EXPLICIT)
759 return;
761 for (ss = se->ss; ss; ss = ss->parent)
763 total_dim += ss->loop->dimen;
764 for (n = 0; n < ss->loop->dimen; n++)
766 /* The bound is known, nothing to do. */
767 if (ss->loop->to[n] != NULL_TREE)
768 continue;
770 dim = ss->dim[n];
771 gcc_assert (dim < as->rank);
772 gcc_assert (ss->loop->dimen <= as->rank);
774 /* Evaluate the lower bound. */
775 gfc_init_se (&tmpse, NULL);
776 gfc_apply_interface_mapping (mapping, &tmpse, as->lower[dim]);
777 gfc_add_block_to_block (&se->pre, &tmpse.pre);
778 gfc_add_block_to_block (&se->post, &tmpse.post);
779 lower = fold_convert (gfc_array_index_type, tmpse.expr);
781 /* ...and the upper bound. */
782 gfc_init_se (&tmpse, NULL);
783 gfc_apply_interface_mapping (mapping, &tmpse, as->upper[dim]);
784 gfc_add_block_to_block (&se->pre, &tmpse.pre);
785 gfc_add_block_to_block (&se->post, &tmpse.post);
786 upper = fold_convert (gfc_array_index_type, tmpse.expr);
788 /* Set the upper bound of the loop to UPPER - LOWER. */
789 tmp = fold_build2_loc (input_location, MINUS_EXPR,
790 gfc_array_index_type, upper, lower);
791 tmp = gfc_evaluate_now (tmp, &se->pre);
792 ss->loop->to[n] = tmp;
796 gcc_assert (total_dim == as->rank);
800 /* Generate code to allocate an array temporary, or create a variable to
801 hold the data. If size is NULL, zero the descriptor so that the
802 callee will allocate the array. If DEALLOC is true, also generate code to
803 free the array afterwards.
805 If INITIAL is not NULL, it is packed using internal_pack and the result used
806 as data instead of allocating a fresh, unitialized area of memory.
808 Initialization code is added to PRE and finalization code to POST.
809 DYNAMIC is true if the caller may want to extend the array later
810 using realloc. This prevents us from putting the array on the stack. */
812 static void
813 gfc_trans_allocate_array_storage (stmtblock_t * pre, stmtblock_t * post,
814 gfc_array_info * info, tree size, tree nelem,
815 tree initial, bool dynamic, bool dealloc)
817 tree tmp;
818 tree desc;
819 bool onstack;
821 desc = info->descriptor;
822 info->offset = gfc_index_zero_node;
823 if (size == NULL_TREE || integer_zerop (size))
825 /* A callee allocated array. */
826 gfc_conv_descriptor_data_set (pre, desc, null_pointer_node);
827 onstack = FALSE;
829 else
831 /* Allocate the temporary. */
832 onstack = !dynamic && initial == NULL_TREE
833 && (gfc_option.flag_stack_arrays
834 || gfc_can_put_var_on_stack (size));
836 if (onstack)
838 /* Make a temporary variable to hold the data. */
839 tmp = fold_build2_loc (input_location, MINUS_EXPR, TREE_TYPE (nelem),
840 nelem, gfc_index_one_node);
841 tmp = gfc_evaluate_now (tmp, pre);
842 tmp = build_range_type (gfc_array_index_type, gfc_index_zero_node,
843 tmp);
844 tmp = build_array_type (gfc_get_element_type (TREE_TYPE (desc)),
845 tmp);
846 tmp = gfc_create_var (tmp, "A");
847 /* If we're here only because of -fstack-arrays we have to
848 emit a DECL_EXPR to make the gimplifier emit alloca calls. */
849 if (!gfc_can_put_var_on_stack (size))
850 gfc_add_expr_to_block (pre,
851 fold_build1_loc (input_location,
852 DECL_EXPR, TREE_TYPE (tmp),
853 tmp));
854 tmp = gfc_build_addr_expr (NULL_TREE, tmp);
855 gfc_conv_descriptor_data_set (pre, desc, tmp);
857 else
859 /* Allocate memory to hold the data or call internal_pack. */
860 if (initial == NULL_TREE)
862 tmp = gfc_call_malloc (pre, NULL, size);
863 tmp = gfc_evaluate_now (tmp, pre);
865 else
867 tree packed;
868 tree source_data;
869 tree was_packed;
870 stmtblock_t do_copying;
872 tmp = TREE_TYPE (initial); /* Pointer to descriptor. */
873 gcc_assert (TREE_CODE (tmp) == POINTER_TYPE);
874 tmp = TREE_TYPE (tmp); /* The descriptor itself. */
875 tmp = gfc_get_element_type (tmp);
876 gcc_assert (tmp == gfc_get_element_type (TREE_TYPE (desc)));
877 packed = gfc_create_var (build_pointer_type (tmp), "data");
879 tmp = build_call_expr_loc (input_location,
880 gfor_fndecl_in_pack, 1, initial);
881 tmp = fold_convert (TREE_TYPE (packed), tmp);
882 gfc_add_modify (pre, packed, tmp);
884 tmp = build_fold_indirect_ref_loc (input_location,
885 initial);
886 source_data = gfc_conv_descriptor_data_get (tmp);
888 /* internal_pack may return source->data without any allocation
889 or copying if it is already packed. If that's the case, we
890 need to allocate and copy manually. */
892 gfc_start_block (&do_copying);
893 tmp = gfc_call_malloc (&do_copying, NULL, size);
894 tmp = fold_convert (TREE_TYPE (packed), tmp);
895 gfc_add_modify (&do_copying, packed, tmp);
896 tmp = gfc_build_memcpy_call (packed, source_data, size);
897 gfc_add_expr_to_block (&do_copying, tmp);
899 was_packed = fold_build2_loc (input_location, EQ_EXPR,
900 boolean_type_node, packed,
901 source_data);
902 tmp = gfc_finish_block (&do_copying);
903 tmp = build3_v (COND_EXPR, was_packed, tmp,
904 build_empty_stmt (input_location));
905 gfc_add_expr_to_block (pre, tmp);
907 tmp = fold_convert (pvoid_type_node, packed);
910 gfc_conv_descriptor_data_set (pre, desc, tmp);
913 info->data = gfc_conv_descriptor_data_get (desc);
915 /* The offset is zero because we create temporaries with a zero
916 lower bound. */
917 gfc_conv_descriptor_offset_set (pre, desc, gfc_index_zero_node);
919 if (dealloc && !onstack)
921 /* Free the temporary. */
922 tmp = gfc_conv_descriptor_data_get (desc);
923 tmp = gfc_call_free (fold_convert (pvoid_type_node, tmp));
924 gfc_add_expr_to_block (post, tmp);
929 /* Get the scalarizer array dimension corresponding to actual array dimension
930 given by ARRAY_DIM.
932 For example, if SS represents the array ref a(1,:,:,1), it is a
933 bidimensional scalarizer array, and the result would be 0 for ARRAY_DIM=1,
934 and 1 for ARRAY_DIM=2.
935 If SS represents transpose(a(:,1,1,:)), it is again a bidimensional
936 scalarizer array, and the result would be 1 for ARRAY_DIM=0 and 0 for
937 ARRAY_DIM=3.
938 If SS represents sum(a(:,:,:,1), dim=1), it is a 2+1-dimensional scalarizer
939 array. If called on the inner ss, the result would be respectively 0,1,2 for
940 ARRAY_DIM=0,1,2. If called on the outer ss, the result would be 0,1
941 for ARRAY_DIM=1,2. */
943 static int
944 get_scalarizer_dim_for_array_dim (gfc_ss *ss, int array_dim)
946 int array_ref_dim;
947 int n;
949 array_ref_dim = 0;
951 for (; ss; ss = ss->parent)
952 for (n = 0; n < ss->dimen; n++)
953 if (ss->dim[n] < array_dim)
954 array_ref_dim++;
956 return array_ref_dim;
960 static gfc_ss *
961 innermost_ss (gfc_ss *ss)
963 while (ss->nested_ss != NULL)
964 ss = ss->nested_ss;
966 return ss;
971 /* Get the array reference dimension corresponding to the given loop dimension.
972 It is different from the true array dimension given by the dim array in
973 the case of a partial array reference (i.e. a(:,:,1,:) for example)
974 It is different from the loop dimension in the case of a transposed array.
977 static int
978 get_array_ref_dim_for_loop_dim (gfc_ss *ss, int loop_dim)
980 return get_scalarizer_dim_for_array_dim (innermost_ss (ss),
981 ss->dim[loop_dim]);
985 /* Generate code to create and initialize the descriptor for a temporary
986 array. This is used for both temporaries needed by the scalarizer, and
987 functions returning arrays. Adjusts the loop variables to be
988 zero-based, and calculates the loop bounds for callee allocated arrays.
989 Allocate the array unless it's callee allocated (we have a callee
990 allocated array if 'callee_alloc' is true, or if loop->to[n] is
991 NULL_TREE for any n). Also fills in the descriptor, data and offset
992 fields of info if known. Returns the size of the array, or NULL for a
993 callee allocated array.
995 'eltype' == NULL signals that the temporary should be a class object.
996 The 'initial' expression is used to obtain the size of the dynamic
997 type; otherwise the allocation and initialization proceeds as for any
998 other expression
1000 PRE, POST, INITIAL, DYNAMIC and DEALLOC are as for
1001 gfc_trans_allocate_array_storage. */
1003 tree
1004 gfc_trans_create_temp_array (stmtblock_t * pre, stmtblock_t * post, gfc_ss * ss,
1005 tree eltype, tree initial, bool dynamic,
1006 bool dealloc, bool callee_alloc, locus * where)
1008 gfc_loopinfo *loop;
1009 gfc_ss *s;
1010 gfc_array_info *info;
1011 tree from[GFC_MAX_DIMENSIONS], to[GFC_MAX_DIMENSIONS];
1012 tree type;
1013 tree desc;
1014 tree tmp;
1015 tree size;
1016 tree nelem;
1017 tree cond;
1018 tree or_expr;
1019 tree class_expr = NULL_TREE;
1020 int n, dim, tmp_dim;
1021 int total_dim = 0;
1023 /* This signals a class array for which we need the size of the
1024 dynamic type. Generate an eltype and then the class expression. */
1025 if (eltype == NULL_TREE && initial)
1027 gcc_assert (POINTER_TYPE_P (TREE_TYPE (initial)));
1028 class_expr = build_fold_indirect_ref_loc (input_location, initial);
1029 eltype = TREE_TYPE (class_expr);
1030 eltype = gfc_get_element_type (eltype);
1031 /* Obtain the structure (class) expression. */
1032 class_expr = TREE_OPERAND (class_expr, 0);
1033 gcc_assert (class_expr);
1036 memset (from, 0, sizeof (from));
1037 memset (to, 0, sizeof (to));
1039 info = &ss->info->data.array;
1041 gcc_assert (ss->dimen > 0);
1042 gcc_assert (ss->loop->dimen == ss->dimen);
1044 if (gfc_option.warn_array_temp && where)
1045 gfc_warning ("Creating array temporary at %L", where);
1047 /* Set the lower bound to zero. */
1048 for (s = ss; s; s = s->parent)
1050 loop = s->loop;
1052 total_dim += loop->dimen;
1053 for (n = 0; n < loop->dimen; n++)
1055 dim = s->dim[n];
1057 /* Callee allocated arrays may not have a known bound yet. */
1058 if (loop->to[n])
1059 loop->to[n] = gfc_evaluate_now (
1060 fold_build2_loc (input_location, MINUS_EXPR,
1061 gfc_array_index_type,
1062 loop->to[n], loop->from[n]),
1063 pre);
1064 loop->from[n] = gfc_index_zero_node;
1066 /* We have just changed the loop bounds, we must clear the
1067 corresponding specloop, so that delta calculation is not skipped
1068 later in gfc_set_delta. */
1069 loop->specloop[n] = NULL;
1071 /* We are constructing the temporary's descriptor based on the loop
1072 dimensions. As the dimensions may be accessed in arbitrary order
1073 (think of transpose) the size taken from the n'th loop may not map
1074 to the n'th dimension of the array. We need to reconstruct loop
1075 infos in the right order before using it to set the descriptor
1076 bounds. */
1077 tmp_dim = get_scalarizer_dim_for_array_dim (ss, dim);
1078 from[tmp_dim] = loop->from[n];
1079 to[tmp_dim] = loop->to[n];
1081 info->delta[dim] = gfc_index_zero_node;
1082 info->start[dim] = gfc_index_zero_node;
1083 info->end[dim] = gfc_index_zero_node;
1084 info->stride[dim] = gfc_index_one_node;
1088 /* Initialize the descriptor. */
1089 type =
1090 gfc_get_array_type_bounds (eltype, total_dim, 0, from, to, 1,
1091 GFC_ARRAY_UNKNOWN, true);
1092 desc = gfc_create_var (type, "atmp");
1093 GFC_DECL_PACKED_ARRAY (desc) = 1;
1095 info->descriptor = desc;
1096 size = gfc_index_one_node;
1098 /* Fill in the array dtype. */
1099 tmp = gfc_conv_descriptor_dtype (desc);
1100 gfc_add_modify (pre, tmp, gfc_get_dtype (TREE_TYPE (desc)));
1103 Fill in the bounds and stride. This is a packed array, so:
1105 size = 1;
1106 for (n = 0; n < rank; n++)
1108 stride[n] = size
1109 delta = ubound[n] + 1 - lbound[n];
1110 size = size * delta;
1112 size = size * sizeof(element);
1115 or_expr = NULL_TREE;
1117 /* If there is at least one null loop->to[n], it is a callee allocated
1118 array. */
1119 for (n = 0; n < total_dim; n++)
1120 if (to[n] == NULL_TREE)
1122 size = NULL_TREE;
1123 break;
1126 if (size == NULL_TREE)
1127 for (s = ss; s; s = s->parent)
1128 for (n = 0; n < s->loop->dimen; n++)
1130 dim = get_scalarizer_dim_for_array_dim (ss, s->dim[n]);
1132 /* For a callee allocated array express the loop bounds in terms
1133 of the descriptor fields. */
1134 tmp = fold_build2_loc (input_location,
1135 MINUS_EXPR, gfc_array_index_type,
1136 gfc_conv_descriptor_ubound_get (desc, gfc_rank_cst[dim]),
1137 gfc_conv_descriptor_lbound_get (desc, gfc_rank_cst[dim]));
1138 s->loop->to[n] = tmp;
1140 else
1142 for (n = 0; n < total_dim; n++)
1144 /* Store the stride and bound components in the descriptor. */
1145 gfc_conv_descriptor_stride_set (pre, desc, gfc_rank_cst[n], size);
1147 gfc_conv_descriptor_lbound_set (pre, desc, gfc_rank_cst[n],
1148 gfc_index_zero_node);
1150 gfc_conv_descriptor_ubound_set (pre, desc, gfc_rank_cst[n], to[n]);
1152 tmp = fold_build2_loc (input_location, PLUS_EXPR,
1153 gfc_array_index_type,
1154 to[n], gfc_index_one_node);
1156 /* Check whether the size for this dimension is negative. */
1157 cond = fold_build2_loc (input_location, LE_EXPR, boolean_type_node,
1158 tmp, gfc_index_zero_node);
1159 cond = gfc_evaluate_now (cond, pre);
1161 if (n == 0)
1162 or_expr = cond;
1163 else
1164 or_expr = fold_build2_loc (input_location, TRUTH_OR_EXPR,
1165 boolean_type_node, or_expr, cond);
1167 size = fold_build2_loc (input_location, MULT_EXPR,
1168 gfc_array_index_type, size, tmp);
1169 size = gfc_evaluate_now (size, pre);
1173 /* Get the size of the array. */
1174 if (size && !callee_alloc)
1176 tree elemsize;
1177 /* If or_expr is true, then the extent in at least one
1178 dimension is zero and the size is set to zero. */
1179 size = fold_build3_loc (input_location, COND_EXPR, gfc_array_index_type,
1180 or_expr, gfc_index_zero_node, size);
1182 nelem = size;
1183 if (class_expr == NULL_TREE)
1184 elemsize = fold_convert (gfc_array_index_type,
1185 TYPE_SIZE_UNIT (gfc_get_element_type (type)));
1186 else
1187 elemsize = gfc_vtable_size_get (class_expr);
1189 size = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type,
1190 size, elemsize);
1192 else
1194 nelem = size;
1195 size = NULL_TREE;
1198 gfc_trans_allocate_array_storage (pre, post, info, size, nelem, initial,
1199 dynamic, dealloc);
1201 while (ss->parent)
1202 ss = ss->parent;
1204 if (ss->dimen > ss->loop->temp_dim)
1205 ss->loop->temp_dim = ss->dimen;
1207 return size;
1211 /* Return the number of iterations in a loop that starts at START,
1212 ends at END, and has step STEP. */
1214 static tree
1215 gfc_get_iteration_count (tree start, tree end, tree step)
1217 tree tmp;
1218 tree type;
1220 type = TREE_TYPE (step);
1221 tmp = fold_build2_loc (input_location, MINUS_EXPR, type, end, start);
1222 tmp = fold_build2_loc (input_location, FLOOR_DIV_EXPR, type, tmp, step);
1223 tmp = fold_build2_loc (input_location, PLUS_EXPR, type, tmp,
1224 build_int_cst (type, 1));
1225 tmp = fold_build2_loc (input_location, MAX_EXPR, type, tmp,
1226 build_int_cst (type, 0));
1227 return fold_convert (gfc_array_index_type, tmp);
1231 /* Extend the data in array DESC by EXTRA elements. */
1233 static void
1234 gfc_grow_array (stmtblock_t * pblock, tree desc, tree extra)
1236 tree arg0, arg1;
1237 tree tmp;
1238 tree size;
1239 tree ubound;
1241 if (integer_zerop (extra))
1242 return;
1244 ubound = gfc_conv_descriptor_ubound_get (desc, gfc_rank_cst[0]);
1246 /* Add EXTRA to the upper bound. */
1247 tmp = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type,
1248 ubound, extra);
1249 gfc_conv_descriptor_ubound_set (pblock, desc, gfc_rank_cst[0], tmp);
1251 /* Get the value of the current data pointer. */
1252 arg0 = gfc_conv_descriptor_data_get (desc);
1254 /* Calculate the new array size. */
1255 size = TYPE_SIZE_UNIT (gfc_get_element_type (TREE_TYPE (desc)));
1256 tmp = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type,
1257 ubound, gfc_index_one_node);
1258 arg1 = fold_build2_loc (input_location, MULT_EXPR, size_type_node,
1259 fold_convert (size_type_node, tmp),
1260 fold_convert (size_type_node, size));
1262 /* Call the realloc() function. */
1263 tmp = gfc_call_realloc (pblock, arg0, arg1);
1264 gfc_conv_descriptor_data_set (pblock, desc, tmp);
1268 /* Return true if the bounds of iterator I can only be determined
1269 at run time. */
1271 static inline bool
1272 gfc_iterator_has_dynamic_bounds (gfc_iterator * i)
1274 return (i->start->expr_type != EXPR_CONSTANT
1275 || i->end->expr_type != EXPR_CONSTANT
1276 || i->step->expr_type != EXPR_CONSTANT);
1280 /* Split the size of constructor element EXPR into the sum of two terms,
1281 one of which can be determined at compile time and one of which must
1282 be calculated at run time. Set *SIZE to the former and return true
1283 if the latter might be nonzero. */
1285 static bool
1286 gfc_get_array_constructor_element_size (mpz_t * size, gfc_expr * expr)
1288 if (expr->expr_type == EXPR_ARRAY)
1289 return gfc_get_array_constructor_size (size, expr->value.constructor);
1290 else if (expr->rank > 0)
1292 /* Calculate everything at run time. */
1293 mpz_set_ui (*size, 0);
1294 return true;
1296 else
1298 /* A single element. */
1299 mpz_set_ui (*size, 1);
1300 return false;
1305 /* Like gfc_get_array_constructor_element_size, but applied to the whole
1306 of array constructor C. */
1308 static bool
1309 gfc_get_array_constructor_size (mpz_t * size, gfc_constructor_base base)
1311 gfc_constructor *c;
1312 gfc_iterator *i;
1313 mpz_t val;
1314 mpz_t len;
1315 bool dynamic;
1317 mpz_set_ui (*size, 0);
1318 mpz_init (len);
1319 mpz_init (val);
1321 dynamic = false;
1322 for (c = gfc_constructor_first (base); c; c = gfc_constructor_next (c))
1324 i = c->iterator;
1325 if (i && gfc_iterator_has_dynamic_bounds (i))
1326 dynamic = true;
1327 else
1329 dynamic |= gfc_get_array_constructor_element_size (&len, c->expr);
1330 if (i)
1332 /* Multiply the static part of the element size by the
1333 number of iterations. */
1334 mpz_sub (val, i->end->value.integer, i->start->value.integer);
1335 mpz_fdiv_q (val, val, i->step->value.integer);
1336 mpz_add_ui (val, val, 1);
1337 if (mpz_sgn (val) > 0)
1338 mpz_mul (len, len, val);
1339 else
1340 mpz_set_ui (len, 0);
1342 mpz_add (*size, *size, len);
1345 mpz_clear (len);
1346 mpz_clear (val);
1347 return dynamic;
1351 /* Make sure offset is a variable. */
1353 static void
1354 gfc_put_offset_into_var (stmtblock_t * pblock, tree * poffset,
1355 tree * offsetvar)
1357 /* We should have already created the offset variable. We cannot
1358 create it here because we may be in an inner scope. */
1359 gcc_assert (*offsetvar != NULL_TREE);
1360 gfc_add_modify (pblock, *offsetvar, *poffset);
1361 *poffset = *offsetvar;
1362 TREE_USED (*offsetvar) = 1;
1366 /* Variables needed for bounds-checking. */
1367 static bool first_len;
1368 static tree first_len_val;
1369 static bool typespec_chararray_ctor;
1371 static void
1372 gfc_trans_array_ctor_element (stmtblock_t * pblock, tree desc,
1373 tree offset, gfc_se * se, gfc_expr * expr)
1375 tree tmp;
1377 gfc_conv_expr (se, expr);
1379 /* Store the value. */
1380 tmp = build_fold_indirect_ref_loc (input_location,
1381 gfc_conv_descriptor_data_get (desc));
1382 tmp = gfc_build_array_ref (tmp, offset, NULL);
1384 if (expr->ts.type == BT_CHARACTER)
1386 int i = gfc_validate_kind (BT_CHARACTER, expr->ts.kind, false);
1387 tree esize;
1389 esize = size_in_bytes (gfc_get_element_type (TREE_TYPE (desc)));
1390 esize = fold_convert (gfc_charlen_type_node, esize);
1391 esize = fold_build2_loc (input_location, TRUNC_DIV_EXPR,
1392 gfc_charlen_type_node, esize,
1393 build_int_cst (gfc_charlen_type_node,
1394 gfc_character_kinds[i].bit_size / 8));
1396 gfc_conv_string_parameter (se);
1397 if (POINTER_TYPE_P (TREE_TYPE (tmp)))
1399 /* The temporary is an array of pointers. */
1400 se->expr = fold_convert (TREE_TYPE (tmp), se->expr);
1401 gfc_add_modify (&se->pre, tmp, se->expr);
1403 else
1405 /* The temporary is an array of string values. */
1406 tmp = gfc_build_addr_expr (gfc_get_pchar_type (expr->ts.kind), tmp);
1407 /* We know the temporary and the value will be the same length,
1408 so can use memcpy. */
1409 gfc_trans_string_copy (&se->pre, esize, tmp, expr->ts.kind,
1410 se->string_length, se->expr, expr->ts.kind);
1412 if ((gfc_option.rtcheck & GFC_RTCHECK_BOUNDS) && !typespec_chararray_ctor)
1414 if (first_len)
1416 gfc_add_modify (&se->pre, first_len_val,
1417 se->string_length);
1418 first_len = false;
1420 else
1422 /* Verify that all constructor elements are of the same
1423 length. */
1424 tree cond = fold_build2_loc (input_location, NE_EXPR,
1425 boolean_type_node, first_len_val,
1426 se->string_length);
1427 gfc_trans_runtime_check
1428 (true, false, cond, &se->pre, &expr->where,
1429 "Different CHARACTER lengths (%ld/%ld) in array constructor",
1430 fold_convert (long_integer_type_node, first_len_val),
1431 fold_convert (long_integer_type_node, se->string_length));
1435 else
1437 /* TODO: Should the frontend already have done this conversion? */
1438 se->expr = fold_convert (TREE_TYPE (tmp), se->expr);
1439 gfc_add_modify (&se->pre, tmp, se->expr);
1442 gfc_add_block_to_block (pblock, &se->pre);
1443 gfc_add_block_to_block (pblock, &se->post);
1447 /* Add the contents of an array to the constructor. DYNAMIC is as for
1448 gfc_trans_array_constructor_value. */
1450 static void
1451 gfc_trans_array_constructor_subarray (stmtblock_t * pblock,
1452 tree type ATTRIBUTE_UNUSED,
1453 tree desc, gfc_expr * expr,
1454 tree * poffset, tree * offsetvar,
1455 bool dynamic)
1457 gfc_se se;
1458 gfc_ss *ss;
1459 gfc_loopinfo loop;
1460 stmtblock_t body;
1461 tree tmp;
1462 tree size;
1463 int n;
1465 /* We need this to be a variable so we can increment it. */
1466 gfc_put_offset_into_var (pblock, poffset, offsetvar);
1468 gfc_init_se (&se, NULL);
1470 /* Walk the array expression. */
1471 ss = gfc_walk_expr (expr);
1472 gcc_assert (ss != gfc_ss_terminator);
1474 /* Initialize the scalarizer. */
1475 gfc_init_loopinfo (&loop);
1476 gfc_add_ss_to_loop (&loop, ss);
1478 /* Initialize the loop. */
1479 gfc_conv_ss_startstride (&loop);
1480 gfc_conv_loop_setup (&loop, &expr->where);
1482 /* Make sure the constructed array has room for the new data. */
1483 if (dynamic)
1485 /* Set SIZE to the total number of elements in the subarray. */
1486 size = gfc_index_one_node;
1487 for (n = 0; n < loop.dimen; n++)
1489 tmp = gfc_get_iteration_count (loop.from[n], loop.to[n],
1490 gfc_index_one_node);
1491 size = fold_build2_loc (input_location, MULT_EXPR,
1492 gfc_array_index_type, size, tmp);
1495 /* Grow the constructed array by SIZE elements. */
1496 gfc_grow_array (&loop.pre, desc, size);
1499 /* Make the loop body. */
1500 gfc_mark_ss_chain_used (ss, 1);
1501 gfc_start_scalarized_body (&loop, &body);
1502 gfc_copy_loopinfo_to_se (&se, &loop);
1503 se.ss = ss;
1505 gfc_trans_array_ctor_element (&body, desc, *poffset, &se, expr);
1506 gcc_assert (se.ss == gfc_ss_terminator);
1508 /* Increment the offset. */
1509 tmp = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type,
1510 *poffset, gfc_index_one_node);
1511 gfc_add_modify (&body, *poffset, tmp);
1513 /* Finish the loop. */
1514 gfc_trans_scalarizing_loops (&loop, &body);
1515 gfc_add_block_to_block (&loop.pre, &loop.post);
1516 tmp = gfc_finish_block (&loop.pre);
1517 gfc_add_expr_to_block (pblock, tmp);
1519 gfc_cleanup_loop (&loop);
1523 /* Assign the values to the elements of an array constructor. DYNAMIC
1524 is true if descriptor DESC only contains enough data for the static
1525 size calculated by gfc_get_array_constructor_size. When true, memory
1526 for the dynamic parts must be allocated using realloc. */
1528 static void
1529 gfc_trans_array_constructor_value (stmtblock_t * pblock, tree type,
1530 tree desc, gfc_constructor_base base,
1531 tree * poffset, tree * offsetvar,
1532 bool dynamic)
1534 tree tmp;
1535 tree start = NULL_TREE;
1536 tree end = NULL_TREE;
1537 tree step = NULL_TREE;
1538 stmtblock_t body;
1539 gfc_se se;
1540 mpz_t size;
1541 gfc_constructor *c;
1543 tree shadow_loopvar = NULL_TREE;
1544 gfc_saved_var saved_loopvar;
1546 mpz_init (size);
1547 for (c = gfc_constructor_first (base); c; c = gfc_constructor_next (c))
1549 /* If this is an iterator or an array, the offset must be a variable. */
1550 if ((c->iterator || c->expr->rank > 0) && INTEGER_CST_P (*poffset))
1551 gfc_put_offset_into_var (pblock, poffset, offsetvar);
1553 /* Shadowing the iterator avoids changing its value and saves us from
1554 keeping track of it. Further, it makes sure that there's always a
1555 backend-decl for the symbol, even if there wasn't one before,
1556 e.g. in the case of an iterator that appears in a specification
1557 expression in an interface mapping. */
1558 if (c->iterator)
1560 gfc_symbol *sym;
1561 tree type;
1563 /* Evaluate loop bounds before substituting the loop variable
1564 in case they depend on it. Such a case is invalid, but it is
1565 not more expensive to do the right thing here.
1566 See PR 44354. */
1567 gfc_init_se (&se, NULL);
1568 gfc_conv_expr_val (&se, c->iterator->start);
1569 gfc_add_block_to_block (pblock, &se.pre);
1570 start = gfc_evaluate_now (se.expr, pblock);
1572 gfc_init_se (&se, NULL);
1573 gfc_conv_expr_val (&se, c->iterator->end);
1574 gfc_add_block_to_block (pblock, &se.pre);
1575 end = gfc_evaluate_now (se.expr, pblock);
1577 gfc_init_se (&se, NULL);
1578 gfc_conv_expr_val (&se, c->iterator->step);
1579 gfc_add_block_to_block (pblock, &se.pre);
1580 step = gfc_evaluate_now (se.expr, pblock);
1582 sym = c->iterator->var->symtree->n.sym;
1583 type = gfc_typenode_for_spec (&sym->ts);
1585 shadow_loopvar = gfc_create_var (type, "shadow_loopvar");
1586 gfc_shadow_sym (sym, shadow_loopvar, &saved_loopvar);
1589 gfc_start_block (&body);
1591 if (c->expr->expr_type == EXPR_ARRAY)
1593 /* Array constructors can be nested. */
1594 gfc_trans_array_constructor_value (&body, type, desc,
1595 c->expr->value.constructor,
1596 poffset, offsetvar, dynamic);
1598 else if (c->expr->rank > 0)
1600 gfc_trans_array_constructor_subarray (&body, type, desc, c->expr,
1601 poffset, offsetvar, dynamic);
1603 else
1605 /* This code really upsets the gimplifier so don't bother for now. */
1606 gfc_constructor *p;
1607 HOST_WIDE_INT n;
1608 HOST_WIDE_INT size;
1610 p = c;
1611 n = 0;
1612 while (p && !(p->iterator || p->expr->expr_type != EXPR_CONSTANT))
1614 p = gfc_constructor_next (p);
1615 n++;
1617 if (n < 4)
1619 /* Scalar values. */
1620 gfc_init_se (&se, NULL);
1621 gfc_trans_array_ctor_element (&body, desc, *poffset,
1622 &se, c->expr);
1624 *poffset = fold_build2_loc (input_location, PLUS_EXPR,
1625 gfc_array_index_type,
1626 *poffset, gfc_index_one_node);
1628 else
1630 /* Collect multiple scalar constants into a constructor. */
1631 vec<constructor_elt, va_gc> *v = NULL;
1632 tree init;
1633 tree bound;
1634 tree tmptype;
1635 HOST_WIDE_INT idx = 0;
1637 p = c;
1638 /* Count the number of consecutive scalar constants. */
1639 while (p && !(p->iterator
1640 || p->expr->expr_type != EXPR_CONSTANT))
1642 gfc_init_se (&se, NULL);
1643 gfc_conv_constant (&se, p->expr);
1645 if (c->expr->ts.type != BT_CHARACTER)
1646 se.expr = fold_convert (type, se.expr);
1647 /* For constant character array constructors we build
1648 an array of pointers. */
1649 else if (POINTER_TYPE_P (type))
1650 se.expr = gfc_build_addr_expr
1651 (gfc_get_pchar_type (p->expr->ts.kind),
1652 se.expr);
1654 CONSTRUCTOR_APPEND_ELT (v,
1655 build_int_cst (gfc_array_index_type,
1656 idx++),
1657 se.expr);
1658 c = p;
1659 p = gfc_constructor_next (p);
1662 bound = size_int (n - 1);
1663 /* Create an array type to hold them. */
1664 tmptype = build_range_type (gfc_array_index_type,
1665 gfc_index_zero_node, bound);
1666 tmptype = build_array_type (type, tmptype);
1668 init = build_constructor (tmptype, v);
1669 TREE_CONSTANT (init) = 1;
1670 TREE_STATIC (init) = 1;
1671 /* Create a static variable to hold the data. */
1672 tmp = gfc_create_var (tmptype, "data");
1673 TREE_STATIC (tmp) = 1;
1674 TREE_CONSTANT (tmp) = 1;
1675 TREE_READONLY (tmp) = 1;
1676 DECL_INITIAL (tmp) = init;
1677 init = tmp;
1679 /* Use BUILTIN_MEMCPY to assign the values. */
1680 tmp = gfc_conv_descriptor_data_get (desc);
1681 tmp = build_fold_indirect_ref_loc (input_location,
1682 tmp);
1683 tmp = gfc_build_array_ref (tmp, *poffset, NULL);
1684 tmp = gfc_build_addr_expr (NULL_TREE, tmp);
1685 init = gfc_build_addr_expr (NULL_TREE, init);
1687 size = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (type));
1688 bound = build_int_cst (size_type_node, n * size);
1689 tmp = build_call_expr_loc (input_location,
1690 builtin_decl_explicit (BUILT_IN_MEMCPY),
1691 3, tmp, init, bound);
1692 gfc_add_expr_to_block (&body, tmp);
1694 *poffset = fold_build2_loc (input_location, PLUS_EXPR,
1695 gfc_array_index_type, *poffset,
1696 build_int_cst (gfc_array_index_type, n));
1698 if (!INTEGER_CST_P (*poffset))
1700 gfc_add_modify (&body, *offsetvar, *poffset);
1701 *poffset = *offsetvar;
1705 /* The frontend should already have done any expansions
1706 at compile-time. */
1707 if (!c->iterator)
1709 /* Pass the code as is. */
1710 tmp = gfc_finish_block (&body);
1711 gfc_add_expr_to_block (pblock, tmp);
1713 else
1715 /* Build the implied do-loop. */
1716 stmtblock_t implied_do_block;
1717 tree cond;
1718 tree exit_label;
1719 tree loopbody;
1720 tree tmp2;
1722 loopbody = gfc_finish_block (&body);
1724 /* Create a new block that holds the implied-do loop. A temporary
1725 loop-variable is used. */
1726 gfc_start_block(&implied_do_block);
1728 /* Initialize the loop. */
1729 gfc_add_modify (&implied_do_block, shadow_loopvar, start);
1731 /* If this array expands dynamically, and the number of iterations
1732 is not constant, we won't have allocated space for the static
1733 part of C->EXPR's size. Do that now. */
1734 if (dynamic && gfc_iterator_has_dynamic_bounds (c->iterator))
1736 /* Get the number of iterations. */
1737 tmp = gfc_get_iteration_count (shadow_loopvar, end, step);
1739 /* Get the static part of C->EXPR's size. */
1740 gfc_get_array_constructor_element_size (&size, c->expr);
1741 tmp2 = gfc_conv_mpz_to_tree (size, gfc_index_integer_kind);
1743 /* Grow the array by TMP * TMP2 elements. */
1744 tmp = fold_build2_loc (input_location, MULT_EXPR,
1745 gfc_array_index_type, tmp, tmp2);
1746 gfc_grow_array (&implied_do_block, desc, tmp);
1749 /* Generate the loop body. */
1750 exit_label = gfc_build_label_decl (NULL_TREE);
1751 gfc_start_block (&body);
1753 /* Generate the exit condition. Depending on the sign of
1754 the step variable we have to generate the correct
1755 comparison. */
1756 tmp = fold_build2_loc (input_location, GT_EXPR, boolean_type_node,
1757 step, build_int_cst (TREE_TYPE (step), 0));
1758 cond = fold_build3_loc (input_location, COND_EXPR,
1759 boolean_type_node, tmp,
1760 fold_build2_loc (input_location, GT_EXPR,
1761 boolean_type_node, shadow_loopvar, end),
1762 fold_build2_loc (input_location, LT_EXPR,
1763 boolean_type_node, shadow_loopvar, end));
1764 tmp = build1_v (GOTO_EXPR, exit_label);
1765 TREE_USED (exit_label) = 1;
1766 tmp = build3_v (COND_EXPR, cond, tmp,
1767 build_empty_stmt (input_location));
1768 gfc_add_expr_to_block (&body, tmp);
1770 /* The main loop body. */
1771 gfc_add_expr_to_block (&body, loopbody);
1773 /* Increase loop variable by step. */
1774 tmp = fold_build2_loc (input_location, PLUS_EXPR,
1775 TREE_TYPE (shadow_loopvar), shadow_loopvar,
1776 step);
1777 gfc_add_modify (&body, shadow_loopvar, tmp);
1779 /* Finish the loop. */
1780 tmp = gfc_finish_block (&body);
1781 tmp = build1_v (LOOP_EXPR, tmp);
1782 gfc_add_expr_to_block (&implied_do_block, tmp);
1784 /* Add the exit label. */
1785 tmp = build1_v (LABEL_EXPR, exit_label);
1786 gfc_add_expr_to_block (&implied_do_block, tmp);
1788 /* Finish the implied-do loop. */
1789 tmp = gfc_finish_block(&implied_do_block);
1790 gfc_add_expr_to_block(pblock, tmp);
1792 gfc_restore_sym (c->iterator->var->symtree->n.sym, &saved_loopvar);
1795 mpz_clear (size);
1799 /* A catch-all to obtain the string length for anything that is not
1800 a substring of non-constant length, a constant, array or variable. */
1802 static void
1803 get_array_ctor_all_strlen (stmtblock_t *block, gfc_expr *e, tree *len)
1805 gfc_se se;
1807 /* Don't bother if we already know the length is a constant. */
1808 if (*len && INTEGER_CST_P (*len))
1809 return;
1811 if (!e->ref && e->ts.u.cl && e->ts.u.cl->length
1812 && e->ts.u.cl->length->expr_type == EXPR_CONSTANT)
1814 /* This is easy. */
1815 gfc_conv_const_charlen (e->ts.u.cl);
1816 *len = e->ts.u.cl->backend_decl;
1818 else
1820 /* Otherwise, be brutal even if inefficient. */
1821 gfc_init_se (&se, NULL);
1823 /* No function call, in case of side effects. */
1824 se.no_function_call = 1;
1825 if (e->rank == 0)
1826 gfc_conv_expr (&se, e);
1827 else
1828 gfc_conv_expr_descriptor (&se, e);
1830 /* Fix the value. */
1831 *len = gfc_evaluate_now (se.string_length, &se.pre);
1833 gfc_add_block_to_block (block, &se.pre);
1834 gfc_add_block_to_block (block, &se.post);
1836 e->ts.u.cl->backend_decl = *len;
1841 /* Figure out the string length of a variable reference expression.
1842 Used by get_array_ctor_strlen. */
1844 static void
1845 get_array_ctor_var_strlen (stmtblock_t *block, gfc_expr * expr, tree * len)
1847 gfc_ref *ref;
1848 gfc_typespec *ts;
1849 mpz_t char_len;
1851 /* Don't bother if we already know the length is a constant. */
1852 if (*len && INTEGER_CST_P (*len))
1853 return;
1855 ts = &expr->symtree->n.sym->ts;
1856 for (ref = expr->ref; ref; ref = ref->next)
1858 switch (ref->type)
1860 case REF_ARRAY:
1861 /* Array references don't change the string length. */
1862 break;
1864 case REF_COMPONENT:
1865 /* Use the length of the component. */
1866 ts = &ref->u.c.component->ts;
1867 break;
1869 case REF_SUBSTRING:
1870 if (ref->u.ss.start->expr_type != EXPR_CONSTANT
1871 || ref->u.ss.end->expr_type != EXPR_CONSTANT)
1873 /* Note that this might evaluate expr. */
1874 get_array_ctor_all_strlen (block, expr, len);
1875 return;
1877 mpz_init_set_ui (char_len, 1);
1878 mpz_add (char_len, char_len, ref->u.ss.end->value.integer);
1879 mpz_sub (char_len, char_len, ref->u.ss.start->value.integer);
1880 *len = gfc_conv_mpz_to_tree (char_len, gfc_default_integer_kind);
1881 *len = convert (gfc_charlen_type_node, *len);
1882 mpz_clear (char_len);
1883 return;
1885 default:
1886 gcc_unreachable ();
1890 *len = ts->u.cl->backend_decl;
1894 /* Figure out the string length of a character array constructor.
1895 If len is NULL, don't calculate the length; this happens for recursive calls
1896 when a sub-array-constructor is an element but not at the first position,
1897 so when we're not interested in the length.
1898 Returns TRUE if all elements are character constants. */
1900 bool
1901 get_array_ctor_strlen (stmtblock_t *block, gfc_constructor_base base, tree * len)
1903 gfc_constructor *c;
1904 bool is_const;
1906 is_const = TRUE;
1908 if (gfc_constructor_first (base) == NULL)
1910 if (len)
1911 *len = build_int_cstu (gfc_charlen_type_node, 0);
1912 return is_const;
1915 /* Loop over all constructor elements to find out is_const, but in len we
1916 want to store the length of the first, not the last, element. We can
1917 of course exit the loop as soon as is_const is found to be false. */
1918 for (c = gfc_constructor_first (base);
1919 c && is_const; c = gfc_constructor_next (c))
1921 switch (c->expr->expr_type)
1923 case EXPR_CONSTANT:
1924 if (len && !(*len && INTEGER_CST_P (*len)))
1925 *len = build_int_cstu (gfc_charlen_type_node,
1926 c->expr->value.character.length);
1927 break;
1929 case EXPR_ARRAY:
1930 if (!get_array_ctor_strlen (block, c->expr->value.constructor, len))
1931 is_const = false;
1932 break;
1934 case EXPR_VARIABLE:
1935 is_const = false;
1936 if (len)
1937 get_array_ctor_var_strlen (block, c->expr, len);
1938 break;
1940 default:
1941 is_const = false;
1942 if (len)
1943 get_array_ctor_all_strlen (block, c->expr, len);
1944 break;
1947 /* After the first iteration, we don't want the length modified. */
1948 len = NULL;
1951 return is_const;
1954 /* Check whether the array constructor C consists entirely of constant
1955 elements, and if so returns the number of those elements, otherwise
1956 return zero. Note, an empty or NULL array constructor returns zero. */
1958 unsigned HOST_WIDE_INT
1959 gfc_constant_array_constructor_p (gfc_constructor_base base)
1961 unsigned HOST_WIDE_INT nelem = 0;
1963 gfc_constructor *c = gfc_constructor_first (base);
1964 while (c)
1966 if (c->iterator
1967 || c->expr->rank > 0
1968 || c->expr->expr_type != EXPR_CONSTANT)
1969 return 0;
1970 c = gfc_constructor_next (c);
1971 nelem++;
1973 return nelem;
1977 /* Given EXPR, the constant array constructor specified by an EXPR_ARRAY,
1978 and the tree type of it's elements, TYPE, return a static constant
1979 variable that is compile-time initialized. */
1981 tree
1982 gfc_build_constant_array_constructor (gfc_expr * expr, tree type)
1984 tree tmptype, init, tmp;
1985 HOST_WIDE_INT nelem;
1986 gfc_constructor *c;
1987 gfc_array_spec as;
1988 gfc_se se;
1989 int i;
1990 vec<constructor_elt, va_gc> *v = NULL;
1992 /* First traverse the constructor list, converting the constants
1993 to tree to build an initializer. */
1994 nelem = 0;
1995 c = gfc_constructor_first (expr->value.constructor);
1996 while (c)
1998 gfc_init_se (&se, NULL);
1999 gfc_conv_constant (&se, c->expr);
2000 if (c->expr->ts.type != BT_CHARACTER)
2001 se.expr = fold_convert (type, se.expr);
2002 else if (POINTER_TYPE_P (type))
2003 se.expr = gfc_build_addr_expr (gfc_get_pchar_type (c->expr->ts.kind),
2004 se.expr);
2005 CONSTRUCTOR_APPEND_ELT (v, build_int_cst (gfc_array_index_type, nelem),
2006 se.expr);
2007 c = gfc_constructor_next (c);
2008 nelem++;
2011 /* Next determine the tree type for the array. We use the gfortran
2012 front-end's gfc_get_nodesc_array_type in order to create a suitable
2013 GFC_ARRAY_TYPE_P that may be used by the scalarizer. */
2015 memset (&as, 0, sizeof (gfc_array_spec));
2017 as.rank = expr->rank;
2018 as.type = AS_EXPLICIT;
2019 if (!expr->shape)
2021 as.lower[0] = gfc_get_int_expr (gfc_default_integer_kind, NULL, 0);
2022 as.upper[0] = gfc_get_int_expr (gfc_default_integer_kind,
2023 NULL, nelem - 1);
2025 else
2026 for (i = 0; i < expr->rank; i++)
2028 int tmp = (int) mpz_get_si (expr->shape[i]);
2029 as.lower[i] = gfc_get_int_expr (gfc_default_integer_kind, NULL, 0);
2030 as.upper[i] = gfc_get_int_expr (gfc_default_integer_kind,
2031 NULL, tmp - 1);
2034 tmptype = gfc_get_nodesc_array_type (type, &as, PACKED_STATIC, true);
2036 /* as is not needed anymore. */
2037 for (i = 0; i < as.rank + as.corank; i++)
2039 gfc_free_expr (as.lower[i]);
2040 gfc_free_expr (as.upper[i]);
2043 init = build_constructor (tmptype, v);
2045 TREE_CONSTANT (init) = 1;
2046 TREE_STATIC (init) = 1;
2048 tmp = gfc_create_var (tmptype, "A");
2049 TREE_STATIC (tmp) = 1;
2050 TREE_CONSTANT (tmp) = 1;
2051 TREE_READONLY (tmp) = 1;
2052 DECL_INITIAL (tmp) = init;
2054 return tmp;
2058 /* Translate a constant EXPR_ARRAY array constructor for the scalarizer.
2059 This mostly initializes the scalarizer state info structure with the
2060 appropriate values to directly use the array created by the function
2061 gfc_build_constant_array_constructor. */
2063 static void
2064 trans_constant_array_constructor (gfc_ss * ss, tree type)
2066 gfc_array_info *info;
2067 tree tmp;
2068 int i;
2070 tmp = gfc_build_constant_array_constructor (ss->info->expr, type);
2072 info = &ss->info->data.array;
2074 info->descriptor = tmp;
2075 info->data = gfc_build_addr_expr (NULL_TREE, tmp);
2076 info->offset = gfc_index_zero_node;
2078 for (i = 0; i < ss->dimen; i++)
2080 info->delta[i] = gfc_index_zero_node;
2081 info->start[i] = gfc_index_zero_node;
2082 info->end[i] = gfc_index_zero_node;
2083 info->stride[i] = gfc_index_one_node;
2088 static int
2089 get_rank (gfc_loopinfo *loop)
2091 int rank;
2093 rank = 0;
2094 for (; loop; loop = loop->parent)
2095 rank += loop->dimen;
2097 return rank;
2101 /* Helper routine of gfc_trans_array_constructor to determine if the
2102 bounds of the loop specified by LOOP are constant and simple enough
2103 to use with trans_constant_array_constructor. Returns the
2104 iteration count of the loop if suitable, and NULL_TREE otherwise. */
2106 static tree
2107 constant_array_constructor_loop_size (gfc_loopinfo * l)
2109 gfc_loopinfo *loop;
2110 tree size = gfc_index_one_node;
2111 tree tmp;
2112 int i, total_dim;
2114 total_dim = get_rank (l);
2116 for (loop = l; loop; loop = loop->parent)
2118 for (i = 0; i < loop->dimen; i++)
2120 /* If the bounds aren't constant, return NULL_TREE. */
2121 if (!INTEGER_CST_P (loop->from[i]) || !INTEGER_CST_P (loop->to[i]))
2122 return NULL_TREE;
2123 if (!integer_zerop (loop->from[i]))
2125 /* Only allow nonzero "from" in one-dimensional arrays. */
2126 if (total_dim != 1)
2127 return NULL_TREE;
2128 tmp = fold_build2_loc (input_location, MINUS_EXPR,
2129 gfc_array_index_type,
2130 loop->to[i], loop->from[i]);
2132 else
2133 tmp = loop->to[i];
2134 tmp = fold_build2_loc (input_location, PLUS_EXPR,
2135 gfc_array_index_type, tmp, gfc_index_one_node);
2136 size = fold_build2_loc (input_location, MULT_EXPR,
2137 gfc_array_index_type, size, tmp);
2141 return size;
2145 static tree *
2146 get_loop_upper_bound_for_array (gfc_ss *array, int array_dim)
2148 gfc_ss *ss;
2149 int n;
2151 gcc_assert (array->nested_ss == NULL);
2153 for (ss = array; ss; ss = ss->parent)
2154 for (n = 0; n < ss->loop->dimen; n++)
2155 if (array_dim == get_array_ref_dim_for_loop_dim (ss, n))
2156 return &(ss->loop->to[n]);
2158 gcc_unreachable ();
2162 static gfc_loopinfo *
2163 outermost_loop (gfc_loopinfo * loop)
2165 while (loop->parent != NULL)
2166 loop = loop->parent;
2168 return loop;
2172 /* Array constructors are handled by constructing a temporary, then using that
2173 within the scalarization loop. This is not optimal, but seems by far the
2174 simplest method. */
2176 static void
2177 trans_array_constructor (gfc_ss * ss, locus * where)
2179 gfc_constructor_base c;
2180 tree offset;
2181 tree offsetvar;
2182 tree desc;
2183 tree type;
2184 tree tmp;
2185 tree *loop_ubound0;
2186 bool dynamic;
2187 bool old_first_len, old_typespec_chararray_ctor;
2188 tree old_first_len_val;
2189 gfc_loopinfo *loop, *outer_loop;
2190 gfc_ss_info *ss_info;
2191 gfc_expr *expr;
2192 gfc_ss *s;
2194 /* Save the old values for nested checking. */
2195 old_first_len = first_len;
2196 old_first_len_val = first_len_val;
2197 old_typespec_chararray_ctor = typespec_chararray_ctor;
2199 loop = ss->loop;
2200 outer_loop = outermost_loop (loop);
2201 ss_info = ss->info;
2202 expr = ss_info->expr;
2204 /* Do bounds-checking here and in gfc_trans_array_ctor_element only if no
2205 typespec was given for the array constructor. */
2206 typespec_chararray_ctor = (expr->ts.u.cl
2207 && expr->ts.u.cl->length_from_typespec);
2209 if ((gfc_option.rtcheck & GFC_RTCHECK_BOUNDS)
2210 && expr->ts.type == BT_CHARACTER && !typespec_chararray_ctor)
2212 first_len_val = gfc_create_var (gfc_charlen_type_node, "len");
2213 first_len = true;
2216 gcc_assert (ss->dimen == ss->loop->dimen);
2218 c = expr->value.constructor;
2219 if (expr->ts.type == BT_CHARACTER)
2221 bool const_string;
2223 /* get_array_ctor_strlen walks the elements of the constructor, if a
2224 typespec was given, we already know the string length and want the one
2225 specified there. */
2226 if (typespec_chararray_ctor && expr->ts.u.cl->length
2227 && expr->ts.u.cl->length->expr_type != EXPR_CONSTANT)
2229 gfc_se length_se;
2231 const_string = false;
2232 gfc_init_se (&length_se, NULL);
2233 gfc_conv_expr_type (&length_se, expr->ts.u.cl->length,
2234 gfc_charlen_type_node);
2235 ss_info->string_length = length_se.expr;
2236 gfc_add_block_to_block (&outer_loop->pre, &length_se.pre);
2237 gfc_add_block_to_block (&outer_loop->post, &length_se.post);
2239 else
2240 const_string = get_array_ctor_strlen (&outer_loop->pre, c,
2241 &ss_info->string_length);
2243 /* Complex character array constructors should have been taken care of
2244 and not end up here. */
2245 gcc_assert (ss_info->string_length);
2247 expr->ts.u.cl->backend_decl = ss_info->string_length;
2249 type = gfc_get_character_type_len (expr->ts.kind, ss_info->string_length);
2250 if (const_string)
2251 type = build_pointer_type (type);
2253 else
2254 type = gfc_typenode_for_spec (&expr->ts);
2256 /* See if the constructor determines the loop bounds. */
2257 dynamic = false;
2259 loop_ubound0 = get_loop_upper_bound_for_array (ss, 0);
2261 if (expr->shape && get_rank (loop) > 1 && *loop_ubound0 == NULL_TREE)
2263 /* We have a multidimensional parameter. */
2264 for (s = ss; s; s = s->parent)
2266 int n;
2267 for (n = 0; n < s->loop->dimen; n++)
2269 s->loop->from[n] = gfc_index_zero_node;
2270 s->loop->to[n] = gfc_conv_mpz_to_tree (expr->shape[s->dim[n]],
2271 gfc_index_integer_kind);
2272 s->loop->to[n] = fold_build2_loc (input_location, MINUS_EXPR,
2273 gfc_array_index_type,
2274 s->loop->to[n],
2275 gfc_index_one_node);
2280 if (*loop_ubound0 == NULL_TREE)
2282 mpz_t size;
2284 /* We should have a 1-dimensional, zero-based loop. */
2285 gcc_assert (loop->parent == NULL && loop->nested == NULL);
2286 gcc_assert (loop->dimen == 1);
2287 gcc_assert (integer_zerop (loop->from[0]));
2289 /* Split the constructor size into a static part and a dynamic part.
2290 Allocate the static size up-front and record whether the dynamic
2291 size might be nonzero. */
2292 mpz_init (size);
2293 dynamic = gfc_get_array_constructor_size (&size, c);
2294 mpz_sub_ui (size, size, 1);
2295 loop->to[0] = gfc_conv_mpz_to_tree (size, gfc_index_integer_kind);
2296 mpz_clear (size);
2299 /* Special case constant array constructors. */
2300 if (!dynamic)
2302 unsigned HOST_WIDE_INT nelem = gfc_constant_array_constructor_p (c);
2303 if (nelem > 0)
2305 tree size = constant_array_constructor_loop_size (loop);
2306 if (size && compare_tree_int (size, nelem) == 0)
2308 trans_constant_array_constructor (ss, type);
2309 goto finish;
2314 gfc_trans_create_temp_array (&outer_loop->pre, &outer_loop->post, ss, type,
2315 NULL_TREE, dynamic, true, false, where);
2317 desc = ss_info->data.array.descriptor;
2318 offset = gfc_index_zero_node;
2319 offsetvar = gfc_create_var_np (gfc_array_index_type, "offset");
2320 TREE_NO_WARNING (offsetvar) = 1;
2321 TREE_USED (offsetvar) = 0;
2322 gfc_trans_array_constructor_value (&outer_loop->pre, type, desc, c,
2323 &offset, &offsetvar, dynamic);
2325 /* If the array grows dynamically, the upper bound of the loop variable
2326 is determined by the array's final upper bound. */
2327 if (dynamic)
2329 tmp = fold_build2_loc (input_location, MINUS_EXPR,
2330 gfc_array_index_type,
2331 offsetvar, gfc_index_one_node);
2332 tmp = gfc_evaluate_now (tmp, &outer_loop->pre);
2333 gfc_conv_descriptor_ubound_set (&loop->pre, desc, gfc_rank_cst[0], tmp);
2334 if (*loop_ubound0 && TREE_CODE (*loop_ubound0) == VAR_DECL)
2335 gfc_add_modify (&outer_loop->pre, *loop_ubound0, tmp);
2336 else
2337 *loop_ubound0 = tmp;
2340 if (TREE_USED (offsetvar))
2341 pushdecl (offsetvar);
2342 else
2343 gcc_assert (INTEGER_CST_P (offset));
2345 #if 0
2346 /* Disable bound checking for now because it's probably broken. */
2347 if (gfc_option.rtcheck & GFC_RTCHECK_BOUNDS)
2349 gcc_unreachable ();
2351 #endif
2353 finish:
2354 /* Restore old values of globals. */
2355 first_len = old_first_len;
2356 first_len_val = old_first_len_val;
2357 typespec_chararray_ctor = old_typespec_chararray_ctor;
2361 /* INFO describes a GFC_SS_SECTION in loop LOOP, and this function is
2362 called after evaluating all of INFO's vector dimensions. Go through
2363 each such vector dimension and see if we can now fill in any missing
2364 loop bounds. */
2366 static void
2367 set_vector_loop_bounds (gfc_ss * ss)
2369 gfc_loopinfo *loop, *outer_loop;
2370 gfc_array_info *info;
2371 gfc_se se;
2372 tree tmp;
2373 tree desc;
2374 tree zero;
2375 int n;
2376 int dim;
2378 outer_loop = outermost_loop (ss->loop);
2380 info = &ss->info->data.array;
2382 for (; ss; ss = ss->parent)
2384 loop = ss->loop;
2386 for (n = 0; n < loop->dimen; n++)
2388 dim = ss->dim[n];
2389 if (info->ref->u.ar.dimen_type[dim] != DIMEN_VECTOR
2390 || loop->to[n] != NULL)
2391 continue;
2393 /* Loop variable N indexes vector dimension DIM, and we don't
2394 yet know the upper bound of loop variable N. Set it to the
2395 difference between the vector's upper and lower bounds. */
2396 gcc_assert (loop->from[n] == gfc_index_zero_node);
2397 gcc_assert (info->subscript[dim]
2398 && info->subscript[dim]->info->type == GFC_SS_VECTOR);
2400 gfc_init_se (&se, NULL);
2401 desc = info->subscript[dim]->info->data.array.descriptor;
2402 zero = gfc_rank_cst[0];
2403 tmp = fold_build2_loc (input_location, MINUS_EXPR,
2404 gfc_array_index_type,
2405 gfc_conv_descriptor_ubound_get (desc, zero),
2406 gfc_conv_descriptor_lbound_get (desc, zero));
2407 tmp = gfc_evaluate_now (tmp, &outer_loop->pre);
2408 loop->to[n] = tmp;
2414 /* Add the pre and post chains for all the scalar expressions in a SS chain
2415 to loop. This is called after the loop parameters have been calculated,
2416 but before the actual scalarizing loops. */
2418 static void
2419 gfc_add_loop_ss_code (gfc_loopinfo * loop, gfc_ss * ss, bool subscript,
2420 locus * where)
2422 gfc_loopinfo *nested_loop, *outer_loop;
2423 gfc_se se;
2424 gfc_ss_info *ss_info;
2425 gfc_array_info *info;
2426 gfc_expr *expr;
2427 int n;
2429 /* Don't evaluate the arguments for realloc_lhs_loop_for_fcn_call; otherwise,
2430 arguments could get evaluated multiple times. */
2431 if (ss->is_alloc_lhs)
2432 return;
2434 outer_loop = outermost_loop (loop);
2436 /* TODO: This can generate bad code if there are ordering dependencies,
2437 e.g., a callee allocated function and an unknown size constructor. */
2438 gcc_assert (ss != NULL);
2440 for (; ss != gfc_ss_terminator; ss = ss->loop_chain)
2442 gcc_assert (ss);
2444 /* Cross loop arrays are handled from within the most nested loop. */
2445 if (ss->nested_ss != NULL)
2446 continue;
2448 ss_info = ss->info;
2449 expr = ss_info->expr;
2450 info = &ss_info->data.array;
2452 switch (ss_info->type)
2454 case GFC_SS_SCALAR:
2455 /* Scalar expression. Evaluate this now. This includes elemental
2456 dimension indices, but not array section bounds. */
2457 gfc_init_se (&se, NULL);
2458 gfc_conv_expr (&se, expr);
2459 gfc_add_block_to_block (&outer_loop->pre, &se.pre);
2461 if (expr->ts.type != BT_CHARACTER)
2463 /* Move the evaluation of scalar expressions outside the
2464 scalarization loop, except for WHERE assignments. */
2465 if (subscript)
2466 se.expr = convert(gfc_array_index_type, se.expr);
2467 if (!ss_info->where)
2468 se.expr = gfc_evaluate_now (se.expr, &outer_loop->pre);
2469 gfc_add_block_to_block (&outer_loop->pre, &se.post);
2471 else
2472 gfc_add_block_to_block (&outer_loop->post, &se.post);
2474 ss_info->data.scalar.value = se.expr;
2475 ss_info->string_length = se.string_length;
2476 break;
2478 case GFC_SS_REFERENCE:
2479 /* Scalar argument to elemental procedure. */
2480 gfc_init_se (&se, NULL);
2481 if (ss_info->can_be_null_ref)
2483 /* If the actual argument can be absent (in other words, it can
2484 be a NULL reference), don't try to evaluate it; pass instead
2485 the reference directly. */
2486 gfc_conv_expr_reference (&se, expr);
2488 else
2490 /* Otherwise, evaluate the argument outside the loop and pass
2491 a reference to the value. */
2492 gfc_conv_expr (&se, expr);
2495 /* Ensure that a pointer to the string is stored. */
2496 if (expr->ts.type == BT_CHARACTER)
2497 gfc_conv_string_parameter (&se);
2499 gfc_add_block_to_block (&outer_loop->pre, &se.pre);
2500 gfc_add_block_to_block (&outer_loop->post, &se.post);
2501 if (gfc_is_class_scalar_expr (expr))
2502 /* This is necessary because the dynamic type will always be
2503 large than the declared type. In consequence, assigning
2504 the value to a temporary could segfault.
2505 OOP-TODO: see if this is generally correct or is the value
2506 has to be written to an allocated temporary, whose address
2507 is passed via ss_info. */
2508 ss_info->data.scalar.value = se.expr;
2509 else
2510 ss_info->data.scalar.value = gfc_evaluate_now (se.expr,
2511 &outer_loop->pre);
2513 ss_info->string_length = se.string_length;
2514 break;
2516 case GFC_SS_SECTION:
2517 /* Add the expressions for scalar and vector subscripts. */
2518 for (n = 0; n < GFC_MAX_DIMENSIONS; n++)
2519 if (info->subscript[n])
2520 gfc_add_loop_ss_code (loop, info->subscript[n], true, where);
2522 set_vector_loop_bounds (ss);
2523 break;
2525 case GFC_SS_VECTOR:
2526 /* Get the vector's descriptor and store it in SS. */
2527 gfc_init_se (&se, NULL);
2528 gfc_conv_expr_descriptor (&se, expr);
2529 gfc_add_block_to_block (&outer_loop->pre, &se.pre);
2530 gfc_add_block_to_block (&outer_loop->post, &se.post);
2531 info->descriptor = se.expr;
2532 break;
2534 case GFC_SS_INTRINSIC:
2535 gfc_add_intrinsic_ss_code (loop, ss);
2536 break;
2538 case GFC_SS_FUNCTION:
2539 /* Array function return value. We call the function and save its
2540 result in a temporary for use inside the loop. */
2541 gfc_init_se (&se, NULL);
2542 se.loop = loop;
2543 se.ss = ss;
2544 gfc_conv_expr (&se, expr);
2545 gfc_add_block_to_block (&outer_loop->pre, &se.pre);
2546 gfc_add_block_to_block (&outer_loop->post, &se.post);
2547 ss_info->string_length = se.string_length;
2548 break;
2550 case GFC_SS_CONSTRUCTOR:
2551 if (expr->ts.type == BT_CHARACTER
2552 && ss_info->string_length == NULL
2553 && expr->ts.u.cl
2554 && expr->ts.u.cl->length)
2556 gfc_init_se (&se, NULL);
2557 gfc_conv_expr_type (&se, expr->ts.u.cl->length,
2558 gfc_charlen_type_node);
2559 ss_info->string_length = se.expr;
2560 gfc_add_block_to_block (&outer_loop->pre, &se.pre);
2561 gfc_add_block_to_block (&outer_loop->post, &se.post);
2563 trans_array_constructor (ss, where);
2564 break;
2566 case GFC_SS_TEMP:
2567 case GFC_SS_COMPONENT:
2568 /* Do nothing. These are handled elsewhere. */
2569 break;
2571 default:
2572 gcc_unreachable ();
2576 if (!subscript)
2577 for (nested_loop = loop->nested; nested_loop;
2578 nested_loop = nested_loop->next)
2579 gfc_add_loop_ss_code (nested_loop, nested_loop->ss, subscript, where);
2583 /* Translate expressions for the descriptor and data pointer of a SS. */
2584 /*GCC ARRAYS*/
2586 static void
2587 gfc_conv_ss_descriptor (stmtblock_t * block, gfc_ss * ss, int base)
2589 gfc_se se;
2590 gfc_ss_info *ss_info;
2591 gfc_array_info *info;
2592 tree tmp;
2594 ss_info = ss->info;
2595 info = &ss_info->data.array;
2597 /* Get the descriptor for the array to be scalarized. */
2598 gcc_assert (ss_info->expr->expr_type == EXPR_VARIABLE);
2599 gfc_init_se (&se, NULL);
2600 se.descriptor_only = 1;
2601 gfc_conv_expr_lhs (&se, ss_info->expr);
2602 gfc_add_block_to_block (block, &se.pre);
2603 info->descriptor = se.expr;
2604 ss_info->string_length = se.string_length;
2606 if (base)
2608 /* Also the data pointer. */
2609 tmp = gfc_conv_array_data (se.expr);
2610 /* If this is a variable or address of a variable we use it directly.
2611 Otherwise we must evaluate it now to avoid breaking dependency
2612 analysis by pulling the expressions for elemental array indices
2613 inside the loop. */
2614 if (!(DECL_P (tmp)
2615 || (TREE_CODE (tmp) == ADDR_EXPR
2616 && DECL_P (TREE_OPERAND (tmp, 0)))))
2617 tmp = gfc_evaluate_now (tmp, block);
2618 info->data = tmp;
2620 tmp = gfc_conv_array_offset (se.expr);
2621 info->offset = gfc_evaluate_now (tmp, block);
2623 /* Make absolutely sure that the saved_offset is indeed saved
2624 so that the variable is still accessible after the loops
2625 are translated. */
2626 info->saved_offset = info->offset;
2631 /* Initialize a gfc_loopinfo structure. */
2633 void
2634 gfc_init_loopinfo (gfc_loopinfo * loop)
2636 int n;
2638 memset (loop, 0, sizeof (gfc_loopinfo));
2639 gfc_init_block (&loop->pre);
2640 gfc_init_block (&loop->post);
2642 /* Initially scalarize in order and default to no loop reversal. */
2643 for (n = 0; n < GFC_MAX_DIMENSIONS; n++)
2645 loop->order[n] = n;
2646 loop->reverse[n] = GFC_INHIBIT_REVERSE;
2649 loop->ss = gfc_ss_terminator;
2653 /* Copies the loop variable info to a gfc_se structure. Does not copy the SS
2654 chain. */
2656 void
2657 gfc_copy_loopinfo_to_se (gfc_se * se, gfc_loopinfo * loop)
2659 se->loop = loop;
2663 /* Return an expression for the data pointer of an array. */
2665 tree
2666 gfc_conv_array_data (tree descriptor)
2668 tree type;
2670 type = TREE_TYPE (descriptor);
2671 if (GFC_ARRAY_TYPE_P (type))
2673 if (TREE_CODE (type) == POINTER_TYPE)
2674 return descriptor;
2675 else
2677 /* Descriptorless arrays. */
2678 return gfc_build_addr_expr (NULL_TREE, descriptor);
2681 else
2682 return gfc_conv_descriptor_data_get (descriptor);
2686 /* Return an expression for the base offset of an array. */
2688 tree
2689 gfc_conv_array_offset (tree descriptor)
2691 tree type;
2693 type = TREE_TYPE (descriptor);
2694 if (GFC_ARRAY_TYPE_P (type))
2695 return GFC_TYPE_ARRAY_OFFSET (type);
2696 else
2697 return gfc_conv_descriptor_offset_get (descriptor);
2701 /* Get an expression for the array stride. */
2703 tree
2704 gfc_conv_array_stride (tree descriptor, int dim)
2706 tree tmp;
2707 tree type;
2709 type = TREE_TYPE (descriptor);
2711 /* For descriptorless arrays use the array size. */
2712 tmp = GFC_TYPE_ARRAY_STRIDE (type, dim);
2713 if (tmp != NULL_TREE)
2714 return tmp;
2716 tmp = gfc_conv_descriptor_stride_get (descriptor, gfc_rank_cst[dim]);
2717 return tmp;
2721 /* Like gfc_conv_array_stride, but for the lower bound. */
2723 tree
2724 gfc_conv_array_lbound (tree descriptor, int dim)
2726 tree tmp;
2727 tree type;
2729 type = TREE_TYPE (descriptor);
2731 tmp = GFC_TYPE_ARRAY_LBOUND (type, dim);
2732 if (tmp != NULL_TREE)
2733 return tmp;
2735 tmp = gfc_conv_descriptor_lbound_get (descriptor, gfc_rank_cst[dim]);
2736 return tmp;
2740 /* Like gfc_conv_array_stride, but for the upper bound. */
2742 tree
2743 gfc_conv_array_ubound (tree descriptor, int dim)
2745 tree tmp;
2746 tree type;
2748 type = TREE_TYPE (descriptor);
2750 tmp = GFC_TYPE_ARRAY_UBOUND (type, dim);
2751 if (tmp != NULL_TREE)
2752 return tmp;
2754 /* This should only ever happen when passing an assumed shape array
2755 as an actual parameter. The value will never be used. */
2756 if (GFC_ARRAY_TYPE_P (TREE_TYPE (descriptor)))
2757 return gfc_index_zero_node;
2759 tmp = gfc_conv_descriptor_ubound_get (descriptor, gfc_rank_cst[dim]);
2760 return tmp;
2764 /* Generate code to perform an array index bound check. */
2766 static tree
2767 trans_array_bound_check (gfc_se * se, gfc_ss *ss, tree index, int n,
2768 locus * where, bool check_upper)
2770 tree fault;
2771 tree tmp_lo, tmp_up;
2772 tree descriptor;
2773 char *msg;
2774 const char * name = NULL;
2776 if (!(gfc_option.rtcheck & GFC_RTCHECK_BOUNDS))
2777 return index;
2779 descriptor = ss->info->data.array.descriptor;
2781 index = gfc_evaluate_now (index, &se->pre);
2783 /* We find a name for the error message. */
2784 name = ss->info->expr->symtree->n.sym->name;
2785 gcc_assert (name != NULL);
2787 if (TREE_CODE (descriptor) == VAR_DECL)
2788 name = IDENTIFIER_POINTER (DECL_NAME (descriptor));
2790 /* If upper bound is present, include both bounds in the error message. */
2791 if (check_upper)
2793 tmp_lo = gfc_conv_array_lbound (descriptor, n);
2794 tmp_up = gfc_conv_array_ubound (descriptor, n);
2796 if (name)
2797 asprintf (&msg, "Index '%%ld' of dimension %d of array '%s' "
2798 "outside of expected range (%%ld:%%ld)", n+1, name);
2799 else
2800 asprintf (&msg, "Index '%%ld' of dimension %d "
2801 "outside of expected range (%%ld:%%ld)", n+1);
2803 fault = fold_build2_loc (input_location, LT_EXPR, boolean_type_node,
2804 index, tmp_lo);
2805 gfc_trans_runtime_check (true, false, fault, &se->pre, where, msg,
2806 fold_convert (long_integer_type_node, index),
2807 fold_convert (long_integer_type_node, tmp_lo),
2808 fold_convert (long_integer_type_node, tmp_up));
2809 fault = fold_build2_loc (input_location, GT_EXPR, boolean_type_node,
2810 index, tmp_up);
2811 gfc_trans_runtime_check (true, false, fault, &se->pre, where, msg,
2812 fold_convert (long_integer_type_node, index),
2813 fold_convert (long_integer_type_node, tmp_lo),
2814 fold_convert (long_integer_type_node, tmp_up));
2815 free (msg);
2817 else
2819 tmp_lo = gfc_conv_array_lbound (descriptor, n);
2821 if (name)
2822 asprintf (&msg, "Index '%%ld' of dimension %d of array '%s' "
2823 "below lower bound of %%ld", n+1, name);
2824 else
2825 asprintf (&msg, "Index '%%ld' of dimension %d "
2826 "below lower bound of %%ld", n+1);
2828 fault = fold_build2_loc (input_location, LT_EXPR, boolean_type_node,
2829 index, tmp_lo);
2830 gfc_trans_runtime_check (true, false, fault, &se->pre, where, msg,
2831 fold_convert (long_integer_type_node, index),
2832 fold_convert (long_integer_type_node, tmp_lo));
2833 free (msg);
2836 return index;
2840 /* Return the offset for an index. Performs bound checking for elemental
2841 dimensions. Single element references are processed separately.
2842 DIM is the array dimension, I is the loop dimension. */
2844 static tree
2845 conv_array_index_offset (gfc_se * se, gfc_ss * ss, int dim, int i,
2846 gfc_array_ref * ar, tree stride)
2848 gfc_array_info *info;
2849 tree index;
2850 tree desc;
2851 tree data;
2853 info = &ss->info->data.array;
2855 /* Get the index into the array for this dimension. */
2856 if (ar)
2858 gcc_assert (ar->type != AR_ELEMENT);
2859 switch (ar->dimen_type[dim])
2861 case DIMEN_THIS_IMAGE:
2862 gcc_unreachable ();
2863 break;
2864 case DIMEN_ELEMENT:
2865 /* Elemental dimension. */
2866 gcc_assert (info->subscript[dim]
2867 && info->subscript[dim]->info->type == GFC_SS_SCALAR);
2868 /* We've already translated this value outside the loop. */
2869 index = info->subscript[dim]->info->data.scalar.value;
2871 index = trans_array_bound_check (se, ss, index, dim, &ar->where,
2872 ar->as->type != AS_ASSUMED_SIZE
2873 || dim < ar->dimen - 1);
2874 break;
2876 case DIMEN_VECTOR:
2877 gcc_assert (info && se->loop);
2878 gcc_assert (info->subscript[dim]
2879 && info->subscript[dim]->info->type == GFC_SS_VECTOR);
2880 desc = info->subscript[dim]->info->data.array.descriptor;
2882 /* Get a zero-based index into the vector. */
2883 index = fold_build2_loc (input_location, MINUS_EXPR,
2884 gfc_array_index_type,
2885 se->loop->loopvar[i], se->loop->from[i]);
2887 /* Multiply the index by the stride. */
2888 index = fold_build2_loc (input_location, MULT_EXPR,
2889 gfc_array_index_type,
2890 index, gfc_conv_array_stride (desc, 0));
2892 /* Read the vector to get an index into info->descriptor. */
2893 data = build_fold_indirect_ref_loc (input_location,
2894 gfc_conv_array_data (desc));
2895 index = gfc_build_array_ref (data, index, NULL);
2896 index = gfc_evaluate_now (index, &se->pre);
2897 index = fold_convert (gfc_array_index_type, index);
2899 /* Do any bounds checking on the final info->descriptor index. */
2900 index = trans_array_bound_check (se, ss, index, dim, &ar->where,
2901 ar->as->type != AS_ASSUMED_SIZE
2902 || dim < ar->dimen - 1);
2903 break;
2905 case DIMEN_RANGE:
2906 /* Scalarized dimension. */
2907 gcc_assert (info && se->loop);
2909 /* Multiply the loop variable by the stride and delta. */
2910 index = se->loop->loopvar[i];
2911 if (!integer_onep (info->stride[dim]))
2912 index = fold_build2_loc (input_location, MULT_EXPR,
2913 gfc_array_index_type, index,
2914 info->stride[dim]);
2915 if (!integer_zerop (info->delta[dim]))
2916 index = fold_build2_loc (input_location, PLUS_EXPR,
2917 gfc_array_index_type, index,
2918 info->delta[dim]);
2919 break;
2921 default:
2922 gcc_unreachable ();
2925 else
2927 /* Temporary array or derived type component. */
2928 gcc_assert (se->loop);
2929 index = se->loop->loopvar[se->loop->order[i]];
2931 /* Pointer functions can have stride[0] different from unity.
2932 Use the stride returned by the function call and stored in
2933 the descriptor for the temporary. */
2934 if (se->ss && se->ss->info->type == GFC_SS_FUNCTION
2935 && se->ss->info->expr
2936 && se->ss->info->expr->symtree
2937 && se->ss->info->expr->symtree->n.sym->result
2938 && se->ss->info->expr->symtree->n.sym->result->attr.pointer)
2939 stride = gfc_conv_descriptor_stride_get (info->descriptor,
2940 gfc_rank_cst[dim]);
2942 if (!integer_zerop (info->delta[dim]))
2943 index = fold_build2_loc (input_location, PLUS_EXPR,
2944 gfc_array_index_type, index, info->delta[dim]);
2947 /* Multiply by the stride. */
2948 if (!integer_onep (stride))
2949 index = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type,
2950 index, stride);
2952 return index;
2956 /* Build a scalarized array reference using the vptr 'size'. */
2958 static bool
2959 build_class_array_ref (gfc_se *se, tree base, tree index)
2961 tree type;
2962 tree size;
2963 tree offset;
2964 tree decl;
2965 tree tmp;
2966 gfc_expr *expr = se->ss->info->expr;
2967 gfc_ref *ref;
2968 gfc_ref *class_ref;
2969 gfc_typespec *ts;
2971 if (expr == NULL || expr->ts.type != BT_CLASS)
2972 return false;
2974 if (expr->symtree && expr->symtree->n.sym->ts.type == BT_CLASS)
2975 ts = &expr->symtree->n.sym->ts;
2976 else
2977 ts = NULL;
2978 class_ref = NULL;
2980 for (ref = expr->ref; ref; ref = ref->next)
2982 if (ref->type == REF_COMPONENT
2983 && ref->u.c.component->ts.type == BT_CLASS
2984 && ref->next && ref->next->type == REF_COMPONENT
2985 && strcmp (ref->next->u.c.component->name, "_data") == 0
2986 && ref->next->next
2987 && ref->next->next->type == REF_ARRAY
2988 && ref->next->next->u.ar.type != AR_ELEMENT)
2990 ts = &ref->u.c.component->ts;
2991 class_ref = ref;
2992 break;
2996 if (ts == NULL)
2997 return false;
2999 if (class_ref == NULL && expr->symtree->n.sym->attr.function
3000 && expr->symtree->n.sym == expr->symtree->n.sym->result)
3002 gcc_assert (expr->symtree->n.sym->backend_decl == current_function_decl);
3003 decl = gfc_get_fake_result_decl (expr->symtree->n.sym, 0);
3005 else if (class_ref == NULL)
3006 decl = expr->symtree->n.sym->backend_decl;
3007 else
3009 /* Remove everything after the last class reference, convert the
3010 expression and then recover its tailend once more. */
3011 gfc_se tmpse;
3012 ref = class_ref->next;
3013 class_ref->next = NULL;
3014 gfc_init_se (&tmpse, NULL);
3015 gfc_conv_expr (&tmpse, expr);
3016 decl = tmpse.expr;
3017 class_ref->next = ref;
3020 size = gfc_vtable_size_get (decl);
3022 /* Build the address of the element. */
3023 type = TREE_TYPE (TREE_TYPE (base));
3024 size = fold_convert (TREE_TYPE (index), size);
3025 offset = fold_build2_loc (input_location, MULT_EXPR,
3026 gfc_array_index_type,
3027 index, size);
3028 tmp = gfc_build_addr_expr (pvoid_type_node, base);
3029 tmp = fold_build_pointer_plus_loc (input_location, tmp, offset);
3030 tmp = fold_convert (build_pointer_type (type), tmp);
3032 /* Return the element in the se expression. */
3033 se->expr = build_fold_indirect_ref_loc (input_location, tmp);
3034 return true;
3038 /* Build a scalarized reference to an array. */
3040 static void
3041 gfc_conv_scalarized_array_ref (gfc_se * se, gfc_array_ref * ar)
3043 gfc_array_info *info;
3044 tree decl = NULL_TREE;
3045 tree index;
3046 tree tmp;
3047 gfc_ss *ss;
3048 gfc_expr *expr;
3049 int n;
3051 ss = se->ss;
3052 expr = ss->info->expr;
3053 info = &ss->info->data.array;
3054 if (ar)
3055 n = se->loop->order[0];
3056 else
3057 n = 0;
3059 index = conv_array_index_offset (se, ss, ss->dim[n], n, ar, info->stride0);
3060 /* Add the offset for this dimension to the stored offset for all other
3061 dimensions. */
3062 if (!integer_zerop (info->offset))
3063 index = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type,
3064 index, info->offset);
3066 if (expr && is_subref_array (expr))
3067 decl = expr->symtree->n.sym->backend_decl;
3069 tmp = build_fold_indirect_ref_loc (input_location, info->data);
3071 /* Use the vptr 'size' field to access a class the element of a class
3072 array. */
3073 if (build_class_array_ref (se, tmp, index))
3074 return;
3076 se->expr = gfc_build_array_ref (tmp, index, decl);
3080 /* Translate access of temporary array. */
3082 void
3083 gfc_conv_tmp_array_ref (gfc_se * se)
3085 se->string_length = se->ss->info->string_length;
3086 gfc_conv_scalarized_array_ref (se, NULL);
3087 gfc_advance_se_ss_chain (se);
3090 /* Add T to the offset pair *OFFSET, *CST_OFFSET. */
3092 static void
3093 add_to_offset (tree *cst_offset, tree *offset, tree t)
3095 if (TREE_CODE (t) == INTEGER_CST)
3096 *cst_offset = int_const_binop (PLUS_EXPR, *cst_offset, t);
3097 else
3099 if (!integer_zerop (*offset))
3100 *offset = fold_build2_loc (input_location, PLUS_EXPR,
3101 gfc_array_index_type, *offset, t);
3102 else
3103 *offset = t;
3108 static tree
3109 build_array_ref (tree desc, tree offset, tree decl)
3111 tree tmp;
3112 tree type;
3114 /* Class container types do not always have the GFC_CLASS_TYPE_P
3115 but the canonical type does. */
3116 if (GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (desc))
3117 && TREE_CODE (desc) == COMPONENT_REF)
3119 type = TREE_TYPE (TREE_OPERAND (desc, 0));
3120 if (TYPE_CANONICAL (type)
3121 && GFC_CLASS_TYPE_P (TYPE_CANONICAL (type)))
3122 type = TYPE_CANONICAL (type);
3124 else
3125 type = NULL;
3127 /* Class array references need special treatment because the assigned
3128 type size needs to be used to point to the element. */
3129 if (type && GFC_CLASS_TYPE_P (type))
3131 type = gfc_get_element_type (TREE_TYPE (desc));
3132 tmp = TREE_OPERAND (desc, 0);
3133 tmp = gfc_get_class_array_ref (offset, tmp);
3134 tmp = fold_convert (build_pointer_type (type), tmp);
3135 tmp = build_fold_indirect_ref_loc (input_location, tmp);
3136 return tmp;
3139 tmp = gfc_conv_array_data (desc);
3140 tmp = build_fold_indirect_ref_loc (input_location, tmp);
3141 tmp = gfc_build_array_ref (tmp, offset, decl);
3142 return tmp;
3146 /* Build an array reference. se->expr already holds the array descriptor.
3147 This should be either a variable, indirect variable reference or component
3148 reference. For arrays which do not have a descriptor, se->expr will be
3149 the data pointer.
3150 a(i, j, k) = base[offset + i * stride[0] + j * stride[1] + k * stride[2]]*/
3152 void
3153 gfc_conv_array_ref (gfc_se * se, gfc_array_ref * ar, gfc_expr *expr,
3154 locus * where)
3156 int n;
3157 tree offset, cst_offset;
3158 tree tmp;
3159 tree stride;
3160 gfc_se indexse;
3161 gfc_se tmpse;
3162 gfc_symbol * sym = expr->symtree->n.sym;
3163 char *var_name = NULL;
3165 if (ar->dimen == 0)
3167 gcc_assert (ar->codimen);
3169 if (GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (se->expr)))
3170 se->expr = build_fold_indirect_ref (gfc_conv_array_data (se->expr));
3171 else
3173 if (GFC_ARRAY_TYPE_P (TREE_TYPE (se->expr))
3174 && TREE_CODE (TREE_TYPE (se->expr)) == POINTER_TYPE)
3175 se->expr = build_fold_indirect_ref_loc (input_location, se->expr);
3177 /* Use the actual tree type and not the wrapped coarray. */
3178 if (!se->want_pointer)
3179 se->expr = fold_convert (TYPE_MAIN_VARIANT (TREE_TYPE (se->expr)),
3180 se->expr);
3183 return;
3186 /* Handle scalarized references separately. */
3187 if (ar->type != AR_ELEMENT)
3189 gfc_conv_scalarized_array_ref (se, ar);
3190 gfc_advance_se_ss_chain (se);
3191 return;
3194 if (gfc_option.rtcheck & GFC_RTCHECK_BOUNDS)
3196 size_t len;
3197 gfc_ref *ref;
3199 len = strlen (sym->name) + 1;
3200 for (ref = expr->ref; ref; ref = ref->next)
3202 if (ref->type == REF_ARRAY && &ref->u.ar == ar)
3203 break;
3204 if (ref->type == REF_COMPONENT)
3205 len += 1 + strlen (ref->u.c.component->name);
3208 var_name = XALLOCAVEC (char, len);
3209 strcpy (var_name, sym->name);
3211 for (ref = expr->ref; ref; ref = ref->next)
3213 if (ref->type == REF_ARRAY && &ref->u.ar == ar)
3214 break;
3215 if (ref->type == REF_COMPONENT)
3217 strcat (var_name, "%%");
3218 strcat (var_name, ref->u.c.component->name);
3223 cst_offset = offset = gfc_index_zero_node;
3224 add_to_offset (&cst_offset, &offset, gfc_conv_array_offset (se->expr));
3226 /* Calculate the offsets from all the dimensions. Make sure to associate
3227 the final offset so that we form a chain of loop invariant summands. */
3228 for (n = ar->dimen - 1; n >= 0; n--)
3230 /* Calculate the index for this dimension. */
3231 gfc_init_se (&indexse, se);
3232 gfc_conv_expr_type (&indexse, ar->start[n], gfc_array_index_type);
3233 gfc_add_block_to_block (&se->pre, &indexse.pre);
3235 if (gfc_option.rtcheck & GFC_RTCHECK_BOUNDS)
3237 /* Check array bounds. */
3238 tree cond;
3239 char *msg;
3241 /* Evaluate the indexse.expr only once. */
3242 indexse.expr = save_expr (indexse.expr);
3244 /* Lower bound. */
3245 tmp = gfc_conv_array_lbound (se->expr, n);
3246 if (sym->attr.temporary)
3248 gfc_init_se (&tmpse, se);
3249 gfc_conv_expr_type (&tmpse, ar->as->lower[n],
3250 gfc_array_index_type);
3251 gfc_add_block_to_block (&se->pre, &tmpse.pre);
3252 tmp = tmpse.expr;
3255 cond = fold_build2_loc (input_location, LT_EXPR, boolean_type_node,
3256 indexse.expr, tmp);
3257 asprintf (&msg, "Index '%%ld' of dimension %d of array '%s' "
3258 "below lower bound of %%ld", n+1, var_name);
3259 gfc_trans_runtime_check (true, false, cond, &se->pre, where, msg,
3260 fold_convert (long_integer_type_node,
3261 indexse.expr),
3262 fold_convert (long_integer_type_node, tmp));
3263 free (msg);
3265 /* Upper bound, but not for the last dimension of assumed-size
3266 arrays. */
3267 if (n < ar->dimen - 1 || ar->as->type != AS_ASSUMED_SIZE)
3269 tmp = gfc_conv_array_ubound (se->expr, n);
3270 if (sym->attr.temporary)
3272 gfc_init_se (&tmpse, se);
3273 gfc_conv_expr_type (&tmpse, ar->as->upper[n],
3274 gfc_array_index_type);
3275 gfc_add_block_to_block (&se->pre, &tmpse.pre);
3276 tmp = tmpse.expr;
3279 cond = fold_build2_loc (input_location, GT_EXPR,
3280 boolean_type_node, indexse.expr, tmp);
3281 asprintf (&msg, "Index '%%ld' of dimension %d of array '%s' "
3282 "above upper bound of %%ld", n+1, var_name);
3283 gfc_trans_runtime_check (true, false, cond, &se->pre, where, msg,
3284 fold_convert (long_integer_type_node,
3285 indexse.expr),
3286 fold_convert (long_integer_type_node, tmp));
3287 free (msg);
3291 /* Multiply the index by the stride. */
3292 stride = gfc_conv_array_stride (se->expr, n);
3293 tmp = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type,
3294 indexse.expr, stride);
3296 /* And add it to the total. */
3297 add_to_offset (&cst_offset, &offset, tmp);
3300 if (!integer_zerop (cst_offset))
3301 offset = fold_build2_loc (input_location, PLUS_EXPR,
3302 gfc_array_index_type, offset, cst_offset);
3304 se->expr = build_array_ref (se->expr, offset, sym->backend_decl);
3308 /* Add the offset corresponding to array's ARRAY_DIM dimension and loop's
3309 LOOP_DIM dimension (if any) to array's offset. */
3311 static void
3312 add_array_offset (stmtblock_t *pblock, gfc_loopinfo *loop, gfc_ss *ss,
3313 gfc_array_ref *ar, int array_dim, int loop_dim)
3315 gfc_se se;
3316 gfc_array_info *info;
3317 tree stride, index;
3319 info = &ss->info->data.array;
3321 gfc_init_se (&se, NULL);
3322 se.loop = loop;
3323 se.expr = info->descriptor;
3324 stride = gfc_conv_array_stride (info->descriptor, array_dim);
3325 index = conv_array_index_offset (&se, ss, array_dim, loop_dim, ar, stride);
3326 gfc_add_block_to_block (pblock, &se.pre);
3328 info->offset = fold_build2_loc (input_location, PLUS_EXPR,
3329 gfc_array_index_type,
3330 info->offset, index);
3331 info->offset = gfc_evaluate_now (info->offset, pblock);
3335 /* Generate the code to be executed immediately before entering a
3336 scalarization loop. */
3338 static void
3339 gfc_trans_preloop_setup (gfc_loopinfo * loop, int dim, int flag,
3340 stmtblock_t * pblock)
3342 tree stride;
3343 gfc_ss_info *ss_info;
3344 gfc_array_info *info;
3345 gfc_ss_type ss_type;
3346 gfc_ss *ss, *pss;
3347 gfc_loopinfo *ploop;
3348 gfc_array_ref *ar;
3349 int i;
3351 /* This code will be executed before entering the scalarization loop
3352 for this dimension. */
3353 for (ss = loop->ss; ss != gfc_ss_terminator; ss = ss->loop_chain)
3355 ss_info = ss->info;
3357 if ((ss_info->useflags & flag) == 0)
3358 continue;
3360 ss_type = ss_info->type;
3361 if (ss_type != GFC_SS_SECTION
3362 && ss_type != GFC_SS_FUNCTION
3363 && ss_type != GFC_SS_CONSTRUCTOR
3364 && ss_type != GFC_SS_COMPONENT)
3365 continue;
3367 info = &ss_info->data.array;
3369 gcc_assert (dim < ss->dimen);
3370 gcc_assert (ss->dimen == loop->dimen);
3372 if (info->ref)
3373 ar = &info->ref->u.ar;
3374 else
3375 ar = NULL;
3377 if (dim == loop->dimen - 1 && loop->parent != NULL)
3379 /* If we are in the outermost dimension of this loop, the previous
3380 dimension shall be in the parent loop. */
3381 gcc_assert (ss->parent != NULL);
3383 pss = ss->parent;
3384 ploop = loop->parent;
3386 /* ss and ss->parent are about the same array. */
3387 gcc_assert (ss_info == pss->info);
3389 else
3391 ploop = loop;
3392 pss = ss;
3395 if (dim == loop->dimen - 1)
3396 i = 0;
3397 else
3398 i = dim + 1;
3400 /* For the time being, there is no loop reordering. */
3401 gcc_assert (i == ploop->order[i]);
3402 i = ploop->order[i];
3404 if (dim == loop->dimen - 1 && loop->parent == NULL)
3406 stride = gfc_conv_array_stride (info->descriptor,
3407 innermost_ss (ss)->dim[i]);
3409 /* Calculate the stride of the innermost loop. Hopefully this will
3410 allow the backend optimizers to do their stuff more effectively.
3412 info->stride0 = gfc_evaluate_now (stride, pblock);
3414 /* For the outermost loop calculate the offset due to any
3415 elemental dimensions. It will have been initialized with the
3416 base offset of the array. */
3417 if (info->ref)
3419 for (i = 0; i < ar->dimen; i++)
3421 if (ar->dimen_type[i] != DIMEN_ELEMENT)
3422 continue;
3424 add_array_offset (pblock, loop, ss, ar, i, /* unused */ -1);
3428 else
3429 /* Add the offset for the previous loop dimension. */
3430 add_array_offset (pblock, ploop, ss, ar, pss->dim[i], i);
3432 /* Remember this offset for the second loop. */
3433 if (dim == loop->temp_dim - 1 && loop->parent == NULL)
3434 info->saved_offset = info->offset;
3439 /* Start a scalarized expression. Creates a scope and declares loop
3440 variables. */
3442 void
3443 gfc_start_scalarized_body (gfc_loopinfo * loop, stmtblock_t * pbody)
3445 int dim;
3446 int n;
3447 int flags;
3449 gcc_assert (!loop->array_parameter);
3451 for (dim = loop->dimen - 1; dim >= 0; dim--)
3453 n = loop->order[dim];
3455 gfc_start_block (&loop->code[n]);
3457 /* Create the loop variable. */
3458 loop->loopvar[n] = gfc_create_var (gfc_array_index_type, "S");
3460 if (dim < loop->temp_dim)
3461 flags = 3;
3462 else
3463 flags = 1;
3464 /* Calculate values that will be constant within this loop. */
3465 gfc_trans_preloop_setup (loop, dim, flags, &loop->code[n]);
3467 gfc_start_block (pbody);
3471 /* Generates the actual loop code for a scalarization loop. */
3473 void
3474 gfc_trans_scalarized_loop_end (gfc_loopinfo * loop, int n,
3475 stmtblock_t * pbody)
3477 stmtblock_t block;
3478 tree cond;
3479 tree tmp;
3480 tree loopbody;
3481 tree exit_label;
3482 tree stmt;
3483 tree init;
3484 tree incr;
3486 if ((ompws_flags & (OMPWS_WORKSHARE_FLAG | OMPWS_SCALARIZER_WS))
3487 == (OMPWS_WORKSHARE_FLAG | OMPWS_SCALARIZER_WS)
3488 && n == loop->dimen - 1)
3490 /* We create an OMP_FOR construct for the outermost scalarized loop. */
3491 init = make_tree_vec (1);
3492 cond = make_tree_vec (1);
3493 incr = make_tree_vec (1);
3495 /* Cycle statement is implemented with a goto. Exit statement must not
3496 be present for this loop. */
3497 exit_label = gfc_build_label_decl (NULL_TREE);
3498 TREE_USED (exit_label) = 1;
3500 /* Label for cycle statements (if needed). */
3501 tmp = build1_v (LABEL_EXPR, exit_label);
3502 gfc_add_expr_to_block (pbody, tmp);
3504 stmt = make_node (OMP_FOR);
3506 TREE_TYPE (stmt) = void_type_node;
3507 OMP_FOR_BODY (stmt) = loopbody = gfc_finish_block (pbody);
3509 OMP_FOR_CLAUSES (stmt) = build_omp_clause (input_location,
3510 OMP_CLAUSE_SCHEDULE);
3511 OMP_CLAUSE_SCHEDULE_KIND (OMP_FOR_CLAUSES (stmt))
3512 = OMP_CLAUSE_SCHEDULE_STATIC;
3513 if (ompws_flags & OMPWS_NOWAIT)
3514 OMP_CLAUSE_CHAIN (OMP_FOR_CLAUSES (stmt))
3515 = build_omp_clause (input_location, OMP_CLAUSE_NOWAIT);
3517 /* Initialize the loopvar. */
3518 TREE_VEC_ELT (init, 0) = build2_v (MODIFY_EXPR, loop->loopvar[n],
3519 loop->from[n]);
3520 OMP_FOR_INIT (stmt) = init;
3521 /* The exit condition. */
3522 TREE_VEC_ELT (cond, 0) = build2_loc (input_location, LE_EXPR,
3523 boolean_type_node,
3524 loop->loopvar[n], loop->to[n]);
3525 SET_EXPR_LOCATION (TREE_VEC_ELT (cond, 0), input_location);
3526 OMP_FOR_COND (stmt) = cond;
3527 /* Increment the loopvar. */
3528 tmp = build2_loc (input_location, PLUS_EXPR, gfc_array_index_type,
3529 loop->loopvar[n], gfc_index_one_node);
3530 TREE_VEC_ELT (incr, 0) = fold_build2_loc (input_location, MODIFY_EXPR,
3531 void_type_node, loop->loopvar[n], tmp);
3532 OMP_FOR_INCR (stmt) = incr;
3534 ompws_flags &= ~OMPWS_CURR_SINGLEUNIT;
3535 gfc_add_expr_to_block (&loop->code[n], stmt);
3537 else
3539 bool reverse_loop = (loop->reverse[n] == GFC_REVERSE_SET)
3540 && (loop->temp_ss == NULL);
3542 loopbody = gfc_finish_block (pbody);
3544 if (reverse_loop)
3546 tmp = loop->from[n];
3547 loop->from[n] = loop->to[n];
3548 loop->to[n] = tmp;
3551 /* Initialize the loopvar. */
3552 if (loop->loopvar[n] != loop->from[n])
3553 gfc_add_modify (&loop->code[n], loop->loopvar[n], loop->from[n]);
3555 exit_label = gfc_build_label_decl (NULL_TREE);
3557 /* Generate the loop body. */
3558 gfc_init_block (&block);
3560 /* The exit condition. */
3561 cond = fold_build2_loc (input_location, reverse_loop ? LT_EXPR : GT_EXPR,
3562 boolean_type_node, loop->loopvar[n], loop->to[n]);
3563 tmp = build1_v (GOTO_EXPR, exit_label);
3564 TREE_USED (exit_label) = 1;
3565 tmp = build3_v (COND_EXPR, cond, tmp, build_empty_stmt (input_location));
3566 gfc_add_expr_to_block (&block, tmp);
3568 /* The main body. */
3569 gfc_add_expr_to_block (&block, loopbody);
3571 /* Increment the loopvar. */
3572 tmp = fold_build2_loc (input_location,
3573 reverse_loop ? MINUS_EXPR : PLUS_EXPR,
3574 gfc_array_index_type, loop->loopvar[n],
3575 gfc_index_one_node);
3577 gfc_add_modify (&block, loop->loopvar[n], tmp);
3579 /* Build the loop. */
3580 tmp = gfc_finish_block (&block);
3581 tmp = build1_v (LOOP_EXPR, tmp);
3582 gfc_add_expr_to_block (&loop->code[n], tmp);
3584 /* Add the exit label. */
3585 tmp = build1_v (LABEL_EXPR, exit_label);
3586 gfc_add_expr_to_block (&loop->code[n], tmp);
3592 /* Finishes and generates the loops for a scalarized expression. */
3594 void
3595 gfc_trans_scalarizing_loops (gfc_loopinfo * loop, stmtblock_t * body)
3597 int dim;
3598 int n;
3599 gfc_ss *ss;
3600 stmtblock_t *pblock;
3601 tree tmp;
3603 pblock = body;
3604 /* Generate the loops. */
3605 for (dim = 0; dim < loop->dimen; dim++)
3607 n = loop->order[dim];
3608 gfc_trans_scalarized_loop_end (loop, n, pblock);
3609 loop->loopvar[n] = NULL_TREE;
3610 pblock = &loop->code[n];
3613 tmp = gfc_finish_block (pblock);
3614 gfc_add_expr_to_block (&loop->pre, tmp);
3616 /* Clear all the used flags. */
3617 for (ss = loop->ss; ss != gfc_ss_terminator; ss = ss->loop_chain)
3618 if (ss->parent == NULL)
3619 ss->info->useflags = 0;
3623 /* Finish the main body of a scalarized expression, and start the secondary
3624 copying body. */
3626 void
3627 gfc_trans_scalarized_loop_boundary (gfc_loopinfo * loop, stmtblock_t * body)
3629 int dim;
3630 int n;
3631 stmtblock_t *pblock;
3632 gfc_ss *ss;
3634 pblock = body;
3635 /* We finish as many loops as are used by the temporary. */
3636 for (dim = 0; dim < loop->temp_dim - 1; dim++)
3638 n = loop->order[dim];
3639 gfc_trans_scalarized_loop_end (loop, n, pblock);
3640 loop->loopvar[n] = NULL_TREE;
3641 pblock = &loop->code[n];
3644 /* We don't want to finish the outermost loop entirely. */
3645 n = loop->order[loop->temp_dim - 1];
3646 gfc_trans_scalarized_loop_end (loop, n, pblock);
3648 /* Restore the initial offsets. */
3649 for (ss = loop->ss; ss != gfc_ss_terminator; ss = ss->loop_chain)
3651 gfc_ss_type ss_type;
3652 gfc_ss_info *ss_info;
3654 ss_info = ss->info;
3656 if ((ss_info->useflags & 2) == 0)
3657 continue;
3659 ss_type = ss_info->type;
3660 if (ss_type != GFC_SS_SECTION
3661 && ss_type != GFC_SS_FUNCTION
3662 && ss_type != GFC_SS_CONSTRUCTOR
3663 && ss_type != GFC_SS_COMPONENT)
3664 continue;
3666 ss_info->data.array.offset = ss_info->data.array.saved_offset;
3669 /* Restart all the inner loops we just finished. */
3670 for (dim = loop->temp_dim - 2; dim >= 0; dim--)
3672 n = loop->order[dim];
3674 gfc_start_block (&loop->code[n]);
3676 loop->loopvar[n] = gfc_create_var (gfc_array_index_type, "Q");
3678 gfc_trans_preloop_setup (loop, dim, 2, &loop->code[n]);
3681 /* Start a block for the secondary copying code. */
3682 gfc_start_block (body);
3686 /* Precalculate (either lower or upper) bound of an array section.
3687 BLOCK: Block in which the (pre)calculation code will go.
3688 BOUNDS[DIM]: Where the bound value will be stored once evaluated.
3689 VALUES[DIM]: Specified bound (NULL <=> unspecified).
3690 DESC: Array descriptor from which the bound will be picked if unspecified
3691 (either lower or upper bound according to LBOUND). */
3693 static void
3694 evaluate_bound (stmtblock_t *block, tree *bounds, gfc_expr ** values,
3695 tree desc, int dim, bool lbound)
3697 gfc_se se;
3698 gfc_expr * input_val = values[dim];
3699 tree *output = &bounds[dim];
3702 if (input_val)
3704 /* Specified section bound. */
3705 gfc_init_se (&se, NULL);
3706 gfc_conv_expr_type (&se, input_val, gfc_array_index_type);
3707 gfc_add_block_to_block (block, &se.pre);
3708 *output = se.expr;
3710 else
3712 /* No specific bound specified so use the bound of the array. */
3713 *output = lbound ? gfc_conv_array_lbound (desc, dim) :
3714 gfc_conv_array_ubound (desc, dim);
3716 *output = gfc_evaluate_now (*output, block);
3720 /* Calculate the lower bound of an array section. */
3722 static void
3723 gfc_conv_section_startstride (stmtblock_t * block, gfc_ss * ss, int dim)
3725 gfc_expr *stride = NULL;
3726 tree desc;
3727 gfc_se se;
3728 gfc_array_info *info;
3729 gfc_array_ref *ar;
3731 gcc_assert (ss->info->type == GFC_SS_SECTION);
3733 info = &ss->info->data.array;
3734 ar = &info->ref->u.ar;
3736 if (ar->dimen_type[dim] == DIMEN_VECTOR)
3738 /* We use a zero-based index to access the vector. */
3739 info->start[dim] = gfc_index_zero_node;
3740 info->end[dim] = NULL;
3741 info->stride[dim] = gfc_index_one_node;
3742 return;
3745 gcc_assert (ar->dimen_type[dim] == DIMEN_RANGE
3746 || ar->dimen_type[dim] == DIMEN_THIS_IMAGE);
3747 desc = info->descriptor;
3748 stride = ar->stride[dim];
3750 /* Calculate the start of the range. For vector subscripts this will
3751 be the range of the vector. */
3752 evaluate_bound (block, info->start, ar->start, desc, dim, true);
3754 /* Similarly calculate the end. Although this is not used in the
3755 scalarizer, it is needed when checking bounds and where the end
3756 is an expression with side-effects. */
3757 evaluate_bound (block, info->end, ar->end, desc, dim, false);
3759 /* Calculate the stride. */
3760 if (stride == NULL)
3761 info->stride[dim] = gfc_index_one_node;
3762 else
3764 gfc_init_se (&se, NULL);
3765 gfc_conv_expr_type (&se, stride, gfc_array_index_type);
3766 gfc_add_block_to_block (block, &se.pre);
3767 info->stride[dim] = gfc_evaluate_now (se.expr, block);
3772 /* Calculates the range start and stride for a SS chain. Also gets the
3773 descriptor and data pointer. The range of vector subscripts is the size
3774 of the vector. Array bounds are also checked. */
3776 void
3777 gfc_conv_ss_startstride (gfc_loopinfo * loop)
3779 int n;
3780 tree tmp;
3781 gfc_ss *ss;
3782 tree desc;
3784 gfc_loopinfo * const outer_loop = outermost_loop (loop);
3786 loop->dimen = 0;
3787 /* Determine the rank of the loop. */
3788 for (ss = loop->ss; ss != gfc_ss_terminator; ss = ss->loop_chain)
3790 switch (ss->info->type)
3792 case GFC_SS_SECTION:
3793 case GFC_SS_CONSTRUCTOR:
3794 case GFC_SS_FUNCTION:
3795 case GFC_SS_COMPONENT:
3796 loop->dimen = ss->dimen;
3797 goto done;
3799 /* As usual, lbound and ubound are exceptions!. */
3800 case GFC_SS_INTRINSIC:
3801 switch (ss->info->expr->value.function.isym->id)
3803 case GFC_ISYM_LBOUND:
3804 case GFC_ISYM_UBOUND:
3805 case GFC_ISYM_LCOBOUND:
3806 case GFC_ISYM_UCOBOUND:
3807 case GFC_ISYM_THIS_IMAGE:
3808 loop->dimen = ss->dimen;
3809 goto done;
3811 default:
3812 break;
3815 default:
3816 break;
3820 /* We should have determined the rank of the expression by now. If
3821 not, that's bad news. */
3822 gcc_unreachable ();
3824 done:
3825 /* Loop over all the SS in the chain. */
3826 for (ss = loop->ss; ss != gfc_ss_terminator; ss = ss->loop_chain)
3828 gfc_ss_info *ss_info;
3829 gfc_array_info *info;
3830 gfc_expr *expr;
3832 ss_info = ss->info;
3833 expr = ss_info->expr;
3834 info = &ss_info->data.array;
3836 if (expr && expr->shape && !info->shape)
3837 info->shape = expr->shape;
3839 switch (ss_info->type)
3841 case GFC_SS_SECTION:
3842 /* Get the descriptor for the array. If it is a cross loops array,
3843 we got the descriptor already in the outermost loop. */
3844 if (ss->parent == NULL)
3845 gfc_conv_ss_descriptor (&outer_loop->pre, ss,
3846 !loop->array_parameter);
3848 for (n = 0; n < ss->dimen; n++)
3849 gfc_conv_section_startstride (&outer_loop->pre, ss, ss->dim[n]);
3850 break;
3852 case GFC_SS_INTRINSIC:
3853 switch (expr->value.function.isym->id)
3855 /* Fall through to supply start and stride. */
3856 case GFC_ISYM_LBOUND:
3857 case GFC_ISYM_UBOUND:
3859 gfc_expr *arg;
3861 /* This is the variant without DIM=... */
3862 gcc_assert (expr->value.function.actual->next->expr == NULL);
3864 arg = expr->value.function.actual->expr;
3865 if (arg->rank == -1)
3867 gfc_se se;
3868 tree rank, tmp;
3870 /* The rank (hence the return value's shape) is unknown,
3871 we have to retrieve it. */
3872 gfc_init_se (&se, NULL);
3873 se.descriptor_only = 1;
3874 gfc_conv_expr (&se, arg);
3875 /* This is a bare variable, so there is no preliminary
3876 or cleanup code. */
3877 gcc_assert (se.pre.head == NULL_TREE
3878 && se.post.head == NULL_TREE);
3879 rank = gfc_conv_descriptor_rank (se.expr);
3880 tmp = fold_build2_loc (input_location, MINUS_EXPR,
3881 gfc_array_index_type,
3882 fold_convert (gfc_array_index_type,
3883 rank),
3884 gfc_index_one_node);
3885 info->end[0] = gfc_evaluate_now (tmp, &outer_loop->pre);
3886 info->start[0] = gfc_index_zero_node;
3887 info->stride[0] = gfc_index_one_node;
3888 continue;
3890 /* Otherwise fall through GFC_SS_FUNCTION. */
3892 case GFC_ISYM_LCOBOUND:
3893 case GFC_ISYM_UCOBOUND:
3894 case GFC_ISYM_THIS_IMAGE:
3895 break;
3897 default:
3898 continue;
3901 case GFC_SS_CONSTRUCTOR:
3902 case GFC_SS_FUNCTION:
3903 for (n = 0; n < ss->dimen; n++)
3905 int dim = ss->dim[n];
3907 info->start[dim] = gfc_index_zero_node;
3908 info->end[dim] = gfc_index_zero_node;
3909 info->stride[dim] = gfc_index_one_node;
3911 break;
3913 default:
3914 break;
3918 /* The rest is just runtime bound checking. */
3919 if (gfc_option.rtcheck & GFC_RTCHECK_BOUNDS)
3921 stmtblock_t block;
3922 tree lbound, ubound;
3923 tree end;
3924 tree size[GFC_MAX_DIMENSIONS];
3925 tree stride_pos, stride_neg, non_zerosized, tmp2, tmp3;
3926 gfc_array_info *info;
3927 char *msg;
3928 int dim;
3930 gfc_start_block (&block);
3932 for (n = 0; n < loop->dimen; n++)
3933 size[n] = NULL_TREE;
3935 for (ss = loop->ss; ss != gfc_ss_terminator; ss = ss->loop_chain)
3937 stmtblock_t inner;
3938 gfc_ss_info *ss_info;
3939 gfc_expr *expr;
3940 locus *expr_loc;
3941 const char *expr_name;
3943 ss_info = ss->info;
3944 if (ss_info->type != GFC_SS_SECTION)
3945 continue;
3947 /* Catch allocatable lhs in f2003. */
3948 if (gfc_option.flag_realloc_lhs && ss->is_alloc_lhs)
3949 continue;
3951 expr = ss_info->expr;
3952 expr_loc = &expr->where;
3953 expr_name = expr->symtree->name;
3955 gfc_start_block (&inner);
3957 /* TODO: range checking for mapped dimensions. */
3958 info = &ss_info->data.array;
3960 /* This code only checks ranges. Elemental and vector
3961 dimensions are checked later. */
3962 for (n = 0; n < loop->dimen; n++)
3964 bool check_upper;
3966 dim = ss->dim[n];
3967 if (info->ref->u.ar.dimen_type[dim] != DIMEN_RANGE)
3968 continue;
3970 if (dim == info->ref->u.ar.dimen - 1
3971 && info->ref->u.ar.as->type == AS_ASSUMED_SIZE)
3972 check_upper = false;
3973 else
3974 check_upper = true;
3976 /* Zero stride is not allowed. */
3977 tmp = fold_build2_loc (input_location, EQ_EXPR, boolean_type_node,
3978 info->stride[dim], gfc_index_zero_node);
3979 asprintf (&msg, "Zero stride is not allowed, for dimension %d "
3980 "of array '%s'", dim + 1, expr_name);
3981 gfc_trans_runtime_check (true, false, tmp, &inner,
3982 expr_loc, msg);
3983 free (msg);
3985 desc = info->descriptor;
3987 /* This is the run-time equivalent of resolve.c's
3988 check_dimension(). The logical is more readable there
3989 than it is here, with all the trees. */
3990 lbound = gfc_conv_array_lbound (desc, dim);
3991 end = info->end[dim];
3992 if (check_upper)
3993 ubound = gfc_conv_array_ubound (desc, dim);
3994 else
3995 ubound = NULL;
3997 /* non_zerosized is true when the selected range is not
3998 empty. */
3999 stride_pos = fold_build2_loc (input_location, GT_EXPR,
4000 boolean_type_node, info->stride[dim],
4001 gfc_index_zero_node);
4002 tmp = fold_build2_loc (input_location, LE_EXPR, boolean_type_node,
4003 info->start[dim], end);
4004 stride_pos = fold_build2_loc (input_location, TRUTH_AND_EXPR,
4005 boolean_type_node, stride_pos, tmp);
4007 stride_neg = fold_build2_loc (input_location, LT_EXPR,
4008 boolean_type_node,
4009 info->stride[dim], gfc_index_zero_node);
4010 tmp = fold_build2_loc (input_location, GE_EXPR, boolean_type_node,
4011 info->start[dim], end);
4012 stride_neg = fold_build2_loc (input_location, TRUTH_AND_EXPR,
4013 boolean_type_node,
4014 stride_neg, tmp);
4015 non_zerosized = fold_build2_loc (input_location, TRUTH_OR_EXPR,
4016 boolean_type_node,
4017 stride_pos, stride_neg);
4019 /* Check the start of the range against the lower and upper
4020 bounds of the array, if the range is not empty.
4021 If upper bound is present, include both bounds in the
4022 error message. */
4023 if (check_upper)
4025 tmp = fold_build2_loc (input_location, LT_EXPR,
4026 boolean_type_node,
4027 info->start[dim], lbound);
4028 tmp = fold_build2_loc (input_location, TRUTH_AND_EXPR,
4029 boolean_type_node,
4030 non_zerosized, tmp);
4031 tmp2 = fold_build2_loc (input_location, GT_EXPR,
4032 boolean_type_node,
4033 info->start[dim], ubound);
4034 tmp2 = fold_build2_loc (input_location, TRUTH_AND_EXPR,
4035 boolean_type_node,
4036 non_zerosized, tmp2);
4037 asprintf (&msg, "Index '%%ld' of dimension %d of array '%s' "
4038 "outside of expected range (%%ld:%%ld)",
4039 dim + 1, expr_name);
4040 gfc_trans_runtime_check (true, false, tmp, &inner,
4041 expr_loc, msg,
4042 fold_convert (long_integer_type_node, info->start[dim]),
4043 fold_convert (long_integer_type_node, lbound),
4044 fold_convert (long_integer_type_node, ubound));
4045 gfc_trans_runtime_check (true, false, tmp2, &inner,
4046 expr_loc, msg,
4047 fold_convert (long_integer_type_node, info->start[dim]),
4048 fold_convert (long_integer_type_node, lbound),
4049 fold_convert (long_integer_type_node, ubound));
4050 free (msg);
4052 else
4054 tmp = fold_build2_loc (input_location, LT_EXPR,
4055 boolean_type_node,
4056 info->start[dim], lbound);
4057 tmp = fold_build2_loc (input_location, TRUTH_AND_EXPR,
4058 boolean_type_node, non_zerosized, tmp);
4059 asprintf (&msg, "Index '%%ld' of dimension %d of array '%s' "
4060 "below lower bound of %%ld",
4061 dim + 1, expr_name);
4062 gfc_trans_runtime_check (true, false, tmp, &inner,
4063 expr_loc, msg,
4064 fold_convert (long_integer_type_node, info->start[dim]),
4065 fold_convert (long_integer_type_node, lbound));
4066 free (msg);
4069 /* Compute the last element of the range, which is not
4070 necessarily "end" (think 0:5:3, which doesn't contain 5)
4071 and check it against both lower and upper bounds. */
4073 tmp = fold_build2_loc (input_location, MINUS_EXPR,
4074 gfc_array_index_type, end,
4075 info->start[dim]);
4076 tmp = fold_build2_loc (input_location, TRUNC_MOD_EXPR,
4077 gfc_array_index_type, tmp,
4078 info->stride[dim]);
4079 tmp = fold_build2_loc (input_location, MINUS_EXPR,
4080 gfc_array_index_type, end, tmp);
4081 tmp2 = fold_build2_loc (input_location, LT_EXPR,
4082 boolean_type_node, tmp, lbound);
4083 tmp2 = fold_build2_loc (input_location, TRUTH_AND_EXPR,
4084 boolean_type_node, non_zerosized, tmp2);
4085 if (check_upper)
4087 tmp3 = fold_build2_loc (input_location, GT_EXPR,
4088 boolean_type_node, tmp, ubound);
4089 tmp3 = fold_build2_loc (input_location, TRUTH_AND_EXPR,
4090 boolean_type_node, non_zerosized, tmp3);
4091 asprintf (&msg, "Index '%%ld' of dimension %d of array '%s' "
4092 "outside of expected range (%%ld:%%ld)",
4093 dim + 1, expr_name);
4094 gfc_trans_runtime_check (true, false, tmp2, &inner,
4095 expr_loc, msg,
4096 fold_convert (long_integer_type_node, tmp),
4097 fold_convert (long_integer_type_node, ubound),
4098 fold_convert (long_integer_type_node, lbound));
4099 gfc_trans_runtime_check (true, false, tmp3, &inner,
4100 expr_loc, msg,
4101 fold_convert (long_integer_type_node, tmp),
4102 fold_convert (long_integer_type_node, ubound),
4103 fold_convert (long_integer_type_node, lbound));
4104 free (msg);
4106 else
4108 asprintf (&msg, "Index '%%ld' of dimension %d of array '%s' "
4109 "below lower bound of %%ld",
4110 dim + 1, expr_name);
4111 gfc_trans_runtime_check (true, false, tmp2, &inner,
4112 expr_loc, msg,
4113 fold_convert (long_integer_type_node, tmp),
4114 fold_convert (long_integer_type_node, lbound));
4115 free (msg);
4118 /* Check the section sizes match. */
4119 tmp = fold_build2_loc (input_location, MINUS_EXPR,
4120 gfc_array_index_type, end,
4121 info->start[dim]);
4122 tmp = fold_build2_loc (input_location, FLOOR_DIV_EXPR,
4123 gfc_array_index_type, tmp,
4124 info->stride[dim]);
4125 tmp = fold_build2_loc (input_location, PLUS_EXPR,
4126 gfc_array_index_type,
4127 gfc_index_one_node, tmp);
4128 tmp = fold_build2_loc (input_location, MAX_EXPR,
4129 gfc_array_index_type, tmp,
4130 build_int_cst (gfc_array_index_type, 0));
4131 /* We remember the size of the first section, and check all the
4132 others against this. */
4133 if (size[n])
4135 tmp3 = fold_build2_loc (input_location, NE_EXPR,
4136 boolean_type_node, tmp, size[n]);
4137 asprintf (&msg, "Array bound mismatch for dimension %d "
4138 "of array '%s' (%%ld/%%ld)",
4139 dim + 1, expr_name);
4141 gfc_trans_runtime_check (true, false, tmp3, &inner,
4142 expr_loc, msg,
4143 fold_convert (long_integer_type_node, tmp),
4144 fold_convert (long_integer_type_node, size[n]));
4146 free (msg);
4148 else
4149 size[n] = gfc_evaluate_now (tmp, &inner);
4152 tmp = gfc_finish_block (&inner);
4154 /* For optional arguments, only check bounds if the argument is
4155 present. */
4156 if (expr->symtree->n.sym->attr.optional
4157 || expr->symtree->n.sym->attr.not_always_present)
4158 tmp = build3_v (COND_EXPR,
4159 gfc_conv_expr_present (expr->symtree->n.sym),
4160 tmp, build_empty_stmt (input_location));
4162 gfc_add_expr_to_block (&block, tmp);
4166 tmp = gfc_finish_block (&block);
4167 gfc_add_expr_to_block (&outer_loop->pre, tmp);
4170 for (loop = loop->nested; loop; loop = loop->next)
4171 gfc_conv_ss_startstride (loop);
4174 /* Return true if both symbols could refer to the same data object. Does
4175 not take account of aliasing due to equivalence statements. */
4177 static int
4178 symbols_could_alias (gfc_symbol *lsym, gfc_symbol *rsym, bool lsym_pointer,
4179 bool lsym_target, bool rsym_pointer, bool rsym_target)
4181 /* Aliasing isn't possible if the symbols have different base types. */
4182 if (gfc_compare_types (&lsym->ts, &rsym->ts) == 0)
4183 return 0;
4185 /* Pointers can point to other pointers and target objects. */
4187 if ((lsym_pointer && (rsym_pointer || rsym_target))
4188 || (rsym_pointer && (lsym_pointer || lsym_target)))
4189 return 1;
4191 /* Special case: Argument association, cf. F90 12.4.1.6, F2003 12.4.1.7
4192 and F2008 12.5.2.13 items 3b and 4b. The pointer case (a) is already
4193 checked above. */
4194 if (lsym_target && rsym_target
4195 && ((lsym->attr.dummy && !lsym->attr.contiguous
4196 && (!lsym->attr.dimension || lsym->as->type == AS_ASSUMED_SHAPE))
4197 || (rsym->attr.dummy && !rsym->attr.contiguous
4198 && (!rsym->attr.dimension
4199 || rsym->as->type == AS_ASSUMED_SHAPE))))
4200 return 1;
4202 return 0;
4206 /* Return true if the two SS could be aliased, i.e. both point to the same data
4207 object. */
4208 /* TODO: resolve aliases based on frontend expressions. */
4210 static int
4211 gfc_could_be_alias (gfc_ss * lss, gfc_ss * rss)
4213 gfc_ref *lref;
4214 gfc_ref *rref;
4215 gfc_expr *lexpr, *rexpr;
4216 gfc_symbol *lsym;
4217 gfc_symbol *rsym;
4218 bool lsym_pointer, lsym_target, rsym_pointer, rsym_target;
4220 lexpr = lss->info->expr;
4221 rexpr = rss->info->expr;
4223 lsym = lexpr->symtree->n.sym;
4224 rsym = rexpr->symtree->n.sym;
4226 lsym_pointer = lsym->attr.pointer;
4227 lsym_target = lsym->attr.target;
4228 rsym_pointer = rsym->attr.pointer;
4229 rsym_target = rsym->attr.target;
4231 if (symbols_could_alias (lsym, rsym, lsym_pointer, lsym_target,
4232 rsym_pointer, rsym_target))
4233 return 1;
4235 if (rsym->ts.type != BT_DERIVED && rsym->ts.type != BT_CLASS
4236 && lsym->ts.type != BT_DERIVED && lsym->ts.type != BT_CLASS)
4237 return 0;
4239 /* For derived types we must check all the component types. We can ignore
4240 array references as these will have the same base type as the previous
4241 component ref. */
4242 for (lref = lexpr->ref; lref != lss->info->data.array.ref; lref = lref->next)
4244 if (lref->type != REF_COMPONENT)
4245 continue;
4247 lsym_pointer = lsym_pointer || lref->u.c.sym->attr.pointer;
4248 lsym_target = lsym_target || lref->u.c.sym->attr.target;
4250 if (symbols_could_alias (lref->u.c.sym, rsym, lsym_pointer, lsym_target,
4251 rsym_pointer, rsym_target))
4252 return 1;
4254 if ((lsym_pointer && (rsym_pointer || rsym_target))
4255 || (rsym_pointer && (lsym_pointer || lsym_target)))
4257 if (gfc_compare_types (&lref->u.c.component->ts,
4258 &rsym->ts))
4259 return 1;
4262 for (rref = rexpr->ref; rref != rss->info->data.array.ref;
4263 rref = rref->next)
4265 if (rref->type != REF_COMPONENT)
4266 continue;
4268 rsym_pointer = rsym_pointer || rref->u.c.sym->attr.pointer;
4269 rsym_target = lsym_target || rref->u.c.sym->attr.target;
4271 if (symbols_could_alias (lref->u.c.sym, rref->u.c.sym,
4272 lsym_pointer, lsym_target,
4273 rsym_pointer, rsym_target))
4274 return 1;
4276 if ((lsym_pointer && (rsym_pointer || rsym_target))
4277 || (rsym_pointer && (lsym_pointer || lsym_target)))
4279 if (gfc_compare_types (&lref->u.c.component->ts,
4280 &rref->u.c.sym->ts))
4281 return 1;
4282 if (gfc_compare_types (&lref->u.c.sym->ts,
4283 &rref->u.c.component->ts))
4284 return 1;
4285 if (gfc_compare_types (&lref->u.c.component->ts,
4286 &rref->u.c.component->ts))
4287 return 1;
4292 lsym_pointer = lsym->attr.pointer;
4293 lsym_target = lsym->attr.target;
4294 lsym_pointer = lsym->attr.pointer;
4295 lsym_target = lsym->attr.target;
4297 for (rref = rexpr->ref; rref != rss->info->data.array.ref; rref = rref->next)
4299 if (rref->type != REF_COMPONENT)
4300 break;
4302 rsym_pointer = rsym_pointer || rref->u.c.sym->attr.pointer;
4303 rsym_target = lsym_target || rref->u.c.sym->attr.target;
4305 if (symbols_could_alias (rref->u.c.sym, lsym,
4306 lsym_pointer, lsym_target,
4307 rsym_pointer, rsym_target))
4308 return 1;
4310 if ((lsym_pointer && (rsym_pointer || rsym_target))
4311 || (rsym_pointer && (lsym_pointer || lsym_target)))
4313 if (gfc_compare_types (&lsym->ts, &rref->u.c.component->ts))
4314 return 1;
4318 return 0;
4322 /* Resolve array data dependencies. Creates a temporary if required. */
4323 /* TODO: Calc dependencies with gfc_expr rather than gfc_ss, and move to
4324 dependency.c. */
4326 void
4327 gfc_conv_resolve_dependencies (gfc_loopinfo * loop, gfc_ss * dest,
4328 gfc_ss * rss)
4330 gfc_ss *ss;
4331 gfc_ref *lref;
4332 gfc_ref *rref;
4333 gfc_expr *dest_expr;
4334 gfc_expr *ss_expr;
4335 int nDepend = 0;
4336 int i, j;
4338 loop->temp_ss = NULL;
4339 dest_expr = dest->info->expr;
4341 for (ss = rss; ss != gfc_ss_terminator; ss = ss->next)
4343 ss_expr = ss->info->expr;
4345 if (ss->info->type != GFC_SS_SECTION)
4347 if (gfc_option.flag_realloc_lhs
4348 && dest_expr != ss_expr
4349 && gfc_is_reallocatable_lhs (dest_expr)
4350 && ss_expr->rank)
4351 nDepend = gfc_check_dependency (dest_expr, ss_expr, true);
4353 continue;
4356 if (dest_expr->symtree->n.sym != ss_expr->symtree->n.sym)
4358 if (gfc_could_be_alias (dest, ss)
4359 || gfc_are_equivalenced_arrays (dest_expr, ss_expr))
4361 nDepend = 1;
4362 break;
4365 else
4367 lref = dest_expr->ref;
4368 rref = ss_expr->ref;
4370 nDepend = gfc_dep_resolver (lref, rref, &loop->reverse[0]);
4372 if (nDepend == 1)
4373 break;
4375 for (i = 0; i < dest->dimen; i++)
4376 for (j = 0; j < ss->dimen; j++)
4377 if (i != j
4378 && dest->dim[i] == ss->dim[j])
4380 /* If we don't access array elements in the same order,
4381 there is a dependency. */
4382 nDepend = 1;
4383 goto temporary;
4385 #if 0
4386 /* TODO : loop shifting. */
4387 if (nDepend == 1)
4389 /* Mark the dimensions for LOOP SHIFTING */
4390 for (n = 0; n < loop->dimen; n++)
4392 int dim = dest->data.info.dim[n];
4394 if (lref->u.ar.dimen_type[dim] == DIMEN_VECTOR)
4395 depends[n] = 2;
4396 else if (! gfc_is_same_range (&lref->u.ar,
4397 &rref->u.ar, dim, 0))
4398 depends[n] = 1;
4401 /* Put all the dimensions with dependencies in the
4402 innermost loops. */
4403 dim = 0;
4404 for (n = 0; n < loop->dimen; n++)
4406 gcc_assert (loop->order[n] == n);
4407 if (depends[n])
4408 loop->order[dim++] = n;
4410 for (n = 0; n < loop->dimen; n++)
4412 if (! depends[n])
4413 loop->order[dim++] = n;
4416 gcc_assert (dim == loop->dimen);
4417 break;
4419 #endif
4423 temporary:
4425 if (nDepend == 1)
4427 tree base_type = gfc_typenode_for_spec (&dest_expr->ts);
4428 if (GFC_ARRAY_TYPE_P (base_type)
4429 || GFC_DESCRIPTOR_TYPE_P (base_type))
4430 base_type = gfc_get_element_type (base_type);
4431 loop->temp_ss = gfc_get_temp_ss (base_type, dest->info->string_length,
4432 loop->dimen);
4433 gfc_add_ss_to_loop (loop, loop->temp_ss);
4435 else
4436 loop->temp_ss = NULL;
4440 /* Browse through each array's information from the scalarizer and set the loop
4441 bounds according to the "best" one (per dimension), i.e. the one which
4442 provides the most information (constant bounds, shape, etc.). */
4444 static void
4445 set_loop_bounds (gfc_loopinfo *loop)
4447 int n, dim, spec_dim;
4448 gfc_array_info *info;
4449 gfc_array_info *specinfo;
4450 gfc_ss *ss;
4451 tree tmp;
4452 gfc_ss **loopspec;
4453 bool dynamic[GFC_MAX_DIMENSIONS];
4454 mpz_t *cshape;
4455 mpz_t i;
4456 bool nonoptional_arr;
4458 gfc_loopinfo * const outer_loop = outermost_loop (loop);
4460 loopspec = loop->specloop;
4462 mpz_init (i);
4463 for (n = 0; n < loop->dimen; n++)
4465 loopspec[n] = NULL;
4466 dynamic[n] = false;
4468 /* If there are both optional and nonoptional array arguments, scalarize
4469 over the nonoptional; otherwise, it does not matter as then all
4470 (optional) arrays have to be present per F2008, 125.2.12p3(6). */
4472 nonoptional_arr = false;
4474 for (ss = loop->ss; ss != gfc_ss_terminator; ss = ss->loop_chain)
4475 if (ss->info->type != GFC_SS_SCALAR && ss->info->type != GFC_SS_TEMP
4476 && ss->info->type != GFC_SS_REFERENCE && !ss->info->can_be_null_ref)
4478 nonoptional_arr = true;
4479 break;
4482 /* We use one SS term, and use that to determine the bounds of the
4483 loop for this dimension. We try to pick the simplest term. */
4484 for (ss = loop->ss; ss != gfc_ss_terminator; ss = ss->loop_chain)
4486 gfc_ss_type ss_type;
4488 ss_type = ss->info->type;
4489 if (ss_type == GFC_SS_SCALAR
4490 || ss_type == GFC_SS_TEMP
4491 || ss_type == GFC_SS_REFERENCE
4492 || (ss->info->can_be_null_ref && nonoptional_arr))
4493 continue;
4495 info = &ss->info->data.array;
4496 dim = ss->dim[n];
4498 if (loopspec[n] != NULL)
4500 specinfo = &loopspec[n]->info->data.array;
4501 spec_dim = loopspec[n]->dim[n];
4503 else
4505 /* Silence uninitialized warnings. */
4506 specinfo = NULL;
4507 spec_dim = 0;
4510 if (info->shape)
4512 gcc_assert (info->shape[dim]);
4513 /* The frontend has worked out the size for us. */
4514 if (!loopspec[n]
4515 || !specinfo->shape
4516 || !integer_zerop (specinfo->start[spec_dim]))
4517 /* Prefer zero-based descriptors if possible. */
4518 loopspec[n] = ss;
4519 continue;
4522 if (ss_type == GFC_SS_CONSTRUCTOR)
4524 gfc_constructor_base base;
4525 /* An unknown size constructor will always be rank one.
4526 Higher rank constructors will either have known shape,
4527 or still be wrapped in a call to reshape. */
4528 gcc_assert (loop->dimen == 1);
4530 /* Always prefer to use the constructor bounds if the size
4531 can be determined at compile time. Prefer not to otherwise,
4532 since the general case involves realloc, and it's better to
4533 avoid that overhead if possible. */
4534 base = ss->info->expr->value.constructor;
4535 dynamic[n] = gfc_get_array_constructor_size (&i, base);
4536 if (!dynamic[n] || !loopspec[n])
4537 loopspec[n] = ss;
4538 continue;
4541 /* Avoid using an allocatable lhs in an assignment, since
4542 there might be a reallocation coming. */
4543 if (loopspec[n] && ss->is_alloc_lhs)
4544 continue;
4546 if (!loopspec[n])
4547 loopspec[n] = ss;
4548 /* Criteria for choosing a loop specifier (most important first):
4549 doesn't need realloc
4550 stride of one
4551 known stride
4552 known lower bound
4553 known upper bound
4555 else if (loopspec[n]->info->type == GFC_SS_CONSTRUCTOR && dynamic[n])
4556 loopspec[n] = ss;
4557 else if (integer_onep (info->stride[dim])
4558 && !integer_onep (specinfo->stride[spec_dim]))
4559 loopspec[n] = ss;
4560 else if (INTEGER_CST_P (info->stride[dim])
4561 && !INTEGER_CST_P (specinfo->stride[spec_dim]))
4562 loopspec[n] = ss;
4563 else if (INTEGER_CST_P (info->start[dim])
4564 && !INTEGER_CST_P (specinfo->start[spec_dim])
4565 && integer_onep (info->stride[dim])
4566 == integer_onep (specinfo->stride[spec_dim])
4567 && INTEGER_CST_P (info->stride[dim])
4568 == INTEGER_CST_P (specinfo->stride[spec_dim]))
4569 loopspec[n] = ss;
4570 /* We don't work out the upper bound.
4571 else if (INTEGER_CST_P (info->finish[n])
4572 && ! INTEGER_CST_P (specinfo->finish[n]))
4573 loopspec[n] = ss; */
4576 /* We should have found the scalarization loop specifier. If not,
4577 that's bad news. */
4578 gcc_assert (loopspec[n]);
4580 info = &loopspec[n]->info->data.array;
4581 dim = loopspec[n]->dim[n];
4583 /* Set the extents of this range. */
4584 cshape = info->shape;
4585 if (cshape && INTEGER_CST_P (info->start[dim])
4586 && INTEGER_CST_P (info->stride[dim]))
4588 loop->from[n] = info->start[dim];
4589 mpz_set (i, cshape[get_array_ref_dim_for_loop_dim (loopspec[n], n)]);
4590 mpz_sub_ui (i, i, 1);
4591 /* To = from + (size - 1) * stride. */
4592 tmp = gfc_conv_mpz_to_tree (i, gfc_index_integer_kind);
4593 if (!integer_onep (info->stride[dim]))
4594 tmp = fold_build2_loc (input_location, MULT_EXPR,
4595 gfc_array_index_type, tmp,
4596 info->stride[dim]);
4597 loop->to[n] = fold_build2_loc (input_location, PLUS_EXPR,
4598 gfc_array_index_type,
4599 loop->from[n], tmp);
4601 else
4603 loop->from[n] = info->start[dim];
4604 switch (loopspec[n]->info->type)
4606 case GFC_SS_CONSTRUCTOR:
4607 /* The upper bound is calculated when we expand the
4608 constructor. */
4609 gcc_assert (loop->to[n] == NULL_TREE);
4610 break;
4612 case GFC_SS_SECTION:
4613 /* Use the end expression if it exists and is not constant,
4614 so that it is only evaluated once. */
4615 loop->to[n] = info->end[dim];
4616 break;
4618 case GFC_SS_FUNCTION:
4619 /* The loop bound will be set when we generate the call. */
4620 gcc_assert (loop->to[n] == NULL_TREE);
4621 break;
4623 case GFC_SS_INTRINSIC:
4625 gfc_expr *expr = loopspec[n]->info->expr;
4627 /* The {l,u}bound of an assumed rank. */
4628 gcc_assert ((expr->value.function.isym->id == GFC_ISYM_LBOUND
4629 || expr->value.function.isym->id == GFC_ISYM_UBOUND)
4630 && expr->value.function.actual->next->expr == NULL
4631 && expr->value.function.actual->expr->rank == -1);
4633 loop->to[n] = info->end[dim];
4634 break;
4637 default:
4638 gcc_unreachable ();
4642 /* Transform everything so we have a simple incrementing variable. */
4643 if (integer_onep (info->stride[dim]))
4644 info->delta[dim] = gfc_index_zero_node;
4645 else
4647 /* Set the delta for this section. */
4648 info->delta[dim] = gfc_evaluate_now (loop->from[n], &outer_loop->pre);
4649 /* Number of iterations is (end - start + step) / step.
4650 with start = 0, this simplifies to
4651 last = end / step;
4652 for (i = 0; i<=last; i++){...}; */
4653 tmp = fold_build2_loc (input_location, MINUS_EXPR,
4654 gfc_array_index_type, loop->to[n],
4655 loop->from[n]);
4656 tmp = fold_build2_loc (input_location, FLOOR_DIV_EXPR,
4657 gfc_array_index_type, tmp, info->stride[dim]);
4658 tmp = fold_build2_loc (input_location, MAX_EXPR, gfc_array_index_type,
4659 tmp, build_int_cst (gfc_array_index_type, -1));
4660 loop->to[n] = gfc_evaluate_now (tmp, &outer_loop->pre);
4661 /* Make the loop variable start at 0. */
4662 loop->from[n] = gfc_index_zero_node;
4665 mpz_clear (i);
4667 for (loop = loop->nested; loop; loop = loop->next)
4668 set_loop_bounds (loop);
4672 /* Initialize the scalarization loop. Creates the loop variables. Determines
4673 the range of the loop variables. Creates a temporary if required.
4674 Also generates code for scalar expressions which have been
4675 moved outside the loop. */
4677 void
4678 gfc_conv_loop_setup (gfc_loopinfo * loop, locus * where)
4680 gfc_ss *tmp_ss;
4681 tree tmp;
4683 set_loop_bounds (loop);
4685 /* Add all the scalar code that can be taken out of the loops.
4686 This may include calculating the loop bounds, so do it before
4687 allocating the temporary. */
4688 gfc_add_loop_ss_code (loop, loop->ss, false, where);
4690 tmp_ss = loop->temp_ss;
4691 /* If we want a temporary then create it. */
4692 if (tmp_ss != NULL)
4694 gfc_ss_info *tmp_ss_info;
4696 tmp_ss_info = tmp_ss->info;
4697 gcc_assert (tmp_ss_info->type == GFC_SS_TEMP);
4698 gcc_assert (loop->parent == NULL);
4700 /* Make absolutely sure that this is a complete type. */
4701 if (tmp_ss_info->string_length)
4702 tmp_ss_info->data.temp.type
4703 = gfc_get_character_type_len_for_eltype
4704 (TREE_TYPE (tmp_ss_info->data.temp.type),
4705 tmp_ss_info->string_length);
4707 tmp = tmp_ss_info->data.temp.type;
4708 memset (&tmp_ss_info->data.array, 0, sizeof (gfc_array_info));
4709 tmp_ss_info->type = GFC_SS_SECTION;
4711 gcc_assert (tmp_ss->dimen != 0);
4713 gfc_trans_create_temp_array (&loop->pre, &loop->post, tmp_ss, tmp,
4714 NULL_TREE, false, true, false, where);
4717 /* For array parameters we don't have loop variables, so don't calculate the
4718 translations. */
4719 if (!loop->array_parameter)
4720 gfc_set_delta (loop);
4724 /* Calculates how to transform from loop variables to array indices for each
4725 array: once loop bounds are chosen, sets the difference (DELTA field) between
4726 loop bounds and array reference bounds, for each array info. */
4728 void
4729 gfc_set_delta (gfc_loopinfo *loop)
4731 gfc_ss *ss, **loopspec;
4732 gfc_array_info *info;
4733 tree tmp;
4734 int n, dim;
4736 gfc_loopinfo * const outer_loop = outermost_loop (loop);
4738 loopspec = loop->specloop;
4740 /* Calculate the translation from loop variables to array indices. */
4741 for (ss = loop->ss; ss != gfc_ss_terminator; ss = ss->loop_chain)
4743 gfc_ss_type ss_type;
4745 ss_type = ss->info->type;
4746 if (ss_type != GFC_SS_SECTION
4747 && ss_type != GFC_SS_COMPONENT
4748 && ss_type != GFC_SS_CONSTRUCTOR)
4749 continue;
4751 info = &ss->info->data.array;
4753 for (n = 0; n < ss->dimen; n++)
4755 /* If we are specifying the range the delta is already set. */
4756 if (loopspec[n] != ss)
4758 dim = ss->dim[n];
4760 /* Calculate the offset relative to the loop variable.
4761 First multiply by the stride. */
4762 tmp = loop->from[n];
4763 if (!integer_onep (info->stride[dim]))
4764 tmp = fold_build2_loc (input_location, MULT_EXPR,
4765 gfc_array_index_type,
4766 tmp, info->stride[dim]);
4768 /* Then subtract this from our starting value. */
4769 tmp = fold_build2_loc (input_location, MINUS_EXPR,
4770 gfc_array_index_type,
4771 info->start[dim], tmp);
4773 info->delta[dim] = gfc_evaluate_now (tmp, &outer_loop->pre);
4778 for (loop = loop->nested; loop; loop = loop->next)
4779 gfc_set_delta (loop);
4783 /* Calculate the size of a given array dimension from the bounds. This
4784 is simply (ubound - lbound + 1) if this expression is positive
4785 or 0 if it is negative (pick either one if it is zero). Optionally
4786 (if or_expr is present) OR the (expression != 0) condition to it. */
4788 tree
4789 gfc_conv_array_extent_dim (tree lbound, tree ubound, tree* or_expr)
4791 tree res;
4792 tree cond;
4794 /* Calculate (ubound - lbound + 1). */
4795 res = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type,
4796 ubound, lbound);
4797 res = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type, res,
4798 gfc_index_one_node);
4800 /* Check whether the size for this dimension is negative. */
4801 cond = fold_build2_loc (input_location, LE_EXPR, boolean_type_node, res,
4802 gfc_index_zero_node);
4803 res = fold_build3_loc (input_location, COND_EXPR, gfc_array_index_type, cond,
4804 gfc_index_zero_node, res);
4806 /* Build OR expression. */
4807 if (or_expr)
4808 *or_expr = fold_build2_loc (input_location, TRUTH_OR_EXPR,
4809 boolean_type_node, *or_expr, cond);
4811 return res;
4815 /* For an array descriptor, get the total number of elements. This is just
4816 the product of the extents along from_dim to to_dim. */
4818 static tree
4819 gfc_conv_descriptor_size_1 (tree desc, int from_dim, int to_dim)
4821 tree res;
4822 int dim;
4824 res = gfc_index_one_node;
4826 for (dim = from_dim; dim < to_dim; ++dim)
4828 tree lbound;
4829 tree ubound;
4830 tree extent;
4832 lbound = gfc_conv_descriptor_lbound_get (desc, gfc_rank_cst[dim]);
4833 ubound = gfc_conv_descriptor_ubound_get (desc, gfc_rank_cst[dim]);
4835 extent = gfc_conv_array_extent_dim (lbound, ubound, NULL);
4836 res = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type,
4837 res, extent);
4840 return res;
4844 /* Full size of an array. */
4846 tree
4847 gfc_conv_descriptor_size (tree desc, int rank)
4849 return gfc_conv_descriptor_size_1 (desc, 0, rank);
4853 /* Size of a coarray for all dimensions but the last. */
4855 tree
4856 gfc_conv_descriptor_cosize (tree desc, int rank, int corank)
4858 return gfc_conv_descriptor_size_1 (desc, rank, rank + corank - 1);
4862 /* Fills in an array descriptor, and returns the size of the array.
4863 The size will be a simple_val, ie a variable or a constant. Also
4864 calculates the offset of the base. The pointer argument overflow,
4865 which should be of integer type, will increase in value if overflow
4866 occurs during the size calculation. Returns the size of the array.
4868 stride = 1;
4869 offset = 0;
4870 for (n = 0; n < rank; n++)
4872 a.lbound[n] = specified_lower_bound;
4873 offset = offset + a.lbond[n] * stride;
4874 size = 1 - lbound;
4875 a.ubound[n] = specified_upper_bound;
4876 a.stride[n] = stride;
4877 size = size >= 0 ? ubound + size : 0; //size = ubound + 1 - lbound
4878 overflow += size == 0 ? 0: (MAX/size < stride ? 1: 0);
4879 stride = stride * size;
4881 for (n = rank; n < rank+corank; n++)
4882 (Set lcobound/ucobound as above.)
4883 element_size = sizeof (array element);
4884 if (!rank)
4885 return element_size
4886 stride = (size_t) stride;
4887 overflow += element_size == 0 ? 0: (MAX/element_size < stride ? 1: 0);
4888 stride = stride * element_size;
4889 return (stride);
4890 } */
4891 /*GCC ARRAYS*/
4893 static tree
4894 gfc_array_init_size (tree descriptor, int rank, int corank, tree * poffset,
4895 gfc_expr ** lower, gfc_expr ** upper, stmtblock_t * pblock,
4896 stmtblock_t * descriptor_block, tree * overflow,
4897 tree expr3_elem_size, tree *nelems, gfc_expr *expr3,
4898 gfc_typespec *ts)
4900 tree type;
4901 tree tmp;
4902 tree size;
4903 tree offset;
4904 tree stride;
4905 tree element_size;
4906 tree or_expr;
4907 tree thencase;
4908 tree elsecase;
4909 tree cond;
4910 tree var;
4911 stmtblock_t thenblock;
4912 stmtblock_t elseblock;
4913 gfc_expr *ubound;
4914 gfc_se se;
4915 int n;
4917 type = TREE_TYPE (descriptor);
4919 stride = gfc_index_one_node;
4920 offset = gfc_index_zero_node;
4922 /* Set the dtype. */
4923 tmp = gfc_conv_descriptor_dtype (descriptor);
4924 gfc_add_modify (descriptor_block, tmp, gfc_get_dtype (TREE_TYPE (descriptor)));
4926 or_expr = boolean_false_node;
4928 for (n = 0; n < rank; n++)
4930 tree conv_lbound;
4931 tree conv_ubound;
4933 /* We have 3 possibilities for determining the size of the array:
4934 lower == NULL => lbound = 1, ubound = upper[n]
4935 upper[n] = NULL => lbound = 1, ubound = lower[n]
4936 upper[n] != NULL => lbound = lower[n], ubound = upper[n] */
4937 ubound = upper[n];
4939 /* Set lower bound. */
4940 gfc_init_se (&se, NULL);
4941 if (lower == NULL)
4942 se.expr = gfc_index_one_node;
4943 else
4945 gcc_assert (lower[n]);
4946 if (ubound)
4948 gfc_conv_expr_type (&se, lower[n], gfc_array_index_type);
4949 gfc_add_block_to_block (pblock, &se.pre);
4951 else
4953 se.expr = gfc_index_one_node;
4954 ubound = lower[n];
4957 gfc_conv_descriptor_lbound_set (descriptor_block, descriptor,
4958 gfc_rank_cst[n], se.expr);
4959 conv_lbound = se.expr;
4961 /* Work out the offset for this component. */
4962 tmp = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type,
4963 se.expr, stride);
4964 offset = fold_build2_loc (input_location, MINUS_EXPR,
4965 gfc_array_index_type, offset, tmp);
4967 /* Set upper bound. */
4968 gfc_init_se (&se, NULL);
4969 gcc_assert (ubound);
4970 gfc_conv_expr_type (&se, ubound, gfc_array_index_type);
4971 gfc_add_block_to_block (pblock, &se.pre);
4973 gfc_conv_descriptor_ubound_set (descriptor_block, descriptor,
4974 gfc_rank_cst[n], se.expr);
4975 conv_ubound = se.expr;
4977 /* Store the stride. */
4978 gfc_conv_descriptor_stride_set (descriptor_block, descriptor,
4979 gfc_rank_cst[n], stride);
4981 /* Calculate size and check whether extent is negative. */
4982 size = gfc_conv_array_extent_dim (conv_lbound, conv_ubound, &or_expr);
4983 size = gfc_evaluate_now (size, pblock);
4985 /* Check whether multiplying the stride by the number of
4986 elements in this dimension would overflow. We must also check
4987 whether the current dimension has zero size in order to avoid
4988 division by zero.
4990 tmp = fold_build2_loc (input_location, TRUNC_DIV_EXPR,
4991 gfc_array_index_type,
4992 fold_convert (gfc_array_index_type,
4993 TYPE_MAX_VALUE (gfc_array_index_type)),
4994 size);
4995 cond = gfc_unlikely (fold_build2_loc (input_location, LT_EXPR,
4996 boolean_type_node, tmp, stride),
4997 PRED_FORTRAN_OVERFLOW);
4998 tmp = fold_build3_loc (input_location, COND_EXPR, integer_type_node, cond,
4999 integer_one_node, integer_zero_node);
5000 cond = gfc_unlikely (fold_build2_loc (input_location, EQ_EXPR,
5001 boolean_type_node, size,
5002 gfc_index_zero_node),
5003 PRED_FORTRAN_SIZE_ZERO);
5004 tmp = fold_build3_loc (input_location, COND_EXPR, integer_type_node, cond,
5005 integer_zero_node, tmp);
5006 tmp = fold_build2_loc (input_location, PLUS_EXPR, integer_type_node,
5007 *overflow, tmp);
5008 *overflow = gfc_evaluate_now (tmp, pblock);
5010 /* Multiply the stride by the number of elements in this dimension. */
5011 stride = fold_build2_loc (input_location, MULT_EXPR,
5012 gfc_array_index_type, stride, size);
5013 stride = gfc_evaluate_now (stride, pblock);
5016 for (n = rank; n < rank + corank; n++)
5018 ubound = upper[n];
5020 /* Set lower bound. */
5021 gfc_init_se (&se, NULL);
5022 if (lower == NULL || lower[n] == NULL)
5024 gcc_assert (n == rank + corank - 1);
5025 se.expr = gfc_index_one_node;
5027 else
5029 if (ubound || n == rank + corank - 1)
5031 gfc_conv_expr_type (&se, lower[n], gfc_array_index_type);
5032 gfc_add_block_to_block (pblock, &se.pre);
5034 else
5036 se.expr = gfc_index_one_node;
5037 ubound = lower[n];
5040 gfc_conv_descriptor_lbound_set (descriptor_block, descriptor,
5041 gfc_rank_cst[n], se.expr);
5043 if (n < rank + corank - 1)
5045 gfc_init_se (&se, NULL);
5046 gcc_assert (ubound);
5047 gfc_conv_expr_type (&se, ubound, gfc_array_index_type);
5048 gfc_add_block_to_block (pblock, &se.pre);
5049 gfc_conv_descriptor_ubound_set (descriptor_block, descriptor,
5050 gfc_rank_cst[n], se.expr);
5054 /* The stride is the number of elements in the array, so multiply by the
5055 size of an element to get the total size. Obviously, if there is a
5056 SOURCE expression (expr3) we must use its element size. */
5057 if (expr3_elem_size != NULL_TREE)
5058 tmp = expr3_elem_size;
5059 else if (expr3 != NULL)
5061 if (expr3->ts.type == BT_CLASS)
5063 gfc_se se_sz;
5064 gfc_expr *sz = gfc_copy_expr (expr3);
5065 gfc_add_vptr_component (sz);
5066 gfc_add_size_component (sz);
5067 gfc_init_se (&se_sz, NULL);
5068 gfc_conv_expr (&se_sz, sz);
5069 gfc_free_expr (sz);
5070 tmp = se_sz.expr;
5072 else
5074 tmp = gfc_typenode_for_spec (&expr3->ts);
5075 tmp = TYPE_SIZE_UNIT (tmp);
5078 else if (ts->type != BT_UNKNOWN && ts->type != BT_CHARACTER)
5079 /* FIXME: Properly handle characters. See PR 57456. */
5080 tmp = TYPE_SIZE_UNIT (gfc_typenode_for_spec (ts));
5081 else
5082 tmp = TYPE_SIZE_UNIT (gfc_get_element_type (type));
5084 /* Convert to size_t. */
5085 element_size = fold_convert (size_type_node, tmp);
5087 if (rank == 0)
5088 return element_size;
5090 *nelems = gfc_evaluate_now (stride, pblock);
5091 stride = fold_convert (size_type_node, stride);
5093 /* First check for overflow. Since an array of type character can
5094 have zero element_size, we must check for that before
5095 dividing. */
5096 tmp = fold_build2_loc (input_location, TRUNC_DIV_EXPR,
5097 size_type_node,
5098 TYPE_MAX_VALUE (size_type_node), element_size);
5099 cond = gfc_unlikely (fold_build2_loc (input_location, LT_EXPR,
5100 boolean_type_node, tmp, stride),
5101 PRED_FORTRAN_OVERFLOW);
5102 tmp = fold_build3_loc (input_location, COND_EXPR, integer_type_node, cond,
5103 integer_one_node, integer_zero_node);
5104 cond = gfc_unlikely (fold_build2_loc (input_location, EQ_EXPR,
5105 boolean_type_node, element_size,
5106 build_int_cst (size_type_node, 0)),
5107 PRED_FORTRAN_SIZE_ZERO);
5108 tmp = fold_build3_loc (input_location, COND_EXPR, integer_type_node, cond,
5109 integer_zero_node, tmp);
5110 tmp = fold_build2_loc (input_location, PLUS_EXPR, integer_type_node,
5111 *overflow, tmp);
5112 *overflow = gfc_evaluate_now (tmp, pblock);
5114 size = fold_build2_loc (input_location, MULT_EXPR, size_type_node,
5115 stride, element_size);
5117 if (poffset != NULL)
5119 offset = gfc_evaluate_now (offset, pblock);
5120 *poffset = offset;
5123 if (integer_zerop (or_expr))
5124 return size;
5125 if (integer_onep (or_expr))
5126 return build_int_cst (size_type_node, 0);
5128 var = gfc_create_var (TREE_TYPE (size), "size");
5129 gfc_start_block (&thenblock);
5130 gfc_add_modify (&thenblock, var, build_int_cst (size_type_node, 0));
5131 thencase = gfc_finish_block (&thenblock);
5133 gfc_start_block (&elseblock);
5134 gfc_add_modify (&elseblock, var, size);
5135 elsecase = gfc_finish_block (&elseblock);
5137 tmp = gfc_evaluate_now (or_expr, pblock);
5138 tmp = build3_v (COND_EXPR, tmp, thencase, elsecase);
5139 gfc_add_expr_to_block (pblock, tmp);
5141 return var;
5145 /* Initializes the descriptor and generates a call to _gfor_allocate. Does
5146 the work for an ALLOCATE statement. */
5147 /*GCC ARRAYS*/
5149 bool
5150 gfc_array_allocate (gfc_se * se, gfc_expr * expr, tree status, tree errmsg,
5151 tree errlen, tree label_finish, tree expr3_elem_size,
5152 tree *nelems, gfc_expr *expr3, gfc_typespec *ts)
5154 tree tmp;
5155 tree pointer;
5156 tree offset = NULL_TREE;
5157 tree token = NULL_TREE;
5158 tree size;
5159 tree msg;
5160 tree error = NULL_TREE;
5161 tree overflow; /* Boolean storing whether size calculation overflows. */
5162 tree var_overflow = NULL_TREE;
5163 tree cond;
5164 tree set_descriptor;
5165 stmtblock_t set_descriptor_block;
5166 stmtblock_t elseblock;
5167 gfc_expr **lower;
5168 gfc_expr **upper;
5169 gfc_ref *ref, *prev_ref = NULL;
5170 bool allocatable, coarray, dimension;
5172 ref = expr->ref;
5174 /* Find the last reference in the chain. */
5175 while (ref && ref->next != NULL)
5177 gcc_assert (ref->type != REF_ARRAY || ref->u.ar.type == AR_ELEMENT
5178 || (ref->u.ar.dimen == 0 && ref->u.ar.codimen > 0));
5179 prev_ref = ref;
5180 ref = ref->next;
5183 if (ref == NULL || ref->type != REF_ARRAY)
5184 return false;
5186 if (!prev_ref)
5188 allocatable = expr->symtree->n.sym->attr.allocatable;
5189 coarray = expr->symtree->n.sym->attr.codimension;
5190 dimension = expr->symtree->n.sym->attr.dimension;
5192 else
5194 allocatable = prev_ref->u.c.component->attr.allocatable;
5195 coarray = prev_ref->u.c.component->attr.codimension;
5196 dimension = prev_ref->u.c.component->attr.dimension;
5199 if (!dimension)
5200 gcc_assert (coarray);
5202 /* Figure out the size of the array. */
5203 switch (ref->u.ar.type)
5205 case AR_ELEMENT:
5206 if (!coarray)
5208 lower = NULL;
5209 upper = ref->u.ar.start;
5210 break;
5212 /* Fall through. */
5214 case AR_SECTION:
5215 lower = ref->u.ar.start;
5216 upper = ref->u.ar.end;
5217 break;
5219 case AR_FULL:
5220 gcc_assert (ref->u.ar.as->type == AS_EXPLICIT);
5222 lower = ref->u.ar.as->lower;
5223 upper = ref->u.ar.as->upper;
5224 break;
5226 default:
5227 gcc_unreachable ();
5228 break;
5231 overflow = integer_zero_node;
5233 gfc_init_block (&set_descriptor_block);
5234 size = gfc_array_init_size (se->expr, ref->u.ar.as->rank,
5235 ref->u.ar.as->corank, &offset, lower, upper,
5236 &se->pre, &set_descriptor_block, &overflow,
5237 expr3_elem_size, nelems, expr3, ts);
5239 if (dimension)
5241 var_overflow = gfc_create_var (integer_type_node, "overflow");
5242 gfc_add_modify (&se->pre, var_overflow, overflow);
5244 if (status == NULL_TREE)
5246 /* Generate the block of code handling overflow. */
5247 msg = gfc_build_addr_expr (pchar_type_node,
5248 gfc_build_localized_cstring_const
5249 ("Integer overflow when calculating the amount of "
5250 "memory to allocate"));
5251 error = build_call_expr_loc (input_location,
5252 gfor_fndecl_runtime_error, 1, msg);
5254 else
5256 tree status_type = TREE_TYPE (status);
5257 stmtblock_t set_status_block;
5259 gfc_start_block (&set_status_block);
5260 gfc_add_modify (&set_status_block, status,
5261 build_int_cst (status_type, LIBERROR_ALLOCATION));
5262 error = gfc_finish_block (&set_status_block);
5266 gfc_start_block (&elseblock);
5268 /* Allocate memory to store the data. */
5269 if (POINTER_TYPE_P (TREE_TYPE (se->expr)))
5270 se->expr = build_fold_indirect_ref_loc (input_location, se->expr);
5272 pointer = gfc_conv_descriptor_data_get (se->expr);
5273 STRIP_NOPS (pointer);
5275 if (coarray && gfc_option.coarray == GFC_FCOARRAY_LIB)
5276 token = gfc_build_addr_expr (NULL_TREE,
5277 gfc_conv_descriptor_token (se->expr));
5279 /* The allocatable variant takes the old pointer as first argument. */
5280 if (allocatable)
5281 gfc_allocate_allocatable (&elseblock, pointer, size, token,
5282 status, errmsg, errlen, label_finish, expr);
5283 else
5284 gfc_allocate_using_malloc (&elseblock, pointer, size, status);
5286 if (dimension)
5288 cond = gfc_unlikely (fold_build2_loc (input_location, NE_EXPR,
5289 boolean_type_node, var_overflow, integer_zero_node),
5290 PRED_FORTRAN_OVERFLOW);
5291 tmp = fold_build3_loc (input_location, COND_EXPR, void_type_node, cond,
5292 error, gfc_finish_block (&elseblock));
5294 else
5295 tmp = gfc_finish_block (&elseblock);
5297 gfc_add_expr_to_block (&se->pre, tmp);
5299 /* Update the array descriptors. */
5300 if (dimension)
5301 gfc_conv_descriptor_offset_set (&set_descriptor_block, se->expr, offset);
5303 set_descriptor = gfc_finish_block (&set_descriptor_block);
5304 if (status != NULL_TREE)
5306 cond = fold_build2_loc (input_location, EQ_EXPR,
5307 boolean_type_node, status,
5308 build_int_cst (TREE_TYPE (status), 0));
5309 gfc_add_expr_to_block (&se->pre,
5310 fold_build3_loc (input_location, COND_EXPR, void_type_node,
5311 gfc_likely (cond, PRED_FORTRAN_FAIL_ALLOC),
5312 set_descriptor,
5313 build_empty_stmt (input_location)));
5315 else
5316 gfc_add_expr_to_block (&se->pre, set_descriptor);
5318 if ((expr->ts.type == BT_DERIVED)
5319 && expr->ts.u.derived->attr.alloc_comp)
5321 tmp = gfc_nullify_alloc_comp (expr->ts.u.derived, se->expr,
5322 ref->u.ar.as->rank);
5323 gfc_add_expr_to_block (&se->pre, tmp);
5326 return true;
5330 /* Deallocate an array variable. Also used when an allocated variable goes
5331 out of scope. */
5332 /*GCC ARRAYS*/
5334 tree
5335 gfc_array_deallocate (tree descriptor, tree pstat, tree errmsg, tree errlen,
5336 tree label_finish, gfc_expr* expr)
5338 tree var;
5339 tree tmp;
5340 stmtblock_t block;
5341 bool coarray = gfc_is_coarray (expr);
5343 gfc_start_block (&block);
5345 /* Get a pointer to the data. */
5346 var = gfc_conv_descriptor_data_get (descriptor);
5347 STRIP_NOPS (var);
5349 /* Parameter is the address of the data component. */
5350 tmp = gfc_deallocate_with_status (coarray ? descriptor : var, pstat, errmsg,
5351 errlen, label_finish, false, expr, coarray);
5352 gfc_add_expr_to_block (&block, tmp);
5354 /* Zero the data pointer; only for coarrays an error can occur and then
5355 the allocation status may not be changed. */
5356 tmp = fold_build2_loc (input_location, MODIFY_EXPR, void_type_node,
5357 var, build_int_cst (TREE_TYPE (var), 0));
5358 if (pstat != NULL_TREE && coarray && gfc_option.coarray == GFC_FCOARRAY_LIB)
5360 tree cond;
5361 tree stat = build_fold_indirect_ref_loc (input_location, pstat);
5363 cond = fold_build2_loc (input_location, EQ_EXPR, boolean_type_node,
5364 stat, build_int_cst (TREE_TYPE (stat), 0));
5365 tmp = fold_build3_loc (input_location, COND_EXPR, void_type_node,
5366 cond, tmp, build_empty_stmt (input_location));
5369 gfc_add_expr_to_block (&block, tmp);
5371 return gfc_finish_block (&block);
5375 /* Create an array constructor from an initialization expression.
5376 We assume the frontend already did any expansions and conversions. */
5378 tree
5379 gfc_conv_array_initializer (tree type, gfc_expr * expr)
5381 gfc_constructor *c;
5382 tree tmp;
5383 gfc_se se;
5384 HOST_WIDE_INT hi;
5385 unsigned HOST_WIDE_INT lo;
5386 tree index, range;
5387 vec<constructor_elt, va_gc> *v = NULL;
5389 if (expr->expr_type == EXPR_VARIABLE
5390 && expr->symtree->n.sym->attr.flavor == FL_PARAMETER
5391 && expr->symtree->n.sym->value)
5392 expr = expr->symtree->n.sym->value;
5394 switch (expr->expr_type)
5396 case EXPR_CONSTANT:
5397 case EXPR_STRUCTURE:
5398 /* A single scalar or derived type value. Create an array with all
5399 elements equal to that value. */
5400 gfc_init_se (&se, NULL);
5402 if (expr->expr_type == EXPR_CONSTANT)
5403 gfc_conv_constant (&se, expr);
5404 else
5405 gfc_conv_structure (&se, expr, 1);
5407 tmp = TYPE_MAX_VALUE (TYPE_DOMAIN (type));
5408 gcc_assert (tmp && INTEGER_CST_P (tmp));
5409 hi = TREE_INT_CST_HIGH (tmp);
5410 lo = TREE_INT_CST_LOW (tmp);
5411 lo++;
5412 if (lo == 0)
5413 hi++;
5414 /* This will probably eat buckets of memory for large arrays. */
5415 while (hi != 0 || lo != 0)
5417 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, se.expr);
5418 if (lo == 0)
5419 hi--;
5420 lo--;
5422 break;
5424 case EXPR_ARRAY:
5425 /* Create a vector of all the elements. */
5426 for (c = gfc_constructor_first (expr->value.constructor);
5427 c; c = gfc_constructor_next (c))
5429 if (c->iterator)
5431 /* Problems occur when we get something like
5432 integer :: a(lots) = (/(i, i=1, lots)/) */
5433 gfc_fatal_error ("The number of elements in the array constructor "
5434 "at %L requires an increase of the allowed %d "
5435 "upper limit. See -fmax-array-constructor "
5436 "option", &expr->where,
5437 gfc_option.flag_max_array_constructor);
5438 return NULL_TREE;
5440 if (mpz_cmp_si (c->offset, 0) != 0)
5441 index = gfc_conv_mpz_to_tree (c->offset, gfc_index_integer_kind);
5442 else
5443 index = NULL_TREE;
5445 if (mpz_cmp_si (c->repeat, 1) > 0)
5447 tree tmp1, tmp2;
5448 mpz_t maxval;
5450 mpz_init (maxval);
5451 mpz_add (maxval, c->offset, c->repeat);
5452 mpz_sub_ui (maxval, maxval, 1);
5453 tmp2 = gfc_conv_mpz_to_tree (maxval, gfc_index_integer_kind);
5454 if (mpz_cmp_si (c->offset, 0) != 0)
5456 mpz_add_ui (maxval, c->offset, 1);
5457 tmp1 = gfc_conv_mpz_to_tree (maxval, gfc_index_integer_kind);
5459 else
5460 tmp1 = gfc_conv_mpz_to_tree (c->offset, gfc_index_integer_kind);
5462 range = fold_build2 (RANGE_EXPR, gfc_array_index_type, tmp1, tmp2);
5463 mpz_clear (maxval);
5465 else
5466 range = NULL;
5468 gfc_init_se (&se, NULL);
5469 switch (c->expr->expr_type)
5471 case EXPR_CONSTANT:
5472 gfc_conv_constant (&se, c->expr);
5473 break;
5475 case EXPR_STRUCTURE:
5476 gfc_conv_structure (&se, c->expr, 1);
5477 break;
5479 default:
5480 /* Catch those occasional beasts that do not simplify
5481 for one reason or another, assuming that if they are
5482 standard defying the frontend will catch them. */
5483 gfc_conv_expr (&se, c->expr);
5484 break;
5487 if (range == NULL_TREE)
5488 CONSTRUCTOR_APPEND_ELT (v, index, se.expr);
5489 else
5491 if (index != NULL_TREE)
5492 CONSTRUCTOR_APPEND_ELT (v, index, se.expr);
5493 CONSTRUCTOR_APPEND_ELT (v, range, se.expr);
5496 break;
5498 case EXPR_NULL:
5499 return gfc_build_null_descriptor (type);
5501 default:
5502 gcc_unreachable ();
5505 /* Create a constructor from the list of elements. */
5506 tmp = build_constructor (type, v);
5507 TREE_CONSTANT (tmp) = 1;
5508 return tmp;
5512 /* Generate code to evaluate non-constant coarray cobounds. */
5514 void
5515 gfc_trans_array_cobounds (tree type, stmtblock_t * pblock,
5516 const gfc_symbol *sym)
5518 int dim;
5519 tree ubound;
5520 tree lbound;
5521 gfc_se se;
5522 gfc_array_spec *as;
5524 as = sym->as;
5526 for (dim = as->rank; dim < as->rank + as->corank; dim++)
5528 /* Evaluate non-constant array bound expressions. */
5529 lbound = GFC_TYPE_ARRAY_LBOUND (type, dim);
5530 if (as->lower[dim] && !INTEGER_CST_P (lbound))
5532 gfc_init_se (&se, NULL);
5533 gfc_conv_expr_type (&se, as->lower[dim], gfc_array_index_type);
5534 gfc_add_block_to_block (pblock, &se.pre);
5535 gfc_add_modify (pblock, lbound, se.expr);
5537 ubound = GFC_TYPE_ARRAY_UBOUND (type, dim);
5538 if (as->upper[dim] && !INTEGER_CST_P (ubound))
5540 gfc_init_se (&se, NULL);
5541 gfc_conv_expr_type (&se, as->upper[dim], gfc_array_index_type);
5542 gfc_add_block_to_block (pblock, &se.pre);
5543 gfc_add_modify (pblock, ubound, se.expr);
5549 /* Generate code to evaluate non-constant array bounds. Sets *poffset and
5550 returns the size (in elements) of the array. */
5552 static tree
5553 gfc_trans_array_bounds (tree type, gfc_symbol * sym, tree * poffset,
5554 stmtblock_t * pblock)
5556 gfc_array_spec *as;
5557 tree size;
5558 tree stride;
5559 tree offset;
5560 tree ubound;
5561 tree lbound;
5562 tree tmp;
5563 gfc_se se;
5565 int dim;
5567 as = sym->as;
5569 size = gfc_index_one_node;
5570 offset = gfc_index_zero_node;
5571 for (dim = 0; dim < as->rank; dim++)
5573 /* Evaluate non-constant array bound expressions. */
5574 lbound = GFC_TYPE_ARRAY_LBOUND (type, dim);
5575 if (as->lower[dim] && !INTEGER_CST_P (lbound))
5577 gfc_init_se (&se, NULL);
5578 gfc_conv_expr_type (&se, as->lower[dim], gfc_array_index_type);
5579 gfc_add_block_to_block (pblock, &se.pre);
5580 gfc_add_modify (pblock, lbound, se.expr);
5582 ubound = GFC_TYPE_ARRAY_UBOUND (type, dim);
5583 if (as->upper[dim] && !INTEGER_CST_P (ubound))
5585 gfc_init_se (&se, NULL);
5586 gfc_conv_expr_type (&se, as->upper[dim], gfc_array_index_type);
5587 gfc_add_block_to_block (pblock, &se.pre);
5588 gfc_add_modify (pblock, ubound, se.expr);
5590 /* The offset of this dimension. offset = offset - lbound * stride. */
5591 tmp = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type,
5592 lbound, size);
5593 offset = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type,
5594 offset, tmp);
5596 /* The size of this dimension, and the stride of the next. */
5597 if (dim + 1 < as->rank)
5598 stride = GFC_TYPE_ARRAY_STRIDE (type, dim + 1);
5599 else
5600 stride = GFC_TYPE_ARRAY_SIZE (type);
5602 if (ubound != NULL_TREE && !(stride && INTEGER_CST_P (stride)))
5604 /* Calculate stride = size * (ubound + 1 - lbound). */
5605 tmp = fold_build2_loc (input_location, MINUS_EXPR,
5606 gfc_array_index_type,
5607 gfc_index_one_node, lbound);
5608 tmp = fold_build2_loc (input_location, PLUS_EXPR,
5609 gfc_array_index_type, ubound, tmp);
5610 tmp = fold_build2_loc (input_location, MULT_EXPR,
5611 gfc_array_index_type, size, tmp);
5612 if (stride)
5613 gfc_add_modify (pblock, stride, tmp);
5614 else
5615 stride = gfc_evaluate_now (tmp, pblock);
5617 /* Make sure that negative size arrays are translated
5618 to being zero size. */
5619 tmp = fold_build2_loc (input_location, GE_EXPR, boolean_type_node,
5620 stride, gfc_index_zero_node);
5621 tmp = fold_build3_loc (input_location, COND_EXPR,
5622 gfc_array_index_type, tmp,
5623 stride, gfc_index_zero_node);
5624 gfc_add_modify (pblock, stride, tmp);
5627 size = stride;
5630 gfc_trans_array_cobounds (type, pblock, sym);
5631 gfc_trans_vla_type_sizes (sym, pblock);
5633 *poffset = offset;
5634 return size;
5638 /* Generate code to initialize/allocate an array variable. */
5640 void
5641 gfc_trans_auto_array_allocation (tree decl, gfc_symbol * sym,
5642 gfc_wrapped_block * block)
5644 stmtblock_t init;
5645 tree type;
5646 tree tmp = NULL_TREE;
5647 tree size;
5648 tree offset;
5649 tree space;
5650 tree inittree;
5651 bool onstack;
5653 gcc_assert (!(sym->attr.pointer || sym->attr.allocatable));
5655 /* Do nothing for USEd variables. */
5656 if (sym->attr.use_assoc)
5657 return;
5659 type = TREE_TYPE (decl);
5660 gcc_assert (GFC_ARRAY_TYPE_P (type));
5661 onstack = TREE_CODE (type) != POINTER_TYPE;
5663 gfc_init_block (&init);
5665 /* Evaluate character string length. */
5666 if (sym->ts.type == BT_CHARACTER
5667 && onstack && !INTEGER_CST_P (sym->ts.u.cl->backend_decl))
5669 gfc_conv_string_length (sym->ts.u.cl, NULL, &init);
5671 gfc_trans_vla_type_sizes (sym, &init);
5673 /* Emit a DECL_EXPR for this variable, which will cause the
5674 gimplifier to allocate storage, and all that good stuff. */
5675 tmp = fold_build1_loc (input_location, DECL_EXPR, TREE_TYPE (decl), decl);
5676 gfc_add_expr_to_block (&init, tmp);
5679 if (onstack)
5681 gfc_add_init_cleanup (block, gfc_finish_block (&init), NULL_TREE);
5682 return;
5685 type = TREE_TYPE (type);
5687 gcc_assert (!sym->attr.use_assoc);
5688 gcc_assert (!TREE_STATIC (decl));
5689 gcc_assert (!sym->module);
5691 if (sym->ts.type == BT_CHARACTER
5692 && !INTEGER_CST_P (sym->ts.u.cl->backend_decl))
5693 gfc_conv_string_length (sym->ts.u.cl, NULL, &init);
5695 size = gfc_trans_array_bounds (type, sym, &offset, &init);
5697 /* Don't actually allocate space for Cray Pointees. */
5698 if (sym->attr.cray_pointee)
5700 if (TREE_CODE (GFC_TYPE_ARRAY_OFFSET (type)) == VAR_DECL)
5701 gfc_add_modify (&init, GFC_TYPE_ARRAY_OFFSET (type), offset);
5703 gfc_add_init_cleanup (block, gfc_finish_block (&init), NULL_TREE);
5704 return;
5707 if (gfc_option.flag_stack_arrays)
5709 gcc_assert (TREE_CODE (TREE_TYPE (decl)) == POINTER_TYPE);
5710 space = build_decl (sym->declared_at.lb->location,
5711 VAR_DECL, create_tmp_var_name ("A"),
5712 TREE_TYPE (TREE_TYPE (decl)));
5713 gfc_trans_vla_type_sizes (sym, &init);
5715 else
5717 /* The size is the number of elements in the array, so multiply by the
5718 size of an element to get the total size. */
5719 tmp = TYPE_SIZE_UNIT (gfc_get_element_type (type));
5720 size = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type,
5721 size, fold_convert (gfc_array_index_type, tmp));
5723 /* Allocate memory to hold the data. */
5724 tmp = gfc_call_malloc (&init, TREE_TYPE (decl), size);
5725 gfc_add_modify (&init, decl, tmp);
5727 /* Free the temporary. */
5728 tmp = gfc_call_free (convert (pvoid_type_node, decl));
5729 space = NULL_TREE;
5732 /* Set offset of the array. */
5733 if (TREE_CODE (GFC_TYPE_ARRAY_OFFSET (type)) == VAR_DECL)
5734 gfc_add_modify (&init, GFC_TYPE_ARRAY_OFFSET (type), offset);
5736 /* Automatic arrays should not have initializers. */
5737 gcc_assert (!sym->value);
5739 inittree = gfc_finish_block (&init);
5741 if (space)
5743 tree addr;
5744 pushdecl (space);
5746 /* Don't create new scope, emit the DECL_EXPR in exactly the scope
5747 where also space is located. */
5748 gfc_init_block (&init);
5749 tmp = fold_build1_loc (input_location, DECL_EXPR,
5750 TREE_TYPE (space), space);
5751 gfc_add_expr_to_block (&init, tmp);
5752 addr = fold_build1_loc (sym->declared_at.lb->location,
5753 ADDR_EXPR, TREE_TYPE (decl), space);
5754 gfc_add_modify (&init, decl, addr);
5755 gfc_add_init_cleanup (block, gfc_finish_block (&init), NULL_TREE);
5756 tmp = NULL_TREE;
5758 gfc_add_init_cleanup (block, inittree, tmp);
5762 /* Generate entry and exit code for g77 calling convention arrays. */
5764 void
5765 gfc_trans_g77_array (gfc_symbol * sym, gfc_wrapped_block * block)
5767 tree parm;
5768 tree type;
5769 locus loc;
5770 tree offset;
5771 tree tmp;
5772 tree stmt;
5773 stmtblock_t init;
5775 gfc_save_backend_locus (&loc);
5776 gfc_set_backend_locus (&sym->declared_at);
5778 /* Descriptor type. */
5779 parm = sym->backend_decl;
5780 type = TREE_TYPE (parm);
5781 gcc_assert (GFC_ARRAY_TYPE_P (type));
5783 gfc_start_block (&init);
5785 if (sym->ts.type == BT_CHARACTER
5786 && TREE_CODE (sym->ts.u.cl->backend_decl) == VAR_DECL)
5787 gfc_conv_string_length (sym->ts.u.cl, NULL, &init);
5789 /* Evaluate the bounds of the array. */
5790 gfc_trans_array_bounds (type, sym, &offset, &init);
5792 /* Set the offset. */
5793 if (TREE_CODE (GFC_TYPE_ARRAY_OFFSET (type)) == VAR_DECL)
5794 gfc_add_modify (&init, GFC_TYPE_ARRAY_OFFSET (type), offset);
5796 /* Set the pointer itself if we aren't using the parameter directly. */
5797 if (TREE_CODE (parm) != PARM_DECL)
5799 tmp = convert (TREE_TYPE (parm), GFC_DECL_SAVED_DESCRIPTOR (parm));
5800 gfc_add_modify (&init, parm, tmp);
5802 stmt = gfc_finish_block (&init);
5804 gfc_restore_backend_locus (&loc);
5806 /* Add the initialization code to the start of the function. */
5808 if (sym->attr.optional || sym->attr.not_always_present)
5810 tmp = gfc_conv_expr_present (sym);
5811 stmt = build3_v (COND_EXPR, tmp, stmt, build_empty_stmt (input_location));
5814 gfc_add_init_cleanup (block, stmt, NULL_TREE);
5818 /* Modify the descriptor of an array parameter so that it has the
5819 correct lower bound. Also move the upper bound accordingly.
5820 If the array is not packed, it will be copied into a temporary.
5821 For each dimension we set the new lower and upper bounds. Then we copy the
5822 stride and calculate the offset for this dimension. We also work out
5823 what the stride of a packed array would be, and see it the two match.
5824 If the array need repacking, we set the stride to the values we just
5825 calculated, recalculate the offset and copy the array data.
5826 Code is also added to copy the data back at the end of the function.
5829 void
5830 gfc_trans_dummy_array_bias (gfc_symbol * sym, tree tmpdesc,
5831 gfc_wrapped_block * block)
5833 tree size;
5834 tree type;
5835 tree offset;
5836 locus loc;
5837 stmtblock_t init;
5838 tree stmtInit, stmtCleanup;
5839 tree lbound;
5840 tree ubound;
5841 tree dubound;
5842 tree dlbound;
5843 tree dumdesc;
5844 tree tmp;
5845 tree stride, stride2;
5846 tree stmt_packed;
5847 tree stmt_unpacked;
5848 tree partial;
5849 gfc_se se;
5850 int n;
5851 int checkparm;
5852 int no_repack;
5853 bool optional_arg;
5855 /* Do nothing for pointer and allocatable arrays. */
5856 if (sym->attr.pointer || sym->attr.allocatable)
5857 return;
5859 if (sym->attr.dummy && gfc_is_nodesc_array (sym))
5861 gfc_trans_g77_array (sym, block);
5862 return;
5865 gfc_save_backend_locus (&loc);
5866 gfc_set_backend_locus (&sym->declared_at);
5868 /* Descriptor type. */
5869 type = TREE_TYPE (tmpdesc);
5870 gcc_assert (GFC_ARRAY_TYPE_P (type));
5871 dumdesc = GFC_DECL_SAVED_DESCRIPTOR (tmpdesc);
5872 dumdesc = build_fold_indirect_ref_loc (input_location, dumdesc);
5873 gfc_start_block (&init);
5875 if (sym->ts.type == BT_CHARACTER
5876 && TREE_CODE (sym->ts.u.cl->backend_decl) == VAR_DECL)
5877 gfc_conv_string_length (sym->ts.u.cl, NULL, &init);
5879 checkparm = (sym->as->type == AS_EXPLICIT
5880 && (gfc_option.rtcheck & GFC_RTCHECK_BOUNDS));
5882 no_repack = !(GFC_DECL_PACKED_ARRAY (tmpdesc)
5883 || GFC_DECL_PARTIAL_PACKED_ARRAY (tmpdesc));
5885 if (GFC_DECL_PARTIAL_PACKED_ARRAY (tmpdesc))
5887 /* For non-constant shape arrays we only check if the first dimension
5888 is contiguous. Repacking higher dimensions wouldn't gain us
5889 anything as we still don't know the array stride. */
5890 partial = gfc_create_var (boolean_type_node, "partial");
5891 TREE_USED (partial) = 1;
5892 tmp = gfc_conv_descriptor_stride_get (dumdesc, gfc_rank_cst[0]);
5893 tmp = fold_build2_loc (input_location, EQ_EXPR, boolean_type_node, tmp,
5894 gfc_index_one_node);
5895 gfc_add_modify (&init, partial, tmp);
5897 else
5898 partial = NULL_TREE;
5900 /* The naming of stmt_unpacked and stmt_packed may be counter-intuitive
5901 here, however I think it does the right thing. */
5902 if (no_repack)
5904 /* Set the first stride. */
5905 stride = gfc_conv_descriptor_stride_get (dumdesc, gfc_rank_cst[0]);
5906 stride = gfc_evaluate_now (stride, &init);
5908 tmp = fold_build2_loc (input_location, EQ_EXPR, boolean_type_node,
5909 stride, gfc_index_zero_node);
5910 tmp = fold_build3_loc (input_location, COND_EXPR, gfc_array_index_type,
5911 tmp, gfc_index_one_node, stride);
5912 stride = GFC_TYPE_ARRAY_STRIDE (type, 0);
5913 gfc_add_modify (&init, stride, tmp);
5915 /* Allow the user to disable array repacking. */
5916 stmt_unpacked = NULL_TREE;
5918 else
5920 gcc_assert (integer_onep (GFC_TYPE_ARRAY_STRIDE (type, 0)));
5921 /* A library call to repack the array if necessary. */
5922 tmp = GFC_DECL_SAVED_DESCRIPTOR (tmpdesc);
5923 stmt_unpacked = build_call_expr_loc (input_location,
5924 gfor_fndecl_in_pack, 1, tmp);
5926 stride = gfc_index_one_node;
5928 if (gfc_option.warn_array_temp)
5929 gfc_warning ("Creating array temporary at %L", &loc);
5932 /* This is for the case where the array data is used directly without
5933 calling the repack function. */
5934 if (no_repack || partial != NULL_TREE)
5935 stmt_packed = gfc_conv_descriptor_data_get (dumdesc);
5936 else
5937 stmt_packed = NULL_TREE;
5939 /* Assign the data pointer. */
5940 if (stmt_packed != NULL_TREE && stmt_unpacked != NULL_TREE)
5942 /* Don't repack unknown shape arrays when the first stride is 1. */
5943 tmp = fold_build3_loc (input_location, COND_EXPR, TREE_TYPE (stmt_packed),
5944 partial, stmt_packed, stmt_unpacked);
5946 else
5947 tmp = stmt_packed != NULL_TREE ? stmt_packed : stmt_unpacked;
5948 gfc_add_modify (&init, tmpdesc, fold_convert (type, tmp));
5950 offset = gfc_index_zero_node;
5951 size = gfc_index_one_node;
5953 /* Evaluate the bounds of the array. */
5954 for (n = 0; n < sym->as->rank; n++)
5956 if (checkparm || !sym->as->upper[n])
5958 /* Get the bounds of the actual parameter. */
5959 dubound = gfc_conv_descriptor_ubound_get (dumdesc, gfc_rank_cst[n]);
5960 dlbound = gfc_conv_descriptor_lbound_get (dumdesc, gfc_rank_cst[n]);
5962 else
5964 dubound = NULL_TREE;
5965 dlbound = NULL_TREE;
5968 lbound = GFC_TYPE_ARRAY_LBOUND (type, n);
5969 if (!INTEGER_CST_P (lbound))
5971 gfc_init_se (&se, NULL);
5972 gfc_conv_expr_type (&se, sym->as->lower[n],
5973 gfc_array_index_type);
5974 gfc_add_block_to_block (&init, &se.pre);
5975 gfc_add_modify (&init, lbound, se.expr);
5978 ubound = GFC_TYPE_ARRAY_UBOUND (type, n);
5979 /* Set the desired upper bound. */
5980 if (sym->as->upper[n])
5982 /* We know what we want the upper bound to be. */
5983 if (!INTEGER_CST_P (ubound))
5985 gfc_init_se (&se, NULL);
5986 gfc_conv_expr_type (&se, sym->as->upper[n],
5987 gfc_array_index_type);
5988 gfc_add_block_to_block (&init, &se.pre);
5989 gfc_add_modify (&init, ubound, se.expr);
5992 /* Check the sizes match. */
5993 if (checkparm)
5995 /* Check (ubound(a) - lbound(a) == ubound(b) - lbound(b)). */
5996 char * msg;
5997 tree temp;
5999 temp = fold_build2_loc (input_location, MINUS_EXPR,
6000 gfc_array_index_type, ubound, lbound);
6001 temp = fold_build2_loc (input_location, PLUS_EXPR,
6002 gfc_array_index_type,
6003 gfc_index_one_node, temp);
6004 stride2 = fold_build2_loc (input_location, MINUS_EXPR,
6005 gfc_array_index_type, dubound,
6006 dlbound);
6007 stride2 = fold_build2_loc (input_location, PLUS_EXPR,
6008 gfc_array_index_type,
6009 gfc_index_one_node, stride2);
6010 tmp = fold_build2_loc (input_location, NE_EXPR,
6011 gfc_array_index_type, temp, stride2);
6012 asprintf (&msg, "Dimension %d of array '%s' has extent "
6013 "%%ld instead of %%ld", n+1, sym->name);
6015 gfc_trans_runtime_check (true, false, tmp, &init, &loc, msg,
6016 fold_convert (long_integer_type_node, temp),
6017 fold_convert (long_integer_type_node, stride2));
6019 free (msg);
6022 else
6024 /* For assumed shape arrays move the upper bound by the same amount
6025 as the lower bound. */
6026 tmp = fold_build2_loc (input_location, MINUS_EXPR,
6027 gfc_array_index_type, dubound, dlbound);
6028 tmp = fold_build2_loc (input_location, PLUS_EXPR,
6029 gfc_array_index_type, tmp, lbound);
6030 gfc_add_modify (&init, ubound, tmp);
6032 /* The offset of this dimension. offset = offset - lbound * stride. */
6033 tmp = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type,
6034 lbound, stride);
6035 offset = fold_build2_loc (input_location, MINUS_EXPR,
6036 gfc_array_index_type, offset, tmp);
6038 /* The size of this dimension, and the stride of the next. */
6039 if (n + 1 < sym->as->rank)
6041 stride = GFC_TYPE_ARRAY_STRIDE (type, n + 1);
6043 if (no_repack || partial != NULL_TREE)
6044 stmt_unpacked =
6045 gfc_conv_descriptor_stride_get (dumdesc, gfc_rank_cst[n+1]);
6047 /* Figure out the stride if not a known constant. */
6048 if (!INTEGER_CST_P (stride))
6050 if (no_repack)
6051 stmt_packed = NULL_TREE;
6052 else
6054 /* Calculate stride = size * (ubound + 1 - lbound). */
6055 tmp = fold_build2_loc (input_location, MINUS_EXPR,
6056 gfc_array_index_type,
6057 gfc_index_one_node, lbound);
6058 tmp = fold_build2_loc (input_location, PLUS_EXPR,
6059 gfc_array_index_type, ubound, tmp);
6060 size = fold_build2_loc (input_location, MULT_EXPR,
6061 gfc_array_index_type, size, tmp);
6062 stmt_packed = size;
6065 /* Assign the stride. */
6066 if (stmt_packed != NULL_TREE && stmt_unpacked != NULL_TREE)
6067 tmp = fold_build3_loc (input_location, COND_EXPR,
6068 gfc_array_index_type, partial,
6069 stmt_unpacked, stmt_packed);
6070 else
6071 tmp = (stmt_packed != NULL_TREE) ? stmt_packed : stmt_unpacked;
6072 gfc_add_modify (&init, stride, tmp);
6075 else
6077 stride = GFC_TYPE_ARRAY_SIZE (type);
6079 if (stride && !INTEGER_CST_P (stride))
6081 /* Calculate size = stride * (ubound + 1 - lbound). */
6082 tmp = fold_build2_loc (input_location, MINUS_EXPR,
6083 gfc_array_index_type,
6084 gfc_index_one_node, lbound);
6085 tmp = fold_build2_loc (input_location, PLUS_EXPR,
6086 gfc_array_index_type,
6087 ubound, tmp);
6088 tmp = fold_build2_loc (input_location, MULT_EXPR,
6089 gfc_array_index_type,
6090 GFC_TYPE_ARRAY_STRIDE (type, n), tmp);
6091 gfc_add_modify (&init, stride, tmp);
6096 gfc_trans_array_cobounds (type, &init, sym);
6098 /* Set the offset. */
6099 if (TREE_CODE (GFC_TYPE_ARRAY_OFFSET (type)) == VAR_DECL)
6100 gfc_add_modify (&init, GFC_TYPE_ARRAY_OFFSET (type), offset);
6102 gfc_trans_vla_type_sizes (sym, &init);
6104 stmtInit = gfc_finish_block (&init);
6106 /* Only do the entry/initialization code if the arg is present. */
6107 dumdesc = GFC_DECL_SAVED_DESCRIPTOR (tmpdesc);
6108 optional_arg = (sym->attr.optional
6109 || (sym->ns->proc_name->attr.entry_master
6110 && sym->attr.dummy));
6111 if (optional_arg)
6113 tmp = gfc_conv_expr_present (sym);
6114 stmtInit = build3_v (COND_EXPR, tmp, stmtInit,
6115 build_empty_stmt (input_location));
6118 /* Cleanup code. */
6119 if (no_repack)
6120 stmtCleanup = NULL_TREE;
6121 else
6123 stmtblock_t cleanup;
6124 gfc_start_block (&cleanup);
6126 if (sym->attr.intent != INTENT_IN)
6128 /* Copy the data back. */
6129 tmp = build_call_expr_loc (input_location,
6130 gfor_fndecl_in_unpack, 2, dumdesc, tmpdesc);
6131 gfc_add_expr_to_block (&cleanup, tmp);
6134 /* Free the temporary. */
6135 tmp = gfc_call_free (tmpdesc);
6136 gfc_add_expr_to_block (&cleanup, tmp);
6138 stmtCleanup = gfc_finish_block (&cleanup);
6140 /* Only do the cleanup if the array was repacked. */
6141 tmp = build_fold_indirect_ref_loc (input_location, dumdesc);
6142 tmp = gfc_conv_descriptor_data_get (tmp);
6143 tmp = fold_build2_loc (input_location, NE_EXPR, boolean_type_node,
6144 tmp, tmpdesc);
6145 stmtCleanup = build3_v (COND_EXPR, tmp, stmtCleanup,
6146 build_empty_stmt (input_location));
6148 if (optional_arg)
6150 tmp = gfc_conv_expr_present (sym);
6151 stmtCleanup = build3_v (COND_EXPR, tmp, stmtCleanup,
6152 build_empty_stmt (input_location));
6156 /* We don't need to free any memory allocated by internal_pack as it will
6157 be freed at the end of the function by pop_context. */
6158 gfc_add_init_cleanup (block, stmtInit, stmtCleanup);
6160 gfc_restore_backend_locus (&loc);
6164 /* Calculate the overall offset, including subreferences. */
6165 static void
6166 gfc_get_dataptr_offset (stmtblock_t *block, tree parm, tree desc, tree offset,
6167 bool subref, gfc_expr *expr)
6169 tree tmp;
6170 tree field;
6171 tree stride;
6172 tree index;
6173 gfc_ref *ref;
6174 gfc_se start;
6175 int n;
6177 /* If offset is NULL and this is not a subreferenced array, there is
6178 nothing to do. */
6179 if (offset == NULL_TREE)
6181 if (subref)
6182 offset = gfc_index_zero_node;
6183 else
6184 return;
6187 tmp = build_array_ref (desc, offset, NULL);
6189 /* Offset the data pointer for pointer assignments from arrays with
6190 subreferences; e.g. my_integer => my_type(:)%integer_component. */
6191 if (subref)
6193 /* Go past the array reference. */
6194 for (ref = expr->ref; ref; ref = ref->next)
6195 if (ref->type == REF_ARRAY &&
6196 ref->u.ar.type != AR_ELEMENT)
6198 ref = ref->next;
6199 break;
6202 /* Calculate the offset for each subsequent subreference. */
6203 for (; ref; ref = ref->next)
6205 switch (ref->type)
6207 case REF_COMPONENT:
6208 field = ref->u.c.component->backend_decl;
6209 gcc_assert (field && TREE_CODE (field) == FIELD_DECL);
6210 tmp = fold_build3_loc (input_location, COMPONENT_REF,
6211 TREE_TYPE (field),
6212 tmp, field, NULL_TREE);
6213 break;
6215 case REF_SUBSTRING:
6216 gcc_assert (TREE_CODE (TREE_TYPE (tmp)) == ARRAY_TYPE);
6217 gfc_init_se (&start, NULL);
6218 gfc_conv_expr_type (&start, ref->u.ss.start, gfc_charlen_type_node);
6219 gfc_add_block_to_block (block, &start.pre);
6220 tmp = gfc_build_array_ref (tmp, start.expr, NULL);
6221 break;
6223 case REF_ARRAY:
6224 gcc_assert (TREE_CODE (TREE_TYPE (tmp)) == ARRAY_TYPE
6225 && ref->u.ar.type == AR_ELEMENT);
6227 /* TODO - Add bounds checking. */
6228 stride = gfc_index_one_node;
6229 index = gfc_index_zero_node;
6230 for (n = 0; n < ref->u.ar.dimen; n++)
6232 tree itmp;
6233 tree jtmp;
6235 /* Update the index. */
6236 gfc_init_se (&start, NULL);
6237 gfc_conv_expr_type (&start, ref->u.ar.start[n], gfc_array_index_type);
6238 itmp = gfc_evaluate_now (start.expr, block);
6239 gfc_init_se (&start, NULL);
6240 gfc_conv_expr_type (&start, ref->u.ar.as->lower[n], gfc_array_index_type);
6241 jtmp = gfc_evaluate_now (start.expr, block);
6242 itmp = fold_build2_loc (input_location, MINUS_EXPR,
6243 gfc_array_index_type, itmp, jtmp);
6244 itmp = fold_build2_loc (input_location, MULT_EXPR,
6245 gfc_array_index_type, itmp, stride);
6246 index = fold_build2_loc (input_location, PLUS_EXPR,
6247 gfc_array_index_type, itmp, index);
6248 index = gfc_evaluate_now (index, block);
6250 /* Update the stride. */
6251 gfc_init_se (&start, NULL);
6252 gfc_conv_expr_type (&start, ref->u.ar.as->upper[n], gfc_array_index_type);
6253 itmp = fold_build2_loc (input_location, MINUS_EXPR,
6254 gfc_array_index_type, start.expr,
6255 jtmp);
6256 itmp = fold_build2_loc (input_location, PLUS_EXPR,
6257 gfc_array_index_type,
6258 gfc_index_one_node, itmp);
6259 stride = fold_build2_loc (input_location, MULT_EXPR,
6260 gfc_array_index_type, stride, itmp);
6261 stride = gfc_evaluate_now (stride, block);
6264 /* Apply the index to obtain the array element. */
6265 tmp = gfc_build_array_ref (tmp, index, NULL);
6266 break;
6268 default:
6269 gcc_unreachable ();
6270 break;
6275 /* Set the target data pointer. */
6276 offset = gfc_build_addr_expr (gfc_array_dataptr_type (desc), tmp);
6277 gfc_conv_descriptor_data_set (block, parm, offset);
6281 /* gfc_conv_expr_descriptor needs the string length an expression
6282 so that the size of the temporary can be obtained. This is done
6283 by adding up the string lengths of all the elements in the
6284 expression. Function with non-constant expressions have their
6285 string lengths mapped onto the actual arguments using the
6286 interface mapping machinery in trans-expr.c. */
6287 static void
6288 get_array_charlen (gfc_expr *expr, gfc_se *se)
6290 gfc_interface_mapping mapping;
6291 gfc_formal_arglist *formal;
6292 gfc_actual_arglist *arg;
6293 gfc_se tse;
6295 if (expr->ts.u.cl->length
6296 && gfc_is_constant_expr (expr->ts.u.cl->length))
6298 if (!expr->ts.u.cl->backend_decl)
6299 gfc_conv_string_length (expr->ts.u.cl, expr, &se->pre);
6300 return;
6303 switch (expr->expr_type)
6305 case EXPR_OP:
6306 get_array_charlen (expr->value.op.op1, se);
6308 /* For parentheses the expression ts.u.cl is identical. */
6309 if (expr->value.op.op == INTRINSIC_PARENTHESES)
6310 return;
6312 expr->ts.u.cl->backend_decl =
6313 gfc_create_var (gfc_charlen_type_node, "sln");
6315 if (expr->value.op.op2)
6317 get_array_charlen (expr->value.op.op2, se);
6319 gcc_assert (expr->value.op.op == INTRINSIC_CONCAT);
6321 /* Add the string lengths and assign them to the expression
6322 string length backend declaration. */
6323 gfc_add_modify (&se->pre, expr->ts.u.cl->backend_decl,
6324 fold_build2_loc (input_location, PLUS_EXPR,
6325 gfc_charlen_type_node,
6326 expr->value.op.op1->ts.u.cl->backend_decl,
6327 expr->value.op.op2->ts.u.cl->backend_decl));
6329 else
6330 gfc_add_modify (&se->pre, expr->ts.u.cl->backend_decl,
6331 expr->value.op.op1->ts.u.cl->backend_decl);
6332 break;
6334 case EXPR_FUNCTION:
6335 if (expr->value.function.esym == NULL
6336 || expr->ts.u.cl->length->expr_type == EXPR_CONSTANT)
6338 gfc_conv_string_length (expr->ts.u.cl, expr, &se->pre);
6339 break;
6342 /* Map expressions involving the dummy arguments onto the actual
6343 argument expressions. */
6344 gfc_init_interface_mapping (&mapping);
6345 formal = gfc_sym_get_dummy_args (expr->symtree->n.sym);
6346 arg = expr->value.function.actual;
6348 /* Set se = NULL in the calls to the interface mapping, to suppress any
6349 backend stuff. */
6350 for (; arg != NULL; arg = arg->next, formal = formal ? formal->next : NULL)
6352 if (!arg->expr)
6353 continue;
6354 if (formal->sym)
6355 gfc_add_interface_mapping (&mapping, formal->sym, NULL, arg->expr);
6358 gfc_init_se (&tse, NULL);
6360 /* Build the expression for the character length and convert it. */
6361 gfc_apply_interface_mapping (&mapping, &tse, expr->ts.u.cl->length);
6363 gfc_add_block_to_block (&se->pre, &tse.pre);
6364 gfc_add_block_to_block (&se->post, &tse.post);
6365 tse.expr = fold_convert (gfc_charlen_type_node, tse.expr);
6366 tse.expr = fold_build2_loc (input_location, MAX_EXPR,
6367 gfc_charlen_type_node, tse.expr,
6368 build_int_cst (gfc_charlen_type_node, 0));
6369 expr->ts.u.cl->backend_decl = tse.expr;
6370 gfc_free_interface_mapping (&mapping);
6371 break;
6373 default:
6374 gfc_conv_string_length (expr->ts.u.cl, expr, &se->pre);
6375 break;
6380 /* Helper function to check dimensions. */
6381 static bool
6382 transposed_dims (gfc_ss *ss)
6384 int n;
6386 for (n = 0; n < ss->dimen; n++)
6387 if (ss->dim[n] != n)
6388 return true;
6389 return false;
6393 /* Convert the last ref of a scalar coarray from an AR_ELEMENT to an
6394 AR_FULL, suitable for the scalarizer. */
6396 static gfc_ss *
6397 walk_coarray (gfc_expr *e)
6399 gfc_ss *ss;
6401 gcc_assert (gfc_get_corank (e) > 0);
6403 ss = gfc_walk_expr (e);
6405 /* Fix scalar coarray. */
6406 if (ss == gfc_ss_terminator)
6408 gfc_ref *ref;
6410 ref = e->ref;
6411 while (ref)
6413 if (ref->type == REF_ARRAY
6414 && ref->u.ar.codimen > 0)
6415 break;
6417 ref = ref->next;
6420 gcc_assert (ref != NULL);
6421 if (ref->u.ar.type == AR_ELEMENT)
6422 ref->u.ar.type = AR_SECTION;
6423 ss = gfc_reverse_ss (gfc_walk_array_ref (ss, e, ref));
6426 return ss;
6430 /* Convert an array for passing as an actual argument. Expressions and
6431 vector subscripts are evaluated and stored in a temporary, which is then
6432 passed. For whole arrays the descriptor is passed. For array sections
6433 a modified copy of the descriptor is passed, but using the original data.
6435 This function is also used for array pointer assignments, and there
6436 are three cases:
6438 - se->want_pointer && !se->direct_byref
6439 EXPR is an actual argument. On exit, se->expr contains a
6440 pointer to the array descriptor.
6442 - !se->want_pointer && !se->direct_byref
6443 EXPR is an actual argument to an intrinsic function or the
6444 left-hand side of a pointer assignment. On exit, se->expr
6445 contains the descriptor for EXPR.
6447 - !se->want_pointer && se->direct_byref
6448 EXPR is the right-hand side of a pointer assignment and
6449 se->expr is the descriptor for the previously-evaluated
6450 left-hand side. The function creates an assignment from
6451 EXPR to se->expr.
6454 The se->force_tmp flag disables the non-copying descriptor optimization
6455 that is used for transpose. It may be used in cases where there is an
6456 alias between the transpose argument and another argument in the same
6457 function call. */
6459 void
6460 gfc_conv_expr_descriptor (gfc_se *se, gfc_expr *expr)
6462 gfc_ss *ss;
6463 gfc_ss_type ss_type;
6464 gfc_ss_info *ss_info;
6465 gfc_loopinfo loop;
6466 gfc_array_info *info;
6467 int need_tmp;
6468 int n;
6469 tree tmp;
6470 tree desc;
6471 stmtblock_t block;
6472 tree start;
6473 tree offset;
6474 int full;
6475 bool subref_array_target = false;
6476 gfc_expr *arg, *ss_expr;
6478 if (se->want_coarray)
6479 ss = walk_coarray (expr);
6480 else
6481 ss = gfc_walk_expr (expr);
6483 gcc_assert (ss != NULL);
6484 gcc_assert (ss != gfc_ss_terminator);
6486 ss_info = ss->info;
6487 ss_type = ss_info->type;
6488 ss_expr = ss_info->expr;
6490 /* Special case: TRANSPOSE which needs no temporary. */
6491 while (expr->expr_type == EXPR_FUNCTION && expr->value.function.isym
6492 && NULL != (arg = gfc_get_noncopying_intrinsic_argument (expr)))
6494 /* This is a call to transpose which has already been handled by the
6495 scalarizer, so that we just need to get its argument's descriptor. */
6496 gcc_assert (expr->value.function.isym->id == GFC_ISYM_TRANSPOSE);
6497 expr = expr->value.function.actual->expr;
6500 /* Special case things we know we can pass easily. */
6501 switch (expr->expr_type)
6503 case EXPR_VARIABLE:
6504 /* If we have a linear array section, we can pass it directly.
6505 Otherwise we need to copy it into a temporary. */
6507 gcc_assert (ss_type == GFC_SS_SECTION);
6508 gcc_assert (ss_expr == expr);
6509 info = &ss_info->data.array;
6511 /* Get the descriptor for the array. */
6512 gfc_conv_ss_descriptor (&se->pre, ss, 0);
6513 desc = info->descriptor;
6515 subref_array_target = se->direct_byref && is_subref_array (expr);
6516 need_tmp = gfc_ref_needs_temporary_p (expr->ref)
6517 && !subref_array_target;
6519 if (se->force_tmp)
6520 need_tmp = 1;
6522 if (need_tmp)
6523 full = 0;
6524 else if (GFC_ARRAY_TYPE_P (TREE_TYPE (desc)))
6526 /* Create a new descriptor if the array doesn't have one. */
6527 full = 0;
6529 else if (info->ref->u.ar.type == AR_FULL || se->descriptor_only)
6530 full = 1;
6531 else if (se->direct_byref)
6532 full = 0;
6533 else
6534 full = gfc_full_array_ref_p (info->ref, NULL);
6536 if (full && !transposed_dims (ss))
6538 if (se->direct_byref && !se->byref_noassign)
6540 /* Copy the descriptor for pointer assignments. */
6541 gfc_add_modify (&se->pre, se->expr, desc);
6543 /* Add any offsets from subreferences. */
6544 gfc_get_dataptr_offset (&se->pre, se->expr, desc, NULL_TREE,
6545 subref_array_target, expr);
6547 else if (se->want_pointer)
6549 /* We pass full arrays directly. This means that pointers and
6550 allocatable arrays should also work. */
6551 se->expr = gfc_build_addr_expr (NULL_TREE, desc);
6553 else
6555 se->expr = desc;
6558 if (expr->ts.type == BT_CHARACTER)
6559 se->string_length = gfc_get_expr_charlen (expr);
6561 gfc_free_ss_chain (ss);
6562 return;
6564 break;
6566 case EXPR_FUNCTION:
6567 /* A transformational function return value will be a temporary
6568 array descriptor. We still need to go through the scalarizer
6569 to create the descriptor. Elemental functions are handled as
6570 arbitrary expressions, i.e. copy to a temporary. */
6572 if (se->direct_byref)
6574 gcc_assert (ss_type == GFC_SS_FUNCTION && ss_expr == expr);
6576 /* For pointer assignments pass the descriptor directly. */
6577 if (se->ss == NULL)
6578 se->ss = ss;
6579 else
6580 gcc_assert (se->ss == ss);
6581 se->expr = gfc_build_addr_expr (NULL_TREE, se->expr);
6582 gfc_conv_expr (se, expr);
6583 gfc_free_ss_chain (ss);
6584 return;
6587 if (ss_expr != expr || ss_type != GFC_SS_FUNCTION)
6589 if (ss_expr != expr)
6590 /* Elemental function. */
6591 gcc_assert ((expr->value.function.esym != NULL
6592 && expr->value.function.esym->attr.elemental)
6593 || (expr->value.function.isym != NULL
6594 && expr->value.function.isym->elemental)
6595 || gfc_inline_intrinsic_function_p (expr));
6596 else
6597 gcc_assert (ss_type == GFC_SS_INTRINSIC);
6599 need_tmp = 1;
6600 if (expr->ts.type == BT_CHARACTER
6601 && expr->ts.u.cl->length->expr_type != EXPR_CONSTANT)
6602 get_array_charlen (expr, se);
6604 info = NULL;
6606 else
6608 /* Transformational function. */
6609 info = &ss_info->data.array;
6610 need_tmp = 0;
6612 break;
6614 case EXPR_ARRAY:
6615 /* Constant array constructors don't need a temporary. */
6616 if (ss_type == GFC_SS_CONSTRUCTOR
6617 && expr->ts.type != BT_CHARACTER
6618 && gfc_constant_array_constructor_p (expr->value.constructor))
6620 need_tmp = 0;
6621 info = &ss_info->data.array;
6623 else
6625 need_tmp = 1;
6626 info = NULL;
6628 break;
6630 default:
6631 /* Something complicated. Copy it into a temporary. */
6632 need_tmp = 1;
6633 info = NULL;
6634 break;
6637 /* If we are creating a temporary, we don't need to bother about aliases
6638 anymore. */
6639 if (need_tmp)
6640 se->force_tmp = 0;
6642 gfc_init_loopinfo (&loop);
6644 /* Associate the SS with the loop. */
6645 gfc_add_ss_to_loop (&loop, ss);
6647 /* Tell the scalarizer not to bother creating loop variables, etc. */
6648 if (!need_tmp)
6649 loop.array_parameter = 1;
6650 else
6651 /* The right-hand side of a pointer assignment mustn't use a temporary. */
6652 gcc_assert (!se->direct_byref);
6654 /* Setup the scalarizing loops and bounds. */
6655 gfc_conv_ss_startstride (&loop);
6657 if (need_tmp)
6659 if (expr->ts.type == BT_CHARACTER && !expr->ts.u.cl->backend_decl)
6660 get_array_charlen (expr, se);
6662 /* Tell the scalarizer to make a temporary. */
6663 loop.temp_ss = gfc_get_temp_ss (gfc_typenode_for_spec (&expr->ts),
6664 ((expr->ts.type == BT_CHARACTER)
6665 ? expr->ts.u.cl->backend_decl
6666 : NULL),
6667 loop.dimen);
6669 se->string_length = loop.temp_ss->info->string_length;
6670 gcc_assert (loop.temp_ss->dimen == loop.dimen);
6671 gfc_add_ss_to_loop (&loop, loop.temp_ss);
6674 gfc_conv_loop_setup (&loop, & expr->where);
6676 if (need_tmp)
6678 /* Copy into a temporary and pass that. We don't need to copy the data
6679 back because expressions and vector subscripts must be INTENT_IN. */
6680 /* TODO: Optimize passing function return values. */
6681 gfc_se lse;
6682 gfc_se rse;
6684 /* Start the copying loops. */
6685 gfc_mark_ss_chain_used (loop.temp_ss, 1);
6686 gfc_mark_ss_chain_used (ss, 1);
6687 gfc_start_scalarized_body (&loop, &block);
6689 /* Copy each data element. */
6690 gfc_init_se (&lse, NULL);
6691 gfc_copy_loopinfo_to_se (&lse, &loop);
6692 gfc_init_se (&rse, NULL);
6693 gfc_copy_loopinfo_to_se (&rse, &loop);
6695 lse.ss = loop.temp_ss;
6696 rse.ss = ss;
6698 gfc_conv_scalarized_array_ref (&lse, NULL);
6699 if (expr->ts.type == BT_CHARACTER)
6701 gfc_conv_expr (&rse, expr);
6702 if (POINTER_TYPE_P (TREE_TYPE (rse.expr)))
6703 rse.expr = build_fold_indirect_ref_loc (input_location,
6704 rse.expr);
6706 else
6707 gfc_conv_expr_val (&rse, expr);
6709 gfc_add_block_to_block (&block, &rse.pre);
6710 gfc_add_block_to_block (&block, &lse.pre);
6712 lse.string_length = rse.string_length;
6713 tmp = gfc_trans_scalar_assign (&lse, &rse, expr->ts, true,
6714 expr->expr_type == EXPR_VARIABLE
6715 || expr->expr_type == EXPR_ARRAY, true);
6716 gfc_add_expr_to_block (&block, tmp);
6718 /* Finish the copying loops. */
6719 gfc_trans_scalarizing_loops (&loop, &block);
6721 desc = loop.temp_ss->info->data.array.descriptor;
6723 else if (expr->expr_type == EXPR_FUNCTION && !transposed_dims (ss))
6725 desc = info->descriptor;
6726 se->string_length = ss_info->string_length;
6728 else
6730 /* We pass sections without copying to a temporary. Make a new
6731 descriptor and point it at the section we want. The loop variable
6732 limits will be the limits of the section.
6733 A function may decide to repack the array to speed up access, but
6734 we're not bothered about that here. */
6735 int dim, ndim, codim;
6736 tree parm;
6737 tree parmtype;
6738 tree stride;
6739 tree from;
6740 tree to;
6741 tree base;
6743 ndim = info->ref ? info->ref->u.ar.dimen : ss->dimen;
6745 if (se->want_coarray)
6747 gfc_array_ref *ar = &info->ref->u.ar;
6749 codim = gfc_get_corank (expr);
6750 for (n = 0; n < codim - 1; n++)
6752 /* Make sure we are not lost somehow. */
6753 gcc_assert (ar->dimen_type[n + ndim] == DIMEN_THIS_IMAGE);
6755 /* Make sure the call to gfc_conv_section_startstride won't
6756 generate unnecessary code to calculate stride. */
6757 gcc_assert (ar->stride[n + ndim] == NULL);
6759 gfc_conv_section_startstride (&loop.pre, ss, n + ndim);
6760 loop.from[n + loop.dimen] = info->start[n + ndim];
6761 loop.to[n + loop.dimen] = info->end[n + ndim];
6764 gcc_assert (n == codim - 1);
6765 evaluate_bound (&loop.pre, info->start, ar->start,
6766 info->descriptor, n + ndim, true);
6767 loop.from[n + loop.dimen] = info->start[n + ndim];
6769 else
6770 codim = 0;
6772 /* Set the string_length for a character array. */
6773 if (expr->ts.type == BT_CHARACTER)
6774 se->string_length = gfc_get_expr_charlen (expr);
6776 desc = info->descriptor;
6777 if (se->direct_byref && !se->byref_noassign)
6779 /* For pointer assignments we fill in the destination. */
6780 parm = se->expr;
6781 parmtype = TREE_TYPE (parm);
6783 else
6785 /* Otherwise make a new one. */
6786 parmtype = gfc_get_element_type (TREE_TYPE (desc));
6787 parmtype = gfc_get_array_type_bounds (parmtype, loop.dimen, codim,
6788 loop.from, loop.to, 0,
6789 GFC_ARRAY_UNKNOWN, false);
6790 parm = gfc_create_var (parmtype, "parm");
6793 offset = gfc_index_zero_node;
6795 /* The following can be somewhat confusing. We have two
6796 descriptors, a new one and the original array.
6797 {parm, parmtype, dim} refer to the new one.
6798 {desc, type, n, loop} refer to the original, which maybe
6799 a descriptorless array.
6800 The bounds of the scalarization are the bounds of the section.
6801 We don't have to worry about numeric overflows when calculating
6802 the offsets because all elements are within the array data. */
6804 /* Set the dtype. */
6805 tmp = gfc_conv_descriptor_dtype (parm);
6806 gfc_add_modify (&loop.pre, tmp, gfc_get_dtype (parmtype));
6808 /* Set offset for assignments to pointer only to zero if it is not
6809 the full array. */
6810 if (se->direct_byref
6811 && info->ref && info->ref->u.ar.type != AR_FULL)
6812 base = gfc_index_zero_node;
6813 else if (GFC_ARRAY_TYPE_P (TREE_TYPE (desc)))
6814 base = gfc_evaluate_now (gfc_conv_array_offset (desc), &loop.pre);
6815 else
6816 base = NULL_TREE;
6818 for (n = 0; n < ndim; n++)
6820 stride = gfc_conv_array_stride (desc, n);
6822 /* Work out the offset. */
6823 if (info->ref
6824 && info->ref->u.ar.dimen_type[n] == DIMEN_ELEMENT)
6826 gcc_assert (info->subscript[n]
6827 && info->subscript[n]->info->type == GFC_SS_SCALAR);
6828 start = info->subscript[n]->info->data.scalar.value;
6830 else
6832 /* Evaluate and remember the start of the section. */
6833 start = info->start[n];
6834 stride = gfc_evaluate_now (stride, &loop.pre);
6837 tmp = gfc_conv_array_lbound (desc, n);
6838 tmp = fold_build2_loc (input_location, MINUS_EXPR, TREE_TYPE (tmp),
6839 start, tmp);
6840 tmp = fold_build2_loc (input_location, MULT_EXPR, TREE_TYPE (tmp),
6841 tmp, stride);
6842 offset = fold_build2_loc (input_location, PLUS_EXPR, TREE_TYPE (tmp),
6843 offset, tmp);
6845 if (info->ref
6846 && info->ref->u.ar.dimen_type[n] == DIMEN_ELEMENT)
6848 /* For elemental dimensions, we only need the offset. */
6849 continue;
6852 /* Vector subscripts need copying and are handled elsewhere. */
6853 if (info->ref)
6854 gcc_assert (info->ref->u.ar.dimen_type[n] == DIMEN_RANGE);
6856 /* look for the corresponding scalarizer dimension: dim. */
6857 for (dim = 0; dim < ndim; dim++)
6858 if (ss->dim[dim] == n)
6859 break;
6861 /* loop exited early: the DIM being looked for has been found. */
6862 gcc_assert (dim < ndim);
6864 /* Set the new lower bound. */
6865 from = loop.from[dim];
6866 to = loop.to[dim];
6868 /* If we have an array section or are assigning make sure that
6869 the lower bound is 1. References to the full
6870 array should otherwise keep the original bounds. */
6871 if ((!info->ref
6872 || info->ref->u.ar.type != AR_FULL)
6873 && !integer_onep (from))
6875 tmp = fold_build2_loc (input_location, MINUS_EXPR,
6876 gfc_array_index_type, gfc_index_one_node,
6877 from);
6878 to = fold_build2_loc (input_location, PLUS_EXPR,
6879 gfc_array_index_type, to, tmp);
6880 from = gfc_index_one_node;
6882 gfc_conv_descriptor_lbound_set (&loop.pre, parm,
6883 gfc_rank_cst[dim], from);
6885 /* Set the new upper bound. */
6886 gfc_conv_descriptor_ubound_set (&loop.pre, parm,
6887 gfc_rank_cst[dim], to);
6889 /* Multiply the stride by the section stride to get the
6890 total stride. */
6891 stride = fold_build2_loc (input_location, MULT_EXPR,
6892 gfc_array_index_type,
6893 stride, info->stride[n]);
6895 if (se->direct_byref
6896 && info->ref
6897 && info->ref->u.ar.type != AR_FULL)
6899 base = fold_build2_loc (input_location, MINUS_EXPR,
6900 TREE_TYPE (base), base, stride);
6902 else if (GFC_ARRAY_TYPE_P (TREE_TYPE (desc)))
6904 tmp = gfc_conv_array_lbound (desc, n);
6905 tmp = fold_build2_loc (input_location, MINUS_EXPR,
6906 TREE_TYPE (base), tmp, loop.from[dim]);
6907 tmp = fold_build2_loc (input_location, MULT_EXPR,
6908 TREE_TYPE (base), tmp,
6909 gfc_conv_array_stride (desc, n));
6910 base = fold_build2_loc (input_location, PLUS_EXPR,
6911 TREE_TYPE (base), tmp, base);
6914 /* Store the new stride. */
6915 gfc_conv_descriptor_stride_set (&loop.pre, parm,
6916 gfc_rank_cst[dim], stride);
6919 for (n = loop.dimen; n < loop.dimen + codim; n++)
6921 from = loop.from[n];
6922 to = loop.to[n];
6923 gfc_conv_descriptor_lbound_set (&loop.pre, parm,
6924 gfc_rank_cst[n], from);
6925 if (n < loop.dimen + codim - 1)
6926 gfc_conv_descriptor_ubound_set (&loop.pre, parm,
6927 gfc_rank_cst[n], to);
6930 if (se->data_not_needed)
6931 gfc_conv_descriptor_data_set (&loop.pre, parm,
6932 gfc_index_zero_node);
6933 else
6934 /* Point the data pointer at the 1st element in the section. */
6935 gfc_get_dataptr_offset (&loop.pre, parm, desc, offset,
6936 subref_array_target, expr);
6938 if ((se->direct_byref || GFC_ARRAY_TYPE_P (TREE_TYPE (desc)))
6939 && !se->data_not_needed)
6941 /* Set the offset. */
6942 gfc_conv_descriptor_offset_set (&loop.pre, parm, base);
6944 else
6946 /* Only the callee knows what the correct offset it, so just set
6947 it to zero here. */
6948 gfc_conv_descriptor_offset_set (&loop.pre, parm, gfc_index_zero_node);
6950 desc = parm;
6953 if (!se->direct_byref || se->byref_noassign)
6955 /* Get a pointer to the new descriptor. */
6956 if (se->want_pointer)
6957 se->expr = gfc_build_addr_expr (NULL_TREE, desc);
6958 else
6959 se->expr = desc;
6962 gfc_add_block_to_block (&se->pre, &loop.pre);
6963 gfc_add_block_to_block (&se->post, &loop.post);
6965 /* Cleanup the scalarizer. */
6966 gfc_cleanup_loop (&loop);
6969 /* Helper function for gfc_conv_array_parameter if array size needs to be
6970 computed. */
6972 static void
6973 array_parameter_size (tree desc, gfc_expr *expr, tree *size)
6975 tree elem;
6976 if (GFC_ARRAY_TYPE_P (TREE_TYPE (desc)))
6977 *size = GFC_TYPE_ARRAY_SIZE (TREE_TYPE (desc));
6978 else if (expr->rank > 1)
6979 *size = build_call_expr_loc (input_location,
6980 gfor_fndecl_size0, 1,
6981 gfc_build_addr_expr (NULL, desc));
6982 else
6984 tree ubound = gfc_conv_descriptor_ubound_get (desc, gfc_index_zero_node);
6985 tree lbound = gfc_conv_descriptor_lbound_get (desc, gfc_index_zero_node);
6987 *size = fold_build2_loc (input_location, MINUS_EXPR,
6988 gfc_array_index_type, ubound, lbound);
6989 *size = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type,
6990 *size, gfc_index_one_node);
6991 *size = fold_build2_loc (input_location, MAX_EXPR, gfc_array_index_type,
6992 *size, gfc_index_zero_node);
6994 elem = TYPE_SIZE_UNIT (gfc_get_element_type (TREE_TYPE (desc)));
6995 *size = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type,
6996 *size, fold_convert (gfc_array_index_type, elem));
6999 /* Convert an array for passing as an actual parameter. */
7000 /* TODO: Optimize passing g77 arrays. */
7002 void
7003 gfc_conv_array_parameter (gfc_se * se, gfc_expr * expr, bool g77,
7004 const gfc_symbol *fsym, const char *proc_name,
7005 tree *size)
7007 tree ptr;
7008 tree desc;
7009 tree tmp = NULL_TREE;
7010 tree stmt;
7011 tree parent = DECL_CONTEXT (current_function_decl);
7012 bool full_array_var;
7013 bool this_array_result;
7014 bool contiguous;
7015 bool no_pack;
7016 bool array_constructor;
7017 bool good_allocatable;
7018 bool ultimate_ptr_comp;
7019 bool ultimate_alloc_comp;
7020 gfc_symbol *sym;
7021 stmtblock_t block;
7022 gfc_ref *ref;
7024 ultimate_ptr_comp = false;
7025 ultimate_alloc_comp = false;
7027 for (ref = expr->ref; ref; ref = ref->next)
7029 if (ref->next == NULL)
7030 break;
7032 if (ref->type == REF_COMPONENT)
7034 ultimate_ptr_comp = ref->u.c.component->attr.pointer;
7035 ultimate_alloc_comp = ref->u.c.component->attr.allocatable;
7039 full_array_var = false;
7040 contiguous = false;
7042 if (expr->expr_type == EXPR_VARIABLE && ref && !ultimate_ptr_comp)
7043 full_array_var = gfc_full_array_ref_p (ref, &contiguous);
7045 sym = full_array_var ? expr->symtree->n.sym : NULL;
7047 /* The symbol should have an array specification. */
7048 gcc_assert (!sym || sym->as || ref->u.ar.as);
7050 if (expr->expr_type == EXPR_ARRAY && expr->ts.type == BT_CHARACTER)
7052 get_array_ctor_strlen (&se->pre, expr->value.constructor, &tmp);
7053 expr->ts.u.cl->backend_decl = tmp;
7054 se->string_length = tmp;
7057 /* Is this the result of the enclosing procedure? */
7058 this_array_result = (full_array_var && sym->attr.flavor == FL_PROCEDURE);
7059 if (this_array_result
7060 && (sym->backend_decl != current_function_decl)
7061 && (sym->backend_decl != parent))
7062 this_array_result = false;
7064 /* Passing address of the array if it is not pointer or assumed-shape. */
7065 if (full_array_var && g77 && !this_array_result
7066 && sym->ts.type != BT_DERIVED && sym->ts.type != BT_CLASS)
7068 tmp = gfc_get_symbol_decl (sym);
7070 if (sym->ts.type == BT_CHARACTER)
7071 se->string_length = sym->ts.u.cl->backend_decl;
7073 if (!sym->attr.pointer
7074 && sym->as
7075 && sym->as->type != AS_ASSUMED_SHAPE
7076 && sym->as->type != AS_DEFERRED
7077 && sym->as->type != AS_ASSUMED_RANK
7078 && !sym->attr.allocatable)
7080 /* Some variables are declared directly, others are declared as
7081 pointers and allocated on the heap. */
7082 if (sym->attr.dummy || POINTER_TYPE_P (TREE_TYPE (tmp)))
7083 se->expr = tmp;
7084 else
7085 se->expr = gfc_build_addr_expr (NULL_TREE, tmp);
7086 if (size)
7087 array_parameter_size (tmp, expr, size);
7088 return;
7091 if (sym->attr.allocatable)
7093 if (sym->attr.dummy || sym->attr.result)
7095 gfc_conv_expr_descriptor (se, expr);
7096 tmp = se->expr;
7098 if (size)
7099 array_parameter_size (tmp, expr, size);
7100 se->expr = gfc_conv_array_data (tmp);
7101 return;
7105 /* A convenient reduction in scope. */
7106 contiguous = g77 && !this_array_result && contiguous;
7108 /* There is no need to pack and unpack the array, if it is contiguous
7109 and not a deferred- or assumed-shape array, or if it is simply
7110 contiguous. */
7111 no_pack = ((sym && sym->as
7112 && !sym->attr.pointer
7113 && sym->as->type != AS_DEFERRED
7114 && sym->as->type != AS_ASSUMED_RANK
7115 && sym->as->type != AS_ASSUMED_SHAPE)
7117 (ref && ref->u.ar.as
7118 && ref->u.ar.as->type != AS_DEFERRED
7119 && ref->u.ar.as->type != AS_ASSUMED_RANK
7120 && ref->u.ar.as->type != AS_ASSUMED_SHAPE)
7122 gfc_is_simply_contiguous (expr, false));
7124 no_pack = contiguous && no_pack;
7126 /* Array constructors are always contiguous and do not need packing. */
7127 array_constructor = g77 && !this_array_result && expr->expr_type == EXPR_ARRAY;
7129 /* Same is true of contiguous sections from allocatable variables. */
7130 good_allocatable = contiguous
7131 && expr->symtree
7132 && expr->symtree->n.sym->attr.allocatable;
7134 /* Or ultimate allocatable components. */
7135 ultimate_alloc_comp = contiguous && ultimate_alloc_comp;
7137 if (no_pack || array_constructor || good_allocatable || ultimate_alloc_comp)
7139 gfc_conv_expr_descriptor (se, expr);
7140 if (expr->ts.type == BT_CHARACTER)
7141 se->string_length = expr->ts.u.cl->backend_decl;
7142 if (size)
7143 array_parameter_size (se->expr, expr, size);
7144 se->expr = gfc_conv_array_data (se->expr);
7145 return;
7148 if (this_array_result)
7150 /* Result of the enclosing function. */
7151 gfc_conv_expr_descriptor (se, expr);
7152 if (size)
7153 array_parameter_size (se->expr, expr, size);
7154 se->expr = gfc_build_addr_expr (NULL_TREE, se->expr);
7156 if (g77 && TREE_TYPE (TREE_TYPE (se->expr)) != NULL_TREE
7157 && GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (TREE_TYPE (se->expr))))
7158 se->expr = gfc_conv_array_data (build_fold_indirect_ref_loc (input_location,
7159 se->expr));
7161 return;
7163 else
7165 /* Every other type of array. */
7166 se->want_pointer = 1;
7167 gfc_conv_expr_descriptor (se, expr);
7168 if (size)
7169 array_parameter_size (build_fold_indirect_ref_loc (input_location,
7170 se->expr),
7171 expr, size);
7174 /* Deallocate the allocatable components of structures that are
7175 not variable. */
7176 if ((expr->ts.type == BT_DERIVED || expr->ts.type == BT_CLASS)
7177 && expr->ts.u.derived->attr.alloc_comp
7178 && expr->expr_type != EXPR_VARIABLE)
7180 tmp = build_fold_indirect_ref_loc (input_location, se->expr);
7181 tmp = gfc_deallocate_alloc_comp (expr->ts.u.derived, tmp, expr->rank);
7183 /* The components shall be deallocated before their containing entity. */
7184 gfc_prepend_expr_to_block (&se->post, tmp);
7187 if (g77 || (fsym && fsym->attr.contiguous
7188 && !gfc_is_simply_contiguous (expr, false)))
7190 tree origptr = NULL_TREE;
7192 desc = se->expr;
7194 /* For contiguous arrays, save the original value of the descriptor. */
7195 if (!g77)
7197 origptr = gfc_create_var (pvoid_type_node, "origptr");
7198 tmp = build_fold_indirect_ref_loc (input_location, desc);
7199 tmp = gfc_conv_array_data (tmp);
7200 tmp = fold_build2_loc (input_location, MODIFY_EXPR,
7201 TREE_TYPE (origptr), origptr,
7202 fold_convert (TREE_TYPE (origptr), tmp));
7203 gfc_add_expr_to_block (&se->pre, tmp);
7206 /* Repack the array. */
7207 if (gfc_option.warn_array_temp)
7209 if (fsym)
7210 gfc_warning ("Creating array temporary at %L for argument '%s'",
7211 &expr->where, fsym->name);
7212 else
7213 gfc_warning ("Creating array temporary at %L", &expr->where);
7216 ptr = build_call_expr_loc (input_location,
7217 gfor_fndecl_in_pack, 1, desc);
7219 if (fsym && fsym->attr.optional && sym && sym->attr.optional)
7221 tmp = gfc_conv_expr_present (sym);
7222 ptr = build3_loc (input_location, COND_EXPR, TREE_TYPE (se->expr),
7223 tmp, fold_convert (TREE_TYPE (se->expr), ptr),
7224 fold_convert (TREE_TYPE (se->expr), null_pointer_node));
7227 ptr = gfc_evaluate_now (ptr, &se->pre);
7229 /* Use the packed data for the actual argument, except for contiguous arrays,
7230 where the descriptor's data component is set. */
7231 if (g77)
7232 se->expr = ptr;
7233 else
7235 tmp = build_fold_indirect_ref_loc (input_location, desc);
7237 gfc_ss * ss = gfc_walk_expr (expr);
7238 if (!transposed_dims (ss))
7239 gfc_conv_descriptor_data_set (&se->pre, tmp, ptr);
7240 else
7242 tree old_field, new_field;
7244 /* The original descriptor has transposed dims so we can't reuse
7245 it directly; we have to create a new one. */
7246 tree old_desc = tmp;
7247 tree new_desc = gfc_create_var (TREE_TYPE (old_desc), "arg_desc");
7249 old_field = gfc_conv_descriptor_dtype (old_desc);
7250 new_field = gfc_conv_descriptor_dtype (new_desc);
7251 gfc_add_modify (&se->pre, new_field, old_field);
7253 old_field = gfc_conv_descriptor_offset (old_desc);
7254 new_field = gfc_conv_descriptor_offset (new_desc);
7255 gfc_add_modify (&se->pre, new_field, old_field);
7257 for (int i = 0; i < expr->rank; i++)
7259 old_field = gfc_conv_descriptor_dimension (old_desc,
7260 gfc_rank_cst[get_array_ref_dim_for_loop_dim (ss, i)]);
7261 new_field = gfc_conv_descriptor_dimension (new_desc,
7262 gfc_rank_cst[i]);
7263 gfc_add_modify (&se->pre, new_field, old_field);
7266 if (gfc_option.coarray == GFC_FCOARRAY_LIB
7267 && GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (old_desc))
7268 && GFC_TYPE_ARRAY_AKIND (TREE_TYPE (old_desc))
7269 == GFC_ARRAY_ALLOCATABLE)
7271 old_field = gfc_conv_descriptor_token (old_desc);
7272 new_field = gfc_conv_descriptor_token (new_desc);
7273 gfc_add_modify (&se->pre, new_field, old_field);
7276 gfc_conv_descriptor_data_set (&se->pre, new_desc, ptr);
7277 se->expr = gfc_build_addr_expr (NULL_TREE, new_desc);
7279 gfc_free_ss (ss);
7282 if (gfc_option.rtcheck & GFC_RTCHECK_ARRAY_TEMPS)
7284 char * msg;
7286 if (fsym && proc_name)
7287 asprintf (&msg, "An array temporary was created for argument "
7288 "'%s' of procedure '%s'", fsym->name, proc_name);
7289 else
7290 asprintf (&msg, "An array temporary was created");
7292 tmp = build_fold_indirect_ref_loc (input_location,
7293 desc);
7294 tmp = gfc_conv_array_data (tmp);
7295 tmp = fold_build2_loc (input_location, NE_EXPR, boolean_type_node,
7296 fold_convert (TREE_TYPE (tmp), ptr), tmp);
7298 if (fsym && fsym->attr.optional && sym && sym->attr.optional)
7299 tmp = fold_build2_loc (input_location, TRUTH_AND_EXPR,
7300 boolean_type_node,
7301 gfc_conv_expr_present (sym), tmp);
7303 gfc_trans_runtime_check (false, true, tmp, &se->pre,
7304 &expr->where, msg);
7305 free (msg);
7308 gfc_start_block (&block);
7310 /* Copy the data back. */
7311 if (fsym == NULL || fsym->attr.intent != INTENT_IN)
7313 tmp = build_call_expr_loc (input_location,
7314 gfor_fndecl_in_unpack, 2, desc, ptr);
7315 gfc_add_expr_to_block (&block, tmp);
7318 /* Free the temporary. */
7319 tmp = gfc_call_free (convert (pvoid_type_node, ptr));
7320 gfc_add_expr_to_block (&block, tmp);
7322 stmt = gfc_finish_block (&block);
7324 gfc_init_block (&block);
7325 /* Only if it was repacked. This code needs to be executed before the
7326 loop cleanup code. */
7327 tmp = build_fold_indirect_ref_loc (input_location,
7328 desc);
7329 tmp = gfc_conv_array_data (tmp);
7330 tmp = fold_build2_loc (input_location, NE_EXPR, boolean_type_node,
7331 fold_convert (TREE_TYPE (tmp), ptr), tmp);
7333 if (fsym && fsym->attr.optional && sym && sym->attr.optional)
7334 tmp = fold_build2_loc (input_location, TRUTH_AND_EXPR,
7335 boolean_type_node,
7336 gfc_conv_expr_present (sym), tmp);
7338 tmp = build3_v (COND_EXPR, tmp, stmt, build_empty_stmt (input_location));
7340 gfc_add_expr_to_block (&block, tmp);
7341 gfc_add_block_to_block (&block, &se->post);
7343 gfc_init_block (&se->post);
7345 /* Reset the descriptor pointer. */
7346 if (!g77)
7348 tmp = build_fold_indirect_ref_loc (input_location, desc);
7349 gfc_conv_descriptor_data_set (&se->post, tmp, origptr);
7352 gfc_add_block_to_block (&se->post, &block);
7357 /* Generate code to deallocate an array, if it is allocated. */
7359 tree
7360 gfc_trans_dealloc_allocated (tree descriptor, bool coarray, gfc_expr *expr)
7362 tree tmp;
7363 tree var;
7364 stmtblock_t block;
7366 gfc_start_block (&block);
7368 var = gfc_conv_descriptor_data_get (descriptor);
7369 STRIP_NOPS (var);
7371 /* Call array_deallocate with an int * present in the second argument.
7372 Although it is ignored here, it's presence ensures that arrays that
7373 are already deallocated are ignored. */
7374 tmp = gfc_deallocate_with_status (coarray ? descriptor : var, NULL_TREE,
7375 NULL_TREE, NULL_TREE, NULL_TREE, true,
7376 expr, coarray);
7377 gfc_add_expr_to_block (&block, tmp);
7379 /* Zero the data pointer. */
7380 tmp = fold_build2_loc (input_location, MODIFY_EXPR, void_type_node,
7381 var, build_int_cst (TREE_TYPE (var), 0));
7382 gfc_add_expr_to_block (&block, tmp);
7384 return gfc_finish_block (&block);
7388 /* This helper function calculates the size in words of a full array. */
7390 static tree
7391 get_full_array_size (stmtblock_t *block, tree decl, int rank)
7393 tree idx;
7394 tree nelems;
7395 tree tmp;
7396 idx = gfc_rank_cst[rank - 1];
7397 nelems = gfc_conv_descriptor_ubound_get (decl, idx);
7398 tmp = gfc_conv_descriptor_lbound_get (decl, idx);
7399 tmp = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type,
7400 nelems, tmp);
7401 tmp = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type,
7402 tmp, gfc_index_one_node);
7403 tmp = gfc_evaluate_now (tmp, block);
7405 nelems = gfc_conv_descriptor_stride_get (decl, idx);
7406 tmp = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type,
7407 nelems, tmp);
7408 return gfc_evaluate_now (tmp, block);
7412 /* Allocate dest to the same size as src, and copy src -> dest.
7413 If no_malloc is set, only the copy is done. */
7415 static tree
7416 duplicate_allocatable (tree dest, tree src, tree type, int rank,
7417 bool no_malloc, tree str_sz)
7419 tree tmp;
7420 tree size;
7421 tree nelems;
7422 tree null_cond;
7423 tree null_data;
7424 stmtblock_t block;
7426 /* If the source is null, set the destination to null. Then,
7427 allocate memory to the destination. */
7428 gfc_init_block (&block);
7430 if (!GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (dest)))
7432 tmp = null_pointer_node;
7433 tmp = fold_build2_loc (input_location, MODIFY_EXPR, type, dest, tmp);
7434 gfc_add_expr_to_block (&block, tmp);
7435 null_data = gfc_finish_block (&block);
7437 gfc_init_block (&block);
7438 if (str_sz != NULL_TREE)
7439 size = str_sz;
7440 else
7441 size = TYPE_SIZE_UNIT (TREE_TYPE (type));
7443 if (!no_malloc)
7445 tmp = gfc_call_malloc (&block, type, size);
7446 tmp = fold_build2_loc (input_location, MODIFY_EXPR, void_type_node,
7447 dest, fold_convert (type, tmp));
7448 gfc_add_expr_to_block (&block, tmp);
7451 tmp = builtin_decl_explicit (BUILT_IN_MEMCPY);
7452 tmp = build_call_expr_loc (input_location, tmp, 3, dest, src,
7453 fold_convert (size_type_node, size));
7455 else
7457 gfc_conv_descriptor_data_set (&block, dest, null_pointer_node);
7458 null_data = gfc_finish_block (&block);
7460 gfc_init_block (&block);
7461 if (rank)
7462 nelems = get_full_array_size (&block, src, rank);
7463 else
7464 nelems = gfc_index_one_node;
7466 if (str_sz != NULL_TREE)
7467 tmp = fold_convert (gfc_array_index_type, str_sz);
7468 else
7469 tmp = fold_convert (gfc_array_index_type,
7470 TYPE_SIZE_UNIT (gfc_get_element_type (type)));
7471 size = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type,
7472 nelems, tmp);
7473 if (!no_malloc)
7475 tmp = TREE_TYPE (gfc_conv_descriptor_data_get (src));
7476 tmp = gfc_call_malloc (&block, tmp, size);
7477 gfc_conv_descriptor_data_set (&block, dest, tmp);
7480 /* We know the temporary and the value will be the same length,
7481 so can use memcpy. */
7482 tmp = builtin_decl_explicit (BUILT_IN_MEMCPY);
7483 tmp = build_call_expr_loc (input_location,
7484 tmp, 3, gfc_conv_descriptor_data_get (dest),
7485 gfc_conv_descriptor_data_get (src),
7486 fold_convert (size_type_node, size));
7489 gfc_add_expr_to_block (&block, tmp);
7490 tmp = gfc_finish_block (&block);
7492 /* Null the destination if the source is null; otherwise do
7493 the allocate and copy. */
7494 if (!GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (src)))
7495 null_cond = src;
7496 else
7497 null_cond = gfc_conv_descriptor_data_get (src);
7499 null_cond = convert (pvoid_type_node, null_cond);
7500 null_cond = fold_build2_loc (input_location, NE_EXPR, boolean_type_node,
7501 null_cond, null_pointer_node);
7502 return build3_v (COND_EXPR, null_cond, tmp, null_data);
7506 /* Allocate dest to the same size as src, and copy data src -> dest. */
7508 tree
7509 gfc_duplicate_allocatable (tree dest, tree src, tree type, int rank)
7511 return duplicate_allocatable (dest, src, type, rank, false, NULL_TREE);
7515 /* Copy data src -> dest. */
7517 tree
7518 gfc_copy_allocatable_data (tree dest, tree src, tree type, int rank)
7520 return duplicate_allocatable (dest, src, type, rank, true, NULL_TREE);
7524 /* Recursively traverse an object of derived type, generating code to
7525 deallocate, nullify or copy allocatable components. This is the work horse
7526 function for the functions named in this enum. */
7528 enum {DEALLOCATE_ALLOC_COMP = 1, DEALLOCATE_ALLOC_COMP_NO_CAF,
7529 NULLIFY_ALLOC_COMP, COPY_ALLOC_COMP, COPY_ONLY_ALLOC_COMP,
7530 COPY_ALLOC_COMP_CAF};
7532 static tree
7533 structure_alloc_comps (gfc_symbol * der_type, tree decl,
7534 tree dest, int rank, int purpose)
7536 gfc_component *c;
7537 gfc_loopinfo loop;
7538 stmtblock_t fnblock;
7539 stmtblock_t loopbody;
7540 stmtblock_t tmpblock;
7541 tree decl_type;
7542 tree tmp;
7543 tree comp;
7544 tree dcmp;
7545 tree nelems;
7546 tree index;
7547 tree var;
7548 tree cdecl;
7549 tree ctype;
7550 tree vref, dref;
7551 tree null_cond = NULL_TREE;
7552 bool called_dealloc_with_status;
7554 gfc_init_block (&fnblock);
7556 decl_type = TREE_TYPE (decl);
7558 if ((POINTER_TYPE_P (decl_type) && rank != 0)
7559 || (TREE_CODE (decl_type) == REFERENCE_TYPE && rank == 0))
7560 decl = build_fold_indirect_ref_loc (input_location, decl);
7562 /* Just in case in gets dereferenced. */
7563 decl_type = TREE_TYPE (decl);
7565 /* If this an array of derived types with allocatable components
7566 build a loop and recursively call this function. */
7567 if (TREE_CODE (decl_type) == ARRAY_TYPE
7568 || (GFC_DESCRIPTOR_TYPE_P (decl_type) && rank != 0))
7570 tmp = gfc_conv_array_data (decl);
7571 var = build_fold_indirect_ref_loc (input_location,
7572 tmp);
7574 /* Get the number of elements - 1 and set the counter. */
7575 if (GFC_DESCRIPTOR_TYPE_P (decl_type))
7577 /* Use the descriptor for an allocatable array. Since this
7578 is a full array reference, we only need the descriptor
7579 information from dimension = rank. */
7580 tmp = get_full_array_size (&fnblock, decl, rank);
7581 tmp = fold_build2_loc (input_location, MINUS_EXPR,
7582 gfc_array_index_type, tmp,
7583 gfc_index_one_node);
7585 null_cond = gfc_conv_descriptor_data_get (decl);
7586 null_cond = fold_build2_loc (input_location, NE_EXPR,
7587 boolean_type_node, null_cond,
7588 build_int_cst (TREE_TYPE (null_cond), 0));
7590 else
7592 /* Otherwise use the TYPE_DOMAIN information. */
7593 tmp = array_type_nelts (decl_type);
7594 tmp = fold_convert (gfc_array_index_type, tmp);
7597 /* Remember that this is, in fact, the no. of elements - 1. */
7598 nelems = gfc_evaluate_now (tmp, &fnblock);
7599 index = gfc_create_var (gfc_array_index_type, "S");
7601 /* Build the body of the loop. */
7602 gfc_init_block (&loopbody);
7604 vref = gfc_build_array_ref (var, index, NULL);
7606 if (purpose == COPY_ALLOC_COMP)
7608 if (GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (dest)))
7610 tmp = gfc_duplicate_allocatable (dest, decl, decl_type, rank);
7611 gfc_add_expr_to_block (&fnblock, tmp);
7613 tmp = build_fold_indirect_ref_loc (input_location,
7614 gfc_conv_array_data (dest));
7615 dref = gfc_build_array_ref (tmp, index, NULL);
7616 tmp = structure_alloc_comps (der_type, vref, dref, rank, purpose);
7618 else if (purpose == COPY_ONLY_ALLOC_COMP)
7620 tmp = build_fold_indirect_ref_loc (input_location,
7621 gfc_conv_array_data (dest));
7622 dref = gfc_build_array_ref (tmp, index, NULL);
7623 tmp = structure_alloc_comps (der_type, vref, dref, rank,
7624 COPY_ALLOC_COMP);
7626 else
7627 tmp = structure_alloc_comps (der_type, vref, NULL_TREE, rank, purpose);
7629 gfc_add_expr_to_block (&loopbody, tmp);
7631 /* Build the loop and return. */
7632 gfc_init_loopinfo (&loop);
7633 loop.dimen = 1;
7634 loop.from[0] = gfc_index_zero_node;
7635 loop.loopvar[0] = index;
7636 loop.to[0] = nelems;
7637 gfc_trans_scalarizing_loops (&loop, &loopbody);
7638 gfc_add_block_to_block (&fnblock, &loop.pre);
7640 tmp = gfc_finish_block (&fnblock);
7641 if (null_cond != NULL_TREE)
7642 tmp = build3_v (COND_EXPR, null_cond, tmp,
7643 build_empty_stmt (input_location));
7645 return tmp;
7648 /* Otherwise, act on the components or recursively call self to
7649 act on a chain of components. */
7650 for (c = der_type->components; c; c = c->next)
7652 bool cmp_has_alloc_comps = (c->ts.type == BT_DERIVED
7653 || c->ts.type == BT_CLASS)
7654 && c->ts.u.derived->attr.alloc_comp;
7655 cdecl = c->backend_decl;
7656 ctype = TREE_TYPE (cdecl);
7658 switch (purpose)
7660 case DEALLOCATE_ALLOC_COMP:
7661 case DEALLOCATE_ALLOC_COMP_NO_CAF:
7663 /* gfc_deallocate_scalar_with_status calls gfc_deallocate_alloc_comp
7664 (i.e. this function) so generate all the calls and suppress the
7665 recursion from here, if necessary. */
7666 called_dealloc_with_status = false;
7667 gfc_init_block (&tmpblock);
7669 if ((c->ts.type == BT_DERIVED && !c->attr.pointer)
7670 || (c->ts.type == BT_CLASS && !CLASS_DATA (c)->attr.class_pointer))
7672 comp = fold_build3_loc (input_location, COMPONENT_REF, ctype,
7673 decl, cdecl, NULL_TREE);
7675 /* The finalizer frees allocatable components. */
7676 called_dealloc_with_status
7677 = gfc_add_comp_finalizer_call (&tmpblock, comp, c,
7678 purpose == DEALLOCATE_ALLOC_COMP);
7680 else
7681 comp = NULL_TREE;
7683 if (c->attr.allocatable && !c->attr.proc_pointer
7684 && (c->attr.dimension
7685 || (c->attr.codimension
7686 && purpose != DEALLOCATE_ALLOC_COMP_NO_CAF)))
7688 if (comp == NULL_TREE)
7689 comp = fold_build3_loc (input_location, COMPONENT_REF, ctype,
7690 decl, cdecl, NULL_TREE);
7691 tmp = gfc_trans_dealloc_allocated (comp, c->attr.codimension, NULL);
7692 gfc_add_expr_to_block (&tmpblock, tmp);
7694 else if (c->attr.allocatable && !c->attr.codimension)
7696 /* Allocatable scalar components. */
7697 if (comp == NULL_TREE)
7698 comp = fold_build3_loc (input_location, COMPONENT_REF, ctype,
7699 decl, cdecl, NULL_TREE);
7701 tmp = gfc_deallocate_scalar_with_status (comp, NULL, true, NULL,
7702 c->ts);
7703 gfc_add_expr_to_block (&tmpblock, tmp);
7704 called_dealloc_with_status = true;
7706 tmp = fold_build2_loc (input_location, MODIFY_EXPR,
7707 void_type_node, comp,
7708 build_int_cst (TREE_TYPE (comp), 0));
7709 gfc_add_expr_to_block (&tmpblock, tmp);
7711 else if (c->ts.type == BT_CLASS && CLASS_DATA (c)->attr.allocatable
7712 && (!CLASS_DATA (c)->attr.codimension
7713 || purpose != DEALLOCATE_ALLOC_COMP_NO_CAF))
7715 /* Allocatable CLASS components. */
7717 /* Add reference to '_data' component. */
7718 tmp = CLASS_DATA (c)->backend_decl;
7719 comp = fold_build3_loc (input_location, COMPONENT_REF,
7720 TREE_TYPE (tmp), comp, tmp, NULL_TREE);
7722 if (GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (comp)))
7723 tmp = gfc_trans_dealloc_allocated (comp,
7724 CLASS_DATA (c)->attr.codimension, NULL);
7725 else
7727 tmp = gfc_deallocate_scalar_with_status (comp, NULL_TREE, true, NULL,
7728 CLASS_DATA (c)->ts);
7729 gfc_add_expr_to_block (&tmpblock, tmp);
7730 called_dealloc_with_status = true;
7732 tmp = fold_build2_loc (input_location, MODIFY_EXPR,
7733 void_type_node, comp,
7734 build_int_cst (TREE_TYPE (comp), 0));
7736 gfc_add_expr_to_block (&tmpblock, tmp);
7739 if (cmp_has_alloc_comps
7740 && !c->attr.pointer
7741 && !called_dealloc_with_status)
7743 /* Do not deallocate the components of ultimate pointer
7744 components or iteratively call self if call has been made
7745 to gfc_trans_dealloc_allocated */
7746 comp = fold_build3_loc (input_location, COMPONENT_REF, ctype,
7747 decl, cdecl, NULL_TREE);
7748 rank = c->as ? c->as->rank : 0;
7749 tmp = structure_alloc_comps (c->ts.u.derived, comp, NULL_TREE,
7750 rank, purpose);
7751 gfc_add_expr_to_block (&fnblock, tmp);
7754 /* Now add the deallocation of this component. */
7755 gfc_add_block_to_block (&fnblock, &tmpblock);
7756 break;
7758 case NULLIFY_ALLOC_COMP:
7759 if (c->attr.pointer)
7760 continue;
7761 else if (c->attr.allocatable
7762 && (c->attr.dimension|| c->attr.codimension))
7764 comp = fold_build3_loc (input_location, COMPONENT_REF, ctype,
7765 decl, cdecl, NULL_TREE);
7766 gfc_conv_descriptor_data_set (&fnblock, comp, null_pointer_node);
7768 else if (c->attr.allocatable)
7770 /* Allocatable scalar components. */
7771 comp = fold_build3_loc (input_location, COMPONENT_REF, ctype,
7772 decl, cdecl, NULL_TREE);
7773 tmp = fold_build2_loc (input_location, MODIFY_EXPR,
7774 void_type_node, comp,
7775 build_int_cst (TREE_TYPE (comp), 0));
7776 gfc_add_expr_to_block (&fnblock, tmp);
7777 if (gfc_deferred_strlen (c, &comp))
7779 comp = fold_build3_loc (input_location, COMPONENT_REF,
7780 TREE_TYPE (comp),
7781 decl, comp, NULL_TREE);
7782 tmp = fold_build2_loc (input_location, MODIFY_EXPR,
7783 TREE_TYPE (comp), comp,
7784 build_int_cst (TREE_TYPE (comp), 0));
7785 gfc_add_expr_to_block (&fnblock, tmp);
7788 else if (c->ts.type == BT_CLASS && CLASS_DATA (c)->attr.allocatable)
7790 /* Allocatable CLASS components. */
7791 comp = fold_build3_loc (input_location, COMPONENT_REF, ctype,
7792 decl, cdecl, NULL_TREE);
7793 /* Add reference to '_data' component. */
7794 tmp = CLASS_DATA (c)->backend_decl;
7795 comp = fold_build3_loc (input_location, COMPONENT_REF,
7796 TREE_TYPE (tmp), comp, tmp, NULL_TREE);
7797 if (GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (comp)))
7798 gfc_conv_descriptor_data_set (&fnblock, comp, null_pointer_node);
7799 else
7801 tmp = fold_build2_loc (input_location, MODIFY_EXPR,
7802 void_type_node, comp,
7803 build_int_cst (TREE_TYPE (comp), 0));
7804 gfc_add_expr_to_block (&fnblock, tmp);
7807 else if (cmp_has_alloc_comps)
7809 comp = fold_build3_loc (input_location, COMPONENT_REF, ctype,
7810 decl, cdecl, NULL_TREE);
7811 rank = c->as ? c->as->rank : 0;
7812 tmp = structure_alloc_comps (c->ts.u.derived, comp, NULL_TREE,
7813 rank, purpose);
7814 gfc_add_expr_to_block (&fnblock, tmp);
7816 break;
7818 case COPY_ALLOC_COMP_CAF:
7819 if (!c->attr.codimension
7820 && (c->ts.type != BT_CLASS || CLASS_DATA (c)->attr.coarray_comp)
7821 && (c->ts.type != BT_DERIVED
7822 || !c->ts.u.derived->attr.coarray_comp))
7823 continue;
7825 comp = fold_build3_loc (input_location, COMPONENT_REF, ctype, decl,
7826 cdecl, NULL_TREE);
7827 dcmp = fold_build3_loc (input_location, COMPONENT_REF, ctype, dest,
7828 cdecl, NULL_TREE);
7830 if (c->attr.codimension)
7832 if (c->ts.type == BT_CLASS)
7834 comp = gfc_class_data_get (comp);
7835 dcmp = gfc_class_data_get (dcmp);
7837 gfc_conv_descriptor_data_set (&fnblock, dcmp,
7838 gfc_conv_descriptor_data_get (comp));
7840 else
7842 tmp = structure_alloc_comps (c->ts.u.derived, comp, dcmp,
7843 rank, purpose);
7844 gfc_add_expr_to_block (&fnblock, tmp);
7847 break;
7849 case COPY_ALLOC_COMP:
7850 if (c->attr.pointer)
7851 continue;
7853 /* We need source and destination components. */
7854 comp = fold_build3_loc (input_location, COMPONENT_REF, ctype, decl,
7855 cdecl, NULL_TREE);
7856 dcmp = fold_build3_loc (input_location, COMPONENT_REF, ctype, dest,
7857 cdecl, NULL_TREE);
7858 dcmp = fold_convert (TREE_TYPE (comp), dcmp);
7860 if (c->ts.type == BT_CLASS && CLASS_DATA (c)->attr.allocatable)
7862 tree ftn_tree;
7863 tree size;
7864 tree dst_data;
7865 tree src_data;
7866 tree null_data;
7868 dst_data = gfc_class_data_get (dcmp);
7869 src_data = gfc_class_data_get (comp);
7870 size = fold_convert (size_type_node, gfc_vtable_size_get (comp));
7872 if (CLASS_DATA (c)->attr.dimension)
7874 nelems = gfc_conv_descriptor_size (src_data,
7875 CLASS_DATA (c)->as->rank);
7876 size = fold_build2_loc (input_location, MULT_EXPR,
7877 size_type_node, size,
7878 fold_convert (size_type_node,
7879 nelems));
7881 else
7882 nelems = build_int_cst (size_type_node, 1);
7884 if (CLASS_DATA (c)->attr.dimension
7885 || CLASS_DATA (c)->attr.codimension)
7887 src_data = gfc_conv_descriptor_data_get (src_data);
7888 dst_data = gfc_conv_descriptor_data_get (dst_data);
7891 gfc_init_block (&tmpblock);
7893 /* Coarray component have to have the same allocation status and
7894 shape/type-parameter/effective-type on the LHS and RHS of an
7895 intrinsic assignment. Hence, we did not deallocated them - and
7896 do not allocate them here. */
7897 if (!CLASS_DATA (c)->attr.codimension)
7899 ftn_tree = builtin_decl_explicit (BUILT_IN_MALLOC);
7900 tmp = build_call_expr_loc (input_location, ftn_tree, 1, size);
7901 gfc_add_modify (&tmpblock, dst_data,
7902 fold_convert (TREE_TYPE (dst_data), tmp));
7905 tmp = gfc_copy_class_to_class (comp, dcmp, nelems);
7906 gfc_add_expr_to_block (&tmpblock, tmp);
7907 tmp = gfc_finish_block (&tmpblock);
7909 gfc_init_block (&tmpblock);
7910 gfc_add_modify (&tmpblock, dst_data,
7911 fold_convert (TREE_TYPE (dst_data),
7912 null_pointer_node));
7913 null_data = gfc_finish_block (&tmpblock);
7915 null_cond = fold_build2_loc (input_location, NE_EXPR,
7916 boolean_type_node, src_data,
7917 null_pointer_node);
7919 gfc_add_expr_to_block (&fnblock, build3_v (COND_EXPR, null_cond,
7920 tmp, null_data));
7921 continue;
7924 if (gfc_deferred_strlen (c, &tmp))
7926 tree len, size;
7927 len = tmp;
7928 tmp = fold_build3_loc (input_location, COMPONENT_REF,
7929 TREE_TYPE (len),
7930 decl, len, NULL_TREE);
7931 len = fold_build3_loc (input_location, COMPONENT_REF,
7932 TREE_TYPE (len),
7933 dest, len, NULL_TREE);
7934 tmp = fold_build2_loc (input_location, MODIFY_EXPR,
7935 TREE_TYPE (len), len, tmp);
7936 gfc_add_expr_to_block (&fnblock, tmp);
7937 size = size_of_string_in_bytes (c->ts.kind, len);
7938 tmp = duplicate_allocatable (dcmp, comp, ctype, rank,
7939 false, size);
7940 gfc_add_expr_to_block (&fnblock, tmp);
7942 else if (c->attr.allocatable && !c->attr.proc_pointer
7943 && !cmp_has_alloc_comps)
7945 rank = c->as ? c->as->rank : 0;
7946 if (c->attr.codimension)
7947 tmp = gfc_copy_allocatable_data (dcmp, comp, ctype, rank);
7948 else
7949 tmp = gfc_duplicate_allocatable (dcmp, comp, ctype, rank);
7950 gfc_add_expr_to_block (&fnblock, tmp);
7953 if (cmp_has_alloc_comps)
7955 rank = c->as ? c->as->rank : 0;
7956 tmp = fold_convert (TREE_TYPE (dcmp), comp);
7957 gfc_add_modify (&fnblock, dcmp, tmp);
7958 tmp = structure_alloc_comps (c->ts.u.derived, comp, dcmp,
7959 rank, purpose);
7960 gfc_add_expr_to_block (&fnblock, tmp);
7962 break;
7964 default:
7965 gcc_unreachable ();
7966 break;
7970 return gfc_finish_block (&fnblock);
7973 /* Recursively traverse an object of derived type, generating code to
7974 nullify allocatable components. */
7976 tree
7977 gfc_nullify_alloc_comp (gfc_symbol * der_type, tree decl, int rank)
7979 return structure_alloc_comps (der_type, decl, NULL_TREE, rank,
7980 NULLIFY_ALLOC_COMP);
7984 /* Recursively traverse an object of derived type, generating code to
7985 deallocate allocatable components. */
7987 tree
7988 gfc_deallocate_alloc_comp (gfc_symbol * der_type, tree decl, int rank)
7990 return structure_alloc_comps (der_type, decl, NULL_TREE, rank,
7991 DEALLOCATE_ALLOC_COMP);
7995 /* Recursively traverse an object of derived type, generating code to
7996 deallocate allocatable components. But do not deallocate coarrays.
7997 To be used for intrinsic assignment, which may not change the allocation
7998 status of coarrays. */
8000 tree
8001 gfc_deallocate_alloc_comp_no_caf (gfc_symbol * der_type, tree decl, int rank)
8003 return structure_alloc_comps (der_type, decl, NULL_TREE, rank,
8004 DEALLOCATE_ALLOC_COMP_NO_CAF);
8008 tree
8009 gfc_reassign_alloc_comp_caf (gfc_symbol *der_type, tree decl, tree dest)
8011 return structure_alloc_comps (der_type, decl, dest, 0, COPY_ALLOC_COMP_CAF);
8015 /* Recursively traverse an object of derived type, generating code to
8016 copy it and its allocatable components. */
8018 tree
8019 gfc_copy_alloc_comp (gfc_symbol * der_type, tree decl, tree dest, int rank)
8021 return structure_alloc_comps (der_type, decl, dest, rank, COPY_ALLOC_COMP);
8025 /* Recursively traverse an object of derived type, generating code to
8026 copy only its allocatable components. */
8028 tree
8029 gfc_copy_only_alloc_comp (gfc_symbol * der_type, tree decl, tree dest, int rank)
8031 return structure_alloc_comps (der_type, decl, dest, rank, COPY_ONLY_ALLOC_COMP);
8035 /* Returns the value of LBOUND for an expression. This could be broken out
8036 from gfc_conv_intrinsic_bound but this seemed to be simpler. This is
8037 called by gfc_alloc_allocatable_for_assignment. */
8038 static tree
8039 get_std_lbound (gfc_expr *expr, tree desc, int dim, bool assumed_size)
8041 tree lbound;
8042 tree ubound;
8043 tree stride;
8044 tree cond, cond1, cond3, cond4;
8045 tree tmp;
8046 gfc_ref *ref;
8048 if (GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (desc)))
8050 tmp = gfc_rank_cst[dim];
8051 lbound = gfc_conv_descriptor_lbound_get (desc, tmp);
8052 ubound = gfc_conv_descriptor_ubound_get (desc, tmp);
8053 stride = gfc_conv_descriptor_stride_get (desc, tmp);
8054 cond1 = fold_build2_loc (input_location, GE_EXPR, boolean_type_node,
8055 ubound, lbound);
8056 cond3 = fold_build2_loc (input_location, GE_EXPR, boolean_type_node,
8057 stride, gfc_index_zero_node);
8058 cond3 = fold_build2_loc (input_location, TRUTH_AND_EXPR,
8059 boolean_type_node, cond3, cond1);
8060 cond4 = fold_build2_loc (input_location, LT_EXPR, boolean_type_node,
8061 stride, gfc_index_zero_node);
8062 if (assumed_size)
8063 cond = fold_build2_loc (input_location, EQ_EXPR, boolean_type_node,
8064 tmp, build_int_cst (gfc_array_index_type,
8065 expr->rank - 1));
8066 else
8067 cond = boolean_false_node;
8069 cond1 = fold_build2_loc (input_location, TRUTH_OR_EXPR,
8070 boolean_type_node, cond3, cond4);
8071 cond = fold_build2_loc (input_location, TRUTH_OR_EXPR,
8072 boolean_type_node, cond, cond1);
8074 return fold_build3_loc (input_location, COND_EXPR,
8075 gfc_array_index_type, cond,
8076 lbound, gfc_index_one_node);
8079 if (expr->expr_type == EXPR_FUNCTION)
8081 /* A conversion function, so use the argument. */
8082 gcc_assert (expr->value.function.isym
8083 && expr->value.function.isym->conversion);
8084 expr = expr->value.function.actual->expr;
8087 if (expr->expr_type == EXPR_VARIABLE)
8089 tmp = TREE_TYPE (expr->symtree->n.sym->backend_decl);
8090 for (ref = expr->ref; ref; ref = ref->next)
8092 if (ref->type == REF_COMPONENT
8093 && ref->u.c.component->as
8094 && ref->next
8095 && ref->next->u.ar.type == AR_FULL)
8096 tmp = TREE_TYPE (ref->u.c.component->backend_decl);
8098 return GFC_TYPE_ARRAY_LBOUND(tmp, dim);
8101 return gfc_index_one_node;
8105 /* Returns true if an expression represents an lhs that can be reallocated
8106 on assignment. */
8108 bool
8109 gfc_is_reallocatable_lhs (gfc_expr *expr)
8111 gfc_ref * ref;
8113 if (!expr->ref)
8114 return false;
8116 /* An allocatable variable. */
8117 if (expr->symtree->n.sym->attr.allocatable
8118 && expr->ref
8119 && expr->ref->type == REF_ARRAY
8120 && expr->ref->u.ar.type == AR_FULL)
8121 return true;
8123 /* All that can be left are allocatable components. */
8124 if ((expr->symtree->n.sym->ts.type != BT_DERIVED
8125 && expr->symtree->n.sym->ts.type != BT_CLASS)
8126 || !expr->symtree->n.sym->ts.u.derived->attr.alloc_comp)
8127 return false;
8129 /* Find a component ref followed by an array reference. */
8130 for (ref = expr->ref; ref; ref = ref->next)
8131 if (ref->next
8132 && ref->type == REF_COMPONENT
8133 && ref->next->type == REF_ARRAY
8134 && !ref->next->next)
8135 break;
8137 if (!ref)
8138 return false;
8140 /* Return true if valid reallocatable lhs. */
8141 if (ref->u.c.component->attr.allocatable
8142 && ref->next->u.ar.type == AR_FULL)
8143 return true;
8145 return false;
8149 /* Allocate the lhs of an assignment to an allocatable array, otherwise
8150 reallocate it. */
8152 tree
8153 gfc_alloc_allocatable_for_assignment (gfc_loopinfo *loop,
8154 gfc_expr *expr1,
8155 gfc_expr *expr2)
8157 stmtblock_t realloc_block;
8158 stmtblock_t alloc_block;
8159 stmtblock_t fblock;
8160 gfc_ss *rss;
8161 gfc_ss *lss;
8162 gfc_array_info *linfo;
8163 tree realloc_expr;
8164 tree alloc_expr;
8165 tree size1;
8166 tree size2;
8167 tree array1;
8168 tree cond_null;
8169 tree cond;
8170 tree tmp;
8171 tree tmp2;
8172 tree lbound;
8173 tree ubound;
8174 tree desc;
8175 tree old_desc;
8176 tree desc2;
8177 tree offset;
8178 tree jump_label1;
8179 tree jump_label2;
8180 tree neq_size;
8181 tree lbd;
8182 int n;
8183 int dim;
8184 gfc_array_spec * as;
8186 /* x = f(...) with x allocatable. In this case, expr1 is the rhs.
8187 Find the lhs expression in the loop chain and set expr1 and
8188 expr2 accordingly. */
8189 if (expr1->expr_type == EXPR_FUNCTION && expr2 == NULL)
8191 expr2 = expr1;
8192 /* Find the ss for the lhs. */
8193 lss = loop->ss;
8194 for (; lss && lss != gfc_ss_terminator; lss = lss->loop_chain)
8195 if (lss->info->expr && lss->info->expr->expr_type == EXPR_VARIABLE)
8196 break;
8197 if (lss == gfc_ss_terminator)
8198 return NULL_TREE;
8199 expr1 = lss->info->expr;
8202 /* Bail out if this is not a valid allocate on assignment. */
8203 if (!gfc_is_reallocatable_lhs (expr1)
8204 || (expr2 && !expr2->rank))
8205 return NULL_TREE;
8207 /* Find the ss for the lhs. */
8208 lss = loop->ss;
8209 for (; lss && lss != gfc_ss_terminator; lss = lss->loop_chain)
8210 if (lss->info->expr == expr1)
8211 break;
8213 if (lss == gfc_ss_terminator)
8214 return NULL_TREE;
8216 linfo = &lss->info->data.array;
8218 /* Find an ss for the rhs. For operator expressions, we see the
8219 ss's for the operands. Any one of these will do. */
8220 rss = loop->ss;
8221 for (; rss && rss != gfc_ss_terminator; rss = rss->loop_chain)
8222 if (rss->info->expr != expr1 && rss != loop->temp_ss)
8223 break;
8225 if (expr2 && rss == gfc_ss_terminator)
8226 return NULL_TREE;
8228 gfc_start_block (&fblock);
8230 /* Since the lhs is allocatable, this must be a descriptor type.
8231 Get the data and array size. */
8232 desc = linfo->descriptor;
8233 gcc_assert (GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (desc)));
8234 array1 = gfc_conv_descriptor_data_get (desc);
8236 /* 7.4.1.3 "If variable is an allocated allocatable variable, it is
8237 deallocated if expr is an array of different shape or any of the
8238 corresponding length type parameter values of variable and expr
8239 differ." This assures F95 compatibility. */
8240 jump_label1 = gfc_build_label_decl (NULL_TREE);
8241 jump_label2 = gfc_build_label_decl (NULL_TREE);
8243 /* Allocate if data is NULL. */
8244 cond_null = fold_build2_loc (input_location, EQ_EXPR, boolean_type_node,
8245 array1, build_int_cst (TREE_TYPE (array1), 0));
8246 tmp = build3_v (COND_EXPR, cond_null,
8247 build1_v (GOTO_EXPR, jump_label1),
8248 build_empty_stmt (input_location));
8249 gfc_add_expr_to_block (&fblock, tmp);
8251 /* Get arrayspec if expr is a full array. */
8252 if (expr2 && expr2->expr_type == EXPR_FUNCTION
8253 && expr2->value.function.isym
8254 && expr2->value.function.isym->conversion)
8256 /* For conversion functions, take the arg. */
8257 gfc_expr *arg = expr2->value.function.actual->expr;
8258 as = gfc_get_full_arrayspec_from_expr (arg);
8260 else if (expr2)
8261 as = gfc_get_full_arrayspec_from_expr (expr2);
8262 else
8263 as = NULL;
8265 /* If the lhs shape is not the same as the rhs jump to setting the
8266 bounds and doing the reallocation....... */
8267 for (n = 0; n < expr1->rank; n++)
8269 /* Check the shape. */
8270 lbound = gfc_conv_descriptor_lbound_get (desc, gfc_rank_cst[n]);
8271 ubound = gfc_conv_descriptor_ubound_get (desc, gfc_rank_cst[n]);
8272 tmp = fold_build2_loc (input_location, MINUS_EXPR,
8273 gfc_array_index_type,
8274 loop->to[n], loop->from[n]);
8275 tmp = fold_build2_loc (input_location, PLUS_EXPR,
8276 gfc_array_index_type,
8277 tmp, lbound);
8278 tmp = fold_build2_loc (input_location, MINUS_EXPR,
8279 gfc_array_index_type,
8280 tmp, ubound);
8281 cond = fold_build2_loc (input_location, NE_EXPR,
8282 boolean_type_node,
8283 tmp, gfc_index_zero_node);
8284 tmp = build3_v (COND_EXPR, cond,
8285 build1_v (GOTO_EXPR, jump_label1),
8286 build_empty_stmt (input_location));
8287 gfc_add_expr_to_block (&fblock, tmp);
8290 /* ....else jump past the (re)alloc code. */
8291 tmp = build1_v (GOTO_EXPR, jump_label2);
8292 gfc_add_expr_to_block (&fblock, tmp);
8294 /* Add the label to start automatic (re)allocation. */
8295 tmp = build1_v (LABEL_EXPR, jump_label1);
8296 gfc_add_expr_to_block (&fblock, tmp);
8298 /* If the lhs has not been allocated, its bounds will not have been
8299 initialized and so its size is set to zero. */
8300 size1 = gfc_create_var (gfc_array_index_type, NULL);
8301 gfc_init_block (&alloc_block);
8302 gfc_add_modify (&alloc_block, size1, gfc_index_zero_node);
8303 gfc_init_block (&realloc_block);
8304 gfc_add_modify (&realloc_block, size1,
8305 gfc_conv_descriptor_size (desc, expr1->rank));
8306 tmp = build3_v (COND_EXPR, cond_null,
8307 gfc_finish_block (&alloc_block),
8308 gfc_finish_block (&realloc_block));
8309 gfc_add_expr_to_block (&fblock, tmp);
8311 /* Get the rhs size and fix it. */
8312 if (expr2)
8313 desc2 = rss->info->data.array.descriptor;
8314 else
8315 desc2 = NULL_TREE;
8317 size2 = gfc_index_one_node;
8318 for (n = 0; n < expr2->rank; n++)
8320 tmp = fold_build2_loc (input_location, MINUS_EXPR,
8321 gfc_array_index_type,
8322 loop->to[n], loop->from[n]);
8323 tmp = fold_build2_loc (input_location, PLUS_EXPR,
8324 gfc_array_index_type,
8325 tmp, gfc_index_one_node);
8326 size2 = fold_build2_loc (input_location, MULT_EXPR,
8327 gfc_array_index_type,
8328 tmp, size2);
8330 size2 = gfc_evaluate_now (size2, &fblock);
8332 cond = fold_build2_loc (input_location, NE_EXPR, boolean_type_node,
8333 size1, size2);
8334 neq_size = gfc_evaluate_now (cond, &fblock);
8336 /* Deallocation of allocatable components will have to occur on
8337 reallocation. Fix the old descriptor now. */
8338 if ((expr1->ts.type == BT_DERIVED)
8339 && expr1->ts.u.derived->attr.alloc_comp)
8340 old_desc = gfc_evaluate_now (desc, &fblock);
8341 else
8342 old_desc = NULL_TREE;
8344 /* Now modify the lhs descriptor and the associated scalarizer
8345 variables. F2003 7.4.1.3: "If variable is or becomes an
8346 unallocated allocatable variable, then it is allocated with each
8347 deferred type parameter equal to the corresponding type parameters
8348 of expr , with the shape of expr , and with each lower bound equal
8349 to the corresponding element of LBOUND(expr)."
8350 Reuse size1 to keep a dimension-by-dimension track of the
8351 stride of the new array. */
8352 size1 = gfc_index_one_node;
8353 offset = gfc_index_zero_node;
8355 for (n = 0; n < expr2->rank; n++)
8357 tmp = fold_build2_loc (input_location, MINUS_EXPR,
8358 gfc_array_index_type,
8359 loop->to[n], loop->from[n]);
8360 tmp = fold_build2_loc (input_location, PLUS_EXPR,
8361 gfc_array_index_type,
8362 tmp, gfc_index_one_node);
8364 lbound = gfc_index_one_node;
8365 ubound = tmp;
8367 if (as)
8369 lbd = get_std_lbound (expr2, desc2, n,
8370 as->type == AS_ASSUMED_SIZE);
8371 ubound = fold_build2_loc (input_location,
8372 MINUS_EXPR,
8373 gfc_array_index_type,
8374 ubound, lbound);
8375 ubound = fold_build2_loc (input_location,
8376 PLUS_EXPR,
8377 gfc_array_index_type,
8378 ubound, lbd);
8379 lbound = lbd;
8382 gfc_conv_descriptor_lbound_set (&fblock, desc,
8383 gfc_rank_cst[n],
8384 lbound);
8385 gfc_conv_descriptor_ubound_set (&fblock, desc,
8386 gfc_rank_cst[n],
8387 ubound);
8388 gfc_conv_descriptor_stride_set (&fblock, desc,
8389 gfc_rank_cst[n],
8390 size1);
8391 lbound = gfc_conv_descriptor_lbound_get (desc,
8392 gfc_rank_cst[n]);
8393 tmp2 = fold_build2_loc (input_location, MULT_EXPR,
8394 gfc_array_index_type,
8395 lbound, size1);
8396 offset = fold_build2_loc (input_location, MINUS_EXPR,
8397 gfc_array_index_type,
8398 offset, tmp2);
8399 size1 = fold_build2_loc (input_location, MULT_EXPR,
8400 gfc_array_index_type,
8401 tmp, size1);
8404 /* Set the lhs descriptor and scalarizer offsets. For rank > 1,
8405 the array offset is saved and the info.offset is used for a
8406 running offset. Use the saved_offset instead. */
8407 tmp = gfc_conv_descriptor_offset (desc);
8408 gfc_add_modify (&fblock, tmp, offset);
8409 if (linfo->saved_offset
8410 && TREE_CODE (linfo->saved_offset) == VAR_DECL)
8411 gfc_add_modify (&fblock, linfo->saved_offset, tmp);
8413 /* Now set the deltas for the lhs. */
8414 for (n = 0; n < expr1->rank; n++)
8416 tmp = gfc_conv_descriptor_lbound_get (desc, gfc_rank_cst[n]);
8417 dim = lss->dim[n];
8418 tmp = fold_build2_loc (input_location, MINUS_EXPR,
8419 gfc_array_index_type, tmp,
8420 loop->from[dim]);
8421 if (linfo->delta[dim]
8422 && TREE_CODE (linfo->delta[dim]) == VAR_DECL)
8423 gfc_add_modify (&fblock, linfo->delta[dim], tmp);
8426 /* Get the new lhs size in bytes. */
8427 if (expr1->ts.type == BT_CHARACTER && expr1->ts.deferred)
8429 if (expr2->ts.deferred)
8431 if (TREE_CODE (expr2->ts.u.cl->backend_decl) == VAR_DECL)
8432 tmp = expr2->ts.u.cl->backend_decl;
8433 else
8434 tmp = rss->info->string_length;
8436 else
8438 tmp = expr2->ts.u.cl->backend_decl;
8439 tmp = fold_convert (TREE_TYPE (expr1->ts.u.cl->backend_decl), tmp);
8442 if (expr1->ts.u.cl->backend_decl
8443 && TREE_CODE (expr1->ts.u.cl->backend_decl) == VAR_DECL)
8444 gfc_add_modify (&fblock, expr1->ts.u.cl->backend_decl, tmp);
8445 else
8446 gfc_add_modify (&fblock, lss->info->string_length, tmp);
8448 else if (expr1->ts.type == BT_CHARACTER && expr1->ts.u.cl->backend_decl)
8450 tmp = TYPE_SIZE_UNIT (TREE_TYPE (gfc_typenode_for_spec (&expr1->ts)));
8451 tmp = fold_build2_loc (input_location, MULT_EXPR,
8452 gfc_array_index_type, tmp,
8453 expr1->ts.u.cl->backend_decl);
8455 else
8456 tmp = TYPE_SIZE_UNIT (gfc_typenode_for_spec (&expr1->ts));
8457 tmp = fold_convert (gfc_array_index_type, tmp);
8458 size2 = fold_build2_loc (input_location, MULT_EXPR,
8459 gfc_array_index_type,
8460 tmp, size2);
8461 size2 = fold_convert (size_type_node, size2);
8462 size2 = fold_build2_loc (input_location, MAX_EXPR, size_type_node,
8463 size2, size_one_node);
8464 size2 = gfc_evaluate_now (size2, &fblock);
8466 /* Realloc expression. Note that the scalarizer uses desc.data
8467 in the array reference - (*desc.data)[<element>]. */
8468 gfc_init_block (&realloc_block);
8470 if ((expr1->ts.type == BT_DERIVED)
8471 && expr1->ts.u.derived->attr.alloc_comp)
8473 tmp = gfc_deallocate_alloc_comp_no_caf (expr1->ts.u.derived, old_desc,
8474 expr1->rank);
8475 gfc_add_expr_to_block (&realloc_block, tmp);
8478 tmp = build_call_expr_loc (input_location,
8479 builtin_decl_explicit (BUILT_IN_REALLOC), 2,
8480 fold_convert (pvoid_type_node, array1),
8481 size2);
8482 gfc_conv_descriptor_data_set (&realloc_block,
8483 desc, tmp);
8485 if ((expr1->ts.type == BT_DERIVED)
8486 && expr1->ts.u.derived->attr.alloc_comp)
8488 tmp = gfc_nullify_alloc_comp (expr1->ts.u.derived, desc,
8489 expr1->rank);
8490 gfc_add_expr_to_block (&realloc_block, tmp);
8493 realloc_expr = gfc_finish_block (&realloc_block);
8495 /* Only reallocate if sizes are different. */
8496 tmp = build3_v (COND_EXPR, neq_size, realloc_expr,
8497 build_empty_stmt (input_location));
8498 realloc_expr = tmp;
8501 /* Malloc expression. */
8502 gfc_init_block (&alloc_block);
8503 tmp = build_call_expr_loc (input_location,
8504 builtin_decl_explicit (BUILT_IN_MALLOC),
8505 1, size2);
8506 gfc_conv_descriptor_data_set (&alloc_block,
8507 desc, tmp);
8508 tmp = gfc_conv_descriptor_dtype (desc);
8509 gfc_add_modify (&alloc_block, tmp, gfc_get_dtype (TREE_TYPE (desc)));
8510 if ((expr1->ts.type == BT_DERIVED)
8511 && expr1->ts.u.derived->attr.alloc_comp)
8513 tmp = gfc_nullify_alloc_comp (expr1->ts.u.derived, desc,
8514 expr1->rank);
8515 gfc_add_expr_to_block (&alloc_block, tmp);
8517 alloc_expr = gfc_finish_block (&alloc_block);
8519 /* Malloc if not allocated; realloc otherwise. */
8520 tmp = build_int_cst (TREE_TYPE (array1), 0);
8521 cond = fold_build2_loc (input_location, EQ_EXPR,
8522 boolean_type_node,
8523 array1, tmp);
8524 tmp = build3_v (COND_EXPR, cond, alloc_expr, realloc_expr);
8525 gfc_add_expr_to_block (&fblock, tmp);
8527 /* Make sure that the scalarizer data pointer is updated. */
8528 if (linfo->data
8529 && TREE_CODE (linfo->data) == VAR_DECL)
8531 tmp = gfc_conv_descriptor_data_get (desc);
8532 gfc_add_modify (&fblock, linfo->data, tmp);
8535 /* Add the exit label. */
8536 tmp = build1_v (LABEL_EXPR, jump_label2);
8537 gfc_add_expr_to_block (&fblock, tmp);
8539 return gfc_finish_block (&fblock);
8543 /* NULLIFY an allocatable/pointer array on function entry, free it on exit.
8544 Do likewise, recursively if necessary, with the allocatable components of
8545 derived types. */
8547 void
8548 gfc_trans_deferred_array (gfc_symbol * sym, gfc_wrapped_block * block)
8550 tree type;
8551 tree tmp;
8552 tree descriptor;
8553 stmtblock_t init;
8554 stmtblock_t cleanup;
8555 locus loc;
8556 int rank;
8557 bool sym_has_alloc_comp, has_finalizer;
8559 sym_has_alloc_comp = (sym->ts.type == BT_DERIVED
8560 || sym->ts.type == BT_CLASS)
8561 && sym->ts.u.derived->attr.alloc_comp;
8562 has_finalizer = sym->ts.type == BT_CLASS || sym->ts.type == BT_DERIVED
8563 ? gfc_is_finalizable (sym->ts.u.derived, NULL) : false;
8565 /* Make sure the frontend gets these right. */
8566 gcc_assert (sym->attr.pointer || sym->attr.allocatable || sym_has_alloc_comp
8567 || has_finalizer);
8569 gfc_save_backend_locus (&loc);
8570 gfc_set_backend_locus (&sym->declared_at);
8571 gfc_init_block (&init);
8573 gcc_assert (TREE_CODE (sym->backend_decl) == VAR_DECL
8574 || TREE_CODE (sym->backend_decl) == PARM_DECL);
8576 if (sym->ts.type == BT_CHARACTER
8577 && !INTEGER_CST_P (sym->ts.u.cl->backend_decl))
8579 gfc_conv_string_length (sym->ts.u.cl, NULL, &init);
8580 gfc_trans_vla_type_sizes (sym, &init);
8583 /* Dummy, use associated and result variables don't need anything special. */
8584 if (sym->attr.dummy || sym->attr.use_assoc || sym->attr.result)
8586 gfc_add_init_cleanup (block, gfc_finish_block (&init), NULL_TREE);
8587 gfc_restore_backend_locus (&loc);
8588 return;
8591 descriptor = sym->backend_decl;
8593 /* Although static, derived types with default initializers and
8594 allocatable components must not be nulled wholesale; instead they
8595 are treated component by component. */
8596 if (TREE_STATIC (descriptor) && !sym_has_alloc_comp && !has_finalizer)
8598 /* SAVEd variables are not freed on exit. */
8599 gfc_trans_static_array_pointer (sym);
8601 gfc_add_init_cleanup (block, gfc_finish_block (&init), NULL_TREE);
8602 gfc_restore_backend_locus (&loc);
8603 return;
8606 /* Get the descriptor type. */
8607 type = TREE_TYPE (sym->backend_decl);
8609 if ((sym_has_alloc_comp || (has_finalizer && sym->ts.type != BT_CLASS))
8610 && !(sym->attr.pointer || sym->attr.allocatable))
8612 if (!sym->attr.save
8613 && !(TREE_STATIC (sym->backend_decl) && sym->attr.is_main_program))
8615 if (sym->value == NULL
8616 || !gfc_has_default_initializer (sym->ts.u.derived))
8618 rank = sym->as ? sym->as->rank : 0;
8619 tmp = gfc_nullify_alloc_comp (sym->ts.u.derived,
8620 descriptor, rank);
8621 gfc_add_expr_to_block (&init, tmp);
8623 else
8624 gfc_init_default_dt (sym, &init, false);
8627 else if (!GFC_DESCRIPTOR_TYPE_P (type))
8629 /* If the backend_decl is not a descriptor, we must have a pointer
8630 to one. */
8631 descriptor = build_fold_indirect_ref_loc (input_location,
8632 sym->backend_decl);
8633 type = TREE_TYPE (descriptor);
8636 /* NULLIFY the data pointer. */
8637 if (GFC_DESCRIPTOR_TYPE_P (type) && !sym->attr.save)
8638 gfc_conv_descriptor_data_set (&init, descriptor, null_pointer_node);
8640 gfc_restore_backend_locus (&loc);
8641 gfc_init_block (&cleanup);
8643 /* Allocatable arrays need to be freed when they go out of scope.
8644 The allocatable components of pointers must not be touched. */
8645 if (!sym->attr.allocatable && has_finalizer && sym->ts.type != BT_CLASS
8646 && !sym->attr.pointer && !sym->attr.artificial && !sym->attr.save
8647 && !sym->ns->proc_name->attr.is_main_program)
8649 gfc_expr *e;
8650 sym->attr.referenced = 1;
8651 e = gfc_lval_expr_from_sym (sym);
8652 gfc_add_finalizer_call (&cleanup, e);
8653 gfc_free_expr (e);
8655 else if ((!sym->attr.allocatable || !has_finalizer)
8656 && sym_has_alloc_comp && !(sym->attr.function || sym->attr.result)
8657 && !sym->attr.pointer && !sym->attr.save
8658 && !sym->ns->proc_name->attr.is_main_program)
8660 int rank;
8661 rank = sym->as ? sym->as->rank : 0;
8662 tmp = gfc_deallocate_alloc_comp (sym->ts.u.derived, descriptor, rank);
8663 gfc_add_expr_to_block (&cleanup, tmp);
8666 if (sym->attr.allocatable && (sym->attr.dimension || sym->attr.codimension)
8667 && !sym->attr.save && !sym->attr.result
8668 && !sym->ns->proc_name->attr.is_main_program)
8670 gfc_expr *e;
8671 e = has_finalizer ? gfc_lval_expr_from_sym (sym) : NULL;
8672 tmp = gfc_trans_dealloc_allocated (sym->backend_decl,
8673 sym->attr.codimension, e);
8674 if (e)
8675 gfc_free_expr (e);
8676 gfc_add_expr_to_block (&cleanup, tmp);
8679 gfc_add_init_cleanup (block, gfc_finish_block (&init),
8680 gfc_finish_block (&cleanup));
8683 /************ Expression Walking Functions ******************/
8685 /* Walk a variable reference.
8687 Possible extension - multiple component subscripts.
8688 x(:,:) = foo%a(:)%b(:)
8689 Transforms to
8690 forall (i=..., j=...)
8691 x(i,j) = foo%a(j)%b(i)
8692 end forall
8693 This adds a fair amount of complexity because you need to deal with more
8694 than one ref. Maybe handle in a similar manner to vector subscripts.
8695 Maybe not worth the effort. */
8698 static gfc_ss *
8699 gfc_walk_variable_expr (gfc_ss * ss, gfc_expr * expr)
8701 gfc_ref *ref;
8703 for (ref = expr->ref; ref; ref = ref->next)
8704 if (ref->type == REF_ARRAY && ref->u.ar.type != AR_ELEMENT)
8705 break;
8707 return gfc_walk_array_ref (ss, expr, ref);
8711 gfc_ss *
8712 gfc_walk_array_ref (gfc_ss * ss, gfc_expr * expr, gfc_ref * ref)
8714 gfc_array_ref *ar;
8715 gfc_ss *newss;
8716 int n;
8718 for (; ref; ref = ref->next)
8720 if (ref->type == REF_SUBSTRING)
8722 ss = gfc_get_scalar_ss (ss, ref->u.ss.start);
8723 ss = gfc_get_scalar_ss (ss, ref->u.ss.end);
8726 /* We're only interested in array sections from now on. */
8727 if (ref->type != REF_ARRAY)
8728 continue;
8730 ar = &ref->u.ar;
8732 switch (ar->type)
8734 case AR_ELEMENT:
8735 for (n = ar->dimen - 1; n >= 0; n--)
8736 ss = gfc_get_scalar_ss (ss, ar->start[n]);
8737 break;
8739 case AR_FULL:
8740 newss = gfc_get_array_ss (ss, expr, ar->as->rank, GFC_SS_SECTION);
8741 newss->info->data.array.ref = ref;
8743 /* Make sure array is the same as array(:,:), this way
8744 we don't need to special case all the time. */
8745 ar->dimen = ar->as->rank;
8746 for (n = 0; n < ar->dimen; n++)
8748 ar->dimen_type[n] = DIMEN_RANGE;
8750 gcc_assert (ar->start[n] == NULL);
8751 gcc_assert (ar->end[n] == NULL);
8752 gcc_assert (ar->stride[n] == NULL);
8754 ss = newss;
8755 break;
8757 case AR_SECTION:
8758 newss = gfc_get_array_ss (ss, expr, 0, GFC_SS_SECTION);
8759 newss->info->data.array.ref = ref;
8761 /* We add SS chains for all the subscripts in the section. */
8762 for (n = 0; n < ar->dimen; n++)
8764 gfc_ss *indexss;
8766 switch (ar->dimen_type[n])
8768 case DIMEN_ELEMENT:
8769 /* Add SS for elemental (scalar) subscripts. */
8770 gcc_assert (ar->start[n]);
8771 indexss = gfc_get_scalar_ss (gfc_ss_terminator, ar->start[n]);
8772 indexss->loop_chain = gfc_ss_terminator;
8773 newss->info->data.array.subscript[n] = indexss;
8774 break;
8776 case DIMEN_RANGE:
8777 /* We don't add anything for sections, just remember this
8778 dimension for later. */
8779 newss->dim[newss->dimen] = n;
8780 newss->dimen++;
8781 break;
8783 case DIMEN_VECTOR:
8784 /* Create a GFC_SS_VECTOR index in which we can store
8785 the vector's descriptor. */
8786 indexss = gfc_get_array_ss (gfc_ss_terminator, ar->start[n],
8787 1, GFC_SS_VECTOR);
8788 indexss->loop_chain = gfc_ss_terminator;
8789 newss->info->data.array.subscript[n] = indexss;
8790 newss->dim[newss->dimen] = n;
8791 newss->dimen++;
8792 break;
8794 default:
8795 /* We should know what sort of section it is by now. */
8796 gcc_unreachable ();
8799 /* We should have at least one non-elemental dimension,
8800 unless we are creating a descriptor for a (scalar) coarray. */
8801 gcc_assert (newss->dimen > 0
8802 || newss->info->data.array.ref->u.ar.as->corank > 0);
8803 ss = newss;
8804 break;
8806 default:
8807 /* We should know what sort of section it is by now. */
8808 gcc_unreachable ();
8812 return ss;
8816 /* Walk an expression operator. If only one operand of a binary expression is
8817 scalar, we must also add the scalar term to the SS chain. */
8819 static gfc_ss *
8820 gfc_walk_op_expr (gfc_ss * ss, gfc_expr * expr)
8822 gfc_ss *head;
8823 gfc_ss *head2;
8825 head = gfc_walk_subexpr (ss, expr->value.op.op1);
8826 if (expr->value.op.op2 == NULL)
8827 head2 = head;
8828 else
8829 head2 = gfc_walk_subexpr (head, expr->value.op.op2);
8831 /* All operands are scalar. Pass back and let the caller deal with it. */
8832 if (head2 == ss)
8833 return head2;
8835 /* All operands require scalarization. */
8836 if (head != ss && (expr->value.op.op2 == NULL || head2 != head))
8837 return head2;
8839 /* One of the operands needs scalarization, the other is scalar.
8840 Create a gfc_ss for the scalar expression. */
8841 if (head == ss)
8843 /* First operand is scalar. We build the chain in reverse order, so
8844 add the scalar SS after the second operand. */
8845 head = head2;
8846 while (head && head->next != ss)
8847 head = head->next;
8848 /* Check we haven't somehow broken the chain. */
8849 gcc_assert (head);
8850 head->next = gfc_get_scalar_ss (ss, expr->value.op.op1);
8852 else /* head2 == head */
8854 gcc_assert (head2 == head);
8855 /* Second operand is scalar. */
8856 head2 = gfc_get_scalar_ss (head2, expr->value.op.op2);
8859 return head2;
8863 /* Reverse a SS chain. */
8865 gfc_ss *
8866 gfc_reverse_ss (gfc_ss * ss)
8868 gfc_ss *next;
8869 gfc_ss *head;
8871 gcc_assert (ss != NULL);
8873 head = gfc_ss_terminator;
8874 while (ss != gfc_ss_terminator)
8876 next = ss->next;
8877 /* Check we didn't somehow break the chain. */
8878 gcc_assert (next != NULL);
8879 ss->next = head;
8880 head = ss;
8881 ss = next;
8884 return (head);
8888 /* Given an expression referring to a procedure, return the symbol of its
8889 interface. We can't get the procedure symbol directly as we have to handle
8890 the case of (deferred) type-bound procedures. */
8892 gfc_symbol *
8893 gfc_get_proc_ifc_for_expr (gfc_expr *procedure_ref)
8895 gfc_symbol *sym;
8896 gfc_ref *ref;
8898 if (procedure_ref == NULL)
8899 return NULL;
8901 /* Normal procedure case. */
8902 sym = procedure_ref->symtree->n.sym;
8904 /* Typebound procedure case. */
8905 for (ref = procedure_ref->ref; ref; ref = ref->next)
8907 if (ref->type == REF_COMPONENT
8908 && ref->u.c.component->attr.proc_pointer)
8909 sym = ref->u.c.component->ts.interface;
8910 else
8911 sym = NULL;
8914 return sym;
8918 /* Walk the arguments of an elemental function.
8919 PROC_EXPR is used to check whether an argument is permitted to be absent. If
8920 it is NULL, we don't do the check and the argument is assumed to be present.
8923 gfc_ss *
8924 gfc_walk_elemental_function_args (gfc_ss * ss, gfc_actual_arglist *arg,
8925 gfc_symbol *proc_ifc, gfc_ss_type type)
8927 gfc_formal_arglist *dummy_arg;
8928 int scalar;
8929 gfc_ss *head;
8930 gfc_ss *tail;
8931 gfc_ss *newss;
8933 head = gfc_ss_terminator;
8934 tail = NULL;
8936 if (proc_ifc)
8937 dummy_arg = gfc_sym_get_dummy_args (proc_ifc);
8938 else
8939 dummy_arg = NULL;
8941 scalar = 1;
8942 for (; arg; arg = arg->next)
8944 if (!arg->expr || arg->expr->expr_type == EXPR_NULL)
8945 continue;
8947 newss = gfc_walk_subexpr (head, arg->expr);
8948 if (newss == head)
8950 /* Scalar argument. */
8951 gcc_assert (type == GFC_SS_SCALAR || type == GFC_SS_REFERENCE);
8952 newss = gfc_get_scalar_ss (head, arg->expr);
8953 newss->info->type = type;
8956 else
8957 scalar = 0;
8959 if (dummy_arg != NULL
8960 && dummy_arg->sym->attr.optional
8961 && arg->expr->expr_type == EXPR_VARIABLE
8962 && (gfc_expr_attr (arg->expr).optional
8963 || gfc_expr_attr (arg->expr).allocatable
8964 || gfc_expr_attr (arg->expr).pointer))
8965 newss->info->can_be_null_ref = true;
8967 head = newss;
8968 if (!tail)
8970 tail = head;
8971 while (tail->next != gfc_ss_terminator)
8972 tail = tail->next;
8975 if (dummy_arg != NULL)
8976 dummy_arg = dummy_arg->next;
8979 if (scalar)
8981 /* If all the arguments are scalar we don't need the argument SS. */
8982 gfc_free_ss_chain (head);
8983 /* Pass it back. */
8984 return ss;
8987 /* Add it onto the existing chain. */
8988 tail->next = ss;
8989 return head;
8993 /* Walk a function call. Scalar functions are passed back, and taken out of
8994 scalarization loops. For elemental functions we walk their arguments.
8995 The result of functions returning arrays is stored in a temporary outside
8996 the loop, so that the function is only called once. Hence we do not need
8997 to walk their arguments. */
8999 static gfc_ss *
9000 gfc_walk_function_expr (gfc_ss * ss, gfc_expr * expr)
9002 gfc_intrinsic_sym *isym;
9003 gfc_symbol *sym;
9004 gfc_component *comp = NULL;
9006 isym = expr->value.function.isym;
9008 /* Handle intrinsic functions separately. */
9009 if (isym)
9010 return gfc_walk_intrinsic_function (ss, expr, isym);
9012 sym = expr->value.function.esym;
9013 if (!sym)
9014 sym = expr->symtree->n.sym;
9016 /* A function that returns arrays. */
9017 comp = gfc_get_proc_ptr_comp (expr);
9018 if ((!comp && gfc_return_by_reference (sym) && sym->result->attr.dimension)
9019 || (comp && comp->attr.dimension))
9020 return gfc_get_array_ss (ss, expr, expr->rank, GFC_SS_FUNCTION);
9022 /* Walk the parameters of an elemental function. For now we always pass
9023 by reference. */
9024 if (sym->attr.elemental || (comp && comp->attr.elemental))
9025 return gfc_walk_elemental_function_args (ss, expr->value.function.actual,
9026 gfc_get_proc_ifc_for_expr (expr),
9027 GFC_SS_REFERENCE);
9029 /* Scalar functions are OK as these are evaluated outside the scalarization
9030 loop. Pass back and let the caller deal with it. */
9031 return ss;
9035 /* An array temporary is constructed for array constructors. */
9037 static gfc_ss *
9038 gfc_walk_array_constructor (gfc_ss * ss, gfc_expr * expr)
9040 return gfc_get_array_ss (ss, expr, expr->rank, GFC_SS_CONSTRUCTOR);
9044 /* Walk an expression. Add walked expressions to the head of the SS chain.
9045 A wholly scalar expression will not be added. */
9047 gfc_ss *
9048 gfc_walk_subexpr (gfc_ss * ss, gfc_expr * expr)
9050 gfc_ss *head;
9052 switch (expr->expr_type)
9054 case EXPR_VARIABLE:
9055 head = gfc_walk_variable_expr (ss, expr);
9056 return head;
9058 case EXPR_OP:
9059 head = gfc_walk_op_expr (ss, expr);
9060 return head;
9062 case EXPR_FUNCTION:
9063 head = gfc_walk_function_expr (ss, expr);
9064 return head;
9066 case EXPR_CONSTANT:
9067 case EXPR_NULL:
9068 case EXPR_STRUCTURE:
9069 /* Pass back and let the caller deal with it. */
9070 break;
9072 case EXPR_ARRAY:
9073 head = gfc_walk_array_constructor (ss, expr);
9074 return head;
9076 case EXPR_SUBSTRING:
9077 /* Pass back and let the caller deal with it. */
9078 break;
9080 default:
9081 internal_error ("bad expression type during walk (%d)",
9082 expr->expr_type);
9084 return ss;
9088 /* Entry point for expression walking.
9089 A return value equal to the passed chain means this is
9090 a scalar expression. It is up to the caller to take whatever action is
9091 necessary to translate these. */
9093 gfc_ss *
9094 gfc_walk_expr (gfc_expr * expr)
9096 gfc_ss *res;
9098 res = gfc_walk_subexpr (gfc_ss_terminator, expr);
9099 return gfc_reverse_ss (res);