Merged revisions 208012,208018-208019,208021,208023-208030,208033,208037,208040-20804...
[official-gcc.git] / main / gcc / ada / sem_ch6.adb
blob2bf9f263d42b5202dd5546a4685c65e051f51fa0
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 6 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2013, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Debug; use Debug;
30 with Einfo; use Einfo;
31 with Elists; use Elists;
32 with Errout; use Errout;
33 with Expander; use Expander;
34 with Exp_Ch6; use Exp_Ch6;
35 with Exp_Ch7; use Exp_Ch7;
36 with Exp_Ch9; use Exp_Ch9;
37 with Exp_Dbug; use Exp_Dbug;
38 with Exp_Disp; use Exp_Disp;
39 with Exp_Tss; use Exp_Tss;
40 with Exp_Util; use Exp_Util;
41 with Fname; use Fname;
42 with Freeze; use Freeze;
43 with Itypes; use Itypes;
44 with Lib.Xref; use Lib.Xref;
45 with Layout; use Layout;
46 with Namet; use Namet;
47 with Lib; use Lib;
48 with Nlists; use Nlists;
49 with Nmake; use Nmake;
50 with Opt; use Opt;
51 with Output; use Output;
52 with Restrict; use Restrict;
53 with Rident; use Rident;
54 with Rtsfind; use Rtsfind;
55 with Sem; use Sem;
56 with Sem_Aux; use Sem_Aux;
57 with Sem_Cat; use Sem_Cat;
58 with Sem_Ch3; use Sem_Ch3;
59 with Sem_Ch4; use Sem_Ch4;
60 with Sem_Ch5; use Sem_Ch5;
61 with Sem_Ch8; use Sem_Ch8;
62 with Sem_Ch10; use Sem_Ch10;
63 with Sem_Ch12; use Sem_Ch12;
64 with Sem_Ch13; use Sem_Ch13;
65 with Sem_Dim; use Sem_Dim;
66 with Sem_Disp; use Sem_Disp;
67 with Sem_Dist; use Sem_Dist;
68 with Sem_Elim; use Sem_Elim;
69 with Sem_Eval; use Sem_Eval;
70 with Sem_Mech; use Sem_Mech;
71 with Sem_Prag; use Sem_Prag;
72 with Sem_Res; use Sem_Res;
73 with Sem_Util; use Sem_Util;
74 with Sem_Type; use Sem_Type;
75 with Sem_Warn; use Sem_Warn;
76 with Sinput; use Sinput;
77 with Stand; use Stand;
78 with Sinfo; use Sinfo;
79 with Sinfo.CN; use Sinfo.CN;
80 with Snames; use Snames;
81 with Stringt; use Stringt;
82 with Style;
83 with Stylesw; use Stylesw;
84 with Targparm; use Targparm;
85 with Tbuild; use Tbuild;
86 with Uintp; use Uintp;
87 with Urealp; use Urealp;
88 with Validsw; use Validsw;
90 package body Sem_Ch6 is
92 May_Hide_Profile : Boolean := False;
93 -- This flag is used to indicate that two formals in two subprograms being
94 -- checked for conformance differ only in that one is an access parameter
95 -- while the other is of a general access type with the same designated
96 -- type. In this case, if the rest of the signatures match, a call to
97 -- either subprogram may be ambiguous, which is worth a warning. The flag
98 -- is set in Compatible_Types, and the warning emitted in
99 -- New_Overloaded_Entity.
101 -----------------------
102 -- Local Subprograms --
103 -----------------------
105 procedure Analyze_Null_Procedure
106 (N : Node_Id;
107 Is_Completion : out Boolean);
108 -- A null procedure can be a declaration or (Ada 2012) a completion.
110 procedure Analyze_Return_Statement (N : Node_Id);
111 -- Common processing for simple and extended return statements
113 procedure Analyze_Function_Return (N : Node_Id);
114 -- Subsidiary to Analyze_Return_Statement. Called when the return statement
115 -- applies to a [generic] function.
117 procedure Analyze_Return_Type (N : Node_Id);
118 -- Subsidiary to Process_Formals: analyze subtype mark in function
119 -- specification in a context where the formals are visible and hide
120 -- outer homographs.
122 procedure Analyze_Subprogram_Body_Helper (N : Node_Id);
123 -- Does all the real work of Analyze_Subprogram_Body. This is split out so
124 -- that we can use RETURN but not skip the debug output at the end.
126 procedure Analyze_Generic_Subprogram_Body (N : Node_Id; Gen_Id : Entity_Id);
127 -- Analyze a generic subprogram body. N is the body to be analyzed, and
128 -- Gen_Id is the defining entity Id for the corresponding spec.
130 procedure Build_Body_To_Inline (N : Node_Id; Subp : Entity_Id);
131 -- If a subprogram has pragma Inline and inlining is active, use generic
132 -- machinery to build an unexpanded body for the subprogram. This body is
133 -- subsequently used for inline expansions at call sites. If subprogram can
134 -- be inlined (depending on size and nature of local declarations) this
135 -- function returns true. Otherwise subprogram body is treated normally.
136 -- If proper warnings are enabled and the subprogram contains a construct
137 -- that cannot be inlined, the offending construct is flagged accordingly.
139 function Can_Override_Operator (Subp : Entity_Id) return Boolean;
140 -- Returns true if Subp can override a predefined operator.
142 procedure Check_And_Build_Body_To_Inline
143 (N : Node_Id;
144 Spec_Id : Entity_Id;
145 Body_Id : Entity_Id);
146 -- Spec_Id and Body_Id are the entities of the specification and body of
147 -- the subprogram body N. If N can be inlined by the frontend (supported
148 -- cases documented in Check_Body_To_Inline) then build the body-to-inline
149 -- associated with N and attach it to the declaration node of Spec_Id.
151 procedure Check_Conformance
152 (New_Id : Entity_Id;
153 Old_Id : Entity_Id;
154 Ctype : Conformance_Type;
155 Errmsg : Boolean;
156 Conforms : out Boolean;
157 Err_Loc : Node_Id := Empty;
158 Get_Inst : Boolean := False;
159 Skip_Controlling_Formals : Boolean := False);
160 -- Given two entities, this procedure checks that the profiles associated
161 -- with these entities meet the conformance criterion given by the third
162 -- parameter. If they conform, Conforms is set True and control returns
163 -- to the caller. If they do not conform, Conforms is set to False, and
164 -- in addition, if Errmsg is True on the call, proper messages are output
165 -- to complain about the conformance failure. If Err_Loc is non_Empty
166 -- the error messages are placed on Err_Loc, if Err_Loc is empty, then
167 -- error messages are placed on the appropriate part of the construct
168 -- denoted by New_Id. If Get_Inst is true, then this is a mode conformance
169 -- against a formal access-to-subprogram type so Get_Instance_Of must
170 -- be called.
172 procedure Check_Subprogram_Order (N : Node_Id);
173 -- N is the N_Subprogram_Body node for a subprogram. This routine applies
174 -- the alpha ordering rule for N if this ordering requirement applicable.
176 procedure Check_Returns
177 (HSS : Node_Id;
178 Mode : Character;
179 Err : out Boolean;
180 Proc : Entity_Id := Empty);
181 -- Called to check for missing return statements in a function body, or for
182 -- returns present in a procedure body which has No_Return set. HSS is the
183 -- handled statement sequence for the subprogram body. This procedure
184 -- checks all flow paths to make sure they either have return (Mode = 'F',
185 -- used for functions) or do not have a return (Mode = 'P', used for
186 -- No_Return procedures). The flag Err is set if there are any control
187 -- paths not explicitly terminated by a return in the function case, and is
188 -- True otherwise. Proc is the entity for the procedure case and is used
189 -- in posting the warning message.
191 procedure Check_Untagged_Equality (Eq_Op : Entity_Id);
192 -- In Ada 2012, a primitive equality operator on an untagged record type
193 -- must appear before the type is frozen, and have the same visibility as
194 -- that of the type. This procedure checks that this rule is met, and
195 -- otherwise emits an error on the subprogram declaration and a warning
196 -- on the earlier freeze point if it is easy to locate. In Ada 2012 mode,
197 -- this routine outputs errors (or warnings if -gnatd.E is set). In earlier
198 -- versions of Ada, warnings are output if Warn_On_Ada_2012_Incompatibility
199 -- is set, otherwise the call has no effect.
201 procedure Enter_Overloaded_Entity (S : Entity_Id);
202 -- This procedure makes S, a new overloaded entity, into the first visible
203 -- entity with that name.
205 function Is_Non_Overriding_Operation
206 (Prev_E : Entity_Id;
207 New_E : Entity_Id) return Boolean;
208 -- Enforce the rule given in 12.3(18): a private operation in an instance
209 -- overrides an inherited operation only if the corresponding operation
210 -- was overriding in the generic. This needs to be checked for primitive
211 -- operations of types derived (in the generic unit) from formal private
212 -- or formal derived types.
214 procedure Make_Inequality_Operator (S : Entity_Id);
215 -- Create the declaration for an inequality operator that is implicitly
216 -- created by a user-defined equality operator that yields a boolean.
218 procedure Set_Formal_Validity (Formal_Id : Entity_Id);
219 -- Formal_Id is an formal parameter entity. This procedure deals with
220 -- setting the proper validity status for this entity, which depends on
221 -- the kind of parameter and the validity checking mode.
223 ---------------------------------------------
224 -- Analyze_Abstract_Subprogram_Declaration --
225 ---------------------------------------------
227 procedure Analyze_Abstract_Subprogram_Declaration (N : Node_Id) is
228 Designator : constant Entity_Id :=
229 Analyze_Subprogram_Specification (Specification (N));
230 Scop : constant Entity_Id := Current_Scope;
232 begin
233 Check_SPARK_Restriction ("abstract subprogram is not allowed", N);
235 Generate_Definition (Designator);
236 Set_Contract (Designator, Make_Contract (Sloc (Designator)));
237 Set_Is_Abstract_Subprogram (Designator);
238 New_Overloaded_Entity (Designator);
239 Check_Delayed_Subprogram (Designator);
241 Set_Categorization_From_Scope (Designator, Scop);
243 if Ekind (Scope (Designator)) = E_Protected_Type then
244 Error_Msg_N
245 ("abstract subprogram not allowed in protected type", N);
247 -- Issue a warning if the abstract subprogram is neither a dispatching
248 -- operation nor an operation that overrides an inherited subprogram or
249 -- predefined operator, since this most likely indicates a mistake.
251 elsif Warn_On_Redundant_Constructs
252 and then not Is_Dispatching_Operation (Designator)
253 and then not Present (Overridden_Operation (Designator))
254 and then (not Is_Operator_Symbol_Name (Chars (Designator))
255 or else Scop /= Scope (Etype (First_Formal (Designator))))
256 then
257 Error_Msg_N
258 ("abstract subprogram is not dispatching or overriding?r?", N);
259 end if;
261 Generate_Reference_To_Formals (Designator);
262 Check_Eliminated (Designator);
264 if Has_Aspects (N) then
265 Analyze_Aspect_Specifications (N, Designator);
266 end if;
267 end Analyze_Abstract_Subprogram_Declaration;
269 ---------------------------------
270 -- Analyze_Expression_Function --
271 ---------------------------------
273 procedure Analyze_Expression_Function (N : Node_Id) is
274 Loc : constant Source_Ptr := Sloc (N);
275 LocX : constant Source_Ptr := Sloc (Expression (N));
276 Expr : constant Node_Id := Expression (N);
277 Spec : constant Node_Id := Specification (N);
279 Def_Id : Entity_Id;
281 Prev : Entity_Id;
282 -- If the expression is a completion, Prev is the entity whose
283 -- declaration is completed. Def_Id is needed to analyze the spec.
285 New_Body : Node_Id;
286 New_Decl : Node_Id;
287 New_Spec : Node_Id;
288 Ret : Node_Id;
290 begin
291 -- This is one of the occasions on which we transform the tree during
292 -- semantic analysis. If this is a completion, transform the expression
293 -- function into an equivalent subprogram body, and analyze it.
295 -- Expression functions are inlined unconditionally. The back-end will
296 -- determine whether this is possible.
298 Inline_Processing_Required := True;
300 -- Create a specification for the generated body. Types and defauts in
301 -- the profile are copies of the spec, but new entities must be created
302 -- for the unit name and the formals.
304 New_Spec := New_Copy_Tree (Spec);
305 Set_Defining_Unit_Name (New_Spec,
306 Make_Defining_Identifier (Sloc (Defining_Unit_Name (Spec)),
307 Chars (Defining_Unit_Name (Spec))));
309 if Present (Parameter_Specifications (New_Spec)) then
310 declare
311 Formal_Spec : Node_Id;
312 Def : Entity_Id;
314 begin
315 Formal_Spec := First (Parameter_Specifications (New_Spec));
317 -- Create a new formal parameter at the same source position
319 while Present (Formal_Spec) loop
320 Def := Defining_Identifier (Formal_Spec);
321 Set_Defining_Identifier (Formal_Spec,
322 Make_Defining_Identifier (Sloc (Def),
323 Chars => Chars (Def)));
324 Next (Formal_Spec);
325 end loop;
326 end;
327 end if;
329 Prev := Current_Entity_In_Scope (Defining_Entity (Spec));
331 -- If there are previous overloadable entities with the same name,
332 -- check whether any of them is completed by the expression function.
334 if Present (Prev) and then Is_Overloadable (Prev) then
335 Def_Id := Analyze_Subprogram_Specification (Spec);
336 Prev := Find_Corresponding_Spec (N);
337 end if;
339 Ret := Make_Simple_Return_Statement (LocX, Expression (N));
341 New_Body :=
342 Make_Subprogram_Body (Loc,
343 Specification => New_Spec,
344 Declarations => Empty_List,
345 Handled_Statement_Sequence =>
346 Make_Handled_Sequence_Of_Statements (LocX,
347 Statements => New_List (Ret)));
349 -- If the expression completes a generic subprogram, we must create a
350 -- separate node for the body, because at instantiation the original
351 -- node of the generic copy must be a generic subprogram body, and
352 -- cannot be a expression function. Otherwise we just rewrite the
353 -- expression with the non-generic body.
355 if Present (Prev) and then Ekind (Prev) = E_Generic_Function then
356 Insert_After (N, New_Body);
358 -- Propagate any aspects or pragmas that apply to the expression
359 -- function to the proper body when the expression function acts
360 -- as a completion.
362 if Has_Aspects (N) then
363 Move_Aspects (N, To => New_Body);
364 end if;
366 Relocate_Pragmas_To_Body (New_Body);
368 Rewrite (N, Make_Null_Statement (Loc));
369 Set_Has_Completion (Prev, False);
370 Analyze (N);
371 Analyze (New_Body);
372 Set_Is_Inlined (Prev);
374 elsif Present (Prev) and then Comes_From_Source (Prev) then
375 Set_Has_Completion (Prev, False);
377 -- An expression function that is a completion freezes the
378 -- expression. This means freezing the return type, and if it is
379 -- an access type, freezing its designated type as well.
381 -- Note that we cannot defer this freezing to the analysis of the
382 -- expression itself, because a freeze node might appear in a nested
383 -- scope, leading to an elaboration order issue in gigi.
385 Freeze_Before (N, Etype (Prev));
387 if Is_Access_Type (Etype (Prev)) then
388 Freeze_Before (N, Designated_Type (Etype (Prev)));
389 end if;
391 -- For navigation purposes, indicate that the function is a body
393 Generate_Reference (Prev, Defining_Entity (N), 'b', Force => True);
394 Rewrite (N, New_Body);
396 -- Correct the parent pointer of the aspect specification list to
397 -- reference the rewritten node.
399 if Has_Aspects (N) then
400 Set_Parent (Aspect_Specifications (N), N);
401 end if;
403 -- Propagate any pragmas that apply to the expression function to the
404 -- proper body when the expression function acts as a completion.
405 -- Aspects are automatically transfered because of node rewriting.
407 Relocate_Pragmas_To_Body (N);
408 Analyze (N);
410 -- Prev is the previous entity with the same name, but it is can
411 -- be an unrelated spec that is not completed by the expression
412 -- function. In that case the relevant entity is the one in the body.
413 -- Not clear that the backend can inline it in this case ???
415 if Has_Completion (Prev) then
416 Set_Is_Inlined (Prev);
418 -- The formals of the expression function are body formals,
419 -- and do not appear in the ali file, which will only contain
420 -- references to the formals of the original subprogram spec.
422 declare
423 F1 : Entity_Id;
424 F2 : Entity_Id;
426 begin
427 F1 := First_Formal (Def_Id);
428 F2 := First_Formal (Prev);
430 while Present (F1) loop
431 Set_Spec_Entity (F1, F2);
432 Next_Formal (F1);
433 Next_Formal (F2);
434 end loop;
435 end;
437 else
438 Set_Is_Inlined (Defining_Entity (New_Body));
439 end if;
441 -- If this is not a completion, create both a declaration and a body, so
442 -- that the expression can be inlined whenever possible.
444 else
445 -- An expression function that is not a completion is not a
446 -- subprogram declaration, and thus cannot appear in a protected
447 -- definition.
449 if Nkind (Parent (N)) = N_Protected_Definition then
450 Error_Msg_N
451 ("an expression function is not a legal protected operation", N);
452 end if;
454 New_Decl :=
455 Make_Subprogram_Declaration (Loc, Specification => Spec);
457 Rewrite (N, New_Decl);
459 -- Correct the parent pointer of the aspect specification list to
460 -- reference the rewritten node.
462 if Has_Aspects (N) then
463 Set_Parent (Aspect_Specifications (N), N);
464 end if;
466 Analyze (N);
467 Set_Is_Inlined (Defining_Entity (New_Decl));
469 -- To prevent premature freeze action, insert the new body at the end
470 -- of the current declarations, or at the end of the package spec.
471 -- However, resolve usage names now, to prevent spurious visibility
472 -- on later entities. Note that the function can now be called in
473 -- the current declarative part, which will appear to be prior to
474 -- the presence of the body in the code. There are nevertheless no
475 -- order of elaboration issues because all name resolution has taken
476 -- place at the point of declaration.
478 declare
479 Decls : List_Id := List_Containing (N);
480 Par : constant Node_Id := Parent (Decls);
481 Id : constant Entity_Id := Defining_Entity (New_Decl);
483 begin
484 if Nkind (Par) = N_Package_Specification
485 and then Decls = Visible_Declarations (Par)
486 and then Present (Private_Declarations (Par))
487 and then not Is_Empty_List (Private_Declarations (Par))
488 then
489 Decls := Private_Declarations (Par);
490 end if;
492 Insert_After (Last (Decls), New_Body);
493 Push_Scope (Id);
494 Install_Formals (Id);
496 -- Preanalyze the expression for name capture, except in an
497 -- instance, where this has been done during generic analysis,
498 -- and will be redone when analyzing the body.
500 declare
501 Expr : constant Node_Id := Expression (Ret);
503 begin
504 Set_Parent (Expr, Ret);
506 if not In_Instance then
507 Preanalyze_Spec_Expression (Expr, Etype (Id));
508 end if;
509 end;
511 End_Scope;
512 end;
513 end if;
515 -- If the return expression is a static constant, we suppress warning
516 -- messages on unused formals, which in most cases will be noise.
518 Set_Is_Trivial_Subprogram (Defining_Entity (New_Body),
519 Is_OK_Static_Expression (Expr));
520 end Analyze_Expression_Function;
522 ----------------------------------------
523 -- Analyze_Extended_Return_Statement --
524 ----------------------------------------
526 procedure Analyze_Extended_Return_Statement (N : Node_Id) is
527 begin
528 Analyze_Return_Statement (N);
529 end Analyze_Extended_Return_Statement;
531 ----------------------------
532 -- Analyze_Function_Call --
533 ----------------------------
535 procedure Analyze_Function_Call (N : Node_Id) is
536 Actuals : constant List_Id := Parameter_Associations (N);
537 Func_Nam : constant Node_Id := Name (N);
538 Actual : Node_Id;
540 begin
541 Analyze (Func_Nam);
543 -- A call of the form A.B (X) may be an Ada 2005 call, which is
544 -- rewritten as B (A, X). If the rewriting is successful, the call
545 -- has been analyzed and we just return.
547 if Nkind (Func_Nam) = N_Selected_Component
548 and then Name (N) /= Func_Nam
549 and then Is_Rewrite_Substitution (N)
550 and then Present (Etype (N))
551 then
552 return;
553 end if;
555 -- If error analyzing name, then set Any_Type as result type and return
557 if Etype (Func_Nam) = Any_Type then
558 Set_Etype (N, Any_Type);
559 return;
560 end if;
562 -- Otherwise analyze the parameters
564 if Present (Actuals) then
565 Actual := First (Actuals);
566 while Present (Actual) loop
567 Analyze (Actual);
568 Check_Parameterless_Call (Actual);
569 Next (Actual);
570 end loop;
571 end if;
573 Analyze_Call (N);
574 end Analyze_Function_Call;
576 -----------------------------
577 -- Analyze_Function_Return --
578 -----------------------------
580 procedure Analyze_Function_Return (N : Node_Id) is
581 Loc : constant Source_Ptr := Sloc (N);
582 Stm_Entity : constant Entity_Id := Return_Statement_Entity (N);
583 Scope_Id : constant Entity_Id := Return_Applies_To (Stm_Entity);
585 R_Type : constant Entity_Id := Etype (Scope_Id);
586 -- Function result subtype
588 procedure Check_Limited_Return (Expr : Node_Id);
589 -- Check the appropriate (Ada 95 or Ada 2005) rules for returning
590 -- limited types. Used only for simple return statements.
591 -- Expr is the expression returned.
593 procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id);
594 -- Check that the return_subtype_indication properly matches the result
595 -- subtype of the function, as required by RM-6.5(5.1/2-5.3/2).
597 --------------------------
598 -- Check_Limited_Return --
599 --------------------------
601 procedure Check_Limited_Return (Expr : Node_Id) is
602 begin
603 -- Ada 2005 (AI-318-02): Return-by-reference types have been
604 -- removed and replaced by anonymous access results. This is an
605 -- incompatibility with Ada 95. Not clear whether this should be
606 -- enforced yet or perhaps controllable with special switch. ???
608 -- A limited interface that is not immutably limited is OK.
610 if Is_Limited_Interface (R_Type)
611 and then
612 not (Is_Task_Interface (R_Type)
613 or else Is_Protected_Interface (R_Type)
614 or else Is_Synchronized_Interface (R_Type))
615 then
616 null;
618 elsif Is_Limited_Type (R_Type)
619 and then not Is_Interface (R_Type)
620 and then Comes_From_Source (N)
621 and then not In_Instance_Body
622 and then not OK_For_Limited_Init_In_05 (R_Type, Expr)
623 then
624 -- Error in Ada 2005
626 if Ada_Version >= Ada_2005
627 and then not Debug_Flag_Dot_L
628 and then not GNAT_Mode
629 then
630 Error_Msg_N
631 ("(Ada 2005) cannot copy object of a limited type " &
632 "(RM-2005 6.5(5.5/2))", Expr);
634 if Is_Limited_View (R_Type) then
635 Error_Msg_N
636 ("\return by reference not permitted in Ada 2005", Expr);
637 end if;
639 -- Warn in Ada 95 mode, to give folks a heads up about this
640 -- incompatibility.
642 -- In GNAT mode, this is just a warning, to allow it to be
643 -- evilly turned off. Otherwise it is a real error.
645 -- In a generic context, simplify the warning because it makes
646 -- no sense to discuss pass-by-reference or copy.
648 elsif Warn_On_Ada_2005_Compatibility or GNAT_Mode then
649 if Inside_A_Generic then
650 Error_Msg_N
651 ("return of limited object not permitted in Ada 2005 "
652 & "(RM-2005 6.5(5.5/2))?y?", Expr);
654 elsif Is_Limited_View (R_Type) then
655 Error_Msg_N
656 ("return by reference not permitted in Ada 2005 "
657 & "(RM-2005 6.5(5.5/2))?y?", Expr);
658 else
659 Error_Msg_N
660 ("cannot copy object of a limited type in Ada 2005 "
661 & "(RM-2005 6.5(5.5/2))?y?", Expr);
662 end if;
664 -- Ada 95 mode, compatibility warnings disabled
666 else
667 return; -- skip continuation messages below
668 end if;
670 if not Inside_A_Generic then
671 Error_Msg_N
672 ("\consider switching to return of access type", Expr);
673 Explain_Limited_Type (R_Type, Expr);
674 end if;
675 end if;
676 end Check_Limited_Return;
678 -------------------------------------
679 -- Check_Return_Subtype_Indication --
680 -------------------------------------
682 procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id) is
683 Return_Obj : constant Node_Id := Defining_Identifier (Obj_Decl);
685 R_Stm_Type : constant Entity_Id := Etype (Return_Obj);
686 -- Subtype given in the extended return statement (must match R_Type)
688 Subtype_Ind : constant Node_Id :=
689 Object_Definition (Original_Node (Obj_Decl));
691 R_Type_Is_Anon_Access : constant Boolean :=
692 Ekind_In (R_Type,
693 E_Anonymous_Access_Subprogram_Type,
694 E_Anonymous_Access_Protected_Subprogram_Type,
695 E_Anonymous_Access_Type);
696 -- True if return type of the function is an anonymous access type
697 -- Can't we make Is_Anonymous_Access_Type in einfo ???
699 R_Stm_Type_Is_Anon_Access : constant Boolean :=
700 Ekind_In (R_Stm_Type,
701 E_Anonymous_Access_Subprogram_Type,
702 E_Anonymous_Access_Protected_Subprogram_Type,
703 E_Anonymous_Access_Type);
704 -- True if type of the return object is an anonymous access type
706 procedure Error_No_Match (N : Node_Id);
707 -- Output error messages for case where types do not statically
708 -- match. N is the location for the messages.
710 --------------------
711 -- Error_No_Match --
712 --------------------
714 procedure Error_No_Match (N : Node_Id) is
715 begin
716 Error_Msg_N
717 ("subtype must statically match function result subtype", N);
719 if not Predicates_Match (R_Stm_Type, R_Type) then
720 Error_Msg_Node_2 := R_Type;
721 Error_Msg_NE
722 ("\predicate of & does not match predicate of &",
723 N, R_Stm_Type);
724 end if;
725 end Error_No_Match;
727 -- Start of processing for Check_Return_Subtype_Indication
729 begin
730 -- First, avoid cascaded errors
732 if Error_Posted (Obj_Decl) or else Error_Posted (Subtype_Ind) then
733 return;
734 end if;
736 -- "return access T" case; check that the return statement also has
737 -- "access T", and that the subtypes statically match:
738 -- if this is an access to subprogram the signatures must match.
740 if R_Type_Is_Anon_Access then
741 if R_Stm_Type_Is_Anon_Access then
743 Ekind (Designated_Type (R_Stm_Type)) /= E_Subprogram_Type
744 then
745 if Base_Type (Designated_Type (R_Stm_Type)) /=
746 Base_Type (Designated_Type (R_Type))
747 or else not Subtypes_Statically_Match (R_Stm_Type, R_Type)
748 then
749 Error_No_Match (Subtype_Mark (Subtype_Ind));
750 end if;
752 else
753 -- For two anonymous access to subprogram types, the
754 -- types themselves must be type conformant.
756 if not Conforming_Types
757 (R_Stm_Type, R_Type, Fully_Conformant)
758 then
759 Error_No_Match (Subtype_Ind);
760 end if;
761 end if;
763 else
764 Error_Msg_N ("must use anonymous access type", Subtype_Ind);
765 end if;
767 -- If the return object is of an anonymous access type, then report
768 -- an error if the function's result type is not also anonymous.
770 elsif R_Stm_Type_Is_Anon_Access
771 and then not R_Type_Is_Anon_Access
772 then
773 Error_Msg_N ("anonymous access not allowed for function with " &
774 "named access result", Subtype_Ind);
776 -- Subtype indication case: check that the return object's type is
777 -- covered by the result type, and that the subtypes statically match
778 -- when the result subtype is constrained. Also handle record types
779 -- with unknown discriminants for which we have built the underlying
780 -- record view. Coverage is needed to allow specific-type return
781 -- objects when the result type is class-wide (see AI05-32).
783 elsif Covers (Base_Type (R_Type), Base_Type (R_Stm_Type))
784 or else (Is_Underlying_Record_View (Base_Type (R_Stm_Type))
785 and then
786 Covers
787 (Base_Type (R_Type),
788 Underlying_Record_View (Base_Type (R_Stm_Type))))
789 then
790 -- A null exclusion may be present on the return type, on the
791 -- function specification, on the object declaration or on the
792 -- subtype itself.
794 if Is_Access_Type (R_Type)
795 and then
796 (Can_Never_Be_Null (R_Type)
797 or else Null_Exclusion_Present (Parent (Scope_Id))) /=
798 Can_Never_Be_Null (R_Stm_Type)
799 then
800 Error_No_Match (Subtype_Ind);
801 end if;
803 -- AI05-103: for elementary types, subtypes must statically match
805 if Is_Constrained (R_Type)
806 or else Is_Access_Type (R_Type)
807 then
808 if not Subtypes_Statically_Match (R_Stm_Type, R_Type) then
809 Error_No_Match (Subtype_Ind);
810 end if;
811 end if;
813 elsif Etype (Base_Type (R_Type)) = R_Stm_Type
814 and then Is_Null_Extension (Base_Type (R_Type))
815 then
816 null;
818 else
819 Error_Msg_N
820 ("wrong type for return_subtype_indication", Subtype_Ind);
821 end if;
822 end Check_Return_Subtype_Indication;
824 ---------------------
825 -- Local Variables --
826 ---------------------
828 Expr : Node_Id;
830 -- Start of processing for Analyze_Function_Return
832 begin
833 Set_Return_Present (Scope_Id);
835 if Nkind (N) = N_Simple_Return_Statement then
836 Expr := Expression (N);
838 -- Guard against a malformed expression. The parser may have tried to
839 -- recover but the node is not analyzable.
841 if Nkind (Expr) = N_Error then
842 Set_Etype (Expr, Any_Type);
843 Expander_Mode_Save_And_Set (False);
844 return;
846 else
847 -- The resolution of a controlled [extension] aggregate associated
848 -- with a return statement creates a temporary which needs to be
849 -- finalized on function exit. Wrap the return statement inside a
850 -- block so that the finalization machinery can detect this case.
851 -- This early expansion is done only when the return statement is
852 -- not part of a handled sequence of statements.
854 if Nkind_In (Expr, N_Aggregate,
855 N_Extension_Aggregate)
856 and then Needs_Finalization (R_Type)
857 and then Nkind (Parent (N)) /= N_Handled_Sequence_Of_Statements
858 then
859 Rewrite (N,
860 Make_Block_Statement (Loc,
861 Handled_Statement_Sequence =>
862 Make_Handled_Sequence_Of_Statements (Loc,
863 Statements => New_List (Relocate_Node (N)))));
865 Analyze (N);
866 return;
867 end if;
869 Analyze_And_Resolve (Expr, R_Type);
870 Check_Limited_Return (Expr);
871 end if;
873 -- RETURN only allowed in SPARK as the last statement in function
875 if Nkind (Parent (N)) /= N_Handled_Sequence_Of_Statements
876 and then
877 (Nkind (Parent (Parent (N))) /= N_Subprogram_Body
878 or else Present (Next (N)))
879 then
880 Check_SPARK_Restriction
881 ("RETURN should be the last statement in function", N);
882 end if;
884 else
885 Check_SPARK_Restriction ("extended RETURN is not allowed", N);
887 -- Analyze parts specific to extended_return_statement:
889 declare
890 Obj_Decl : constant Node_Id :=
891 Last (Return_Object_Declarations (N));
892 Has_Aliased : constant Boolean := Aliased_Present (Obj_Decl);
893 HSS : constant Node_Id := Handled_Statement_Sequence (N);
895 begin
896 Expr := Expression (Obj_Decl);
898 -- Note: The check for OK_For_Limited_Init will happen in
899 -- Analyze_Object_Declaration; we treat it as a normal
900 -- object declaration.
902 Set_Is_Return_Object (Defining_Identifier (Obj_Decl));
903 Analyze (Obj_Decl);
905 Check_Return_Subtype_Indication (Obj_Decl);
907 if Present (HSS) then
908 Analyze (HSS);
910 if Present (Exception_Handlers (HSS)) then
912 -- ???Has_Nested_Block_With_Handler needs to be set.
913 -- Probably by creating an actual N_Block_Statement.
914 -- Probably in Expand.
916 null;
917 end if;
918 end if;
920 -- Mark the return object as referenced, since the return is an
921 -- implicit reference of the object.
923 Set_Referenced (Defining_Identifier (Obj_Decl));
925 Check_References (Stm_Entity);
927 -- Check RM 6.5 (5.9/3)
929 if Has_Aliased then
930 if Ada_Version < Ada_2012 then
932 -- Shouldn't this test Warn_On_Ada_2012_Compatibility ???
933 -- Can it really happen (extended return???)
935 Error_Msg_N
936 ("aliased only allowed for limited"
937 & " return objects in Ada 2012?", N);
939 elsif not Is_Limited_View (R_Type) then
940 Error_Msg_N ("aliased only allowed for limited"
941 & " return objects", N);
942 end if;
943 end if;
944 end;
945 end if;
947 -- Case of Expr present
949 if Present (Expr)
951 -- Defend against previous errors
953 and then Nkind (Expr) /= N_Empty
954 and then Present (Etype (Expr))
955 then
956 -- Apply constraint check. Note that this is done before the implicit
957 -- conversion of the expression done for anonymous access types to
958 -- ensure correct generation of the null-excluding check associated
959 -- with null-excluding expressions found in return statements.
961 Apply_Constraint_Check (Expr, R_Type);
963 -- Ada 2005 (AI-318-02): When the result type is an anonymous access
964 -- type, apply an implicit conversion of the expression to that type
965 -- to force appropriate static and run-time accessibility checks.
967 if Ada_Version >= Ada_2005
968 and then Ekind (R_Type) = E_Anonymous_Access_Type
969 then
970 Rewrite (Expr, Convert_To (R_Type, Relocate_Node (Expr)));
971 Analyze_And_Resolve (Expr, R_Type);
973 -- If this is a local anonymous access to subprogram, the
974 -- accessibility check can be applied statically. The return is
975 -- illegal if the access type of the return expression is declared
976 -- inside of the subprogram (except if it is the subtype indication
977 -- of an extended return statement).
979 elsif Ekind (R_Type) = E_Anonymous_Access_Subprogram_Type then
980 if not Comes_From_Source (Current_Scope)
981 or else Ekind (Current_Scope) = E_Return_Statement
982 then
983 null;
985 elsif
986 Scope_Depth (Scope (Etype (Expr))) >= Scope_Depth (Scope_Id)
987 then
988 Error_Msg_N ("cannot return local access to subprogram", N);
989 end if;
990 end if;
992 -- If the result type is class-wide, then check that the return
993 -- expression's type is not declared at a deeper level than the
994 -- function (RM05-6.5(5.6/2)).
996 if Ada_Version >= Ada_2005
997 and then Is_Class_Wide_Type (R_Type)
998 then
999 if Type_Access_Level (Etype (Expr)) >
1000 Subprogram_Access_Level (Scope_Id)
1001 then
1002 Error_Msg_N
1003 ("level of return expression type is deeper than " &
1004 "class-wide function!", Expr);
1005 end if;
1006 end if;
1008 -- Check incorrect use of dynamically tagged expression
1010 if Is_Tagged_Type (R_Type) then
1011 Check_Dynamically_Tagged_Expression
1012 (Expr => Expr,
1013 Typ => R_Type,
1014 Related_Nod => N);
1015 end if;
1017 -- ??? A real run-time accessibility check is needed in cases
1018 -- involving dereferences of access parameters. For now we just
1019 -- check the static cases.
1021 if (Ada_Version < Ada_2005 or else Debug_Flag_Dot_L)
1022 and then Is_Limited_View (Etype (Scope_Id))
1023 and then Object_Access_Level (Expr) >
1024 Subprogram_Access_Level (Scope_Id)
1025 then
1026 -- Suppress the message in a generic, where the rewriting
1027 -- is irrelevant.
1029 if Inside_A_Generic then
1030 null;
1032 else
1033 Rewrite (N,
1034 Make_Raise_Program_Error (Loc,
1035 Reason => PE_Accessibility_Check_Failed));
1036 Analyze (N);
1038 Error_Msg_Warn := SPARK_Mode /= On;
1039 Error_Msg_N ("cannot return a local value by reference<<", N);
1040 Error_Msg_NE ("\& [<<", N, Standard_Program_Error);
1041 end if;
1042 end if;
1044 if Known_Null (Expr)
1045 and then Nkind (Parent (Scope_Id)) = N_Function_Specification
1046 and then Null_Exclusion_Present (Parent (Scope_Id))
1047 then
1048 Apply_Compile_Time_Constraint_Error
1049 (N => Expr,
1050 Msg => "(Ada 2005) null not allowed for "
1051 & "null-excluding return??",
1052 Reason => CE_Null_Not_Allowed);
1053 end if;
1054 end if;
1055 end Analyze_Function_Return;
1057 -------------------------------------
1058 -- Analyze_Generic_Subprogram_Body --
1059 -------------------------------------
1061 procedure Analyze_Generic_Subprogram_Body
1062 (N : Node_Id;
1063 Gen_Id : Entity_Id)
1065 Gen_Decl : constant Node_Id := Unit_Declaration_Node (Gen_Id);
1066 Kind : constant Entity_Kind := Ekind (Gen_Id);
1067 Body_Id : Entity_Id;
1068 New_N : Node_Id;
1069 Spec : Node_Id;
1071 begin
1072 -- Copy body and disable expansion while analyzing the generic For a
1073 -- stub, do not copy the stub (which would load the proper body), this
1074 -- will be done when the proper body is analyzed.
1076 if Nkind (N) /= N_Subprogram_Body_Stub then
1077 New_N := Copy_Generic_Node (N, Empty, Instantiating => False);
1078 Rewrite (N, New_N);
1079 Start_Generic;
1080 end if;
1082 Spec := Specification (N);
1084 -- Within the body of the generic, the subprogram is callable, and
1085 -- behaves like the corresponding non-generic unit.
1087 Body_Id := Defining_Entity (Spec);
1089 if Kind = E_Generic_Procedure
1090 and then Nkind (Spec) /= N_Procedure_Specification
1091 then
1092 Error_Msg_N ("invalid body for generic procedure ", Body_Id);
1093 return;
1095 elsif Kind = E_Generic_Function
1096 and then Nkind (Spec) /= N_Function_Specification
1097 then
1098 Error_Msg_N ("invalid body for generic function ", Body_Id);
1099 return;
1100 end if;
1102 Set_Corresponding_Body (Gen_Decl, Body_Id);
1104 if Has_Completion (Gen_Id)
1105 and then Nkind (Parent (N)) /= N_Subunit
1106 then
1107 Error_Msg_N ("duplicate generic body", N);
1108 return;
1109 else
1110 Set_Has_Completion (Gen_Id);
1111 end if;
1113 if Nkind (N) = N_Subprogram_Body_Stub then
1114 Set_Ekind (Defining_Entity (Specification (N)), Kind);
1115 else
1116 Set_Corresponding_Spec (N, Gen_Id);
1117 end if;
1119 if Nkind (Parent (N)) = N_Compilation_Unit then
1120 Set_Cunit_Entity (Current_Sem_Unit, Defining_Entity (N));
1121 end if;
1123 -- Make generic parameters immediately visible in the body. They are
1124 -- needed to process the formals declarations. Then make the formals
1125 -- visible in a separate step.
1127 Push_Scope (Gen_Id);
1129 declare
1130 E : Entity_Id;
1131 First_Ent : Entity_Id;
1133 begin
1134 First_Ent := First_Entity (Gen_Id);
1136 E := First_Ent;
1137 while Present (E) and then not Is_Formal (E) loop
1138 Install_Entity (E);
1139 Next_Entity (E);
1140 end loop;
1142 Set_Use (Generic_Formal_Declarations (Gen_Decl));
1144 -- Now generic formals are visible, and the specification can be
1145 -- analyzed, for subsequent conformance check.
1147 Body_Id := Analyze_Subprogram_Specification (Spec);
1149 -- Make formal parameters visible
1151 if Present (E) then
1153 -- E is the first formal parameter, we loop through the formals
1154 -- installing them so that they will be visible.
1156 Set_First_Entity (Gen_Id, E);
1157 while Present (E) loop
1158 Install_Entity (E);
1159 Next_Formal (E);
1160 end loop;
1161 end if;
1163 -- Visible generic entity is callable within its own body
1165 Set_Ekind (Gen_Id, Ekind (Body_Id));
1166 Set_Contract (Body_Id, Make_Contract (Sloc (Body_Id)));
1167 Set_Ekind (Body_Id, E_Subprogram_Body);
1168 Set_Convention (Body_Id, Convention (Gen_Id));
1169 Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Gen_Id));
1170 Set_Scope (Body_Id, Scope (Gen_Id));
1171 Check_Fully_Conformant (Body_Id, Gen_Id, Body_Id);
1173 if Nkind (N) = N_Subprogram_Body_Stub then
1175 -- No body to analyze, so restore state of generic unit
1177 Set_Ekind (Gen_Id, Kind);
1178 Set_Ekind (Body_Id, Kind);
1180 if Present (First_Ent) then
1181 Set_First_Entity (Gen_Id, First_Ent);
1182 end if;
1184 End_Scope;
1185 return;
1186 end if;
1188 -- If this is a compilation unit, it must be made visible explicitly,
1189 -- because the compilation of the declaration, unlike other library
1190 -- unit declarations, does not. If it is not a unit, the following
1191 -- is redundant but harmless.
1193 Set_Is_Immediately_Visible (Gen_Id);
1194 Reference_Body_Formals (Gen_Id, Body_Id);
1196 if Is_Child_Unit (Gen_Id) then
1197 Generate_Reference (Gen_Id, Scope (Gen_Id), 'k', False);
1198 end if;
1200 Set_Actual_Subtypes (N, Current_Scope);
1202 -- Deal with [refined] preconditions, postconditions, Contract_Cases,
1203 -- invariants and predicates associated with the body and its spec.
1204 -- Note that this is not pure expansion as Expand_Subprogram_Contract
1205 -- prepares the contract assertions for generic subprograms or for
1206 -- ASIS. Do not generate contract checks in SPARK mode.
1208 if not GNATprove_Mode then
1209 Expand_Subprogram_Contract (N, Gen_Id, Body_Id);
1210 end if;
1212 -- If the generic unit carries pre- or post-conditions, copy them
1213 -- to the original generic tree, so that they are properly added
1214 -- to any instantiation.
1216 declare
1217 Orig : constant Node_Id := Original_Node (N);
1218 Cond : Node_Id;
1220 begin
1221 Cond := First (Declarations (N));
1222 while Present (Cond) loop
1223 if Nkind (Cond) = N_Pragma
1224 and then Pragma_Name (Cond) = Name_Check
1225 then
1226 Prepend (New_Copy_Tree (Cond), Declarations (Orig));
1228 elsif Nkind (Cond) = N_Pragma
1229 and then Pragma_Name (Cond) = Name_Postcondition
1230 then
1231 Set_Ekind (Defining_Entity (Orig), Ekind (Gen_Id));
1232 Prepend (New_Copy_Tree (Cond), Declarations (Orig));
1233 else
1234 exit;
1235 end if;
1237 Next (Cond);
1238 end loop;
1239 end;
1241 Check_SPARK_Mode_In_Generic (N);
1243 Set_SPARK_Pragma (Body_Id, SPARK_Mode_Pragma);
1244 Set_SPARK_Pragma_Inherited (Body_Id, True);
1246 Analyze_Declarations (Declarations (N));
1247 Check_Completion;
1248 Analyze (Handled_Statement_Sequence (N));
1250 Save_Global_References (Original_Node (N));
1252 -- Prior to exiting the scope, include generic formals again (if any
1253 -- are present) in the set of local entities.
1255 if Present (First_Ent) then
1256 Set_First_Entity (Gen_Id, First_Ent);
1257 end if;
1259 Check_References (Gen_Id);
1260 end;
1262 Process_End_Label (Handled_Statement_Sequence (N), 't', Current_Scope);
1263 End_Scope;
1264 Check_Subprogram_Order (N);
1266 -- Outside of its body, unit is generic again
1268 Set_Ekind (Gen_Id, Kind);
1269 Generate_Reference (Gen_Id, Body_Id, 'b', Set_Ref => False);
1271 if Style_Check then
1272 Style.Check_Identifier (Body_Id, Gen_Id);
1273 end if;
1275 End_Generic;
1276 end Analyze_Generic_Subprogram_Body;
1278 ----------------------------
1279 -- Analyze_Null_Procedure --
1280 ----------------------------
1282 procedure Analyze_Null_Procedure
1283 (N : Node_Id;
1284 Is_Completion : out Boolean)
1286 Loc : constant Source_Ptr := Sloc (N);
1287 Spec : constant Node_Id := Specification (N);
1288 Designator : Entity_Id;
1289 Form : Node_Id;
1290 Null_Body : Node_Id := Empty;
1291 Prev : Entity_Id;
1293 begin
1294 -- Capture the profile of the null procedure before analysis, for
1295 -- expansion at the freeze point and at each point of call. The body is
1296 -- used if the procedure has preconditions, or if it is a completion. In
1297 -- the first case the body is analyzed at the freeze point, in the other
1298 -- it replaces the null procedure declaration.
1300 Null_Body :=
1301 Make_Subprogram_Body (Loc,
1302 Specification => New_Copy_Tree (Spec),
1303 Declarations => New_List,
1304 Handled_Statement_Sequence =>
1305 Make_Handled_Sequence_Of_Statements (Loc,
1306 Statements => New_List (Make_Null_Statement (Loc))));
1308 -- Create new entities for body and formals
1310 Set_Defining_Unit_Name (Specification (Null_Body),
1311 Make_Defining_Identifier (Loc, Chars (Defining_Entity (N))));
1313 Form := First (Parameter_Specifications (Specification (Null_Body)));
1314 while Present (Form) loop
1315 Set_Defining_Identifier (Form,
1316 Make_Defining_Identifier (Loc, Chars (Defining_Identifier (Form))));
1317 Next (Form);
1318 end loop;
1320 -- Determine whether the null procedure may be a completion of a generic
1321 -- suprogram, in which case we use the new null body as the completion
1322 -- and set minimal semantic information on the original declaration,
1323 -- which is rewritten as a null statement.
1325 Prev := Current_Entity_In_Scope (Defining_Entity (Spec));
1327 if Present (Prev) and then Is_Generic_Subprogram (Prev) then
1328 Insert_Before (N, Null_Body);
1329 Set_Ekind (Defining_Entity (N), Ekind (Prev));
1330 Set_Contract (Defining_Entity (N), Make_Contract (Loc));
1332 Rewrite (N, Make_Null_Statement (Loc));
1333 Analyze_Generic_Subprogram_Body (Null_Body, Prev);
1334 Is_Completion := True;
1335 return;
1337 else
1338 -- Resolve the types of the formals now, because the freeze point
1339 -- may appear in a different context, e.g. an instantiation.
1341 Form := First (Parameter_Specifications (Specification (Null_Body)));
1342 while Present (Form) loop
1343 if Nkind (Parameter_Type (Form)) /= N_Access_Definition then
1344 Find_Type (Parameter_Type (Form));
1346 elsif
1347 No (Access_To_Subprogram_Definition (Parameter_Type (Form)))
1348 then
1349 Find_Type (Subtype_Mark (Parameter_Type (Form)));
1351 else
1352 -- The case of a null procedure with a formal that is an
1353 -- access_to_subprogram type, and that is used as an actual
1354 -- in an instantiation is left to the enthusiastic reader.
1356 null;
1357 end if;
1359 Next (Form);
1360 end loop;
1361 end if;
1363 -- If there are previous overloadable entities with the same name,
1364 -- check whether any of them is completed by the null procedure.
1366 if Present (Prev) and then Is_Overloadable (Prev) then
1367 Designator := Analyze_Subprogram_Specification (Spec);
1368 Prev := Find_Corresponding_Spec (N);
1369 end if;
1371 if No (Prev) or else not Comes_From_Source (Prev) then
1372 Designator := Analyze_Subprogram_Specification (Spec);
1373 Set_Has_Completion (Designator);
1375 -- Signal to caller that this is a procedure declaration
1377 Is_Completion := False;
1379 -- Null procedures are always inlined, but generic formal subprograms
1380 -- which appear as such in the internal instance of formal packages,
1381 -- need no completion and are not marked Inline.
1383 if Expander_Active
1384 and then Nkind (N) /= N_Formal_Concrete_Subprogram_Declaration
1385 then
1386 Set_Corresponding_Body (N, Defining_Entity (Null_Body));
1387 Set_Body_To_Inline (N, Null_Body);
1388 Set_Is_Inlined (Designator);
1389 end if;
1391 else
1392 -- The null procedure is a completion
1394 Is_Completion := True;
1396 if Expander_Active then
1397 Rewrite (N, Null_Body);
1398 Analyze (N);
1400 else
1401 Designator := Analyze_Subprogram_Specification (Spec);
1402 Set_Has_Completion (Designator);
1403 Set_Has_Completion (Prev);
1404 end if;
1405 end if;
1406 end Analyze_Null_Procedure;
1408 -----------------------------
1409 -- Analyze_Operator_Symbol --
1410 -----------------------------
1412 -- An operator symbol such as "+" or "and" may appear in context where the
1413 -- literal denotes an entity name, such as "+"(x, y) or in context when it
1414 -- is just a string, as in (conjunction = "or"). In these cases the parser
1415 -- generates this node, and the semantics does the disambiguation. Other
1416 -- such case are actuals in an instantiation, the generic unit in an
1417 -- instantiation, and pragma arguments.
1419 procedure Analyze_Operator_Symbol (N : Node_Id) is
1420 Par : constant Node_Id := Parent (N);
1422 begin
1423 if (Nkind (Par) = N_Function_Call and then N = Name (Par))
1424 or else Nkind (Par) = N_Function_Instantiation
1425 or else (Nkind (Par) = N_Indexed_Component and then N = Prefix (Par))
1426 or else (Nkind (Par) = N_Pragma_Argument_Association
1427 and then not Is_Pragma_String_Literal (Par))
1428 or else Nkind (Par) = N_Subprogram_Renaming_Declaration
1429 or else (Nkind (Par) = N_Attribute_Reference
1430 and then Attribute_Name (Par) /= Name_Value)
1431 then
1432 Find_Direct_Name (N);
1434 else
1435 Change_Operator_Symbol_To_String_Literal (N);
1436 Analyze (N);
1437 end if;
1438 end Analyze_Operator_Symbol;
1440 -----------------------------------
1441 -- Analyze_Parameter_Association --
1442 -----------------------------------
1444 procedure Analyze_Parameter_Association (N : Node_Id) is
1445 begin
1446 Analyze (Explicit_Actual_Parameter (N));
1447 end Analyze_Parameter_Association;
1449 ----------------------------
1450 -- Analyze_Procedure_Call --
1451 ----------------------------
1453 procedure Analyze_Procedure_Call (N : Node_Id) is
1454 Loc : constant Source_Ptr := Sloc (N);
1455 P : constant Node_Id := Name (N);
1456 Actuals : constant List_Id := Parameter_Associations (N);
1457 Actual : Node_Id;
1458 New_N : Node_Id;
1460 procedure Analyze_Call_And_Resolve;
1461 -- Do Analyze and Resolve calls for procedure call
1462 -- At end, check illegal order dependence.
1464 ------------------------------
1465 -- Analyze_Call_And_Resolve --
1466 ------------------------------
1468 procedure Analyze_Call_And_Resolve is
1469 begin
1470 if Nkind (N) = N_Procedure_Call_Statement then
1471 Analyze_Call (N);
1472 Resolve (N, Standard_Void_Type);
1473 else
1474 Analyze (N);
1475 end if;
1476 end Analyze_Call_And_Resolve;
1478 -- Start of processing for Analyze_Procedure_Call
1480 begin
1481 -- The syntactic construct: PREFIX ACTUAL_PARAMETER_PART can denote
1482 -- a procedure call or an entry call. The prefix may denote an access
1483 -- to subprogram type, in which case an implicit dereference applies.
1484 -- If the prefix is an indexed component (without implicit dereference)
1485 -- then the construct denotes a call to a member of an entire family.
1486 -- If the prefix is a simple name, it may still denote a call to a
1487 -- parameterless member of an entry family. Resolution of these various
1488 -- interpretations is delicate.
1490 Analyze (P);
1492 -- If this is a call of the form Obj.Op, the call may have been
1493 -- analyzed and possibly rewritten into a block, in which case
1494 -- we are done.
1496 if Analyzed (N) then
1497 return;
1498 end if;
1500 -- If there is an error analyzing the name (which may have been
1501 -- rewritten if the original call was in prefix notation) then error
1502 -- has been emitted already, mark node and return.
1504 if Error_Posted (N) or else Etype (Name (N)) = Any_Type then
1505 Set_Etype (N, Any_Type);
1506 return;
1507 end if;
1509 -- Otherwise analyze the parameters
1511 if Present (Actuals) then
1512 Actual := First (Actuals);
1514 while Present (Actual) loop
1515 Analyze (Actual);
1516 Check_Parameterless_Call (Actual);
1517 Next (Actual);
1518 end loop;
1519 end if;
1521 -- Special processing for Elab_Spec, Elab_Body and Elab_Subp_Body calls
1523 if Nkind (P) = N_Attribute_Reference
1524 and then Nam_In (Attribute_Name (P), Name_Elab_Spec,
1525 Name_Elab_Body,
1526 Name_Elab_Subp_Body)
1527 then
1528 if Present (Actuals) then
1529 Error_Msg_N
1530 ("no parameters allowed for this call", First (Actuals));
1531 return;
1532 end if;
1534 Set_Etype (N, Standard_Void_Type);
1535 Set_Analyzed (N);
1537 elsif Is_Entity_Name (P)
1538 and then Is_Record_Type (Etype (Entity (P)))
1539 and then Remote_AST_I_Dereference (P)
1540 then
1541 return;
1543 elsif Is_Entity_Name (P)
1544 and then Ekind (Entity (P)) /= E_Entry_Family
1545 then
1546 if Is_Access_Type (Etype (P))
1547 and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
1548 and then No (Actuals)
1549 and then Comes_From_Source (N)
1550 then
1551 Error_Msg_N ("missing explicit dereference in call", N);
1552 end if;
1554 Analyze_Call_And_Resolve;
1556 -- If the prefix is the simple name of an entry family, this is
1557 -- a parameterless call from within the task body itself.
1559 elsif Is_Entity_Name (P)
1560 and then Nkind (P) = N_Identifier
1561 and then Ekind (Entity (P)) = E_Entry_Family
1562 and then Present (Actuals)
1563 and then No (Next (First (Actuals)))
1564 then
1565 -- Can be call to parameterless entry family. What appears to be the
1566 -- sole argument is in fact the entry index. Rewrite prefix of node
1567 -- accordingly. Source representation is unchanged by this
1568 -- transformation.
1570 New_N :=
1571 Make_Indexed_Component (Loc,
1572 Prefix =>
1573 Make_Selected_Component (Loc,
1574 Prefix => New_Occurrence_Of (Scope (Entity (P)), Loc),
1575 Selector_Name => New_Occurrence_Of (Entity (P), Loc)),
1576 Expressions => Actuals);
1577 Set_Name (N, New_N);
1578 Set_Etype (New_N, Standard_Void_Type);
1579 Set_Parameter_Associations (N, No_List);
1580 Analyze_Call_And_Resolve;
1582 elsif Nkind (P) = N_Explicit_Dereference then
1583 if Ekind (Etype (P)) = E_Subprogram_Type then
1584 Analyze_Call_And_Resolve;
1585 else
1586 Error_Msg_N ("expect access to procedure in call", P);
1587 end if;
1589 -- The name can be a selected component or an indexed component that
1590 -- yields an access to subprogram. Such a prefix is legal if the call
1591 -- has parameter associations.
1593 elsif Is_Access_Type (Etype (P))
1594 and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
1595 then
1596 if Present (Actuals) then
1597 Analyze_Call_And_Resolve;
1598 else
1599 Error_Msg_N ("missing explicit dereference in call ", N);
1600 end if;
1602 -- If not an access to subprogram, then the prefix must resolve to the
1603 -- name of an entry, entry family, or protected operation.
1605 -- For the case of a simple entry call, P is a selected component where
1606 -- the prefix is the task and the selector name is the entry. A call to
1607 -- a protected procedure will have the same syntax. If the protected
1608 -- object contains overloaded operations, the entity may appear as a
1609 -- function, the context will select the operation whose type is Void.
1611 elsif Nkind (P) = N_Selected_Component
1612 and then Ekind_In (Entity (Selector_Name (P)), E_Entry,
1613 E_Procedure,
1614 E_Function)
1615 then
1616 Analyze_Call_And_Resolve;
1618 elsif Nkind (P) = N_Selected_Component
1619 and then Ekind (Entity (Selector_Name (P))) = E_Entry_Family
1620 and then Present (Actuals)
1621 and then No (Next (First (Actuals)))
1622 then
1623 -- Can be call to parameterless entry family. What appears to be the
1624 -- sole argument is in fact the entry index. Rewrite prefix of node
1625 -- accordingly. Source representation is unchanged by this
1626 -- transformation.
1628 New_N :=
1629 Make_Indexed_Component (Loc,
1630 Prefix => New_Copy (P),
1631 Expressions => Actuals);
1632 Set_Name (N, New_N);
1633 Set_Etype (New_N, Standard_Void_Type);
1634 Set_Parameter_Associations (N, No_List);
1635 Analyze_Call_And_Resolve;
1637 -- For the case of a reference to an element of an entry family, P is
1638 -- an indexed component whose prefix is a selected component (task and
1639 -- entry family), and whose index is the entry family index.
1641 elsif Nkind (P) = N_Indexed_Component
1642 and then Nkind (Prefix (P)) = N_Selected_Component
1643 and then Ekind (Entity (Selector_Name (Prefix (P)))) = E_Entry_Family
1644 then
1645 Analyze_Call_And_Resolve;
1647 -- If the prefix is the name of an entry family, it is a call from
1648 -- within the task body itself.
1650 elsif Nkind (P) = N_Indexed_Component
1651 and then Nkind (Prefix (P)) = N_Identifier
1652 and then Ekind (Entity (Prefix (P))) = E_Entry_Family
1653 then
1654 New_N :=
1655 Make_Selected_Component (Loc,
1656 Prefix => New_Occurrence_Of (Scope (Entity (Prefix (P))), Loc),
1657 Selector_Name => New_Occurrence_Of (Entity (Prefix (P)), Loc));
1658 Rewrite (Prefix (P), New_N);
1659 Analyze (P);
1660 Analyze_Call_And_Resolve;
1662 -- In Ada 2012. a qualified expression is a name, but it cannot be a
1663 -- procedure name, so the construct can only be a qualified expression.
1665 elsif Nkind (P) = N_Qualified_Expression
1666 and then Ada_Version >= Ada_2012
1667 then
1668 Rewrite (N, Make_Code_Statement (Loc, Expression => P));
1669 Analyze (N);
1671 -- Anything else is an error
1673 else
1674 Error_Msg_N ("invalid procedure or entry call", N);
1675 end if;
1676 end Analyze_Procedure_Call;
1678 ------------------------------
1679 -- Analyze_Return_Statement --
1680 ------------------------------
1682 procedure Analyze_Return_Statement (N : Node_Id) is
1684 pragma Assert (Nkind_In (N, N_Simple_Return_Statement,
1685 N_Extended_Return_Statement));
1687 Returns_Object : constant Boolean :=
1688 Nkind (N) = N_Extended_Return_Statement
1689 or else
1690 (Nkind (N) = N_Simple_Return_Statement
1691 and then Present (Expression (N)));
1692 -- True if we're returning something; that is, "return <expression>;"
1693 -- or "return Result : T [:= ...]". False for "return;". Used for error
1694 -- checking: If Returns_Object is True, N should apply to a function
1695 -- body; otherwise N should apply to a procedure body, entry body,
1696 -- accept statement, or extended return statement.
1698 function Find_What_It_Applies_To return Entity_Id;
1699 -- Find the entity representing the innermost enclosing body, accept
1700 -- statement, or extended return statement. If the result is a callable
1701 -- construct or extended return statement, then this will be the value
1702 -- of the Return_Applies_To attribute. Otherwise, the program is
1703 -- illegal. See RM-6.5(4/2).
1705 -----------------------------
1706 -- Find_What_It_Applies_To --
1707 -----------------------------
1709 function Find_What_It_Applies_To return Entity_Id is
1710 Result : Entity_Id := Empty;
1712 begin
1713 -- Loop outward through the Scope_Stack, skipping blocks, loops,
1714 -- and postconditions.
1716 for J in reverse 0 .. Scope_Stack.Last loop
1717 Result := Scope_Stack.Table (J).Entity;
1718 exit when not Ekind_In (Result, E_Block, E_Loop)
1719 and then Chars (Result) /= Name_uPostconditions;
1720 end loop;
1722 pragma Assert (Present (Result));
1723 return Result;
1724 end Find_What_It_Applies_To;
1726 -- Local declarations
1728 Scope_Id : constant Entity_Id := Find_What_It_Applies_To;
1729 Kind : constant Entity_Kind := Ekind (Scope_Id);
1730 Loc : constant Source_Ptr := Sloc (N);
1731 Stm_Entity : constant Entity_Id :=
1732 New_Internal_Entity
1733 (E_Return_Statement, Current_Scope, Loc, 'R');
1735 -- Start of processing for Analyze_Return_Statement
1737 begin
1738 Set_Return_Statement_Entity (N, Stm_Entity);
1740 Set_Etype (Stm_Entity, Standard_Void_Type);
1741 Set_Return_Applies_To (Stm_Entity, Scope_Id);
1743 -- Place Return entity on scope stack, to simplify enforcement of 6.5
1744 -- (4/2): an inner return statement will apply to this extended return.
1746 if Nkind (N) = N_Extended_Return_Statement then
1747 Push_Scope (Stm_Entity);
1748 end if;
1750 -- Check that pragma No_Return is obeyed. Don't complain about the
1751 -- implicitly-generated return that is placed at the end.
1753 if No_Return (Scope_Id) and then Comes_From_Source (N) then
1754 Error_Msg_N ("RETURN statement not allowed (No_Return)", N);
1755 end if;
1757 -- Warn on any unassigned OUT parameters if in procedure
1759 if Ekind (Scope_Id) = E_Procedure then
1760 Warn_On_Unassigned_Out_Parameter (N, Scope_Id);
1761 end if;
1763 -- Check that functions return objects, and other things do not
1765 if Kind = E_Function or else Kind = E_Generic_Function then
1766 if not Returns_Object then
1767 Error_Msg_N ("missing expression in return from function", N);
1768 end if;
1770 elsif Kind = E_Procedure or else Kind = E_Generic_Procedure then
1771 if Returns_Object then
1772 Error_Msg_N ("procedure cannot return value (use function)", N);
1773 end if;
1775 elsif Kind = E_Entry or else Kind = E_Entry_Family then
1776 if Returns_Object then
1777 if Is_Protected_Type (Scope (Scope_Id)) then
1778 Error_Msg_N ("entry body cannot return value", N);
1779 else
1780 Error_Msg_N ("accept statement cannot return value", N);
1781 end if;
1782 end if;
1784 elsif Kind = E_Return_Statement then
1786 -- We are nested within another return statement, which must be an
1787 -- extended_return_statement.
1789 if Returns_Object then
1790 if Nkind (N) = N_Extended_Return_Statement then
1791 Error_Msg_N
1792 ("extended return statement cannot be nested (use `RETURN;`)",
1795 -- Case of a simple return statement with a value inside extended
1796 -- return statement.
1798 else
1799 Error_Msg_N
1800 ("return nested in extended return statement cannot return " &
1801 "value (use `RETURN;`)", N);
1802 end if;
1803 end if;
1805 else
1806 Error_Msg_N ("illegal context for return statement", N);
1807 end if;
1809 if Ekind_In (Kind, E_Function, E_Generic_Function) then
1810 Analyze_Function_Return (N);
1812 elsif Ekind_In (Kind, E_Procedure, E_Generic_Procedure) then
1813 Set_Return_Present (Scope_Id);
1814 end if;
1816 if Nkind (N) = N_Extended_Return_Statement then
1817 End_Scope;
1818 end if;
1820 Kill_Current_Values (Last_Assignment_Only => True);
1821 Check_Unreachable_Code (N);
1823 Analyze_Dimension (N);
1824 end Analyze_Return_Statement;
1826 -------------------------------------
1827 -- Analyze_Simple_Return_Statement --
1828 -------------------------------------
1830 procedure Analyze_Simple_Return_Statement (N : Node_Id) is
1831 begin
1832 if Present (Expression (N)) then
1833 Mark_Coextensions (N, Expression (N));
1834 end if;
1836 Analyze_Return_Statement (N);
1837 end Analyze_Simple_Return_Statement;
1839 -------------------------
1840 -- Analyze_Return_Type --
1841 -------------------------
1843 procedure Analyze_Return_Type (N : Node_Id) is
1844 Designator : constant Entity_Id := Defining_Entity (N);
1845 Typ : Entity_Id := Empty;
1847 begin
1848 -- Normal case where result definition does not indicate an error
1850 if Result_Definition (N) /= Error then
1851 if Nkind (Result_Definition (N)) = N_Access_Definition then
1852 Check_SPARK_Restriction
1853 ("access result is not allowed", Result_Definition (N));
1855 -- Ada 2005 (AI-254): Handle anonymous access to subprograms
1857 declare
1858 AD : constant Node_Id :=
1859 Access_To_Subprogram_Definition (Result_Definition (N));
1860 begin
1861 if Present (AD) and then Protected_Present (AD) then
1862 Typ := Replace_Anonymous_Access_To_Protected_Subprogram (N);
1863 else
1864 Typ := Access_Definition (N, Result_Definition (N));
1865 end if;
1866 end;
1868 Set_Parent (Typ, Result_Definition (N));
1869 Set_Is_Local_Anonymous_Access (Typ);
1870 Set_Etype (Designator, Typ);
1872 -- Ada 2005 (AI-231): Ensure proper usage of null exclusion
1874 Null_Exclusion_Static_Checks (N);
1876 -- Subtype_Mark case
1878 else
1879 Find_Type (Result_Definition (N));
1880 Typ := Entity (Result_Definition (N));
1881 Set_Etype (Designator, Typ);
1883 -- Unconstrained array as result is not allowed in SPARK
1885 if Is_Array_Type (Typ) and then not Is_Constrained (Typ) then
1886 Check_SPARK_Restriction
1887 ("returning an unconstrained array is not allowed",
1888 Result_Definition (N));
1889 end if;
1891 -- Ada 2005 (AI-231): Ensure proper usage of null exclusion
1893 Null_Exclusion_Static_Checks (N);
1895 -- If a null exclusion is imposed on the result type, then create
1896 -- a null-excluding itype (an access subtype) and use it as the
1897 -- function's Etype. Note that the null exclusion checks are done
1898 -- right before this, because they don't get applied to types that
1899 -- do not come from source.
1901 if Is_Access_Type (Typ) and then Null_Exclusion_Present (N) then
1902 Set_Etype (Designator,
1903 Create_Null_Excluding_Itype
1904 (T => Typ,
1905 Related_Nod => N,
1906 Scope_Id => Scope (Current_Scope)));
1908 -- The new subtype must be elaborated before use because
1909 -- it is visible outside of the function. However its base
1910 -- type may not be frozen yet, so the reference that will
1911 -- force elaboration must be attached to the freezing of
1912 -- the base type.
1914 -- If the return specification appears on a proper body,
1915 -- the subtype will have been created already on the spec.
1917 if Is_Frozen (Typ) then
1918 if Nkind (Parent (N)) = N_Subprogram_Body
1919 and then Nkind (Parent (Parent (N))) = N_Subunit
1920 then
1921 null;
1922 else
1923 Build_Itype_Reference (Etype (Designator), Parent (N));
1924 end if;
1926 else
1927 Ensure_Freeze_Node (Typ);
1929 declare
1930 IR : constant Node_Id := Make_Itype_Reference (Sloc (N));
1931 begin
1932 Set_Itype (IR, Etype (Designator));
1933 Append_Freeze_Actions (Typ, New_List (IR));
1934 end;
1935 end if;
1937 else
1938 Set_Etype (Designator, Typ);
1939 end if;
1941 if Ekind (Typ) = E_Incomplete_Type
1942 and then Is_Value_Type (Typ)
1943 then
1944 null;
1946 elsif Ekind (Typ) = E_Incomplete_Type
1947 or else (Is_Class_Wide_Type (Typ)
1948 and then Ekind (Root_Type (Typ)) = E_Incomplete_Type)
1949 then
1950 -- AI05-0151: Tagged incomplete types are allowed in all formal
1951 -- parts. Untagged incomplete types are not allowed in bodies.
1953 if Ada_Version >= Ada_2012 then
1954 if Is_Tagged_Type (Typ) then
1955 null;
1957 elsif Nkind (Parent (N)) = N_Subprogram_Body
1958 or else Nkind_In (Parent (Parent (N)), N_Accept_Statement,
1959 N_Entry_Body)
1960 then
1961 Error_Msg_NE
1962 ("invalid use of untagged incomplete type&",
1963 Designator, Typ);
1964 end if;
1966 -- The type must be completed in the current package. This
1967 -- is checked at the end of the package declaration when
1968 -- Taft-amendment types are identified. If the return type
1969 -- is class-wide, there is no required check, the type can
1970 -- be a bona fide TAT.
1972 if Ekind (Scope (Current_Scope)) = E_Package
1973 and then In_Private_Part (Scope (Current_Scope))
1974 and then not Is_Class_Wide_Type (Typ)
1975 then
1976 Append_Elmt (Designator, Private_Dependents (Typ));
1977 end if;
1979 else
1980 Error_Msg_NE
1981 ("invalid use of incomplete type&", Designator, Typ);
1982 end if;
1983 end if;
1984 end if;
1986 -- Case where result definition does indicate an error
1988 else
1989 Set_Etype (Designator, Any_Type);
1990 end if;
1991 end Analyze_Return_Type;
1993 -----------------------------
1994 -- Analyze_Subprogram_Body --
1995 -----------------------------
1997 procedure Analyze_Subprogram_Body (N : Node_Id) is
1998 Loc : constant Source_Ptr := Sloc (N);
1999 Body_Spec : constant Node_Id := Specification (N);
2000 Body_Id : constant Entity_Id := Defining_Entity (Body_Spec);
2002 begin
2003 if Debug_Flag_C then
2004 Write_Str ("==> subprogram body ");
2005 Write_Name (Chars (Body_Id));
2006 Write_Str (" from ");
2007 Write_Location (Loc);
2008 Write_Eol;
2009 Indent;
2010 end if;
2012 Trace_Scope (N, Body_Id, " Analyze subprogram: ");
2014 -- The real work is split out into the helper, so it can do "return;"
2015 -- without skipping the debug output:
2017 Analyze_Subprogram_Body_Helper (N);
2019 if Debug_Flag_C then
2020 Outdent;
2021 Write_Str ("<== subprogram body ");
2022 Write_Name (Chars (Body_Id));
2023 Write_Str (" from ");
2024 Write_Location (Loc);
2025 Write_Eol;
2026 end if;
2027 end Analyze_Subprogram_Body;
2029 --------------------------------------
2030 -- Analyze_Subprogram_Body_Contract --
2031 --------------------------------------
2033 procedure Analyze_Subprogram_Body_Contract (Body_Id : Entity_Id) is
2034 Body_Decl : constant Node_Id := Parent (Parent (Body_Id));
2035 Spec_Id : constant Entity_Id := Corresponding_Spec (Body_Decl);
2036 Prag : Node_Id;
2037 Ref_Depends : Node_Id := Empty;
2038 Ref_Global : Node_Id := Empty;
2040 begin
2041 -- When a subprogram body declaration is erroneous, its defining entity
2042 -- is left unanalyzed. There is nothing left to do in this case because
2043 -- the body lacks a contract.
2045 if not Analyzed (Body_Id) then
2046 return;
2047 end if;
2049 -- Locate and store pragmas Refined_Depends and Refined_Global since
2050 -- their order of analysis matters.
2052 Prag := Classifications (Contract (Body_Id));
2053 while Present (Prag) loop
2054 if Pragma_Name (Prag) = Name_Refined_Depends then
2055 Ref_Depends := Prag;
2056 elsif Pragma_Name (Prag) = Name_Refined_Global then
2057 Ref_Global := Prag;
2058 end if;
2060 Prag := Next_Pragma (Prag);
2061 end loop;
2063 -- Analyze Refined_Global first as Refined_Depends may mention items
2064 -- classified in the global refinement.
2066 if Present (Ref_Global) then
2067 Analyze_Refined_Global_In_Decl_Part (Ref_Global);
2069 -- When the corresponding Global aspect/pragma references a state with
2070 -- visible refinement, the body requires Refined_Global. Refinement is
2071 -- not required when SPARK checks are suppressed.
2073 elsif Present (Spec_Id) then
2074 Prag := Get_Pragma (Spec_Id, Pragma_Global);
2076 if SPARK_Mode /= Off
2077 and then Present (Prag)
2078 and then Contains_Refined_State (Prag)
2079 then
2080 Error_Msg_NE
2081 ("body of subprogram & requires global refinement",
2082 Body_Decl, Spec_Id);
2083 end if;
2084 end if;
2086 -- Refined_Depends must be analyzed after Refined_Global in order to see
2087 -- the modes of all global refinements.
2089 if Present (Ref_Depends) then
2090 Analyze_Refined_Depends_In_Decl_Part (Ref_Depends);
2092 -- When the corresponding Depends aspect/pragma references a state with
2093 -- visible refinement, the body requires Refined_Depends. Refinement is
2094 -- not required when SPARK checks are suppressed.
2096 elsif Present (Spec_Id) then
2097 Prag := Get_Pragma (Spec_Id, Pragma_Depends);
2099 if SPARK_Mode /= Off
2100 and then Present (Prag)
2101 and then Contains_Refined_State (Prag)
2102 then
2103 Error_Msg_NE
2104 ("body of subprogram & requires dependance refinement",
2105 Body_Decl, Spec_Id);
2106 end if;
2107 end if;
2108 end Analyze_Subprogram_Body_Contract;
2110 ------------------------------------
2111 -- Analyze_Subprogram_Body_Helper --
2112 ------------------------------------
2114 -- This procedure is called for regular subprogram bodies, generic bodies,
2115 -- and for subprogram stubs of both kinds. In the case of stubs, only the
2116 -- specification matters, and is used to create a proper declaration for
2117 -- the subprogram, or to perform conformance checks.
2119 procedure Analyze_Subprogram_Body_Helper (N : Node_Id) is
2120 Loc : constant Source_Ptr := Sloc (N);
2121 Body_Spec : constant Node_Id := Specification (N);
2122 Body_Id : Entity_Id := Defining_Entity (Body_Spec);
2123 Prev_Id : constant Entity_Id := Current_Entity_In_Scope (Body_Id);
2124 Conformant : Boolean;
2125 HSS : Node_Id;
2126 Prot_Typ : Entity_Id := Empty;
2127 Spec_Id : Entity_Id;
2128 Spec_Decl : Node_Id := Empty;
2130 Last_Real_Spec_Entity : Entity_Id := Empty;
2131 -- When we analyze a separate spec, the entity chain ends up containing
2132 -- the formals, as well as any itypes generated during analysis of the
2133 -- default expressions for parameters, or the arguments of associated
2134 -- precondition/postcondition pragmas (which are analyzed in the context
2135 -- of the spec since they have visibility on formals).
2137 -- These entities belong with the spec and not the body. However we do
2138 -- the analysis of the body in the context of the spec (again to obtain
2139 -- visibility to the formals), and all the entities generated during
2140 -- this analysis end up also chained to the entity chain of the spec.
2141 -- But they really belong to the body, and there is circuitry to move
2142 -- them from the spec to the body.
2144 -- However, when we do this move, we don't want to move the real spec
2145 -- entities (first para above) to the body. The Last_Real_Spec_Entity
2146 -- variable points to the last real spec entity, so we only move those
2147 -- chained beyond that point. It is initialized to Empty to deal with
2148 -- the case where there is no separate spec.
2150 procedure Check_Anonymous_Return;
2151 -- Ada 2005: if a function returns an access type that denotes a task,
2152 -- or a type that contains tasks, we must create a master entity for
2153 -- the anonymous type, which typically will be used in an allocator
2154 -- in the body of the function.
2156 procedure Check_Inline_Pragma (Spec : in out Node_Id);
2157 -- Look ahead to recognize a pragma that may appear after the body.
2158 -- If there is a previous spec, check that it appears in the same
2159 -- declarative part. If the pragma is Inline_Always, perform inlining
2160 -- unconditionally, otherwise only if Front_End_Inlining is requested.
2161 -- If the body acts as a spec, and inlining is required, we create a
2162 -- subprogram declaration for it, in order to attach the body to inline.
2163 -- If pragma does not appear after the body, check whether there is
2164 -- an inline pragma before any local declarations.
2166 procedure Check_Missing_Return;
2167 -- Checks for a function with a no return statements, and also performs
2168 -- the warning checks implemented by Check_Returns. In formal mode, also
2169 -- verify that a function ends with a RETURN and that a procedure does
2170 -- not contain any RETURN.
2172 procedure Diagnose_Misplaced_Aspect_Specifications;
2173 -- It is known that subprogram body N has aspects, but they are not
2174 -- properly placed. Provide specific error messages depending on the
2175 -- aspects involved.
2177 function Disambiguate_Spec return Entity_Id;
2178 -- When a primitive is declared between the private view and the full
2179 -- view of a concurrent type which implements an interface, a special
2180 -- mechanism is used to find the corresponding spec of the primitive
2181 -- body.
2183 procedure Exchange_Limited_Views (Subp_Id : Entity_Id);
2184 -- Ada 2012 (AI05-0151): Detect whether the profile of Subp_Id contains
2185 -- incomplete types coming from a limited context and swap their limited
2186 -- views with the non-limited ones.
2188 function Is_Private_Concurrent_Primitive
2189 (Subp_Id : Entity_Id) return Boolean;
2190 -- Determine whether subprogram Subp_Id is a primitive of a concurrent
2191 -- type that implements an interface and has a private view.
2193 procedure Set_Trivial_Subprogram (N : Node_Id);
2194 -- Sets the Is_Trivial_Subprogram flag in both spec and body of the
2195 -- subprogram whose body is being analyzed. N is the statement node
2196 -- causing the flag to be set, if the following statement is a return
2197 -- of an entity, we mark the entity as set in source to suppress any
2198 -- warning on the stylized use of function stubs with a dummy return.
2200 procedure Verify_Overriding_Indicator;
2201 -- If there was a previous spec, the entity has been entered in the
2202 -- current scope previously. If the body itself carries an overriding
2203 -- indicator, check that it is consistent with the known status of the
2204 -- entity.
2206 ----------------------------
2207 -- Check_Anonymous_Return --
2208 ----------------------------
2210 procedure Check_Anonymous_Return is
2211 Decl : Node_Id;
2212 Par : Node_Id;
2213 Scop : Entity_Id;
2215 begin
2216 if Present (Spec_Id) then
2217 Scop := Spec_Id;
2218 else
2219 Scop := Body_Id;
2220 end if;
2222 if Ekind (Scop) = E_Function
2223 and then Ekind (Etype (Scop)) = E_Anonymous_Access_Type
2224 and then not Is_Thunk (Scop)
2225 and then (Has_Task (Designated_Type (Etype (Scop)))
2226 or else
2227 (Is_Class_Wide_Type (Designated_Type (Etype (Scop)))
2228 and then
2229 Is_Limited_Record (Designated_Type (Etype (Scop)))))
2230 and then Expander_Active
2232 -- Avoid cases with no tasking support
2234 and then RTE_Available (RE_Current_Master)
2235 and then not Restriction_Active (No_Task_Hierarchy)
2236 then
2237 Decl :=
2238 Make_Object_Declaration (Loc,
2239 Defining_Identifier =>
2240 Make_Defining_Identifier (Loc, Name_uMaster),
2241 Constant_Present => True,
2242 Object_Definition =>
2243 New_Occurrence_Of (RTE (RE_Master_Id), Loc),
2244 Expression =>
2245 Make_Explicit_Dereference (Loc,
2246 New_Occurrence_Of (RTE (RE_Current_Master), Loc)));
2248 if Present (Declarations (N)) then
2249 Prepend (Decl, Declarations (N));
2250 else
2251 Set_Declarations (N, New_List (Decl));
2252 end if;
2254 Set_Master_Id (Etype (Scop), Defining_Identifier (Decl));
2255 Set_Has_Master_Entity (Scop);
2257 -- Now mark the containing scope as a task master
2259 Par := N;
2260 while Nkind (Par) /= N_Compilation_Unit loop
2261 Par := Parent (Par);
2262 pragma Assert (Present (Par));
2264 -- If we fall off the top, we are at the outer level, and
2265 -- the environment task is our effective master, so nothing
2266 -- to mark.
2268 if Nkind_In
2269 (Par, N_Task_Body, N_Block_Statement, N_Subprogram_Body)
2270 then
2271 Set_Is_Task_Master (Par, True);
2272 exit;
2273 end if;
2274 end loop;
2275 end if;
2276 end Check_Anonymous_Return;
2278 -------------------------
2279 -- Check_Inline_Pragma --
2280 -------------------------
2282 procedure Check_Inline_Pragma (Spec : in out Node_Id) is
2283 Prag : Node_Id;
2284 Plist : List_Id;
2286 function Is_Inline_Pragma (N : Node_Id) return Boolean;
2287 -- True when N is a pragma Inline or Inline_Always that applies
2288 -- to this subprogram.
2290 -----------------------
2291 -- Is_Inline_Pragma --
2292 -----------------------
2294 function Is_Inline_Pragma (N : Node_Id) return Boolean is
2295 begin
2296 return
2297 Nkind (N) = N_Pragma
2298 and then
2299 (Pragma_Name (N) = Name_Inline_Always
2300 or else
2301 (Front_End_Inlining
2302 and then Pragma_Name (N) = Name_Inline))
2303 and then
2304 Chars
2305 (Expression (First (Pragma_Argument_Associations (N)))) =
2306 Chars (Body_Id);
2307 end Is_Inline_Pragma;
2309 -- Start of processing for Check_Inline_Pragma
2311 begin
2312 if not Expander_Active then
2313 return;
2314 end if;
2316 if Is_List_Member (N)
2317 and then Present (Next (N))
2318 and then Is_Inline_Pragma (Next (N))
2319 then
2320 Prag := Next (N);
2322 elsif Nkind (N) /= N_Subprogram_Body_Stub
2323 and then Present (Declarations (N))
2324 and then Is_Inline_Pragma (First (Declarations (N)))
2325 then
2326 Prag := First (Declarations (N));
2328 else
2329 Prag := Empty;
2330 end if;
2332 if Present (Prag) then
2333 if Present (Spec_Id) then
2334 if In_Same_List (N, Unit_Declaration_Node (Spec_Id)) then
2335 Analyze (Prag);
2336 end if;
2338 else
2339 -- Create a subprogram declaration, to make treatment uniform
2341 declare
2342 Subp : constant Entity_Id :=
2343 Make_Defining_Identifier (Loc, Chars (Body_Id));
2344 Decl : constant Node_Id :=
2345 Make_Subprogram_Declaration (Loc,
2346 Specification =>
2347 New_Copy_Tree (Specification (N)));
2349 begin
2350 Set_Defining_Unit_Name (Specification (Decl), Subp);
2352 if Present (First_Formal (Body_Id)) then
2353 Plist := Copy_Parameter_List (Body_Id);
2354 Set_Parameter_Specifications
2355 (Specification (Decl), Plist);
2356 end if;
2358 Insert_Before (N, Decl);
2359 Analyze (Decl);
2360 Analyze (Prag);
2361 Set_Has_Pragma_Inline (Subp);
2363 if Pragma_Name (Prag) = Name_Inline_Always then
2364 Set_Is_Inlined (Subp);
2365 Set_Has_Pragma_Inline_Always (Subp);
2366 end if;
2368 -- Prior to copying the subprogram body to create a template
2369 -- for it for subsequent inlining, remove the pragma from
2370 -- the current body so that the copy that will produce the
2371 -- new body will start from a completely unanalyzed tree.
2373 if Nkind (Parent (Prag)) = N_Subprogram_Body then
2374 Rewrite (Prag, Make_Null_Statement (Sloc (Prag)));
2375 end if;
2377 Spec := Subp;
2378 end;
2379 end if;
2380 end if;
2381 end Check_Inline_Pragma;
2383 --------------------------
2384 -- Check_Missing_Return --
2385 --------------------------
2387 procedure Check_Missing_Return is
2388 Id : Entity_Id;
2389 Missing_Ret : Boolean;
2391 begin
2392 if Nkind (Body_Spec) = N_Function_Specification then
2393 if Present (Spec_Id) then
2394 Id := Spec_Id;
2395 else
2396 Id := Body_Id;
2397 end if;
2399 if Return_Present (Id) then
2400 Check_Returns (HSS, 'F', Missing_Ret);
2402 if Missing_Ret then
2403 Set_Has_Missing_Return (Id);
2404 end if;
2406 elsif Is_Generic_Subprogram (Id)
2407 or else not Is_Machine_Code_Subprogram (Id)
2408 then
2409 Error_Msg_N ("missing RETURN statement in function body", N);
2410 end if;
2412 -- If procedure with No_Return, check returns
2414 elsif Nkind (Body_Spec) = N_Procedure_Specification
2415 and then Present (Spec_Id)
2416 and then No_Return (Spec_Id)
2417 then
2418 Check_Returns (HSS, 'P', Missing_Ret, Spec_Id);
2419 end if;
2421 -- Special checks in SPARK mode
2423 if Nkind (Body_Spec) = N_Function_Specification then
2425 -- In SPARK mode, last statement of a function should be a return
2427 declare
2428 Stat : constant Node_Id := Last_Source_Statement (HSS);
2429 begin
2430 if Present (Stat)
2431 and then not Nkind_In (Stat, N_Simple_Return_Statement,
2432 N_Extended_Return_Statement)
2433 then
2434 Check_SPARK_Restriction
2435 ("last statement in function should be RETURN", Stat);
2436 end if;
2437 end;
2439 -- In SPARK mode, verify that a procedure has no return
2441 elsif Nkind (Body_Spec) = N_Procedure_Specification then
2442 if Present (Spec_Id) then
2443 Id := Spec_Id;
2444 else
2445 Id := Body_Id;
2446 end if;
2448 -- Would be nice to point to return statement here, can we
2449 -- borrow the Check_Returns procedure here ???
2451 if Return_Present (Id) then
2452 Check_SPARK_Restriction
2453 ("procedure should not have RETURN", N);
2454 end if;
2455 end if;
2456 end Check_Missing_Return;
2458 ----------------------------------------------
2459 -- Diagnose_Misplaced_Aspect_Specifications --
2460 ----------------------------------------------
2462 procedure Diagnose_Misplaced_Aspect_Specifications is
2463 Asp : Node_Id;
2464 Asp_Nam : Name_Id;
2465 Asp_Id : Aspect_Id;
2466 -- The current aspect along with its name and id
2468 procedure SPARK_Aspect_Error (Ref_Nam : Name_Id);
2469 -- Emit an error message concerning SPARK aspect Asp. Ref_Nam is the
2470 -- name of the refined version of the aspect.
2472 ------------------------
2473 -- SPARK_Aspect_Error --
2474 ------------------------
2476 procedure SPARK_Aspect_Error (Ref_Nam : Name_Id) is
2477 begin
2478 -- The corresponding spec already contains the aspect in question
2479 -- and the one appearing on the body must be the refined form:
2481 -- procedure P with Global ...;
2482 -- procedure P with Global ... is ... end P;
2483 -- ^
2484 -- Refined_Global
2486 if Has_Aspect (Spec_Id, Asp_Id) then
2487 Error_Msg_Name_1 := Asp_Nam;
2489 -- Subunits cannot carry aspects that apply to a subprogram
2490 -- declaration.
2492 if Nkind (Parent (N)) = N_Subunit then
2493 Error_Msg_N ("aspect % cannot apply to a subunit", Asp);
2495 else
2496 Error_Msg_Name_2 := Ref_Nam;
2497 Error_Msg_N ("aspect % should be %", Asp);
2498 end if;
2500 -- Otherwise the aspect must appear in the spec, not in the body:
2502 -- procedure P;
2503 -- procedure P with Global ... is ... end P;
2505 else
2506 Error_Msg_N
2507 ("aspect specification must appear in subprogram declaration",
2508 Asp);
2509 end if;
2510 end SPARK_Aspect_Error;
2512 -- Start of processing for Diagnose_Misplaced_Aspect_Specifications
2514 begin
2515 -- Iterate over the aspect specifications and emit specific errors
2516 -- where applicable.
2518 Asp := First (Aspect_Specifications (N));
2519 while Present (Asp) loop
2520 Asp_Nam := Chars (Identifier (Asp));
2521 Asp_Id := Get_Aspect_Id (Asp_Nam);
2523 -- Do not emit errors on aspects that can appear on a subprogram
2524 -- body. This scenario occurs when the aspect specification list
2525 -- contains both misplaced and properly placed aspects.
2527 if Aspect_On_Body_Or_Stub_OK (Asp_Id) then
2528 null;
2530 -- Special diagnostics for SPARK aspects
2532 elsif Asp_Nam = Name_Depends then
2533 SPARK_Aspect_Error (Name_Refined_Depends);
2535 elsif Asp_Nam = Name_Global then
2536 SPARK_Aspect_Error (Name_Refined_Global);
2538 elsif Asp_Nam = Name_Post then
2539 SPARK_Aspect_Error (Name_Refined_Post);
2541 else
2542 Error_Msg_N
2543 ("aspect specification must appear in subprogram declaration",
2544 Asp);
2545 end if;
2547 Next (Asp);
2548 end loop;
2549 end Diagnose_Misplaced_Aspect_Specifications;
2551 -----------------------
2552 -- Disambiguate_Spec --
2553 -----------------------
2555 function Disambiguate_Spec return Entity_Id is
2556 Priv_Spec : Entity_Id;
2557 Spec_N : Entity_Id;
2559 procedure Replace_Types (To_Corresponding : Boolean);
2560 -- Depending on the flag, replace the type of formal parameters of
2561 -- Body_Id if it is a concurrent type implementing interfaces with
2562 -- the corresponding record type or the other way around.
2564 procedure Replace_Types (To_Corresponding : Boolean) is
2565 Formal : Entity_Id;
2566 Formal_Typ : Entity_Id;
2568 begin
2569 Formal := First_Formal (Body_Id);
2570 while Present (Formal) loop
2571 Formal_Typ := Etype (Formal);
2573 if Is_Class_Wide_Type (Formal_Typ) then
2574 Formal_Typ := Root_Type (Formal_Typ);
2575 end if;
2577 -- From concurrent type to corresponding record
2579 if To_Corresponding then
2580 if Is_Concurrent_Type (Formal_Typ)
2581 and then Present (Corresponding_Record_Type (Formal_Typ))
2582 and then Present (Interfaces (
2583 Corresponding_Record_Type (Formal_Typ)))
2584 then
2585 Set_Etype (Formal,
2586 Corresponding_Record_Type (Formal_Typ));
2587 end if;
2589 -- From corresponding record to concurrent type
2591 else
2592 if Is_Concurrent_Record_Type (Formal_Typ)
2593 and then Present (Interfaces (Formal_Typ))
2594 then
2595 Set_Etype (Formal,
2596 Corresponding_Concurrent_Type (Formal_Typ));
2597 end if;
2598 end if;
2600 Next_Formal (Formal);
2601 end loop;
2602 end Replace_Types;
2604 -- Start of processing for Disambiguate_Spec
2606 begin
2607 -- Try to retrieve the specification of the body as is. All error
2608 -- messages are suppressed because the body may not have a spec in
2609 -- its current state.
2611 Spec_N := Find_Corresponding_Spec (N, False);
2613 -- It is possible that this is the body of a primitive declared
2614 -- between a private and a full view of a concurrent type. The
2615 -- controlling parameter of the spec carries the concurrent type,
2616 -- not the corresponding record type as transformed by Analyze_
2617 -- Subprogram_Specification. In such cases, we undo the change
2618 -- made by the analysis of the specification and try to find the
2619 -- spec again.
2621 -- Note that wrappers already have their corresponding specs and
2622 -- bodies set during their creation, so if the candidate spec is
2623 -- a wrapper, then we definitely need to swap all types to their
2624 -- original concurrent status.
2626 if No (Spec_N)
2627 or else Is_Primitive_Wrapper (Spec_N)
2628 then
2629 -- Restore all references of corresponding record types to the
2630 -- original concurrent types.
2632 Replace_Types (To_Corresponding => False);
2633 Priv_Spec := Find_Corresponding_Spec (N, False);
2635 -- The current body truly belongs to a primitive declared between
2636 -- a private and a full view. We leave the modified body as is,
2637 -- and return the true spec.
2639 if Present (Priv_Spec)
2640 and then Is_Private_Primitive (Priv_Spec)
2641 then
2642 return Priv_Spec;
2643 end if;
2645 -- In case that this is some sort of error, restore the original
2646 -- state of the body.
2648 Replace_Types (To_Corresponding => True);
2649 end if;
2651 return Spec_N;
2652 end Disambiguate_Spec;
2654 ----------------------------
2655 -- Exchange_Limited_Views --
2656 ----------------------------
2658 procedure Exchange_Limited_Views (Subp_Id : Entity_Id) is
2659 procedure Detect_And_Exchange (Id : Entity_Id);
2660 -- Determine whether Id's type denotes an incomplete type associated
2661 -- with a limited with clause and exchange the limited view with the
2662 -- non-limited one.
2664 -------------------------
2665 -- Detect_And_Exchange --
2666 -------------------------
2668 procedure Detect_And_Exchange (Id : Entity_Id) is
2669 Typ : constant Entity_Id := Etype (Id);
2671 begin
2672 if Ekind (Typ) = E_Incomplete_Type
2673 and then From_Limited_With (Typ)
2674 and then Present (Non_Limited_View (Typ))
2675 then
2676 Set_Etype (Id, Non_Limited_View (Typ));
2677 end if;
2678 end Detect_And_Exchange;
2680 -- Local variables
2682 Formal : Entity_Id;
2684 -- Start of processing for Exchange_Limited_Views
2686 begin
2687 if No (Subp_Id) then
2688 return;
2690 -- Do not process subprogram bodies as they already use the non-
2691 -- limited view of types.
2693 elsif not Ekind_In (Subp_Id, E_Function, E_Procedure) then
2694 return;
2695 end if;
2697 -- Examine all formals and swap views when applicable
2699 Formal := First_Formal (Subp_Id);
2700 while Present (Formal) loop
2701 Detect_And_Exchange (Formal);
2703 Next_Formal (Formal);
2704 end loop;
2706 -- Process the return type of a function
2708 if Ekind (Subp_Id) = E_Function then
2709 Detect_And_Exchange (Subp_Id);
2710 end if;
2711 end Exchange_Limited_Views;
2713 -------------------------------------
2714 -- Is_Private_Concurrent_Primitive --
2715 -------------------------------------
2717 function Is_Private_Concurrent_Primitive
2718 (Subp_Id : Entity_Id) return Boolean
2720 Formal_Typ : Entity_Id;
2722 begin
2723 if Present (First_Formal (Subp_Id)) then
2724 Formal_Typ := Etype (First_Formal (Subp_Id));
2726 if Is_Concurrent_Record_Type (Formal_Typ) then
2727 if Is_Class_Wide_Type (Formal_Typ) then
2728 Formal_Typ := Root_Type (Formal_Typ);
2729 end if;
2731 Formal_Typ := Corresponding_Concurrent_Type (Formal_Typ);
2732 end if;
2734 -- The type of the first formal is a concurrent tagged type with
2735 -- a private view.
2737 return
2738 Is_Concurrent_Type (Formal_Typ)
2739 and then Is_Tagged_Type (Formal_Typ)
2740 and then Has_Private_Declaration (Formal_Typ);
2741 end if;
2743 return False;
2744 end Is_Private_Concurrent_Primitive;
2746 ----------------------------
2747 -- Set_Trivial_Subprogram --
2748 ----------------------------
2750 procedure Set_Trivial_Subprogram (N : Node_Id) is
2751 Nxt : constant Node_Id := Next (N);
2753 begin
2754 Set_Is_Trivial_Subprogram (Body_Id);
2756 if Present (Spec_Id) then
2757 Set_Is_Trivial_Subprogram (Spec_Id);
2758 end if;
2760 if Present (Nxt)
2761 and then Nkind (Nxt) = N_Simple_Return_Statement
2762 and then No (Next (Nxt))
2763 and then Present (Expression (Nxt))
2764 and then Is_Entity_Name (Expression (Nxt))
2765 then
2766 Set_Never_Set_In_Source (Entity (Expression (Nxt)), False);
2767 end if;
2768 end Set_Trivial_Subprogram;
2770 ---------------------------------
2771 -- Verify_Overriding_Indicator --
2772 ---------------------------------
2774 procedure Verify_Overriding_Indicator is
2775 begin
2776 if Must_Override (Body_Spec) then
2777 if Nkind (Spec_Id) = N_Defining_Operator_Symbol
2778 and then Operator_Matches_Spec (Spec_Id, Spec_Id)
2779 then
2780 null;
2782 elsif not Present (Overridden_Operation (Spec_Id)) then
2783 Error_Msg_NE
2784 ("subprogram& is not overriding", Body_Spec, Spec_Id);
2785 end if;
2787 elsif Must_Not_Override (Body_Spec) then
2788 if Present (Overridden_Operation (Spec_Id)) then
2789 Error_Msg_NE
2790 ("subprogram& overrides inherited operation",
2791 Body_Spec, Spec_Id);
2793 elsif Nkind (Spec_Id) = N_Defining_Operator_Symbol
2794 and then Operator_Matches_Spec (Spec_Id, Spec_Id)
2795 then
2796 Error_Msg_NE
2797 ("subprogram & overrides predefined operator ",
2798 Body_Spec, Spec_Id);
2800 -- If this is not a primitive operation or protected subprogram,
2801 -- then the overriding indicator is altogether illegal.
2803 elsif not Is_Primitive (Spec_Id)
2804 and then Ekind (Scope (Spec_Id)) /= E_Protected_Type
2805 then
2806 Error_Msg_N
2807 ("overriding indicator only allowed " &
2808 "if subprogram is primitive",
2809 Body_Spec);
2810 end if;
2812 elsif Style_Check
2813 and then Present (Overridden_Operation (Spec_Id))
2814 then
2815 pragma Assert (Unit_Declaration_Node (Body_Id) = N);
2816 Style.Missing_Overriding (N, Body_Id);
2818 elsif Style_Check
2819 and then Can_Override_Operator (Spec_Id)
2820 and then not Is_Predefined_File_Name
2821 (Unit_File_Name (Get_Source_Unit (Spec_Id)))
2822 then
2823 pragma Assert (Unit_Declaration_Node (Body_Id) = N);
2824 Style.Missing_Overriding (N, Body_Id);
2825 end if;
2826 end Verify_Overriding_Indicator;
2828 -- Start of processing for Analyze_Subprogram_Body_Helper
2830 begin
2831 -- Generic subprograms are handled separately. They always have a
2832 -- generic specification. Determine whether current scope has a
2833 -- previous declaration.
2835 -- If the subprogram body is defined within an instance of the same
2836 -- name, the instance appears as a package renaming, and will be hidden
2837 -- within the subprogram.
2839 if Present (Prev_Id)
2840 and then not Is_Overloadable (Prev_Id)
2841 and then (Nkind (Parent (Prev_Id)) /= N_Package_Renaming_Declaration
2842 or else Comes_From_Source (Prev_Id))
2843 then
2844 if Is_Generic_Subprogram (Prev_Id) then
2845 Spec_Id := Prev_Id;
2846 Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
2847 Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
2849 Analyze_Generic_Subprogram_Body (N, Spec_Id);
2851 if Nkind (N) = N_Subprogram_Body then
2852 HSS := Handled_Statement_Sequence (N);
2853 Check_Missing_Return;
2854 end if;
2856 return;
2858 else
2859 -- Previous entity conflicts with subprogram name. Attempting to
2860 -- enter name will post error.
2862 Enter_Name (Body_Id);
2863 return;
2864 end if;
2866 -- Non-generic case, find the subprogram declaration, if one was seen,
2867 -- or enter new overloaded entity in the current scope. If the
2868 -- Current_Entity is the Body_Id itself, the unit is being analyzed as
2869 -- part of the context of one of its subunits. No need to redo the
2870 -- analysis.
2872 elsif Prev_Id = Body_Id and then Has_Completion (Body_Id) then
2873 return;
2875 else
2876 Body_Id := Analyze_Subprogram_Specification (Body_Spec);
2878 if Nkind (N) = N_Subprogram_Body_Stub
2879 or else No (Corresponding_Spec (N))
2880 then
2881 if Is_Private_Concurrent_Primitive (Body_Id) then
2882 Spec_Id := Disambiguate_Spec;
2883 else
2884 Spec_Id := Find_Corresponding_Spec (N);
2885 end if;
2887 -- If this is a duplicate body, no point in analyzing it
2889 if Error_Posted (N) then
2890 return;
2891 end if;
2893 -- A subprogram body should cause freezing of its own declaration,
2894 -- but if there was no previous explicit declaration, then the
2895 -- subprogram will get frozen too late (there may be code within
2896 -- the body that depends on the subprogram having been frozen,
2897 -- such as uses of extra formals), so we force it to be frozen
2898 -- here. Same holds if the body and spec are compilation units.
2899 -- Finally, if the return type is an anonymous access to protected
2900 -- subprogram, it must be frozen before the body because its
2901 -- expansion has generated an equivalent type that is used when
2902 -- elaborating the body.
2904 -- An exception in the case of Ada 2012, AI05-177: The bodies
2905 -- created for expression functions do not freeze.
2907 if No (Spec_Id)
2908 and then Nkind (Original_Node (N)) /= N_Expression_Function
2909 then
2910 Freeze_Before (N, Body_Id);
2912 elsif Nkind (Parent (N)) = N_Compilation_Unit then
2913 Freeze_Before (N, Spec_Id);
2915 elsif Is_Access_Subprogram_Type (Etype (Body_Id)) then
2916 Freeze_Before (N, Etype (Body_Id));
2917 end if;
2919 else
2920 Spec_Id := Corresponding_Spec (N);
2921 end if;
2922 end if;
2924 -- Language-defined aspects cannot appear on a subprogram body [stub] if
2925 -- the subprogram has a spec. Certain implementation-defined aspects are
2926 -- allowed to break this rule (see table Aspect_On_Body_Or_Stub_OK).
2928 if Has_Aspects (N) then
2929 if Present (Spec_Id)
2930 and then not Aspects_On_Body_Or_Stub_OK (N)
2931 then
2932 Diagnose_Misplaced_Aspect_Specifications;
2934 else
2935 Analyze_Aspect_Specifications (N, Body_Id);
2936 end if;
2937 end if;
2939 -- Previously we scanned the body to look for nested subprograms, and
2940 -- rejected an inline directive if nested subprograms were present,
2941 -- because the back-end would generate conflicting symbols for the
2942 -- nested bodies. This is now unnecessary.
2944 -- Look ahead to recognize a pragma Inline that appears after the body
2946 Check_Inline_Pragma (Spec_Id);
2948 -- Deal with special case of a fully private operation in the body of
2949 -- the protected type. We must create a declaration for the subprogram,
2950 -- in order to attach the protected subprogram that will be used in
2951 -- internal calls. We exclude compiler generated bodies from the
2952 -- expander since the issue does not arise for those cases.
2954 if No (Spec_Id)
2955 and then Comes_From_Source (N)
2956 and then Is_Protected_Type (Current_Scope)
2957 then
2958 Spec_Id := Build_Private_Protected_Declaration (N);
2959 end if;
2961 -- If a separate spec is present, then deal with freezing issues
2963 if Present (Spec_Id) then
2964 Spec_Decl := Unit_Declaration_Node (Spec_Id);
2965 Verify_Overriding_Indicator;
2967 -- In general, the spec will be frozen when we start analyzing the
2968 -- body. However, for internally generated operations, such as
2969 -- wrapper functions for inherited operations with controlling
2970 -- results, the spec may not have been frozen by the time we expand
2971 -- the freeze actions that include the bodies. In particular, extra
2972 -- formals for accessibility or for return-in-place may need to be
2973 -- generated. Freeze nodes, if any, are inserted before the current
2974 -- body. These freeze actions are also needed in ASIS mode to enable
2975 -- the proper back-annotations.
2977 if not Is_Frozen (Spec_Id)
2978 and then (Expander_Active or ASIS_Mode)
2979 then
2980 -- Force the generation of its freezing node to ensure proper
2981 -- management of access types in the backend.
2983 -- This is definitely needed for some cases, but it is not clear
2984 -- why, to be investigated further???
2986 Set_Has_Delayed_Freeze (Spec_Id);
2987 Freeze_Before (N, Spec_Id);
2988 end if;
2989 end if;
2991 -- Mark presence of postcondition procedure in current scope and mark
2992 -- the procedure itself as needing debug info. The latter is important
2993 -- when analyzing decision coverage (for example, for MC/DC coverage).
2995 if Chars (Body_Id) = Name_uPostconditions then
2996 Set_Has_Postconditions (Current_Scope);
2997 Set_Debug_Info_Needed (Body_Id);
2998 end if;
3000 -- Place subprogram on scope stack, and make formals visible. If there
3001 -- is a spec, the visible entity remains that of the spec.
3003 if Present (Spec_Id) then
3004 Generate_Reference (Spec_Id, Body_Id, 'b', Set_Ref => False);
3006 if Is_Child_Unit (Spec_Id) then
3007 Generate_Reference (Spec_Id, Scope (Spec_Id), 'k', False);
3008 end if;
3010 if Style_Check then
3011 Style.Check_Identifier (Body_Id, Spec_Id);
3012 end if;
3014 Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
3015 Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
3017 if Is_Abstract_Subprogram (Spec_Id) then
3018 Error_Msg_N ("an abstract subprogram cannot have a body", N);
3019 return;
3021 else
3022 Set_Convention (Body_Id, Convention (Spec_Id));
3023 Set_Has_Completion (Spec_Id);
3025 if Is_Protected_Type (Scope (Spec_Id)) then
3026 Prot_Typ := Scope (Spec_Id);
3027 end if;
3029 -- If this is a body generated for a renaming, do not check for
3030 -- full conformance. The check is redundant, because the spec of
3031 -- the body is a copy of the spec in the renaming declaration,
3032 -- and the test can lead to spurious errors on nested defaults.
3034 if Present (Spec_Decl)
3035 and then not Comes_From_Source (N)
3036 and then
3037 (Nkind (Original_Node (Spec_Decl)) =
3038 N_Subprogram_Renaming_Declaration
3039 or else (Present (Corresponding_Body (Spec_Decl))
3040 and then
3041 Nkind (Unit_Declaration_Node
3042 (Corresponding_Body (Spec_Decl))) =
3043 N_Subprogram_Renaming_Declaration))
3044 then
3045 Conformant := True;
3047 -- Conversely, the spec may have been generated for specless body
3048 -- with an inline pragma.
3050 elsif Comes_From_Source (N)
3051 and then not Comes_From_Source (Spec_Id)
3052 and then Has_Pragma_Inline (Spec_Id)
3053 then
3054 Conformant := True;
3056 else
3057 Check_Conformance
3058 (Body_Id, Spec_Id,
3059 Fully_Conformant, True, Conformant, Body_Id);
3060 end if;
3062 -- If the body is not fully conformant, we have to decide if we
3063 -- should analyze it or not. If it has a really messed up profile
3064 -- then we probably should not analyze it, since we will get too
3065 -- many bogus messages.
3067 -- Our decision is to go ahead in the non-fully conformant case
3068 -- only if it is at least mode conformant with the spec. Note
3069 -- that the call to Check_Fully_Conformant has issued the proper
3070 -- error messages to complain about the lack of conformance.
3072 if not Conformant
3073 and then not Mode_Conformant (Body_Id, Spec_Id)
3074 then
3075 return;
3076 end if;
3077 end if;
3079 if Spec_Id /= Body_Id then
3080 Reference_Body_Formals (Spec_Id, Body_Id);
3081 end if;
3083 Set_Ekind (Body_Id, E_Subprogram_Body);
3085 if Nkind (N) = N_Subprogram_Body_Stub then
3086 Set_Corresponding_Spec_Of_Stub (N, Spec_Id);
3088 -- Regular body
3090 else
3091 Set_Corresponding_Spec (N, Spec_Id);
3093 -- Ada 2005 (AI-345): If the operation is a primitive operation
3094 -- of a concurrent type, the type of the first parameter has been
3095 -- replaced with the corresponding record, which is the proper
3096 -- run-time structure to use. However, within the body there may
3097 -- be uses of the formals that depend on primitive operations
3098 -- of the type (in particular calls in prefixed form) for which
3099 -- we need the original concurrent type. The operation may have
3100 -- several controlling formals, so the replacement must be done
3101 -- for all of them.
3103 if Comes_From_Source (Spec_Id)
3104 and then Present (First_Entity (Spec_Id))
3105 and then Ekind (Etype (First_Entity (Spec_Id))) = E_Record_Type
3106 and then Is_Tagged_Type (Etype (First_Entity (Spec_Id)))
3107 and then Present (Interfaces (Etype (First_Entity (Spec_Id))))
3108 and then Present (Corresponding_Concurrent_Type
3109 (Etype (First_Entity (Spec_Id))))
3110 then
3111 declare
3112 Typ : constant Entity_Id := Etype (First_Entity (Spec_Id));
3113 Form : Entity_Id;
3115 begin
3116 Form := First_Formal (Spec_Id);
3117 while Present (Form) loop
3118 if Etype (Form) = Typ then
3119 Set_Etype (Form, Corresponding_Concurrent_Type (Typ));
3120 end if;
3122 Next_Formal (Form);
3123 end loop;
3124 end;
3125 end if;
3127 -- Make the formals visible, and place subprogram on scope stack.
3128 -- This is also the point at which we set Last_Real_Spec_Entity
3129 -- to mark the entities which will not be moved to the body.
3131 Install_Formals (Spec_Id);
3132 Last_Real_Spec_Entity := Last_Entity (Spec_Id);
3134 -- Within an instance, add local renaming declarations so that
3135 -- gdb can retrieve the values of actuals more easily. This is
3136 -- only relevant if generating code (and indeed we definitely
3137 -- do not want these definitions -gnatc mode, because that would
3138 -- confuse ASIS).
3140 if Is_Generic_Instance (Spec_Id)
3141 and then Is_Wrapper_Package (Current_Scope)
3142 and then Expander_Active
3143 then
3144 Build_Subprogram_Instance_Renamings (N, Current_Scope);
3145 end if;
3147 Push_Scope (Spec_Id);
3149 -- Make sure that the subprogram is immediately visible. For
3150 -- child units that have no separate spec this is indispensable.
3151 -- Otherwise it is safe albeit redundant.
3153 Set_Is_Immediately_Visible (Spec_Id);
3154 end if;
3156 Set_Corresponding_Body (Unit_Declaration_Node (Spec_Id), Body_Id);
3157 Set_Contract (Body_Id, Make_Contract (Sloc (Body_Id)));
3158 Set_Scope (Body_Id, Scope (Spec_Id));
3159 Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Spec_Id));
3161 -- Case of subprogram body with no previous spec
3163 else
3164 -- Check for style warning required
3166 if Style_Check
3168 -- Only apply check for source level subprograms for which checks
3169 -- have not been suppressed.
3171 and then Comes_From_Source (Body_Id)
3172 and then not Suppress_Style_Checks (Body_Id)
3174 -- No warnings within an instance
3176 and then not In_Instance
3178 -- No warnings for expression functions
3180 and then Nkind (Original_Node (N)) /= N_Expression_Function
3181 then
3182 Style.Body_With_No_Spec (N);
3183 end if;
3185 New_Overloaded_Entity (Body_Id);
3187 if Nkind (N) /= N_Subprogram_Body_Stub then
3188 Set_Acts_As_Spec (N);
3189 Generate_Definition (Body_Id);
3190 Set_Contract (Body_Id, Make_Contract (Sloc (Body_Id)));
3191 Generate_Reference
3192 (Body_Id, Body_Id, 'b', Set_Ref => False, Force => True);
3193 Install_Formals (Body_Id);
3195 Push_Scope (Body_Id);
3196 end if;
3198 -- For stubs and bodies with no previous spec, generate references to
3199 -- formals.
3201 Generate_Reference_To_Formals (Body_Id);
3202 end if;
3204 -- Set SPARK_Mode from context
3206 Set_SPARK_Pragma (Body_Id, SPARK_Mode_Pragma);
3207 Set_SPARK_Pragma_Inherited (Body_Id, True);
3209 -- If the return type is an anonymous access type whose designated type
3210 -- is the limited view of a class-wide type and the non-limited view is
3211 -- available, update the return type accordingly.
3213 if Ada_Version >= Ada_2005 and then Comes_From_Source (N) then
3214 declare
3215 Etyp : Entity_Id;
3216 Rtyp : Entity_Id;
3218 begin
3219 Rtyp := Etype (Current_Scope);
3221 if Ekind (Rtyp) = E_Anonymous_Access_Type then
3222 Etyp := Directly_Designated_Type (Rtyp);
3224 if Is_Class_Wide_Type (Etyp)
3225 and then From_Limited_With (Etyp)
3226 then
3227 Set_Directly_Designated_Type
3228 (Etype (Current_Scope), Available_View (Etyp));
3229 end if;
3230 end if;
3231 end;
3232 end if;
3234 -- If this is the proper body of a stub, we must verify that the stub
3235 -- conforms to the body, and to the previous spec if one was present.
3236 -- We know already that the body conforms to that spec. This test is
3237 -- only required for subprograms that come from source.
3239 if Nkind (Parent (N)) = N_Subunit
3240 and then Comes_From_Source (N)
3241 and then not Error_Posted (Body_Id)
3242 and then Nkind (Corresponding_Stub (Parent (N))) =
3243 N_Subprogram_Body_Stub
3244 then
3245 declare
3246 Old_Id : constant Entity_Id :=
3247 Defining_Entity
3248 (Specification (Corresponding_Stub (Parent (N))));
3250 Conformant : Boolean := False;
3252 begin
3253 if No (Spec_Id) then
3254 Check_Fully_Conformant (Body_Id, Old_Id);
3256 else
3257 Check_Conformance
3258 (Body_Id, Old_Id, Fully_Conformant, False, Conformant);
3260 if not Conformant then
3262 -- The stub was taken to be a new declaration. Indicate that
3263 -- it lacks a body.
3265 Set_Has_Completion (Old_Id, False);
3266 end if;
3267 end if;
3268 end;
3269 end if;
3271 Set_Has_Completion (Body_Id);
3272 Check_Eliminated (Body_Id);
3274 if Nkind (N) = N_Subprogram_Body_Stub then
3275 return;
3276 end if;
3278 -- Handle frontend inlining. There is no need to prepare us for inlining
3279 -- if we will not generate the code.
3281 -- Old semantics
3283 if not Debug_Flag_Dot_K then
3284 if Present (Spec_Id)
3285 and then Expander_Active
3286 and then
3287 (Has_Pragma_Inline_Always (Spec_Id)
3288 or else (Has_Pragma_Inline (Spec_Id) and Front_End_Inlining))
3289 then
3290 Build_Body_To_Inline (N, Spec_Id);
3291 end if;
3293 -- New semantics
3295 elsif Expander_Active
3296 and then Serious_Errors_Detected = 0
3297 and then Present (Spec_Id)
3298 and then Has_Pragma_Inline (Spec_Id)
3299 then
3300 Check_And_Build_Body_To_Inline (N, Spec_Id, Body_Id);
3301 end if;
3303 -- Ada 2005 (AI-262): In library subprogram bodies, after the analysis
3304 -- of the specification we have to install the private withed units.
3305 -- This holds for child units as well.
3307 if Is_Compilation_Unit (Body_Id)
3308 or else Nkind (Parent (N)) = N_Compilation_Unit
3309 then
3310 Install_Private_With_Clauses (Body_Id);
3311 end if;
3313 Check_Anonymous_Return;
3315 -- Set the Protected_Formal field of each extra formal of the protected
3316 -- subprogram to reference the corresponding extra formal of the
3317 -- subprogram that implements it. For regular formals this occurs when
3318 -- the protected subprogram's declaration is expanded, but the extra
3319 -- formals don't get created until the subprogram is frozen. We need to
3320 -- do this before analyzing the protected subprogram's body so that any
3321 -- references to the original subprogram's extra formals will be changed
3322 -- refer to the implementing subprogram's formals (see Expand_Formal).
3324 if Present (Spec_Id)
3325 and then Is_Protected_Type (Scope (Spec_Id))
3326 and then Present (Protected_Body_Subprogram (Spec_Id))
3327 then
3328 declare
3329 Impl_Subp : constant Entity_Id :=
3330 Protected_Body_Subprogram (Spec_Id);
3331 Prot_Ext_Formal : Entity_Id := Extra_Formals (Spec_Id);
3332 Impl_Ext_Formal : Entity_Id := Extra_Formals (Impl_Subp);
3333 begin
3334 while Present (Prot_Ext_Formal) loop
3335 pragma Assert (Present (Impl_Ext_Formal));
3336 Set_Protected_Formal (Prot_Ext_Formal, Impl_Ext_Formal);
3337 Next_Formal_With_Extras (Prot_Ext_Formal);
3338 Next_Formal_With_Extras (Impl_Ext_Formal);
3339 end loop;
3340 end;
3341 end if;
3343 -- Now we can go on to analyze the body
3345 HSS := Handled_Statement_Sequence (N);
3346 Set_Actual_Subtypes (N, Current_Scope);
3348 -- Deal with [refined] preconditions, postconditions, Contract_Cases,
3349 -- invariants and predicates associated with the body and its spec.
3350 -- Note that this is not pure expansion as Expand_Subprogram_Contract
3351 -- prepares the contract assertions for generic subprograms or for ASIS.
3352 -- Do not generate contract checks in SPARK mode.
3354 if not GNATprove_Mode then
3355 Expand_Subprogram_Contract (N, Spec_Id, Body_Id);
3356 end if;
3358 -- Add a declaration for the Protection object, renaming declarations
3359 -- for discriminals and privals and finally a declaration for the entry
3360 -- family index (if applicable). This form of early expansion is done
3361 -- when the Expander is active because Install_Private_Data_Declarations
3362 -- references entities which were created during regular expansion. The
3363 -- subprogram entity must come from source, and not be an internally
3364 -- generated subprogram.
3366 if Expander_Active
3367 and then Present (Prot_Typ)
3368 and then Present (Spec_Id)
3369 and then Comes_From_Source (Spec_Id)
3370 and then not Is_Eliminated (Spec_Id)
3371 then
3372 Install_Private_Data_Declarations
3373 (Sloc (N), Spec_Id, Prot_Typ, N, Declarations (N));
3374 end if;
3376 -- Ada 2012 (AI05-0151): Incomplete types coming from a limited context
3377 -- may now appear in parameter and result profiles. Since the analysis
3378 -- of a subprogram body may use the parameter and result profile of the
3379 -- spec, swap any limited views with their non-limited counterpart.
3381 if Ada_Version >= Ada_2012 then
3382 Exchange_Limited_Views (Spec_Id);
3383 end if;
3385 -- Analyze the declarations (this call will analyze the precondition
3386 -- Check pragmas we prepended to the list, as well as the declaration
3387 -- of the _Postconditions procedure).
3389 Analyze_Declarations (Declarations (N));
3391 -- After declarations have been analyzed, the body has been set
3392 -- its final value of SPARK_Mode. Check that SPARK_Mode for body
3393 -- is consistent with SPARK_Mode for spec.
3395 if Present (Spec_Id) and then Present (SPARK_Pragma (Body_Id)) then
3396 if Present (SPARK_Pragma (Spec_Id)) then
3397 if Get_SPARK_Mode_From_Pragma (SPARK_Pragma (Spec_Id)) = Off
3398 and then
3399 Get_SPARK_Mode_From_Pragma (SPARK_Pragma (Body_Id)) = On
3400 then
3401 Error_Msg_Sloc := Sloc (SPARK_Pragma (Body_Id));
3402 Error_Msg_N ("incorrect application of SPARK_Mode#", N);
3403 Error_Msg_Sloc := Sloc (SPARK_Pragma (Spec_Id));
3404 Error_Msg_NE
3405 ("\value Off was set for SPARK_Mode on&#", N, Spec_Id);
3406 end if;
3408 elsif Nkind (Parent (Parent (Spec_Id))) = N_Subprogram_Body_Stub then
3409 null;
3411 else
3412 Error_Msg_Sloc := Sloc (SPARK_Pragma (Body_Id));
3413 Error_Msg_N ("incorrect application of SPARK_Mode#", N);
3414 Error_Msg_Sloc := Sloc (Spec_Id);
3415 Error_Msg_NE ("\no value was set for SPARK_Mode on&#", N, Spec_Id);
3416 end if;
3417 end if;
3419 -- Check completion, and analyze the statements
3421 Check_Completion;
3422 Inspect_Deferred_Constant_Completion (Declarations (N));
3423 Analyze (HSS);
3425 -- Deal with end of scope processing for the body
3427 Process_End_Label (HSS, 't', Current_Scope);
3428 End_Scope;
3429 Check_Subprogram_Order (N);
3430 Set_Analyzed (Body_Id);
3432 -- If we have a separate spec, then the analysis of the declarations
3433 -- caused the entities in the body to be chained to the spec id, but
3434 -- we want them chained to the body id. Only the formal parameters
3435 -- end up chained to the spec id in this case.
3437 if Present (Spec_Id) then
3439 -- We must conform to the categorization of our spec
3441 Validate_Categorization_Dependency (N, Spec_Id);
3443 -- And if this is a child unit, the parent units must conform
3445 if Is_Child_Unit (Spec_Id) then
3446 Validate_Categorization_Dependency
3447 (Unit_Declaration_Node (Spec_Id), Spec_Id);
3448 end if;
3450 -- Here is where we move entities from the spec to the body
3452 -- Case where there are entities that stay with the spec
3454 if Present (Last_Real_Spec_Entity) then
3456 -- No body entities (happens when the only real spec entities come
3457 -- from precondition and postcondition pragmas).
3459 if No (Last_Entity (Body_Id)) then
3460 Set_First_Entity
3461 (Body_Id, Next_Entity (Last_Real_Spec_Entity));
3463 -- Body entities present (formals), so chain stuff past them
3465 else
3466 Set_Next_Entity
3467 (Last_Entity (Body_Id), Next_Entity (Last_Real_Spec_Entity));
3468 end if;
3470 Set_Next_Entity (Last_Real_Spec_Entity, Empty);
3471 Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
3472 Set_Last_Entity (Spec_Id, Last_Real_Spec_Entity);
3474 -- Case where there are no spec entities, in this case there can be
3475 -- no body entities either, so just move everything.
3477 else
3478 pragma Assert (No (Last_Entity (Body_Id)));
3479 Set_First_Entity (Body_Id, First_Entity (Spec_Id));
3480 Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
3481 Set_First_Entity (Spec_Id, Empty);
3482 Set_Last_Entity (Spec_Id, Empty);
3483 end if;
3484 end if;
3486 Check_Missing_Return;
3488 -- Now we are going to check for variables that are never modified in
3489 -- the body of the procedure. But first we deal with a special case
3490 -- where we want to modify this check. If the body of the subprogram
3491 -- starts with a raise statement or its equivalent, or if the body
3492 -- consists entirely of a null statement, then it is pretty obvious that
3493 -- it is OK to not reference the parameters. For example, this might be
3494 -- the following common idiom for a stubbed function: statement of the
3495 -- procedure raises an exception. In particular this deals with the
3496 -- common idiom of a stubbed function, which appears something like:
3498 -- function F (A : Integer) return Some_Type;
3499 -- X : Some_Type;
3500 -- begin
3501 -- raise Program_Error;
3502 -- return X;
3503 -- end F;
3505 -- Here the purpose of X is simply to satisfy the annoying requirement
3506 -- in Ada that there be at least one return, and we certainly do not
3507 -- want to go posting warnings on X that it is not initialized. On
3508 -- the other hand, if X is entirely unreferenced that should still
3509 -- get a warning.
3511 -- What we do is to detect these cases, and if we find them, flag the
3512 -- subprogram as being Is_Trivial_Subprogram and then use that flag to
3513 -- suppress unwanted warnings. For the case of the function stub above
3514 -- we have a special test to set X as apparently assigned to suppress
3515 -- the warning.
3517 declare
3518 Stm : Node_Id;
3520 begin
3521 -- Skip initial labels (for one thing this occurs when we are in
3522 -- front end ZCX mode, but in any case it is irrelevant), and also
3523 -- initial Push_xxx_Error_Label nodes, which are also irrelevant.
3525 Stm := First (Statements (HSS));
3526 while Nkind (Stm) = N_Label
3527 or else Nkind (Stm) in N_Push_xxx_Label
3528 loop
3529 Next (Stm);
3530 end loop;
3532 -- Do the test on the original statement before expansion
3534 declare
3535 Ostm : constant Node_Id := Original_Node (Stm);
3537 begin
3538 -- If explicit raise statement, turn on flag
3540 if Nkind (Ostm) = N_Raise_Statement then
3541 Set_Trivial_Subprogram (Stm);
3543 -- If null statement, and no following statements, turn on flag
3545 elsif Nkind (Stm) = N_Null_Statement
3546 and then Comes_From_Source (Stm)
3547 and then No (Next (Stm))
3548 then
3549 Set_Trivial_Subprogram (Stm);
3551 -- Check for explicit call cases which likely raise an exception
3553 elsif Nkind (Ostm) = N_Procedure_Call_Statement then
3554 if Is_Entity_Name (Name (Ostm)) then
3555 declare
3556 Ent : constant Entity_Id := Entity (Name (Ostm));
3558 begin
3559 -- If the procedure is marked No_Return, then likely it
3560 -- raises an exception, but in any case it is not coming
3561 -- back here, so turn on the flag.
3563 if Present (Ent)
3564 and then Ekind (Ent) = E_Procedure
3565 and then No_Return (Ent)
3566 then
3567 Set_Trivial_Subprogram (Stm);
3568 end if;
3569 end;
3570 end if;
3571 end if;
3572 end;
3573 end;
3575 -- Check for variables that are never modified
3577 declare
3578 E1, E2 : Entity_Id;
3580 begin
3581 -- If there is a separate spec, then transfer Never_Set_In_Source
3582 -- flags from out parameters to the corresponding entities in the
3583 -- body. The reason we do that is we want to post error flags on
3584 -- the body entities, not the spec entities.
3586 if Present (Spec_Id) then
3587 E1 := First_Entity (Spec_Id);
3588 while Present (E1) loop
3589 if Ekind (E1) = E_Out_Parameter then
3590 E2 := First_Entity (Body_Id);
3591 while Present (E2) loop
3592 exit when Chars (E1) = Chars (E2);
3593 Next_Entity (E2);
3594 end loop;
3596 if Present (E2) then
3597 Set_Never_Set_In_Source (E2, Never_Set_In_Source (E1));
3598 end if;
3599 end if;
3601 Next_Entity (E1);
3602 end loop;
3603 end if;
3605 -- Check references in body
3607 Check_References (Body_Id);
3608 end;
3609 end Analyze_Subprogram_Body_Helper;
3611 ---------------------------------
3612 -- Analyze_Subprogram_Contract --
3613 ---------------------------------
3615 procedure Analyze_Subprogram_Contract (Subp : Entity_Id) is
3616 Items : constant Node_Id := Contract (Subp);
3617 Case_Prag : Node_Id := Empty;
3618 Depends : Node_Id := Empty;
3619 Global : Node_Id := Empty;
3620 Nam : Name_Id;
3621 Post_Prag : Node_Id := Empty;
3622 Prag : Node_Id;
3623 Seen_In_Case : Boolean := False;
3624 Seen_In_Post : Boolean := False;
3626 begin
3627 if Present (Items) then
3629 -- Analyze pre- and postconditions
3631 Prag := Pre_Post_Conditions (Items);
3632 while Present (Prag) loop
3633 Analyze_Pre_Post_Condition_In_Decl_Part (Prag, Subp);
3635 -- Verify whether a postcondition mentions attribute 'Result and
3636 -- its expression introduces a post-state.
3638 if Warn_On_Suspicious_Contract
3639 and then Pragma_Name (Prag) = Name_Postcondition
3640 then
3641 Post_Prag := Prag;
3642 Check_Result_And_Post_State (Prag, Seen_In_Post);
3643 end if;
3645 Prag := Next_Pragma (Prag);
3646 end loop;
3648 -- Analyze contract-cases and test-cases
3650 Prag := Contract_Test_Cases (Items);
3651 while Present (Prag) loop
3652 Nam := Pragma_Name (Prag);
3654 if Nam = Name_Contract_Cases then
3655 Analyze_Contract_Cases_In_Decl_Part (Prag);
3657 -- Verify whether contract-cases mention attribute 'Result and
3658 -- its expression introduces a post-state. Perform the check
3659 -- only when the pragma is legal.
3661 if Warn_On_Suspicious_Contract
3662 and then not Error_Posted (Prag)
3663 then
3664 Case_Prag := Prag;
3665 Check_Result_And_Post_State (Prag, Seen_In_Case);
3666 end if;
3668 else
3669 pragma Assert (Nam = Name_Test_Case);
3670 Analyze_Test_Case_In_Decl_Part (Prag, Subp);
3671 end if;
3673 Prag := Next_Pragma (Prag);
3674 end loop;
3676 -- Analyze classification pragmas
3678 Prag := Classifications (Items);
3679 while Present (Prag) loop
3680 Nam := Pragma_Name (Prag);
3682 if Nam = Name_Depends then
3683 Depends := Prag;
3684 else pragma Assert (Nam = Name_Global);
3685 Global := Prag;
3686 end if;
3688 Prag := Next_Pragma (Prag);
3689 end loop;
3691 -- Analyze Global first as Depends may mention items classified in
3692 -- the global categorization.
3694 if Present (Global) then
3695 Analyze_Global_In_Decl_Part (Global);
3696 end if;
3698 -- Depends must be analyzed after Global in order to see the modes of
3699 -- all global items.
3701 if Present (Depends) then
3702 Analyze_Depends_In_Decl_Part (Depends);
3703 end if;
3704 end if;
3706 -- Emit an error when neither the postconditions nor the contract-cases
3707 -- mention attribute 'Result in the context of a function.
3709 if Warn_On_Suspicious_Contract
3710 and then Ekind_In (Subp, E_Function, E_Generic_Function)
3711 then
3712 if Present (Case_Prag)
3713 and then not Seen_In_Case
3714 and then Present (Post_Prag)
3715 and then not Seen_In_Post
3716 then
3717 Error_Msg_N
3718 ("neither function postcondition nor contract cases mention "
3719 & "result?T?", Post_Prag);
3721 elsif Present (Case_Prag) and then not Seen_In_Case then
3722 Error_Msg_N
3723 ("contract cases do not mention result?T?", Case_Prag);
3725 -- OK if we have at least one IN OUT parameter
3727 elsif Present (Post_Prag) and then not Seen_In_Post then
3728 declare
3729 F : Entity_Id;
3730 begin
3731 F := First_Formal (Subp);
3732 while Present (F) loop
3733 if Ekind (F) = E_In_Out_Parameter then
3734 return;
3735 else
3736 Next_Formal (F);
3737 end if;
3738 end loop;
3739 end;
3741 -- If no in-out parameters and no mention of Result, the contract
3742 -- is certainly suspicious.
3744 Error_Msg_N
3745 ("function postcondition does not mention result?T?", Post_Prag);
3746 end if;
3747 end if;
3748 end Analyze_Subprogram_Contract;
3750 ------------------------------------
3751 -- Analyze_Subprogram_Declaration --
3752 ------------------------------------
3754 procedure Analyze_Subprogram_Declaration (N : Node_Id) is
3755 Scop : constant Entity_Id := Current_Scope;
3756 Designator : Entity_Id;
3758 Is_Completion : Boolean;
3759 -- Indicates whether a null procedure declaration is a completion
3761 begin
3762 -- Null procedures are not allowed in SPARK
3764 if Nkind (Specification (N)) = N_Procedure_Specification
3765 and then Null_Present (Specification (N))
3766 then
3767 Check_SPARK_Restriction ("null procedure is not allowed", N);
3769 if Is_Protected_Type (Current_Scope) then
3770 Error_Msg_N ("protected operation cannot be a null procedure", N);
3771 end if;
3773 Analyze_Null_Procedure (N, Is_Completion);
3775 if Is_Completion then
3777 -- The null procedure acts as a body, nothing further is needed.
3779 return;
3780 end if;
3781 end if;
3783 Designator := Analyze_Subprogram_Specification (Specification (N));
3785 -- A reference may already have been generated for the unit name, in
3786 -- which case the following call is redundant. However it is needed for
3787 -- declarations that are the rewriting of an expression function.
3789 Generate_Definition (Designator);
3791 -- Set SPARK mode from current context (may be overwritten later with
3792 -- explicit pragma).
3794 Set_SPARK_Pragma (Designator, SPARK_Mode_Pragma);
3795 Set_SPARK_Pragma_Inherited (Designator, True);
3797 if Debug_Flag_C then
3798 Write_Str ("==> subprogram spec ");
3799 Write_Name (Chars (Designator));
3800 Write_Str (" from ");
3801 Write_Location (Sloc (N));
3802 Write_Eol;
3803 Indent;
3804 end if;
3806 Validate_RCI_Subprogram_Declaration (N);
3807 New_Overloaded_Entity (Designator);
3808 Check_Delayed_Subprogram (Designator);
3810 -- If the type of the first formal of the current subprogram is a non-
3811 -- generic tagged private type, mark the subprogram as being a private
3812 -- primitive. Ditto if this is a function with controlling result, and
3813 -- the return type is currently private. In both cases, the type of the
3814 -- controlling argument or result must be in the current scope for the
3815 -- operation to be primitive.
3817 if Has_Controlling_Result (Designator)
3818 and then Is_Private_Type (Etype (Designator))
3819 and then Scope (Etype (Designator)) = Current_Scope
3820 and then not Is_Generic_Actual_Type (Etype (Designator))
3821 then
3822 Set_Is_Private_Primitive (Designator);
3824 elsif Present (First_Formal (Designator)) then
3825 declare
3826 Formal_Typ : constant Entity_Id :=
3827 Etype (First_Formal (Designator));
3828 begin
3829 Set_Is_Private_Primitive (Designator,
3830 Is_Tagged_Type (Formal_Typ)
3831 and then Scope (Formal_Typ) = Current_Scope
3832 and then Is_Private_Type (Formal_Typ)
3833 and then not Is_Generic_Actual_Type (Formal_Typ));
3834 end;
3835 end if;
3837 -- Ada 2005 (AI-251): Abstract interface primitives must be abstract
3838 -- or null.
3840 if Ada_Version >= Ada_2005
3841 and then Comes_From_Source (N)
3842 and then Is_Dispatching_Operation (Designator)
3843 then
3844 declare
3845 E : Entity_Id;
3846 Etyp : Entity_Id;
3848 begin
3849 if Has_Controlling_Result (Designator) then
3850 Etyp := Etype (Designator);
3852 else
3853 E := First_Entity (Designator);
3854 while Present (E)
3855 and then Is_Formal (E)
3856 and then not Is_Controlling_Formal (E)
3857 loop
3858 Next_Entity (E);
3859 end loop;
3861 Etyp := Etype (E);
3862 end if;
3864 if Is_Access_Type (Etyp) then
3865 Etyp := Directly_Designated_Type (Etyp);
3866 end if;
3868 if Is_Interface (Etyp)
3869 and then not Is_Abstract_Subprogram (Designator)
3870 and then not (Ekind (Designator) = E_Procedure
3871 and then Null_Present (Specification (N)))
3872 then
3873 Error_Msg_Name_1 := Chars (Defining_Entity (N));
3875 -- Specialize error message based on procedures vs. functions,
3876 -- since functions can't be null subprograms.
3878 if Ekind (Designator) = E_Procedure then
3879 Error_Msg_N
3880 ("interface procedure % must be abstract or null", N);
3881 else
3882 Error_Msg_N ("interface function % must be abstract", N);
3883 end if;
3884 end if;
3885 end;
3886 end if;
3888 -- What is the following code for, it used to be
3890 -- ??? Set_Suppress_Elaboration_Checks
3891 -- ??? (Designator, Elaboration_Checks_Suppressed (Designator));
3893 -- The following seems equivalent, but a bit dubious
3895 if Elaboration_Checks_Suppressed (Designator) then
3896 Set_Kill_Elaboration_Checks (Designator);
3897 end if;
3899 if Scop /= Standard_Standard and then not Is_Child_Unit (Designator) then
3900 Set_Categorization_From_Scope (Designator, Scop);
3902 else
3903 -- For a compilation unit, check for library-unit pragmas
3905 Push_Scope (Designator);
3906 Set_Categorization_From_Pragmas (N);
3907 Validate_Categorization_Dependency (N, Designator);
3908 Pop_Scope;
3909 end if;
3911 -- For a compilation unit, set body required. This flag will only be
3912 -- reset if a valid Import or Interface pragma is processed later on.
3914 if Nkind (Parent (N)) = N_Compilation_Unit then
3915 Set_Body_Required (Parent (N), True);
3917 if Ada_Version >= Ada_2005
3918 and then Nkind (Specification (N)) = N_Procedure_Specification
3919 and then Null_Present (Specification (N))
3920 then
3921 Error_Msg_N
3922 ("null procedure cannot be declared at library level", N);
3923 end if;
3924 end if;
3926 Generate_Reference_To_Formals (Designator);
3927 Check_Eliminated (Designator);
3929 if Debug_Flag_C then
3930 Outdent;
3931 Write_Str ("<== subprogram spec ");
3932 Write_Name (Chars (Designator));
3933 Write_Str (" from ");
3934 Write_Location (Sloc (N));
3935 Write_Eol;
3936 end if;
3938 if Is_Protected_Type (Current_Scope) then
3940 -- Indicate that this is a protected operation, because it may be
3941 -- used in subsequent declarations within the protected type.
3943 Set_Convention (Designator, Convention_Protected);
3944 end if;
3946 List_Inherited_Pre_Post_Aspects (Designator);
3948 if Has_Aspects (N) then
3949 Analyze_Aspect_Specifications (N, Designator);
3950 end if;
3951 end Analyze_Subprogram_Declaration;
3953 --------------------------------------
3954 -- Analyze_Subprogram_Specification --
3955 --------------------------------------
3957 -- Reminder: N here really is a subprogram specification (not a subprogram
3958 -- declaration). This procedure is called to analyze the specification in
3959 -- both subprogram bodies and subprogram declarations (specs).
3961 function Analyze_Subprogram_Specification (N : Node_Id) return Entity_Id is
3962 Designator : constant Entity_Id := Defining_Entity (N);
3963 Formals : constant List_Id := Parameter_Specifications (N);
3965 -- Start of processing for Analyze_Subprogram_Specification
3967 begin
3968 -- User-defined operator is not allowed in SPARK, except as a renaming
3970 if Nkind (Defining_Unit_Name (N)) = N_Defining_Operator_Symbol
3971 and then Nkind (Parent (N)) /= N_Subprogram_Renaming_Declaration
3972 then
3973 Check_SPARK_Restriction ("user-defined operator is not allowed", N);
3974 end if;
3976 -- Proceed with analysis. Do not emit a cross-reference entry if the
3977 -- specification comes from an expression function, because it may be
3978 -- the completion of a previous declaration. It is is not, the cross-
3979 -- reference entry will be emitted for the new subprogram declaration.
3981 if Nkind (Parent (N)) /= N_Expression_Function then
3982 Generate_Definition (Designator);
3983 end if;
3985 Set_Contract (Designator, Make_Contract (Sloc (Designator)));
3987 if Nkind (N) = N_Function_Specification then
3988 Set_Ekind (Designator, E_Function);
3989 Set_Mechanism (Designator, Default_Mechanism);
3990 else
3991 Set_Ekind (Designator, E_Procedure);
3992 Set_Etype (Designator, Standard_Void_Type);
3993 end if;
3995 -- Introduce new scope for analysis of the formals and the return type
3997 Set_Scope (Designator, Current_Scope);
3999 if Present (Formals) then
4000 Push_Scope (Designator);
4001 Process_Formals (Formals, N);
4003 -- Check dimensions in N for formals with default expression
4005 Analyze_Dimension_Formals (N, Formals);
4007 -- Ada 2005 (AI-345): If this is an overriding operation of an
4008 -- inherited interface operation, and the controlling type is
4009 -- a synchronized type, replace the type with its corresponding
4010 -- record, to match the proper signature of an overriding operation.
4011 -- Same processing for an access parameter whose designated type is
4012 -- derived from a synchronized interface.
4014 if Ada_Version >= Ada_2005 then
4015 declare
4016 Formal : Entity_Id;
4017 Formal_Typ : Entity_Id;
4018 Rec_Typ : Entity_Id;
4019 Desig_Typ : Entity_Id;
4021 begin
4022 Formal := First_Formal (Designator);
4023 while Present (Formal) loop
4024 Formal_Typ := Etype (Formal);
4026 if Is_Concurrent_Type (Formal_Typ)
4027 and then Present (Corresponding_Record_Type (Formal_Typ))
4028 then
4029 Rec_Typ := Corresponding_Record_Type (Formal_Typ);
4031 if Present (Interfaces (Rec_Typ)) then
4032 Set_Etype (Formal, Rec_Typ);
4033 end if;
4035 elsif Ekind (Formal_Typ) = E_Anonymous_Access_Type then
4036 Desig_Typ := Designated_Type (Formal_Typ);
4038 if Is_Concurrent_Type (Desig_Typ)
4039 and then Present (Corresponding_Record_Type (Desig_Typ))
4040 then
4041 Rec_Typ := Corresponding_Record_Type (Desig_Typ);
4043 if Present (Interfaces (Rec_Typ)) then
4044 Set_Directly_Designated_Type (Formal_Typ, Rec_Typ);
4045 end if;
4046 end if;
4047 end if;
4049 Next_Formal (Formal);
4050 end loop;
4051 end;
4052 end if;
4054 End_Scope;
4056 -- The subprogram scope is pushed and popped around the processing of
4057 -- the return type for consistency with call above to Process_Formals
4058 -- (which itself can call Analyze_Return_Type), and to ensure that any
4059 -- itype created for the return type will be associated with the proper
4060 -- scope.
4062 elsif Nkind (N) = N_Function_Specification then
4063 Push_Scope (Designator);
4064 Analyze_Return_Type (N);
4065 End_Scope;
4066 end if;
4068 -- Function case
4070 if Nkind (N) = N_Function_Specification then
4072 -- Deal with operator symbol case
4074 if Nkind (Designator) = N_Defining_Operator_Symbol then
4075 Valid_Operator_Definition (Designator);
4076 end if;
4078 May_Need_Actuals (Designator);
4080 -- Ada 2005 (AI-251): If the return type is abstract, verify that
4081 -- the subprogram is abstract also. This does not apply to renaming
4082 -- declarations, where abstractness is inherited, and to subprogram
4083 -- bodies generated for stream operations, which become renamings as
4084 -- bodies.
4086 -- In case of primitives associated with abstract interface types
4087 -- the check is applied later (see Analyze_Subprogram_Declaration).
4089 if not Nkind_In (Original_Node (Parent (N)),
4090 N_Subprogram_Renaming_Declaration,
4091 N_Abstract_Subprogram_Declaration,
4092 N_Formal_Abstract_Subprogram_Declaration)
4093 then
4094 if Is_Abstract_Type (Etype (Designator))
4095 and then not Is_Interface (Etype (Designator))
4096 then
4097 Error_Msg_N
4098 ("function that returns abstract type must be abstract", N);
4100 -- Ada 2012 (AI-0073): Extend this test to subprograms with an
4101 -- access result whose designated type is abstract.
4103 elsif Nkind (Result_Definition (N)) = N_Access_Definition
4104 and then
4105 not Is_Class_Wide_Type (Designated_Type (Etype (Designator)))
4106 and then Is_Abstract_Type (Designated_Type (Etype (Designator)))
4107 and then Ada_Version >= Ada_2012
4108 then
4109 Error_Msg_N ("function whose access result designates "
4110 & "abstract type must be abstract", N);
4111 end if;
4112 end if;
4113 end if;
4115 return Designator;
4116 end Analyze_Subprogram_Specification;
4118 --------------------------
4119 -- Build_Body_To_Inline --
4120 --------------------------
4122 procedure Build_Body_To_Inline (N : Node_Id; Subp : Entity_Id) is
4123 Decl : constant Node_Id := Unit_Declaration_Node (Subp);
4124 Original_Body : Node_Id;
4125 Body_To_Analyze : Node_Id;
4126 Max_Size : constant := 10;
4127 Stat_Count : Integer := 0;
4129 function Has_Excluded_Declaration (Decls : List_Id) return Boolean;
4130 -- Check for declarations that make inlining not worthwhile
4132 function Has_Excluded_Statement (Stats : List_Id) return Boolean;
4133 -- Check for statements that make inlining not worthwhile: any tasking
4134 -- statement, nested at any level. Keep track of total number of
4135 -- elementary statements, as a measure of acceptable size.
4137 function Has_Pending_Instantiation return Boolean;
4138 -- If some enclosing body contains instantiations that appear before the
4139 -- corresponding generic body, the enclosing body has a freeze node so
4140 -- that it can be elaborated after the generic itself. This might
4141 -- conflict with subsequent inlinings, so that it is unsafe to try to
4142 -- inline in such a case.
4144 function Has_Single_Return return Boolean;
4145 -- In general we cannot inline functions that return unconstrained type.
4146 -- However, we can handle such functions if all return statements return
4147 -- a local variable that is the only declaration in the body of the
4148 -- function. In that case the call can be replaced by that local
4149 -- variable as is done for other inlined calls.
4151 procedure Remove_Pragmas;
4152 -- A pragma Unreferenced or pragma Unmodified that mentions a formal
4153 -- parameter has no meaning when the body is inlined and the formals
4154 -- are rewritten. Remove it from body to inline. The analysis of the
4155 -- non-inlined body will handle the pragma properly.
4157 function Uses_Secondary_Stack (Bod : Node_Id) return Boolean;
4158 -- If the body of the subprogram includes a call that returns an
4159 -- unconstrained type, the secondary stack is involved, and it
4160 -- is not worth inlining.
4162 ------------------------------
4163 -- Has_Excluded_Declaration --
4164 ------------------------------
4166 function Has_Excluded_Declaration (Decls : List_Id) return Boolean is
4167 D : Node_Id;
4169 function Is_Unchecked_Conversion (D : Node_Id) return Boolean;
4170 -- Nested subprograms make a given body ineligible for inlining, but
4171 -- we make an exception for instantiations of unchecked conversion.
4172 -- The body has not been analyzed yet, so check the name, and verify
4173 -- that the visible entity with that name is the predefined unit.
4175 -----------------------------
4176 -- Is_Unchecked_Conversion --
4177 -----------------------------
4179 function Is_Unchecked_Conversion (D : Node_Id) return Boolean is
4180 Id : constant Node_Id := Name (D);
4181 Conv : Entity_Id;
4183 begin
4184 if Nkind (Id) = N_Identifier
4185 and then Chars (Id) = Name_Unchecked_Conversion
4186 then
4187 Conv := Current_Entity (Id);
4189 elsif Nkind_In (Id, N_Selected_Component, N_Expanded_Name)
4190 and then Chars (Selector_Name (Id)) = Name_Unchecked_Conversion
4191 then
4192 Conv := Current_Entity (Selector_Name (Id));
4193 else
4194 return False;
4195 end if;
4197 return Present (Conv)
4198 and then Is_Predefined_File_Name
4199 (Unit_File_Name (Get_Source_Unit (Conv)))
4200 and then Is_Intrinsic_Subprogram (Conv);
4201 end Is_Unchecked_Conversion;
4203 -- Start of processing for Has_Excluded_Declaration
4205 begin
4206 D := First (Decls);
4207 while Present (D) loop
4208 if (Nkind (D) = N_Function_Instantiation
4209 and then not Is_Unchecked_Conversion (D))
4210 or else Nkind_In (D, N_Protected_Type_Declaration,
4211 N_Package_Declaration,
4212 N_Package_Instantiation,
4213 N_Subprogram_Body,
4214 N_Procedure_Instantiation,
4215 N_Task_Type_Declaration)
4216 then
4217 Cannot_Inline
4218 ("cannot inline & (non-allowed declaration)?", D, Subp);
4219 return True;
4220 end if;
4222 Next (D);
4223 end loop;
4225 return False;
4226 end Has_Excluded_Declaration;
4228 ----------------------------
4229 -- Has_Excluded_Statement --
4230 ----------------------------
4232 function Has_Excluded_Statement (Stats : List_Id) return Boolean is
4233 S : Node_Id;
4234 E : Node_Id;
4236 begin
4237 S := First (Stats);
4238 while Present (S) loop
4239 Stat_Count := Stat_Count + 1;
4241 if Nkind_In (S, N_Abort_Statement,
4242 N_Asynchronous_Select,
4243 N_Conditional_Entry_Call,
4244 N_Delay_Relative_Statement,
4245 N_Delay_Until_Statement,
4246 N_Selective_Accept,
4247 N_Timed_Entry_Call)
4248 then
4249 Cannot_Inline
4250 ("cannot inline & (non-allowed statement)?", S, Subp);
4251 return True;
4253 elsif Nkind (S) = N_Block_Statement then
4254 if Present (Declarations (S))
4255 and then Has_Excluded_Declaration (Declarations (S))
4256 then
4257 return True;
4259 elsif Present (Handled_Statement_Sequence (S))
4260 and then
4261 (Present
4262 (Exception_Handlers (Handled_Statement_Sequence (S)))
4263 or else
4264 Has_Excluded_Statement
4265 (Statements (Handled_Statement_Sequence (S))))
4266 then
4267 return True;
4268 end if;
4270 elsif Nkind (S) = N_Case_Statement then
4271 E := First (Alternatives (S));
4272 while Present (E) loop
4273 if Has_Excluded_Statement (Statements (E)) then
4274 return True;
4275 end if;
4277 Next (E);
4278 end loop;
4280 elsif Nkind (S) = N_If_Statement then
4281 if Has_Excluded_Statement (Then_Statements (S)) then
4282 return True;
4283 end if;
4285 if Present (Elsif_Parts (S)) then
4286 E := First (Elsif_Parts (S));
4287 while Present (E) loop
4288 if Has_Excluded_Statement (Then_Statements (E)) then
4289 return True;
4290 end if;
4292 Next (E);
4293 end loop;
4294 end if;
4296 if Present (Else_Statements (S))
4297 and then Has_Excluded_Statement (Else_Statements (S))
4298 then
4299 return True;
4300 end if;
4302 elsif Nkind (S) = N_Loop_Statement
4303 and then Has_Excluded_Statement (Statements (S))
4304 then
4305 return True;
4307 elsif Nkind (S) = N_Extended_Return_Statement then
4308 if Has_Excluded_Statement
4309 (Statements (Handled_Statement_Sequence (S)))
4310 or else Present
4311 (Exception_Handlers (Handled_Statement_Sequence (S)))
4312 then
4313 return True;
4314 end if;
4315 end if;
4317 Next (S);
4318 end loop;
4320 return False;
4321 end Has_Excluded_Statement;
4323 -------------------------------
4324 -- Has_Pending_Instantiation --
4325 -------------------------------
4327 function Has_Pending_Instantiation return Boolean is
4328 S : Entity_Id;
4330 begin
4331 S := Current_Scope;
4332 while Present (S) loop
4333 if Is_Compilation_Unit (S)
4334 or else Is_Child_Unit (S)
4335 then
4336 return False;
4338 elsif Ekind (S) = E_Package
4339 and then Has_Forward_Instantiation (S)
4340 then
4341 return True;
4342 end if;
4344 S := Scope (S);
4345 end loop;
4347 return False;
4348 end Has_Pending_Instantiation;
4350 ------------------------
4351 -- Has_Single_Return --
4352 ------------------------
4354 function Has_Single_Return return Boolean is
4355 Return_Statement : Node_Id := Empty;
4357 function Check_Return (N : Node_Id) return Traverse_Result;
4359 ------------------
4360 -- Check_Return --
4361 ------------------
4363 function Check_Return (N : Node_Id) return Traverse_Result is
4364 begin
4365 if Nkind (N) = N_Simple_Return_Statement then
4366 if Present (Expression (N))
4367 and then Is_Entity_Name (Expression (N))
4368 then
4369 if No (Return_Statement) then
4370 Return_Statement := N;
4371 return OK;
4373 elsif Chars (Expression (N)) =
4374 Chars (Expression (Return_Statement))
4375 then
4376 return OK;
4378 else
4379 return Abandon;
4380 end if;
4382 -- A return statement within an extended return is a noop
4383 -- after inlining.
4385 elsif No (Expression (N))
4386 and then Nkind (Parent (Parent (N))) =
4387 N_Extended_Return_Statement
4388 then
4389 return OK;
4391 else
4392 -- Expression has wrong form
4394 return Abandon;
4395 end if;
4397 -- We can only inline a build-in-place function if
4398 -- it has a single extended return.
4400 elsif Nkind (N) = N_Extended_Return_Statement then
4401 if No (Return_Statement) then
4402 Return_Statement := N;
4403 return OK;
4405 else
4406 return Abandon;
4407 end if;
4409 else
4410 return OK;
4411 end if;
4412 end Check_Return;
4414 function Check_All_Returns is new Traverse_Func (Check_Return);
4416 -- Start of processing for Has_Single_Return
4418 begin
4419 if Check_All_Returns (N) /= OK then
4420 return False;
4422 elsif Nkind (Return_Statement) = N_Extended_Return_Statement then
4423 return True;
4425 else
4426 return Present (Declarations (N))
4427 and then Present (First (Declarations (N)))
4428 and then Chars (Expression (Return_Statement)) =
4429 Chars (Defining_Identifier (First (Declarations (N))));
4430 end if;
4431 end Has_Single_Return;
4433 --------------------
4434 -- Remove_Pragmas --
4435 --------------------
4437 procedure Remove_Pragmas is
4438 Decl : Node_Id;
4439 Nxt : Node_Id;
4441 begin
4442 Decl := First (Declarations (Body_To_Analyze));
4443 while Present (Decl) loop
4444 Nxt := Next (Decl);
4446 if Nkind (Decl) = N_Pragma
4447 and then Nam_In (Pragma_Name (Decl), Name_Unreferenced,
4448 Name_Unmodified)
4449 then
4450 Remove (Decl);
4451 end if;
4453 Decl := Nxt;
4454 end loop;
4455 end Remove_Pragmas;
4457 --------------------------
4458 -- Uses_Secondary_Stack --
4459 --------------------------
4461 function Uses_Secondary_Stack (Bod : Node_Id) return Boolean is
4462 function Check_Call (N : Node_Id) return Traverse_Result;
4463 -- Look for function calls that return an unconstrained type
4465 ----------------
4466 -- Check_Call --
4467 ----------------
4469 function Check_Call (N : Node_Id) return Traverse_Result is
4470 begin
4471 if Nkind (N) = N_Function_Call
4472 and then Is_Entity_Name (Name (N))
4473 and then Is_Composite_Type (Etype (Entity (Name (N))))
4474 and then not Is_Constrained (Etype (Entity (Name (N))))
4475 then
4476 Cannot_Inline
4477 ("cannot inline & (call returns unconstrained type)?",
4478 N, Subp);
4479 return Abandon;
4480 else
4481 return OK;
4482 end if;
4483 end Check_Call;
4485 function Check_Calls is new Traverse_Func (Check_Call);
4487 begin
4488 return Check_Calls (Bod) = Abandon;
4489 end Uses_Secondary_Stack;
4491 -- Start of processing for Build_Body_To_Inline
4493 begin
4494 -- Return immediately if done already
4496 if Nkind (Decl) = N_Subprogram_Declaration
4497 and then Present (Body_To_Inline (Decl))
4498 then
4499 return;
4501 -- Functions that return unconstrained composite types require
4502 -- secondary stack handling, and cannot currently be inlined, unless
4503 -- all return statements return a local variable that is the first
4504 -- local declaration in the body.
4506 elsif Ekind (Subp) = E_Function
4507 and then not Is_Scalar_Type (Etype (Subp))
4508 and then not Is_Access_Type (Etype (Subp))
4509 and then not Is_Constrained (Etype (Subp))
4510 then
4511 if not Has_Single_Return then
4512 Cannot_Inline
4513 ("cannot inline & (unconstrained return type)?", N, Subp);
4514 return;
4515 end if;
4517 -- Ditto for functions that return controlled types, where controlled
4518 -- actions interfere in complex ways with inlining.
4520 elsif Ekind (Subp) = E_Function
4521 and then Needs_Finalization (Etype (Subp))
4522 then
4523 Cannot_Inline
4524 ("cannot inline & (controlled return type)?", N, Subp);
4525 return;
4526 end if;
4528 if Present (Declarations (N))
4529 and then Has_Excluded_Declaration (Declarations (N))
4530 then
4531 return;
4532 end if;
4534 if Present (Handled_Statement_Sequence (N)) then
4535 if Present (Exception_Handlers (Handled_Statement_Sequence (N))) then
4536 Cannot_Inline
4537 ("cannot inline& (exception handler)?",
4538 First (Exception_Handlers (Handled_Statement_Sequence (N))),
4539 Subp);
4540 return;
4541 elsif
4542 Has_Excluded_Statement
4543 (Statements (Handled_Statement_Sequence (N)))
4544 then
4545 return;
4546 end if;
4547 end if;
4549 -- We do not inline a subprogram that is too large, unless it is
4550 -- marked Inline_Always. This pragma does not suppress the other
4551 -- checks on inlining (forbidden declarations, handlers, etc).
4553 if Stat_Count > Max_Size
4554 and then not Has_Pragma_Inline_Always (Subp)
4555 then
4556 Cannot_Inline ("cannot inline& (body too large)?", N, Subp);
4557 return;
4558 end if;
4560 if Has_Pending_Instantiation then
4561 Cannot_Inline
4562 ("cannot inline& (forward instance within enclosing body)?",
4563 N, Subp);
4564 return;
4565 end if;
4567 -- Within an instance, the body to inline must be treated as a nested
4568 -- generic, so that the proper global references are preserved.
4570 -- Note that we do not do this at the library level, because it is not
4571 -- needed, and furthermore this causes trouble if front end inlining
4572 -- is activated (-gnatN).
4574 if In_Instance and then Scope (Current_Scope) /= Standard_Standard then
4575 Save_Env (Scope (Current_Scope), Scope (Current_Scope));
4576 Original_Body := Copy_Generic_Node (N, Empty, True);
4577 else
4578 Original_Body := Copy_Separate_Tree (N);
4579 end if;
4581 -- We need to capture references to the formals in order to substitute
4582 -- the actuals at the point of inlining, i.e. instantiation. To treat
4583 -- the formals as globals to the body to inline, we nest it within
4584 -- a dummy parameterless subprogram, declared within the real one.
4585 -- To avoid generating an internal name (which is never public, and
4586 -- which affects serial numbers of other generated names), we use
4587 -- an internal symbol that cannot conflict with user declarations.
4589 Set_Parameter_Specifications (Specification (Original_Body), No_List);
4590 Set_Defining_Unit_Name
4591 (Specification (Original_Body),
4592 Make_Defining_Identifier (Sloc (N), Name_uParent));
4593 Set_Corresponding_Spec (Original_Body, Empty);
4595 Body_To_Analyze := Copy_Generic_Node (Original_Body, Empty, False);
4597 -- Set return type of function, which is also global and does not need
4598 -- to be resolved.
4600 if Ekind (Subp) = E_Function then
4601 Set_Result_Definition (Specification (Body_To_Analyze),
4602 New_Occurrence_Of (Etype (Subp), Sloc (N)));
4603 end if;
4605 if No (Declarations (N)) then
4606 Set_Declarations (N, New_List (Body_To_Analyze));
4607 else
4608 Append (Body_To_Analyze, Declarations (N));
4609 end if;
4611 Expander_Mode_Save_And_Set (False);
4612 Remove_Pragmas;
4614 Analyze (Body_To_Analyze);
4615 Push_Scope (Defining_Entity (Body_To_Analyze));
4616 Save_Global_References (Original_Body);
4617 End_Scope;
4618 Remove (Body_To_Analyze);
4620 Expander_Mode_Restore;
4622 -- Restore environment if previously saved
4624 if In_Instance and then Scope (Current_Scope) /= Standard_Standard then
4625 Restore_Env;
4626 end if;
4628 -- If secondary stk used there is no point in inlining. We have
4629 -- already issued the warning in this case, so nothing to do.
4631 if Uses_Secondary_Stack (Body_To_Analyze) then
4632 return;
4633 end if;
4635 Set_Body_To_Inline (Decl, Original_Body);
4636 Set_Ekind (Defining_Entity (Original_Body), Ekind (Subp));
4637 Set_Is_Inlined (Subp);
4638 end Build_Body_To_Inline;
4640 -------------------
4641 -- Cannot_Inline --
4642 -------------------
4644 procedure Cannot_Inline
4645 (Msg : String;
4646 N : Node_Id;
4647 Subp : Entity_Id;
4648 Is_Serious : Boolean := False)
4650 begin
4651 pragma Assert (Msg (Msg'Last) = '?');
4653 -- Old semantics
4655 if not Debug_Flag_Dot_K then
4657 -- Do not emit warning if this is a predefined unit which is not
4658 -- the main unit. With validity checks enabled, some predefined
4659 -- subprograms may contain nested subprograms and become ineligible
4660 -- for inlining.
4662 if Is_Predefined_File_Name (Unit_File_Name (Get_Source_Unit (Subp)))
4663 and then not In_Extended_Main_Source_Unit (Subp)
4664 then
4665 null;
4667 elsif Has_Pragma_Inline_Always (Subp) then
4669 -- Remove last character (question mark) to make this into an
4670 -- error, because the Inline_Always pragma cannot be obeyed.
4672 Error_Msg_NE (Msg (Msg'First .. Msg'Last - 1), N, Subp);
4674 elsif Ineffective_Inline_Warnings then
4675 Error_Msg_NE (Msg & "p?", N, Subp);
4676 end if;
4678 return;
4680 -- New semantics
4682 elsif Is_Serious then
4684 -- Remove last character (question mark) to make this into an error.
4686 Error_Msg_NE (Msg (Msg'First .. Msg'Last - 1), N, Subp);
4688 elsif Optimization_Level = 0 then
4690 -- Do not emit warning if this is a predefined unit which is not
4691 -- the main unit. This behavior is currently provided for backward
4692 -- compatibility but it will be removed when we enforce the
4693 -- strictness of the new rules.
4695 if Is_Predefined_File_Name (Unit_File_Name (Get_Source_Unit (Subp)))
4696 and then not In_Extended_Main_Source_Unit (Subp)
4697 then
4698 null;
4700 elsif Has_Pragma_Inline_Always (Subp) then
4702 -- Emit a warning if this is a call to a runtime subprogram
4703 -- which is located inside a generic. Previously this call
4704 -- was silently skipped.
4706 if Is_Generic_Instance (Subp) then
4707 declare
4708 Gen_P : constant Entity_Id := Generic_Parent (Parent (Subp));
4709 begin
4710 if Is_Predefined_File_Name
4711 (Unit_File_Name (Get_Source_Unit (Gen_P)))
4712 then
4713 Set_Is_Inlined (Subp, False);
4714 Error_Msg_NE (Msg & "p?", N, Subp);
4715 return;
4716 end if;
4717 end;
4718 end if;
4720 -- Remove last character (question mark) to make this into an
4721 -- error, because the Inline_Always pragma cannot be obeyed.
4723 Error_Msg_NE (Msg (Msg'First .. Msg'Last - 1), N, Subp);
4725 else pragma Assert (Front_End_Inlining);
4726 Set_Is_Inlined (Subp, False);
4728 -- When inlining cannot take place we must issue an error.
4729 -- For backward compatibility we still report a warning.
4731 if Ineffective_Inline_Warnings then
4732 Error_Msg_NE (Msg & "p?", N, Subp);
4733 end if;
4734 end if;
4736 -- Compiling with optimizations enabled it is too early to report
4737 -- problems since the backend may still perform inlining. In order
4738 -- to report unhandled inlinings the program must be compiled with
4739 -- -Winline and the error is reported by the backend.
4741 else
4742 null;
4743 end if;
4744 end Cannot_Inline;
4746 ------------------------------------
4747 -- Check_And_Build_Body_To_Inline --
4748 ------------------------------------
4750 procedure Check_And_Build_Body_To_Inline
4751 (N : Node_Id;
4752 Spec_Id : Entity_Id;
4753 Body_Id : Entity_Id)
4755 procedure Build_Body_To_Inline (N : Node_Id; Spec_Id : Entity_Id);
4756 -- Use generic machinery to build an unexpanded body for the subprogram.
4757 -- This body is subsequently used for inline expansions at call sites.
4759 function Can_Split_Unconstrained_Function (N : Node_Id) return Boolean;
4760 -- Return true if we generate code for the function body N, the function
4761 -- body N has no local declarations and its unique statement is a single
4762 -- extended return statement with a handled statements sequence.
4764 function Check_Body_To_Inline
4765 (N : Node_Id;
4766 Subp : Entity_Id) return Boolean;
4767 -- N is the N_Subprogram_Body of Subp. Return true if Subp can be
4768 -- inlined by the frontend. These are the rules:
4769 -- * At -O0 use fe inlining when inline_always is specified except if
4770 -- the function returns a controlled type.
4771 -- * At other optimization levels use the fe inlining for both inline
4772 -- and inline_always in the following cases:
4773 -- - function returning a known at compile time constant
4774 -- - function returning a call to an intrinsic function
4775 -- - function returning an unconstrained type (see Can_Split
4776 -- Unconstrained_Function).
4777 -- - function returning a call to a frontend-inlined function
4778 -- Use the back-end mechanism otherwise
4780 -- In addition, in the following cases the function cannot be inlined by
4781 -- the frontend:
4782 -- - functions that uses the secondary stack
4783 -- - functions that have declarations of:
4784 -- - Concurrent types
4785 -- - Packages
4786 -- - Instantiations
4787 -- - Subprograms
4788 -- - functions that have some of the following statements:
4789 -- - abort
4790 -- - asynchronous-select
4791 -- - conditional-entry-call
4792 -- - delay-relative
4793 -- - delay-until
4794 -- - selective-accept
4795 -- - timed-entry-call
4796 -- - functions that have exception handlers
4797 -- - functions that have some enclosing body containing instantiations
4798 -- that appear before the corresponding generic body.
4800 procedure Generate_Body_To_Inline
4801 (N : Node_Id;
4802 Body_To_Inline : out Node_Id);
4803 -- Generate a parameterless duplicate of subprogram body N. Occurrences
4804 -- of pragmas referencing the formals are removed since they have no
4805 -- meaning when the body is inlined and the formals are rewritten (the
4806 -- analysis of the non-inlined body will handle these pragmas properly).
4807 -- A new internal name is associated with Body_To_Inline.
4809 procedure Split_Unconstrained_Function
4810 (N : Node_Id;
4811 Spec_Id : Entity_Id);
4812 -- N is an inlined function body that returns an unconstrained type and
4813 -- has a single extended return statement. Split N in two subprograms:
4814 -- a procedure P' and a function F'. The formals of P' duplicate the
4815 -- formals of N plus an extra formal which is used return a value;
4816 -- its body is composed by the declarations and list of statements
4817 -- of the extended return statement of N.
4819 --------------------------
4820 -- Build_Body_To_Inline --
4821 --------------------------
4823 procedure Build_Body_To_Inline (N : Node_Id; Spec_Id : Entity_Id) is
4824 Decl : constant Node_Id := Unit_Declaration_Node (Spec_Id);
4825 Original_Body : Node_Id;
4826 Body_To_Analyze : Node_Id;
4828 begin
4829 pragma Assert (Current_Scope = Spec_Id);
4831 -- Within an instance, the body to inline must be treated as a nested
4832 -- generic, so that the proper global references are preserved. We
4833 -- do not do this at the library level, because it is not needed, and
4834 -- furthermore this causes trouble if front end inlining is activated
4835 -- (-gnatN).
4837 if In_Instance
4838 and then Scope (Current_Scope) /= Standard_Standard
4839 then
4840 Save_Env (Scope (Current_Scope), Scope (Current_Scope));
4841 end if;
4843 -- We need to capture references to the formals in order
4844 -- to substitute the actuals at the point of inlining, i.e.
4845 -- instantiation. To treat the formals as globals to the body to
4846 -- inline, we nest it within a dummy parameterless subprogram,
4847 -- declared within the real one.
4849 Generate_Body_To_Inline (N, Original_Body);
4850 Body_To_Analyze := Copy_Generic_Node (Original_Body, Empty, False);
4852 -- Set return type of function, which is also global and does not
4853 -- need to be resolved.
4855 if Ekind (Spec_Id) = E_Function then
4856 Set_Result_Definition (Specification (Body_To_Analyze),
4857 New_Occurrence_Of (Etype (Spec_Id), Sloc (N)));
4858 end if;
4860 if No (Declarations (N)) then
4861 Set_Declarations (N, New_List (Body_To_Analyze));
4862 else
4863 Append_To (Declarations (N), Body_To_Analyze);
4864 end if;
4866 Preanalyze (Body_To_Analyze);
4868 Push_Scope (Defining_Entity (Body_To_Analyze));
4869 Save_Global_References (Original_Body);
4870 End_Scope;
4871 Remove (Body_To_Analyze);
4873 -- Restore environment if previously saved
4875 if In_Instance
4876 and then Scope (Current_Scope) /= Standard_Standard
4877 then
4878 Restore_Env;
4879 end if;
4881 pragma Assert (No (Body_To_Inline (Decl)));
4882 Set_Body_To_Inline (Decl, Original_Body);
4883 Set_Ekind (Defining_Entity (Original_Body), Ekind (Spec_Id));
4884 end Build_Body_To_Inline;
4886 --------------------------
4887 -- Check_Body_To_Inline --
4888 --------------------------
4890 function Check_Body_To_Inline
4891 (N : Node_Id;
4892 Subp : Entity_Id) return Boolean
4894 Max_Size : constant := 10;
4895 Stat_Count : Integer := 0;
4897 function Has_Excluded_Declaration (Decls : List_Id) return Boolean;
4898 -- Check for declarations that make inlining not worthwhile
4900 function Has_Excluded_Statement (Stats : List_Id) return Boolean;
4901 -- Check for statements that make inlining not worthwhile: any
4902 -- tasking statement, nested at any level. Keep track of total
4903 -- number of elementary statements, as a measure of acceptable size.
4905 function Has_Pending_Instantiation return Boolean;
4906 -- Return True if some enclosing body contains instantiations that
4907 -- appear before the corresponding generic body.
4909 function Returns_Compile_Time_Constant (N : Node_Id) return Boolean;
4910 -- Return True if all the return statements of the function body N
4911 -- are simple return statements and return a compile time constant
4913 function Returns_Intrinsic_Function_Call (N : Node_Id) return Boolean;
4914 -- Return True if all the return statements of the function body N
4915 -- are simple return statements and return an intrinsic function call
4917 function Uses_Secondary_Stack (N : Node_Id) return Boolean;
4918 -- If the body of the subprogram includes a call that returns an
4919 -- unconstrained type, the secondary stack is involved, and it
4920 -- is not worth inlining.
4922 ------------------------------
4923 -- Has_Excluded_Declaration --
4924 ------------------------------
4926 function Has_Excluded_Declaration (Decls : List_Id) return Boolean is
4927 D : Node_Id;
4929 function Is_Unchecked_Conversion (D : Node_Id) return Boolean;
4930 -- Nested subprograms make a given body ineligible for inlining,
4931 -- but we make an exception for instantiations of unchecked
4932 -- conversion. The body has not been analyzed yet, so check the
4933 -- name, and verify that the visible entity with that name is the
4934 -- predefined unit.
4936 -----------------------------
4937 -- Is_Unchecked_Conversion --
4938 -----------------------------
4940 function Is_Unchecked_Conversion (D : Node_Id) return Boolean is
4941 Id : constant Node_Id := Name (D);
4942 Conv : Entity_Id;
4944 begin
4945 if Nkind (Id) = N_Identifier
4946 and then Chars (Id) = Name_Unchecked_Conversion
4947 then
4948 Conv := Current_Entity (Id);
4950 elsif Nkind_In (Id, N_Selected_Component, N_Expanded_Name)
4951 and then
4952 Chars (Selector_Name (Id)) = Name_Unchecked_Conversion
4953 then
4954 Conv := Current_Entity (Selector_Name (Id));
4955 else
4956 return False;
4957 end if;
4959 return Present (Conv)
4960 and then Is_Predefined_File_Name
4961 (Unit_File_Name (Get_Source_Unit (Conv)))
4962 and then Is_Intrinsic_Subprogram (Conv);
4963 end Is_Unchecked_Conversion;
4965 -- Start of processing for Has_Excluded_Declaration
4967 begin
4968 D := First (Decls);
4969 while Present (D) loop
4970 if (Nkind (D) = N_Function_Instantiation
4971 and then not Is_Unchecked_Conversion (D))
4972 or else Nkind_In (D, N_Protected_Type_Declaration,
4973 N_Package_Declaration,
4974 N_Package_Instantiation,
4975 N_Subprogram_Body,
4976 N_Procedure_Instantiation,
4977 N_Task_Type_Declaration)
4978 then
4979 Cannot_Inline
4980 ("cannot inline & (non-allowed declaration)?", D, Subp);
4982 return True;
4983 end if;
4985 Next (D);
4986 end loop;
4988 return False;
4989 end Has_Excluded_Declaration;
4991 ----------------------------
4992 -- Has_Excluded_Statement --
4993 ----------------------------
4995 function Has_Excluded_Statement (Stats : List_Id) return Boolean is
4996 S : Node_Id;
4997 E : Node_Id;
4999 begin
5000 S := First (Stats);
5001 while Present (S) loop
5002 Stat_Count := Stat_Count + 1;
5004 if Nkind_In (S, N_Abort_Statement,
5005 N_Asynchronous_Select,
5006 N_Conditional_Entry_Call,
5007 N_Delay_Relative_Statement,
5008 N_Delay_Until_Statement,
5009 N_Selective_Accept,
5010 N_Timed_Entry_Call)
5011 then
5012 Cannot_Inline
5013 ("cannot inline & (non-allowed statement)?", S, Subp);
5014 return True;
5016 elsif Nkind (S) = N_Block_Statement then
5017 if Present (Declarations (S))
5018 and then Has_Excluded_Declaration (Declarations (S))
5019 then
5020 return True;
5022 elsif Present (Handled_Statement_Sequence (S)) then
5023 if Present
5024 (Exception_Handlers (Handled_Statement_Sequence (S)))
5025 then
5026 Cannot_Inline
5027 ("cannot inline& (exception handler)?",
5028 First (Exception_Handlers
5029 (Handled_Statement_Sequence (S))),
5030 Subp);
5031 return True;
5033 elsif Has_Excluded_Statement
5034 (Statements (Handled_Statement_Sequence (S)))
5035 then
5036 return True;
5037 end if;
5038 end if;
5040 elsif Nkind (S) = N_Case_Statement then
5041 E := First (Alternatives (S));
5042 while Present (E) loop
5043 if Has_Excluded_Statement (Statements (E)) then
5044 return True;
5045 end if;
5047 Next (E);
5048 end loop;
5050 elsif Nkind (S) = N_If_Statement then
5051 if Has_Excluded_Statement (Then_Statements (S)) then
5052 return True;
5053 end if;
5055 if Present (Elsif_Parts (S)) then
5056 E := First (Elsif_Parts (S));
5057 while Present (E) loop
5058 if Has_Excluded_Statement (Then_Statements (E)) then
5059 return True;
5060 end if;
5061 Next (E);
5062 end loop;
5063 end if;
5065 if Present (Else_Statements (S))
5066 and then Has_Excluded_Statement (Else_Statements (S))
5067 then
5068 return True;
5069 end if;
5071 elsif Nkind (S) = N_Loop_Statement
5072 and then Has_Excluded_Statement (Statements (S))
5073 then
5074 return True;
5076 elsif Nkind (S) = N_Extended_Return_Statement then
5077 if Present (Handled_Statement_Sequence (S))
5078 and then
5079 Has_Excluded_Statement
5080 (Statements (Handled_Statement_Sequence (S)))
5081 then
5082 return True;
5084 elsif Present (Handled_Statement_Sequence (S))
5085 and then
5086 Present (Exception_Handlers
5087 (Handled_Statement_Sequence (S)))
5088 then
5089 Cannot_Inline
5090 ("cannot inline& (exception handler)?",
5091 First (Exception_Handlers
5092 (Handled_Statement_Sequence (S))),
5093 Subp);
5094 return True;
5095 end if;
5096 end if;
5098 Next (S);
5099 end loop;
5101 return False;
5102 end Has_Excluded_Statement;
5104 -------------------------------
5105 -- Has_Pending_Instantiation --
5106 -------------------------------
5108 function Has_Pending_Instantiation return Boolean is
5109 S : Entity_Id;
5111 begin
5112 S := Current_Scope;
5113 while Present (S) loop
5114 if Is_Compilation_Unit (S)
5115 or else Is_Child_Unit (S)
5116 then
5117 return False;
5119 elsif Ekind (S) = E_Package
5120 and then Has_Forward_Instantiation (S)
5121 then
5122 return True;
5123 end if;
5125 S := Scope (S);
5126 end loop;
5128 return False;
5129 end Has_Pending_Instantiation;
5131 ------------------------------------
5132 -- Returns_Compile_Time_Constant --
5133 ------------------------------------
5135 function Returns_Compile_Time_Constant (N : Node_Id) return Boolean is
5137 function Check_Return (N : Node_Id) return Traverse_Result;
5139 ------------------
5140 -- Check_Return --
5141 ------------------
5143 function Check_Return (N : Node_Id) return Traverse_Result is
5144 begin
5145 if Nkind (N) = N_Extended_Return_Statement then
5146 return Abandon;
5148 elsif Nkind (N) = N_Simple_Return_Statement then
5149 if Present (Expression (N)) then
5150 declare
5151 Orig_Expr : constant Node_Id :=
5152 Original_Node (Expression (N));
5154 begin
5155 if Nkind_In (Orig_Expr, N_Integer_Literal,
5156 N_Real_Literal,
5157 N_Character_Literal)
5158 then
5159 return OK;
5161 elsif Is_Entity_Name (Orig_Expr)
5162 and then Ekind (Entity (Orig_Expr)) = E_Constant
5163 and then Is_Static_Expression (Orig_Expr)
5164 then
5165 return OK;
5166 else
5167 return Abandon;
5168 end if;
5169 end;
5171 -- Expression has wrong form
5173 else
5174 return Abandon;
5175 end if;
5177 -- Continue analyzing statements
5179 else
5180 return OK;
5181 end if;
5182 end Check_Return;
5184 function Check_All_Returns is new Traverse_Func (Check_Return);
5186 -- Start of processing for Returns_Compile_Time_Constant
5188 begin
5189 return Check_All_Returns (N) = OK;
5190 end Returns_Compile_Time_Constant;
5192 --------------------------------------
5193 -- Returns_Intrinsic_Function_Call --
5194 --------------------------------------
5196 function Returns_Intrinsic_Function_Call
5197 (N : Node_Id) return Boolean
5199 function Check_Return (N : Node_Id) return Traverse_Result;
5201 ------------------
5202 -- Check_Return --
5203 ------------------
5205 function Check_Return (N : Node_Id) return Traverse_Result is
5206 begin
5207 if Nkind (N) = N_Extended_Return_Statement then
5208 return Abandon;
5210 elsif Nkind (N) = N_Simple_Return_Statement then
5211 if Present (Expression (N)) then
5212 declare
5213 Orig_Expr : constant Node_Id :=
5214 Original_Node (Expression (N));
5216 begin
5217 if Nkind (Orig_Expr) in N_Op
5218 and then Is_Intrinsic_Subprogram (Entity (Orig_Expr))
5219 then
5220 return OK;
5222 elsif Nkind (Orig_Expr) in N_Has_Entity
5223 and then Present (Entity (Orig_Expr))
5224 and then Ekind (Entity (Orig_Expr)) = E_Function
5225 and then Is_Inlined (Entity (Orig_Expr))
5226 then
5227 return OK;
5229 elsif Nkind (Orig_Expr) in N_Has_Entity
5230 and then Present (Entity (Orig_Expr))
5231 and then Is_Intrinsic_Subprogram (Entity (Orig_Expr))
5232 then
5233 return OK;
5235 else
5236 return Abandon;
5237 end if;
5238 end;
5240 -- Expression has wrong form
5242 else
5243 return Abandon;
5244 end if;
5246 -- Continue analyzing statements
5248 else
5249 return OK;
5250 end if;
5251 end Check_Return;
5253 function Check_All_Returns is new Traverse_Func (Check_Return);
5255 -- Start of processing for Returns_Intrinsic_Function_Call
5257 begin
5258 return Check_All_Returns (N) = OK;
5259 end Returns_Intrinsic_Function_Call;
5261 --------------------------
5262 -- Uses_Secondary_Stack --
5263 --------------------------
5265 function Uses_Secondary_Stack (N : Node_Id) return Boolean is
5267 function Check_Call (N : Node_Id) return Traverse_Result;
5268 -- Look for function calls that return an unconstrained type
5270 ----------------
5271 -- Check_Call --
5272 ----------------
5274 function Check_Call (N : Node_Id) return Traverse_Result is
5275 begin
5276 if Nkind (N) = N_Function_Call
5277 and then Is_Entity_Name (Name (N))
5278 and then Is_Composite_Type (Etype (Entity (Name (N))))
5279 and then not Is_Constrained (Etype (Entity (Name (N))))
5280 then
5281 Cannot_Inline
5282 ("cannot inline & (call returns unconstrained type)?",
5283 N, Subp);
5285 return Abandon;
5286 else
5287 return OK;
5288 end if;
5289 end Check_Call;
5291 function Check_Calls is new Traverse_Func (Check_Call);
5293 -- Start of processing for Uses_Secondary_Stack
5295 begin
5296 return Check_Calls (N) = Abandon;
5297 end Uses_Secondary_Stack;
5299 -- Local variables
5301 Decl : constant Node_Id := Unit_Declaration_Node (Spec_Id);
5302 May_Inline : constant Boolean :=
5303 Has_Pragma_Inline_Always (Spec_Id)
5304 or else (Has_Pragma_Inline (Spec_Id)
5305 and then ((Optimization_Level > 0
5306 and then Ekind (Spec_Id)
5307 = E_Function)
5308 or else Front_End_Inlining));
5309 Body_To_Analyze : Node_Id;
5311 -- Start of processing for Check_Body_To_Inline
5313 begin
5314 -- No action needed in stubs since the attribute Body_To_Inline
5315 -- is not available
5317 if Nkind (Decl) = N_Subprogram_Body_Stub then
5318 return False;
5320 -- Cannot build the body to inline if the attribute is already set.
5321 -- This attribute may have been set if this is a subprogram renaming
5322 -- declarations (see Freeze.Build_Renamed_Body).
5324 elsif Present (Body_To_Inline (Decl)) then
5325 return False;
5327 -- No action needed if the subprogram does not fulfill the minimum
5328 -- conditions to be inlined by the frontend
5330 elsif not May_Inline then
5331 return False;
5332 end if;
5334 -- Check excluded declarations
5336 if Present (Declarations (N))
5337 and then Has_Excluded_Declaration (Declarations (N))
5338 then
5339 return False;
5340 end if;
5342 -- Check excluded statements
5344 if Present (Handled_Statement_Sequence (N)) then
5345 if Present
5346 (Exception_Handlers (Handled_Statement_Sequence (N)))
5347 then
5348 Cannot_Inline
5349 ("cannot inline& (exception handler)?",
5350 First
5351 (Exception_Handlers (Handled_Statement_Sequence (N))),
5352 Subp);
5354 return False;
5356 elsif Has_Excluded_Statement
5357 (Statements (Handled_Statement_Sequence (N)))
5358 then
5359 return False;
5360 end if;
5361 end if;
5363 -- For backward compatibility, compiling under -gnatN we do not
5364 -- inline a subprogram that is too large, unless it is marked
5365 -- Inline_Always. This pragma does not suppress the other checks
5366 -- on inlining (forbidden declarations, handlers, etc).
5368 if Front_End_Inlining
5369 and then not Has_Pragma_Inline_Always (Subp)
5370 and then Stat_Count > Max_Size
5371 then
5372 Cannot_Inline ("cannot inline& (body too large)?", N, Subp);
5373 return False;
5374 end if;
5376 -- If some enclosing body contains instantiations that appear before
5377 -- the corresponding generic body, the enclosing body has a freeze
5378 -- node so that it can be elaborated after the generic itself. This
5379 -- might conflict with subsequent inlinings, so that it is unsafe to
5380 -- try to inline in such a case.
5382 if Has_Pending_Instantiation then
5383 Cannot_Inline
5384 ("cannot inline& (forward instance within enclosing body)?",
5385 N, Subp);
5387 return False;
5388 end if;
5390 -- Generate and preanalyze the body to inline (needed to perform
5391 -- the rest of the checks)
5393 Generate_Body_To_Inline (N, Body_To_Analyze);
5395 if Ekind (Subp) = E_Function then
5396 Set_Result_Definition (Specification (Body_To_Analyze),
5397 New_Occurrence_Of (Etype (Subp), Sloc (N)));
5398 end if;
5400 -- Nest the body to analyze within the real one
5402 if No (Declarations (N)) then
5403 Set_Declarations (N, New_List (Body_To_Analyze));
5404 else
5405 Append_To (Declarations (N), Body_To_Analyze);
5406 end if;
5408 Preanalyze (Body_To_Analyze);
5409 Remove (Body_To_Analyze);
5411 -- Keep separate checks needed when compiling without optimizations
5413 if Optimization_Level = 0
5415 -- AAMP and VM targets have no support for inlining in the backend
5416 -- and hence we use frontend inlining at all optimization levels.
5418 or else AAMP_On_Target
5419 or else VM_Target /= No_VM
5420 then
5421 -- Cannot inline functions whose body has a call that returns an
5422 -- unconstrained type since the secondary stack is involved, and
5423 -- it is not worth inlining.
5425 if Uses_Secondary_Stack (Body_To_Analyze) then
5426 return False;
5428 -- Cannot inline functions that return controlled types since
5429 -- controlled actions interfere in complex ways with inlining.
5431 elsif Ekind (Subp) = E_Function
5432 and then Needs_Finalization (Etype (Subp))
5433 then
5434 Cannot_Inline
5435 ("cannot inline & (controlled return type)?", N, Subp);
5436 return False;
5438 elsif Returns_Unconstrained_Type (Subp) then
5439 Cannot_Inline
5440 ("cannot inline & (unconstrained return type)?", N, Subp);
5441 return False;
5442 end if;
5444 -- Compiling with optimizations enabled
5446 else
5447 -- Procedures are never frontend inlined in this case
5449 if Ekind (Subp) /= E_Function then
5450 return False;
5452 -- Functions returning unconstrained types are tested
5453 -- separately (see Can_Split_Unconstrained_Function).
5455 elsif Returns_Unconstrained_Type (Subp) then
5456 null;
5458 -- Check supported cases
5460 elsif not Returns_Compile_Time_Constant (Body_To_Analyze)
5461 and then Convention (Subp) /= Convention_Intrinsic
5462 and then not Returns_Intrinsic_Function_Call (Body_To_Analyze)
5463 then
5464 return False;
5465 end if;
5466 end if;
5468 return True;
5469 end Check_Body_To_Inline;
5471 --------------------------------------
5472 -- Can_Split_Unconstrained_Function --
5473 --------------------------------------
5475 function Can_Split_Unconstrained_Function (N : Node_Id) return Boolean
5477 Ret_Node : constant Node_Id :=
5478 First (Statements (Handled_Statement_Sequence (N)));
5479 D : Node_Id;
5481 begin
5482 -- No user defined declarations allowed in the function except inside
5483 -- the unique return statement; implicit labels are the only allowed
5484 -- declarations.
5486 if not Is_Empty_List (Declarations (N)) then
5487 D := First (Declarations (N));
5488 while Present (D) loop
5489 if Nkind (D) /= N_Implicit_Label_Declaration then
5490 return False;
5491 end if;
5493 Next (D);
5494 end loop;
5495 end if;
5497 -- We only split the inlined function when we are generating the code
5498 -- of its body; otherwise we leave duplicated split subprograms in
5499 -- the tree which (if referenced) generate wrong references at link
5500 -- time.
5502 return In_Extended_Main_Code_Unit (N)
5503 and then Present (Ret_Node)
5504 and then Nkind (Ret_Node) = N_Extended_Return_Statement
5505 and then No (Next (Ret_Node))
5506 and then Present (Handled_Statement_Sequence (Ret_Node));
5507 end Can_Split_Unconstrained_Function;
5509 -----------------------------
5510 -- Generate_Body_To_Inline --
5511 -----------------------------
5513 procedure Generate_Body_To_Inline
5514 (N : Node_Id;
5515 Body_To_Inline : out Node_Id)
5517 procedure Remove_Pragmas (N : Node_Id);
5518 -- Remove occurrences of pragmas that may reference the formals of
5519 -- N. The analysis of the non-inlined body will handle these pragmas
5520 -- properly.
5522 --------------------
5523 -- Remove_Pragmas --
5524 --------------------
5526 procedure Remove_Pragmas (N : Node_Id) is
5527 Decl : Node_Id;
5528 Nxt : Node_Id;
5530 begin
5531 Decl := First (Declarations (N));
5532 while Present (Decl) loop
5533 Nxt := Next (Decl);
5535 if Nkind (Decl) = N_Pragma
5536 and then Nam_In (Pragma_Name (Decl), Name_Unreferenced,
5537 Name_Unmodified)
5538 then
5539 Remove (Decl);
5540 end if;
5542 Decl := Nxt;
5543 end loop;
5544 end Remove_Pragmas;
5546 -- Start of processing for Generate_Body_To_Inline
5548 begin
5549 -- Within an instance, the body to inline must be treated as a nested
5550 -- generic, so that the proper global references are preserved.
5552 -- Note that we do not do this at the library level, because it
5553 -- is not needed, and furthermore this causes trouble if front
5554 -- end inlining is activated (-gnatN).
5556 if In_Instance
5557 and then Scope (Current_Scope) /= Standard_Standard
5558 then
5559 Body_To_Inline := Copy_Generic_Node (N, Empty, True);
5560 else
5561 Body_To_Inline := Copy_Separate_Tree (N);
5562 end if;
5564 -- A pragma Unreferenced or pragma Unmodified that mentions a formal
5565 -- parameter has no meaning when the body is inlined and the formals
5566 -- are rewritten. Remove it from body to inline. The analysis of the
5567 -- non-inlined body will handle the pragma properly.
5569 Remove_Pragmas (Body_To_Inline);
5571 -- We need to capture references to the formals in order
5572 -- to substitute the actuals at the point of inlining, i.e.
5573 -- instantiation. To treat the formals as globals to the body to
5574 -- inline, we nest it within a dummy parameterless subprogram,
5575 -- declared within the real one.
5577 Set_Parameter_Specifications
5578 (Specification (Body_To_Inline), No_List);
5580 -- A new internal name is associated with Body_To_Inline to avoid
5581 -- conflicts when the non-inlined body N is analyzed.
5583 Set_Defining_Unit_Name (Specification (Body_To_Inline),
5584 Make_Defining_Identifier (Sloc (N), New_Internal_Name ('P')));
5585 Set_Corresponding_Spec (Body_To_Inline, Empty);
5586 end Generate_Body_To_Inline;
5588 ----------------------------------
5589 -- Split_Unconstrained_Function --
5590 ----------------------------------
5592 procedure Split_Unconstrained_Function
5593 (N : Node_Id;
5594 Spec_Id : Entity_Id)
5596 Loc : constant Source_Ptr := Sloc (N);
5597 Ret_Node : constant Node_Id :=
5598 First (Statements (Handled_Statement_Sequence (N)));
5599 Ret_Obj : constant Node_Id :=
5600 First (Return_Object_Declarations (Ret_Node));
5602 procedure Build_Procedure
5603 (Proc_Id : out Entity_Id;
5604 Decl_List : out List_Id);
5605 -- Build a procedure containing the statements found in the extended
5606 -- return statement of the unconstrained function body N.
5608 procedure Build_Procedure
5609 (Proc_Id : out Entity_Id;
5610 Decl_List : out List_Id)
5612 Formal : Entity_Id;
5613 Formal_List : constant List_Id := New_List;
5614 Proc_Spec : Node_Id;
5615 Proc_Body : Node_Id;
5616 Subp_Name : constant Name_Id := New_Internal_Name ('F');
5617 Body_Decl_List : List_Id := No_List;
5618 Param_Type : Node_Id;
5620 begin
5621 if Nkind (Object_Definition (Ret_Obj)) = N_Identifier then
5622 Param_Type := New_Copy (Object_Definition (Ret_Obj));
5623 else
5624 Param_Type :=
5625 New_Copy (Subtype_Mark (Object_Definition (Ret_Obj)));
5626 end if;
5628 Append_To (Formal_List,
5629 Make_Parameter_Specification (Loc,
5630 Defining_Identifier =>
5631 Make_Defining_Identifier (Loc,
5632 Chars => Chars (Defining_Identifier (Ret_Obj))),
5633 In_Present => False,
5634 Out_Present => True,
5635 Null_Exclusion_Present => False,
5636 Parameter_Type => Param_Type));
5638 Formal := First_Formal (Spec_Id);
5639 while Present (Formal) loop
5640 Append_To (Formal_List,
5641 Make_Parameter_Specification (Loc,
5642 Defining_Identifier =>
5643 Make_Defining_Identifier (Sloc (Formal),
5644 Chars => Chars (Formal)),
5645 In_Present => In_Present (Parent (Formal)),
5646 Out_Present => Out_Present (Parent (Formal)),
5647 Null_Exclusion_Present =>
5648 Null_Exclusion_Present (Parent (Formal)),
5649 Parameter_Type =>
5650 New_Occurrence_Of (Etype (Formal), Loc),
5651 Expression =>
5652 Copy_Separate_Tree (Expression (Parent (Formal)))));
5654 Next_Formal (Formal);
5655 end loop;
5657 Proc_Id :=
5658 Make_Defining_Identifier (Loc, Chars => Subp_Name);
5660 Proc_Spec :=
5661 Make_Procedure_Specification (Loc,
5662 Defining_Unit_Name => Proc_Id,
5663 Parameter_Specifications => Formal_List);
5665 Decl_List := New_List;
5667 Append_To (Decl_List,
5668 Make_Subprogram_Declaration (Loc, Proc_Spec));
5670 -- Can_Convert_Unconstrained_Function checked that the function
5671 -- has no local declarations except implicit label declarations.
5672 -- Copy these declarations to the built procedure.
5674 if Present (Declarations (N)) then
5675 Body_Decl_List := New_List;
5677 declare
5678 D : Node_Id;
5679 New_D : Node_Id;
5681 begin
5682 D := First (Declarations (N));
5683 while Present (D) loop
5684 pragma Assert (Nkind (D) = N_Implicit_Label_Declaration);
5686 New_D :=
5687 Make_Implicit_Label_Declaration (Loc,
5688 Make_Defining_Identifier (Loc,
5689 Chars => Chars (Defining_Identifier (D))),
5690 Label_Construct => Empty);
5691 Append_To (Body_Decl_List, New_D);
5693 Next (D);
5694 end loop;
5695 end;
5696 end if;
5698 pragma Assert (Present (Handled_Statement_Sequence (Ret_Node)));
5700 Proc_Body :=
5701 Make_Subprogram_Body (Loc,
5702 Specification => Copy_Separate_Tree (Proc_Spec),
5703 Declarations => Body_Decl_List,
5704 Handled_Statement_Sequence =>
5705 Copy_Separate_Tree (Handled_Statement_Sequence (Ret_Node)));
5707 Set_Defining_Unit_Name (Specification (Proc_Body),
5708 Make_Defining_Identifier (Loc, Subp_Name));
5710 Append_To (Decl_List, Proc_Body);
5711 end Build_Procedure;
5713 -- Local variables
5715 New_Obj : constant Node_Id := Copy_Separate_Tree (Ret_Obj);
5716 Blk_Stmt : Node_Id;
5717 Proc_Id : Entity_Id;
5718 Proc_Call : Node_Id;
5720 -- Start of processing for Split_Unconstrained_Function
5722 begin
5723 -- Build the associated procedure, analyze it and insert it before
5724 -- the function body N
5726 declare
5727 Scope : constant Entity_Id := Current_Scope;
5728 Decl_List : List_Id;
5729 begin
5730 Pop_Scope;
5731 Build_Procedure (Proc_Id, Decl_List);
5732 Insert_Actions (N, Decl_List);
5733 Push_Scope (Scope);
5734 end;
5736 -- Build the call to the generated procedure
5738 declare
5739 Actual_List : constant List_Id := New_List;
5740 Formal : Entity_Id;
5742 begin
5743 Append_To (Actual_List,
5744 New_Occurrence_Of (Defining_Identifier (New_Obj), Loc));
5746 Formal := First_Formal (Spec_Id);
5747 while Present (Formal) loop
5748 Append_To (Actual_List, New_Occurrence_Of (Formal, Loc));
5750 -- Avoid spurious warning on unreferenced formals
5752 Set_Referenced (Formal);
5753 Next_Formal (Formal);
5754 end loop;
5756 Proc_Call :=
5757 Make_Procedure_Call_Statement (Loc,
5758 Name => New_Occurrence_Of (Proc_Id, Loc),
5759 Parameter_Associations => Actual_List);
5760 end;
5762 -- Generate
5764 -- declare
5765 -- New_Obj : ...
5766 -- begin
5767 -- main_1__F1b (New_Obj, ...);
5768 -- return Obj;
5769 -- end B10b;
5771 Blk_Stmt :=
5772 Make_Block_Statement (Loc,
5773 Declarations => New_List (New_Obj),
5774 Handled_Statement_Sequence =>
5775 Make_Handled_Sequence_Of_Statements (Loc,
5776 Statements => New_List (
5778 Proc_Call,
5780 Make_Simple_Return_Statement (Loc,
5781 Expression =>
5782 New_Occurrence_Of
5783 (Defining_Identifier (New_Obj), Loc)))));
5785 Rewrite (Ret_Node, Blk_Stmt);
5786 end Split_Unconstrained_Function;
5788 -- Start of processing for Check_And_Build_Body_To_Inline
5790 begin
5791 -- Do not inline any subprogram that contains nested subprograms, since
5792 -- the backend inlining circuit seems to generate uninitialized
5793 -- references in this case. We know this happens in the case of front
5794 -- end ZCX support, but it also appears it can happen in other cases as
5795 -- well. The backend often rejects attempts to inline in the case of
5796 -- nested procedures anyway, so little if anything is lost by this.
5797 -- Note that this is test is for the benefit of the back-end. There is
5798 -- a separate test for front-end inlining that also rejects nested
5799 -- subprograms.
5801 -- Do not do this test if errors have been detected, because in some
5802 -- error cases, this code blows up, and we don't need it anyway if
5803 -- there have been errors, since we won't get to the linker anyway.
5805 if Comes_From_Source (Body_Id)
5806 and then (Has_Pragma_Inline_Always (Spec_Id)
5807 or else Optimization_Level > 0)
5808 and then Serious_Errors_Detected = 0
5809 then
5810 declare
5811 P_Ent : Node_Id;
5813 begin
5814 P_Ent := Body_Id;
5815 loop
5816 P_Ent := Scope (P_Ent);
5817 exit when No (P_Ent) or else P_Ent = Standard_Standard;
5819 if Is_Subprogram (P_Ent) then
5820 Set_Is_Inlined (P_Ent, False);
5822 if Comes_From_Source (P_Ent)
5823 and then Has_Pragma_Inline (P_Ent)
5824 then
5825 Cannot_Inline
5826 ("cannot inline& (nested subprogram)?", N, P_Ent,
5827 Is_Serious => True);
5828 end if;
5829 end if;
5830 end loop;
5831 end;
5832 end if;
5834 -- Build the body to inline only if really needed
5836 if Check_Body_To_Inline (N, Spec_Id)
5837 and then Serious_Errors_Detected = 0
5838 then
5839 if Returns_Unconstrained_Type (Spec_Id) then
5840 if Can_Split_Unconstrained_Function (N) then
5841 Split_Unconstrained_Function (N, Spec_Id);
5842 Build_Body_To_Inline (N, Spec_Id);
5843 Set_Is_Inlined (Spec_Id);
5844 end if;
5845 else
5846 Build_Body_To_Inline (N, Spec_Id);
5847 Set_Is_Inlined (Spec_Id);
5848 end if;
5849 end if;
5850 end Check_And_Build_Body_To_Inline;
5852 -----------------------
5853 -- Check_Conformance --
5854 -----------------------
5856 procedure Check_Conformance
5857 (New_Id : Entity_Id;
5858 Old_Id : Entity_Id;
5859 Ctype : Conformance_Type;
5860 Errmsg : Boolean;
5861 Conforms : out Boolean;
5862 Err_Loc : Node_Id := Empty;
5863 Get_Inst : Boolean := False;
5864 Skip_Controlling_Formals : Boolean := False)
5866 procedure Conformance_Error (Msg : String; N : Node_Id := New_Id);
5867 -- Sets Conforms to False. If Errmsg is False, then that's all it does.
5868 -- If Errmsg is True, then processing continues to post an error message
5869 -- for conformance error on given node. Two messages are output. The
5870 -- first message points to the previous declaration with a general "no
5871 -- conformance" message. The second is the detailed reason, supplied as
5872 -- Msg. The parameter N provide information for a possible & insertion
5873 -- in the message, and also provides the location for posting the
5874 -- message in the absence of a specified Err_Loc location.
5876 -----------------------
5877 -- Conformance_Error --
5878 -----------------------
5880 procedure Conformance_Error (Msg : String; N : Node_Id := New_Id) is
5881 Enode : Node_Id;
5883 begin
5884 Conforms := False;
5886 if Errmsg then
5887 if No (Err_Loc) then
5888 Enode := N;
5889 else
5890 Enode := Err_Loc;
5891 end if;
5893 Error_Msg_Sloc := Sloc (Old_Id);
5895 case Ctype is
5896 when Type_Conformant =>
5897 Error_Msg_N -- CODEFIX
5898 ("not type conformant with declaration#!", Enode);
5900 when Mode_Conformant =>
5901 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
5902 Error_Msg_N
5903 ("not mode conformant with operation inherited#!",
5904 Enode);
5905 else
5906 Error_Msg_N
5907 ("not mode conformant with declaration#!", Enode);
5908 end if;
5910 when Subtype_Conformant =>
5911 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
5912 Error_Msg_N
5913 ("not subtype conformant with operation inherited#!",
5914 Enode);
5915 else
5916 Error_Msg_N
5917 ("not subtype conformant with declaration#!", Enode);
5918 end if;
5920 when Fully_Conformant =>
5921 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
5922 Error_Msg_N -- CODEFIX
5923 ("not fully conformant with operation inherited#!",
5924 Enode);
5925 else
5926 Error_Msg_N -- CODEFIX
5927 ("not fully conformant with declaration#!", Enode);
5928 end if;
5929 end case;
5931 Error_Msg_NE (Msg, Enode, N);
5932 end if;
5933 end Conformance_Error;
5935 -- Local Variables
5937 Old_Type : constant Entity_Id := Etype (Old_Id);
5938 New_Type : constant Entity_Id := Etype (New_Id);
5939 Old_Formal : Entity_Id;
5940 New_Formal : Entity_Id;
5941 Access_Types_Match : Boolean;
5942 Old_Formal_Base : Entity_Id;
5943 New_Formal_Base : Entity_Id;
5945 -- Start of processing for Check_Conformance
5947 begin
5948 Conforms := True;
5950 -- We need a special case for operators, since they don't appear
5951 -- explicitly.
5953 if Ctype = Type_Conformant then
5954 if Ekind (New_Id) = E_Operator
5955 and then Operator_Matches_Spec (New_Id, Old_Id)
5956 then
5957 return;
5958 end if;
5959 end if;
5961 -- If both are functions/operators, check return types conform
5963 if Old_Type /= Standard_Void_Type
5964 and then New_Type /= Standard_Void_Type
5965 then
5967 -- If we are checking interface conformance we omit controlling
5968 -- arguments and result, because we are only checking the conformance
5969 -- of the remaining parameters.
5971 if Has_Controlling_Result (Old_Id)
5972 and then Has_Controlling_Result (New_Id)
5973 and then Skip_Controlling_Formals
5974 then
5975 null;
5977 elsif not Conforming_Types (Old_Type, New_Type, Ctype, Get_Inst) then
5978 if Ctype >= Subtype_Conformant
5979 and then not Predicates_Match (Old_Type, New_Type)
5980 then
5981 Conformance_Error
5982 ("\predicate of return type does not match!", New_Id);
5983 else
5984 Conformance_Error
5985 ("\return type does not match!", New_Id);
5986 end if;
5988 return;
5989 end if;
5991 -- Ada 2005 (AI-231): In case of anonymous access types check the
5992 -- null-exclusion and access-to-constant attributes match.
5994 if Ada_Version >= Ada_2005
5995 and then Ekind (Etype (Old_Type)) = E_Anonymous_Access_Type
5996 and then
5997 (Can_Never_Be_Null (Old_Type) /= Can_Never_Be_Null (New_Type)
5998 or else Is_Access_Constant (Etype (Old_Type)) /=
5999 Is_Access_Constant (Etype (New_Type)))
6000 then
6001 Conformance_Error ("\return type does not match!", New_Id);
6002 return;
6003 end if;
6005 -- If either is a function/operator and the other isn't, error
6007 elsif Old_Type /= Standard_Void_Type
6008 or else New_Type /= Standard_Void_Type
6009 then
6010 Conformance_Error ("\functions can only match functions!", New_Id);
6011 return;
6012 end if;
6014 -- In subtype conformant case, conventions must match (RM 6.3.1(16)).
6015 -- If this is a renaming as body, refine error message to indicate that
6016 -- the conflict is with the original declaration. If the entity is not
6017 -- frozen, the conventions don't have to match, the one of the renamed
6018 -- entity is inherited.
6020 if Ctype >= Subtype_Conformant then
6021 if Convention (Old_Id) /= Convention (New_Id) then
6022 if not Is_Frozen (New_Id) then
6023 null;
6025 elsif Present (Err_Loc)
6026 and then Nkind (Err_Loc) = N_Subprogram_Renaming_Declaration
6027 and then Present (Corresponding_Spec (Err_Loc))
6028 then
6029 Error_Msg_Name_1 := Chars (New_Id);
6030 Error_Msg_Name_2 :=
6031 Name_Ada + Convention_Id'Pos (Convention (New_Id));
6032 Conformance_Error ("\prior declaration for% has convention %!");
6034 else
6035 Conformance_Error ("\calling conventions do not match!");
6036 end if;
6038 return;
6040 elsif Is_Formal_Subprogram (Old_Id)
6041 or else Is_Formal_Subprogram (New_Id)
6042 then
6043 Conformance_Error ("\formal subprograms not allowed!");
6044 return;
6045 end if;
6046 end if;
6048 -- Deal with parameters
6050 -- Note: we use the entity information, rather than going directly
6051 -- to the specification in the tree. This is not only simpler, but
6052 -- absolutely necessary for some cases of conformance tests between
6053 -- operators, where the declaration tree simply does not exist.
6055 Old_Formal := First_Formal (Old_Id);
6056 New_Formal := First_Formal (New_Id);
6057 while Present (Old_Formal) and then Present (New_Formal) loop
6058 if Is_Controlling_Formal (Old_Formal)
6059 and then Is_Controlling_Formal (New_Formal)
6060 and then Skip_Controlling_Formals
6061 then
6062 -- The controlling formals will have different types when
6063 -- comparing an interface operation with its match, but both
6064 -- or neither must be access parameters.
6066 if Is_Access_Type (Etype (Old_Formal))
6068 Is_Access_Type (Etype (New_Formal))
6069 then
6070 goto Skip_Controlling_Formal;
6071 else
6072 Conformance_Error
6073 ("\access parameter does not match!", New_Formal);
6074 end if;
6075 end if;
6077 -- Ada 2012: Mode conformance also requires that formal parameters
6078 -- be both aliased, or neither.
6080 if Ctype >= Mode_Conformant and then Ada_Version >= Ada_2012 then
6081 if Is_Aliased (Old_Formal) /= Is_Aliased (New_Formal) then
6082 Conformance_Error
6083 ("\aliased parameter mismatch!", New_Formal);
6084 end if;
6085 end if;
6087 if Ctype = Fully_Conformant then
6089 -- Names must match. Error message is more accurate if we do
6090 -- this before checking that the types of the formals match.
6092 if Chars (Old_Formal) /= Chars (New_Formal) then
6093 Conformance_Error ("\name & does not match!", New_Formal);
6095 -- Set error posted flag on new formal as well to stop
6096 -- junk cascaded messages in some cases.
6098 Set_Error_Posted (New_Formal);
6099 return;
6100 end if;
6102 -- Null exclusion must match
6104 if Null_Exclusion_Present (Parent (Old_Formal))
6106 Null_Exclusion_Present (Parent (New_Formal))
6107 then
6108 -- Only give error if both come from source. This should be
6109 -- investigated some time, since it should not be needed ???
6111 if Comes_From_Source (Old_Formal)
6112 and then
6113 Comes_From_Source (New_Formal)
6114 then
6115 Conformance_Error
6116 ("\null exclusion for & does not match", New_Formal);
6118 -- Mark error posted on the new formal to avoid duplicated
6119 -- complaint about types not matching.
6121 Set_Error_Posted (New_Formal);
6122 end if;
6123 end if;
6124 end if;
6126 -- Ada 2005 (AI-423): Possible access [sub]type and itype match. This
6127 -- case occurs whenever a subprogram is being renamed and one of its
6128 -- parameters imposes a null exclusion. For example:
6130 -- type T is null record;
6131 -- type Acc_T is access T;
6132 -- subtype Acc_T_Sub is Acc_T;
6134 -- procedure P (Obj : not null Acc_T_Sub); -- itype
6135 -- procedure Ren_P (Obj : Acc_T_Sub) -- subtype
6136 -- renames P;
6138 Old_Formal_Base := Etype (Old_Formal);
6139 New_Formal_Base := Etype (New_Formal);
6141 if Get_Inst then
6142 Old_Formal_Base := Get_Instance_Of (Old_Formal_Base);
6143 New_Formal_Base := Get_Instance_Of (New_Formal_Base);
6144 end if;
6146 Access_Types_Match := Ada_Version >= Ada_2005
6148 -- Ensure that this rule is only applied when New_Id is a
6149 -- renaming of Old_Id.
6151 and then Nkind (Parent (Parent (New_Id))) =
6152 N_Subprogram_Renaming_Declaration
6153 and then Nkind (Name (Parent (Parent (New_Id)))) in N_Has_Entity
6154 and then Present (Entity (Name (Parent (Parent (New_Id)))))
6155 and then Entity (Name (Parent (Parent (New_Id)))) = Old_Id
6157 -- Now handle the allowed access-type case
6159 and then Is_Access_Type (Old_Formal_Base)
6160 and then Is_Access_Type (New_Formal_Base)
6162 -- The type kinds must match. The only exception occurs with
6163 -- multiple generics of the form:
6165 -- generic generic
6166 -- type F is private; type A is private;
6167 -- type F_Ptr is access F; type A_Ptr is access A;
6168 -- with proc F_P (X : F_Ptr); with proc A_P (X : A_Ptr);
6169 -- package F_Pack is ... package A_Pack is
6170 -- package F_Inst is
6171 -- new F_Pack (A, A_Ptr, A_P);
6173 -- When checking for conformance between the parameters of A_P
6174 -- and F_P, the type kinds of F_Ptr and A_Ptr will not match
6175 -- because the compiler has transformed A_Ptr into a subtype of
6176 -- F_Ptr. We catch this case in the code below.
6178 and then (Ekind (Old_Formal_Base) = Ekind (New_Formal_Base)
6179 or else
6180 (Is_Generic_Type (Old_Formal_Base)
6181 and then Is_Generic_Type (New_Formal_Base)
6182 and then Is_Internal (New_Formal_Base)
6183 and then Etype (Etype (New_Formal_Base)) =
6184 Old_Formal_Base))
6185 and then Directly_Designated_Type (Old_Formal_Base) =
6186 Directly_Designated_Type (New_Formal_Base)
6187 and then ((Is_Itype (Old_Formal_Base)
6188 and then Can_Never_Be_Null (Old_Formal_Base))
6189 or else
6190 (Is_Itype (New_Formal_Base)
6191 and then Can_Never_Be_Null (New_Formal_Base)));
6193 -- Types must always match. In the visible part of an instance,
6194 -- usual overloading rules for dispatching operations apply, and
6195 -- we check base types (not the actual subtypes).
6197 if In_Instance_Visible_Part
6198 and then Is_Dispatching_Operation (New_Id)
6199 then
6200 if not Conforming_Types
6201 (T1 => Base_Type (Etype (Old_Formal)),
6202 T2 => Base_Type (Etype (New_Formal)),
6203 Ctype => Ctype,
6204 Get_Inst => Get_Inst)
6205 and then not Access_Types_Match
6206 then
6207 Conformance_Error ("\type of & does not match!", New_Formal);
6208 return;
6209 end if;
6211 elsif not Conforming_Types
6212 (T1 => Old_Formal_Base,
6213 T2 => New_Formal_Base,
6214 Ctype => Ctype,
6215 Get_Inst => Get_Inst)
6216 and then not Access_Types_Match
6217 then
6218 -- Don't give error message if old type is Any_Type. This test
6219 -- avoids some cascaded errors, e.g. in case of a bad spec.
6221 if Errmsg and then Old_Formal_Base = Any_Type then
6222 Conforms := False;
6223 else
6224 if Ctype >= Subtype_Conformant
6225 and then
6226 not Predicates_Match (Old_Formal_Base, New_Formal_Base)
6227 then
6228 Conformance_Error
6229 ("\predicate of & does not match!", New_Formal);
6230 else
6231 Conformance_Error
6232 ("\type of & does not match!", New_Formal);
6233 end if;
6234 end if;
6236 return;
6237 end if;
6239 -- For mode conformance, mode must match
6241 if Ctype >= Mode_Conformant then
6242 if Parameter_Mode (Old_Formal) /= Parameter_Mode (New_Formal) then
6243 if not Ekind_In (New_Id, E_Function, E_Procedure)
6244 or else not Is_Primitive_Wrapper (New_Id)
6245 then
6246 Conformance_Error ("\mode of & does not match!", New_Formal);
6248 else
6249 declare
6250 T : constant Entity_Id := Find_Dispatching_Type (New_Id);
6251 begin
6252 if Is_Protected_Type
6253 (Corresponding_Concurrent_Type (T))
6254 then
6255 Error_Msg_PT (T, New_Id);
6256 else
6257 Conformance_Error
6258 ("\mode of & does not match!", New_Formal);
6259 end if;
6260 end;
6261 end if;
6263 return;
6265 -- Part of mode conformance for access types is having the same
6266 -- constant modifier.
6268 elsif Access_Types_Match
6269 and then Is_Access_Constant (Old_Formal_Base) /=
6270 Is_Access_Constant (New_Formal_Base)
6271 then
6272 Conformance_Error
6273 ("\constant modifier does not match!", New_Formal);
6274 return;
6275 end if;
6276 end if;
6278 if Ctype >= Subtype_Conformant then
6280 -- Ada 2005 (AI-231): In case of anonymous access types check
6281 -- the null-exclusion and access-to-constant attributes must
6282 -- match. For null exclusion, we test the types rather than the
6283 -- formals themselves, since the attribute is only set reliably
6284 -- on the formals in the Ada 95 case, and we exclude the case
6285 -- where Old_Formal is marked as controlling, to avoid errors
6286 -- when matching completing bodies with dispatching declarations
6287 -- (access formals in the bodies aren't marked Can_Never_Be_Null).
6289 if Ada_Version >= Ada_2005
6290 and then Ekind (Etype (Old_Formal)) = E_Anonymous_Access_Type
6291 and then Ekind (Etype (New_Formal)) = E_Anonymous_Access_Type
6292 and then
6293 ((Can_Never_Be_Null (Etype (Old_Formal)) /=
6294 Can_Never_Be_Null (Etype (New_Formal))
6295 and then
6296 not Is_Controlling_Formal (Old_Formal))
6297 or else
6298 Is_Access_Constant (Etype (Old_Formal)) /=
6299 Is_Access_Constant (Etype (New_Formal)))
6301 -- Do not complain if error already posted on New_Formal. This
6302 -- avoids some redundant error messages.
6304 and then not Error_Posted (New_Formal)
6305 then
6306 -- It is allowed to omit the null-exclusion in case of stream
6307 -- attribute subprograms. We recognize stream subprograms
6308 -- through their TSS-generated suffix.
6310 declare
6311 TSS_Name : constant TSS_Name_Type := Get_TSS_Name (New_Id);
6313 begin
6314 if TSS_Name /= TSS_Stream_Read
6315 and then TSS_Name /= TSS_Stream_Write
6316 and then TSS_Name /= TSS_Stream_Input
6317 and then TSS_Name /= TSS_Stream_Output
6318 then
6319 -- Here we have a definite conformance error. It is worth
6320 -- special casing the error message for the case of a
6321 -- controlling formal (which excludes null).
6323 if Is_Controlling_Formal (New_Formal) then
6324 Error_Msg_Node_2 := Scope (New_Formal);
6325 Conformance_Error
6326 ("\controlling formal& of& excludes null, "
6327 & "declaration must exclude null as well",
6328 New_Formal);
6330 -- Normal case (couldn't we give more detail here???)
6332 else
6333 Conformance_Error
6334 ("\type of & does not match!", New_Formal);
6335 end if;
6337 return;
6338 end if;
6339 end;
6340 end if;
6341 end if;
6343 -- Full conformance checks
6345 if Ctype = Fully_Conformant then
6347 -- We have checked already that names match
6349 if Parameter_Mode (Old_Formal) = E_In_Parameter then
6351 -- Check default expressions for in parameters
6353 declare
6354 NewD : constant Boolean :=
6355 Present (Default_Value (New_Formal));
6356 OldD : constant Boolean :=
6357 Present (Default_Value (Old_Formal));
6358 begin
6359 if NewD or OldD then
6361 -- The old default value has been analyzed because the
6362 -- current full declaration will have frozen everything
6363 -- before. The new default value has not been analyzed,
6364 -- so analyze it now before we check for conformance.
6366 if NewD then
6367 Push_Scope (New_Id);
6368 Preanalyze_Spec_Expression
6369 (Default_Value (New_Formal), Etype (New_Formal));
6370 End_Scope;
6371 end if;
6373 if not (NewD and OldD)
6374 or else not Fully_Conformant_Expressions
6375 (Default_Value (Old_Formal),
6376 Default_Value (New_Formal))
6377 then
6378 Conformance_Error
6379 ("\default expression for & does not match!",
6380 New_Formal);
6381 return;
6382 end if;
6383 end if;
6384 end;
6385 end if;
6386 end if;
6388 -- A couple of special checks for Ada 83 mode. These checks are
6389 -- skipped if either entity is an operator in package Standard,
6390 -- or if either old or new instance is not from the source program.
6392 if Ada_Version = Ada_83
6393 and then Sloc (Old_Id) > Standard_Location
6394 and then Sloc (New_Id) > Standard_Location
6395 and then Comes_From_Source (Old_Id)
6396 and then Comes_From_Source (New_Id)
6397 then
6398 declare
6399 Old_Param : constant Node_Id := Declaration_Node (Old_Formal);
6400 New_Param : constant Node_Id := Declaration_Node (New_Formal);
6402 begin
6403 -- Explicit IN must be present or absent in both cases. This
6404 -- test is required only in the full conformance case.
6406 if In_Present (Old_Param) /= In_Present (New_Param)
6407 and then Ctype = Fully_Conformant
6408 then
6409 Conformance_Error
6410 ("\(Ada 83) IN must appear in both declarations",
6411 New_Formal);
6412 return;
6413 end if;
6415 -- Grouping (use of comma in param lists) must be the same
6416 -- This is where we catch a misconformance like:
6418 -- A, B : Integer
6419 -- A : Integer; B : Integer
6421 -- which are represented identically in the tree except
6422 -- for the setting of the flags More_Ids and Prev_Ids.
6424 if More_Ids (Old_Param) /= More_Ids (New_Param)
6425 or else Prev_Ids (Old_Param) /= Prev_Ids (New_Param)
6426 then
6427 Conformance_Error
6428 ("\grouping of & does not match!", New_Formal);
6429 return;
6430 end if;
6431 end;
6432 end if;
6434 -- This label is required when skipping controlling formals
6436 <<Skip_Controlling_Formal>>
6438 Next_Formal (Old_Formal);
6439 Next_Formal (New_Formal);
6440 end loop;
6442 if Present (Old_Formal) then
6443 Conformance_Error ("\too few parameters!");
6444 return;
6446 elsif Present (New_Formal) then
6447 Conformance_Error ("\too many parameters!", New_Formal);
6448 return;
6449 end if;
6450 end Check_Conformance;
6452 -----------------------
6453 -- Check_Conventions --
6454 -----------------------
6456 procedure Check_Conventions (Typ : Entity_Id) is
6457 Ifaces_List : Elist_Id;
6459 procedure Check_Convention (Op : Entity_Id);
6460 -- Verify that the convention of inherited dispatching operation Op is
6461 -- consistent among all subprograms it overrides. In order to minimize
6462 -- the search, Search_From is utilized to designate a specific point in
6463 -- the list rather than iterating over the whole list once more.
6465 ----------------------
6466 -- Check_Convention --
6467 ----------------------
6469 procedure Check_Convention (Op : Entity_Id) is
6470 function Convention_Of (Id : Entity_Id) return Convention_Id;
6471 -- Given an entity, return its convention. The function treats Ghost
6472 -- as convention Ada because the two have the same dynamic semantics.
6474 -------------------
6475 -- Convention_Of --
6476 -------------------
6478 function Convention_Of (Id : Entity_Id) return Convention_Id is
6479 Conv : constant Convention_Id := Convention (Id);
6480 begin
6481 if Conv = Convention_Ghost then
6482 return Convention_Ada;
6483 else
6484 return Conv;
6485 end if;
6486 end Convention_Of;
6488 -- Local variables
6490 Op_Conv : constant Convention_Id := Convention_Of (Op);
6491 Iface_Conv : Convention_Id;
6492 Iface_Elmt : Elmt_Id;
6493 Iface_Prim_Elmt : Elmt_Id;
6494 Iface_Prim : Entity_Id;
6496 -- Start of processing for Check_Convention
6498 begin
6499 Iface_Elmt := First_Elmt (Ifaces_List);
6500 while Present (Iface_Elmt) loop
6501 Iface_Prim_Elmt :=
6502 First_Elmt (Primitive_Operations (Node (Iface_Elmt)));
6503 while Present (Iface_Prim_Elmt) loop
6504 Iface_Prim := Node (Iface_Prim_Elmt);
6505 Iface_Conv := Convention_Of (Iface_Prim);
6507 if Is_Interface_Conformant (Typ, Iface_Prim, Op)
6508 and then Iface_Conv /= Op_Conv
6509 then
6510 Error_Msg_N
6511 ("inconsistent conventions in primitive operations", Typ);
6513 Error_Msg_Name_1 := Chars (Op);
6514 Error_Msg_Name_2 := Get_Convention_Name (Op_Conv);
6515 Error_Msg_Sloc := Sloc (Op);
6517 if Comes_From_Source (Op) or else No (Alias (Op)) then
6518 if not Present (Overridden_Operation (Op)) then
6519 Error_Msg_N ("\\primitive % defined #", Typ);
6520 else
6521 Error_Msg_N
6522 ("\\overriding operation % with " &
6523 "convention % defined #", Typ);
6524 end if;
6526 else pragma Assert (Present (Alias (Op)));
6527 Error_Msg_Sloc := Sloc (Alias (Op));
6528 Error_Msg_N
6529 ("\\inherited operation % with " &
6530 "convention % defined #", Typ);
6531 end if;
6533 Error_Msg_Name_1 := Chars (Op);
6534 Error_Msg_Name_2 := Get_Convention_Name (Iface_Conv);
6535 Error_Msg_Sloc := Sloc (Iface_Prim);
6536 Error_Msg_N
6537 ("\\overridden operation % with " &
6538 "convention % defined #", Typ);
6540 -- Avoid cascading errors
6542 return;
6543 end if;
6545 Next_Elmt (Iface_Prim_Elmt);
6546 end loop;
6548 Next_Elmt (Iface_Elmt);
6549 end loop;
6550 end Check_Convention;
6552 -- Local variables
6554 Prim_Op : Entity_Id;
6555 Prim_Op_Elmt : Elmt_Id;
6557 -- Start of processing for Check_Conventions
6559 begin
6560 if not Has_Interfaces (Typ) then
6561 return;
6562 end if;
6564 Collect_Interfaces (Typ, Ifaces_List);
6566 -- The algorithm checks every overriding dispatching operation against
6567 -- all the corresponding overridden dispatching operations, detecting
6568 -- differences in conventions.
6570 Prim_Op_Elmt := First_Elmt (Primitive_Operations (Typ));
6571 while Present (Prim_Op_Elmt) loop
6572 Prim_Op := Node (Prim_Op_Elmt);
6574 -- A small optimization: skip the predefined dispatching operations
6575 -- since they always have the same convention.
6577 if not Is_Predefined_Dispatching_Operation (Prim_Op) then
6578 Check_Convention (Prim_Op);
6579 end if;
6581 Next_Elmt (Prim_Op_Elmt);
6582 end loop;
6583 end Check_Conventions;
6585 ------------------------------
6586 -- Check_Delayed_Subprogram --
6587 ------------------------------
6589 procedure Check_Delayed_Subprogram (Designator : Entity_Id) is
6590 F : Entity_Id;
6592 procedure Possible_Freeze (T : Entity_Id);
6593 -- T is the type of either a formal parameter or of the return type.
6594 -- If T is not yet frozen and needs a delayed freeze, then the
6595 -- subprogram itself must be delayed. If T is the limited view of an
6596 -- incomplete type the subprogram must be frozen as well, because
6597 -- T may depend on local types that have not been frozen yet.
6599 ---------------------
6600 -- Possible_Freeze --
6601 ---------------------
6603 procedure Possible_Freeze (T : Entity_Id) is
6604 begin
6605 if Has_Delayed_Freeze (T) and then not Is_Frozen (T) then
6606 Set_Has_Delayed_Freeze (Designator);
6608 elsif Is_Access_Type (T)
6609 and then Has_Delayed_Freeze (Designated_Type (T))
6610 and then not Is_Frozen (Designated_Type (T))
6611 then
6612 Set_Has_Delayed_Freeze (Designator);
6614 elsif Ekind (T) = E_Incomplete_Type
6615 and then From_Limited_With (T)
6616 then
6617 Set_Has_Delayed_Freeze (Designator);
6619 -- AI05-0151: In Ada 2012, Incomplete types can appear in the profile
6620 -- of a subprogram or entry declaration.
6622 elsif Ekind (T) = E_Incomplete_Type
6623 and then Ada_Version >= Ada_2012
6624 then
6625 Set_Has_Delayed_Freeze (Designator);
6626 end if;
6628 end Possible_Freeze;
6630 -- Start of processing for Check_Delayed_Subprogram
6632 begin
6633 -- All subprograms, including abstract subprograms, may need a freeze
6634 -- node if some formal type or the return type needs one.
6636 Possible_Freeze (Etype (Designator));
6637 Possible_Freeze (Base_Type (Etype (Designator))); -- needed ???
6639 -- Need delayed freeze if any of the formal types themselves need
6640 -- a delayed freeze and are not yet frozen.
6642 F := First_Formal (Designator);
6643 while Present (F) loop
6644 Possible_Freeze (Etype (F));
6645 Possible_Freeze (Base_Type (Etype (F))); -- needed ???
6646 Next_Formal (F);
6647 end loop;
6649 -- Mark functions that return by reference. Note that it cannot be
6650 -- done for delayed_freeze subprograms because the underlying
6651 -- returned type may not be known yet (for private types)
6653 if not Has_Delayed_Freeze (Designator) and then Expander_Active then
6654 declare
6655 Typ : constant Entity_Id := Etype (Designator);
6656 Utyp : constant Entity_Id := Underlying_Type (Typ);
6657 begin
6658 if Is_Limited_View (Typ) then
6659 Set_Returns_By_Ref (Designator);
6660 elsif Present (Utyp) and then CW_Or_Has_Controlled_Part (Utyp) then
6661 Set_Returns_By_Ref (Designator);
6662 end if;
6663 end;
6664 end if;
6665 end Check_Delayed_Subprogram;
6667 ------------------------------------
6668 -- Check_Discriminant_Conformance --
6669 ------------------------------------
6671 procedure Check_Discriminant_Conformance
6672 (N : Node_Id;
6673 Prev : Entity_Id;
6674 Prev_Loc : Node_Id)
6676 Old_Discr : Entity_Id := First_Discriminant (Prev);
6677 New_Discr : Node_Id := First (Discriminant_Specifications (N));
6678 New_Discr_Id : Entity_Id;
6679 New_Discr_Type : Entity_Id;
6681 procedure Conformance_Error (Msg : String; N : Node_Id);
6682 -- Post error message for conformance error on given node. Two messages
6683 -- are output. The first points to the previous declaration with a
6684 -- general "no conformance" message. The second is the detailed reason,
6685 -- supplied as Msg. The parameter N provide information for a possible
6686 -- & insertion in the message.
6688 -----------------------
6689 -- Conformance_Error --
6690 -----------------------
6692 procedure Conformance_Error (Msg : String; N : Node_Id) is
6693 begin
6694 Error_Msg_Sloc := Sloc (Prev_Loc);
6695 Error_Msg_N -- CODEFIX
6696 ("not fully conformant with declaration#!", N);
6697 Error_Msg_NE (Msg, N, N);
6698 end Conformance_Error;
6700 -- Start of processing for Check_Discriminant_Conformance
6702 begin
6703 while Present (Old_Discr) and then Present (New_Discr) loop
6704 New_Discr_Id := Defining_Identifier (New_Discr);
6706 -- The subtype mark of the discriminant on the full type has not
6707 -- been analyzed so we do it here. For an access discriminant a new
6708 -- type is created.
6710 if Nkind (Discriminant_Type (New_Discr)) = N_Access_Definition then
6711 New_Discr_Type :=
6712 Access_Definition (N, Discriminant_Type (New_Discr));
6714 else
6715 Analyze (Discriminant_Type (New_Discr));
6716 New_Discr_Type := Etype (Discriminant_Type (New_Discr));
6718 -- Ada 2005: if the discriminant definition carries a null
6719 -- exclusion, create an itype to check properly for consistency
6720 -- with partial declaration.
6722 if Is_Access_Type (New_Discr_Type)
6723 and then Null_Exclusion_Present (New_Discr)
6724 then
6725 New_Discr_Type :=
6726 Create_Null_Excluding_Itype
6727 (T => New_Discr_Type,
6728 Related_Nod => New_Discr,
6729 Scope_Id => Current_Scope);
6730 end if;
6731 end if;
6733 if not Conforming_Types
6734 (Etype (Old_Discr), New_Discr_Type, Fully_Conformant)
6735 then
6736 Conformance_Error ("type of & does not match!", New_Discr_Id);
6737 return;
6738 else
6739 -- Treat the new discriminant as an occurrence of the old one,
6740 -- for navigation purposes, and fill in some semantic
6741 -- information, for completeness.
6743 Generate_Reference (Old_Discr, New_Discr_Id, 'r');
6744 Set_Etype (New_Discr_Id, Etype (Old_Discr));
6745 Set_Scope (New_Discr_Id, Scope (Old_Discr));
6746 end if;
6748 -- Names must match
6750 if Chars (Old_Discr) /= Chars (Defining_Identifier (New_Discr)) then
6751 Conformance_Error ("name & does not match!", New_Discr_Id);
6752 return;
6753 end if;
6755 -- Default expressions must match
6757 declare
6758 NewD : constant Boolean :=
6759 Present (Expression (New_Discr));
6760 OldD : constant Boolean :=
6761 Present (Expression (Parent (Old_Discr)));
6763 begin
6764 if NewD or OldD then
6766 -- The old default value has been analyzed and expanded,
6767 -- because the current full declaration will have frozen
6768 -- everything before. The new default values have not been
6769 -- expanded, so expand now to check conformance.
6771 if NewD then
6772 Preanalyze_Spec_Expression
6773 (Expression (New_Discr), New_Discr_Type);
6774 end if;
6776 if not (NewD and OldD)
6777 or else not Fully_Conformant_Expressions
6778 (Expression (Parent (Old_Discr)),
6779 Expression (New_Discr))
6781 then
6782 Conformance_Error
6783 ("default expression for & does not match!",
6784 New_Discr_Id);
6785 return;
6786 end if;
6787 end if;
6788 end;
6790 -- In Ada 83 case, grouping must match: (A,B : X) /= (A : X; B : X)
6792 if Ada_Version = Ada_83 then
6793 declare
6794 Old_Disc : constant Node_Id := Declaration_Node (Old_Discr);
6796 begin
6797 -- Grouping (use of comma in param lists) must be the same
6798 -- This is where we catch a misconformance like:
6800 -- A, B : Integer
6801 -- A : Integer; B : Integer
6803 -- which are represented identically in the tree except
6804 -- for the setting of the flags More_Ids and Prev_Ids.
6806 if More_Ids (Old_Disc) /= More_Ids (New_Discr)
6807 or else Prev_Ids (Old_Disc) /= Prev_Ids (New_Discr)
6808 then
6809 Conformance_Error
6810 ("grouping of & does not match!", New_Discr_Id);
6811 return;
6812 end if;
6813 end;
6814 end if;
6816 Next_Discriminant (Old_Discr);
6817 Next (New_Discr);
6818 end loop;
6820 if Present (Old_Discr) then
6821 Conformance_Error ("too few discriminants!", Defining_Identifier (N));
6822 return;
6824 elsif Present (New_Discr) then
6825 Conformance_Error
6826 ("too many discriminants!", Defining_Identifier (New_Discr));
6827 return;
6828 end if;
6829 end Check_Discriminant_Conformance;
6831 ----------------------------
6832 -- Check_Fully_Conformant --
6833 ----------------------------
6835 procedure Check_Fully_Conformant
6836 (New_Id : Entity_Id;
6837 Old_Id : Entity_Id;
6838 Err_Loc : Node_Id := Empty)
6840 Result : Boolean;
6841 pragma Warnings (Off, Result);
6842 begin
6843 Check_Conformance
6844 (New_Id, Old_Id, Fully_Conformant, True, Result, Err_Loc);
6845 end Check_Fully_Conformant;
6847 ---------------------------
6848 -- Check_Mode_Conformant --
6849 ---------------------------
6851 procedure Check_Mode_Conformant
6852 (New_Id : Entity_Id;
6853 Old_Id : Entity_Id;
6854 Err_Loc : Node_Id := Empty;
6855 Get_Inst : Boolean := False)
6857 Result : Boolean;
6858 pragma Warnings (Off, Result);
6859 begin
6860 Check_Conformance
6861 (New_Id, Old_Id, Mode_Conformant, True, Result, Err_Loc, Get_Inst);
6862 end Check_Mode_Conformant;
6864 --------------------------------
6865 -- Check_Overriding_Indicator --
6866 --------------------------------
6868 procedure Check_Overriding_Indicator
6869 (Subp : Entity_Id;
6870 Overridden_Subp : Entity_Id;
6871 Is_Primitive : Boolean)
6873 Decl : Node_Id;
6874 Spec : Node_Id;
6876 begin
6877 -- No overriding indicator for literals
6879 if Ekind (Subp) = E_Enumeration_Literal then
6880 return;
6882 elsif Ekind (Subp) = E_Entry then
6883 Decl := Parent (Subp);
6885 -- No point in analyzing a malformed operator
6887 elsif Nkind (Subp) = N_Defining_Operator_Symbol
6888 and then Error_Posted (Subp)
6889 then
6890 return;
6892 else
6893 Decl := Unit_Declaration_Node (Subp);
6894 end if;
6896 if Nkind_In (Decl, N_Subprogram_Body,
6897 N_Subprogram_Body_Stub,
6898 N_Subprogram_Declaration,
6899 N_Abstract_Subprogram_Declaration,
6900 N_Subprogram_Renaming_Declaration)
6901 then
6902 Spec := Specification (Decl);
6904 elsif Nkind (Decl) = N_Entry_Declaration then
6905 Spec := Decl;
6907 else
6908 return;
6909 end if;
6911 -- The overriding operation is type conformant with the overridden one,
6912 -- but the names of the formals are not required to match. If the names
6913 -- appear permuted in the overriding operation, this is a possible
6914 -- source of confusion that is worth diagnosing. Controlling formals
6915 -- often carry names that reflect the type, and it is not worthwhile
6916 -- requiring that their names match.
6918 if Present (Overridden_Subp)
6919 and then Nkind (Subp) /= N_Defining_Operator_Symbol
6920 then
6921 declare
6922 Form1 : Entity_Id;
6923 Form2 : Entity_Id;
6925 begin
6926 Form1 := First_Formal (Subp);
6927 Form2 := First_Formal (Overridden_Subp);
6929 -- If the overriding operation is a synchronized operation, skip
6930 -- the first parameter of the overridden operation, which is
6931 -- implicit in the new one. If the operation is declared in the
6932 -- body it is not primitive and all formals must match.
6934 if Is_Concurrent_Type (Scope (Subp))
6935 and then Is_Tagged_Type (Scope (Subp))
6936 and then not Has_Completion (Scope (Subp))
6937 then
6938 Form2 := Next_Formal (Form2);
6939 end if;
6941 if Present (Form1) then
6942 Form1 := Next_Formal (Form1);
6943 Form2 := Next_Formal (Form2);
6944 end if;
6946 while Present (Form1) loop
6947 if not Is_Controlling_Formal (Form1)
6948 and then Present (Next_Formal (Form2))
6949 and then Chars (Form1) = Chars (Next_Formal (Form2))
6950 then
6951 Error_Msg_Node_2 := Alias (Overridden_Subp);
6952 Error_Msg_Sloc := Sloc (Error_Msg_Node_2);
6953 Error_Msg_NE
6954 ("& does not match corresponding formal of&#",
6955 Form1, Form1);
6956 exit;
6957 end if;
6959 Next_Formal (Form1);
6960 Next_Formal (Form2);
6961 end loop;
6962 end;
6963 end if;
6965 -- If there is an overridden subprogram, then check that there is no
6966 -- "not overriding" indicator, and mark the subprogram as overriding.
6967 -- This is not done if the overridden subprogram is marked as hidden,
6968 -- which can occur for the case of inherited controlled operations
6969 -- (see Derive_Subprogram), unless the inherited subprogram's parent
6970 -- subprogram is not itself hidden. (Note: This condition could probably
6971 -- be simplified, leaving out the testing for the specific controlled
6972 -- cases, but it seems safer and clearer this way, and echoes similar
6973 -- special-case tests of this kind in other places.)
6975 if Present (Overridden_Subp)
6976 and then (not Is_Hidden (Overridden_Subp)
6977 or else
6978 (Nam_In (Chars (Overridden_Subp), Name_Initialize,
6979 Name_Adjust,
6980 Name_Finalize)
6981 and then Present (Alias (Overridden_Subp))
6982 and then not Is_Hidden (Alias (Overridden_Subp))))
6983 then
6984 if Must_Not_Override (Spec) then
6985 Error_Msg_Sloc := Sloc (Overridden_Subp);
6987 if Ekind (Subp) = E_Entry then
6988 Error_Msg_NE
6989 ("entry & overrides inherited operation #", Spec, Subp);
6990 else
6991 Error_Msg_NE
6992 ("subprogram & overrides inherited operation #", Spec, Subp);
6993 end if;
6995 -- Special-case to fix a GNAT oddity: Limited_Controlled is declared
6996 -- as an extension of Root_Controlled, and thus has a useless Adjust
6997 -- operation. This operation should not be inherited by other limited
6998 -- controlled types. An explicit Adjust for them is not overriding.
7000 elsif Must_Override (Spec)
7001 and then Chars (Overridden_Subp) = Name_Adjust
7002 and then Is_Limited_Type (Etype (First_Formal (Subp)))
7003 and then Present (Alias (Overridden_Subp))
7004 and then
7005 Is_Predefined_File_Name
7006 (Unit_File_Name (Get_Source_Unit (Alias (Overridden_Subp))))
7007 then
7008 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
7010 elsif Is_Subprogram (Subp) then
7011 if Is_Init_Proc (Subp) then
7012 null;
7014 elsif No (Overridden_Operation (Subp)) then
7016 -- For entities generated by Derive_Subprograms the overridden
7017 -- operation is the inherited primitive (which is available
7018 -- through the attribute alias)
7020 if (Is_Dispatching_Operation (Subp)
7021 or else Is_Dispatching_Operation (Overridden_Subp))
7022 and then not Comes_From_Source (Overridden_Subp)
7023 and then Find_Dispatching_Type (Overridden_Subp) =
7024 Find_Dispatching_Type (Subp)
7025 and then Present (Alias (Overridden_Subp))
7026 and then Comes_From_Source (Alias (Overridden_Subp))
7027 then
7028 Set_Overridden_Operation (Subp, Alias (Overridden_Subp));
7030 else
7031 Set_Overridden_Operation (Subp, Overridden_Subp);
7032 end if;
7033 end if;
7034 end if;
7036 -- If primitive flag is set or this is a protected operation, then
7037 -- the operation is overriding at the point of its declaration, so
7038 -- warn if necessary. Otherwise it may have been declared before the
7039 -- operation it overrides and no check is required.
7041 if Style_Check
7042 and then not Must_Override (Spec)
7043 and then (Is_Primitive
7044 or else Ekind (Scope (Subp)) = E_Protected_Type)
7045 then
7046 Style.Missing_Overriding (Decl, Subp);
7047 end if;
7049 -- If Subp is an operator, it may override a predefined operation, if
7050 -- it is defined in the same scope as the type to which it applies.
7051 -- In that case Overridden_Subp is empty because of our implicit
7052 -- representation for predefined operators. We have to check whether the
7053 -- signature of Subp matches that of a predefined operator. Note that
7054 -- first argument provides the name of the operator, and the second
7055 -- argument the signature that may match that of a standard operation.
7056 -- If the indicator is overriding, then the operator must match a
7057 -- predefined signature, because we know already that there is no
7058 -- explicit overridden operation.
7060 elsif Nkind (Subp) = N_Defining_Operator_Symbol then
7061 if Must_Not_Override (Spec) then
7063 -- If this is not a primitive or a protected subprogram, then
7064 -- "not overriding" is illegal.
7066 if not Is_Primitive
7067 and then Ekind (Scope (Subp)) /= E_Protected_Type
7068 then
7069 Error_Msg_N
7070 ("overriding indicator only allowed "
7071 & "if subprogram is primitive", Subp);
7073 elsif Can_Override_Operator (Subp) then
7074 Error_Msg_NE
7075 ("subprogram& overrides predefined operator ", Spec, Subp);
7076 end if;
7078 elsif Must_Override (Spec) then
7079 if No (Overridden_Operation (Subp))
7080 and then not Can_Override_Operator (Subp)
7081 then
7082 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
7083 end if;
7085 elsif not Error_Posted (Subp)
7086 and then Style_Check
7087 and then Can_Override_Operator (Subp)
7088 and then
7089 not Is_Predefined_File_Name
7090 (Unit_File_Name (Get_Source_Unit (Subp)))
7091 then
7092 -- If style checks are enabled, indicate that the indicator is
7093 -- missing. However, at the point of declaration, the type of
7094 -- which this is a primitive operation may be private, in which
7095 -- case the indicator would be premature.
7097 if Has_Private_Declaration (Etype (Subp))
7098 or else Has_Private_Declaration (Etype (First_Formal (Subp)))
7099 then
7100 null;
7101 else
7102 Style.Missing_Overriding (Decl, Subp);
7103 end if;
7104 end if;
7106 elsif Must_Override (Spec) then
7107 if Ekind (Subp) = E_Entry then
7108 Error_Msg_NE ("entry & is not overriding", Spec, Subp);
7109 else
7110 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
7111 end if;
7113 -- If the operation is marked "not overriding" and it's not primitive
7114 -- then an error is issued, unless this is an operation of a task or
7115 -- protected type (RM05-8.3.1(3/2-4/2)). Error cases where "overriding"
7116 -- has been specified have already been checked above.
7118 elsif Must_Not_Override (Spec)
7119 and then not Is_Primitive
7120 and then Ekind (Subp) /= E_Entry
7121 and then Ekind (Scope (Subp)) /= E_Protected_Type
7122 then
7123 Error_Msg_N
7124 ("overriding indicator only allowed if subprogram is primitive",
7125 Subp);
7126 return;
7127 end if;
7128 end Check_Overriding_Indicator;
7130 -------------------
7131 -- Check_Returns --
7132 -------------------
7134 -- Note: this procedure needs to know far too much about how the expander
7135 -- messes with exceptions. The use of the flag Exception_Junk and the
7136 -- incorporation of knowledge of Exp_Ch11.Expand_Local_Exception_Handlers
7137 -- works, but is not very clean. It would be better if the expansion
7138 -- routines would leave Original_Node working nicely, and we could use
7139 -- Original_Node here to ignore all the peculiar expander messing ???
7141 procedure Check_Returns
7142 (HSS : Node_Id;
7143 Mode : Character;
7144 Err : out Boolean;
7145 Proc : Entity_Id := Empty)
7147 Handler : Node_Id;
7149 procedure Check_Statement_Sequence (L : List_Id);
7150 -- Internal recursive procedure to check a list of statements for proper
7151 -- termination by a return statement (or a transfer of control or a
7152 -- compound statement that is itself internally properly terminated).
7154 ------------------------------
7155 -- Check_Statement_Sequence --
7156 ------------------------------
7158 procedure Check_Statement_Sequence (L : List_Id) is
7159 Last_Stm : Node_Id;
7160 Stm : Node_Id;
7161 Kind : Node_Kind;
7163 function Assert_False return Boolean;
7164 -- Returns True if Last_Stm is a pragma Assert (False) that has been
7165 -- rewritten as a null statement when assertions are off. The assert
7166 -- is not active, but it is still enough to kill the warning.
7168 ------------------
7169 -- Assert_False --
7170 ------------------
7172 function Assert_False return Boolean is
7173 Orig : constant Node_Id := Original_Node (Last_Stm);
7175 begin
7176 if Nkind (Orig) = N_Pragma
7177 and then Pragma_Name (Orig) = Name_Assert
7178 and then not Error_Posted (Orig)
7179 then
7180 declare
7181 Arg : constant Node_Id :=
7182 First (Pragma_Argument_Associations (Orig));
7183 Exp : constant Node_Id := Expression (Arg);
7184 begin
7185 return Nkind (Exp) = N_Identifier
7186 and then Chars (Exp) = Name_False;
7187 end;
7189 else
7190 return False;
7191 end if;
7192 end Assert_False;
7194 -- Local variables
7196 Raise_Exception_Call : Boolean;
7197 -- Set True if statement sequence terminated by Raise_Exception call
7198 -- or a Reraise_Occurrence call.
7200 -- Start of processing for Check_Statement_Sequence
7202 begin
7203 Raise_Exception_Call := False;
7205 -- Get last real statement
7207 Last_Stm := Last (L);
7209 -- Deal with digging out exception handler statement sequences that
7210 -- have been transformed by the local raise to goto optimization.
7211 -- See Exp_Ch11.Expand_Local_Exception_Handlers for details. If this
7212 -- optimization has occurred, we are looking at something like:
7214 -- begin
7215 -- original stmts in block
7217 -- exception \
7218 -- when excep1 => |
7219 -- goto L1; | omitted if No_Exception_Propagation
7220 -- when excep2 => |
7221 -- goto L2; /
7222 -- end;
7224 -- goto L3; -- skip handler when exception not raised
7226 -- <<L1>> -- target label for local exception
7227 -- begin
7228 -- estmts1
7229 -- end;
7231 -- goto L3;
7233 -- <<L2>>
7234 -- begin
7235 -- estmts2
7236 -- end;
7238 -- <<L3>>
7240 -- and what we have to do is to dig out the estmts1 and estmts2
7241 -- sequences (which were the original sequences of statements in
7242 -- the exception handlers) and check them.
7244 if Nkind (Last_Stm) = N_Label and then Exception_Junk (Last_Stm) then
7245 Stm := Last_Stm;
7246 loop
7247 Prev (Stm);
7248 exit when No (Stm);
7249 exit when Nkind (Stm) /= N_Block_Statement;
7250 exit when not Exception_Junk (Stm);
7251 Prev (Stm);
7252 exit when No (Stm);
7253 exit when Nkind (Stm) /= N_Label;
7254 exit when not Exception_Junk (Stm);
7255 Check_Statement_Sequence
7256 (Statements (Handled_Statement_Sequence (Next (Stm))));
7258 Prev (Stm);
7259 Last_Stm := Stm;
7260 exit when No (Stm);
7261 exit when Nkind (Stm) /= N_Goto_Statement;
7262 exit when not Exception_Junk (Stm);
7263 end loop;
7264 end if;
7266 -- Don't count pragmas
7268 while Nkind (Last_Stm) = N_Pragma
7270 -- Don't count call to SS_Release (can happen after Raise_Exception)
7272 or else
7273 (Nkind (Last_Stm) = N_Procedure_Call_Statement
7274 and then
7275 Nkind (Name (Last_Stm)) = N_Identifier
7276 and then
7277 Is_RTE (Entity (Name (Last_Stm)), RE_SS_Release))
7279 -- Don't count exception junk
7281 or else
7282 (Nkind_In (Last_Stm, N_Goto_Statement,
7283 N_Label,
7284 N_Object_Declaration)
7285 and then Exception_Junk (Last_Stm))
7286 or else Nkind (Last_Stm) in N_Push_xxx_Label
7287 or else Nkind (Last_Stm) in N_Pop_xxx_Label
7289 -- Inserted code, such as finalization calls, is irrelevant: we only
7290 -- need to check original source.
7292 or else Is_Rewrite_Insertion (Last_Stm)
7293 loop
7294 Prev (Last_Stm);
7295 end loop;
7297 -- Here we have the "real" last statement
7299 Kind := Nkind (Last_Stm);
7301 -- Transfer of control, OK. Note that in the No_Return procedure
7302 -- case, we already diagnosed any explicit return statements, so
7303 -- we can treat them as OK in this context.
7305 if Is_Transfer (Last_Stm) then
7306 return;
7308 -- Check cases of explicit non-indirect procedure calls
7310 elsif Kind = N_Procedure_Call_Statement
7311 and then Is_Entity_Name (Name (Last_Stm))
7312 then
7313 -- Check call to Raise_Exception procedure which is treated
7314 -- specially, as is a call to Reraise_Occurrence.
7316 -- We suppress the warning in these cases since it is likely that
7317 -- the programmer really does not expect to deal with the case
7318 -- of Null_Occurrence, and thus would find a warning about a
7319 -- missing return curious, and raising Program_Error does not
7320 -- seem such a bad behavior if this does occur.
7322 -- Note that in the Ada 2005 case for Raise_Exception, the actual
7323 -- behavior will be to raise Constraint_Error (see AI-329).
7325 if Is_RTE (Entity (Name (Last_Stm)), RE_Raise_Exception)
7326 or else
7327 Is_RTE (Entity (Name (Last_Stm)), RE_Reraise_Occurrence)
7328 then
7329 Raise_Exception_Call := True;
7331 -- For Raise_Exception call, test first argument, if it is
7332 -- an attribute reference for a 'Identity call, then we know
7333 -- that the call cannot possibly return.
7335 declare
7336 Arg : constant Node_Id :=
7337 Original_Node (First_Actual (Last_Stm));
7338 begin
7339 if Nkind (Arg) = N_Attribute_Reference
7340 and then Attribute_Name (Arg) = Name_Identity
7341 then
7342 return;
7343 end if;
7344 end;
7345 end if;
7347 -- If statement, need to look inside if there is an else and check
7348 -- each constituent statement sequence for proper termination.
7350 elsif Kind = N_If_Statement
7351 and then Present (Else_Statements (Last_Stm))
7352 then
7353 Check_Statement_Sequence (Then_Statements (Last_Stm));
7354 Check_Statement_Sequence (Else_Statements (Last_Stm));
7356 if Present (Elsif_Parts (Last_Stm)) then
7357 declare
7358 Elsif_Part : Node_Id := First (Elsif_Parts (Last_Stm));
7360 begin
7361 while Present (Elsif_Part) loop
7362 Check_Statement_Sequence (Then_Statements (Elsif_Part));
7363 Next (Elsif_Part);
7364 end loop;
7365 end;
7366 end if;
7368 return;
7370 -- Case statement, check each case for proper termination
7372 elsif Kind = N_Case_Statement then
7373 declare
7374 Case_Alt : Node_Id;
7375 begin
7376 Case_Alt := First_Non_Pragma (Alternatives (Last_Stm));
7377 while Present (Case_Alt) loop
7378 Check_Statement_Sequence (Statements (Case_Alt));
7379 Next_Non_Pragma (Case_Alt);
7380 end loop;
7381 end;
7383 return;
7385 -- Block statement, check its handled sequence of statements
7387 elsif Kind = N_Block_Statement then
7388 declare
7389 Err1 : Boolean;
7391 begin
7392 Check_Returns
7393 (Handled_Statement_Sequence (Last_Stm), Mode, Err1);
7395 if Err1 then
7396 Err := True;
7397 end if;
7399 return;
7400 end;
7402 -- Loop statement. If there is an iteration scheme, we can definitely
7403 -- fall out of the loop. Similarly if there is an exit statement, we
7404 -- can fall out. In either case we need a following return.
7406 elsif Kind = N_Loop_Statement then
7407 if Present (Iteration_Scheme (Last_Stm))
7408 or else Has_Exit (Entity (Identifier (Last_Stm)))
7409 then
7410 null;
7412 -- A loop with no exit statement or iteration scheme is either
7413 -- an infinite loop, or it has some other exit (raise/return).
7414 -- In either case, no warning is required.
7416 else
7417 return;
7418 end if;
7420 -- Timed entry call, check entry call and delay alternatives
7422 -- Note: in expanded code, the timed entry call has been converted
7423 -- to a set of expanded statements on which the check will work
7424 -- correctly in any case.
7426 elsif Kind = N_Timed_Entry_Call then
7427 declare
7428 ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
7429 DCA : constant Node_Id := Delay_Alternative (Last_Stm);
7431 begin
7432 -- If statement sequence of entry call alternative is missing,
7433 -- then we can definitely fall through, and we post the error
7434 -- message on the entry call alternative itself.
7436 if No (Statements (ECA)) then
7437 Last_Stm := ECA;
7439 -- If statement sequence of delay alternative is missing, then
7440 -- we can definitely fall through, and we post the error
7441 -- message on the delay alternative itself.
7443 -- Note: if both ECA and DCA are missing the return, then we
7444 -- post only one message, should be enough to fix the bugs.
7445 -- If not we will get a message next time on the DCA when the
7446 -- ECA is fixed.
7448 elsif No (Statements (DCA)) then
7449 Last_Stm := DCA;
7451 -- Else check both statement sequences
7453 else
7454 Check_Statement_Sequence (Statements (ECA));
7455 Check_Statement_Sequence (Statements (DCA));
7456 return;
7457 end if;
7458 end;
7460 -- Conditional entry call, check entry call and else part
7462 -- Note: in expanded code, the conditional entry call has been
7463 -- converted to a set of expanded statements on which the check
7464 -- will work correctly in any case.
7466 elsif Kind = N_Conditional_Entry_Call then
7467 declare
7468 ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
7470 begin
7471 -- If statement sequence of entry call alternative is missing,
7472 -- then we can definitely fall through, and we post the error
7473 -- message on the entry call alternative itself.
7475 if No (Statements (ECA)) then
7476 Last_Stm := ECA;
7478 -- Else check statement sequence and else part
7480 else
7481 Check_Statement_Sequence (Statements (ECA));
7482 Check_Statement_Sequence (Else_Statements (Last_Stm));
7483 return;
7484 end if;
7485 end;
7486 end if;
7488 -- If we fall through, issue appropriate message
7490 if Mode = 'F' then
7492 -- Kill warning if last statement is a raise exception call,
7493 -- or a pragma Assert (False). Note that with assertions enabled,
7494 -- such a pragma has been converted into a raise exception call
7495 -- already, so the Assert_False is for the assertions off case.
7497 if not Raise_Exception_Call and then not Assert_False then
7499 -- In GNATprove mode, it is an error to have a missing return
7501 Error_Msg_Warn := SPARK_Mode /= On;
7503 -- Issue error message or warning
7505 Error_Msg_N
7506 ("RETURN statement missing following this statement<<!",
7507 Last_Stm);
7508 Error_Msg_N
7509 ("\Program_Error ]<<!", Last_Stm);
7510 end if;
7512 -- Note: we set Err even though we have not issued a warning
7513 -- because we still have a case of a missing return. This is
7514 -- an extremely marginal case, probably will never be noticed
7515 -- but we might as well get it right.
7517 Err := True;
7519 -- Otherwise we have the case of a procedure marked No_Return
7521 else
7522 if not Raise_Exception_Call then
7523 if GNATprove_Mode then
7524 Error_Msg_N
7525 ("implied return after this statement "
7526 & "would have raised Program_Error", Last_Stm);
7527 else
7528 Error_Msg_N
7529 ("implied return after this statement "
7530 & "will raise Program_Error??", Last_Stm);
7531 end if;
7533 Error_Msg_Warn := SPARK_Mode /= On;
7534 Error_Msg_NE
7535 ("\procedure & is marked as No_Return<<!", Last_Stm, Proc);
7536 end if;
7538 declare
7539 RE : constant Node_Id :=
7540 Make_Raise_Program_Error (Sloc (Last_Stm),
7541 Reason => PE_Implicit_Return);
7542 begin
7543 Insert_After (Last_Stm, RE);
7544 Analyze (RE);
7545 end;
7546 end if;
7547 end Check_Statement_Sequence;
7549 -- Start of processing for Check_Returns
7551 begin
7552 Err := False;
7553 Check_Statement_Sequence (Statements (HSS));
7555 if Present (Exception_Handlers (HSS)) then
7556 Handler := First_Non_Pragma (Exception_Handlers (HSS));
7557 while Present (Handler) loop
7558 Check_Statement_Sequence (Statements (Handler));
7559 Next_Non_Pragma (Handler);
7560 end loop;
7561 end if;
7562 end Check_Returns;
7564 ----------------------------
7565 -- Check_Subprogram_Order --
7566 ----------------------------
7568 procedure Check_Subprogram_Order (N : Node_Id) is
7570 function Subprogram_Name_Greater (S1, S2 : String) return Boolean;
7571 -- This is used to check if S1 > S2 in the sense required by this test,
7572 -- for example nameab < namec, but name2 < name10.
7574 -----------------------------
7575 -- Subprogram_Name_Greater --
7576 -----------------------------
7578 function Subprogram_Name_Greater (S1, S2 : String) return Boolean is
7579 L1, L2 : Positive;
7580 N1, N2 : Natural;
7582 begin
7583 -- Deal with special case where names are identical except for a
7584 -- numerical suffix. These are handled specially, taking the numeric
7585 -- ordering from the suffix into account.
7587 L1 := S1'Last;
7588 while S1 (L1) in '0' .. '9' loop
7589 L1 := L1 - 1;
7590 end loop;
7592 L2 := S2'Last;
7593 while S2 (L2) in '0' .. '9' loop
7594 L2 := L2 - 1;
7595 end loop;
7597 -- If non-numeric parts non-equal, do straight compare
7599 if S1 (S1'First .. L1) /= S2 (S2'First .. L2) then
7600 return S1 > S2;
7602 -- If non-numeric parts equal, compare suffixed numeric parts. Note
7603 -- that a missing suffix is treated as numeric zero in this test.
7605 else
7606 N1 := 0;
7607 while L1 < S1'Last loop
7608 L1 := L1 + 1;
7609 N1 := N1 * 10 + Character'Pos (S1 (L1)) - Character'Pos ('0');
7610 end loop;
7612 N2 := 0;
7613 while L2 < S2'Last loop
7614 L2 := L2 + 1;
7615 N2 := N2 * 10 + Character'Pos (S2 (L2)) - Character'Pos ('0');
7616 end loop;
7618 return N1 > N2;
7619 end if;
7620 end Subprogram_Name_Greater;
7622 -- Start of processing for Check_Subprogram_Order
7624 begin
7625 -- Check body in alpha order if this is option
7627 if Style_Check
7628 and then Style_Check_Order_Subprograms
7629 and then Nkind (N) = N_Subprogram_Body
7630 and then Comes_From_Source (N)
7631 and then In_Extended_Main_Source_Unit (N)
7632 then
7633 declare
7634 LSN : String_Ptr
7635 renames Scope_Stack.Table
7636 (Scope_Stack.Last).Last_Subprogram_Name;
7638 Body_Id : constant Entity_Id :=
7639 Defining_Entity (Specification (N));
7641 begin
7642 Get_Decoded_Name_String (Chars (Body_Id));
7644 if LSN /= null then
7645 if Subprogram_Name_Greater
7646 (LSN.all, Name_Buffer (1 .. Name_Len))
7647 then
7648 Style.Subprogram_Not_In_Alpha_Order (Body_Id);
7649 end if;
7651 Free (LSN);
7652 end if;
7654 LSN := new String'(Name_Buffer (1 .. Name_Len));
7655 end;
7656 end if;
7657 end Check_Subprogram_Order;
7659 ------------------------------
7660 -- Check_Subtype_Conformant --
7661 ------------------------------
7663 procedure Check_Subtype_Conformant
7664 (New_Id : Entity_Id;
7665 Old_Id : Entity_Id;
7666 Err_Loc : Node_Id := Empty;
7667 Skip_Controlling_Formals : Boolean := False;
7668 Get_Inst : Boolean := False)
7670 Result : Boolean;
7671 pragma Warnings (Off, Result);
7672 begin
7673 Check_Conformance
7674 (New_Id, Old_Id, Subtype_Conformant, True, Result, Err_Loc,
7675 Skip_Controlling_Formals => Skip_Controlling_Formals,
7676 Get_Inst => Get_Inst);
7677 end Check_Subtype_Conformant;
7679 ---------------------------
7680 -- Check_Type_Conformant --
7681 ---------------------------
7683 procedure Check_Type_Conformant
7684 (New_Id : Entity_Id;
7685 Old_Id : Entity_Id;
7686 Err_Loc : Node_Id := Empty)
7688 Result : Boolean;
7689 pragma Warnings (Off, Result);
7690 begin
7691 Check_Conformance
7692 (New_Id, Old_Id, Type_Conformant, True, Result, Err_Loc);
7693 end Check_Type_Conformant;
7695 ---------------------------
7696 -- Can_Override_Operator --
7697 ---------------------------
7699 function Can_Override_Operator (Subp : Entity_Id) return Boolean is
7700 Typ : Entity_Id;
7702 begin
7703 if Nkind (Subp) /= N_Defining_Operator_Symbol then
7704 return False;
7706 else
7707 Typ := Base_Type (Etype (First_Formal (Subp)));
7709 -- Check explicitly that the operation is a primitive of the type
7711 return Operator_Matches_Spec (Subp, Subp)
7712 and then not Is_Generic_Type (Typ)
7713 and then Scope (Subp) = Scope (Typ)
7714 and then not Is_Class_Wide_Type (Typ);
7715 end if;
7716 end Can_Override_Operator;
7718 ----------------------
7719 -- Conforming_Types --
7720 ----------------------
7722 function Conforming_Types
7723 (T1 : Entity_Id;
7724 T2 : Entity_Id;
7725 Ctype : Conformance_Type;
7726 Get_Inst : Boolean := False) return Boolean
7728 Type_1 : Entity_Id := T1;
7729 Type_2 : Entity_Id := T2;
7730 Are_Anonymous_Access_To_Subprogram_Types : Boolean := False;
7732 function Base_Types_Match (T1, T2 : Entity_Id) return Boolean;
7733 -- If neither T1 nor T2 are generic actual types, or if they are in
7734 -- different scopes (e.g. parent and child instances), then verify that
7735 -- the base types are equal. Otherwise T1 and T2 must be on the same
7736 -- subtype chain. The whole purpose of this procedure is to prevent
7737 -- spurious ambiguities in an instantiation that may arise if two
7738 -- distinct generic types are instantiated with the same actual.
7740 function Find_Designated_Type (T : Entity_Id) return Entity_Id;
7741 -- An access parameter can designate an incomplete type. If the
7742 -- incomplete type is the limited view of a type from a limited_
7743 -- with_clause, check whether the non-limited view is available. If
7744 -- it is a (non-limited) incomplete type, get the full view.
7746 function Matches_Limited_With_View (T1, T2 : Entity_Id) return Boolean;
7747 -- Returns True if and only if either T1 denotes a limited view of T2
7748 -- or T2 denotes a limited view of T1. This can arise when the limited
7749 -- with view of a type is used in a subprogram declaration and the
7750 -- subprogram body is in the scope of a regular with clause for the
7751 -- same unit. In such a case, the two type entities can be considered
7752 -- identical for purposes of conformance checking.
7754 ----------------------
7755 -- Base_Types_Match --
7756 ----------------------
7758 function Base_Types_Match (T1, T2 : Entity_Id) return Boolean is
7759 BT1 : constant Entity_Id := Base_Type (T1);
7760 BT2 : constant Entity_Id := Base_Type (T2);
7762 begin
7763 if T1 = T2 then
7764 return True;
7766 elsif BT1 = BT2 then
7768 -- The following is too permissive. A more precise test should
7769 -- check that the generic actual is an ancestor subtype of the
7770 -- other ???.
7772 -- See code in Find_Corresponding_Spec that applies an additional
7773 -- filter to handle accidental amiguities in instances.
7775 return not Is_Generic_Actual_Type (T1)
7776 or else not Is_Generic_Actual_Type (T2)
7777 or else Scope (T1) /= Scope (T2);
7779 -- If T2 is a generic actual type it is declared as the subtype of
7780 -- the actual. If that actual is itself a subtype we need to use its
7781 -- own base type to check for compatibility.
7783 elsif Ekind (BT2) = Ekind (T2) and then BT1 = Base_Type (BT2) then
7784 return True;
7786 elsif Ekind (BT1) = Ekind (T1) and then BT2 = Base_Type (BT1) then
7787 return True;
7789 else
7790 return False;
7791 end if;
7792 end Base_Types_Match;
7794 --------------------------
7795 -- Find_Designated_Type --
7796 --------------------------
7798 function Find_Designated_Type (T : Entity_Id) return Entity_Id is
7799 Desig : Entity_Id;
7801 begin
7802 Desig := Directly_Designated_Type (T);
7804 if Ekind (Desig) = E_Incomplete_Type then
7806 -- If regular incomplete type, get full view if available
7808 if Present (Full_View (Desig)) then
7809 Desig := Full_View (Desig);
7811 -- If limited view of a type, get non-limited view if available,
7812 -- and check again for a regular incomplete type.
7814 elsif Present (Non_Limited_View (Desig)) then
7815 Desig := Get_Full_View (Non_Limited_View (Desig));
7816 end if;
7817 end if;
7819 return Desig;
7820 end Find_Designated_Type;
7822 -------------------------------
7823 -- Matches_Limited_With_View --
7824 -------------------------------
7826 function Matches_Limited_With_View (T1, T2 : Entity_Id) return Boolean is
7827 begin
7828 -- In some cases a type imported through a limited_with clause, and
7829 -- its nonlimited view are both visible, for example in an anonymous
7830 -- access-to-class-wide type in a formal. Both entities designate the
7831 -- same type.
7833 if From_Limited_With (T1) and then T2 = Available_View (T1) then
7834 return True;
7836 elsif From_Limited_With (T2) and then T1 = Available_View (T2) then
7837 return True;
7839 elsif From_Limited_With (T1)
7840 and then From_Limited_With (T2)
7841 and then Available_View (T1) = Available_View (T2)
7842 then
7843 return True;
7845 else
7846 return False;
7847 end if;
7848 end Matches_Limited_With_View;
7850 -- Start of processing for Conforming_Types
7852 begin
7853 -- The context is an instance association for a formal access-to-
7854 -- subprogram type; the formal parameter types require mapping because
7855 -- they may denote other formal parameters of the generic unit.
7857 if Get_Inst then
7858 Type_1 := Get_Instance_Of (T1);
7859 Type_2 := Get_Instance_Of (T2);
7860 end if;
7862 -- If one of the types is a view of the other introduced by a limited
7863 -- with clause, treat these as conforming for all purposes.
7865 if Matches_Limited_With_View (T1, T2) then
7866 return True;
7868 elsif Base_Types_Match (Type_1, Type_2) then
7869 return Ctype <= Mode_Conformant
7870 or else Subtypes_Statically_Match (Type_1, Type_2);
7872 elsif Is_Incomplete_Or_Private_Type (Type_1)
7873 and then Present (Full_View (Type_1))
7874 and then Base_Types_Match (Full_View (Type_1), Type_2)
7875 then
7876 return Ctype <= Mode_Conformant
7877 or else Subtypes_Statically_Match (Full_View (Type_1), Type_2);
7879 elsif Ekind (Type_2) = E_Incomplete_Type
7880 and then Present (Full_View (Type_2))
7881 and then Base_Types_Match (Type_1, Full_View (Type_2))
7882 then
7883 return Ctype <= Mode_Conformant
7884 or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
7886 elsif Is_Private_Type (Type_2)
7887 and then In_Instance
7888 and then Present (Full_View (Type_2))
7889 and then Base_Types_Match (Type_1, Full_View (Type_2))
7890 then
7891 return Ctype <= Mode_Conformant
7892 or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
7893 end if;
7895 -- Ada 2005 (AI-254): Anonymous access-to-subprogram types must be
7896 -- treated recursively because they carry a signature. As far as
7897 -- conformance is concerned, convention plays no role, and either
7898 -- or both could be access to protected subprograms.
7900 Are_Anonymous_Access_To_Subprogram_Types :=
7901 Ekind_In (Type_1, E_Anonymous_Access_Subprogram_Type,
7902 E_Anonymous_Access_Protected_Subprogram_Type)
7903 and then
7904 Ekind_In (Type_2, E_Anonymous_Access_Subprogram_Type,
7905 E_Anonymous_Access_Protected_Subprogram_Type);
7907 -- Test anonymous access type case. For this case, static subtype
7908 -- matching is required for mode conformance (RM 6.3.1(15)). We check
7909 -- the base types because we may have built internal subtype entities
7910 -- to handle null-excluding types (see Process_Formals).
7912 if (Ekind (Base_Type (Type_1)) = E_Anonymous_Access_Type
7913 and then
7914 Ekind (Base_Type (Type_2)) = E_Anonymous_Access_Type)
7916 -- Ada 2005 (AI-254)
7918 or else Are_Anonymous_Access_To_Subprogram_Types
7919 then
7920 declare
7921 Desig_1 : Entity_Id;
7922 Desig_2 : Entity_Id;
7924 begin
7925 -- In Ada 2005, access constant indicators must match for
7926 -- subtype conformance.
7928 if Ada_Version >= Ada_2005
7929 and then Ctype >= Subtype_Conformant
7930 and then
7931 Is_Access_Constant (Type_1) /= Is_Access_Constant (Type_2)
7932 then
7933 return False;
7934 end if;
7936 Desig_1 := Find_Designated_Type (Type_1);
7937 Desig_2 := Find_Designated_Type (Type_2);
7939 -- If the context is an instance association for a formal
7940 -- access-to-subprogram type; formal access parameter designated
7941 -- types require mapping because they may denote other formal
7942 -- parameters of the generic unit.
7944 if Get_Inst then
7945 Desig_1 := Get_Instance_Of (Desig_1);
7946 Desig_2 := Get_Instance_Of (Desig_2);
7947 end if;
7949 -- It is possible for a Class_Wide_Type to be introduced for an
7950 -- incomplete type, in which case there is a separate class_ wide
7951 -- type for the full view. The types conform if their Etypes
7952 -- conform, i.e. one may be the full view of the other. This can
7953 -- only happen in the context of an access parameter, other uses
7954 -- of an incomplete Class_Wide_Type are illegal.
7956 if Is_Class_Wide_Type (Desig_1)
7957 and then
7958 Is_Class_Wide_Type (Desig_2)
7959 then
7960 return
7961 Conforming_Types
7962 (Etype (Base_Type (Desig_1)),
7963 Etype (Base_Type (Desig_2)), Ctype);
7965 elsif Are_Anonymous_Access_To_Subprogram_Types then
7966 if Ada_Version < Ada_2005 then
7967 return Ctype = Type_Conformant
7968 or else
7969 Subtypes_Statically_Match (Desig_1, Desig_2);
7971 -- We must check the conformance of the signatures themselves
7973 else
7974 declare
7975 Conformant : Boolean;
7976 begin
7977 Check_Conformance
7978 (Desig_1, Desig_2, Ctype, False, Conformant);
7979 return Conformant;
7980 end;
7981 end if;
7983 else
7984 return Base_Type (Desig_1) = Base_Type (Desig_2)
7985 and then (Ctype = Type_Conformant
7986 or else
7987 Subtypes_Statically_Match (Desig_1, Desig_2));
7988 end if;
7989 end;
7991 -- Otherwise definitely no match
7993 else
7994 if ((Ekind (Type_1) = E_Anonymous_Access_Type
7995 and then Is_Access_Type (Type_2))
7996 or else (Ekind (Type_2) = E_Anonymous_Access_Type
7997 and then Is_Access_Type (Type_1)))
7998 and then
7999 Conforming_Types
8000 (Designated_Type (Type_1), Designated_Type (Type_2), Ctype)
8001 then
8002 May_Hide_Profile := True;
8003 end if;
8005 return False;
8006 end if;
8007 end Conforming_Types;
8009 --------------------------
8010 -- Create_Extra_Formals --
8011 --------------------------
8013 procedure Create_Extra_Formals (E : Entity_Id) is
8014 Formal : Entity_Id;
8015 First_Extra : Entity_Id := Empty;
8016 Last_Extra : Entity_Id;
8017 Formal_Type : Entity_Id;
8018 P_Formal : Entity_Id := Empty;
8020 function Add_Extra_Formal
8021 (Assoc_Entity : Entity_Id;
8022 Typ : Entity_Id;
8023 Scope : Entity_Id;
8024 Suffix : String) return Entity_Id;
8025 -- Add an extra formal to the current list of formals and extra formals.
8026 -- The extra formal is added to the end of the list of extra formals,
8027 -- and also returned as the result. These formals are always of mode IN.
8028 -- The new formal has the type Typ, is declared in Scope, and its name
8029 -- is given by a concatenation of the name of Assoc_Entity and Suffix.
8030 -- The following suffixes are currently used. They should not be changed
8031 -- without coordinating with CodePeer, which makes use of these to
8032 -- provide better messages.
8034 -- O denotes the Constrained bit.
8035 -- L denotes the accessibility level.
8036 -- BIP_xxx denotes an extra formal for a build-in-place function. See
8037 -- the full list in exp_ch6.BIP_Formal_Kind.
8039 ----------------------
8040 -- Add_Extra_Formal --
8041 ----------------------
8043 function Add_Extra_Formal
8044 (Assoc_Entity : Entity_Id;
8045 Typ : Entity_Id;
8046 Scope : Entity_Id;
8047 Suffix : String) return Entity_Id
8049 EF : constant Entity_Id :=
8050 Make_Defining_Identifier (Sloc (Assoc_Entity),
8051 Chars => New_External_Name (Chars (Assoc_Entity),
8052 Suffix => Suffix));
8054 begin
8055 -- A little optimization. Never generate an extra formal for the
8056 -- _init operand of an initialization procedure, since it could
8057 -- never be used.
8059 if Chars (Formal) = Name_uInit then
8060 return Empty;
8061 end if;
8063 Set_Ekind (EF, E_In_Parameter);
8064 Set_Actual_Subtype (EF, Typ);
8065 Set_Etype (EF, Typ);
8066 Set_Scope (EF, Scope);
8067 Set_Mechanism (EF, Default_Mechanism);
8068 Set_Formal_Validity (EF);
8070 if No (First_Extra) then
8071 First_Extra := EF;
8072 Set_Extra_Formals (Scope, First_Extra);
8073 end if;
8075 if Present (Last_Extra) then
8076 Set_Extra_Formal (Last_Extra, EF);
8077 end if;
8079 Last_Extra := EF;
8081 return EF;
8082 end Add_Extra_Formal;
8084 -- Start of processing for Create_Extra_Formals
8086 begin
8087 -- We never generate extra formals if expansion is not active because we
8088 -- don't need them unless we are generating code.
8090 if not Expander_Active then
8091 return;
8092 end if;
8094 -- No need to generate extra formals in interface thunks whose target
8095 -- primitive has no extra formals.
8097 if Is_Thunk (E) and then No (Extra_Formals (Thunk_Entity (E))) then
8098 return;
8099 end if;
8101 -- If this is a derived subprogram then the subtypes of the parent
8102 -- subprogram's formal parameters will be used to determine the need
8103 -- for extra formals.
8105 if Is_Overloadable (E) and then Present (Alias (E)) then
8106 P_Formal := First_Formal (Alias (E));
8107 end if;
8109 Last_Extra := Empty;
8110 Formal := First_Formal (E);
8111 while Present (Formal) loop
8112 Last_Extra := Formal;
8113 Next_Formal (Formal);
8114 end loop;
8116 -- If Extra_formals were already created, don't do it again. This
8117 -- situation may arise for subprogram types created as part of
8118 -- dispatching calls (see Expand_Dispatching_Call)
8120 if Present (Last_Extra) and then Present (Extra_Formal (Last_Extra)) then
8121 return;
8122 end if;
8124 -- If the subprogram is a predefined dispatching subprogram then don't
8125 -- generate any extra constrained or accessibility level formals. In
8126 -- general we suppress these for internal subprograms (by not calling
8127 -- Freeze_Subprogram and Create_Extra_Formals at all), but internally
8128 -- generated stream attributes do get passed through because extra
8129 -- build-in-place formals are needed in some cases (limited 'Input).
8131 if Is_Predefined_Internal_Operation (E) then
8132 goto Test_For_Func_Result_Extras;
8133 end if;
8135 Formal := First_Formal (E);
8136 while Present (Formal) loop
8138 -- Create extra formal for supporting the attribute 'Constrained.
8139 -- The case of a private type view without discriminants also
8140 -- requires the extra formal if the underlying type has defaulted
8141 -- discriminants.
8143 if Ekind (Formal) /= E_In_Parameter then
8144 if Present (P_Formal) then
8145 Formal_Type := Etype (P_Formal);
8146 else
8147 Formal_Type := Etype (Formal);
8148 end if;
8150 -- Do not produce extra formals for Unchecked_Union parameters.
8151 -- Jump directly to the end of the loop.
8153 if Is_Unchecked_Union (Base_Type (Formal_Type)) then
8154 goto Skip_Extra_Formal_Generation;
8155 end if;
8157 if not Has_Discriminants (Formal_Type)
8158 and then Ekind (Formal_Type) in Private_Kind
8159 and then Present (Underlying_Type (Formal_Type))
8160 then
8161 Formal_Type := Underlying_Type (Formal_Type);
8162 end if;
8164 -- Suppress the extra formal if formal's subtype is constrained or
8165 -- indefinite, or we're compiling for Ada 2012 and the underlying
8166 -- type is tagged and limited. In Ada 2012, a limited tagged type
8167 -- can have defaulted discriminants, but 'Constrained is required
8168 -- to return True, so the formal is never needed (see AI05-0214).
8169 -- Note that this ensures consistency of calling sequences for
8170 -- dispatching operations when some types in a class have defaults
8171 -- on discriminants and others do not (and requiring the extra
8172 -- formal would introduce distributed overhead).
8174 -- If the type does not have a completion yet, treat as prior to
8175 -- Ada 2012 for consistency.
8177 if Has_Discriminants (Formal_Type)
8178 and then not Is_Constrained (Formal_Type)
8179 and then not Is_Indefinite_Subtype (Formal_Type)
8180 and then (Ada_Version < Ada_2012
8181 or else No (Underlying_Type (Formal_Type))
8182 or else not
8183 (Is_Limited_Type (Formal_Type)
8184 and then
8185 (Is_Tagged_Type
8186 (Underlying_Type (Formal_Type)))))
8187 then
8188 Set_Extra_Constrained
8189 (Formal, Add_Extra_Formal (Formal, Standard_Boolean, E, "O"));
8190 end if;
8191 end if;
8193 -- Create extra formal for supporting accessibility checking. This
8194 -- is done for both anonymous access formals and formals of named
8195 -- access types that are marked as controlling formals. The latter
8196 -- case can occur when Expand_Dispatching_Call creates a subprogram
8197 -- type and substitutes the types of access-to-class-wide actuals
8198 -- for the anonymous access-to-specific-type of controlling formals.
8199 -- Base_Type is applied because in cases where there is a null
8200 -- exclusion the formal may have an access subtype.
8202 -- This is suppressed if we specifically suppress accessibility
8203 -- checks at the package level for either the subprogram, or the
8204 -- package in which it resides. However, we do not suppress it
8205 -- simply if the scope has accessibility checks suppressed, since
8206 -- this could cause trouble when clients are compiled with a
8207 -- different suppression setting. The explicit checks at the
8208 -- package level are safe from this point of view.
8210 if (Ekind (Base_Type (Etype (Formal))) = E_Anonymous_Access_Type
8211 or else (Is_Controlling_Formal (Formal)
8212 and then Is_Access_Type (Base_Type (Etype (Formal)))))
8213 and then not
8214 (Explicit_Suppress (E, Accessibility_Check)
8215 or else
8216 Explicit_Suppress (Scope (E), Accessibility_Check))
8217 and then
8218 (No (P_Formal)
8219 or else Present (Extra_Accessibility (P_Formal)))
8220 then
8221 Set_Extra_Accessibility
8222 (Formal, Add_Extra_Formal (Formal, Standard_Natural, E, "L"));
8223 end if;
8225 -- This label is required when skipping extra formal generation for
8226 -- Unchecked_Union parameters.
8228 <<Skip_Extra_Formal_Generation>>
8230 if Present (P_Formal) then
8231 Next_Formal (P_Formal);
8232 end if;
8234 Next_Formal (Formal);
8235 end loop;
8237 <<Test_For_Func_Result_Extras>>
8239 -- Ada 2012 (AI05-234): "the accessibility level of the result of a
8240 -- function call is ... determined by the point of call ...".
8242 if Needs_Result_Accessibility_Level (E) then
8243 Set_Extra_Accessibility_Of_Result
8244 (E, Add_Extra_Formal (E, Standard_Natural, E, "L"));
8245 end if;
8247 -- Ada 2005 (AI-318-02): In the case of build-in-place functions, add
8248 -- appropriate extra formals. See type Exp_Ch6.BIP_Formal_Kind.
8250 if Ada_Version >= Ada_2005 and then Is_Build_In_Place_Function (E) then
8251 declare
8252 Result_Subt : constant Entity_Id := Etype (E);
8253 Full_Subt : constant Entity_Id := Available_View (Result_Subt);
8254 Formal_Typ : Entity_Id;
8256 Discard : Entity_Id;
8257 pragma Warnings (Off, Discard);
8259 begin
8260 -- In the case of functions with unconstrained result subtypes,
8261 -- add a 4-state formal indicating whether the return object is
8262 -- allocated by the caller (1), or should be allocated by the
8263 -- callee on the secondary stack (2), in the global heap (3), or
8264 -- in a user-defined storage pool (4). For the moment we just use
8265 -- Natural for the type of this formal. Note that this formal
8266 -- isn't usually needed in the case where the result subtype is
8267 -- constrained, but it is needed when the function has a tagged
8268 -- result, because generally such functions can be called in a
8269 -- dispatching context and such calls must be handled like calls
8270 -- to a class-wide function.
8272 if Needs_BIP_Alloc_Form (E) then
8273 Discard :=
8274 Add_Extra_Formal
8275 (E, Standard_Natural,
8276 E, BIP_Formal_Suffix (BIP_Alloc_Form));
8278 -- Add BIP_Storage_Pool, in case BIP_Alloc_Form indicates to
8279 -- use a user-defined pool. This formal is not added on
8280 -- .NET/JVM/ZFP as those targets do not support pools.
8282 if VM_Target = No_VM
8283 and then RTE_Available (RE_Root_Storage_Pool_Ptr)
8284 then
8285 Discard :=
8286 Add_Extra_Formal
8287 (E, RTE (RE_Root_Storage_Pool_Ptr),
8288 E, BIP_Formal_Suffix (BIP_Storage_Pool));
8289 end if;
8290 end if;
8292 -- In the case of functions whose result type needs finalization,
8293 -- add an extra formal which represents the finalization master.
8295 if Needs_BIP_Finalization_Master (E) then
8296 Discard :=
8297 Add_Extra_Formal
8298 (E, RTE (RE_Finalization_Master_Ptr),
8299 E, BIP_Formal_Suffix (BIP_Finalization_Master));
8300 end if;
8302 -- When the result type contains tasks, add two extra formals: the
8303 -- master of the tasks to be created, and the caller's activation
8304 -- chain.
8306 if Has_Task (Full_Subt) then
8307 Discard :=
8308 Add_Extra_Formal
8309 (E, RTE (RE_Master_Id),
8310 E, BIP_Formal_Suffix (BIP_Task_Master));
8311 Discard :=
8312 Add_Extra_Formal
8313 (E, RTE (RE_Activation_Chain_Access),
8314 E, BIP_Formal_Suffix (BIP_Activation_Chain));
8315 end if;
8317 -- All build-in-place functions get an extra formal that will be
8318 -- passed the address of the return object within the caller.
8320 Formal_Typ :=
8321 Create_Itype (E_Anonymous_Access_Type, E, Scope_Id => Scope (E));
8323 Set_Directly_Designated_Type (Formal_Typ, Result_Subt);
8324 Set_Etype (Formal_Typ, Formal_Typ);
8325 Set_Depends_On_Private
8326 (Formal_Typ, Has_Private_Component (Formal_Typ));
8327 Set_Is_Public (Formal_Typ, Is_Public (Scope (Formal_Typ)));
8328 Set_Is_Access_Constant (Formal_Typ, False);
8330 -- Ada 2005 (AI-50217): Propagate the attribute that indicates
8331 -- the designated type comes from the limited view (for back-end
8332 -- purposes).
8334 Set_From_Limited_With
8335 (Formal_Typ, From_Limited_With (Result_Subt));
8337 Layout_Type (Formal_Typ);
8339 Discard :=
8340 Add_Extra_Formal
8341 (E, Formal_Typ, E, BIP_Formal_Suffix (BIP_Object_Access));
8342 end;
8343 end if;
8344 end Create_Extra_Formals;
8346 -----------------------------
8347 -- Enter_Overloaded_Entity --
8348 -----------------------------
8350 procedure Enter_Overloaded_Entity (S : Entity_Id) is
8351 E : Entity_Id := Current_Entity_In_Scope (S);
8352 C_E : Entity_Id := Current_Entity (S);
8354 begin
8355 if Present (E) then
8356 Set_Has_Homonym (E);
8357 Set_Has_Homonym (S);
8358 end if;
8360 Set_Is_Immediately_Visible (S);
8361 Set_Scope (S, Current_Scope);
8363 -- Chain new entity if front of homonym in current scope, so that
8364 -- homonyms are contiguous.
8366 if Present (E) and then E /= C_E then
8367 while Homonym (C_E) /= E loop
8368 C_E := Homonym (C_E);
8369 end loop;
8371 Set_Homonym (C_E, S);
8373 else
8374 E := C_E;
8375 Set_Current_Entity (S);
8376 end if;
8378 Set_Homonym (S, E);
8380 if Is_Inherited_Operation (S) then
8381 Append_Inherited_Subprogram (S);
8382 else
8383 Append_Entity (S, Current_Scope);
8384 end if;
8386 Set_Public_Status (S);
8388 if Debug_Flag_E then
8389 Write_Str ("New overloaded entity chain: ");
8390 Write_Name (Chars (S));
8392 E := S;
8393 while Present (E) loop
8394 Write_Str (" "); Write_Int (Int (E));
8395 E := Homonym (E);
8396 end loop;
8398 Write_Eol;
8399 end if;
8401 -- Generate warning for hiding
8403 if Warn_On_Hiding
8404 and then Comes_From_Source (S)
8405 and then In_Extended_Main_Source_Unit (S)
8406 then
8407 E := S;
8408 loop
8409 E := Homonym (E);
8410 exit when No (E);
8412 -- Warn unless genuine overloading. Do not emit warning on
8413 -- hiding predefined operators in Standard (these are either an
8414 -- (artifact of our implicit declarations, or simple noise) but
8415 -- keep warning on a operator defined on a local subtype, because
8416 -- of the real danger that different operators may be applied in
8417 -- various parts of the program.
8419 -- Note that if E and S have the same scope, there is never any
8420 -- hiding. Either the two conflict, and the program is illegal,
8421 -- or S is overriding an implicit inherited subprogram.
8423 if Scope (E) /= Scope (S)
8424 and then (not Is_Overloadable (E)
8425 or else Subtype_Conformant (E, S))
8426 and then (Is_Immediately_Visible (E)
8427 or else
8428 Is_Potentially_Use_Visible (S))
8429 then
8430 if Scope (E) /= Standard_Standard then
8431 Error_Msg_Sloc := Sloc (E);
8432 Error_Msg_N ("declaration of & hides one#?h?", S);
8434 elsif Nkind (S) = N_Defining_Operator_Symbol
8435 and then
8436 Scope (Base_Type (Etype (First_Formal (S)))) /= Scope (S)
8437 then
8438 Error_Msg_N
8439 ("declaration of & hides predefined operator?h?", S);
8440 end if;
8441 end if;
8442 end loop;
8443 end if;
8444 end Enter_Overloaded_Entity;
8446 -----------------------------
8447 -- Check_Untagged_Equality --
8448 -----------------------------
8450 procedure Check_Untagged_Equality (Eq_Op : Entity_Id) is
8451 Typ : constant Entity_Id := Etype (First_Formal (Eq_Op));
8452 Decl : constant Node_Id := Unit_Declaration_Node (Eq_Op);
8453 Obj_Decl : Node_Id;
8455 begin
8456 -- This check applies only if we have a subprogram declaration with a
8457 -- non-tagged record type.
8459 if Nkind (Decl) /= N_Subprogram_Declaration
8460 or else not Is_Record_Type (Typ)
8461 or else Is_Tagged_Type (Typ)
8462 then
8463 return;
8464 end if;
8466 -- In Ada 2012 case, we will output errors or warnings depending on
8467 -- the setting of debug flag -gnatd.E.
8469 if Ada_Version >= Ada_2012 then
8470 Error_Msg_Warn := Debug_Flag_Dot_EE;
8472 -- In earlier versions of Ada, nothing to do unless we are warning on
8473 -- Ada 2012 incompatibilities (Warn_On_Ada_2012_Incompatibility set).
8475 else
8476 if not Warn_On_Ada_2012_Compatibility then
8477 return;
8478 end if;
8479 end if;
8481 -- Cases where the type has already been frozen
8483 if Is_Frozen (Typ) then
8485 -- If the type is not declared in a package, or if we are in the body
8486 -- of the package or in some other scope, the new operation is not
8487 -- primitive, and therefore legal, though suspicious. Should we
8488 -- generate a warning in this case ???
8490 if Ekind (Scope (Typ)) /= E_Package
8491 or else Scope (Typ) /= Current_Scope
8492 then
8493 return;
8495 -- If the type is a generic actual (sub)type, the operation is not
8496 -- primitive either because the base type is declared elsewhere.
8498 elsif Is_Generic_Actual_Type (Typ) then
8499 return;
8501 -- Here we have a definite error of declaration after freezing
8503 else
8504 if Ada_Version >= Ada_2012 then
8505 Error_Msg_NE
8506 ("equality operator must be declared before type& is "
8507 & "frozen (RM 4.5.2 (9.8)) (Ada 2012)<<", Eq_Op, Typ);
8509 -- In Ada 2012 mode with error turned to warning, output one
8510 -- more warning to warn that the equality operation may not
8511 -- compose. This is the consequence of ignoring the error.
8513 if Error_Msg_Warn then
8514 Error_Msg_N ("\equality operation may not compose??", Eq_Op);
8515 end if;
8517 else
8518 Error_Msg_NE
8519 ("equality operator must be declared before type& is "
8520 & "frozen (RM 4.5.2 (9.8)) (Ada 2012)?y?", Eq_Op, Typ);
8521 end if;
8523 -- If we are in the package body, we could just move the
8524 -- declaration to the package spec, so add a message saying that.
8526 if In_Package_Body (Scope (Typ)) then
8527 if Ada_Version >= Ada_2012 then
8528 Error_Msg_N
8529 ("\move declaration to package spec<<", Eq_Op);
8530 else
8531 Error_Msg_N
8532 ("\move declaration to package spec (Ada 2012)?y?", Eq_Op);
8533 end if;
8535 -- Otherwise try to find the freezing point
8537 else
8538 Obj_Decl := Next (Parent (Typ));
8539 while Present (Obj_Decl) and then Obj_Decl /= Decl loop
8540 if Nkind (Obj_Decl) = N_Object_Declaration
8541 and then Etype (Defining_Identifier (Obj_Decl)) = Typ
8542 then
8543 -- Freezing point, output warnings
8545 if Ada_Version >= Ada_2012 then
8546 Error_Msg_NE
8547 ("type& is frozen by declaration??", Obj_Decl, Typ);
8548 Error_Msg_N
8549 ("\an equality operator cannot be declared after "
8550 & "this point??",
8551 Obj_Decl);
8552 else
8553 Error_Msg_NE
8554 ("type& is frozen by declaration (Ada 2012)?y?",
8555 Obj_Decl, Typ);
8556 Error_Msg_N
8557 ("\an equality operator cannot be declared after "
8558 & "this point (Ada 2012)?y?",
8559 Obj_Decl);
8560 end if;
8562 exit;
8563 end if;
8565 Next (Obj_Decl);
8566 end loop;
8567 end if;
8568 end if;
8570 -- Here if type is not frozen yet. It is illegal to have a primitive
8571 -- equality declared in the private part if the type is visible.
8573 elsif not In_Same_List (Parent (Typ), Decl)
8574 and then not Is_Limited_Type (Typ)
8575 then
8576 -- Shouldn't we give an RM reference here???
8578 if Ada_Version >= Ada_2012 then
8579 Error_Msg_N
8580 ("equality operator appears too late<<", Eq_Op);
8581 else
8582 Error_Msg_N
8583 ("equality operator appears too late (Ada 2012)?y?", Eq_Op);
8584 end if;
8586 -- No error detected
8588 else
8589 return;
8590 end if;
8591 end Check_Untagged_Equality;
8593 -----------------------------
8594 -- Find_Corresponding_Spec --
8595 -----------------------------
8597 function Find_Corresponding_Spec
8598 (N : Node_Id;
8599 Post_Error : Boolean := True) return Entity_Id
8601 Spec : constant Node_Id := Specification (N);
8602 Designator : constant Entity_Id := Defining_Entity (Spec);
8604 E : Entity_Id;
8606 function Different_Generic_Profile (E : Entity_Id) return Boolean;
8607 -- Even if fully conformant, a body may depend on a generic actual when
8608 -- the spec does not, or vice versa, in which case they were distinct
8609 -- entities in the generic.
8611 -------------------------------
8612 -- Different_Generic_Profile --
8613 -------------------------------
8615 function Different_Generic_Profile (E : Entity_Id) return Boolean is
8616 F1, F2 : Entity_Id;
8618 function Same_Generic_Actual (T1, T2 : Entity_Id) return Boolean;
8619 -- Check that the types of corresponding formals have the same
8620 -- generic actual if any. We have to account for subtypes of a
8621 -- generic formal, declared between a spec and a body, which may
8622 -- appear distinct in an instance but matched in the generic.
8624 -------------------------
8625 -- Same_Generic_Actual --
8626 -------------------------
8628 function Same_Generic_Actual (T1, T2 : Entity_Id) return Boolean is
8629 begin
8630 return Is_Generic_Actual_Type (T1) = Is_Generic_Actual_Type (T2)
8631 or else
8632 (Present (Parent (T1))
8633 and then Comes_From_Source (Parent (T1))
8634 and then Nkind (Parent (T1)) = N_Subtype_Declaration
8635 and then Is_Entity_Name (Subtype_Indication (Parent (T1)))
8636 and then Entity (Subtype_Indication (Parent (T1))) = T2);
8637 end Same_Generic_Actual;
8639 -- Start of processing for Different_Generic_Profile
8641 begin
8642 if not In_Instance then
8643 return False;
8645 elsif Ekind (E) = E_Function
8646 and then not Same_Generic_Actual (Etype (E), Etype (Designator))
8647 then
8648 return True;
8649 end if;
8651 F1 := First_Formal (Designator);
8652 F2 := First_Formal (E);
8653 while Present (F1) loop
8654 if not Same_Generic_Actual (Etype (F1), Etype (F2)) then
8655 return True;
8656 end if;
8658 Next_Formal (F1);
8659 Next_Formal (F2);
8660 end loop;
8662 return False;
8663 end Different_Generic_Profile;
8665 -- Start of processing for Find_Corresponding_Spec
8667 begin
8668 E := Current_Entity (Designator);
8669 while Present (E) loop
8671 -- We are looking for a matching spec. It must have the same scope,
8672 -- and the same name, and either be type conformant, or be the case
8673 -- of a library procedure spec and its body (which belong to one
8674 -- another regardless of whether they are type conformant or not).
8676 if Scope (E) = Current_Scope then
8677 if Current_Scope = Standard_Standard
8678 or else (Ekind (E) = Ekind (Designator)
8679 and then Type_Conformant (E, Designator))
8680 then
8681 -- Within an instantiation, we know that spec and body are
8682 -- subtype conformant, because they were subtype conformant in
8683 -- the generic. We choose the subtype-conformant entity here as
8684 -- well, to resolve spurious ambiguities in the instance that
8685 -- were not present in the generic (i.e. when two different
8686 -- types are given the same actual). If we are looking for a
8687 -- spec to match a body, full conformance is expected.
8689 if In_Instance then
8690 Set_Convention (Designator, Convention (E));
8692 -- Skip past subprogram bodies and subprogram renamings that
8693 -- may appear to have a matching spec, but that aren't fully
8694 -- conformant with it. That can occur in cases where an
8695 -- actual type causes unrelated homographs in the instance.
8697 if Nkind_In (N, N_Subprogram_Body,
8698 N_Subprogram_Renaming_Declaration)
8699 and then Present (Homonym (E))
8700 and then not Fully_Conformant (Designator, E)
8701 then
8702 goto Next_Entity;
8704 elsif not Subtype_Conformant (Designator, E) then
8705 goto Next_Entity;
8707 elsif Different_Generic_Profile (E) then
8708 goto Next_Entity;
8709 end if;
8710 end if;
8712 -- Ada 2012 (AI05-0165): For internally generated bodies of
8713 -- null procedures locate the internally generated spec. We
8714 -- enforce mode conformance since a tagged type may inherit
8715 -- from interfaces several null primitives which differ only
8716 -- in the mode of the formals.
8718 if not (Comes_From_Source (E))
8719 and then Is_Null_Procedure (E)
8720 and then not Mode_Conformant (Designator, E)
8721 then
8722 null;
8724 -- For null procedures coming from source that are completions,
8725 -- analysis of the generated body will establish the link.
8727 elsif Comes_From_Source (E)
8728 and then Nkind (Spec) = N_Procedure_Specification
8729 and then Null_Present (Spec)
8730 then
8731 return E;
8733 elsif not Has_Completion (E) then
8734 if Nkind (N) /= N_Subprogram_Body_Stub then
8735 Set_Corresponding_Spec (N, E);
8736 end if;
8738 Set_Has_Completion (E);
8739 return E;
8741 elsif Nkind (Parent (N)) = N_Subunit then
8743 -- If this is the proper body of a subunit, the completion
8744 -- flag is set when analyzing the stub.
8746 return E;
8748 -- If E is an internal function with a controlling result that
8749 -- was created for an operation inherited by a null extension,
8750 -- it may be overridden by a body without a previous spec (one
8751 -- more reason why these should be shunned). In that case we
8752 -- remove the generated body if present, because the current
8753 -- one is the explicit overriding.
8755 elsif Ekind (E) = E_Function
8756 and then Ada_Version >= Ada_2005
8757 and then not Comes_From_Source (E)
8758 and then Has_Controlling_Result (E)
8759 and then Is_Null_Extension (Etype (E))
8760 and then Comes_From_Source (Spec)
8761 then
8762 Set_Has_Completion (E, False);
8764 if Expander_Active
8765 and then Nkind (Parent (E)) = N_Function_Specification
8766 then
8767 Remove
8768 (Unit_Declaration_Node
8769 (Corresponding_Body (Unit_Declaration_Node (E))));
8771 return E;
8773 -- If expansion is disabled, or if the wrapper function has
8774 -- not been generated yet, this a late body overriding an
8775 -- inherited operation, or it is an overriding by some other
8776 -- declaration before the controlling result is frozen. In
8777 -- either case this is a declaration of a new entity.
8779 else
8780 return Empty;
8781 end if;
8783 -- If the body already exists, then this is an error unless
8784 -- the previous declaration is the implicit declaration of a
8785 -- derived subprogram. It is also legal for an instance to
8786 -- contain type conformant overloadable declarations (but the
8787 -- generic declaration may not), per 8.3(26/2).
8789 elsif No (Alias (E))
8790 and then not Is_Intrinsic_Subprogram (E)
8791 and then not In_Instance
8792 and then Post_Error
8793 then
8794 Error_Msg_Sloc := Sloc (E);
8796 if Is_Imported (E) then
8797 Error_Msg_NE
8798 ("body not allowed for imported subprogram & declared#",
8799 N, E);
8800 else
8801 Error_Msg_NE ("duplicate body for & declared#", N, E);
8802 end if;
8803 end if;
8805 -- Child units cannot be overloaded, so a conformance mismatch
8806 -- between body and a previous spec is an error.
8808 elsif Is_Child_Unit (E)
8809 and then
8810 Nkind (Unit_Declaration_Node (Designator)) = N_Subprogram_Body
8811 and then
8812 Nkind (Parent (Unit_Declaration_Node (Designator))) =
8813 N_Compilation_Unit
8814 and then Post_Error
8815 then
8816 Error_Msg_N
8817 ("body of child unit does not match previous declaration", N);
8818 end if;
8819 end if;
8821 <<Next_Entity>>
8822 E := Homonym (E);
8823 end loop;
8825 -- On exit, we know that no previous declaration of subprogram exists
8827 return Empty;
8828 end Find_Corresponding_Spec;
8830 ----------------------
8831 -- Fully_Conformant --
8832 ----------------------
8834 function Fully_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
8835 Result : Boolean;
8836 begin
8837 Check_Conformance (New_Id, Old_Id, Fully_Conformant, False, Result);
8838 return Result;
8839 end Fully_Conformant;
8841 ----------------------------------
8842 -- Fully_Conformant_Expressions --
8843 ----------------------------------
8845 function Fully_Conformant_Expressions
8846 (Given_E1 : Node_Id;
8847 Given_E2 : Node_Id) return Boolean
8849 E1 : constant Node_Id := Original_Node (Given_E1);
8850 E2 : constant Node_Id := Original_Node (Given_E2);
8851 -- We always test conformance on original nodes, since it is possible
8852 -- for analysis and/or expansion to make things look as though they
8853 -- conform when they do not, e.g. by converting 1+2 into 3.
8855 function FCE (Given_E1, Given_E2 : Node_Id) return Boolean
8856 renames Fully_Conformant_Expressions;
8858 function FCL (L1, L2 : List_Id) return Boolean;
8859 -- Compare elements of two lists for conformance. Elements have to be
8860 -- conformant, and actuals inserted as default parameters do not match
8861 -- explicit actuals with the same value.
8863 function FCO (Op_Node, Call_Node : Node_Id) return Boolean;
8864 -- Compare an operator node with a function call
8866 ---------
8867 -- FCL --
8868 ---------
8870 function FCL (L1, L2 : List_Id) return Boolean is
8871 N1, N2 : Node_Id;
8873 begin
8874 if L1 = No_List then
8875 N1 := Empty;
8876 else
8877 N1 := First (L1);
8878 end if;
8880 if L2 = No_List then
8881 N2 := Empty;
8882 else
8883 N2 := First (L2);
8884 end if;
8886 -- Compare two lists, skipping rewrite insertions (we want to compare
8887 -- the original trees, not the expanded versions).
8889 loop
8890 if Is_Rewrite_Insertion (N1) then
8891 Next (N1);
8892 elsif Is_Rewrite_Insertion (N2) then
8893 Next (N2);
8894 elsif No (N1) then
8895 return No (N2);
8896 elsif No (N2) then
8897 return False;
8898 elsif not FCE (N1, N2) then
8899 return False;
8900 else
8901 Next (N1);
8902 Next (N2);
8903 end if;
8904 end loop;
8905 end FCL;
8907 ---------
8908 -- FCO --
8909 ---------
8911 function FCO (Op_Node, Call_Node : Node_Id) return Boolean is
8912 Actuals : constant List_Id := Parameter_Associations (Call_Node);
8913 Act : Node_Id;
8915 begin
8916 if No (Actuals)
8917 or else Entity (Op_Node) /= Entity (Name (Call_Node))
8918 then
8919 return False;
8921 else
8922 Act := First (Actuals);
8924 if Nkind (Op_Node) in N_Binary_Op then
8925 if not FCE (Left_Opnd (Op_Node), Act) then
8926 return False;
8927 end if;
8929 Next (Act);
8930 end if;
8932 return Present (Act)
8933 and then FCE (Right_Opnd (Op_Node), Act)
8934 and then No (Next (Act));
8935 end if;
8936 end FCO;
8938 -- Start of processing for Fully_Conformant_Expressions
8940 begin
8941 -- Non-conformant if paren count does not match. Note: if some idiot
8942 -- complains that we don't do this right for more than 3 levels of
8943 -- parentheses, they will be treated with the respect they deserve.
8945 if Paren_Count (E1) /= Paren_Count (E2) then
8946 return False;
8948 -- If same entities are referenced, then they are conformant even if
8949 -- they have different forms (RM 8.3.1(19-20)).
8951 elsif Is_Entity_Name (E1) and then Is_Entity_Name (E2) then
8952 if Present (Entity (E1)) then
8953 return Entity (E1) = Entity (E2)
8954 or else (Chars (Entity (E1)) = Chars (Entity (E2))
8955 and then Ekind (Entity (E1)) = E_Discriminant
8956 and then Ekind (Entity (E2)) = E_In_Parameter);
8958 elsif Nkind (E1) = N_Expanded_Name
8959 and then Nkind (E2) = N_Expanded_Name
8960 and then Nkind (Selector_Name (E1)) = N_Character_Literal
8961 and then Nkind (Selector_Name (E2)) = N_Character_Literal
8962 then
8963 return Chars (Selector_Name (E1)) = Chars (Selector_Name (E2));
8965 else
8966 -- Identifiers in component associations don't always have
8967 -- entities, but their names must conform.
8969 return Nkind (E1) = N_Identifier
8970 and then Nkind (E2) = N_Identifier
8971 and then Chars (E1) = Chars (E2);
8972 end if;
8974 elsif Nkind (E1) = N_Character_Literal
8975 and then Nkind (E2) = N_Expanded_Name
8976 then
8977 return Nkind (Selector_Name (E2)) = N_Character_Literal
8978 and then Chars (E1) = Chars (Selector_Name (E2));
8980 elsif Nkind (E2) = N_Character_Literal
8981 and then Nkind (E1) = N_Expanded_Name
8982 then
8983 return Nkind (Selector_Name (E1)) = N_Character_Literal
8984 and then Chars (E2) = Chars (Selector_Name (E1));
8986 elsif Nkind (E1) in N_Op and then Nkind (E2) = N_Function_Call then
8987 return FCO (E1, E2);
8989 elsif Nkind (E2) in N_Op and then Nkind (E1) = N_Function_Call then
8990 return FCO (E2, E1);
8992 -- Otherwise we must have the same syntactic entity
8994 elsif Nkind (E1) /= Nkind (E2) then
8995 return False;
8997 -- At this point, we specialize by node type
8999 else
9000 case Nkind (E1) is
9002 when N_Aggregate =>
9003 return
9004 FCL (Expressions (E1), Expressions (E2))
9005 and then
9006 FCL (Component_Associations (E1),
9007 Component_Associations (E2));
9009 when N_Allocator =>
9010 if Nkind (Expression (E1)) = N_Qualified_Expression
9011 or else
9012 Nkind (Expression (E2)) = N_Qualified_Expression
9013 then
9014 return FCE (Expression (E1), Expression (E2));
9016 -- Check that the subtype marks and any constraints
9017 -- are conformant
9019 else
9020 declare
9021 Indic1 : constant Node_Id := Expression (E1);
9022 Indic2 : constant Node_Id := Expression (E2);
9023 Elt1 : Node_Id;
9024 Elt2 : Node_Id;
9026 begin
9027 if Nkind (Indic1) /= N_Subtype_Indication then
9028 return
9029 Nkind (Indic2) /= N_Subtype_Indication
9030 and then Entity (Indic1) = Entity (Indic2);
9032 elsif Nkind (Indic2) /= N_Subtype_Indication then
9033 return
9034 Nkind (Indic1) /= N_Subtype_Indication
9035 and then Entity (Indic1) = Entity (Indic2);
9037 else
9038 if Entity (Subtype_Mark (Indic1)) /=
9039 Entity (Subtype_Mark (Indic2))
9040 then
9041 return False;
9042 end if;
9044 Elt1 := First (Constraints (Constraint (Indic1)));
9045 Elt2 := First (Constraints (Constraint (Indic2)));
9046 while Present (Elt1) and then Present (Elt2) loop
9047 if not FCE (Elt1, Elt2) then
9048 return False;
9049 end if;
9051 Next (Elt1);
9052 Next (Elt2);
9053 end loop;
9055 return True;
9056 end if;
9057 end;
9058 end if;
9060 when N_Attribute_Reference =>
9061 return
9062 Attribute_Name (E1) = Attribute_Name (E2)
9063 and then FCL (Expressions (E1), Expressions (E2));
9065 when N_Binary_Op =>
9066 return
9067 Entity (E1) = Entity (E2)
9068 and then FCE (Left_Opnd (E1), Left_Opnd (E2))
9069 and then FCE (Right_Opnd (E1), Right_Opnd (E2));
9071 when N_Short_Circuit | N_Membership_Test =>
9072 return
9073 FCE (Left_Opnd (E1), Left_Opnd (E2))
9074 and then
9075 FCE (Right_Opnd (E1), Right_Opnd (E2));
9077 when N_Case_Expression =>
9078 declare
9079 Alt1 : Node_Id;
9080 Alt2 : Node_Id;
9082 begin
9083 if not FCE (Expression (E1), Expression (E2)) then
9084 return False;
9086 else
9087 Alt1 := First (Alternatives (E1));
9088 Alt2 := First (Alternatives (E2));
9089 loop
9090 if Present (Alt1) /= Present (Alt2) then
9091 return False;
9092 elsif No (Alt1) then
9093 return True;
9094 end if;
9096 if not FCE (Expression (Alt1), Expression (Alt2))
9097 or else not FCL (Discrete_Choices (Alt1),
9098 Discrete_Choices (Alt2))
9099 then
9100 return False;
9101 end if;
9103 Next (Alt1);
9104 Next (Alt2);
9105 end loop;
9106 end if;
9107 end;
9109 when N_Character_Literal =>
9110 return
9111 Char_Literal_Value (E1) = Char_Literal_Value (E2);
9113 when N_Component_Association =>
9114 return
9115 FCL (Choices (E1), Choices (E2))
9116 and then
9117 FCE (Expression (E1), Expression (E2));
9119 when N_Explicit_Dereference =>
9120 return
9121 FCE (Prefix (E1), Prefix (E2));
9123 when N_Extension_Aggregate =>
9124 return
9125 FCL (Expressions (E1), Expressions (E2))
9126 and then Null_Record_Present (E1) =
9127 Null_Record_Present (E2)
9128 and then FCL (Component_Associations (E1),
9129 Component_Associations (E2));
9131 when N_Function_Call =>
9132 return
9133 FCE (Name (E1), Name (E2))
9134 and then
9135 FCL (Parameter_Associations (E1),
9136 Parameter_Associations (E2));
9138 when N_If_Expression =>
9139 return
9140 FCL (Expressions (E1), Expressions (E2));
9142 when N_Indexed_Component =>
9143 return
9144 FCE (Prefix (E1), Prefix (E2))
9145 and then
9146 FCL (Expressions (E1), Expressions (E2));
9148 when N_Integer_Literal =>
9149 return (Intval (E1) = Intval (E2));
9151 when N_Null =>
9152 return True;
9154 when N_Operator_Symbol =>
9155 return
9156 Chars (E1) = Chars (E2);
9158 when N_Others_Choice =>
9159 return True;
9161 when N_Parameter_Association =>
9162 return
9163 Chars (Selector_Name (E1)) = Chars (Selector_Name (E2))
9164 and then FCE (Explicit_Actual_Parameter (E1),
9165 Explicit_Actual_Parameter (E2));
9167 when N_Qualified_Expression =>
9168 return
9169 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
9170 and then
9171 FCE (Expression (E1), Expression (E2));
9173 when N_Quantified_Expression =>
9174 if not FCE (Condition (E1), Condition (E2)) then
9175 return False;
9176 end if;
9178 if Present (Loop_Parameter_Specification (E1))
9179 and then Present (Loop_Parameter_Specification (E2))
9180 then
9181 declare
9182 L1 : constant Node_Id :=
9183 Loop_Parameter_Specification (E1);
9184 L2 : constant Node_Id :=
9185 Loop_Parameter_Specification (E2);
9187 begin
9188 return
9189 Reverse_Present (L1) = Reverse_Present (L2)
9190 and then
9191 FCE (Defining_Identifier (L1),
9192 Defining_Identifier (L2))
9193 and then
9194 FCE (Discrete_Subtype_Definition (L1),
9195 Discrete_Subtype_Definition (L2));
9196 end;
9198 elsif Present (Iterator_Specification (E1))
9199 and then Present (Iterator_Specification (E2))
9200 then
9201 declare
9202 I1 : constant Node_Id := Iterator_Specification (E1);
9203 I2 : constant Node_Id := Iterator_Specification (E2);
9205 begin
9206 return
9207 FCE (Defining_Identifier (I1),
9208 Defining_Identifier (I2))
9209 and then
9210 Of_Present (I1) = Of_Present (I2)
9211 and then
9212 Reverse_Present (I1) = Reverse_Present (I2)
9213 and then FCE (Name (I1), Name (I2))
9214 and then FCE (Subtype_Indication (I1),
9215 Subtype_Indication (I2));
9216 end;
9218 -- The quantified expressions used different specifications to
9219 -- walk their respective ranges.
9221 else
9222 return False;
9223 end if;
9225 when N_Range =>
9226 return
9227 FCE (Low_Bound (E1), Low_Bound (E2))
9228 and then
9229 FCE (High_Bound (E1), High_Bound (E2));
9231 when N_Real_Literal =>
9232 return (Realval (E1) = Realval (E2));
9234 when N_Selected_Component =>
9235 return
9236 FCE (Prefix (E1), Prefix (E2))
9237 and then
9238 FCE (Selector_Name (E1), Selector_Name (E2));
9240 when N_Slice =>
9241 return
9242 FCE (Prefix (E1), Prefix (E2))
9243 and then
9244 FCE (Discrete_Range (E1), Discrete_Range (E2));
9246 when N_String_Literal =>
9247 declare
9248 S1 : constant String_Id := Strval (E1);
9249 S2 : constant String_Id := Strval (E2);
9250 L1 : constant Nat := String_Length (S1);
9251 L2 : constant Nat := String_Length (S2);
9253 begin
9254 if L1 /= L2 then
9255 return False;
9257 else
9258 for J in 1 .. L1 loop
9259 if Get_String_Char (S1, J) /=
9260 Get_String_Char (S2, J)
9261 then
9262 return False;
9263 end if;
9264 end loop;
9266 return True;
9267 end if;
9268 end;
9270 when N_Type_Conversion =>
9271 return
9272 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
9273 and then
9274 FCE (Expression (E1), Expression (E2));
9276 when N_Unary_Op =>
9277 return
9278 Entity (E1) = Entity (E2)
9279 and then
9280 FCE (Right_Opnd (E1), Right_Opnd (E2));
9282 when N_Unchecked_Type_Conversion =>
9283 return
9284 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
9285 and then
9286 FCE (Expression (E1), Expression (E2));
9288 -- All other node types cannot appear in this context. Strictly
9289 -- we should raise a fatal internal error. Instead we just ignore
9290 -- the nodes. This means that if anyone makes a mistake in the
9291 -- expander and mucks an expression tree irretrievably, the result
9292 -- will be a failure to detect a (probably very obscure) case
9293 -- of non-conformance, which is better than bombing on some
9294 -- case where two expressions do in fact conform.
9296 when others =>
9297 return True;
9299 end case;
9300 end if;
9301 end Fully_Conformant_Expressions;
9303 ----------------------------------------
9304 -- Fully_Conformant_Discrete_Subtypes --
9305 ----------------------------------------
9307 function Fully_Conformant_Discrete_Subtypes
9308 (Given_S1 : Node_Id;
9309 Given_S2 : Node_Id) return Boolean
9311 S1 : constant Node_Id := Original_Node (Given_S1);
9312 S2 : constant Node_Id := Original_Node (Given_S2);
9314 function Conforming_Bounds (B1, B2 : Node_Id) return Boolean;
9315 -- Special-case for a bound given by a discriminant, which in the body
9316 -- is replaced with the discriminal of the enclosing type.
9318 function Conforming_Ranges (R1, R2 : Node_Id) return Boolean;
9319 -- Check both bounds
9321 -----------------------
9322 -- Conforming_Bounds --
9323 -----------------------
9325 function Conforming_Bounds (B1, B2 : Node_Id) return Boolean is
9326 begin
9327 if Is_Entity_Name (B1)
9328 and then Is_Entity_Name (B2)
9329 and then Ekind (Entity (B1)) = E_Discriminant
9330 then
9331 return Chars (B1) = Chars (B2);
9333 else
9334 return Fully_Conformant_Expressions (B1, B2);
9335 end if;
9336 end Conforming_Bounds;
9338 -----------------------
9339 -- Conforming_Ranges --
9340 -----------------------
9342 function Conforming_Ranges (R1, R2 : Node_Id) return Boolean is
9343 begin
9344 return
9345 Conforming_Bounds (Low_Bound (R1), Low_Bound (R2))
9346 and then
9347 Conforming_Bounds (High_Bound (R1), High_Bound (R2));
9348 end Conforming_Ranges;
9350 -- Start of processing for Fully_Conformant_Discrete_Subtypes
9352 begin
9353 if Nkind (S1) /= Nkind (S2) then
9354 return False;
9356 elsif Is_Entity_Name (S1) then
9357 return Entity (S1) = Entity (S2);
9359 elsif Nkind (S1) = N_Range then
9360 return Conforming_Ranges (S1, S2);
9362 elsif Nkind (S1) = N_Subtype_Indication then
9363 return
9364 Entity (Subtype_Mark (S1)) = Entity (Subtype_Mark (S2))
9365 and then
9366 Conforming_Ranges
9367 (Range_Expression (Constraint (S1)),
9368 Range_Expression (Constraint (S2)));
9369 else
9370 return True;
9371 end if;
9372 end Fully_Conformant_Discrete_Subtypes;
9374 --------------------
9375 -- Install_Entity --
9376 --------------------
9378 procedure Install_Entity (E : Entity_Id) is
9379 Prev : constant Entity_Id := Current_Entity (E);
9380 begin
9381 Set_Is_Immediately_Visible (E);
9382 Set_Current_Entity (E);
9383 Set_Homonym (E, Prev);
9384 end Install_Entity;
9386 ---------------------
9387 -- Install_Formals --
9388 ---------------------
9390 procedure Install_Formals (Id : Entity_Id) is
9391 F : Entity_Id;
9392 begin
9393 F := First_Formal (Id);
9394 while Present (F) loop
9395 Install_Entity (F);
9396 Next_Formal (F);
9397 end loop;
9398 end Install_Formals;
9400 -----------------------------
9401 -- Is_Interface_Conformant --
9402 -----------------------------
9404 function Is_Interface_Conformant
9405 (Tagged_Type : Entity_Id;
9406 Iface_Prim : Entity_Id;
9407 Prim : Entity_Id) return Boolean
9409 -- The operation may in fact be an inherited (implicit) operation
9410 -- rather than the original interface primitive, so retrieve the
9411 -- ultimate ancestor.
9413 Iface : constant Entity_Id :=
9414 Find_Dispatching_Type (Ultimate_Alias (Iface_Prim));
9415 Typ : constant Entity_Id := Find_Dispatching_Type (Prim);
9417 function Controlling_Formal (Prim : Entity_Id) return Entity_Id;
9418 -- Return the controlling formal of Prim
9420 ------------------------
9421 -- Controlling_Formal --
9422 ------------------------
9424 function Controlling_Formal (Prim : Entity_Id) return Entity_Id is
9425 E : Entity_Id;
9427 begin
9428 E := First_Entity (Prim);
9429 while Present (E) loop
9430 if Is_Formal (E) and then Is_Controlling_Formal (E) then
9431 return E;
9432 end if;
9434 Next_Entity (E);
9435 end loop;
9437 return Empty;
9438 end Controlling_Formal;
9440 -- Local variables
9442 Iface_Ctrl_F : constant Entity_Id := Controlling_Formal (Iface_Prim);
9443 Prim_Ctrl_F : constant Entity_Id := Controlling_Formal (Prim);
9445 -- Start of processing for Is_Interface_Conformant
9447 begin
9448 pragma Assert (Is_Subprogram (Iface_Prim)
9449 and then Is_Subprogram (Prim)
9450 and then Is_Dispatching_Operation (Iface_Prim)
9451 and then Is_Dispatching_Operation (Prim));
9453 pragma Assert (Is_Interface (Iface)
9454 or else (Present (Alias (Iface_Prim))
9455 and then
9456 Is_Interface
9457 (Find_Dispatching_Type (Ultimate_Alias (Iface_Prim)))));
9459 if Prim = Iface_Prim
9460 or else not Is_Subprogram (Prim)
9461 or else Ekind (Prim) /= Ekind (Iface_Prim)
9462 or else not Is_Dispatching_Operation (Prim)
9463 or else Scope (Prim) /= Scope (Tagged_Type)
9464 or else No (Typ)
9465 or else Base_Type (Typ) /= Base_Type (Tagged_Type)
9466 or else not Primitive_Names_Match (Iface_Prim, Prim)
9467 then
9468 return False;
9470 -- The mode of the controlling formals must match
9472 elsif Present (Iface_Ctrl_F)
9473 and then Present (Prim_Ctrl_F)
9474 and then Ekind (Iface_Ctrl_F) /= Ekind (Prim_Ctrl_F)
9475 then
9476 return False;
9478 -- Case of a procedure, or a function whose result type matches the
9479 -- result type of the interface primitive, or a function that has no
9480 -- controlling result (I or access I).
9482 elsif Ekind (Iface_Prim) = E_Procedure
9483 or else Etype (Prim) = Etype (Iface_Prim)
9484 or else not Has_Controlling_Result (Prim)
9485 then
9486 return Type_Conformant
9487 (Iface_Prim, Prim, Skip_Controlling_Formals => True);
9489 -- Case of a function returning an interface, or an access to one. Check
9490 -- that the return types correspond.
9492 elsif Implements_Interface (Typ, Iface) then
9493 if (Ekind (Etype (Prim)) = E_Anonymous_Access_Type)
9495 (Ekind (Etype (Iface_Prim)) = E_Anonymous_Access_Type)
9496 then
9497 return False;
9498 else
9499 return
9500 Type_Conformant (Prim, Ultimate_Alias (Iface_Prim),
9501 Skip_Controlling_Formals => True);
9502 end if;
9504 else
9505 return False;
9506 end if;
9507 end Is_Interface_Conformant;
9509 ---------------------------------
9510 -- Is_Non_Overriding_Operation --
9511 ---------------------------------
9513 function Is_Non_Overriding_Operation
9514 (Prev_E : Entity_Id;
9515 New_E : Entity_Id) return Boolean
9517 Formal : Entity_Id;
9518 F_Typ : Entity_Id;
9519 G_Typ : Entity_Id := Empty;
9521 function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id;
9522 -- If F_Type is a derived type associated with a generic actual subtype,
9523 -- then return its Generic_Parent_Type attribute, else return Empty.
9525 function Types_Correspond
9526 (P_Type : Entity_Id;
9527 N_Type : Entity_Id) return Boolean;
9528 -- Returns true if and only if the types (or designated types in the
9529 -- case of anonymous access types) are the same or N_Type is derived
9530 -- directly or indirectly from P_Type.
9532 -----------------------------
9533 -- Get_Generic_Parent_Type --
9534 -----------------------------
9536 function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id is
9537 G_Typ : Entity_Id;
9538 Defn : Node_Id;
9539 Indic : Node_Id;
9541 begin
9542 if Is_Derived_Type (F_Typ)
9543 and then Nkind (Parent (F_Typ)) = N_Full_Type_Declaration
9544 then
9545 -- The tree must be traversed to determine the parent subtype in
9546 -- the generic unit, which unfortunately isn't always available
9547 -- via semantic attributes. ??? (Note: The use of Original_Node
9548 -- is needed for cases where a full derived type has been
9549 -- rewritten.)
9551 Defn := Type_Definition (Original_Node (Parent (F_Typ)));
9552 if Nkind (Defn) = N_Derived_Type_Definition then
9553 Indic := Subtype_Indication (Defn);
9555 if Nkind (Indic) = N_Subtype_Indication then
9556 G_Typ := Entity (Subtype_Mark (Indic));
9557 else
9558 G_Typ := Entity (Indic);
9559 end if;
9561 if Nkind (Parent (G_Typ)) = N_Subtype_Declaration
9562 and then Present (Generic_Parent_Type (Parent (G_Typ)))
9563 then
9564 return Generic_Parent_Type (Parent (G_Typ));
9565 end if;
9566 end if;
9567 end if;
9569 return Empty;
9570 end Get_Generic_Parent_Type;
9572 ----------------------
9573 -- Types_Correspond --
9574 ----------------------
9576 function Types_Correspond
9577 (P_Type : Entity_Id;
9578 N_Type : Entity_Id) return Boolean
9580 Prev_Type : Entity_Id := Base_Type (P_Type);
9581 New_Type : Entity_Id := Base_Type (N_Type);
9583 begin
9584 if Ekind (Prev_Type) = E_Anonymous_Access_Type then
9585 Prev_Type := Designated_Type (Prev_Type);
9586 end if;
9588 if Ekind (New_Type) = E_Anonymous_Access_Type then
9589 New_Type := Designated_Type (New_Type);
9590 end if;
9592 if Prev_Type = New_Type then
9593 return True;
9595 elsif not Is_Class_Wide_Type (New_Type) then
9596 while Etype (New_Type) /= New_Type loop
9597 New_Type := Etype (New_Type);
9598 if New_Type = Prev_Type then
9599 return True;
9600 end if;
9601 end loop;
9602 end if;
9603 return False;
9604 end Types_Correspond;
9606 -- Start of processing for Is_Non_Overriding_Operation
9608 begin
9609 -- In the case where both operations are implicit derived subprograms
9610 -- then neither overrides the other. This can only occur in certain
9611 -- obscure cases (e.g., derivation from homographs created in a generic
9612 -- instantiation).
9614 if Present (Alias (Prev_E)) and then Present (Alias (New_E)) then
9615 return True;
9617 elsif Ekind (Current_Scope) = E_Package
9618 and then Is_Generic_Instance (Current_Scope)
9619 and then In_Private_Part (Current_Scope)
9620 and then Comes_From_Source (New_E)
9621 then
9622 -- We examine the formals and result type of the inherited operation,
9623 -- to determine whether their type is derived from (the instance of)
9624 -- a generic type. The first such formal or result type is the one
9625 -- tested.
9627 Formal := First_Formal (Prev_E);
9628 while Present (Formal) loop
9629 F_Typ := Base_Type (Etype (Formal));
9631 if Ekind (F_Typ) = E_Anonymous_Access_Type then
9632 F_Typ := Designated_Type (F_Typ);
9633 end if;
9635 G_Typ := Get_Generic_Parent_Type (F_Typ);
9636 exit when Present (G_Typ);
9638 Next_Formal (Formal);
9639 end loop;
9641 if No (G_Typ) and then Ekind (Prev_E) = E_Function then
9642 G_Typ := Get_Generic_Parent_Type (Base_Type (Etype (Prev_E)));
9643 end if;
9645 if No (G_Typ) then
9646 return False;
9647 end if;
9649 -- If the generic type is a private type, then the original operation
9650 -- was not overriding in the generic, because there was no primitive
9651 -- operation to override.
9653 if Nkind (Parent (G_Typ)) = N_Formal_Type_Declaration
9654 and then Nkind (Formal_Type_Definition (Parent (G_Typ))) =
9655 N_Formal_Private_Type_Definition
9656 then
9657 return True;
9659 -- The generic parent type is the ancestor of a formal derived
9660 -- type declaration. We need to check whether it has a primitive
9661 -- operation that should be overridden by New_E in the generic.
9663 else
9664 declare
9665 P_Formal : Entity_Id;
9666 N_Formal : Entity_Id;
9667 P_Typ : Entity_Id;
9668 N_Typ : Entity_Id;
9669 P_Prim : Entity_Id;
9670 Prim_Elt : Elmt_Id := First_Elmt (Primitive_Operations (G_Typ));
9672 begin
9673 while Present (Prim_Elt) loop
9674 P_Prim := Node (Prim_Elt);
9676 if Chars (P_Prim) = Chars (New_E)
9677 and then Ekind (P_Prim) = Ekind (New_E)
9678 then
9679 P_Formal := First_Formal (P_Prim);
9680 N_Formal := First_Formal (New_E);
9681 while Present (P_Formal) and then Present (N_Formal) loop
9682 P_Typ := Etype (P_Formal);
9683 N_Typ := Etype (N_Formal);
9685 if not Types_Correspond (P_Typ, N_Typ) then
9686 exit;
9687 end if;
9689 Next_Entity (P_Formal);
9690 Next_Entity (N_Formal);
9691 end loop;
9693 -- Found a matching primitive operation belonging to the
9694 -- formal ancestor type, so the new subprogram is
9695 -- overriding.
9697 if No (P_Formal)
9698 and then No (N_Formal)
9699 and then (Ekind (New_E) /= E_Function
9700 or else
9701 Types_Correspond
9702 (Etype (P_Prim), Etype (New_E)))
9703 then
9704 return False;
9705 end if;
9706 end if;
9708 Next_Elmt (Prim_Elt);
9709 end loop;
9711 -- If no match found, then the new subprogram does not override
9712 -- in the generic (nor in the instance).
9714 -- If the type in question is not abstract, and the subprogram
9715 -- is, this will be an error if the new operation is in the
9716 -- private part of the instance. Emit a warning now, which will
9717 -- make the subsequent error message easier to understand.
9719 if not Is_Abstract_Type (F_Typ)
9720 and then Is_Abstract_Subprogram (Prev_E)
9721 and then In_Private_Part (Current_Scope)
9722 then
9723 Error_Msg_Node_2 := F_Typ;
9724 Error_Msg_NE
9725 ("private operation& in generic unit does not override " &
9726 "any primitive operation of& (RM 12.3 (18))??",
9727 New_E, New_E);
9728 end if;
9730 return True;
9731 end;
9732 end if;
9733 else
9734 return False;
9735 end if;
9736 end Is_Non_Overriding_Operation;
9738 -------------------------------------
9739 -- List_Inherited_Pre_Post_Aspects --
9740 -------------------------------------
9742 procedure List_Inherited_Pre_Post_Aspects (E : Entity_Id) is
9743 begin
9744 if Opt.List_Inherited_Aspects
9745 and then (Is_Subprogram (E) or else Is_Generic_Subprogram (E))
9746 then
9747 declare
9748 Inherited : constant Subprogram_List := Inherited_Subprograms (E);
9749 P : Node_Id;
9751 begin
9752 for J in Inherited'Range loop
9753 P := Pre_Post_Conditions (Contract (Inherited (J)));
9754 while Present (P) loop
9755 Error_Msg_Sloc := Sloc (P);
9757 if Class_Present (P) and then not Split_PPC (P) then
9758 if Pragma_Name (P) = Name_Precondition then
9759 Error_Msg_N
9760 ("info: & inherits `Pre''Class` aspect from #?L?",
9762 else
9763 Error_Msg_N
9764 ("info: & inherits `Post''Class` aspect from #?L?",
9766 end if;
9767 end if;
9769 P := Next_Pragma (P);
9770 end loop;
9771 end loop;
9772 end;
9773 end if;
9774 end List_Inherited_Pre_Post_Aspects;
9776 ------------------------------
9777 -- Make_Inequality_Operator --
9778 ------------------------------
9780 -- S is the defining identifier of an equality operator. We build a
9781 -- subprogram declaration with the right signature. This operation is
9782 -- intrinsic, because it is always expanded as the negation of the
9783 -- call to the equality function.
9785 procedure Make_Inequality_Operator (S : Entity_Id) is
9786 Loc : constant Source_Ptr := Sloc (S);
9787 Decl : Node_Id;
9788 Formals : List_Id;
9789 Op_Name : Entity_Id;
9791 FF : constant Entity_Id := First_Formal (S);
9792 NF : constant Entity_Id := Next_Formal (FF);
9794 begin
9795 -- Check that equality was properly defined, ignore call if not
9797 if No (NF) then
9798 return;
9799 end if;
9801 declare
9802 A : constant Entity_Id :=
9803 Make_Defining_Identifier (Sloc (FF),
9804 Chars => Chars (FF));
9806 B : constant Entity_Id :=
9807 Make_Defining_Identifier (Sloc (NF),
9808 Chars => Chars (NF));
9810 begin
9811 Op_Name := Make_Defining_Operator_Symbol (Loc, Name_Op_Ne);
9813 Formals := New_List (
9814 Make_Parameter_Specification (Loc,
9815 Defining_Identifier => A,
9816 Parameter_Type =>
9817 New_Occurrence_Of (Etype (First_Formal (S)),
9818 Sloc (Etype (First_Formal (S))))),
9820 Make_Parameter_Specification (Loc,
9821 Defining_Identifier => B,
9822 Parameter_Type =>
9823 New_Occurrence_Of (Etype (Next_Formal (First_Formal (S))),
9824 Sloc (Etype (Next_Formal (First_Formal (S)))))));
9826 Decl :=
9827 Make_Subprogram_Declaration (Loc,
9828 Specification =>
9829 Make_Function_Specification (Loc,
9830 Defining_Unit_Name => Op_Name,
9831 Parameter_Specifications => Formals,
9832 Result_Definition =>
9833 New_Occurrence_Of (Standard_Boolean, Loc)));
9835 -- Insert inequality right after equality if it is explicit or after
9836 -- the derived type when implicit. These entities are created only
9837 -- for visibility purposes, and eventually replaced in the course
9838 -- of expansion, so they do not need to be attached to the tree and
9839 -- seen by the back-end. Keeping them internal also avoids spurious
9840 -- freezing problems. The declaration is inserted in the tree for
9841 -- analysis, and removed afterwards. If the equality operator comes
9842 -- from an explicit declaration, attach the inequality immediately
9843 -- after. Else the equality is inherited from a derived type
9844 -- declaration, so insert inequality after that declaration.
9846 if No (Alias (S)) then
9847 Insert_After (Unit_Declaration_Node (S), Decl);
9848 elsif Is_List_Member (Parent (S)) then
9849 Insert_After (Parent (S), Decl);
9850 else
9851 Insert_After (Parent (Etype (First_Formal (S))), Decl);
9852 end if;
9854 Mark_Rewrite_Insertion (Decl);
9855 Set_Is_Intrinsic_Subprogram (Op_Name);
9856 Analyze (Decl);
9857 Remove (Decl);
9858 Set_Has_Completion (Op_Name);
9859 Set_Corresponding_Equality (Op_Name, S);
9860 Set_Is_Abstract_Subprogram (Op_Name, Is_Abstract_Subprogram (S));
9861 end;
9862 end Make_Inequality_Operator;
9864 ----------------------
9865 -- May_Need_Actuals --
9866 ----------------------
9868 procedure May_Need_Actuals (Fun : Entity_Id) is
9869 F : Entity_Id;
9870 B : Boolean;
9872 begin
9873 F := First_Formal (Fun);
9874 B := True;
9875 while Present (F) loop
9876 if No (Default_Value (F)) then
9877 B := False;
9878 exit;
9879 end if;
9881 Next_Formal (F);
9882 end loop;
9884 Set_Needs_No_Actuals (Fun, B);
9885 end May_Need_Actuals;
9887 ---------------------
9888 -- Mode_Conformant --
9889 ---------------------
9891 function Mode_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
9892 Result : Boolean;
9893 begin
9894 Check_Conformance (New_Id, Old_Id, Mode_Conformant, False, Result);
9895 return Result;
9896 end Mode_Conformant;
9898 ---------------------------
9899 -- New_Overloaded_Entity --
9900 ---------------------------
9902 procedure New_Overloaded_Entity
9903 (S : Entity_Id;
9904 Derived_Type : Entity_Id := Empty)
9906 Overridden_Subp : Entity_Id := Empty;
9907 -- Set if the current scope has an operation that is type-conformant
9908 -- with S, and becomes hidden by S.
9910 Is_Primitive_Subp : Boolean;
9911 -- Set to True if the new subprogram is primitive
9913 E : Entity_Id;
9914 -- Entity that S overrides
9916 Prev_Vis : Entity_Id := Empty;
9917 -- Predecessor of E in Homonym chain
9919 procedure Check_For_Primitive_Subprogram
9920 (Is_Primitive : out Boolean;
9921 Is_Overriding : Boolean := False);
9922 -- If the subprogram being analyzed is a primitive operation of the type
9923 -- of a formal or result, set the Has_Primitive_Operations flag on the
9924 -- type, and set Is_Primitive to True (otherwise set to False). Set the
9925 -- corresponding flag on the entity itself for later use.
9927 procedure Check_Synchronized_Overriding
9928 (Def_Id : Entity_Id;
9929 Overridden_Subp : out Entity_Id);
9930 -- First determine if Def_Id is an entry or a subprogram either defined
9931 -- in the scope of a task or protected type, or is a primitive of such
9932 -- a type. Check whether Def_Id overrides a subprogram of an interface
9933 -- implemented by the synchronized type, return the overridden entity
9934 -- or Empty.
9936 function Is_Private_Declaration (E : Entity_Id) return Boolean;
9937 -- Check that E is declared in the private part of the current package,
9938 -- or in the package body, where it may hide a previous declaration.
9939 -- We can't use In_Private_Part by itself because this flag is also
9940 -- set when freezing entities, so we must examine the place of the
9941 -- declaration in the tree, and recognize wrapper packages as well.
9943 function Is_Overriding_Alias
9944 (Old_E : Entity_Id;
9945 New_E : Entity_Id) return Boolean;
9946 -- Check whether new subprogram and old subprogram are both inherited
9947 -- from subprograms that have distinct dispatch table entries. This can
9948 -- occur with derivations from instances with accidental homonyms. The
9949 -- function is conservative given that the converse is only true within
9950 -- instances that contain accidental overloadings.
9952 ------------------------------------
9953 -- Check_For_Primitive_Subprogram --
9954 ------------------------------------
9956 procedure Check_For_Primitive_Subprogram
9957 (Is_Primitive : out Boolean;
9958 Is_Overriding : Boolean := False)
9960 Formal : Entity_Id;
9961 F_Typ : Entity_Id;
9962 B_Typ : Entity_Id;
9964 function Visible_Part_Type (T : Entity_Id) return Boolean;
9965 -- Returns true if T is declared in the visible part of the current
9966 -- package scope; otherwise returns false. Assumes that T is declared
9967 -- in a package.
9969 procedure Check_Private_Overriding (T : Entity_Id);
9970 -- Checks that if a primitive abstract subprogram of a visible
9971 -- abstract type is declared in a private part, then it must override
9972 -- an abstract subprogram declared in the visible part. Also checks
9973 -- that if a primitive function with a controlling result is declared
9974 -- in a private part, then it must override a function declared in
9975 -- the visible part.
9977 ------------------------------
9978 -- Check_Private_Overriding --
9979 ------------------------------
9981 procedure Check_Private_Overriding (T : Entity_Id) is
9982 begin
9983 if Is_Package_Or_Generic_Package (Current_Scope)
9984 and then In_Private_Part (Current_Scope)
9985 and then Visible_Part_Type (T)
9986 and then not In_Instance
9987 then
9988 if Is_Abstract_Type (T)
9989 and then Is_Abstract_Subprogram (S)
9990 and then (not Is_Overriding
9991 or else not Is_Abstract_Subprogram (E))
9992 then
9993 Error_Msg_N
9994 ("abstract subprograms must be visible "
9995 & "(RM 3.9.3(10))!", S);
9997 elsif Ekind (S) = E_Function and then not Is_Overriding then
9998 if Is_Tagged_Type (T) and then T = Base_Type (Etype (S)) then
9999 Error_Msg_N
10000 ("private function with tagged result must"
10001 & " override visible-part function", S);
10002 Error_Msg_N
10003 ("\move subprogram to the visible part"
10004 & " (RM 3.9.3(10))", S);
10006 -- AI05-0073: extend this test to the case of a function
10007 -- with a controlling access result.
10009 elsif Ekind (Etype (S)) = E_Anonymous_Access_Type
10010 and then Is_Tagged_Type (Designated_Type (Etype (S)))
10011 and then
10012 not Is_Class_Wide_Type (Designated_Type (Etype (S)))
10013 and then Ada_Version >= Ada_2012
10014 then
10015 Error_Msg_N
10016 ("private function with controlling access result "
10017 & "must override visible-part function", S);
10018 Error_Msg_N
10019 ("\move subprogram to the visible part"
10020 & " (RM 3.9.3(10))", S);
10021 end if;
10022 end if;
10023 end if;
10024 end Check_Private_Overriding;
10026 -----------------------
10027 -- Visible_Part_Type --
10028 -----------------------
10030 function Visible_Part_Type (T : Entity_Id) return Boolean is
10031 P : constant Node_Id := Unit_Declaration_Node (Scope (T));
10032 N : Node_Id;
10034 begin
10035 -- If the entity is a private type, then it must be declared in a
10036 -- visible part.
10038 if Ekind (T) in Private_Kind then
10039 return True;
10040 end if;
10042 -- Otherwise, we traverse the visible part looking for its
10043 -- corresponding declaration. We cannot use the declaration
10044 -- node directly because in the private part the entity of a
10045 -- private type is the one in the full view, which does not
10046 -- indicate that it is the completion of something visible.
10048 N := First (Visible_Declarations (Specification (P)));
10049 while Present (N) loop
10050 if Nkind (N) = N_Full_Type_Declaration
10051 and then Present (Defining_Identifier (N))
10052 and then T = Defining_Identifier (N)
10053 then
10054 return True;
10056 elsif Nkind_In (N, N_Private_Type_Declaration,
10057 N_Private_Extension_Declaration)
10058 and then Present (Defining_Identifier (N))
10059 and then T = Full_View (Defining_Identifier (N))
10060 then
10061 return True;
10062 end if;
10064 Next (N);
10065 end loop;
10067 return False;
10068 end Visible_Part_Type;
10070 -- Start of processing for Check_For_Primitive_Subprogram
10072 begin
10073 Is_Primitive := False;
10075 if not Comes_From_Source (S) then
10076 null;
10078 -- If subprogram is at library level, it is not primitive operation
10080 elsif Current_Scope = Standard_Standard then
10081 null;
10083 elsif (Is_Package_Or_Generic_Package (Current_Scope)
10084 and then not In_Package_Body (Current_Scope))
10085 or else Is_Overriding
10086 then
10087 -- For function, check return type
10089 if Ekind (S) = E_Function then
10090 if Ekind (Etype (S)) = E_Anonymous_Access_Type then
10091 F_Typ := Designated_Type (Etype (S));
10092 else
10093 F_Typ := Etype (S);
10094 end if;
10096 B_Typ := Base_Type (F_Typ);
10098 if Scope (B_Typ) = Current_Scope
10099 and then not Is_Class_Wide_Type (B_Typ)
10100 and then not Is_Generic_Type (B_Typ)
10101 then
10102 Is_Primitive := True;
10103 Set_Has_Primitive_Operations (B_Typ);
10104 Set_Is_Primitive (S);
10105 Check_Private_Overriding (B_Typ);
10106 end if;
10107 end if;
10109 -- For all subprograms, check formals
10111 Formal := First_Formal (S);
10112 while Present (Formal) loop
10113 if Ekind (Etype (Formal)) = E_Anonymous_Access_Type then
10114 F_Typ := Designated_Type (Etype (Formal));
10115 else
10116 F_Typ := Etype (Formal);
10117 end if;
10119 B_Typ := Base_Type (F_Typ);
10121 if Ekind (B_Typ) = E_Access_Subtype then
10122 B_Typ := Base_Type (B_Typ);
10123 end if;
10125 if Scope (B_Typ) = Current_Scope
10126 and then not Is_Class_Wide_Type (B_Typ)
10127 and then not Is_Generic_Type (B_Typ)
10128 then
10129 Is_Primitive := True;
10130 Set_Is_Primitive (S);
10131 Set_Has_Primitive_Operations (B_Typ);
10132 Check_Private_Overriding (B_Typ);
10133 end if;
10135 Next_Formal (Formal);
10136 end loop;
10138 -- Special case: An equality function can be redefined for a type
10139 -- occurring in a declarative part, and won't otherwise be treated as
10140 -- a primitive because it doesn't occur in a package spec and doesn't
10141 -- override an inherited subprogram. It's important that we mark it
10142 -- primitive so it can be returned by Collect_Primitive_Operations
10143 -- and be used in composing the equality operation of later types
10144 -- that have a component of the type.
10146 elsif Chars (S) = Name_Op_Eq
10147 and then Etype (S) = Standard_Boolean
10148 then
10149 B_Typ := Base_Type (Etype (First_Formal (S)));
10151 if Scope (B_Typ) = Current_Scope
10152 and then
10153 Base_Type (Etype (Next_Formal (First_Formal (S)))) = B_Typ
10154 and then not Is_Limited_Type (B_Typ)
10155 then
10156 Is_Primitive := True;
10157 Set_Is_Primitive (S);
10158 Set_Has_Primitive_Operations (B_Typ);
10159 Check_Private_Overriding (B_Typ);
10160 end if;
10161 end if;
10162 end Check_For_Primitive_Subprogram;
10164 -----------------------------------
10165 -- Check_Synchronized_Overriding --
10166 -----------------------------------
10168 procedure Check_Synchronized_Overriding
10169 (Def_Id : Entity_Id;
10170 Overridden_Subp : out Entity_Id)
10172 Ifaces_List : Elist_Id;
10173 In_Scope : Boolean;
10174 Typ : Entity_Id;
10176 function Matches_Prefixed_View_Profile
10177 (Prim_Params : List_Id;
10178 Iface_Params : List_Id) return Boolean;
10179 -- Determine whether a subprogram's parameter profile Prim_Params
10180 -- matches that of a potentially overridden interface subprogram
10181 -- Iface_Params. Also determine if the type of first parameter of
10182 -- Iface_Params is an implemented interface.
10184 -----------------------------------
10185 -- Matches_Prefixed_View_Profile --
10186 -----------------------------------
10188 function Matches_Prefixed_View_Profile
10189 (Prim_Params : List_Id;
10190 Iface_Params : List_Id) return Boolean
10192 Iface_Id : Entity_Id;
10193 Iface_Param : Node_Id;
10194 Iface_Typ : Entity_Id;
10195 Prim_Id : Entity_Id;
10196 Prim_Param : Node_Id;
10197 Prim_Typ : Entity_Id;
10199 function Is_Implemented
10200 (Ifaces_List : Elist_Id;
10201 Iface : Entity_Id) return Boolean;
10202 -- Determine if Iface is implemented by the current task or
10203 -- protected type.
10205 --------------------
10206 -- Is_Implemented --
10207 --------------------
10209 function Is_Implemented
10210 (Ifaces_List : Elist_Id;
10211 Iface : Entity_Id) return Boolean
10213 Iface_Elmt : Elmt_Id;
10215 begin
10216 Iface_Elmt := First_Elmt (Ifaces_List);
10217 while Present (Iface_Elmt) loop
10218 if Node (Iface_Elmt) = Iface then
10219 return True;
10220 end if;
10222 Next_Elmt (Iface_Elmt);
10223 end loop;
10225 return False;
10226 end Is_Implemented;
10228 -- Start of processing for Matches_Prefixed_View_Profile
10230 begin
10231 Iface_Param := First (Iface_Params);
10232 Iface_Typ := Etype (Defining_Identifier (Iface_Param));
10234 if Is_Access_Type (Iface_Typ) then
10235 Iface_Typ := Designated_Type (Iface_Typ);
10236 end if;
10238 Prim_Param := First (Prim_Params);
10240 -- The first parameter of the potentially overridden subprogram
10241 -- must be an interface implemented by Prim.
10243 if not Is_Interface (Iface_Typ)
10244 or else not Is_Implemented (Ifaces_List, Iface_Typ)
10245 then
10246 return False;
10247 end if;
10249 -- The checks on the object parameters are done, move onto the
10250 -- rest of the parameters.
10252 if not In_Scope then
10253 Prim_Param := Next (Prim_Param);
10254 end if;
10256 Iface_Param := Next (Iface_Param);
10257 while Present (Iface_Param) and then Present (Prim_Param) loop
10258 Iface_Id := Defining_Identifier (Iface_Param);
10259 Iface_Typ := Find_Parameter_Type (Iface_Param);
10261 Prim_Id := Defining_Identifier (Prim_Param);
10262 Prim_Typ := Find_Parameter_Type (Prim_Param);
10264 if Ekind (Iface_Typ) = E_Anonymous_Access_Type
10265 and then Ekind (Prim_Typ) = E_Anonymous_Access_Type
10266 and then Is_Concurrent_Type (Designated_Type (Prim_Typ))
10267 then
10268 Iface_Typ := Designated_Type (Iface_Typ);
10269 Prim_Typ := Designated_Type (Prim_Typ);
10270 end if;
10272 -- Case of multiple interface types inside a parameter profile
10274 -- (Obj_Param : in out Iface; ...; Param : Iface)
10276 -- If the interface type is implemented, then the matching type
10277 -- in the primitive should be the implementing record type.
10279 if Ekind (Iface_Typ) = E_Record_Type
10280 and then Is_Interface (Iface_Typ)
10281 and then Is_Implemented (Ifaces_List, Iface_Typ)
10282 then
10283 if Prim_Typ /= Typ then
10284 return False;
10285 end if;
10287 -- The two parameters must be both mode and subtype conformant
10289 elsif Ekind (Iface_Id) /= Ekind (Prim_Id)
10290 or else not
10291 Conforming_Types (Iface_Typ, Prim_Typ, Subtype_Conformant)
10292 then
10293 return False;
10294 end if;
10296 Next (Iface_Param);
10297 Next (Prim_Param);
10298 end loop;
10300 -- One of the two lists contains more parameters than the other
10302 if Present (Iface_Param) or else Present (Prim_Param) then
10303 return False;
10304 end if;
10306 return True;
10307 end Matches_Prefixed_View_Profile;
10309 -- Start of processing for Check_Synchronized_Overriding
10311 begin
10312 Overridden_Subp := Empty;
10314 -- Def_Id must be an entry or a subprogram. We should skip predefined
10315 -- primitives internally generated by the frontend; however at this
10316 -- stage predefined primitives are still not fully decorated. As a
10317 -- minor optimization we skip here internally generated subprograms.
10319 if (Ekind (Def_Id) /= E_Entry
10320 and then Ekind (Def_Id) /= E_Function
10321 and then Ekind (Def_Id) /= E_Procedure)
10322 or else not Comes_From_Source (Def_Id)
10323 then
10324 return;
10325 end if;
10327 -- Search for the concurrent declaration since it contains the list
10328 -- of all implemented interfaces. In this case, the subprogram is
10329 -- declared within the scope of a protected or a task type.
10331 if Present (Scope (Def_Id))
10332 and then Is_Concurrent_Type (Scope (Def_Id))
10333 and then not Is_Generic_Actual_Type (Scope (Def_Id))
10334 then
10335 Typ := Scope (Def_Id);
10336 In_Scope := True;
10338 -- The enclosing scope is not a synchronized type and the subprogram
10339 -- has no formals.
10341 elsif No (First_Formal (Def_Id)) then
10342 return;
10344 -- The subprogram has formals and hence it may be a primitive of a
10345 -- concurrent type.
10347 else
10348 Typ := Etype (First_Formal (Def_Id));
10350 if Is_Access_Type (Typ) then
10351 Typ := Directly_Designated_Type (Typ);
10352 end if;
10354 if Is_Concurrent_Type (Typ)
10355 and then not Is_Generic_Actual_Type (Typ)
10356 then
10357 In_Scope := False;
10359 -- This case occurs when the concurrent type is declared within
10360 -- a generic unit. As a result the corresponding record has been
10361 -- built and used as the type of the first formal, we just have
10362 -- to retrieve the corresponding concurrent type.
10364 elsif Is_Concurrent_Record_Type (Typ)
10365 and then not Is_Class_Wide_Type (Typ)
10366 and then Present (Corresponding_Concurrent_Type (Typ))
10367 then
10368 Typ := Corresponding_Concurrent_Type (Typ);
10369 In_Scope := False;
10371 else
10372 return;
10373 end if;
10374 end if;
10376 -- There is no overriding to check if is an inherited operation in a
10377 -- type derivation on for a generic actual.
10379 Collect_Interfaces (Typ, Ifaces_List);
10381 if Is_Empty_Elmt_List (Ifaces_List) then
10382 return;
10383 end if;
10385 -- Determine whether entry or subprogram Def_Id overrides a primitive
10386 -- operation that belongs to one of the interfaces in Ifaces_List.
10388 declare
10389 Candidate : Entity_Id := Empty;
10390 Hom : Entity_Id := Empty;
10391 Iface_Typ : Entity_Id;
10392 Subp : Entity_Id := Empty;
10394 begin
10395 -- Traverse the homonym chain, looking for a potentially
10396 -- overridden subprogram that belongs to an implemented
10397 -- interface.
10399 Hom := Current_Entity_In_Scope (Def_Id);
10400 while Present (Hom) loop
10401 Subp := Hom;
10403 if Subp = Def_Id
10404 or else not Is_Overloadable (Subp)
10405 or else not Is_Primitive (Subp)
10406 or else not Is_Dispatching_Operation (Subp)
10407 or else not Present (Find_Dispatching_Type (Subp))
10408 or else not Is_Interface (Find_Dispatching_Type (Subp))
10409 then
10410 null;
10412 -- Entries and procedures can override abstract or null
10413 -- interface procedures.
10415 elsif (Ekind (Def_Id) = E_Procedure
10416 or else Ekind (Def_Id) = E_Entry)
10417 and then Ekind (Subp) = E_Procedure
10418 and then Matches_Prefixed_View_Profile
10419 (Parameter_Specifications (Parent (Def_Id)),
10420 Parameter_Specifications (Parent (Subp)))
10421 then
10422 Candidate := Subp;
10424 -- For an overridden subprogram Subp, check whether the mode
10425 -- of its first parameter is correct depending on the kind
10426 -- of synchronized type.
10428 declare
10429 Formal : constant Node_Id := First_Formal (Candidate);
10431 begin
10432 -- In order for an entry or a protected procedure to
10433 -- override, the first parameter of the overridden
10434 -- routine must be of mode "out", "in out" or
10435 -- access-to-variable.
10437 if Ekind_In (Candidate, E_Entry, E_Procedure)
10438 and then Is_Protected_Type (Typ)
10439 and then Ekind (Formal) /= E_In_Out_Parameter
10440 and then Ekind (Formal) /= E_Out_Parameter
10441 and then Nkind (Parameter_Type (Parent (Formal))) /=
10442 N_Access_Definition
10443 then
10444 null;
10446 -- All other cases are OK since a task entry or routine
10447 -- does not have a restriction on the mode of the first
10448 -- parameter of the overridden interface routine.
10450 else
10451 Overridden_Subp := Candidate;
10452 return;
10453 end if;
10454 end;
10456 -- Functions can override abstract interface functions
10458 elsif Ekind (Def_Id) = E_Function
10459 and then Ekind (Subp) = E_Function
10460 and then Matches_Prefixed_View_Profile
10461 (Parameter_Specifications (Parent (Def_Id)),
10462 Parameter_Specifications (Parent (Subp)))
10463 and then Etype (Result_Definition (Parent (Def_Id))) =
10464 Etype (Result_Definition (Parent (Subp)))
10465 then
10466 Overridden_Subp := Subp;
10467 return;
10468 end if;
10470 Hom := Homonym (Hom);
10471 end loop;
10473 -- After examining all candidates for overriding, we are left with
10474 -- the best match which is a mode incompatible interface routine.
10475 -- Do not emit an error if the Expander is active since this error
10476 -- will be detected later on after all concurrent types are
10477 -- expanded and all wrappers are built. This check is meant for
10478 -- spec-only compilations.
10480 if Present (Candidate) and then not Expander_Active then
10481 Iface_Typ :=
10482 Find_Parameter_Type (Parent (First_Formal (Candidate)));
10484 -- Def_Id is primitive of a protected type, declared inside the
10485 -- type, and the candidate is primitive of a limited or
10486 -- synchronized interface.
10488 if In_Scope
10489 and then Is_Protected_Type (Typ)
10490 and then
10491 (Is_Limited_Interface (Iface_Typ)
10492 or else Is_Protected_Interface (Iface_Typ)
10493 or else Is_Synchronized_Interface (Iface_Typ)
10494 or else Is_Task_Interface (Iface_Typ))
10495 then
10496 Error_Msg_PT (Parent (Typ), Candidate);
10497 end if;
10498 end if;
10500 Overridden_Subp := Candidate;
10501 return;
10502 end;
10503 end Check_Synchronized_Overriding;
10505 ----------------------------
10506 -- Is_Private_Declaration --
10507 ----------------------------
10509 function Is_Private_Declaration (E : Entity_Id) return Boolean is
10510 Priv_Decls : List_Id;
10511 Decl : constant Node_Id := Unit_Declaration_Node (E);
10513 begin
10514 if Is_Package_Or_Generic_Package (Current_Scope)
10515 and then In_Private_Part (Current_Scope)
10516 then
10517 Priv_Decls :=
10518 Private_Declarations (Package_Specification (Current_Scope));
10520 return In_Package_Body (Current_Scope)
10521 or else
10522 (Is_List_Member (Decl)
10523 and then List_Containing (Decl) = Priv_Decls)
10524 or else (Nkind (Parent (Decl)) = N_Package_Specification
10525 and then not
10526 Is_Compilation_Unit
10527 (Defining_Entity (Parent (Decl)))
10528 and then List_Containing (Parent (Parent (Decl))) =
10529 Priv_Decls);
10530 else
10531 return False;
10532 end if;
10533 end Is_Private_Declaration;
10535 --------------------------
10536 -- Is_Overriding_Alias --
10537 --------------------------
10539 function Is_Overriding_Alias
10540 (Old_E : Entity_Id;
10541 New_E : Entity_Id) return Boolean
10543 AO : constant Entity_Id := Alias (Old_E);
10544 AN : constant Entity_Id := Alias (New_E);
10546 begin
10547 return Scope (AO) /= Scope (AN)
10548 or else No (DTC_Entity (AO))
10549 or else No (DTC_Entity (AN))
10550 or else DT_Position (AO) = DT_Position (AN);
10551 end Is_Overriding_Alias;
10553 -- Start of processing for New_Overloaded_Entity
10555 begin
10556 -- We need to look for an entity that S may override. This must be a
10557 -- homonym in the current scope, so we look for the first homonym of
10558 -- S in the current scope as the starting point for the search.
10560 E := Current_Entity_In_Scope (S);
10562 -- Ada 2005 (AI-251): Derivation of abstract interface primitives.
10563 -- They are directly added to the list of primitive operations of
10564 -- Derived_Type, unless this is a rederivation in the private part
10565 -- of an operation that was already derived in the visible part of
10566 -- the current package.
10568 if Ada_Version >= Ada_2005
10569 and then Present (Derived_Type)
10570 and then Present (Alias (S))
10571 and then Is_Dispatching_Operation (Alias (S))
10572 and then Present (Find_Dispatching_Type (Alias (S)))
10573 and then Is_Interface (Find_Dispatching_Type (Alias (S)))
10574 then
10575 -- For private types, when the full-view is processed we propagate to
10576 -- the full view the non-overridden entities whose attribute "alias"
10577 -- references an interface primitive. These entities were added by
10578 -- Derive_Subprograms to ensure that interface primitives are
10579 -- covered.
10581 -- Inside_Freeze_Actions is non zero when S corresponds with an
10582 -- internal entity that links an interface primitive with its
10583 -- covering primitive through attribute Interface_Alias (see
10584 -- Add_Internal_Interface_Entities).
10586 if Inside_Freezing_Actions = 0
10587 and then Is_Package_Or_Generic_Package (Current_Scope)
10588 and then In_Private_Part (Current_Scope)
10589 and then Nkind (Parent (E)) = N_Private_Extension_Declaration
10590 and then Nkind (Parent (S)) = N_Full_Type_Declaration
10591 and then Full_View (Defining_Identifier (Parent (E)))
10592 = Defining_Identifier (Parent (S))
10593 and then Alias (E) = Alias (S)
10594 then
10595 Check_Operation_From_Private_View (S, E);
10596 Set_Is_Dispatching_Operation (S);
10598 -- Common case
10600 else
10601 Enter_Overloaded_Entity (S);
10602 Check_Dispatching_Operation (S, Empty);
10603 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
10604 end if;
10606 return;
10607 end if;
10609 -- If there is no homonym then this is definitely not overriding
10611 if No (E) then
10612 Enter_Overloaded_Entity (S);
10613 Check_Dispatching_Operation (S, Empty);
10614 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
10616 -- If subprogram has an explicit declaration, check whether it has an
10617 -- overriding indicator.
10619 if Comes_From_Source (S) then
10620 Check_Synchronized_Overriding (S, Overridden_Subp);
10622 -- (Ada 2012: AI05-0125-1): If S is a dispatching operation then
10623 -- it may have overridden some hidden inherited primitive. Update
10624 -- Overridden_Subp to avoid spurious errors when checking the
10625 -- overriding indicator.
10627 if Ada_Version >= Ada_2012
10628 and then No (Overridden_Subp)
10629 and then Is_Dispatching_Operation (S)
10630 and then Present (Overridden_Operation (S))
10631 then
10632 Overridden_Subp := Overridden_Operation (S);
10633 end if;
10635 Check_Overriding_Indicator
10636 (S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);
10637 end if;
10639 -- If there is a homonym that is not overloadable, then we have an
10640 -- error, except for the special cases checked explicitly below.
10642 elsif not Is_Overloadable (E) then
10644 -- Check for spurious conflict produced by a subprogram that has the
10645 -- same name as that of the enclosing generic package. The conflict
10646 -- occurs within an instance, between the subprogram and the renaming
10647 -- declaration for the package. After the subprogram, the package
10648 -- renaming declaration becomes hidden.
10650 if Ekind (E) = E_Package
10651 and then Present (Renamed_Object (E))
10652 and then Renamed_Object (E) = Current_Scope
10653 and then Nkind (Parent (Renamed_Object (E))) =
10654 N_Package_Specification
10655 and then Present (Generic_Parent (Parent (Renamed_Object (E))))
10656 then
10657 Set_Is_Hidden (E);
10658 Set_Is_Immediately_Visible (E, False);
10659 Enter_Overloaded_Entity (S);
10660 Set_Homonym (S, Homonym (E));
10661 Check_Dispatching_Operation (S, Empty);
10662 Check_Overriding_Indicator (S, Empty, Is_Primitive => False);
10664 -- If the subprogram is implicit it is hidden by the previous
10665 -- declaration. However if it is dispatching, it must appear in the
10666 -- dispatch table anyway, because it can be dispatched to even if it
10667 -- cannot be called directly.
10669 elsif Present (Alias (S)) and then not Comes_From_Source (S) then
10670 Set_Scope (S, Current_Scope);
10672 if Is_Dispatching_Operation (Alias (S)) then
10673 Check_Dispatching_Operation (S, Empty);
10674 end if;
10676 return;
10678 else
10679 Error_Msg_Sloc := Sloc (E);
10681 -- Generate message, with useful additional warning if in generic
10683 if Is_Generic_Unit (E) then
10684 Error_Msg_N ("previous generic unit cannot be overloaded", S);
10685 Error_Msg_N ("\& conflicts with declaration#", S);
10686 else
10687 Error_Msg_N ("& conflicts with declaration#", S);
10688 end if;
10690 return;
10691 end if;
10693 -- E exists and is overloadable
10695 else
10696 Check_Synchronized_Overriding (S, Overridden_Subp);
10698 -- Loop through E and its homonyms to determine if any of them is
10699 -- the candidate for overriding by S.
10701 while Present (E) loop
10703 -- Definitely not interesting if not in the current scope
10705 if Scope (E) /= Current_Scope then
10706 null;
10708 -- A function can overload the name of an abstract state. The
10709 -- state can be viewed as a function with a profile that cannot
10710 -- be matched by anything.
10712 elsif Ekind (S) = E_Function
10713 and then Ekind (E) = E_Abstract_State
10714 then
10715 Enter_Overloaded_Entity (S);
10716 return;
10718 -- Ada 2012 (AI05-0165): For internally generated bodies of null
10719 -- procedures locate the internally generated spec. We enforce
10720 -- mode conformance since a tagged type may inherit from
10721 -- interfaces several null primitives which differ only in
10722 -- the mode of the formals.
10724 elsif not Comes_From_Source (S)
10725 and then Is_Null_Procedure (S)
10726 and then not Mode_Conformant (E, S)
10727 then
10728 null;
10730 -- Check if we have type conformance
10732 elsif Type_Conformant (E, S) then
10734 -- If the old and new entities have the same profile and one
10735 -- is not the body of the other, then this is an error, unless
10736 -- one of them is implicitly declared.
10738 -- There are some cases when both can be implicit, for example
10739 -- when both a literal and a function that overrides it are
10740 -- inherited in a derivation, or when an inherited operation
10741 -- of a tagged full type overrides the inherited operation of
10742 -- a private extension. Ada 83 had a special rule for the
10743 -- literal case. In Ada 95, the later implicit operation hides
10744 -- the former, and the literal is always the former. In the
10745 -- odd case where both are derived operations declared at the
10746 -- same point, both operations should be declared, and in that
10747 -- case we bypass the following test and proceed to the next
10748 -- part. This can only occur for certain obscure cases in
10749 -- instances, when an operation on a type derived from a formal
10750 -- private type does not override a homograph inherited from
10751 -- the actual. In subsequent derivations of such a type, the
10752 -- DT positions of these operations remain distinct, if they
10753 -- have been set.
10755 if Present (Alias (S))
10756 and then (No (Alias (E))
10757 or else Comes_From_Source (E)
10758 or else Is_Abstract_Subprogram (S)
10759 or else
10760 (Is_Dispatching_Operation (E)
10761 and then Is_Overriding_Alias (E, S)))
10762 and then Ekind (E) /= E_Enumeration_Literal
10763 then
10764 -- When an derived operation is overloaded it may be due to
10765 -- the fact that the full view of a private extension
10766 -- re-inherits. It has to be dealt with.
10768 if Is_Package_Or_Generic_Package (Current_Scope)
10769 and then In_Private_Part (Current_Scope)
10770 then
10771 Check_Operation_From_Private_View (S, E);
10772 end if;
10774 -- In any case the implicit operation remains hidden by the
10775 -- existing declaration, which is overriding. Indicate that
10776 -- E overrides the operation from which S is inherited.
10778 if Present (Alias (S)) then
10779 Set_Overridden_Operation (E, Alias (S));
10780 else
10781 Set_Overridden_Operation (E, S);
10782 end if;
10784 if Comes_From_Source (E) then
10785 Check_Overriding_Indicator (E, S, Is_Primitive => False);
10786 end if;
10788 return;
10790 -- Within an instance, the renaming declarations for actual
10791 -- subprograms may become ambiguous, but they do not hide each
10792 -- other.
10794 elsif Ekind (E) /= E_Entry
10795 and then not Comes_From_Source (E)
10796 and then not Is_Generic_Instance (E)
10797 and then (Present (Alias (E))
10798 or else Is_Intrinsic_Subprogram (E))
10799 and then (not In_Instance
10800 or else No (Parent (E))
10801 or else Nkind (Unit_Declaration_Node (E)) /=
10802 N_Subprogram_Renaming_Declaration)
10803 then
10804 -- A subprogram child unit is not allowed to override an
10805 -- inherited subprogram (10.1.1(20)).
10807 if Is_Child_Unit (S) then
10808 Error_Msg_N
10809 ("child unit overrides inherited subprogram in parent",
10811 return;
10812 end if;
10814 if Is_Non_Overriding_Operation (E, S) then
10815 Enter_Overloaded_Entity (S);
10817 if No (Derived_Type)
10818 or else Is_Tagged_Type (Derived_Type)
10819 then
10820 Check_Dispatching_Operation (S, Empty);
10821 end if;
10823 return;
10824 end if;
10826 -- E is a derived operation or an internal operator which
10827 -- is being overridden. Remove E from further visibility.
10828 -- Furthermore, if E is a dispatching operation, it must be
10829 -- replaced in the list of primitive operations of its type
10830 -- (see Override_Dispatching_Operation).
10832 Overridden_Subp := E;
10834 declare
10835 Prev : Entity_Id;
10837 begin
10838 Prev := First_Entity (Current_Scope);
10839 while Present (Prev) and then Next_Entity (Prev) /= E loop
10840 Next_Entity (Prev);
10841 end loop;
10843 -- It is possible for E to be in the current scope and
10844 -- yet not in the entity chain. This can only occur in a
10845 -- generic context where E is an implicit concatenation
10846 -- in the formal part, because in a generic body the
10847 -- entity chain starts with the formals.
10849 pragma Assert
10850 (Present (Prev) or else Chars (E) = Name_Op_Concat);
10852 -- E must be removed both from the entity_list of the
10853 -- current scope, and from the visibility chain
10855 if Debug_Flag_E then
10856 Write_Str ("Override implicit operation ");
10857 Write_Int (Int (E));
10858 Write_Eol;
10859 end if;
10861 -- If E is a predefined concatenation, it stands for four
10862 -- different operations. As a result, a single explicit
10863 -- declaration does not hide it. In a possible ambiguous
10864 -- situation, Disambiguate chooses the user-defined op,
10865 -- so it is correct to retain the previous internal one.
10867 if Chars (E) /= Name_Op_Concat
10868 or else Ekind (E) /= E_Operator
10869 then
10870 -- For nondispatching derived operations that are
10871 -- overridden by a subprogram declared in the private
10872 -- part of a package, we retain the derived subprogram
10873 -- but mark it as not immediately visible. If the
10874 -- derived operation was declared in the visible part
10875 -- then this ensures that it will still be visible
10876 -- outside the package with the proper signature
10877 -- (calls from outside must also be directed to this
10878 -- version rather than the overriding one, unlike the
10879 -- dispatching case). Calls from inside the package
10880 -- will still resolve to the overriding subprogram
10881 -- since the derived one is marked as not visible
10882 -- within the package.
10884 -- If the private operation is dispatching, we achieve
10885 -- the overriding by keeping the implicit operation
10886 -- but setting its alias to be the overriding one. In
10887 -- this fashion the proper body is executed in all
10888 -- cases, but the original signature is used outside
10889 -- of the package.
10891 -- If the overriding is not in the private part, we
10892 -- remove the implicit operation altogether.
10894 if Is_Private_Declaration (S) then
10895 if not Is_Dispatching_Operation (E) then
10896 Set_Is_Immediately_Visible (E, False);
10897 else
10898 -- Work done in Override_Dispatching_Operation,
10899 -- so nothing else needs to be done here.
10901 null;
10902 end if;
10904 else
10905 -- Find predecessor of E in Homonym chain
10907 if E = Current_Entity (E) then
10908 Prev_Vis := Empty;
10909 else
10910 Prev_Vis := Current_Entity (E);
10911 while Homonym (Prev_Vis) /= E loop
10912 Prev_Vis := Homonym (Prev_Vis);
10913 end loop;
10914 end if;
10916 if Prev_Vis /= Empty then
10918 -- Skip E in the visibility chain
10920 Set_Homonym (Prev_Vis, Homonym (E));
10922 else
10923 Set_Name_Entity_Id (Chars (E), Homonym (E));
10924 end if;
10926 Set_Next_Entity (Prev, Next_Entity (E));
10928 if No (Next_Entity (Prev)) then
10929 Set_Last_Entity (Current_Scope, Prev);
10930 end if;
10931 end if;
10932 end if;
10934 Enter_Overloaded_Entity (S);
10936 -- For entities generated by Derive_Subprograms the
10937 -- overridden operation is the inherited primitive
10938 -- (which is available through the attribute alias).
10940 if not (Comes_From_Source (E))
10941 and then Is_Dispatching_Operation (E)
10942 and then Find_Dispatching_Type (E) =
10943 Find_Dispatching_Type (S)
10944 and then Present (Alias (E))
10945 and then Comes_From_Source (Alias (E))
10946 then
10947 Set_Overridden_Operation (S, Alias (E));
10949 -- Normal case of setting entity as overridden
10951 -- Note: Static_Initialization and Overridden_Operation
10952 -- attributes use the same field in subprogram entities.
10953 -- Static_Initialization is only defined for internal
10954 -- initialization procedures, where Overridden_Operation
10955 -- is irrelevant. Therefore the setting of this attribute
10956 -- must check whether the target is an init_proc.
10958 elsif not Is_Init_Proc (S) then
10959 Set_Overridden_Operation (S, E);
10960 end if;
10962 Check_Overriding_Indicator (S, E, Is_Primitive => True);
10964 -- If S is a user-defined subprogram or a null procedure
10965 -- expanded to override an inherited null procedure, or a
10966 -- predefined dispatching primitive then indicate that E
10967 -- overrides the operation from which S is inherited.
10969 if Comes_From_Source (S)
10970 or else
10971 (Present (Parent (S))
10972 and then
10973 Nkind (Parent (S)) = N_Procedure_Specification
10974 and then
10975 Null_Present (Parent (S)))
10976 or else
10977 (Present (Alias (E))
10978 and then
10979 Is_Predefined_Dispatching_Operation (Alias (E)))
10980 then
10981 if Present (Alias (E)) then
10982 Set_Overridden_Operation (S, Alias (E));
10983 end if;
10984 end if;
10986 if Is_Dispatching_Operation (E) then
10988 -- An overriding dispatching subprogram inherits the
10989 -- convention of the overridden subprogram (AI-117).
10991 Set_Convention (S, Convention (E));
10992 Check_Dispatching_Operation (S, E);
10994 else
10995 Check_Dispatching_Operation (S, Empty);
10996 end if;
10998 Check_For_Primitive_Subprogram
10999 (Is_Primitive_Subp, Is_Overriding => True);
11000 goto Check_Inequality;
11001 end;
11003 -- Apparent redeclarations in instances can occur when two
11004 -- formal types get the same actual type. The subprograms in
11005 -- in the instance are legal, even if not callable from the
11006 -- outside. Calls from within are disambiguated elsewhere.
11007 -- For dispatching operations in the visible part, the usual
11008 -- rules apply, and operations with the same profile are not
11009 -- legal (B830001).
11011 elsif (In_Instance_Visible_Part
11012 and then not Is_Dispatching_Operation (E))
11013 or else In_Instance_Not_Visible
11014 then
11015 null;
11017 -- Here we have a real error (identical profile)
11019 else
11020 Error_Msg_Sloc := Sloc (E);
11022 -- Avoid cascaded errors if the entity appears in
11023 -- subsequent calls.
11025 Set_Scope (S, Current_Scope);
11027 -- Generate error, with extra useful warning for the case
11028 -- of a generic instance with no completion.
11030 if Is_Generic_Instance (S)
11031 and then not Has_Completion (E)
11032 then
11033 Error_Msg_N
11034 ("instantiation cannot provide body for&", S);
11035 Error_Msg_N ("\& conflicts with declaration#", S);
11036 else
11037 Error_Msg_N ("& conflicts with declaration#", S);
11038 end if;
11040 return;
11041 end if;
11043 else
11044 -- If one subprogram has an access parameter and the other
11045 -- a parameter of an access type, calls to either might be
11046 -- ambiguous. Verify that parameters match except for the
11047 -- access parameter.
11049 if May_Hide_Profile then
11050 declare
11051 F1 : Entity_Id;
11052 F2 : Entity_Id;
11054 begin
11055 F1 := First_Formal (S);
11056 F2 := First_Formal (E);
11057 while Present (F1) and then Present (F2) loop
11058 if Is_Access_Type (Etype (F1)) then
11059 if not Is_Access_Type (Etype (F2))
11060 or else not Conforming_Types
11061 (Designated_Type (Etype (F1)),
11062 Designated_Type (Etype (F2)),
11063 Type_Conformant)
11064 then
11065 May_Hide_Profile := False;
11066 end if;
11068 elsif
11069 not Conforming_Types
11070 (Etype (F1), Etype (F2), Type_Conformant)
11071 then
11072 May_Hide_Profile := False;
11073 end if;
11075 Next_Formal (F1);
11076 Next_Formal (F2);
11077 end loop;
11079 if May_Hide_Profile
11080 and then No (F1)
11081 and then No (F2)
11082 then
11083 Error_Msg_NE ("calls to& may be ambiguous??", S, S);
11084 end if;
11085 end;
11086 end if;
11087 end if;
11089 E := Homonym (E);
11090 end loop;
11092 -- On exit, we know that S is a new entity
11094 Enter_Overloaded_Entity (S);
11095 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
11096 Check_Overriding_Indicator
11097 (S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);
11099 -- Overloading is not allowed in SPARK, except for operators
11101 if Nkind (S) /= N_Defining_Operator_Symbol then
11102 Error_Msg_Sloc := Sloc (Homonym (S));
11103 Check_SPARK_Restriction
11104 ("overloading not allowed with entity#", S);
11105 end if;
11107 -- If S is a derived operation for an untagged type then by
11108 -- definition it's not a dispatching operation (even if the parent
11109 -- operation was dispatching), so Check_Dispatching_Operation is not
11110 -- called in that case.
11112 if No (Derived_Type)
11113 or else Is_Tagged_Type (Derived_Type)
11114 then
11115 Check_Dispatching_Operation (S, Empty);
11116 end if;
11117 end if;
11119 -- If this is a user-defined equality operator that is not a derived
11120 -- subprogram, create the corresponding inequality. If the operation is
11121 -- dispatching, the expansion is done elsewhere, and we do not create
11122 -- an explicit inequality operation.
11124 <<Check_Inequality>>
11125 if Chars (S) = Name_Op_Eq
11126 and then Etype (S) = Standard_Boolean
11127 and then Present (Parent (S))
11128 and then not Is_Dispatching_Operation (S)
11129 then
11130 Make_Inequality_Operator (S);
11131 Check_Untagged_Equality (S);
11132 end if;
11133 end New_Overloaded_Entity;
11135 ---------------------
11136 -- Process_Formals --
11137 ---------------------
11139 procedure Process_Formals
11140 (T : List_Id;
11141 Related_Nod : Node_Id)
11143 Param_Spec : Node_Id;
11144 Formal : Entity_Id;
11145 Formal_Type : Entity_Id;
11146 Default : Node_Id;
11147 Ptype : Entity_Id;
11149 Num_Out_Params : Nat := 0;
11150 First_Out_Param : Entity_Id := Empty;
11151 -- Used for setting Is_Only_Out_Parameter
11153 function Designates_From_Limited_With (Typ : Entity_Id) return Boolean;
11154 -- Determine whether an access type designates a type coming from a
11155 -- limited view.
11157 function Is_Class_Wide_Default (D : Node_Id) return Boolean;
11158 -- Check whether the default has a class-wide type. After analysis the
11159 -- default has the type of the formal, so we must also check explicitly
11160 -- for an access attribute.
11162 ----------------------------------
11163 -- Designates_From_Limited_With --
11164 ----------------------------------
11166 function Designates_From_Limited_With (Typ : Entity_Id) return Boolean is
11167 Desig : Entity_Id := Typ;
11169 begin
11170 if Is_Access_Type (Desig) then
11171 Desig := Directly_Designated_Type (Desig);
11172 end if;
11174 if Is_Class_Wide_Type (Desig) then
11175 Desig := Root_Type (Desig);
11176 end if;
11178 return
11179 Ekind (Desig) = E_Incomplete_Type
11180 and then From_Limited_With (Desig);
11181 end Designates_From_Limited_With;
11183 ---------------------------
11184 -- Is_Class_Wide_Default --
11185 ---------------------------
11187 function Is_Class_Wide_Default (D : Node_Id) return Boolean is
11188 begin
11189 return Is_Class_Wide_Type (Designated_Type (Etype (D)))
11190 or else (Nkind (D) = N_Attribute_Reference
11191 and then Attribute_Name (D) = Name_Access
11192 and then Is_Class_Wide_Type (Etype (Prefix (D))));
11193 end Is_Class_Wide_Default;
11195 -- Start of processing for Process_Formals
11197 begin
11198 -- In order to prevent premature use of the formals in the same formal
11199 -- part, the Ekind is left undefined until all default expressions are
11200 -- analyzed. The Ekind is established in a separate loop at the end.
11202 Param_Spec := First (T);
11203 while Present (Param_Spec) loop
11204 Formal := Defining_Identifier (Param_Spec);
11205 Set_Never_Set_In_Source (Formal, True);
11206 Enter_Name (Formal);
11208 -- Case of ordinary parameters
11210 if Nkind (Parameter_Type (Param_Spec)) /= N_Access_Definition then
11211 Find_Type (Parameter_Type (Param_Spec));
11212 Ptype := Parameter_Type (Param_Spec);
11214 if Ptype = Error then
11215 goto Continue;
11216 end if;
11218 Formal_Type := Entity (Ptype);
11220 if Is_Incomplete_Type (Formal_Type)
11221 or else
11222 (Is_Class_Wide_Type (Formal_Type)
11223 and then Is_Incomplete_Type (Root_Type (Formal_Type)))
11224 then
11225 -- Ada 2005 (AI-326): Tagged incomplete types allowed in
11226 -- primitive operations, as long as their completion is
11227 -- in the same declarative part. If in the private part
11228 -- this means that the type cannot be a Taft-amendment type.
11229 -- Check is done on package exit. For access to subprograms,
11230 -- the use is legal for Taft-amendment types.
11232 -- Ada 2012: tagged incomplete types are allowed as generic
11233 -- formal types. They do not introduce dependencies and the
11234 -- corresponding generic subprogram does not have a delayed
11235 -- freeze, because it does not need a freeze node. However,
11236 -- it is still the case that untagged incomplete types cannot
11237 -- be Taft-amendment types and must be completed in private
11238 -- part, so the subprogram must appear in the list of private
11239 -- dependents of the type.
11241 if Is_Tagged_Type (Formal_Type)
11242 or else Ada_Version >= Ada_2012
11243 then
11244 if Ekind (Scope (Current_Scope)) = E_Package
11245 and then not From_Limited_With (Formal_Type)
11246 and then not Is_Generic_Type (Formal_Type)
11247 and then not Is_Class_Wide_Type (Formal_Type)
11248 then
11249 if not Nkind_In
11250 (Parent (T), N_Access_Function_Definition,
11251 N_Access_Procedure_Definition)
11252 then
11253 Append_Elmt
11254 (Current_Scope,
11255 Private_Dependents (Base_Type (Formal_Type)));
11257 -- Freezing is delayed to ensure that Register_Prim
11258 -- will get called for this operation, which is needed
11259 -- in cases where static dispatch tables aren't built.
11260 -- (Note that the same is done for controlling access
11261 -- parameter cases in function Access_Definition.)
11263 Set_Has_Delayed_Freeze (Current_Scope);
11264 end if;
11265 end if;
11267 -- Special handling of Value_Type for CIL case
11269 elsif Is_Value_Type (Formal_Type) then
11270 null;
11272 elsif not Nkind_In (Parent (T), N_Access_Function_Definition,
11273 N_Access_Procedure_Definition)
11274 then
11275 -- AI05-0151: Tagged incomplete types are allowed in all
11276 -- formal parts. Untagged incomplete types are not allowed
11277 -- in bodies.
11279 if Ada_Version >= Ada_2012 then
11280 if Is_Tagged_Type (Formal_Type) then
11281 null;
11283 elsif Nkind_In (Parent (Parent (T)), N_Accept_Statement,
11284 N_Entry_Body,
11285 N_Subprogram_Body)
11286 then
11287 Error_Msg_NE
11288 ("invalid use of untagged incomplete type&",
11289 Ptype, Formal_Type);
11290 end if;
11292 else
11293 Error_Msg_NE
11294 ("invalid use of incomplete type&",
11295 Param_Spec, Formal_Type);
11297 -- Further checks on the legality of incomplete types
11298 -- in formal parts are delayed until the freeze point
11299 -- of the enclosing subprogram or access to subprogram.
11300 end if;
11301 end if;
11303 elsif Ekind (Formal_Type) = E_Void then
11304 Error_Msg_NE
11305 ("premature use of&",
11306 Parameter_Type (Param_Spec), Formal_Type);
11307 end if;
11309 -- Ada 2012 (AI-142): Handle aliased parameters
11311 if Ada_Version >= Ada_2012
11312 and then Aliased_Present (Param_Spec)
11313 then
11314 Set_Is_Aliased (Formal);
11315 end if;
11317 -- Ada 2005 (AI-231): Create and decorate an internal subtype
11318 -- declaration corresponding to the null-excluding type of the
11319 -- formal in the enclosing scope. Finally, replace the parameter
11320 -- type of the formal with the internal subtype.
11322 if Ada_Version >= Ada_2005
11323 and then Null_Exclusion_Present (Param_Spec)
11324 then
11325 if not Is_Access_Type (Formal_Type) then
11326 Error_Msg_N
11327 ("`NOT NULL` allowed only for an access type", Param_Spec);
11329 else
11330 if Can_Never_Be_Null (Formal_Type)
11331 and then Comes_From_Source (Related_Nod)
11332 then
11333 Error_Msg_NE
11334 ("`NOT NULL` not allowed (& already excludes null)",
11335 Param_Spec, Formal_Type);
11336 end if;
11338 Formal_Type :=
11339 Create_Null_Excluding_Itype
11340 (T => Formal_Type,
11341 Related_Nod => Related_Nod,
11342 Scope_Id => Scope (Current_Scope));
11344 -- If the designated type of the itype is an itype that is
11345 -- not frozen yet, we set the Has_Delayed_Freeze attribute
11346 -- on the access subtype, to prevent order-of-elaboration
11347 -- issues in the backend.
11349 -- Example:
11350 -- type T is access procedure;
11351 -- procedure Op (O : not null T);
11353 if Is_Itype (Directly_Designated_Type (Formal_Type))
11354 and then
11355 not Is_Frozen (Directly_Designated_Type (Formal_Type))
11356 then
11357 Set_Has_Delayed_Freeze (Formal_Type);
11358 end if;
11359 end if;
11360 end if;
11362 -- An access formal type
11364 else
11365 Formal_Type :=
11366 Access_Definition (Related_Nod, Parameter_Type (Param_Spec));
11368 -- No need to continue if we already notified errors
11370 if not Present (Formal_Type) then
11371 return;
11372 end if;
11374 -- Ada 2005 (AI-254)
11376 declare
11377 AD : constant Node_Id :=
11378 Access_To_Subprogram_Definition
11379 (Parameter_Type (Param_Spec));
11380 begin
11381 if Present (AD) and then Protected_Present (AD) then
11382 Formal_Type :=
11383 Replace_Anonymous_Access_To_Protected_Subprogram
11384 (Param_Spec);
11385 end if;
11386 end;
11387 end if;
11389 Set_Etype (Formal, Formal_Type);
11391 -- Deal with default expression if present
11393 Default := Expression (Param_Spec);
11395 if Present (Default) then
11396 Check_SPARK_Restriction
11397 ("default expression is not allowed", Default);
11399 if Out_Present (Param_Spec) then
11400 Error_Msg_N
11401 ("default initialization only allowed for IN parameters",
11402 Param_Spec);
11403 end if;
11405 -- Do the special preanalysis of the expression (see section on
11406 -- "Handling of Default Expressions" in the spec of package Sem).
11408 Preanalyze_Spec_Expression (Default, Formal_Type);
11410 -- An access to constant cannot be the default for
11411 -- an access parameter that is an access to variable.
11413 if Ekind (Formal_Type) = E_Anonymous_Access_Type
11414 and then not Is_Access_Constant (Formal_Type)
11415 and then Is_Access_Type (Etype (Default))
11416 and then Is_Access_Constant (Etype (Default))
11417 then
11418 Error_Msg_N
11419 ("formal that is access to variable cannot be initialized " &
11420 "with an access-to-constant expression", Default);
11421 end if;
11423 -- Check that the designated type of an access parameter's default
11424 -- is not a class-wide type unless the parameter's designated type
11425 -- is also class-wide.
11427 if Ekind (Formal_Type) = E_Anonymous_Access_Type
11428 and then not Designates_From_Limited_With (Formal_Type)
11429 and then Is_Class_Wide_Default (Default)
11430 and then not Is_Class_Wide_Type (Designated_Type (Formal_Type))
11431 then
11432 Error_Msg_N
11433 ("access to class-wide expression not allowed here", Default);
11434 end if;
11436 -- Check incorrect use of dynamically tagged expressions
11438 if Is_Tagged_Type (Formal_Type) then
11439 Check_Dynamically_Tagged_Expression
11440 (Expr => Default,
11441 Typ => Formal_Type,
11442 Related_Nod => Default);
11443 end if;
11444 end if;
11446 -- Ada 2005 (AI-231): Static checks
11448 if Ada_Version >= Ada_2005
11449 and then Is_Access_Type (Etype (Formal))
11450 and then Can_Never_Be_Null (Etype (Formal))
11451 then
11452 Null_Exclusion_Static_Checks (Param_Spec);
11453 end if;
11455 -- The following checks are relevant when SPARK_Mode is on as these
11456 -- are not standard Ada legality rules.
11458 if SPARK_Mode = On
11459 and then Ekind_In (Scope (Formal), E_Function, E_Generic_Function)
11460 then
11461 -- A function cannot have a parameter of mode IN OUT or OUT
11462 -- (SPARK RM 6.1).
11464 if Ekind_In (Formal, E_In_Out_Parameter, E_Out_Parameter) then
11465 Error_Msg_N
11466 ("function cannot have parameter of mode `OUT` or `IN OUT`",
11467 Formal);
11469 -- A function cannot have a volatile formal parameter
11470 -- (SPARK RM 7.1.3(10)).
11472 elsif Is_SPARK_Volatile_Object (Formal) then
11473 Error_Msg_N
11474 ("function cannot have a volatile formal parameter", Formal);
11475 end if;
11476 end if;
11478 <<Continue>>
11479 Next (Param_Spec);
11480 end loop;
11482 -- If this is the formal part of a function specification, analyze the
11483 -- subtype mark in the context where the formals are visible but not
11484 -- yet usable, and may hide outer homographs.
11486 if Nkind (Related_Nod) = N_Function_Specification then
11487 Analyze_Return_Type (Related_Nod);
11488 end if;
11490 -- Now set the kind (mode) of each formal
11492 Param_Spec := First (T);
11493 while Present (Param_Spec) loop
11494 Formal := Defining_Identifier (Param_Spec);
11495 Set_Formal_Mode (Formal);
11497 if Ekind (Formal) = E_In_Parameter then
11498 Set_Default_Value (Formal, Expression (Param_Spec));
11500 if Present (Expression (Param_Spec)) then
11501 Default := Expression (Param_Spec);
11503 if Is_Scalar_Type (Etype (Default)) then
11504 if Nkind (Parameter_Type (Param_Spec)) /=
11505 N_Access_Definition
11506 then
11507 Formal_Type := Entity (Parameter_Type (Param_Spec));
11508 else
11509 Formal_Type :=
11510 Access_Definition
11511 (Related_Nod, Parameter_Type (Param_Spec));
11512 end if;
11514 Apply_Scalar_Range_Check (Default, Formal_Type);
11515 end if;
11516 end if;
11518 elsif Ekind (Formal) = E_Out_Parameter then
11519 Num_Out_Params := Num_Out_Params + 1;
11521 if Num_Out_Params = 1 then
11522 First_Out_Param := Formal;
11523 end if;
11525 elsif Ekind (Formal) = E_In_Out_Parameter then
11526 Num_Out_Params := Num_Out_Params + 1;
11527 end if;
11529 -- Skip remaining processing if formal type was in error
11531 if Etype (Formal) = Any_Type or else Error_Posted (Formal) then
11532 goto Next_Parameter;
11533 end if;
11535 -- Force call by reference if aliased
11537 if Is_Aliased (Formal) then
11538 Set_Mechanism (Formal, By_Reference);
11540 -- Warn if user asked this to be passed by copy
11542 if Convention (Formal_Type) = Convention_Ada_Pass_By_Copy then
11543 Error_Msg_N
11544 ("cannot pass aliased parameter & by copy?", Formal);
11545 end if;
11547 -- Force mechanism if type has Convention Ada_Pass_By_Ref/Copy
11549 elsif Convention (Formal_Type) = Convention_Ada_Pass_By_Copy then
11550 Set_Mechanism (Formal, By_Copy);
11552 elsif Convention (Formal_Type) = Convention_Ada_Pass_By_Reference then
11553 Set_Mechanism (Formal, By_Reference);
11554 end if;
11556 <<Next_Parameter>>
11557 Next (Param_Spec);
11558 end loop;
11560 if Present (First_Out_Param) and then Num_Out_Params = 1 then
11561 Set_Is_Only_Out_Parameter (First_Out_Param);
11562 end if;
11563 end Process_Formals;
11565 ----------------------------
11566 -- Reference_Body_Formals --
11567 ----------------------------
11569 procedure Reference_Body_Formals (Spec : Entity_Id; Bod : Entity_Id) is
11570 Fs : Entity_Id;
11571 Fb : Entity_Id;
11573 begin
11574 if Error_Posted (Spec) then
11575 return;
11576 end if;
11578 -- Iterate over both lists. They may be of different lengths if the two
11579 -- specs are not conformant.
11581 Fs := First_Formal (Spec);
11582 Fb := First_Formal (Bod);
11583 while Present (Fs) and then Present (Fb) loop
11584 Generate_Reference (Fs, Fb, 'b');
11586 if Style_Check then
11587 Style.Check_Identifier (Fb, Fs);
11588 end if;
11590 Set_Spec_Entity (Fb, Fs);
11591 Set_Referenced (Fs, False);
11592 Next_Formal (Fs);
11593 Next_Formal (Fb);
11594 end loop;
11595 end Reference_Body_Formals;
11597 -------------------------
11598 -- Set_Actual_Subtypes --
11599 -------------------------
11601 procedure Set_Actual_Subtypes (N : Node_Id; Subp : Entity_Id) is
11602 Decl : Node_Id;
11603 Formal : Entity_Id;
11604 T : Entity_Id;
11605 First_Stmt : Node_Id := Empty;
11606 AS_Needed : Boolean;
11608 begin
11609 -- If this is an empty initialization procedure, no need to create
11610 -- actual subtypes (small optimization).
11612 if Ekind (Subp) = E_Procedure and then Is_Null_Init_Proc (Subp) then
11613 return;
11614 end if;
11616 Formal := First_Formal (Subp);
11617 while Present (Formal) loop
11618 T := Etype (Formal);
11620 -- We never need an actual subtype for a constrained formal
11622 if Is_Constrained (T) then
11623 AS_Needed := False;
11625 -- If we have unknown discriminants, then we do not need an actual
11626 -- subtype, or more accurately we cannot figure it out. Note that
11627 -- all class-wide types have unknown discriminants.
11629 elsif Has_Unknown_Discriminants (T) then
11630 AS_Needed := False;
11632 -- At this stage we have an unconstrained type that may need an
11633 -- actual subtype. For sure the actual subtype is needed if we have
11634 -- an unconstrained array type.
11636 elsif Is_Array_Type (T) then
11637 AS_Needed := True;
11639 -- The only other case needing an actual subtype is an unconstrained
11640 -- record type which is an IN parameter (we cannot generate actual
11641 -- subtypes for the OUT or IN OUT case, since an assignment can
11642 -- change the discriminant values. However we exclude the case of
11643 -- initialization procedures, since discriminants are handled very
11644 -- specially in this context, see the section entitled "Handling of
11645 -- Discriminants" in Einfo.
11647 -- We also exclude the case of Discrim_SO_Functions (functions used
11648 -- in front end layout mode for size/offset values), since in such
11649 -- functions only discriminants are referenced, and not only are such
11650 -- subtypes not needed, but they cannot always be generated, because
11651 -- of order of elaboration issues.
11653 elsif Is_Record_Type (T)
11654 and then Ekind (Formal) = E_In_Parameter
11655 and then Chars (Formal) /= Name_uInit
11656 and then not Is_Unchecked_Union (T)
11657 and then not Is_Discrim_SO_Function (Subp)
11658 then
11659 AS_Needed := True;
11661 -- All other cases do not need an actual subtype
11663 else
11664 AS_Needed := False;
11665 end if;
11667 -- Generate actual subtypes for unconstrained arrays and
11668 -- unconstrained discriminated records.
11670 if AS_Needed then
11671 if Nkind (N) = N_Accept_Statement then
11673 -- If expansion is active, the formal is replaced by a local
11674 -- variable that renames the corresponding entry of the
11675 -- parameter block, and it is this local variable that may
11676 -- require an actual subtype.
11678 if Expander_Active then
11679 Decl := Build_Actual_Subtype (T, Renamed_Object (Formal));
11680 else
11681 Decl := Build_Actual_Subtype (T, Formal);
11682 end if;
11684 if Present (Handled_Statement_Sequence (N)) then
11685 First_Stmt :=
11686 First (Statements (Handled_Statement_Sequence (N)));
11687 Prepend (Decl, Statements (Handled_Statement_Sequence (N)));
11688 Mark_Rewrite_Insertion (Decl);
11689 else
11690 -- If the accept statement has no body, there will be no
11691 -- reference to the actuals, so no need to compute actual
11692 -- subtypes.
11694 return;
11695 end if;
11697 else
11698 Decl := Build_Actual_Subtype (T, Formal);
11699 Prepend (Decl, Declarations (N));
11700 Mark_Rewrite_Insertion (Decl);
11701 end if;
11703 -- The declaration uses the bounds of an existing object, and
11704 -- therefore needs no constraint checks.
11706 Analyze (Decl, Suppress => All_Checks);
11708 -- We need to freeze manually the generated type when it is
11709 -- inserted anywhere else than in a declarative part.
11711 if Present (First_Stmt) then
11712 Insert_List_Before_And_Analyze (First_Stmt,
11713 Freeze_Entity (Defining_Identifier (Decl), N));
11715 -- Ditto if the type has a dynamic predicate, because the
11716 -- generated function will mention the actual subtype.
11718 elsif Has_Dynamic_Predicate_Aspect (T) then
11719 Insert_List_Before_And_Analyze (Decl,
11720 Freeze_Entity (Defining_Identifier (Decl), N));
11721 end if;
11723 if Nkind (N) = N_Accept_Statement
11724 and then Expander_Active
11725 then
11726 Set_Actual_Subtype (Renamed_Object (Formal),
11727 Defining_Identifier (Decl));
11728 else
11729 Set_Actual_Subtype (Formal, Defining_Identifier (Decl));
11730 end if;
11731 end if;
11733 Next_Formal (Formal);
11734 end loop;
11735 end Set_Actual_Subtypes;
11737 ---------------------
11738 -- Set_Formal_Mode --
11739 ---------------------
11741 procedure Set_Formal_Mode (Formal_Id : Entity_Id) is
11742 Spec : constant Node_Id := Parent (Formal_Id);
11744 begin
11745 -- Note: we set Is_Known_Valid for IN parameters and IN OUT parameters
11746 -- since we ensure that corresponding actuals are always valid at the
11747 -- point of the call.
11749 if Out_Present (Spec) then
11750 if Ekind (Scope (Formal_Id)) = E_Function
11751 or else Ekind (Scope (Formal_Id)) = E_Generic_Function
11752 then
11753 -- [IN] OUT parameters allowed for functions in Ada 2012
11755 if Ada_Version >= Ada_2012 then
11757 -- Even in Ada 2012 operators can only have IN parameters
11759 if Is_Operator_Symbol_Name (Chars (Scope (Formal_Id))) then
11760 Error_Msg_N ("operators can only have IN parameters", Spec);
11761 end if;
11763 if In_Present (Spec) then
11764 Set_Ekind (Formal_Id, E_In_Out_Parameter);
11765 else
11766 Set_Ekind (Formal_Id, E_Out_Parameter);
11767 end if;
11769 -- But not in earlier versions of Ada
11771 else
11772 Error_Msg_N ("functions can only have IN parameters", Spec);
11773 Set_Ekind (Formal_Id, E_In_Parameter);
11774 end if;
11776 elsif In_Present (Spec) then
11777 Set_Ekind (Formal_Id, E_In_Out_Parameter);
11779 else
11780 Set_Ekind (Formal_Id, E_Out_Parameter);
11781 Set_Never_Set_In_Source (Formal_Id, True);
11782 Set_Is_True_Constant (Formal_Id, False);
11783 Set_Current_Value (Formal_Id, Empty);
11784 end if;
11786 else
11787 Set_Ekind (Formal_Id, E_In_Parameter);
11788 end if;
11790 -- Set Is_Known_Non_Null for access parameters since the language
11791 -- guarantees that access parameters are always non-null. We also set
11792 -- Can_Never_Be_Null, since there is no way to change the value.
11794 if Nkind (Parameter_Type (Spec)) = N_Access_Definition then
11796 -- Ada 2005 (AI-231): In Ada 95, access parameters are always non-
11797 -- null; In Ada 2005, only if then null_exclusion is explicit.
11799 if Ada_Version < Ada_2005
11800 or else Can_Never_Be_Null (Etype (Formal_Id))
11801 then
11802 Set_Is_Known_Non_Null (Formal_Id);
11803 Set_Can_Never_Be_Null (Formal_Id);
11804 end if;
11806 -- Ada 2005 (AI-231): Null-exclusion access subtype
11808 elsif Is_Access_Type (Etype (Formal_Id))
11809 and then Can_Never_Be_Null (Etype (Formal_Id))
11810 then
11811 Set_Is_Known_Non_Null (Formal_Id);
11813 -- We can also set Can_Never_Be_Null (thus preventing some junk
11814 -- access checks) for the case of an IN parameter, which cannot
11815 -- be changed, or for an IN OUT parameter, which can be changed but
11816 -- not to a null value. But for an OUT parameter, the initial value
11817 -- passed in can be null, so we can't set this flag in that case.
11819 if Ekind (Formal_Id) /= E_Out_Parameter then
11820 Set_Can_Never_Be_Null (Formal_Id);
11821 end if;
11822 end if;
11824 Set_Mechanism (Formal_Id, Default_Mechanism);
11825 Set_Formal_Validity (Formal_Id);
11826 end Set_Formal_Mode;
11828 -------------------------
11829 -- Set_Formal_Validity --
11830 -------------------------
11832 procedure Set_Formal_Validity (Formal_Id : Entity_Id) is
11833 begin
11834 -- If no validity checking, then we cannot assume anything about the
11835 -- validity of parameters, since we do not know there is any checking
11836 -- of the validity on the call side.
11838 if not Validity_Checks_On then
11839 return;
11841 -- If validity checking for parameters is enabled, this means we are
11842 -- not supposed to make any assumptions about argument values.
11844 elsif Validity_Check_Parameters then
11845 return;
11847 -- If we are checking in parameters, we will assume that the caller is
11848 -- also checking parameters, so we can assume the parameter is valid.
11850 elsif Ekind (Formal_Id) = E_In_Parameter
11851 and then Validity_Check_In_Params
11852 then
11853 Set_Is_Known_Valid (Formal_Id, True);
11855 -- Similar treatment for IN OUT parameters
11857 elsif Ekind (Formal_Id) = E_In_Out_Parameter
11858 and then Validity_Check_In_Out_Params
11859 then
11860 Set_Is_Known_Valid (Formal_Id, True);
11861 end if;
11862 end Set_Formal_Validity;
11864 ------------------------
11865 -- Subtype_Conformant --
11866 ------------------------
11868 function Subtype_Conformant
11869 (New_Id : Entity_Id;
11870 Old_Id : Entity_Id;
11871 Skip_Controlling_Formals : Boolean := False) return Boolean
11873 Result : Boolean;
11874 begin
11875 Check_Conformance (New_Id, Old_Id, Subtype_Conformant, False, Result,
11876 Skip_Controlling_Formals => Skip_Controlling_Formals);
11877 return Result;
11878 end Subtype_Conformant;
11880 ---------------------
11881 -- Type_Conformant --
11882 ---------------------
11884 function Type_Conformant
11885 (New_Id : Entity_Id;
11886 Old_Id : Entity_Id;
11887 Skip_Controlling_Formals : Boolean := False) return Boolean
11889 Result : Boolean;
11890 begin
11891 May_Hide_Profile := False;
11893 Check_Conformance
11894 (New_Id, Old_Id, Type_Conformant, False, Result,
11895 Skip_Controlling_Formals => Skip_Controlling_Formals);
11896 return Result;
11897 end Type_Conformant;
11899 -------------------------------
11900 -- Valid_Operator_Definition --
11901 -------------------------------
11903 procedure Valid_Operator_Definition (Designator : Entity_Id) is
11904 N : Integer := 0;
11905 F : Entity_Id;
11906 Id : constant Name_Id := Chars (Designator);
11907 N_OK : Boolean;
11909 begin
11910 F := First_Formal (Designator);
11911 while Present (F) loop
11912 N := N + 1;
11914 if Present (Default_Value (F)) then
11915 Error_Msg_N
11916 ("default values not allowed for operator parameters",
11917 Parent (F));
11918 end if;
11920 Next_Formal (F);
11921 end loop;
11923 -- Verify that user-defined operators have proper number of arguments
11924 -- First case of operators which can only be unary
11926 if Nam_In (Id, Name_Op_Not, Name_Op_Abs) then
11927 N_OK := (N = 1);
11929 -- Case of operators which can be unary or binary
11931 elsif Nam_In (Id, Name_Op_Add, Name_Op_Subtract) then
11932 N_OK := (N in 1 .. 2);
11934 -- All other operators can only be binary
11936 else
11937 N_OK := (N = 2);
11938 end if;
11940 if not N_OK then
11941 Error_Msg_N
11942 ("incorrect number of arguments for operator", Designator);
11943 end if;
11945 if Id = Name_Op_Ne
11946 and then Base_Type (Etype (Designator)) = Standard_Boolean
11947 and then not Is_Intrinsic_Subprogram (Designator)
11948 then
11949 Error_Msg_N
11950 ("explicit definition of inequality not allowed", Designator);
11951 end if;
11952 end Valid_Operator_Definition;
11954 end Sem_Ch6;