Merged revisions 208012,208018-208019,208021,208023-208030,208033,208037,208040-20804...
[official-gcc.git] / main / gcc / config / mips / mips.h
bloba786d4ce30393025be1ade7a5793088c60694cb0
1 /* Definitions of target machine for GNU compiler. MIPS version.
2 Copyright (C) 1989-2014 Free Software Foundation, Inc.
3 Contributed by A. Lichnewsky (lich@inria.inria.fr).
4 Changed by Michael Meissner (meissner@osf.org).
5 64-bit r4000 support by Ian Lance Taylor (ian@cygnus.com) and
6 Brendan Eich (brendan@microunity.com).
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3, or (at your option)
13 any later version.
15 GCC is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
25 #include "config/vxworks-dummy.h"
27 #ifdef GENERATOR_FILE
28 /* This is used in some insn conditions, so needs to be declared, but
29 does not need to be defined. */
30 extern int target_flags_explicit;
31 #endif
33 /* MIPS external variables defined in mips.c. */
35 /* Which ABI to use. ABI_32 (original 32, or o32), ABI_N32 (n32),
36 ABI_64 (n64) are all defined by SGI. ABI_O64 is o32 extended
37 to work on a 64-bit machine. */
39 #define ABI_32 0
40 #define ABI_N32 1
41 #define ABI_64 2
42 #define ABI_EABI 3
43 #define ABI_O64 4
45 /* Masks that affect tuning.
47 PTF_AVOID_BRANCHLIKELY
48 Set if it is usually not profitable to use branch-likely instructions
49 for this target, typically because the branches are always predicted
50 taken and so incur a large overhead when not taken.
52 PTF_AVOID_IMADD
53 Set if it is usually not profitable to use the integer MADD or MSUB
54 instructions because of the overhead of getting the result out of
55 the HI/LO registers. */
57 #define PTF_AVOID_BRANCHLIKELY 0x1
58 #define PTF_AVOID_IMADD 0x2
60 /* Information about one recognized processor. Defined here for the
61 benefit of TARGET_CPU_CPP_BUILTINS. */
62 struct mips_cpu_info {
63 /* The 'canonical' name of the processor as far as GCC is concerned.
64 It's typically a manufacturer's prefix followed by a numerical
65 designation. It should be lowercase. */
66 const char *name;
68 /* The internal processor number that most closely matches this
69 entry. Several processors can have the same value, if there's no
70 difference between them from GCC's point of view. */
71 enum processor cpu;
73 /* The ISA level that the processor implements. */
74 int isa;
76 /* A mask of PTF_* values. */
77 unsigned int tune_flags;
80 #include "config/mips/mips-opts.h"
82 /* Macros to silence warnings about numbers being signed in traditional
83 C and unsigned in ISO C when compiled on 32-bit hosts. */
85 #define BITMASK_HIGH (((unsigned long)1) << 31) /* 0x80000000 */
86 #define BITMASK_UPPER16 ((unsigned long)0xffff << 16) /* 0xffff0000 */
87 #define BITMASK_LOWER16 ((unsigned long)0xffff) /* 0x0000ffff */
90 /* Run-time compilation parameters selecting different hardware subsets. */
92 /* True if we are generating position-independent VxWorks RTP code. */
93 #define TARGET_RTP_PIC (TARGET_VXWORKS_RTP && flag_pic)
95 /* True if the output file is marked as ".abicalls; .option pic0"
96 (-call_nonpic). */
97 #define TARGET_ABICALLS_PIC0 \
98 (TARGET_ABSOLUTE_ABICALLS && TARGET_PLT)
100 /* True if the output file is marked as ".abicalls; .option pic2" (-KPIC). */
101 #define TARGET_ABICALLS_PIC2 \
102 (TARGET_ABICALLS && !TARGET_ABICALLS_PIC0)
104 /* True if the call patterns should be split into a jalr followed by
105 an instruction to restore $gp. It is only safe to split the load
106 from the call when every use of $gp is explicit.
108 See mips_must_initialize_gp_p for details about how we manage the
109 global pointer. */
111 #define TARGET_SPLIT_CALLS \
112 (TARGET_EXPLICIT_RELOCS && TARGET_CALL_CLOBBERED_GP && epilogue_completed)
114 /* True if we're generating a form of -mabicalls in which we can use
115 operators like %hi and %lo to refer to locally-binding symbols.
116 We can only do this for -mno-shared, and only then if we can use
117 relocation operations instead of assembly macros. It isn't really
118 worth using absolute sequences for 64-bit symbols because GOT
119 accesses are so much shorter. */
121 #define TARGET_ABSOLUTE_ABICALLS \
122 (TARGET_ABICALLS \
123 && !TARGET_SHARED \
124 && TARGET_EXPLICIT_RELOCS \
125 && !ABI_HAS_64BIT_SYMBOLS)
127 /* True if we can optimize sibling calls. For simplicity, we only
128 handle cases in which call_insn_operand will reject invalid
129 sibcall addresses. There are two cases in which this isn't true:
131 - TARGET_MIPS16. call_insn_operand accepts constant addresses
132 but there is no direct jump instruction. It isn't worth
133 using sibling calls in this case anyway; they would usually
134 be longer than normal calls.
136 - TARGET_USE_GOT && !TARGET_EXPLICIT_RELOCS. call_insn_operand
137 accepts global constants, but all sibcalls must be indirect. */
138 #define TARGET_SIBCALLS \
139 (!TARGET_MIPS16 && (!TARGET_USE_GOT || TARGET_EXPLICIT_RELOCS))
141 /* True if we need to use a global offset table to access some symbols. */
142 #define TARGET_USE_GOT (TARGET_ABICALLS || TARGET_RTP_PIC)
144 /* True if TARGET_USE_GOT and if $gp is a call-clobbered register. */
145 #define TARGET_CALL_CLOBBERED_GP (TARGET_ABICALLS && TARGET_OLDABI)
147 /* True if TARGET_USE_GOT and if $gp is a call-saved register. */
148 #define TARGET_CALL_SAVED_GP (TARGET_USE_GOT && !TARGET_CALL_CLOBBERED_GP)
150 /* True if we should use .cprestore to store to the cprestore slot.
152 We continue to use .cprestore for explicit-reloc code so that JALs
153 inside inline asms will work correctly. */
154 #define TARGET_CPRESTORE_DIRECTIVE \
155 (TARGET_ABICALLS_PIC2 && !TARGET_MIPS16)
157 /* True if we can use the J and JAL instructions. */
158 #define TARGET_ABSOLUTE_JUMPS \
159 (!flag_pic || TARGET_ABSOLUTE_ABICALLS)
161 /* True if indirect calls must use register class PIC_FN_ADDR_REG.
162 This is true for both the PIC and non-PIC VxWorks RTP modes. */
163 #define TARGET_USE_PIC_FN_ADDR_REG (TARGET_ABICALLS || TARGET_VXWORKS_RTP)
165 /* True if .gpword or .gpdword should be used for switch tables. */
166 #define TARGET_GPWORD \
167 (TARGET_ABICALLS && !TARGET_ABSOLUTE_ABICALLS)
169 /* True if the output must have a writable .eh_frame.
170 See ASM_PREFERRED_EH_DATA_FORMAT for details. */
171 #ifdef HAVE_LD_PERSONALITY_RELAXATION
172 #define TARGET_WRITABLE_EH_FRAME 0
173 #else
174 #define TARGET_WRITABLE_EH_FRAME (flag_pic && TARGET_SHARED)
175 #endif
177 /* Test the assembler to set ISA_HAS_DSP_MULT to DSP Rev 1 or 2. */
178 #ifdef HAVE_AS_DSPR1_MULT
179 #define ISA_HAS_DSP_MULT ISA_HAS_DSP
180 #else
181 #define ISA_HAS_DSP_MULT ISA_HAS_DSPR2
182 #endif
184 /* The ISA compression flags that are currently in effect. */
185 #define TARGET_COMPRESSION (target_flags & (MASK_MIPS16 | MASK_MICROMIPS))
187 /* Generate mips16 code */
188 #define TARGET_MIPS16 ((target_flags & MASK_MIPS16) != 0)
189 /* Generate mips16e code. Default 16bit ASE for mips32* and mips64* */
190 #define GENERATE_MIPS16E (TARGET_MIPS16 && mips_isa >= 32)
191 /* Generate mips16e register save/restore sequences. */
192 #define GENERATE_MIPS16E_SAVE_RESTORE (GENERATE_MIPS16E && mips_abi == ABI_32)
194 /* True if we're generating a form of MIPS16 code in which general
195 text loads are allowed. */
196 #define TARGET_MIPS16_TEXT_LOADS \
197 (TARGET_MIPS16 && mips_code_readable == CODE_READABLE_YES)
199 /* True if we're generating a form of MIPS16 code in which PC-relative
200 loads are allowed. */
201 #define TARGET_MIPS16_PCREL_LOADS \
202 (TARGET_MIPS16 && mips_code_readable >= CODE_READABLE_PCREL)
204 /* Generic ISA defines. */
205 #define ISA_MIPS1 (mips_isa == 1)
206 #define ISA_MIPS2 (mips_isa == 2)
207 #define ISA_MIPS3 (mips_isa == 3)
208 #define ISA_MIPS4 (mips_isa == 4)
209 #define ISA_MIPS32 (mips_isa == 32)
210 #define ISA_MIPS32R2 (mips_isa == 33)
211 #define ISA_MIPS64 (mips_isa == 64)
212 #define ISA_MIPS64R2 (mips_isa == 65)
214 /* Architecture target defines. */
215 #define TARGET_LOONGSON_2E (mips_arch == PROCESSOR_LOONGSON_2E)
216 #define TARGET_LOONGSON_2F (mips_arch == PROCESSOR_LOONGSON_2F)
217 #define TARGET_LOONGSON_2EF (TARGET_LOONGSON_2E || TARGET_LOONGSON_2F)
218 #define TARGET_LOONGSON_3A (mips_arch == PROCESSOR_LOONGSON_3A)
219 #define TARGET_MIPS3900 (mips_arch == PROCESSOR_R3900)
220 #define TARGET_MIPS4000 (mips_arch == PROCESSOR_R4000)
221 #define TARGET_MIPS4120 (mips_arch == PROCESSOR_R4120)
222 #define TARGET_MIPS4130 (mips_arch == PROCESSOR_R4130)
223 #define TARGET_MIPS5400 (mips_arch == PROCESSOR_R5400)
224 #define TARGET_MIPS5500 (mips_arch == PROCESSOR_R5500)
225 #define TARGET_MIPS5900 (mips_arch == PROCESSOR_R5900)
226 #define TARGET_MIPS7000 (mips_arch == PROCESSOR_R7000)
227 #define TARGET_MIPS9000 (mips_arch == PROCESSOR_R9000)
228 #define TARGET_OCTEON (mips_arch == PROCESSOR_OCTEON \
229 || mips_arch == PROCESSOR_OCTEON2)
230 #define TARGET_OCTEON2 (mips_arch == PROCESSOR_OCTEON2)
231 #define TARGET_SB1 (mips_arch == PROCESSOR_SB1 \
232 || mips_arch == PROCESSOR_SB1A)
233 #define TARGET_SR71K (mips_arch == PROCESSOR_SR71000)
234 #define TARGET_XLP (mips_arch == PROCESSOR_XLP)
236 /* Scheduling target defines. */
237 #define TUNE_20KC (mips_tune == PROCESSOR_20KC)
238 #define TUNE_24K (mips_tune == PROCESSOR_24KC \
239 || mips_tune == PROCESSOR_24KF2_1 \
240 || mips_tune == PROCESSOR_24KF1_1)
241 #define TUNE_74K (mips_tune == PROCESSOR_74KC \
242 || mips_tune == PROCESSOR_74KF2_1 \
243 || mips_tune == PROCESSOR_74KF1_1 \
244 || mips_tune == PROCESSOR_74KF3_2)
245 #define TUNE_LOONGSON_2EF (mips_tune == PROCESSOR_LOONGSON_2E \
246 || mips_tune == PROCESSOR_LOONGSON_2F)
247 #define TUNE_LOONGSON_3A (mips_tune == PROCESSOR_LOONGSON_3A)
248 #define TUNE_MIPS3000 (mips_tune == PROCESSOR_R3000)
249 #define TUNE_MIPS3900 (mips_tune == PROCESSOR_R3900)
250 #define TUNE_MIPS4000 (mips_tune == PROCESSOR_R4000)
251 #define TUNE_MIPS4120 (mips_tune == PROCESSOR_R4120)
252 #define TUNE_MIPS4130 (mips_tune == PROCESSOR_R4130)
253 #define TUNE_MIPS5000 (mips_tune == PROCESSOR_R5000)
254 #define TUNE_MIPS5400 (mips_tune == PROCESSOR_R5400)
255 #define TUNE_MIPS5500 (mips_tune == PROCESSOR_R5500)
256 #define TUNE_MIPS6000 (mips_tune == PROCESSOR_R6000)
257 #define TUNE_MIPS7000 (mips_tune == PROCESSOR_R7000)
258 #define TUNE_MIPS9000 (mips_tune == PROCESSOR_R9000)
259 #define TUNE_OCTEON (mips_tune == PROCESSOR_OCTEON \
260 || mips_tune == PROCESSOR_OCTEON2)
261 #define TUNE_SB1 (mips_tune == PROCESSOR_SB1 \
262 || mips_tune == PROCESSOR_SB1A)
264 /* Whether vector modes and intrinsics for ST Microelectronics
265 Loongson-2E/2F processors should be enabled. In o32 pairs of
266 floating-point registers provide 64-bit values. */
267 #define TARGET_LOONGSON_VECTORS (TARGET_HARD_FLOAT_ABI \
268 && (TARGET_LOONGSON_2EF \
269 || TARGET_LOONGSON_3A))
271 /* True if the pre-reload scheduler should try to create chains of
272 multiply-add or multiply-subtract instructions. For example,
273 suppose we have:
275 t1 = a * b
276 t2 = t1 + c * d
277 t3 = e * f
278 t4 = t3 - g * h
280 t1 will have a higher priority than t2 and t3 will have a higher
281 priority than t4. However, before reload, there is no dependence
282 between t1 and t3, and they can often have similar priorities.
283 The scheduler will then tend to prefer:
285 t1 = a * b
286 t3 = e * f
287 t2 = t1 + c * d
288 t4 = t3 - g * h
290 which stops us from making full use of macc/madd-style instructions.
291 This sort of situation occurs frequently in Fourier transforms and
292 in unrolled loops.
294 To counter this, the TUNE_MACC_CHAINS code will reorder the ready
295 queue so that chained multiply-add and multiply-subtract instructions
296 appear ahead of any other instruction that is likely to clobber lo.
297 In the example above, if t2 and t3 become ready at the same time,
298 the code ensures that t2 is scheduled first.
300 Multiply-accumulate instructions are a bigger win for some targets
301 than others, so this macro is defined on an opt-in basis. */
302 #define TUNE_MACC_CHAINS (TUNE_MIPS5500 \
303 || TUNE_MIPS4120 \
304 || TUNE_MIPS4130 \
305 || TUNE_24K)
307 #define TARGET_OLDABI (mips_abi == ABI_32 || mips_abi == ABI_O64)
308 #define TARGET_NEWABI (mips_abi == ABI_N32 || mips_abi == ABI_64)
310 /* TARGET_HARD_FLOAT and TARGET_SOFT_FLOAT reflect whether the FPU is
311 directly accessible, while the command-line options select
312 TARGET_HARD_FLOAT_ABI and TARGET_SOFT_FLOAT_ABI to reflect the ABI
313 in use. */
314 #define TARGET_HARD_FLOAT (TARGET_HARD_FLOAT_ABI && !TARGET_MIPS16)
315 #define TARGET_SOFT_FLOAT (TARGET_SOFT_FLOAT_ABI || TARGET_MIPS16)
317 /* False if SC acts as a memory barrier with respect to itself,
318 otherwise a SYNC will be emitted after SC for atomic operations
319 that require ordering between the SC and following loads and
320 stores. It does not tell anything about ordering of loads and
321 stores prior to and following the SC, only about the SC itself and
322 those loads and stores follow it. */
323 #define TARGET_SYNC_AFTER_SC (!TARGET_OCTEON && !TARGET_XLP)
325 /* Define preprocessor macros for the -march and -mtune options.
326 PREFIX is either _MIPS_ARCH or _MIPS_TUNE, INFO is the selected
327 processor. If INFO's canonical name is "foo", define PREFIX to
328 be "foo", and define an additional macro PREFIX_FOO. */
329 #define MIPS_CPP_SET_PROCESSOR(PREFIX, INFO) \
330 do \
332 char *macro, *p; \
334 macro = concat ((PREFIX), "_", (INFO)->name, NULL); \
335 for (p = macro; *p != 0; p++) \
336 if (*p == '+') \
337 *p = 'P'; \
338 else \
339 *p = TOUPPER (*p); \
341 builtin_define (macro); \
342 builtin_define_with_value ((PREFIX), (INFO)->name, 1); \
343 free (macro); \
345 while (0)
347 /* Target CPU builtins. */
348 #define TARGET_CPU_CPP_BUILTINS() \
349 do \
351 builtin_assert ("machine=mips"); \
352 builtin_assert ("cpu=mips"); \
353 builtin_define ("__mips__"); \
354 builtin_define ("_mips"); \
356 /* We do this here because __mips is defined below and so we \
357 can't use builtin_define_std. We don't ever want to define \
358 "mips" for VxWorks because some of the VxWorks headers \
359 construct include filenames from a root directory macro, \
360 an architecture macro and a filename, where the architecture \
361 macro expands to 'mips'. If we define 'mips' to 1, the \
362 architecture macro expands to 1 as well. */ \
363 if (!flag_iso && !TARGET_VXWORKS) \
364 builtin_define ("mips"); \
366 if (TARGET_64BIT) \
367 builtin_define ("__mips64"); \
369 /* Treat _R3000 and _R4000 like register-size \
370 defines, which is how they've historically \
371 been used. */ \
372 if (TARGET_64BIT) \
374 builtin_define_std ("R4000"); \
375 builtin_define ("_R4000"); \
377 else \
379 builtin_define_std ("R3000"); \
380 builtin_define ("_R3000"); \
383 if (TARGET_FLOAT64) \
384 builtin_define ("__mips_fpr=64"); \
385 else \
386 builtin_define ("__mips_fpr=32"); \
388 if (mips_base_compression_flags & MASK_MIPS16) \
389 builtin_define ("__mips16"); \
391 if (TARGET_MIPS3D) \
392 builtin_define ("__mips3d"); \
394 if (TARGET_SMARTMIPS) \
395 builtin_define ("__mips_smartmips"); \
397 if (mips_base_compression_flags & MASK_MICROMIPS) \
398 builtin_define ("__mips_micromips"); \
400 if (TARGET_MCU) \
401 builtin_define ("__mips_mcu"); \
403 if (TARGET_EVA) \
404 builtin_define ("__mips_eva"); \
406 if (TARGET_DSP) \
408 builtin_define ("__mips_dsp"); \
409 if (TARGET_DSPR2) \
411 builtin_define ("__mips_dspr2"); \
412 builtin_define ("__mips_dsp_rev=2"); \
414 else \
415 builtin_define ("__mips_dsp_rev=1"); \
418 MIPS_CPP_SET_PROCESSOR ("_MIPS_ARCH", mips_arch_info); \
419 MIPS_CPP_SET_PROCESSOR ("_MIPS_TUNE", mips_tune_info); \
421 if (ISA_MIPS1) \
423 builtin_define ("__mips=1"); \
424 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS1"); \
426 else if (ISA_MIPS2) \
428 builtin_define ("__mips=2"); \
429 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS2"); \
431 else if (ISA_MIPS3) \
433 builtin_define ("__mips=3"); \
434 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS3"); \
436 else if (ISA_MIPS4) \
438 builtin_define ("__mips=4"); \
439 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS4"); \
441 else if (ISA_MIPS32) \
443 builtin_define ("__mips=32"); \
444 builtin_define ("__mips_isa_rev=1"); \
445 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS32"); \
447 else if (ISA_MIPS32R2) \
449 builtin_define ("__mips=32"); \
450 builtin_define ("__mips_isa_rev=2"); \
451 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS32"); \
453 else if (ISA_MIPS64) \
455 builtin_define ("__mips=64"); \
456 builtin_define ("__mips_isa_rev=1"); \
457 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS64"); \
459 else if (ISA_MIPS64R2) \
461 builtin_define ("__mips=64"); \
462 builtin_define ("__mips_isa_rev=2"); \
463 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS64"); \
466 switch (mips_abi) \
468 case ABI_32: \
469 builtin_define ("_ABIO32=1"); \
470 builtin_define ("_MIPS_SIM=_ABIO32"); \
471 break; \
473 case ABI_N32: \
474 builtin_define ("_ABIN32=2"); \
475 builtin_define ("_MIPS_SIM=_ABIN32"); \
476 break; \
478 case ABI_64: \
479 builtin_define ("_ABI64=3"); \
480 builtin_define ("_MIPS_SIM=_ABI64"); \
481 break; \
483 case ABI_O64: \
484 builtin_define ("_ABIO64=4"); \
485 builtin_define ("_MIPS_SIM=_ABIO64"); \
486 break; \
489 builtin_define_with_int_value ("_MIPS_SZINT", INT_TYPE_SIZE); \
490 builtin_define_with_int_value ("_MIPS_SZLONG", LONG_TYPE_SIZE); \
491 builtin_define_with_int_value ("_MIPS_SZPTR", POINTER_SIZE); \
492 builtin_define_with_int_value ("_MIPS_FPSET", \
493 32 / MAX_FPRS_PER_FMT); \
495 /* These defines reflect the ABI in use, not whether the \
496 FPU is directly accessible. */ \
497 if (TARGET_NO_FLOAT) \
498 builtin_define ("__mips_no_float"); \
499 else if (TARGET_HARD_FLOAT_ABI) \
500 builtin_define ("__mips_hard_float"); \
501 else \
502 builtin_define ("__mips_soft_float"); \
504 if (TARGET_SINGLE_FLOAT) \
505 builtin_define ("__mips_single_float"); \
507 if (TARGET_PAIRED_SINGLE_FLOAT) \
508 builtin_define ("__mips_paired_single_float"); \
510 if (mips_abs == MIPS_IEEE_754_2008) \
511 builtin_define ("__mips_abs2008"); \
513 if (mips_nan == MIPS_IEEE_754_2008) \
514 builtin_define ("__mips_nan2008"); \
516 if (TARGET_BIG_ENDIAN) \
518 builtin_define_std ("MIPSEB"); \
519 builtin_define ("_MIPSEB"); \
521 else \
523 builtin_define_std ("MIPSEL"); \
524 builtin_define ("_MIPSEL"); \
527 /* Whether calls should go through $25. The separate __PIC__ \
528 macro indicates whether abicalls code might use a GOT. */ \
529 if (TARGET_ABICALLS) \
530 builtin_define ("__mips_abicalls"); \
532 /* Whether Loongson vector modes are enabled. */ \
533 if (TARGET_LOONGSON_VECTORS) \
534 builtin_define ("__mips_loongson_vector_rev"); \
536 /* Historical Octeon macro. */ \
537 if (TARGET_OCTEON) \
538 builtin_define ("__OCTEON__"); \
540 if (TARGET_SYNCI) \
541 builtin_define ("__mips_synci"); \
543 /* Macros dependent on the C dialect. */ \
544 if (preprocessing_asm_p ()) \
546 builtin_define_std ("LANGUAGE_ASSEMBLY"); \
547 builtin_define ("_LANGUAGE_ASSEMBLY"); \
549 else if (c_dialect_cxx ()) \
551 builtin_define ("_LANGUAGE_C_PLUS_PLUS"); \
552 builtin_define ("__LANGUAGE_C_PLUS_PLUS"); \
553 builtin_define ("__LANGUAGE_C_PLUS_PLUS__"); \
555 else \
557 builtin_define_std ("LANGUAGE_C"); \
558 builtin_define ("_LANGUAGE_C"); \
560 if (c_dialect_objc ()) \
562 builtin_define ("_LANGUAGE_OBJECTIVE_C"); \
563 builtin_define ("__LANGUAGE_OBJECTIVE_C"); \
564 /* Bizarre, but retained for backwards compatibility. */ \
565 builtin_define_std ("LANGUAGE_C"); \
566 builtin_define ("_LANGUAGE_C"); \
569 if (mips_abi == ABI_EABI) \
570 builtin_define ("__mips_eabi"); \
572 if (TARGET_CACHE_BUILTIN) \
573 builtin_define ("__GCC_HAVE_BUILTIN_MIPS_CACHE"); \
575 while (0)
577 /* Default target_flags if no switches are specified */
579 #ifndef TARGET_DEFAULT
580 #define TARGET_DEFAULT 0
581 #endif
583 #ifndef TARGET_CPU_DEFAULT
584 #define TARGET_CPU_DEFAULT 0
585 #endif
587 #ifndef TARGET_ENDIAN_DEFAULT
588 #define TARGET_ENDIAN_DEFAULT MASK_BIG_ENDIAN
589 #endif
591 #ifdef IN_LIBGCC2
592 #undef TARGET_64BIT
593 /* Make this compile time constant for libgcc2 */
594 #ifdef __mips64
595 #define TARGET_64BIT 1
596 #else
597 #define TARGET_64BIT 0
598 #endif
599 #endif /* IN_LIBGCC2 */
601 /* Force the call stack unwinders in unwind.inc not to be MIPS16 code
602 when compiled with hardware floating point. This is because MIPS16
603 code cannot save and restore the floating-point registers, which is
604 important if in a mixed MIPS16/non-MIPS16 environment. */
606 #ifdef IN_LIBGCC2
607 #if __mips_hard_float
608 #define LIBGCC2_UNWIND_ATTRIBUTE __attribute__((__nomips16__))
609 #endif
610 #endif /* IN_LIBGCC2 */
612 #define TARGET_LIBGCC_SDATA_SECTION ".sdata"
614 #ifndef MULTILIB_ENDIAN_DEFAULT
615 #if TARGET_ENDIAN_DEFAULT == 0
616 #define MULTILIB_ENDIAN_DEFAULT "EL"
617 #else
618 #define MULTILIB_ENDIAN_DEFAULT "EB"
619 #endif
620 #endif
622 #ifndef MULTILIB_ISA_DEFAULT
623 #if MIPS_ISA_DEFAULT == 1
624 #define MULTILIB_ISA_DEFAULT "mips1"
625 #elif MIPS_ISA_DEFAULT == 2
626 #define MULTILIB_ISA_DEFAULT "mips2"
627 #elif MIPS_ISA_DEFAULT == 3
628 #define MULTILIB_ISA_DEFAULT "mips3"
629 #elif MIPS_ISA_DEFAULT == 4
630 #define MULTILIB_ISA_DEFAULT "mips4"
631 #elif MIPS_ISA_DEFAULT == 32
632 #define MULTILIB_ISA_DEFAULT "mips32"
633 #elif MIPS_ISA_DEFAULT == 33
634 #define MULTILIB_ISA_DEFAULT "mips32r2"
635 #elif MIPS_ISA_DEFAULT == 64
636 #define MULTILIB_ISA_DEFAULT "mips64"
637 #elif MIPS_ISA_DEFAULT == 65
638 #define MULTILIB_ISA_DEFAULT "mips64r2"
639 #else
640 #define MULTILIB_ISA_DEFAULT "mips1"
641 #endif
642 #endif
644 #ifndef MIPS_ABI_DEFAULT
645 #define MIPS_ABI_DEFAULT ABI_32
646 #endif
648 /* Use the most portable ABI flag for the ASM specs. */
650 #if MIPS_ABI_DEFAULT == ABI_32
651 #define MULTILIB_ABI_DEFAULT "mabi=32"
652 #elif MIPS_ABI_DEFAULT == ABI_O64
653 #define MULTILIB_ABI_DEFAULT "mabi=o64"
654 #elif MIPS_ABI_DEFAULT == ABI_N32
655 #define MULTILIB_ABI_DEFAULT "mabi=n32"
656 #elif MIPS_ABI_DEFAULT == ABI_64
657 #define MULTILIB_ABI_DEFAULT "mabi=64"
658 #elif MIPS_ABI_DEFAULT == ABI_EABI
659 #define MULTILIB_ABI_DEFAULT "mabi=eabi"
660 #endif
662 #ifndef MULTILIB_DEFAULTS
663 #define MULTILIB_DEFAULTS \
664 { MULTILIB_ENDIAN_DEFAULT, MULTILIB_ISA_DEFAULT, MULTILIB_ABI_DEFAULT }
665 #endif
667 /* We must pass -EL to the linker by default for little endian embedded
668 targets using linker scripts with a OUTPUT_FORMAT line. Otherwise, the
669 linker will default to using big-endian output files. The OUTPUT_FORMAT
670 line must be in the linker script, otherwise -EB/-EL will not work. */
672 #ifndef ENDIAN_SPEC
673 #if TARGET_ENDIAN_DEFAULT == 0
674 #define ENDIAN_SPEC "%{!EB:%{!meb:-EL}} %{EB|meb:-EB}"
675 #else
676 #define ENDIAN_SPEC "%{!EL:%{!mel:-EB}} %{EL|mel:-EL}"
677 #endif
678 #endif
680 /* A spec condition that matches all non-mips16 -mips arguments. */
682 #define MIPS_ISA_LEVEL_OPTION_SPEC \
683 "mips1|mips2|mips3|mips4|mips32*|mips64*"
685 /* A spec condition that matches all non-mips16 architecture arguments. */
687 #define MIPS_ARCH_OPTION_SPEC \
688 MIPS_ISA_LEVEL_OPTION_SPEC "|march=*"
690 /* A spec that infers a -mips argument from an -march argument,
691 or injects the default if no architecture is specified. */
693 #define MIPS_ISA_LEVEL_SPEC \
694 "%{" MIPS_ISA_LEVEL_OPTION_SPEC ":;: \
695 %{march=mips1|march=r2000|march=r3000|march=r3900:-mips1} \
696 %{march=mips2|march=r6000:-mips2} \
697 %{march=mips3|march=r4*|march=vr4*|march=orion|march=loongson2*:-mips3} \
698 %{march=mips4|march=r8000|march=vr5*|march=rm7000|march=rm9000 \
699 |march=r10000|march=r12000|march=r14000|march=r16000:-mips4} \
700 %{march=mips32|march=4kc|march=4km|march=4kp|march=4ksc:-mips32} \
701 %{march=mips32r2|march=m4k|march=4ke*|march=4ksd|march=24k* \
702 |march=34k*|march=74k*|march=m14k*|march=1004k*: -mips32r2} \
703 %{march=mips64|march=5k*|march=20k*|march=sb1*|march=sr71000 \
704 |march=xlr: -mips64} \
705 %{march=mips64r2|march=loongson3a|march=octeon|march=xlp: -mips64r2} \
706 %{!march=*: -" MULTILIB_ISA_DEFAULT "}}"
708 /* A spec that infers a -mhard-float or -msoft-float setting from an
709 -march argument. Note that soft-float and hard-float code are not
710 link-compatible. */
712 #define MIPS_ARCH_FLOAT_SPEC \
713 "%{mhard-float|msoft-float|mno-float|march=mips*:; \
714 march=vr41*|march=m4k|march=4k*|march=24kc|march=24kec \
715 |march=34kc|march=34kn|march=74kc|march=1004kc|march=5kc \
716 |march=m14k*|march=octeon|march=xlr: -msoft-float; \
717 march=*: -mhard-float}"
719 /* A spec condition that matches 32-bit options. It only works if
720 MIPS_ISA_LEVEL_SPEC has been applied. */
722 #define MIPS_32BIT_OPTION_SPEC \
723 "mips1|mips2|mips32*|mgp32"
725 /* Infer a -msynci setting from a -mips argument, on the assumption that
726 -msynci is desired where possible. */
727 #define MIPS_ISA_SYNCI_SPEC \
728 "%{msynci|mno-synci:;:%{mips32r2|mips64r2:-msynci;:-mno-synci}}"
730 #if (MIPS_ABI_DEFAULT == ABI_O64 \
731 || MIPS_ABI_DEFAULT == ABI_N32 \
732 || MIPS_ABI_DEFAULT == ABI_64)
733 #define OPT_ARCH64 "mabi=32|mgp32:;"
734 #define OPT_ARCH32 "mabi=32|mgp32"
735 #else
736 #define OPT_ARCH64 "mabi=o64|mabi=n32|mabi=64|mgp64"
737 #define OPT_ARCH32 "mabi=o64|mabi=n32|mabi=64|mgp64:;"
738 #endif
740 /* Support for a compile-time default CPU, et cetera. The rules are:
741 --with-arch is ignored if -march is specified or a -mips is specified
742 (other than -mips16); likewise --with-arch-32 and --with-arch-64.
743 --with-tune is ignored if -mtune is specified; likewise
744 --with-tune-32 and --with-tune-64.
745 --with-abi is ignored if -mabi is specified.
746 --with-float is ignored if -mhard-float or -msoft-float are
747 specified.
748 --with-nan is ignored if -mnan is specified.
749 --with-divide is ignored if -mdivide-traps or -mdivide-breaks are
750 specified. */
751 #define OPTION_DEFAULT_SPECS \
752 {"arch", "%{" MIPS_ARCH_OPTION_SPEC ":;: -march=%(VALUE)}" }, \
753 {"arch_32", "%{" OPT_ARCH32 ":%{" MIPS_ARCH_OPTION_SPEC ":;: -march=%(VALUE)}}" }, \
754 {"arch_64", "%{" OPT_ARCH64 ":%{" MIPS_ARCH_OPTION_SPEC ":;: -march=%(VALUE)}}" }, \
755 {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }, \
756 {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:-mtune=%(VALUE)}}" }, \
757 {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:-mtune=%(VALUE)}}" }, \
758 {"abi", "%{!mabi=*:-mabi=%(VALUE)}" }, \
759 {"float", "%{!msoft-float:%{!mhard-float:-m%(VALUE)-float}}" }, \
760 {"fpu", "%{!msingle-float:%{!mdouble-float:-m%(VALUE)-float}}" }, \
761 {"nan", "%{!mnan=*:-mnan=%(VALUE)}" }, \
762 {"divide", "%{!mdivide-traps:%{!mdivide-breaks:-mdivide-%(VALUE)}}" }, \
763 {"llsc", "%{!mllsc:%{!mno-llsc:-m%(VALUE)}}" }, \
764 {"mips-plt", "%{!mplt:%{!mno-plt:-m%(VALUE)}}" }, \
765 {"synci", "%{!msynci:%{!mno-synci:-m%(VALUE)}}" }
767 /* A spec that infers the -mdsp setting from an -march argument. */
768 #define BASE_DRIVER_SELF_SPECS \
769 "%{!mno-dsp: \
770 %{march=24ke*|march=34kc*|march=34kf*|march=34kx*|march=1004k*: -mdsp} \
771 %{march=74k*|march=m14ke*: %{!mno-dspr2: -mdspr2 -mdsp}}}"
773 #define DRIVER_SELF_SPECS BASE_DRIVER_SELF_SPECS
775 #define GENERATE_DIVIDE_TRAPS (TARGET_DIVIDE_TRAPS \
776 && ISA_HAS_COND_TRAP)
778 #define GENERATE_BRANCHLIKELY (TARGET_BRANCHLIKELY && !TARGET_MIPS16)
780 /* True if the ABI can only work with 64-bit integer registers. We
781 generally allow ad-hoc variations for TARGET_SINGLE_FLOAT, but
782 otherwise floating-point registers must also be 64-bit. */
783 #define ABI_NEEDS_64BIT_REGS (TARGET_NEWABI || mips_abi == ABI_O64)
785 /* Likewise for 32-bit regs. */
786 #define ABI_NEEDS_32BIT_REGS (mips_abi == ABI_32)
788 /* True if the file format uses 64-bit symbols. At present, this is
789 only true for n64, which uses 64-bit ELF. */
790 #define FILE_HAS_64BIT_SYMBOLS (mips_abi == ABI_64)
792 /* True if symbols are 64 bits wide. This is usually determined by
793 the ABI's file format, but it can be overridden by -msym32. Note that
794 overriding the size with -msym32 changes the ABI of relocatable objects,
795 although it doesn't change the ABI of a fully-linked object. */
796 #define ABI_HAS_64BIT_SYMBOLS (FILE_HAS_64BIT_SYMBOLS \
797 && Pmode == DImode \
798 && !TARGET_SYM32)
800 /* ISA has instructions for managing 64-bit fp and gp regs (e.g. mips3). */
801 #define ISA_HAS_64BIT_REGS (ISA_MIPS3 \
802 || ISA_MIPS4 \
803 || ISA_MIPS64 \
804 || ISA_MIPS64R2)
806 /* ISA has branch likely instructions (e.g. mips2). */
807 /* Disable branchlikely for tx39 until compare rewrite. They haven't
808 been generated up to this point. */
809 #define ISA_HAS_BRANCHLIKELY (!ISA_MIPS1)
811 /* ISA has a three-operand multiplication instruction (usually spelt "mul"). */
812 #define ISA_HAS_MUL3 ((TARGET_MIPS3900 \
813 || TARGET_MIPS5400 \
814 || TARGET_MIPS5500 \
815 || TARGET_MIPS5900 \
816 || TARGET_MIPS7000 \
817 || TARGET_MIPS9000 \
818 || TARGET_MAD \
819 || ISA_MIPS32 \
820 || ISA_MIPS32R2 \
821 || ISA_MIPS64 \
822 || ISA_MIPS64R2) \
823 && !TARGET_MIPS16)
825 /* ISA has a three-operand multiplication instruction. */
826 #define ISA_HAS_DMUL3 (TARGET_64BIT \
827 && TARGET_OCTEON \
828 && !TARGET_MIPS16)
830 /* ISA supports instructions DMULT and DMULTU. */
831 #define ISA_HAS_DMULT (TARGET_64BIT && !TARGET_MIPS5900)
833 /* ISA supports instructions MULT and MULTU.
834 This is always true, but the macro is needed for ISA_HAS_<D>MULT
835 in mips.md. */
836 #define ISA_HAS_MULT (1)
838 /* ISA supports instructions DDIV and DDIVU. */
839 #define ISA_HAS_DDIV (TARGET_64BIT && !TARGET_MIPS5900)
841 /* ISA supports instructions DIV and DIVU.
842 This is always true, but the macro is needed for ISA_HAS_<D>DIV
843 in mips.md. */
844 #define ISA_HAS_DIV (1)
846 #define ISA_HAS_DIV3 ((TARGET_LOONGSON_2EF \
847 || TARGET_LOONGSON_3A) \
848 && !TARGET_MIPS16)
850 /* ISA has the floating-point conditional move instructions introduced
851 in mips4. */
852 #define ISA_HAS_FP_CONDMOVE ((ISA_MIPS4 \
853 || ISA_MIPS32 \
854 || ISA_MIPS32R2 \
855 || ISA_MIPS64 \
856 || ISA_MIPS64R2) \
857 && !TARGET_MIPS5500 \
858 && !TARGET_MIPS16)
860 /* ISA has the integer conditional move instructions introduced in mips4 and
861 ST Loongson 2E/2F. */
862 #define ISA_HAS_CONDMOVE (ISA_HAS_FP_CONDMOVE \
863 || TARGET_MIPS5900 \
864 || TARGET_LOONGSON_2EF)
866 /* ISA has LDC1 and SDC1. */
867 #define ISA_HAS_LDC1_SDC1 (!ISA_MIPS1 \
868 && !TARGET_MIPS5900 \
869 && !TARGET_MIPS16)
871 /* ISA has the mips4 FP condition code instructions: FP-compare to CC,
872 branch on CC, and move (both FP and non-FP) on CC. */
873 #define ISA_HAS_8CC (ISA_MIPS4 \
874 || ISA_MIPS32 \
875 || ISA_MIPS32R2 \
876 || ISA_MIPS64 \
877 || ISA_MIPS64R2)
879 /* This is a catch all for other mips4 instructions: indexed load, the
880 FP madd and msub instructions, and the FP recip and recip sqrt
881 instructions. Note that this macro should only be used by other
882 ISA_HAS_* macros. */
883 #define ISA_HAS_FP4 ((ISA_MIPS4 \
884 || ISA_MIPS32R2 \
885 || ISA_MIPS64 \
886 || ISA_MIPS64R2) \
887 && !TARGET_MIPS16)
889 /* ISA has floating-point indexed load and store instructions
890 (LWXC1, LDXC1, SWXC1 and SDXC1). */
891 #define ISA_HAS_LXC1_SXC1 ISA_HAS_FP4
893 /* ISA has paired-single instructions. */
894 #define ISA_HAS_PAIRED_SINGLE (ISA_MIPS32R2 || ISA_MIPS64 || ISA_MIPS64R2)
896 /* ISA has conditional trap instructions. */
897 #define ISA_HAS_COND_TRAP (!ISA_MIPS1 \
898 && !TARGET_MIPS16)
900 /* ISA has integer multiply-accumulate instructions, madd and msub. */
901 #define ISA_HAS_MADD_MSUB (ISA_MIPS32 \
902 || ISA_MIPS32R2 \
903 || ISA_MIPS64 \
904 || ISA_MIPS64R2)
906 /* Integer multiply-accumulate instructions should be generated. */
907 #define GENERATE_MADD_MSUB (TARGET_IMADD && !TARGET_MIPS16)
909 /* ISA has floating-point madd and msub instructions 'd = a * b [+-] c'. */
910 #define ISA_HAS_FP_MADD4_MSUB4 ISA_HAS_FP4
912 /* ISA has floating-point madd and msub instructions 'c = a * b [+-] c'. */
913 #define ISA_HAS_FP_MADD3_MSUB3 TARGET_LOONGSON_2EF
915 /* ISA has floating-point nmadd and nmsub instructions
916 'd = -((a * b) [+-] c)'. */
917 #define ISA_HAS_NMADD4_NMSUB4 ISA_HAS_FP4
919 /* ISA has floating-point nmadd and nmsub instructions
920 'c = -((a * b) [+-] c)'. */
921 #define ISA_HAS_NMADD3_NMSUB3 TARGET_LOONGSON_2EF
923 /* ISA has floating-point RECIP.fmt and RSQRT.fmt instructions. The
924 MIPS64 rev. 1 ISA says that RECIP.D and RSQRT.D are unpredictable when
925 doubles are stored in pairs of FPRs, so for safety's sake, we apply
926 this restriction to the MIPS IV ISA too. */
927 #define ISA_HAS_FP_RECIP_RSQRT(MODE) \
928 (((ISA_HAS_FP4 \
929 && ((MODE) == SFmode \
930 || ((TARGET_FLOAT64 \
931 || ISA_MIPS32R2 \
932 || ISA_MIPS64R2) \
933 && (MODE) == DFmode))) \
934 || (TARGET_SB1 \
935 && (MODE) == V2SFmode)) \
936 && !TARGET_MIPS16)
938 /* ISA has count leading zeroes/ones instruction (not implemented). */
939 #define ISA_HAS_CLZ_CLO ((ISA_MIPS32 \
940 || ISA_MIPS32R2 \
941 || ISA_MIPS64 \
942 || ISA_MIPS64R2) \
943 && !TARGET_MIPS16)
945 /* ISA has three operand multiply instructions that put
946 the high part in an accumulator: mulhi or mulhiu. */
947 #define ISA_HAS_MULHI ((TARGET_MIPS5400 \
948 || TARGET_MIPS5500 \
949 || TARGET_SR71K) \
950 && !TARGET_MIPS16)
952 /* ISA has three operand multiply instructions that negate the
953 result and put the result in an accumulator. */
954 #define ISA_HAS_MULS ((TARGET_MIPS5400 \
955 || TARGET_MIPS5500 \
956 || TARGET_SR71K) \
957 && !TARGET_MIPS16)
959 /* ISA has three operand multiply instructions that subtract the
960 result from a 4th operand and put the result in an accumulator. */
961 #define ISA_HAS_MSAC ((TARGET_MIPS5400 \
962 || TARGET_MIPS5500 \
963 || TARGET_SR71K) \
964 && !TARGET_MIPS16)
966 /* ISA has three operand multiply instructions that add the result
967 to a 4th operand and put the result in an accumulator. */
968 #define ISA_HAS_MACC ((TARGET_MIPS4120 \
969 || TARGET_MIPS4130 \
970 || TARGET_MIPS5400 \
971 || TARGET_MIPS5500 \
972 || TARGET_SR71K) \
973 && !TARGET_MIPS16)
975 /* ISA has NEC VR-style MACC, MACCHI, DMACC and DMACCHI instructions. */
976 #define ISA_HAS_MACCHI ((TARGET_MIPS4120 \
977 || TARGET_MIPS4130) \
978 && !TARGET_MIPS16)
980 /* ISA has the "ror" (rotate right) instructions. */
981 #define ISA_HAS_ROR ((ISA_MIPS32R2 \
982 || ISA_MIPS64R2 \
983 || TARGET_MIPS5400 \
984 || TARGET_MIPS5500 \
985 || TARGET_SR71K \
986 || TARGET_SMARTMIPS) \
987 && !TARGET_MIPS16)
989 /* ISA has the WSBH (word swap bytes within halfwords) instruction.
990 64-bit targets also provide DSBH and DSHD. */
991 #define ISA_HAS_WSBH ((ISA_MIPS32R2 || ISA_MIPS64R2) \
992 && !TARGET_MIPS16)
994 /* ISA has data prefetch instructions. This controls use of 'pref'. */
995 #define ISA_HAS_PREFETCH ((ISA_MIPS4 \
996 || TARGET_LOONGSON_2EF \
997 || TARGET_MIPS5900 \
998 || ISA_MIPS32 \
999 || ISA_MIPS32R2 \
1000 || ISA_MIPS64 \
1001 || ISA_MIPS64R2) \
1002 && !TARGET_MIPS16)
1004 /* ISA has data indexed prefetch instructions. This controls use of
1005 'prefx', along with TARGET_HARD_FLOAT and TARGET_DOUBLE_FLOAT.
1006 (prefx is a cop1x instruction, so can only be used if FP is
1007 enabled.) */
1008 #define ISA_HAS_PREFETCHX ISA_HAS_FP4
1010 /* True if trunc.w.s and trunc.w.d are real (not synthetic)
1011 instructions. Both require TARGET_HARD_FLOAT, and trunc.w.d
1012 also requires TARGET_DOUBLE_FLOAT. */
1013 #define ISA_HAS_TRUNC_W (!ISA_MIPS1)
1015 /* ISA includes the MIPS32r2 seb and seh instructions. */
1016 #define ISA_HAS_SEB_SEH ((ISA_MIPS32R2 \
1017 || ISA_MIPS64R2) \
1018 && !TARGET_MIPS16)
1020 /* ISA includes the MIPS32/64 rev 2 ext and ins instructions. */
1021 #define ISA_HAS_EXT_INS ((ISA_MIPS32R2 \
1022 || ISA_MIPS64R2) \
1023 && !TARGET_MIPS16)
1025 /* ISA has instructions for accessing top part of 64-bit fp regs. */
1026 #define ISA_HAS_MXHC1 (TARGET_FLOAT64 \
1027 && (ISA_MIPS32R2 \
1028 || ISA_MIPS64R2))
1030 /* ISA has lwxs instruction (load w/scaled index address. */
1031 #define ISA_HAS_LWXS ((TARGET_SMARTMIPS || TARGET_MICROMIPS) \
1032 && !TARGET_MIPS16)
1034 /* ISA has lbx, lbux, lhx, lhx, lhux, lwx, lwux, or ldx instruction. */
1035 #define ISA_HAS_LBX (TARGET_OCTEON2)
1036 #define ISA_HAS_LBUX (ISA_HAS_DSP || TARGET_OCTEON2)
1037 #define ISA_HAS_LHX (ISA_HAS_DSP || TARGET_OCTEON2)
1038 #define ISA_HAS_LHUX (TARGET_OCTEON2)
1039 #define ISA_HAS_LWX (ISA_HAS_DSP || TARGET_OCTEON2)
1040 #define ISA_HAS_LWUX (TARGET_OCTEON2 && TARGET_64BIT)
1041 #define ISA_HAS_LDX ((ISA_HAS_DSP || TARGET_OCTEON2) \
1042 && TARGET_64BIT)
1044 /* The DSP ASE is available. */
1045 #define ISA_HAS_DSP (TARGET_DSP && !TARGET_MIPS16)
1047 /* Revision 2 of the DSP ASE is available. */
1048 #define ISA_HAS_DSPR2 (TARGET_DSPR2 && !TARGET_MIPS16)
1050 /* True if the result of a load is not available to the next instruction.
1051 A nop will then be needed between instructions like "lw $4,..."
1052 and "addiu $4,$4,1". */
1053 #define ISA_HAS_LOAD_DELAY (ISA_MIPS1 \
1054 && !TARGET_MIPS3900 \
1055 && !TARGET_MIPS5900 \
1056 && !TARGET_MIPS16 \
1057 && !TARGET_MICROMIPS)
1059 /* Likewise mtc1 and mfc1. */
1060 #define ISA_HAS_XFER_DELAY (mips_isa <= 3 \
1061 && !TARGET_MIPS5900 \
1062 && !TARGET_LOONGSON_2EF)
1064 /* Likewise floating-point comparisons. */
1065 #define ISA_HAS_FCMP_DELAY (mips_isa <= 3 \
1066 && !TARGET_MIPS5900 \
1067 && !TARGET_LOONGSON_2EF)
1069 /* True if mflo and mfhi can be immediately followed by instructions
1070 which write to the HI and LO registers.
1072 According to MIPS specifications, MIPS ISAs I, II, and III need
1073 (at least) two instructions between the reads of HI/LO and
1074 instructions which write them, and later ISAs do not. Contradicting
1075 the MIPS specifications, some MIPS IV processor user manuals (e.g.
1076 the UM for the NEC Vr5000) document needing the instructions between
1077 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
1078 MIPS64 and later ISAs to have the interlocks, plus any specific
1079 earlier-ISA CPUs for which CPU documentation declares that the
1080 instructions are really interlocked. */
1081 #define ISA_HAS_HILO_INTERLOCKS (ISA_MIPS32 \
1082 || ISA_MIPS32R2 \
1083 || ISA_MIPS64 \
1084 || ISA_MIPS64R2 \
1085 || TARGET_MIPS5500 \
1086 || TARGET_MIPS5900 \
1087 || TARGET_LOONGSON_2EF)
1089 /* ISA includes synci, jr.hb and jalr.hb. */
1090 #define ISA_HAS_SYNCI ((ISA_MIPS32R2 \
1091 || ISA_MIPS64R2) \
1092 && !TARGET_MIPS16)
1094 /* ISA includes sync. */
1095 #define ISA_HAS_SYNC ((mips_isa >= 2 || TARGET_MIPS3900) && !TARGET_MIPS16)
1096 #define GENERATE_SYNC \
1097 (target_flags_explicit & MASK_LLSC \
1098 ? TARGET_LLSC && !TARGET_MIPS16 \
1099 : ISA_HAS_SYNC)
1101 /* ISA includes ll and sc. Note that this implies ISA_HAS_SYNC
1102 because the expanders use both ISA_HAS_SYNC and ISA_HAS_LL_SC
1103 instructions. */
1104 #define ISA_HAS_LL_SC (mips_isa >= 2 && !TARGET_MIPS5900 && !TARGET_MIPS16)
1105 #define GENERATE_LL_SC \
1106 (target_flags_explicit & MASK_LLSC \
1107 ? TARGET_LLSC && !TARGET_MIPS16 \
1108 : ISA_HAS_LL_SC)
1110 #define ISA_HAS_SWAP (TARGET_XLP)
1111 #define ISA_HAS_LDADD (TARGET_XLP)
1113 /* ISA includes the baddu instruction. */
1114 #define ISA_HAS_BADDU (TARGET_OCTEON && !TARGET_MIPS16)
1116 /* ISA includes the bbit* instructions. */
1117 #define ISA_HAS_BBIT (TARGET_OCTEON && !TARGET_MIPS16)
1119 /* ISA includes the cins instruction. */
1120 #define ISA_HAS_CINS (TARGET_OCTEON && !TARGET_MIPS16)
1122 /* ISA includes the exts instruction. */
1123 #define ISA_HAS_EXTS (TARGET_OCTEON && !TARGET_MIPS16)
1125 /* ISA includes the seq and sne instructions. */
1126 #define ISA_HAS_SEQ_SNE (TARGET_OCTEON && !TARGET_MIPS16)
1128 /* ISA includes the pop instruction. */
1129 #define ISA_HAS_POP (TARGET_OCTEON && !TARGET_MIPS16)
1131 /* The CACHE instruction is available in non-MIPS16 code. */
1132 #define TARGET_CACHE_BUILTIN (mips_isa >= 3)
1134 /* The CACHE instruction is available. */
1135 #define ISA_HAS_CACHE (TARGET_CACHE_BUILTIN && !TARGET_MIPS16)
1137 /* Tell collect what flags to pass to nm. */
1138 #ifndef NM_FLAGS
1139 #define NM_FLAGS "-Bn"
1140 #endif
1143 /* SUBTARGET_ASM_DEBUGGING_SPEC handles passing debugging options to
1144 the assembler. It may be overridden by subtargets.
1146 Beginning with gas 2.13, -mdebug must be passed to correctly handle
1147 COFF debugging info. */
1149 #ifndef SUBTARGET_ASM_DEBUGGING_SPEC
1150 #define SUBTARGET_ASM_DEBUGGING_SPEC "\
1151 %{g} %{g0} %{g1} %{g2} %{g3} \
1152 %{ggdb:-g} %{ggdb0:-g0} %{ggdb1:-g1} %{ggdb2:-g2} %{ggdb3:-g3} \
1153 %{gstabs:-g} %{gstabs0:-g0} %{gstabs1:-g1} %{gstabs2:-g2} %{gstabs3:-g3} \
1154 %{gstabs+:-g} %{gstabs+0:-g0} %{gstabs+1:-g1} %{gstabs+2:-g2} %{gstabs+3:-g3} \
1155 %{gcoff:-g} %{gcoff0:-g0} %{gcoff1:-g1} %{gcoff2:-g2} %{gcoff3:-g3} \
1156 %{gcoff*:-mdebug} %{!gcoff*:-no-mdebug}"
1157 #endif
1159 /* SUBTARGET_ASM_SPEC is always passed to the assembler. It may be
1160 overridden by subtargets. */
1162 #ifndef SUBTARGET_ASM_SPEC
1163 #define SUBTARGET_ASM_SPEC ""
1164 #endif
1166 #undef ASM_SPEC
1167 #define ASM_SPEC "\
1168 %{G*} %(endian_spec) %{mips1} %{mips2} %{mips3} %{mips4} \
1169 %{mips32*} %{mips64*} \
1170 %{mips16} %{mno-mips16:-no-mips16} \
1171 %{mmicromips} %{mno-micromips} \
1172 %{mips3d} %{mno-mips3d:-no-mips3d} \
1173 %{mdmx} %{mno-mdmx:-no-mdmx} \
1174 %{mdsp} %{mno-dsp} \
1175 %{mdspr2} %{mno-dspr2} \
1176 %{mmcu} %{mno-mcu} \
1177 %{meva} %{mno-eva} \
1178 %{mvirt} %{mno-virt} \
1179 %{msmartmips} %{mno-smartmips} \
1180 %{mmt} %{mno-mt} \
1181 %{mfix-rm7000} %{mno-fix-rm7000} \
1182 %{mfix-vr4120} %{mfix-vr4130} \
1183 %{mfix-24k} \
1184 %{noasmopt:-O0; O0|fno-delayed-branch:-O1; O*:-O2; :-O1} \
1185 %(subtarget_asm_debugging_spec) \
1186 %{mabi=*} %{!mabi=*: %(asm_abi_default_spec)} \
1187 %{mgp32} %{mgp64} %{march=*} %{mxgot:-xgot} \
1188 %{mfp32} %{mfp64} %{mnan=*} \
1189 %{mshared} %{mno-shared} \
1190 %{msym32} %{mno-sym32} \
1191 %{mtune=*} \
1192 %(subtarget_asm_spec)"
1194 /* Extra switches sometimes passed to the linker. */
1196 #ifndef LINK_SPEC
1197 #define LINK_SPEC "\
1198 %(endian_spec) \
1199 %{G*} %{mips1} %{mips2} %{mips3} %{mips4} %{mips32*} %{mips64*} \
1200 %{shared}"
1201 #endif /* LINK_SPEC defined */
1204 /* Specs for the compiler proper */
1206 /* SUBTARGET_CC1_SPEC is passed to the compiler proper. It may be
1207 overridden by subtargets. */
1208 #ifndef SUBTARGET_CC1_SPEC
1209 #define SUBTARGET_CC1_SPEC ""
1210 #endif
1212 /* CC1_SPEC is the set of arguments to pass to the compiler proper. */
1214 #undef CC1_SPEC
1215 #define CC1_SPEC "\
1216 %{G*} %{EB:-meb} %{EL:-mel} %{EB:%{EL:%emay not use both -EB and -EL}} \
1217 %(subtarget_cc1_spec)"
1219 /* Preprocessor specs. */
1221 /* SUBTARGET_CPP_SPEC is passed to the preprocessor. It may be
1222 overridden by subtargets. */
1223 #ifndef SUBTARGET_CPP_SPEC
1224 #define SUBTARGET_CPP_SPEC ""
1225 #endif
1227 #define CPP_SPEC "%(subtarget_cpp_spec)"
1229 /* This macro defines names of additional specifications to put in the specs
1230 that can be used in various specifications like CC1_SPEC. Its definition
1231 is an initializer with a subgrouping for each command option.
1233 Each subgrouping contains a string constant, that defines the
1234 specification name, and a string constant that used by the GCC driver
1235 program.
1237 Do not define this macro if it does not need to do anything. */
1239 #define EXTRA_SPECS \
1240 { "subtarget_cc1_spec", SUBTARGET_CC1_SPEC }, \
1241 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }, \
1242 { "subtarget_asm_debugging_spec", SUBTARGET_ASM_DEBUGGING_SPEC }, \
1243 { "subtarget_asm_spec", SUBTARGET_ASM_SPEC }, \
1244 { "asm_abi_default_spec", "-" MULTILIB_ABI_DEFAULT }, \
1245 { "endian_spec", ENDIAN_SPEC }, \
1246 SUBTARGET_EXTRA_SPECS
1248 #ifndef SUBTARGET_EXTRA_SPECS
1249 #define SUBTARGET_EXTRA_SPECS
1250 #endif
1252 #define DBX_DEBUGGING_INFO 1 /* generate stabs (OSF/rose) */
1253 #define DWARF2_DEBUGGING_INFO 1 /* dwarf2 debugging info */
1255 #ifndef PREFERRED_DEBUGGING_TYPE
1256 #define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
1257 #endif
1259 /* The size of DWARF addresses should be the same as the size of symbols
1260 in the target file format. They shouldn't depend on things like -msym32,
1261 because many DWARF consumers do not allow the mixture of address sizes
1262 that one would then get from linking -msym32 code with -msym64 code.
1264 Note that the default POINTER_SIZE test is not appropriate for MIPS.
1265 EABI64 has 64-bit pointers but uses 32-bit ELF. */
1266 #define DWARF2_ADDR_SIZE (FILE_HAS_64BIT_SYMBOLS ? 8 : 4)
1268 /* By default, turn on GDB extensions. */
1269 #define DEFAULT_GDB_EXTENSIONS 1
1271 /* Local compiler-generated symbols must have a prefix that the assembler
1272 understands. By default, this is $, although some targets (e.g.,
1273 NetBSD-ELF) need to override this. */
1275 #ifndef LOCAL_LABEL_PREFIX
1276 #define LOCAL_LABEL_PREFIX "$"
1277 #endif
1279 /* By default on the mips, external symbols do not have an underscore
1280 prepended, but some targets (e.g., NetBSD) require this. */
1282 #ifndef USER_LABEL_PREFIX
1283 #define USER_LABEL_PREFIX ""
1284 #endif
1286 /* On Sun 4, this limit is 2048. We use 1500 to be safe,
1287 since the length can run past this up to a continuation point. */
1288 #undef DBX_CONTIN_LENGTH
1289 #define DBX_CONTIN_LENGTH 1500
1291 /* How to renumber registers for dbx and gdb. */
1292 #define DBX_REGISTER_NUMBER(REGNO) mips_dbx_regno[REGNO]
1294 /* The mapping from gcc register number to DWARF 2 CFA column number. */
1295 #define DWARF_FRAME_REGNUM(REGNO) mips_dwarf_regno[REGNO]
1297 /* The DWARF 2 CFA column which tracks the return address. */
1298 #define DWARF_FRAME_RETURN_COLUMN RETURN_ADDR_REGNUM
1300 /* Before the prologue, RA lives in r31. */
1301 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (VOIDmode, RETURN_ADDR_REGNUM)
1303 /* Describe how we implement __builtin_eh_return. */
1304 #define EH_RETURN_DATA_REGNO(N) \
1305 ((N) < (TARGET_MIPS16 ? 2 : 4) ? (N) + GP_ARG_FIRST : INVALID_REGNUM)
1307 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, GP_REG_FIRST + 3)
1309 #define EH_USES(N) mips_eh_uses (N)
1311 /* Offsets recorded in opcodes are a multiple of this alignment factor.
1312 The default for this in 64-bit mode is 8, which causes problems with
1313 SFmode register saves. */
1314 #define DWARF_CIE_DATA_ALIGNMENT -4
1316 /* Correct the offset of automatic variables and arguments. Note that
1317 the MIPS debug format wants all automatic variables and arguments
1318 to be in terms of the virtual frame pointer (stack pointer before
1319 any adjustment in the function), while the MIPS 3.0 linker wants
1320 the frame pointer to be the stack pointer after the initial
1321 adjustment. */
1323 #define DEBUGGER_AUTO_OFFSET(X) \
1324 mips_debugger_offset (X, (HOST_WIDE_INT) 0)
1325 #define DEBUGGER_ARG_OFFSET(OFFSET, X) \
1326 mips_debugger_offset (X, (HOST_WIDE_INT) OFFSET)
1328 /* Target machine storage layout */
1330 #define BITS_BIG_ENDIAN 0
1331 #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
1332 #define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
1334 #define MAX_BITS_PER_WORD 64
1336 /* Width of a word, in units (bytes). */
1337 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
1338 #ifndef IN_LIBGCC2
1339 #define MIN_UNITS_PER_WORD 4
1340 #endif
1342 /* For MIPS, width of a floating point register. */
1343 #define UNITS_PER_FPREG (TARGET_FLOAT64 ? 8 : 4)
1345 /* The number of consecutive floating-point registers needed to store the
1346 largest format supported by the FPU. */
1347 #define MAX_FPRS_PER_FMT (TARGET_FLOAT64 || TARGET_SINGLE_FLOAT ? 1 : 2)
1349 /* The number of consecutive floating-point registers needed to store the
1350 smallest format supported by the FPU. */
1351 #define MIN_FPRS_PER_FMT \
1352 (ISA_MIPS32 || ISA_MIPS32R2 || ISA_MIPS64 || ISA_MIPS64R2 \
1353 ? 1 : MAX_FPRS_PER_FMT)
1355 /* The largest size of value that can be held in floating-point
1356 registers and moved with a single instruction. */
1357 #define UNITS_PER_HWFPVALUE \
1358 (TARGET_SOFT_FLOAT_ABI ? 0 : MAX_FPRS_PER_FMT * UNITS_PER_FPREG)
1360 /* The largest size of value that can be held in floating-point
1361 registers. */
1362 #define UNITS_PER_FPVALUE \
1363 (TARGET_SOFT_FLOAT_ABI ? 0 \
1364 : TARGET_SINGLE_FLOAT ? UNITS_PER_FPREG \
1365 : LONG_DOUBLE_TYPE_SIZE / BITS_PER_UNIT)
1367 /* The number of bytes in a double. */
1368 #define UNITS_PER_DOUBLE (TYPE_PRECISION (double_type_node) / BITS_PER_UNIT)
1370 /* Set the sizes of the core types. */
1371 #define SHORT_TYPE_SIZE 16
1372 #define INT_TYPE_SIZE 32
1373 #define LONG_TYPE_SIZE (TARGET_LONG64 ? 64 : 32)
1374 #define LONG_LONG_TYPE_SIZE 64
1376 #define FLOAT_TYPE_SIZE 32
1377 #define DOUBLE_TYPE_SIZE 64
1378 #define LONG_DOUBLE_TYPE_SIZE (TARGET_NEWABI ? 128 : 64)
1380 /* Define the sizes of fixed-point types. */
1381 #define SHORT_FRACT_TYPE_SIZE 8
1382 #define FRACT_TYPE_SIZE 16
1383 #define LONG_FRACT_TYPE_SIZE 32
1384 #define LONG_LONG_FRACT_TYPE_SIZE 64
1386 #define SHORT_ACCUM_TYPE_SIZE 16
1387 #define ACCUM_TYPE_SIZE 32
1388 #define LONG_ACCUM_TYPE_SIZE 64
1389 /* FIXME. LONG_LONG_ACCUM_TYPE_SIZE should be 128 bits, but GCC
1390 doesn't support 128-bit integers for MIPS32 currently. */
1391 #define LONG_LONG_ACCUM_TYPE_SIZE (TARGET_64BIT ? 128 : 64)
1393 /* long double is not a fixed mode, but the idea is that, if we
1394 support long double, we also want a 128-bit integer type. */
1395 #define MAX_FIXED_MODE_SIZE LONG_DOUBLE_TYPE_SIZE
1397 #ifdef IN_LIBGCC2
1398 #if ((defined _ABIN32 && _MIPS_SIM == _ABIN32) \
1399 || (defined _ABI64 && _MIPS_SIM == _ABI64))
1400 # define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
1401 # else
1402 # define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
1403 # endif
1404 #endif
1406 /* Width in bits of a pointer. */
1407 #ifndef POINTER_SIZE
1408 #define POINTER_SIZE ((TARGET_LONG64 && TARGET_64BIT) ? 64 : 32)
1409 #endif
1411 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
1412 #define PARM_BOUNDARY BITS_PER_WORD
1414 /* Allocation boundary (in *bits*) for the code of a function. */
1415 #define FUNCTION_BOUNDARY 32
1417 /* Alignment of field after `int : 0' in a structure. */
1418 #define EMPTY_FIELD_BOUNDARY 32
1420 /* Every structure's size must be a multiple of this. */
1421 /* 8 is observed right on a DECstation and on riscos 4.02. */
1422 #define STRUCTURE_SIZE_BOUNDARY 8
1424 /* There is no point aligning anything to a rounder boundary than this. */
1425 #define BIGGEST_ALIGNMENT LONG_DOUBLE_TYPE_SIZE
1427 /* All accesses must be aligned. */
1428 #define STRICT_ALIGNMENT 1
1430 /* Define this if you wish to imitate the way many other C compilers
1431 handle alignment of bitfields and the structures that contain
1432 them.
1434 The behavior is that the type written for a bit-field (`int',
1435 `short', or other integer type) imposes an alignment for the
1436 entire structure, as if the structure really did contain an
1437 ordinary field of that type. In addition, the bit-field is placed
1438 within the structure so that it would fit within such a field,
1439 not crossing a boundary for it.
1441 Thus, on most machines, a bit-field whose type is written as `int'
1442 would not cross a four-byte boundary, and would force four-byte
1443 alignment for the whole structure. (The alignment used may not
1444 be four bytes; it is controlled by the other alignment
1445 parameters.)
1447 If the macro is defined, its definition should be a C expression;
1448 a nonzero value for the expression enables this behavior. */
1450 #define PCC_BITFIELD_TYPE_MATTERS 1
1452 /* If defined, a C expression to compute the alignment given to a
1453 constant that is being placed in memory. CONSTANT is the constant
1454 and ALIGN is the alignment that the object would ordinarily have.
1455 The value of this macro is used instead of that alignment to align
1456 the object.
1458 If this macro is not defined, then ALIGN is used.
1460 The typical use of this macro is to increase alignment for string
1461 constants to be word aligned so that `strcpy' calls that copy
1462 constants can be done inline. */
1464 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
1465 ((TREE_CODE (EXP) == STRING_CST || TREE_CODE (EXP) == CONSTRUCTOR) \
1466 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
1468 /* If defined, a C expression to compute the alignment for a static
1469 variable. TYPE is the data type, and ALIGN is the alignment that
1470 the object would ordinarily have. The value of this macro is used
1471 instead of that alignment to align the object.
1473 If this macro is not defined, then ALIGN is used.
1475 One use of this macro is to increase alignment of medium-size
1476 data to make it all fit in fewer cache lines. Another is to
1477 cause character arrays to be word-aligned so that `strcpy' calls
1478 that copy constants to character arrays can be done inline. */
1480 #undef DATA_ALIGNMENT
1481 #define DATA_ALIGNMENT(TYPE, ALIGN) \
1482 ((((ALIGN) < BITS_PER_WORD) \
1483 && (TREE_CODE (TYPE) == ARRAY_TYPE \
1484 || TREE_CODE (TYPE) == UNION_TYPE \
1485 || TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
1487 /* We need this for the same reason as DATA_ALIGNMENT, namely to cause
1488 character arrays to be word-aligned so that `strcpy' calls that copy
1489 constants to character arrays can be done inline, and 'strcmp' can be
1490 optimised to use word loads. */
1491 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
1492 DATA_ALIGNMENT (TYPE, ALIGN)
1494 #define PAD_VARARGS_DOWN \
1495 (FUNCTION_ARG_PADDING (TYPE_MODE (type), type) == downward)
1497 /* Define if operations between registers always perform the operation
1498 on the full register even if a narrower mode is specified. */
1499 #define WORD_REGISTER_OPERATIONS
1501 /* When in 64-bit mode, move insns will sign extend SImode and CCmode
1502 moves. All other references are zero extended. */
1503 #define LOAD_EXTEND_OP(MODE) \
1504 (TARGET_64BIT && ((MODE) == SImode || (MODE) == CCmode) \
1505 ? SIGN_EXTEND : ZERO_EXTEND)
1507 /* Define this macro if it is advisable to hold scalars in registers
1508 in a wider mode than that declared by the program. In such cases,
1509 the value is constrained to be within the bounds of the declared
1510 type, but kept valid in the wider mode. The signedness of the
1511 extension may differ from that of the type. */
1513 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
1514 if (GET_MODE_CLASS (MODE) == MODE_INT \
1515 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
1517 if ((MODE) == SImode) \
1518 (UNSIGNEDP) = 0; \
1519 (MODE) = Pmode; \
1522 /* Pmode is always the same as ptr_mode, but not always the same as word_mode.
1523 Extensions of pointers to word_mode must be signed. */
1524 #define POINTERS_EXTEND_UNSIGNED false
1526 /* Define if loading short immediate values into registers sign extends. */
1527 #define SHORT_IMMEDIATES_SIGN_EXTEND
1529 /* The [d]clz instructions have the natural values at 0. */
1531 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1532 ((VALUE) = GET_MODE_BITSIZE (MODE), 2)
1534 /* Standard register usage. */
1536 /* Number of hardware registers. We have:
1538 - 32 integer registers
1539 - 32 floating point registers
1540 - 8 condition code registers
1541 - 2 accumulator registers (hi and lo)
1542 - 32 registers each for coprocessors 0, 2 and 3
1543 - 4 fake registers:
1544 - ARG_POINTER_REGNUM
1545 - FRAME_POINTER_REGNUM
1546 - GOT_VERSION_REGNUM (see the comment above load_call<mode> for details)
1547 - CPRESTORE_SLOT_REGNUM
1548 - 2 dummy entries that were used at various times in the past.
1549 - 6 DSP accumulator registers (3 hi-lo pairs) for MIPS DSP ASE
1550 - 6 DSP control registers */
1552 #define FIRST_PSEUDO_REGISTER 188
1554 /* By default, fix the kernel registers ($26 and $27), the global
1555 pointer ($28) and the stack pointer ($29). This can change
1556 depending on the command-line options.
1558 Regarding coprocessor registers: without evidence to the contrary,
1559 it's best to assume that each coprocessor register has a unique
1560 use. This can be overridden, in, e.g., mips_option_override or
1561 TARGET_CONDITIONAL_REGISTER_USAGE should the assumption be
1562 inappropriate for a particular target. */
1564 #define FIXED_REGISTERS \
1566 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1567 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, \
1568 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1569 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1570 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, \
1571 /* COP0 registers */ \
1572 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1573 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1574 /* COP2 registers */ \
1575 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1576 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1577 /* COP3 registers */ \
1578 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1579 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1580 /* 6 DSP accumulator registers & 6 control registers */ \
1581 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1 \
1585 /* Set up this array for o32 by default.
1587 Note that we don't mark $31 as a call-clobbered register. The idea is
1588 that it's really the call instructions themselves which clobber $31.
1589 We don't care what the called function does with it afterwards.
1591 This approach makes it easier to implement sibcalls. Unlike normal
1592 calls, sibcalls don't clobber $31, so the register reaches the
1593 called function in tact. EPILOGUE_USES says that $31 is useful
1594 to the called function. */
1596 #define CALL_USED_REGISTERS \
1598 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1599 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, \
1600 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1601 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1602 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1603 /* COP0 registers */ \
1604 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1605 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1606 /* COP2 registers */ \
1607 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1608 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1609 /* COP3 registers */ \
1610 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1611 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1612 /* 6 DSP accumulator registers & 6 control registers */ \
1613 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 \
1617 /* Define this since $28, though fixed, is call-saved in many ABIs. */
1619 #define CALL_REALLY_USED_REGISTERS \
1620 { /* General registers. */ \
1621 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1622 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, \
1623 /* Floating-point registers. */ \
1624 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1625 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1626 /* Others. */ \
1627 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, \
1628 /* COP0 registers */ \
1629 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1630 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1631 /* COP2 registers */ \
1632 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1633 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1634 /* COP3 registers */ \
1635 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1636 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1637 /* 6 DSP accumulator registers & 6 control registers */ \
1638 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0 \
1641 /* Internal macros to classify a register number as to whether it's a
1642 general purpose register, a floating point register, a
1643 multiply/divide register, or a status register. */
1645 #define GP_REG_FIRST 0
1646 #define GP_REG_LAST 31
1647 #define GP_REG_NUM (GP_REG_LAST - GP_REG_FIRST + 1)
1648 #define GP_DBX_FIRST 0
1649 #define K0_REG_NUM (GP_REG_FIRST + 26)
1650 #define K1_REG_NUM (GP_REG_FIRST + 27)
1651 #define KERNEL_REG_P(REGNO) (IN_RANGE (REGNO, K0_REG_NUM, K1_REG_NUM))
1653 #define FP_REG_FIRST 32
1654 #define FP_REG_LAST 63
1655 #define FP_REG_NUM (FP_REG_LAST - FP_REG_FIRST + 1)
1656 #define FP_DBX_FIRST ((write_symbols == DBX_DEBUG) ? 38 : 32)
1658 #define MD_REG_FIRST 64
1659 #define MD_REG_LAST 65
1660 #define MD_REG_NUM (MD_REG_LAST - MD_REG_FIRST + 1)
1661 #define MD_DBX_FIRST (FP_DBX_FIRST + FP_REG_NUM)
1663 /* The DWARF 2 CFA column which tracks the return address from a
1664 signal handler context. This means that to maintain backwards
1665 compatibility, no hard register can be assigned this column if it
1666 would need to be handled by the DWARF unwinder. */
1667 #define DWARF_ALT_FRAME_RETURN_COLUMN 66
1669 #define ST_REG_FIRST 67
1670 #define ST_REG_LAST 74
1671 #define ST_REG_NUM (ST_REG_LAST - ST_REG_FIRST + 1)
1674 /* FIXME: renumber. */
1675 #define COP0_REG_FIRST 80
1676 #define COP0_REG_LAST 111
1677 #define COP0_REG_NUM (COP0_REG_LAST - COP0_REG_FIRST + 1)
1679 #define COP0_STATUS_REG_NUM (COP0_REG_FIRST + 12)
1680 #define COP0_CAUSE_REG_NUM (COP0_REG_FIRST + 13)
1681 #define COP0_EPC_REG_NUM (COP0_REG_FIRST + 14)
1683 #define COP2_REG_FIRST 112
1684 #define COP2_REG_LAST 143
1685 #define COP2_REG_NUM (COP2_REG_LAST - COP2_REG_FIRST + 1)
1687 #define COP3_REG_FIRST 144
1688 #define COP3_REG_LAST 175
1689 #define COP3_REG_NUM (COP3_REG_LAST - COP3_REG_FIRST + 1)
1691 /* These definitions assume that COP0, 2 and 3 are numbered consecutively. */
1692 #define ALL_COP_REG_FIRST COP0_REG_FIRST
1693 #define ALL_COP_REG_LAST COP3_REG_LAST
1694 #define ALL_COP_REG_NUM (ALL_COP_REG_LAST - ALL_COP_REG_FIRST + 1)
1696 #define DSP_ACC_REG_FIRST 176
1697 #define DSP_ACC_REG_LAST 181
1698 #define DSP_ACC_REG_NUM (DSP_ACC_REG_LAST - DSP_ACC_REG_FIRST + 1)
1700 #define AT_REGNUM (GP_REG_FIRST + 1)
1701 #define HI_REGNUM (TARGET_BIG_ENDIAN ? MD_REG_FIRST : MD_REG_FIRST + 1)
1702 #define LO_REGNUM (TARGET_BIG_ENDIAN ? MD_REG_FIRST + 1 : MD_REG_FIRST)
1704 /* A few bitfield locations for the coprocessor registers. */
1705 /* Request Interrupt Priority Level is from bit 10 to bit 15 of
1706 the cause register for the EIC interrupt mode. */
1707 #define CAUSE_IPL 10
1708 /* Interrupt Priority Level is from bit 10 to bit 15 of the status register. */
1709 #define SR_IPL 10
1710 /* Exception Level is at bit 1 of the status register. */
1711 #define SR_EXL 1
1712 /* Interrupt Enable is at bit 0 of the status register. */
1713 #define SR_IE 0
1715 /* FPSW_REGNUM is the single condition code used if !ISA_HAS_8CC.
1716 If ISA_HAS_8CC, it should not be used, and an arbitrary ST_REG
1717 should be used instead. */
1718 #define FPSW_REGNUM ST_REG_FIRST
1720 #define GP_REG_P(REGNO) \
1721 ((unsigned int) ((int) (REGNO) - GP_REG_FIRST) < GP_REG_NUM)
1722 #define M16_REG_P(REGNO) \
1723 (((REGNO) >= 2 && (REGNO) <= 7) || (REGNO) == 16 || (REGNO) == 17)
1724 #define M16STORE_REG_P(REGNO) \
1725 (((REGNO) >= 2 && (REGNO) <= 7) || (REGNO) == 0 || (REGNO) == 17)
1726 #define FP_REG_P(REGNO) \
1727 ((unsigned int) ((int) (REGNO) - FP_REG_FIRST) < FP_REG_NUM)
1728 #define MD_REG_P(REGNO) \
1729 ((unsigned int) ((int) (REGNO) - MD_REG_FIRST) < MD_REG_NUM)
1730 #define ST_REG_P(REGNO) \
1731 ((unsigned int) ((int) (REGNO) - ST_REG_FIRST) < ST_REG_NUM)
1732 #define COP0_REG_P(REGNO) \
1733 ((unsigned int) ((int) (REGNO) - COP0_REG_FIRST) < COP0_REG_NUM)
1734 #define COP2_REG_P(REGNO) \
1735 ((unsigned int) ((int) (REGNO) - COP2_REG_FIRST) < COP2_REG_NUM)
1736 #define COP3_REG_P(REGNO) \
1737 ((unsigned int) ((int) (REGNO) - COP3_REG_FIRST) < COP3_REG_NUM)
1738 #define ALL_COP_REG_P(REGNO) \
1739 ((unsigned int) ((int) (REGNO) - COP0_REG_FIRST) < ALL_COP_REG_NUM)
1740 /* Test if REGNO is one of the 6 new DSP accumulators. */
1741 #define DSP_ACC_REG_P(REGNO) \
1742 ((unsigned int) ((int) (REGNO) - DSP_ACC_REG_FIRST) < DSP_ACC_REG_NUM)
1743 /* Test if REGNO is hi, lo, or one of the 6 new DSP accumulators. */
1744 #define ACC_REG_P(REGNO) \
1745 (MD_REG_P (REGNO) || DSP_ACC_REG_P (REGNO))
1747 #define FP_REG_RTX_P(X) (REG_P (X) && FP_REG_P (REGNO (X)))
1749 /* True if X is (const (unspec [(const_int 0)] UNSPEC_GP)). This is used
1750 to initialize the mips16 gp pseudo register. */
1751 #define CONST_GP_P(X) \
1752 (GET_CODE (X) == CONST \
1753 && GET_CODE (XEXP (X, 0)) == UNSPEC \
1754 && XINT (XEXP (X, 0), 1) == UNSPEC_GP)
1756 /* Return coprocessor number from register number. */
1758 #define COPNUM_AS_CHAR_FROM_REGNUM(REGNO) \
1759 (COP0_REG_P (REGNO) ? '0' : COP2_REG_P (REGNO) ? '2' \
1760 : COP3_REG_P (REGNO) ? '3' : '?')
1763 #define HARD_REGNO_NREGS(REGNO, MODE) mips_hard_regno_nregs (REGNO, MODE)
1765 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
1766 mips_hard_regno_mode_ok[ (int)(MODE) ][ (REGNO) ]
1768 #define MODES_TIEABLE_P mips_modes_tieable_p
1770 /* Register to use for pushing function arguments. */
1771 #define STACK_POINTER_REGNUM (GP_REG_FIRST + 29)
1773 /* These two registers don't really exist: they get eliminated to either
1774 the stack or hard frame pointer. */
1775 #define ARG_POINTER_REGNUM 77
1776 #define FRAME_POINTER_REGNUM 78
1778 /* $30 is not available on the mips16, so we use $17 as the frame
1779 pointer. */
1780 #define HARD_FRAME_POINTER_REGNUM \
1781 (TARGET_MIPS16 ? GP_REG_FIRST + 17 : GP_REG_FIRST + 30)
1783 #define HARD_FRAME_POINTER_IS_FRAME_POINTER 0
1784 #define HARD_FRAME_POINTER_IS_ARG_POINTER 0
1786 /* Register in which static-chain is passed to a function. */
1787 #define STATIC_CHAIN_REGNUM (GP_REG_FIRST + 15)
1789 /* Registers used as temporaries in prologue/epilogue code:
1791 - If a MIPS16 PIC function needs access to _gp, it first loads
1792 the value into MIPS16_PIC_TEMP and then copies it to $gp.
1794 - The prologue can use MIPS_PROLOGUE_TEMP as a general temporary
1795 register. The register must not conflict with MIPS16_PIC_TEMP.
1797 - If we aren't generating MIPS16 code, the prologue can also use
1798 MIPS_PROLOGUE_TEMP2 as a general temporary register.
1800 - The epilogue can use MIPS_EPILOGUE_TEMP as a general temporary
1801 register.
1803 If we're generating MIPS16 code, these registers must come from the
1804 core set of 8. The prologue registers mustn't conflict with any
1805 incoming arguments, the static chain pointer, or the frame pointer.
1806 The epilogue temporary mustn't conflict with the return registers,
1807 the PIC call register ($25), the frame pointer, the EH stack adjustment,
1808 or the EH data registers.
1810 If we're generating interrupt handlers, we use K0 as a temporary register
1811 in prologue/epilogue code. */
1813 #define MIPS16_PIC_TEMP_REGNUM (GP_REG_FIRST + 2)
1814 #define MIPS_PROLOGUE_TEMP_REGNUM \
1815 (cfun->machine->interrupt_handler_p ? K0_REG_NUM : GP_REG_FIRST + 3)
1816 #define MIPS_PROLOGUE_TEMP2_REGNUM \
1817 (TARGET_MIPS16 \
1818 ? (gcc_unreachable (), INVALID_REGNUM) \
1819 : cfun->machine->interrupt_handler_p ? K1_REG_NUM : GP_REG_FIRST + 12)
1820 #define MIPS_EPILOGUE_TEMP_REGNUM \
1821 (cfun->machine->interrupt_handler_p \
1822 ? K0_REG_NUM \
1823 : GP_REG_FIRST + (TARGET_MIPS16 ? 6 : 8))
1825 #define MIPS16_PIC_TEMP gen_rtx_REG (Pmode, MIPS16_PIC_TEMP_REGNUM)
1826 #define MIPS_PROLOGUE_TEMP(MODE) gen_rtx_REG (MODE, MIPS_PROLOGUE_TEMP_REGNUM)
1827 #define MIPS_PROLOGUE_TEMP2(MODE) \
1828 gen_rtx_REG (MODE, MIPS_PROLOGUE_TEMP2_REGNUM)
1829 #define MIPS_EPILOGUE_TEMP(MODE) gen_rtx_REG (MODE, MIPS_EPILOGUE_TEMP_REGNUM)
1831 /* Define this macro if it is as good or better to call a constant
1832 function address than to call an address kept in a register. */
1833 #define NO_FUNCTION_CSE 1
1835 /* The ABI-defined global pointer. Sometimes we use a different
1836 register in leaf functions: see PIC_OFFSET_TABLE_REGNUM. */
1837 #define GLOBAL_POINTER_REGNUM (GP_REG_FIRST + 28)
1839 /* We normally use $28 as the global pointer. However, when generating
1840 n32/64 PIC, it is better for leaf functions to use a call-clobbered
1841 register instead. They can then avoid saving and restoring $28
1842 and perhaps avoid using a frame at all.
1844 When a leaf function uses something other than $28, mips_expand_prologue
1845 will modify pic_offset_table_rtx in place. Take the register number
1846 from there after reload. */
1847 #define PIC_OFFSET_TABLE_REGNUM \
1848 (reload_completed ? REGNO (pic_offset_table_rtx) : GLOBAL_POINTER_REGNUM)
1850 /* Define the classes of registers for register constraints in the
1851 machine description. Also define ranges of constants.
1853 One of the classes must always be named ALL_REGS and include all hard regs.
1854 If there is more than one class, another class must be named NO_REGS
1855 and contain no registers.
1857 The name GENERAL_REGS must be the name of a class (or an alias for
1858 another name such as ALL_REGS). This is the class of registers
1859 that is allowed by "g" or "r" in a register constraint.
1860 Also, registers outside this class are allocated only when
1861 instructions express preferences for them.
1863 The classes must be numbered in nondecreasing order; that is,
1864 a larger-numbered class must never be contained completely
1865 in a smaller-numbered class.
1867 For any two classes, it is very desirable that there be another
1868 class that represents their union. */
1870 enum reg_class
1872 NO_REGS, /* no registers in set */
1873 M16_REGS, /* mips16 directly accessible registers */
1874 T_REG, /* mips16 T register ($24) */
1875 M16_T_REGS, /* mips16 registers plus T register */
1876 PIC_FN_ADDR_REG, /* SVR4 PIC function address register */
1877 V1_REG, /* Register $v1 ($3) used for TLS access. */
1878 LEA_REGS, /* Every GPR except $25 */
1879 GR_REGS, /* integer registers */
1880 FP_REGS, /* floating point registers */
1881 MD0_REG, /* first multiply/divide register */
1882 MD1_REG, /* second multiply/divide register */
1883 MD_REGS, /* multiply/divide registers (hi/lo) */
1884 COP0_REGS, /* generic coprocessor classes */
1885 COP2_REGS,
1886 COP3_REGS,
1887 ST_REGS, /* status registers (fp status) */
1888 DSP_ACC_REGS, /* DSP accumulator registers */
1889 ACC_REGS, /* Hi/Lo and DSP accumulator registers */
1890 FRAME_REGS, /* $arg and $frame */
1891 GR_AND_MD0_REGS, /* union classes */
1892 GR_AND_MD1_REGS,
1893 GR_AND_MD_REGS,
1894 GR_AND_ACC_REGS,
1895 ALL_REGS, /* all registers */
1896 LIM_REG_CLASSES /* max value + 1 */
1899 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1901 #define GENERAL_REGS GR_REGS
1903 /* An initializer containing the names of the register classes as C
1904 string constants. These names are used in writing some of the
1905 debugging dumps. */
1907 #define REG_CLASS_NAMES \
1909 "NO_REGS", \
1910 "M16_REGS", \
1911 "T_REG", \
1912 "M16_T_REGS", \
1913 "PIC_FN_ADDR_REG", \
1914 "V1_REG", \
1915 "LEA_REGS", \
1916 "GR_REGS", \
1917 "FP_REGS", \
1918 "MD0_REG", \
1919 "MD1_REG", \
1920 "MD_REGS", \
1921 /* coprocessor registers */ \
1922 "COP0_REGS", \
1923 "COP2_REGS", \
1924 "COP3_REGS", \
1925 "ST_REGS", \
1926 "DSP_ACC_REGS", \
1927 "ACC_REGS", \
1928 "FRAME_REGS", \
1929 "GR_AND_MD0_REGS", \
1930 "GR_AND_MD1_REGS", \
1931 "GR_AND_MD_REGS", \
1932 "GR_AND_ACC_REGS", \
1933 "ALL_REGS" \
1936 /* An initializer containing the contents of the register classes,
1937 as integers which are bit masks. The Nth integer specifies the
1938 contents of class N. The way the integer MASK is interpreted is
1939 that register R is in the class if `MASK & (1 << R)' is 1.
1941 When the machine has more than 32 registers, an integer does not
1942 suffice. Then the integers are replaced by sub-initializers,
1943 braced groupings containing several integers. Each
1944 sub-initializer must be suitable as an initializer for the type
1945 `HARD_REG_SET' which is defined in `hard-reg-set.h'. */
1947 #define REG_CLASS_CONTENTS \
1949 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
1950 { 0x000300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* M16_REGS */ \
1951 { 0x01000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* T_REG */ \
1952 { 0x010300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* M16_T_REGS */ \
1953 { 0x02000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* PIC_FN_ADDR_REG */ \
1954 { 0x00000008, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* V1_REG */ \
1955 { 0xfdffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* LEA_REGS */ \
1956 { 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* GR_REGS */ \
1957 { 0x00000000, 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* FP_REGS */ \
1958 { 0x00000000, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000 }, /* MD0_REG */ \
1959 { 0x00000000, 0x00000000, 0x00000002, 0x00000000, 0x00000000, 0x00000000 }, /* MD1_REG */ \
1960 { 0x00000000, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x00000000 }, /* MD_REGS */ \
1961 { 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000, 0x00000000 }, /* COP0_REGS */ \
1962 { 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000 }, /* COP2_REGS */ \
1963 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff }, /* COP3_REGS */ \
1964 { 0x00000000, 0x00000000, 0x000007f8, 0x00000000, 0x00000000, 0x00000000 }, /* ST_REGS */ \
1965 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x003f0000 }, /* DSP_ACC_REGS */ \
1966 { 0x00000000, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x003f0000 }, /* ACC_REGS */ \
1967 { 0x00000000, 0x00000000, 0x00006000, 0x00000000, 0x00000000, 0x00000000 }, /* FRAME_REGS */ \
1968 { 0xffffffff, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000 }, /* GR_AND_MD0_REGS */ \
1969 { 0xffffffff, 0x00000000, 0x00000002, 0x00000000, 0x00000000, 0x00000000 }, /* GR_AND_MD1_REGS */ \
1970 { 0xffffffff, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x00000000 }, /* GR_AND_MD_REGS */ \
1971 { 0xffffffff, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x003f0000 }, /* GR_AND_ACC_REGS */ \
1972 { 0xffffffff, 0xffffffff, 0xffff67ff, 0xffffffff, 0xffffffff, 0x0fffffff } /* ALL_REGS */ \
1976 /* A C expression whose value is a register class containing hard
1977 register REGNO. In general there is more that one such class;
1978 choose a class which is "minimal", meaning that no smaller class
1979 also contains the register. */
1981 #define REGNO_REG_CLASS(REGNO) mips_regno_to_class[ (REGNO) ]
1983 /* A macro whose definition is the name of the class to which a
1984 valid base register must belong. A base register is one used in
1985 an address which is the register value plus a displacement. */
1987 #define BASE_REG_CLASS (TARGET_MIPS16 ? M16_REGS : GR_REGS)
1989 /* A macro whose definition is the name of the class to which a
1990 valid index register must belong. An index register is one used
1991 in an address where its value is either multiplied by a scale
1992 factor or added to another register (as well as added to a
1993 displacement). */
1995 #define INDEX_REG_CLASS NO_REGS
1997 /* We generally want to put call-clobbered registers ahead of
1998 call-saved ones. (IRA expects this.) */
2000 #define REG_ALLOC_ORDER \
2001 { /* Accumulator registers. When GPRs and accumulators have equal \
2002 cost, we generally prefer to use accumulators. For example, \
2003 a division of multiplication result is better allocated to LO, \
2004 so that we put the MFLO at the point of use instead of at the \
2005 point of definition. It's also needed if we're to take advantage \
2006 of the extra accumulators available with -mdspr2. In some cases, \
2007 it can also help to reduce register pressure. */ \
2008 64, 65,176,177,178,179,180,181, \
2009 /* Call-clobbered GPRs. */ \
2010 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, \
2011 24, 25, 31, \
2012 /* The global pointer. This is call-clobbered for o32 and o64 \
2013 abicalls, call-saved for n32 and n64 abicalls, and a program \
2014 invariant otherwise. Putting it between the call-clobbered \
2015 and call-saved registers should cope with all eventualities. */ \
2016 28, \
2017 /* Call-saved GPRs. */ \
2018 16, 17, 18, 19, 20, 21, 22, 23, 30, \
2019 /* GPRs that can never be exposed to the register allocator. */ \
2020 0, 26, 27, 29, \
2021 /* Call-clobbered FPRs. */ \
2022 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
2023 48, 49, 50, 51, \
2024 /* FPRs that are usually call-saved. The odd ones are actually \
2025 call-clobbered for n32, but listing them ahead of the even \
2026 registers might encourage the register allocator to fragment \
2027 the available FPR pairs. We need paired FPRs to store long \
2028 doubles, so it isn't clear that using a different order \
2029 for n32 would be a win. */ \
2030 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, \
2031 /* None of the remaining classes have defined call-saved \
2032 registers. */ \
2033 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, \
2034 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, \
2035 96, 97, 98, 99, 100,101,102,103,104,105,106,107,108,109,110,111, \
2036 112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127, \
2037 128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143, \
2038 144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159, \
2039 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175, \
2040 182,183,184,185,186,187 \
2043 /* ADJUST_REG_ALLOC_ORDER is a macro which permits reg_alloc_order
2044 to be rearranged based on a particular function. On the mips16, we
2045 want to allocate $24 (T_REG) before other registers for
2046 instructions for which it is possible. */
2048 #define ADJUST_REG_ALLOC_ORDER mips_order_regs_for_local_alloc ()
2050 /* True if VALUE is an unsigned 6-bit number. */
2052 #define UIMM6_OPERAND(VALUE) \
2053 (((VALUE) & ~(unsigned HOST_WIDE_INT) 0x3f) == 0)
2055 /* True if VALUE is a signed 10-bit number. */
2057 #define IMM10_OPERAND(VALUE) \
2058 ((unsigned HOST_WIDE_INT) (VALUE) + 0x200 < 0x400)
2060 /* True if VALUE is a signed 16-bit number. */
2062 #define SMALL_OPERAND(VALUE) \
2063 ((unsigned HOST_WIDE_INT) (VALUE) + 0x8000 < 0x10000)
2065 /* True if VALUE is an unsigned 16-bit number. */
2067 #define SMALL_OPERAND_UNSIGNED(VALUE) \
2068 (((VALUE) & ~(unsigned HOST_WIDE_INT) 0xffff) == 0)
2070 /* True if VALUE can be loaded into a register using LUI. */
2072 #define LUI_OPERAND(VALUE) \
2073 (((VALUE) | 0x7fff0000) == 0x7fff0000 \
2074 || ((VALUE) | 0x7fff0000) + 0x10000 == 0)
2076 /* Return a value X with the low 16 bits clear, and such that
2077 VALUE - X is a signed 16-bit value. */
2079 #define CONST_HIGH_PART(VALUE) \
2080 (((VALUE) + 0x8000) & ~(unsigned HOST_WIDE_INT) 0xffff)
2082 #define CONST_LOW_PART(VALUE) \
2083 ((VALUE) - CONST_HIGH_PART (VALUE))
2085 #define SMALL_INT(X) SMALL_OPERAND (INTVAL (X))
2086 #define SMALL_INT_UNSIGNED(X) SMALL_OPERAND_UNSIGNED (INTVAL (X))
2087 #define LUI_INT(X) LUI_OPERAND (INTVAL (X))
2088 #define UMIPS_12BIT_OFFSET_P(OFFSET) (IN_RANGE (OFFSET, -2048, 2047))
2090 /* The HI and LO registers can only be reloaded via the general
2091 registers. Condition code registers can only be loaded to the
2092 general registers, and from the floating point registers. */
2094 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
2095 mips_secondary_reload_class (CLASS, MODE, X, true)
2096 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
2097 mips_secondary_reload_class (CLASS, MODE, X, false)
2099 /* Return the maximum number of consecutive registers
2100 needed to represent mode MODE in a register of class CLASS. */
2102 #define CLASS_MAX_NREGS(CLASS, MODE) mips_class_max_nregs (CLASS, MODE)
2104 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
2105 mips_cannot_change_mode_class (FROM, TO, CLASS)
2107 /* Stack layout; function entry, exit and calling. */
2109 #define STACK_GROWS_DOWNWARD
2111 #define FRAME_GROWS_DOWNWARD flag_stack_protect
2113 /* Size of the area allocated in the frame to save the GP. */
2115 #define MIPS_GP_SAVE_AREA_SIZE \
2116 (TARGET_CALL_CLOBBERED_GP ? MIPS_STACK_ALIGN (UNITS_PER_WORD) : 0)
2118 /* The offset of the first local variable from the frame pointer. See
2119 mips_compute_frame_info for details about the frame layout. */
2121 #define STARTING_FRAME_OFFSET \
2122 (FRAME_GROWS_DOWNWARD \
2123 ? 0 \
2124 : crtl->outgoing_args_size + MIPS_GP_SAVE_AREA_SIZE)
2126 #define RETURN_ADDR_RTX mips_return_addr
2128 /* Mask off the MIPS16 ISA bit in unwind addresses.
2130 The reason for this is a little subtle. When unwinding a call,
2131 we are given the call's return address, which on most targets
2132 is the address of the following instruction. However, what we
2133 actually want to find is the EH region for the call itself.
2134 The target-independent unwind code therefore searches for "RA - 1".
2136 In the MIPS16 case, RA is always an odd-valued (ISA-encoded) address.
2137 RA - 1 is therefore the real (even-valued) start of the return
2138 instruction. EH region labels are usually odd-valued MIPS16 symbols
2139 too, so a search for an even address within a MIPS16 region would
2140 usually work.
2142 However, there is an exception. If the end of an EH region is also
2143 the end of a function, the end label is allowed to be even. This is
2144 necessary because a following non-MIPS16 function may also need EH
2145 information for its first instruction.
2147 Thus a MIPS16 region may be terminated by an ISA-encoded or a
2148 non-ISA-encoded address. This probably isn't ideal, but it is
2149 the traditional (legacy) behavior. It is therefore only safe
2150 to search MIPS EH regions for an _odd-valued_ address.
2152 Masking off the ISA bit means that the target-independent code
2153 will search for "(RA & -2) - 1", which is guaranteed to be odd. */
2154 #define MASK_RETURN_ADDR GEN_INT (-2)
2157 /* Similarly, don't use the least-significant bit to tell pointers to
2158 code from vtable index. */
2160 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_delta
2162 /* The eliminations to $17 are only used for mips16 code. See the
2163 definition of HARD_FRAME_POINTER_REGNUM. */
2165 #define ELIMINABLE_REGS \
2166 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
2167 { ARG_POINTER_REGNUM, GP_REG_FIRST + 30}, \
2168 { ARG_POINTER_REGNUM, GP_REG_FIRST + 17}, \
2169 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
2170 { FRAME_POINTER_REGNUM, GP_REG_FIRST + 30}, \
2171 { FRAME_POINTER_REGNUM, GP_REG_FIRST + 17}}
2173 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
2174 (OFFSET) = mips_initial_elimination_offset ((FROM), (TO))
2176 /* Allocate stack space for arguments at the beginning of each function. */
2177 #define ACCUMULATE_OUTGOING_ARGS 1
2179 /* The argument pointer always points to the first argument. */
2180 #define FIRST_PARM_OFFSET(FNDECL) 0
2182 /* o32 and o64 reserve stack space for all argument registers. */
2183 #define REG_PARM_STACK_SPACE(FNDECL) \
2184 (TARGET_OLDABI \
2185 ? (MAX_ARGS_IN_REGISTERS * UNITS_PER_WORD) \
2186 : 0)
2188 /* Define this if it is the responsibility of the caller to
2189 allocate the area reserved for arguments passed in registers.
2190 If `ACCUMULATE_OUTGOING_ARGS' is also defined, the only effect
2191 of this macro is to determine whether the space is included in
2192 `crtl->outgoing_args_size'. */
2193 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
2195 #define STACK_BOUNDARY (TARGET_NEWABI ? 128 : 64)
2197 /* Symbolic macros for the registers used to return integer and floating
2198 point values. */
2200 #define GP_RETURN (GP_REG_FIRST + 2)
2201 #define FP_RETURN ((TARGET_SOFT_FLOAT) ? GP_RETURN : (FP_REG_FIRST + 0))
2203 #define MAX_ARGS_IN_REGISTERS (TARGET_OLDABI ? 4 : 8)
2205 /* Symbolic macros for the first/last argument registers. */
2207 #define GP_ARG_FIRST (GP_REG_FIRST + 4)
2208 #define GP_ARG_LAST (GP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
2209 #define FP_ARG_FIRST (FP_REG_FIRST + 12)
2210 #define FP_ARG_LAST (FP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
2212 /* 1 if N is a possible register number for function argument passing.
2213 We have no FP argument registers when soft-float. When FP registers
2214 are 32 bits, we can't directly reference the odd numbered ones. */
2216 #define FUNCTION_ARG_REGNO_P(N) \
2217 ((IN_RANGE((N), GP_ARG_FIRST, GP_ARG_LAST) \
2218 || (IN_RANGE((N), FP_ARG_FIRST, FP_ARG_LAST))) \
2219 && !fixed_regs[N])
2221 /* This structure has to cope with two different argument allocation
2222 schemes. Most MIPS ABIs view the arguments as a structure, of which
2223 the first N words go in registers and the rest go on the stack. If I
2224 < N, the Ith word might go in Ith integer argument register or in a
2225 floating-point register. For these ABIs, we only need to remember
2226 the offset of the current argument into the structure.
2228 The EABI instead allocates the integer and floating-point arguments
2229 separately. The first N words of FP arguments go in FP registers,
2230 the rest go on the stack. Likewise, the first N words of the other
2231 arguments go in integer registers, and the rest go on the stack. We
2232 need to maintain three counts: the number of integer registers used,
2233 the number of floating-point registers used, and the number of words
2234 passed on the stack.
2236 We could keep separate information for the two ABIs (a word count for
2237 the standard ABIs, and three separate counts for the EABI). But it
2238 seems simpler to view the standard ABIs as forms of EABI that do not
2239 allocate floating-point registers.
2241 So for the standard ABIs, the first N words are allocated to integer
2242 registers, and mips_function_arg decides on an argument-by-argument
2243 basis whether that argument should really go in an integer register,
2244 or in a floating-point one. */
2246 typedef struct mips_args {
2247 /* Always true for varargs functions. Otherwise true if at least
2248 one argument has been passed in an integer register. */
2249 int gp_reg_found;
2251 /* The number of arguments seen so far. */
2252 unsigned int arg_number;
2254 /* The number of integer registers used so far. For all ABIs except
2255 EABI, this is the number of words that have been added to the
2256 argument structure, limited to MAX_ARGS_IN_REGISTERS. */
2257 unsigned int num_gprs;
2259 /* For EABI, the number of floating-point registers used so far. */
2260 unsigned int num_fprs;
2262 /* The number of words passed on the stack. */
2263 unsigned int stack_words;
2265 /* On the mips16, we need to keep track of which floating point
2266 arguments were passed in general registers, but would have been
2267 passed in the FP regs if this were a 32-bit function, so that we
2268 can move them to the FP regs if we wind up calling a 32-bit
2269 function. We record this information in fp_code, encoded in base
2270 four. A zero digit means no floating point argument, a one digit
2271 means an SFmode argument, and a two digit means a DFmode argument,
2272 and a three digit is not used. The low order digit is the first
2273 argument. Thus 6 == 1 * 4 + 2 means a DFmode argument followed by
2274 an SFmode argument. ??? A more sophisticated approach will be
2275 needed if MIPS_ABI != ABI_32. */
2276 int fp_code;
2278 /* True if the function has a prototype. */
2279 int prototype;
2280 } CUMULATIVE_ARGS;
2282 /* Initialize a variable CUM of type CUMULATIVE_ARGS
2283 for a call to a function whose data type is FNTYPE.
2284 For a library call, FNTYPE is 0. */
2286 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
2287 mips_init_cumulative_args (&CUM, FNTYPE)
2289 #define FUNCTION_ARG_PADDING(MODE, TYPE) \
2290 (mips_pad_arg_upward (MODE, TYPE) ? upward : downward)
2292 #define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \
2293 (mips_pad_reg_upward (MODE, TYPE) ? upward : downward)
2295 /* True if using EABI and varargs can be passed in floating-point
2296 registers. Under these conditions, we need a more complex form
2297 of va_list, which tracks GPR, FPR and stack arguments separately. */
2298 #define EABI_FLOAT_VARARGS_P \
2299 (mips_abi == ABI_EABI && UNITS_PER_FPVALUE >= UNITS_PER_DOUBLE)
2302 #define EPILOGUE_USES(REGNO) mips_epilogue_uses (REGNO)
2304 /* Treat LOC as a byte offset from the stack pointer and round it up
2305 to the next fully-aligned offset. */
2306 #define MIPS_STACK_ALIGN(LOC) \
2307 (TARGET_NEWABI ? ((LOC) + 15) & -16 : ((LOC) + 7) & -8)
2310 /* Output assembler code to FILE to increment profiler label # LABELNO
2311 for profiling a function entry. */
2313 #define FUNCTION_PROFILER(FILE, LABELNO) mips_function_profiler ((FILE))
2315 /* The profiler preserves all interesting registers, including $31. */
2316 #define MIPS_SAVE_REG_FOR_PROFILING_P(REGNO) false
2318 /* No mips port has ever used the profiler counter word, so don't emit it
2319 or the label for it. */
2321 #define NO_PROFILE_COUNTERS 1
2323 /* Define this macro if the code for function profiling should come
2324 before the function prologue. Normally, the profiling code comes
2325 after. */
2327 /* #define PROFILE_BEFORE_PROLOGUE */
2329 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
2330 the stack pointer does not matter. The value is tested only in
2331 functions that have frame pointers.
2332 No definition is equivalent to always zero. */
2334 #define EXIT_IGNORE_STACK 1
2337 /* Trampolines are a block of code followed by two pointers. */
2339 #define TRAMPOLINE_SIZE \
2340 (mips_trampoline_code_size () + GET_MODE_SIZE (ptr_mode) * 2)
2342 /* Forcing a 64-bit alignment for 32-bit targets allows us to load two
2343 pointers from a single LUI base. */
2345 #define TRAMPOLINE_ALIGNMENT 64
2347 /* mips_trampoline_init calls this library function to flush
2348 program and data caches. */
2350 #ifndef CACHE_FLUSH_FUNC
2351 #define CACHE_FLUSH_FUNC "_flush_cache"
2352 #endif
2354 #define MIPS_ICACHE_SYNC(ADDR, SIZE) \
2355 /* Flush both caches. We need to flush the data cache in case \
2356 the system has a write-back cache. */ \
2357 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, mips_cache_flush_func), \
2358 LCT_NORMAL, VOIDmode, 3, ADDR, Pmode, SIZE, Pmode, \
2359 GEN_INT (3), TYPE_MODE (integer_type_node))
2362 /* Addressing modes, and classification of registers for them. */
2364 #define REGNO_OK_FOR_INDEX_P(REGNO) 0
2365 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
2366 mips_regno_mode_ok_for_base_p (REGNO, MODE, 1)
2368 /* Maximum number of registers that can appear in a valid memory address. */
2370 #define MAX_REGS_PER_ADDRESS 1
2372 /* Check for constness inline but use mips_legitimate_address_p
2373 to check whether a constant really is an address. */
2375 #define CONSTANT_ADDRESS_P(X) \
2376 (CONSTANT_P (X) && memory_address_p (SImode, X))
2378 /* This handles the magic '..CURRENT_FUNCTION' symbol, which means
2379 'the start of the function that this code is output in'. */
2381 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
2382 if (strcmp (NAME, "..CURRENT_FUNCTION") == 0) \
2383 asm_fprintf ((FILE), "%U%s", \
2384 XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0)); \
2385 else \
2386 asm_fprintf ((FILE), "%U%s", (NAME))
2388 /* Flag to mark a function decl symbol that requires a long call. */
2389 #define SYMBOL_FLAG_LONG_CALL (SYMBOL_FLAG_MACH_DEP << 0)
2390 #define SYMBOL_REF_LONG_CALL_P(X) \
2391 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_LONG_CALL) != 0)
2393 /* This flag marks functions that cannot be lazily bound. */
2394 #define SYMBOL_FLAG_BIND_NOW (SYMBOL_FLAG_MACH_DEP << 1)
2395 #define SYMBOL_REF_BIND_NOW_P(RTX) \
2396 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_BIND_NOW) != 0)
2398 /* True if we're generating a form of MIPS16 code in which jump tables
2399 are stored in the text section and encoded as 16-bit PC-relative
2400 offsets. This is only possible when general text loads are allowed,
2401 since the table access itself will be an "lh" instruction. If the
2402 PC-relative offsets grow too large, 32-bit offsets are used instead. */
2403 #define TARGET_MIPS16_SHORT_JUMP_TABLES TARGET_MIPS16_TEXT_LOADS
2405 #define JUMP_TABLES_IN_TEXT_SECTION TARGET_MIPS16_SHORT_JUMP_TABLES
2407 #define CASE_VECTOR_MODE (TARGET_MIPS16_SHORT_JUMP_TABLES ? SImode : ptr_mode)
2409 /* Only use short offsets if their range will not overflow. */
2410 #define CASE_VECTOR_SHORTEN_MODE(MIN, MAX, BODY) \
2411 (!TARGET_MIPS16_SHORT_JUMP_TABLES ? ptr_mode \
2412 : ((MIN) >= -32768 && (MAX) < 32768) ? HImode \
2413 : SImode)
2415 #define CASE_VECTOR_PC_RELATIVE TARGET_MIPS16_SHORT_JUMP_TABLES
2417 /* Define this as 1 if `char' should by default be signed; else as 0. */
2418 #ifndef DEFAULT_SIGNED_CHAR
2419 #define DEFAULT_SIGNED_CHAR 1
2420 #endif
2422 /* Although LDC1 and SDC1 provide 64-bit moves on 32-bit targets,
2423 we generally don't want to use them for copying arbitrary data.
2424 A single N-word move is usually the same cost as N single-word moves. */
2425 #define MOVE_MAX UNITS_PER_WORD
2426 #define MAX_MOVE_MAX 8
2428 /* Define this macro as a C expression which is nonzero if
2429 accessing less than a word of memory (i.e. a `char' or a
2430 `short') is no faster than accessing a word of memory, i.e., if
2431 such access require more than one instruction or if there is no
2432 difference in cost between byte and (aligned) word loads.
2434 On RISC machines, it tends to generate better code to define
2435 this as 1, since it avoids making a QI or HI mode register.
2437 But, generating word accesses for -mips16 is generally bad as shifts
2438 (often extended) would be needed for byte accesses. */
2439 #define SLOW_BYTE_ACCESS (!TARGET_MIPS16)
2441 /* Standard MIPS integer shifts truncate the shift amount to the
2442 width of the shifted operand. However, Loongson vector shifts
2443 do not truncate the shift amount at all. */
2444 #define SHIFT_COUNT_TRUNCATED (!TARGET_LOONGSON_VECTORS)
2446 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2447 is done just by pretending it is already truncated. */
2448 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) \
2449 (TARGET_64BIT ? ((INPREC) <= 32 || (OUTPREC) > 32) : 1)
2452 /* Specify the machine mode that pointers have.
2453 After generation of rtl, the compiler makes no further distinction
2454 between pointers and any other objects of this machine mode. */
2456 #ifndef Pmode
2457 #define Pmode (TARGET_64BIT && TARGET_LONG64 ? DImode : SImode)
2458 #endif
2460 /* Give call MEMs SImode since it is the "most permissive" mode
2461 for both 32-bit and 64-bit targets. */
2463 #define FUNCTION_MODE SImode
2466 /* We allocate $fcc registers by hand and can't cope with moves of
2467 CCmode registers to and from pseudos (or memory). */
2468 #define AVOID_CCMODE_COPIES
2470 /* A C expression for the cost of a branch instruction. A value of
2471 1 is the default; other values are interpreted relative to that. */
2473 #define BRANCH_COST(speed_p, predictable_p) mips_branch_cost
2474 #define LOGICAL_OP_NON_SHORT_CIRCUIT 0
2476 /* The MIPS port has several functions that return an instruction count.
2477 Multiplying the count by this value gives the number of bytes that
2478 the instructions occupy. */
2479 #define BASE_INSN_LENGTH (TARGET_MIPS16 ? 2 : 4)
2481 /* The length of a NOP in bytes. */
2482 #define NOP_INSN_LENGTH (TARGET_COMPRESSION ? 2 : 4)
2484 /* If defined, modifies the length assigned to instruction INSN as a
2485 function of the context in which it is used. LENGTH is an lvalue
2486 that contains the initially computed length of the insn and should
2487 be updated with the correct length of the insn. */
2488 #define ADJUST_INSN_LENGTH(INSN, LENGTH) \
2489 ((LENGTH) = mips_adjust_insn_length ((INSN), (LENGTH)))
2491 /* Return the asm template for a non-MIPS16 conditional branch instruction.
2492 OPCODE is the opcode's mnemonic and OPERANDS is the asm template for
2493 its operands. */
2494 #define MIPS_BRANCH(OPCODE, OPERANDS) \
2495 "%*" OPCODE "%?\t" OPERANDS "%/"
2497 /* Return an asm string that forces INSN to be treated as an absolute
2498 J or JAL instruction instead of an assembler macro. */
2499 #define MIPS_ABSOLUTE_JUMP(INSN) \
2500 (TARGET_ABICALLS_PIC2 \
2501 ? ".option\tpic0\n\t" INSN "\n\t.option\tpic2" \
2502 : INSN)
2504 /* Return the asm template for a call. INSN is the instruction's mnemonic
2505 ("j" or "jal"), OPERANDS are its operands, TARGET_OPNO is the operand
2506 number of the target. SIZE_OPNO is the operand number of the argument size
2507 operand that can optionally hold the call attributes. If SIZE_OPNO is not
2508 -1 and the call is indirect, use the function symbol from the call
2509 attributes to attach a R_MIPS_JALR relocation to the call.
2511 When generating GOT code without explicit relocation operators,
2512 all calls should use assembly macros. Otherwise, all indirect
2513 calls should use "jr" or "jalr"; we will arrange to restore $gp
2514 afterwards if necessary. Finally, we can only generate direct
2515 calls for -mabicalls by temporarily switching to non-PIC mode.
2517 For microMIPS jal(r), we try to generate jal(r)s when a 16-bit
2518 instruction is in the delay slot of jal(r). */
2519 #define MIPS_CALL(INSN, OPERANDS, TARGET_OPNO, SIZE_OPNO) \
2520 (TARGET_USE_GOT && !TARGET_EXPLICIT_RELOCS \
2521 ? "%*" INSN "\t%" #TARGET_OPNO "%/" \
2522 : REG_P (OPERANDS[TARGET_OPNO]) \
2523 ? (mips_get_pic_call_symbol (OPERANDS, SIZE_OPNO) \
2524 ? ("%*.reloc\t1f,R_MIPS_JALR,%" #SIZE_OPNO "\n" \
2525 "1:\t" INSN "r\t%" #TARGET_OPNO "%/") \
2526 : TARGET_MICROMIPS && !TARGET_INTERLINK_COMPRESSED \
2527 ? "%*" INSN "r%!\t%" #TARGET_OPNO "%/" \
2528 : "%*" INSN "r\t%" #TARGET_OPNO "%/") \
2529 : TARGET_MICROMIPS && !TARGET_INTERLINK_COMPRESSED \
2530 ? MIPS_ABSOLUTE_JUMP ("%*" INSN "%!\t%" #TARGET_OPNO "%/") \
2531 : MIPS_ABSOLUTE_JUMP ("%*" INSN "\t%" #TARGET_OPNO "%/")) \
2533 /* Similar to MIPS_CALL, but this is for MICROMIPS "j" to generate
2534 "jrc" when nop is in the delay slot of "jr". */
2536 #define MICROMIPS_J(INSN, OPERANDS, OPNO) \
2537 (TARGET_USE_GOT && !TARGET_EXPLICIT_RELOCS \
2538 ? "%*j\t%" #OPNO "%/" \
2539 : REG_P (OPERANDS[OPNO]) \
2540 ? "%*jr%:\t%" #OPNO \
2541 : MIPS_ABSOLUTE_JUMP ("%*" INSN "\t%" #OPNO "%/"))
2544 /* Control the assembler format that we output. */
2546 /* Output to assembler file text saying following lines
2547 may contain character constants, extra white space, comments, etc. */
2549 #ifndef ASM_APP_ON
2550 #define ASM_APP_ON " #APP\n"
2551 #endif
2553 /* Output to assembler file text saying following lines
2554 no longer contain unusual constructs. */
2556 #ifndef ASM_APP_OFF
2557 #define ASM_APP_OFF " #NO_APP\n"
2558 #endif
2560 #define REGISTER_NAMES \
2561 { "$0", "$1", "$2", "$3", "$4", "$5", "$6", "$7", \
2562 "$8", "$9", "$10", "$11", "$12", "$13", "$14", "$15", \
2563 "$16", "$17", "$18", "$19", "$20", "$21", "$22", "$23", \
2564 "$24", "$25", "$26", "$27", "$28", "$sp", "$fp", "$31", \
2565 "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", \
2566 "$f8", "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15", \
2567 "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23", \
2568 "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "$f31", \
2569 "hi", "lo", "", "$fcc0","$fcc1","$fcc2","$fcc3","$fcc4", \
2570 "$fcc5","$fcc6","$fcc7","", "$cprestore", "$arg", "$frame", "$fakec", \
2571 "$c0r0", "$c0r1", "$c0r2", "$c0r3", "$c0r4", "$c0r5", "$c0r6", "$c0r7", \
2572 "$c0r8", "$c0r9", "$c0r10","$c0r11","$c0r12","$c0r13","$c0r14","$c0r15", \
2573 "$c0r16","$c0r17","$c0r18","$c0r19","$c0r20","$c0r21","$c0r22","$c0r23", \
2574 "$c0r24","$c0r25","$c0r26","$c0r27","$c0r28","$c0r29","$c0r30","$c0r31", \
2575 "$c2r0", "$c2r1", "$c2r2", "$c2r3", "$c2r4", "$c2r5", "$c2r6", "$c2r7", \
2576 "$c2r8", "$c2r9", "$c2r10","$c2r11","$c2r12","$c2r13","$c2r14","$c2r15", \
2577 "$c2r16","$c2r17","$c2r18","$c2r19","$c2r20","$c2r21","$c2r22","$c2r23", \
2578 "$c2r24","$c2r25","$c2r26","$c2r27","$c2r28","$c2r29","$c2r30","$c2r31", \
2579 "$c3r0", "$c3r1", "$c3r2", "$c3r3", "$c3r4", "$c3r5", "$c3r6", "$c3r7", \
2580 "$c3r8", "$c3r9", "$c3r10","$c3r11","$c3r12","$c3r13","$c3r14","$c3r15", \
2581 "$c3r16","$c3r17","$c3r18","$c3r19","$c3r20","$c3r21","$c3r22","$c3r23", \
2582 "$c3r24","$c3r25","$c3r26","$c3r27","$c3r28","$c3r29","$c3r30","$c3r31", \
2583 "$ac1hi","$ac1lo","$ac2hi","$ac2lo","$ac3hi","$ac3lo","$dsp_po","$dsp_sc", \
2584 "$dsp_ca","$dsp_ou","$dsp_cc","$dsp_ef" }
2586 /* List the "software" names for each register. Also list the numerical
2587 names for $fp and $sp. */
2589 #define ADDITIONAL_REGISTER_NAMES \
2591 { "$29", 29 + GP_REG_FIRST }, \
2592 { "$30", 30 + GP_REG_FIRST }, \
2593 { "at", 1 + GP_REG_FIRST }, \
2594 { "v0", 2 + GP_REG_FIRST }, \
2595 { "v1", 3 + GP_REG_FIRST }, \
2596 { "a0", 4 + GP_REG_FIRST }, \
2597 { "a1", 5 + GP_REG_FIRST }, \
2598 { "a2", 6 + GP_REG_FIRST }, \
2599 { "a3", 7 + GP_REG_FIRST }, \
2600 { "t0", 8 + GP_REG_FIRST }, \
2601 { "t1", 9 + GP_REG_FIRST }, \
2602 { "t2", 10 + GP_REG_FIRST }, \
2603 { "t3", 11 + GP_REG_FIRST }, \
2604 { "t4", 12 + GP_REG_FIRST }, \
2605 { "t5", 13 + GP_REG_FIRST }, \
2606 { "t6", 14 + GP_REG_FIRST }, \
2607 { "t7", 15 + GP_REG_FIRST }, \
2608 { "s0", 16 + GP_REG_FIRST }, \
2609 { "s1", 17 + GP_REG_FIRST }, \
2610 { "s2", 18 + GP_REG_FIRST }, \
2611 { "s3", 19 + GP_REG_FIRST }, \
2612 { "s4", 20 + GP_REG_FIRST }, \
2613 { "s5", 21 + GP_REG_FIRST }, \
2614 { "s6", 22 + GP_REG_FIRST }, \
2615 { "s7", 23 + GP_REG_FIRST }, \
2616 { "t8", 24 + GP_REG_FIRST }, \
2617 { "t9", 25 + GP_REG_FIRST }, \
2618 { "k0", 26 + GP_REG_FIRST }, \
2619 { "k1", 27 + GP_REG_FIRST }, \
2620 { "gp", 28 + GP_REG_FIRST }, \
2621 { "sp", 29 + GP_REG_FIRST }, \
2622 { "fp", 30 + GP_REG_FIRST }, \
2623 { "ra", 31 + GP_REG_FIRST } \
2626 #define DBR_OUTPUT_SEQEND(STREAM) \
2627 do \
2629 /* Undo the effect of '%*'. */ \
2630 mips_pop_asm_switch (&mips_nomacro); \
2631 mips_pop_asm_switch (&mips_noreorder); \
2632 /* Emit a blank line after the delay slot for emphasis. */ \
2633 fputs ("\n", STREAM); \
2635 while (0)
2637 /* The MIPS implementation uses some labels for its own purpose. The
2638 following lists what labels are created, and are all formed by the
2639 pattern $L[a-z].*. The machine independent portion of GCC creates
2640 labels matching: $L[A-Z][0-9]+ and $L[0-9]+.
2642 LM[0-9]+ Silicon Graphics/ECOFF stabs label before each stmt.
2643 $Lb[0-9]+ Begin blocks for MIPS debug support
2644 $Lc[0-9]+ Label for use in s<xx> operation.
2645 $Le[0-9]+ End blocks for MIPS debug support */
2647 #undef ASM_DECLARE_OBJECT_NAME
2648 #define ASM_DECLARE_OBJECT_NAME(STREAM, NAME, DECL) \
2649 mips_declare_object (STREAM, NAME, "", ":\n")
2651 /* Globalizing directive for a label. */
2652 #define GLOBAL_ASM_OP "\t.globl\t"
2654 /* This says how to define a global common symbol. */
2656 #define ASM_OUTPUT_ALIGNED_DECL_COMMON mips_output_aligned_decl_common
2658 /* This says how to define a local common symbol (i.e., not visible to
2659 linker). */
2661 #ifndef ASM_OUTPUT_ALIGNED_LOCAL
2662 #define ASM_OUTPUT_ALIGNED_LOCAL(STREAM, NAME, SIZE, ALIGN) \
2663 mips_declare_common_object (STREAM, NAME, "\n\t.lcomm\t", SIZE, ALIGN, false)
2664 #endif
2666 /* This says how to output an external. It would be possible not to
2667 output anything and let undefined symbol become external. However
2668 the assembler uses length information on externals to allocate in
2669 data/sdata bss/sbss, thereby saving exec time. */
2671 #undef ASM_OUTPUT_EXTERNAL
2672 #define ASM_OUTPUT_EXTERNAL(STREAM,DECL,NAME) \
2673 mips_output_external(STREAM,DECL,NAME)
2675 /* This is how to declare a function name. The actual work of
2676 emitting the label is moved to function_prologue, so that we can
2677 get the line number correctly emitted before the .ent directive,
2678 and after any .file directives. Define as empty so that the function
2679 is not declared before the .ent directive elsewhere. */
2681 #undef ASM_DECLARE_FUNCTION_NAME
2682 #define ASM_DECLARE_FUNCTION_NAME(STREAM,NAME,DECL)
2684 /* This is how to store into the string LABEL
2685 the symbol_ref name of an internal numbered label where
2686 PREFIX is the class of label and NUM is the number within the class.
2687 This is suitable for output with `assemble_name'. */
2689 #undef ASM_GENERATE_INTERNAL_LABEL
2690 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
2691 sprintf ((LABEL), "*%s%s%ld", (LOCAL_LABEL_PREFIX), (PREFIX), (long)(NUM))
2693 /* Print debug labels as "foo = ." rather than "foo:" because they should
2694 represent a byte pointer rather than an ISA-encoded address. This is
2695 particularly important for code like:
2697 $LFBxxx = .
2698 .cfi_startproc
2700 .section .gcc_except_table,...
2702 .uleb128 foo-$LFBxxx
2704 The .uleb128 requies $LFBxxx to match the FDE start address, which is
2705 likewise a byte pointer rather than an ISA-encoded address.
2707 At the time of writing, this hook is not used for the function end
2708 label:
2710 $LFExxx:
2711 .end foo
2713 But this doesn't matter, because GAS doesn't treat a pre-.end label
2714 as a MIPS16 one anyway. */
2716 #define ASM_OUTPUT_DEBUG_LABEL(FILE, PREFIX, NUM) \
2717 fprintf (FILE, "%s%s%d = .\n", LOCAL_LABEL_PREFIX, PREFIX, NUM)
2719 /* This is how to output an element of a case-vector that is absolute. */
2721 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
2722 fprintf (STREAM, "\t%s\t%sL%d\n", \
2723 ptr_mode == DImode ? ".dword" : ".word", \
2724 LOCAL_LABEL_PREFIX, \
2725 VALUE)
2727 /* This is how to output an element of a case-vector. We can make the
2728 entries PC-relative in MIPS16 code and GP-relative when .gp(d)word
2729 is supported. */
2731 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
2732 do { \
2733 if (TARGET_MIPS16_SHORT_JUMP_TABLES) \
2735 if (GET_MODE (BODY) == HImode) \
2736 fprintf (STREAM, "\t.half\t%sL%d-%sL%d\n", \
2737 LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL); \
2738 else \
2739 fprintf (STREAM, "\t.word\t%sL%d-%sL%d\n", \
2740 LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL); \
2742 else if (TARGET_GPWORD) \
2743 fprintf (STREAM, "\t%s\t%sL%d\n", \
2744 ptr_mode == DImode ? ".gpdword" : ".gpword", \
2745 LOCAL_LABEL_PREFIX, VALUE); \
2746 else if (TARGET_RTP_PIC) \
2748 /* Make the entry relative to the start of the function. */ \
2749 rtx fnsym = XEXP (DECL_RTL (current_function_decl), 0); \
2750 fprintf (STREAM, "\t%s\t%sL%d-", \
2751 Pmode == DImode ? ".dword" : ".word", \
2752 LOCAL_LABEL_PREFIX, VALUE); \
2753 assemble_name (STREAM, XSTR (fnsym, 0)); \
2754 fprintf (STREAM, "\n"); \
2756 else \
2757 fprintf (STREAM, "\t%s\t%sL%d\n", \
2758 ptr_mode == DImode ? ".dword" : ".word", \
2759 LOCAL_LABEL_PREFIX, VALUE); \
2760 } while (0)
2762 /* This is how to output an assembler line
2763 that says to advance the location counter
2764 to a multiple of 2**LOG bytes. */
2766 #define ASM_OUTPUT_ALIGN(STREAM,LOG) \
2767 fprintf (STREAM, "\t.align\t%d\n", (LOG))
2769 /* This is how to output an assembler line to advance the location
2770 counter by SIZE bytes. */
2772 #undef ASM_OUTPUT_SKIP
2773 #define ASM_OUTPUT_SKIP(STREAM,SIZE) \
2774 fprintf (STREAM, "\t.space\t"HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
2776 /* This is how to output a string. */
2777 #undef ASM_OUTPUT_ASCII
2778 #define ASM_OUTPUT_ASCII mips_output_ascii
2781 /* Default to -G 8 */
2782 #ifndef MIPS_DEFAULT_GVALUE
2783 #define MIPS_DEFAULT_GVALUE 8
2784 #endif
2786 /* Define the strings to put out for each section in the object file. */
2787 #define TEXT_SECTION_ASM_OP "\t.text" /* instructions */
2788 #define DATA_SECTION_ASM_OP "\t.data" /* large data */
2790 #undef READONLY_DATA_SECTION_ASM_OP
2791 #define READONLY_DATA_SECTION_ASM_OP "\t.rdata" /* read-only data */
2793 #define ASM_OUTPUT_REG_PUSH(STREAM,REGNO) \
2794 do \
2796 fprintf (STREAM, "\t%s\t%s,%s,-8\n\t%s\t%s,0(%s)\n", \
2797 TARGET_64BIT ? "daddiu" : "addiu", \
2798 reg_names[STACK_POINTER_REGNUM], \
2799 reg_names[STACK_POINTER_REGNUM], \
2800 TARGET_64BIT ? "sd" : "sw", \
2801 reg_names[REGNO], \
2802 reg_names[STACK_POINTER_REGNUM]); \
2804 while (0)
2806 #define ASM_OUTPUT_REG_POP(STREAM,REGNO) \
2807 do \
2809 mips_push_asm_switch (&mips_noreorder); \
2810 fprintf (STREAM, "\t%s\t%s,0(%s)\n\t%s\t%s,%s,8\n", \
2811 TARGET_64BIT ? "ld" : "lw", \
2812 reg_names[REGNO], \
2813 reg_names[STACK_POINTER_REGNUM], \
2814 TARGET_64BIT ? "daddu" : "addu", \
2815 reg_names[STACK_POINTER_REGNUM], \
2816 reg_names[STACK_POINTER_REGNUM]); \
2817 mips_pop_asm_switch (&mips_noreorder); \
2819 while (0)
2821 /* How to start an assembler comment.
2822 The leading space is important (the mips native assembler requires it). */
2823 #ifndef ASM_COMMENT_START
2824 #define ASM_COMMENT_START " #"
2825 #endif
2827 #undef SIZE_TYPE
2828 #define SIZE_TYPE (POINTER_SIZE == 64 ? "long unsigned int" : "unsigned int")
2830 #undef PTRDIFF_TYPE
2831 #define PTRDIFF_TYPE (POINTER_SIZE == 64 ? "long int" : "int")
2833 /* The maximum number of bytes that can be copied by one iteration of
2834 a movmemsi loop; see mips_block_move_loop. */
2835 #define MIPS_MAX_MOVE_BYTES_PER_LOOP_ITER \
2836 (UNITS_PER_WORD * 4)
2838 /* The maximum number of bytes that can be copied by a straight-line
2839 implementation of movmemsi; see mips_block_move_straight. We want
2840 to make sure that any loop-based implementation will iterate at
2841 least twice. */
2842 #define MIPS_MAX_MOVE_BYTES_STRAIGHT \
2843 (MIPS_MAX_MOVE_BYTES_PER_LOOP_ITER * 2)
2845 /* The base cost of a memcpy call, for MOVE_RATIO and friends. These
2846 values were determined experimentally by benchmarking with CSiBE.
2847 In theory, the call overhead is higher for TARGET_ABICALLS (especially
2848 for o32 where we have to restore $gp afterwards as well as make an
2849 indirect call), but in practice, bumping this up higher for
2850 TARGET_ABICALLS doesn't make much difference to code size. */
2852 #define MIPS_CALL_RATIO 8
2854 /* Any loop-based implementation of movmemsi will have at least
2855 MIPS_MAX_MOVE_BYTES_STRAIGHT / UNITS_PER_WORD memory-to-memory
2856 moves, so allow individual copies of fewer elements.
2858 When movmemsi is not available, use a value approximating
2859 the length of a memcpy call sequence, so that move_by_pieces
2860 will generate inline code if it is shorter than a function call.
2861 Since move_by_pieces_ninsns counts memory-to-memory moves, but
2862 we'll have to generate a load/store pair for each, halve the
2863 value of MIPS_CALL_RATIO to take that into account. */
2865 #define MOVE_RATIO(speed) \
2866 (HAVE_movmemsi \
2867 ? MIPS_MAX_MOVE_BYTES_STRAIGHT / MOVE_MAX \
2868 : MIPS_CALL_RATIO / 2)
2870 #define MOVE_BY_PIECES_P(SIZE, ALIGN) \
2871 mips_move_by_pieces_p (SIZE, ALIGN)
2873 /* For CLEAR_RATIO, when optimizing for size, give a better estimate
2874 of the length of a memset call, but use the default otherwise. */
2876 #define CLEAR_RATIO(speed)\
2877 ((speed) ? 15 : MIPS_CALL_RATIO)
2879 /* This is similar to CLEAR_RATIO, but for a non-zero constant, so when
2880 optimizing for size adjust the ratio to account for the overhead of
2881 loading the constant and replicating it across the word. */
2883 #define SET_RATIO(speed) \
2884 ((speed) ? 15 : MIPS_CALL_RATIO - 2)
2886 #define STORE_BY_PIECES_P(SIZE, ALIGN) \
2887 mips_store_by_pieces_p (SIZE, ALIGN)
2889 /* Since the bits of the _init and _fini function is spread across
2890 many object files, each potentially with its own GP, we must assume
2891 we need to load our GP. We don't preserve $gp or $ra, since each
2892 init/fini chunk is supposed to initialize $gp, and crti/crtn
2893 already take care of preserving $ra and, when appropriate, $gp. */
2894 #if (defined _ABIO32 && _MIPS_SIM == _ABIO32)
2895 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2896 asm (SECTION_OP "\n\
2897 .set push\n\
2898 .set nomips16\n\
2899 .set noreorder\n\
2900 bal 1f\n\
2901 nop\n\
2902 1: .cpload $31\n\
2903 .set reorder\n\
2904 jal " USER_LABEL_PREFIX #FUNC "\n\
2905 .set pop\n\
2906 " TEXT_SECTION_ASM_OP);
2907 #elif ((defined _ABIN32 && _MIPS_SIM == _ABIN32) \
2908 || (defined _ABI64 && _MIPS_SIM == _ABI64))
2909 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2910 asm (SECTION_OP "\n\
2911 .set push\n\
2912 .set nomips16\n\
2913 .set noreorder\n\
2914 bal 1f\n\
2915 nop\n\
2916 1: .set reorder\n\
2917 .cpsetup $31, $2, 1b\n\
2918 jal " USER_LABEL_PREFIX #FUNC "\n\
2919 .set pop\n\
2920 " TEXT_SECTION_ASM_OP);
2921 #endif
2923 #ifndef HAVE_AS_TLS
2924 #define HAVE_AS_TLS 0
2925 #endif
2927 #ifndef HAVE_AS_NAN
2928 #define HAVE_AS_NAN 0
2929 #endif
2931 #ifndef USED_FOR_TARGET
2932 /* Information about ".set noFOO; ...; .set FOO" blocks. */
2933 struct mips_asm_switch {
2934 /* The FOO in the description above. */
2935 const char *name;
2937 /* The current block nesting level, or 0 if we aren't in a block. */
2938 int nesting_level;
2941 extern const enum reg_class mips_regno_to_class[];
2942 extern bool mips_hard_regno_mode_ok[][FIRST_PSEUDO_REGISTER];
2943 extern const char *current_function_file; /* filename current function is in */
2944 extern int num_source_filenames; /* current .file # */
2945 extern struct mips_asm_switch mips_noreorder;
2946 extern struct mips_asm_switch mips_nomacro;
2947 extern struct mips_asm_switch mips_noat;
2948 extern int mips_dbx_regno[];
2949 extern int mips_dwarf_regno[];
2950 extern bool mips_split_p[];
2951 extern bool mips_split_hi_p[];
2952 extern bool mips_use_pcrel_pool_p[];
2953 extern const char *mips_lo_relocs[];
2954 extern const char *mips_hi_relocs[];
2955 extern enum processor mips_arch; /* which cpu to codegen for */
2956 extern enum processor mips_tune; /* which cpu to schedule for */
2957 extern int mips_isa; /* architectural level */
2958 extern const struct mips_cpu_info *mips_arch_info;
2959 extern const struct mips_cpu_info *mips_tune_info;
2960 extern unsigned int mips_base_compression_flags;
2961 extern GTY(()) struct target_globals *mips16_globals;
2962 #endif
2964 /* Enable querying of DFA units. */
2965 #define CPU_UNITS_QUERY 1
2967 #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
2968 mips_final_prescan_insn (INSN, OPVEC, NOPERANDS)
2970 /* As on most targets, we want the .eh_frame section to be read-only where
2971 possible. And as on most targets, this means two things:
2973 (a) Non-locally-binding pointers must have an indirect encoding,
2974 so that the addresses in the .eh_frame section itself become
2975 locally-binding.
2977 (b) A shared library's .eh_frame section must encode locally-binding
2978 pointers in a relative (relocation-free) form.
2980 However, MIPS has traditionally not allowed directives like:
2982 .long x-.
2984 in cases where "x" is in a different section, or is not defined in the
2985 same assembly file. We are therefore unable to emit the PC-relative
2986 form required by (b) at assembly time.
2988 Fortunately, the linker is able to convert absolute addresses into
2989 PC-relative addresses on our behalf. Unfortunately, only certain
2990 versions of the linker know how to do this for indirect pointers,
2991 and for personality data. We must fall back on using writable
2992 .eh_frame sections for shared libraries if the linker does not
2993 support this feature. */
2994 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
2995 (((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_absptr)
2997 /* For switching between MIPS16 and non-MIPS16 modes. */
2998 #define SWITCHABLE_TARGET 1
3000 /* Several named MIPS patterns depend on Pmode. These patterns have the
3001 form <NAME>_si for Pmode == SImode and <NAME>_di for Pmode == DImode.
3002 Add the appropriate suffix to generator function NAME and invoke it
3003 with arguments ARGS. */
3004 #define PMODE_INSN(NAME, ARGS) \
3005 (Pmode == SImode ? NAME ## _si ARGS : NAME ## _di ARGS)