1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2013, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Aspects
; use Aspects
;
27 with Atree
; use Atree
;
28 with Checks
; use Checks
;
29 with Einfo
; use Einfo
;
30 with Errout
; use Errout
;
31 with Expander
; use Expander
;
32 with Exp_Ch6
; use Exp_Ch6
;
33 with Exp_Util
; use Exp_Util
;
34 with Freeze
; use Freeze
;
36 with Lib
.Xref
; use Lib
.Xref
;
37 with Namet
; use Namet
;
38 with Nlists
; use Nlists
;
39 with Nmake
; use Nmake
;
41 with Restrict
; use Restrict
;
42 with Rident
; use Rident
;
43 with Rtsfind
; use Rtsfind
;
45 with Sem_Aux
; use Sem_Aux
;
46 with Sem_Case
; use Sem_Case
;
47 with Sem_Ch3
; use Sem_Ch3
;
48 with Sem_Ch6
; use Sem_Ch6
;
49 with Sem_Ch8
; use Sem_Ch8
;
50 with Sem_Dim
; use Sem_Dim
;
51 with Sem_Disp
; use Sem_Disp
;
52 with Sem_Elab
; use Sem_Elab
;
53 with Sem_Eval
; use Sem_Eval
;
54 with Sem_Res
; use Sem_Res
;
55 with Sem_Type
; use Sem_Type
;
56 with Sem_Util
; use Sem_Util
;
57 with Sem_Warn
; use Sem_Warn
;
58 with Snames
; use Snames
;
59 with Stand
; use Stand
;
60 with Sinfo
; use Sinfo
;
61 with Targparm
; use Targparm
;
62 with Tbuild
; use Tbuild
;
63 with Uintp
; use Uintp
;
65 package body Sem_Ch5
is
67 Unblocked_Exit_Count
: Nat
:= 0;
68 -- This variable is used when processing if statements, case statements,
69 -- and block statements. It counts the number of exit points that are not
70 -- blocked by unconditional transfer instructions: for IF and CASE, these
71 -- are the branches of the conditional; for a block, they are the statement
72 -- sequence of the block, and the statement sequences of any exception
73 -- handlers that are part of the block. When processing is complete, if
74 -- this count is zero, it means that control cannot fall through the IF,
75 -- CASE or block statement. This is used for the generation of warning
76 -- messages. This variable is recursively saved on entry to processing the
77 -- construct, and restored on exit.
79 procedure Preanalyze_Range
(R_Copy
: Node_Id
);
80 -- Determine expected type of range or domain of iteration of Ada 2012
81 -- loop by analyzing separate copy. Do the analysis and resolution of the
82 -- copy of the bound(s) with expansion disabled, to prevent the generation
83 -- of finalization actions. This prevents memory leaks when the bounds
84 -- contain calls to functions returning controlled arrays or when the
85 -- domain of iteration is a container.
87 ------------------------
88 -- Analyze_Assignment --
89 ------------------------
91 procedure Analyze_Assignment
(N
: Node_Id
) is
92 Lhs
: constant Node_Id
:= Name
(N
);
93 Rhs
: constant Node_Id
:= Expression
(N
);
98 procedure Diagnose_Non_Variable_Lhs
(N
: Node_Id
);
99 -- N is the node for the left hand side of an assignment, and it is not
100 -- a variable. This routine issues an appropriate diagnostic.
103 -- This is called to kill current value settings of a simple variable
104 -- on the left hand side. We call it if we find any error in analyzing
105 -- the assignment, and at the end of processing before setting any new
106 -- current values in place.
108 procedure Set_Assignment_Type
110 Opnd_Type
: in out Entity_Id
);
111 -- Opnd is either the Lhs or Rhs of the assignment, and Opnd_Type is the
112 -- nominal subtype. This procedure is used to deal with cases where the
113 -- nominal subtype must be replaced by the actual subtype.
115 -------------------------------
116 -- Diagnose_Non_Variable_Lhs --
117 -------------------------------
119 procedure Diagnose_Non_Variable_Lhs
(N
: Node_Id
) is
121 -- Not worth posting another error if left hand side already flagged
122 -- as being illegal in some respect.
124 if Error_Posted
(N
) then
127 -- Some special bad cases of entity names
129 elsif Is_Entity_Name
(N
) then
131 Ent
: constant Entity_Id
:= Entity
(N
);
134 if Ekind
(Ent
) = E_In_Parameter
then
136 ("assignment to IN mode parameter not allowed", N
);
139 -- Renamings of protected private components are turned into
140 -- constants when compiling a protected function. In the case
141 -- of single protected types, the private component appears
144 elsif (Is_Prival
(Ent
)
146 (Ekind
(Current_Scope
) = E_Function
147 or else Ekind
(Enclosing_Dynamic_Scope
148 (Current_Scope
)) = E_Function
))
150 (Ekind
(Ent
) = E_Component
151 and then Is_Protected_Type
(Scope
(Ent
)))
154 ("protected function cannot modify protected object", N
);
157 elsif Ekind
(Ent
) = E_Loop_Parameter
then
158 Error_Msg_N
("assignment to loop parameter not allowed", N
);
163 -- For indexed components, test prefix if it is in array. We do not
164 -- want to recurse for cases where the prefix is a pointer, since we
165 -- may get a message confusing the pointer and what it references.
167 elsif Nkind
(N
) = N_Indexed_Component
168 and then Is_Array_Type
(Etype
(Prefix
(N
)))
170 Diagnose_Non_Variable_Lhs
(Prefix
(N
));
173 -- Another special case for assignment to discriminant
175 elsif Nkind
(N
) = N_Selected_Component
then
176 if Present
(Entity
(Selector_Name
(N
)))
177 and then Ekind
(Entity
(Selector_Name
(N
))) = E_Discriminant
179 Error_Msg_N
("assignment to discriminant not allowed", N
);
182 -- For selection from record, diagnose prefix, but note that again
183 -- we only do this for a record, not e.g. for a pointer.
185 elsif Is_Record_Type
(Etype
(Prefix
(N
))) then
186 Diagnose_Non_Variable_Lhs
(Prefix
(N
));
191 -- If we fall through, we have no special message to issue
193 Error_Msg_N
("left hand side of assignment must be a variable", N
);
194 end Diagnose_Non_Variable_Lhs
;
200 procedure Kill_Lhs
is
202 if Is_Entity_Name
(Lhs
) then
204 Ent
: constant Entity_Id
:= Entity
(Lhs
);
206 if Present
(Ent
) then
207 Kill_Current_Values
(Ent
);
213 -------------------------
214 -- Set_Assignment_Type --
215 -------------------------
217 procedure Set_Assignment_Type
219 Opnd_Type
: in out Entity_Id
)
222 Require_Entity
(Opnd
);
224 -- If the assignment operand is an in-out or out parameter, then we
225 -- get the actual subtype (needed for the unconstrained case). If the
226 -- operand is the actual in an entry declaration, then within the
227 -- accept statement it is replaced with a local renaming, which may
228 -- also have an actual subtype.
230 if Is_Entity_Name
(Opnd
)
231 and then (Ekind
(Entity
(Opnd
)) = E_Out_Parameter
232 or else Ekind_In
(Entity
(Opnd
),
234 E_Generic_In_Out_Parameter
)
236 (Ekind
(Entity
(Opnd
)) = E_Variable
237 and then Nkind
(Parent
(Entity
(Opnd
))) =
238 N_Object_Renaming_Declaration
239 and then Nkind
(Parent
(Parent
(Entity
(Opnd
)))) =
242 Opnd_Type
:= Get_Actual_Subtype
(Opnd
);
244 -- If assignment operand is a component reference, then we get the
245 -- actual subtype of the component for the unconstrained case.
247 elsif Nkind_In
(Opnd
, N_Selected_Component
, N_Explicit_Dereference
)
248 and then not Is_Unchecked_Union
(Opnd_Type
)
250 Decl
:= Build_Actual_Subtype_Of_Component
(Opnd_Type
, Opnd
);
252 if Present
(Decl
) then
253 Insert_Action
(N
, Decl
);
254 Mark_Rewrite_Insertion
(Decl
);
256 Opnd_Type
:= Defining_Identifier
(Decl
);
257 Set_Etype
(Opnd
, Opnd_Type
);
258 Freeze_Itype
(Opnd_Type
, N
);
260 elsif Is_Constrained
(Etype
(Opnd
)) then
261 Opnd_Type
:= Etype
(Opnd
);
264 -- For slice, use the constrained subtype created for the slice
266 elsif Nkind
(Opnd
) = N_Slice
then
267 Opnd_Type
:= Etype
(Opnd
);
269 end Set_Assignment_Type
;
271 -- Start of processing for Analyze_Assignment
274 Mark_Coextensions
(N
, Rhs
);
279 -- Ensure that we never do an assignment on a variable marked as
280 -- as Safe_To_Reevaluate.
282 pragma Assert
(not Is_Entity_Name
(Lhs
)
283 or else Ekind
(Entity
(Lhs
)) /= E_Variable
284 or else not Is_Safe_To_Reevaluate
(Entity
(Lhs
)));
286 -- Start type analysis for assignment
290 -- In the most general case, both Lhs and Rhs can be overloaded, and we
291 -- must compute the intersection of the possible types on each side.
293 if Is_Overloaded
(Lhs
) then
300 Get_First_Interp
(Lhs
, I
, It
);
302 while Present
(It
.Typ
) loop
303 if Has_Compatible_Type
(Rhs
, It
.Typ
) then
304 if T1
/= Any_Type
then
306 -- An explicit dereference is overloaded if the prefix
307 -- is. Try to remove the ambiguity on the prefix, the
308 -- error will be posted there if the ambiguity is real.
310 if Nkind
(Lhs
) = N_Explicit_Dereference
then
313 PI1
: Interp_Index
:= 0;
319 Get_First_Interp
(Prefix
(Lhs
), PI
, PIt
);
321 while Present
(PIt
.Typ
) loop
322 if Is_Access_Type
(PIt
.Typ
)
323 and then Has_Compatible_Type
324 (Rhs
, Designated_Type
(PIt
.Typ
))
328 Disambiguate
(Prefix
(Lhs
),
331 if PIt
= No_Interp
then
333 ("ambiguous left-hand side"
334 & " in assignment", Lhs
);
337 Resolve
(Prefix
(Lhs
), PIt
.Typ
);
347 Get_Next_Interp
(PI
, PIt
);
353 ("ambiguous left-hand side in assignment", Lhs
);
361 Get_Next_Interp
(I
, It
);
365 if T1
= Any_Type
then
367 ("no valid types for left-hand side for assignment", Lhs
);
373 -- The resulting assignment type is T1, so now we will resolve the left
374 -- hand side of the assignment using this determined type.
378 -- Cases where Lhs is not a variable
380 if not Is_Variable
(Lhs
) then
382 -- Ada 2005 (AI-327): Check assignment to the attribute Priority of a
390 if Ada_Version
>= Ada_2005
then
392 -- Handle chains of renamings
395 while Nkind
(Ent
) in N_Has_Entity
396 and then Present
(Entity
(Ent
))
397 and then Present
(Renamed_Object
(Entity
(Ent
)))
399 Ent
:= Renamed_Object
(Entity
(Ent
));
402 if (Nkind
(Ent
) = N_Attribute_Reference
403 and then Attribute_Name
(Ent
) = Name_Priority
)
405 -- Renamings of the attribute Priority applied to protected
406 -- objects have been previously expanded into calls to the
407 -- Get_Ceiling run-time subprogram.
410 (Nkind
(Ent
) = N_Function_Call
411 and then (Entity
(Name
(Ent
)) = RTE
(RE_Get_Ceiling
)
413 Entity
(Name
(Ent
)) = RTE
(RO_PE_Get_Ceiling
)))
415 -- The enclosing subprogram cannot be a protected function
418 while not (Is_Subprogram
(S
)
419 and then Convention
(S
) = Convention_Protected
)
420 and then S
/= Standard_Standard
425 if Ekind
(S
) = E_Function
426 and then Convention
(S
) = Convention_Protected
429 ("protected function cannot modify protected object",
433 -- Changes of the ceiling priority of the protected object
434 -- are only effective if the Ceiling_Locking policy is in
435 -- effect (AARM D.5.2 (5/2)).
437 if Locking_Policy
/= 'C' then
438 Error_Msg_N
("assignment to the attribute PRIORITY has " &
440 Error_Msg_N
("\since no Locking_Policy has been " &
449 Diagnose_Non_Variable_Lhs
(Lhs
);
452 -- Error of assigning to limited type. We do however allow this in
453 -- certain cases where the front end generates the assignments.
455 elsif Is_Limited_Type
(T1
)
456 and then not Assignment_OK
(Lhs
)
457 and then not Assignment_OK
(Original_Node
(Lhs
))
458 and then not Is_Value_Type
(T1
)
460 -- CPP constructors can only be called in declarations
462 if Is_CPP_Constructor_Call
(Rhs
) then
463 Error_Msg_N
("invalid use of 'C'P'P constructor", Rhs
);
466 ("left hand of assignment must not be limited type", Lhs
);
467 Explain_Limited_Type
(T1
, Lhs
);
471 -- Enforce RM 3.9.3 (8): the target of an assignment operation cannot be
472 -- abstract. This is only checked when the assignment Comes_From_Source,
473 -- because in some cases the expander generates such assignments (such
474 -- in the _assign operation for an abstract type).
476 elsif Is_Abstract_Type
(T1
) and then Comes_From_Source
(N
) then
478 ("target of assignment operation must not be abstract", Lhs
);
481 -- Resolution may have updated the subtype, in case the left-hand side
482 -- is a private protected component. Use the correct subtype to avoid
483 -- scoping issues in the back-end.
487 -- Ada 2005 (AI-50217, AI-326): Check wrong dereference of incomplete
488 -- type. For example:
492 -- type Acc is access P.T;
495 -- with Pkg; use Acc;
496 -- procedure Example is
499 -- A.all := B.all; -- ERROR
502 if Nkind
(Lhs
) = N_Explicit_Dereference
503 and then Ekind
(T1
) = E_Incomplete_Type
505 Error_Msg_N
("invalid use of incomplete type", Lhs
);
510 -- Now we can complete the resolution of the right hand side
512 Set_Assignment_Type
(Lhs
, T1
);
515 -- This is the point at which we check for an unset reference
517 Check_Unset_Reference
(Rhs
);
518 Check_Unprotected_Access
(Lhs
, Rhs
);
520 -- Remaining steps are skipped if Rhs was syntactically in error
529 if not Covers
(T1
, T2
) then
530 Wrong_Type
(Rhs
, Etype
(Lhs
));
535 -- Ada 2005 (AI-326): In case of explicit dereference of incomplete
536 -- types, use the non-limited view if available
538 if Nkind
(Rhs
) = N_Explicit_Dereference
539 and then Ekind
(T2
) = E_Incomplete_Type
540 and then Is_Tagged_Type
(T2
)
541 and then Present
(Non_Limited_View
(T2
))
543 T2
:= Non_Limited_View
(T2
);
546 Set_Assignment_Type
(Rhs
, T2
);
548 if Total_Errors_Detected
/= 0 then
558 if T1
= Any_Type
or else T2
= Any_Type
then
563 -- If the rhs is class-wide or dynamically tagged, then require the lhs
564 -- to be class-wide. The case where the rhs is a dynamically tagged call
565 -- to a dispatching operation with a controlling access result is
566 -- excluded from this check, since the target has an access type (and
567 -- no tag propagation occurs in that case).
569 if (Is_Class_Wide_Type
(T2
)
570 or else (Is_Dynamically_Tagged
(Rhs
)
571 and then not Is_Access_Type
(T1
)))
572 and then not Is_Class_Wide_Type
(T1
)
574 Error_Msg_N
("dynamically tagged expression not allowed!", Rhs
);
576 elsif Is_Class_Wide_Type
(T1
)
577 and then not Is_Class_Wide_Type
(T2
)
578 and then not Is_Tag_Indeterminate
(Rhs
)
579 and then not Is_Dynamically_Tagged
(Rhs
)
581 Error_Msg_N
("dynamically tagged expression required!", Rhs
);
584 -- Propagate the tag from a class-wide target to the rhs when the rhs
585 -- is a tag-indeterminate call.
587 if Is_Tag_Indeterminate
(Rhs
) then
588 if Is_Class_Wide_Type
(T1
) then
589 Propagate_Tag
(Lhs
, Rhs
);
591 elsif Nkind
(Rhs
) = N_Function_Call
592 and then Is_Entity_Name
(Name
(Rhs
))
593 and then Is_Abstract_Subprogram
(Entity
(Name
(Rhs
)))
596 ("call to abstract function must be dispatching", Name
(Rhs
));
598 elsif Nkind
(Rhs
) = N_Qualified_Expression
599 and then Nkind
(Expression
(Rhs
)) = N_Function_Call
600 and then Is_Entity_Name
(Name
(Expression
(Rhs
)))
602 Is_Abstract_Subprogram
(Entity
(Name
(Expression
(Rhs
))))
605 ("call to abstract function must be dispatching",
606 Name
(Expression
(Rhs
)));
610 -- Ada 2005 (AI-385): When the lhs type is an anonymous access type,
611 -- apply an implicit conversion of the rhs to that type to force
612 -- appropriate static and run-time accessibility checks. This applies
613 -- as well to anonymous access-to-subprogram types that are component
614 -- subtypes or formal parameters.
616 if Ada_Version
>= Ada_2005
and then Is_Access_Type
(T1
) then
617 if Is_Local_Anonymous_Access
(T1
)
618 or else Ekind
(T2
) = E_Anonymous_Access_Subprogram_Type
620 -- Handle assignment to an Ada 2012 stand-alone object
621 -- of an anonymous access type.
623 or else (Ekind
(T1
) = E_Anonymous_Access_Type
624 and then Nkind
(Associated_Node_For_Itype
(T1
)) =
625 N_Object_Declaration
)
628 Rewrite
(Rhs
, Convert_To
(T1
, Relocate_Node
(Rhs
)));
629 Analyze_And_Resolve
(Rhs
, T1
);
633 -- Ada 2005 (AI-231): Assignment to not null variable
635 if Ada_Version
>= Ada_2005
636 and then Can_Never_Be_Null
(T1
)
637 and then not Assignment_OK
(Lhs
)
639 -- Case where we know the right hand side is null
641 if Known_Null
(Rhs
) then
642 Apply_Compile_Time_Constraint_Error
645 "(Ada 2005) null not allowed in null-excluding objects??",
646 Reason
=> CE_Null_Not_Allowed
);
648 -- We still mark this as a possible modification, that's necessary
649 -- to reset Is_True_Constant, and desirable for xref purposes.
651 Note_Possible_Modification
(Lhs
, Sure
=> True);
654 -- If we know the right hand side is non-null, then we convert to the
655 -- target type, since we don't need a run time check in that case.
657 elsif not Can_Never_Be_Null
(T2
) then
658 Rewrite
(Rhs
, Convert_To
(T1
, Relocate_Node
(Rhs
)));
659 Analyze_And_Resolve
(Rhs
, T1
);
663 if Is_Scalar_Type
(T1
) then
664 Apply_Scalar_Range_Check
(Rhs
, Etype
(Lhs
));
666 -- For array types, verify that lengths match. If the right hand side
667 -- is a function call that has been inlined, the assignment has been
668 -- rewritten as a block, and the constraint check will be applied to the
669 -- assignment within the block.
671 elsif Is_Array_Type
(T1
)
672 and then (Nkind
(Rhs
) /= N_Type_Conversion
673 or else Is_Constrained
(Etype
(Rhs
)))
674 and then (Nkind
(Rhs
) /= N_Function_Call
675 or else Nkind
(N
) /= N_Block_Statement
)
677 -- Assignment verifies that the length of the Lsh and Rhs are equal,
678 -- but of course the indexes do not have to match. If the right-hand
679 -- side is a type conversion to an unconstrained type, a length check
680 -- is performed on the expression itself during expansion. In rare
681 -- cases, the redundant length check is computed on an index type
682 -- with a different representation, triggering incorrect code in the
685 Apply_Length_Check
(Rhs
, Etype
(Lhs
));
688 -- Discriminant checks are applied in the course of expansion
693 -- Note: modifications of the Lhs may only be recorded after
694 -- checks have been applied.
696 Note_Possible_Modification
(Lhs
, Sure
=> True);
698 -- ??? a real accessibility check is needed when ???
700 -- Post warning for redundant assignment or variable to itself
702 if Warn_On_Redundant_Constructs
704 -- We only warn for source constructs
706 and then Comes_From_Source
(N
)
708 -- Where the object is the same on both sides
710 and then Same_Object
(Lhs
, Original_Node
(Rhs
))
712 -- But exclude the case where the right side was an operation that
713 -- got rewritten (e.g. JUNK + K, where K was known to be zero). We
714 -- don't want to warn in such a case, since it is reasonable to write
715 -- such expressions especially when K is defined symbolically in some
718 and then Nkind
(Original_Node
(Rhs
)) not in N_Op
720 if Nkind
(Lhs
) in N_Has_Entity
then
721 Error_Msg_NE
-- CODEFIX
722 ("?r?useless assignment of & to itself!", N
, Entity
(Lhs
));
724 Error_Msg_N
-- CODEFIX
725 ("?r?useless assignment of object to itself!", N
);
729 -- Check for non-allowed composite assignment
731 if not Support_Composite_Assign_On_Target
732 and then (Is_Array_Type
(T1
) or else Is_Record_Type
(T1
))
733 and then (not Has_Size_Clause
(T1
) or else Esize
(T1
) > 64)
735 Error_Msg_CRT
("composite assignment", N
);
738 -- Check elaboration warning for left side if not in elab code
740 if not In_Subprogram_Or_Concurrent_Unit
then
741 Check_Elab_Assign
(Lhs
);
744 -- Set Referenced_As_LHS if appropriate. We only set this flag if the
745 -- assignment is a source assignment in the extended main source unit.
746 -- We are not interested in any reference information outside this
747 -- context, or in compiler generated assignment statements.
749 if Comes_From_Source
(N
)
750 and then In_Extended_Main_Source_Unit
(Lhs
)
752 Set_Referenced_Modified
(Lhs
, Out_Param
=> False);
755 -- Final step. If left side is an entity, then we may be able to reset
756 -- the current tracked values to new safe values. We only have something
757 -- to do if the left side is an entity name, and expansion has not
758 -- modified the node into something other than an assignment, and of
759 -- course we only capture values if it is safe to do so.
761 if Is_Entity_Name
(Lhs
)
762 and then Nkind
(N
) = N_Assignment_Statement
765 Ent
: constant Entity_Id
:= Entity
(Lhs
);
768 if Safe_To_Capture_Value
(N
, Ent
) then
770 -- If simple variable on left side, warn if this assignment
771 -- blots out another one (rendering it useless). We only do
772 -- this for source assignments, otherwise we can generate bogus
773 -- warnings when an assignment is rewritten as another
774 -- assignment, and gets tied up with itself.
776 if Warn_On_Modified_Unread
777 and then Is_Assignable
(Ent
)
778 and then Comes_From_Source
(N
)
779 and then In_Extended_Main_Source_Unit
(Ent
)
781 Warn_On_Useless_Assignment
(Ent
, N
);
784 -- If we are assigning an access type and the left side is an
785 -- entity, then make sure that the Is_Known_[Non_]Null flags
786 -- properly reflect the state of the entity after assignment.
788 if Is_Access_Type
(T1
) then
789 if Known_Non_Null
(Rhs
) then
790 Set_Is_Known_Non_Null
(Ent
, True);
792 elsif Known_Null
(Rhs
)
793 and then not Can_Never_Be_Null
(Ent
)
795 Set_Is_Known_Null
(Ent
, True);
798 Set_Is_Known_Null
(Ent
, False);
800 if not Can_Never_Be_Null
(Ent
) then
801 Set_Is_Known_Non_Null
(Ent
, False);
805 -- For discrete types, we may be able to set the current value
806 -- if the value is known at compile time.
808 elsif Is_Discrete_Type
(T1
)
809 and then Compile_Time_Known_Value
(Rhs
)
811 Set_Current_Value
(Ent
, Rhs
);
813 Set_Current_Value
(Ent
, Empty
);
816 -- If not safe to capture values, kill them
824 -- If assigning to an object in whole or in part, note location of
825 -- assignment in case no one references value. We only do this for
826 -- source assignments, otherwise we can generate bogus warnings when an
827 -- assignment is rewritten as another assignment, and gets tied up with
831 Ent
: constant Entity_Id
:= Get_Enclosing_Object
(Lhs
);
834 and then Safe_To_Capture_Value
(N
, Ent
)
835 and then Nkind
(N
) = N_Assignment_Statement
836 and then Warn_On_Modified_Unread
837 and then Is_Assignable
(Ent
)
838 and then Comes_From_Source
(N
)
839 and then In_Extended_Main_Source_Unit
(Ent
)
841 Set_Last_Assignment
(Ent
, Lhs
);
845 Analyze_Dimension
(N
);
846 end Analyze_Assignment
;
848 -----------------------------
849 -- Analyze_Block_Statement --
850 -----------------------------
852 procedure Analyze_Block_Statement
(N
: Node_Id
) is
853 procedure Install_Return_Entities
(Scop
: Entity_Id
);
854 -- Install all entities of return statement scope Scop in the visibility
855 -- chain except for the return object since its entity is reused in a
858 -----------------------------
859 -- Install_Return_Entities --
860 -----------------------------
862 procedure Install_Return_Entities
(Scop
: Entity_Id
) is
866 Id
:= First_Entity
(Scop
);
867 while Present
(Id
) loop
869 -- Do not install the return object
871 if not Ekind_In
(Id
, E_Constant
, E_Variable
)
872 or else not Is_Return_Object
(Id
)
879 end Install_Return_Entities
;
881 -- Local constants and variables
883 Decls
: constant List_Id
:= Declarations
(N
);
884 Id
: constant Node_Id
:= Identifier
(N
);
885 HSS
: constant Node_Id
:= Handled_Statement_Sequence
(N
);
887 Is_BIP_Return_Statement
: Boolean;
889 -- Start of processing for Analyze_Block_Statement
892 -- In SPARK mode, we reject block statements. Note that the case of
893 -- block statements generated by the expander is fine.
895 if Nkind
(Original_Node
(N
)) = N_Block_Statement
then
896 Check_SPARK_Restriction
("block statement is not allowed", N
);
899 -- If no handled statement sequence is present, things are really messed
900 -- up, and we just return immediately (defence against previous errors).
903 Check_Error_Detected
;
907 -- Detect whether the block is actually a rewritten return statement of
908 -- a build-in-place function.
910 Is_BIP_Return_Statement
:=
912 and then Present
(Entity
(Id
))
913 and then Ekind
(Entity
(Id
)) = E_Return_Statement
914 and then Is_Build_In_Place_Function
915 (Return_Applies_To
(Entity
(Id
)));
917 -- Normal processing with HSS present
920 EH
: constant List_Id
:= Exception_Handlers
(HSS
);
921 Ent
: Entity_Id
:= Empty
;
924 Save_Unblocked_Exit_Count
: constant Nat
:= Unblocked_Exit_Count
;
925 -- Recursively save value of this global, will be restored on exit
928 -- Initialize unblocked exit count for statements of begin block
929 -- plus one for each exception handler that is present.
931 Unblocked_Exit_Count
:= 1;
934 Unblocked_Exit_Count
:= Unblocked_Exit_Count
+ List_Length
(EH
);
937 -- If a label is present analyze it and mark it as referenced
943 -- An error defense. If we have an identifier, but no entity, then
944 -- something is wrong. If previous errors, then just remove the
945 -- identifier and continue, otherwise raise an exception.
948 Check_Error_Detected
;
949 Set_Identifier
(N
, Empty
);
952 Set_Ekind
(Ent
, E_Block
);
953 Generate_Reference
(Ent
, N
, ' ');
954 Generate_Definition
(Ent
);
956 if Nkind
(Parent
(Ent
)) = N_Implicit_Label_Declaration
then
957 Set_Label_Construct
(Parent
(Ent
), N
);
962 -- If no entity set, create a label entity
965 Ent
:= New_Internal_Entity
(E_Block
, Current_Scope
, Sloc
(N
), 'B');
966 Set_Identifier
(N
, New_Occurrence_Of
(Ent
, Sloc
(N
)));
970 Set_Etype
(Ent
, Standard_Void_Type
);
971 Set_Block_Node
(Ent
, Identifier
(N
));
974 -- The block served as an extended return statement. Ensure that any
975 -- entities created during the analysis and expansion of the return
976 -- object declaration are once again visible.
978 if Is_BIP_Return_Statement
then
979 Install_Return_Entities
(Ent
);
982 if Present
(Decls
) then
983 Analyze_Declarations
(Decls
);
985 Inspect_Deferred_Constant_Completion
(Decls
);
989 Process_End_Label
(HSS
, 'e', Ent
);
991 -- If exception handlers are present, then we indicate that enclosing
992 -- scopes contain a block with handlers. We only need to mark non-
998 Set_Has_Nested_Block_With_Handler
(S
);
999 exit when Is_Overloadable
(S
)
1000 or else Ekind
(S
) = E_Package
1001 or else Is_Generic_Unit
(S
);
1006 Check_References
(Ent
);
1007 Warn_On_Useless_Assignments
(Ent
);
1010 if Unblocked_Exit_Count
= 0 then
1011 Unblocked_Exit_Count
:= Save_Unblocked_Exit_Count
;
1012 Check_Unreachable_Code
(N
);
1014 Unblocked_Exit_Count
:= Save_Unblocked_Exit_Count
;
1017 end Analyze_Block_Statement
;
1019 ----------------------------
1020 -- Analyze_Case_Statement --
1021 ----------------------------
1023 procedure Analyze_Case_Statement
(N
: Node_Id
) is
1025 Exp_Type
: Entity_Id
;
1026 Exp_Btype
: Entity_Id
;
1029 Others_Present
: Boolean;
1030 -- Indicates if Others was present
1032 pragma Warnings
(Off
, Last_Choice
);
1033 -- Don't care about assigned value
1035 Statements_Analyzed
: Boolean := False;
1036 -- Set True if at least some statement sequences get analyzed. If False
1037 -- on exit, means we had a serious error that prevented full analysis of
1038 -- the case statement, and as a result it is not a good idea to output
1039 -- warning messages about unreachable code.
1041 Save_Unblocked_Exit_Count
: constant Nat
:= Unblocked_Exit_Count
;
1042 -- Recursively save value of this global, will be restored on exit
1044 procedure Non_Static_Choice_Error
(Choice
: Node_Id
);
1045 -- Error routine invoked by the generic instantiation below when the
1046 -- case statement has a non static choice.
1048 procedure Process_Statements
(Alternative
: Node_Id
);
1049 -- Analyzes the statements associated with a case alternative. Needed
1050 -- by instantiation below.
1052 package Analyze_Case_Choices
is new
1053 Generic_Analyze_Choices
1054 (Process_Associated_Node
=> Process_Statements
);
1055 use Analyze_Case_Choices
;
1056 -- Instantiation of the generic choice analysis package
1058 package Check_Case_Choices
is new
1059 Generic_Check_Choices
1060 (Process_Empty_Choice
=> No_OP
,
1061 Process_Non_Static_Choice
=> Non_Static_Choice_Error
,
1062 Process_Associated_Node
=> No_OP
);
1063 use Check_Case_Choices
;
1064 -- Instantiation of the generic choice processing package
1066 -----------------------------
1067 -- Non_Static_Choice_Error --
1068 -----------------------------
1070 procedure Non_Static_Choice_Error
(Choice
: Node_Id
) is
1072 Flag_Non_Static_Expr
1073 ("choice given in case statement is not static!", Choice
);
1074 end Non_Static_Choice_Error
;
1076 ------------------------
1077 -- Process_Statements --
1078 ------------------------
1080 procedure Process_Statements
(Alternative
: Node_Id
) is
1081 Choices
: constant List_Id
:= Discrete_Choices
(Alternative
);
1085 Unblocked_Exit_Count
:= Unblocked_Exit_Count
+ 1;
1086 Statements_Analyzed
:= True;
1088 -- An interesting optimization. If the case statement expression
1089 -- is a simple entity, then we can set the current value within an
1090 -- alternative if the alternative has one possible value.
1094 -- when 2 | 3 => beta
1095 -- when others => gamma
1097 -- Here we know that N is initially 1 within alpha, but for beta and
1098 -- gamma, we do not know anything more about the initial value.
1100 if Is_Entity_Name
(Exp
) then
1101 Ent
:= Entity
(Exp
);
1103 if Ekind_In
(Ent
, E_Variable
,
1107 if List_Length
(Choices
) = 1
1108 and then Nkind
(First
(Choices
)) in N_Subexpr
1109 and then Compile_Time_Known_Value
(First
(Choices
))
1111 Set_Current_Value
(Entity
(Exp
), First
(Choices
));
1114 Analyze_Statements
(Statements
(Alternative
));
1116 -- After analyzing the case, set the current value to empty
1117 -- since we won't know what it is for the next alternative
1118 -- (unless reset by this same circuit), or after the case.
1120 Set_Current_Value
(Entity
(Exp
), Empty
);
1125 -- Case where expression is not an entity name of a variable
1127 Analyze_Statements
(Statements
(Alternative
));
1128 end Process_Statements
;
1130 -- Start of processing for Analyze_Case_Statement
1133 Unblocked_Exit_Count
:= 0;
1134 Exp
:= Expression
(N
);
1137 -- The expression must be of any discrete type. In rare cases, the
1138 -- expander constructs a case statement whose expression has a private
1139 -- type whose full view is discrete. This can happen when generating
1140 -- a stream operation for a variant type after the type is frozen,
1141 -- when the partial of view of the type of the discriminant is private.
1142 -- In that case, use the full view to analyze case alternatives.
1144 if not Is_Overloaded
(Exp
)
1145 and then not Comes_From_Source
(N
)
1146 and then Is_Private_Type
(Etype
(Exp
))
1147 and then Present
(Full_View
(Etype
(Exp
)))
1148 and then Is_Discrete_Type
(Full_View
(Etype
(Exp
)))
1150 Resolve
(Exp
, Etype
(Exp
));
1151 Exp_Type
:= Full_View
(Etype
(Exp
));
1154 Analyze_And_Resolve
(Exp
, Any_Discrete
);
1155 Exp_Type
:= Etype
(Exp
);
1158 Check_Unset_Reference
(Exp
);
1159 Exp_Btype
:= Base_Type
(Exp_Type
);
1161 -- The expression must be of a discrete type which must be determinable
1162 -- independently of the context in which the expression occurs, but
1163 -- using the fact that the expression must be of a discrete type.
1164 -- Moreover, the type this expression must not be a character literal
1165 -- (which is always ambiguous) or, for Ada-83, a generic formal type.
1167 -- If error already reported by Resolve, nothing more to do
1169 if Exp_Btype
= Any_Discrete
or else Exp_Btype
= Any_Type
then
1172 elsif Exp_Btype
= Any_Character
then
1174 ("character literal as case expression is ambiguous", Exp
);
1177 elsif Ada_Version
= Ada_83
1178 and then (Is_Generic_Type
(Exp_Btype
)
1179 or else Is_Generic_Type
(Root_Type
(Exp_Btype
)))
1182 ("(Ada 83) case expression cannot be of a generic type", Exp
);
1186 -- If the case expression is a formal object of mode in out, then treat
1187 -- it as having a nonstatic subtype by forcing use of the base type
1188 -- (which has to get passed to Check_Case_Choices below). Also use base
1189 -- type when the case expression is parenthesized.
1191 if Paren_Count
(Exp
) > 0
1192 or else (Is_Entity_Name
(Exp
)
1193 and then Ekind
(Entity
(Exp
)) = E_Generic_In_Out_Parameter
)
1195 Exp_Type
:= Exp_Btype
;
1198 -- Call instantiated procedures to analyzwe and check discrete choices
1200 Analyze_Choices
(Alternatives
(N
), Exp_Type
);
1201 Check_Choices
(N
, Alternatives
(N
), Exp_Type
, Others_Present
);
1203 -- Case statement with single OTHERS alternative not allowed in SPARK
1205 if Others_Present
and then List_Length
(Alternatives
(N
)) = 1 then
1206 Check_SPARK_Restriction
1207 ("OTHERS as unique case alternative is not allowed", N
);
1210 if Exp_Type
= Universal_Integer
and then not Others_Present
then
1211 Error_Msg_N
("case on universal integer requires OTHERS choice", Exp
);
1214 -- If all our exits were blocked by unconditional transfers of control,
1215 -- then the entire CASE statement acts as an unconditional transfer of
1216 -- control, so treat it like one, and check unreachable code. Skip this
1217 -- test if we had serious errors preventing any statement analysis.
1219 if Unblocked_Exit_Count
= 0 and then Statements_Analyzed
then
1220 Unblocked_Exit_Count
:= Save_Unblocked_Exit_Count
;
1221 Check_Unreachable_Code
(N
);
1223 Unblocked_Exit_Count
:= Save_Unblocked_Exit_Count
;
1226 -- If the expander is active it will detect the case of a statically
1227 -- determined single alternative and remove warnings for the case, but
1228 -- if we are not doing expansion, that circuit won't be active. Here we
1229 -- duplicate the effect of removing warnings in the same way, so that
1230 -- we will get the same set of warnings in -gnatc mode.
1232 if not Expander_Active
1233 and then Compile_Time_Known_Value
(Expression
(N
))
1234 and then Serious_Errors_Detected
= 0
1237 Chosen
: constant Node_Id
:= Find_Static_Alternative
(N
);
1241 Alt
:= First
(Alternatives
(N
));
1242 while Present
(Alt
) loop
1243 if Alt
/= Chosen
then
1244 Remove_Warning_Messages
(Statements
(Alt
));
1251 end Analyze_Case_Statement
;
1253 ----------------------------
1254 -- Analyze_Exit_Statement --
1255 ----------------------------
1257 -- If the exit includes a name, it must be the name of a currently open
1258 -- loop. Otherwise there must be an innermost open loop on the stack, to
1259 -- which the statement implicitly refers.
1261 -- Additionally, in SPARK mode:
1263 -- The exit can only name the closest enclosing loop;
1265 -- An exit with a when clause must be directly contained in a loop;
1267 -- An exit without a when clause must be directly contained in an
1268 -- if-statement with no elsif or else, which is itself directly contained
1269 -- in a loop. The exit must be the last statement in the if-statement.
1271 procedure Analyze_Exit_Statement
(N
: Node_Id
) is
1272 Target
: constant Node_Id
:= Name
(N
);
1273 Cond
: constant Node_Id
:= Condition
(N
);
1274 Scope_Id
: Entity_Id
;
1280 Check_Unreachable_Code
(N
);
1283 if Present
(Target
) then
1285 U_Name
:= Entity
(Target
);
1287 if not In_Open_Scopes
(U_Name
) or else Ekind
(U_Name
) /= E_Loop
then
1288 Error_Msg_N
("invalid loop name in exit statement", N
);
1292 if Has_Loop_In_Inner_Open_Scopes
(U_Name
) then
1293 Check_SPARK_Restriction
1294 ("exit label must name the closest enclosing loop", N
);
1297 Set_Has_Exit
(U_Name
);
1304 for J
in reverse 0 .. Scope_Stack
.Last
loop
1305 Scope_Id
:= Scope_Stack
.Table
(J
).Entity
;
1306 Kind
:= Ekind
(Scope_Id
);
1308 if Kind
= E_Loop
and then (No
(Target
) or else Scope_Id
= U_Name
) then
1309 Set_Has_Exit
(Scope_Id
);
1312 elsif Kind
= E_Block
1313 or else Kind
= E_Loop
1314 or else Kind
= E_Return_Statement
1320 ("cannot exit from program unit or accept statement", N
);
1325 -- Verify that if present the condition is a Boolean expression
1327 if Present
(Cond
) then
1328 Analyze_And_Resolve
(Cond
, Any_Boolean
);
1329 Check_Unset_Reference
(Cond
);
1332 -- In SPARK mode, verify that the exit statement respects the SPARK
1335 if Present
(Cond
) then
1336 if Nkind
(Parent
(N
)) /= N_Loop_Statement
then
1337 Check_SPARK_Restriction
1338 ("exit with when clause must be directly in loop", N
);
1342 if Nkind
(Parent
(N
)) /= N_If_Statement
then
1343 if Nkind
(Parent
(N
)) = N_Elsif_Part
then
1344 Check_SPARK_Restriction
1345 ("exit must be in IF without ELSIF", N
);
1347 Check_SPARK_Restriction
("exit must be directly in IF", N
);
1350 elsif Nkind
(Parent
(Parent
(N
))) /= N_Loop_Statement
then
1351 Check_SPARK_Restriction
1352 ("exit must be in IF directly in loop", N
);
1354 -- First test the presence of ELSE, so that an exit in an ELSE leads
1355 -- to an error mentioning the ELSE.
1357 elsif Present
(Else_Statements
(Parent
(N
))) then
1358 Check_SPARK_Restriction
("exit must be in IF without ELSE", N
);
1360 -- An exit in an ELSIF does not reach here, as it would have been
1361 -- detected in the case (Nkind (Parent (N)) /= N_If_Statement).
1363 elsif Present
(Elsif_Parts
(Parent
(N
))) then
1364 Check_SPARK_Restriction
("exit must be in IF without ELSIF", N
);
1368 -- Chain exit statement to associated loop entity
1370 Set_Next_Exit_Statement
(N
, First_Exit_Statement
(Scope_Id
));
1371 Set_First_Exit_Statement
(Scope_Id
, N
);
1373 -- Since the exit may take us out of a loop, any previous assignment
1374 -- statement is not useless, so clear last assignment indications. It
1375 -- is OK to keep other current values, since if the exit statement
1376 -- does not exit, then the current values are still valid.
1378 Kill_Current_Values
(Last_Assignment_Only
=> True);
1379 end Analyze_Exit_Statement
;
1381 ----------------------------
1382 -- Analyze_Goto_Statement --
1383 ----------------------------
1385 procedure Analyze_Goto_Statement
(N
: Node_Id
) is
1386 Label
: constant Node_Id
:= Name
(N
);
1387 Scope_Id
: Entity_Id
;
1388 Label_Scope
: Entity_Id
;
1389 Label_Ent
: Entity_Id
;
1392 Check_SPARK_Restriction
("goto statement is not allowed", N
);
1394 -- Actual semantic checks
1396 Check_Unreachable_Code
(N
);
1397 Kill_Current_Values
(Last_Assignment_Only
=> True);
1400 Label_Ent
:= Entity
(Label
);
1402 -- Ignore previous error
1404 if Label_Ent
= Any_Id
then
1405 Check_Error_Detected
;
1408 -- We just have a label as the target of a goto
1410 elsif Ekind
(Label_Ent
) /= E_Label
then
1411 Error_Msg_N
("target of goto statement must be a label", Label
);
1414 -- Check that the target of the goto is reachable according to Ada
1415 -- scoping rules. Note: the special gotos we generate for optimizing
1416 -- local handling of exceptions would violate these rules, but we mark
1417 -- such gotos as analyzed when built, so this code is never entered.
1419 elsif not Reachable
(Label_Ent
) then
1420 Error_Msg_N
("target of goto statement is not reachable", Label
);
1424 -- Here if goto passes initial validity checks
1426 Label_Scope
:= Enclosing_Scope
(Label_Ent
);
1428 for J
in reverse 0 .. Scope_Stack
.Last
loop
1429 Scope_Id
:= Scope_Stack
.Table
(J
).Entity
;
1431 if Label_Scope
= Scope_Id
1432 or else not Ekind_In
(Scope_Id
, E_Block
, E_Loop
, E_Return_Statement
)
1434 if Scope_Id
/= Label_Scope
then
1436 ("cannot exit from program unit or accept statement", N
);
1443 raise Program_Error
;
1444 end Analyze_Goto_Statement
;
1446 --------------------------
1447 -- Analyze_If_Statement --
1448 --------------------------
1450 -- A special complication arises in the analysis of if statements
1452 -- The expander has circuitry to completely delete code that it can tell
1453 -- will not be executed (as a result of compile time known conditions). In
1454 -- the analyzer, we ensure that code that will be deleted in this manner
1455 -- is analyzed but not expanded. This is obviously more efficient, but
1456 -- more significantly, difficulties arise if code is expanded and then
1457 -- eliminated (e.g. exception table entries disappear). Similarly, itypes
1458 -- generated in deleted code must be frozen from start, because the nodes
1459 -- on which they depend will not be available at the freeze point.
1461 procedure Analyze_If_Statement
(N
: Node_Id
) is
1464 Save_Unblocked_Exit_Count
: constant Nat
:= Unblocked_Exit_Count
;
1465 -- Recursively save value of this global, will be restored on exit
1467 Save_In_Deleted_Code
: Boolean;
1469 Del
: Boolean := False;
1470 -- This flag gets set True if a True condition has been found, which
1471 -- means that remaining ELSE/ELSIF parts are deleted.
1473 procedure Analyze_Cond_Then
(Cnode
: Node_Id
);
1474 -- This is applied to either the N_If_Statement node itself or to an
1475 -- N_Elsif_Part node. It deals with analyzing the condition and the THEN
1476 -- statements associated with it.
1478 -----------------------
1479 -- Analyze_Cond_Then --
1480 -----------------------
1482 procedure Analyze_Cond_Then
(Cnode
: Node_Id
) is
1483 Cond
: constant Node_Id
:= Condition
(Cnode
);
1484 Tstm
: constant List_Id
:= Then_Statements
(Cnode
);
1487 Unblocked_Exit_Count
:= Unblocked_Exit_Count
+ 1;
1488 Analyze_And_Resolve
(Cond
, Any_Boolean
);
1489 Check_Unset_Reference
(Cond
);
1490 Set_Current_Value_Condition
(Cnode
);
1492 -- If already deleting, then just analyze then statements
1495 Analyze_Statements
(Tstm
);
1497 -- Compile time known value, not deleting yet
1499 elsif Compile_Time_Known_Value
(Cond
) then
1500 Save_In_Deleted_Code
:= In_Deleted_Code
;
1502 -- If condition is True, then analyze the THEN statements and set
1503 -- no expansion for ELSE and ELSIF parts.
1505 if Is_True
(Expr_Value
(Cond
)) then
1506 Analyze_Statements
(Tstm
);
1508 Expander_Mode_Save_And_Set
(False);
1509 In_Deleted_Code
:= True;
1511 -- If condition is False, analyze THEN with expansion off
1513 else -- Is_False (Expr_Value (Cond))
1514 Expander_Mode_Save_And_Set
(False);
1515 In_Deleted_Code
:= True;
1516 Analyze_Statements
(Tstm
);
1517 Expander_Mode_Restore
;
1518 In_Deleted_Code
:= Save_In_Deleted_Code
;
1521 -- Not known at compile time, not deleting, normal analysis
1524 Analyze_Statements
(Tstm
);
1526 end Analyze_Cond_Then
;
1528 -- Start of Analyze_If_Statement
1531 -- Initialize exit count for else statements. If there is no else part,
1532 -- this count will stay non-zero reflecting the fact that the uncovered
1533 -- else case is an unblocked exit.
1535 Unblocked_Exit_Count
:= 1;
1536 Analyze_Cond_Then
(N
);
1538 -- Now to analyze the elsif parts if any are present
1540 if Present
(Elsif_Parts
(N
)) then
1541 E
:= First
(Elsif_Parts
(N
));
1542 while Present
(E
) loop
1543 Analyze_Cond_Then
(E
);
1548 if Present
(Else_Statements
(N
)) then
1549 Analyze_Statements
(Else_Statements
(N
));
1552 -- If all our exits were blocked by unconditional transfers of control,
1553 -- then the entire IF statement acts as an unconditional transfer of
1554 -- control, so treat it like one, and check unreachable code.
1556 if Unblocked_Exit_Count
= 0 then
1557 Unblocked_Exit_Count
:= Save_Unblocked_Exit_Count
;
1558 Check_Unreachable_Code
(N
);
1560 Unblocked_Exit_Count
:= Save_Unblocked_Exit_Count
;
1564 Expander_Mode_Restore
;
1565 In_Deleted_Code
:= Save_In_Deleted_Code
;
1568 if not Expander_Active
1569 and then Compile_Time_Known_Value
(Condition
(N
))
1570 and then Serious_Errors_Detected
= 0
1572 if Is_True
(Expr_Value
(Condition
(N
))) then
1573 Remove_Warning_Messages
(Else_Statements
(N
));
1575 if Present
(Elsif_Parts
(N
)) then
1576 E
:= First
(Elsif_Parts
(N
));
1577 while Present
(E
) loop
1578 Remove_Warning_Messages
(Then_Statements
(E
));
1584 Remove_Warning_Messages
(Then_Statements
(N
));
1588 -- Warn on redundant if statement that has no effect
1590 -- Note, we could also check empty ELSIF parts ???
1592 if Warn_On_Redundant_Constructs
1594 -- If statement must be from source
1596 and then Comes_From_Source
(N
)
1598 -- Condition must not have obvious side effect
1600 and then Has_No_Obvious_Side_Effects
(Condition
(N
))
1602 -- No elsif parts of else part
1604 and then No
(Elsif_Parts
(N
))
1605 and then No
(Else_Statements
(N
))
1607 -- Then must be a single null statement
1609 and then List_Length
(Then_Statements
(N
)) = 1
1611 -- Go to original node, since we may have rewritten something as
1612 -- a null statement (e.g. a case we could figure the outcome of).
1615 T
: constant Node_Id
:= First
(Then_Statements
(N
));
1616 S
: constant Node_Id
:= Original_Node
(T
);
1619 if Comes_From_Source
(S
) and then Nkind
(S
) = N_Null_Statement
then
1620 Error_Msg_N
("if statement has no effect?r?", N
);
1624 end Analyze_If_Statement
;
1626 ----------------------------------------
1627 -- Analyze_Implicit_Label_Declaration --
1628 ----------------------------------------
1630 -- An implicit label declaration is generated in the innermost enclosing
1631 -- declarative part. This is done for labels, and block and loop names.
1633 -- Note: any changes in this routine may need to be reflected in
1634 -- Analyze_Label_Entity.
1636 procedure Analyze_Implicit_Label_Declaration
(N
: Node_Id
) is
1637 Id
: constant Node_Id
:= Defining_Identifier
(N
);
1640 Set_Ekind
(Id
, E_Label
);
1641 Set_Etype
(Id
, Standard_Void_Type
);
1642 Set_Enclosing_Scope
(Id
, Current_Scope
);
1643 end Analyze_Implicit_Label_Declaration
;
1645 ------------------------------
1646 -- Analyze_Iteration_Scheme --
1647 ------------------------------
1649 procedure Analyze_Iteration_Scheme
(N
: Node_Id
) is
1651 Iter_Spec
: Node_Id
;
1652 Loop_Spec
: Node_Id
;
1655 -- For an infinite loop, there is no iteration scheme
1661 Cond
:= Condition
(N
);
1662 Iter_Spec
:= Iterator_Specification
(N
);
1663 Loop_Spec
:= Loop_Parameter_Specification
(N
);
1665 if Present
(Cond
) then
1666 Analyze_And_Resolve
(Cond
, Any_Boolean
);
1667 Check_Unset_Reference
(Cond
);
1668 Set_Current_Value_Condition
(N
);
1670 elsif Present
(Iter_Spec
) then
1671 Analyze_Iterator_Specification
(Iter_Spec
);
1674 Analyze_Loop_Parameter_Specification
(Loop_Spec
);
1676 end Analyze_Iteration_Scheme
;
1678 ------------------------------------
1679 -- Analyze_Iterator_Specification --
1680 ------------------------------------
1682 procedure Analyze_Iterator_Specification
(N
: Node_Id
) is
1683 Loc
: constant Source_Ptr
:= Sloc
(N
);
1684 Def_Id
: constant Node_Id
:= Defining_Identifier
(N
);
1685 Subt
: constant Node_Id
:= Subtype_Indication
(N
);
1686 Iter_Name
: constant Node_Id
:= Name
(N
);
1693 Enter_Name
(Def_Id
);
1695 if Present
(Subt
) then
1698 -- Save type of subtype indication for subsequent check
1700 if Nkind
(Subt
) = N_Subtype_Indication
then
1701 Bas
:= Entity
(Subtype_Mark
(Subt
));
1703 Bas
:= Entity
(Subt
);
1707 Preanalyze_Range
(Iter_Name
);
1709 -- Set the kind of the loop variable, which is not visible within
1710 -- the iterator name.
1712 Set_Ekind
(Def_Id
, E_Variable
);
1714 -- Provide a link between the iterator variable and the container, for
1715 -- subsequent use in cross-reference and modification information.
1717 if Of_Present
(N
) then
1718 Set_Related_Expression
(Def_Id
, Iter_Name
);
1721 -- If the domain of iteration is an expression, create a declaration for
1722 -- it, so that finalization actions are introduced outside of the loop.
1723 -- The declaration must be a renaming because the body of the loop may
1724 -- assign to elements.
1726 if not Is_Entity_Name
(Iter_Name
)
1728 -- When the context is a quantified expression, the renaming
1729 -- declaration is delayed until the expansion phase if we are
1732 and then (Nkind
(Parent
(N
)) /= N_Quantified_Expression
1733 or else Operating_Mode
= Check_Semantics
)
1735 -- Do not perform this expansion in SPARK mode, since the formal
1736 -- verification directly deals with the source form of the iterator.
1737 -- Ditto for ASIS, where the temporary may hide the transformation
1738 -- of a selected component into a prefixed function call.
1740 and then not GNATprove_Mode
1741 and then not ASIS_Mode
1744 Id
: constant Entity_Id
:= Make_Temporary
(Loc
, 'R', Iter_Name
);
1748 Typ
:= Etype
(Iter_Name
);
1750 -- Protect against malformed iterator
1752 if Typ
= Any_Type
then
1753 Error_Msg_N
("invalid expression in loop iterator", Iter_Name
);
1757 -- The name in the renaming declaration may be a function call.
1758 -- Indicate that it does not come from source, to suppress
1759 -- spurious warnings on renamings of parameterless functions,
1760 -- a common enough idiom in user-defined iterators.
1763 Make_Object_Renaming_Declaration
(Loc
,
1764 Defining_Identifier
=> Id
,
1765 Subtype_Mark
=> New_Occurrence_Of
(Typ
, Loc
),
1767 New_Copy_Tree
(Iter_Name
, New_Sloc
=> Loc
));
1769 Insert_Actions
(Parent
(Parent
(N
)), New_List
(Decl
));
1770 Rewrite
(Name
(N
), New_Occurrence_Of
(Id
, Loc
));
1771 Set_Etype
(Id
, Typ
);
1772 Set_Etype
(Name
(N
), Typ
);
1775 -- Container is an entity or an array with uncontrolled components, or
1776 -- else it is a container iterator given by a function call, typically
1777 -- called Iterate in the case of predefined containers, even though
1778 -- Iterate is not a reserved name. What matters is that the return type
1779 -- of the function is an iterator type.
1781 elsif Is_Entity_Name
(Iter_Name
) then
1782 Analyze
(Iter_Name
);
1784 if Nkind
(Iter_Name
) = N_Function_Call
then
1786 C
: constant Node_Id
:= Name
(Iter_Name
);
1791 if not Is_Overloaded
(Iter_Name
) then
1792 Resolve
(Iter_Name
, Etype
(C
));
1795 Get_First_Interp
(C
, I
, It
);
1796 while It
.Typ
/= Empty
loop
1797 if Reverse_Present
(N
) then
1798 if Is_Reversible_Iterator
(It
.Typ
) then
1799 Resolve
(Iter_Name
, It
.Typ
);
1803 elsif Is_Iterator
(It
.Typ
) then
1804 Resolve
(Iter_Name
, It
.Typ
);
1808 Get_Next_Interp
(I
, It
);
1813 -- Domain of iteration is not overloaded
1816 Resolve
(Iter_Name
, Etype
(Iter_Name
));
1820 -- Get base type of container, for proper retrieval of Cursor type
1821 -- and primitive operations.
1823 Typ
:= Base_Type
(Etype
(Iter_Name
));
1825 if Is_Array_Type
(Typ
) then
1826 if Of_Present
(N
) then
1827 Set_Etype
(Def_Id
, Component_Type
(Typ
));
1830 and then Base_Type
(Bas
) /= Base_Type
(Component_Type
(Typ
))
1833 ("subtype indication does not match component type", Subt
);
1836 -- Here we have a missing Range attribute
1840 ("missing Range attribute in iteration over an array", N
);
1842 -- In Ada 2012 mode, this may be an attempt at an iterator
1844 if Ada_Version
>= Ada_2012
then
1846 ("\if& is meant to designate an element of the array, use OF",
1850 -- Prevent cascaded errors
1852 Set_Ekind
(Def_Id
, E_Loop_Parameter
);
1853 Set_Etype
(Def_Id
, Etype
(First_Index
(Typ
)));
1856 -- Check for type error in iterator
1858 elsif Typ
= Any_Type
then
1861 -- Iteration over a container
1864 Set_Ekind
(Def_Id
, E_Loop_Parameter
);
1865 Error_Msg_Ada_2012_Feature
("container iterator", Sloc
(N
));
1869 if Of_Present
(N
) then
1870 if Has_Aspect
(Typ
, Aspect_Iterable
) then
1871 if No
(Get_Iterable_Type_Primitive
(Typ
, Name_Element
)) then
1872 Error_Msg_N
("missing Element primitive for iteration", N
);
1875 -- For a predefined container, The type of the loop variable is
1876 -- the Iterator_Element aspect of the container type.
1880 Element
: constant Entity_Id
:=
1881 Find_Value_Of_Aspect
(Typ
, Aspect_Iterator_Element
);
1884 if No
(Element
) then
1885 Error_Msg_NE
("cannot iterate over&", N
, Typ
);
1889 Set_Etype
(Def_Id
, Entity
(Element
));
1891 -- If subtype indication was given, verify that it
1892 -- matches element type of container.
1895 and then Bas
/= Base_Type
(Etype
(Def_Id
))
1898 ("subtype indication does not match element type",
1902 -- If the container has a variable indexing aspect, the
1903 -- element is a variable and is modifiable in the loop.
1905 if Has_Aspect
(Typ
, Aspect_Variable_Indexing
) then
1906 Set_Ekind
(Def_Id
, E_Variable
);
1915 -- For an iteration of the form IN, the name must denote an
1916 -- iterator, typically the result of a call to Iterate. Give a
1917 -- useful error message when the name is a container by itself.
1919 -- The type may be a formal container type, which has to have
1920 -- an Iterable aspect detailing the required primitives.
1922 if Is_Entity_Name
(Original_Node
(Name
(N
)))
1923 and then not Is_Iterator
(Typ
)
1925 if Has_Aspect
(Typ
, Aspect_Iterable
) then
1928 elsif not Has_Aspect
(Typ
, Aspect_Iterator_Element
) then
1930 ("cannot iterate over&", Name
(N
), Typ
);
1933 ("name must be an iterator, not a container", Name
(N
));
1936 if Has_Aspect
(Typ
, Aspect_Iterable
) then
1940 ("\to iterate directly over the elements of a container, "
1941 & "write `of &`", Name
(N
), Original_Node
(Name
(N
)));
1945 -- The result type of Iterate function is the classwide type of
1946 -- the interface parent. We need the specific Cursor type defined
1947 -- in the container package. We obtain it by name for a predefined
1948 -- container, or through the Iterable aspect for a formal one.
1950 if Has_Aspect
(Typ
, Aspect_Iterable
) then
1953 (Parent
(Find_Value_Of_Aspect
(Typ
, Aspect_Iterable
)),
1955 Ent
:= Etype
(Def_Id
);
1958 Ent
:= First_Entity
(Scope
(Typ
));
1959 while Present
(Ent
) loop
1960 if Chars
(Ent
) = Name_Cursor
then
1961 Set_Etype
(Def_Id
, Etype
(Ent
));
1971 -- A loop parameter cannot be volatile. This check is peformed only
1972 -- when SPARK_Mode is on as it is not a standard Ada legality check
1973 -- (SPARK RM 7.1.3(6)).
1975 -- Not clear whether this applies to element iterators, where the
1976 -- cursor is not an explicit entity ???
1979 and then not Of_Present
(N
)
1980 and then Is_SPARK_Volatile_Object
(Ent
)
1982 Error_Msg_N
("loop parameter cannot be volatile", Ent
);
1984 end Analyze_Iterator_Specification
;
1990 -- Note: the semantic work required for analyzing labels (setting them as
1991 -- reachable) was done in a prepass through the statements in the block,
1992 -- so that forward gotos would be properly handled. See Analyze_Statements
1993 -- for further details. The only processing required here is to deal with
1994 -- optimizations that depend on an assumption of sequential control flow,
1995 -- since of course the occurrence of a label breaks this assumption.
1997 procedure Analyze_Label
(N
: Node_Id
) is
1998 pragma Warnings
(Off
, N
);
2000 Kill_Current_Values
;
2003 --------------------------
2004 -- Analyze_Label_Entity --
2005 --------------------------
2007 procedure Analyze_Label_Entity
(E
: Entity_Id
) is
2009 Set_Ekind
(E
, E_Label
);
2010 Set_Etype
(E
, Standard_Void_Type
);
2011 Set_Enclosing_Scope
(E
, Current_Scope
);
2012 Set_Reachable
(E
, True);
2013 end Analyze_Label_Entity
;
2015 ------------------------------------------
2016 -- Analyze_Loop_Parameter_Specification --
2017 ------------------------------------------
2019 procedure Analyze_Loop_Parameter_Specification
(N
: Node_Id
) is
2020 Loop_Nod
: constant Node_Id
:= Parent
(Parent
(N
));
2022 procedure Check_Controlled_Array_Attribute
(DS
: Node_Id
);
2023 -- If the bounds are given by a 'Range reference on a function call
2024 -- that returns a controlled array, introduce an explicit declaration
2025 -- to capture the bounds, so that the function result can be finalized
2026 -- in timely fashion.
2028 function Has_Call_Using_Secondary_Stack
(N
: Node_Id
) return Boolean;
2029 -- N is the node for an arbitrary construct. This function searches the
2030 -- construct N to see if any expressions within it contain function
2031 -- calls that use the secondary stack, returning True if any such call
2032 -- is found, and False otherwise.
2034 procedure Process_Bounds
(R
: Node_Id
);
2035 -- If the iteration is given by a range, create temporaries and
2036 -- assignment statements block to capture the bounds and perform
2037 -- required finalization actions in case a bound includes a function
2038 -- call that uses the temporary stack. We first pre-analyze a copy of
2039 -- the range in order to determine the expected type, and analyze and
2040 -- resolve the original bounds.
2042 --------------------------------------
2043 -- Check_Controlled_Array_Attribute --
2044 --------------------------------------
2046 procedure Check_Controlled_Array_Attribute
(DS
: Node_Id
) is
2048 if Nkind
(DS
) = N_Attribute_Reference
2049 and then Is_Entity_Name
(Prefix
(DS
))
2050 and then Ekind
(Entity
(Prefix
(DS
))) = E_Function
2051 and then Is_Array_Type
(Etype
(Entity
(Prefix
(DS
))))
2053 Is_Controlled
(Component_Type
(Etype
(Entity
(Prefix
(DS
)))))
2054 and then Expander_Active
2057 Loc
: constant Source_Ptr
:= Sloc
(N
);
2058 Arr
: constant Entity_Id
:= Etype
(Entity
(Prefix
(DS
)));
2059 Indx
: constant Entity_Id
:=
2060 Base_Type
(Etype
(First_Index
(Arr
)));
2061 Subt
: constant Entity_Id
:= Make_Temporary
(Loc
, 'S');
2066 Make_Subtype_Declaration
(Loc
,
2067 Defining_Identifier
=> Subt
,
2068 Subtype_Indication
=>
2069 Make_Subtype_Indication
(Loc
,
2070 Subtype_Mark
=> New_Occurrence_Of
(Indx
, Loc
),
2072 Make_Range_Constraint
(Loc
, Relocate_Node
(DS
))));
2073 Insert_Before
(Loop_Nod
, Decl
);
2077 Make_Attribute_Reference
(Loc
,
2078 Prefix
=> New_Occurrence_Of
(Subt
, Loc
),
2079 Attribute_Name
=> Attribute_Name
(DS
)));
2084 end Check_Controlled_Array_Attribute
;
2086 ------------------------------------
2087 -- Has_Call_Using_Secondary_Stack --
2088 ------------------------------------
2090 function Has_Call_Using_Secondary_Stack
(N
: Node_Id
) return Boolean is
2092 function Check_Call
(N
: Node_Id
) return Traverse_Result
;
2093 -- Check if N is a function call which uses the secondary stack
2099 function Check_Call
(N
: Node_Id
) return Traverse_Result
is
2102 Return_Typ
: Entity_Id
;
2105 if Nkind
(N
) = N_Function_Call
then
2108 -- Call using access to subprogram with explicit dereference
2110 if Nkind
(Nam
) = N_Explicit_Dereference
then
2111 Subp
:= Etype
(Nam
);
2113 -- Call using a selected component notation or Ada 2005 object
2114 -- operation notation
2116 elsif Nkind
(Nam
) = N_Selected_Component
then
2117 Subp
:= Entity
(Selector_Name
(Nam
));
2122 Subp
:= Entity
(Nam
);
2125 Return_Typ
:= Etype
(Subp
);
2127 if Is_Composite_Type
(Return_Typ
)
2128 and then not Is_Constrained
(Return_Typ
)
2132 elsif Sec_Stack_Needed_For_Return
(Subp
) then
2137 -- Continue traversing the tree
2142 function Check_Calls
is new Traverse_Func
(Check_Call
);
2144 -- Start of processing for Has_Call_Using_Secondary_Stack
2147 return Check_Calls
(N
) = Abandon
;
2148 end Has_Call_Using_Secondary_Stack
;
2150 --------------------
2151 -- Process_Bounds --
2152 --------------------
2154 procedure Process_Bounds
(R
: Node_Id
) is
2155 Loc
: constant Source_Ptr
:= Sloc
(N
);
2158 (Original_Bound
: Node_Id
;
2159 Analyzed_Bound
: Node_Id
;
2160 Typ
: Entity_Id
) return Node_Id
;
2161 -- Capture value of bound and return captured value
2168 (Original_Bound
: Node_Id
;
2169 Analyzed_Bound
: Node_Id
;
2170 Typ
: Entity_Id
) return Node_Id
2177 -- If the bound is a constant or an object, no need for a separate
2178 -- declaration. If the bound is the result of previous expansion
2179 -- it is already analyzed and should not be modified. Note that
2180 -- the Bound will be resolved later, if needed, as part of the
2181 -- call to Make_Index (literal bounds may need to be resolved to
2184 if Analyzed
(Original_Bound
) then
2185 return Original_Bound
;
2187 elsif Nkind_In
(Analyzed_Bound
, N_Integer_Literal
,
2188 N_Character_Literal
)
2189 or else Is_Entity_Name
(Analyzed_Bound
)
2191 Analyze_And_Resolve
(Original_Bound
, Typ
);
2192 return Original_Bound
;
2195 -- Normally, the best approach is simply to generate a constant
2196 -- declaration that captures the bound. However, there is a nasty
2197 -- case where this is wrong. If the bound is complex, and has a
2198 -- possible use of the secondary stack, we need to generate a
2199 -- separate assignment statement to ensure the creation of a block
2200 -- which will release the secondary stack.
2202 -- We prefer the constant declaration, since it leaves us with a
2203 -- proper trace of the value, useful in optimizations that get rid
2204 -- of junk range checks.
2206 if not Has_Call_Using_Secondary_Stack
(Analyzed_Bound
) then
2207 Analyze_And_Resolve
(Original_Bound
, Typ
);
2209 -- Ensure that the bound is valid. This check should not be
2210 -- generated when the range belongs to a quantified expression
2211 -- as the construct is still not expanded into its final form.
2213 if Nkind
(Parent
(R
)) /= N_Loop_Parameter_Specification
2214 or else Nkind
(Parent
(Parent
(R
))) /= N_Quantified_Expression
2216 Ensure_Valid
(Original_Bound
);
2219 Force_Evaluation
(Original_Bound
);
2220 return Original_Bound
;
2223 Id
:= Make_Temporary
(Loc
, 'R', Original_Bound
);
2225 -- Here we make a declaration with a separate assignment
2226 -- statement, and insert before loop header.
2229 Make_Object_Declaration
(Loc
,
2230 Defining_Identifier
=> Id
,
2231 Object_Definition
=> New_Occurrence_Of
(Typ
, Loc
));
2234 Make_Assignment_Statement
(Loc
,
2235 Name
=> New_Occurrence_Of
(Id
, Loc
),
2236 Expression
=> Relocate_Node
(Original_Bound
));
2238 Insert_Actions
(Loop_Nod
, New_List
(Decl
, Assign
));
2240 -- Now that this temporary variable is initialized we decorate it
2241 -- as safe-to-reevaluate to inform to the backend that no further
2242 -- asignment will be issued and hence it can be handled as side
2243 -- effect free. Note that this decoration must be done when the
2244 -- assignment has been analyzed because otherwise it will be
2245 -- rejected (see Analyze_Assignment).
2247 Set_Is_Safe_To_Reevaluate
(Id
);
2249 Rewrite
(Original_Bound
, New_Occurrence_Of
(Id
, Loc
));
2251 if Nkind
(Assign
) = N_Assignment_Statement
then
2252 return Expression
(Assign
);
2254 return Original_Bound
;
2258 Hi
: constant Node_Id
:= High_Bound
(R
);
2259 Lo
: constant Node_Id
:= Low_Bound
(R
);
2260 R_Copy
: constant Node_Id
:= New_Copy_Tree
(R
);
2265 -- Start of processing for Process_Bounds
2268 Set_Parent
(R_Copy
, Parent
(R
));
2269 Preanalyze_Range
(R_Copy
);
2270 Typ
:= Etype
(R_Copy
);
2272 -- If the type of the discrete range is Universal_Integer, then the
2273 -- bound's type must be resolved to Integer, and any object used to
2274 -- hold the bound must also have type Integer, unless the literal
2275 -- bounds are constant-folded expressions with a user-defined type.
2277 if Typ
= Universal_Integer
then
2278 if Nkind
(Lo
) = N_Integer_Literal
2279 and then Present
(Etype
(Lo
))
2280 and then Scope
(Etype
(Lo
)) /= Standard_Standard
2284 elsif Nkind
(Hi
) = N_Integer_Literal
2285 and then Present
(Etype
(Hi
))
2286 and then Scope
(Etype
(Hi
)) /= Standard_Standard
2291 Typ
:= Standard_Integer
;
2297 New_Lo
:= One_Bound
(Lo
, Low_Bound
(R_Copy
), Typ
);
2298 New_Hi
:= One_Bound
(Hi
, High_Bound
(R_Copy
), Typ
);
2300 -- Propagate staticness to loop range itself, in case the
2301 -- corresponding subtype is static.
2303 if New_Lo
/= Lo
and then Is_Static_Expression
(New_Lo
) then
2304 Rewrite
(Low_Bound
(R
), New_Copy
(New_Lo
));
2307 if New_Hi
/= Hi
and then Is_Static_Expression
(New_Hi
) then
2308 Rewrite
(High_Bound
(R
), New_Copy
(New_Hi
));
2314 DS
: constant Node_Id
:= Discrete_Subtype_Definition
(N
);
2315 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
2319 -- Start of processing for Analyze_Loop_Parameter_Specification
2324 -- We always consider the loop variable to be referenced, since the loop
2325 -- may be used just for counting purposes.
2327 Generate_Reference
(Id
, N
, ' ');
2329 -- Check for the case of loop variable hiding a local variable (used
2330 -- later on to give a nice warning if the hidden variable is never
2334 H
: constant Entity_Id
:= Homonym
(Id
);
2337 and then Ekind
(H
) = E_Variable
2338 and then Is_Discrete_Type
(Etype
(H
))
2339 and then Enclosing_Dynamic_Scope
(H
) = Enclosing_Dynamic_Scope
(Id
)
2341 Set_Hiding_Loop_Variable
(H
, Id
);
2345 -- Loop parameter specification must include subtype mark in SPARK
2347 if Nkind
(DS
) = N_Range
then
2348 Check_SPARK_Restriction
2349 ("loop parameter specification must include subtype mark", N
);
2352 -- Analyze the subtype definition and create temporaries for the bounds.
2353 -- Do not evaluate the range when preanalyzing a quantified expression
2354 -- because bounds expressed as function calls with side effects will be
2355 -- erroneously replicated.
2357 if Nkind
(DS
) = N_Range
2358 and then Expander_Active
2359 and then Nkind
(Parent
(N
)) /= N_Quantified_Expression
2361 Process_Bounds
(DS
);
2363 -- Either the expander not active or the range of iteration is a subtype
2364 -- indication, an entity, or a function call that yields an aggregate or
2368 DS_Copy
:= New_Copy_Tree
(DS
);
2369 Set_Parent
(DS_Copy
, Parent
(DS
));
2370 Preanalyze_Range
(DS_Copy
);
2372 -- Ada 2012: If the domain of iteration is:
2374 -- a) a function call,
2375 -- b) an identifier that is not a type,
2376 -- c) an attribute reference 'Old (within a postcondition)
2378 -- then it is an iteration over a container. It was classified as
2379 -- a loop specification by the parser, and must be rewritten now
2380 -- to activate container iteration.
2382 if Nkind
(DS_Copy
) = N_Function_Call
2383 or else (Is_Entity_Name
(DS_Copy
)
2384 and then not Is_Type
(Entity
(DS_Copy
)))
2385 or else (Nkind
(DS_Copy
) = N_Attribute_Reference
2386 and then Attribute_Name
(DS_Copy
) = Name_Old
)
2388 -- This is an iterator specification. Rewrite it as such and
2389 -- analyze it to capture function calls that may require
2390 -- finalization actions.
2393 I_Spec
: constant Node_Id
:=
2394 Make_Iterator_Specification
(Sloc
(N
),
2395 Defining_Identifier
=> Relocate_Node
(Id
),
2397 Subtype_Indication
=> Empty
,
2398 Reverse_Present
=> Reverse_Present
(N
));
2399 Scheme
: constant Node_Id
:= Parent
(N
);
2402 Set_Iterator_Specification
(Scheme
, I_Spec
);
2403 Set_Loop_Parameter_Specification
(Scheme
, Empty
);
2404 Analyze_Iterator_Specification
(I_Spec
);
2406 -- In a generic context, analyze the original domain of
2407 -- iteration, for name capture.
2409 if not Expander_Active
then
2413 -- Set kind of loop parameter, which may be used in the
2414 -- subsequent analysis of the condition in a quantified
2417 Set_Ekind
(Id
, E_Loop_Parameter
);
2421 -- Domain of iteration is not a function call, and is side-effect
2425 -- A quantified expression that appears in a pre/post condition
2426 -- is pre-analyzed several times. If the range is given by an
2427 -- attribute reference it is rewritten as a range, and this is
2428 -- done even with expansion disabled. If the type is already set
2429 -- do not reanalyze, because a range with static bounds may be
2430 -- typed Integer by default.
2432 if Nkind
(Parent
(N
)) = N_Quantified_Expression
2433 and then Present
(Etype
(DS
))
2446 -- Some additional checks if we are iterating through a type
2448 if Is_Entity_Name
(DS
)
2449 and then Present
(Entity
(DS
))
2450 and then Is_Type
(Entity
(DS
))
2452 -- The subtype indication may denote the completion of an incomplete
2453 -- type declaration.
2455 if Ekind
(Entity
(DS
)) = E_Incomplete_Type
then
2456 Set_Entity
(DS
, Get_Full_View
(Entity
(DS
)));
2457 Set_Etype
(DS
, Entity
(DS
));
2460 -- Attempt to iterate through non-static predicate. Note that a type
2461 -- with inherited predicates may have both static and dynamic forms.
2462 -- In this case it is not sufficent to check the static predicate
2463 -- function only, look for a dynamic predicate aspect as well.
2465 if Is_Discrete_Type
(Entity
(DS
))
2466 and then Present
(Predicate_Function
(Entity
(DS
)))
2467 and then (No
(Static_Predicate
(Entity
(DS
)))
2468 or else Has_Dynamic_Predicate_Aspect
(Entity
(DS
)))
2470 Bad_Predicated_Subtype_Use
2471 ("cannot use subtype& with non-static predicate for loop " &
2472 "iteration", DS
, Entity
(DS
), Suggest_Static
=> True);
2476 -- Error if not discrete type
2478 if not Is_Discrete_Type
(Etype
(DS
)) then
2479 Wrong_Type
(DS
, Any_Discrete
);
2480 Set_Etype
(DS
, Any_Type
);
2483 Check_Controlled_Array_Attribute
(DS
);
2485 Make_Index
(DS
, N
, In_Iter_Schm
=> True);
2486 Set_Ekind
(Id
, E_Loop_Parameter
);
2488 -- A quantified expression which appears in a pre- or post-condition may
2489 -- be analyzed multiple times. The analysis of the range creates several
2490 -- itypes which reside in different scopes depending on whether the pre-
2491 -- or post-condition has been expanded. Update the type of the loop
2492 -- variable to reflect the proper itype at each stage of analysis.
2495 or else Etype
(Id
) = Any_Type
2497 (Present
(Etype
(Id
))
2498 and then Is_Itype
(Etype
(Id
))
2499 and then Nkind
(Parent
(Loop_Nod
)) = N_Expression_With_Actions
2500 and then Nkind
(Original_Node
(Parent
(Loop_Nod
))) =
2501 N_Quantified_Expression
)
2503 Set_Etype
(Id
, Etype
(DS
));
2506 -- Treat a range as an implicit reference to the type, to inhibit
2507 -- spurious warnings.
2509 Generate_Reference
(Base_Type
(Etype
(DS
)), N
, ' ');
2510 Set_Is_Known_Valid
(Id
, True);
2512 -- The loop is not a declarative part, so the loop variable must be
2513 -- frozen explicitly. Do not freeze while preanalyzing a quantified
2514 -- expression because the freeze node will not be inserted into the
2515 -- tree due to flag Is_Spec_Expression being set.
2517 if Nkind
(Parent
(N
)) /= N_Quantified_Expression
then
2519 Flist
: constant List_Id
:= Freeze_Entity
(Id
, N
);
2521 if Is_Non_Empty_List
(Flist
) then
2522 Insert_Actions
(N
, Flist
);
2527 -- Case where we have a range or a subtype, get type bounds
2529 if Nkind_In
(DS
, N_Range
, N_Subtype_Indication
)
2530 and then not Error_Posted
(DS
)
2531 and then Etype
(DS
) /= Any_Type
2532 and then Is_Discrete_Type
(Etype
(DS
))
2539 if Nkind
(DS
) = N_Range
then
2540 L
:= Low_Bound
(DS
);
2541 H
:= High_Bound
(DS
);
2544 Type_Low_Bound
(Underlying_Type
(Etype
(Subtype_Mark
(DS
))));
2546 Type_High_Bound
(Underlying_Type
(Etype
(Subtype_Mark
(DS
))));
2549 -- Check for null or possibly null range and issue warning. We
2550 -- suppress such messages in generic templates and instances,
2551 -- because in practice they tend to be dubious in these cases. The
2552 -- check applies as well to rewritten array element loops where a
2553 -- null range may be detected statically.
2555 if Compile_Time_Compare
(L
, H
, Assume_Valid
=> True) = GT
then
2557 -- Suppress the warning if inside a generic template or
2558 -- instance, since in practice they tend to be dubious in these
2559 -- cases since they can result from intended parameterization.
2561 if not Inside_A_Generic
and then not In_Instance
then
2563 -- Specialize msg if invalid values could make the loop
2564 -- non-null after all.
2566 if Compile_Time_Compare
2567 (L
, H
, Assume_Valid
=> False) = GT
2569 -- Since we know the range of the loop is null, set the
2570 -- appropriate flag to remove the loop entirely during
2573 Set_Is_Null_Loop
(Loop_Nod
);
2575 if Comes_From_Source
(N
) then
2577 ("??loop range is null, loop will not execute", DS
);
2580 -- Here is where the loop could execute because of
2581 -- invalid values, so issue appropriate message and in
2582 -- this case we do not set the Is_Null_Loop flag since
2583 -- the loop may execute.
2585 elsif Comes_From_Source
(N
) then
2587 ("??loop range may be null, loop may not execute",
2590 ("??can only execute if invalid values are present",
2595 -- In either case, suppress warnings in the body of the loop,
2596 -- since it is likely that these warnings will be inappropriate
2597 -- if the loop never actually executes, which is likely.
2599 Set_Suppress_Loop_Warnings
(Loop_Nod
);
2601 -- The other case for a warning is a reverse loop where the
2602 -- upper bound is the integer literal zero or one, and the
2603 -- lower bound may exceed this value.
2605 -- For example, we have
2607 -- for J in reverse N .. 1 loop
2609 -- In practice, this is very likely to be a case of reversing
2610 -- the bounds incorrectly in the range.
2612 elsif Reverse_Present
(N
)
2613 and then Nkind
(Original_Node
(H
)) = N_Integer_Literal
2615 (Intval
(Original_Node
(H
)) = Uint_0
2617 Intval
(Original_Node
(H
)) = Uint_1
)
2619 -- Lower bound may in fact be known and known not to exceed
2620 -- upper bound (e.g. reverse 0 .. 1) and that's OK.
2622 if Compile_Time_Known_Value
(L
)
2623 and then Expr_Value
(L
) <= Expr_Value
(H
)
2627 -- Otherwise warning is warranted
2630 Error_Msg_N
("??loop range may be null", DS
);
2631 Error_Msg_N
("\??bounds may be wrong way round", DS
);
2635 -- Check if either bound is known to be outside the range of the
2636 -- loop parameter type, this is e.g. the case of a loop from
2637 -- 20..X where the type is 1..19.
2639 -- Such a loop is dubious since either it raises CE or it executes
2640 -- zero times, and that cannot be useful!
2642 if Etype
(DS
) /= Any_Type
2643 and then not Error_Posted
(DS
)
2644 and then Nkind
(DS
) = N_Subtype_Indication
2645 and then Nkind
(Constraint
(DS
)) = N_Range_Constraint
2648 LLo
: constant Node_Id
:=
2649 Low_Bound
(Range_Expression
(Constraint
(DS
)));
2650 LHi
: constant Node_Id
:=
2651 High_Bound
(Range_Expression
(Constraint
(DS
)));
2653 Bad_Bound
: Node_Id
:= Empty
;
2654 -- Suspicious loop bound
2657 -- At this stage L, H are the bounds of the type, and LLo
2658 -- Lhi are the low bound and high bound of the loop.
2660 if Compile_Time_Compare
(LLo
, L
, Assume_Valid
=> True) = LT
2662 Compile_Time_Compare
(LLo
, H
, Assume_Valid
=> True) = GT
2667 if Compile_Time_Compare
(LHi
, L
, Assume_Valid
=> True) = LT
2669 Compile_Time_Compare
(LHi
, H
, Assume_Valid
=> True) = GT
2674 if Present
(Bad_Bound
) then
2676 ("suspicious loop bound out of range of "
2677 & "loop subtype??", Bad_Bound
);
2679 ("\loop executes zero times or raises "
2680 & "Constraint_Error??", Bad_Bound
);
2685 -- This declare block is about warnings, if we get an exception while
2686 -- testing for warnings, we simply abandon the attempt silently. This
2687 -- most likely occurs as the result of a previous error, but might
2688 -- just be an obscure case we have missed. In either case, not giving
2689 -- the warning is perfectly acceptable.
2692 when others => null;
2696 -- A loop parameter cannot be volatile. This check is peformed only
2697 -- when SPARK_Mode is on as it is not a standard Ada legality check
2698 -- (SPARK RM 7.1.3(6)).
2700 if SPARK_Mode
= On
and then Is_SPARK_Volatile_Object
(Id
) then
2701 Error_Msg_N
("loop parameter cannot be volatile", Id
);
2703 end Analyze_Loop_Parameter_Specification
;
2705 ----------------------------
2706 -- Analyze_Loop_Statement --
2707 ----------------------------
2709 procedure Analyze_Loop_Statement
(N
: Node_Id
) is
2711 function Is_Container_Iterator
(Iter
: Node_Id
) return Boolean;
2712 -- Given a loop iteration scheme, determine whether it is an Ada 2012
2713 -- container iteration.
2715 function Is_Wrapped_In_Block
(N
: Node_Id
) return Boolean;
2716 -- Determine whether node N is the sole statement of a block
2718 ---------------------------
2719 -- Is_Container_Iterator --
2720 ---------------------------
2722 function Is_Container_Iterator
(Iter
: Node_Id
) return Boolean is
2731 elsif Present
(Condition
(Iter
)) then
2734 -- for Def_Id in [reverse] Name loop
2735 -- for Def_Id [: Subtype_Indication] of [reverse] Name loop
2737 elsif Present
(Iterator_Specification
(Iter
)) then
2739 Nam
: constant Node_Id
:= Name
(Iterator_Specification
(Iter
));
2743 Nam_Copy
:= New_Copy_Tree
(Nam
);
2744 Set_Parent
(Nam_Copy
, Parent
(Nam
));
2745 Preanalyze_Range
(Nam_Copy
);
2747 -- The only two options here are iteration over a container or
2750 return not Is_Array_Type
(Etype
(Nam_Copy
));
2753 -- for Def_Id in [reverse] Discrete_Subtype_Definition loop
2757 LP
: constant Node_Id
:= Loop_Parameter_Specification
(Iter
);
2758 DS
: constant Node_Id
:= Discrete_Subtype_Definition
(LP
);
2762 DS_Copy
:= New_Copy_Tree
(DS
);
2763 Set_Parent
(DS_Copy
, Parent
(DS
));
2764 Preanalyze_Range
(DS_Copy
);
2766 -- Check for a call to Iterate ()
2769 Nkind
(DS_Copy
) = N_Function_Call
2770 and then Needs_Finalization
(Etype
(DS_Copy
));
2773 end Is_Container_Iterator
;
2775 -------------------------
2776 -- Is_Wrapped_In_Block --
2777 -------------------------
2779 function Is_Wrapped_In_Block
(N
: Node_Id
) return Boolean is
2780 HSS
: constant Node_Id
:= Parent
(N
);
2784 Nkind
(HSS
) = N_Handled_Sequence_Of_Statements
2785 and then Nkind
(Parent
(HSS
)) = N_Block_Statement
2786 and then First
(Statements
(HSS
)) = N
2787 and then No
(Next
(First
(Statements
(HSS
))));
2788 end Is_Wrapped_In_Block
;
2790 -- Local declarations
2792 Id
: constant Node_Id
:= Identifier
(N
);
2793 Iter
: constant Node_Id
:= Iteration_Scheme
(N
);
2794 Loc
: constant Source_Ptr
:= Sloc
(N
);
2798 -- Start of processing for Analyze_Loop_Statement
2801 if Present
(Id
) then
2803 -- Make name visible, e.g. for use in exit statements. Loop labels
2804 -- are always considered to be referenced.
2809 -- Guard against serious error (typically, a scope mismatch when
2810 -- semantic analysis is requested) by creating loop entity to
2811 -- continue analysis.
2814 if Total_Errors_Detected
/= 0 then
2815 Ent
:= New_Internal_Entity
(E_Loop
, Current_Scope
, Loc
, 'L');
2817 raise Program_Error
;
2821 Generate_Reference
(Ent
, N
, ' ');
2822 Generate_Definition
(Ent
);
2824 -- If we found a label, mark its type. If not, ignore it, since it
2825 -- means we have a conflicting declaration, which would already
2826 -- have been diagnosed at declaration time. Set Label_Construct
2827 -- of the implicit label declaration, which is not created by the
2828 -- parser for generic units.
2830 if Ekind
(Ent
) = E_Label
then
2831 Set_Ekind
(Ent
, E_Loop
);
2833 if Nkind
(Parent
(Ent
)) = N_Implicit_Label_Declaration
then
2834 Set_Label_Construct
(Parent
(Ent
), N
);
2839 -- Case of no identifier present
2842 Ent
:= New_Internal_Entity
(E_Loop
, Current_Scope
, Loc
, 'L');
2843 Set_Etype
(Ent
, Standard_Void_Type
);
2844 Set_Parent
(Ent
, N
);
2847 -- Iteration over a container in Ada 2012 involves the creation of a
2848 -- controlled iterator object. Wrap the loop in a block to ensure the
2849 -- timely finalization of the iterator and release of container locks.
2850 -- The same applies to the use of secondary stack when obtaining an
2853 if Ada_Version
>= Ada_2012
2854 and then Is_Container_Iterator
(Iter
)
2855 and then not Is_Wrapped_In_Block
(N
)
2858 Block_Nod
: Node_Id
;
2859 Block_Id
: Entity_Id
;
2863 Make_Block_Statement
(Loc
,
2864 Declarations
=> New_List
,
2865 Handled_Statement_Sequence
=>
2866 Make_Handled_Sequence_Of_Statements
(Loc
,
2867 Statements
=> New_List
(Relocate_Node
(N
))));
2869 Add_Block_Identifier
(Block_Nod
, Block_Id
);
2871 -- The expansion of iterator loops generates an iterator in order
2872 -- to traverse the elements of a container:
2874 -- Iter : <iterator type> := Iterate (Container)'reference;
2876 -- The iterator is controlled and returned on the secondary stack.
2877 -- The analysis of the call to Iterate establishes a transient
2878 -- scope to deal with the secondary stack management, but never
2879 -- really creates a physical block as this would kill the iterator
2880 -- too early (see Wrap_Transient_Declaration). To address this
2881 -- case, mark the generated block as needing secondary stack
2884 Set_Uses_Sec_Stack
(Block_Id
);
2886 Rewrite
(N
, Block_Nod
);
2892 -- Kill current values on entry to loop, since statements in the body of
2893 -- the loop may have been executed before the loop is entered. Similarly
2894 -- we kill values after the loop, since we do not know that the body of
2895 -- the loop was executed.
2897 Kill_Current_Values
;
2899 Analyze_Iteration_Scheme
(Iter
);
2901 -- Check for following case which merits a warning if the type E of is
2902 -- a multi-dimensional array (and no explicit subscript ranges present).
2908 and then Present
(Loop_Parameter_Specification
(Iter
))
2911 LPS
: constant Node_Id
:= Loop_Parameter_Specification
(Iter
);
2912 DSD
: constant Node_Id
:=
2913 Original_Node
(Discrete_Subtype_Definition
(LPS
));
2915 if Nkind
(DSD
) = N_Attribute_Reference
2916 and then Attribute_Name
(DSD
) = Name_Range
2917 and then No
(Expressions
(DSD
))
2920 Typ
: constant Entity_Id
:= Etype
(Prefix
(DSD
));
2922 if Is_Array_Type
(Typ
)
2923 and then Number_Dimensions
(Typ
) > 1
2924 and then Nkind
(Parent
(N
)) = N_Loop_Statement
2925 and then Present
(Iteration_Scheme
(Parent
(N
)))
2928 OIter
: constant Node_Id
:=
2929 Iteration_Scheme
(Parent
(N
));
2930 OLPS
: constant Node_Id
:=
2931 Loop_Parameter_Specification
(OIter
);
2932 ODSD
: constant Node_Id
:=
2933 Original_Node
(Discrete_Subtype_Definition
(OLPS
));
2935 if Nkind
(ODSD
) = N_Attribute_Reference
2936 and then Attribute_Name
(ODSD
) = Name_Range
2937 and then No
(Expressions
(ODSD
))
2938 and then Etype
(Prefix
(ODSD
)) = Typ
2940 Error_Msg_Sloc
:= Sloc
(ODSD
);
2942 ("inner range same as outer range#??", DSD
);
2951 -- Analyze the statements of the body except in the case of an Ada 2012
2952 -- iterator with the expander active. In this case the expander will do
2953 -- a rewrite of the loop into a while loop. We will then analyze the
2954 -- loop body when we analyze this while loop.
2956 -- We need to do this delay because if the container is for indefinite
2957 -- types the actual subtype of the components will only be determined
2958 -- when the cursor declaration is analyzed.
2960 -- If the expander is not active, or in SPARK mode, then we want to
2961 -- analyze the loop body now even in the Ada 2012 iterator case, since
2962 -- the rewriting will not be done. Insert the loop variable in the
2963 -- current scope, if not done when analysing the iteration scheme.
2966 or else No
(Iterator_Specification
(Iter
))
2967 or else not Expander_Active
2970 and then Present
(Iterator_Specification
(Iter
))
2973 Id
: constant Entity_Id
:=
2974 Defining_Identifier
(Iterator_Specification
(Iter
));
2976 if Scope
(Id
) /= Current_Scope
then
2982 Analyze_Statements
(Statements
(N
));
2985 -- When the iteration scheme of a loop contains attribute 'Loop_Entry,
2986 -- the loop is transformed into a conditional block. Retrieve the loop.
2990 if Subject_To_Loop_Entry_Attributes
(Stmt
) then
2991 Stmt
:= Find_Loop_In_Conditional_Block
(Stmt
);
2994 -- Finish up processing for the loop. We kill all current values, since
2995 -- in general we don't know if the statements in the loop have been
2996 -- executed. We could do a bit better than this with a loop that we
2997 -- know will execute at least once, but it's not worth the trouble and
2998 -- the front end is not in the business of flow tracing.
3000 Process_End_Label
(Stmt
, 'e', Ent
);
3002 Kill_Current_Values
;
3004 -- Check for infinite loop. Skip check for generated code, since it
3005 -- justs waste time and makes debugging the routine called harder.
3007 -- Note that we have to wait till the body of the loop is fully analyzed
3008 -- before making this call, since Check_Infinite_Loop_Warning relies on
3009 -- being able to use semantic visibility information to find references.
3011 if Comes_From_Source
(Stmt
) then
3012 Check_Infinite_Loop_Warning
(Stmt
);
3015 -- Code after loop is unreachable if the loop has no WHILE or FOR and
3016 -- contains no EXIT statements within the body of the loop.
3018 if No
(Iter
) and then not Has_Exit
(Ent
) then
3019 Check_Unreachable_Code
(Stmt
);
3021 end Analyze_Loop_Statement
;
3023 ----------------------------
3024 -- Analyze_Null_Statement --
3025 ----------------------------
3027 -- Note: the semantics of the null statement is implemented by a single
3028 -- null statement, too bad everything isn't as simple as this.
3030 procedure Analyze_Null_Statement
(N
: Node_Id
) is
3031 pragma Warnings
(Off
, N
);
3034 end Analyze_Null_Statement
;
3036 ------------------------
3037 -- Analyze_Statements --
3038 ------------------------
3040 procedure Analyze_Statements
(L
: List_Id
) is
3045 -- The labels declared in the statement list are reachable from
3046 -- statements in the list. We do this as a prepass so that any goto
3047 -- statement will be properly flagged if its target is not reachable.
3048 -- This is not required, but is nice behavior.
3051 while Present
(S
) loop
3052 if Nkind
(S
) = N_Label
then
3053 Analyze
(Identifier
(S
));
3054 Lab
:= Entity
(Identifier
(S
));
3056 -- If we found a label mark it as reachable
3058 if Ekind
(Lab
) = E_Label
then
3059 Generate_Definition
(Lab
);
3060 Set_Reachable
(Lab
);
3062 if Nkind
(Parent
(Lab
)) = N_Implicit_Label_Declaration
then
3063 Set_Label_Construct
(Parent
(Lab
), S
);
3066 -- If we failed to find a label, it means the implicit declaration
3067 -- of the label was hidden. A for-loop parameter can do this to
3068 -- a label with the same name inside the loop, since the implicit
3069 -- label declaration is in the innermost enclosing body or block
3073 Error_Msg_Sloc
:= Sloc
(Lab
);
3075 ("implicit label declaration for & is hidden#",
3083 -- Perform semantic analysis on all statements
3085 Conditional_Statements_Begin
;
3088 while Present
(S
) loop
3091 -- Remove dimension in all statements
3093 Remove_Dimension_In_Statement
(S
);
3097 Conditional_Statements_End
;
3099 -- Make labels unreachable. Visibility is not sufficient, because labels
3100 -- in one if-branch for example are not reachable from the other branch,
3101 -- even though their declarations are in the enclosing declarative part.
3104 while Present
(S
) loop
3105 if Nkind
(S
) = N_Label
then
3106 Set_Reachable
(Entity
(Identifier
(S
)), False);
3111 end Analyze_Statements
;
3113 ----------------------------
3114 -- Check_Unreachable_Code --
3115 ----------------------------
3117 procedure Check_Unreachable_Code
(N
: Node_Id
) is
3118 Error_Node
: Node_Id
;
3122 if Is_List_Member
(N
) and then Comes_From_Source
(N
) then
3127 Nxt
:= Original_Node
(Next
(N
));
3129 -- Skip past pragmas
3131 while Nkind
(Nxt
) = N_Pragma
loop
3132 Nxt
:= Original_Node
(Next
(Nxt
));
3135 -- If a label follows us, then we never have dead code, since
3136 -- someone could branch to the label, so we just ignore it, unless
3137 -- we are in formal mode where goto statements are not allowed.
3139 if Nkind
(Nxt
) = N_Label
3140 and then not Restriction_Check_Required
(SPARK_05
)
3144 -- Otherwise see if we have a real statement following us
3147 and then Comes_From_Source
(Nxt
)
3148 and then Is_Statement
(Nxt
)
3150 -- Special very annoying exception. If we have a return that
3151 -- follows a raise, then we allow it without a warning, since
3152 -- the Ada RM annoyingly requires a useless return here.
3154 if Nkind
(Original_Node
(N
)) /= N_Raise_Statement
3155 or else Nkind
(Nxt
) /= N_Simple_Return_Statement
3157 -- The rather strange shenanigans with the warning message
3158 -- here reflects the fact that Kill_Dead_Code is very good
3159 -- at removing warnings in deleted code, and this is one
3160 -- warning we would prefer NOT to have removed.
3164 -- If we have unreachable code, analyze and remove the
3165 -- unreachable code, since it is useless and we don't
3166 -- want to generate junk warnings.
3168 -- We skip this step if we are not in code generation mode.
3169 -- This is the one case where we remove dead code in the
3170 -- semantics as opposed to the expander, and we do not want
3171 -- to remove code if we are not in code generation mode,
3172 -- since this messes up the ASIS trees.
3174 -- Note that one might react by moving the whole circuit to
3175 -- exp_ch5, but then we lose the warning in -gnatc mode.
3177 if Operating_Mode
= Generate_Code
then
3181 -- Quit deleting when we have nothing more to delete
3182 -- or if we hit a label (since someone could transfer
3183 -- control to a label, so we should not delete it).
3185 exit when No
(Nxt
) or else Nkind
(Nxt
) = N_Label
;
3187 -- Statement/declaration is to be deleted
3191 Kill_Dead_Code
(Nxt
);
3195 -- Now issue the warning (or error in formal mode)
3197 if Restriction_Check_Required
(SPARK_05
) then
3198 Check_SPARK_Restriction
3199 ("unreachable code is not allowed", Error_Node
);
3201 Error_Msg
("??unreachable code!", Sloc
(Error_Node
));
3205 -- If the unconditional transfer of control instruction is the
3206 -- last statement of a sequence, then see if our parent is one of
3207 -- the constructs for which we count unblocked exits, and if so,
3208 -- adjust the count.
3213 -- Statements in THEN part or ELSE part of IF statement
3215 if Nkind
(P
) = N_If_Statement
then
3218 -- Statements in ELSIF part of an IF statement
3220 elsif Nkind
(P
) = N_Elsif_Part
then
3222 pragma Assert
(Nkind
(P
) = N_If_Statement
);
3224 -- Statements in CASE statement alternative
3226 elsif Nkind
(P
) = N_Case_Statement_Alternative
then
3228 pragma Assert
(Nkind
(P
) = N_Case_Statement
);
3230 -- Statements in body of block
3232 elsif Nkind
(P
) = N_Handled_Sequence_Of_Statements
3233 and then Nkind
(Parent
(P
)) = N_Block_Statement
3235 -- The original loop is now placed inside a block statement
3236 -- due to the expansion of attribute 'Loop_Entry. Return as
3237 -- this is not a "real" block for the purposes of exit
3240 if Nkind
(N
) = N_Loop_Statement
3241 and then Subject_To_Loop_Entry_Attributes
(N
)
3246 -- Statements in exception handler in a block
3248 elsif Nkind
(P
) = N_Exception_Handler
3249 and then Nkind
(Parent
(P
)) = N_Handled_Sequence_Of_Statements
3250 and then Nkind
(Parent
(Parent
(P
))) = N_Block_Statement
3254 -- None of these cases, so return
3260 -- This was one of the cases we are looking for (i.e. the
3261 -- parent construct was IF, CASE or block) so decrement count.
3263 Unblocked_Exit_Count
:= Unblocked_Exit_Count
- 1;
3267 end Check_Unreachable_Code
;
3269 ----------------------
3270 -- Preanalyze_Range --
3271 ----------------------
3273 procedure Preanalyze_Range
(R_Copy
: Node_Id
) is
3274 Save_Analysis
: constant Boolean := Full_Analysis
;
3278 Full_Analysis
:= False;
3279 Expander_Mode_Save_And_Set
(False);
3283 if Nkind
(R_Copy
) in N_Subexpr
and then Is_Overloaded
(R_Copy
) then
3285 -- Apply preference rules for range of predefined integer types, or
3286 -- diagnose true ambiguity.
3291 Found
: Entity_Id
:= Empty
;
3294 Get_First_Interp
(R_Copy
, I
, It
);
3295 while Present
(It
.Typ
) loop
3296 if Is_Discrete_Type
(It
.Typ
) then
3300 if Scope
(Found
) = Standard_Standard
then
3303 elsif Scope
(It
.Typ
) = Standard_Standard
then
3307 -- Both of them are user-defined
3310 ("ambiguous bounds in range of iteration", R_Copy
);
3311 Error_Msg_N
("\possible interpretations:", R_Copy
);
3312 Error_Msg_NE
("\\} ", R_Copy
, Found
);
3313 Error_Msg_NE
("\\} ", R_Copy
, It
.Typ
);
3319 Get_Next_Interp
(I
, It
);
3324 -- Subtype mark in iteration scheme
3326 if Is_Entity_Name
(R_Copy
) and then Is_Type
(Entity
(R_Copy
)) then
3329 -- Expression in range, or Ada 2012 iterator
3331 elsif Nkind
(R_Copy
) in N_Subexpr
then
3333 Typ
:= Etype
(R_Copy
);
3335 if Is_Discrete_Type
(Typ
) then
3338 -- Check that the resulting object is an iterable container
3340 elsif Has_Aspect
(Typ
, Aspect_Iterator_Element
)
3341 or else Has_Aspect
(Typ
, Aspect_Constant_Indexing
)
3342 or else Has_Aspect
(Typ
, Aspect_Variable_Indexing
)
3346 -- The expression may yield an implicit reference to an iterable
3347 -- container. Insert explicit dereference so that proper type is
3348 -- visible in the loop.
3350 elsif Has_Implicit_Dereference
(Etype
(R_Copy
)) then
3355 Disc
:= First_Discriminant
(Typ
);
3356 while Present
(Disc
) loop
3357 if Has_Implicit_Dereference
(Disc
) then
3358 Build_Explicit_Dereference
(R_Copy
, Disc
);
3362 Next_Discriminant
(Disc
);
3369 Expander_Mode_Restore
;
3370 Full_Analysis
:= Save_Analysis
;
3371 end Preanalyze_Range
;