Merged revisions 208012,208018-208019,208021,208023-208030,208033,208037,208040-20804...
[official-gcc.git] / main / gcc / ada / sem_ch5.adb
blob409ea7bf43271b4ff41b6ece0b1e9fc29dd82aad
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 5 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2013, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Einfo; use Einfo;
30 with Errout; use Errout;
31 with Expander; use Expander;
32 with Exp_Ch6; use Exp_Ch6;
33 with Exp_Util; use Exp_Util;
34 with Freeze; use Freeze;
35 with Lib; use Lib;
36 with Lib.Xref; use Lib.Xref;
37 with Namet; use Namet;
38 with Nlists; use Nlists;
39 with Nmake; use Nmake;
40 with Opt; use Opt;
41 with Restrict; use Restrict;
42 with Rident; use Rident;
43 with Rtsfind; use Rtsfind;
44 with Sem; use Sem;
45 with Sem_Aux; use Sem_Aux;
46 with Sem_Case; use Sem_Case;
47 with Sem_Ch3; use Sem_Ch3;
48 with Sem_Ch6; use Sem_Ch6;
49 with Sem_Ch8; use Sem_Ch8;
50 with Sem_Dim; use Sem_Dim;
51 with Sem_Disp; use Sem_Disp;
52 with Sem_Elab; use Sem_Elab;
53 with Sem_Eval; use Sem_Eval;
54 with Sem_Res; use Sem_Res;
55 with Sem_Type; use Sem_Type;
56 with Sem_Util; use Sem_Util;
57 with Sem_Warn; use Sem_Warn;
58 with Snames; use Snames;
59 with Stand; use Stand;
60 with Sinfo; use Sinfo;
61 with Targparm; use Targparm;
62 with Tbuild; use Tbuild;
63 with Uintp; use Uintp;
65 package body Sem_Ch5 is
67 Unblocked_Exit_Count : Nat := 0;
68 -- This variable is used when processing if statements, case statements,
69 -- and block statements. It counts the number of exit points that are not
70 -- blocked by unconditional transfer instructions: for IF and CASE, these
71 -- are the branches of the conditional; for a block, they are the statement
72 -- sequence of the block, and the statement sequences of any exception
73 -- handlers that are part of the block. When processing is complete, if
74 -- this count is zero, it means that control cannot fall through the IF,
75 -- CASE or block statement. This is used for the generation of warning
76 -- messages. This variable is recursively saved on entry to processing the
77 -- construct, and restored on exit.
79 procedure Preanalyze_Range (R_Copy : Node_Id);
80 -- Determine expected type of range or domain of iteration of Ada 2012
81 -- loop by analyzing separate copy. Do the analysis and resolution of the
82 -- copy of the bound(s) with expansion disabled, to prevent the generation
83 -- of finalization actions. This prevents memory leaks when the bounds
84 -- contain calls to functions returning controlled arrays or when the
85 -- domain of iteration is a container.
87 ------------------------
88 -- Analyze_Assignment --
89 ------------------------
91 procedure Analyze_Assignment (N : Node_Id) is
92 Lhs : constant Node_Id := Name (N);
93 Rhs : constant Node_Id := Expression (N);
94 T1 : Entity_Id;
95 T2 : Entity_Id;
96 Decl : Node_Id;
98 procedure Diagnose_Non_Variable_Lhs (N : Node_Id);
99 -- N is the node for the left hand side of an assignment, and it is not
100 -- a variable. This routine issues an appropriate diagnostic.
102 procedure Kill_Lhs;
103 -- This is called to kill current value settings of a simple variable
104 -- on the left hand side. We call it if we find any error in analyzing
105 -- the assignment, and at the end of processing before setting any new
106 -- current values in place.
108 procedure Set_Assignment_Type
109 (Opnd : Node_Id;
110 Opnd_Type : in out Entity_Id);
111 -- Opnd is either the Lhs or Rhs of the assignment, and Opnd_Type is the
112 -- nominal subtype. This procedure is used to deal with cases where the
113 -- nominal subtype must be replaced by the actual subtype.
115 -------------------------------
116 -- Diagnose_Non_Variable_Lhs --
117 -------------------------------
119 procedure Diagnose_Non_Variable_Lhs (N : Node_Id) is
120 begin
121 -- Not worth posting another error if left hand side already flagged
122 -- as being illegal in some respect.
124 if Error_Posted (N) then
125 return;
127 -- Some special bad cases of entity names
129 elsif Is_Entity_Name (N) then
130 declare
131 Ent : constant Entity_Id := Entity (N);
133 begin
134 if Ekind (Ent) = E_In_Parameter then
135 Error_Msg_N
136 ("assignment to IN mode parameter not allowed", N);
137 return;
139 -- Renamings of protected private components are turned into
140 -- constants when compiling a protected function. In the case
141 -- of single protected types, the private component appears
142 -- directly.
144 elsif (Is_Prival (Ent)
145 and then
146 (Ekind (Current_Scope) = E_Function
147 or else Ekind (Enclosing_Dynamic_Scope
148 (Current_Scope)) = E_Function))
149 or else
150 (Ekind (Ent) = E_Component
151 and then Is_Protected_Type (Scope (Ent)))
152 then
153 Error_Msg_N
154 ("protected function cannot modify protected object", N);
155 return;
157 elsif Ekind (Ent) = E_Loop_Parameter then
158 Error_Msg_N ("assignment to loop parameter not allowed", N);
159 return;
160 end if;
161 end;
163 -- For indexed components, test prefix if it is in array. We do not
164 -- want to recurse for cases where the prefix is a pointer, since we
165 -- may get a message confusing the pointer and what it references.
167 elsif Nkind (N) = N_Indexed_Component
168 and then Is_Array_Type (Etype (Prefix (N)))
169 then
170 Diagnose_Non_Variable_Lhs (Prefix (N));
171 return;
173 -- Another special case for assignment to discriminant
175 elsif Nkind (N) = N_Selected_Component then
176 if Present (Entity (Selector_Name (N)))
177 and then Ekind (Entity (Selector_Name (N))) = E_Discriminant
178 then
179 Error_Msg_N ("assignment to discriminant not allowed", N);
180 return;
182 -- For selection from record, diagnose prefix, but note that again
183 -- we only do this for a record, not e.g. for a pointer.
185 elsif Is_Record_Type (Etype (Prefix (N))) then
186 Diagnose_Non_Variable_Lhs (Prefix (N));
187 return;
188 end if;
189 end if;
191 -- If we fall through, we have no special message to issue
193 Error_Msg_N ("left hand side of assignment must be a variable", N);
194 end Diagnose_Non_Variable_Lhs;
196 --------------
197 -- Kill_Lhs --
198 --------------
200 procedure Kill_Lhs is
201 begin
202 if Is_Entity_Name (Lhs) then
203 declare
204 Ent : constant Entity_Id := Entity (Lhs);
205 begin
206 if Present (Ent) then
207 Kill_Current_Values (Ent);
208 end if;
209 end;
210 end if;
211 end Kill_Lhs;
213 -------------------------
214 -- Set_Assignment_Type --
215 -------------------------
217 procedure Set_Assignment_Type
218 (Opnd : Node_Id;
219 Opnd_Type : in out Entity_Id)
221 begin
222 Require_Entity (Opnd);
224 -- If the assignment operand is an in-out or out parameter, then we
225 -- get the actual subtype (needed for the unconstrained case). If the
226 -- operand is the actual in an entry declaration, then within the
227 -- accept statement it is replaced with a local renaming, which may
228 -- also have an actual subtype.
230 if Is_Entity_Name (Opnd)
231 and then (Ekind (Entity (Opnd)) = E_Out_Parameter
232 or else Ekind_In (Entity (Opnd),
233 E_In_Out_Parameter,
234 E_Generic_In_Out_Parameter)
235 or else
236 (Ekind (Entity (Opnd)) = E_Variable
237 and then Nkind (Parent (Entity (Opnd))) =
238 N_Object_Renaming_Declaration
239 and then Nkind (Parent (Parent (Entity (Opnd)))) =
240 N_Accept_Statement))
241 then
242 Opnd_Type := Get_Actual_Subtype (Opnd);
244 -- If assignment operand is a component reference, then we get the
245 -- actual subtype of the component for the unconstrained case.
247 elsif Nkind_In (Opnd, N_Selected_Component, N_Explicit_Dereference)
248 and then not Is_Unchecked_Union (Opnd_Type)
249 then
250 Decl := Build_Actual_Subtype_Of_Component (Opnd_Type, Opnd);
252 if Present (Decl) then
253 Insert_Action (N, Decl);
254 Mark_Rewrite_Insertion (Decl);
255 Analyze (Decl);
256 Opnd_Type := Defining_Identifier (Decl);
257 Set_Etype (Opnd, Opnd_Type);
258 Freeze_Itype (Opnd_Type, N);
260 elsif Is_Constrained (Etype (Opnd)) then
261 Opnd_Type := Etype (Opnd);
262 end if;
264 -- For slice, use the constrained subtype created for the slice
266 elsif Nkind (Opnd) = N_Slice then
267 Opnd_Type := Etype (Opnd);
268 end if;
269 end Set_Assignment_Type;
271 -- Start of processing for Analyze_Assignment
273 begin
274 Mark_Coextensions (N, Rhs);
276 Analyze (Rhs);
277 Analyze (Lhs);
279 -- Ensure that we never do an assignment on a variable marked as
280 -- as Safe_To_Reevaluate.
282 pragma Assert (not Is_Entity_Name (Lhs)
283 or else Ekind (Entity (Lhs)) /= E_Variable
284 or else not Is_Safe_To_Reevaluate (Entity (Lhs)));
286 -- Start type analysis for assignment
288 T1 := Etype (Lhs);
290 -- In the most general case, both Lhs and Rhs can be overloaded, and we
291 -- must compute the intersection of the possible types on each side.
293 if Is_Overloaded (Lhs) then
294 declare
295 I : Interp_Index;
296 It : Interp;
298 begin
299 T1 := Any_Type;
300 Get_First_Interp (Lhs, I, It);
302 while Present (It.Typ) loop
303 if Has_Compatible_Type (Rhs, It.Typ) then
304 if T1 /= Any_Type then
306 -- An explicit dereference is overloaded if the prefix
307 -- is. Try to remove the ambiguity on the prefix, the
308 -- error will be posted there if the ambiguity is real.
310 if Nkind (Lhs) = N_Explicit_Dereference then
311 declare
312 PI : Interp_Index;
313 PI1 : Interp_Index := 0;
314 PIt : Interp;
315 Found : Boolean;
317 begin
318 Found := False;
319 Get_First_Interp (Prefix (Lhs), PI, PIt);
321 while Present (PIt.Typ) loop
322 if Is_Access_Type (PIt.Typ)
323 and then Has_Compatible_Type
324 (Rhs, Designated_Type (PIt.Typ))
325 then
326 if Found then
327 PIt :=
328 Disambiguate (Prefix (Lhs),
329 PI1, PI, Any_Type);
331 if PIt = No_Interp then
332 Error_Msg_N
333 ("ambiguous left-hand side"
334 & " in assignment", Lhs);
335 exit;
336 else
337 Resolve (Prefix (Lhs), PIt.Typ);
338 end if;
340 exit;
341 else
342 Found := True;
343 PI1 := PI;
344 end if;
345 end if;
347 Get_Next_Interp (PI, PIt);
348 end loop;
349 end;
351 else
352 Error_Msg_N
353 ("ambiguous left-hand side in assignment", Lhs);
354 exit;
355 end if;
356 else
357 T1 := It.Typ;
358 end if;
359 end if;
361 Get_Next_Interp (I, It);
362 end loop;
363 end;
365 if T1 = Any_Type then
366 Error_Msg_N
367 ("no valid types for left-hand side for assignment", Lhs);
368 Kill_Lhs;
369 return;
370 end if;
371 end if;
373 -- The resulting assignment type is T1, so now we will resolve the left
374 -- hand side of the assignment using this determined type.
376 Resolve (Lhs, T1);
378 -- Cases where Lhs is not a variable
380 if not Is_Variable (Lhs) then
382 -- Ada 2005 (AI-327): Check assignment to the attribute Priority of a
383 -- protected object.
385 declare
386 Ent : Entity_Id;
387 S : Entity_Id;
389 begin
390 if Ada_Version >= Ada_2005 then
392 -- Handle chains of renamings
394 Ent := Lhs;
395 while Nkind (Ent) in N_Has_Entity
396 and then Present (Entity (Ent))
397 and then Present (Renamed_Object (Entity (Ent)))
398 loop
399 Ent := Renamed_Object (Entity (Ent));
400 end loop;
402 if (Nkind (Ent) = N_Attribute_Reference
403 and then Attribute_Name (Ent) = Name_Priority)
405 -- Renamings of the attribute Priority applied to protected
406 -- objects have been previously expanded into calls to the
407 -- Get_Ceiling run-time subprogram.
409 or else
410 (Nkind (Ent) = N_Function_Call
411 and then (Entity (Name (Ent)) = RTE (RE_Get_Ceiling)
412 or else
413 Entity (Name (Ent)) = RTE (RO_PE_Get_Ceiling)))
414 then
415 -- The enclosing subprogram cannot be a protected function
417 S := Current_Scope;
418 while not (Is_Subprogram (S)
419 and then Convention (S) = Convention_Protected)
420 and then S /= Standard_Standard
421 loop
422 S := Scope (S);
423 end loop;
425 if Ekind (S) = E_Function
426 and then Convention (S) = Convention_Protected
427 then
428 Error_Msg_N
429 ("protected function cannot modify protected object",
430 Lhs);
431 end if;
433 -- Changes of the ceiling priority of the protected object
434 -- are only effective if the Ceiling_Locking policy is in
435 -- effect (AARM D.5.2 (5/2)).
437 if Locking_Policy /= 'C' then
438 Error_Msg_N ("assignment to the attribute PRIORITY has " &
439 "no effect??", Lhs);
440 Error_Msg_N ("\since no Locking_Policy has been " &
441 "specified??", Lhs);
442 end if;
444 return;
445 end if;
446 end if;
447 end;
449 Diagnose_Non_Variable_Lhs (Lhs);
450 return;
452 -- Error of assigning to limited type. We do however allow this in
453 -- certain cases where the front end generates the assignments.
455 elsif Is_Limited_Type (T1)
456 and then not Assignment_OK (Lhs)
457 and then not Assignment_OK (Original_Node (Lhs))
458 and then not Is_Value_Type (T1)
459 then
460 -- CPP constructors can only be called in declarations
462 if Is_CPP_Constructor_Call (Rhs) then
463 Error_Msg_N ("invalid use of 'C'P'P constructor", Rhs);
464 else
465 Error_Msg_N
466 ("left hand of assignment must not be limited type", Lhs);
467 Explain_Limited_Type (T1, Lhs);
468 end if;
469 return;
471 -- Enforce RM 3.9.3 (8): the target of an assignment operation cannot be
472 -- abstract. This is only checked when the assignment Comes_From_Source,
473 -- because in some cases the expander generates such assignments (such
474 -- in the _assign operation for an abstract type).
476 elsif Is_Abstract_Type (T1) and then Comes_From_Source (N) then
477 Error_Msg_N
478 ("target of assignment operation must not be abstract", Lhs);
479 end if;
481 -- Resolution may have updated the subtype, in case the left-hand side
482 -- is a private protected component. Use the correct subtype to avoid
483 -- scoping issues in the back-end.
485 T1 := Etype (Lhs);
487 -- Ada 2005 (AI-50217, AI-326): Check wrong dereference of incomplete
488 -- type. For example:
490 -- limited with P;
491 -- package Pkg is
492 -- type Acc is access P.T;
493 -- end Pkg;
495 -- with Pkg; use Acc;
496 -- procedure Example is
497 -- A, B : Acc;
498 -- begin
499 -- A.all := B.all; -- ERROR
500 -- end Example;
502 if Nkind (Lhs) = N_Explicit_Dereference
503 and then Ekind (T1) = E_Incomplete_Type
504 then
505 Error_Msg_N ("invalid use of incomplete type", Lhs);
506 Kill_Lhs;
507 return;
508 end if;
510 -- Now we can complete the resolution of the right hand side
512 Set_Assignment_Type (Lhs, T1);
513 Resolve (Rhs, T1);
515 -- This is the point at which we check for an unset reference
517 Check_Unset_Reference (Rhs);
518 Check_Unprotected_Access (Lhs, Rhs);
520 -- Remaining steps are skipped if Rhs was syntactically in error
522 if Rhs = Error then
523 Kill_Lhs;
524 return;
525 end if;
527 T2 := Etype (Rhs);
529 if not Covers (T1, T2) then
530 Wrong_Type (Rhs, Etype (Lhs));
531 Kill_Lhs;
532 return;
533 end if;
535 -- Ada 2005 (AI-326): In case of explicit dereference of incomplete
536 -- types, use the non-limited view if available
538 if Nkind (Rhs) = N_Explicit_Dereference
539 and then Ekind (T2) = E_Incomplete_Type
540 and then Is_Tagged_Type (T2)
541 and then Present (Non_Limited_View (T2))
542 then
543 T2 := Non_Limited_View (T2);
544 end if;
546 Set_Assignment_Type (Rhs, T2);
548 if Total_Errors_Detected /= 0 then
549 if No (T1) then
550 T1 := Any_Type;
551 end if;
553 if No (T2) then
554 T2 := Any_Type;
555 end if;
556 end if;
558 if T1 = Any_Type or else T2 = Any_Type then
559 Kill_Lhs;
560 return;
561 end if;
563 -- If the rhs is class-wide or dynamically tagged, then require the lhs
564 -- to be class-wide. The case where the rhs is a dynamically tagged call
565 -- to a dispatching operation with a controlling access result is
566 -- excluded from this check, since the target has an access type (and
567 -- no tag propagation occurs in that case).
569 if (Is_Class_Wide_Type (T2)
570 or else (Is_Dynamically_Tagged (Rhs)
571 and then not Is_Access_Type (T1)))
572 and then not Is_Class_Wide_Type (T1)
573 then
574 Error_Msg_N ("dynamically tagged expression not allowed!", Rhs);
576 elsif Is_Class_Wide_Type (T1)
577 and then not Is_Class_Wide_Type (T2)
578 and then not Is_Tag_Indeterminate (Rhs)
579 and then not Is_Dynamically_Tagged (Rhs)
580 then
581 Error_Msg_N ("dynamically tagged expression required!", Rhs);
582 end if;
584 -- Propagate the tag from a class-wide target to the rhs when the rhs
585 -- is a tag-indeterminate call.
587 if Is_Tag_Indeterminate (Rhs) then
588 if Is_Class_Wide_Type (T1) then
589 Propagate_Tag (Lhs, Rhs);
591 elsif Nkind (Rhs) = N_Function_Call
592 and then Is_Entity_Name (Name (Rhs))
593 and then Is_Abstract_Subprogram (Entity (Name (Rhs)))
594 then
595 Error_Msg_N
596 ("call to abstract function must be dispatching", Name (Rhs));
598 elsif Nkind (Rhs) = N_Qualified_Expression
599 and then Nkind (Expression (Rhs)) = N_Function_Call
600 and then Is_Entity_Name (Name (Expression (Rhs)))
601 and then
602 Is_Abstract_Subprogram (Entity (Name (Expression (Rhs))))
603 then
604 Error_Msg_N
605 ("call to abstract function must be dispatching",
606 Name (Expression (Rhs)));
607 end if;
608 end if;
610 -- Ada 2005 (AI-385): When the lhs type is an anonymous access type,
611 -- apply an implicit conversion of the rhs to that type to force
612 -- appropriate static and run-time accessibility checks. This applies
613 -- as well to anonymous access-to-subprogram types that are component
614 -- subtypes or formal parameters.
616 if Ada_Version >= Ada_2005 and then Is_Access_Type (T1) then
617 if Is_Local_Anonymous_Access (T1)
618 or else Ekind (T2) = E_Anonymous_Access_Subprogram_Type
620 -- Handle assignment to an Ada 2012 stand-alone object
621 -- of an anonymous access type.
623 or else (Ekind (T1) = E_Anonymous_Access_Type
624 and then Nkind (Associated_Node_For_Itype (T1)) =
625 N_Object_Declaration)
627 then
628 Rewrite (Rhs, Convert_To (T1, Relocate_Node (Rhs)));
629 Analyze_And_Resolve (Rhs, T1);
630 end if;
631 end if;
633 -- Ada 2005 (AI-231): Assignment to not null variable
635 if Ada_Version >= Ada_2005
636 and then Can_Never_Be_Null (T1)
637 and then not Assignment_OK (Lhs)
638 then
639 -- Case where we know the right hand side is null
641 if Known_Null (Rhs) then
642 Apply_Compile_Time_Constraint_Error
643 (N => Rhs,
644 Msg =>
645 "(Ada 2005) null not allowed in null-excluding objects??",
646 Reason => CE_Null_Not_Allowed);
648 -- We still mark this as a possible modification, that's necessary
649 -- to reset Is_True_Constant, and desirable for xref purposes.
651 Note_Possible_Modification (Lhs, Sure => True);
652 return;
654 -- If we know the right hand side is non-null, then we convert to the
655 -- target type, since we don't need a run time check in that case.
657 elsif not Can_Never_Be_Null (T2) then
658 Rewrite (Rhs, Convert_To (T1, Relocate_Node (Rhs)));
659 Analyze_And_Resolve (Rhs, T1);
660 end if;
661 end if;
663 if Is_Scalar_Type (T1) then
664 Apply_Scalar_Range_Check (Rhs, Etype (Lhs));
666 -- For array types, verify that lengths match. If the right hand side
667 -- is a function call that has been inlined, the assignment has been
668 -- rewritten as a block, and the constraint check will be applied to the
669 -- assignment within the block.
671 elsif Is_Array_Type (T1)
672 and then (Nkind (Rhs) /= N_Type_Conversion
673 or else Is_Constrained (Etype (Rhs)))
674 and then (Nkind (Rhs) /= N_Function_Call
675 or else Nkind (N) /= N_Block_Statement)
676 then
677 -- Assignment verifies that the length of the Lsh and Rhs are equal,
678 -- but of course the indexes do not have to match. If the right-hand
679 -- side is a type conversion to an unconstrained type, a length check
680 -- is performed on the expression itself during expansion. In rare
681 -- cases, the redundant length check is computed on an index type
682 -- with a different representation, triggering incorrect code in the
683 -- back end.
685 Apply_Length_Check (Rhs, Etype (Lhs));
687 else
688 -- Discriminant checks are applied in the course of expansion
690 null;
691 end if;
693 -- Note: modifications of the Lhs may only be recorded after
694 -- checks have been applied.
696 Note_Possible_Modification (Lhs, Sure => True);
698 -- ??? a real accessibility check is needed when ???
700 -- Post warning for redundant assignment or variable to itself
702 if Warn_On_Redundant_Constructs
704 -- We only warn for source constructs
706 and then Comes_From_Source (N)
708 -- Where the object is the same on both sides
710 and then Same_Object (Lhs, Original_Node (Rhs))
712 -- But exclude the case where the right side was an operation that
713 -- got rewritten (e.g. JUNK + K, where K was known to be zero). We
714 -- don't want to warn in such a case, since it is reasonable to write
715 -- such expressions especially when K is defined symbolically in some
716 -- other package.
718 and then Nkind (Original_Node (Rhs)) not in N_Op
719 then
720 if Nkind (Lhs) in N_Has_Entity then
721 Error_Msg_NE -- CODEFIX
722 ("?r?useless assignment of & to itself!", N, Entity (Lhs));
723 else
724 Error_Msg_N -- CODEFIX
725 ("?r?useless assignment of object to itself!", N);
726 end if;
727 end if;
729 -- Check for non-allowed composite assignment
731 if not Support_Composite_Assign_On_Target
732 and then (Is_Array_Type (T1) or else Is_Record_Type (T1))
733 and then (not Has_Size_Clause (T1) or else Esize (T1) > 64)
734 then
735 Error_Msg_CRT ("composite assignment", N);
736 end if;
738 -- Check elaboration warning for left side if not in elab code
740 if not In_Subprogram_Or_Concurrent_Unit then
741 Check_Elab_Assign (Lhs);
742 end if;
744 -- Set Referenced_As_LHS if appropriate. We only set this flag if the
745 -- assignment is a source assignment in the extended main source unit.
746 -- We are not interested in any reference information outside this
747 -- context, or in compiler generated assignment statements.
749 if Comes_From_Source (N)
750 and then In_Extended_Main_Source_Unit (Lhs)
751 then
752 Set_Referenced_Modified (Lhs, Out_Param => False);
753 end if;
755 -- Final step. If left side is an entity, then we may be able to reset
756 -- the current tracked values to new safe values. We only have something
757 -- to do if the left side is an entity name, and expansion has not
758 -- modified the node into something other than an assignment, and of
759 -- course we only capture values if it is safe to do so.
761 if Is_Entity_Name (Lhs)
762 and then Nkind (N) = N_Assignment_Statement
763 then
764 declare
765 Ent : constant Entity_Id := Entity (Lhs);
767 begin
768 if Safe_To_Capture_Value (N, Ent) then
770 -- If simple variable on left side, warn if this assignment
771 -- blots out another one (rendering it useless). We only do
772 -- this for source assignments, otherwise we can generate bogus
773 -- warnings when an assignment is rewritten as another
774 -- assignment, and gets tied up with itself.
776 if Warn_On_Modified_Unread
777 and then Is_Assignable (Ent)
778 and then Comes_From_Source (N)
779 and then In_Extended_Main_Source_Unit (Ent)
780 then
781 Warn_On_Useless_Assignment (Ent, N);
782 end if;
784 -- If we are assigning an access type and the left side is an
785 -- entity, then make sure that the Is_Known_[Non_]Null flags
786 -- properly reflect the state of the entity after assignment.
788 if Is_Access_Type (T1) then
789 if Known_Non_Null (Rhs) then
790 Set_Is_Known_Non_Null (Ent, True);
792 elsif Known_Null (Rhs)
793 and then not Can_Never_Be_Null (Ent)
794 then
795 Set_Is_Known_Null (Ent, True);
797 else
798 Set_Is_Known_Null (Ent, False);
800 if not Can_Never_Be_Null (Ent) then
801 Set_Is_Known_Non_Null (Ent, False);
802 end if;
803 end if;
805 -- For discrete types, we may be able to set the current value
806 -- if the value is known at compile time.
808 elsif Is_Discrete_Type (T1)
809 and then Compile_Time_Known_Value (Rhs)
810 then
811 Set_Current_Value (Ent, Rhs);
812 else
813 Set_Current_Value (Ent, Empty);
814 end if;
816 -- If not safe to capture values, kill them
818 else
819 Kill_Lhs;
820 end if;
821 end;
822 end if;
824 -- If assigning to an object in whole or in part, note location of
825 -- assignment in case no one references value. We only do this for
826 -- source assignments, otherwise we can generate bogus warnings when an
827 -- assignment is rewritten as another assignment, and gets tied up with
828 -- itself.
830 declare
831 Ent : constant Entity_Id := Get_Enclosing_Object (Lhs);
832 begin
833 if Present (Ent)
834 and then Safe_To_Capture_Value (N, Ent)
835 and then Nkind (N) = N_Assignment_Statement
836 and then Warn_On_Modified_Unread
837 and then Is_Assignable (Ent)
838 and then Comes_From_Source (N)
839 and then In_Extended_Main_Source_Unit (Ent)
840 then
841 Set_Last_Assignment (Ent, Lhs);
842 end if;
843 end;
845 Analyze_Dimension (N);
846 end Analyze_Assignment;
848 -----------------------------
849 -- Analyze_Block_Statement --
850 -----------------------------
852 procedure Analyze_Block_Statement (N : Node_Id) is
853 procedure Install_Return_Entities (Scop : Entity_Id);
854 -- Install all entities of return statement scope Scop in the visibility
855 -- chain except for the return object since its entity is reused in a
856 -- renaming.
858 -----------------------------
859 -- Install_Return_Entities --
860 -----------------------------
862 procedure Install_Return_Entities (Scop : Entity_Id) is
863 Id : Entity_Id;
865 begin
866 Id := First_Entity (Scop);
867 while Present (Id) loop
869 -- Do not install the return object
871 if not Ekind_In (Id, E_Constant, E_Variable)
872 or else not Is_Return_Object (Id)
873 then
874 Install_Entity (Id);
875 end if;
877 Next_Entity (Id);
878 end loop;
879 end Install_Return_Entities;
881 -- Local constants and variables
883 Decls : constant List_Id := Declarations (N);
884 Id : constant Node_Id := Identifier (N);
885 HSS : constant Node_Id := Handled_Statement_Sequence (N);
887 Is_BIP_Return_Statement : Boolean;
889 -- Start of processing for Analyze_Block_Statement
891 begin
892 -- In SPARK mode, we reject block statements. Note that the case of
893 -- block statements generated by the expander is fine.
895 if Nkind (Original_Node (N)) = N_Block_Statement then
896 Check_SPARK_Restriction ("block statement is not allowed", N);
897 end if;
899 -- If no handled statement sequence is present, things are really messed
900 -- up, and we just return immediately (defence against previous errors).
902 if No (HSS) then
903 Check_Error_Detected;
904 return;
905 end if;
907 -- Detect whether the block is actually a rewritten return statement of
908 -- a build-in-place function.
910 Is_BIP_Return_Statement :=
911 Present (Id)
912 and then Present (Entity (Id))
913 and then Ekind (Entity (Id)) = E_Return_Statement
914 and then Is_Build_In_Place_Function
915 (Return_Applies_To (Entity (Id)));
917 -- Normal processing with HSS present
919 declare
920 EH : constant List_Id := Exception_Handlers (HSS);
921 Ent : Entity_Id := Empty;
922 S : Entity_Id;
924 Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
925 -- Recursively save value of this global, will be restored on exit
927 begin
928 -- Initialize unblocked exit count for statements of begin block
929 -- plus one for each exception handler that is present.
931 Unblocked_Exit_Count := 1;
933 if Present (EH) then
934 Unblocked_Exit_Count := Unblocked_Exit_Count + List_Length (EH);
935 end if;
937 -- If a label is present analyze it and mark it as referenced
939 if Present (Id) then
940 Analyze (Id);
941 Ent := Entity (Id);
943 -- An error defense. If we have an identifier, but no entity, then
944 -- something is wrong. If previous errors, then just remove the
945 -- identifier and continue, otherwise raise an exception.
947 if No (Ent) then
948 Check_Error_Detected;
949 Set_Identifier (N, Empty);
951 else
952 Set_Ekind (Ent, E_Block);
953 Generate_Reference (Ent, N, ' ');
954 Generate_Definition (Ent);
956 if Nkind (Parent (Ent)) = N_Implicit_Label_Declaration then
957 Set_Label_Construct (Parent (Ent), N);
958 end if;
959 end if;
960 end if;
962 -- If no entity set, create a label entity
964 if No (Ent) then
965 Ent := New_Internal_Entity (E_Block, Current_Scope, Sloc (N), 'B');
966 Set_Identifier (N, New_Occurrence_Of (Ent, Sloc (N)));
967 Set_Parent (Ent, N);
968 end if;
970 Set_Etype (Ent, Standard_Void_Type);
971 Set_Block_Node (Ent, Identifier (N));
972 Push_Scope (Ent);
974 -- The block served as an extended return statement. Ensure that any
975 -- entities created during the analysis and expansion of the return
976 -- object declaration are once again visible.
978 if Is_BIP_Return_Statement then
979 Install_Return_Entities (Ent);
980 end if;
982 if Present (Decls) then
983 Analyze_Declarations (Decls);
984 Check_Completion;
985 Inspect_Deferred_Constant_Completion (Decls);
986 end if;
988 Analyze (HSS);
989 Process_End_Label (HSS, 'e', Ent);
991 -- If exception handlers are present, then we indicate that enclosing
992 -- scopes contain a block with handlers. We only need to mark non-
993 -- generic scopes.
995 if Present (EH) then
996 S := Scope (Ent);
997 loop
998 Set_Has_Nested_Block_With_Handler (S);
999 exit when Is_Overloadable (S)
1000 or else Ekind (S) = E_Package
1001 or else Is_Generic_Unit (S);
1002 S := Scope (S);
1003 end loop;
1004 end if;
1006 Check_References (Ent);
1007 Warn_On_Useless_Assignments (Ent);
1008 End_Scope;
1010 if Unblocked_Exit_Count = 0 then
1011 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1012 Check_Unreachable_Code (N);
1013 else
1014 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1015 end if;
1016 end;
1017 end Analyze_Block_Statement;
1019 ----------------------------
1020 -- Analyze_Case_Statement --
1021 ----------------------------
1023 procedure Analyze_Case_Statement (N : Node_Id) is
1024 Exp : Node_Id;
1025 Exp_Type : Entity_Id;
1026 Exp_Btype : Entity_Id;
1027 Last_Choice : Nat;
1029 Others_Present : Boolean;
1030 -- Indicates if Others was present
1032 pragma Warnings (Off, Last_Choice);
1033 -- Don't care about assigned value
1035 Statements_Analyzed : Boolean := False;
1036 -- Set True if at least some statement sequences get analyzed. If False
1037 -- on exit, means we had a serious error that prevented full analysis of
1038 -- the case statement, and as a result it is not a good idea to output
1039 -- warning messages about unreachable code.
1041 Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
1042 -- Recursively save value of this global, will be restored on exit
1044 procedure Non_Static_Choice_Error (Choice : Node_Id);
1045 -- Error routine invoked by the generic instantiation below when the
1046 -- case statement has a non static choice.
1048 procedure Process_Statements (Alternative : Node_Id);
1049 -- Analyzes the statements associated with a case alternative. Needed
1050 -- by instantiation below.
1052 package Analyze_Case_Choices is new
1053 Generic_Analyze_Choices
1054 (Process_Associated_Node => Process_Statements);
1055 use Analyze_Case_Choices;
1056 -- Instantiation of the generic choice analysis package
1058 package Check_Case_Choices is new
1059 Generic_Check_Choices
1060 (Process_Empty_Choice => No_OP,
1061 Process_Non_Static_Choice => Non_Static_Choice_Error,
1062 Process_Associated_Node => No_OP);
1063 use Check_Case_Choices;
1064 -- Instantiation of the generic choice processing package
1066 -----------------------------
1067 -- Non_Static_Choice_Error --
1068 -----------------------------
1070 procedure Non_Static_Choice_Error (Choice : Node_Id) is
1071 begin
1072 Flag_Non_Static_Expr
1073 ("choice given in case statement is not static!", Choice);
1074 end Non_Static_Choice_Error;
1076 ------------------------
1077 -- Process_Statements --
1078 ------------------------
1080 procedure Process_Statements (Alternative : Node_Id) is
1081 Choices : constant List_Id := Discrete_Choices (Alternative);
1082 Ent : Entity_Id;
1084 begin
1085 Unblocked_Exit_Count := Unblocked_Exit_Count + 1;
1086 Statements_Analyzed := True;
1088 -- An interesting optimization. If the case statement expression
1089 -- is a simple entity, then we can set the current value within an
1090 -- alternative if the alternative has one possible value.
1092 -- case N is
1093 -- when 1 => alpha
1094 -- when 2 | 3 => beta
1095 -- when others => gamma
1097 -- Here we know that N is initially 1 within alpha, but for beta and
1098 -- gamma, we do not know anything more about the initial value.
1100 if Is_Entity_Name (Exp) then
1101 Ent := Entity (Exp);
1103 if Ekind_In (Ent, E_Variable,
1104 E_In_Out_Parameter,
1105 E_Out_Parameter)
1106 then
1107 if List_Length (Choices) = 1
1108 and then Nkind (First (Choices)) in N_Subexpr
1109 and then Compile_Time_Known_Value (First (Choices))
1110 then
1111 Set_Current_Value (Entity (Exp), First (Choices));
1112 end if;
1114 Analyze_Statements (Statements (Alternative));
1116 -- After analyzing the case, set the current value to empty
1117 -- since we won't know what it is for the next alternative
1118 -- (unless reset by this same circuit), or after the case.
1120 Set_Current_Value (Entity (Exp), Empty);
1121 return;
1122 end if;
1123 end if;
1125 -- Case where expression is not an entity name of a variable
1127 Analyze_Statements (Statements (Alternative));
1128 end Process_Statements;
1130 -- Start of processing for Analyze_Case_Statement
1132 begin
1133 Unblocked_Exit_Count := 0;
1134 Exp := Expression (N);
1135 Analyze (Exp);
1137 -- The expression must be of any discrete type. In rare cases, the
1138 -- expander constructs a case statement whose expression has a private
1139 -- type whose full view is discrete. This can happen when generating
1140 -- a stream operation for a variant type after the type is frozen,
1141 -- when the partial of view of the type of the discriminant is private.
1142 -- In that case, use the full view to analyze case alternatives.
1144 if not Is_Overloaded (Exp)
1145 and then not Comes_From_Source (N)
1146 and then Is_Private_Type (Etype (Exp))
1147 and then Present (Full_View (Etype (Exp)))
1148 and then Is_Discrete_Type (Full_View (Etype (Exp)))
1149 then
1150 Resolve (Exp, Etype (Exp));
1151 Exp_Type := Full_View (Etype (Exp));
1153 else
1154 Analyze_And_Resolve (Exp, Any_Discrete);
1155 Exp_Type := Etype (Exp);
1156 end if;
1158 Check_Unset_Reference (Exp);
1159 Exp_Btype := Base_Type (Exp_Type);
1161 -- The expression must be of a discrete type which must be determinable
1162 -- independently of the context in which the expression occurs, but
1163 -- using the fact that the expression must be of a discrete type.
1164 -- Moreover, the type this expression must not be a character literal
1165 -- (which is always ambiguous) or, for Ada-83, a generic formal type.
1167 -- If error already reported by Resolve, nothing more to do
1169 if Exp_Btype = Any_Discrete or else Exp_Btype = Any_Type then
1170 return;
1172 elsif Exp_Btype = Any_Character then
1173 Error_Msg_N
1174 ("character literal as case expression is ambiguous", Exp);
1175 return;
1177 elsif Ada_Version = Ada_83
1178 and then (Is_Generic_Type (Exp_Btype)
1179 or else Is_Generic_Type (Root_Type (Exp_Btype)))
1180 then
1181 Error_Msg_N
1182 ("(Ada 83) case expression cannot be of a generic type", Exp);
1183 return;
1184 end if;
1186 -- If the case expression is a formal object of mode in out, then treat
1187 -- it as having a nonstatic subtype by forcing use of the base type
1188 -- (which has to get passed to Check_Case_Choices below). Also use base
1189 -- type when the case expression is parenthesized.
1191 if Paren_Count (Exp) > 0
1192 or else (Is_Entity_Name (Exp)
1193 and then Ekind (Entity (Exp)) = E_Generic_In_Out_Parameter)
1194 then
1195 Exp_Type := Exp_Btype;
1196 end if;
1198 -- Call instantiated procedures to analyzwe and check discrete choices
1200 Analyze_Choices (Alternatives (N), Exp_Type);
1201 Check_Choices (N, Alternatives (N), Exp_Type, Others_Present);
1203 -- Case statement with single OTHERS alternative not allowed in SPARK
1205 if Others_Present and then List_Length (Alternatives (N)) = 1 then
1206 Check_SPARK_Restriction
1207 ("OTHERS as unique case alternative is not allowed", N);
1208 end if;
1210 if Exp_Type = Universal_Integer and then not Others_Present then
1211 Error_Msg_N ("case on universal integer requires OTHERS choice", Exp);
1212 end if;
1214 -- If all our exits were blocked by unconditional transfers of control,
1215 -- then the entire CASE statement acts as an unconditional transfer of
1216 -- control, so treat it like one, and check unreachable code. Skip this
1217 -- test if we had serious errors preventing any statement analysis.
1219 if Unblocked_Exit_Count = 0 and then Statements_Analyzed then
1220 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1221 Check_Unreachable_Code (N);
1222 else
1223 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1224 end if;
1226 -- If the expander is active it will detect the case of a statically
1227 -- determined single alternative and remove warnings for the case, but
1228 -- if we are not doing expansion, that circuit won't be active. Here we
1229 -- duplicate the effect of removing warnings in the same way, so that
1230 -- we will get the same set of warnings in -gnatc mode.
1232 if not Expander_Active
1233 and then Compile_Time_Known_Value (Expression (N))
1234 and then Serious_Errors_Detected = 0
1235 then
1236 declare
1237 Chosen : constant Node_Id := Find_Static_Alternative (N);
1238 Alt : Node_Id;
1240 begin
1241 Alt := First (Alternatives (N));
1242 while Present (Alt) loop
1243 if Alt /= Chosen then
1244 Remove_Warning_Messages (Statements (Alt));
1245 end if;
1247 Next (Alt);
1248 end loop;
1249 end;
1250 end if;
1251 end Analyze_Case_Statement;
1253 ----------------------------
1254 -- Analyze_Exit_Statement --
1255 ----------------------------
1257 -- If the exit includes a name, it must be the name of a currently open
1258 -- loop. Otherwise there must be an innermost open loop on the stack, to
1259 -- which the statement implicitly refers.
1261 -- Additionally, in SPARK mode:
1263 -- The exit can only name the closest enclosing loop;
1265 -- An exit with a when clause must be directly contained in a loop;
1267 -- An exit without a when clause must be directly contained in an
1268 -- if-statement with no elsif or else, which is itself directly contained
1269 -- in a loop. The exit must be the last statement in the if-statement.
1271 procedure Analyze_Exit_Statement (N : Node_Id) is
1272 Target : constant Node_Id := Name (N);
1273 Cond : constant Node_Id := Condition (N);
1274 Scope_Id : Entity_Id;
1275 U_Name : Entity_Id;
1276 Kind : Entity_Kind;
1278 begin
1279 if No (Cond) then
1280 Check_Unreachable_Code (N);
1281 end if;
1283 if Present (Target) then
1284 Analyze (Target);
1285 U_Name := Entity (Target);
1287 if not In_Open_Scopes (U_Name) or else Ekind (U_Name) /= E_Loop then
1288 Error_Msg_N ("invalid loop name in exit statement", N);
1289 return;
1291 else
1292 if Has_Loop_In_Inner_Open_Scopes (U_Name) then
1293 Check_SPARK_Restriction
1294 ("exit label must name the closest enclosing loop", N);
1295 end if;
1297 Set_Has_Exit (U_Name);
1298 end if;
1300 else
1301 U_Name := Empty;
1302 end if;
1304 for J in reverse 0 .. Scope_Stack.Last loop
1305 Scope_Id := Scope_Stack.Table (J).Entity;
1306 Kind := Ekind (Scope_Id);
1308 if Kind = E_Loop and then (No (Target) or else Scope_Id = U_Name) then
1309 Set_Has_Exit (Scope_Id);
1310 exit;
1312 elsif Kind = E_Block
1313 or else Kind = E_Loop
1314 or else Kind = E_Return_Statement
1315 then
1316 null;
1318 else
1319 Error_Msg_N
1320 ("cannot exit from program unit or accept statement", N);
1321 return;
1322 end if;
1323 end loop;
1325 -- Verify that if present the condition is a Boolean expression
1327 if Present (Cond) then
1328 Analyze_And_Resolve (Cond, Any_Boolean);
1329 Check_Unset_Reference (Cond);
1330 end if;
1332 -- In SPARK mode, verify that the exit statement respects the SPARK
1333 -- restrictions.
1335 if Present (Cond) then
1336 if Nkind (Parent (N)) /= N_Loop_Statement then
1337 Check_SPARK_Restriction
1338 ("exit with when clause must be directly in loop", N);
1339 end if;
1341 else
1342 if Nkind (Parent (N)) /= N_If_Statement then
1343 if Nkind (Parent (N)) = N_Elsif_Part then
1344 Check_SPARK_Restriction
1345 ("exit must be in IF without ELSIF", N);
1346 else
1347 Check_SPARK_Restriction ("exit must be directly in IF", N);
1348 end if;
1350 elsif Nkind (Parent (Parent (N))) /= N_Loop_Statement then
1351 Check_SPARK_Restriction
1352 ("exit must be in IF directly in loop", N);
1354 -- First test the presence of ELSE, so that an exit in an ELSE leads
1355 -- to an error mentioning the ELSE.
1357 elsif Present (Else_Statements (Parent (N))) then
1358 Check_SPARK_Restriction ("exit must be in IF without ELSE", N);
1360 -- An exit in an ELSIF does not reach here, as it would have been
1361 -- detected in the case (Nkind (Parent (N)) /= N_If_Statement).
1363 elsif Present (Elsif_Parts (Parent (N))) then
1364 Check_SPARK_Restriction ("exit must be in IF without ELSIF", N);
1365 end if;
1366 end if;
1368 -- Chain exit statement to associated loop entity
1370 Set_Next_Exit_Statement (N, First_Exit_Statement (Scope_Id));
1371 Set_First_Exit_Statement (Scope_Id, N);
1373 -- Since the exit may take us out of a loop, any previous assignment
1374 -- statement is not useless, so clear last assignment indications. It
1375 -- is OK to keep other current values, since if the exit statement
1376 -- does not exit, then the current values are still valid.
1378 Kill_Current_Values (Last_Assignment_Only => True);
1379 end Analyze_Exit_Statement;
1381 ----------------------------
1382 -- Analyze_Goto_Statement --
1383 ----------------------------
1385 procedure Analyze_Goto_Statement (N : Node_Id) is
1386 Label : constant Node_Id := Name (N);
1387 Scope_Id : Entity_Id;
1388 Label_Scope : Entity_Id;
1389 Label_Ent : Entity_Id;
1391 begin
1392 Check_SPARK_Restriction ("goto statement is not allowed", N);
1394 -- Actual semantic checks
1396 Check_Unreachable_Code (N);
1397 Kill_Current_Values (Last_Assignment_Only => True);
1399 Analyze (Label);
1400 Label_Ent := Entity (Label);
1402 -- Ignore previous error
1404 if Label_Ent = Any_Id then
1405 Check_Error_Detected;
1406 return;
1408 -- We just have a label as the target of a goto
1410 elsif Ekind (Label_Ent) /= E_Label then
1411 Error_Msg_N ("target of goto statement must be a label", Label);
1412 return;
1414 -- Check that the target of the goto is reachable according to Ada
1415 -- scoping rules. Note: the special gotos we generate for optimizing
1416 -- local handling of exceptions would violate these rules, but we mark
1417 -- such gotos as analyzed when built, so this code is never entered.
1419 elsif not Reachable (Label_Ent) then
1420 Error_Msg_N ("target of goto statement is not reachable", Label);
1421 return;
1422 end if;
1424 -- Here if goto passes initial validity checks
1426 Label_Scope := Enclosing_Scope (Label_Ent);
1428 for J in reverse 0 .. Scope_Stack.Last loop
1429 Scope_Id := Scope_Stack.Table (J).Entity;
1431 if Label_Scope = Scope_Id
1432 or else not Ekind_In (Scope_Id, E_Block, E_Loop, E_Return_Statement)
1433 then
1434 if Scope_Id /= Label_Scope then
1435 Error_Msg_N
1436 ("cannot exit from program unit or accept statement", N);
1437 end if;
1439 return;
1440 end if;
1441 end loop;
1443 raise Program_Error;
1444 end Analyze_Goto_Statement;
1446 --------------------------
1447 -- Analyze_If_Statement --
1448 --------------------------
1450 -- A special complication arises in the analysis of if statements
1452 -- The expander has circuitry to completely delete code that it can tell
1453 -- will not be executed (as a result of compile time known conditions). In
1454 -- the analyzer, we ensure that code that will be deleted in this manner
1455 -- is analyzed but not expanded. This is obviously more efficient, but
1456 -- more significantly, difficulties arise if code is expanded and then
1457 -- eliminated (e.g. exception table entries disappear). Similarly, itypes
1458 -- generated in deleted code must be frozen from start, because the nodes
1459 -- on which they depend will not be available at the freeze point.
1461 procedure Analyze_If_Statement (N : Node_Id) is
1462 E : Node_Id;
1464 Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
1465 -- Recursively save value of this global, will be restored on exit
1467 Save_In_Deleted_Code : Boolean;
1469 Del : Boolean := False;
1470 -- This flag gets set True if a True condition has been found, which
1471 -- means that remaining ELSE/ELSIF parts are deleted.
1473 procedure Analyze_Cond_Then (Cnode : Node_Id);
1474 -- This is applied to either the N_If_Statement node itself or to an
1475 -- N_Elsif_Part node. It deals with analyzing the condition and the THEN
1476 -- statements associated with it.
1478 -----------------------
1479 -- Analyze_Cond_Then --
1480 -----------------------
1482 procedure Analyze_Cond_Then (Cnode : Node_Id) is
1483 Cond : constant Node_Id := Condition (Cnode);
1484 Tstm : constant List_Id := Then_Statements (Cnode);
1486 begin
1487 Unblocked_Exit_Count := Unblocked_Exit_Count + 1;
1488 Analyze_And_Resolve (Cond, Any_Boolean);
1489 Check_Unset_Reference (Cond);
1490 Set_Current_Value_Condition (Cnode);
1492 -- If already deleting, then just analyze then statements
1494 if Del then
1495 Analyze_Statements (Tstm);
1497 -- Compile time known value, not deleting yet
1499 elsif Compile_Time_Known_Value (Cond) then
1500 Save_In_Deleted_Code := In_Deleted_Code;
1502 -- If condition is True, then analyze the THEN statements and set
1503 -- no expansion for ELSE and ELSIF parts.
1505 if Is_True (Expr_Value (Cond)) then
1506 Analyze_Statements (Tstm);
1507 Del := True;
1508 Expander_Mode_Save_And_Set (False);
1509 In_Deleted_Code := True;
1511 -- If condition is False, analyze THEN with expansion off
1513 else -- Is_False (Expr_Value (Cond))
1514 Expander_Mode_Save_And_Set (False);
1515 In_Deleted_Code := True;
1516 Analyze_Statements (Tstm);
1517 Expander_Mode_Restore;
1518 In_Deleted_Code := Save_In_Deleted_Code;
1519 end if;
1521 -- Not known at compile time, not deleting, normal analysis
1523 else
1524 Analyze_Statements (Tstm);
1525 end if;
1526 end Analyze_Cond_Then;
1528 -- Start of Analyze_If_Statement
1530 begin
1531 -- Initialize exit count for else statements. If there is no else part,
1532 -- this count will stay non-zero reflecting the fact that the uncovered
1533 -- else case is an unblocked exit.
1535 Unblocked_Exit_Count := 1;
1536 Analyze_Cond_Then (N);
1538 -- Now to analyze the elsif parts if any are present
1540 if Present (Elsif_Parts (N)) then
1541 E := First (Elsif_Parts (N));
1542 while Present (E) loop
1543 Analyze_Cond_Then (E);
1544 Next (E);
1545 end loop;
1546 end if;
1548 if Present (Else_Statements (N)) then
1549 Analyze_Statements (Else_Statements (N));
1550 end if;
1552 -- If all our exits were blocked by unconditional transfers of control,
1553 -- then the entire IF statement acts as an unconditional transfer of
1554 -- control, so treat it like one, and check unreachable code.
1556 if Unblocked_Exit_Count = 0 then
1557 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1558 Check_Unreachable_Code (N);
1559 else
1560 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1561 end if;
1563 if Del then
1564 Expander_Mode_Restore;
1565 In_Deleted_Code := Save_In_Deleted_Code;
1566 end if;
1568 if not Expander_Active
1569 and then Compile_Time_Known_Value (Condition (N))
1570 and then Serious_Errors_Detected = 0
1571 then
1572 if Is_True (Expr_Value (Condition (N))) then
1573 Remove_Warning_Messages (Else_Statements (N));
1575 if Present (Elsif_Parts (N)) then
1576 E := First (Elsif_Parts (N));
1577 while Present (E) loop
1578 Remove_Warning_Messages (Then_Statements (E));
1579 Next (E);
1580 end loop;
1581 end if;
1583 else
1584 Remove_Warning_Messages (Then_Statements (N));
1585 end if;
1586 end if;
1588 -- Warn on redundant if statement that has no effect
1590 -- Note, we could also check empty ELSIF parts ???
1592 if Warn_On_Redundant_Constructs
1594 -- If statement must be from source
1596 and then Comes_From_Source (N)
1598 -- Condition must not have obvious side effect
1600 and then Has_No_Obvious_Side_Effects (Condition (N))
1602 -- No elsif parts of else part
1604 and then No (Elsif_Parts (N))
1605 and then No (Else_Statements (N))
1607 -- Then must be a single null statement
1609 and then List_Length (Then_Statements (N)) = 1
1610 then
1611 -- Go to original node, since we may have rewritten something as
1612 -- a null statement (e.g. a case we could figure the outcome of).
1614 declare
1615 T : constant Node_Id := First (Then_Statements (N));
1616 S : constant Node_Id := Original_Node (T);
1618 begin
1619 if Comes_From_Source (S) and then Nkind (S) = N_Null_Statement then
1620 Error_Msg_N ("if statement has no effect?r?", N);
1621 end if;
1622 end;
1623 end if;
1624 end Analyze_If_Statement;
1626 ----------------------------------------
1627 -- Analyze_Implicit_Label_Declaration --
1628 ----------------------------------------
1630 -- An implicit label declaration is generated in the innermost enclosing
1631 -- declarative part. This is done for labels, and block and loop names.
1633 -- Note: any changes in this routine may need to be reflected in
1634 -- Analyze_Label_Entity.
1636 procedure Analyze_Implicit_Label_Declaration (N : Node_Id) is
1637 Id : constant Node_Id := Defining_Identifier (N);
1638 begin
1639 Enter_Name (Id);
1640 Set_Ekind (Id, E_Label);
1641 Set_Etype (Id, Standard_Void_Type);
1642 Set_Enclosing_Scope (Id, Current_Scope);
1643 end Analyze_Implicit_Label_Declaration;
1645 ------------------------------
1646 -- Analyze_Iteration_Scheme --
1647 ------------------------------
1649 procedure Analyze_Iteration_Scheme (N : Node_Id) is
1650 Cond : Node_Id;
1651 Iter_Spec : Node_Id;
1652 Loop_Spec : Node_Id;
1654 begin
1655 -- For an infinite loop, there is no iteration scheme
1657 if No (N) then
1658 return;
1659 end if;
1661 Cond := Condition (N);
1662 Iter_Spec := Iterator_Specification (N);
1663 Loop_Spec := Loop_Parameter_Specification (N);
1665 if Present (Cond) then
1666 Analyze_And_Resolve (Cond, Any_Boolean);
1667 Check_Unset_Reference (Cond);
1668 Set_Current_Value_Condition (N);
1670 elsif Present (Iter_Spec) then
1671 Analyze_Iterator_Specification (Iter_Spec);
1673 else
1674 Analyze_Loop_Parameter_Specification (Loop_Spec);
1675 end if;
1676 end Analyze_Iteration_Scheme;
1678 ------------------------------------
1679 -- Analyze_Iterator_Specification --
1680 ------------------------------------
1682 procedure Analyze_Iterator_Specification (N : Node_Id) is
1683 Loc : constant Source_Ptr := Sloc (N);
1684 Def_Id : constant Node_Id := Defining_Identifier (N);
1685 Subt : constant Node_Id := Subtype_Indication (N);
1686 Iter_Name : constant Node_Id := Name (N);
1688 Ent : Entity_Id;
1689 Typ : Entity_Id;
1690 Bas : Entity_Id;
1692 begin
1693 Enter_Name (Def_Id);
1695 if Present (Subt) then
1696 Analyze (Subt);
1698 -- Save type of subtype indication for subsequent check
1700 if Nkind (Subt) = N_Subtype_Indication then
1701 Bas := Entity (Subtype_Mark (Subt));
1702 else
1703 Bas := Entity (Subt);
1704 end if;
1705 end if;
1707 Preanalyze_Range (Iter_Name);
1709 -- Set the kind of the loop variable, which is not visible within
1710 -- the iterator name.
1712 Set_Ekind (Def_Id, E_Variable);
1714 -- Provide a link between the iterator variable and the container, for
1715 -- subsequent use in cross-reference and modification information.
1717 if Of_Present (N) then
1718 Set_Related_Expression (Def_Id, Iter_Name);
1719 end if;
1721 -- If the domain of iteration is an expression, create a declaration for
1722 -- it, so that finalization actions are introduced outside of the loop.
1723 -- The declaration must be a renaming because the body of the loop may
1724 -- assign to elements.
1726 if not Is_Entity_Name (Iter_Name)
1728 -- When the context is a quantified expression, the renaming
1729 -- declaration is delayed until the expansion phase if we are
1730 -- doing expansion.
1732 and then (Nkind (Parent (N)) /= N_Quantified_Expression
1733 or else Operating_Mode = Check_Semantics)
1735 -- Do not perform this expansion in SPARK mode, since the formal
1736 -- verification directly deals with the source form of the iterator.
1737 -- Ditto for ASIS, where the temporary may hide the transformation
1738 -- of a selected component into a prefixed function call.
1740 and then not GNATprove_Mode
1741 and then not ASIS_Mode
1742 then
1743 declare
1744 Id : constant Entity_Id := Make_Temporary (Loc, 'R', Iter_Name);
1745 Decl : Node_Id;
1747 begin
1748 Typ := Etype (Iter_Name);
1750 -- Protect against malformed iterator
1752 if Typ = Any_Type then
1753 Error_Msg_N ("invalid expression in loop iterator", Iter_Name);
1754 return;
1755 end if;
1757 -- The name in the renaming declaration may be a function call.
1758 -- Indicate that it does not come from source, to suppress
1759 -- spurious warnings on renamings of parameterless functions,
1760 -- a common enough idiom in user-defined iterators.
1762 Decl :=
1763 Make_Object_Renaming_Declaration (Loc,
1764 Defining_Identifier => Id,
1765 Subtype_Mark => New_Occurrence_Of (Typ, Loc),
1766 Name =>
1767 New_Copy_Tree (Iter_Name, New_Sloc => Loc));
1769 Insert_Actions (Parent (Parent (N)), New_List (Decl));
1770 Rewrite (Name (N), New_Occurrence_Of (Id, Loc));
1771 Set_Etype (Id, Typ);
1772 Set_Etype (Name (N), Typ);
1773 end;
1775 -- Container is an entity or an array with uncontrolled components, or
1776 -- else it is a container iterator given by a function call, typically
1777 -- called Iterate in the case of predefined containers, even though
1778 -- Iterate is not a reserved name. What matters is that the return type
1779 -- of the function is an iterator type.
1781 elsif Is_Entity_Name (Iter_Name) then
1782 Analyze (Iter_Name);
1784 if Nkind (Iter_Name) = N_Function_Call then
1785 declare
1786 C : constant Node_Id := Name (Iter_Name);
1787 I : Interp_Index;
1788 It : Interp;
1790 begin
1791 if not Is_Overloaded (Iter_Name) then
1792 Resolve (Iter_Name, Etype (C));
1794 else
1795 Get_First_Interp (C, I, It);
1796 while It.Typ /= Empty loop
1797 if Reverse_Present (N) then
1798 if Is_Reversible_Iterator (It.Typ) then
1799 Resolve (Iter_Name, It.Typ);
1800 exit;
1801 end if;
1803 elsif Is_Iterator (It.Typ) then
1804 Resolve (Iter_Name, It.Typ);
1805 exit;
1806 end if;
1808 Get_Next_Interp (I, It);
1809 end loop;
1810 end if;
1811 end;
1813 -- Domain of iteration is not overloaded
1815 else
1816 Resolve (Iter_Name, Etype (Iter_Name));
1817 end if;
1818 end if;
1820 -- Get base type of container, for proper retrieval of Cursor type
1821 -- and primitive operations.
1823 Typ := Base_Type (Etype (Iter_Name));
1825 if Is_Array_Type (Typ) then
1826 if Of_Present (N) then
1827 Set_Etype (Def_Id, Component_Type (Typ));
1829 if Present (Subt)
1830 and then Base_Type (Bas) /= Base_Type (Component_Type (Typ))
1831 then
1832 Error_Msg_N
1833 ("subtype indication does not match component type", Subt);
1834 end if;
1836 -- Here we have a missing Range attribute
1838 else
1839 Error_Msg_N
1840 ("missing Range attribute in iteration over an array", N);
1842 -- In Ada 2012 mode, this may be an attempt at an iterator
1844 if Ada_Version >= Ada_2012 then
1845 Error_Msg_NE
1846 ("\if& is meant to designate an element of the array, use OF",
1847 N, Def_Id);
1848 end if;
1850 -- Prevent cascaded errors
1852 Set_Ekind (Def_Id, E_Loop_Parameter);
1853 Set_Etype (Def_Id, Etype (First_Index (Typ)));
1854 end if;
1856 -- Check for type error in iterator
1858 elsif Typ = Any_Type then
1859 return;
1861 -- Iteration over a container
1863 else
1864 Set_Ekind (Def_Id, E_Loop_Parameter);
1865 Error_Msg_Ada_2012_Feature ("container iterator", Sloc (N));
1867 -- OF present
1869 if Of_Present (N) then
1870 if Has_Aspect (Typ, Aspect_Iterable) then
1871 if No (Get_Iterable_Type_Primitive (Typ, Name_Element)) then
1872 Error_Msg_N ("missing Element primitive for iteration", N);
1873 end if;
1875 -- For a predefined container, The type of the loop variable is
1876 -- the Iterator_Element aspect of the container type.
1878 else
1879 declare
1880 Element : constant Entity_Id :=
1881 Find_Value_Of_Aspect (Typ, Aspect_Iterator_Element);
1883 begin
1884 if No (Element) then
1885 Error_Msg_NE ("cannot iterate over&", N, Typ);
1886 return;
1888 else
1889 Set_Etype (Def_Id, Entity (Element));
1891 -- If subtype indication was given, verify that it
1892 -- matches element type of container.
1894 if Present (Subt)
1895 and then Bas /= Base_Type (Etype (Def_Id))
1896 then
1897 Error_Msg_N
1898 ("subtype indication does not match element type",
1899 Subt);
1900 end if;
1902 -- If the container has a variable indexing aspect, the
1903 -- element is a variable and is modifiable in the loop.
1905 if Has_Aspect (Typ, Aspect_Variable_Indexing) then
1906 Set_Ekind (Def_Id, E_Variable);
1907 end if;
1908 end if;
1909 end;
1910 end if;
1912 -- OF not present
1914 else
1915 -- For an iteration of the form IN, the name must denote an
1916 -- iterator, typically the result of a call to Iterate. Give a
1917 -- useful error message when the name is a container by itself.
1919 -- The type may be a formal container type, which has to have
1920 -- an Iterable aspect detailing the required primitives.
1922 if Is_Entity_Name (Original_Node (Name (N)))
1923 and then not Is_Iterator (Typ)
1924 then
1925 if Has_Aspect (Typ, Aspect_Iterable) then
1926 null;
1928 elsif not Has_Aspect (Typ, Aspect_Iterator_Element) then
1929 Error_Msg_NE
1930 ("cannot iterate over&", Name (N), Typ);
1931 else
1932 Error_Msg_N
1933 ("name must be an iterator, not a container", Name (N));
1934 end if;
1936 if Has_Aspect (Typ, Aspect_Iterable) then
1937 null;
1938 else
1939 Error_Msg_NE
1940 ("\to iterate directly over the elements of a container, "
1941 & "write `of &`", Name (N), Original_Node (Name (N)));
1942 end if;
1943 end if;
1945 -- The result type of Iterate function is the classwide type of
1946 -- the interface parent. We need the specific Cursor type defined
1947 -- in the container package. We obtain it by name for a predefined
1948 -- container, or through the Iterable aspect for a formal one.
1950 if Has_Aspect (Typ, Aspect_Iterable) then
1951 Set_Etype (Def_Id,
1952 Get_Cursor_Type
1953 (Parent (Find_Value_Of_Aspect (Typ, Aspect_Iterable)),
1954 Typ));
1955 Ent := Etype (Def_Id);
1957 else
1958 Ent := First_Entity (Scope (Typ));
1959 while Present (Ent) loop
1960 if Chars (Ent) = Name_Cursor then
1961 Set_Etype (Def_Id, Etype (Ent));
1962 exit;
1963 end if;
1965 Next_Entity (Ent);
1966 end loop;
1967 end if;
1968 end if;
1969 end if;
1971 -- A loop parameter cannot be volatile. This check is peformed only
1972 -- when SPARK_Mode is on as it is not a standard Ada legality check
1973 -- (SPARK RM 7.1.3(6)).
1975 -- Not clear whether this applies to element iterators, where the
1976 -- cursor is not an explicit entity ???
1978 if SPARK_Mode = On
1979 and then not Of_Present (N)
1980 and then Is_SPARK_Volatile_Object (Ent)
1981 then
1982 Error_Msg_N ("loop parameter cannot be volatile", Ent);
1983 end if;
1984 end Analyze_Iterator_Specification;
1986 -------------------
1987 -- Analyze_Label --
1988 -------------------
1990 -- Note: the semantic work required for analyzing labels (setting them as
1991 -- reachable) was done in a prepass through the statements in the block,
1992 -- so that forward gotos would be properly handled. See Analyze_Statements
1993 -- for further details. The only processing required here is to deal with
1994 -- optimizations that depend on an assumption of sequential control flow,
1995 -- since of course the occurrence of a label breaks this assumption.
1997 procedure Analyze_Label (N : Node_Id) is
1998 pragma Warnings (Off, N);
1999 begin
2000 Kill_Current_Values;
2001 end Analyze_Label;
2003 --------------------------
2004 -- Analyze_Label_Entity --
2005 --------------------------
2007 procedure Analyze_Label_Entity (E : Entity_Id) is
2008 begin
2009 Set_Ekind (E, E_Label);
2010 Set_Etype (E, Standard_Void_Type);
2011 Set_Enclosing_Scope (E, Current_Scope);
2012 Set_Reachable (E, True);
2013 end Analyze_Label_Entity;
2015 ------------------------------------------
2016 -- Analyze_Loop_Parameter_Specification --
2017 ------------------------------------------
2019 procedure Analyze_Loop_Parameter_Specification (N : Node_Id) is
2020 Loop_Nod : constant Node_Id := Parent (Parent (N));
2022 procedure Check_Controlled_Array_Attribute (DS : Node_Id);
2023 -- If the bounds are given by a 'Range reference on a function call
2024 -- that returns a controlled array, introduce an explicit declaration
2025 -- to capture the bounds, so that the function result can be finalized
2026 -- in timely fashion.
2028 function Has_Call_Using_Secondary_Stack (N : Node_Id) return Boolean;
2029 -- N is the node for an arbitrary construct. This function searches the
2030 -- construct N to see if any expressions within it contain function
2031 -- calls that use the secondary stack, returning True if any such call
2032 -- is found, and False otherwise.
2034 procedure Process_Bounds (R : Node_Id);
2035 -- If the iteration is given by a range, create temporaries and
2036 -- assignment statements block to capture the bounds and perform
2037 -- required finalization actions in case a bound includes a function
2038 -- call that uses the temporary stack. We first pre-analyze a copy of
2039 -- the range in order to determine the expected type, and analyze and
2040 -- resolve the original bounds.
2042 --------------------------------------
2043 -- Check_Controlled_Array_Attribute --
2044 --------------------------------------
2046 procedure Check_Controlled_Array_Attribute (DS : Node_Id) is
2047 begin
2048 if Nkind (DS) = N_Attribute_Reference
2049 and then Is_Entity_Name (Prefix (DS))
2050 and then Ekind (Entity (Prefix (DS))) = E_Function
2051 and then Is_Array_Type (Etype (Entity (Prefix (DS))))
2052 and then
2053 Is_Controlled (Component_Type (Etype (Entity (Prefix (DS)))))
2054 and then Expander_Active
2055 then
2056 declare
2057 Loc : constant Source_Ptr := Sloc (N);
2058 Arr : constant Entity_Id := Etype (Entity (Prefix (DS)));
2059 Indx : constant Entity_Id :=
2060 Base_Type (Etype (First_Index (Arr)));
2061 Subt : constant Entity_Id := Make_Temporary (Loc, 'S');
2062 Decl : Node_Id;
2064 begin
2065 Decl :=
2066 Make_Subtype_Declaration (Loc,
2067 Defining_Identifier => Subt,
2068 Subtype_Indication =>
2069 Make_Subtype_Indication (Loc,
2070 Subtype_Mark => New_Occurrence_Of (Indx, Loc),
2071 Constraint =>
2072 Make_Range_Constraint (Loc, Relocate_Node (DS))));
2073 Insert_Before (Loop_Nod, Decl);
2074 Analyze (Decl);
2076 Rewrite (DS,
2077 Make_Attribute_Reference (Loc,
2078 Prefix => New_Occurrence_Of (Subt, Loc),
2079 Attribute_Name => Attribute_Name (DS)));
2081 Analyze (DS);
2082 end;
2083 end if;
2084 end Check_Controlled_Array_Attribute;
2086 ------------------------------------
2087 -- Has_Call_Using_Secondary_Stack --
2088 ------------------------------------
2090 function Has_Call_Using_Secondary_Stack (N : Node_Id) return Boolean is
2092 function Check_Call (N : Node_Id) return Traverse_Result;
2093 -- Check if N is a function call which uses the secondary stack
2095 ----------------
2096 -- Check_Call --
2097 ----------------
2099 function Check_Call (N : Node_Id) return Traverse_Result is
2100 Nam : Node_Id;
2101 Subp : Entity_Id;
2102 Return_Typ : Entity_Id;
2104 begin
2105 if Nkind (N) = N_Function_Call then
2106 Nam := Name (N);
2108 -- Call using access to subprogram with explicit dereference
2110 if Nkind (Nam) = N_Explicit_Dereference then
2111 Subp := Etype (Nam);
2113 -- Call using a selected component notation or Ada 2005 object
2114 -- operation notation
2116 elsif Nkind (Nam) = N_Selected_Component then
2117 Subp := Entity (Selector_Name (Nam));
2119 -- Common case
2121 else
2122 Subp := Entity (Nam);
2123 end if;
2125 Return_Typ := Etype (Subp);
2127 if Is_Composite_Type (Return_Typ)
2128 and then not Is_Constrained (Return_Typ)
2129 then
2130 return Abandon;
2132 elsif Sec_Stack_Needed_For_Return (Subp) then
2133 return Abandon;
2134 end if;
2135 end if;
2137 -- Continue traversing the tree
2139 return OK;
2140 end Check_Call;
2142 function Check_Calls is new Traverse_Func (Check_Call);
2144 -- Start of processing for Has_Call_Using_Secondary_Stack
2146 begin
2147 return Check_Calls (N) = Abandon;
2148 end Has_Call_Using_Secondary_Stack;
2150 --------------------
2151 -- Process_Bounds --
2152 --------------------
2154 procedure Process_Bounds (R : Node_Id) is
2155 Loc : constant Source_Ptr := Sloc (N);
2157 function One_Bound
2158 (Original_Bound : Node_Id;
2159 Analyzed_Bound : Node_Id;
2160 Typ : Entity_Id) return Node_Id;
2161 -- Capture value of bound and return captured value
2163 ---------------
2164 -- One_Bound --
2165 ---------------
2167 function One_Bound
2168 (Original_Bound : Node_Id;
2169 Analyzed_Bound : Node_Id;
2170 Typ : Entity_Id) return Node_Id
2172 Assign : Node_Id;
2173 Decl : Node_Id;
2174 Id : Entity_Id;
2176 begin
2177 -- If the bound is a constant or an object, no need for a separate
2178 -- declaration. If the bound is the result of previous expansion
2179 -- it is already analyzed and should not be modified. Note that
2180 -- the Bound will be resolved later, if needed, as part of the
2181 -- call to Make_Index (literal bounds may need to be resolved to
2182 -- type Integer).
2184 if Analyzed (Original_Bound) then
2185 return Original_Bound;
2187 elsif Nkind_In (Analyzed_Bound, N_Integer_Literal,
2188 N_Character_Literal)
2189 or else Is_Entity_Name (Analyzed_Bound)
2190 then
2191 Analyze_And_Resolve (Original_Bound, Typ);
2192 return Original_Bound;
2193 end if;
2195 -- Normally, the best approach is simply to generate a constant
2196 -- declaration that captures the bound. However, there is a nasty
2197 -- case where this is wrong. If the bound is complex, and has a
2198 -- possible use of the secondary stack, we need to generate a
2199 -- separate assignment statement to ensure the creation of a block
2200 -- which will release the secondary stack.
2202 -- We prefer the constant declaration, since it leaves us with a
2203 -- proper trace of the value, useful in optimizations that get rid
2204 -- of junk range checks.
2206 if not Has_Call_Using_Secondary_Stack (Analyzed_Bound) then
2207 Analyze_And_Resolve (Original_Bound, Typ);
2209 -- Ensure that the bound is valid. This check should not be
2210 -- generated when the range belongs to a quantified expression
2211 -- as the construct is still not expanded into its final form.
2213 if Nkind (Parent (R)) /= N_Loop_Parameter_Specification
2214 or else Nkind (Parent (Parent (R))) /= N_Quantified_Expression
2215 then
2216 Ensure_Valid (Original_Bound);
2217 end if;
2219 Force_Evaluation (Original_Bound);
2220 return Original_Bound;
2221 end if;
2223 Id := Make_Temporary (Loc, 'R', Original_Bound);
2225 -- Here we make a declaration with a separate assignment
2226 -- statement, and insert before loop header.
2228 Decl :=
2229 Make_Object_Declaration (Loc,
2230 Defining_Identifier => Id,
2231 Object_Definition => New_Occurrence_Of (Typ, Loc));
2233 Assign :=
2234 Make_Assignment_Statement (Loc,
2235 Name => New_Occurrence_Of (Id, Loc),
2236 Expression => Relocate_Node (Original_Bound));
2238 Insert_Actions (Loop_Nod, New_List (Decl, Assign));
2240 -- Now that this temporary variable is initialized we decorate it
2241 -- as safe-to-reevaluate to inform to the backend that no further
2242 -- asignment will be issued and hence it can be handled as side
2243 -- effect free. Note that this decoration must be done when the
2244 -- assignment has been analyzed because otherwise it will be
2245 -- rejected (see Analyze_Assignment).
2247 Set_Is_Safe_To_Reevaluate (Id);
2249 Rewrite (Original_Bound, New_Occurrence_Of (Id, Loc));
2251 if Nkind (Assign) = N_Assignment_Statement then
2252 return Expression (Assign);
2253 else
2254 return Original_Bound;
2255 end if;
2256 end One_Bound;
2258 Hi : constant Node_Id := High_Bound (R);
2259 Lo : constant Node_Id := Low_Bound (R);
2260 R_Copy : constant Node_Id := New_Copy_Tree (R);
2261 New_Hi : Node_Id;
2262 New_Lo : Node_Id;
2263 Typ : Entity_Id;
2265 -- Start of processing for Process_Bounds
2267 begin
2268 Set_Parent (R_Copy, Parent (R));
2269 Preanalyze_Range (R_Copy);
2270 Typ := Etype (R_Copy);
2272 -- If the type of the discrete range is Universal_Integer, then the
2273 -- bound's type must be resolved to Integer, and any object used to
2274 -- hold the bound must also have type Integer, unless the literal
2275 -- bounds are constant-folded expressions with a user-defined type.
2277 if Typ = Universal_Integer then
2278 if Nkind (Lo) = N_Integer_Literal
2279 and then Present (Etype (Lo))
2280 and then Scope (Etype (Lo)) /= Standard_Standard
2281 then
2282 Typ := Etype (Lo);
2284 elsif Nkind (Hi) = N_Integer_Literal
2285 and then Present (Etype (Hi))
2286 and then Scope (Etype (Hi)) /= Standard_Standard
2287 then
2288 Typ := Etype (Hi);
2290 else
2291 Typ := Standard_Integer;
2292 end if;
2293 end if;
2295 Set_Etype (R, Typ);
2297 New_Lo := One_Bound (Lo, Low_Bound (R_Copy), Typ);
2298 New_Hi := One_Bound (Hi, High_Bound (R_Copy), Typ);
2300 -- Propagate staticness to loop range itself, in case the
2301 -- corresponding subtype is static.
2303 if New_Lo /= Lo and then Is_Static_Expression (New_Lo) then
2304 Rewrite (Low_Bound (R), New_Copy (New_Lo));
2305 end if;
2307 if New_Hi /= Hi and then Is_Static_Expression (New_Hi) then
2308 Rewrite (High_Bound (R), New_Copy (New_Hi));
2309 end if;
2310 end Process_Bounds;
2312 -- Local variables
2314 DS : constant Node_Id := Discrete_Subtype_Definition (N);
2315 Id : constant Entity_Id := Defining_Identifier (N);
2317 DS_Copy : Node_Id;
2319 -- Start of processing for Analyze_Loop_Parameter_Specification
2321 begin
2322 Enter_Name (Id);
2324 -- We always consider the loop variable to be referenced, since the loop
2325 -- may be used just for counting purposes.
2327 Generate_Reference (Id, N, ' ');
2329 -- Check for the case of loop variable hiding a local variable (used
2330 -- later on to give a nice warning if the hidden variable is never
2331 -- assigned).
2333 declare
2334 H : constant Entity_Id := Homonym (Id);
2335 begin
2336 if Present (H)
2337 and then Ekind (H) = E_Variable
2338 and then Is_Discrete_Type (Etype (H))
2339 and then Enclosing_Dynamic_Scope (H) = Enclosing_Dynamic_Scope (Id)
2340 then
2341 Set_Hiding_Loop_Variable (H, Id);
2342 end if;
2343 end;
2345 -- Loop parameter specification must include subtype mark in SPARK
2347 if Nkind (DS) = N_Range then
2348 Check_SPARK_Restriction
2349 ("loop parameter specification must include subtype mark", N);
2350 end if;
2352 -- Analyze the subtype definition and create temporaries for the bounds.
2353 -- Do not evaluate the range when preanalyzing a quantified expression
2354 -- because bounds expressed as function calls with side effects will be
2355 -- erroneously replicated.
2357 if Nkind (DS) = N_Range
2358 and then Expander_Active
2359 and then Nkind (Parent (N)) /= N_Quantified_Expression
2360 then
2361 Process_Bounds (DS);
2363 -- Either the expander not active or the range of iteration is a subtype
2364 -- indication, an entity, or a function call that yields an aggregate or
2365 -- a container.
2367 else
2368 DS_Copy := New_Copy_Tree (DS);
2369 Set_Parent (DS_Copy, Parent (DS));
2370 Preanalyze_Range (DS_Copy);
2372 -- Ada 2012: If the domain of iteration is:
2374 -- a) a function call,
2375 -- b) an identifier that is not a type,
2376 -- c) an attribute reference 'Old (within a postcondition)
2378 -- then it is an iteration over a container. It was classified as
2379 -- a loop specification by the parser, and must be rewritten now
2380 -- to activate container iteration.
2382 if Nkind (DS_Copy) = N_Function_Call
2383 or else (Is_Entity_Name (DS_Copy)
2384 and then not Is_Type (Entity (DS_Copy)))
2385 or else (Nkind (DS_Copy) = N_Attribute_Reference
2386 and then Attribute_Name (DS_Copy) = Name_Old)
2387 then
2388 -- This is an iterator specification. Rewrite it as such and
2389 -- analyze it to capture function calls that may require
2390 -- finalization actions.
2392 declare
2393 I_Spec : constant Node_Id :=
2394 Make_Iterator_Specification (Sloc (N),
2395 Defining_Identifier => Relocate_Node (Id),
2396 Name => DS_Copy,
2397 Subtype_Indication => Empty,
2398 Reverse_Present => Reverse_Present (N));
2399 Scheme : constant Node_Id := Parent (N);
2401 begin
2402 Set_Iterator_Specification (Scheme, I_Spec);
2403 Set_Loop_Parameter_Specification (Scheme, Empty);
2404 Analyze_Iterator_Specification (I_Spec);
2406 -- In a generic context, analyze the original domain of
2407 -- iteration, for name capture.
2409 if not Expander_Active then
2410 Analyze (DS);
2411 end if;
2413 -- Set kind of loop parameter, which may be used in the
2414 -- subsequent analysis of the condition in a quantified
2415 -- expression.
2417 Set_Ekind (Id, E_Loop_Parameter);
2418 return;
2419 end;
2421 -- Domain of iteration is not a function call, and is side-effect
2422 -- free.
2424 else
2425 -- A quantified expression that appears in a pre/post condition
2426 -- is pre-analyzed several times. If the range is given by an
2427 -- attribute reference it is rewritten as a range, and this is
2428 -- done even with expansion disabled. If the type is already set
2429 -- do not reanalyze, because a range with static bounds may be
2430 -- typed Integer by default.
2432 if Nkind (Parent (N)) = N_Quantified_Expression
2433 and then Present (Etype (DS))
2434 then
2435 null;
2436 else
2437 Analyze (DS);
2438 end if;
2439 end if;
2440 end if;
2442 if DS = Error then
2443 return;
2444 end if;
2446 -- Some additional checks if we are iterating through a type
2448 if Is_Entity_Name (DS)
2449 and then Present (Entity (DS))
2450 and then Is_Type (Entity (DS))
2451 then
2452 -- The subtype indication may denote the completion of an incomplete
2453 -- type declaration.
2455 if Ekind (Entity (DS)) = E_Incomplete_Type then
2456 Set_Entity (DS, Get_Full_View (Entity (DS)));
2457 Set_Etype (DS, Entity (DS));
2458 end if;
2460 -- Attempt to iterate through non-static predicate. Note that a type
2461 -- with inherited predicates may have both static and dynamic forms.
2462 -- In this case it is not sufficent to check the static predicate
2463 -- function only, look for a dynamic predicate aspect as well.
2465 if Is_Discrete_Type (Entity (DS))
2466 and then Present (Predicate_Function (Entity (DS)))
2467 and then (No (Static_Predicate (Entity (DS)))
2468 or else Has_Dynamic_Predicate_Aspect (Entity (DS)))
2469 then
2470 Bad_Predicated_Subtype_Use
2471 ("cannot use subtype& with non-static predicate for loop " &
2472 "iteration", DS, Entity (DS), Suggest_Static => True);
2473 end if;
2474 end if;
2476 -- Error if not discrete type
2478 if not Is_Discrete_Type (Etype (DS)) then
2479 Wrong_Type (DS, Any_Discrete);
2480 Set_Etype (DS, Any_Type);
2481 end if;
2483 Check_Controlled_Array_Attribute (DS);
2485 Make_Index (DS, N, In_Iter_Schm => True);
2486 Set_Ekind (Id, E_Loop_Parameter);
2488 -- A quantified expression which appears in a pre- or post-condition may
2489 -- be analyzed multiple times. The analysis of the range creates several
2490 -- itypes which reside in different scopes depending on whether the pre-
2491 -- or post-condition has been expanded. Update the type of the loop
2492 -- variable to reflect the proper itype at each stage of analysis.
2494 if No (Etype (Id))
2495 or else Etype (Id) = Any_Type
2496 or else
2497 (Present (Etype (Id))
2498 and then Is_Itype (Etype (Id))
2499 and then Nkind (Parent (Loop_Nod)) = N_Expression_With_Actions
2500 and then Nkind (Original_Node (Parent (Loop_Nod))) =
2501 N_Quantified_Expression)
2502 then
2503 Set_Etype (Id, Etype (DS));
2504 end if;
2506 -- Treat a range as an implicit reference to the type, to inhibit
2507 -- spurious warnings.
2509 Generate_Reference (Base_Type (Etype (DS)), N, ' ');
2510 Set_Is_Known_Valid (Id, True);
2512 -- The loop is not a declarative part, so the loop variable must be
2513 -- frozen explicitly. Do not freeze while preanalyzing a quantified
2514 -- expression because the freeze node will not be inserted into the
2515 -- tree due to flag Is_Spec_Expression being set.
2517 if Nkind (Parent (N)) /= N_Quantified_Expression then
2518 declare
2519 Flist : constant List_Id := Freeze_Entity (Id, N);
2520 begin
2521 if Is_Non_Empty_List (Flist) then
2522 Insert_Actions (N, Flist);
2523 end if;
2524 end;
2525 end if;
2527 -- Case where we have a range or a subtype, get type bounds
2529 if Nkind_In (DS, N_Range, N_Subtype_Indication)
2530 and then not Error_Posted (DS)
2531 and then Etype (DS) /= Any_Type
2532 and then Is_Discrete_Type (Etype (DS))
2533 then
2534 declare
2535 L : Node_Id;
2536 H : Node_Id;
2538 begin
2539 if Nkind (DS) = N_Range then
2540 L := Low_Bound (DS);
2541 H := High_Bound (DS);
2542 else
2543 L :=
2544 Type_Low_Bound (Underlying_Type (Etype (Subtype_Mark (DS))));
2545 H :=
2546 Type_High_Bound (Underlying_Type (Etype (Subtype_Mark (DS))));
2547 end if;
2549 -- Check for null or possibly null range and issue warning. We
2550 -- suppress such messages in generic templates and instances,
2551 -- because in practice they tend to be dubious in these cases. The
2552 -- check applies as well to rewritten array element loops where a
2553 -- null range may be detected statically.
2555 if Compile_Time_Compare (L, H, Assume_Valid => True) = GT then
2557 -- Suppress the warning if inside a generic template or
2558 -- instance, since in practice they tend to be dubious in these
2559 -- cases since they can result from intended parameterization.
2561 if not Inside_A_Generic and then not In_Instance then
2563 -- Specialize msg if invalid values could make the loop
2564 -- non-null after all.
2566 if Compile_Time_Compare
2567 (L, H, Assume_Valid => False) = GT
2568 then
2569 -- Since we know the range of the loop is null, set the
2570 -- appropriate flag to remove the loop entirely during
2571 -- expansion.
2573 Set_Is_Null_Loop (Loop_Nod);
2575 if Comes_From_Source (N) then
2576 Error_Msg_N
2577 ("??loop range is null, loop will not execute", DS);
2578 end if;
2580 -- Here is where the loop could execute because of
2581 -- invalid values, so issue appropriate message and in
2582 -- this case we do not set the Is_Null_Loop flag since
2583 -- the loop may execute.
2585 elsif Comes_From_Source (N) then
2586 Error_Msg_N
2587 ("??loop range may be null, loop may not execute",
2588 DS);
2589 Error_Msg_N
2590 ("??can only execute if invalid values are present",
2591 DS);
2592 end if;
2593 end if;
2595 -- In either case, suppress warnings in the body of the loop,
2596 -- since it is likely that these warnings will be inappropriate
2597 -- if the loop never actually executes, which is likely.
2599 Set_Suppress_Loop_Warnings (Loop_Nod);
2601 -- The other case for a warning is a reverse loop where the
2602 -- upper bound is the integer literal zero or one, and the
2603 -- lower bound may exceed this value.
2605 -- For example, we have
2607 -- for J in reverse N .. 1 loop
2609 -- In practice, this is very likely to be a case of reversing
2610 -- the bounds incorrectly in the range.
2612 elsif Reverse_Present (N)
2613 and then Nkind (Original_Node (H)) = N_Integer_Literal
2614 and then
2615 (Intval (Original_Node (H)) = Uint_0
2616 or else
2617 Intval (Original_Node (H)) = Uint_1)
2618 then
2619 -- Lower bound may in fact be known and known not to exceed
2620 -- upper bound (e.g. reverse 0 .. 1) and that's OK.
2622 if Compile_Time_Known_Value (L)
2623 and then Expr_Value (L) <= Expr_Value (H)
2624 then
2625 null;
2627 -- Otherwise warning is warranted
2629 else
2630 Error_Msg_N ("??loop range may be null", DS);
2631 Error_Msg_N ("\??bounds may be wrong way round", DS);
2632 end if;
2633 end if;
2635 -- Check if either bound is known to be outside the range of the
2636 -- loop parameter type, this is e.g. the case of a loop from
2637 -- 20..X where the type is 1..19.
2639 -- Such a loop is dubious since either it raises CE or it executes
2640 -- zero times, and that cannot be useful!
2642 if Etype (DS) /= Any_Type
2643 and then not Error_Posted (DS)
2644 and then Nkind (DS) = N_Subtype_Indication
2645 and then Nkind (Constraint (DS)) = N_Range_Constraint
2646 then
2647 declare
2648 LLo : constant Node_Id :=
2649 Low_Bound (Range_Expression (Constraint (DS)));
2650 LHi : constant Node_Id :=
2651 High_Bound (Range_Expression (Constraint (DS)));
2653 Bad_Bound : Node_Id := Empty;
2654 -- Suspicious loop bound
2656 begin
2657 -- At this stage L, H are the bounds of the type, and LLo
2658 -- Lhi are the low bound and high bound of the loop.
2660 if Compile_Time_Compare (LLo, L, Assume_Valid => True) = LT
2661 or else
2662 Compile_Time_Compare (LLo, H, Assume_Valid => True) = GT
2663 then
2664 Bad_Bound := LLo;
2665 end if;
2667 if Compile_Time_Compare (LHi, L, Assume_Valid => True) = LT
2668 or else
2669 Compile_Time_Compare (LHi, H, Assume_Valid => True) = GT
2670 then
2671 Bad_Bound := LHi;
2672 end if;
2674 if Present (Bad_Bound) then
2675 Error_Msg_N
2676 ("suspicious loop bound out of range of "
2677 & "loop subtype??", Bad_Bound);
2678 Error_Msg_N
2679 ("\loop executes zero times or raises "
2680 & "Constraint_Error??", Bad_Bound);
2681 end if;
2682 end;
2683 end if;
2685 -- This declare block is about warnings, if we get an exception while
2686 -- testing for warnings, we simply abandon the attempt silently. This
2687 -- most likely occurs as the result of a previous error, but might
2688 -- just be an obscure case we have missed. In either case, not giving
2689 -- the warning is perfectly acceptable.
2691 exception
2692 when others => null;
2693 end;
2694 end if;
2696 -- A loop parameter cannot be volatile. This check is peformed only
2697 -- when SPARK_Mode is on as it is not a standard Ada legality check
2698 -- (SPARK RM 7.1.3(6)).
2700 if SPARK_Mode = On and then Is_SPARK_Volatile_Object (Id) then
2701 Error_Msg_N ("loop parameter cannot be volatile", Id);
2702 end if;
2703 end Analyze_Loop_Parameter_Specification;
2705 ----------------------------
2706 -- Analyze_Loop_Statement --
2707 ----------------------------
2709 procedure Analyze_Loop_Statement (N : Node_Id) is
2711 function Is_Container_Iterator (Iter : Node_Id) return Boolean;
2712 -- Given a loop iteration scheme, determine whether it is an Ada 2012
2713 -- container iteration.
2715 function Is_Wrapped_In_Block (N : Node_Id) return Boolean;
2716 -- Determine whether node N is the sole statement of a block
2718 ---------------------------
2719 -- Is_Container_Iterator --
2720 ---------------------------
2722 function Is_Container_Iterator (Iter : Node_Id) return Boolean is
2723 begin
2724 -- Infinite loop
2726 if No (Iter) then
2727 return False;
2729 -- While loop
2731 elsif Present (Condition (Iter)) then
2732 return False;
2734 -- for Def_Id in [reverse] Name loop
2735 -- for Def_Id [: Subtype_Indication] of [reverse] Name loop
2737 elsif Present (Iterator_Specification (Iter)) then
2738 declare
2739 Nam : constant Node_Id := Name (Iterator_Specification (Iter));
2740 Nam_Copy : Node_Id;
2742 begin
2743 Nam_Copy := New_Copy_Tree (Nam);
2744 Set_Parent (Nam_Copy, Parent (Nam));
2745 Preanalyze_Range (Nam_Copy);
2747 -- The only two options here are iteration over a container or
2748 -- an array.
2750 return not Is_Array_Type (Etype (Nam_Copy));
2751 end;
2753 -- for Def_Id in [reverse] Discrete_Subtype_Definition loop
2755 else
2756 declare
2757 LP : constant Node_Id := Loop_Parameter_Specification (Iter);
2758 DS : constant Node_Id := Discrete_Subtype_Definition (LP);
2759 DS_Copy : Node_Id;
2761 begin
2762 DS_Copy := New_Copy_Tree (DS);
2763 Set_Parent (DS_Copy, Parent (DS));
2764 Preanalyze_Range (DS_Copy);
2766 -- Check for a call to Iterate ()
2768 return
2769 Nkind (DS_Copy) = N_Function_Call
2770 and then Needs_Finalization (Etype (DS_Copy));
2771 end;
2772 end if;
2773 end Is_Container_Iterator;
2775 -------------------------
2776 -- Is_Wrapped_In_Block --
2777 -------------------------
2779 function Is_Wrapped_In_Block (N : Node_Id) return Boolean is
2780 HSS : constant Node_Id := Parent (N);
2782 begin
2783 return
2784 Nkind (HSS) = N_Handled_Sequence_Of_Statements
2785 and then Nkind (Parent (HSS)) = N_Block_Statement
2786 and then First (Statements (HSS)) = N
2787 and then No (Next (First (Statements (HSS))));
2788 end Is_Wrapped_In_Block;
2790 -- Local declarations
2792 Id : constant Node_Id := Identifier (N);
2793 Iter : constant Node_Id := Iteration_Scheme (N);
2794 Loc : constant Source_Ptr := Sloc (N);
2795 Ent : Entity_Id;
2796 Stmt : Node_Id;
2798 -- Start of processing for Analyze_Loop_Statement
2800 begin
2801 if Present (Id) then
2803 -- Make name visible, e.g. for use in exit statements. Loop labels
2804 -- are always considered to be referenced.
2806 Analyze (Id);
2807 Ent := Entity (Id);
2809 -- Guard against serious error (typically, a scope mismatch when
2810 -- semantic analysis is requested) by creating loop entity to
2811 -- continue analysis.
2813 if No (Ent) then
2814 if Total_Errors_Detected /= 0 then
2815 Ent := New_Internal_Entity (E_Loop, Current_Scope, Loc, 'L');
2816 else
2817 raise Program_Error;
2818 end if;
2820 else
2821 Generate_Reference (Ent, N, ' ');
2822 Generate_Definition (Ent);
2824 -- If we found a label, mark its type. If not, ignore it, since it
2825 -- means we have a conflicting declaration, which would already
2826 -- have been diagnosed at declaration time. Set Label_Construct
2827 -- of the implicit label declaration, which is not created by the
2828 -- parser for generic units.
2830 if Ekind (Ent) = E_Label then
2831 Set_Ekind (Ent, E_Loop);
2833 if Nkind (Parent (Ent)) = N_Implicit_Label_Declaration then
2834 Set_Label_Construct (Parent (Ent), N);
2835 end if;
2836 end if;
2837 end if;
2839 -- Case of no identifier present
2841 else
2842 Ent := New_Internal_Entity (E_Loop, Current_Scope, Loc, 'L');
2843 Set_Etype (Ent, Standard_Void_Type);
2844 Set_Parent (Ent, N);
2845 end if;
2847 -- Iteration over a container in Ada 2012 involves the creation of a
2848 -- controlled iterator object. Wrap the loop in a block to ensure the
2849 -- timely finalization of the iterator and release of container locks.
2850 -- The same applies to the use of secondary stack when obtaining an
2851 -- iterator.
2853 if Ada_Version >= Ada_2012
2854 and then Is_Container_Iterator (Iter)
2855 and then not Is_Wrapped_In_Block (N)
2856 then
2857 declare
2858 Block_Nod : Node_Id;
2859 Block_Id : Entity_Id;
2861 begin
2862 Block_Nod :=
2863 Make_Block_Statement (Loc,
2864 Declarations => New_List,
2865 Handled_Statement_Sequence =>
2866 Make_Handled_Sequence_Of_Statements (Loc,
2867 Statements => New_List (Relocate_Node (N))));
2869 Add_Block_Identifier (Block_Nod, Block_Id);
2871 -- The expansion of iterator loops generates an iterator in order
2872 -- to traverse the elements of a container:
2874 -- Iter : <iterator type> := Iterate (Container)'reference;
2876 -- The iterator is controlled and returned on the secondary stack.
2877 -- The analysis of the call to Iterate establishes a transient
2878 -- scope to deal with the secondary stack management, but never
2879 -- really creates a physical block as this would kill the iterator
2880 -- too early (see Wrap_Transient_Declaration). To address this
2881 -- case, mark the generated block as needing secondary stack
2882 -- management.
2884 Set_Uses_Sec_Stack (Block_Id);
2886 Rewrite (N, Block_Nod);
2887 Analyze (N);
2888 return;
2889 end;
2890 end if;
2892 -- Kill current values on entry to loop, since statements in the body of
2893 -- the loop may have been executed before the loop is entered. Similarly
2894 -- we kill values after the loop, since we do not know that the body of
2895 -- the loop was executed.
2897 Kill_Current_Values;
2898 Push_Scope (Ent);
2899 Analyze_Iteration_Scheme (Iter);
2901 -- Check for following case which merits a warning if the type E of is
2902 -- a multi-dimensional array (and no explicit subscript ranges present).
2904 -- for J in E'Range
2905 -- for K in E'Range
2907 if Present (Iter)
2908 and then Present (Loop_Parameter_Specification (Iter))
2909 then
2910 declare
2911 LPS : constant Node_Id := Loop_Parameter_Specification (Iter);
2912 DSD : constant Node_Id :=
2913 Original_Node (Discrete_Subtype_Definition (LPS));
2914 begin
2915 if Nkind (DSD) = N_Attribute_Reference
2916 and then Attribute_Name (DSD) = Name_Range
2917 and then No (Expressions (DSD))
2918 then
2919 declare
2920 Typ : constant Entity_Id := Etype (Prefix (DSD));
2921 begin
2922 if Is_Array_Type (Typ)
2923 and then Number_Dimensions (Typ) > 1
2924 and then Nkind (Parent (N)) = N_Loop_Statement
2925 and then Present (Iteration_Scheme (Parent (N)))
2926 then
2927 declare
2928 OIter : constant Node_Id :=
2929 Iteration_Scheme (Parent (N));
2930 OLPS : constant Node_Id :=
2931 Loop_Parameter_Specification (OIter);
2932 ODSD : constant Node_Id :=
2933 Original_Node (Discrete_Subtype_Definition (OLPS));
2934 begin
2935 if Nkind (ODSD) = N_Attribute_Reference
2936 and then Attribute_Name (ODSD) = Name_Range
2937 and then No (Expressions (ODSD))
2938 and then Etype (Prefix (ODSD)) = Typ
2939 then
2940 Error_Msg_Sloc := Sloc (ODSD);
2941 Error_Msg_N
2942 ("inner range same as outer range#??", DSD);
2943 end if;
2944 end;
2945 end if;
2946 end;
2947 end if;
2948 end;
2949 end if;
2951 -- Analyze the statements of the body except in the case of an Ada 2012
2952 -- iterator with the expander active. In this case the expander will do
2953 -- a rewrite of the loop into a while loop. We will then analyze the
2954 -- loop body when we analyze this while loop.
2956 -- We need to do this delay because if the container is for indefinite
2957 -- types the actual subtype of the components will only be determined
2958 -- when the cursor declaration is analyzed.
2960 -- If the expander is not active, or in SPARK mode, then we want to
2961 -- analyze the loop body now even in the Ada 2012 iterator case, since
2962 -- the rewriting will not be done. Insert the loop variable in the
2963 -- current scope, if not done when analysing the iteration scheme.
2965 if No (Iter)
2966 or else No (Iterator_Specification (Iter))
2967 or else not Expander_Active
2968 then
2969 if Present (Iter)
2970 and then Present (Iterator_Specification (Iter))
2971 then
2972 declare
2973 Id : constant Entity_Id :=
2974 Defining_Identifier (Iterator_Specification (Iter));
2975 begin
2976 if Scope (Id) /= Current_Scope then
2977 Enter_Name (Id);
2978 end if;
2979 end;
2980 end if;
2982 Analyze_Statements (Statements (N));
2983 end if;
2985 -- When the iteration scheme of a loop contains attribute 'Loop_Entry,
2986 -- the loop is transformed into a conditional block. Retrieve the loop.
2988 Stmt := N;
2990 if Subject_To_Loop_Entry_Attributes (Stmt) then
2991 Stmt := Find_Loop_In_Conditional_Block (Stmt);
2992 end if;
2994 -- Finish up processing for the loop. We kill all current values, since
2995 -- in general we don't know if the statements in the loop have been
2996 -- executed. We could do a bit better than this with a loop that we
2997 -- know will execute at least once, but it's not worth the trouble and
2998 -- the front end is not in the business of flow tracing.
3000 Process_End_Label (Stmt, 'e', Ent);
3001 End_Scope;
3002 Kill_Current_Values;
3004 -- Check for infinite loop. Skip check for generated code, since it
3005 -- justs waste time and makes debugging the routine called harder.
3007 -- Note that we have to wait till the body of the loop is fully analyzed
3008 -- before making this call, since Check_Infinite_Loop_Warning relies on
3009 -- being able to use semantic visibility information to find references.
3011 if Comes_From_Source (Stmt) then
3012 Check_Infinite_Loop_Warning (Stmt);
3013 end if;
3015 -- Code after loop is unreachable if the loop has no WHILE or FOR and
3016 -- contains no EXIT statements within the body of the loop.
3018 if No (Iter) and then not Has_Exit (Ent) then
3019 Check_Unreachable_Code (Stmt);
3020 end if;
3021 end Analyze_Loop_Statement;
3023 ----------------------------
3024 -- Analyze_Null_Statement --
3025 ----------------------------
3027 -- Note: the semantics of the null statement is implemented by a single
3028 -- null statement, too bad everything isn't as simple as this.
3030 procedure Analyze_Null_Statement (N : Node_Id) is
3031 pragma Warnings (Off, N);
3032 begin
3033 null;
3034 end Analyze_Null_Statement;
3036 ------------------------
3037 -- Analyze_Statements --
3038 ------------------------
3040 procedure Analyze_Statements (L : List_Id) is
3041 S : Node_Id;
3042 Lab : Entity_Id;
3044 begin
3045 -- The labels declared in the statement list are reachable from
3046 -- statements in the list. We do this as a prepass so that any goto
3047 -- statement will be properly flagged if its target is not reachable.
3048 -- This is not required, but is nice behavior.
3050 S := First (L);
3051 while Present (S) loop
3052 if Nkind (S) = N_Label then
3053 Analyze (Identifier (S));
3054 Lab := Entity (Identifier (S));
3056 -- If we found a label mark it as reachable
3058 if Ekind (Lab) = E_Label then
3059 Generate_Definition (Lab);
3060 Set_Reachable (Lab);
3062 if Nkind (Parent (Lab)) = N_Implicit_Label_Declaration then
3063 Set_Label_Construct (Parent (Lab), S);
3064 end if;
3066 -- If we failed to find a label, it means the implicit declaration
3067 -- of the label was hidden. A for-loop parameter can do this to
3068 -- a label with the same name inside the loop, since the implicit
3069 -- label declaration is in the innermost enclosing body or block
3070 -- statement.
3072 else
3073 Error_Msg_Sloc := Sloc (Lab);
3074 Error_Msg_N
3075 ("implicit label declaration for & is hidden#",
3076 Identifier (S));
3077 end if;
3078 end if;
3080 Next (S);
3081 end loop;
3083 -- Perform semantic analysis on all statements
3085 Conditional_Statements_Begin;
3087 S := First (L);
3088 while Present (S) loop
3089 Analyze (S);
3091 -- Remove dimension in all statements
3093 Remove_Dimension_In_Statement (S);
3094 Next (S);
3095 end loop;
3097 Conditional_Statements_End;
3099 -- Make labels unreachable. Visibility is not sufficient, because labels
3100 -- in one if-branch for example are not reachable from the other branch,
3101 -- even though their declarations are in the enclosing declarative part.
3103 S := First (L);
3104 while Present (S) loop
3105 if Nkind (S) = N_Label then
3106 Set_Reachable (Entity (Identifier (S)), False);
3107 end if;
3109 Next (S);
3110 end loop;
3111 end Analyze_Statements;
3113 ----------------------------
3114 -- Check_Unreachable_Code --
3115 ----------------------------
3117 procedure Check_Unreachable_Code (N : Node_Id) is
3118 Error_Node : Node_Id;
3119 P : Node_Id;
3121 begin
3122 if Is_List_Member (N) and then Comes_From_Source (N) then
3123 declare
3124 Nxt : Node_Id;
3126 begin
3127 Nxt := Original_Node (Next (N));
3129 -- Skip past pragmas
3131 while Nkind (Nxt) = N_Pragma loop
3132 Nxt := Original_Node (Next (Nxt));
3133 end loop;
3135 -- If a label follows us, then we never have dead code, since
3136 -- someone could branch to the label, so we just ignore it, unless
3137 -- we are in formal mode where goto statements are not allowed.
3139 if Nkind (Nxt) = N_Label
3140 and then not Restriction_Check_Required (SPARK_05)
3141 then
3142 return;
3144 -- Otherwise see if we have a real statement following us
3146 elsif Present (Nxt)
3147 and then Comes_From_Source (Nxt)
3148 and then Is_Statement (Nxt)
3149 then
3150 -- Special very annoying exception. If we have a return that
3151 -- follows a raise, then we allow it without a warning, since
3152 -- the Ada RM annoyingly requires a useless return here.
3154 if Nkind (Original_Node (N)) /= N_Raise_Statement
3155 or else Nkind (Nxt) /= N_Simple_Return_Statement
3156 then
3157 -- The rather strange shenanigans with the warning message
3158 -- here reflects the fact that Kill_Dead_Code is very good
3159 -- at removing warnings in deleted code, and this is one
3160 -- warning we would prefer NOT to have removed.
3162 Error_Node := Nxt;
3164 -- If we have unreachable code, analyze and remove the
3165 -- unreachable code, since it is useless and we don't
3166 -- want to generate junk warnings.
3168 -- We skip this step if we are not in code generation mode.
3169 -- This is the one case where we remove dead code in the
3170 -- semantics as opposed to the expander, and we do not want
3171 -- to remove code if we are not in code generation mode,
3172 -- since this messes up the ASIS trees.
3174 -- Note that one might react by moving the whole circuit to
3175 -- exp_ch5, but then we lose the warning in -gnatc mode.
3177 if Operating_Mode = Generate_Code then
3178 loop
3179 Nxt := Next (N);
3181 -- Quit deleting when we have nothing more to delete
3182 -- or if we hit a label (since someone could transfer
3183 -- control to a label, so we should not delete it).
3185 exit when No (Nxt) or else Nkind (Nxt) = N_Label;
3187 -- Statement/declaration is to be deleted
3189 Analyze (Nxt);
3190 Remove (Nxt);
3191 Kill_Dead_Code (Nxt);
3192 end loop;
3193 end if;
3195 -- Now issue the warning (or error in formal mode)
3197 if Restriction_Check_Required (SPARK_05) then
3198 Check_SPARK_Restriction
3199 ("unreachable code is not allowed", Error_Node);
3200 else
3201 Error_Msg ("??unreachable code!", Sloc (Error_Node));
3202 end if;
3203 end if;
3205 -- If the unconditional transfer of control instruction is the
3206 -- last statement of a sequence, then see if our parent is one of
3207 -- the constructs for which we count unblocked exits, and if so,
3208 -- adjust the count.
3210 else
3211 P := Parent (N);
3213 -- Statements in THEN part or ELSE part of IF statement
3215 if Nkind (P) = N_If_Statement then
3216 null;
3218 -- Statements in ELSIF part of an IF statement
3220 elsif Nkind (P) = N_Elsif_Part then
3221 P := Parent (P);
3222 pragma Assert (Nkind (P) = N_If_Statement);
3224 -- Statements in CASE statement alternative
3226 elsif Nkind (P) = N_Case_Statement_Alternative then
3227 P := Parent (P);
3228 pragma Assert (Nkind (P) = N_Case_Statement);
3230 -- Statements in body of block
3232 elsif Nkind (P) = N_Handled_Sequence_Of_Statements
3233 and then Nkind (Parent (P)) = N_Block_Statement
3234 then
3235 -- The original loop is now placed inside a block statement
3236 -- due to the expansion of attribute 'Loop_Entry. Return as
3237 -- this is not a "real" block for the purposes of exit
3238 -- counting.
3240 if Nkind (N) = N_Loop_Statement
3241 and then Subject_To_Loop_Entry_Attributes (N)
3242 then
3243 return;
3244 end if;
3246 -- Statements in exception handler in a block
3248 elsif Nkind (P) = N_Exception_Handler
3249 and then Nkind (Parent (P)) = N_Handled_Sequence_Of_Statements
3250 and then Nkind (Parent (Parent (P))) = N_Block_Statement
3251 then
3252 null;
3254 -- None of these cases, so return
3256 else
3257 return;
3258 end if;
3260 -- This was one of the cases we are looking for (i.e. the
3261 -- parent construct was IF, CASE or block) so decrement count.
3263 Unblocked_Exit_Count := Unblocked_Exit_Count - 1;
3264 end if;
3265 end;
3266 end if;
3267 end Check_Unreachable_Code;
3269 ----------------------
3270 -- Preanalyze_Range --
3271 ----------------------
3273 procedure Preanalyze_Range (R_Copy : Node_Id) is
3274 Save_Analysis : constant Boolean := Full_Analysis;
3275 Typ : Entity_Id;
3277 begin
3278 Full_Analysis := False;
3279 Expander_Mode_Save_And_Set (False);
3281 Analyze (R_Copy);
3283 if Nkind (R_Copy) in N_Subexpr and then Is_Overloaded (R_Copy) then
3285 -- Apply preference rules for range of predefined integer types, or
3286 -- diagnose true ambiguity.
3288 declare
3289 I : Interp_Index;
3290 It : Interp;
3291 Found : Entity_Id := Empty;
3293 begin
3294 Get_First_Interp (R_Copy, I, It);
3295 while Present (It.Typ) loop
3296 if Is_Discrete_Type (It.Typ) then
3297 if No (Found) then
3298 Found := It.Typ;
3299 else
3300 if Scope (Found) = Standard_Standard then
3301 null;
3303 elsif Scope (It.Typ) = Standard_Standard then
3304 Found := It.Typ;
3306 else
3307 -- Both of them are user-defined
3309 Error_Msg_N
3310 ("ambiguous bounds in range of iteration", R_Copy);
3311 Error_Msg_N ("\possible interpretations:", R_Copy);
3312 Error_Msg_NE ("\\} ", R_Copy, Found);
3313 Error_Msg_NE ("\\} ", R_Copy, It.Typ);
3314 exit;
3315 end if;
3316 end if;
3317 end if;
3319 Get_Next_Interp (I, It);
3320 end loop;
3321 end;
3322 end if;
3324 -- Subtype mark in iteration scheme
3326 if Is_Entity_Name (R_Copy) and then Is_Type (Entity (R_Copy)) then
3327 null;
3329 -- Expression in range, or Ada 2012 iterator
3331 elsif Nkind (R_Copy) in N_Subexpr then
3332 Resolve (R_Copy);
3333 Typ := Etype (R_Copy);
3335 if Is_Discrete_Type (Typ) then
3336 null;
3338 -- Check that the resulting object is an iterable container
3340 elsif Has_Aspect (Typ, Aspect_Iterator_Element)
3341 or else Has_Aspect (Typ, Aspect_Constant_Indexing)
3342 or else Has_Aspect (Typ, Aspect_Variable_Indexing)
3343 then
3344 null;
3346 -- The expression may yield an implicit reference to an iterable
3347 -- container. Insert explicit dereference so that proper type is
3348 -- visible in the loop.
3350 elsif Has_Implicit_Dereference (Etype (R_Copy)) then
3351 declare
3352 Disc : Entity_Id;
3354 begin
3355 Disc := First_Discriminant (Typ);
3356 while Present (Disc) loop
3357 if Has_Implicit_Dereference (Disc) then
3358 Build_Explicit_Dereference (R_Copy, Disc);
3359 exit;
3360 end if;
3362 Next_Discriminant (Disc);
3363 end loop;
3364 end;
3366 end if;
3367 end if;
3369 Expander_Mode_Restore;
3370 Full_Analysis := Save_Analysis;
3371 end Preanalyze_Range;
3373 end Sem_Ch5;