Merged revisions 208012,208018-208019,208021,208023-208030,208033,208037,208040-20804...
[official-gcc.git] / main / gcc / ada / sem_res.adb
blob5a70b2d56baa870ddd989cba4df178a67804311e
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ R E S --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2014, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Checks; use Checks;
28 with Debug; use Debug;
29 with Debug_A; use Debug_A;
30 with Einfo; use Einfo;
31 with Errout; use Errout;
32 with Expander; use Expander;
33 with Exp_Disp; use Exp_Disp;
34 with Exp_Ch6; use Exp_Ch6;
35 with Exp_Ch7; use Exp_Ch7;
36 with Exp_Tss; use Exp_Tss;
37 with Exp_Util; use Exp_Util;
38 with Fname; use Fname;
39 with Freeze; use Freeze;
40 with Itypes; use Itypes;
41 with Lib; use Lib;
42 with Lib.Xref; use Lib.Xref;
43 with Namet; use Namet;
44 with Nmake; use Nmake;
45 with Nlists; use Nlists;
46 with Opt; use Opt;
47 with Output; use Output;
48 with Restrict; use Restrict;
49 with Rident; use Rident;
50 with Rtsfind; use Rtsfind;
51 with Sem; use Sem;
52 with Sem_Aux; use Sem_Aux;
53 with Sem_Aggr; use Sem_Aggr;
54 with Sem_Attr; use Sem_Attr;
55 with Sem_Cat; use Sem_Cat;
56 with Sem_Ch4; use Sem_Ch4;
57 with Sem_Ch6; use Sem_Ch6;
58 with Sem_Ch8; use Sem_Ch8;
59 with Sem_Ch13; use Sem_Ch13;
60 with Sem_Dim; use Sem_Dim;
61 with Sem_Disp; use Sem_Disp;
62 with Sem_Dist; use Sem_Dist;
63 with Sem_Elim; use Sem_Elim;
64 with Sem_Elab; use Sem_Elab;
65 with Sem_Eval; use Sem_Eval;
66 with Sem_Intr; use Sem_Intr;
67 with Sem_Util; use Sem_Util;
68 with Targparm; use Targparm;
69 with Sem_Type; use Sem_Type;
70 with Sem_Warn; use Sem_Warn;
71 with Sinfo; use Sinfo;
72 with Sinfo.CN; use Sinfo.CN;
73 with Snames; use Snames;
74 with Stand; use Stand;
75 with Stringt; use Stringt;
76 with Style; use Style;
77 with Tbuild; use Tbuild;
78 with Uintp; use Uintp;
79 with Urealp; use Urealp;
81 package body Sem_Res is
83 -----------------------
84 -- Local Subprograms --
85 -----------------------
87 -- Second pass (top-down) type checking and overload resolution procedures
88 -- Typ is the type required by context. These procedures propagate the type
89 -- information recursively to the descendants of N. If the node is not
90 -- overloaded, its Etype is established in the first pass. If overloaded,
91 -- the Resolve routines set the correct type. For arith. operators, the
92 -- Etype is the base type of the context.
94 -- Note that Resolve_Attribute is separated off in Sem_Attr
96 procedure Check_Discriminant_Use (N : Node_Id);
97 -- Enforce the restrictions on the use of discriminants when constraining
98 -- a component of a discriminated type (record or concurrent type).
100 procedure Check_For_Visible_Operator (N : Node_Id; T : Entity_Id);
101 -- Given a node for an operator associated with type T, check that
102 -- the operator is visible. Operators all of whose operands are
103 -- universal must be checked for visibility during resolution
104 -- because their type is not determinable based on their operands.
106 procedure Check_Fully_Declared_Prefix
107 (Typ : Entity_Id;
108 Pref : Node_Id);
109 -- Check that the type of the prefix of a dereference is not incomplete
111 function Check_Infinite_Recursion (N : Node_Id) return Boolean;
112 -- Given a call node, N, which is known to occur immediately within the
113 -- subprogram being called, determines whether it is a detectable case of
114 -- an infinite recursion, and if so, outputs appropriate messages. Returns
115 -- True if an infinite recursion is detected, and False otherwise.
117 procedure Check_Initialization_Call (N : Entity_Id; Nam : Entity_Id);
118 -- If the type of the object being initialized uses the secondary stack
119 -- directly or indirectly, create a transient scope for the call to the
120 -- init proc. This is because we do not create transient scopes for the
121 -- initialization of individual components within the init proc itself.
122 -- Could be optimized away perhaps?
124 procedure Check_No_Direct_Boolean_Operators (N : Node_Id);
125 -- N is the node for a logical operator. If the operator is predefined, and
126 -- the root type of the operands is Standard.Boolean, then a check is made
127 -- for restriction No_Direct_Boolean_Operators. This procedure also handles
128 -- the style check for Style_Check_Boolean_And_Or.
130 function Is_Definite_Access_Type (E : Entity_Id) return Boolean;
131 -- Determine whether E is an access type declared by an access declaration,
132 -- and not an (anonymous) allocator type.
134 function Is_Predefined_Op (Nam : Entity_Id) return Boolean;
135 -- Utility to check whether the entity for an operator is a predefined
136 -- operator, in which case the expression is left as an operator in the
137 -- tree (else it is rewritten into a call). An instance of an intrinsic
138 -- conversion operation may be given an operator name, but is not treated
139 -- like an operator. Note that an operator that is an imported back-end
140 -- builtin has convention Intrinsic, but is expected to be rewritten into
141 -- a call, so such an operator is not treated as predefined by this
142 -- predicate.
144 procedure Replace_Actual_Discriminants (N : Node_Id; Default : Node_Id);
145 -- If a default expression in entry call N depends on the discriminants
146 -- of the task, it must be replaced with a reference to the discriminant
147 -- of the task being called.
149 procedure Resolve_Op_Concat_Arg
150 (N : Node_Id;
151 Arg : Node_Id;
152 Typ : Entity_Id;
153 Is_Comp : Boolean);
154 -- Internal procedure for Resolve_Op_Concat to resolve one operand of
155 -- concatenation operator. The operand is either of the array type or of
156 -- the component type. If the operand is an aggregate, and the component
157 -- type is composite, this is ambiguous if component type has aggregates.
159 procedure Resolve_Op_Concat_First (N : Node_Id; Typ : Entity_Id);
160 -- Does the first part of the work of Resolve_Op_Concat
162 procedure Resolve_Op_Concat_Rest (N : Node_Id; Typ : Entity_Id);
163 -- Does the "rest" of the work of Resolve_Op_Concat, after the left operand
164 -- has been resolved. See Resolve_Op_Concat for details.
166 procedure Resolve_Allocator (N : Node_Id; Typ : Entity_Id);
167 procedure Resolve_Arithmetic_Op (N : Node_Id; Typ : Entity_Id);
168 procedure Resolve_Call (N : Node_Id; Typ : Entity_Id);
169 procedure Resolve_Case_Expression (N : Node_Id; Typ : Entity_Id);
170 procedure Resolve_Character_Literal (N : Node_Id; Typ : Entity_Id);
171 procedure Resolve_Comparison_Op (N : Node_Id; Typ : Entity_Id);
172 procedure Resolve_Entity_Name (N : Node_Id; Typ : Entity_Id);
173 procedure Resolve_Equality_Op (N : Node_Id; Typ : Entity_Id);
174 procedure Resolve_Explicit_Dereference (N : Node_Id; Typ : Entity_Id);
175 procedure Resolve_Expression_With_Actions (N : Node_Id; Typ : Entity_Id);
176 procedure Resolve_If_Expression (N : Node_Id; Typ : Entity_Id);
177 procedure Resolve_Generalized_Indexing (N : Node_Id; Typ : Entity_Id);
178 procedure Resolve_Indexed_Component (N : Node_Id; Typ : Entity_Id);
179 procedure Resolve_Integer_Literal (N : Node_Id; Typ : Entity_Id);
180 procedure Resolve_Logical_Op (N : Node_Id; Typ : Entity_Id);
181 procedure Resolve_Membership_Op (N : Node_Id; Typ : Entity_Id);
182 procedure Resolve_Null (N : Node_Id; Typ : Entity_Id);
183 procedure Resolve_Operator_Symbol (N : Node_Id; Typ : Entity_Id);
184 procedure Resolve_Op_Concat (N : Node_Id; Typ : Entity_Id);
185 procedure Resolve_Op_Expon (N : Node_Id; Typ : Entity_Id);
186 procedure Resolve_Op_Not (N : Node_Id; Typ : Entity_Id);
187 procedure Resolve_Qualified_Expression (N : Node_Id; Typ : Entity_Id);
188 procedure Resolve_Raise_Expression (N : Node_Id; Typ : Entity_Id);
189 procedure Resolve_Range (N : Node_Id; Typ : Entity_Id);
190 procedure Resolve_Real_Literal (N : Node_Id; Typ : Entity_Id);
191 procedure Resolve_Reference (N : Node_Id; Typ : Entity_Id);
192 procedure Resolve_Selected_Component (N : Node_Id; Typ : Entity_Id);
193 procedure Resolve_Shift (N : Node_Id; Typ : Entity_Id);
194 procedure Resolve_Short_Circuit (N : Node_Id; Typ : Entity_Id);
195 procedure Resolve_Slice (N : Node_Id; Typ : Entity_Id);
196 procedure Resolve_String_Literal (N : Node_Id; Typ : Entity_Id);
197 procedure Resolve_Type_Conversion (N : Node_Id; Typ : Entity_Id);
198 procedure Resolve_Unary_Op (N : Node_Id; Typ : Entity_Id);
199 procedure Resolve_Unchecked_Expression (N : Node_Id; Typ : Entity_Id);
200 procedure Resolve_Unchecked_Type_Conversion (N : Node_Id; Typ : Entity_Id);
202 function Operator_Kind
203 (Op_Name : Name_Id;
204 Is_Binary : Boolean) return Node_Kind;
205 -- Utility to map the name of an operator into the corresponding Node. Used
206 -- by other node rewriting procedures.
208 procedure Resolve_Actuals (N : Node_Id; Nam : Entity_Id);
209 -- Resolve actuals of call, and add default expressions for missing ones.
210 -- N is the Node_Id for the subprogram call, and Nam is the entity of the
211 -- called subprogram.
213 procedure Resolve_Entry_Call (N : Node_Id; Typ : Entity_Id);
214 -- Called from Resolve_Call, when the prefix denotes an entry or element
215 -- of entry family. Actuals are resolved as for subprograms, and the node
216 -- is rebuilt as an entry call. Also called for protected operations. Typ
217 -- is the context type, which is used when the operation is a protected
218 -- function with no arguments, and the return value is indexed.
220 procedure Resolve_Intrinsic_Operator (N : Node_Id; Typ : Entity_Id);
221 -- A call to a user-defined intrinsic operator is rewritten as a call to
222 -- the corresponding predefined operator, with suitable conversions. Note
223 -- that this applies only for intrinsic operators that denote predefined
224 -- operators, not ones that are intrinsic imports of back-end builtins.
226 procedure Resolve_Intrinsic_Unary_Operator (N : Node_Id; Typ : Entity_Id);
227 -- Ditto, for unary operators (arithmetic ones and "not" on signed
228 -- integer types for VMS).
230 procedure Rewrite_Operator_As_Call (N : Node_Id; Nam : Entity_Id);
231 -- If an operator node resolves to a call to a user-defined operator,
232 -- rewrite the node as a function call.
234 procedure Make_Call_Into_Operator
235 (N : Node_Id;
236 Typ : Entity_Id;
237 Op_Id : Entity_Id);
238 -- Inverse transformation: if an operator is given in functional notation,
239 -- then after resolving the node, transform into an operator node, so
240 -- that operands are resolved properly. Recall that predefined operators
241 -- do not have a full signature and special resolution rules apply.
243 procedure Rewrite_Renamed_Operator
244 (N : Node_Id;
245 Op : Entity_Id;
246 Typ : Entity_Id);
247 -- An operator can rename another, e.g. in an instantiation. In that
248 -- case, the proper operator node must be constructed and resolved.
250 procedure Set_String_Literal_Subtype (N : Node_Id; Typ : Entity_Id);
251 -- The String_Literal_Subtype is built for all strings that are not
252 -- operands of a static concatenation operation. If the argument is
253 -- not a N_String_Literal node, then the call has no effect.
255 procedure Set_Slice_Subtype (N : Node_Id);
256 -- Build subtype of array type, with the range specified by the slice
258 procedure Simplify_Type_Conversion (N : Node_Id);
259 -- Called after N has been resolved and evaluated, but before range checks
260 -- have been applied. Currently simplifies a combination of floating-point
261 -- to integer conversion and Truncation attribute.
263 function Unique_Fixed_Point_Type (N : Node_Id) return Entity_Id;
264 -- A universal_fixed expression in an universal context is unambiguous if
265 -- there is only one applicable fixed point type. Determining whether there
266 -- is only one requires a search over all visible entities, and happens
267 -- only in very pathological cases (see 6115-006).
269 -------------------------
270 -- Ambiguous_Character --
271 -------------------------
273 procedure Ambiguous_Character (C : Node_Id) is
274 E : Entity_Id;
276 begin
277 if Nkind (C) = N_Character_Literal then
278 Error_Msg_N ("ambiguous character literal", C);
280 -- First the ones in Standard
282 Error_Msg_N ("\\possible interpretation: Character!", C);
283 Error_Msg_N ("\\possible interpretation: Wide_Character!", C);
285 -- Include Wide_Wide_Character in Ada 2005 mode
287 if Ada_Version >= Ada_2005 then
288 Error_Msg_N ("\\possible interpretation: Wide_Wide_Character!", C);
289 end if;
291 -- Now any other types that match
293 E := Current_Entity (C);
294 while Present (E) loop
295 Error_Msg_NE ("\\possible interpretation:}!", C, Etype (E));
296 E := Homonym (E);
297 end loop;
298 end if;
299 end Ambiguous_Character;
301 -------------------------
302 -- Analyze_And_Resolve --
303 -------------------------
305 procedure Analyze_And_Resolve (N : Node_Id) is
306 begin
307 Analyze (N);
308 Resolve (N);
309 end Analyze_And_Resolve;
311 procedure Analyze_And_Resolve (N : Node_Id; Typ : Entity_Id) is
312 begin
313 Analyze (N);
314 Resolve (N, Typ);
315 end Analyze_And_Resolve;
317 -- Versions with check(s) suppressed
319 procedure Analyze_And_Resolve
320 (N : Node_Id;
321 Typ : Entity_Id;
322 Suppress : Check_Id)
324 Scop : constant Entity_Id := Current_Scope;
326 begin
327 if Suppress = All_Checks then
328 declare
329 Sva : constant Suppress_Array := Scope_Suppress.Suppress;
330 begin
331 Scope_Suppress.Suppress := (others => True);
332 Analyze_And_Resolve (N, Typ);
333 Scope_Suppress.Suppress := Sva;
334 end;
336 else
337 declare
338 Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
339 begin
340 Scope_Suppress.Suppress (Suppress) := True;
341 Analyze_And_Resolve (N, Typ);
342 Scope_Suppress.Suppress (Suppress) := Svg;
343 end;
344 end if;
346 if Current_Scope /= Scop
347 and then Scope_Is_Transient
348 then
349 -- This can only happen if a transient scope was created for an inner
350 -- expression, which will be removed upon completion of the analysis
351 -- of an enclosing construct. The transient scope must have the
352 -- suppress status of the enclosing environment, not of this Analyze
353 -- call.
355 Scope_Stack.Table (Scope_Stack.Last).Save_Scope_Suppress :=
356 Scope_Suppress;
357 end if;
358 end Analyze_And_Resolve;
360 procedure Analyze_And_Resolve
361 (N : Node_Id;
362 Suppress : Check_Id)
364 Scop : constant Entity_Id := Current_Scope;
366 begin
367 if Suppress = All_Checks then
368 declare
369 Sva : constant Suppress_Array := Scope_Suppress.Suppress;
370 begin
371 Scope_Suppress.Suppress := (others => True);
372 Analyze_And_Resolve (N);
373 Scope_Suppress.Suppress := Sva;
374 end;
376 else
377 declare
378 Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
379 begin
380 Scope_Suppress.Suppress (Suppress) := True;
381 Analyze_And_Resolve (N);
382 Scope_Suppress.Suppress (Suppress) := Svg;
383 end;
384 end if;
386 if Current_Scope /= Scop and then Scope_Is_Transient then
387 Scope_Stack.Table (Scope_Stack.Last).Save_Scope_Suppress :=
388 Scope_Suppress;
389 end if;
390 end Analyze_And_Resolve;
392 ----------------------------
393 -- Check_Discriminant_Use --
394 ----------------------------
396 procedure Check_Discriminant_Use (N : Node_Id) is
397 PN : constant Node_Id := Parent (N);
398 Disc : constant Entity_Id := Entity (N);
399 P : Node_Id;
400 D : Node_Id;
402 begin
403 -- Any use in a spec-expression is legal
405 if In_Spec_Expression then
406 null;
408 elsif Nkind (PN) = N_Range then
410 -- Discriminant cannot be used to constrain a scalar type
412 P := Parent (PN);
414 if Nkind (P) = N_Range_Constraint
415 and then Nkind (Parent (P)) = N_Subtype_Indication
416 and then Nkind (Parent (Parent (P))) = N_Component_Definition
417 then
418 Error_Msg_N ("discriminant cannot constrain scalar type", N);
420 elsif Nkind (P) = N_Index_Or_Discriminant_Constraint then
422 -- The following check catches the unusual case where a
423 -- discriminant appears within an index constraint that is part of
424 -- a larger expression within a constraint on a component, e.g. "C
425 -- : Int range 1 .. F (new A(1 .. D))". For now we only check case
426 -- of record components, and note that a similar check should also
427 -- apply in the case of discriminant constraints below. ???
429 -- Note that the check for N_Subtype_Declaration below is to
430 -- detect the valid use of discriminants in the constraints of a
431 -- subtype declaration when this subtype declaration appears
432 -- inside the scope of a record type (which is syntactically
433 -- illegal, but which may be created as part of derived type
434 -- processing for records). See Sem_Ch3.Build_Derived_Record_Type
435 -- for more info.
437 if Ekind (Current_Scope) = E_Record_Type
438 and then Scope (Disc) = Current_Scope
439 and then not
440 (Nkind (Parent (P)) = N_Subtype_Indication
441 and then
442 Nkind_In (Parent (Parent (P)), N_Component_Definition,
443 N_Subtype_Declaration)
444 and then Paren_Count (N) = 0)
445 then
446 Error_Msg_N
447 ("discriminant must appear alone in component constraint", N);
448 return;
449 end if;
451 -- Detect a common error:
453 -- type R (D : Positive := 100) is record
454 -- Name : String (1 .. D);
455 -- end record;
457 -- The default value causes an object of type R to be allocated
458 -- with room for Positive'Last characters. The RM does not mandate
459 -- the allocation of the maximum size, but that is what GNAT does
460 -- so we should warn the programmer that there is a problem.
462 Check_Large : declare
463 SI : Node_Id;
464 T : Entity_Id;
465 TB : Node_Id;
466 CB : Entity_Id;
468 function Large_Storage_Type (T : Entity_Id) return Boolean;
469 -- Return True if type T has a large enough range that any
470 -- array whose index type covered the whole range of the type
471 -- would likely raise Storage_Error.
473 ------------------------
474 -- Large_Storage_Type --
475 ------------------------
477 function Large_Storage_Type (T : Entity_Id) return Boolean is
478 begin
479 -- The type is considered large if its bounds are known at
480 -- compile time and if it requires at least as many bits as
481 -- a Positive to store the possible values.
483 return Compile_Time_Known_Value (Type_Low_Bound (T))
484 and then Compile_Time_Known_Value (Type_High_Bound (T))
485 and then
486 Minimum_Size (T, Biased => True) >=
487 RM_Size (Standard_Positive);
488 end Large_Storage_Type;
490 -- Start of processing for Check_Large
492 begin
493 -- Check that the Disc has a large range
495 if not Large_Storage_Type (Etype (Disc)) then
496 goto No_Danger;
497 end if;
499 -- If the enclosing type is limited, we allocate only the
500 -- default value, not the maximum, and there is no need for
501 -- a warning.
503 if Is_Limited_Type (Scope (Disc)) then
504 goto No_Danger;
505 end if;
507 -- Check that it is the high bound
509 if N /= High_Bound (PN)
510 or else No (Discriminant_Default_Value (Disc))
511 then
512 goto No_Danger;
513 end if;
515 -- Check the array allows a large range at this bound. First
516 -- find the array
518 SI := Parent (P);
520 if Nkind (SI) /= N_Subtype_Indication then
521 goto No_Danger;
522 end if;
524 T := Entity (Subtype_Mark (SI));
526 if not Is_Array_Type (T) then
527 goto No_Danger;
528 end if;
530 -- Next, find the dimension
532 TB := First_Index (T);
533 CB := First (Constraints (P));
534 while True
535 and then Present (TB)
536 and then Present (CB)
537 and then CB /= PN
538 loop
539 Next_Index (TB);
540 Next (CB);
541 end loop;
543 if CB /= PN then
544 goto No_Danger;
545 end if;
547 -- Now, check the dimension has a large range
549 if not Large_Storage_Type (Etype (TB)) then
550 goto No_Danger;
551 end if;
553 -- Warn about the danger
555 Error_Msg_N
556 ("??creation of & object may raise Storage_Error!",
557 Scope (Disc));
559 <<No_Danger>>
560 null;
562 end Check_Large;
563 end if;
565 -- Legal case is in index or discriminant constraint
567 elsif Nkind_In (PN, N_Index_Or_Discriminant_Constraint,
568 N_Discriminant_Association)
569 then
570 if Paren_Count (N) > 0 then
571 Error_Msg_N
572 ("discriminant in constraint must appear alone", N);
574 elsif Nkind (N) = N_Expanded_Name
575 and then Comes_From_Source (N)
576 then
577 Error_Msg_N
578 ("discriminant must appear alone as a direct name", N);
579 end if;
581 return;
583 -- Otherwise, context is an expression. It should not be within (i.e. a
584 -- subexpression of) a constraint for a component.
586 else
587 D := PN;
588 P := Parent (PN);
589 while not Nkind_In (P, N_Component_Declaration,
590 N_Subtype_Indication,
591 N_Entry_Declaration)
592 loop
593 D := P;
594 P := Parent (P);
595 exit when No (P);
596 end loop;
598 -- If the discriminant is used in an expression that is a bound of a
599 -- scalar type, an Itype is created and the bounds are attached to
600 -- its range, not to the original subtype indication. Such use is of
601 -- course a double fault.
603 if (Nkind (P) = N_Subtype_Indication
604 and then Nkind_In (Parent (P), N_Component_Definition,
605 N_Derived_Type_Definition)
606 and then D = Constraint (P))
608 -- The constraint itself may be given by a subtype indication,
609 -- rather than by a more common discrete range.
611 or else (Nkind (P) = N_Subtype_Indication
612 and then
613 Nkind (Parent (P)) = N_Index_Or_Discriminant_Constraint)
614 or else Nkind (P) = N_Entry_Declaration
615 or else Nkind (D) = N_Defining_Identifier
616 then
617 Error_Msg_N
618 ("discriminant in constraint must appear alone", N);
619 end if;
620 end if;
621 end Check_Discriminant_Use;
623 --------------------------------
624 -- Check_For_Visible_Operator --
625 --------------------------------
627 procedure Check_For_Visible_Operator (N : Node_Id; T : Entity_Id) is
628 begin
629 if Is_Invisible_Operator (N, T) then
630 Error_Msg_NE -- CODEFIX
631 ("operator for} is not directly visible!", N, First_Subtype (T));
632 Error_Msg_N -- CODEFIX
633 ("use clause would make operation legal!", N);
634 end if;
635 end Check_For_Visible_Operator;
637 ----------------------------------
638 -- Check_Fully_Declared_Prefix --
639 ----------------------------------
641 procedure Check_Fully_Declared_Prefix
642 (Typ : Entity_Id;
643 Pref : Node_Id)
645 begin
646 -- Check that the designated type of the prefix of a dereference is
647 -- not an incomplete type. This cannot be done unconditionally, because
648 -- dereferences of private types are legal in default expressions. This
649 -- case is taken care of in Check_Fully_Declared, called below. There
650 -- are also 2005 cases where it is legal for the prefix to be unfrozen.
652 -- This consideration also applies to similar checks for allocators,
653 -- qualified expressions, and type conversions.
655 -- An additional exception concerns other per-object expressions that
656 -- are not directly related to component declarations, in particular
657 -- representation pragmas for tasks. These will be per-object
658 -- expressions if they depend on discriminants or some global entity.
659 -- If the task has access discriminants, the designated type may be
660 -- incomplete at the point the expression is resolved. This resolution
661 -- takes place within the body of the initialization procedure, where
662 -- the discriminant is replaced by its discriminal.
664 if Is_Entity_Name (Pref)
665 and then Ekind (Entity (Pref)) = E_In_Parameter
666 then
667 null;
669 -- Ada 2005 (AI-326): Tagged incomplete types allowed. The wrong usages
670 -- are handled by Analyze_Access_Attribute, Analyze_Assignment,
671 -- Analyze_Object_Renaming, and Freeze_Entity.
673 elsif Ada_Version >= Ada_2005
674 and then Is_Entity_Name (Pref)
675 and then Is_Access_Type (Etype (Pref))
676 and then Ekind (Directly_Designated_Type (Etype (Pref))) =
677 E_Incomplete_Type
678 and then Is_Tagged_Type (Directly_Designated_Type (Etype (Pref)))
679 then
680 null;
681 else
682 Check_Fully_Declared (Typ, Parent (Pref));
683 end if;
684 end Check_Fully_Declared_Prefix;
686 ------------------------------
687 -- Check_Infinite_Recursion --
688 ------------------------------
690 function Check_Infinite_Recursion (N : Node_Id) return Boolean is
691 P : Node_Id;
692 C : Node_Id;
694 function Same_Argument_List return Boolean;
695 -- Check whether list of actuals is identical to list of formals of
696 -- called function (which is also the enclosing scope).
698 ------------------------
699 -- Same_Argument_List --
700 ------------------------
702 function Same_Argument_List return Boolean is
703 A : Node_Id;
704 F : Entity_Id;
705 Subp : Entity_Id;
707 begin
708 if not Is_Entity_Name (Name (N)) then
709 return False;
710 else
711 Subp := Entity (Name (N));
712 end if;
714 F := First_Formal (Subp);
715 A := First_Actual (N);
716 while Present (F) and then Present (A) loop
717 if not Is_Entity_Name (A)
718 or else Entity (A) /= F
719 then
720 return False;
721 end if;
723 Next_Actual (A);
724 Next_Formal (F);
725 end loop;
727 return True;
728 end Same_Argument_List;
730 -- Start of processing for Check_Infinite_Recursion
732 begin
733 -- Special case, if this is a procedure call and is a call to the
734 -- current procedure with the same argument list, then this is for
735 -- sure an infinite recursion and we insert a call to raise SE.
737 if Is_List_Member (N)
738 and then List_Length (List_Containing (N)) = 1
739 and then Same_Argument_List
740 then
741 declare
742 P : constant Node_Id := Parent (N);
743 begin
744 if Nkind (P) = N_Handled_Sequence_Of_Statements
745 and then Nkind (Parent (P)) = N_Subprogram_Body
746 and then Is_Empty_List (Declarations (Parent (P)))
747 then
748 Error_Msg_Warn := SPARK_Mode /= On;
749 Error_Msg_N ("!infinite recursion<<", N);
750 Error_Msg_N ("\!Storage_Error [<<", N);
751 Insert_Action (N,
752 Make_Raise_Storage_Error (Sloc (N),
753 Reason => SE_Infinite_Recursion));
754 return True;
755 end if;
756 end;
757 end if;
759 -- If not that special case, search up tree, quitting if we reach a
760 -- construct (e.g. a conditional) that tells us that this is not a
761 -- case for an infinite recursion warning.
763 C := N;
764 loop
765 P := Parent (C);
767 -- If no parent, then we were not inside a subprogram, this can for
768 -- example happen when processing certain pragmas in a spec. Just
769 -- return False in this case.
771 if No (P) then
772 return False;
773 end if;
775 -- Done if we get to subprogram body, this is definitely an infinite
776 -- recursion case if we did not find anything to stop us.
778 exit when Nkind (P) = N_Subprogram_Body;
780 -- If appearing in conditional, result is false
782 if Nkind_In (P, N_Or_Else,
783 N_And_Then,
784 N_Case_Expression,
785 N_Case_Statement,
786 N_If_Expression,
787 N_If_Statement)
788 then
789 return False;
791 elsif Nkind (P) = N_Handled_Sequence_Of_Statements
792 and then C /= First (Statements (P))
793 then
794 -- If the call is the expression of a return statement and the
795 -- actuals are identical to the formals, it's worth a warning.
796 -- However, we skip this if there is an immediately preceding
797 -- raise statement, since the call is never executed.
799 -- Furthermore, this corresponds to a common idiom:
801 -- function F (L : Thing) return Boolean is
802 -- begin
803 -- raise Program_Error;
804 -- return F (L);
805 -- end F;
807 -- for generating a stub function
809 if Nkind (Parent (N)) = N_Simple_Return_Statement
810 and then Same_Argument_List
811 then
812 exit when not Is_List_Member (Parent (N));
814 -- OK, return statement is in a statement list, look for raise
816 declare
817 Nod : Node_Id;
819 begin
820 -- Skip past N_Freeze_Entity nodes generated by expansion
822 Nod := Prev (Parent (N));
823 while Present (Nod)
824 and then Nkind (Nod) = N_Freeze_Entity
825 loop
826 Prev (Nod);
827 end loop;
829 -- If no raise statement, give warning. We look at the
830 -- original node, because in the case of "raise ... with
831 -- ...", the node has been transformed into a call.
833 exit when Nkind (Original_Node (Nod)) /= N_Raise_Statement
834 and then
835 (Nkind (Nod) not in N_Raise_xxx_Error
836 or else Present (Condition (Nod)));
837 end;
838 end if;
840 return False;
842 else
843 C := P;
844 end if;
845 end loop;
847 Error_Msg_Warn := SPARK_Mode /= On;
848 Error_Msg_N ("!possible infinite recursion<<", N);
849 Error_Msg_N ("\!??Storage_Error ]<<", N);
851 return True;
852 end Check_Infinite_Recursion;
854 -------------------------------
855 -- Check_Initialization_Call --
856 -------------------------------
858 procedure Check_Initialization_Call (N : Entity_Id; Nam : Entity_Id) is
859 Typ : constant Entity_Id := Etype (First_Formal (Nam));
861 function Uses_SS (T : Entity_Id) return Boolean;
862 -- Check whether the creation of an object of the type will involve
863 -- use of the secondary stack. If T is a record type, this is true
864 -- if the expression for some component uses the secondary stack, e.g.
865 -- through a call to a function that returns an unconstrained value.
866 -- False if T is controlled, because cleanups occur elsewhere.
868 -------------
869 -- Uses_SS --
870 -------------
872 function Uses_SS (T : Entity_Id) return Boolean is
873 Comp : Entity_Id;
874 Expr : Node_Id;
875 Full_Type : Entity_Id := Underlying_Type (T);
877 begin
878 -- Normally we want to use the underlying type, but if it's not set
879 -- then continue with T.
881 if not Present (Full_Type) then
882 Full_Type := T;
883 end if;
885 if Is_Controlled (Full_Type) then
886 return False;
888 elsif Is_Array_Type (Full_Type) then
889 return Uses_SS (Component_Type (Full_Type));
891 elsif Is_Record_Type (Full_Type) then
892 Comp := First_Component (Full_Type);
893 while Present (Comp) loop
894 if Ekind (Comp) = E_Component
895 and then Nkind (Parent (Comp)) = N_Component_Declaration
896 then
897 -- The expression for a dynamic component may be rewritten
898 -- as a dereference, so retrieve original node.
900 Expr := Original_Node (Expression (Parent (Comp)));
902 -- Return True if the expression is a call to a function
903 -- (including an attribute function such as Image, or a
904 -- user-defined operator) with a result that requires a
905 -- transient scope.
907 if (Nkind (Expr) = N_Function_Call
908 or else Nkind (Expr) in N_Op
909 or else (Nkind (Expr) = N_Attribute_Reference
910 and then Present (Expressions (Expr))))
911 and then Requires_Transient_Scope (Etype (Expr))
912 then
913 return True;
915 elsif Uses_SS (Etype (Comp)) then
916 return True;
917 end if;
918 end if;
920 Next_Component (Comp);
921 end loop;
923 return False;
925 else
926 return False;
927 end if;
928 end Uses_SS;
930 -- Start of processing for Check_Initialization_Call
932 begin
933 -- Establish a transient scope if the type needs it
935 if Uses_SS (Typ) then
936 Establish_Transient_Scope (First_Actual (N), Sec_Stack => True);
937 end if;
938 end Check_Initialization_Call;
940 ---------------------------------------
941 -- Check_No_Direct_Boolean_Operators --
942 ---------------------------------------
944 procedure Check_No_Direct_Boolean_Operators (N : Node_Id) is
945 begin
946 if Scope (Entity (N)) = Standard_Standard
947 and then Root_Type (Etype (Left_Opnd (N))) = Standard_Boolean
948 then
949 -- Restriction only applies to original source code
951 if Comes_From_Source (N) then
952 Check_Restriction (No_Direct_Boolean_Operators, N);
953 end if;
954 end if;
956 -- Do style check (but skip if in instance, error is on template)
958 if Style_Check then
959 if not In_Instance then
960 Check_Boolean_Operator (N);
961 end if;
962 end if;
963 end Check_No_Direct_Boolean_Operators;
965 ------------------------------
966 -- Check_Parameterless_Call --
967 ------------------------------
969 procedure Check_Parameterless_Call (N : Node_Id) is
970 Nam : Node_Id;
972 function Prefix_Is_Access_Subp return Boolean;
973 -- If the prefix is of an access_to_subprogram type, the node must be
974 -- rewritten as a call. Ditto if the prefix is overloaded and all its
975 -- interpretations are access to subprograms.
977 ---------------------------
978 -- Prefix_Is_Access_Subp --
979 ---------------------------
981 function Prefix_Is_Access_Subp return Boolean is
982 I : Interp_Index;
983 It : Interp;
985 begin
986 -- If the context is an attribute reference that can apply to
987 -- functions, this is never a parameterless call (RM 4.1.4(6)).
989 if Nkind (Parent (N)) = N_Attribute_Reference
990 and then Nam_In (Attribute_Name (Parent (N)), Name_Address,
991 Name_Code_Address,
992 Name_Access)
993 then
994 return False;
995 end if;
997 if not Is_Overloaded (N) then
998 return
999 Ekind (Etype (N)) = E_Subprogram_Type
1000 and then Base_Type (Etype (Etype (N))) /= Standard_Void_Type;
1001 else
1002 Get_First_Interp (N, I, It);
1003 while Present (It.Typ) loop
1004 if Ekind (It.Typ) /= E_Subprogram_Type
1005 or else Base_Type (Etype (It.Typ)) = Standard_Void_Type
1006 then
1007 return False;
1008 end if;
1010 Get_Next_Interp (I, It);
1011 end loop;
1013 return True;
1014 end if;
1015 end Prefix_Is_Access_Subp;
1017 -- Start of processing for Check_Parameterless_Call
1019 begin
1020 -- Defend against junk stuff if errors already detected
1022 if Total_Errors_Detected /= 0 then
1023 if Nkind (N) in N_Has_Etype and then Etype (N) = Any_Type then
1024 return;
1025 elsif Nkind (N) in N_Has_Chars
1026 and then Chars (N) in Error_Name_Or_No_Name
1027 then
1028 return;
1029 end if;
1031 Require_Entity (N);
1032 end if;
1034 -- If the context expects a value, and the name is a procedure, this is
1035 -- most likely a missing 'Access. Don't try to resolve the parameterless
1036 -- call, error will be caught when the outer call is analyzed.
1038 if Is_Entity_Name (N)
1039 and then Ekind (Entity (N)) = E_Procedure
1040 and then not Is_Overloaded (N)
1041 and then
1042 Nkind_In (Parent (N), N_Parameter_Association,
1043 N_Function_Call,
1044 N_Procedure_Call_Statement)
1045 then
1046 return;
1047 end if;
1049 -- Rewrite as call if overloadable entity that is (or could be, in the
1050 -- overloaded case) a function call. If we know for sure that the entity
1051 -- is an enumeration literal, we do not rewrite it.
1053 -- If the entity is the name of an operator, it cannot be a call because
1054 -- operators cannot have default parameters. In this case, this must be
1055 -- a string whose contents coincide with an operator name. Set the kind
1056 -- of the node appropriately.
1058 if (Is_Entity_Name (N)
1059 and then Nkind (N) /= N_Operator_Symbol
1060 and then Is_Overloadable (Entity (N))
1061 and then (Ekind (Entity (N)) /= E_Enumeration_Literal
1062 or else Is_Overloaded (N)))
1064 -- Rewrite as call if it is an explicit dereference of an expression of
1065 -- a subprogram access type, and the subprogram type is not that of a
1066 -- procedure or entry.
1068 or else
1069 (Nkind (N) = N_Explicit_Dereference and then Prefix_Is_Access_Subp)
1071 -- Rewrite as call if it is a selected component which is a function,
1072 -- this is the case of a call to a protected function (which may be
1073 -- overloaded with other protected operations).
1075 or else
1076 (Nkind (N) = N_Selected_Component
1077 and then (Ekind (Entity (Selector_Name (N))) = E_Function
1078 or else
1079 (Ekind_In (Entity (Selector_Name (N)), E_Entry,
1080 E_Procedure)
1081 and then Is_Overloaded (Selector_Name (N)))))
1083 -- If one of the above three conditions is met, rewrite as call. Apply
1084 -- the rewriting only once.
1086 then
1087 if Nkind (Parent (N)) /= N_Function_Call
1088 or else N /= Name (Parent (N))
1089 then
1091 -- This may be a prefixed call that was not fully analyzed, e.g.
1092 -- an actual in an instance.
1094 if Ada_Version >= Ada_2005
1095 and then Nkind (N) = N_Selected_Component
1096 and then Is_Dispatching_Operation (Entity (Selector_Name (N)))
1097 then
1098 Analyze_Selected_Component (N);
1100 if Nkind (N) /= N_Selected_Component then
1101 return;
1102 end if;
1103 end if;
1105 Nam := New_Copy (N);
1107 -- If overloaded, overload set belongs to new copy
1109 Save_Interps (N, Nam);
1111 -- Change node to parameterless function call (note that the
1112 -- Parameter_Associations associations field is left set to Empty,
1113 -- its normal default value since there are no parameters)
1115 Change_Node (N, N_Function_Call);
1116 Set_Name (N, Nam);
1117 Set_Sloc (N, Sloc (Nam));
1118 Analyze_Call (N);
1119 end if;
1121 elsif Nkind (N) = N_Parameter_Association then
1122 Check_Parameterless_Call (Explicit_Actual_Parameter (N));
1124 elsif Nkind (N) = N_Operator_Symbol then
1125 Change_Operator_Symbol_To_String_Literal (N);
1126 Set_Is_Overloaded (N, False);
1127 Set_Etype (N, Any_String);
1128 end if;
1129 end Check_Parameterless_Call;
1131 -----------------------------
1132 -- Is_Definite_Access_Type --
1133 -----------------------------
1135 function Is_Definite_Access_Type (E : Entity_Id) return Boolean is
1136 Btyp : constant Entity_Id := Base_Type (E);
1137 begin
1138 return Ekind (Btyp) = E_Access_Type
1139 or else (Ekind (Btyp) = E_Access_Subprogram_Type
1140 and then Comes_From_Source (Btyp));
1141 end Is_Definite_Access_Type;
1143 ----------------------
1144 -- Is_Predefined_Op --
1145 ----------------------
1147 function Is_Predefined_Op (Nam : Entity_Id) return Boolean is
1148 begin
1149 -- Predefined operators are intrinsic subprograms
1151 if not Is_Intrinsic_Subprogram (Nam) then
1152 return False;
1153 end if;
1155 -- A call to a back-end builtin is never a predefined operator
1157 if Is_Imported (Nam) and then Present (Interface_Name (Nam)) then
1158 return False;
1159 end if;
1161 return not Is_Generic_Instance (Nam)
1162 and then Chars (Nam) in Any_Operator_Name
1163 and then (No (Alias (Nam)) or else Is_Predefined_Op (Alias (Nam)));
1164 end Is_Predefined_Op;
1166 -----------------------------
1167 -- Make_Call_Into_Operator --
1168 -----------------------------
1170 procedure Make_Call_Into_Operator
1171 (N : Node_Id;
1172 Typ : Entity_Id;
1173 Op_Id : Entity_Id)
1175 Op_Name : constant Name_Id := Chars (Op_Id);
1176 Act1 : Node_Id := First_Actual (N);
1177 Act2 : Node_Id := Next_Actual (Act1);
1178 Error : Boolean := False;
1179 Func : constant Entity_Id := Entity (Name (N));
1180 Is_Binary : constant Boolean := Present (Act2);
1181 Op_Node : Node_Id;
1182 Opnd_Type : Entity_Id;
1183 Orig_Type : Entity_Id := Empty;
1184 Pack : Entity_Id;
1186 type Kind_Test is access function (E : Entity_Id) return Boolean;
1188 function Operand_Type_In_Scope (S : Entity_Id) return Boolean;
1189 -- If the operand is not universal, and the operator is given by an
1190 -- expanded name, verify that the operand has an interpretation with a
1191 -- type defined in the given scope of the operator.
1193 function Type_In_P (Test : Kind_Test) return Entity_Id;
1194 -- Find a type of the given class in package Pack that contains the
1195 -- operator.
1197 ---------------------------
1198 -- Operand_Type_In_Scope --
1199 ---------------------------
1201 function Operand_Type_In_Scope (S : Entity_Id) return Boolean is
1202 Nod : constant Node_Id := Right_Opnd (Op_Node);
1203 I : Interp_Index;
1204 It : Interp;
1206 begin
1207 if not Is_Overloaded (Nod) then
1208 return Scope (Base_Type (Etype (Nod))) = S;
1210 else
1211 Get_First_Interp (Nod, I, It);
1212 while Present (It.Typ) loop
1213 if Scope (Base_Type (It.Typ)) = S then
1214 return True;
1215 end if;
1217 Get_Next_Interp (I, It);
1218 end loop;
1220 return False;
1221 end if;
1222 end Operand_Type_In_Scope;
1224 ---------------
1225 -- Type_In_P --
1226 ---------------
1228 function Type_In_P (Test : Kind_Test) return Entity_Id is
1229 E : Entity_Id;
1231 function In_Decl return Boolean;
1232 -- Verify that node is not part of the type declaration for the
1233 -- candidate type, which would otherwise be invisible.
1235 -------------
1236 -- In_Decl --
1237 -------------
1239 function In_Decl return Boolean is
1240 Decl_Node : constant Node_Id := Parent (E);
1241 N2 : Node_Id;
1243 begin
1244 N2 := N;
1246 if Etype (E) = Any_Type then
1247 return True;
1249 elsif No (Decl_Node) then
1250 return False;
1252 else
1253 while Present (N2)
1254 and then Nkind (N2) /= N_Compilation_Unit
1255 loop
1256 if N2 = Decl_Node then
1257 return True;
1258 else
1259 N2 := Parent (N2);
1260 end if;
1261 end loop;
1263 return False;
1264 end if;
1265 end In_Decl;
1267 -- Start of processing for Type_In_P
1269 begin
1270 -- If the context type is declared in the prefix package, this is the
1271 -- desired base type.
1273 if Scope (Base_Type (Typ)) = Pack and then Test (Typ) then
1274 return Base_Type (Typ);
1276 else
1277 E := First_Entity (Pack);
1278 while Present (E) loop
1279 if Test (E)
1280 and then not In_Decl
1281 then
1282 return E;
1283 end if;
1285 Next_Entity (E);
1286 end loop;
1288 return Empty;
1289 end if;
1290 end Type_In_P;
1292 -- Start of processing for Make_Call_Into_Operator
1294 begin
1295 Op_Node := New_Node (Operator_Kind (Op_Name, Is_Binary), Sloc (N));
1297 -- Binary operator
1299 if Is_Binary then
1300 Set_Left_Opnd (Op_Node, Relocate_Node (Act1));
1301 Set_Right_Opnd (Op_Node, Relocate_Node (Act2));
1302 Save_Interps (Act1, Left_Opnd (Op_Node));
1303 Save_Interps (Act2, Right_Opnd (Op_Node));
1304 Act1 := Left_Opnd (Op_Node);
1305 Act2 := Right_Opnd (Op_Node);
1307 -- Unary operator
1309 else
1310 Set_Right_Opnd (Op_Node, Relocate_Node (Act1));
1311 Save_Interps (Act1, Right_Opnd (Op_Node));
1312 Act1 := Right_Opnd (Op_Node);
1313 end if;
1315 -- If the operator is denoted by an expanded name, and the prefix is
1316 -- not Standard, but the operator is a predefined one whose scope is
1317 -- Standard, then this is an implicit_operator, inserted as an
1318 -- interpretation by the procedure of the same name. This procedure
1319 -- overestimates the presence of implicit operators, because it does
1320 -- not examine the type of the operands. Verify now that the operand
1321 -- type appears in the given scope. If right operand is universal,
1322 -- check the other operand. In the case of concatenation, either
1323 -- argument can be the component type, so check the type of the result.
1324 -- If both arguments are literals, look for a type of the right kind
1325 -- defined in the given scope. This elaborate nonsense is brought to
1326 -- you courtesy of b33302a. The type itself must be frozen, so we must
1327 -- find the type of the proper class in the given scope.
1329 -- A final wrinkle is the multiplication operator for fixed point types,
1330 -- which is defined in Standard only, and not in the scope of the
1331 -- fixed point type itself.
1333 if Nkind (Name (N)) = N_Expanded_Name then
1334 Pack := Entity (Prefix (Name (N)));
1336 -- If this is a package renaming, get renamed entity, which will be
1337 -- the scope of the operands if operaton is type-correct.
1339 if Present (Renamed_Entity (Pack)) then
1340 Pack := Renamed_Entity (Pack);
1341 end if;
1343 -- If the entity being called is defined in the given package, it is
1344 -- a renaming of a predefined operator, and known to be legal.
1346 if Scope (Entity (Name (N))) = Pack
1347 and then Pack /= Standard_Standard
1348 then
1349 null;
1351 -- Visibility does not need to be checked in an instance: if the
1352 -- operator was not visible in the generic it has been diagnosed
1353 -- already, else there is an implicit copy of it in the instance.
1355 elsif In_Instance then
1356 null;
1358 elsif Nam_In (Op_Name, Name_Op_Multiply, Name_Op_Divide)
1359 and then Is_Fixed_Point_Type (Etype (Left_Opnd (Op_Node)))
1360 and then Is_Fixed_Point_Type (Etype (Right_Opnd (Op_Node)))
1361 then
1362 if Pack /= Standard_Standard then
1363 Error := True;
1364 end if;
1366 -- Ada 2005 AI-420: Predefined equality on Universal_Access is
1367 -- available.
1369 elsif Ada_Version >= Ada_2005
1370 and then Nam_In (Op_Name, Name_Op_Eq, Name_Op_Ne)
1371 and then Ekind (Etype (Act1)) = E_Anonymous_Access_Type
1372 then
1373 null;
1375 else
1376 Opnd_Type := Base_Type (Etype (Right_Opnd (Op_Node)));
1378 if Op_Name = Name_Op_Concat then
1379 Opnd_Type := Base_Type (Typ);
1381 elsif (Scope (Opnd_Type) = Standard_Standard
1382 and then Is_Binary)
1383 or else (Nkind (Right_Opnd (Op_Node)) = N_Attribute_Reference
1384 and then Is_Binary
1385 and then not Comes_From_Source (Opnd_Type))
1386 then
1387 Opnd_Type := Base_Type (Etype (Left_Opnd (Op_Node)));
1388 end if;
1390 if Scope (Opnd_Type) = Standard_Standard then
1392 -- Verify that the scope contains a type that corresponds to
1393 -- the given literal. Optimize the case where Pack is Standard.
1395 if Pack /= Standard_Standard then
1397 if Opnd_Type = Universal_Integer then
1398 Orig_Type := Type_In_P (Is_Integer_Type'Access);
1400 elsif Opnd_Type = Universal_Real then
1401 Orig_Type := Type_In_P (Is_Real_Type'Access);
1403 elsif Opnd_Type = Any_String then
1404 Orig_Type := Type_In_P (Is_String_Type'Access);
1406 elsif Opnd_Type = Any_Access then
1407 Orig_Type := Type_In_P (Is_Definite_Access_Type'Access);
1409 elsif Opnd_Type = Any_Composite then
1410 Orig_Type := Type_In_P (Is_Composite_Type'Access);
1412 if Present (Orig_Type) then
1413 if Has_Private_Component (Orig_Type) then
1414 Orig_Type := Empty;
1415 else
1416 Set_Etype (Act1, Orig_Type);
1418 if Is_Binary then
1419 Set_Etype (Act2, Orig_Type);
1420 end if;
1421 end if;
1422 end if;
1424 else
1425 Orig_Type := Empty;
1426 end if;
1428 Error := No (Orig_Type);
1429 end if;
1431 elsif Ekind (Opnd_Type) = E_Allocator_Type
1432 and then No (Type_In_P (Is_Definite_Access_Type'Access))
1433 then
1434 Error := True;
1436 -- If the type is defined elsewhere, and the operator is not
1437 -- defined in the given scope (by a renaming declaration, e.g.)
1438 -- then this is an error as well. If an extension of System is
1439 -- present, and the type may be defined there, Pack must be
1440 -- System itself.
1442 elsif Scope (Opnd_Type) /= Pack
1443 and then Scope (Op_Id) /= Pack
1444 and then (No (System_Aux_Id)
1445 or else Scope (Opnd_Type) /= System_Aux_Id
1446 or else Pack /= Scope (System_Aux_Id))
1447 then
1448 if not Is_Overloaded (Right_Opnd (Op_Node)) then
1449 Error := True;
1450 else
1451 Error := not Operand_Type_In_Scope (Pack);
1452 end if;
1454 elsif Pack = Standard_Standard
1455 and then not Operand_Type_In_Scope (Standard_Standard)
1456 then
1457 Error := True;
1458 end if;
1459 end if;
1461 if Error then
1462 Error_Msg_Node_2 := Pack;
1463 Error_Msg_NE
1464 ("& not declared in&", N, Selector_Name (Name (N)));
1465 Set_Etype (N, Any_Type);
1466 return;
1468 -- Detect a mismatch between the context type and the result type
1469 -- in the named package, which is otherwise not detected if the
1470 -- operands are universal. Check is only needed if source entity is
1471 -- an operator, not a function that renames an operator.
1473 elsif Nkind (Parent (N)) /= N_Type_Conversion
1474 and then Ekind (Entity (Name (N))) = E_Operator
1475 and then Is_Numeric_Type (Typ)
1476 and then not Is_Universal_Numeric_Type (Typ)
1477 and then Scope (Base_Type (Typ)) /= Pack
1478 and then not In_Instance
1479 then
1480 if Is_Fixed_Point_Type (Typ)
1481 and then Nam_In (Op_Name, Name_Op_Multiply, Name_Op_Divide)
1482 then
1483 -- Already checked above
1485 null;
1487 -- Operator may be defined in an extension of System
1489 elsif Present (System_Aux_Id)
1490 and then Scope (Opnd_Type) = System_Aux_Id
1491 then
1492 null;
1494 else
1495 -- Could we use Wrong_Type here??? (this would require setting
1496 -- Etype (N) to the actual type found where Typ was expected).
1498 Error_Msg_NE ("expect }", N, Typ);
1499 end if;
1500 end if;
1501 end if;
1503 Set_Chars (Op_Node, Op_Name);
1505 if not Is_Private_Type (Etype (N)) then
1506 Set_Etype (Op_Node, Base_Type (Etype (N)));
1507 else
1508 Set_Etype (Op_Node, Etype (N));
1509 end if;
1511 -- If this is a call to a function that renames a predefined equality,
1512 -- the renaming declaration provides a type that must be used to
1513 -- resolve the operands. This must be done now because resolution of
1514 -- the equality node will not resolve any remaining ambiguity, and it
1515 -- assumes that the first operand is not overloaded.
1517 if Nam_In (Op_Name, Name_Op_Eq, Name_Op_Ne)
1518 and then Ekind (Func) = E_Function
1519 and then Is_Overloaded (Act1)
1520 then
1521 Resolve (Act1, Base_Type (Etype (First_Formal (Func))));
1522 Resolve (Act2, Base_Type (Etype (First_Formal (Func))));
1523 end if;
1525 Set_Entity (Op_Node, Op_Id);
1526 Generate_Reference (Op_Id, N, ' ');
1528 -- Do rewrite setting Comes_From_Source on the result if the original
1529 -- call came from source. Although it is not strictly the case that the
1530 -- operator as such comes from the source, logically it corresponds
1531 -- exactly to the function call in the source, so it should be marked
1532 -- this way (e.g. to make sure that validity checks work fine).
1534 declare
1535 CS : constant Boolean := Comes_From_Source (N);
1536 begin
1537 Rewrite (N, Op_Node);
1538 Set_Comes_From_Source (N, CS);
1539 end;
1541 -- If this is an arithmetic operator and the result type is private,
1542 -- the operands and the result must be wrapped in conversion to
1543 -- expose the underlying numeric type and expand the proper checks,
1544 -- e.g. on division.
1546 if Is_Private_Type (Typ) then
1547 case Nkind (N) is
1548 when N_Op_Add | N_Op_Subtract | N_Op_Multiply | N_Op_Divide |
1549 N_Op_Expon | N_Op_Mod | N_Op_Rem =>
1550 Resolve_Intrinsic_Operator (N, Typ);
1552 when N_Op_Plus | N_Op_Minus | N_Op_Abs =>
1553 Resolve_Intrinsic_Unary_Operator (N, Typ);
1555 when others =>
1556 Resolve (N, Typ);
1557 end case;
1558 else
1559 Resolve (N, Typ);
1560 end if;
1562 -- If in ASIS_Mode, propagate operand types to original actuals of
1563 -- function call, which would otherwise not be fully resolved. If
1564 -- the call has already been constant-folded, nothing to do. We
1565 -- relocate the operand nodes rather than copy them, to preserve
1566 -- original_node pointers, given that the operands themselves may
1567 -- have been rewritten.
1569 if ASIS_Mode and then Nkind (N) in N_Op then
1570 if Is_Binary then
1571 Rewrite (First (Parameter_Associations (Original_Node (N))),
1572 Relocate_Node (Left_Opnd (N)));
1573 Rewrite (Next (First (Parameter_Associations (Original_Node (N)))),
1574 Relocate_Node (Right_Opnd (N)));
1575 else
1576 Rewrite (First (Parameter_Associations (Original_Node (N))),
1577 Relocate_Node (Right_Opnd (N)));
1578 end if;
1580 Set_Parent (Original_Node (N), Parent (N));
1581 end if;
1582 end Make_Call_Into_Operator;
1584 -------------------
1585 -- Operator_Kind --
1586 -------------------
1588 function Operator_Kind
1589 (Op_Name : Name_Id;
1590 Is_Binary : Boolean) return Node_Kind
1592 Kind : Node_Kind;
1594 begin
1595 -- Use CASE statement or array???
1597 if Is_Binary then
1598 if Op_Name = Name_Op_And then
1599 Kind := N_Op_And;
1600 elsif Op_Name = Name_Op_Or then
1601 Kind := N_Op_Or;
1602 elsif Op_Name = Name_Op_Xor then
1603 Kind := N_Op_Xor;
1604 elsif Op_Name = Name_Op_Eq then
1605 Kind := N_Op_Eq;
1606 elsif Op_Name = Name_Op_Ne then
1607 Kind := N_Op_Ne;
1608 elsif Op_Name = Name_Op_Lt then
1609 Kind := N_Op_Lt;
1610 elsif Op_Name = Name_Op_Le then
1611 Kind := N_Op_Le;
1612 elsif Op_Name = Name_Op_Gt then
1613 Kind := N_Op_Gt;
1614 elsif Op_Name = Name_Op_Ge then
1615 Kind := N_Op_Ge;
1616 elsif Op_Name = Name_Op_Add then
1617 Kind := N_Op_Add;
1618 elsif Op_Name = Name_Op_Subtract then
1619 Kind := N_Op_Subtract;
1620 elsif Op_Name = Name_Op_Concat then
1621 Kind := N_Op_Concat;
1622 elsif Op_Name = Name_Op_Multiply then
1623 Kind := N_Op_Multiply;
1624 elsif Op_Name = Name_Op_Divide then
1625 Kind := N_Op_Divide;
1626 elsif Op_Name = Name_Op_Mod then
1627 Kind := N_Op_Mod;
1628 elsif Op_Name = Name_Op_Rem then
1629 Kind := N_Op_Rem;
1630 elsif Op_Name = Name_Op_Expon then
1631 Kind := N_Op_Expon;
1632 else
1633 raise Program_Error;
1634 end if;
1636 -- Unary operators
1638 else
1639 if Op_Name = Name_Op_Add then
1640 Kind := N_Op_Plus;
1641 elsif Op_Name = Name_Op_Subtract then
1642 Kind := N_Op_Minus;
1643 elsif Op_Name = Name_Op_Abs then
1644 Kind := N_Op_Abs;
1645 elsif Op_Name = Name_Op_Not then
1646 Kind := N_Op_Not;
1647 else
1648 raise Program_Error;
1649 end if;
1650 end if;
1652 return Kind;
1653 end Operator_Kind;
1655 ----------------------------
1656 -- Preanalyze_And_Resolve --
1657 ----------------------------
1659 procedure Preanalyze_And_Resolve (N : Node_Id; T : Entity_Id) is
1660 Save_Full_Analysis : constant Boolean := Full_Analysis;
1662 begin
1663 Full_Analysis := False;
1664 Expander_Mode_Save_And_Set (False);
1666 -- Normally, we suppress all checks for this preanalysis. There is no
1667 -- point in processing them now, since they will be applied properly
1668 -- and in the proper location when the default expressions reanalyzed
1669 -- and reexpanded later on. We will also have more information at that
1670 -- point for possible suppression of individual checks.
1672 -- However, in SPARK mode, most expansion is suppressed, and this
1673 -- later reanalysis and reexpansion may not occur. SPARK mode does
1674 -- require the setting of checking flags for proof purposes, so we
1675 -- do the SPARK preanalysis without suppressing checks.
1677 -- This special handling for SPARK mode is required for example in the
1678 -- case of Ada 2012 constructs such as quantified expressions, which are
1679 -- expanded in two separate steps.
1681 if GNATprove_Mode then
1682 Analyze_And_Resolve (N, T);
1683 else
1684 Analyze_And_Resolve (N, T, Suppress => All_Checks);
1685 end if;
1687 Expander_Mode_Restore;
1688 Full_Analysis := Save_Full_Analysis;
1689 end Preanalyze_And_Resolve;
1691 -- Version without context type
1693 procedure Preanalyze_And_Resolve (N : Node_Id) is
1694 Save_Full_Analysis : constant Boolean := Full_Analysis;
1696 begin
1697 Full_Analysis := False;
1698 Expander_Mode_Save_And_Set (False);
1700 Analyze (N);
1701 Resolve (N, Etype (N), Suppress => All_Checks);
1703 Expander_Mode_Restore;
1704 Full_Analysis := Save_Full_Analysis;
1705 end Preanalyze_And_Resolve;
1707 ----------------------------------
1708 -- Replace_Actual_Discriminants --
1709 ----------------------------------
1711 procedure Replace_Actual_Discriminants (N : Node_Id; Default : Node_Id) is
1712 Loc : constant Source_Ptr := Sloc (N);
1713 Tsk : Node_Id := Empty;
1715 function Process_Discr (Nod : Node_Id) return Traverse_Result;
1716 -- Comment needed???
1718 -------------------
1719 -- Process_Discr --
1720 -------------------
1722 function Process_Discr (Nod : Node_Id) return Traverse_Result is
1723 Ent : Entity_Id;
1725 begin
1726 if Nkind (Nod) = N_Identifier then
1727 Ent := Entity (Nod);
1729 if Present (Ent)
1730 and then Ekind (Ent) = E_Discriminant
1731 then
1732 Rewrite (Nod,
1733 Make_Selected_Component (Loc,
1734 Prefix => New_Copy_Tree (Tsk, New_Sloc => Loc),
1735 Selector_Name => Make_Identifier (Loc, Chars (Ent))));
1737 Set_Etype (Nod, Etype (Ent));
1738 end if;
1740 end if;
1742 return OK;
1743 end Process_Discr;
1745 procedure Replace_Discrs is new Traverse_Proc (Process_Discr);
1747 -- Start of processing for Replace_Actual_Discriminants
1749 begin
1750 if not Expander_Active then
1751 return;
1752 end if;
1754 if Nkind (Name (N)) = N_Selected_Component then
1755 Tsk := Prefix (Name (N));
1757 elsif Nkind (Name (N)) = N_Indexed_Component then
1758 Tsk := Prefix (Prefix (Name (N)));
1759 end if;
1761 if No (Tsk) then
1762 return;
1763 else
1764 Replace_Discrs (Default);
1765 end if;
1766 end Replace_Actual_Discriminants;
1768 -------------
1769 -- Resolve --
1770 -------------
1772 procedure Resolve (N : Node_Id; Typ : Entity_Id) is
1773 Ambiguous : Boolean := False;
1774 Ctx_Type : Entity_Id := Typ;
1775 Expr_Type : Entity_Id := Empty; -- prevent junk warning
1776 Err_Type : Entity_Id := Empty;
1777 Found : Boolean := False;
1778 From_Lib : Boolean;
1779 I : Interp_Index;
1780 I1 : Interp_Index := 0; -- prevent junk warning
1781 It : Interp;
1782 It1 : Interp;
1783 Seen : Entity_Id := Empty; -- prevent junk warning
1785 function Comes_From_Predefined_Lib_Unit (Nod : Node_Id) return Boolean;
1786 -- Determine whether a node comes from a predefined library unit or
1787 -- Standard.
1789 procedure Patch_Up_Value (N : Node_Id; Typ : Entity_Id);
1790 -- Try and fix up a literal so that it matches its expected type. New
1791 -- literals are manufactured if necessary to avoid cascaded errors.
1793 function Proper_Current_Scope return Entity_Id;
1794 -- Return the current scope. Skip loop scopes created for the purpose of
1795 -- quantified expression analysis since those do not appear in the tree.
1797 procedure Report_Ambiguous_Argument;
1798 -- Additional diagnostics when an ambiguous call has an ambiguous
1799 -- argument (typically a controlling actual).
1801 procedure Resolution_Failed;
1802 -- Called when attempt at resolving current expression fails
1804 ------------------------------------
1805 -- Comes_From_Predefined_Lib_Unit --
1806 -------------------------------------
1808 function Comes_From_Predefined_Lib_Unit (Nod : Node_Id) return Boolean is
1809 begin
1810 return
1811 Sloc (Nod) = Standard_Location
1812 or else Is_Predefined_File_Name
1813 (Unit_File_Name (Get_Source_Unit (Sloc (Nod))));
1814 end Comes_From_Predefined_Lib_Unit;
1816 --------------------
1817 -- Patch_Up_Value --
1818 --------------------
1820 procedure Patch_Up_Value (N : Node_Id; Typ : Entity_Id) is
1821 begin
1822 if Nkind (N) = N_Integer_Literal and then Is_Real_Type (Typ) then
1823 Rewrite (N,
1824 Make_Real_Literal (Sloc (N),
1825 Realval => UR_From_Uint (Intval (N))));
1826 Set_Etype (N, Universal_Real);
1827 Set_Is_Static_Expression (N);
1829 elsif Nkind (N) = N_Real_Literal and then Is_Integer_Type (Typ) then
1830 Rewrite (N,
1831 Make_Integer_Literal (Sloc (N),
1832 Intval => UR_To_Uint (Realval (N))));
1833 Set_Etype (N, Universal_Integer);
1834 Set_Is_Static_Expression (N);
1836 elsif Nkind (N) = N_String_Literal
1837 and then Is_Character_Type (Typ)
1838 then
1839 Set_Character_Literal_Name (Char_Code (Character'Pos ('A')));
1840 Rewrite (N,
1841 Make_Character_Literal (Sloc (N),
1842 Chars => Name_Find,
1843 Char_Literal_Value =>
1844 UI_From_Int (Character'Pos ('A'))));
1845 Set_Etype (N, Any_Character);
1846 Set_Is_Static_Expression (N);
1848 elsif Nkind (N) /= N_String_Literal and then Is_String_Type (Typ) then
1849 Rewrite (N,
1850 Make_String_Literal (Sloc (N),
1851 Strval => End_String));
1853 elsif Nkind (N) = N_Range then
1854 Patch_Up_Value (Low_Bound (N), Typ);
1855 Patch_Up_Value (High_Bound (N), Typ);
1856 end if;
1857 end Patch_Up_Value;
1859 --------------------------
1860 -- Proper_Current_Scope --
1861 --------------------------
1863 function Proper_Current_Scope return Entity_Id is
1864 S : Entity_Id := Current_Scope;
1866 begin
1867 while Present (S) loop
1869 -- Skip a loop scope created for quantified expression analysis
1871 if Ekind (S) = E_Loop
1872 and then Nkind (Parent (S)) = N_Quantified_Expression
1873 then
1874 S := Scope (S);
1875 else
1876 exit;
1877 end if;
1878 end loop;
1880 return S;
1881 end Proper_Current_Scope;
1883 -------------------------------
1884 -- Report_Ambiguous_Argument --
1885 -------------------------------
1887 procedure Report_Ambiguous_Argument is
1888 Arg : constant Node_Id := First (Parameter_Associations (N));
1889 I : Interp_Index;
1890 It : Interp;
1892 begin
1893 if Nkind (Arg) = N_Function_Call
1894 and then Is_Entity_Name (Name (Arg))
1895 and then Is_Overloaded (Name (Arg))
1896 then
1897 Error_Msg_NE ("ambiguous call to&", Arg, Name (Arg));
1899 -- Could use comments on what is going on here???
1901 Get_First_Interp (Name (Arg), I, It);
1902 while Present (It.Nam) loop
1903 Error_Msg_Sloc := Sloc (It.Nam);
1905 if Nkind (Parent (It.Nam)) = N_Full_Type_Declaration then
1906 Error_Msg_N ("interpretation (inherited) #!", Arg);
1907 else
1908 Error_Msg_N ("interpretation #!", Arg);
1909 end if;
1911 Get_Next_Interp (I, It);
1912 end loop;
1913 end if;
1914 end Report_Ambiguous_Argument;
1916 -----------------------
1917 -- Resolution_Failed --
1918 -----------------------
1920 procedure Resolution_Failed is
1921 begin
1922 Patch_Up_Value (N, Typ);
1923 Set_Etype (N, Typ);
1924 Debug_A_Exit ("resolving ", N, " (done, resolution failed)");
1925 Set_Is_Overloaded (N, False);
1927 -- The caller will return without calling the expander, so we need
1928 -- to set the analyzed flag. Note that it is fine to set Analyzed
1929 -- to True even if we are in the middle of a shallow analysis,
1930 -- (see the spec of sem for more details) since this is an error
1931 -- situation anyway, and there is no point in repeating the
1932 -- analysis later (indeed it won't work to repeat it later, since
1933 -- we haven't got a clear resolution of which entity is being
1934 -- referenced.)
1936 Set_Analyzed (N, True);
1937 return;
1938 end Resolution_Failed;
1940 -- Start of processing for Resolve
1942 begin
1943 if N = Error then
1944 return;
1945 end if;
1947 -- Access attribute on remote subprogram cannot be used for a non-remote
1948 -- access-to-subprogram type.
1950 if Nkind (N) = N_Attribute_Reference
1951 and then Nam_In (Attribute_Name (N), Name_Access,
1952 Name_Unrestricted_Access,
1953 Name_Unchecked_Access)
1954 and then Comes_From_Source (N)
1955 and then Is_Entity_Name (Prefix (N))
1956 and then Is_Subprogram (Entity (Prefix (N)))
1957 and then Is_Remote_Call_Interface (Entity (Prefix (N)))
1958 and then not Is_Remote_Access_To_Subprogram_Type (Typ)
1959 then
1960 Error_Msg_N
1961 ("prefix must statically denote a non-remote subprogram", N);
1962 end if;
1964 From_Lib := Comes_From_Predefined_Lib_Unit (N);
1966 -- If the context is a Remote_Access_To_Subprogram, access attributes
1967 -- must be resolved with the corresponding fat pointer. There is no need
1968 -- to check for the attribute name since the return type of an
1969 -- attribute is never a remote type.
1971 if Nkind (N) = N_Attribute_Reference
1972 and then Comes_From_Source (N)
1973 and then (Is_Remote_Call_Interface (Typ) or else Is_Remote_Types (Typ))
1974 then
1975 declare
1976 Attr : constant Attribute_Id :=
1977 Get_Attribute_Id (Attribute_Name (N));
1978 Pref : constant Node_Id := Prefix (N);
1979 Decl : Node_Id;
1980 Spec : Node_Id;
1981 Is_Remote : Boolean := True;
1983 begin
1984 -- Check that Typ is a remote access-to-subprogram type
1986 if Is_Remote_Access_To_Subprogram_Type (Typ) then
1988 -- Prefix (N) must statically denote a remote subprogram
1989 -- declared in a package specification.
1991 if Attr = Attribute_Access or else
1992 Attr = Attribute_Unchecked_Access or else
1993 Attr = Attribute_Unrestricted_Access
1994 then
1995 Decl := Unit_Declaration_Node (Entity (Pref));
1997 if Nkind (Decl) = N_Subprogram_Body then
1998 Spec := Corresponding_Spec (Decl);
2000 if not No (Spec) then
2001 Decl := Unit_Declaration_Node (Spec);
2002 end if;
2003 end if;
2005 Spec := Parent (Decl);
2007 if not Is_Entity_Name (Prefix (N))
2008 or else Nkind (Spec) /= N_Package_Specification
2009 or else
2010 not Is_Remote_Call_Interface (Defining_Entity (Spec))
2011 then
2012 Is_Remote := False;
2013 Error_Msg_N
2014 ("prefix must statically denote a remote subprogram ",
2016 end if;
2018 -- If we are generating code in distributed mode, perform
2019 -- semantic checks against corresponding remote entities.
2021 if Expander_Active
2022 and then Get_PCS_Name /= Name_No_DSA
2023 then
2024 Check_Subtype_Conformant
2025 (New_Id => Entity (Prefix (N)),
2026 Old_Id => Designated_Type
2027 (Corresponding_Remote_Type (Typ)),
2028 Err_Loc => N);
2030 if Is_Remote then
2031 Process_Remote_AST_Attribute (N, Typ);
2032 end if;
2033 end if;
2034 end if;
2035 end if;
2036 end;
2037 end if;
2039 Debug_A_Entry ("resolving ", N);
2041 if Debug_Flag_V then
2042 Write_Overloads (N);
2043 end if;
2045 if Comes_From_Source (N) then
2046 if Is_Fixed_Point_Type (Typ) then
2047 Check_Restriction (No_Fixed_Point, N);
2049 elsif Is_Floating_Point_Type (Typ)
2050 and then Typ /= Universal_Real
2051 and then Typ /= Any_Real
2052 then
2053 Check_Restriction (No_Floating_Point, N);
2054 end if;
2055 end if;
2057 -- Return if already analyzed
2059 if Analyzed (N) then
2060 Debug_A_Exit ("resolving ", N, " (done, already analyzed)");
2061 Analyze_Dimension (N);
2062 return;
2064 -- Any case of Any_Type as the Etype value means that we had a
2065 -- previous error.
2067 elsif Etype (N) = Any_Type then
2068 Debug_A_Exit ("resolving ", N, " (done, Etype = Any_Type)");
2069 return;
2070 end if;
2072 Check_Parameterless_Call (N);
2074 -- The resolution of an Expression_With_Actions is determined by
2075 -- its Expression.
2077 if Nkind (N) = N_Expression_With_Actions then
2078 Resolve (Expression (N), Typ);
2080 Found := True;
2081 Expr_Type := Etype (Expression (N));
2083 -- If not overloaded, then we know the type, and all that needs doing
2084 -- is to check that this type is compatible with the context.
2086 elsif not Is_Overloaded (N) then
2087 Found := Covers (Typ, Etype (N));
2088 Expr_Type := Etype (N);
2090 -- In the overloaded case, we must select the interpretation that
2091 -- is compatible with the context (i.e. the type passed to Resolve)
2093 else
2094 -- Loop through possible interpretations
2096 Get_First_Interp (N, I, It);
2097 Interp_Loop : while Present (It.Typ) loop
2099 if Debug_Flag_V then
2100 Write_Str ("Interp: ");
2101 Write_Interp (It);
2102 end if;
2104 -- We are only interested in interpretations that are compatible
2105 -- with the expected type, any other interpretations are ignored.
2107 if not Covers (Typ, It.Typ) then
2108 if Debug_Flag_V then
2109 Write_Str (" interpretation incompatible with context");
2110 Write_Eol;
2111 end if;
2113 else
2114 -- Skip the current interpretation if it is disabled by an
2115 -- abstract operator. This action is performed only when the
2116 -- type against which we are resolving is the same as the
2117 -- type of the interpretation.
2119 if Ada_Version >= Ada_2005
2120 and then It.Typ = Typ
2121 and then Typ /= Universal_Integer
2122 and then Typ /= Universal_Real
2123 and then Present (It.Abstract_Op)
2124 then
2125 if Debug_Flag_V then
2126 Write_Line ("Skip.");
2127 end if;
2129 goto Continue;
2130 end if;
2132 -- First matching interpretation
2134 if not Found then
2135 Found := True;
2136 I1 := I;
2137 Seen := It.Nam;
2138 Expr_Type := It.Typ;
2140 -- Matching interpretation that is not the first, maybe an
2141 -- error, but there are some cases where preference rules are
2142 -- used to choose between the two possibilities. These and
2143 -- some more obscure cases are handled in Disambiguate.
2145 else
2146 -- If the current statement is part of a predefined library
2147 -- unit, then all interpretations which come from user level
2148 -- packages should not be considered. Check previous and
2149 -- current one.
2151 if From_Lib then
2152 if not Comes_From_Predefined_Lib_Unit (It.Nam) then
2153 goto Continue;
2155 elsif not Comes_From_Predefined_Lib_Unit (Seen) then
2157 -- Previous interpretation must be discarded
2159 I1 := I;
2160 Seen := It.Nam;
2161 Expr_Type := It.Typ;
2162 Set_Entity (N, Seen);
2163 goto Continue;
2164 end if;
2165 end if;
2167 -- Otherwise apply further disambiguation steps
2169 Error_Msg_Sloc := Sloc (Seen);
2170 It1 := Disambiguate (N, I1, I, Typ);
2172 -- Disambiguation has succeeded. Skip the remaining
2173 -- interpretations.
2175 if It1 /= No_Interp then
2176 Seen := It1.Nam;
2177 Expr_Type := It1.Typ;
2179 while Present (It.Typ) loop
2180 Get_Next_Interp (I, It);
2181 end loop;
2183 else
2184 -- Before we issue an ambiguity complaint, check for
2185 -- the case of a subprogram call where at least one
2186 -- of the arguments is Any_Type, and if so, suppress
2187 -- the message, since it is a cascaded error.
2189 if Nkind (N) in N_Subprogram_Call then
2190 declare
2191 A : Node_Id;
2192 E : Node_Id;
2194 begin
2195 A := First_Actual (N);
2196 while Present (A) loop
2197 E := A;
2199 if Nkind (E) = N_Parameter_Association then
2200 E := Explicit_Actual_Parameter (E);
2201 end if;
2203 if Etype (E) = Any_Type then
2204 if Debug_Flag_V then
2205 Write_Str ("Any_Type in call");
2206 Write_Eol;
2207 end if;
2209 exit Interp_Loop;
2210 end if;
2212 Next_Actual (A);
2213 end loop;
2214 end;
2216 elsif Nkind (N) in N_Binary_Op
2217 and then (Etype (Left_Opnd (N)) = Any_Type
2218 or else Etype (Right_Opnd (N)) = Any_Type)
2219 then
2220 exit Interp_Loop;
2222 elsif Nkind (N) in N_Unary_Op
2223 and then Etype (Right_Opnd (N)) = Any_Type
2224 then
2225 exit Interp_Loop;
2226 end if;
2228 -- Not that special case, so issue message using the
2229 -- flag Ambiguous to control printing of the header
2230 -- message only at the start of an ambiguous set.
2232 if not Ambiguous then
2233 if Nkind (N) = N_Function_Call
2234 and then Nkind (Name (N)) = N_Explicit_Dereference
2235 then
2236 Error_Msg_N
2237 ("ambiguous expression "
2238 & "(cannot resolve indirect call)!", N);
2239 else
2240 Error_Msg_NE -- CODEFIX
2241 ("ambiguous expression (cannot resolve&)!",
2242 N, It.Nam);
2243 end if;
2245 Ambiguous := True;
2247 if Nkind (Parent (Seen)) = N_Full_Type_Declaration then
2248 Error_Msg_N
2249 ("\\possible interpretation (inherited)#!", N);
2250 else
2251 Error_Msg_N -- CODEFIX
2252 ("\\possible interpretation#!", N);
2253 end if;
2255 if Nkind (N) in N_Subprogram_Call
2256 and then Present (Parameter_Associations (N))
2257 then
2258 Report_Ambiguous_Argument;
2259 end if;
2260 end if;
2262 Error_Msg_Sloc := Sloc (It.Nam);
2264 -- By default, the error message refers to the candidate
2265 -- interpretation. But if it is a predefined operator, it
2266 -- is implicitly declared at the declaration of the type
2267 -- of the operand. Recover the sloc of that declaration
2268 -- for the error message.
2270 if Nkind (N) in N_Op
2271 and then Scope (It.Nam) = Standard_Standard
2272 and then not Is_Overloaded (Right_Opnd (N))
2273 and then Scope (Base_Type (Etype (Right_Opnd (N)))) /=
2274 Standard_Standard
2275 then
2276 Err_Type := First_Subtype (Etype (Right_Opnd (N)));
2278 if Comes_From_Source (Err_Type)
2279 and then Present (Parent (Err_Type))
2280 then
2281 Error_Msg_Sloc := Sloc (Parent (Err_Type));
2282 end if;
2284 elsif Nkind (N) in N_Binary_Op
2285 and then Scope (It.Nam) = Standard_Standard
2286 and then not Is_Overloaded (Left_Opnd (N))
2287 and then Scope (Base_Type (Etype (Left_Opnd (N)))) /=
2288 Standard_Standard
2289 then
2290 Err_Type := First_Subtype (Etype (Left_Opnd (N)));
2292 if Comes_From_Source (Err_Type)
2293 and then Present (Parent (Err_Type))
2294 then
2295 Error_Msg_Sloc := Sloc (Parent (Err_Type));
2296 end if;
2298 -- If this is an indirect call, use the subprogram_type
2299 -- in the message, to have a meaningful location. Also
2300 -- indicate if this is an inherited operation, created
2301 -- by a type declaration.
2303 elsif Nkind (N) = N_Function_Call
2304 and then Nkind (Name (N)) = N_Explicit_Dereference
2305 and then Is_Type (It.Nam)
2306 then
2307 Err_Type := It.Nam;
2308 Error_Msg_Sloc :=
2309 Sloc (Associated_Node_For_Itype (Err_Type));
2310 else
2311 Err_Type := Empty;
2312 end if;
2314 if Nkind (N) in N_Op
2315 and then Scope (It.Nam) = Standard_Standard
2316 and then Present (Err_Type)
2317 then
2318 -- Special-case the message for universal_fixed
2319 -- operators, which are not declared with the type
2320 -- of the operand, but appear forever in Standard.
2322 if It.Typ = Universal_Fixed
2323 and then Scope (It.Nam) = Standard_Standard
2324 then
2325 Error_Msg_N
2326 ("\\possible interpretation as universal_fixed "
2327 & "operation (RM 4.5.5 (19))", N);
2328 else
2329 Error_Msg_N
2330 ("\\possible interpretation (predefined)#!", N);
2331 end if;
2333 elsif
2334 Nkind (Parent (It.Nam)) = N_Full_Type_Declaration
2335 then
2336 Error_Msg_N
2337 ("\\possible interpretation (inherited)#!", N);
2338 else
2339 Error_Msg_N -- CODEFIX
2340 ("\\possible interpretation#!", N);
2341 end if;
2343 end if;
2344 end if;
2346 -- We have a matching interpretation, Expr_Type is the type
2347 -- from this interpretation, and Seen is the entity.
2349 -- For an operator, just set the entity name. The type will be
2350 -- set by the specific operator resolution routine.
2352 if Nkind (N) in N_Op then
2353 Set_Entity (N, Seen);
2354 Generate_Reference (Seen, N);
2356 elsif Nkind (N) = N_Case_Expression then
2357 Set_Etype (N, Expr_Type);
2359 elsif Nkind (N) = N_Character_Literal then
2360 Set_Etype (N, Expr_Type);
2362 elsif Nkind (N) = N_If_Expression then
2363 Set_Etype (N, Expr_Type);
2365 -- AI05-0139-2: Expression is overloaded because type has
2366 -- implicit dereference. If type matches context, no implicit
2367 -- dereference is involved.
2369 elsif Has_Implicit_Dereference (Expr_Type) then
2370 Set_Etype (N, Expr_Type);
2371 Set_Is_Overloaded (N, False);
2372 exit Interp_Loop;
2374 elsif Is_Overloaded (N)
2375 and then Present (It.Nam)
2376 and then Ekind (It.Nam) = E_Discriminant
2377 and then Has_Implicit_Dereference (It.Nam)
2378 then
2379 -- If the node is a general indexing, the dereference is
2380 -- is inserted when resolving the rewritten form, else
2381 -- insert it now.
2383 if Nkind (N) /= N_Indexed_Component
2384 or else No (Generalized_Indexing (N))
2385 then
2386 Build_Explicit_Dereference (N, It.Nam);
2387 end if;
2389 -- For an explicit dereference, attribute reference, range,
2390 -- short-circuit form (which is not an operator node), or call
2391 -- with a name that is an explicit dereference, there is
2392 -- nothing to be done at this point.
2394 elsif Nkind_In (N, N_Explicit_Dereference,
2395 N_Attribute_Reference,
2396 N_And_Then,
2397 N_Indexed_Component,
2398 N_Or_Else,
2399 N_Range,
2400 N_Selected_Component,
2401 N_Slice)
2402 or else Nkind (Name (N)) = N_Explicit_Dereference
2403 then
2404 null;
2406 -- For procedure or function calls, set the type of the name,
2407 -- and also the entity pointer for the prefix.
2409 elsif Nkind (N) in N_Subprogram_Call
2410 and then Is_Entity_Name (Name (N))
2411 then
2412 Set_Etype (Name (N), Expr_Type);
2413 Set_Entity (Name (N), Seen);
2414 Generate_Reference (Seen, Name (N));
2416 elsif Nkind (N) = N_Function_Call
2417 and then Nkind (Name (N)) = N_Selected_Component
2418 then
2419 Set_Etype (Name (N), Expr_Type);
2420 Set_Entity (Selector_Name (Name (N)), Seen);
2421 Generate_Reference (Seen, Selector_Name (Name (N)));
2423 -- For all other cases, just set the type of the Name
2425 else
2426 Set_Etype (Name (N), Expr_Type);
2427 end if;
2429 end if;
2431 <<Continue>>
2433 -- Move to next interpretation
2435 exit Interp_Loop when No (It.Typ);
2437 Get_Next_Interp (I, It);
2438 end loop Interp_Loop;
2439 end if;
2441 -- At this stage Found indicates whether or not an acceptable
2442 -- interpretation exists. If not, then we have an error, except that if
2443 -- the context is Any_Type as a result of some other error, then we
2444 -- suppress the error report.
2446 if not Found then
2447 if Typ /= Any_Type then
2449 -- If type we are looking for is Void, then this is the procedure
2450 -- call case, and the error is simply that what we gave is not a
2451 -- procedure name (we think of procedure calls as expressions with
2452 -- types internally, but the user doesn't think of them this way).
2454 if Typ = Standard_Void_Type then
2456 -- Special case message if function used as a procedure
2458 if Nkind (N) = N_Procedure_Call_Statement
2459 and then Is_Entity_Name (Name (N))
2460 and then Ekind (Entity (Name (N))) = E_Function
2461 then
2462 Error_Msg_NE
2463 ("cannot use function & in a procedure call",
2464 Name (N), Entity (Name (N)));
2466 -- Otherwise give general message (not clear what cases this
2467 -- covers, but no harm in providing for them).
2469 else
2470 Error_Msg_N ("expect procedure name in procedure call", N);
2471 end if;
2473 Found := True;
2475 -- Otherwise we do have a subexpression with the wrong type
2477 -- Check for the case of an allocator which uses an access type
2478 -- instead of the designated type. This is a common error and we
2479 -- specialize the message, posting an error on the operand of the
2480 -- allocator, complaining that we expected the designated type of
2481 -- the allocator.
2483 elsif Nkind (N) = N_Allocator
2484 and then Ekind (Typ) in Access_Kind
2485 and then Ekind (Etype (N)) in Access_Kind
2486 and then Designated_Type (Etype (N)) = Typ
2487 then
2488 Wrong_Type (Expression (N), Designated_Type (Typ));
2489 Found := True;
2491 -- Check for view mismatch on Null in instances, for which the
2492 -- view-swapping mechanism has no identifier.
2494 elsif (In_Instance or else In_Inlined_Body)
2495 and then (Nkind (N) = N_Null)
2496 and then Is_Private_Type (Typ)
2497 and then Is_Access_Type (Full_View (Typ))
2498 then
2499 Resolve (N, Full_View (Typ));
2500 Set_Etype (N, Typ);
2501 return;
2503 -- Check for an aggregate. Sometimes we can get bogus aggregates
2504 -- from misuse of parentheses, and we are about to complain about
2505 -- the aggregate without even looking inside it.
2507 -- Instead, if we have an aggregate of type Any_Composite, then
2508 -- analyze and resolve the component fields, and then only issue
2509 -- another message if we get no errors doing this (otherwise
2510 -- assume that the errors in the aggregate caused the problem).
2512 elsif Nkind (N) = N_Aggregate
2513 and then Etype (N) = Any_Composite
2514 then
2515 -- Disable expansion in any case. If there is a type mismatch
2516 -- it may be fatal to try to expand the aggregate. The flag
2517 -- would otherwise be set to false when the error is posted.
2519 Expander_Active := False;
2521 declare
2522 procedure Check_Aggr (Aggr : Node_Id);
2523 -- Check one aggregate, and set Found to True if we have a
2524 -- definite error in any of its elements
2526 procedure Check_Elmt (Aelmt : Node_Id);
2527 -- Check one element of aggregate and set Found to True if
2528 -- we definitely have an error in the element.
2530 ----------------
2531 -- Check_Aggr --
2532 ----------------
2534 procedure Check_Aggr (Aggr : Node_Id) is
2535 Elmt : Node_Id;
2537 begin
2538 if Present (Expressions (Aggr)) then
2539 Elmt := First (Expressions (Aggr));
2540 while Present (Elmt) loop
2541 Check_Elmt (Elmt);
2542 Next (Elmt);
2543 end loop;
2544 end if;
2546 if Present (Component_Associations (Aggr)) then
2547 Elmt := First (Component_Associations (Aggr));
2548 while Present (Elmt) loop
2550 -- If this is a default-initialized component, then
2551 -- there is nothing to check. The box will be
2552 -- replaced by the appropriate call during late
2553 -- expansion.
2555 if not Box_Present (Elmt) then
2556 Check_Elmt (Expression (Elmt));
2557 end if;
2559 Next (Elmt);
2560 end loop;
2561 end if;
2562 end Check_Aggr;
2564 ----------------
2565 -- Check_Elmt --
2566 ----------------
2568 procedure Check_Elmt (Aelmt : Node_Id) is
2569 begin
2570 -- If we have a nested aggregate, go inside it (to
2571 -- attempt a naked analyze-resolve of the aggregate can
2572 -- cause undesirable cascaded errors). Do not resolve
2573 -- expression if it needs a type from context, as for
2574 -- integer * fixed expression.
2576 if Nkind (Aelmt) = N_Aggregate then
2577 Check_Aggr (Aelmt);
2579 else
2580 Analyze (Aelmt);
2582 if not Is_Overloaded (Aelmt)
2583 and then Etype (Aelmt) /= Any_Fixed
2584 then
2585 Resolve (Aelmt);
2586 end if;
2588 if Etype (Aelmt) = Any_Type then
2589 Found := True;
2590 end if;
2591 end if;
2592 end Check_Elmt;
2594 begin
2595 Check_Aggr (N);
2596 end;
2597 end if;
2599 -- Looks like we have a type error, but check for special case
2600 -- of Address wanted, integer found, with the configuration pragma
2601 -- Allow_Integer_Address active. If we have this case, introduce
2602 -- an unchecked conversion to allow the integer expression to be
2603 -- treated as an Address. The reverse case of integer wanted,
2604 -- Address found, is treated in an analogous manner.
2606 if Address_Integer_Convert_OK (Typ, Etype (N)) then
2607 Rewrite (N, Unchecked_Convert_To (Typ, Relocate_Node (N)));
2608 Analyze_And_Resolve (N, Typ);
2609 return;
2610 end if;
2612 -- That special Allow_Integer_Address check did not appply, so we
2613 -- have a real type error. If an error message was issued already,
2614 -- Found got reset to True, so if it's still False, issue standard
2615 -- Wrong_Type message.
2617 if not Found then
2618 if Is_Overloaded (N) and then Nkind (N) = N_Function_Call then
2619 declare
2620 Subp_Name : Node_Id;
2622 begin
2623 if Is_Entity_Name (Name (N)) then
2624 Subp_Name := Name (N);
2626 elsif Nkind (Name (N)) = N_Selected_Component then
2628 -- Protected operation: retrieve operation name
2630 Subp_Name := Selector_Name (Name (N));
2632 else
2633 raise Program_Error;
2634 end if;
2636 Error_Msg_Node_2 := Typ;
2637 Error_Msg_NE
2638 ("no visible interpretation of& "
2639 & "matches expected type&", N, Subp_Name);
2640 end;
2642 if All_Errors_Mode then
2643 declare
2644 Index : Interp_Index;
2645 It : Interp;
2647 begin
2648 Error_Msg_N ("\\possible interpretations:", N);
2650 Get_First_Interp (Name (N), Index, It);
2651 while Present (It.Nam) loop
2652 Error_Msg_Sloc := Sloc (It.Nam);
2653 Error_Msg_Node_2 := It.Nam;
2654 Error_Msg_NE
2655 ("\\ type& for & declared#", N, It.Typ);
2656 Get_Next_Interp (Index, It);
2657 end loop;
2658 end;
2660 else
2661 Error_Msg_N ("\use -gnatf for details", N);
2662 end if;
2664 else
2665 Wrong_Type (N, Typ);
2666 end if;
2667 end if;
2668 end if;
2670 Resolution_Failed;
2671 return;
2673 -- Test if we have more than one interpretation for the context
2675 elsif Ambiguous then
2676 Resolution_Failed;
2677 return;
2679 -- Only one intepretation
2681 else
2682 -- In Ada 2005, if we have something like "X : T := 2 + 2;", where
2683 -- the "+" on T is abstract, and the operands are of universal type,
2684 -- the above code will have (incorrectly) resolved the "+" to the
2685 -- universal one in Standard. Therefore check for this case and give
2686 -- an error. We can't do this earlier, because it would cause legal
2687 -- cases to get errors (when some other type has an abstract "+").
2689 if Ada_Version >= Ada_2005
2690 and then Nkind (N) in N_Op
2691 and then Is_Overloaded (N)
2692 and then Is_Universal_Numeric_Type (Etype (Entity (N)))
2693 then
2694 Get_First_Interp (N, I, It);
2695 while Present (It.Typ) loop
2696 if Present (It.Abstract_Op) and then
2697 Etype (It.Abstract_Op) = Typ
2698 then
2699 Error_Msg_NE
2700 ("cannot call abstract subprogram &!", N, It.Abstract_Op);
2701 return;
2702 end if;
2704 Get_Next_Interp (I, It);
2705 end loop;
2706 end if;
2708 -- Here we have an acceptable interpretation for the context
2710 -- Propagate type information and normalize tree for various
2711 -- predefined operations. If the context only imposes a class of
2712 -- types, rather than a specific type, propagate the actual type
2713 -- downward.
2715 if Typ = Any_Integer or else
2716 Typ = Any_Boolean or else
2717 Typ = Any_Modular or else
2718 Typ = Any_Real or else
2719 Typ = Any_Discrete
2720 then
2721 Ctx_Type := Expr_Type;
2723 -- Any_Fixed is legal in a real context only if a specific fixed-
2724 -- point type is imposed. If Norman Cohen can be confused by this,
2725 -- it deserves a separate message.
2727 if Typ = Any_Real
2728 and then Expr_Type = Any_Fixed
2729 then
2730 Error_Msg_N ("illegal context for mixed mode operation", N);
2731 Set_Etype (N, Universal_Real);
2732 Ctx_Type := Universal_Real;
2733 end if;
2734 end if;
2736 -- A user-defined operator is transformed into a function call at
2737 -- this point, so that further processing knows that operators are
2738 -- really operators (i.e. are predefined operators). User-defined
2739 -- operators that are intrinsic are just renamings of the predefined
2740 -- ones, and need not be turned into calls either, but if they rename
2741 -- a different operator, we must transform the node accordingly.
2742 -- Instantiations of Unchecked_Conversion are intrinsic but are
2743 -- treated as functions, even if given an operator designator.
2745 if Nkind (N) in N_Op
2746 and then Present (Entity (N))
2747 and then Ekind (Entity (N)) /= E_Operator
2748 then
2750 if not Is_Predefined_Op (Entity (N)) then
2751 Rewrite_Operator_As_Call (N, Entity (N));
2753 elsif Present (Alias (Entity (N)))
2754 and then
2755 Nkind (Parent (Parent (Entity (N)))) =
2756 N_Subprogram_Renaming_Declaration
2757 then
2758 Rewrite_Renamed_Operator (N, Alias (Entity (N)), Typ);
2760 -- If the node is rewritten, it will be fully resolved in
2761 -- Rewrite_Renamed_Operator.
2763 if Analyzed (N) then
2764 return;
2765 end if;
2766 end if;
2767 end if;
2769 case N_Subexpr'(Nkind (N)) is
2771 when N_Aggregate => Resolve_Aggregate (N, Ctx_Type);
2773 when N_Allocator => Resolve_Allocator (N, Ctx_Type);
2775 when N_Short_Circuit
2776 => Resolve_Short_Circuit (N, Ctx_Type);
2778 when N_Attribute_Reference
2779 => Resolve_Attribute (N, Ctx_Type);
2781 when N_Case_Expression
2782 => Resolve_Case_Expression (N, Ctx_Type);
2784 when N_Character_Literal
2785 => Resolve_Character_Literal (N, Ctx_Type);
2787 when N_Expanded_Name
2788 => Resolve_Entity_Name (N, Ctx_Type);
2790 when N_Explicit_Dereference
2791 => Resolve_Explicit_Dereference (N, Ctx_Type);
2793 when N_Expression_With_Actions
2794 => Resolve_Expression_With_Actions (N, Ctx_Type);
2796 when N_Extension_Aggregate
2797 => Resolve_Extension_Aggregate (N, Ctx_Type);
2799 when N_Function_Call
2800 => Resolve_Call (N, Ctx_Type);
2802 when N_Identifier
2803 => Resolve_Entity_Name (N, Ctx_Type);
2805 when N_If_Expression
2806 => Resolve_If_Expression (N, Ctx_Type);
2808 when N_Indexed_Component
2809 => Resolve_Indexed_Component (N, Ctx_Type);
2811 when N_Integer_Literal
2812 => Resolve_Integer_Literal (N, Ctx_Type);
2814 when N_Membership_Test
2815 => Resolve_Membership_Op (N, Ctx_Type);
2817 when N_Null => Resolve_Null (N, Ctx_Type);
2819 when N_Op_And | N_Op_Or | N_Op_Xor
2820 => Resolve_Logical_Op (N, Ctx_Type);
2822 when N_Op_Eq | N_Op_Ne
2823 => Resolve_Equality_Op (N, Ctx_Type);
2825 when N_Op_Lt | N_Op_Le | N_Op_Gt | N_Op_Ge
2826 => Resolve_Comparison_Op (N, Ctx_Type);
2828 when N_Op_Not => Resolve_Op_Not (N, Ctx_Type);
2830 when N_Op_Add | N_Op_Subtract | N_Op_Multiply |
2831 N_Op_Divide | N_Op_Mod | N_Op_Rem
2833 => Resolve_Arithmetic_Op (N, Ctx_Type);
2835 when N_Op_Concat => Resolve_Op_Concat (N, Ctx_Type);
2837 when N_Op_Expon => Resolve_Op_Expon (N, Ctx_Type);
2839 when N_Op_Plus | N_Op_Minus | N_Op_Abs
2840 => Resolve_Unary_Op (N, Ctx_Type);
2842 when N_Op_Shift => Resolve_Shift (N, Ctx_Type);
2844 when N_Procedure_Call_Statement
2845 => Resolve_Call (N, Ctx_Type);
2847 when N_Operator_Symbol
2848 => Resolve_Operator_Symbol (N, Ctx_Type);
2850 when N_Qualified_Expression
2851 => Resolve_Qualified_Expression (N, Ctx_Type);
2853 -- Why is the following null, needs a comment ???
2855 when N_Quantified_Expression
2856 => null;
2858 when N_Raise_Expression
2859 => Resolve_Raise_Expression (N, Ctx_Type);
2861 when N_Raise_xxx_Error
2862 => Set_Etype (N, Ctx_Type);
2864 when N_Range => Resolve_Range (N, Ctx_Type);
2866 when N_Real_Literal
2867 => Resolve_Real_Literal (N, Ctx_Type);
2869 when N_Reference => Resolve_Reference (N, Ctx_Type);
2871 when N_Selected_Component
2872 => Resolve_Selected_Component (N, Ctx_Type);
2874 when N_Slice => Resolve_Slice (N, Ctx_Type);
2876 when N_String_Literal
2877 => Resolve_String_Literal (N, Ctx_Type);
2879 when N_Type_Conversion
2880 => Resolve_Type_Conversion (N, Ctx_Type);
2882 when N_Unchecked_Expression =>
2883 Resolve_Unchecked_Expression (N, Ctx_Type);
2885 when N_Unchecked_Type_Conversion =>
2886 Resolve_Unchecked_Type_Conversion (N, Ctx_Type);
2887 end case;
2889 -- Ada 2012 (AI05-0149): Apply an (implicit) conversion to an
2890 -- expression of an anonymous access type that occurs in the context
2891 -- of a named general access type, except when the expression is that
2892 -- of a membership test. This ensures proper legality checking in
2893 -- terms of allowed conversions (expressions that would be illegal to
2894 -- convert implicitly are allowed in membership tests).
2896 if Ada_Version >= Ada_2012
2897 and then Ekind (Ctx_Type) = E_General_Access_Type
2898 and then Ekind (Etype (N)) = E_Anonymous_Access_Type
2899 and then Nkind (Parent (N)) not in N_Membership_Test
2900 then
2901 Rewrite (N, Convert_To (Ctx_Type, Relocate_Node (N)));
2902 Analyze_And_Resolve (N, Ctx_Type);
2903 end if;
2905 -- If the subexpression was replaced by a non-subexpression, then
2906 -- all we do is to expand it. The only legitimate case we know of
2907 -- is converting procedure call statement to entry call statements,
2908 -- but there may be others, so we are making this test general.
2910 if Nkind (N) not in N_Subexpr then
2911 Debug_A_Exit ("resolving ", N, " (done)");
2912 Expand (N);
2913 return;
2914 end if;
2916 -- The expression is definitely NOT overloaded at this point, so
2917 -- we reset the Is_Overloaded flag to avoid any confusion when
2918 -- reanalyzing the node.
2920 Set_Is_Overloaded (N, False);
2922 -- Freeze expression type, entity if it is a name, and designated
2923 -- type if it is an allocator (RM 13.14(10,11,13)).
2925 -- Now that the resolution of the type of the node is complete, and
2926 -- we did not detect an error, we can expand this node. We skip the
2927 -- expand call if we are in a default expression, see section
2928 -- "Handling of Default Expressions" in Sem spec.
2930 Debug_A_Exit ("resolving ", N, " (done)");
2932 -- We unconditionally freeze the expression, even if we are in
2933 -- default expression mode (the Freeze_Expression routine tests this
2934 -- flag and only freezes static types if it is set).
2936 -- Ada 2012 (AI05-177): Expression functions do not freeze. Only
2937 -- their use (in an expanded call) freezes.
2939 if Ekind (Proper_Current_Scope) /= E_Function
2940 or else Nkind (Original_Node (Unit_Declaration_Node
2941 (Proper_Current_Scope))) /= N_Expression_Function
2942 then
2943 Freeze_Expression (N);
2944 end if;
2946 -- Now we can do the expansion
2948 Expand (N);
2949 end if;
2950 end Resolve;
2952 -------------
2953 -- Resolve --
2954 -------------
2956 -- Version with check(s) suppressed
2958 procedure Resolve (N : Node_Id; Typ : Entity_Id; Suppress : Check_Id) is
2959 begin
2960 if Suppress = All_Checks then
2961 declare
2962 Sva : constant Suppress_Array := Scope_Suppress.Suppress;
2963 begin
2964 Scope_Suppress.Suppress := (others => True);
2965 Resolve (N, Typ);
2966 Scope_Suppress.Suppress := Sva;
2967 end;
2969 else
2970 declare
2971 Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
2972 begin
2973 Scope_Suppress.Suppress (Suppress) := True;
2974 Resolve (N, Typ);
2975 Scope_Suppress.Suppress (Suppress) := Svg;
2976 end;
2977 end if;
2978 end Resolve;
2980 -------------
2981 -- Resolve --
2982 -------------
2984 -- Version with implicit type
2986 procedure Resolve (N : Node_Id) is
2987 begin
2988 Resolve (N, Etype (N));
2989 end Resolve;
2991 ---------------------
2992 -- Resolve_Actuals --
2993 ---------------------
2995 procedure Resolve_Actuals (N : Node_Id; Nam : Entity_Id) is
2996 Loc : constant Source_Ptr := Sloc (N);
2997 A : Node_Id;
2998 A_Id : Entity_Id;
2999 A_Typ : Entity_Id;
3000 F : Entity_Id;
3001 F_Typ : Entity_Id;
3002 Prev : Node_Id := Empty;
3003 Orig_A : Node_Id;
3005 procedure Check_Argument_Order;
3006 -- Performs a check for the case where the actuals are all simple
3007 -- identifiers that correspond to the formal names, but in the wrong
3008 -- order, which is considered suspicious and cause for a warning.
3010 procedure Check_Prefixed_Call;
3011 -- If the original node is an overloaded call in prefix notation,
3012 -- insert an 'Access or a dereference as needed over the first actual.
3013 -- Try_Object_Operation has already verified that there is a valid
3014 -- interpretation, but the form of the actual can only be determined
3015 -- once the primitive operation is identified.
3017 procedure Insert_Default;
3018 -- If the actual is missing in a call, insert in the actuals list
3019 -- an instance of the default expression. The insertion is always
3020 -- a named association.
3022 procedure Property_Error
3023 (Var : Node_Id;
3024 Var_Id : Entity_Id;
3025 Prop_Nam : Name_Id);
3026 -- Emit an error concerning variable Var with entity Var_Id that has
3027 -- enabled property Prop_Nam when it acts as an actual parameter in a
3028 -- call and the corresponding formal parameter is of mode IN.
3030 function Same_Ancestor (T1, T2 : Entity_Id) return Boolean;
3031 -- Check whether T1 and T2, or their full views, are derived from a
3032 -- common type. Used to enforce the restrictions on array conversions
3033 -- of AI95-00246.
3035 function Static_Concatenation (N : Node_Id) return Boolean;
3036 -- Predicate to determine whether an actual that is a concatenation
3037 -- will be evaluated statically and does not need a transient scope.
3038 -- This must be determined before the actual is resolved and expanded
3039 -- because if needed the transient scope must be introduced earlier.
3041 --------------------------
3042 -- Check_Argument_Order --
3043 --------------------------
3045 procedure Check_Argument_Order is
3046 begin
3047 -- Nothing to do if no parameters, or original node is neither a
3048 -- function call nor a procedure call statement (happens in the
3049 -- operator-transformed-to-function call case), or the call does
3050 -- not come from source, or this warning is off.
3052 if not Warn_On_Parameter_Order
3053 or else No (Parameter_Associations (N))
3054 or else Nkind (Original_Node (N)) not in N_Subprogram_Call
3055 or else not Comes_From_Source (N)
3056 then
3057 return;
3058 end if;
3060 declare
3061 Nargs : constant Nat := List_Length (Parameter_Associations (N));
3063 begin
3064 -- Nothing to do if only one parameter
3066 if Nargs < 2 then
3067 return;
3068 end if;
3070 -- Here if at least two arguments
3072 declare
3073 Actuals : array (1 .. Nargs) of Node_Id;
3074 Actual : Node_Id;
3075 Formal : Node_Id;
3077 Wrong_Order : Boolean := False;
3078 -- Set True if an out of order case is found
3080 begin
3081 -- Collect identifier names of actuals, fail if any actual is
3082 -- not a simple identifier, and record max length of name.
3084 Actual := First (Parameter_Associations (N));
3085 for J in Actuals'Range loop
3086 if Nkind (Actual) /= N_Identifier then
3087 return;
3088 else
3089 Actuals (J) := Actual;
3090 Next (Actual);
3091 end if;
3092 end loop;
3094 -- If we got this far, all actuals are identifiers and the list
3095 -- of their names is stored in the Actuals array.
3097 Formal := First_Formal (Nam);
3098 for J in Actuals'Range loop
3100 -- If we ran out of formals, that's odd, probably an error
3101 -- which will be detected elsewhere, but abandon the search.
3103 if No (Formal) then
3104 return;
3105 end if;
3107 -- If name matches and is in order OK
3109 if Chars (Formal) = Chars (Actuals (J)) then
3110 null;
3112 else
3113 -- If no match, see if it is elsewhere in list and if so
3114 -- flag potential wrong order if type is compatible.
3116 for K in Actuals'Range loop
3117 if Chars (Formal) = Chars (Actuals (K))
3118 and then
3119 Has_Compatible_Type (Actuals (K), Etype (Formal))
3120 then
3121 Wrong_Order := True;
3122 goto Continue;
3123 end if;
3124 end loop;
3126 -- No match
3128 return;
3129 end if;
3131 <<Continue>> Next_Formal (Formal);
3132 end loop;
3134 -- If Formals left over, also probably an error, skip warning
3136 if Present (Formal) then
3137 return;
3138 end if;
3140 -- Here we give the warning if something was out of order
3142 if Wrong_Order then
3143 Error_Msg_N
3144 ("?P?actuals for this call may be in wrong order", N);
3145 end if;
3146 end;
3147 end;
3148 end Check_Argument_Order;
3150 -------------------------
3151 -- Check_Prefixed_Call --
3152 -------------------------
3154 procedure Check_Prefixed_Call is
3155 Act : constant Node_Id := First_Actual (N);
3156 A_Type : constant Entity_Id := Etype (Act);
3157 F_Type : constant Entity_Id := Etype (First_Formal (Nam));
3158 Orig : constant Node_Id := Original_Node (N);
3159 New_A : Node_Id;
3161 begin
3162 -- Check whether the call is a prefixed call, with or without
3163 -- additional actuals.
3165 if Nkind (Orig) = N_Selected_Component
3166 or else
3167 (Nkind (Orig) = N_Indexed_Component
3168 and then Nkind (Prefix (Orig)) = N_Selected_Component
3169 and then Is_Entity_Name (Prefix (Prefix (Orig)))
3170 and then Is_Entity_Name (Act)
3171 and then Chars (Act) = Chars (Prefix (Prefix (Orig))))
3172 then
3173 if Is_Access_Type (A_Type)
3174 and then not Is_Access_Type (F_Type)
3175 then
3176 -- Introduce dereference on object in prefix
3178 New_A :=
3179 Make_Explicit_Dereference (Sloc (Act),
3180 Prefix => Relocate_Node (Act));
3181 Rewrite (Act, New_A);
3182 Analyze (Act);
3184 elsif Is_Access_Type (F_Type)
3185 and then not Is_Access_Type (A_Type)
3186 then
3187 -- Introduce an implicit 'Access in prefix
3189 if not Is_Aliased_View (Act) then
3190 Error_Msg_NE
3191 ("object in prefixed call to& must be aliased"
3192 & " (RM-2005 4.3.1 (13))",
3193 Prefix (Act), Nam);
3194 end if;
3196 Rewrite (Act,
3197 Make_Attribute_Reference (Loc,
3198 Attribute_Name => Name_Access,
3199 Prefix => Relocate_Node (Act)));
3200 end if;
3202 Analyze (Act);
3203 end if;
3204 end Check_Prefixed_Call;
3206 --------------------
3207 -- Insert_Default --
3208 --------------------
3210 procedure Insert_Default is
3211 Actval : Node_Id;
3212 Assoc : Node_Id;
3214 begin
3215 -- Missing argument in call, nothing to insert
3217 if No (Default_Value (F)) then
3218 return;
3220 else
3221 -- Note that we do a full New_Copy_Tree, so that any associated
3222 -- Itypes are properly copied. This may not be needed any more,
3223 -- but it does no harm as a safety measure. Defaults of a generic
3224 -- formal may be out of bounds of the corresponding actual (see
3225 -- cc1311b) and an additional check may be required.
3227 Actval :=
3228 New_Copy_Tree
3229 (Default_Value (F),
3230 New_Scope => Current_Scope,
3231 New_Sloc => Loc);
3233 if Is_Concurrent_Type (Scope (Nam))
3234 and then Has_Discriminants (Scope (Nam))
3235 then
3236 Replace_Actual_Discriminants (N, Actval);
3237 end if;
3239 if Is_Overloadable (Nam)
3240 and then Present (Alias (Nam))
3241 then
3242 if Base_Type (Etype (F)) /= Base_Type (Etype (Actval))
3243 and then not Is_Tagged_Type (Etype (F))
3244 then
3245 -- If default is a real literal, do not introduce a
3246 -- conversion whose effect may depend on the run-time
3247 -- size of universal real.
3249 if Nkind (Actval) = N_Real_Literal then
3250 Set_Etype (Actval, Base_Type (Etype (F)));
3251 else
3252 Actval := Unchecked_Convert_To (Etype (F), Actval);
3253 end if;
3254 end if;
3256 if Is_Scalar_Type (Etype (F)) then
3257 Enable_Range_Check (Actval);
3258 end if;
3260 Set_Parent (Actval, N);
3262 -- Resolve aggregates with their base type, to avoid scope
3263 -- anomalies: the subtype was first built in the subprogram
3264 -- declaration, and the current call may be nested.
3266 if Nkind (Actval) = N_Aggregate then
3267 Analyze_And_Resolve (Actval, Etype (F));
3268 else
3269 Analyze_And_Resolve (Actval, Etype (Actval));
3270 end if;
3272 else
3273 Set_Parent (Actval, N);
3275 -- See note above concerning aggregates
3277 if Nkind (Actval) = N_Aggregate
3278 and then Has_Discriminants (Etype (Actval))
3279 then
3280 Analyze_And_Resolve (Actval, Base_Type (Etype (Actval)));
3282 -- Resolve entities with their own type, which may differ from
3283 -- the type of a reference in a generic context (the view
3284 -- swapping mechanism did not anticipate the re-analysis of
3285 -- default values in calls).
3287 elsif Is_Entity_Name (Actval) then
3288 Analyze_And_Resolve (Actval, Etype (Entity (Actval)));
3290 else
3291 Analyze_And_Resolve (Actval, Etype (Actval));
3292 end if;
3293 end if;
3295 -- If default is a tag indeterminate function call, propagate tag
3296 -- to obtain proper dispatching.
3298 if Is_Controlling_Formal (F)
3299 and then Nkind (Default_Value (F)) = N_Function_Call
3300 then
3301 Set_Is_Controlling_Actual (Actval);
3302 end if;
3304 end if;
3306 -- If the default expression raises constraint error, then just
3307 -- silently replace it with an N_Raise_Constraint_Error node, since
3308 -- we already gave the warning on the subprogram spec. If node is
3309 -- already a Raise_Constraint_Error leave as is, to prevent loops in
3310 -- the warnings removal machinery.
3312 if Raises_Constraint_Error (Actval)
3313 and then Nkind (Actval) /= N_Raise_Constraint_Error
3314 then
3315 Rewrite (Actval,
3316 Make_Raise_Constraint_Error (Loc,
3317 Reason => CE_Range_Check_Failed));
3318 Set_Raises_Constraint_Error (Actval);
3319 Set_Etype (Actval, Etype (F));
3320 end if;
3322 Assoc :=
3323 Make_Parameter_Association (Loc,
3324 Explicit_Actual_Parameter => Actval,
3325 Selector_Name => Make_Identifier (Loc, Chars (F)));
3327 -- Case of insertion is first named actual
3329 if No (Prev) or else
3330 Nkind (Parent (Prev)) /= N_Parameter_Association
3331 then
3332 Set_Next_Named_Actual (Assoc, First_Named_Actual (N));
3333 Set_First_Named_Actual (N, Actval);
3335 if No (Prev) then
3336 if No (Parameter_Associations (N)) then
3337 Set_Parameter_Associations (N, New_List (Assoc));
3338 else
3339 Append (Assoc, Parameter_Associations (N));
3340 end if;
3342 else
3343 Insert_After (Prev, Assoc);
3344 end if;
3346 -- Case of insertion is not first named actual
3348 else
3349 Set_Next_Named_Actual
3350 (Assoc, Next_Named_Actual (Parent (Prev)));
3351 Set_Next_Named_Actual (Parent (Prev), Actval);
3352 Append (Assoc, Parameter_Associations (N));
3353 end if;
3355 Mark_Rewrite_Insertion (Assoc);
3356 Mark_Rewrite_Insertion (Actval);
3358 Prev := Actval;
3359 end Insert_Default;
3361 --------------------
3362 -- Property_Error --
3363 --------------------
3365 procedure Property_Error
3366 (Var : Node_Id;
3367 Var_Id : Entity_Id;
3368 Prop_Nam : Name_Id)
3370 begin
3371 Error_Msg_Name_1 := Prop_Nam;
3372 Error_Msg_NE
3373 ("external variable & with enabled property % cannot appear as "
3374 & "actual in procedure call (SPARK RM 7.1.3(11))", Var, Var_Id);
3375 Error_Msg_N ("\\corresponding formal parameter has mode In", Var);
3376 end Property_Error;
3378 -------------------
3379 -- Same_Ancestor --
3380 -------------------
3382 function Same_Ancestor (T1, T2 : Entity_Id) return Boolean is
3383 FT1 : Entity_Id := T1;
3384 FT2 : Entity_Id := T2;
3386 begin
3387 if Is_Private_Type (T1)
3388 and then Present (Full_View (T1))
3389 then
3390 FT1 := Full_View (T1);
3391 end if;
3393 if Is_Private_Type (T2)
3394 and then Present (Full_View (T2))
3395 then
3396 FT2 := Full_View (T2);
3397 end if;
3399 return Root_Type (Base_Type (FT1)) = Root_Type (Base_Type (FT2));
3400 end Same_Ancestor;
3402 --------------------------
3403 -- Static_Concatenation --
3404 --------------------------
3406 function Static_Concatenation (N : Node_Id) return Boolean is
3407 begin
3408 case Nkind (N) is
3409 when N_String_Literal =>
3410 return True;
3412 when N_Op_Concat =>
3414 -- Concatenation is static when both operands are static and
3415 -- the concatenation operator is a predefined one.
3417 return Scope (Entity (N)) = Standard_Standard
3418 and then
3419 Static_Concatenation (Left_Opnd (N))
3420 and then
3421 Static_Concatenation (Right_Opnd (N));
3423 when others =>
3424 if Is_Entity_Name (N) then
3425 declare
3426 Ent : constant Entity_Id := Entity (N);
3427 begin
3428 return Ekind (Ent) = E_Constant
3429 and then Present (Constant_Value (Ent))
3430 and then
3431 Is_Static_Expression (Constant_Value (Ent));
3432 end;
3434 else
3435 return False;
3436 end if;
3437 end case;
3438 end Static_Concatenation;
3440 -- Start of processing for Resolve_Actuals
3442 begin
3443 Check_Argument_Order;
3444 Check_Function_Writable_Actuals (N);
3446 if Present (First_Actual (N)) then
3447 Check_Prefixed_Call;
3448 end if;
3450 A := First_Actual (N);
3451 F := First_Formal (Nam);
3452 while Present (F) loop
3453 if No (A) and then Needs_No_Actuals (Nam) then
3454 null;
3456 -- If we have an error in any actual or formal, indicated by a type
3457 -- of Any_Type, then abandon resolution attempt, and set result type
3458 -- to Any_Type. Skip this if the actual is a Raise_Expression, whose
3459 -- type is imposed from context.
3461 elsif (Present (A) and then Etype (A) = Any_Type)
3462 or else Etype (F) = Any_Type
3463 then
3464 if Nkind (A) /= N_Raise_Expression then
3465 Set_Etype (N, Any_Type);
3466 return;
3467 end if;
3468 end if;
3470 -- Case where actual is present
3472 -- If the actual is an entity, generate a reference to it now. We
3473 -- do this before the actual is resolved, because a formal of some
3474 -- protected subprogram, or a task discriminant, will be rewritten
3475 -- during expansion, and the source entity reference may be lost.
3477 if Present (A)
3478 and then Is_Entity_Name (A)
3479 and then Comes_From_Source (N)
3480 then
3481 Orig_A := Entity (A);
3483 if Present (Orig_A) then
3484 if Is_Formal (Orig_A)
3485 and then Ekind (F) /= E_In_Parameter
3486 then
3487 Generate_Reference (Orig_A, A, 'm');
3489 elsif not Is_Overloaded (A) then
3490 if Ekind (F) /= E_Out_Parameter then
3491 Generate_Reference (Orig_A, A);
3493 -- RM 6.4.1(12): For an out parameter that is passed by
3494 -- copy, the formal parameter object is created, and:
3496 -- * For an access type, the formal parameter is initialized
3497 -- from the value of the actual, without checking that the
3498 -- value satisfies any constraint, any predicate, or any
3499 -- exclusion of the null value.
3501 -- * For a scalar type that has the Default_Value aspect
3502 -- specified, the formal parameter is initialized from the
3503 -- value of the actual, without checking that the value
3504 -- satisfies any constraint or any predicate.
3505 -- I do not understand why this case is included??? this is
3506 -- not a case where an OUT parameter is treated as IN OUT.
3508 -- * For a composite type with discriminants or that has
3509 -- implicit initial values for any subcomponents, the
3510 -- behavior is as for an in out parameter passed by copy.
3512 -- Hence for these cases we generate the read reference now
3513 -- (the write reference will be generated later by
3514 -- Note_Possible_Modification).
3516 elsif Is_By_Copy_Type (Etype (F))
3517 and then
3518 (Is_Access_Type (Etype (F))
3519 or else
3520 (Is_Scalar_Type (Etype (F))
3521 and then
3522 Present (Default_Aspect_Value (Etype (F))))
3523 or else
3524 (Is_Composite_Type (Etype (F))
3525 and then (Has_Discriminants (Etype (F))
3526 or else Is_Partially_Initialized_Type
3527 (Etype (F)))))
3528 then
3529 Generate_Reference (Orig_A, A);
3530 end if;
3531 end if;
3532 end if;
3533 end if;
3535 if Present (A)
3536 and then (Nkind (Parent (A)) /= N_Parameter_Association
3537 or else Chars (Selector_Name (Parent (A))) = Chars (F))
3538 then
3539 -- If style checking mode on, check match of formal name
3541 if Style_Check then
3542 if Nkind (Parent (A)) = N_Parameter_Association then
3543 Check_Identifier (Selector_Name (Parent (A)), F);
3544 end if;
3545 end if;
3547 -- If the formal is Out or In_Out, do not resolve and expand the
3548 -- conversion, because it is subsequently expanded into explicit
3549 -- temporaries and assignments. However, the object of the
3550 -- conversion can be resolved. An exception is the case of tagged
3551 -- type conversion with a class-wide actual. In that case we want
3552 -- the tag check to occur and no temporary will be needed (no
3553 -- representation change can occur) and the parameter is passed by
3554 -- reference, so we go ahead and resolve the type conversion.
3555 -- Another exception is the case of reference to component or
3556 -- subcomponent of a bit-packed array, in which case we want to
3557 -- defer expansion to the point the in and out assignments are
3558 -- performed.
3560 if Ekind (F) /= E_In_Parameter
3561 and then Nkind (A) = N_Type_Conversion
3562 and then not Is_Class_Wide_Type (Etype (Expression (A)))
3563 then
3564 if Ekind (F) = E_In_Out_Parameter
3565 and then Is_Array_Type (Etype (F))
3566 then
3567 -- In a view conversion, the conversion must be legal in
3568 -- both directions, and thus both component types must be
3569 -- aliased, or neither (4.6 (8)).
3571 -- The extra rule in 4.6 (24.9.2) seems unduly restrictive:
3572 -- the privacy requirement should not apply to generic
3573 -- types, and should be checked in an instance. ARG query
3574 -- is in order ???
3576 if Has_Aliased_Components (Etype (Expression (A))) /=
3577 Has_Aliased_Components (Etype (F))
3578 then
3579 Error_Msg_N
3580 ("both component types in a view conversion must be"
3581 & " aliased, or neither", A);
3583 -- Comment here??? what set of cases???
3585 elsif
3586 not Same_Ancestor (Etype (F), Etype (Expression (A)))
3587 then
3588 -- Check view conv between unrelated by ref array types
3590 if Is_By_Reference_Type (Etype (F))
3591 or else Is_By_Reference_Type (Etype (Expression (A)))
3592 then
3593 Error_Msg_N
3594 ("view conversion between unrelated by reference "
3595 & "array types not allowed (\'A'I-00246)", A);
3597 -- In Ada 2005 mode, check view conversion component
3598 -- type cannot be private, tagged, or volatile. Note
3599 -- that we only apply this to source conversions. The
3600 -- generated code can contain conversions which are
3601 -- not subject to this test, and we cannot extract the
3602 -- component type in such cases since it is not present.
3604 elsif Comes_From_Source (A)
3605 and then Ada_Version >= Ada_2005
3606 then
3607 declare
3608 Comp_Type : constant Entity_Id :=
3609 Component_Type
3610 (Etype (Expression (A)));
3611 begin
3612 if (Is_Private_Type (Comp_Type)
3613 and then not Is_Generic_Type (Comp_Type))
3614 or else Is_Tagged_Type (Comp_Type)
3615 or else Is_Volatile (Comp_Type)
3616 then
3617 Error_Msg_N
3618 ("component type of a view conversion cannot"
3619 & " be private, tagged, or volatile"
3620 & " (RM 4.6 (24))",
3621 Expression (A));
3622 end if;
3623 end;
3624 end if;
3625 end if;
3626 end if;
3628 -- Resolve expression if conversion is all OK
3630 if (Conversion_OK (A)
3631 or else Valid_Conversion (A, Etype (A), Expression (A)))
3632 and then not Is_Ref_To_Bit_Packed_Array (Expression (A))
3633 then
3634 Resolve (Expression (A));
3635 end if;
3637 -- If the actual is a function call that returns a limited
3638 -- unconstrained object that needs finalization, create a
3639 -- transient scope for it, so that it can receive the proper
3640 -- finalization list.
3642 elsif Nkind (A) = N_Function_Call
3643 and then Is_Limited_Record (Etype (F))
3644 and then not Is_Constrained (Etype (F))
3645 and then Expander_Active
3646 and then (Is_Controlled (Etype (F)) or else Has_Task (Etype (F)))
3647 then
3648 Establish_Transient_Scope (A, Sec_Stack => False);
3649 Resolve (A, Etype (F));
3651 -- A small optimization: if one of the actuals is a concatenation
3652 -- create a block around a procedure call to recover stack space.
3653 -- This alleviates stack usage when several procedure calls in
3654 -- the same statement list use concatenation. We do not perform
3655 -- this wrapping for code statements, where the argument is a
3656 -- static string, and we want to preserve warnings involving
3657 -- sequences of such statements.
3659 elsif Nkind (A) = N_Op_Concat
3660 and then Nkind (N) = N_Procedure_Call_Statement
3661 and then Expander_Active
3662 and then
3663 not (Is_Intrinsic_Subprogram (Nam)
3664 and then Chars (Nam) = Name_Asm)
3665 and then not Static_Concatenation (A)
3666 then
3667 Establish_Transient_Scope (A, Sec_Stack => False);
3668 Resolve (A, Etype (F));
3670 else
3671 if Nkind (A) = N_Type_Conversion
3672 and then Is_Array_Type (Etype (F))
3673 and then not Same_Ancestor (Etype (F), Etype (Expression (A)))
3674 and then
3675 (Is_Limited_Type (Etype (F))
3676 or else Is_Limited_Type (Etype (Expression (A))))
3677 then
3678 Error_Msg_N
3679 ("conversion between unrelated limited array types "
3680 & "not allowed ('A'I-00246)", A);
3682 if Is_Limited_Type (Etype (F)) then
3683 Explain_Limited_Type (Etype (F), A);
3684 end if;
3686 if Is_Limited_Type (Etype (Expression (A))) then
3687 Explain_Limited_Type (Etype (Expression (A)), A);
3688 end if;
3689 end if;
3691 -- (Ada 2005: AI-251): If the actual is an allocator whose
3692 -- directly designated type is a class-wide interface, we build
3693 -- an anonymous access type to use it as the type of the
3694 -- allocator. Later, when the subprogram call is expanded, if
3695 -- the interface has a secondary dispatch table the expander
3696 -- will add a type conversion to force the correct displacement
3697 -- of the pointer.
3699 if Nkind (A) = N_Allocator then
3700 declare
3701 DDT : constant Entity_Id :=
3702 Directly_Designated_Type (Base_Type (Etype (F)));
3704 New_Itype : Entity_Id;
3706 begin
3707 if Is_Class_Wide_Type (DDT)
3708 and then Is_Interface (DDT)
3709 then
3710 New_Itype := Create_Itype (E_Anonymous_Access_Type, A);
3711 Set_Etype (New_Itype, Etype (A));
3712 Set_Directly_Designated_Type
3713 (New_Itype, Directly_Designated_Type (Etype (A)));
3714 Set_Etype (A, New_Itype);
3715 end if;
3717 -- Ada 2005, AI-162:If the actual is an allocator, the
3718 -- innermost enclosing statement is the master of the
3719 -- created object. This needs to be done with expansion
3720 -- enabled only, otherwise the transient scope will not
3721 -- be removed in the expansion of the wrapped construct.
3723 if (Is_Controlled (DDT) or else Has_Task (DDT))
3724 and then Expander_Active
3725 then
3726 Establish_Transient_Scope (A, Sec_Stack => False);
3727 end if;
3728 end;
3730 if Ekind (Etype (F)) = E_Anonymous_Access_Type then
3731 Check_Restriction (No_Access_Parameter_Allocators, A);
3732 end if;
3733 end if;
3735 -- (Ada 2005): The call may be to a primitive operation of a
3736 -- tagged synchronized type, declared outside of the type. In
3737 -- this case the controlling actual must be converted to its
3738 -- corresponding record type, which is the formal type. The
3739 -- actual may be a subtype, either because of a constraint or
3740 -- because it is a generic actual, so use base type to locate
3741 -- concurrent type.
3743 F_Typ := Base_Type (Etype (F));
3745 if Is_Tagged_Type (F_Typ)
3746 and then (Is_Concurrent_Type (F_Typ)
3747 or else Is_Concurrent_Record_Type (F_Typ))
3748 then
3749 -- If the actual is overloaded, look for an interpretation
3750 -- that has a synchronized type.
3752 if not Is_Overloaded (A) then
3753 A_Typ := Base_Type (Etype (A));
3755 else
3756 declare
3757 Index : Interp_Index;
3758 It : Interp;
3760 begin
3761 Get_First_Interp (A, Index, It);
3762 while Present (It.Typ) loop
3763 if Is_Concurrent_Type (It.Typ)
3764 or else Is_Concurrent_Record_Type (It.Typ)
3765 then
3766 A_Typ := Base_Type (It.Typ);
3767 exit;
3768 end if;
3770 Get_Next_Interp (Index, It);
3771 end loop;
3772 end;
3773 end if;
3775 declare
3776 Full_A_Typ : Entity_Id;
3778 begin
3779 if Present (Full_View (A_Typ)) then
3780 Full_A_Typ := Base_Type (Full_View (A_Typ));
3781 else
3782 Full_A_Typ := A_Typ;
3783 end if;
3785 -- Tagged synchronized type (case 1): the actual is a
3786 -- concurrent type.
3788 if Is_Concurrent_Type (A_Typ)
3789 and then Corresponding_Record_Type (A_Typ) = F_Typ
3790 then
3791 Rewrite (A,
3792 Unchecked_Convert_To
3793 (Corresponding_Record_Type (A_Typ), A));
3794 Resolve (A, Etype (F));
3796 -- Tagged synchronized type (case 2): the formal is a
3797 -- concurrent type.
3799 elsif Ekind (Full_A_Typ) = E_Record_Type
3800 and then Present
3801 (Corresponding_Concurrent_Type (Full_A_Typ))
3802 and then Is_Concurrent_Type (F_Typ)
3803 and then Present (Corresponding_Record_Type (F_Typ))
3804 and then Full_A_Typ = Corresponding_Record_Type (F_Typ)
3805 then
3806 Resolve (A, Corresponding_Record_Type (F_Typ));
3808 -- Common case
3810 else
3811 Resolve (A, Etype (F));
3812 end if;
3813 end;
3815 -- Not a synchronized operation
3817 else
3818 Resolve (A, Etype (F));
3819 end if;
3820 end if;
3822 A_Typ := Etype (A);
3823 F_Typ := Etype (F);
3825 if Comes_From_Source (Original_Node (N))
3826 and then Nkind_In (Original_Node (N), N_Function_Call,
3827 N_Procedure_Call_Statement)
3828 then
3829 -- In formal mode, check that actual parameters matching
3830 -- formals of tagged types are objects (or ancestor type
3831 -- conversions of objects), not general expressions.
3833 if Is_Actual_Tagged_Parameter (A) then
3834 if Is_SPARK_Object_Reference (A) then
3835 null;
3837 elsif Nkind (A) = N_Type_Conversion then
3838 declare
3839 Operand : constant Node_Id := Expression (A);
3840 Operand_Typ : constant Entity_Id := Etype (Operand);
3841 Target_Typ : constant Entity_Id := A_Typ;
3843 begin
3844 if not Is_SPARK_Object_Reference (Operand) then
3845 Check_SPARK_Restriction
3846 ("object required", Operand);
3848 -- In formal mode, the only view conversions are those
3849 -- involving ancestor conversion of an extended type.
3851 elsif not
3852 (Is_Tagged_Type (Target_Typ)
3853 and then not Is_Class_Wide_Type (Target_Typ)
3854 and then Is_Tagged_Type (Operand_Typ)
3855 and then not Is_Class_Wide_Type (Operand_Typ)
3856 and then Is_Ancestor (Target_Typ, Operand_Typ))
3857 then
3858 if Ekind_In
3859 (F, E_Out_Parameter, E_In_Out_Parameter)
3860 then
3861 Check_SPARK_Restriction
3862 ("ancestor conversion is the only permitted "
3863 & "view conversion", A);
3864 else
3865 Check_SPARK_Restriction
3866 ("ancestor conversion required", A);
3867 end if;
3869 else
3870 null;
3871 end if;
3872 end;
3874 else
3875 Check_SPARK_Restriction ("object required", A);
3876 end if;
3878 -- In formal mode, the only view conversions are those
3879 -- involving ancestor conversion of an extended type.
3881 elsif Nkind (A) = N_Type_Conversion
3882 and then Ekind_In (F, E_Out_Parameter, E_In_Out_Parameter)
3883 then
3884 Check_SPARK_Restriction
3885 ("ancestor conversion is the only permitted view "
3886 & "conversion", A);
3887 end if;
3888 end if;
3890 -- has warnings suppressed, then we reset Never_Set_In_Source for
3891 -- the calling entity. The reason for this is to catch cases like
3892 -- GNAT.Spitbol.Patterns.Vstring_Var where the called subprogram
3893 -- uses trickery to modify an IN parameter.
3895 if Ekind (F) = E_In_Parameter
3896 and then Is_Entity_Name (A)
3897 and then Present (Entity (A))
3898 and then Ekind (Entity (A)) = E_Variable
3899 and then Has_Warnings_Off (F_Typ)
3900 then
3901 Set_Never_Set_In_Source (Entity (A), False);
3902 end if;
3904 -- Perform error checks for IN and IN OUT parameters
3906 if Ekind (F) /= E_Out_Parameter then
3908 -- Check unset reference. For scalar parameters, it is clearly
3909 -- wrong to pass an uninitialized value as either an IN or
3910 -- IN-OUT parameter. For composites, it is also clearly an
3911 -- error to pass a completely uninitialized value as an IN
3912 -- parameter, but the case of IN OUT is trickier. We prefer
3913 -- not to give a warning here. For example, suppose there is
3914 -- a routine that sets some component of a record to False.
3915 -- It is perfectly reasonable to make this IN-OUT and allow
3916 -- either initialized or uninitialized records to be passed
3917 -- in this case.
3919 -- For partially initialized composite values, we also avoid
3920 -- warnings, since it is quite likely that we are passing a
3921 -- partially initialized value and only the initialized fields
3922 -- will in fact be read in the subprogram.
3924 if Is_Scalar_Type (A_Typ)
3925 or else (Ekind (F) = E_In_Parameter
3926 and then not Is_Partially_Initialized_Type (A_Typ))
3927 then
3928 Check_Unset_Reference (A);
3929 end if;
3931 -- In Ada 83 we cannot pass an OUT parameter as an IN or IN OUT
3932 -- actual to a nested call, since this is case of reading an
3933 -- out parameter, which is not allowed.
3935 if Ada_Version = Ada_83
3936 and then Is_Entity_Name (A)
3937 and then Ekind (Entity (A)) = E_Out_Parameter
3938 then
3939 Error_Msg_N ("(Ada 83) illegal reading of out parameter", A);
3940 end if;
3941 end if;
3943 -- Case of OUT or IN OUT parameter
3945 if Ekind (F) /= E_In_Parameter then
3947 -- For an Out parameter, check for useless assignment. Note
3948 -- that we can't set Last_Assignment this early, because we may
3949 -- kill current values in Resolve_Call, and that call would
3950 -- clobber the Last_Assignment field.
3952 -- Note: call Warn_On_Useless_Assignment before doing the check
3953 -- below for Is_OK_Variable_For_Out_Formal so that the setting
3954 -- of Referenced_As_LHS/Referenced_As_Out_Formal properly
3955 -- reflects the last assignment, not this one.
3957 if Ekind (F) = E_Out_Parameter then
3958 if Warn_On_Modified_As_Out_Parameter (F)
3959 and then Is_Entity_Name (A)
3960 and then Present (Entity (A))
3961 and then Comes_From_Source (N)
3962 then
3963 Warn_On_Useless_Assignment (Entity (A), A);
3964 end if;
3965 end if;
3967 -- Validate the form of the actual. Note that the call to
3968 -- Is_OK_Variable_For_Out_Formal generates the required
3969 -- reference in this case.
3971 -- A call to an initialization procedure for an aggregate
3972 -- component may initialize a nested component of a constant
3973 -- designated object. In this context the object is variable.
3975 if not Is_OK_Variable_For_Out_Formal (A)
3976 and then not Is_Init_Proc (Nam)
3977 then
3978 Error_Msg_NE ("actual for& must be a variable", A, F);
3980 if Is_Subprogram (Current_Scope)
3981 and then
3982 (Is_Invariant_Procedure (Current_Scope)
3983 or else Is_Predicate_Function (Current_Scope))
3984 then
3985 Error_Msg_N
3986 ("function used in predicate cannot "
3987 & "modify its argument", F);
3988 end if;
3989 end if;
3991 -- What's the following about???
3993 if Is_Entity_Name (A) then
3994 Kill_Checks (Entity (A));
3995 else
3996 Kill_All_Checks;
3997 end if;
3998 end if;
4000 if Etype (A) = Any_Type then
4001 Set_Etype (N, Any_Type);
4002 return;
4003 end if;
4005 -- Apply appropriate range checks for in, out, and in-out
4006 -- parameters. Out and in-out parameters also need a separate
4007 -- check, if there is a type conversion, to make sure the return
4008 -- value meets the constraints of the variable before the
4009 -- conversion.
4011 -- Gigi looks at the check flag and uses the appropriate types.
4012 -- For now since one flag is used there is an optimization which
4013 -- might not be done in the In Out case since Gigi does not do
4014 -- any analysis. More thought required about this ???
4016 if Ekind_In (F, E_In_Parameter, E_In_Out_Parameter) then
4018 -- Apply predicate checks, unless this is a call to the
4019 -- predicate check function itself, which would cause an
4020 -- infinite recursion, or it is a call to an initialization
4021 -- procedure whose operand is of course an unfinished object.
4023 if not (Ekind (Nam) = E_Function
4024 and then (Is_Predicate_Function (Nam)
4025 or else
4026 Is_Predicate_Function_M (Nam)))
4027 and then not Is_Init_Proc (Nam)
4028 then
4029 Apply_Predicate_Check (A, F_Typ);
4030 end if;
4032 -- Apply required constraint checks
4034 if Is_Scalar_Type (Etype (A)) then
4035 Apply_Scalar_Range_Check (A, F_Typ);
4037 elsif Is_Array_Type (Etype (A)) then
4038 Apply_Length_Check (A, F_Typ);
4040 elsif Is_Record_Type (F_Typ)
4041 and then Has_Discriminants (F_Typ)
4042 and then Is_Constrained (F_Typ)
4043 and then (not Is_Derived_Type (F_Typ)
4044 or else Comes_From_Source (Nam))
4045 then
4046 Apply_Discriminant_Check (A, F_Typ);
4048 -- For view conversions of a discriminated object, apply
4049 -- check to object itself, the conversion alreay has the
4050 -- proper type.
4052 if Nkind (A) = N_Type_Conversion
4053 and then Is_Constrained (Etype (Expression (A)))
4054 then
4055 Apply_Discriminant_Check (Expression (A), F_Typ);
4056 end if;
4058 elsif Is_Access_Type (F_Typ)
4059 and then Is_Array_Type (Designated_Type (F_Typ))
4060 and then Is_Constrained (Designated_Type (F_Typ))
4061 then
4062 Apply_Length_Check (A, F_Typ);
4064 elsif Is_Access_Type (F_Typ)
4065 and then Has_Discriminants (Designated_Type (F_Typ))
4066 and then Is_Constrained (Designated_Type (F_Typ))
4067 then
4068 Apply_Discriminant_Check (A, F_Typ);
4070 else
4071 Apply_Range_Check (A, F_Typ);
4072 end if;
4074 -- Ada 2005 (AI-231): Note that the controlling parameter case
4075 -- already existed in Ada 95, which is partially checked
4076 -- elsewhere (see Checks), and we don't want the warning
4077 -- message to differ.
4079 if Is_Access_Type (F_Typ)
4080 and then Can_Never_Be_Null (F_Typ)
4081 and then Known_Null (A)
4082 then
4083 if Is_Controlling_Formal (F) then
4084 Apply_Compile_Time_Constraint_Error
4085 (N => A,
4086 Msg => "null value not allowed here??",
4087 Reason => CE_Access_Check_Failed);
4089 elsif Ada_Version >= Ada_2005 then
4090 Apply_Compile_Time_Constraint_Error
4091 (N => A,
4092 Msg => "(Ada 2005) null not allowed in "
4093 & "null-excluding formal??",
4094 Reason => CE_Null_Not_Allowed);
4095 end if;
4096 end if;
4097 end if;
4099 if Ekind_In (F, E_Out_Parameter, E_In_Out_Parameter) then
4100 if Nkind (A) = N_Type_Conversion then
4101 if Is_Scalar_Type (A_Typ) then
4102 Apply_Scalar_Range_Check
4103 (Expression (A), Etype (Expression (A)), A_Typ);
4104 else
4105 Apply_Range_Check
4106 (Expression (A), Etype (Expression (A)), A_Typ);
4107 end if;
4109 else
4110 if Is_Scalar_Type (F_Typ) then
4111 Apply_Scalar_Range_Check (A, A_Typ, F_Typ);
4112 elsif Is_Array_Type (F_Typ)
4113 and then Ekind (F) = E_Out_Parameter
4114 then
4115 Apply_Length_Check (A, F_Typ);
4116 else
4117 Apply_Range_Check (A, A_Typ, F_Typ);
4118 end if;
4119 end if;
4120 end if;
4122 -- An actual associated with an access parameter is implicitly
4123 -- converted to the anonymous access type of the formal and must
4124 -- satisfy the legality checks for access conversions.
4126 if Ekind (F_Typ) = E_Anonymous_Access_Type then
4127 if not Valid_Conversion (A, F_Typ, A) then
4128 Error_Msg_N
4129 ("invalid implicit conversion for access parameter", A);
4130 end if;
4132 -- If the actual is an access selected component of a variable,
4133 -- the call may modify its designated object. It is reasonable
4134 -- to treat this as a potential modification of the enclosing
4135 -- record, to prevent spurious warnings that it should be
4136 -- declared as a constant, because intuitively programmers
4137 -- regard the designated subcomponent as part of the record.
4139 if Nkind (A) = N_Selected_Component
4140 and then Is_Entity_Name (Prefix (A))
4141 and then not Is_Constant_Object (Entity (Prefix (A)))
4142 then
4143 Note_Possible_Modification (A, Sure => False);
4144 end if;
4145 end if;
4147 -- Check bad case of atomic/volatile argument (RM C.6(12))
4149 if Is_By_Reference_Type (Etype (F))
4150 and then Comes_From_Source (N)
4151 then
4152 if Is_Atomic_Object (A)
4153 and then not Is_Atomic (Etype (F))
4154 then
4155 Error_Msg_NE
4156 ("cannot pass atomic argument to non-atomic formal&",
4157 A, F);
4159 elsif Is_Volatile_Object (A)
4160 and then not Is_Volatile (Etype (F))
4161 then
4162 Error_Msg_NE
4163 ("cannot pass volatile argument to non-volatile formal&",
4164 A, F);
4165 end if;
4166 end if;
4168 -- Check that subprograms don't have improper controlling
4169 -- arguments (RM 3.9.2 (9)).
4171 -- A primitive operation may have an access parameter of an
4172 -- incomplete tagged type, but a dispatching call is illegal
4173 -- if the type is still incomplete.
4175 if Is_Controlling_Formal (F) then
4176 Set_Is_Controlling_Actual (A);
4178 if Ekind (Etype (F)) = E_Anonymous_Access_Type then
4179 declare
4180 Desig : constant Entity_Id := Designated_Type (Etype (F));
4181 begin
4182 if Ekind (Desig) = E_Incomplete_Type
4183 and then No (Full_View (Desig))
4184 and then No (Non_Limited_View (Desig))
4185 then
4186 Error_Msg_NE
4187 ("premature use of incomplete type& "
4188 & "in dispatching call", A, Desig);
4189 end if;
4190 end;
4191 end if;
4193 elsif Nkind (A) = N_Explicit_Dereference then
4194 Validate_Remote_Access_To_Class_Wide_Type (A);
4195 end if;
4197 if (Is_Class_Wide_Type (A_Typ) or else Is_Dynamically_Tagged (A))
4198 and then not Is_Class_Wide_Type (F_Typ)
4199 and then not Is_Controlling_Formal (F)
4200 then
4201 Error_Msg_N ("class-wide argument not allowed here!", A);
4203 if Is_Subprogram (Nam)
4204 and then Comes_From_Source (Nam)
4205 then
4206 Error_Msg_Node_2 := F_Typ;
4207 Error_Msg_NE
4208 ("& is not a dispatching operation of &!", A, Nam);
4209 end if;
4211 -- Apply the checks described in 3.10.2(27): if the context is a
4212 -- specific access-to-object, the actual cannot be class-wide.
4213 -- Use base type to exclude access_to_subprogram cases.
4215 elsif Is_Access_Type (A_Typ)
4216 and then Is_Access_Type (F_Typ)
4217 and then not Is_Access_Subprogram_Type (Base_Type (F_Typ))
4218 and then (Is_Class_Wide_Type (Designated_Type (A_Typ))
4219 or else (Nkind (A) = N_Attribute_Reference
4220 and then
4221 Is_Class_Wide_Type (Etype (Prefix (A)))))
4222 and then not Is_Class_Wide_Type (Designated_Type (F_Typ))
4223 and then not Is_Controlling_Formal (F)
4225 -- Disable these checks for call to imported C++ subprograms
4227 and then not
4228 (Is_Entity_Name (Name (N))
4229 and then Is_Imported (Entity (Name (N)))
4230 and then Convention (Entity (Name (N))) = Convention_CPP)
4231 then
4232 Error_Msg_N
4233 ("access to class-wide argument not allowed here!", A);
4235 if Is_Subprogram (Nam) and then Comes_From_Source (Nam) then
4236 Error_Msg_Node_2 := Designated_Type (F_Typ);
4237 Error_Msg_NE
4238 ("& is not a dispatching operation of &!", A, Nam);
4239 end if;
4240 end if;
4242 Eval_Actual (A);
4244 -- If it is a named association, treat the selector_name as a
4245 -- proper identifier, and mark the corresponding entity.
4247 if Nkind (Parent (A)) = N_Parameter_Association
4249 -- Ignore reference in SPARK mode, as it refers to an entity not
4250 -- in scope at the point of reference, so the reference should
4251 -- be ignored for computing effects of subprograms.
4253 and then not GNATprove_Mode
4254 then
4255 Set_Entity (Selector_Name (Parent (A)), F);
4256 Generate_Reference (F, Selector_Name (Parent (A)));
4257 Set_Etype (Selector_Name (Parent (A)), F_Typ);
4258 Generate_Reference (F_Typ, N, ' ');
4259 end if;
4261 Prev := A;
4263 if Ekind (F) /= E_Out_Parameter then
4264 Check_Unset_Reference (A);
4265 end if;
4267 -- The following checks are only relevant when SPARK_Mode is on as
4268 -- they are not standard Ada legality rule.
4270 if SPARK_Mode = On
4271 and then Is_SPARK_Volatile_Object (A)
4272 then
4273 -- A volatile object may act as an actual parameter when the
4274 -- corresponding formal is of a non-scalar volatile type.
4276 if Is_Volatile (Etype (F))
4277 and then not Is_Scalar_Type (Etype (F))
4278 then
4279 null;
4281 -- A volatile object may act as an actual parameter in a call
4282 -- to an instance of Unchecked_Conversion.
4284 elsif Is_Unchecked_Conversion_Instance (Nam) then
4285 null;
4287 else
4288 Error_Msg_N
4289 ("volatile object cannot act as actual in a call (SPARK "
4290 & "RM 7.1.3(12))", A);
4291 end if;
4293 -- Detect an external variable with an enabled property that
4294 -- does not match the mode of the corresponding formal in a
4295 -- procedure call.
4297 -- why only procedure calls ???
4299 if Ekind (Nam) = E_Procedure
4300 and then Is_Entity_Name (A)
4301 and then Present (Entity (A))
4302 and then Ekind (Entity (A)) = E_Variable
4303 then
4304 A_Id := Entity (A);
4306 if Ekind (F) = E_In_Parameter then
4307 if Async_Readers_Enabled (A_Id) then
4308 Property_Error (A, A_Id, Name_Async_Readers);
4309 elsif Effective_Reads_Enabled (A_Id) then
4310 Property_Error (A, A_Id, Name_Effective_Reads);
4311 elsif Effective_Writes_Enabled (A_Id) then
4312 Property_Error (A, A_Id, Name_Effective_Writes);
4313 end if;
4315 elsif Ekind (F) = E_Out_Parameter
4316 and then Async_Writers_Enabled (A_Id)
4317 then
4318 Error_Msg_Name_1 := Name_Async_Writers;
4319 Error_Msg_NE
4320 ("external variable & with enabled property % cannot "
4321 & "appear as actual in procedure call "
4322 & "(SPARK RM 7.1.3(11))", A, A_Id);
4323 Error_Msg_N
4324 ("\\corresponding formal parameter has mode Out", A);
4325 end if;
4326 end if;
4327 end if;
4329 Next_Actual (A);
4331 -- Case where actual is not present
4333 else
4334 Insert_Default;
4335 end if;
4337 Next_Formal (F);
4338 end loop;
4339 end Resolve_Actuals;
4341 -----------------------
4342 -- Resolve_Allocator --
4343 -----------------------
4345 procedure Resolve_Allocator (N : Node_Id; Typ : Entity_Id) is
4346 Desig_T : constant Entity_Id := Designated_Type (Typ);
4347 E : constant Node_Id := Expression (N);
4348 Subtyp : Entity_Id;
4349 Discrim : Entity_Id;
4350 Constr : Node_Id;
4351 Aggr : Node_Id;
4352 Assoc : Node_Id := Empty;
4353 Disc_Exp : Node_Id;
4355 procedure Check_Allocator_Discrim_Accessibility
4356 (Disc_Exp : Node_Id;
4357 Alloc_Typ : Entity_Id);
4358 -- Check that accessibility level associated with an access discriminant
4359 -- initialized in an allocator by the expression Disc_Exp is not deeper
4360 -- than the level of the allocator type Alloc_Typ. An error message is
4361 -- issued if this condition is violated. Specialized checks are done for
4362 -- the cases of a constraint expression which is an access attribute or
4363 -- an access discriminant.
4365 function In_Dispatching_Context return Boolean;
4366 -- If the allocator is an actual in a call, it is allowed to be class-
4367 -- wide when the context is not because it is a controlling actual.
4369 -------------------------------------------
4370 -- Check_Allocator_Discrim_Accessibility --
4371 -------------------------------------------
4373 procedure Check_Allocator_Discrim_Accessibility
4374 (Disc_Exp : Node_Id;
4375 Alloc_Typ : Entity_Id)
4377 begin
4378 if Type_Access_Level (Etype (Disc_Exp)) >
4379 Deepest_Type_Access_Level (Alloc_Typ)
4380 then
4381 Error_Msg_N
4382 ("operand type has deeper level than allocator type", Disc_Exp);
4384 -- When the expression is an Access attribute the level of the prefix
4385 -- object must not be deeper than that of the allocator's type.
4387 elsif Nkind (Disc_Exp) = N_Attribute_Reference
4388 and then Get_Attribute_Id (Attribute_Name (Disc_Exp)) =
4389 Attribute_Access
4390 and then Object_Access_Level (Prefix (Disc_Exp)) >
4391 Deepest_Type_Access_Level (Alloc_Typ)
4392 then
4393 Error_Msg_N
4394 ("prefix of attribute has deeper level than allocator type",
4395 Disc_Exp);
4397 -- When the expression is an access discriminant the check is against
4398 -- the level of the prefix object.
4400 elsif Ekind (Etype (Disc_Exp)) = E_Anonymous_Access_Type
4401 and then Nkind (Disc_Exp) = N_Selected_Component
4402 and then Object_Access_Level (Prefix (Disc_Exp)) >
4403 Deepest_Type_Access_Level (Alloc_Typ)
4404 then
4405 Error_Msg_N
4406 ("access discriminant has deeper level than allocator type",
4407 Disc_Exp);
4409 -- All other cases are legal
4411 else
4412 null;
4413 end if;
4414 end Check_Allocator_Discrim_Accessibility;
4416 ----------------------------
4417 -- In_Dispatching_Context --
4418 ----------------------------
4420 function In_Dispatching_Context return Boolean is
4421 Par : constant Node_Id := Parent (N);
4423 begin
4424 return Nkind (Par) in N_Subprogram_Call
4425 and then Is_Entity_Name (Name (Par))
4426 and then Is_Dispatching_Operation (Entity (Name (Par)));
4427 end In_Dispatching_Context;
4429 -- Start of processing for Resolve_Allocator
4431 begin
4432 -- Replace general access with specific type
4434 if Ekind (Etype (N)) = E_Allocator_Type then
4435 Set_Etype (N, Base_Type (Typ));
4436 end if;
4438 if Is_Abstract_Type (Typ) then
4439 Error_Msg_N ("type of allocator cannot be abstract", N);
4440 end if;
4442 -- For qualified expression, resolve the expression using the given
4443 -- subtype (nothing to do for type mark, subtype indication)
4445 if Nkind (E) = N_Qualified_Expression then
4446 if Is_Class_Wide_Type (Etype (E))
4447 and then not Is_Class_Wide_Type (Desig_T)
4448 and then not In_Dispatching_Context
4449 then
4450 Error_Msg_N
4451 ("class-wide allocator not allowed for this access type", N);
4452 end if;
4454 Resolve (Expression (E), Etype (E));
4455 Check_Unset_Reference (Expression (E));
4457 -- A qualified expression requires an exact match of the type.
4458 -- Class-wide matching is not allowed.
4460 if (Is_Class_Wide_Type (Etype (Expression (E)))
4461 or else Is_Class_Wide_Type (Etype (E)))
4462 and then Base_Type (Etype (Expression (E))) /= Base_Type (Etype (E))
4463 then
4464 Wrong_Type (Expression (E), Etype (E));
4465 end if;
4467 -- Calls to build-in-place functions are not currently supported in
4468 -- allocators for access types associated with a simple storage pool.
4469 -- Supporting such allocators may require passing additional implicit
4470 -- parameters to build-in-place functions (or a significant revision
4471 -- of the current b-i-p implementation to unify the handling for
4472 -- multiple kinds of storage pools). ???
4474 if Is_Limited_View (Desig_T)
4475 and then Nkind (Expression (E)) = N_Function_Call
4476 then
4477 declare
4478 Pool : constant Entity_Id :=
4479 Associated_Storage_Pool (Root_Type (Typ));
4480 begin
4481 if Present (Pool)
4482 and then
4483 Present (Get_Rep_Pragma
4484 (Etype (Pool), Name_Simple_Storage_Pool_Type))
4485 then
4486 Error_Msg_N
4487 ("limited function calls not yet supported in simple "
4488 & "storage pool allocators", Expression (E));
4489 end if;
4490 end;
4491 end if;
4493 -- A special accessibility check is needed for allocators that
4494 -- constrain access discriminants. The level of the type of the
4495 -- expression used to constrain an access discriminant cannot be
4496 -- deeper than the type of the allocator (in contrast to access
4497 -- parameters, where the level of the actual can be arbitrary).
4499 -- We can't use Valid_Conversion to perform this check because in
4500 -- general the type of the allocator is unrelated to the type of
4501 -- the access discriminant.
4503 if Ekind (Typ) /= E_Anonymous_Access_Type
4504 or else Is_Local_Anonymous_Access (Typ)
4505 then
4506 Subtyp := Entity (Subtype_Mark (E));
4508 Aggr := Original_Node (Expression (E));
4510 if Has_Discriminants (Subtyp)
4511 and then Nkind_In (Aggr, N_Aggregate, N_Extension_Aggregate)
4512 then
4513 Discrim := First_Discriminant (Base_Type (Subtyp));
4515 -- Get the first component expression of the aggregate
4517 if Present (Expressions (Aggr)) then
4518 Disc_Exp := First (Expressions (Aggr));
4520 elsif Present (Component_Associations (Aggr)) then
4521 Assoc := First (Component_Associations (Aggr));
4523 if Present (Assoc) then
4524 Disc_Exp := Expression (Assoc);
4525 else
4526 Disc_Exp := Empty;
4527 end if;
4529 else
4530 Disc_Exp := Empty;
4531 end if;
4533 while Present (Discrim) and then Present (Disc_Exp) loop
4534 if Ekind (Etype (Discrim)) = E_Anonymous_Access_Type then
4535 Check_Allocator_Discrim_Accessibility (Disc_Exp, Typ);
4536 end if;
4538 Next_Discriminant (Discrim);
4540 if Present (Discrim) then
4541 if Present (Assoc) then
4542 Next (Assoc);
4543 Disc_Exp := Expression (Assoc);
4545 elsif Present (Next (Disc_Exp)) then
4546 Next (Disc_Exp);
4548 else
4549 Assoc := First (Component_Associations (Aggr));
4551 if Present (Assoc) then
4552 Disc_Exp := Expression (Assoc);
4553 else
4554 Disc_Exp := Empty;
4555 end if;
4556 end if;
4557 end if;
4558 end loop;
4559 end if;
4560 end if;
4562 -- For a subtype mark or subtype indication, freeze the subtype
4564 else
4565 Freeze_Expression (E);
4567 if Is_Access_Constant (Typ) and then not No_Initialization (N) then
4568 Error_Msg_N
4569 ("initialization required for access-to-constant allocator", N);
4570 end if;
4572 -- A special accessibility check is needed for allocators that
4573 -- constrain access discriminants. The level of the type of the
4574 -- expression used to constrain an access discriminant cannot be
4575 -- deeper than the type of the allocator (in contrast to access
4576 -- parameters, where the level of the actual can be arbitrary).
4577 -- We can't use Valid_Conversion to perform this check because
4578 -- in general the type of the allocator is unrelated to the type
4579 -- of the access discriminant.
4581 if Nkind (Original_Node (E)) = N_Subtype_Indication
4582 and then (Ekind (Typ) /= E_Anonymous_Access_Type
4583 or else Is_Local_Anonymous_Access (Typ))
4584 then
4585 Subtyp := Entity (Subtype_Mark (Original_Node (E)));
4587 if Has_Discriminants (Subtyp) then
4588 Discrim := First_Discriminant (Base_Type (Subtyp));
4589 Constr := First (Constraints (Constraint (Original_Node (E))));
4590 while Present (Discrim) and then Present (Constr) loop
4591 if Ekind (Etype (Discrim)) = E_Anonymous_Access_Type then
4592 if Nkind (Constr) = N_Discriminant_Association then
4593 Disc_Exp := Original_Node (Expression (Constr));
4594 else
4595 Disc_Exp := Original_Node (Constr);
4596 end if;
4598 Check_Allocator_Discrim_Accessibility (Disc_Exp, Typ);
4599 end if;
4601 Next_Discriminant (Discrim);
4602 Next (Constr);
4603 end loop;
4604 end if;
4605 end if;
4606 end if;
4608 -- Ada 2005 (AI-344): A class-wide allocator requires an accessibility
4609 -- check that the level of the type of the created object is not deeper
4610 -- than the level of the allocator's access type, since extensions can
4611 -- now occur at deeper levels than their ancestor types. This is a
4612 -- static accessibility level check; a run-time check is also needed in
4613 -- the case of an initialized allocator with a class-wide argument (see
4614 -- Expand_Allocator_Expression).
4616 if Ada_Version >= Ada_2005
4617 and then Is_Class_Wide_Type (Desig_T)
4618 then
4619 declare
4620 Exp_Typ : Entity_Id;
4622 begin
4623 if Nkind (E) = N_Qualified_Expression then
4624 Exp_Typ := Etype (E);
4625 elsif Nkind (E) = N_Subtype_Indication then
4626 Exp_Typ := Entity (Subtype_Mark (Original_Node (E)));
4627 else
4628 Exp_Typ := Entity (E);
4629 end if;
4631 if Type_Access_Level (Exp_Typ) >
4632 Deepest_Type_Access_Level (Typ)
4633 then
4634 if In_Instance_Body then
4635 Error_Msg_Warn := SPARK_Mode /= On;
4636 Error_Msg_N
4637 ("type in allocator has deeper level than "
4638 & "designated class-wide type<<", E);
4639 Error_Msg_N ("\Program_Error [<<", E);
4640 Rewrite (N,
4641 Make_Raise_Program_Error (Sloc (N),
4642 Reason => PE_Accessibility_Check_Failed));
4643 Set_Etype (N, Typ);
4645 -- Do not apply Ada 2005 accessibility checks on a class-wide
4646 -- allocator if the type given in the allocator is a formal
4647 -- type. A run-time check will be performed in the instance.
4649 elsif not Is_Generic_Type (Exp_Typ) then
4650 Error_Msg_N ("type in allocator has deeper level than "
4651 & "designated class-wide type", E);
4652 end if;
4653 end if;
4654 end;
4655 end if;
4657 -- Check for allocation from an empty storage pool
4659 if No_Pool_Assigned (Typ) then
4660 Error_Msg_N ("allocation from empty storage pool!", N);
4662 -- If the context is an unchecked conversion, as may happen within an
4663 -- inlined subprogram, the allocator is being resolved with its own
4664 -- anonymous type. In that case, if the target type has a specific
4665 -- storage pool, it must be inherited explicitly by the allocator type.
4667 elsif Nkind (Parent (N)) = N_Unchecked_Type_Conversion
4668 and then No (Associated_Storage_Pool (Typ))
4669 then
4670 Set_Associated_Storage_Pool
4671 (Typ, Associated_Storage_Pool (Etype (Parent (N))));
4672 end if;
4674 if Ekind (Etype (N)) = E_Anonymous_Access_Type then
4675 Check_Restriction (No_Anonymous_Allocators, N);
4676 end if;
4678 -- Check that an allocator with task parts isn't for a nested access
4679 -- type when restriction No_Task_Hierarchy applies.
4681 if not Is_Library_Level_Entity (Base_Type (Typ))
4682 and then Has_Task (Base_Type (Desig_T))
4683 then
4684 Check_Restriction (No_Task_Hierarchy, N);
4685 end if;
4687 -- An erroneous allocator may be rewritten as a raise Program_Error
4688 -- statement.
4690 if Nkind (N) = N_Allocator then
4692 -- An anonymous access discriminant is the definition of a
4693 -- coextension.
4695 if Ekind (Typ) = E_Anonymous_Access_Type
4696 and then Nkind (Associated_Node_For_Itype (Typ)) =
4697 N_Discriminant_Specification
4698 then
4699 declare
4700 Discr : constant Entity_Id :=
4701 Defining_Identifier (Associated_Node_For_Itype (Typ));
4703 begin
4704 Check_Restriction (No_Coextensions, N);
4706 -- Ada 2012 AI05-0052: If the designated type of the allocator
4707 -- is limited, then the allocator shall not be used to define
4708 -- the value of an access discriminant unless the discriminated
4709 -- type is immutably limited.
4711 if Ada_Version >= Ada_2012
4712 and then Is_Limited_Type (Desig_T)
4713 and then not Is_Limited_View (Scope (Discr))
4714 then
4715 Error_Msg_N
4716 ("only immutably limited types can have anonymous "
4717 & "access discriminants designating a limited type", N);
4718 end if;
4719 end;
4721 -- Avoid marking an allocator as a dynamic coextension if it is
4722 -- within a static construct.
4724 if not Is_Static_Coextension (N) then
4725 Set_Is_Dynamic_Coextension (N);
4726 end if;
4728 -- Cleanup for potential static coextensions
4730 else
4731 Set_Is_Dynamic_Coextension (N, False);
4732 Set_Is_Static_Coextension (N, False);
4733 end if;
4734 end if;
4736 -- Report a simple error: if the designated object is a local task,
4737 -- its body has not been seen yet, and its activation will fail an
4738 -- elaboration check.
4740 if Is_Task_Type (Desig_T)
4741 and then Scope (Base_Type (Desig_T)) = Current_Scope
4742 and then Is_Compilation_Unit (Current_Scope)
4743 and then Ekind (Current_Scope) = E_Package
4744 and then not In_Package_Body (Current_Scope)
4745 then
4746 Error_Msg_Warn := SPARK_Mode /= On;
4747 Error_Msg_N ("cannot activate task before body seen<<", N);
4748 Error_Msg_N ("\Program_Error [<<", N);
4749 end if;
4751 -- Ada 2012 (AI05-0111-3): Detect an attempt to allocate a task or a
4752 -- type with a task component on a subpool. This action must raise
4753 -- Program_Error at runtime.
4755 if Ada_Version >= Ada_2012
4756 and then Nkind (N) = N_Allocator
4757 and then Present (Subpool_Handle_Name (N))
4758 and then Has_Task (Desig_T)
4759 then
4760 Error_Msg_Warn := SPARK_Mode /= On;
4761 Error_Msg_N ("cannot allocate task on subpool<<", N);
4762 Error_Msg_N ("\Program_Error [<<", N);
4764 Rewrite (N,
4765 Make_Raise_Program_Error (Sloc (N),
4766 Reason => PE_Explicit_Raise));
4767 Set_Etype (N, Typ);
4768 end if;
4769 end Resolve_Allocator;
4771 ---------------------------
4772 -- Resolve_Arithmetic_Op --
4773 ---------------------------
4775 -- Used for resolving all arithmetic operators except exponentiation
4777 procedure Resolve_Arithmetic_Op (N : Node_Id; Typ : Entity_Id) is
4778 L : constant Node_Id := Left_Opnd (N);
4779 R : constant Node_Id := Right_Opnd (N);
4780 TL : constant Entity_Id := Base_Type (Etype (L));
4781 TR : constant Entity_Id := Base_Type (Etype (R));
4782 T : Entity_Id;
4783 Rop : Node_Id;
4785 B_Typ : constant Entity_Id := Base_Type (Typ);
4786 -- We do the resolution using the base type, because intermediate values
4787 -- in expressions always are of the base type, not a subtype of it.
4789 function Expected_Type_Is_Any_Real (N : Node_Id) return Boolean;
4790 -- Returns True if N is in a context that expects "any real type"
4792 function Is_Integer_Or_Universal (N : Node_Id) return Boolean;
4793 -- Return True iff given type is Integer or universal real/integer
4795 procedure Set_Mixed_Mode_Operand (N : Node_Id; T : Entity_Id);
4796 -- Choose type of integer literal in fixed-point operation to conform
4797 -- to available fixed-point type. T is the type of the other operand,
4798 -- which is needed to determine the expected type of N.
4800 procedure Set_Operand_Type (N : Node_Id);
4801 -- Set operand type to T if universal
4803 -------------------------------
4804 -- Expected_Type_Is_Any_Real --
4805 -------------------------------
4807 function Expected_Type_Is_Any_Real (N : Node_Id) return Boolean is
4808 begin
4809 -- N is the expression after "delta" in a fixed_point_definition;
4810 -- see RM-3.5.9(6):
4812 return Nkind_In (Parent (N), N_Ordinary_Fixed_Point_Definition,
4813 N_Decimal_Fixed_Point_Definition,
4815 -- N is one of the bounds in a real_range_specification;
4816 -- see RM-3.5.7(5):
4818 N_Real_Range_Specification,
4820 -- N is the expression of a delta_constraint;
4821 -- see RM-J.3(3):
4823 N_Delta_Constraint);
4824 end Expected_Type_Is_Any_Real;
4826 -----------------------------
4827 -- Is_Integer_Or_Universal --
4828 -----------------------------
4830 function Is_Integer_Or_Universal (N : Node_Id) return Boolean is
4831 T : Entity_Id;
4832 Index : Interp_Index;
4833 It : Interp;
4835 begin
4836 if not Is_Overloaded (N) then
4837 T := Etype (N);
4838 return Base_Type (T) = Base_Type (Standard_Integer)
4839 or else T = Universal_Integer
4840 or else T = Universal_Real;
4841 else
4842 Get_First_Interp (N, Index, It);
4843 while Present (It.Typ) loop
4844 if Base_Type (It.Typ) = Base_Type (Standard_Integer)
4845 or else It.Typ = Universal_Integer
4846 or else It.Typ = Universal_Real
4847 then
4848 return True;
4849 end if;
4851 Get_Next_Interp (Index, It);
4852 end loop;
4853 end if;
4855 return False;
4856 end Is_Integer_Or_Universal;
4858 ----------------------------
4859 -- Set_Mixed_Mode_Operand --
4860 ----------------------------
4862 procedure Set_Mixed_Mode_Operand (N : Node_Id; T : Entity_Id) is
4863 Index : Interp_Index;
4864 It : Interp;
4866 begin
4867 if Universal_Interpretation (N) = Universal_Integer then
4869 -- A universal integer literal is resolved as standard integer
4870 -- except in the case of a fixed-point result, where we leave it
4871 -- as universal (to be handled by Exp_Fixd later on)
4873 if Is_Fixed_Point_Type (T) then
4874 Resolve (N, Universal_Integer);
4875 else
4876 Resolve (N, Standard_Integer);
4877 end if;
4879 elsif Universal_Interpretation (N) = Universal_Real
4880 and then (T = Base_Type (Standard_Integer)
4881 or else T = Universal_Integer
4882 or else T = Universal_Real)
4883 then
4884 -- A universal real can appear in a fixed-type context. We resolve
4885 -- the literal with that context, even though this might raise an
4886 -- exception prematurely (the other operand may be zero).
4888 Resolve (N, B_Typ);
4890 elsif Etype (N) = Base_Type (Standard_Integer)
4891 and then T = Universal_Real
4892 and then Is_Overloaded (N)
4893 then
4894 -- Integer arg in mixed-mode operation. Resolve with universal
4895 -- type, in case preference rule must be applied.
4897 Resolve (N, Universal_Integer);
4899 elsif Etype (N) = T
4900 and then B_Typ /= Universal_Fixed
4901 then
4902 -- Not a mixed-mode operation, resolve with context
4904 Resolve (N, B_Typ);
4906 elsif Etype (N) = Any_Fixed then
4908 -- N may itself be a mixed-mode operation, so use context type
4910 Resolve (N, B_Typ);
4912 elsif Is_Fixed_Point_Type (T)
4913 and then B_Typ = Universal_Fixed
4914 and then Is_Overloaded (N)
4915 then
4916 -- Must be (fixed * fixed) operation, operand must have one
4917 -- compatible interpretation.
4919 Resolve (N, Any_Fixed);
4921 elsif Is_Fixed_Point_Type (B_Typ)
4922 and then (T = Universal_Real or else Is_Fixed_Point_Type (T))
4923 and then Is_Overloaded (N)
4924 then
4925 -- C * F(X) in a fixed context, where C is a real literal or a
4926 -- fixed-point expression. F must have either a fixed type
4927 -- interpretation or an integer interpretation, but not both.
4929 Get_First_Interp (N, Index, It);
4930 while Present (It.Typ) loop
4931 if Base_Type (It.Typ) = Base_Type (Standard_Integer) then
4932 if Analyzed (N) then
4933 Error_Msg_N ("ambiguous operand in fixed operation", N);
4934 else
4935 Resolve (N, Standard_Integer);
4936 end if;
4938 elsif Is_Fixed_Point_Type (It.Typ) then
4939 if Analyzed (N) then
4940 Error_Msg_N ("ambiguous operand in fixed operation", N);
4941 else
4942 Resolve (N, It.Typ);
4943 end if;
4944 end if;
4946 Get_Next_Interp (Index, It);
4947 end loop;
4949 -- Reanalyze the literal with the fixed type of the context. If
4950 -- context is Universal_Fixed, we are within a conversion, leave
4951 -- the literal as a universal real because there is no usable
4952 -- fixed type, and the target of the conversion plays no role in
4953 -- the resolution.
4955 declare
4956 Op2 : Node_Id;
4957 T2 : Entity_Id;
4959 begin
4960 if N = L then
4961 Op2 := R;
4962 else
4963 Op2 := L;
4964 end if;
4966 if B_Typ = Universal_Fixed
4967 and then Nkind (Op2) = N_Real_Literal
4968 then
4969 T2 := Universal_Real;
4970 else
4971 T2 := B_Typ;
4972 end if;
4974 Set_Analyzed (Op2, False);
4975 Resolve (Op2, T2);
4976 end;
4978 else
4979 Resolve (N);
4980 end if;
4981 end Set_Mixed_Mode_Operand;
4983 ----------------------
4984 -- Set_Operand_Type --
4985 ----------------------
4987 procedure Set_Operand_Type (N : Node_Id) is
4988 begin
4989 if Etype (N) = Universal_Integer
4990 or else Etype (N) = Universal_Real
4991 then
4992 Set_Etype (N, T);
4993 end if;
4994 end Set_Operand_Type;
4996 -- Start of processing for Resolve_Arithmetic_Op
4998 begin
4999 if Comes_From_Source (N)
5000 and then Ekind (Entity (N)) = E_Function
5001 and then Is_Imported (Entity (N))
5002 and then Is_Intrinsic_Subprogram (Entity (N))
5003 then
5004 Resolve_Intrinsic_Operator (N, Typ);
5005 return;
5007 -- Special-case for mixed-mode universal expressions or fixed point type
5008 -- operation: each argument is resolved separately. The same treatment
5009 -- is required if one of the operands of a fixed point operation is
5010 -- universal real, since in this case we don't do a conversion to a
5011 -- specific fixed-point type (instead the expander handles the case).
5013 -- Set the type of the node to its universal interpretation because
5014 -- legality checks on an exponentiation operand need the context.
5016 elsif (B_Typ = Universal_Integer or else B_Typ = Universal_Real)
5017 and then Present (Universal_Interpretation (L))
5018 and then Present (Universal_Interpretation (R))
5019 then
5020 Set_Etype (N, B_Typ);
5021 Resolve (L, Universal_Interpretation (L));
5022 Resolve (R, Universal_Interpretation (R));
5024 elsif (B_Typ = Universal_Real
5025 or else Etype (N) = Universal_Fixed
5026 or else (Etype (N) = Any_Fixed
5027 and then Is_Fixed_Point_Type (B_Typ))
5028 or else (Is_Fixed_Point_Type (B_Typ)
5029 and then (Is_Integer_Or_Universal (L)
5030 or else
5031 Is_Integer_Or_Universal (R))))
5032 and then Nkind_In (N, N_Op_Multiply, N_Op_Divide)
5033 then
5034 if TL = Universal_Integer or else TR = Universal_Integer then
5035 Check_For_Visible_Operator (N, B_Typ);
5036 end if;
5038 -- If context is a fixed type and one operand is integer, the other
5039 -- is resolved with the type of the context.
5041 if Is_Fixed_Point_Type (B_Typ)
5042 and then (Base_Type (TL) = Base_Type (Standard_Integer)
5043 or else TL = Universal_Integer)
5044 then
5045 Resolve (R, B_Typ);
5046 Resolve (L, TL);
5048 elsif Is_Fixed_Point_Type (B_Typ)
5049 and then (Base_Type (TR) = Base_Type (Standard_Integer)
5050 or else TR = Universal_Integer)
5051 then
5052 Resolve (L, B_Typ);
5053 Resolve (R, TR);
5055 else
5056 Set_Mixed_Mode_Operand (L, TR);
5057 Set_Mixed_Mode_Operand (R, TL);
5058 end if;
5060 -- Check the rule in RM05-4.5.5(19.1/2) disallowing universal_fixed
5061 -- multiplying operators from being used when the expected type is
5062 -- also universal_fixed. Note that B_Typ will be Universal_Fixed in
5063 -- some cases where the expected type is actually Any_Real;
5064 -- Expected_Type_Is_Any_Real takes care of that case.
5066 if Etype (N) = Universal_Fixed
5067 or else Etype (N) = Any_Fixed
5068 then
5069 if B_Typ = Universal_Fixed
5070 and then not Expected_Type_Is_Any_Real (N)
5071 and then not Nkind_In (Parent (N), N_Type_Conversion,
5072 N_Unchecked_Type_Conversion)
5073 then
5074 Error_Msg_N ("type cannot be determined from context!", N);
5075 Error_Msg_N ("\explicit conversion to result type required", N);
5077 Set_Etype (L, Any_Type);
5078 Set_Etype (R, Any_Type);
5080 else
5081 if Ada_Version = Ada_83
5082 and then Etype (N) = Universal_Fixed
5083 and then not
5084 Nkind_In (Parent (N), N_Type_Conversion,
5085 N_Unchecked_Type_Conversion)
5086 then
5087 Error_Msg_N
5088 ("(Ada 83) fixed-point operation "
5089 & "needs explicit conversion", N);
5090 end if;
5092 -- The expected type is "any real type" in contexts like
5094 -- type T is delta <universal_fixed-expression> ...
5096 -- in which case we need to set the type to Universal_Real
5097 -- so that static expression evaluation will work properly.
5099 if Expected_Type_Is_Any_Real (N) then
5100 Set_Etype (N, Universal_Real);
5101 else
5102 Set_Etype (N, B_Typ);
5103 end if;
5104 end if;
5106 elsif Is_Fixed_Point_Type (B_Typ)
5107 and then (Is_Integer_Or_Universal (L)
5108 or else Nkind (L) = N_Real_Literal
5109 or else Nkind (R) = N_Real_Literal
5110 or else Is_Integer_Or_Universal (R))
5111 then
5112 Set_Etype (N, B_Typ);
5114 elsif Etype (N) = Any_Fixed then
5116 -- If no previous errors, this is only possible if one operand is
5117 -- overloaded and the context is universal. Resolve as such.
5119 Set_Etype (N, B_Typ);
5120 end if;
5122 else
5123 if (TL = Universal_Integer or else TL = Universal_Real)
5124 and then
5125 (TR = Universal_Integer or else TR = Universal_Real)
5126 then
5127 Check_For_Visible_Operator (N, B_Typ);
5128 end if;
5130 -- If the context is Universal_Fixed and the operands are also
5131 -- universal fixed, this is an error, unless there is only one
5132 -- applicable fixed_point type (usually Duration).
5134 if B_Typ = Universal_Fixed and then Etype (L) = Universal_Fixed then
5135 T := Unique_Fixed_Point_Type (N);
5137 if T = Any_Type then
5138 Set_Etype (N, T);
5139 return;
5140 else
5141 Resolve (L, T);
5142 Resolve (R, T);
5143 end if;
5145 else
5146 Resolve (L, B_Typ);
5147 Resolve (R, B_Typ);
5148 end if;
5150 -- If one of the arguments was resolved to a non-universal type.
5151 -- label the result of the operation itself with the same type.
5152 -- Do the same for the universal argument, if any.
5154 T := Intersect_Types (L, R);
5155 Set_Etype (N, Base_Type (T));
5156 Set_Operand_Type (L);
5157 Set_Operand_Type (R);
5158 end if;
5160 Generate_Operator_Reference (N, Typ);
5161 Analyze_Dimension (N);
5162 Eval_Arithmetic_Op (N);
5164 -- In SPARK, a multiplication or division with operands of fixed point
5165 -- types shall be qualified or explicitly converted to identify the
5166 -- result type.
5168 if (Is_Fixed_Point_Type (Etype (L))
5169 or else Is_Fixed_Point_Type (Etype (R)))
5170 and then Nkind_In (N, N_Op_Multiply, N_Op_Divide)
5171 and then
5172 not Nkind_In (Parent (N), N_Qualified_Expression, N_Type_Conversion)
5173 then
5174 Check_SPARK_Restriction
5175 ("operation should be qualified or explicitly converted", N);
5176 end if;
5178 -- Set overflow and division checking bit
5180 if Nkind (N) in N_Op then
5181 if not Overflow_Checks_Suppressed (Etype (N)) then
5182 Enable_Overflow_Check (N);
5183 end if;
5185 -- Give warning if explicit division by zero
5187 if Nkind_In (N, N_Op_Divide, N_Op_Rem, N_Op_Mod)
5188 and then not Division_Checks_Suppressed (Etype (N))
5189 then
5190 Rop := Right_Opnd (N);
5192 if Compile_Time_Known_Value (Rop)
5193 and then ((Is_Integer_Type (Etype (Rop))
5194 and then Expr_Value (Rop) = Uint_0)
5195 or else
5196 (Is_Real_Type (Etype (Rop))
5197 and then Expr_Value_R (Rop) = Ureal_0))
5198 then
5199 -- Specialize the warning message according to the operation.
5200 -- The following warnings are for the case
5202 case Nkind (N) is
5203 when N_Op_Divide =>
5205 -- For division, we have two cases, for float division
5206 -- of an unconstrained float type, on a machine where
5207 -- Machine_Overflows is false, we don't get an exception
5208 -- at run-time, but rather an infinity or Nan. The Nan
5209 -- case is pretty obscure, so just warn about infinities.
5211 if Is_Floating_Point_Type (Typ)
5212 and then not Is_Constrained (Typ)
5213 and then not Machine_Overflows_On_Target
5214 then
5215 Error_Msg_N
5216 ("float division by zero, may generate "
5217 & "'+'/'- infinity??", Right_Opnd (N));
5219 -- For all other cases, we get a Constraint_Error
5221 else
5222 Apply_Compile_Time_Constraint_Error
5223 (N, "division by zero??", CE_Divide_By_Zero,
5224 Loc => Sloc (Right_Opnd (N)));
5225 end if;
5227 when N_Op_Rem =>
5228 Apply_Compile_Time_Constraint_Error
5229 (N, "rem with zero divisor??", CE_Divide_By_Zero,
5230 Loc => Sloc (Right_Opnd (N)));
5232 when N_Op_Mod =>
5233 Apply_Compile_Time_Constraint_Error
5234 (N, "mod with zero divisor??", CE_Divide_By_Zero,
5235 Loc => Sloc (Right_Opnd (N)));
5237 -- Division by zero can only happen with division, rem,
5238 -- and mod operations.
5240 when others =>
5241 raise Program_Error;
5242 end case;
5244 -- Otherwise just set the flag to check at run time
5246 else
5247 Activate_Division_Check (N);
5248 end if;
5249 end if;
5251 -- If Restriction No_Implicit_Conditionals is active, then it is
5252 -- violated if either operand can be negative for mod, or for rem
5253 -- if both operands can be negative.
5255 if Restriction_Check_Required (No_Implicit_Conditionals)
5256 and then Nkind_In (N, N_Op_Rem, N_Op_Mod)
5257 then
5258 declare
5259 Lo : Uint;
5260 Hi : Uint;
5261 OK : Boolean;
5263 LNeg : Boolean;
5264 RNeg : Boolean;
5265 -- Set if corresponding operand might be negative
5267 begin
5268 Determine_Range
5269 (Left_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
5270 LNeg := (not OK) or else Lo < 0;
5272 Determine_Range
5273 (Right_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
5274 RNeg := (not OK) or else Lo < 0;
5276 -- Check if we will be generating conditionals. There are two
5277 -- cases where that can happen, first for REM, the only case
5278 -- is largest negative integer mod -1, where the division can
5279 -- overflow, but we still have to give the right result. The
5280 -- front end generates a test for this annoying case. Here we
5281 -- just test if both operands can be negative (that's what the
5282 -- expander does, so we match its logic here).
5284 -- The second case is mod where either operand can be negative.
5285 -- In this case, the back end has to generate additional tests.
5287 if (Nkind (N) = N_Op_Rem and then (LNeg and RNeg))
5288 or else
5289 (Nkind (N) = N_Op_Mod and then (LNeg or RNeg))
5290 then
5291 Check_Restriction (No_Implicit_Conditionals, N);
5292 end if;
5293 end;
5294 end if;
5295 end if;
5297 Check_Unset_Reference (L);
5298 Check_Unset_Reference (R);
5299 Check_Function_Writable_Actuals (N);
5300 end Resolve_Arithmetic_Op;
5302 ------------------
5303 -- Resolve_Call --
5304 ------------------
5306 procedure Resolve_Call (N : Node_Id; Typ : Entity_Id) is
5307 Loc : constant Source_Ptr := Sloc (N);
5308 Subp : constant Node_Id := Name (N);
5309 Nam : Entity_Id;
5310 I : Interp_Index;
5311 It : Interp;
5312 Norm_OK : Boolean;
5313 Scop : Entity_Id;
5314 Rtype : Entity_Id;
5316 function Same_Or_Aliased_Subprograms
5317 (S : Entity_Id;
5318 E : Entity_Id) return Boolean;
5319 -- Returns True if the subprogram entity S is the same as E or else
5320 -- S is an alias of E.
5322 ---------------------------------
5323 -- Same_Or_Aliased_Subprograms --
5324 ---------------------------------
5326 function Same_Or_Aliased_Subprograms
5327 (S : Entity_Id;
5328 E : Entity_Id) return Boolean
5330 Subp_Alias : constant Entity_Id := Alias (S);
5331 begin
5332 return S = E or else (Present (Subp_Alias) and then Subp_Alias = E);
5333 end Same_Or_Aliased_Subprograms;
5335 -- Start of processing for Resolve_Call
5337 begin
5338 -- The context imposes a unique interpretation with type Typ on a
5339 -- procedure or function call. Find the entity of the subprogram that
5340 -- yields the expected type, and propagate the corresponding formal
5341 -- constraints on the actuals. The caller has established that an
5342 -- interpretation exists, and emitted an error if not unique.
5344 -- First deal with the case of a call to an access-to-subprogram,
5345 -- dereference made explicit in Analyze_Call.
5347 if Ekind (Etype (Subp)) = E_Subprogram_Type then
5348 if not Is_Overloaded (Subp) then
5349 Nam := Etype (Subp);
5351 else
5352 -- Find the interpretation whose type (a subprogram type) has a
5353 -- return type that is compatible with the context. Analysis of
5354 -- the node has established that one exists.
5356 Nam := Empty;
5358 Get_First_Interp (Subp, I, It);
5359 while Present (It.Typ) loop
5360 if Covers (Typ, Etype (It.Typ)) then
5361 Nam := It.Typ;
5362 exit;
5363 end if;
5365 Get_Next_Interp (I, It);
5366 end loop;
5368 if No (Nam) then
5369 raise Program_Error;
5370 end if;
5371 end if;
5373 -- If the prefix is not an entity, then resolve it
5375 if not Is_Entity_Name (Subp) then
5376 Resolve (Subp, Nam);
5377 end if;
5379 -- For an indirect call, we always invalidate checks, since we do not
5380 -- know whether the subprogram is local or global. Yes we could do
5381 -- better here, e.g. by knowing that there are no local subprograms,
5382 -- but it does not seem worth the effort. Similarly, we kill all
5383 -- knowledge of current constant values.
5385 Kill_Current_Values;
5387 -- If this is a procedure call which is really an entry call, do
5388 -- the conversion of the procedure call to an entry call. Protected
5389 -- operations use the same circuitry because the name in the call
5390 -- can be an arbitrary expression with special resolution rules.
5392 elsif Nkind_In (Subp, N_Selected_Component, N_Indexed_Component)
5393 or else (Is_Entity_Name (Subp)
5394 and then Ekind (Entity (Subp)) = E_Entry)
5395 then
5396 Resolve_Entry_Call (N, Typ);
5397 Check_Elab_Call (N);
5399 -- Kill checks and constant values, as above for indirect case
5400 -- Who knows what happens when another task is activated?
5402 Kill_Current_Values;
5403 return;
5405 -- Normal subprogram call with name established in Resolve
5407 elsif not (Is_Type (Entity (Subp))) then
5408 Nam := Entity (Subp);
5409 Set_Entity_With_Checks (Subp, Nam);
5411 -- Otherwise we must have the case of an overloaded call
5413 else
5414 pragma Assert (Is_Overloaded (Subp));
5416 -- Initialize Nam to prevent warning (we know it will be assigned
5417 -- in the loop below, but the compiler does not know that).
5419 Nam := Empty;
5421 Get_First_Interp (Subp, I, It);
5422 while Present (It.Typ) loop
5423 if Covers (Typ, It.Typ) then
5424 Nam := It.Nam;
5425 Set_Entity_With_Checks (Subp, Nam);
5426 exit;
5427 end if;
5429 Get_Next_Interp (I, It);
5430 end loop;
5431 end if;
5433 if Is_Access_Subprogram_Type (Base_Type (Etype (Nam)))
5434 and then not Is_Access_Subprogram_Type (Base_Type (Typ))
5435 and then Nkind (Subp) /= N_Explicit_Dereference
5436 and then Present (Parameter_Associations (N))
5437 then
5438 -- The prefix is a parameterless function call that returns an access
5439 -- to subprogram. If parameters are present in the current call, add
5440 -- add an explicit dereference. We use the base type here because
5441 -- within an instance these may be subtypes.
5443 -- The dereference is added either in Analyze_Call or here. Should
5444 -- be consolidated ???
5446 Set_Is_Overloaded (Subp, False);
5447 Set_Etype (Subp, Etype (Nam));
5448 Insert_Explicit_Dereference (Subp);
5449 Nam := Designated_Type (Etype (Nam));
5450 Resolve (Subp, Nam);
5451 end if;
5453 -- Check that a call to Current_Task does not occur in an entry body
5455 if Is_RTE (Nam, RE_Current_Task) then
5456 declare
5457 P : Node_Id;
5459 begin
5460 P := N;
5461 loop
5462 P := Parent (P);
5464 -- Exclude calls that occur within the default of a formal
5465 -- parameter of the entry, since those are evaluated outside
5466 -- of the body.
5468 exit when No (P) or else Nkind (P) = N_Parameter_Specification;
5470 if Nkind (P) = N_Entry_Body
5471 or else (Nkind (P) = N_Subprogram_Body
5472 and then Is_Entry_Barrier_Function (P))
5473 then
5474 Rtype := Etype (N);
5475 Error_Msg_Warn := SPARK_Mode /= On;
5476 Error_Msg_NE
5477 ("& should not be used in entry body (RM C.7(17))<<",
5478 N, Nam);
5479 Error_Msg_NE ("\Program_Error [<<", N, Nam);
5480 Rewrite (N,
5481 Make_Raise_Program_Error (Loc,
5482 Reason => PE_Current_Task_In_Entry_Body));
5483 Set_Etype (N, Rtype);
5484 return;
5485 end if;
5486 end loop;
5487 end;
5488 end if;
5490 -- Check that a procedure call does not occur in the context of the
5491 -- entry call statement of a conditional or timed entry call. Note that
5492 -- the case of a call to a subprogram renaming of an entry will also be
5493 -- rejected. The test for N not being an N_Entry_Call_Statement is
5494 -- defensive, covering the possibility that the processing of entry
5495 -- calls might reach this point due to later modifications of the code
5496 -- above.
5498 if Nkind (Parent (N)) = N_Entry_Call_Alternative
5499 and then Nkind (N) /= N_Entry_Call_Statement
5500 and then Entry_Call_Statement (Parent (N)) = N
5501 then
5502 if Ada_Version < Ada_2005 then
5503 Error_Msg_N ("entry call required in select statement", N);
5505 -- Ada 2005 (AI-345): If a procedure_call_statement is used
5506 -- for a procedure_or_entry_call, the procedure_name or
5507 -- procedure_prefix of the procedure_call_statement shall denote
5508 -- an entry renamed by a procedure, or (a view of) a primitive
5509 -- subprogram of a limited interface whose first parameter is
5510 -- a controlling parameter.
5512 elsif Nkind (N) = N_Procedure_Call_Statement
5513 and then not Is_Renamed_Entry (Nam)
5514 and then not Is_Controlling_Limited_Procedure (Nam)
5515 then
5516 Error_Msg_N
5517 ("entry call or dispatching primitive of interface required", N);
5518 end if;
5519 end if;
5521 -- If the SPARK_05 restriction is active, we are not allowed
5522 -- to have a call to a subprogram before we see its completion.
5524 if not Has_Completion (Nam)
5525 and then Restriction_Check_Required (SPARK_05)
5527 -- Don't flag strange internal calls
5529 and then Comes_From_Source (N)
5530 and then Comes_From_Source (Nam)
5532 -- Only flag calls in extended main source
5534 and then In_Extended_Main_Source_Unit (Nam)
5535 and then In_Extended_Main_Source_Unit (N)
5537 -- Exclude enumeration literals from this processing
5539 and then Ekind (Nam) /= E_Enumeration_Literal
5540 then
5541 Check_SPARK_Restriction
5542 ("call to subprogram cannot appear before its body", N);
5543 end if;
5545 -- Check that this is not a call to a protected procedure or entry from
5546 -- within a protected function.
5548 Check_Internal_Protected_Use (N, Nam);
5550 -- Freeze the subprogram name if not in a spec-expression. Note that
5551 -- we freeze procedure calls as well as function calls. Procedure calls
5552 -- are not frozen according to the rules (RM 13.14(14)) because it is
5553 -- impossible to have a procedure call to a non-frozen procedure in
5554 -- pure Ada, but in the code that we generate in the expander, this
5555 -- rule needs extending because we can generate procedure calls that
5556 -- need freezing.
5558 -- In Ada 2012, expression functions may be called within pre/post
5559 -- conditions of subsequent functions or expression functions. Such
5560 -- calls do not freeze when they appear within generated bodies,
5561 -- (including the body of another expression function) which would
5562 -- place the freeze node in the wrong scope. An expression function
5563 -- is frozen in the usual fashion, by the appearance of a real body,
5564 -- or at the end of a declarative part.
5566 if Is_Entity_Name (Subp) and then not In_Spec_Expression
5567 and then not Is_Expression_Function (Current_Scope)
5568 and then
5569 (not Is_Expression_Function (Entity (Subp))
5570 or else Scope (Entity (Subp)) = Current_Scope)
5571 then
5572 Freeze_Expression (Subp);
5573 end if;
5575 -- For a predefined operator, the type of the result is the type imposed
5576 -- by context, except for a predefined operation on universal fixed.
5577 -- Otherwise The type of the call is the type returned by the subprogram
5578 -- being called.
5580 if Is_Predefined_Op (Nam) then
5581 if Etype (N) /= Universal_Fixed then
5582 Set_Etype (N, Typ);
5583 end if;
5585 -- If the subprogram returns an array type, and the context requires the
5586 -- component type of that array type, the node is really an indexing of
5587 -- the parameterless call. Resolve as such. A pathological case occurs
5588 -- when the type of the component is an access to the array type. In
5589 -- this case the call is truly ambiguous.
5591 elsif (Needs_No_Actuals (Nam) or else Needs_One_Actual (Nam))
5592 and then
5593 ((Is_Array_Type (Etype (Nam))
5594 and then Covers (Typ, Component_Type (Etype (Nam))))
5595 or else
5596 (Is_Access_Type (Etype (Nam))
5597 and then Is_Array_Type (Designated_Type (Etype (Nam)))
5598 and then
5599 Covers (Typ, Component_Type (Designated_Type (Etype (Nam))))))
5600 then
5601 declare
5602 Index_Node : Node_Id;
5603 New_Subp : Node_Id;
5604 Ret_Type : constant Entity_Id := Etype (Nam);
5606 begin
5607 if Is_Access_Type (Ret_Type)
5608 and then Ret_Type = Component_Type (Designated_Type (Ret_Type))
5609 then
5610 Error_Msg_N
5611 ("cannot disambiguate function call and indexing", N);
5612 else
5613 New_Subp := Relocate_Node (Subp);
5615 -- The called entity may be an explicit dereference, in which
5616 -- case there is no entity to set.
5618 if Nkind (New_Subp) /= N_Explicit_Dereference then
5619 Set_Entity (Subp, Nam);
5620 end if;
5622 if (Is_Array_Type (Ret_Type)
5623 and then Component_Type (Ret_Type) /= Any_Type)
5624 or else
5625 (Is_Access_Type (Ret_Type)
5626 and then
5627 Component_Type (Designated_Type (Ret_Type)) /= Any_Type)
5628 then
5629 if Needs_No_Actuals (Nam) then
5631 -- Indexed call to a parameterless function
5633 Index_Node :=
5634 Make_Indexed_Component (Loc,
5635 Prefix =>
5636 Make_Function_Call (Loc,
5637 Name => New_Subp),
5638 Expressions => Parameter_Associations (N));
5639 else
5640 -- An Ada 2005 prefixed call to a primitive operation
5641 -- whose first parameter is the prefix. This prefix was
5642 -- prepended to the parameter list, which is actually a
5643 -- list of indexes. Remove the prefix in order to build
5644 -- the proper indexed component.
5646 Index_Node :=
5647 Make_Indexed_Component (Loc,
5648 Prefix =>
5649 Make_Function_Call (Loc,
5650 Name => New_Subp,
5651 Parameter_Associations =>
5652 New_List
5653 (Remove_Head (Parameter_Associations (N)))),
5654 Expressions => Parameter_Associations (N));
5655 end if;
5657 -- Preserve the parenthesis count of the node
5659 Set_Paren_Count (Index_Node, Paren_Count (N));
5661 -- Since we are correcting a node classification error made
5662 -- by the parser, we call Replace rather than Rewrite.
5664 Replace (N, Index_Node);
5666 Set_Etype (Prefix (N), Ret_Type);
5667 Set_Etype (N, Typ);
5668 Resolve_Indexed_Component (N, Typ);
5669 Check_Elab_Call (Prefix (N));
5670 end if;
5671 end if;
5673 return;
5674 end;
5676 else
5677 Set_Etype (N, Etype (Nam));
5678 end if;
5680 -- In the case where the call is to an overloaded subprogram, Analyze
5681 -- calls Normalize_Actuals once per overloaded subprogram. Therefore in
5682 -- such a case Normalize_Actuals needs to be called once more to order
5683 -- the actuals correctly. Otherwise the call will have the ordering
5684 -- given by the last overloaded subprogram whether this is the correct
5685 -- one being called or not.
5687 if Is_Overloaded (Subp) then
5688 Normalize_Actuals (N, Nam, False, Norm_OK);
5689 pragma Assert (Norm_OK);
5690 end if;
5692 -- In any case, call is fully resolved now. Reset Overload flag, to
5693 -- prevent subsequent overload resolution if node is analyzed again
5695 Set_Is_Overloaded (Subp, False);
5696 Set_Is_Overloaded (N, False);
5698 -- If we are calling the current subprogram from immediately within its
5699 -- body, then that is the case where we can sometimes detect cases of
5700 -- infinite recursion statically. Do not try this in case restriction
5701 -- No_Recursion is in effect anyway, and do it only for source calls.
5703 if Comes_From_Source (N) then
5704 Scop := Current_Scope;
5706 -- Check violation of SPARK_05 restriction which does not permit
5707 -- a subprogram body to contain a call to the subprogram directly.
5709 if Restriction_Check_Required (SPARK_05)
5710 and then Same_Or_Aliased_Subprograms (Nam, Scop)
5711 then
5712 Check_SPARK_Restriction
5713 ("subprogram may not contain direct call to itself", N);
5714 end if;
5716 -- Issue warning for possible infinite recursion in the absence
5717 -- of the No_Recursion restriction.
5719 if Same_Or_Aliased_Subprograms (Nam, Scop)
5720 and then not Restriction_Active (No_Recursion)
5721 and then Check_Infinite_Recursion (N)
5722 then
5723 -- Here we detected and flagged an infinite recursion, so we do
5724 -- not need to test the case below for further warnings. Also we
5725 -- are all done if we now have a raise SE node.
5727 if Nkind (N) = N_Raise_Storage_Error then
5728 return;
5729 end if;
5731 -- If call is to immediately containing subprogram, then check for
5732 -- the case of a possible run-time detectable infinite recursion.
5734 else
5735 Scope_Loop : while Scop /= Standard_Standard loop
5736 if Same_Or_Aliased_Subprograms (Nam, Scop) then
5738 -- Although in general case, recursion is not statically
5739 -- checkable, the case of calling an immediately containing
5740 -- subprogram is easy to catch.
5742 Check_Restriction (No_Recursion, N);
5744 -- If the recursive call is to a parameterless subprogram,
5745 -- then even if we can't statically detect infinite
5746 -- recursion, this is pretty suspicious, and we output a
5747 -- warning. Furthermore, we will try later to detect some
5748 -- cases here at run time by expanding checking code (see
5749 -- Detect_Infinite_Recursion in package Exp_Ch6).
5751 -- If the recursive call is within a handler, do not emit a
5752 -- warning, because this is a common idiom: loop until input
5753 -- is correct, catch illegal input in handler and restart.
5755 if No (First_Formal (Nam))
5756 and then Etype (Nam) = Standard_Void_Type
5757 and then not Error_Posted (N)
5758 and then Nkind (Parent (N)) /= N_Exception_Handler
5759 then
5760 -- For the case of a procedure call. We give the message
5761 -- only if the call is the first statement in a sequence
5762 -- of statements, or if all previous statements are
5763 -- simple assignments. This is simply a heuristic to
5764 -- decrease false positives, without losing too many good
5765 -- warnings. The idea is that these previous statements
5766 -- may affect global variables the procedure depends on.
5767 -- We also exclude raise statements, that may arise from
5768 -- constraint checks and are probably unrelated to the
5769 -- intended control flow.
5771 if Nkind (N) = N_Procedure_Call_Statement
5772 and then Is_List_Member (N)
5773 then
5774 declare
5775 P : Node_Id;
5776 begin
5777 P := Prev (N);
5778 while Present (P) loop
5779 if not Nkind_In (P,
5780 N_Assignment_Statement,
5781 N_Raise_Constraint_Error)
5782 then
5783 exit Scope_Loop;
5784 end if;
5786 Prev (P);
5787 end loop;
5788 end;
5789 end if;
5791 -- Do not give warning if we are in a conditional context
5793 declare
5794 K : constant Node_Kind := Nkind (Parent (N));
5795 begin
5796 if (K = N_Loop_Statement
5797 and then Present (Iteration_Scheme (Parent (N))))
5798 or else K = N_If_Statement
5799 or else K = N_Elsif_Part
5800 or else K = N_Case_Statement_Alternative
5801 then
5802 exit Scope_Loop;
5803 end if;
5804 end;
5806 -- Here warning is to be issued
5808 Set_Has_Recursive_Call (Nam);
5809 Error_Msg_Warn := SPARK_Mode /= On;
5810 Error_Msg_N ("possible infinite recursion<<!", N);
5811 Error_Msg_N ("\Storage_Error ]<<!", N);
5812 end if;
5814 exit Scope_Loop;
5815 end if;
5817 Scop := Scope (Scop);
5818 end loop Scope_Loop;
5819 end if;
5820 end if;
5822 -- Check obsolescent reference to Ada.Characters.Handling subprogram
5824 Check_Obsolescent_2005_Entity (Nam, Subp);
5826 -- If subprogram name is a predefined operator, it was given in
5827 -- functional notation. Replace call node with operator node, so
5828 -- that actuals can be resolved appropriately.
5830 if Is_Predefined_Op (Nam) or else Ekind (Nam) = E_Operator then
5831 Make_Call_Into_Operator (N, Typ, Entity (Name (N)));
5832 return;
5834 elsif Present (Alias (Nam))
5835 and then Is_Predefined_Op (Alias (Nam))
5836 then
5837 Resolve_Actuals (N, Nam);
5838 Make_Call_Into_Operator (N, Typ, Alias (Nam));
5839 return;
5840 end if;
5842 -- Create a transient scope if the resulting type requires it
5844 -- There are several notable exceptions:
5846 -- a) In init procs, the transient scope overhead is not needed, and is
5847 -- even incorrect when the call is a nested initialization call for a
5848 -- component whose expansion may generate adjust calls. However, if the
5849 -- call is some other procedure call within an initialization procedure
5850 -- (for example a call to Create_Task in the init_proc of the task
5851 -- run-time record) a transient scope must be created around this call.
5853 -- b) Enumeration literal pseudo-calls need no transient scope
5855 -- c) Intrinsic subprograms (Unchecked_Conversion and source info
5856 -- functions) do not use the secondary stack even though the return
5857 -- type may be unconstrained.
5859 -- d) Calls to a build-in-place function, since such functions may
5860 -- allocate their result directly in a target object, and cases where
5861 -- the result does get allocated in the secondary stack are checked for
5862 -- within the specialized Exp_Ch6 procedures for expanding those
5863 -- build-in-place calls.
5865 -- e) If the subprogram is marked Inline_Always, then even if it returns
5866 -- an unconstrained type the call does not require use of the secondary
5867 -- stack. However, inlining will only take place if the body to inline
5868 -- is already present. It may not be available if e.g. the subprogram is
5869 -- declared in a child instance.
5871 -- If this is an initialization call for a type whose construction
5872 -- uses the secondary stack, and it is not a nested call to initialize
5873 -- a component, we do need to create a transient scope for it. We
5874 -- check for this by traversing the type in Check_Initialization_Call.
5876 if Is_Inlined (Nam)
5877 and then Has_Pragma_Inline_Always (Nam)
5878 and then Nkind (Unit_Declaration_Node (Nam)) = N_Subprogram_Declaration
5879 and then Present (Body_To_Inline (Unit_Declaration_Node (Nam)))
5880 and then not Debug_Flag_Dot_K
5881 then
5882 null;
5884 elsif Is_Inlined (Nam)
5885 and then Has_Pragma_Inline (Nam)
5886 and then Nkind (Unit_Declaration_Node (Nam)) = N_Subprogram_Declaration
5887 and then Present (Body_To_Inline (Unit_Declaration_Node (Nam)))
5888 and then Debug_Flag_Dot_K
5889 then
5890 null;
5892 elsif Ekind (Nam) = E_Enumeration_Literal
5893 or else Is_Build_In_Place_Function (Nam)
5894 or else Is_Intrinsic_Subprogram (Nam)
5895 then
5896 null;
5898 elsif Expander_Active
5899 and then Is_Type (Etype (Nam))
5900 and then Requires_Transient_Scope (Etype (Nam))
5901 and then
5902 (not Within_Init_Proc
5903 or else
5904 (not Is_Init_Proc (Nam) and then Ekind (Nam) /= E_Function))
5905 then
5906 Establish_Transient_Scope (N, Sec_Stack => True);
5908 -- If the call appears within the bounds of a loop, it will
5909 -- be rewritten and reanalyzed, nothing left to do here.
5911 if Nkind (N) /= N_Function_Call then
5912 return;
5913 end if;
5915 elsif Is_Init_Proc (Nam)
5916 and then not Within_Init_Proc
5917 then
5918 Check_Initialization_Call (N, Nam);
5919 end if;
5921 -- A protected function cannot be called within the definition of the
5922 -- enclosing protected type.
5924 if Is_Protected_Type (Scope (Nam))
5925 and then In_Open_Scopes (Scope (Nam))
5926 and then not Has_Completion (Scope (Nam))
5927 then
5928 Error_Msg_NE
5929 ("& cannot be called before end of protected definition", N, Nam);
5930 end if;
5932 -- Propagate interpretation to actuals, and add default expressions
5933 -- where needed.
5935 if Present (First_Formal (Nam)) then
5936 Resolve_Actuals (N, Nam);
5938 -- Overloaded literals are rewritten as function calls, for purpose of
5939 -- resolution. After resolution, we can replace the call with the
5940 -- literal itself.
5942 elsif Ekind (Nam) = E_Enumeration_Literal then
5943 Copy_Node (Subp, N);
5944 Resolve_Entity_Name (N, Typ);
5946 -- Avoid validation, since it is a static function call
5948 Generate_Reference (Nam, Subp);
5949 return;
5950 end if;
5952 -- If the subprogram is not global, then kill all saved values and
5953 -- checks. This is a bit conservative, since in many cases we could do
5954 -- better, but it is not worth the effort. Similarly, we kill constant
5955 -- values. However we do not need to do this for internal entities
5956 -- (unless they are inherited user-defined subprograms), since they
5957 -- are not in the business of molesting local values.
5959 -- If the flag Suppress_Value_Tracking_On_Calls is set, then we also
5960 -- kill all checks and values for calls to global subprograms. This
5961 -- takes care of the case where an access to a local subprogram is
5962 -- taken, and could be passed directly or indirectly and then called
5963 -- from almost any context.
5965 -- Note: we do not do this step till after resolving the actuals. That
5966 -- way we still take advantage of the current value information while
5967 -- scanning the actuals.
5969 -- We suppress killing values if we are processing the nodes associated
5970 -- with N_Freeze_Entity nodes. Otherwise the declaration of a tagged
5971 -- type kills all the values as part of analyzing the code that
5972 -- initializes the dispatch tables.
5974 if Inside_Freezing_Actions = 0
5975 and then (not Is_Library_Level_Entity (Nam)
5976 or else Suppress_Value_Tracking_On_Call
5977 (Nearest_Dynamic_Scope (Current_Scope)))
5978 and then (Comes_From_Source (Nam)
5979 or else (Present (Alias (Nam))
5980 and then Comes_From_Source (Alias (Nam))))
5981 then
5982 Kill_Current_Values;
5983 end if;
5985 -- If we are warning about unread OUT parameters, this is the place to
5986 -- set Last_Assignment for OUT and IN OUT parameters. We have to do this
5987 -- after the above call to Kill_Current_Values (since that call clears
5988 -- the Last_Assignment field of all local variables).
5990 if (Warn_On_Modified_Unread or Warn_On_All_Unread_Out_Parameters)
5991 and then Comes_From_Source (N)
5992 and then In_Extended_Main_Source_Unit (N)
5993 then
5994 declare
5995 F : Entity_Id;
5996 A : Node_Id;
5998 begin
5999 F := First_Formal (Nam);
6000 A := First_Actual (N);
6001 while Present (F) and then Present (A) loop
6002 if Ekind_In (F, E_Out_Parameter, E_In_Out_Parameter)
6003 and then Warn_On_Modified_As_Out_Parameter (F)
6004 and then Is_Entity_Name (A)
6005 and then Present (Entity (A))
6006 and then Comes_From_Source (N)
6007 and then Safe_To_Capture_Value (N, Entity (A))
6008 then
6009 Set_Last_Assignment (Entity (A), A);
6010 end if;
6012 Next_Formal (F);
6013 Next_Actual (A);
6014 end loop;
6015 end;
6016 end if;
6018 -- If the subprogram is a primitive operation, check whether or not
6019 -- it is a correct dispatching call.
6021 if Is_Overloadable (Nam)
6022 and then Is_Dispatching_Operation (Nam)
6023 then
6024 Check_Dispatching_Call (N);
6026 elsif Ekind (Nam) /= E_Subprogram_Type
6027 and then Is_Abstract_Subprogram (Nam)
6028 and then not In_Instance
6029 then
6030 Error_Msg_NE ("cannot call abstract subprogram &!", N, Nam);
6031 end if;
6033 -- If this is a dispatching call, generate the appropriate reference,
6034 -- for better source navigation in GPS.
6036 if Is_Overloadable (Nam)
6037 and then Present (Controlling_Argument (N))
6038 then
6039 Generate_Reference (Nam, Subp, 'R');
6041 -- Normal case, not a dispatching call: generate a call reference
6043 else
6044 Generate_Reference (Nam, Subp, 's');
6045 end if;
6047 if Is_Intrinsic_Subprogram (Nam) then
6048 Check_Intrinsic_Call (N);
6049 end if;
6051 -- Check for violation of restriction No_Specific_Termination_Handlers
6052 -- and warn on a potentially blocking call to Abort_Task.
6054 if Restriction_Check_Required (No_Specific_Termination_Handlers)
6055 and then (Is_RTE (Nam, RE_Set_Specific_Handler)
6056 or else
6057 Is_RTE (Nam, RE_Specific_Handler))
6058 then
6059 Check_Restriction (No_Specific_Termination_Handlers, N);
6061 elsif Is_RTE (Nam, RE_Abort_Task) then
6062 Check_Potentially_Blocking_Operation (N);
6063 end if;
6065 -- A call to Ada.Real_Time.Timing_Events.Set_Handler to set a relative
6066 -- timing event violates restriction No_Relative_Delay (AI-0211). We
6067 -- need to check the second argument to determine whether it is an
6068 -- absolute or relative timing event.
6070 if Restriction_Check_Required (No_Relative_Delay)
6071 and then Is_RTE (Nam, RE_Set_Handler)
6072 and then Is_RTE (Etype (Next_Actual (First_Actual (N))), RE_Time_Span)
6073 then
6074 Check_Restriction (No_Relative_Delay, N);
6075 end if;
6077 -- Issue an error for a call to an eliminated subprogram. This routine
6078 -- will not perform the check if the call appears within a default
6079 -- expression.
6081 Check_For_Eliminated_Subprogram (Subp, Nam);
6083 -- In formal mode, the primitive operations of a tagged type or type
6084 -- extension do not include functions that return the tagged type.
6086 if Nkind (N) = N_Function_Call
6087 and then Is_Tagged_Type (Etype (N))
6088 and then Is_Entity_Name (Name (N))
6089 and then Is_Inherited_Operation_For_Type (Entity (Name (N)), Etype (N))
6090 then
6091 Check_SPARK_Restriction ("function not inherited", N);
6092 end if;
6094 -- Implement rule in 12.5.1 (23.3/2): In an instance, if the actual is
6095 -- class-wide and the call dispatches on result in a context that does
6096 -- not provide a tag, the call raises Program_Error.
6098 if Nkind (N) = N_Function_Call
6099 and then In_Instance
6100 and then Is_Generic_Actual_Type (Typ)
6101 and then Is_Class_Wide_Type (Typ)
6102 and then Has_Controlling_Result (Nam)
6103 and then Nkind (Parent (N)) = N_Object_Declaration
6104 then
6105 -- Verify that none of the formals are controlling
6107 declare
6108 Call_OK : Boolean := False;
6109 F : Entity_Id;
6111 begin
6112 F := First_Formal (Nam);
6113 while Present (F) loop
6114 if Is_Controlling_Formal (F) then
6115 Call_OK := True;
6116 exit;
6117 end if;
6119 Next_Formal (F);
6120 end loop;
6122 if not Call_OK then
6123 Error_Msg_Warn := SPARK_Mode /= On;
6124 Error_Msg_N ("!cannot determine tag of result<<", N);
6125 Error_Msg_N ("\Program_Error [<<!", N);
6126 Insert_Action (N,
6127 Make_Raise_Program_Error (Sloc (N),
6128 Reason => PE_Explicit_Raise));
6129 end if;
6130 end;
6131 end if;
6133 -- Check the dimensions of the actuals in the call. For function calls,
6134 -- propagate the dimensions from the returned type to N.
6136 Analyze_Dimension_Call (N, Nam);
6138 -- All done, evaluate call and deal with elaboration issues
6140 Eval_Call (N);
6141 Check_Elab_Call (N);
6142 Warn_On_Overlapping_Actuals (Nam, N);
6143 end Resolve_Call;
6145 -----------------------------
6146 -- Resolve_Case_Expression --
6147 -----------------------------
6149 procedure Resolve_Case_Expression (N : Node_Id; Typ : Entity_Id) is
6150 Alt : Node_Id;
6152 begin
6153 Alt := First (Alternatives (N));
6154 while Present (Alt) loop
6155 Resolve (Expression (Alt), Typ);
6156 Next (Alt);
6157 end loop;
6159 Set_Etype (N, Typ);
6160 Eval_Case_Expression (N);
6161 end Resolve_Case_Expression;
6163 -------------------------------
6164 -- Resolve_Character_Literal --
6165 -------------------------------
6167 procedure Resolve_Character_Literal (N : Node_Id; Typ : Entity_Id) is
6168 B_Typ : constant Entity_Id := Base_Type (Typ);
6169 C : Entity_Id;
6171 begin
6172 -- Verify that the character does belong to the type of the context
6174 Set_Etype (N, B_Typ);
6175 Eval_Character_Literal (N);
6177 -- Wide_Wide_Character literals must always be defined, since the set
6178 -- of wide wide character literals is complete, i.e. if a character
6179 -- literal is accepted by the parser, then it is OK for wide wide
6180 -- character (out of range character literals are rejected).
6182 if Root_Type (B_Typ) = Standard_Wide_Wide_Character then
6183 return;
6185 -- Always accept character literal for type Any_Character, which
6186 -- occurs in error situations and in comparisons of literals, both
6187 -- of which should accept all literals.
6189 elsif B_Typ = Any_Character then
6190 return;
6192 -- For Standard.Character or a type derived from it, check that the
6193 -- literal is in range.
6195 elsif Root_Type (B_Typ) = Standard_Character then
6196 if In_Character_Range (UI_To_CC (Char_Literal_Value (N))) then
6197 return;
6198 end if;
6200 -- For Standard.Wide_Character or a type derived from it, check that the
6201 -- literal is in range.
6203 elsif Root_Type (B_Typ) = Standard_Wide_Character then
6204 if In_Wide_Character_Range (UI_To_CC (Char_Literal_Value (N))) then
6205 return;
6206 end if;
6208 -- For Standard.Wide_Wide_Character or a type derived from it, we
6209 -- know the literal is in range, since the parser checked.
6211 elsif Root_Type (B_Typ) = Standard_Wide_Wide_Character then
6212 return;
6214 -- If the entity is already set, this has already been resolved in a
6215 -- generic context, or comes from expansion. Nothing else to do.
6217 elsif Present (Entity (N)) then
6218 return;
6220 -- Otherwise we have a user defined character type, and we can use the
6221 -- standard visibility mechanisms to locate the referenced entity.
6223 else
6224 C := Current_Entity (N);
6225 while Present (C) loop
6226 if Etype (C) = B_Typ then
6227 Set_Entity_With_Checks (N, C);
6228 Generate_Reference (C, N);
6229 return;
6230 end if;
6232 C := Homonym (C);
6233 end loop;
6234 end if;
6236 -- If we fall through, then the literal does not match any of the
6237 -- entries of the enumeration type. This isn't just a constraint error
6238 -- situation, it is an illegality (see RM 4.2).
6240 Error_Msg_NE
6241 ("character not defined for }", N, First_Subtype (B_Typ));
6242 end Resolve_Character_Literal;
6244 ---------------------------
6245 -- Resolve_Comparison_Op --
6246 ---------------------------
6248 -- Context requires a boolean type, and plays no role in resolution.
6249 -- Processing identical to that for equality operators. The result type is
6250 -- the base type, which matters when pathological subtypes of booleans with
6251 -- limited ranges are used.
6253 procedure Resolve_Comparison_Op (N : Node_Id; Typ : Entity_Id) is
6254 L : constant Node_Id := Left_Opnd (N);
6255 R : constant Node_Id := Right_Opnd (N);
6256 T : Entity_Id;
6258 begin
6259 -- If this is an intrinsic operation which is not predefined, use the
6260 -- types of its declared arguments to resolve the possibly overloaded
6261 -- operands. Otherwise the operands are unambiguous and specify the
6262 -- expected type.
6264 if Scope (Entity (N)) /= Standard_Standard then
6265 T := Etype (First_Entity (Entity (N)));
6267 else
6268 T := Find_Unique_Type (L, R);
6270 if T = Any_Fixed then
6271 T := Unique_Fixed_Point_Type (L);
6272 end if;
6273 end if;
6275 Set_Etype (N, Base_Type (Typ));
6276 Generate_Reference (T, N, ' ');
6278 -- Skip remaining processing if already set to Any_Type
6280 if T = Any_Type then
6281 return;
6282 end if;
6284 -- Deal with other error cases
6286 if T = Any_String or else
6287 T = Any_Composite or else
6288 T = Any_Character
6289 then
6290 if T = Any_Character then
6291 Ambiguous_Character (L);
6292 else
6293 Error_Msg_N ("ambiguous operands for comparison", N);
6294 end if;
6296 Set_Etype (N, Any_Type);
6297 return;
6298 end if;
6300 -- Resolve the operands if types OK
6302 Resolve (L, T);
6303 Resolve (R, T);
6304 Check_Unset_Reference (L);
6305 Check_Unset_Reference (R);
6306 Generate_Operator_Reference (N, T);
6307 Check_Low_Bound_Tested (N);
6309 -- In SPARK, ordering operators <, <=, >, >= are not defined for Boolean
6310 -- types or array types except String.
6312 if Is_Boolean_Type (T) then
6313 Check_SPARK_Restriction
6314 ("comparison is not defined on Boolean type", N);
6316 elsif Is_Array_Type (T)
6317 and then Base_Type (T) /= Standard_String
6318 then
6319 Check_SPARK_Restriction
6320 ("comparison is not defined on array types other than String", N);
6321 end if;
6323 -- Check comparison on unordered enumeration
6325 if Bad_Unordered_Enumeration_Reference (N, Etype (L)) then
6326 Error_Msg_Sloc := Sloc (Etype (L));
6327 Error_Msg_NE
6328 ("comparison on unordered enumeration type& declared#?U?",
6329 N, Etype (L));
6330 end if;
6332 -- Evaluate the relation (note we do this after the above check since
6333 -- this Eval call may change N to True/False.
6335 Analyze_Dimension (N);
6336 Eval_Relational_Op (N);
6337 end Resolve_Comparison_Op;
6339 -----------------------------------------
6340 -- Resolve_Discrete_Subtype_Indication --
6341 -----------------------------------------
6343 procedure Resolve_Discrete_Subtype_Indication
6344 (N : Node_Id;
6345 Typ : Entity_Id)
6347 R : Node_Id;
6348 S : Entity_Id;
6350 begin
6351 Analyze (Subtype_Mark (N));
6352 S := Entity (Subtype_Mark (N));
6354 if Nkind (Constraint (N)) /= N_Range_Constraint then
6355 Error_Msg_N ("expect range constraint for discrete type", N);
6356 Set_Etype (N, Any_Type);
6358 else
6359 R := Range_Expression (Constraint (N));
6361 if R = Error then
6362 return;
6363 end if;
6365 Analyze (R);
6367 if Base_Type (S) /= Base_Type (Typ) then
6368 Error_Msg_NE
6369 ("expect subtype of }", N, First_Subtype (Typ));
6371 -- Rewrite the constraint as a range of Typ
6372 -- to allow compilation to proceed further.
6374 Set_Etype (N, Typ);
6375 Rewrite (Low_Bound (R),
6376 Make_Attribute_Reference (Sloc (Low_Bound (R)),
6377 Prefix => New_Occurrence_Of (Typ, Sloc (R)),
6378 Attribute_Name => Name_First));
6379 Rewrite (High_Bound (R),
6380 Make_Attribute_Reference (Sloc (High_Bound (R)),
6381 Prefix => New_Occurrence_Of (Typ, Sloc (R)),
6382 Attribute_Name => Name_First));
6384 else
6385 Resolve (R, Typ);
6386 Set_Etype (N, Etype (R));
6388 -- Additionally, we must check that the bounds are compatible
6389 -- with the given subtype, which might be different from the
6390 -- type of the context.
6392 Apply_Range_Check (R, S);
6394 -- ??? If the above check statically detects a Constraint_Error
6395 -- it replaces the offending bound(s) of the range R with a
6396 -- Constraint_Error node. When the itype which uses these bounds
6397 -- is frozen the resulting call to Duplicate_Subexpr generates
6398 -- a new temporary for the bounds.
6400 -- Unfortunately there are other itypes that are also made depend
6401 -- on these bounds, so when Duplicate_Subexpr is called they get
6402 -- a forward reference to the newly created temporaries and Gigi
6403 -- aborts on such forward references. This is probably sign of a
6404 -- more fundamental problem somewhere else in either the order of
6405 -- itype freezing or the way certain itypes are constructed.
6407 -- To get around this problem we call Remove_Side_Effects right
6408 -- away if either bounds of R are a Constraint_Error.
6410 declare
6411 L : constant Node_Id := Low_Bound (R);
6412 H : constant Node_Id := High_Bound (R);
6414 begin
6415 if Nkind (L) = N_Raise_Constraint_Error then
6416 Remove_Side_Effects (L);
6417 end if;
6419 if Nkind (H) = N_Raise_Constraint_Error then
6420 Remove_Side_Effects (H);
6421 end if;
6422 end;
6424 Check_Unset_Reference (Low_Bound (R));
6425 Check_Unset_Reference (High_Bound (R));
6426 end if;
6427 end if;
6428 end Resolve_Discrete_Subtype_Indication;
6430 -------------------------
6431 -- Resolve_Entity_Name --
6432 -------------------------
6434 -- Used to resolve identifiers and expanded names
6436 procedure Resolve_Entity_Name (N : Node_Id; Typ : Entity_Id) is
6437 function Appears_In_Check (Nod : Node_Id) return Boolean;
6438 -- Denote whether an arbitrary node Nod appears in a check node
6440 ----------------------
6441 -- Appears_In_Check --
6442 ----------------------
6444 function Appears_In_Check (Nod : Node_Id) return Boolean is
6445 Par : Node_Id;
6447 begin
6448 -- Climb the parent chain looking for a check node
6450 Par := Nod;
6451 while Present (Par) loop
6452 if Nkind (Par) in N_Raise_xxx_Error then
6453 return True;
6455 -- Prevent the search from going too far
6457 elsif Is_Body_Or_Package_Declaration (Par) then
6458 exit;
6459 end if;
6461 Par := Parent (Par);
6462 end loop;
6464 return False;
6465 end Appears_In_Check;
6467 -- Local variables
6469 E : constant Entity_Id := Entity (N);
6470 Par : constant Node_Id := Parent (N);
6472 -- Start of processing for Resolve_Entity_Name
6474 begin
6475 -- If garbage from errors, set to Any_Type and return
6477 if No (E) and then Total_Errors_Detected /= 0 then
6478 Set_Etype (N, Any_Type);
6479 return;
6480 end if;
6482 -- Replace named numbers by corresponding literals. Note that this is
6483 -- the one case where Resolve_Entity_Name must reset the Etype, since
6484 -- it is currently marked as universal.
6486 if Ekind (E) = E_Named_Integer then
6487 Set_Etype (N, Typ);
6488 Eval_Named_Integer (N);
6490 elsif Ekind (E) = E_Named_Real then
6491 Set_Etype (N, Typ);
6492 Eval_Named_Real (N);
6494 -- For enumeration literals, we need to make sure that a proper style
6495 -- check is done, since such literals are overloaded, and thus we did
6496 -- not do a style check during the first phase of analysis.
6498 elsif Ekind (E) = E_Enumeration_Literal then
6499 Set_Entity_With_Checks (N, E);
6500 Eval_Entity_Name (N);
6502 -- Case of subtype name appearing as an operand in expression
6504 elsif Is_Type (E) then
6506 -- Allow use of subtype if it is a concurrent type where we are
6507 -- currently inside the body. This will eventually be expanded into a
6508 -- call to Self (for tasks) or _object (for protected objects). Any
6509 -- other use of a subtype is invalid.
6511 if Is_Concurrent_Type (E)
6512 and then In_Open_Scopes (E)
6513 then
6514 null;
6516 -- Any other use is an error
6518 else
6519 Error_Msg_N
6520 ("invalid use of subtype mark in expression or call", N);
6521 end if;
6523 -- Check discriminant use if entity is discriminant in current scope,
6524 -- i.e. discriminant of record or concurrent type currently being
6525 -- analyzed. Uses in corresponding body are unrestricted.
6527 elsif Ekind (E) = E_Discriminant
6528 and then Scope (E) = Current_Scope
6529 and then not Has_Completion (Current_Scope)
6530 then
6531 Check_Discriminant_Use (N);
6533 -- A parameterless generic function cannot appear in a context that
6534 -- requires resolution.
6536 elsif Ekind (E) = E_Generic_Function then
6537 Error_Msg_N ("illegal use of generic function", N);
6539 elsif Ekind (E) = E_Out_Parameter
6540 and then Ada_Version = Ada_83
6541 and then (Nkind (Parent (N)) in N_Op
6542 or else (Nkind (Parent (N)) = N_Assignment_Statement
6543 and then N = Expression (Parent (N)))
6544 or else Nkind (Parent (N)) = N_Explicit_Dereference)
6545 then
6546 Error_Msg_N ("(Ada 83) illegal reading of out parameter", N);
6548 -- In all other cases, just do the possible static evaluation
6550 else
6551 -- A deferred constant that appears in an expression must have a
6552 -- completion, unless it has been removed by in-place expansion of
6553 -- an aggregate.
6555 if Ekind (E) = E_Constant
6556 and then Comes_From_Source (E)
6557 and then No (Constant_Value (E))
6558 and then Is_Frozen (Etype (E))
6559 and then not In_Spec_Expression
6560 and then not Is_Imported (E)
6561 then
6562 if No_Initialization (Parent (E))
6563 or else (Present (Full_View (E))
6564 and then No_Initialization (Parent (Full_View (E))))
6565 then
6566 null;
6567 else
6568 Error_Msg_N (
6569 "deferred constant is frozen before completion", N);
6570 end if;
6571 end if;
6573 Eval_Entity_Name (N);
6574 end if;
6576 -- A volatile object subject to enabled properties Async_Writers or
6577 -- Effective_Reads must appear in a specific context. The following
6578 -- checks are only relevant when SPARK_Mode is on as they are not
6579 -- standard Ada legality rules.
6581 if SPARK_Mode = On
6582 and then Ekind_In (E, E_Abstract_State, E_Variable)
6583 and then Is_SPARK_Volatile_Object (E)
6584 and then
6585 (Async_Writers_Enabled (E)
6586 or else Effective_Reads_Enabled (E))
6587 then
6588 -- The volatile object can appear on either side of an assignment
6590 if Nkind (Par) = N_Assignment_Statement then
6591 null;
6593 -- The volatile object is part of the initialization expression of
6594 -- another object. Ensure that the climb of the parent chain came
6595 -- from the expression side and not from the name side.
6597 elsif Nkind (Par) = N_Object_Declaration
6598 and then Present (Expression (Par))
6599 and then N = Expression (Par)
6600 then
6601 null;
6603 -- The volatile object appears as an actual parameter in a call to an
6604 -- instance of Unchecked_Conversion whose result is renamed.
6606 elsif Nkind (Par) = N_Function_Call
6607 and then Is_Unchecked_Conversion_Instance (Entity (Name (Par)))
6608 and then Nkind (Parent (Par)) = N_Object_Renaming_Declaration
6609 then
6610 null;
6612 -- Assume that references to volatile objects that appear as actual
6613 -- parameters in a procedure call are always legal. The full legality
6614 -- check is done when the actuals are resolved.
6616 elsif Nkind (Par) = N_Procedure_Call_Statement then
6617 null;
6619 -- Allow references to volatile objects in various checks
6621 elsif Appears_In_Check (Par) then
6622 null;
6624 else
6625 Error_Msg_N
6626 ("volatile object cannot appear in this context "
6627 & "(SPARK RM 7.1.3(13))", N);
6628 end if;
6629 end if;
6630 end Resolve_Entity_Name;
6632 -------------------
6633 -- Resolve_Entry --
6634 -------------------
6636 procedure Resolve_Entry (Entry_Name : Node_Id) is
6637 Loc : constant Source_Ptr := Sloc (Entry_Name);
6638 Nam : Entity_Id;
6639 New_N : Node_Id;
6640 S : Entity_Id;
6641 Tsk : Entity_Id;
6642 E_Name : Node_Id;
6643 Index : Node_Id;
6645 function Actual_Index_Type (E : Entity_Id) return Entity_Id;
6646 -- If the bounds of the entry family being called depend on task
6647 -- discriminants, build a new index subtype where a discriminant is
6648 -- replaced with the value of the discriminant of the target task.
6649 -- The target task is the prefix of the entry name in the call.
6651 -----------------------
6652 -- Actual_Index_Type --
6653 -----------------------
6655 function Actual_Index_Type (E : Entity_Id) return Entity_Id is
6656 Typ : constant Entity_Id := Entry_Index_Type (E);
6657 Tsk : constant Entity_Id := Scope (E);
6658 Lo : constant Node_Id := Type_Low_Bound (Typ);
6659 Hi : constant Node_Id := Type_High_Bound (Typ);
6660 New_T : Entity_Id;
6662 function Actual_Discriminant_Ref (Bound : Node_Id) return Node_Id;
6663 -- If the bound is given by a discriminant, replace with a reference
6664 -- to the discriminant of the same name in the target task. If the
6665 -- entry name is the target of a requeue statement and the entry is
6666 -- in the current protected object, the bound to be used is the
6667 -- discriminal of the object (see Apply_Range_Checks for details of
6668 -- the transformation).
6670 -----------------------------
6671 -- Actual_Discriminant_Ref --
6672 -----------------------------
6674 function Actual_Discriminant_Ref (Bound : Node_Id) return Node_Id is
6675 Typ : constant Entity_Id := Etype (Bound);
6676 Ref : Node_Id;
6678 begin
6679 Remove_Side_Effects (Bound);
6681 if not Is_Entity_Name (Bound)
6682 or else Ekind (Entity (Bound)) /= E_Discriminant
6683 then
6684 return Bound;
6686 elsif Is_Protected_Type (Tsk)
6687 and then In_Open_Scopes (Tsk)
6688 and then Nkind (Parent (Entry_Name)) = N_Requeue_Statement
6689 then
6690 -- Note: here Bound denotes a discriminant of the corresponding
6691 -- record type tskV, whose discriminal is a formal of the
6692 -- init-proc tskVIP. What we want is the body discriminal,
6693 -- which is associated to the discriminant of the original
6694 -- concurrent type tsk.
6696 return New_Occurrence_Of
6697 (Find_Body_Discriminal (Entity (Bound)), Loc);
6699 else
6700 Ref :=
6701 Make_Selected_Component (Loc,
6702 Prefix => New_Copy_Tree (Prefix (Prefix (Entry_Name))),
6703 Selector_Name => New_Occurrence_Of (Entity (Bound), Loc));
6704 Analyze (Ref);
6705 Resolve (Ref, Typ);
6706 return Ref;
6707 end if;
6708 end Actual_Discriminant_Ref;
6710 -- Start of processing for Actual_Index_Type
6712 begin
6713 if not Has_Discriminants (Tsk)
6714 or else (not Is_Entity_Name (Lo) and then not Is_Entity_Name (Hi))
6715 then
6716 return Entry_Index_Type (E);
6718 else
6719 New_T := Create_Itype (Ekind (Typ), Parent (Entry_Name));
6720 Set_Etype (New_T, Base_Type (Typ));
6721 Set_Size_Info (New_T, Typ);
6722 Set_RM_Size (New_T, RM_Size (Typ));
6723 Set_Scalar_Range (New_T,
6724 Make_Range (Sloc (Entry_Name),
6725 Low_Bound => Actual_Discriminant_Ref (Lo),
6726 High_Bound => Actual_Discriminant_Ref (Hi)));
6728 return New_T;
6729 end if;
6730 end Actual_Index_Type;
6732 -- Start of processing of Resolve_Entry
6734 begin
6735 -- Find name of entry being called, and resolve prefix of name with its
6736 -- own type. The prefix can be overloaded, and the name and signature of
6737 -- the entry must be taken into account.
6739 if Nkind (Entry_Name) = N_Indexed_Component then
6741 -- Case of dealing with entry family within the current tasks
6743 E_Name := Prefix (Entry_Name);
6745 else
6746 E_Name := Entry_Name;
6747 end if;
6749 if Is_Entity_Name (E_Name) then
6751 -- Entry call to an entry (or entry family) in the current task. This
6752 -- is legal even though the task will deadlock. Rewrite as call to
6753 -- current task.
6755 -- This can also be a call to an entry in an enclosing task. If this
6756 -- is a single task, we have to retrieve its name, because the scope
6757 -- of the entry is the task type, not the object. If the enclosing
6758 -- task is a task type, the identity of the task is given by its own
6759 -- self variable.
6761 -- Finally this can be a requeue on an entry of the same task or
6762 -- protected object.
6764 S := Scope (Entity (E_Name));
6766 for J in reverse 0 .. Scope_Stack.Last loop
6767 if Is_Task_Type (Scope_Stack.Table (J).Entity)
6768 and then not Comes_From_Source (S)
6769 then
6770 -- S is an enclosing task or protected object. The concurrent
6771 -- declaration has been converted into a type declaration, and
6772 -- the object itself has an object declaration that follows
6773 -- the type in the same declarative part.
6775 Tsk := Next_Entity (S);
6776 while Etype (Tsk) /= S loop
6777 Next_Entity (Tsk);
6778 end loop;
6780 S := Tsk;
6781 exit;
6783 elsif S = Scope_Stack.Table (J).Entity then
6785 -- Call to current task. Will be transformed into call to Self
6787 exit;
6789 end if;
6790 end loop;
6792 New_N :=
6793 Make_Selected_Component (Loc,
6794 Prefix => New_Occurrence_Of (S, Loc),
6795 Selector_Name =>
6796 New_Occurrence_Of (Entity (E_Name), Loc));
6797 Rewrite (E_Name, New_N);
6798 Analyze (E_Name);
6800 elsif Nkind (Entry_Name) = N_Selected_Component
6801 and then Is_Overloaded (Prefix (Entry_Name))
6802 then
6803 -- Use the entry name (which must be unique at this point) to find
6804 -- the prefix that returns the corresponding task/protected type.
6806 declare
6807 Pref : constant Node_Id := Prefix (Entry_Name);
6808 Ent : constant Entity_Id := Entity (Selector_Name (Entry_Name));
6809 I : Interp_Index;
6810 It : Interp;
6812 begin
6813 Get_First_Interp (Pref, I, It);
6814 while Present (It.Typ) loop
6815 if Scope (Ent) = It.Typ then
6816 Set_Etype (Pref, It.Typ);
6817 exit;
6818 end if;
6820 Get_Next_Interp (I, It);
6821 end loop;
6822 end;
6823 end if;
6825 if Nkind (Entry_Name) = N_Selected_Component then
6826 Resolve (Prefix (Entry_Name));
6828 else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
6829 Nam := Entity (Selector_Name (Prefix (Entry_Name)));
6830 Resolve (Prefix (Prefix (Entry_Name)));
6831 Index := First (Expressions (Entry_Name));
6832 Resolve (Index, Entry_Index_Type (Nam));
6834 -- Up to this point the expression could have been the actual in a
6835 -- simple entry call, and be given by a named association.
6837 if Nkind (Index) = N_Parameter_Association then
6838 Error_Msg_N ("expect expression for entry index", Index);
6839 else
6840 Apply_Range_Check (Index, Actual_Index_Type (Nam));
6841 end if;
6842 end if;
6843 end Resolve_Entry;
6845 ------------------------
6846 -- Resolve_Entry_Call --
6847 ------------------------
6849 procedure Resolve_Entry_Call (N : Node_Id; Typ : Entity_Id) is
6850 Entry_Name : constant Node_Id := Name (N);
6851 Loc : constant Source_Ptr := Sloc (Entry_Name);
6852 Actuals : List_Id;
6853 First_Named : Node_Id;
6854 Nam : Entity_Id;
6855 Norm_OK : Boolean;
6856 Obj : Node_Id;
6857 Was_Over : Boolean;
6859 begin
6860 -- We kill all checks here, because it does not seem worth the effort to
6861 -- do anything better, an entry call is a big operation.
6863 Kill_All_Checks;
6865 -- Processing of the name is similar for entry calls and protected
6866 -- operation calls. Once the entity is determined, we can complete
6867 -- the resolution of the actuals.
6869 -- The selector may be overloaded, in the case of a protected object
6870 -- with overloaded functions. The type of the context is used for
6871 -- resolution.
6873 if Nkind (Entry_Name) = N_Selected_Component
6874 and then Is_Overloaded (Selector_Name (Entry_Name))
6875 and then Typ /= Standard_Void_Type
6876 then
6877 declare
6878 I : Interp_Index;
6879 It : Interp;
6881 begin
6882 Get_First_Interp (Selector_Name (Entry_Name), I, It);
6883 while Present (It.Typ) loop
6884 if Covers (Typ, It.Typ) then
6885 Set_Entity (Selector_Name (Entry_Name), It.Nam);
6886 Set_Etype (Entry_Name, It.Typ);
6888 Generate_Reference (It.Typ, N, ' ');
6889 end if;
6891 Get_Next_Interp (I, It);
6892 end loop;
6893 end;
6894 end if;
6896 Resolve_Entry (Entry_Name);
6898 if Nkind (Entry_Name) = N_Selected_Component then
6900 -- Simple entry call
6902 Nam := Entity (Selector_Name (Entry_Name));
6903 Obj := Prefix (Entry_Name);
6904 Was_Over := Is_Overloaded (Selector_Name (Entry_Name));
6906 else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
6908 -- Call to member of entry family
6910 Nam := Entity (Selector_Name (Prefix (Entry_Name)));
6911 Obj := Prefix (Prefix (Entry_Name));
6912 Was_Over := Is_Overloaded (Selector_Name (Prefix (Entry_Name)));
6913 end if;
6915 -- We cannot in general check the maximum depth of protected entry calls
6916 -- at compile time. But we can tell that any protected entry call at all
6917 -- violates a specified nesting depth of zero.
6919 if Is_Protected_Type (Scope (Nam)) then
6920 Check_Restriction (Max_Entry_Queue_Length, N);
6921 end if;
6923 -- Use context type to disambiguate a protected function that can be
6924 -- called without actuals and that returns an array type, and where the
6925 -- argument list may be an indexing of the returned value.
6927 if Ekind (Nam) = E_Function
6928 and then Needs_No_Actuals (Nam)
6929 and then Present (Parameter_Associations (N))
6930 and then
6931 ((Is_Array_Type (Etype (Nam))
6932 and then Covers (Typ, Component_Type (Etype (Nam))))
6934 or else (Is_Access_Type (Etype (Nam))
6935 and then Is_Array_Type (Designated_Type (Etype (Nam)))
6936 and then
6937 Covers
6938 (Typ,
6939 Component_Type (Designated_Type (Etype (Nam))))))
6940 then
6941 declare
6942 Index_Node : Node_Id;
6944 begin
6945 Index_Node :=
6946 Make_Indexed_Component (Loc,
6947 Prefix =>
6948 Make_Function_Call (Loc, Name => Relocate_Node (Entry_Name)),
6949 Expressions => Parameter_Associations (N));
6951 -- Since we are correcting a node classification error made by the
6952 -- parser, we call Replace rather than Rewrite.
6954 Replace (N, Index_Node);
6955 Set_Etype (Prefix (N), Etype (Nam));
6956 Set_Etype (N, Typ);
6957 Resolve_Indexed_Component (N, Typ);
6958 return;
6959 end;
6960 end if;
6962 if Ekind_In (Nam, E_Entry, E_Entry_Family)
6963 and then Present (PPC_Wrapper (Nam))
6964 and then Current_Scope /= PPC_Wrapper (Nam)
6965 then
6966 -- Rewrite as call to the precondition wrapper, adding the task
6967 -- object to the list of actuals. If the call is to a member of an
6968 -- entry family, include the index as well.
6970 declare
6971 New_Call : Node_Id;
6972 New_Actuals : List_Id;
6974 begin
6975 New_Actuals := New_List (Obj);
6977 if Nkind (Entry_Name) = N_Indexed_Component then
6978 Append_To (New_Actuals,
6979 New_Copy_Tree (First (Expressions (Entry_Name))));
6980 end if;
6982 Append_List (Parameter_Associations (N), New_Actuals);
6983 New_Call :=
6984 Make_Procedure_Call_Statement (Loc,
6985 Name =>
6986 New_Occurrence_Of (PPC_Wrapper (Nam), Loc),
6987 Parameter_Associations => New_Actuals);
6988 Rewrite (N, New_Call);
6989 Analyze_And_Resolve (N);
6990 return;
6991 end;
6992 end if;
6994 -- The operation name may have been overloaded. Order the actuals
6995 -- according to the formals of the resolved entity, and set the return
6996 -- type to that of the operation.
6998 if Was_Over then
6999 Normalize_Actuals (N, Nam, False, Norm_OK);
7000 pragma Assert (Norm_OK);
7001 Set_Etype (N, Etype (Nam));
7002 end if;
7004 Resolve_Actuals (N, Nam);
7005 Check_Internal_Protected_Use (N, Nam);
7007 -- Create a call reference to the entry
7009 Generate_Reference (Nam, Entry_Name, 's');
7011 if Ekind_In (Nam, E_Entry, E_Entry_Family) then
7012 Check_Potentially_Blocking_Operation (N);
7013 end if;
7015 -- Verify that a procedure call cannot masquerade as an entry
7016 -- call where an entry call is expected.
7018 if Ekind (Nam) = E_Procedure then
7019 if Nkind (Parent (N)) = N_Entry_Call_Alternative
7020 and then N = Entry_Call_Statement (Parent (N))
7021 then
7022 Error_Msg_N ("entry call required in select statement", N);
7024 elsif Nkind (Parent (N)) = N_Triggering_Alternative
7025 and then N = Triggering_Statement (Parent (N))
7026 then
7027 Error_Msg_N ("triggering statement cannot be procedure call", N);
7029 elsif Ekind (Scope (Nam)) = E_Task_Type
7030 and then not In_Open_Scopes (Scope (Nam))
7031 then
7032 Error_Msg_N ("task has no entry with this name", Entry_Name);
7033 end if;
7034 end if;
7036 -- After resolution, entry calls and protected procedure calls are
7037 -- changed into entry calls, for expansion. The structure of the node
7038 -- does not change, so it can safely be done in place. Protected
7039 -- function calls must keep their structure because they are
7040 -- subexpressions.
7042 if Ekind (Nam) /= E_Function then
7044 -- A protected operation that is not a function may modify the
7045 -- corresponding object, and cannot apply to a constant. If this
7046 -- is an internal call, the prefix is the type itself.
7048 if Is_Protected_Type (Scope (Nam))
7049 and then not Is_Variable (Obj)
7050 and then (not Is_Entity_Name (Obj)
7051 or else not Is_Type (Entity (Obj)))
7052 then
7053 Error_Msg_N
7054 ("prefix of protected procedure or entry call must be variable",
7055 Entry_Name);
7056 end if;
7058 Actuals := Parameter_Associations (N);
7059 First_Named := First_Named_Actual (N);
7061 Rewrite (N,
7062 Make_Entry_Call_Statement (Loc,
7063 Name => Entry_Name,
7064 Parameter_Associations => Actuals));
7066 Set_First_Named_Actual (N, First_Named);
7067 Set_Analyzed (N, True);
7069 -- Protected functions can return on the secondary stack, in which
7070 -- case we must trigger the transient scope mechanism.
7072 elsif Expander_Active
7073 and then Requires_Transient_Scope (Etype (Nam))
7074 then
7075 Establish_Transient_Scope (N, Sec_Stack => True);
7076 end if;
7077 end Resolve_Entry_Call;
7079 -------------------------
7080 -- Resolve_Equality_Op --
7081 -------------------------
7083 -- Both arguments must have the same type, and the boolean context does
7084 -- not participate in the resolution. The first pass verifies that the
7085 -- interpretation is not ambiguous, and the type of the left argument is
7086 -- correctly set, or is Any_Type in case of ambiguity. If both arguments
7087 -- are strings or aggregates, allocators, or Null, they are ambiguous even
7088 -- though they carry a single (universal) type. Diagnose this case here.
7090 procedure Resolve_Equality_Op (N : Node_Id; Typ : Entity_Id) is
7091 L : constant Node_Id := Left_Opnd (N);
7092 R : constant Node_Id := Right_Opnd (N);
7093 T : Entity_Id := Find_Unique_Type (L, R);
7095 procedure Check_If_Expression (Cond : Node_Id);
7096 -- The resolution rule for if expressions requires that each such must
7097 -- have a unique type. This means that if several dependent expressions
7098 -- are of a non-null anonymous access type, and the context does not
7099 -- impose an expected type (as can be the case in an equality operation)
7100 -- the expression must be rejected.
7102 procedure Explain_Redundancy (N : Node_Id);
7103 -- Attempt to explain the nature of a redundant comparison with True. If
7104 -- the expression N is too complex, this routine issues a general error
7105 -- message.
7107 function Find_Unique_Access_Type return Entity_Id;
7108 -- In the case of allocators and access attributes, the context must
7109 -- provide an indication of the specific access type to be used. If
7110 -- one operand is of such a "generic" access type, check whether there
7111 -- is a specific visible access type that has the same designated type.
7112 -- This is semantically dubious, and of no interest to any real code,
7113 -- but c48008a makes it all worthwhile.
7115 -------------------------
7116 -- Check_If_Expression --
7117 -------------------------
7119 procedure Check_If_Expression (Cond : Node_Id) is
7120 Then_Expr : Node_Id;
7121 Else_Expr : Node_Id;
7123 begin
7124 if Nkind (Cond) = N_If_Expression then
7125 Then_Expr := Next (First (Expressions (Cond)));
7126 Else_Expr := Next (Then_Expr);
7128 if Nkind (Then_Expr) /= N_Null
7129 and then Nkind (Else_Expr) /= N_Null
7130 then
7131 Error_Msg_N ("cannot determine type of if expression", Cond);
7132 end if;
7133 end if;
7134 end Check_If_Expression;
7136 ------------------------
7137 -- Explain_Redundancy --
7138 ------------------------
7140 procedure Explain_Redundancy (N : Node_Id) is
7141 Error : Name_Id;
7142 Val : Node_Id;
7143 Val_Id : Entity_Id;
7145 begin
7146 Val := N;
7148 -- Strip the operand down to an entity
7150 loop
7151 if Nkind (Val) = N_Selected_Component then
7152 Val := Selector_Name (Val);
7153 else
7154 exit;
7155 end if;
7156 end loop;
7158 -- The construct denotes an entity
7160 if Is_Entity_Name (Val) and then Present (Entity (Val)) then
7161 Val_Id := Entity (Val);
7163 -- Do not generate an error message when the comparison is done
7164 -- against the enumeration literal Standard.True.
7166 if Ekind (Val_Id) /= E_Enumeration_Literal then
7168 -- Build a customized error message
7170 Name_Len := 0;
7171 Add_Str_To_Name_Buffer ("?r?");
7173 if Ekind (Val_Id) = E_Component then
7174 Add_Str_To_Name_Buffer ("component ");
7176 elsif Ekind (Val_Id) = E_Constant then
7177 Add_Str_To_Name_Buffer ("constant ");
7179 elsif Ekind (Val_Id) = E_Discriminant then
7180 Add_Str_To_Name_Buffer ("discriminant ");
7182 elsif Is_Formal (Val_Id) then
7183 Add_Str_To_Name_Buffer ("parameter ");
7185 elsif Ekind (Val_Id) = E_Variable then
7186 Add_Str_To_Name_Buffer ("variable ");
7187 end if;
7189 Add_Str_To_Name_Buffer ("& is always True!");
7190 Error := Name_Find;
7192 Error_Msg_NE (Get_Name_String (Error), Val, Val_Id);
7193 end if;
7195 -- The construct is too complex to disect, issue a general message
7197 else
7198 Error_Msg_N ("?r?expression is always True!", Val);
7199 end if;
7200 end Explain_Redundancy;
7202 -----------------------------
7203 -- Find_Unique_Access_Type --
7204 -----------------------------
7206 function Find_Unique_Access_Type return Entity_Id is
7207 Acc : Entity_Id;
7208 E : Entity_Id;
7209 S : Entity_Id;
7211 begin
7212 if Ekind_In (Etype (R), E_Allocator_Type,
7213 E_Access_Attribute_Type)
7214 then
7215 Acc := Designated_Type (Etype (R));
7217 elsif Ekind_In (Etype (L), E_Allocator_Type,
7218 E_Access_Attribute_Type)
7219 then
7220 Acc := Designated_Type (Etype (L));
7221 else
7222 return Empty;
7223 end if;
7225 S := Current_Scope;
7226 while S /= Standard_Standard loop
7227 E := First_Entity (S);
7228 while Present (E) loop
7229 if Is_Type (E)
7230 and then Is_Access_Type (E)
7231 and then Ekind (E) /= E_Allocator_Type
7232 and then Designated_Type (E) = Base_Type (Acc)
7233 then
7234 return E;
7235 end if;
7237 Next_Entity (E);
7238 end loop;
7240 S := Scope (S);
7241 end loop;
7243 return Empty;
7244 end Find_Unique_Access_Type;
7246 -- Start of processing for Resolve_Equality_Op
7248 begin
7249 Set_Etype (N, Base_Type (Typ));
7250 Generate_Reference (T, N, ' ');
7252 if T = Any_Fixed then
7253 T := Unique_Fixed_Point_Type (L);
7254 end if;
7256 if T /= Any_Type then
7257 if T = Any_String or else
7258 T = Any_Composite or else
7259 T = Any_Character
7260 then
7261 if T = Any_Character then
7262 Ambiguous_Character (L);
7263 else
7264 Error_Msg_N ("ambiguous operands for equality", N);
7265 end if;
7267 Set_Etype (N, Any_Type);
7268 return;
7270 elsif T = Any_Access
7271 or else Ekind_In (T, E_Allocator_Type, E_Access_Attribute_Type)
7272 then
7273 T := Find_Unique_Access_Type;
7275 if No (T) then
7276 Error_Msg_N ("ambiguous operands for equality", N);
7277 Set_Etype (N, Any_Type);
7278 return;
7279 end if;
7281 -- If expressions must have a single type, and if the context does
7282 -- not impose one the dependent expressions cannot be anonymous
7283 -- access types.
7285 -- Why no similar processing for case expressions???
7287 elsif Ada_Version >= Ada_2012
7288 and then Ekind_In (Etype (L), E_Anonymous_Access_Type,
7289 E_Anonymous_Access_Subprogram_Type)
7290 and then Ekind_In (Etype (R), E_Anonymous_Access_Type,
7291 E_Anonymous_Access_Subprogram_Type)
7292 then
7293 Check_If_Expression (L);
7294 Check_If_Expression (R);
7295 end if;
7297 Resolve (L, T);
7298 Resolve (R, T);
7300 -- In SPARK, equality operators = and /= for array types other than
7301 -- String are only defined when, for each index position, the
7302 -- operands have equal static bounds.
7304 if Is_Array_Type (T) then
7306 -- Protect call to Matching_Static_Array_Bounds to avoid costly
7307 -- operation if not needed.
7309 if Restriction_Check_Required (SPARK_05)
7310 and then Base_Type (T) /= Standard_String
7311 and then Base_Type (Etype (L)) = Base_Type (Etype (R))
7312 and then Etype (L) /= Any_Composite -- or else L in error
7313 and then Etype (R) /= Any_Composite -- or else R in error
7314 and then not Matching_Static_Array_Bounds (Etype (L), Etype (R))
7315 then
7316 Check_SPARK_Restriction
7317 ("array types should have matching static bounds", N);
7318 end if;
7319 end if;
7321 -- If the unique type is a class-wide type then it will be expanded
7322 -- into a dispatching call to the predefined primitive. Therefore we
7323 -- check here for potential violation of such restriction.
7325 if Is_Class_Wide_Type (T) then
7326 Check_Restriction (No_Dispatching_Calls, N);
7327 end if;
7329 if Warn_On_Redundant_Constructs
7330 and then Comes_From_Source (N)
7331 and then Comes_From_Source (R)
7332 and then Is_Entity_Name (R)
7333 and then Entity (R) = Standard_True
7334 then
7335 Error_Msg_N -- CODEFIX
7336 ("?r?comparison with True is redundant!", N);
7337 Explain_Redundancy (Original_Node (R));
7338 end if;
7340 Check_Unset_Reference (L);
7341 Check_Unset_Reference (R);
7342 Generate_Operator_Reference (N, T);
7343 Check_Low_Bound_Tested (N);
7345 -- If this is an inequality, it may be the implicit inequality
7346 -- created for a user-defined operation, in which case the corres-
7347 -- ponding equality operation is not intrinsic, and the operation
7348 -- cannot be constant-folded. Else fold.
7350 if Nkind (N) = N_Op_Eq
7351 or else Comes_From_Source (Entity (N))
7352 or else Ekind (Entity (N)) = E_Operator
7353 or else Is_Intrinsic_Subprogram
7354 (Corresponding_Equality (Entity (N)))
7355 then
7356 Analyze_Dimension (N);
7357 Eval_Relational_Op (N);
7359 elsif Nkind (N) = N_Op_Ne
7360 and then Is_Abstract_Subprogram (Entity (N))
7361 then
7362 Error_Msg_NE ("cannot call abstract subprogram &!", N, Entity (N));
7363 end if;
7365 -- Ada 2005: If one operand is an anonymous access type, convert the
7366 -- other operand to it, to ensure that the underlying types match in
7367 -- the back-end. Same for access_to_subprogram, and the conversion
7368 -- verifies that the types are subtype conformant.
7370 -- We apply the same conversion in the case one of the operands is a
7371 -- private subtype of the type of the other.
7373 -- Why the Expander_Active test here ???
7375 if Expander_Active
7376 and then
7377 (Ekind_In (T, E_Anonymous_Access_Type,
7378 E_Anonymous_Access_Subprogram_Type)
7379 or else Is_Private_Type (T))
7380 then
7381 if Etype (L) /= T then
7382 Rewrite (L,
7383 Make_Unchecked_Type_Conversion (Sloc (L),
7384 Subtype_Mark => New_Occurrence_Of (T, Sloc (L)),
7385 Expression => Relocate_Node (L)));
7386 Analyze_And_Resolve (L, T);
7387 end if;
7389 if (Etype (R)) /= T then
7390 Rewrite (R,
7391 Make_Unchecked_Type_Conversion (Sloc (R),
7392 Subtype_Mark => New_Occurrence_Of (Etype (L), Sloc (R)),
7393 Expression => Relocate_Node (R)));
7394 Analyze_And_Resolve (R, T);
7395 end if;
7396 end if;
7397 end if;
7398 end Resolve_Equality_Op;
7400 ----------------------------------
7401 -- Resolve_Explicit_Dereference --
7402 ----------------------------------
7404 procedure Resolve_Explicit_Dereference (N : Node_Id; Typ : Entity_Id) is
7405 Loc : constant Source_Ptr := Sloc (N);
7406 New_N : Node_Id;
7407 P : constant Node_Id := Prefix (N);
7409 P_Typ : Entity_Id;
7410 -- The candidate prefix type, if overloaded
7412 I : Interp_Index;
7413 It : Interp;
7415 begin
7416 Check_Fully_Declared_Prefix (Typ, P);
7417 P_Typ := Empty;
7419 -- A useful optimization: check whether the dereference denotes an
7420 -- element of a container, and if so rewrite it as a call to the
7421 -- corresponding Element function.
7423 -- Disabled for now, on advice of ARG. A more restricted form of the
7424 -- predicate might be acceptable ???
7426 -- if Is_Container_Element (N) then
7427 -- return;
7428 -- end if;
7430 if Is_Overloaded (P) then
7432 -- Use the context type to select the prefix that has the correct
7433 -- designated type. Keep the first match, which will be the inner-
7434 -- most.
7436 Get_First_Interp (P, I, It);
7438 while Present (It.Typ) loop
7439 if Is_Access_Type (It.Typ)
7440 and then Covers (Typ, Designated_Type (It.Typ))
7441 then
7442 if No (P_Typ) then
7443 P_Typ := It.Typ;
7444 end if;
7446 -- Remove access types that do not match, but preserve access
7447 -- to subprogram interpretations, in case a further dereference
7448 -- is needed (see below).
7450 elsif Ekind (It.Typ) /= E_Access_Subprogram_Type then
7451 Remove_Interp (I);
7452 end if;
7454 Get_Next_Interp (I, It);
7455 end loop;
7457 if Present (P_Typ) then
7458 Resolve (P, P_Typ);
7459 Set_Etype (N, Designated_Type (P_Typ));
7461 else
7462 -- If no interpretation covers the designated type of the prefix,
7463 -- this is the pathological case where not all implementations of
7464 -- the prefix allow the interpretation of the node as a call. Now
7465 -- that the expected type is known, Remove other interpretations
7466 -- from prefix, rewrite it as a call, and resolve again, so that
7467 -- the proper call node is generated.
7469 Get_First_Interp (P, I, It);
7470 while Present (It.Typ) loop
7471 if Ekind (It.Typ) /= E_Access_Subprogram_Type then
7472 Remove_Interp (I);
7473 end if;
7475 Get_Next_Interp (I, It);
7476 end loop;
7478 New_N :=
7479 Make_Function_Call (Loc,
7480 Name =>
7481 Make_Explicit_Dereference (Loc,
7482 Prefix => P),
7483 Parameter_Associations => New_List);
7485 Save_Interps (N, New_N);
7486 Rewrite (N, New_N);
7487 Analyze_And_Resolve (N, Typ);
7488 return;
7489 end if;
7491 -- If not overloaded, resolve P with its own type
7493 else
7494 Resolve (P);
7495 end if;
7497 if Is_Access_Type (Etype (P)) then
7498 Apply_Access_Check (N);
7499 end if;
7501 -- If the designated type is a packed unconstrained array type, and the
7502 -- explicit dereference is not in the context of an attribute reference,
7503 -- then we must compute and set the actual subtype, since it is needed
7504 -- by Gigi. The reason we exclude the attribute case is that this is
7505 -- handled fine by Gigi, and in fact we use such attributes to build the
7506 -- actual subtype. We also exclude generated code (which builds actual
7507 -- subtypes directly if they are needed).
7509 if Is_Array_Type (Etype (N))
7510 and then Is_Packed (Etype (N))
7511 and then not Is_Constrained (Etype (N))
7512 and then Nkind (Parent (N)) /= N_Attribute_Reference
7513 and then Comes_From_Source (N)
7514 then
7515 Set_Etype (N, Get_Actual_Subtype (N));
7516 end if;
7518 -- Note: No Eval processing is required for an explicit dereference,
7519 -- because such a name can never be static.
7521 end Resolve_Explicit_Dereference;
7523 -------------------------------------
7524 -- Resolve_Expression_With_Actions --
7525 -------------------------------------
7527 procedure Resolve_Expression_With_Actions (N : Node_Id; Typ : Entity_Id) is
7528 begin
7529 Set_Etype (N, Typ);
7531 -- If N has no actions, and its expression has been constant folded,
7532 -- then rewrite N as just its expression. Note, we can't do this in
7533 -- the general case of Is_Empty_List (Actions (N)) as this would cause
7534 -- Expression (N) to be expanded again.
7536 if Is_Empty_List (Actions (N))
7537 and then Compile_Time_Known_Value (Expression (N))
7538 then
7539 Rewrite (N, Expression (N));
7540 end if;
7541 end Resolve_Expression_With_Actions;
7543 ----------------------------------
7544 -- Resolve_Generalized_Indexing --
7545 ----------------------------------
7547 procedure Resolve_Generalized_Indexing (N : Node_Id; Typ : Entity_Id) is
7548 Indexing : constant Node_Id := Generalized_Indexing (N);
7549 Call : Node_Id;
7550 Indices : List_Id;
7551 Pref : Node_Id;
7553 begin
7554 -- In ASIS mode, propagate the information about the indices back to
7555 -- to the original indexing node. The generalized indexing is either
7556 -- a function call, or a dereference of one. The actuals include the
7557 -- prefix of the original node, which is the container expression.
7559 if ASIS_Mode then
7560 Resolve (Indexing, Typ);
7561 Set_Etype (N, Etype (Indexing));
7562 Set_Is_Overloaded (N, False);
7564 Call := Indexing;
7565 while Nkind_In (Call, N_Explicit_Dereference, N_Selected_Component)
7566 loop
7567 Call := Prefix (Call);
7568 end loop;
7570 if Nkind (Call) = N_Function_Call then
7571 Indices := Parameter_Associations (Call);
7572 Pref := Remove_Head (Indices);
7573 Set_Expressions (N, Indices);
7574 Set_Prefix (N, Pref);
7575 end if;
7577 else
7578 Rewrite (N, Indexing);
7579 Resolve (N, Typ);
7580 end if;
7581 end Resolve_Generalized_Indexing;
7583 ---------------------------
7584 -- Resolve_If_Expression --
7585 ---------------------------
7587 procedure Resolve_If_Expression (N : Node_Id; Typ : Entity_Id) is
7588 Condition : constant Node_Id := First (Expressions (N));
7589 Then_Expr : constant Node_Id := Next (Condition);
7590 Else_Expr : Node_Id := Next (Then_Expr);
7591 Else_Typ : Entity_Id;
7592 Then_Typ : Entity_Id;
7594 begin
7595 Resolve (Condition, Any_Boolean);
7596 Resolve (Then_Expr, Typ);
7597 Then_Typ := Etype (Then_Expr);
7599 -- When the "then" expression is of a scalar subtype different from the
7600 -- result subtype, then insert a conversion to ensure the generation of
7601 -- a constraint check. The same is done for the else part below, again
7602 -- comparing subtypes rather than base types.
7604 if Is_Scalar_Type (Then_Typ)
7605 and then Then_Typ /= Typ
7606 then
7607 Rewrite (Then_Expr, Convert_To (Typ, Then_Expr));
7608 Analyze_And_Resolve (Then_Expr, Typ);
7609 end if;
7611 -- If ELSE expression present, just resolve using the determined type
7613 if Present (Else_Expr) then
7614 Resolve (Else_Expr, Typ);
7615 Else_Typ := Etype (Else_Expr);
7617 if Is_Scalar_Type (Else_Typ)
7618 and then Else_Typ /= Typ
7619 then
7620 Rewrite (Else_Expr, Convert_To (Typ, Else_Expr));
7621 Analyze_And_Resolve (Else_Expr, Typ);
7622 end if;
7624 -- If no ELSE expression is present, root type must be Standard.Boolean
7625 -- and we provide a Standard.True result converted to the appropriate
7626 -- Boolean type (in case it is a derived boolean type).
7628 elsif Root_Type (Typ) = Standard_Boolean then
7629 Else_Expr :=
7630 Convert_To (Typ, New_Occurrence_Of (Standard_True, Sloc (N)));
7631 Analyze_And_Resolve (Else_Expr, Typ);
7632 Append_To (Expressions (N), Else_Expr);
7634 else
7635 Error_Msg_N ("can only omit ELSE expression in Boolean case", N);
7636 Append_To (Expressions (N), Error);
7637 end if;
7639 Set_Etype (N, Typ);
7640 Eval_If_Expression (N);
7641 end Resolve_If_Expression;
7643 -------------------------------
7644 -- Resolve_Indexed_Component --
7645 -------------------------------
7647 procedure Resolve_Indexed_Component (N : Node_Id; Typ : Entity_Id) is
7648 Name : constant Node_Id := Prefix (N);
7649 Expr : Node_Id;
7650 Array_Type : Entity_Id := Empty; -- to prevent junk warning
7651 Index : Node_Id;
7653 begin
7654 if Present (Generalized_Indexing (N)) then
7655 Resolve_Generalized_Indexing (N, Typ);
7656 return;
7657 end if;
7659 if Is_Overloaded (Name) then
7661 -- Use the context type to select the prefix that yields the correct
7662 -- component type.
7664 declare
7665 I : Interp_Index;
7666 It : Interp;
7667 I1 : Interp_Index := 0;
7668 P : constant Node_Id := Prefix (N);
7669 Found : Boolean := False;
7671 begin
7672 Get_First_Interp (P, I, It);
7673 while Present (It.Typ) loop
7674 if (Is_Array_Type (It.Typ)
7675 and then Covers (Typ, Component_Type (It.Typ)))
7676 or else (Is_Access_Type (It.Typ)
7677 and then Is_Array_Type (Designated_Type (It.Typ))
7678 and then
7679 Covers
7680 (Typ,
7681 Component_Type (Designated_Type (It.Typ))))
7682 then
7683 if Found then
7684 It := Disambiguate (P, I1, I, Any_Type);
7686 if It = No_Interp then
7687 Error_Msg_N ("ambiguous prefix for indexing", N);
7688 Set_Etype (N, Typ);
7689 return;
7691 else
7692 Found := True;
7693 Array_Type := It.Typ;
7694 I1 := I;
7695 end if;
7697 else
7698 Found := True;
7699 Array_Type := It.Typ;
7700 I1 := I;
7701 end if;
7702 end if;
7704 Get_Next_Interp (I, It);
7705 end loop;
7706 end;
7708 else
7709 Array_Type := Etype (Name);
7710 end if;
7712 Resolve (Name, Array_Type);
7713 Array_Type := Get_Actual_Subtype_If_Available (Name);
7715 -- If prefix is access type, dereference to get real array type.
7716 -- Note: we do not apply an access check because the expander always
7717 -- introduces an explicit dereference, and the check will happen there.
7719 if Is_Access_Type (Array_Type) then
7720 Array_Type := Designated_Type (Array_Type);
7721 end if;
7723 -- If name was overloaded, set component type correctly now
7724 -- If a misplaced call to an entry family (which has no index types)
7725 -- return. Error will be diagnosed from calling context.
7727 if Is_Array_Type (Array_Type) then
7728 Set_Etype (N, Component_Type (Array_Type));
7729 else
7730 return;
7731 end if;
7733 Index := First_Index (Array_Type);
7734 Expr := First (Expressions (N));
7736 -- The prefix may have resolved to a string literal, in which case its
7737 -- etype has a special representation. This is only possible currently
7738 -- if the prefix is a static concatenation, written in functional
7739 -- notation.
7741 if Ekind (Array_Type) = E_String_Literal_Subtype then
7742 Resolve (Expr, Standard_Positive);
7744 else
7745 while Present (Index) and Present (Expr) loop
7746 Resolve (Expr, Etype (Index));
7747 Check_Unset_Reference (Expr);
7749 if Is_Scalar_Type (Etype (Expr)) then
7750 Apply_Scalar_Range_Check (Expr, Etype (Index));
7751 else
7752 Apply_Range_Check (Expr, Get_Actual_Subtype (Index));
7753 end if;
7755 Next_Index (Index);
7756 Next (Expr);
7757 end loop;
7758 end if;
7760 Analyze_Dimension (N);
7762 -- Do not generate the warning on suspicious index if we are analyzing
7763 -- package Ada.Tags; otherwise we will report the warning with the
7764 -- Prims_Ptr field of the dispatch table.
7766 if Scope (Etype (Prefix (N))) = Standard_Standard
7767 or else not
7768 Is_RTU (Cunit_Entity (Get_Source_Unit (Etype (Prefix (N)))),
7769 Ada_Tags)
7770 then
7771 Warn_On_Suspicious_Index (Name, First (Expressions (N)));
7772 Eval_Indexed_Component (N);
7773 end if;
7775 -- If the array type is atomic, and is packed, and we are in a left side
7776 -- context, then this is worth a warning, since we have a situation
7777 -- where the access to the component may cause extra read/writes of
7778 -- the atomic array object, which could be considered unexpected.
7780 if Nkind (N) = N_Indexed_Component
7781 and then (Is_Atomic (Array_Type)
7782 or else (Is_Entity_Name (Prefix (N))
7783 and then Is_Atomic (Entity (Prefix (N)))))
7784 and then Is_Bit_Packed_Array (Array_Type)
7785 and then Is_LHS (N) = Yes
7786 then
7787 Error_Msg_N ("??assignment to component of packed atomic array",
7788 Prefix (N));
7789 Error_Msg_N ("??\may cause unexpected accesses to atomic object",
7790 Prefix (N));
7791 end if;
7792 end Resolve_Indexed_Component;
7794 -----------------------------
7795 -- Resolve_Integer_Literal --
7796 -----------------------------
7798 procedure Resolve_Integer_Literal (N : Node_Id; Typ : Entity_Id) is
7799 begin
7800 Set_Etype (N, Typ);
7801 Eval_Integer_Literal (N);
7802 end Resolve_Integer_Literal;
7804 --------------------------------
7805 -- Resolve_Intrinsic_Operator --
7806 --------------------------------
7808 procedure Resolve_Intrinsic_Operator (N : Node_Id; Typ : Entity_Id) is
7809 Btyp : constant Entity_Id := Base_Type (Underlying_Type (Typ));
7810 Op : Entity_Id;
7811 Orig_Op : constant Entity_Id := Entity (N);
7812 Arg1 : Node_Id;
7813 Arg2 : Node_Id;
7815 function Convert_Operand (Opnd : Node_Id) return Node_Id;
7816 -- If the operand is a literal, it cannot be the expression in a
7817 -- conversion. Use a qualified expression instead.
7819 function Convert_Operand (Opnd : Node_Id) return Node_Id is
7820 Loc : constant Source_Ptr := Sloc (Opnd);
7821 Res : Node_Id;
7822 begin
7823 if Nkind_In (Opnd, N_Integer_Literal, N_Real_Literal) then
7824 Res :=
7825 Make_Qualified_Expression (Loc,
7826 Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
7827 Expression => Relocate_Node (Opnd));
7828 Analyze (Res);
7830 else
7831 Res := Unchecked_Convert_To (Btyp, Opnd);
7832 end if;
7834 return Res;
7835 end Convert_Operand;
7837 -- Start of processing for Resolve_Intrinsic_Operator
7839 begin
7840 -- We must preserve the original entity in a generic setting, so that
7841 -- the legality of the operation can be verified in an instance.
7843 if not Expander_Active then
7844 return;
7845 end if;
7847 Op := Entity (N);
7848 while Scope (Op) /= Standard_Standard loop
7849 Op := Homonym (Op);
7850 pragma Assert (Present (Op));
7851 end loop;
7853 Set_Entity (N, Op);
7854 Set_Is_Overloaded (N, False);
7856 -- If the result or operand types are private, rewrite with unchecked
7857 -- conversions on the operands and the result, to expose the proper
7858 -- underlying numeric type.
7860 if Is_Private_Type (Typ)
7861 or else Is_Private_Type (Etype (Left_Opnd (N)))
7862 or else Is_Private_Type (Etype (Right_Opnd (N)))
7863 then
7864 Arg1 := Convert_Operand (Left_Opnd (N));
7865 -- Unchecked_Convert_To (Btyp, Left_Opnd (N));
7866 -- What on earth is this commented out fragment of code???
7868 if Nkind (N) = N_Op_Expon then
7869 Arg2 := Unchecked_Convert_To (Standard_Integer, Right_Opnd (N));
7870 else
7871 Arg2 := Convert_Operand (Right_Opnd (N));
7872 end if;
7874 if Nkind (Arg1) = N_Type_Conversion then
7875 Save_Interps (Left_Opnd (N), Expression (Arg1));
7876 end if;
7878 if Nkind (Arg2) = N_Type_Conversion then
7879 Save_Interps (Right_Opnd (N), Expression (Arg2));
7880 end if;
7882 Set_Left_Opnd (N, Arg1);
7883 Set_Right_Opnd (N, Arg2);
7885 Set_Etype (N, Btyp);
7886 Rewrite (N, Unchecked_Convert_To (Typ, N));
7887 Resolve (N, Typ);
7889 elsif Typ /= Etype (Left_Opnd (N))
7890 or else Typ /= Etype (Right_Opnd (N))
7891 then
7892 -- Add explicit conversion where needed, and save interpretations in
7893 -- case operands are overloaded. If the context is a VMS operation,
7894 -- assert that the conversion is legal (the operands have the proper
7895 -- types to select the VMS intrinsic). Note that in rare cases the
7896 -- VMS operators may be visible, but the default System is being used
7897 -- and Address is a private type.
7899 Arg1 := Convert_To (Typ, Left_Opnd (N));
7900 Arg2 := Convert_To (Typ, Right_Opnd (N));
7902 if Nkind (Arg1) = N_Type_Conversion then
7903 Save_Interps (Left_Opnd (N), Expression (Arg1));
7905 if Is_VMS_Operator (Orig_Op) then
7906 Set_Conversion_OK (Arg1);
7907 end if;
7908 else
7909 Save_Interps (Left_Opnd (N), Arg1);
7910 end if;
7912 if Nkind (Arg2) = N_Type_Conversion then
7913 Save_Interps (Right_Opnd (N), Expression (Arg2));
7915 if Is_VMS_Operator (Orig_Op) then
7916 Set_Conversion_OK (Arg2);
7917 end if;
7918 else
7919 Save_Interps (Right_Opnd (N), Arg2);
7920 end if;
7922 Rewrite (Left_Opnd (N), Arg1);
7923 Rewrite (Right_Opnd (N), Arg2);
7924 Analyze (Arg1);
7925 Analyze (Arg2);
7926 Resolve_Arithmetic_Op (N, Typ);
7928 else
7929 Resolve_Arithmetic_Op (N, Typ);
7930 end if;
7931 end Resolve_Intrinsic_Operator;
7933 --------------------------------------
7934 -- Resolve_Intrinsic_Unary_Operator --
7935 --------------------------------------
7937 procedure Resolve_Intrinsic_Unary_Operator
7938 (N : Node_Id;
7939 Typ : Entity_Id)
7941 Btyp : constant Entity_Id := Base_Type (Underlying_Type (Typ));
7942 Op : Entity_Id;
7943 Arg2 : Node_Id;
7945 begin
7946 Op := Entity (N);
7947 while Scope (Op) /= Standard_Standard loop
7948 Op := Homonym (Op);
7949 pragma Assert (Present (Op));
7950 end loop;
7952 Set_Entity (N, Op);
7954 if Is_Private_Type (Typ) then
7955 Arg2 := Unchecked_Convert_To (Btyp, Right_Opnd (N));
7956 Save_Interps (Right_Opnd (N), Expression (Arg2));
7958 Set_Right_Opnd (N, Arg2);
7960 Set_Etype (N, Btyp);
7961 Rewrite (N, Unchecked_Convert_To (Typ, N));
7962 Resolve (N, Typ);
7964 else
7965 Resolve_Unary_Op (N, Typ);
7966 end if;
7967 end Resolve_Intrinsic_Unary_Operator;
7969 ------------------------
7970 -- Resolve_Logical_Op --
7971 ------------------------
7973 procedure Resolve_Logical_Op (N : Node_Id; Typ : Entity_Id) is
7974 B_Typ : Entity_Id;
7976 begin
7977 Check_No_Direct_Boolean_Operators (N);
7979 -- Predefined operations on scalar types yield the base type. On the
7980 -- other hand, logical operations on arrays yield the type of the
7981 -- arguments (and the context).
7983 if Is_Array_Type (Typ) then
7984 B_Typ := Typ;
7985 else
7986 B_Typ := Base_Type (Typ);
7987 end if;
7989 -- OK if this is a VMS-specific intrinsic operation
7991 if Is_VMS_Operator (Entity (N)) then
7992 null;
7994 -- The following test is required because the operands of the operation
7995 -- may be literals, in which case the resulting type appears to be
7996 -- compatible with a signed integer type, when in fact it is compatible
7997 -- only with modular types. If the context itself is universal, the
7998 -- operation is illegal.
8000 elsif not Valid_Boolean_Arg (Typ) then
8001 Error_Msg_N ("invalid context for logical operation", N);
8002 Set_Etype (N, Any_Type);
8003 return;
8005 elsif Typ = Any_Modular then
8006 Error_Msg_N
8007 ("no modular type available in this context", N);
8008 Set_Etype (N, Any_Type);
8009 return;
8011 elsif Is_Modular_Integer_Type (Typ)
8012 and then Etype (Left_Opnd (N)) = Universal_Integer
8013 and then Etype (Right_Opnd (N)) = Universal_Integer
8014 then
8015 Check_For_Visible_Operator (N, B_Typ);
8016 end if;
8018 -- Replace AND by AND THEN, or OR by OR ELSE, if Short_Circuit_And_Or
8019 -- is active and the result type is standard Boolean (do not mess with
8020 -- ops that return a nonstandard Boolean type, because something strange
8021 -- is going on).
8023 -- Note: you might expect this replacement to be done during expansion,
8024 -- but that doesn't work, because when the pragma Short_Circuit_And_Or
8025 -- is used, no part of the right operand of an "and" or "or" operator
8026 -- should be executed if the left operand would short-circuit the
8027 -- evaluation of the corresponding "and then" or "or else". If we left
8028 -- the replacement to expansion time, then run-time checks associated
8029 -- with such operands would be evaluated unconditionally, due to being
8030 -- before the condition prior to the rewriting as short-circuit forms
8031 -- during expansion.
8033 if Short_Circuit_And_Or
8034 and then B_Typ = Standard_Boolean
8035 and then Nkind_In (N, N_Op_And, N_Op_Or)
8036 then
8037 if Nkind (N) = N_Op_And then
8038 Rewrite (N,
8039 Make_And_Then (Sloc (N),
8040 Left_Opnd => Relocate_Node (Left_Opnd (N)),
8041 Right_Opnd => Relocate_Node (Right_Opnd (N))));
8042 Analyze_And_Resolve (N, B_Typ);
8044 -- Case of OR changed to OR ELSE
8046 else
8047 Rewrite (N,
8048 Make_Or_Else (Sloc (N),
8049 Left_Opnd => Relocate_Node (Left_Opnd (N)),
8050 Right_Opnd => Relocate_Node (Right_Opnd (N))));
8051 Analyze_And_Resolve (N, B_Typ);
8052 end if;
8054 -- Return now, since analysis of the rewritten ops will take care of
8055 -- other reference bookkeeping and expression folding.
8057 return;
8058 end if;
8060 Resolve (Left_Opnd (N), B_Typ);
8061 Resolve (Right_Opnd (N), B_Typ);
8063 Check_Unset_Reference (Left_Opnd (N));
8064 Check_Unset_Reference (Right_Opnd (N));
8066 Set_Etype (N, B_Typ);
8067 Generate_Operator_Reference (N, B_Typ);
8068 Eval_Logical_Op (N);
8070 -- In SPARK, logical operations AND, OR and XOR for arrays are defined
8071 -- only when both operands have same static lower and higher bounds. Of
8072 -- course the types have to match, so only check if operands are
8073 -- compatible and the node itself has no errors.
8075 if Is_Array_Type (B_Typ)
8076 and then Nkind (N) in N_Binary_Op
8077 then
8078 declare
8079 Left_Typ : constant Node_Id := Etype (Left_Opnd (N));
8080 Right_Typ : constant Node_Id := Etype (Right_Opnd (N));
8082 begin
8083 -- Protect call to Matching_Static_Array_Bounds to avoid costly
8084 -- operation if not needed.
8086 if Restriction_Check_Required (SPARK_05)
8087 and then Base_Type (Left_Typ) = Base_Type (Right_Typ)
8088 and then Left_Typ /= Any_Composite -- or Left_Opnd in error
8089 and then Right_Typ /= Any_Composite -- or Right_Opnd in error
8090 and then not Matching_Static_Array_Bounds (Left_Typ, Right_Typ)
8091 then
8092 Check_SPARK_Restriction
8093 ("array types should have matching static bounds", N);
8094 end if;
8095 end;
8096 end if;
8098 Check_Function_Writable_Actuals (N);
8099 end Resolve_Logical_Op;
8101 ---------------------------
8102 -- Resolve_Membership_Op --
8103 ---------------------------
8105 -- The context can only be a boolean type, and does not determine the
8106 -- arguments. Arguments should be unambiguous, but the preference rule for
8107 -- universal types applies.
8109 procedure Resolve_Membership_Op (N : Node_Id; Typ : Entity_Id) is
8110 pragma Warnings (Off, Typ);
8112 L : constant Node_Id := Left_Opnd (N);
8113 R : constant Node_Id := Right_Opnd (N);
8114 T : Entity_Id;
8116 procedure Resolve_Set_Membership;
8117 -- Analysis has determined a unique type for the left operand. Use it to
8118 -- resolve the disjuncts.
8120 ----------------------------
8121 -- Resolve_Set_Membership --
8122 ----------------------------
8124 procedure Resolve_Set_Membership is
8125 Alt : Node_Id;
8126 Ltyp : constant Entity_Id := Etype (L);
8128 begin
8129 Resolve (L, Ltyp);
8131 Alt := First (Alternatives (N));
8132 while Present (Alt) loop
8134 -- Alternative is an expression, a range
8135 -- or a subtype mark.
8137 if not Is_Entity_Name (Alt)
8138 or else not Is_Type (Entity (Alt))
8139 then
8140 Resolve (Alt, Ltyp);
8141 end if;
8143 Next (Alt);
8144 end loop;
8146 -- Check for duplicates for discrete case
8148 if Is_Discrete_Type (Ltyp) then
8149 declare
8150 type Ent is record
8151 Alt : Node_Id;
8152 Val : Uint;
8153 end record;
8155 Alts : array (0 .. List_Length (Alternatives (N))) of Ent;
8156 Nalts : Nat;
8158 begin
8159 -- Loop checking duplicates. This is quadratic, but giant sets
8160 -- are unlikely in this context so it's a reasonable choice.
8162 Nalts := 0;
8163 Alt := First (Alternatives (N));
8164 while Present (Alt) loop
8165 if Is_Static_Expression (Alt)
8166 and then (Nkind_In (Alt, N_Integer_Literal,
8167 N_Character_Literal)
8168 or else Nkind (Alt) in N_Has_Entity)
8169 then
8170 Nalts := Nalts + 1;
8171 Alts (Nalts) := (Alt, Expr_Value (Alt));
8173 for J in 1 .. Nalts - 1 loop
8174 if Alts (J).Val = Alts (Nalts).Val then
8175 Error_Msg_Sloc := Sloc (Alts (J).Alt);
8176 Error_Msg_N ("duplicate of value given#??", Alt);
8177 end if;
8178 end loop;
8179 end if;
8181 Alt := Next (Alt);
8182 end loop;
8183 end;
8184 end if;
8185 end Resolve_Set_Membership;
8187 -- Start of processing for Resolve_Membership_Op
8189 begin
8190 if L = Error or else R = Error then
8191 return;
8192 end if;
8194 if Present (Alternatives (N)) then
8195 Resolve_Set_Membership;
8196 Check_Function_Writable_Actuals (N);
8197 return;
8199 elsif not Is_Overloaded (R)
8200 and then
8201 (Etype (R) = Universal_Integer
8202 or else
8203 Etype (R) = Universal_Real)
8204 and then Is_Overloaded (L)
8205 then
8206 T := Etype (R);
8208 -- Ada 2005 (AI-251): Support the following case:
8210 -- type I is interface;
8211 -- type T is tagged ...
8213 -- function Test (O : I'Class) is
8214 -- begin
8215 -- return O in T'Class.
8216 -- end Test;
8218 -- In this case we have nothing else to do. The membership test will be
8219 -- done at run time.
8221 elsif Ada_Version >= Ada_2005
8222 and then Is_Class_Wide_Type (Etype (L))
8223 and then Is_Interface (Etype (L))
8224 and then Is_Class_Wide_Type (Etype (R))
8225 and then not Is_Interface (Etype (R))
8226 then
8227 return;
8228 else
8229 T := Intersect_Types (L, R);
8230 end if;
8232 -- If mixed-mode operations are present and operands are all literal,
8233 -- the only interpretation involves Duration, which is probably not
8234 -- the intention of the programmer.
8236 if T = Any_Fixed then
8237 T := Unique_Fixed_Point_Type (N);
8239 if T = Any_Type then
8240 return;
8241 end if;
8242 end if;
8244 Resolve (L, T);
8245 Check_Unset_Reference (L);
8247 if Nkind (R) = N_Range
8248 and then not Is_Scalar_Type (T)
8249 then
8250 Error_Msg_N ("scalar type required for range", R);
8251 end if;
8253 if Is_Entity_Name (R) then
8254 Freeze_Expression (R);
8255 else
8256 Resolve (R, T);
8257 Check_Unset_Reference (R);
8258 end if;
8260 Eval_Membership_Op (N);
8261 Check_Function_Writable_Actuals (N);
8262 end Resolve_Membership_Op;
8264 ------------------
8265 -- Resolve_Null --
8266 ------------------
8268 procedure Resolve_Null (N : Node_Id; Typ : Entity_Id) is
8269 Loc : constant Source_Ptr := Sloc (N);
8271 begin
8272 -- Handle restriction against anonymous null access values This
8273 -- restriction can be turned off using -gnatdj.
8275 -- Ada 2005 (AI-231): Remove restriction
8277 if Ada_Version < Ada_2005
8278 and then not Debug_Flag_J
8279 and then Ekind (Typ) = E_Anonymous_Access_Type
8280 and then Comes_From_Source (N)
8281 then
8282 -- In the common case of a call which uses an explicitly null value
8283 -- for an access parameter, give specialized error message.
8285 if Nkind (Parent (N)) in N_Subprogram_Call then
8286 Error_Msg_N
8287 ("null is not allowed as argument for an access parameter", N);
8289 -- Standard message for all other cases (are there any?)
8291 else
8292 Error_Msg_N
8293 ("null cannot be of an anonymous access type", N);
8294 end if;
8295 end if;
8297 -- Ada 2005 (AI-231): Generate the null-excluding check in case of
8298 -- assignment to a null-excluding object
8300 if Ada_Version >= Ada_2005
8301 and then Can_Never_Be_Null (Typ)
8302 and then Nkind (Parent (N)) = N_Assignment_Statement
8303 then
8304 if not Inside_Init_Proc then
8305 Insert_Action
8306 (Compile_Time_Constraint_Error (N,
8307 "(Ada 2005) null not allowed in null-excluding objects??"),
8308 Make_Raise_Constraint_Error (Loc,
8309 Reason => CE_Access_Check_Failed));
8310 else
8311 Insert_Action (N,
8312 Make_Raise_Constraint_Error (Loc,
8313 Reason => CE_Access_Check_Failed));
8314 end if;
8315 end if;
8317 -- In a distributed context, null for a remote access to subprogram may
8318 -- need to be replaced with a special record aggregate. In this case,
8319 -- return after having done the transformation.
8321 if (Ekind (Typ) = E_Record_Type
8322 or else Is_Remote_Access_To_Subprogram_Type (Typ))
8323 and then Remote_AST_Null_Value (N, Typ)
8324 then
8325 return;
8326 end if;
8328 -- The null literal takes its type from the context
8330 Set_Etype (N, Typ);
8331 end Resolve_Null;
8333 -----------------------
8334 -- Resolve_Op_Concat --
8335 -----------------------
8337 procedure Resolve_Op_Concat (N : Node_Id; Typ : Entity_Id) is
8339 -- We wish to avoid deep recursion, because concatenations are often
8340 -- deeply nested, as in A&B&...&Z. Therefore, we walk down the left
8341 -- operands nonrecursively until we find something that is not a simple
8342 -- concatenation (A in this case). We resolve that, and then walk back
8343 -- up the tree following Parent pointers, calling Resolve_Op_Concat_Rest
8344 -- to do the rest of the work at each level. The Parent pointers allow
8345 -- us to avoid recursion, and thus avoid running out of memory. See also
8346 -- Sem_Ch4.Analyze_Concatenation, where a similar approach is used.
8348 NN : Node_Id := N;
8349 Op1 : Node_Id;
8351 begin
8352 -- The following code is equivalent to:
8354 -- Resolve_Op_Concat_First (NN, Typ);
8355 -- Resolve_Op_Concat_Arg (N, ...);
8356 -- Resolve_Op_Concat_Rest (N, Typ);
8358 -- where the Resolve_Op_Concat_Arg call recurses back here if the left
8359 -- operand is a concatenation.
8361 -- Walk down left operands
8363 loop
8364 Resolve_Op_Concat_First (NN, Typ);
8365 Op1 := Left_Opnd (NN);
8366 exit when not (Nkind (Op1) = N_Op_Concat
8367 and then not Is_Array_Type (Component_Type (Typ))
8368 and then Entity (Op1) = Entity (NN));
8369 NN := Op1;
8370 end loop;
8372 -- Now (given the above example) NN is A&B and Op1 is A
8374 -- First resolve Op1 ...
8376 Resolve_Op_Concat_Arg (NN, Op1, Typ, Is_Component_Left_Opnd (NN));
8378 -- ... then walk NN back up until we reach N (where we started), calling
8379 -- Resolve_Op_Concat_Rest along the way.
8381 loop
8382 Resolve_Op_Concat_Rest (NN, Typ);
8383 exit when NN = N;
8384 NN := Parent (NN);
8385 end loop;
8387 if Base_Type (Etype (N)) /= Standard_String then
8388 Check_SPARK_Restriction
8389 ("result of concatenation should have type String", N);
8390 end if;
8391 end Resolve_Op_Concat;
8393 ---------------------------
8394 -- Resolve_Op_Concat_Arg --
8395 ---------------------------
8397 procedure Resolve_Op_Concat_Arg
8398 (N : Node_Id;
8399 Arg : Node_Id;
8400 Typ : Entity_Id;
8401 Is_Comp : Boolean)
8403 Btyp : constant Entity_Id := Base_Type (Typ);
8404 Ctyp : constant Entity_Id := Component_Type (Typ);
8406 begin
8407 if In_Instance then
8408 if Is_Comp
8409 or else (not Is_Overloaded (Arg)
8410 and then Etype (Arg) /= Any_Composite
8411 and then Covers (Ctyp, Etype (Arg)))
8412 then
8413 Resolve (Arg, Ctyp);
8414 else
8415 Resolve (Arg, Btyp);
8416 end if;
8418 -- If both Array & Array and Array & Component are visible, there is a
8419 -- potential ambiguity that must be reported.
8421 elsif Has_Compatible_Type (Arg, Ctyp) then
8422 if Nkind (Arg) = N_Aggregate
8423 and then Is_Composite_Type (Ctyp)
8424 then
8425 if Is_Private_Type (Ctyp) then
8426 Resolve (Arg, Btyp);
8428 -- If the operation is user-defined and not overloaded use its
8429 -- profile. The operation may be a renaming, in which case it has
8430 -- been rewritten, and we want the original profile.
8432 elsif not Is_Overloaded (N)
8433 and then Comes_From_Source (Entity (Original_Node (N)))
8434 and then Ekind (Entity (Original_Node (N))) = E_Function
8435 then
8436 Resolve (Arg,
8437 Etype
8438 (Next_Formal (First_Formal (Entity (Original_Node (N))))));
8439 return;
8441 -- Otherwise an aggregate may match both the array type and the
8442 -- component type.
8444 else
8445 Error_Msg_N ("ambiguous aggregate must be qualified", Arg);
8446 Set_Etype (Arg, Any_Type);
8447 end if;
8449 else
8450 if Is_Overloaded (Arg)
8451 and then Has_Compatible_Type (Arg, Typ)
8452 and then Etype (Arg) /= Any_Type
8453 then
8454 declare
8455 I : Interp_Index;
8456 It : Interp;
8457 Func : Entity_Id;
8459 begin
8460 Get_First_Interp (Arg, I, It);
8461 Func := It.Nam;
8462 Get_Next_Interp (I, It);
8464 -- Special-case the error message when the overloading is
8465 -- caused by a function that yields an array and can be
8466 -- called without parameters.
8468 if It.Nam = Func then
8469 Error_Msg_Sloc := Sloc (Func);
8470 Error_Msg_N ("ambiguous call to function#", Arg);
8471 Error_Msg_NE
8472 ("\\interpretation as call yields&", Arg, Typ);
8473 Error_Msg_NE
8474 ("\\interpretation as indexing of call yields&",
8475 Arg, Component_Type (Typ));
8477 else
8478 Error_Msg_N ("ambiguous operand for concatenation!", Arg);
8480 Get_First_Interp (Arg, I, It);
8481 while Present (It.Nam) loop
8482 Error_Msg_Sloc := Sloc (It.Nam);
8484 if Base_Type (It.Typ) = Btyp
8485 or else
8486 Base_Type (It.Typ) = Base_Type (Ctyp)
8487 then
8488 Error_Msg_N -- CODEFIX
8489 ("\\possible interpretation#", Arg);
8490 end if;
8492 Get_Next_Interp (I, It);
8493 end loop;
8494 end if;
8495 end;
8496 end if;
8498 Resolve (Arg, Component_Type (Typ));
8500 if Nkind (Arg) = N_String_Literal then
8501 Set_Etype (Arg, Component_Type (Typ));
8502 end if;
8504 if Arg = Left_Opnd (N) then
8505 Set_Is_Component_Left_Opnd (N);
8506 else
8507 Set_Is_Component_Right_Opnd (N);
8508 end if;
8509 end if;
8511 else
8512 Resolve (Arg, Btyp);
8513 end if;
8515 -- Concatenation is restricted in SPARK: each operand must be either a
8516 -- string literal, the name of a string constant, a static character or
8517 -- string expression, or another concatenation. Arg cannot be a
8518 -- concatenation here as callers of Resolve_Op_Concat_Arg call it
8519 -- separately on each final operand, past concatenation operations.
8521 if Is_Character_Type (Etype (Arg)) then
8522 if not Is_Static_Expression (Arg) then
8523 Check_SPARK_Restriction
8524 ("character operand for concatenation should be static", Arg);
8525 end if;
8527 elsif Is_String_Type (Etype (Arg)) then
8528 if not (Nkind_In (Arg, N_Identifier, N_Expanded_Name)
8529 and then Is_Constant_Object (Entity (Arg)))
8530 and then not Is_Static_Expression (Arg)
8531 then
8532 Check_SPARK_Restriction
8533 ("string operand for concatenation should be static", Arg);
8534 end if;
8536 -- Do not issue error on an operand that is neither a character nor a
8537 -- string, as the error is issued in Resolve_Op_Concat.
8539 else
8540 null;
8541 end if;
8543 Check_Unset_Reference (Arg);
8544 end Resolve_Op_Concat_Arg;
8546 -----------------------------
8547 -- Resolve_Op_Concat_First --
8548 -----------------------------
8550 procedure Resolve_Op_Concat_First (N : Node_Id; Typ : Entity_Id) is
8551 Btyp : constant Entity_Id := Base_Type (Typ);
8552 Op1 : constant Node_Id := Left_Opnd (N);
8553 Op2 : constant Node_Id := Right_Opnd (N);
8555 begin
8556 -- The parser folds an enormous sequence of concatenations of string
8557 -- literals into "" & "...", where the Is_Folded_In_Parser flag is set
8558 -- in the right operand. If the expression resolves to a predefined "&"
8559 -- operator, all is well. Otherwise, the parser's folding is wrong, so
8560 -- we give an error. See P_Simple_Expression in Par.Ch4.
8562 if Nkind (Op2) = N_String_Literal
8563 and then Is_Folded_In_Parser (Op2)
8564 and then Ekind (Entity (N)) = E_Function
8565 then
8566 pragma Assert (Nkind (Op1) = N_String_Literal -- should be ""
8567 and then String_Length (Strval (Op1)) = 0);
8568 Error_Msg_N ("too many user-defined concatenations", N);
8569 return;
8570 end if;
8572 Set_Etype (N, Btyp);
8574 if Is_Limited_Composite (Btyp) then
8575 Error_Msg_N ("concatenation not available for limited array", N);
8576 Explain_Limited_Type (Btyp, N);
8577 end if;
8578 end Resolve_Op_Concat_First;
8580 ----------------------------
8581 -- Resolve_Op_Concat_Rest --
8582 ----------------------------
8584 procedure Resolve_Op_Concat_Rest (N : Node_Id; Typ : Entity_Id) is
8585 Op1 : constant Node_Id := Left_Opnd (N);
8586 Op2 : constant Node_Id := Right_Opnd (N);
8588 begin
8589 Resolve_Op_Concat_Arg (N, Op2, Typ, Is_Component_Right_Opnd (N));
8591 Generate_Operator_Reference (N, Typ);
8593 if Is_String_Type (Typ) then
8594 Eval_Concatenation (N);
8595 end if;
8597 -- If this is not a static concatenation, but the result is a string
8598 -- type (and not an array of strings) ensure that static string operands
8599 -- have their subtypes properly constructed.
8601 if Nkind (N) /= N_String_Literal
8602 and then Is_Character_Type (Component_Type (Typ))
8603 then
8604 Set_String_Literal_Subtype (Op1, Typ);
8605 Set_String_Literal_Subtype (Op2, Typ);
8606 end if;
8607 end Resolve_Op_Concat_Rest;
8609 ----------------------
8610 -- Resolve_Op_Expon --
8611 ----------------------
8613 procedure Resolve_Op_Expon (N : Node_Id; Typ : Entity_Id) is
8614 B_Typ : constant Entity_Id := Base_Type (Typ);
8616 begin
8617 -- Catch attempts to do fixed-point exponentiation with universal
8618 -- operands, which is a case where the illegality is not caught during
8619 -- normal operator analysis. This is not done in preanalysis mode
8620 -- since the tree is not fully decorated during preanalysis.
8622 if Full_Analysis then
8623 if Is_Fixed_Point_Type (Typ) and then Comes_From_Source (N) then
8624 Error_Msg_N ("exponentiation not available for fixed point", N);
8625 return;
8627 elsif Nkind (Parent (N)) in N_Op
8628 and then Is_Fixed_Point_Type (Etype (Parent (N)))
8629 and then Etype (N) = Universal_Real
8630 and then Comes_From_Source (N)
8631 then
8632 Error_Msg_N ("exponentiation not available for fixed point", N);
8633 return;
8634 end if;
8635 end if;
8637 if Comes_From_Source (N)
8638 and then Ekind (Entity (N)) = E_Function
8639 and then Is_Imported (Entity (N))
8640 and then Is_Intrinsic_Subprogram (Entity (N))
8641 then
8642 Resolve_Intrinsic_Operator (N, Typ);
8643 return;
8644 end if;
8646 if Etype (Left_Opnd (N)) = Universal_Integer
8647 or else Etype (Left_Opnd (N)) = Universal_Real
8648 then
8649 Check_For_Visible_Operator (N, B_Typ);
8650 end if;
8652 -- We do the resolution using the base type, because intermediate values
8653 -- in expressions are always of the base type, not a subtype of it.
8655 Resolve (Left_Opnd (N), B_Typ);
8656 Resolve (Right_Opnd (N), Standard_Integer);
8658 -- For integer types, right argument must be in Natural range
8660 if Is_Integer_Type (Typ) then
8661 Apply_Scalar_Range_Check (Right_Opnd (N), Standard_Natural);
8662 end if;
8664 Check_Unset_Reference (Left_Opnd (N));
8665 Check_Unset_Reference (Right_Opnd (N));
8667 Set_Etype (N, B_Typ);
8668 Generate_Operator_Reference (N, B_Typ);
8670 Analyze_Dimension (N);
8672 if Ada_Version >= Ada_2012 and then Has_Dimension_System (B_Typ) then
8673 -- Evaluate the exponentiation operator for dimensioned type
8675 Eval_Op_Expon_For_Dimensioned_Type (N, B_Typ);
8676 else
8677 Eval_Op_Expon (N);
8678 end if;
8680 -- Set overflow checking bit. Much cleverer code needed here eventually
8681 -- and perhaps the Resolve routines should be separated for the various
8682 -- arithmetic operations, since they will need different processing. ???
8684 if Nkind (N) in N_Op then
8685 if not Overflow_Checks_Suppressed (Etype (N)) then
8686 Enable_Overflow_Check (N);
8687 end if;
8688 end if;
8689 end Resolve_Op_Expon;
8691 --------------------
8692 -- Resolve_Op_Not --
8693 --------------------
8695 procedure Resolve_Op_Not (N : Node_Id; Typ : Entity_Id) is
8696 B_Typ : Entity_Id;
8698 function Parent_Is_Boolean return Boolean;
8699 -- This function determines if the parent node is a boolean operator or
8700 -- operation (comparison op, membership test, or short circuit form) and
8701 -- the not in question is the left operand of this operation. Note that
8702 -- if the not is in parens, then false is returned.
8704 -----------------------
8705 -- Parent_Is_Boolean --
8706 -----------------------
8708 function Parent_Is_Boolean return Boolean is
8709 begin
8710 if Paren_Count (N) /= 0 then
8711 return False;
8713 else
8714 case Nkind (Parent (N)) is
8715 when N_Op_And |
8716 N_Op_Eq |
8717 N_Op_Ge |
8718 N_Op_Gt |
8719 N_Op_Le |
8720 N_Op_Lt |
8721 N_Op_Ne |
8722 N_Op_Or |
8723 N_Op_Xor |
8724 N_In |
8725 N_Not_In |
8726 N_And_Then |
8727 N_Or_Else =>
8729 return Left_Opnd (Parent (N)) = N;
8731 when others =>
8732 return False;
8733 end case;
8734 end if;
8735 end Parent_Is_Boolean;
8737 -- Start of processing for Resolve_Op_Not
8739 begin
8740 -- Predefined operations on scalar types yield the base type. On the
8741 -- other hand, logical operations on arrays yield the type of the
8742 -- arguments (and the context).
8744 if Is_Array_Type (Typ) then
8745 B_Typ := Typ;
8746 else
8747 B_Typ := Base_Type (Typ);
8748 end if;
8750 if Is_VMS_Operator (Entity (N)) then
8751 null;
8753 -- Straightforward case of incorrect arguments
8755 elsif not Valid_Boolean_Arg (Typ) then
8756 Error_Msg_N ("invalid operand type for operator&", N);
8757 Set_Etype (N, Any_Type);
8758 return;
8760 -- Special case of probable missing parens
8762 elsif Typ = Universal_Integer or else Typ = Any_Modular then
8763 if Parent_Is_Boolean then
8764 Error_Msg_N
8765 ("operand of not must be enclosed in parentheses",
8766 Right_Opnd (N));
8767 else
8768 Error_Msg_N
8769 ("no modular type available in this context", N);
8770 end if;
8772 Set_Etype (N, Any_Type);
8773 return;
8775 -- OK resolution of NOT
8777 else
8778 -- Warn if non-boolean types involved. This is a case like not a < b
8779 -- where a and b are modular, where we will get (not a) < b and most
8780 -- likely not (a < b) was intended.
8782 if Warn_On_Questionable_Missing_Parens
8783 and then not Is_Boolean_Type (Typ)
8784 and then Parent_Is_Boolean
8785 then
8786 Error_Msg_N ("?q?not expression should be parenthesized here!", N);
8787 end if;
8789 -- Warn on double negation if checking redundant constructs
8791 if Warn_On_Redundant_Constructs
8792 and then Comes_From_Source (N)
8793 and then Comes_From_Source (Right_Opnd (N))
8794 and then Root_Type (Typ) = Standard_Boolean
8795 and then Nkind (Right_Opnd (N)) = N_Op_Not
8796 then
8797 Error_Msg_N ("redundant double negation?r?", N);
8798 end if;
8800 -- Complete resolution and evaluation of NOT
8802 Resolve (Right_Opnd (N), B_Typ);
8803 Check_Unset_Reference (Right_Opnd (N));
8804 Set_Etype (N, B_Typ);
8805 Generate_Operator_Reference (N, B_Typ);
8806 Eval_Op_Not (N);
8807 end if;
8808 end Resolve_Op_Not;
8810 -----------------------------
8811 -- Resolve_Operator_Symbol --
8812 -----------------------------
8814 -- Nothing to be done, all resolved already
8816 procedure Resolve_Operator_Symbol (N : Node_Id; Typ : Entity_Id) is
8817 pragma Warnings (Off, N);
8818 pragma Warnings (Off, Typ);
8820 begin
8821 null;
8822 end Resolve_Operator_Symbol;
8824 ----------------------------------
8825 -- Resolve_Qualified_Expression --
8826 ----------------------------------
8828 procedure Resolve_Qualified_Expression (N : Node_Id; Typ : Entity_Id) is
8829 pragma Warnings (Off, Typ);
8831 Target_Typ : constant Entity_Id := Entity (Subtype_Mark (N));
8832 Expr : constant Node_Id := Expression (N);
8834 begin
8835 Resolve (Expr, Target_Typ);
8837 -- Protect call to Matching_Static_Array_Bounds to avoid costly
8838 -- operation if not needed.
8840 if Restriction_Check_Required (SPARK_05)
8841 and then Is_Array_Type (Target_Typ)
8842 and then Is_Array_Type (Etype (Expr))
8843 and then Etype (Expr) /= Any_Composite -- or else Expr in error
8844 and then not Matching_Static_Array_Bounds (Target_Typ, Etype (Expr))
8845 then
8846 Check_SPARK_Restriction
8847 ("array types should have matching static bounds", N);
8848 end if;
8850 -- A qualified expression requires an exact match of the type, class-
8851 -- wide matching is not allowed. However, if the qualifying type is
8852 -- specific and the expression has a class-wide type, it may still be
8853 -- okay, since it can be the result of the expansion of a call to a
8854 -- dispatching function, so we also have to check class-wideness of the
8855 -- type of the expression's original node.
8857 if (Is_Class_Wide_Type (Target_Typ)
8858 or else
8859 (Is_Class_Wide_Type (Etype (Expr))
8860 and then Is_Class_Wide_Type (Etype (Original_Node (Expr)))))
8861 and then Base_Type (Etype (Expr)) /= Base_Type (Target_Typ)
8862 then
8863 Wrong_Type (Expr, Target_Typ);
8864 end if;
8866 -- If the target type is unconstrained, then we reset the type of the
8867 -- result from the type of the expression. For other cases, the actual
8868 -- subtype of the expression is the target type.
8870 if Is_Composite_Type (Target_Typ)
8871 and then not Is_Constrained (Target_Typ)
8872 then
8873 Set_Etype (N, Etype (Expr));
8874 end if;
8876 Analyze_Dimension (N);
8877 Eval_Qualified_Expression (N);
8878 end Resolve_Qualified_Expression;
8880 ------------------------------
8881 -- Resolve_Raise_Expression --
8882 ------------------------------
8884 procedure Resolve_Raise_Expression (N : Node_Id; Typ : Entity_Id) is
8885 begin
8886 if Typ = Raise_Type then
8887 Error_Msg_N ("cannot find unique type for raise expression", N);
8888 Set_Etype (N, Any_Type);
8889 else
8890 Set_Etype (N, Typ);
8891 end if;
8892 end Resolve_Raise_Expression;
8894 -------------------
8895 -- Resolve_Range --
8896 -------------------
8898 procedure Resolve_Range (N : Node_Id; Typ : Entity_Id) is
8899 L : constant Node_Id := Low_Bound (N);
8900 H : constant Node_Id := High_Bound (N);
8902 function First_Last_Ref return Boolean;
8903 -- Returns True if N is of the form X'First .. X'Last where X is the
8904 -- same entity for both attributes.
8906 --------------------
8907 -- First_Last_Ref --
8908 --------------------
8910 function First_Last_Ref return Boolean is
8911 Lorig : constant Node_Id := Original_Node (L);
8912 Horig : constant Node_Id := Original_Node (H);
8914 begin
8915 if Nkind (Lorig) = N_Attribute_Reference
8916 and then Nkind (Horig) = N_Attribute_Reference
8917 and then Attribute_Name (Lorig) = Name_First
8918 and then Attribute_Name (Horig) = Name_Last
8919 then
8920 declare
8921 PL : constant Node_Id := Prefix (Lorig);
8922 PH : constant Node_Id := Prefix (Horig);
8923 begin
8924 if Is_Entity_Name (PL)
8925 and then Is_Entity_Name (PH)
8926 and then Entity (PL) = Entity (PH)
8927 then
8928 return True;
8929 end if;
8930 end;
8931 end if;
8933 return False;
8934 end First_Last_Ref;
8936 -- Start of processing for Resolve_Range
8938 begin
8939 Set_Etype (N, Typ);
8940 Resolve (L, Typ);
8941 Resolve (H, Typ);
8943 -- Check for inappropriate range on unordered enumeration type
8945 if Bad_Unordered_Enumeration_Reference (N, Typ)
8947 -- Exclude X'First .. X'Last if X is the same entity for both
8949 and then not First_Last_Ref
8950 then
8951 Error_Msg_Sloc := Sloc (Typ);
8952 Error_Msg_NE
8953 ("subrange of unordered enumeration type& declared#?U?", N, Typ);
8954 end if;
8956 Check_Unset_Reference (L);
8957 Check_Unset_Reference (H);
8959 -- We have to check the bounds for being within the base range as
8960 -- required for a non-static context. Normally this is automatic and
8961 -- done as part of evaluating expressions, but the N_Range node is an
8962 -- exception, since in GNAT we consider this node to be a subexpression,
8963 -- even though in Ada it is not. The circuit in Sem_Eval could check for
8964 -- this, but that would put the test on the main evaluation path for
8965 -- expressions.
8967 Check_Non_Static_Context (L);
8968 Check_Non_Static_Context (H);
8970 -- Check for an ambiguous range over character literals. This will
8971 -- happen with a membership test involving only literals.
8973 if Typ = Any_Character then
8974 Ambiguous_Character (L);
8975 Set_Etype (N, Any_Type);
8976 return;
8977 end if;
8979 -- If bounds are static, constant-fold them, so size computations are
8980 -- identical between front-end and back-end. Do not perform this
8981 -- transformation while analyzing generic units, as type information
8982 -- would be lost when reanalyzing the constant node in the instance.
8984 if Is_Discrete_Type (Typ) and then Expander_Active then
8985 if Is_OK_Static_Expression (L) then
8986 Fold_Uint (L, Expr_Value (L), Is_Static_Expression (L));
8987 end if;
8989 if Is_OK_Static_Expression (H) then
8990 Fold_Uint (H, Expr_Value (H), Is_Static_Expression (H));
8991 end if;
8992 end if;
8993 end Resolve_Range;
8995 --------------------------
8996 -- Resolve_Real_Literal --
8997 --------------------------
8999 procedure Resolve_Real_Literal (N : Node_Id; Typ : Entity_Id) is
9000 Actual_Typ : constant Entity_Id := Etype (N);
9002 begin
9003 -- Special processing for fixed-point literals to make sure that the
9004 -- value is an exact multiple of small where this is required. We skip
9005 -- this for the universal real case, and also for generic types.
9007 if Is_Fixed_Point_Type (Typ)
9008 and then Typ /= Universal_Fixed
9009 and then Typ /= Any_Fixed
9010 and then not Is_Generic_Type (Typ)
9011 then
9012 declare
9013 Val : constant Ureal := Realval (N);
9014 Cintr : constant Ureal := Val / Small_Value (Typ);
9015 Cint : constant Uint := UR_Trunc (Cintr);
9016 Den : constant Uint := Norm_Den (Cintr);
9017 Stat : Boolean;
9019 begin
9020 -- Case of literal is not an exact multiple of the Small
9022 if Den /= 1 then
9024 -- For a source program literal for a decimal fixed-point type,
9025 -- this is statically illegal (RM 4.9(36)).
9027 if Is_Decimal_Fixed_Point_Type (Typ)
9028 and then Actual_Typ = Universal_Real
9029 and then Comes_From_Source (N)
9030 then
9031 Error_Msg_N ("value has extraneous low order digits", N);
9032 end if;
9034 -- Generate a warning if literal from source
9036 if Is_Static_Expression (N)
9037 and then Warn_On_Bad_Fixed_Value
9038 then
9039 Error_Msg_N
9040 ("?b?static fixed-point value is not a multiple of Small!",
9042 end if;
9044 -- Replace literal by a value that is the exact representation
9045 -- of a value of the type, i.e. a multiple of the small value,
9046 -- by truncation, since Machine_Rounds is false for all GNAT
9047 -- fixed-point types (RM 4.9(38)).
9049 Stat := Is_Static_Expression (N);
9050 Rewrite (N,
9051 Make_Real_Literal (Sloc (N),
9052 Realval => Small_Value (Typ) * Cint));
9054 Set_Is_Static_Expression (N, Stat);
9055 end if;
9057 -- In all cases, set the corresponding integer field
9059 Set_Corresponding_Integer_Value (N, Cint);
9060 end;
9061 end if;
9063 -- Now replace the actual type by the expected type as usual
9065 Set_Etype (N, Typ);
9066 Eval_Real_Literal (N);
9067 end Resolve_Real_Literal;
9069 -----------------------
9070 -- Resolve_Reference --
9071 -----------------------
9073 procedure Resolve_Reference (N : Node_Id; Typ : Entity_Id) is
9074 P : constant Node_Id := Prefix (N);
9076 begin
9077 -- Replace general access with specific type
9079 if Ekind (Etype (N)) = E_Allocator_Type then
9080 Set_Etype (N, Base_Type (Typ));
9081 end if;
9083 Resolve (P, Designated_Type (Etype (N)));
9085 -- If we are taking the reference of a volatile entity, then treat it as
9086 -- a potential modification of this entity. This is too conservative,
9087 -- but necessary because remove side effects can cause transformations
9088 -- of normal assignments into reference sequences that otherwise fail to
9089 -- notice the modification.
9091 if Is_Entity_Name (P) and then Treat_As_Volatile (Entity (P)) then
9092 Note_Possible_Modification (P, Sure => False);
9093 end if;
9094 end Resolve_Reference;
9096 --------------------------------
9097 -- Resolve_Selected_Component --
9098 --------------------------------
9100 procedure Resolve_Selected_Component (N : Node_Id; Typ : Entity_Id) is
9101 Comp : Entity_Id;
9102 Comp1 : Entity_Id := Empty; -- prevent junk warning
9103 P : constant Node_Id := Prefix (N);
9104 S : constant Node_Id := Selector_Name (N);
9105 T : Entity_Id := Etype (P);
9106 I : Interp_Index;
9107 I1 : Interp_Index := 0; -- prevent junk warning
9108 It : Interp;
9109 It1 : Interp;
9110 Found : Boolean;
9112 function Init_Component return Boolean;
9113 -- Check whether this is the initialization of a component within an
9114 -- init proc (by assignment or call to another init proc). If true,
9115 -- there is no need for a discriminant check.
9117 --------------------
9118 -- Init_Component --
9119 --------------------
9121 function Init_Component return Boolean is
9122 begin
9123 return Inside_Init_Proc
9124 and then Nkind (Prefix (N)) = N_Identifier
9125 and then Chars (Prefix (N)) = Name_uInit
9126 and then Nkind (Parent (Parent (N))) = N_Case_Statement_Alternative;
9127 end Init_Component;
9129 -- Start of processing for Resolve_Selected_Component
9131 begin
9132 if Is_Overloaded (P) then
9134 -- Use the context type to select the prefix that has a selector
9135 -- of the correct name and type.
9137 Found := False;
9138 Get_First_Interp (P, I, It);
9140 Search : while Present (It.Typ) loop
9141 if Is_Access_Type (It.Typ) then
9142 T := Designated_Type (It.Typ);
9143 else
9144 T := It.Typ;
9145 end if;
9147 -- Locate selected component. For a private prefix the selector
9148 -- can denote a discriminant.
9150 if Is_Record_Type (T) or else Is_Private_Type (T) then
9152 -- The visible components of a class-wide type are those of
9153 -- the root type.
9155 if Is_Class_Wide_Type (T) then
9156 T := Etype (T);
9157 end if;
9159 Comp := First_Entity (T);
9160 while Present (Comp) loop
9161 if Chars (Comp) = Chars (S)
9162 and then Covers (Etype (Comp), Typ)
9163 then
9164 if not Found then
9165 Found := True;
9166 I1 := I;
9167 It1 := It;
9168 Comp1 := Comp;
9170 else
9171 It := Disambiguate (P, I1, I, Any_Type);
9173 if It = No_Interp then
9174 Error_Msg_N
9175 ("ambiguous prefix for selected component", N);
9176 Set_Etype (N, Typ);
9177 return;
9179 else
9180 It1 := It;
9182 -- There may be an implicit dereference. Retrieve
9183 -- designated record type.
9185 if Is_Access_Type (It1.Typ) then
9186 T := Designated_Type (It1.Typ);
9187 else
9188 T := It1.Typ;
9189 end if;
9191 if Scope (Comp1) /= T then
9193 -- Resolution chooses the new interpretation.
9194 -- Find the component with the right name.
9196 Comp1 := First_Entity (T);
9197 while Present (Comp1)
9198 and then Chars (Comp1) /= Chars (S)
9199 loop
9200 Comp1 := Next_Entity (Comp1);
9201 end loop;
9202 end if;
9204 exit Search;
9205 end if;
9206 end if;
9207 end if;
9209 Comp := Next_Entity (Comp);
9210 end loop;
9211 end if;
9213 Get_Next_Interp (I, It);
9214 end loop Search;
9216 Resolve (P, It1.Typ);
9217 Set_Etype (N, Typ);
9218 Set_Entity_With_Checks (S, Comp1);
9220 else
9221 -- Resolve prefix with its type
9223 Resolve (P, T);
9224 end if;
9226 -- Generate cross-reference. We needed to wait until full overloading
9227 -- resolution was complete to do this, since otherwise we can't tell if
9228 -- we are an lvalue or not.
9230 if May_Be_Lvalue (N) then
9231 Generate_Reference (Entity (S), S, 'm');
9232 else
9233 Generate_Reference (Entity (S), S, 'r');
9234 end if;
9236 -- If prefix is an access type, the node will be transformed into an
9237 -- explicit dereference during expansion. The type of the node is the
9238 -- designated type of that of the prefix.
9240 if Is_Access_Type (Etype (P)) then
9241 T := Designated_Type (Etype (P));
9242 Check_Fully_Declared_Prefix (T, P);
9243 else
9244 T := Etype (P);
9245 end if;
9247 -- Set flag for expander if discriminant check required
9249 if Has_Discriminants (T)
9250 and then Ekind_In (Entity (S), E_Component, E_Discriminant)
9251 and then Present (Original_Record_Component (Entity (S)))
9252 and then Ekind (Original_Record_Component (Entity (S))) = E_Component
9253 and then not Discriminant_Checks_Suppressed (T)
9254 and then not Init_Component
9255 then
9256 Set_Do_Discriminant_Check (N);
9257 end if;
9259 if Ekind (Entity (S)) = E_Void then
9260 Error_Msg_N ("premature use of component", S);
9261 end if;
9263 -- If the prefix is a record conversion, this may be a renamed
9264 -- discriminant whose bounds differ from those of the original
9265 -- one, so we must ensure that a range check is performed.
9267 if Nkind (P) = N_Type_Conversion
9268 and then Ekind (Entity (S)) = E_Discriminant
9269 and then Is_Discrete_Type (Typ)
9270 then
9271 Set_Etype (N, Base_Type (Typ));
9272 end if;
9274 -- Note: No Eval processing is required, because the prefix is of a
9275 -- record type, or protected type, and neither can possibly be static.
9277 -- If the array type is atomic, and is packed, and we are in a left side
9278 -- context, then this is worth a warning, since we have a situation
9279 -- where the access to the component may cause extra read/writes of the
9280 -- atomic array object, which could be considered unexpected.
9282 if Nkind (N) = N_Selected_Component
9283 and then (Is_Atomic (T)
9284 or else (Is_Entity_Name (Prefix (N))
9285 and then Is_Atomic (Entity (Prefix (N)))))
9286 and then Is_Packed (T)
9287 and then Is_LHS (N) = Yes
9288 then
9289 Error_Msg_N
9290 ("??assignment to component of packed atomic record", Prefix (N));
9291 Error_Msg_N
9292 ("\??may cause unexpected accesses to atomic object", Prefix (N));
9293 end if;
9295 Analyze_Dimension (N);
9296 end Resolve_Selected_Component;
9298 -------------------
9299 -- Resolve_Shift --
9300 -------------------
9302 procedure Resolve_Shift (N : Node_Id; Typ : Entity_Id) is
9303 B_Typ : constant Entity_Id := Base_Type (Typ);
9304 L : constant Node_Id := Left_Opnd (N);
9305 R : constant Node_Id := Right_Opnd (N);
9307 begin
9308 -- We do the resolution using the base type, because intermediate values
9309 -- in expressions always are of the base type, not a subtype of it.
9311 Resolve (L, B_Typ);
9312 Resolve (R, Standard_Natural);
9314 Check_Unset_Reference (L);
9315 Check_Unset_Reference (R);
9317 Set_Etype (N, B_Typ);
9318 Generate_Operator_Reference (N, B_Typ);
9319 Eval_Shift (N);
9320 end Resolve_Shift;
9322 ---------------------------
9323 -- Resolve_Short_Circuit --
9324 ---------------------------
9326 procedure Resolve_Short_Circuit (N : Node_Id; Typ : Entity_Id) is
9327 B_Typ : constant Entity_Id := Base_Type (Typ);
9328 L : constant Node_Id := Left_Opnd (N);
9329 R : constant Node_Id := Right_Opnd (N);
9331 begin
9332 -- Ensure all actions associated with the left operand (e.g.
9333 -- finalization of transient controlled objects) are fully evaluated
9334 -- locally within an expression with actions. This is particularly
9335 -- helpful for coverage analysis. However this should not happen in
9336 -- generics.
9338 if Expander_Active then
9339 declare
9340 Reloc_L : constant Node_Id := Relocate_Node (L);
9341 begin
9342 Save_Interps (Old_N => L, New_N => Reloc_L);
9344 Rewrite (L,
9345 Make_Expression_With_Actions (Sloc (L),
9346 Actions => New_List,
9347 Expression => Reloc_L));
9349 -- Set Comes_From_Source on L to preserve warnings for unset
9350 -- reference.
9352 Set_Comes_From_Source (L, Comes_From_Source (Reloc_L));
9353 end;
9354 end if;
9356 Resolve (L, B_Typ);
9357 Resolve (R, B_Typ);
9359 -- Check for issuing warning for always False assert/check, this happens
9360 -- when assertions are turned off, in which case the pragma Assert/Check
9361 -- was transformed into:
9363 -- if False and then <condition> then ...
9365 -- and we detect this pattern
9367 if Warn_On_Assertion_Failure
9368 and then Is_Entity_Name (R)
9369 and then Entity (R) = Standard_False
9370 and then Nkind (Parent (N)) = N_If_Statement
9371 and then Nkind (N) = N_And_Then
9372 and then Is_Entity_Name (L)
9373 and then Entity (L) = Standard_False
9374 then
9375 declare
9376 Orig : constant Node_Id := Original_Node (Parent (N));
9378 begin
9379 -- Special handling of Asssert pragma
9381 if Nkind (Orig) = N_Pragma
9382 and then Pragma_Name (Orig) = Name_Assert
9383 then
9384 declare
9385 Expr : constant Node_Id :=
9386 Original_Node
9387 (Expression
9388 (First (Pragma_Argument_Associations (Orig))));
9390 begin
9391 -- Don't warn if original condition is explicit False,
9392 -- since obviously the failure is expected in this case.
9394 if Is_Entity_Name (Expr)
9395 and then Entity (Expr) = Standard_False
9396 then
9397 null;
9399 -- Issue warning. We do not want the deletion of the
9400 -- IF/AND-THEN to take this message with it. We achieve this
9401 -- by making sure that the expanded code points to the Sloc
9402 -- of the expression, not the original pragma.
9404 else
9405 -- Note: Use Error_Msg_F here rather than Error_Msg_N.
9406 -- The source location of the expression is not usually
9407 -- the best choice here. For example, it gets located on
9408 -- the last AND keyword in a chain of boolean expressiond
9409 -- AND'ed together. It is best to put the message on the
9410 -- first character of the assertion, which is the effect
9411 -- of the First_Node call here.
9413 Error_Msg_F
9414 ("?A?assertion would fail at run time!",
9415 Expression
9416 (First (Pragma_Argument_Associations (Orig))));
9417 end if;
9418 end;
9420 -- Similar processing for Check pragma
9422 elsif Nkind (Orig) = N_Pragma
9423 and then Pragma_Name (Orig) = Name_Check
9424 then
9425 -- Don't want to warn if original condition is explicit False
9427 declare
9428 Expr : constant Node_Id :=
9429 Original_Node
9430 (Expression
9431 (Next (First (Pragma_Argument_Associations (Orig)))));
9432 begin
9433 if Is_Entity_Name (Expr)
9434 and then Entity (Expr) = Standard_False
9435 then
9436 null;
9438 -- Post warning
9440 else
9441 -- Again use Error_Msg_F rather than Error_Msg_N, see
9442 -- comment above for an explanation of why we do this.
9444 Error_Msg_F
9445 ("?A?check would fail at run time!",
9446 Expression
9447 (Last (Pragma_Argument_Associations (Orig))));
9448 end if;
9449 end;
9450 end if;
9451 end;
9452 end if;
9454 -- Continue with processing of short circuit
9456 Check_Unset_Reference (L);
9457 Check_Unset_Reference (R);
9459 Set_Etype (N, B_Typ);
9460 Eval_Short_Circuit (N);
9461 end Resolve_Short_Circuit;
9463 -------------------
9464 -- Resolve_Slice --
9465 -------------------
9467 procedure Resolve_Slice (N : Node_Id; Typ : Entity_Id) is
9468 Drange : constant Node_Id := Discrete_Range (N);
9469 Name : constant Node_Id := Prefix (N);
9470 Array_Type : Entity_Id := Empty;
9471 Dexpr : Node_Id := Empty;
9472 Index_Type : Entity_Id;
9474 begin
9475 if Is_Overloaded (Name) then
9477 -- Use the context type to select the prefix that yields the correct
9478 -- array type.
9480 declare
9481 I : Interp_Index;
9482 I1 : Interp_Index := 0;
9483 It : Interp;
9484 P : constant Node_Id := Prefix (N);
9485 Found : Boolean := False;
9487 begin
9488 Get_First_Interp (P, I, It);
9489 while Present (It.Typ) loop
9490 if (Is_Array_Type (It.Typ)
9491 and then Covers (Typ, It.Typ))
9492 or else (Is_Access_Type (It.Typ)
9493 and then Is_Array_Type (Designated_Type (It.Typ))
9494 and then Covers (Typ, Designated_Type (It.Typ)))
9495 then
9496 if Found then
9497 It := Disambiguate (P, I1, I, Any_Type);
9499 if It = No_Interp then
9500 Error_Msg_N ("ambiguous prefix for slicing", N);
9501 Set_Etype (N, Typ);
9502 return;
9503 else
9504 Found := True;
9505 Array_Type := It.Typ;
9506 I1 := I;
9507 end if;
9508 else
9509 Found := True;
9510 Array_Type := It.Typ;
9511 I1 := I;
9512 end if;
9513 end if;
9515 Get_Next_Interp (I, It);
9516 end loop;
9517 end;
9519 else
9520 Array_Type := Etype (Name);
9521 end if;
9523 Resolve (Name, Array_Type);
9525 if Is_Access_Type (Array_Type) then
9526 Apply_Access_Check (N);
9527 Array_Type := Designated_Type (Array_Type);
9529 -- If the prefix is an access to an unconstrained array, we must use
9530 -- the actual subtype of the object to perform the index checks. The
9531 -- object denoted by the prefix is implicit in the node, so we build
9532 -- an explicit representation for it in order to compute the actual
9533 -- subtype.
9535 if not Is_Constrained (Array_Type) then
9536 Remove_Side_Effects (Prefix (N));
9538 declare
9539 Obj : constant Node_Id :=
9540 Make_Explicit_Dereference (Sloc (N),
9541 Prefix => New_Copy_Tree (Prefix (N)));
9542 begin
9543 Set_Etype (Obj, Array_Type);
9544 Set_Parent (Obj, Parent (N));
9545 Array_Type := Get_Actual_Subtype (Obj);
9546 end;
9547 end if;
9549 elsif Is_Entity_Name (Name)
9550 or else Nkind (Name) = N_Explicit_Dereference
9551 or else (Nkind (Name) = N_Function_Call
9552 and then not Is_Constrained (Etype (Name)))
9553 then
9554 Array_Type := Get_Actual_Subtype (Name);
9556 -- If the name is a selected component that depends on discriminants,
9557 -- build an actual subtype for it. This can happen only when the name
9558 -- itself is overloaded; otherwise the actual subtype is created when
9559 -- the selected component is analyzed.
9561 elsif Nkind (Name) = N_Selected_Component
9562 and then Full_Analysis
9563 and then Depends_On_Discriminant (First_Index (Array_Type))
9564 then
9565 declare
9566 Act_Decl : constant Node_Id :=
9567 Build_Actual_Subtype_Of_Component (Array_Type, Name);
9568 begin
9569 Insert_Action (N, Act_Decl);
9570 Array_Type := Defining_Identifier (Act_Decl);
9571 end;
9573 -- Maybe this should just be "else", instead of checking for the
9574 -- specific case of slice??? This is needed for the case where the
9575 -- prefix is an Image attribute, which gets expanded to a slice, and so
9576 -- has a constrained subtype which we want to use for the slice range
9577 -- check applied below (the range check won't get done if the
9578 -- unconstrained subtype of the 'Image is used).
9580 elsif Nkind (Name) = N_Slice then
9581 Array_Type := Etype (Name);
9582 end if;
9584 -- Obtain the type of the array index
9586 if Ekind (Array_Type) = E_String_Literal_Subtype then
9587 Index_Type := Etype (String_Literal_Low_Bound (Array_Type));
9588 else
9589 Index_Type := Etype (First_Index (Array_Type));
9590 end if;
9592 -- If name was overloaded, set slice type correctly now
9594 Set_Etype (N, Array_Type);
9596 -- Handle the generation of a range check that compares the array index
9597 -- against the discrete_range. The check is not applied to internally
9598 -- built nodes associated with the expansion of dispatch tables. Check
9599 -- that Ada.Tags has already been loaded to avoid extra dependencies on
9600 -- the unit.
9602 if Tagged_Type_Expansion
9603 and then RTU_Loaded (Ada_Tags)
9604 and then Nkind (Prefix (N)) = N_Selected_Component
9605 and then Present (Entity (Selector_Name (Prefix (N))))
9606 and then Entity (Selector_Name (Prefix (N))) =
9607 RTE_Record_Component (RE_Prims_Ptr)
9608 then
9609 null;
9611 -- The discrete_range is specified by a subtype indication. Create a
9612 -- shallow copy and inherit the type, parent and source location from
9613 -- the discrete_range. This ensures that the range check is inserted
9614 -- relative to the slice and that the runtime exception points to the
9615 -- proper construct.
9617 elsif Is_Entity_Name (Drange) then
9618 Dexpr := New_Copy (Scalar_Range (Entity (Drange)));
9620 Set_Etype (Dexpr, Etype (Drange));
9621 Set_Parent (Dexpr, Parent (Drange));
9622 Set_Sloc (Dexpr, Sloc (Drange));
9624 -- The discrete_range is a regular range. Resolve the bounds and remove
9625 -- their side effects.
9627 else
9628 Resolve (Drange, Base_Type (Index_Type));
9630 if Nkind (Drange) = N_Range then
9631 Force_Evaluation (Low_Bound (Drange));
9632 Force_Evaluation (High_Bound (Drange));
9634 Dexpr := Drange;
9635 end if;
9636 end if;
9638 if Present (Dexpr) then
9639 Apply_Range_Check (Dexpr, Index_Type);
9640 end if;
9642 Set_Slice_Subtype (N);
9644 -- Check bad use of type with predicates
9646 if Has_Predicates (Etype (Drange)) then
9647 Bad_Predicated_Subtype_Use
9648 ("subtype& has predicate, not allowed in slice",
9649 Drange, Etype (Drange));
9651 -- Otherwise here is where we check suspicious indexes
9653 elsif Nkind (Drange) = N_Range then
9654 Warn_On_Suspicious_Index (Name, Low_Bound (Drange));
9655 Warn_On_Suspicious_Index (Name, High_Bound (Drange));
9656 end if;
9658 Analyze_Dimension (N);
9659 Eval_Slice (N);
9660 end Resolve_Slice;
9662 ----------------------------
9663 -- Resolve_String_Literal --
9664 ----------------------------
9666 procedure Resolve_String_Literal (N : Node_Id; Typ : Entity_Id) is
9667 C_Typ : constant Entity_Id := Component_Type (Typ);
9668 R_Typ : constant Entity_Id := Root_Type (C_Typ);
9669 Loc : constant Source_Ptr := Sloc (N);
9670 Str : constant String_Id := Strval (N);
9671 Strlen : constant Nat := String_Length (Str);
9672 Subtype_Id : Entity_Id;
9673 Need_Check : Boolean;
9675 begin
9676 -- For a string appearing in a concatenation, defer creation of the
9677 -- string_literal_subtype until the end of the resolution of the
9678 -- concatenation, because the literal may be constant-folded away. This
9679 -- is a useful optimization for long concatenation expressions.
9681 -- If the string is an aggregate built for a single character (which
9682 -- happens in a non-static context) or a is null string to which special
9683 -- checks may apply, we build the subtype. Wide strings must also get a
9684 -- string subtype if they come from a one character aggregate. Strings
9685 -- generated by attributes might be static, but it is often hard to
9686 -- determine whether the enclosing context is static, so we generate
9687 -- subtypes for them as well, thus losing some rarer optimizations ???
9688 -- Same for strings that come from a static conversion.
9690 Need_Check :=
9691 (Strlen = 0 and then Typ /= Standard_String)
9692 or else Nkind (Parent (N)) /= N_Op_Concat
9693 or else (N /= Left_Opnd (Parent (N))
9694 and then N /= Right_Opnd (Parent (N)))
9695 or else ((Typ = Standard_Wide_String
9696 or else Typ = Standard_Wide_Wide_String)
9697 and then Nkind (Original_Node (N)) /= N_String_Literal);
9699 -- If the resolving type is itself a string literal subtype, we can just
9700 -- reuse it, since there is no point in creating another.
9702 if Ekind (Typ) = E_String_Literal_Subtype then
9703 Subtype_Id := Typ;
9705 elsif Nkind (Parent (N)) = N_Op_Concat
9706 and then not Need_Check
9707 and then not Nkind_In (Original_Node (N), N_Character_Literal,
9708 N_Attribute_Reference,
9709 N_Qualified_Expression,
9710 N_Type_Conversion)
9711 then
9712 Subtype_Id := Typ;
9714 -- Otherwise we must create a string literal subtype. Note that the
9715 -- whole idea of string literal subtypes is simply to avoid the need
9716 -- for building a full fledged array subtype for each literal.
9718 else
9719 Set_String_Literal_Subtype (N, Typ);
9720 Subtype_Id := Etype (N);
9721 end if;
9723 if Nkind (Parent (N)) /= N_Op_Concat
9724 or else Need_Check
9725 then
9726 Set_Etype (N, Subtype_Id);
9727 Eval_String_Literal (N);
9728 end if;
9730 if Is_Limited_Composite (Typ)
9731 or else Is_Private_Composite (Typ)
9732 then
9733 Error_Msg_N ("string literal not available for private array", N);
9734 Set_Etype (N, Any_Type);
9735 return;
9736 end if;
9738 -- The validity of a null string has been checked in the call to
9739 -- Eval_String_Literal.
9741 if Strlen = 0 then
9742 return;
9744 -- Always accept string literal with component type Any_Character, which
9745 -- occurs in error situations and in comparisons of literals, both of
9746 -- which should accept all literals.
9748 elsif R_Typ = Any_Character then
9749 return;
9751 -- If the type is bit-packed, then we always transform the string
9752 -- literal into a full fledged aggregate.
9754 elsif Is_Bit_Packed_Array (Typ) then
9755 null;
9757 -- Deal with cases of Wide_Wide_String, Wide_String, and String
9759 else
9760 -- For Standard.Wide_Wide_String, or any other type whose component
9761 -- type is Standard.Wide_Wide_Character, we know that all the
9762 -- characters in the string must be acceptable, since the parser
9763 -- accepted the characters as valid character literals.
9765 if R_Typ = Standard_Wide_Wide_Character then
9766 null;
9768 -- For the case of Standard.String, or any other type whose component
9769 -- type is Standard.Character, we must make sure that there are no
9770 -- wide characters in the string, i.e. that it is entirely composed
9771 -- of characters in range of type Character.
9773 -- If the string literal is the result of a static concatenation, the
9774 -- test has already been performed on the components, and need not be
9775 -- repeated.
9777 elsif R_Typ = Standard_Character
9778 and then Nkind (Original_Node (N)) /= N_Op_Concat
9779 then
9780 for J in 1 .. Strlen loop
9781 if not In_Character_Range (Get_String_Char (Str, J)) then
9783 -- If we are out of range, post error. This is one of the
9784 -- very few places that we place the flag in the middle of
9785 -- a token, right under the offending wide character. Not
9786 -- quite clear if this is right wrt wide character encoding
9787 -- sequences, but it's only an error message.
9789 Error_Msg
9790 ("literal out of range of type Standard.Character",
9791 Source_Ptr (Int (Loc) + J));
9792 return;
9793 end if;
9794 end loop;
9796 -- For the case of Standard.Wide_String, or any other type whose
9797 -- component type is Standard.Wide_Character, we must make sure that
9798 -- there are no wide characters in the string, i.e. that it is
9799 -- entirely composed of characters in range of type Wide_Character.
9801 -- If the string literal is the result of a static concatenation,
9802 -- the test has already been performed on the components, and need
9803 -- not be repeated.
9805 elsif R_Typ = Standard_Wide_Character
9806 and then Nkind (Original_Node (N)) /= N_Op_Concat
9807 then
9808 for J in 1 .. Strlen loop
9809 if not In_Wide_Character_Range (Get_String_Char (Str, J)) then
9811 -- If we are out of range, post error. This is one of the
9812 -- very few places that we place the flag in the middle of
9813 -- a token, right under the offending wide character.
9815 -- This is not quite right, because characters in general
9816 -- will take more than one character position ???
9818 Error_Msg
9819 ("literal out of range of type Standard.Wide_Character",
9820 Source_Ptr (Int (Loc) + J));
9821 return;
9822 end if;
9823 end loop;
9825 -- If the root type is not a standard character, then we will convert
9826 -- the string into an aggregate and will let the aggregate code do
9827 -- the checking. Standard Wide_Wide_Character is also OK here.
9829 else
9830 null;
9831 end if;
9833 -- See if the component type of the array corresponding to the string
9834 -- has compile time known bounds. If yes we can directly check
9835 -- whether the evaluation of the string will raise constraint error.
9836 -- Otherwise we need to transform the string literal into the
9837 -- corresponding character aggregate and let the aggregate code do
9838 -- the checking.
9840 if Is_Standard_Character_Type (R_Typ) then
9842 -- Check for the case of full range, where we are definitely OK
9844 if Component_Type (Typ) = Base_Type (Component_Type (Typ)) then
9845 return;
9846 end if;
9848 -- Here the range is not the complete base type range, so check
9850 declare
9851 Comp_Typ_Lo : constant Node_Id :=
9852 Type_Low_Bound (Component_Type (Typ));
9853 Comp_Typ_Hi : constant Node_Id :=
9854 Type_High_Bound (Component_Type (Typ));
9856 Char_Val : Uint;
9858 begin
9859 if Compile_Time_Known_Value (Comp_Typ_Lo)
9860 and then Compile_Time_Known_Value (Comp_Typ_Hi)
9861 then
9862 for J in 1 .. Strlen loop
9863 Char_Val := UI_From_Int (Int (Get_String_Char (Str, J)));
9865 if Char_Val < Expr_Value (Comp_Typ_Lo)
9866 or else Char_Val > Expr_Value (Comp_Typ_Hi)
9867 then
9868 Apply_Compile_Time_Constraint_Error
9869 (N, "character out of range??",
9870 CE_Range_Check_Failed,
9871 Loc => Source_Ptr (Int (Loc) + J));
9872 end if;
9873 end loop;
9875 return;
9876 end if;
9877 end;
9878 end if;
9879 end if;
9881 -- If we got here we meed to transform the string literal into the
9882 -- equivalent qualified positional array aggregate. This is rather
9883 -- heavy artillery for this situation, but it is hard work to avoid.
9885 declare
9886 Lits : constant List_Id := New_List;
9887 P : Source_Ptr := Loc + 1;
9888 C : Char_Code;
9890 begin
9891 -- Build the character literals, we give them source locations that
9892 -- correspond to the string positions, which is a bit tricky given
9893 -- the possible presence of wide character escape sequences.
9895 for J in 1 .. Strlen loop
9896 C := Get_String_Char (Str, J);
9897 Set_Character_Literal_Name (C);
9899 Append_To (Lits,
9900 Make_Character_Literal (P,
9901 Chars => Name_Find,
9902 Char_Literal_Value => UI_From_CC (C)));
9904 if In_Character_Range (C) then
9905 P := P + 1;
9907 -- Should we have a call to Skip_Wide here ???
9909 -- ??? else
9910 -- Skip_Wide (P);
9912 end if;
9913 end loop;
9915 Rewrite (N,
9916 Make_Qualified_Expression (Loc,
9917 Subtype_Mark => New_Occurrence_Of (Typ, Loc),
9918 Expression =>
9919 Make_Aggregate (Loc, Expressions => Lits)));
9921 Analyze_And_Resolve (N, Typ);
9922 end;
9923 end Resolve_String_Literal;
9925 -----------------------------
9926 -- Resolve_Type_Conversion --
9927 -----------------------------
9929 procedure Resolve_Type_Conversion (N : Node_Id; Typ : Entity_Id) is
9930 Conv_OK : constant Boolean := Conversion_OK (N);
9931 Operand : constant Node_Id := Expression (N);
9932 Operand_Typ : constant Entity_Id := Etype (Operand);
9933 Target_Typ : constant Entity_Id := Etype (N);
9934 Rop : Node_Id;
9935 Orig_N : Node_Id;
9936 Orig_T : Node_Id;
9938 Test_Redundant : Boolean := Warn_On_Redundant_Constructs;
9939 -- Set to False to suppress cases where we want to suppress the test
9940 -- for redundancy to avoid possible false positives on this warning.
9942 begin
9943 if not Conv_OK
9944 and then not Valid_Conversion (N, Target_Typ, Operand)
9945 then
9946 return;
9947 end if;
9949 -- If the Operand Etype is Universal_Fixed, then the conversion is
9950 -- never redundant. We need this check because by the time we have
9951 -- finished the rather complex transformation, the conversion looks
9952 -- redundant when it is not.
9954 if Operand_Typ = Universal_Fixed then
9955 Test_Redundant := False;
9957 -- If the operand is marked as Any_Fixed, then special processing is
9958 -- required. This is also a case where we suppress the test for a
9959 -- redundant conversion, since most certainly it is not redundant.
9961 elsif Operand_Typ = Any_Fixed then
9962 Test_Redundant := False;
9964 -- Mixed-mode operation involving a literal. Context must be a fixed
9965 -- type which is applied to the literal subsequently.
9967 if Is_Fixed_Point_Type (Typ) then
9968 Set_Etype (Operand, Universal_Real);
9970 elsif Is_Numeric_Type (Typ)
9971 and then Nkind_In (Operand, N_Op_Multiply, N_Op_Divide)
9972 and then (Etype (Right_Opnd (Operand)) = Universal_Real
9973 or else
9974 Etype (Left_Opnd (Operand)) = Universal_Real)
9975 then
9976 -- Return if expression is ambiguous
9978 if Unique_Fixed_Point_Type (N) = Any_Type then
9979 return;
9981 -- If nothing else, the available fixed type is Duration
9983 else
9984 Set_Etype (Operand, Standard_Duration);
9985 end if;
9987 -- Resolve the real operand with largest available precision
9989 if Etype (Right_Opnd (Operand)) = Universal_Real then
9990 Rop := New_Copy_Tree (Right_Opnd (Operand));
9991 else
9992 Rop := New_Copy_Tree (Left_Opnd (Operand));
9993 end if;
9995 Resolve (Rop, Universal_Real);
9997 -- If the operand is a literal (it could be a non-static and
9998 -- illegal exponentiation) check whether the use of Duration
9999 -- is potentially inaccurate.
10001 if Nkind (Rop) = N_Real_Literal
10002 and then Realval (Rop) /= Ureal_0
10003 and then abs (Realval (Rop)) < Delta_Value (Standard_Duration)
10004 then
10005 Error_Msg_N
10006 ("??universal real operand can only "
10007 & "be interpreted as Duration!", Rop);
10008 Error_Msg_N
10009 ("\??precision will be lost in the conversion!", Rop);
10010 end if;
10012 elsif Is_Numeric_Type (Typ)
10013 and then Nkind (Operand) in N_Op
10014 and then Unique_Fixed_Point_Type (N) /= Any_Type
10015 then
10016 Set_Etype (Operand, Standard_Duration);
10018 else
10019 Error_Msg_N ("invalid context for mixed mode operation", N);
10020 Set_Etype (Operand, Any_Type);
10021 return;
10022 end if;
10023 end if;
10025 Resolve (Operand);
10027 -- In SPARK, a type conversion between array types should be restricted
10028 -- to types which have matching static bounds.
10030 -- Protect call to Matching_Static_Array_Bounds to avoid costly
10031 -- operation if not needed.
10033 if Restriction_Check_Required (SPARK_05)
10034 and then Is_Array_Type (Target_Typ)
10035 and then Is_Array_Type (Operand_Typ)
10036 and then Operand_Typ /= Any_Composite -- or else Operand in error
10037 and then not Matching_Static_Array_Bounds (Target_Typ, Operand_Typ)
10038 then
10039 Check_SPARK_Restriction
10040 ("array types should have matching static bounds", N);
10041 end if;
10043 -- In formal mode, the operand of an ancestor type conversion must be an
10044 -- object (not an expression).
10046 if Is_Tagged_Type (Target_Typ)
10047 and then not Is_Class_Wide_Type (Target_Typ)
10048 and then Is_Tagged_Type (Operand_Typ)
10049 and then not Is_Class_Wide_Type (Operand_Typ)
10050 and then Is_Ancestor (Target_Typ, Operand_Typ)
10051 and then not Is_SPARK_Object_Reference (Operand)
10052 then
10053 Check_SPARK_Restriction ("object required", Operand);
10054 end if;
10056 Analyze_Dimension (N);
10058 -- Note: we do the Eval_Type_Conversion call before applying the
10059 -- required checks for a subtype conversion. This is important, since
10060 -- both are prepared under certain circumstances to change the type
10061 -- conversion to a constraint error node, but in the case of
10062 -- Eval_Type_Conversion this may reflect an illegality in the static
10063 -- case, and we would miss the illegality (getting only a warning
10064 -- message), if we applied the type conversion checks first.
10066 Eval_Type_Conversion (N);
10068 -- Even when evaluation is not possible, we may be able to simplify the
10069 -- conversion or its expression. This needs to be done before applying
10070 -- checks, since otherwise the checks may use the original expression
10071 -- and defeat the simplifications. This is specifically the case for
10072 -- elimination of the floating-point Truncation attribute in
10073 -- float-to-int conversions.
10075 Simplify_Type_Conversion (N);
10077 -- If after evaluation we still have a type conversion, then we may need
10078 -- to apply checks required for a subtype conversion.
10080 -- Skip these type conversion checks if universal fixed operands
10081 -- operands involved, since range checks are handled separately for
10082 -- these cases (in the appropriate Expand routines in unit Exp_Fixd).
10084 if Nkind (N) = N_Type_Conversion
10085 and then not Is_Generic_Type (Root_Type (Target_Typ))
10086 and then Target_Typ /= Universal_Fixed
10087 and then Operand_Typ /= Universal_Fixed
10088 then
10089 Apply_Type_Conversion_Checks (N);
10090 end if;
10092 -- Issue warning for conversion of simple object to its own type. We
10093 -- have to test the original nodes, since they may have been rewritten
10094 -- by various optimizations.
10096 Orig_N := Original_Node (N);
10098 -- Here we test for a redundant conversion if the warning mode is
10099 -- active (and was not locally reset), and we have a type conversion
10100 -- from source not appearing in a generic instance.
10102 if Test_Redundant
10103 and then Nkind (Orig_N) = N_Type_Conversion
10104 and then Comes_From_Source (Orig_N)
10105 and then not In_Instance
10106 then
10107 Orig_N := Original_Node (Expression (Orig_N));
10108 Orig_T := Target_Typ;
10110 -- If the node is part of a larger expression, the Target_Type
10111 -- may not be the original type of the node if the context is a
10112 -- condition. Recover original type to see if conversion is needed.
10114 if Is_Boolean_Type (Orig_T)
10115 and then Nkind (Parent (N)) in N_Op
10116 then
10117 Orig_T := Etype (Parent (N));
10118 end if;
10120 -- If we have an entity name, then give the warning if the entity
10121 -- is the right type, or if it is a loop parameter covered by the
10122 -- original type (that's needed because loop parameters have an
10123 -- odd subtype coming from the bounds).
10125 if (Is_Entity_Name (Orig_N)
10126 and then
10127 (Etype (Entity (Orig_N)) = Orig_T
10128 or else
10129 (Ekind (Entity (Orig_N)) = E_Loop_Parameter
10130 and then Covers (Orig_T, Etype (Entity (Orig_N))))))
10132 -- If not an entity, then type of expression must match
10134 or else Etype (Orig_N) = Orig_T
10135 then
10136 -- One more check, do not give warning if the analyzed conversion
10137 -- has an expression with non-static bounds, and the bounds of the
10138 -- target are static. This avoids junk warnings in cases where the
10139 -- conversion is necessary to establish staticness, for example in
10140 -- a case statement.
10142 if not Is_OK_Static_Subtype (Operand_Typ)
10143 and then Is_OK_Static_Subtype (Target_Typ)
10144 then
10145 null;
10147 -- Finally, if this type conversion occurs in a context requiring
10148 -- a prefix, and the expression is a qualified expression then the
10149 -- type conversion is not redundant, since a qualified expression
10150 -- is not a prefix, whereas a type conversion is. For example, "X
10151 -- := T'(Funx(...)).Y;" is illegal because a selected component
10152 -- requires a prefix, but a type conversion makes it legal: "X :=
10153 -- T(T'(Funx(...))).Y;"
10155 -- In Ada 2012, a qualified expression is a name, so this idiom is
10156 -- no longer needed, but we still suppress the warning because it
10157 -- seems unfriendly for warnings to pop up when you switch to the
10158 -- newer language version.
10160 elsif Nkind (Orig_N) = N_Qualified_Expression
10161 and then Nkind_In (Parent (N), N_Attribute_Reference,
10162 N_Indexed_Component,
10163 N_Selected_Component,
10164 N_Slice,
10165 N_Explicit_Dereference)
10166 then
10167 null;
10169 -- Never warn on conversion to Long_Long_Integer'Base since
10170 -- that is most likely an artifact of the extended overflow
10171 -- checking and comes from complex expanded code.
10173 elsif Orig_T = Base_Type (Standard_Long_Long_Integer) then
10174 null;
10176 -- Here we give the redundant conversion warning. If it is an
10177 -- entity, give the name of the entity in the message. If not,
10178 -- just mention the expression.
10180 -- Shoudn't we test Warn_On_Redundant_Constructs here ???
10182 else
10183 if Is_Entity_Name (Orig_N) then
10184 Error_Msg_Node_2 := Orig_T;
10185 Error_Msg_NE -- CODEFIX
10186 ("??redundant conversion, & is of type &!",
10187 N, Entity (Orig_N));
10188 else
10189 Error_Msg_NE
10190 ("??redundant conversion, expression is of type&!",
10191 N, Orig_T);
10192 end if;
10193 end if;
10194 end if;
10195 end if;
10197 -- Ada 2005 (AI-251): Handle class-wide interface type conversions.
10198 -- No need to perform any interface conversion if the type of the
10199 -- expression coincides with the target type.
10201 if Ada_Version >= Ada_2005
10202 and then Expander_Active
10203 and then Operand_Typ /= Target_Typ
10204 then
10205 declare
10206 Opnd : Entity_Id := Operand_Typ;
10207 Target : Entity_Id := Target_Typ;
10209 begin
10210 if Is_Access_Type (Opnd) then
10211 Opnd := Designated_Type (Opnd);
10212 end if;
10214 if Is_Access_Type (Target_Typ) then
10215 Target := Designated_Type (Target);
10216 end if;
10218 if Opnd = Target then
10219 null;
10221 -- Conversion from interface type
10223 elsif Is_Interface (Opnd) then
10225 -- Ada 2005 (AI-217): Handle entities from limited views
10227 if From_Limited_With (Opnd) then
10228 Error_Msg_Qual_Level := 99;
10229 Error_Msg_NE -- CODEFIX
10230 ("missing WITH clause on package &", N,
10231 Cunit_Entity (Get_Source_Unit (Base_Type (Opnd))));
10232 Error_Msg_N
10233 ("type conversions require visibility of the full view",
10236 elsif From_Limited_With (Target)
10237 and then not
10238 (Is_Access_Type (Target_Typ)
10239 and then Present (Non_Limited_View (Etype (Target))))
10240 then
10241 Error_Msg_Qual_Level := 99;
10242 Error_Msg_NE -- CODEFIX
10243 ("missing WITH clause on package &", N,
10244 Cunit_Entity (Get_Source_Unit (Base_Type (Target))));
10245 Error_Msg_N
10246 ("type conversions require visibility of the full view",
10249 else
10250 Expand_Interface_Conversion (N);
10251 end if;
10253 -- Conversion to interface type
10255 elsif Is_Interface (Target) then
10257 -- Handle subtypes
10259 if Ekind_In (Opnd, E_Protected_Subtype, E_Task_Subtype) then
10260 Opnd := Etype (Opnd);
10261 end if;
10263 if Is_Class_Wide_Type (Opnd)
10264 or else Interface_Present_In_Ancestor
10265 (Typ => Opnd,
10266 Iface => Target)
10267 then
10268 Expand_Interface_Conversion (N);
10269 else
10270 Error_Msg_Name_1 := Chars (Etype (Target));
10271 Error_Msg_Name_2 := Chars (Opnd);
10272 Error_Msg_N
10273 ("wrong interface conversion (% is not a progenitor "
10274 & "of %)", N);
10275 end if;
10276 end if;
10277 end;
10278 end if;
10280 -- Ada 2012: if target type has predicates, the result requires a
10281 -- predicate check. If the context is a call to another predicate
10282 -- check we must prevent infinite recursion.
10284 if Has_Predicates (Target_Typ) then
10285 if Nkind (Parent (N)) = N_Function_Call
10286 and then Present (Name (Parent (N)))
10287 and then (Is_Predicate_Function (Entity (Name (Parent (N))))
10288 or else
10289 Is_Predicate_Function_M (Entity (Name (Parent (N)))))
10290 then
10291 null;
10293 else
10294 Apply_Predicate_Check (N, Target_Typ);
10295 end if;
10296 end if;
10297 end Resolve_Type_Conversion;
10299 ----------------------
10300 -- Resolve_Unary_Op --
10301 ----------------------
10303 procedure Resolve_Unary_Op (N : Node_Id; Typ : Entity_Id) is
10304 B_Typ : constant Entity_Id := Base_Type (Typ);
10305 R : constant Node_Id := Right_Opnd (N);
10306 OK : Boolean;
10307 Lo : Uint;
10308 Hi : Uint;
10310 begin
10311 if Is_Modular_Integer_Type (Typ) and then Nkind (N) /= N_Op_Not then
10312 Error_Msg_Name_1 := Chars (Typ);
10313 Check_SPARK_Restriction
10314 ("unary operator not defined for modular type%", N);
10315 end if;
10317 -- Deal with intrinsic unary operators
10319 if Comes_From_Source (N)
10320 and then Ekind (Entity (N)) = E_Function
10321 and then Is_Imported (Entity (N))
10322 and then Is_Intrinsic_Subprogram (Entity (N))
10323 then
10324 Resolve_Intrinsic_Unary_Operator (N, Typ);
10325 return;
10326 end if;
10328 -- Deal with universal cases
10330 if Etype (R) = Universal_Integer
10331 or else
10332 Etype (R) = Universal_Real
10333 then
10334 Check_For_Visible_Operator (N, B_Typ);
10335 end if;
10337 Set_Etype (N, B_Typ);
10338 Resolve (R, B_Typ);
10340 -- Generate warning for expressions like abs (x mod 2)
10342 if Warn_On_Redundant_Constructs
10343 and then Nkind (N) = N_Op_Abs
10344 then
10345 Determine_Range (Right_Opnd (N), OK, Lo, Hi);
10347 if OK and then Hi >= Lo and then Lo >= 0 then
10348 Error_Msg_N -- CODEFIX
10349 ("?r?abs applied to known non-negative value has no effect", N);
10350 end if;
10351 end if;
10353 -- Deal with reference generation
10355 Check_Unset_Reference (R);
10356 Generate_Operator_Reference (N, B_Typ);
10357 Analyze_Dimension (N);
10358 Eval_Unary_Op (N);
10360 -- Set overflow checking bit. Much cleverer code needed here eventually
10361 -- and perhaps the Resolve routines should be separated for the various
10362 -- arithmetic operations, since they will need different processing ???
10364 if Nkind (N) in N_Op then
10365 if not Overflow_Checks_Suppressed (Etype (N)) then
10366 Enable_Overflow_Check (N);
10367 end if;
10368 end if;
10370 -- Generate warning for expressions like -5 mod 3 for integers. No need
10371 -- to worry in the floating-point case, since parens do not affect the
10372 -- result so there is no point in giving in a warning.
10374 declare
10375 Norig : constant Node_Id := Original_Node (N);
10376 Rorig : Node_Id;
10377 Val : Uint;
10378 HB : Uint;
10379 LB : Uint;
10380 Lval : Uint;
10381 Opnd : Node_Id;
10383 begin
10384 if Warn_On_Questionable_Missing_Parens
10385 and then Comes_From_Source (Norig)
10386 and then Is_Integer_Type (Typ)
10387 and then Nkind (Norig) = N_Op_Minus
10388 then
10389 Rorig := Original_Node (Right_Opnd (Norig));
10391 -- We are looking for cases where the right operand is not
10392 -- parenthesized, and is a binary operator, multiply, divide, or
10393 -- mod. These are the cases where the grouping can affect results.
10395 if Paren_Count (Rorig) = 0
10396 and then Nkind_In (Rorig, N_Op_Mod, N_Op_Multiply, N_Op_Divide)
10397 then
10398 -- For mod, we always give the warning, since the value is
10399 -- affected by the parenthesization (e.g. (-5) mod 315 /=
10400 -- -(5 mod 315)). But for the other cases, the only concern is
10401 -- overflow, e.g. for the case of 8 big signed (-(2 * 64)
10402 -- overflows, but (-2) * 64 does not). So we try to give the
10403 -- message only when overflow is possible.
10405 if Nkind (Rorig) /= N_Op_Mod
10406 and then Compile_Time_Known_Value (R)
10407 then
10408 Val := Expr_Value (R);
10410 if Compile_Time_Known_Value (Type_High_Bound (Typ)) then
10411 HB := Expr_Value (Type_High_Bound (Typ));
10412 else
10413 HB := Expr_Value (Type_High_Bound (Base_Type (Typ)));
10414 end if;
10416 if Compile_Time_Known_Value (Type_Low_Bound (Typ)) then
10417 LB := Expr_Value (Type_Low_Bound (Typ));
10418 else
10419 LB := Expr_Value (Type_Low_Bound (Base_Type (Typ)));
10420 end if;
10422 -- Note that the test below is deliberately excluding the
10423 -- largest negative number, since that is a potentially
10424 -- troublesome case (e.g. -2 * x, where the result is the
10425 -- largest negative integer has an overflow with 2 * x).
10427 if Val > LB and then Val <= HB then
10428 return;
10429 end if;
10430 end if;
10432 -- For the multiplication case, the only case we have to worry
10433 -- about is when (-a)*b is exactly the largest negative number
10434 -- so that -(a*b) can cause overflow. This can only happen if
10435 -- a is a power of 2, and more generally if any operand is a
10436 -- constant that is not a power of 2, then the parentheses
10437 -- cannot affect whether overflow occurs. We only bother to
10438 -- test the left most operand
10440 -- Loop looking at left operands for one that has known value
10442 Opnd := Rorig;
10443 Opnd_Loop : while Nkind (Opnd) = N_Op_Multiply loop
10444 if Compile_Time_Known_Value (Left_Opnd (Opnd)) then
10445 Lval := UI_Abs (Expr_Value (Left_Opnd (Opnd)));
10447 -- Operand value of 0 or 1 skips warning
10449 if Lval <= 1 then
10450 return;
10452 -- Otherwise check power of 2, if power of 2, warn, if
10453 -- anything else, skip warning.
10455 else
10456 while Lval /= 2 loop
10457 if Lval mod 2 = 1 then
10458 return;
10459 else
10460 Lval := Lval / 2;
10461 end if;
10462 end loop;
10464 exit Opnd_Loop;
10465 end if;
10466 end if;
10468 -- Keep looking at left operands
10470 Opnd := Left_Opnd (Opnd);
10471 end loop Opnd_Loop;
10473 -- For rem or "/" we can only have a problematic situation
10474 -- if the divisor has a value of minus one or one. Otherwise
10475 -- overflow is impossible (divisor > 1) or we have a case of
10476 -- division by zero in any case.
10478 if Nkind_In (Rorig, N_Op_Divide, N_Op_Rem)
10479 and then Compile_Time_Known_Value (Right_Opnd (Rorig))
10480 and then UI_Abs (Expr_Value (Right_Opnd (Rorig))) /= 1
10481 then
10482 return;
10483 end if;
10485 -- If we fall through warning should be issued
10487 -- Shouldn't we test Warn_On_Questionable_Missing_Parens ???
10489 Error_Msg_N
10490 ("??unary minus expression should be parenthesized here!", N);
10491 end if;
10492 end if;
10493 end;
10494 end Resolve_Unary_Op;
10496 ----------------------------------
10497 -- Resolve_Unchecked_Expression --
10498 ----------------------------------
10500 procedure Resolve_Unchecked_Expression
10501 (N : Node_Id;
10502 Typ : Entity_Id)
10504 begin
10505 Resolve (Expression (N), Typ, Suppress => All_Checks);
10506 Set_Etype (N, Typ);
10507 end Resolve_Unchecked_Expression;
10509 ---------------------------------------
10510 -- Resolve_Unchecked_Type_Conversion --
10511 ---------------------------------------
10513 procedure Resolve_Unchecked_Type_Conversion
10514 (N : Node_Id;
10515 Typ : Entity_Id)
10517 pragma Warnings (Off, Typ);
10519 Operand : constant Node_Id := Expression (N);
10520 Opnd_Type : constant Entity_Id := Etype (Operand);
10522 begin
10523 -- Resolve operand using its own type
10525 Resolve (Operand, Opnd_Type);
10526 Analyze_Dimension (N);
10527 Eval_Unchecked_Conversion (N);
10528 end Resolve_Unchecked_Type_Conversion;
10530 ------------------------------
10531 -- Rewrite_Operator_As_Call --
10532 ------------------------------
10534 procedure Rewrite_Operator_As_Call (N : Node_Id; Nam : Entity_Id) is
10535 Loc : constant Source_Ptr := Sloc (N);
10536 Actuals : constant List_Id := New_List;
10537 New_N : Node_Id;
10539 begin
10540 if Nkind (N) in N_Binary_Op then
10541 Append (Left_Opnd (N), Actuals);
10542 end if;
10544 Append (Right_Opnd (N), Actuals);
10546 New_N :=
10547 Make_Function_Call (Sloc => Loc,
10548 Name => New_Occurrence_Of (Nam, Loc),
10549 Parameter_Associations => Actuals);
10551 Preserve_Comes_From_Source (New_N, N);
10552 Preserve_Comes_From_Source (Name (New_N), N);
10553 Rewrite (N, New_N);
10554 Set_Etype (N, Etype (Nam));
10555 end Rewrite_Operator_As_Call;
10557 ------------------------------
10558 -- Rewrite_Renamed_Operator --
10559 ------------------------------
10561 procedure Rewrite_Renamed_Operator
10562 (N : Node_Id;
10563 Op : Entity_Id;
10564 Typ : Entity_Id)
10566 Nam : constant Name_Id := Chars (Op);
10567 Is_Binary : constant Boolean := Nkind (N) in N_Binary_Op;
10568 Op_Node : Node_Id;
10570 begin
10571 -- Do not perform this transformation within a pre/postcondition,
10572 -- because the expression will be re-analyzed, and the transformation
10573 -- might affect the visibility of the operator, e.g. in an instance.
10575 if In_Assertion_Expr > 0 then
10576 return;
10577 end if;
10579 -- Rewrite the operator node using the real operator, not its renaming.
10580 -- Exclude user-defined intrinsic operations of the same name, which are
10581 -- treated separately and rewritten as calls.
10583 if Ekind (Op) /= E_Function or else Chars (N) /= Nam then
10584 Op_Node := New_Node (Operator_Kind (Nam, Is_Binary), Sloc (N));
10585 Set_Chars (Op_Node, Nam);
10586 Set_Etype (Op_Node, Etype (N));
10587 Set_Entity (Op_Node, Op);
10588 Set_Right_Opnd (Op_Node, Right_Opnd (N));
10590 -- Indicate that both the original entity and its renaming are
10591 -- referenced at this point.
10593 Generate_Reference (Entity (N), N);
10594 Generate_Reference (Op, N);
10596 if Is_Binary then
10597 Set_Left_Opnd (Op_Node, Left_Opnd (N));
10598 end if;
10600 Rewrite (N, Op_Node);
10602 -- If the context type is private, add the appropriate conversions so
10603 -- that the operator is applied to the full view. This is done in the
10604 -- routines that resolve intrinsic operators.
10606 if Is_Intrinsic_Subprogram (Op)
10607 and then Is_Private_Type (Typ)
10608 then
10609 case Nkind (N) is
10610 when N_Op_Add | N_Op_Subtract | N_Op_Multiply | N_Op_Divide |
10611 N_Op_Expon | N_Op_Mod | N_Op_Rem =>
10612 Resolve_Intrinsic_Operator (N, Typ);
10614 when N_Op_Plus | N_Op_Minus | N_Op_Abs =>
10615 Resolve_Intrinsic_Unary_Operator (N, Typ);
10617 when others =>
10618 Resolve (N, Typ);
10619 end case;
10620 end if;
10622 elsif Ekind (Op) = E_Function and then Is_Intrinsic_Subprogram (Op) then
10624 -- Operator renames a user-defined operator of the same name. Use the
10625 -- original operator in the node, which is the one Gigi knows about.
10627 Set_Entity (N, Op);
10628 Set_Is_Overloaded (N, False);
10629 end if;
10630 end Rewrite_Renamed_Operator;
10632 -----------------------
10633 -- Set_Slice_Subtype --
10634 -----------------------
10636 -- Build an implicit subtype declaration to represent the type delivered by
10637 -- the slice. This is an abbreviated version of an array subtype. We define
10638 -- an index subtype for the slice, using either the subtype name or the
10639 -- discrete range of the slice. To be consistent with index usage elsewhere
10640 -- we create a list header to hold the single index. This list is not
10641 -- otherwise attached to the syntax tree.
10643 procedure Set_Slice_Subtype (N : Node_Id) is
10644 Loc : constant Source_Ptr := Sloc (N);
10645 Index_List : constant List_Id := New_List;
10646 Index : Node_Id;
10647 Index_Subtype : Entity_Id;
10648 Index_Type : Entity_Id;
10649 Slice_Subtype : Entity_Id;
10650 Drange : constant Node_Id := Discrete_Range (N);
10652 begin
10653 Index_Type := Base_Type (Etype (Drange));
10655 if Is_Entity_Name (Drange) then
10656 Index_Subtype := Entity (Drange);
10658 else
10659 -- We force the evaluation of a range. This is definitely needed in
10660 -- the renamed case, and seems safer to do unconditionally. Note in
10661 -- any case that since we will create and insert an Itype referring
10662 -- to this range, we must make sure any side effect removal actions
10663 -- are inserted before the Itype definition.
10665 if Nkind (Drange) = N_Range then
10666 Force_Evaluation (Low_Bound (Drange));
10667 Force_Evaluation (High_Bound (Drange));
10669 -- If the discrete range is given by a subtype indication, the
10670 -- type of the slice is the base of the subtype mark.
10672 elsif Nkind (Drange) = N_Subtype_Indication then
10673 declare
10674 R : constant Node_Id := Range_Expression (Constraint (Drange));
10675 begin
10676 Index_Type := Base_Type (Entity (Subtype_Mark (Drange)));
10677 Force_Evaluation (Low_Bound (R));
10678 Force_Evaluation (High_Bound (R));
10679 end;
10680 end if;
10682 Index_Subtype := Create_Itype (Subtype_Kind (Ekind (Index_Type)), N);
10684 -- Take a new copy of Drange (where bounds have been rewritten to
10685 -- reference side-effect-free names). Using a separate tree ensures
10686 -- that further expansion (e.g. while rewriting a slice assignment
10687 -- into a FOR loop) does not attempt to remove side effects on the
10688 -- bounds again (which would cause the bounds in the index subtype
10689 -- definition to refer to temporaries before they are defined) (the
10690 -- reason is that some names are considered side effect free here
10691 -- for the subtype, but not in the context of a loop iteration
10692 -- scheme).
10694 Set_Scalar_Range (Index_Subtype, New_Copy_Tree (Drange));
10695 Set_Parent (Scalar_Range (Index_Subtype), Index_Subtype);
10696 Set_Etype (Index_Subtype, Index_Type);
10697 Set_Size_Info (Index_Subtype, Index_Type);
10698 Set_RM_Size (Index_Subtype, RM_Size (Index_Type));
10699 end if;
10701 Slice_Subtype := Create_Itype (E_Array_Subtype, N);
10703 Index := New_Occurrence_Of (Index_Subtype, Loc);
10704 Set_Etype (Index, Index_Subtype);
10705 Append (Index, Index_List);
10707 Set_First_Index (Slice_Subtype, Index);
10708 Set_Etype (Slice_Subtype, Base_Type (Etype (N)));
10709 Set_Is_Constrained (Slice_Subtype, True);
10711 Check_Compile_Time_Size (Slice_Subtype);
10713 -- The Etype of the existing Slice node is reset to this slice subtype.
10714 -- Its bounds are obtained from its first index.
10716 Set_Etype (N, Slice_Subtype);
10718 -- For packed slice subtypes, freeze immediately (except in the case of
10719 -- being in a "spec expression" where we never freeze when we first see
10720 -- the expression).
10722 if Is_Packed (Slice_Subtype) and not In_Spec_Expression then
10723 Freeze_Itype (Slice_Subtype, N);
10725 -- For all other cases insert an itype reference in the slice's actions
10726 -- so that the itype is frozen at the proper place in the tree (i.e. at
10727 -- the point where actions for the slice are analyzed). Note that this
10728 -- is different from freezing the itype immediately, which might be
10729 -- premature (e.g. if the slice is within a transient scope). This needs
10730 -- to be done only if expansion is enabled.
10732 elsif Expander_Active then
10733 Ensure_Defined (Typ => Slice_Subtype, N => N);
10734 end if;
10735 end Set_Slice_Subtype;
10737 --------------------------------
10738 -- Set_String_Literal_Subtype --
10739 --------------------------------
10741 procedure Set_String_Literal_Subtype (N : Node_Id; Typ : Entity_Id) is
10742 Loc : constant Source_Ptr := Sloc (N);
10743 Low_Bound : constant Node_Id :=
10744 Type_Low_Bound (Etype (First_Index (Typ)));
10745 Subtype_Id : Entity_Id;
10747 begin
10748 if Nkind (N) /= N_String_Literal then
10749 return;
10750 end if;
10752 Subtype_Id := Create_Itype (E_String_Literal_Subtype, N);
10753 Set_String_Literal_Length (Subtype_Id, UI_From_Int
10754 (String_Length (Strval (N))));
10755 Set_Etype (Subtype_Id, Base_Type (Typ));
10756 Set_Is_Constrained (Subtype_Id);
10757 Set_Etype (N, Subtype_Id);
10759 -- The low bound is set from the low bound of the corresponding index
10760 -- type. Note that we do not store the high bound in the string literal
10761 -- subtype, but it can be deduced if necessary from the length and the
10762 -- low bound.
10764 if Is_OK_Static_Expression (Low_Bound) then
10765 Set_String_Literal_Low_Bound (Subtype_Id, Low_Bound);
10767 -- If the lower bound is not static we create a range for the string
10768 -- literal, using the index type and the known length of the literal.
10769 -- The index type is not necessarily Positive, so the upper bound is
10770 -- computed as T'Val (T'Pos (Low_Bound) + L - 1).
10772 else
10773 declare
10774 Index_List : constant List_Id := New_List;
10775 Index_Type : constant Entity_Id := Etype (First_Index (Typ));
10776 High_Bound : constant Node_Id :=
10777 Make_Attribute_Reference (Loc,
10778 Attribute_Name => Name_Val,
10779 Prefix =>
10780 New_Occurrence_Of (Index_Type, Loc),
10781 Expressions => New_List (
10782 Make_Op_Add (Loc,
10783 Left_Opnd =>
10784 Make_Attribute_Reference (Loc,
10785 Attribute_Name => Name_Pos,
10786 Prefix =>
10787 New_Occurrence_Of (Index_Type, Loc),
10788 Expressions =>
10789 New_List (New_Copy_Tree (Low_Bound))),
10790 Right_Opnd =>
10791 Make_Integer_Literal (Loc,
10792 String_Length (Strval (N)) - 1))));
10794 Array_Subtype : Entity_Id;
10795 Drange : Node_Id;
10796 Index : Node_Id;
10797 Index_Subtype : Entity_Id;
10799 begin
10800 if Is_Integer_Type (Index_Type) then
10801 Set_String_Literal_Low_Bound
10802 (Subtype_Id, Make_Integer_Literal (Loc, 1));
10804 else
10805 -- If the index type is an enumeration type, build bounds
10806 -- expression with attributes.
10808 Set_String_Literal_Low_Bound
10809 (Subtype_Id,
10810 Make_Attribute_Reference (Loc,
10811 Attribute_Name => Name_First,
10812 Prefix =>
10813 New_Occurrence_Of (Base_Type (Index_Type), Loc)));
10814 Set_Etype (String_Literal_Low_Bound (Subtype_Id), Index_Type);
10815 end if;
10817 Analyze_And_Resolve (String_Literal_Low_Bound (Subtype_Id));
10819 -- Build bona fide subtype for the string, and wrap it in an
10820 -- unchecked conversion, because the backend expects the
10821 -- String_Literal_Subtype to have a static lower bound.
10823 Index_Subtype :=
10824 Create_Itype (Subtype_Kind (Ekind (Index_Type)), N);
10825 Drange := Make_Range (Loc, New_Copy_Tree (Low_Bound), High_Bound);
10826 Set_Scalar_Range (Index_Subtype, Drange);
10827 Set_Parent (Drange, N);
10828 Analyze_And_Resolve (Drange, Index_Type);
10830 -- In the context, the Index_Type may already have a constraint,
10831 -- so use common base type on string subtype. The base type may
10832 -- be used when generating attributes of the string, for example
10833 -- in the context of a slice assignment.
10835 Set_Etype (Index_Subtype, Base_Type (Index_Type));
10836 Set_Size_Info (Index_Subtype, Index_Type);
10837 Set_RM_Size (Index_Subtype, RM_Size (Index_Type));
10839 Array_Subtype := Create_Itype (E_Array_Subtype, N);
10841 Index := New_Occurrence_Of (Index_Subtype, Loc);
10842 Set_Etype (Index, Index_Subtype);
10843 Append (Index, Index_List);
10845 Set_First_Index (Array_Subtype, Index);
10846 Set_Etype (Array_Subtype, Base_Type (Typ));
10847 Set_Is_Constrained (Array_Subtype, True);
10849 Rewrite (N,
10850 Make_Unchecked_Type_Conversion (Loc,
10851 Subtype_Mark => New_Occurrence_Of (Array_Subtype, Loc),
10852 Expression => Relocate_Node (N)));
10853 Set_Etype (N, Array_Subtype);
10854 end;
10855 end if;
10856 end Set_String_Literal_Subtype;
10858 ------------------------------
10859 -- Simplify_Type_Conversion --
10860 ------------------------------
10862 procedure Simplify_Type_Conversion (N : Node_Id) is
10863 begin
10864 if Nkind (N) = N_Type_Conversion then
10865 declare
10866 Operand : constant Node_Id := Expression (N);
10867 Target_Typ : constant Entity_Id := Etype (N);
10868 Opnd_Typ : constant Entity_Id := Etype (Operand);
10870 begin
10871 if Is_Floating_Point_Type (Opnd_Typ)
10872 and then
10873 (Is_Integer_Type (Target_Typ)
10874 or else (Is_Fixed_Point_Type (Target_Typ)
10875 and then Conversion_OK (N)))
10876 and then Nkind (Operand) = N_Attribute_Reference
10877 and then Attribute_Name (Operand) = Name_Truncation
10879 -- Special processing required if the conversion is the expression
10880 -- of a Truncation attribute reference. In this case we replace:
10882 -- ityp (ftyp'Truncation (x))
10884 -- by
10886 -- ityp (x)
10888 -- with the Float_Truncate flag set, which is more efficient.
10890 then
10891 Rewrite (Operand,
10892 Relocate_Node (First (Expressions (Operand))));
10893 Set_Float_Truncate (N, True);
10894 end if;
10895 end;
10896 end if;
10897 end Simplify_Type_Conversion;
10899 -----------------------------
10900 -- Unique_Fixed_Point_Type --
10901 -----------------------------
10903 function Unique_Fixed_Point_Type (N : Node_Id) return Entity_Id is
10904 T1 : Entity_Id := Empty;
10905 T2 : Entity_Id;
10906 Item : Node_Id;
10907 Scop : Entity_Id;
10909 procedure Fixed_Point_Error;
10910 -- Give error messages for true ambiguity. Messages are posted on node
10911 -- N, and entities T1, T2 are the possible interpretations.
10913 -----------------------
10914 -- Fixed_Point_Error --
10915 -----------------------
10917 procedure Fixed_Point_Error is
10918 begin
10919 Error_Msg_N ("ambiguous universal_fixed_expression", N);
10920 Error_Msg_NE ("\\possible interpretation as}", N, T1);
10921 Error_Msg_NE ("\\possible interpretation as}", N, T2);
10922 end Fixed_Point_Error;
10924 -- Start of processing for Unique_Fixed_Point_Type
10926 begin
10927 -- The operations on Duration are visible, so Duration is always a
10928 -- possible interpretation.
10930 T1 := Standard_Duration;
10932 -- Look for fixed-point types in enclosing scopes
10934 Scop := Current_Scope;
10935 while Scop /= Standard_Standard loop
10936 T2 := First_Entity (Scop);
10937 while Present (T2) loop
10938 if Is_Fixed_Point_Type (T2)
10939 and then Current_Entity (T2) = T2
10940 and then Scope (Base_Type (T2)) = Scop
10941 then
10942 if Present (T1) then
10943 Fixed_Point_Error;
10944 return Any_Type;
10945 else
10946 T1 := T2;
10947 end if;
10948 end if;
10950 Next_Entity (T2);
10951 end loop;
10953 Scop := Scope (Scop);
10954 end loop;
10956 -- Look for visible fixed type declarations in the context
10958 Item := First (Context_Items (Cunit (Current_Sem_Unit)));
10959 while Present (Item) loop
10960 if Nkind (Item) = N_With_Clause then
10961 Scop := Entity (Name (Item));
10962 T2 := First_Entity (Scop);
10963 while Present (T2) loop
10964 if Is_Fixed_Point_Type (T2)
10965 and then Scope (Base_Type (T2)) = Scop
10966 and then (Is_Potentially_Use_Visible (T2) or else In_Use (T2))
10967 then
10968 if Present (T1) then
10969 Fixed_Point_Error;
10970 return Any_Type;
10971 else
10972 T1 := T2;
10973 end if;
10974 end if;
10976 Next_Entity (T2);
10977 end loop;
10978 end if;
10980 Next (Item);
10981 end loop;
10983 if Nkind (N) = N_Real_Literal then
10984 Error_Msg_NE
10985 ("??real literal interpreted as }!", N, T1);
10986 else
10987 Error_Msg_NE
10988 ("??universal_fixed expression interpreted as }!", N, T1);
10989 end if;
10991 return T1;
10992 end Unique_Fixed_Point_Type;
10994 ----------------------
10995 -- Valid_Conversion --
10996 ----------------------
10998 function Valid_Conversion
10999 (N : Node_Id;
11000 Target : Entity_Id;
11001 Operand : Node_Id;
11002 Report_Errs : Boolean := True) return Boolean
11004 Target_Type : constant Entity_Id := Base_Type (Target);
11005 Opnd_Type : Entity_Id := Etype (Operand);
11006 Inc_Ancestor : Entity_Id;
11008 function Conversion_Check
11009 (Valid : Boolean;
11010 Msg : String) return Boolean;
11011 -- Little routine to post Msg if Valid is False, returns Valid value
11013 procedure Conversion_Error_N (Msg : String; N : Node_Or_Entity_Id);
11014 -- If Report_Errs, then calls Errout.Error_Msg_N with its arguments
11016 procedure Conversion_Error_NE
11017 (Msg : String;
11018 N : Node_Or_Entity_Id;
11019 E : Node_Or_Entity_Id);
11020 -- If Report_Errs, then calls Errout.Error_Msg_NE with its arguments
11022 function Valid_Tagged_Conversion
11023 (Target_Type : Entity_Id;
11024 Opnd_Type : Entity_Id) return Boolean;
11025 -- Specifically test for validity of tagged conversions
11027 function Valid_Array_Conversion return Boolean;
11028 -- Check index and component conformance, and accessibility levels if
11029 -- the component types are anonymous access types (Ada 2005).
11031 ----------------------
11032 -- Conversion_Check --
11033 ----------------------
11035 function Conversion_Check
11036 (Valid : Boolean;
11037 Msg : String) return Boolean
11039 begin
11040 if not Valid
11042 -- A generic unit has already been analyzed and we have verified
11043 -- that a particular conversion is OK in that context. Since the
11044 -- instance is reanalyzed without relying on the relationships
11045 -- established during the analysis of the generic, it is possible
11046 -- to end up with inconsistent views of private types. Do not emit
11047 -- the error message in such cases. The rest of the machinery in
11048 -- Valid_Conversion still ensures the proper compatibility of
11049 -- target and operand types.
11051 and then not In_Instance
11052 then
11053 Conversion_Error_N (Msg, Operand);
11054 end if;
11056 return Valid;
11057 end Conversion_Check;
11059 ------------------------
11060 -- Conversion_Error_N --
11061 ------------------------
11063 procedure Conversion_Error_N (Msg : String; N : Node_Or_Entity_Id) is
11064 begin
11065 if Report_Errs then
11066 Error_Msg_N (Msg, N);
11067 end if;
11068 end Conversion_Error_N;
11070 -------------------------
11071 -- Conversion_Error_NE --
11072 -------------------------
11074 procedure Conversion_Error_NE
11075 (Msg : String;
11076 N : Node_Or_Entity_Id;
11077 E : Node_Or_Entity_Id)
11079 begin
11080 if Report_Errs then
11081 Error_Msg_NE (Msg, N, E);
11082 end if;
11083 end Conversion_Error_NE;
11085 ----------------------------
11086 -- Valid_Array_Conversion --
11087 ----------------------------
11089 function Valid_Array_Conversion return Boolean
11091 Opnd_Comp_Type : constant Entity_Id := Component_Type (Opnd_Type);
11092 Opnd_Comp_Base : constant Entity_Id := Base_Type (Opnd_Comp_Type);
11094 Opnd_Index : Node_Id;
11095 Opnd_Index_Type : Entity_Id;
11097 Target_Comp_Type : constant Entity_Id :=
11098 Component_Type (Target_Type);
11099 Target_Comp_Base : constant Entity_Id :=
11100 Base_Type (Target_Comp_Type);
11102 Target_Index : Node_Id;
11103 Target_Index_Type : Entity_Id;
11105 begin
11106 -- Error if wrong number of dimensions
11109 Number_Dimensions (Target_Type) /= Number_Dimensions (Opnd_Type)
11110 then
11111 Conversion_Error_N
11112 ("incompatible number of dimensions for conversion", Operand);
11113 return False;
11115 -- Number of dimensions matches
11117 else
11118 -- Loop through indexes of the two arrays
11120 Target_Index := First_Index (Target_Type);
11121 Opnd_Index := First_Index (Opnd_Type);
11122 while Present (Target_Index) and then Present (Opnd_Index) loop
11123 Target_Index_Type := Etype (Target_Index);
11124 Opnd_Index_Type := Etype (Opnd_Index);
11126 -- Error if index types are incompatible
11128 if not (Is_Integer_Type (Target_Index_Type)
11129 and then Is_Integer_Type (Opnd_Index_Type))
11130 and then (Root_Type (Target_Index_Type)
11131 /= Root_Type (Opnd_Index_Type))
11132 then
11133 Conversion_Error_N
11134 ("incompatible index types for array conversion",
11135 Operand);
11136 return False;
11137 end if;
11139 Next_Index (Target_Index);
11140 Next_Index (Opnd_Index);
11141 end loop;
11143 -- If component types have same base type, all set
11145 if Target_Comp_Base = Opnd_Comp_Base then
11146 null;
11148 -- Here if base types of components are not the same. The only
11149 -- time this is allowed is if we have anonymous access types.
11151 -- The conversion of arrays of anonymous access types can lead
11152 -- to dangling pointers. AI-392 formalizes the accessibility
11153 -- checks that must be applied to such conversions to prevent
11154 -- out-of-scope references.
11156 elsif Ekind_In
11157 (Target_Comp_Base, E_Anonymous_Access_Type,
11158 E_Anonymous_Access_Subprogram_Type)
11159 and then Ekind (Opnd_Comp_Base) = Ekind (Target_Comp_Base)
11160 and then
11161 Subtypes_Statically_Match (Target_Comp_Type, Opnd_Comp_Type)
11162 then
11163 if Type_Access_Level (Target_Type) <
11164 Deepest_Type_Access_Level (Opnd_Type)
11165 then
11166 if In_Instance_Body then
11167 Error_Msg_Warn := SPARK_Mode /= On;
11168 Conversion_Error_N
11169 ("source array type has deeper accessibility "
11170 & "level than target<<", Operand);
11171 Conversion_Error_N ("\Program_Error [<<", Operand);
11172 Rewrite (N,
11173 Make_Raise_Program_Error (Sloc (N),
11174 Reason => PE_Accessibility_Check_Failed));
11175 Set_Etype (N, Target_Type);
11176 return False;
11178 -- Conversion not allowed because of accessibility levels
11180 else
11181 Conversion_Error_N
11182 ("source array type has deeper accessibility "
11183 & "level than target", Operand);
11184 return False;
11185 end if;
11187 else
11188 null;
11189 end if;
11191 -- All other cases where component base types do not match
11193 else
11194 Conversion_Error_N
11195 ("incompatible component types for array conversion",
11196 Operand);
11197 return False;
11198 end if;
11200 -- Check that component subtypes statically match. For numeric
11201 -- types this means that both must be either constrained or
11202 -- unconstrained. For enumeration types the bounds must match.
11203 -- All of this is checked in Subtypes_Statically_Match.
11205 if not Subtypes_Statically_Match
11206 (Target_Comp_Type, Opnd_Comp_Type)
11207 then
11208 Conversion_Error_N
11209 ("component subtypes must statically match", Operand);
11210 return False;
11211 end if;
11212 end if;
11214 return True;
11215 end Valid_Array_Conversion;
11217 -----------------------------
11218 -- Valid_Tagged_Conversion --
11219 -----------------------------
11221 function Valid_Tagged_Conversion
11222 (Target_Type : Entity_Id;
11223 Opnd_Type : Entity_Id) return Boolean
11225 begin
11226 -- Upward conversions are allowed (RM 4.6(22))
11228 if Covers (Target_Type, Opnd_Type)
11229 or else Is_Ancestor (Target_Type, Opnd_Type)
11230 then
11231 return True;
11233 -- Downward conversion are allowed if the operand is class-wide
11234 -- (RM 4.6(23)).
11236 elsif Is_Class_Wide_Type (Opnd_Type)
11237 and then Covers (Opnd_Type, Target_Type)
11238 then
11239 return True;
11241 elsif Covers (Opnd_Type, Target_Type)
11242 or else Is_Ancestor (Opnd_Type, Target_Type)
11243 then
11244 return
11245 Conversion_Check (False,
11246 "downward conversion of tagged objects not allowed");
11248 -- Ada 2005 (AI-251): The conversion to/from interface types is
11249 -- always valid
11251 elsif Is_Interface (Target_Type) or else Is_Interface (Opnd_Type) then
11252 return True;
11254 -- If the operand is a class-wide type obtained through a limited_
11255 -- with clause, and the context includes the non-limited view, use
11256 -- it to determine whether the conversion is legal.
11258 elsif Is_Class_Wide_Type (Opnd_Type)
11259 and then From_Limited_With (Opnd_Type)
11260 and then Present (Non_Limited_View (Etype (Opnd_Type)))
11261 and then Is_Interface (Non_Limited_View (Etype (Opnd_Type)))
11262 then
11263 return True;
11265 elsif Is_Access_Type (Opnd_Type)
11266 and then Is_Interface (Directly_Designated_Type (Opnd_Type))
11267 then
11268 return True;
11270 else
11271 Conversion_Error_NE
11272 ("invalid tagged conversion, not compatible with}",
11273 N, First_Subtype (Opnd_Type));
11274 return False;
11275 end if;
11276 end Valid_Tagged_Conversion;
11278 -- Start of processing for Valid_Conversion
11280 begin
11281 Check_Parameterless_Call (Operand);
11283 if Is_Overloaded (Operand) then
11284 declare
11285 I : Interp_Index;
11286 I1 : Interp_Index;
11287 It : Interp;
11288 It1 : Interp;
11289 N1 : Entity_Id;
11290 T1 : Entity_Id;
11292 begin
11293 -- Remove procedure calls, which syntactically cannot appear in
11294 -- this context, but which cannot be removed by type checking,
11295 -- because the context does not impose a type.
11297 -- When compiling for VMS, spurious ambiguities can be produced
11298 -- when arithmetic operations have a literal operand and return
11299 -- System.Address or a descendant of it. These ambiguities are
11300 -- otherwise resolved by the context, but for conversions there
11301 -- is no context type and the removal of the spurious operations
11302 -- must be done explicitly here.
11304 -- The node may be labelled overloaded, but still contain only one
11305 -- interpretation because others were discarded earlier. If this
11306 -- is the case, retain the single interpretation if legal.
11308 Get_First_Interp (Operand, I, It);
11309 Opnd_Type := It.Typ;
11310 Get_Next_Interp (I, It);
11312 if Present (It.Typ)
11313 and then Opnd_Type /= Standard_Void_Type
11314 then
11315 -- More than one candidate interpretation is available
11317 Get_First_Interp (Operand, I, It);
11318 while Present (It.Typ) loop
11319 if It.Typ = Standard_Void_Type then
11320 Remove_Interp (I);
11321 end if;
11323 if Present (System_Aux_Id)
11324 and then Is_Descendent_Of_Address (It.Typ)
11325 then
11326 Remove_Interp (I);
11327 end if;
11329 Get_Next_Interp (I, It);
11330 end loop;
11331 end if;
11333 Get_First_Interp (Operand, I, It);
11334 I1 := I;
11335 It1 := It;
11337 if No (It.Typ) then
11338 Conversion_Error_N ("illegal operand in conversion", Operand);
11339 return False;
11340 end if;
11342 Get_Next_Interp (I, It);
11344 if Present (It.Typ) then
11345 N1 := It1.Nam;
11346 T1 := It1.Typ;
11347 It1 := Disambiguate (Operand, I1, I, Any_Type);
11349 if It1 = No_Interp then
11350 Conversion_Error_N
11351 ("ambiguous operand in conversion", Operand);
11353 -- If the interpretation involves a standard operator, use
11354 -- the location of the type, which may be user-defined.
11356 if Sloc (It.Nam) = Standard_Location then
11357 Error_Msg_Sloc := Sloc (It.Typ);
11358 else
11359 Error_Msg_Sloc := Sloc (It.Nam);
11360 end if;
11362 Conversion_Error_N -- CODEFIX
11363 ("\\possible interpretation#!", Operand);
11365 if Sloc (N1) = Standard_Location then
11366 Error_Msg_Sloc := Sloc (T1);
11367 else
11368 Error_Msg_Sloc := Sloc (N1);
11369 end if;
11371 Conversion_Error_N -- CODEFIX
11372 ("\\possible interpretation#!", Operand);
11374 return False;
11375 end if;
11376 end if;
11378 Set_Etype (Operand, It1.Typ);
11379 Opnd_Type := It1.Typ;
11380 end;
11381 end if;
11383 -- Deal with conversion of integer type to address if the pragma
11384 -- Allow_Integer_Address is in effect. We convert the conversion to
11385 -- an unchecked conversion in this case and we are all done.
11387 if Address_Integer_Convert_OK (Opnd_Type, Target_Type) then
11388 Rewrite (N, Unchecked_Convert_To (Target_Type, Expression (N)));
11389 Analyze_And_Resolve (N, Target_Type);
11390 return True;
11391 end if;
11393 -- If we are within a child unit, check whether the type of the
11394 -- expression has an ancestor in a parent unit, in which case it
11395 -- belongs to its derivation class even if the ancestor is private.
11396 -- See RM 7.3.1 (5.2/3).
11398 Inc_Ancestor := Get_Incomplete_View_Of_Ancestor (Opnd_Type);
11400 -- Numeric types
11402 if Is_Numeric_Type (Target_Type) then
11404 -- A universal fixed expression can be converted to any numeric type
11406 if Opnd_Type = Universal_Fixed then
11407 return True;
11409 -- Also no need to check when in an instance or inlined body, because
11410 -- the legality has been established when the template was analyzed.
11411 -- Furthermore, numeric conversions may occur where only a private
11412 -- view of the operand type is visible at the instantiation point.
11413 -- This results in a spurious error if we check that the operand type
11414 -- is a numeric type.
11416 -- Note: in a previous version of this unit, the following tests were
11417 -- applied only for generated code (Comes_From_Source set to False),
11418 -- but in fact the test is required for source code as well, since
11419 -- this situation can arise in source code.
11421 elsif In_Instance or else In_Inlined_Body then
11422 return True;
11424 -- Otherwise we need the conversion check
11426 else
11427 return Conversion_Check
11428 (Is_Numeric_Type (Opnd_Type)
11429 or else
11430 (Present (Inc_Ancestor)
11431 and then Is_Numeric_Type (Inc_Ancestor)),
11432 "illegal operand for numeric conversion");
11433 end if;
11435 -- Array types
11437 elsif Is_Array_Type (Target_Type) then
11438 if not Is_Array_Type (Opnd_Type)
11439 or else Opnd_Type = Any_Composite
11440 or else Opnd_Type = Any_String
11441 then
11442 Conversion_Error_N
11443 ("illegal operand for array conversion", Operand);
11444 return False;
11446 else
11447 return Valid_Array_Conversion;
11448 end if;
11450 -- Ada 2005 (AI-251): Anonymous access types where target references an
11451 -- interface type.
11453 elsif Ekind_In (Target_Type, E_General_Access_Type,
11454 E_Anonymous_Access_Type)
11455 and then Is_Interface (Directly_Designated_Type (Target_Type))
11456 then
11457 -- Check the static accessibility rule of 4.6(17). Note that the
11458 -- check is not enforced when within an instance body, since the
11459 -- RM requires such cases to be caught at run time.
11461 -- If the operand is a rewriting of an allocator no check is needed
11462 -- because there are no accessibility issues.
11464 if Nkind (Original_Node (N)) = N_Allocator then
11465 null;
11467 elsif Ekind (Target_Type) /= E_Anonymous_Access_Type then
11468 if Type_Access_Level (Opnd_Type) >
11469 Deepest_Type_Access_Level (Target_Type)
11470 then
11471 -- In an instance, this is a run-time check, but one we know
11472 -- will fail, so generate an appropriate warning. The raise
11473 -- will be generated by Expand_N_Type_Conversion.
11475 if In_Instance_Body then
11476 Error_Msg_Warn := SPARK_Mode /= On;
11477 Conversion_Error_N
11478 ("cannot convert local pointer to non-local access type<<",
11479 Operand);
11480 Conversion_Error_N ("\Program_Error [<<", Operand);
11482 else
11483 Conversion_Error_N
11484 ("cannot convert local pointer to non-local access type",
11485 Operand);
11486 return False;
11487 end if;
11489 -- Special accessibility checks are needed in the case of access
11490 -- discriminants declared for a limited type.
11492 elsif Ekind (Opnd_Type) = E_Anonymous_Access_Type
11493 and then not Is_Local_Anonymous_Access (Opnd_Type)
11494 then
11495 -- When the operand is a selected access discriminant the check
11496 -- needs to be made against the level of the object denoted by
11497 -- the prefix of the selected name (Object_Access_Level handles
11498 -- checking the prefix of the operand for this case).
11500 if Nkind (Operand) = N_Selected_Component
11501 and then Object_Access_Level (Operand) >
11502 Deepest_Type_Access_Level (Target_Type)
11503 then
11504 -- In an instance, this is a run-time check, but one we know
11505 -- will fail, so generate an appropriate warning. The raise
11506 -- will be generated by Expand_N_Type_Conversion.
11508 if In_Instance_Body then
11509 Error_Msg_Warn := SPARK_Mode /= On;
11510 Conversion_Error_N
11511 ("cannot convert access discriminant to non-local "
11512 & "access type<<", Operand);
11513 Conversion_Error_N ("\Program_Error [<<", Operand);
11515 -- Real error if not in instance body
11517 else
11518 Conversion_Error_N
11519 ("cannot convert access discriminant to non-local "
11520 & "access type", Operand);
11521 return False;
11522 end if;
11523 end if;
11525 -- The case of a reference to an access discriminant from
11526 -- within a limited type declaration (which will appear as
11527 -- a discriminal) is always illegal because the level of the
11528 -- discriminant is considered to be deeper than any (nameable)
11529 -- access type.
11531 if Is_Entity_Name (Operand)
11532 and then not Is_Local_Anonymous_Access (Opnd_Type)
11533 and then
11534 Ekind_In (Entity (Operand), E_In_Parameter, E_Constant)
11535 and then Present (Discriminal_Link (Entity (Operand)))
11536 then
11537 Conversion_Error_N
11538 ("discriminant has deeper accessibility level than target",
11539 Operand);
11540 return False;
11541 end if;
11542 end if;
11543 end if;
11545 return True;
11547 -- General and anonymous access types
11549 elsif Ekind_In (Target_Type, E_General_Access_Type,
11550 E_Anonymous_Access_Type)
11551 and then
11552 Conversion_Check
11553 (Is_Access_Type (Opnd_Type)
11554 and then not
11555 Ekind_In (Opnd_Type, E_Access_Subprogram_Type,
11556 E_Access_Protected_Subprogram_Type),
11557 "must be an access-to-object type")
11558 then
11559 if Is_Access_Constant (Opnd_Type)
11560 and then not Is_Access_Constant (Target_Type)
11561 then
11562 Conversion_Error_N
11563 ("access-to-constant operand type not allowed", Operand);
11564 return False;
11565 end if;
11567 -- Check the static accessibility rule of 4.6(17). Note that the
11568 -- check is not enforced when within an instance body, since the RM
11569 -- requires such cases to be caught at run time.
11571 if Ekind (Target_Type) /= E_Anonymous_Access_Type
11572 or else Is_Local_Anonymous_Access (Target_Type)
11573 or else Nkind (Associated_Node_For_Itype (Target_Type)) =
11574 N_Object_Declaration
11575 then
11576 -- Ada 2012 (AI05-0149): Perform legality checking on implicit
11577 -- conversions from an anonymous access type to a named general
11578 -- access type. Such conversions are not allowed in the case of
11579 -- access parameters and stand-alone objects of an anonymous
11580 -- access type. The implicit conversion case is recognized by
11581 -- testing that Comes_From_Source is False and that it's been
11582 -- rewritten. The Comes_From_Source test isn't sufficient because
11583 -- nodes in inlined calls to predefined library routines can have
11584 -- Comes_From_Source set to False. (Is there a better way to test
11585 -- for implicit conversions???)
11587 if Ada_Version >= Ada_2012
11588 and then not Comes_From_Source (N)
11589 and then N /= Original_Node (N)
11590 and then Ekind (Target_Type) = E_General_Access_Type
11591 and then Ekind (Opnd_Type) = E_Anonymous_Access_Type
11592 then
11593 if Is_Itype (Opnd_Type) then
11595 -- Implicit conversions aren't allowed for objects of an
11596 -- anonymous access type, since such objects have nonstatic
11597 -- levels in Ada 2012.
11599 if Nkind (Associated_Node_For_Itype (Opnd_Type)) =
11600 N_Object_Declaration
11601 then
11602 Conversion_Error_N
11603 ("implicit conversion of stand-alone anonymous "
11604 & "access object not allowed", Operand);
11605 return False;
11607 -- Implicit conversions aren't allowed for anonymous access
11608 -- parameters. The "not Is_Local_Anonymous_Access_Type" test
11609 -- is done to exclude anonymous access results.
11611 elsif not Is_Local_Anonymous_Access (Opnd_Type)
11612 and then Nkind_In (Associated_Node_For_Itype (Opnd_Type),
11613 N_Function_Specification,
11614 N_Procedure_Specification)
11615 then
11616 Conversion_Error_N
11617 ("implicit conversion of anonymous access formal "
11618 & "not allowed", Operand);
11619 return False;
11621 -- This is a case where there's an enclosing object whose
11622 -- to which the "statically deeper than" relationship does
11623 -- not apply (such as an access discriminant selected from
11624 -- a dereference of an access parameter).
11626 elsif Object_Access_Level (Operand)
11627 = Scope_Depth (Standard_Standard)
11628 then
11629 Conversion_Error_N
11630 ("implicit conversion of anonymous access value "
11631 & "not allowed", Operand);
11632 return False;
11634 -- In other cases, the level of the operand's type must be
11635 -- statically less deep than that of the target type, else
11636 -- implicit conversion is disallowed (by RM12-8.6(27.1/3)).
11638 elsif Type_Access_Level (Opnd_Type) >
11639 Deepest_Type_Access_Level (Target_Type)
11640 then
11641 Conversion_Error_N
11642 ("implicit conversion of anonymous access value "
11643 & "violates accessibility", Operand);
11644 return False;
11645 end if;
11646 end if;
11648 elsif Type_Access_Level (Opnd_Type) >
11649 Deepest_Type_Access_Level (Target_Type)
11650 then
11651 -- In an instance, this is a run-time check, but one we know
11652 -- will fail, so generate an appropriate warning. The raise
11653 -- will be generated by Expand_N_Type_Conversion.
11655 if In_Instance_Body then
11656 Error_Msg_Warn := SPARK_Mode /= On;
11657 Conversion_Error_N
11658 ("cannot convert local pointer to non-local access type<<",
11659 Operand);
11660 Conversion_Error_N ("\Program_Error [<<", Operand);
11662 -- If not in an instance body, this is a real error
11664 else
11665 -- Avoid generation of spurious error message
11667 if not Error_Posted (N) then
11668 Conversion_Error_N
11669 ("cannot convert local pointer to non-local access type",
11670 Operand);
11671 end if;
11673 return False;
11674 end if;
11676 -- Special accessibility checks are needed in the case of access
11677 -- discriminants declared for a limited type.
11679 elsif Ekind (Opnd_Type) = E_Anonymous_Access_Type
11680 and then not Is_Local_Anonymous_Access (Opnd_Type)
11681 then
11682 -- When the operand is a selected access discriminant the check
11683 -- needs to be made against the level of the object denoted by
11684 -- the prefix of the selected name (Object_Access_Level handles
11685 -- checking the prefix of the operand for this case).
11687 if Nkind (Operand) = N_Selected_Component
11688 and then Object_Access_Level (Operand) >
11689 Deepest_Type_Access_Level (Target_Type)
11690 then
11691 -- In an instance, this is a run-time check, but one we know
11692 -- will fail, so generate an appropriate warning. The raise
11693 -- will be generated by Expand_N_Type_Conversion.
11695 if In_Instance_Body then
11696 Error_Msg_Warn := SPARK_Mode /= On;
11697 Conversion_Error_N
11698 ("cannot convert access discriminant to non-local "
11699 & "access type<<", Operand);
11700 Conversion_Error_N ("\Program_Error [<<", Operand);
11702 -- If not in an instance body, this is a real error
11704 else
11705 Conversion_Error_N
11706 ("cannot convert access discriminant to non-local "
11707 & "access type", Operand);
11708 return False;
11709 end if;
11710 end if;
11712 -- The case of a reference to an access discriminant from
11713 -- within a limited type declaration (which will appear as
11714 -- a discriminal) is always illegal because the level of the
11715 -- discriminant is considered to be deeper than any (nameable)
11716 -- access type.
11718 if Is_Entity_Name (Operand)
11719 and then
11720 Ekind_In (Entity (Operand), E_In_Parameter, E_Constant)
11721 and then Present (Discriminal_Link (Entity (Operand)))
11722 then
11723 Conversion_Error_N
11724 ("discriminant has deeper accessibility level than target",
11725 Operand);
11726 return False;
11727 end if;
11728 end if;
11729 end if;
11731 -- In the presence of limited_with clauses we have to use non-limited
11732 -- views, if available.
11734 Check_Limited : declare
11735 function Full_Designated_Type (T : Entity_Id) return Entity_Id;
11736 -- Helper function to handle limited views
11738 --------------------------
11739 -- Full_Designated_Type --
11740 --------------------------
11742 function Full_Designated_Type (T : Entity_Id) return Entity_Id is
11743 Desig : constant Entity_Id := Designated_Type (T);
11745 begin
11746 -- Handle the limited view of a type
11748 if Is_Incomplete_Type (Desig)
11749 and then From_Limited_With (Desig)
11750 and then Present (Non_Limited_View (Desig))
11751 then
11752 return Available_View (Desig);
11753 else
11754 return Desig;
11755 end if;
11756 end Full_Designated_Type;
11758 -- Local Declarations
11760 Target : constant Entity_Id := Full_Designated_Type (Target_Type);
11761 Opnd : constant Entity_Id := Full_Designated_Type (Opnd_Type);
11763 Same_Base : constant Boolean :=
11764 Base_Type (Target) = Base_Type (Opnd);
11766 -- Start of processing for Check_Limited
11768 begin
11769 if Is_Tagged_Type (Target) then
11770 return Valid_Tagged_Conversion (Target, Opnd);
11772 else
11773 if not Same_Base then
11774 Conversion_Error_NE
11775 ("target designated type not compatible with }",
11776 N, Base_Type (Opnd));
11777 return False;
11779 -- Ada 2005 AI-384: legality rule is symmetric in both
11780 -- designated types. The conversion is legal (with possible
11781 -- constraint check) if either designated type is
11782 -- unconstrained.
11784 elsif Subtypes_Statically_Match (Target, Opnd)
11785 or else
11786 (Has_Discriminants (Target)
11787 and then
11788 (not Is_Constrained (Opnd)
11789 or else not Is_Constrained (Target)))
11790 then
11791 -- Special case, if Value_Size has been used to make the
11792 -- sizes different, the conversion is not allowed even
11793 -- though the subtypes statically match.
11795 if Known_Static_RM_Size (Target)
11796 and then Known_Static_RM_Size (Opnd)
11797 and then RM_Size (Target) /= RM_Size (Opnd)
11798 then
11799 Conversion_Error_NE
11800 ("target designated subtype not compatible with }",
11801 N, Opnd);
11802 Conversion_Error_NE
11803 ("\because sizes of the two designated subtypes differ",
11804 N, Opnd);
11805 return False;
11807 -- Normal case where conversion is allowed
11809 else
11810 return True;
11811 end if;
11813 else
11814 Error_Msg_NE
11815 ("target designated subtype not compatible with }",
11816 N, Opnd);
11817 return False;
11818 end if;
11819 end if;
11820 end Check_Limited;
11822 -- Access to subprogram types. If the operand is an access parameter,
11823 -- the type has a deeper accessibility that any master, and cannot be
11824 -- assigned. We must make an exception if the conversion is part of an
11825 -- assignment and the target is the return object of an extended return
11826 -- statement, because in that case the accessibility check takes place
11827 -- after the return.
11829 elsif Is_Access_Subprogram_Type (Target_Type)
11830 and then No (Corresponding_Remote_Type (Opnd_Type))
11831 then
11832 if Ekind (Base_Type (Opnd_Type)) = E_Anonymous_Access_Subprogram_Type
11833 and then Is_Entity_Name (Operand)
11834 and then Ekind (Entity (Operand)) = E_In_Parameter
11835 and then
11836 (Nkind (Parent (N)) /= N_Assignment_Statement
11837 or else not Is_Entity_Name (Name (Parent (N)))
11838 or else not Is_Return_Object (Entity (Name (Parent (N)))))
11839 then
11840 Conversion_Error_N
11841 ("illegal attempt to store anonymous access to subprogram",
11842 Operand);
11843 Conversion_Error_N
11844 ("\value has deeper accessibility than any master "
11845 & "(RM 3.10.2 (13))",
11846 Operand);
11848 Error_Msg_NE
11849 ("\use named access type for& instead of access parameter",
11850 Operand, Entity (Operand));
11851 end if;
11853 -- Check that the designated types are subtype conformant
11855 Check_Subtype_Conformant (New_Id => Designated_Type (Target_Type),
11856 Old_Id => Designated_Type (Opnd_Type),
11857 Err_Loc => N);
11859 -- Check the static accessibility rule of 4.6(20)
11861 if Type_Access_Level (Opnd_Type) >
11862 Deepest_Type_Access_Level (Target_Type)
11863 then
11864 Conversion_Error_N
11865 ("operand type has deeper accessibility level than target",
11866 Operand);
11868 -- Check that if the operand type is declared in a generic body,
11869 -- then the target type must be declared within that same body
11870 -- (enforces last sentence of 4.6(20)).
11872 elsif Present (Enclosing_Generic_Body (Opnd_Type)) then
11873 declare
11874 O_Gen : constant Node_Id :=
11875 Enclosing_Generic_Body (Opnd_Type);
11877 T_Gen : Node_Id;
11879 begin
11880 T_Gen := Enclosing_Generic_Body (Target_Type);
11881 while Present (T_Gen) and then T_Gen /= O_Gen loop
11882 T_Gen := Enclosing_Generic_Body (T_Gen);
11883 end loop;
11885 if T_Gen /= O_Gen then
11886 Conversion_Error_N
11887 ("target type must be declared in same generic body "
11888 & "as operand type", N);
11889 end if;
11890 end;
11891 end if;
11893 return True;
11895 -- Remote subprogram access types
11897 elsif Is_Remote_Access_To_Subprogram_Type (Target_Type)
11898 and then Is_Remote_Access_To_Subprogram_Type (Opnd_Type)
11899 then
11900 -- It is valid to convert from one RAS type to another provided
11901 -- that their specification statically match.
11903 Check_Subtype_Conformant
11904 (New_Id =>
11905 Designated_Type (Corresponding_Remote_Type (Target_Type)),
11906 Old_Id =>
11907 Designated_Type (Corresponding_Remote_Type (Opnd_Type)),
11908 Err_Loc =>
11910 return True;
11912 -- If it was legal in the generic, it's legal in the instance
11914 elsif In_Instance_Body then
11915 return True;
11917 -- If both are tagged types, check legality of view conversions
11919 elsif Is_Tagged_Type (Target_Type)
11920 and then
11921 Is_Tagged_Type (Opnd_Type)
11922 then
11923 return Valid_Tagged_Conversion (Target_Type, Opnd_Type);
11925 -- Types derived from the same root type are convertible
11927 elsif Root_Type (Target_Type) = Root_Type (Opnd_Type) then
11928 return True;
11930 -- In an instance or an inlined body, there may be inconsistent views of
11931 -- the same type, or of types derived from a common root.
11933 elsif (In_Instance or In_Inlined_Body)
11934 and then
11935 Root_Type (Underlying_Type (Target_Type)) =
11936 Root_Type (Underlying_Type (Opnd_Type))
11937 then
11938 return True;
11940 -- Special check for common access type error case
11942 elsif Ekind (Target_Type) = E_Access_Type
11943 and then Is_Access_Type (Opnd_Type)
11944 then
11945 Conversion_Error_N ("target type must be general access type!", N);
11946 Conversion_Error_NE -- CODEFIX
11947 ("add ALL to }!", N, Target_Type);
11948 return False;
11950 -- Here we have a real conversion error
11952 else
11953 Conversion_Error_NE
11954 ("invalid conversion, not compatible with }", N, Opnd_Type);
11955 return False;
11956 end if;
11957 end Valid_Conversion;
11959 end Sem_Res;