1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 2001-2013, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Atree
; use Atree
;
27 with Checks
; use Checks
;
28 with Debug
; use Debug
;
29 with Einfo
; use Einfo
;
30 with Errout
; use Errout
;
31 with Exp_Ch3
; use Exp_Ch3
;
32 with Exp_Util
; use Exp_Util
;
33 with Namet
; use Namet
;
34 with Nlists
; use Nlists
;
35 with Nmake
; use Nmake
;
37 with Repinfo
; use Repinfo
;
39 with Sem_Aux
; use Sem_Aux
;
40 with Sem_Case
; use Sem_Case
;
41 with Sem_Ch13
; use Sem_Ch13
;
42 with Sem_Eval
; use Sem_Eval
;
43 with Sem_Util
; use Sem_Util
;
44 with Sinfo
; use Sinfo
;
45 with Snames
; use Snames
;
46 with Stand
; use Stand
;
47 with Targparm
; use Targparm
;
48 with Tbuild
; use Tbuild
;
49 with Ttypes
; use Ttypes
;
50 with Uintp
; use Uintp
;
52 package body Layout
is
54 ------------------------
55 -- Local Declarations --
56 ------------------------
58 SSU
: constant Int
:= Ttypes
.System_Storage_Unit
;
59 -- Short hand for System_Storage_Unit
61 Vname
: constant Name_Id
:= Name_uV
;
62 -- Formal parameter name used for functions generated for size offset
63 -- values that depend on the discriminant. All such functions have the
66 -- function xxx (V : vtyp) return Unsigned is
68 -- return ... expression involving V.discrim
71 -----------------------
72 -- Local Subprograms --
73 -----------------------
78 Right_Opnd
: Node_Id
) return Node_Id
;
79 -- This is like Make_Op_Add except that it optimizes some cases knowing
80 -- that associative rearrangement is allowed for constant folding if one
81 -- of the operands is a compile time known value.
83 function Assoc_Multiply
86 Right_Opnd
: Node_Id
) return Node_Id
;
87 -- This is like Make_Op_Multiply except that it optimizes some cases
88 -- knowing that associative rearrangement is allowed for constant folding
89 -- if one of the operands is a compile time known value
91 function Assoc_Subtract
94 Right_Opnd
: Node_Id
) return Node_Id
;
95 -- This is like Make_Op_Subtract except that it optimizes some cases
96 -- knowing that associative rearrangement is allowed for constant folding
97 -- if one of the operands is a compile time known value
99 function Bits_To_SU
(N
: Node_Id
) return Node_Id
;
100 -- This is used when we cross the boundary from static sizes in bits to
101 -- dynamic sizes in storage units. If the argument N is anything other
102 -- than an integer literal, it is returned unchanged, but if it is an
103 -- integer literal, then it is taken as a size in bits, and is replaced
104 -- by the corresponding size in storage units.
106 function Compute_Length
(Lo
: Node_Id
; Hi
: Node_Id
) return Node_Id
;
107 -- Given expressions for the low bound (Lo) and the high bound (Hi),
108 -- Build an expression for the value hi-lo+1, converted to type
109 -- Standard.Unsigned. Takes care of the case where the operands
110 -- are of an enumeration type (so that the subtraction cannot be
111 -- done directly) by applying the Pos operator to Hi/Lo first.
113 procedure Compute_Size_Depends_On_Discriminant
(E
: Entity_Id
);
114 -- Given an array type or an array subtype E, compute whether its size
115 -- depends on the value of one or more discriminants and set the flag
116 -- Size_Depends_On_Discriminant accordingly. This need not be called
117 -- in front end layout mode since it does the computation on its own.
119 function Expr_From_SO_Ref
122 Comp
: Entity_Id
:= Empty
) return Node_Id
;
123 -- Given a value D from a size or offset field, return an expression
124 -- representing the value stored. If the value is known at compile time,
125 -- then an N_Integer_Literal is returned with the appropriate value. If
126 -- the value references a constant entity, then an N_Identifier node
127 -- referencing this entity is returned. If the value denotes a size
128 -- function, then returns a call node denoting the given function, with
129 -- a single actual parameter that either refers to the parameter V of
130 -- an enclosing size function (if Comp is Empty or its type doesn't match
131 -- the function's formal), or else is a selected component V.c when Comp
132 -- denotes a component c whose type matches that of the function formal.
133 -- The Loc value is used for the Sloc value of constructed notes.
135 function SO_Ref_From_Expr
137 Ins_Type
: Entity_Id
;
138 Vtype
: Entity_Id
:= Empty
;
139 Make_Func
: Boolean := False) return Dynamic_SO_Ref
;
140 -- This routine is used in the case where a size/offset value is dynamic
141 -- and is represented by the expression Expr. SO_Ref_From_Expr checks if
142 -- the Expr contains a reference to the identifier V, and if so builds
143 -- a function depending on discriminants of the formal parameter V which
144 -- is of type Vtype. Otherwise, if the parameter Make_Func is True, then
145 -- Expr will be encapsulated in a parameterless function; if Make_Func is
146 -- False, then a constant entity with the value Expr is built. The result
147 -- is a Dynamic_SO_Ref to the created entity. Note that Vtype can be
148 -- omitted if Expr does not contain any reference to V, the created entity.
149 -- The declaration created is inserted in the freeze actions of Ins_Type,
150 -- which also supplies the Sloc for created nodes. This function also takes
151 -- care of making sure that the expression is properly analyzed and
152 -- resolved (which may not be the case yet if we build the expression
155 function Get_Max_SU_Size
(E
: Entity_Id
) return Node_Id
;
156 -- E is an array type or subtype that has at least one index bound that
157 -- is the value of a record discriminant. For such an array, the function
158 -- computes an expression that yields the maximum possible size of the
159 -- array in storage units. The result is not defined for any other type,
160 -- or for arrays that do not depend on discriminants, and it is a fatal
161 -- error to call this unless Size_Depends_On_Discriminant (E) is True.
163 procedure Layout_Array_Type
(E
: Entity_Id
);
164 -- Front-end layout of non-bit-packed array type or subtype
166 procedure Layout_Record_Type
(E
: Entity_Id
);
167 -- Front-end layout of record type
169 procedure Rewrite_Integer
(N
: Node_Id
; V
: Uint
);
170 -- Rewrite node N with an integer literal whose value is V. The Sloc for
171 -- the new node is taken from N, and the type of the literal is set to a
172 -- copy of the type of N on entry.
174 procedure Set_And_Check_Static_Size
178 -- This procedure is called to check explicit given sizes (possibly stored
179 -- in the Esize and RM_Size fields of E) against computed Object_Size
180 -- (Esiz) and Value_Size (RM_Siz) values. Appropriate errors and warnings
181 -- are posted if specified sizes are inconsistent with specified sizes. On
182 -- return, Esize and RM_Size fields of E are set (either from previously
183 -- given values, or from the newly computed values, as appropriate).
185 procedure Set_Composite_Alignment
(E
: Entity_Id
);
186 -- This procedure is called for record types and subtypes, and also for
187 -- atomic array types and subtypes. If no alignment is set, and the size
188 -- is 2 or 4 (or 8 if the word size is 8), then the alignment is set to
191 ----------------------------
192 -- Adjust_Esize_Alignment --
193 ----------------------------
195 procedure Adjust_Esize_Alignment
(E
: Entity_Id
) is
200 -- Nothing to do if size unknown
202 if Unknown_Esize
(E
) then
206 -- Determine if size is constrained by an attribute definition clause
207 -- which must be obeyed. If so, we cannot increase the size in this
210 -- For a type, the issue is whether an object size clause has been set.
211 -- A normal size clause constrains only the value size (RM_Size)
214 Esize_Set
:= Has_Object_Size_Clause
(E
);
216 -- For an object, the issue is whether a size clause is present
219 Esize_Set
:= Has_Size_Clause
(E
);
222 -- If size is known it must be a multiple of the storage unit size
224 if Esize
(E
) mod SSU
/= 0 then
226 -- If not, and size specified, then give error
230 ("size for& not a multiple of storage unit size",
234 -- Otherwise bump up size to a storage unit boundary
237 Set_Esize
(E
, (Esize
(E
) + SSU
- 1) / SSU
* SSU
);
241 -- Now we have the size set, it must be a multiple of the alignment
242 -- nothing more we can do here if the alignment is unknown here.
244 if Unknown_Alignment
(E
) then
248 -- At this point both the Esize and Alignment are known, so we need
249 -- to make sure they are consistent.
251 Abits
:= UI_To_Int
(Alignment
(E
)) * SSU
;
253 if Esize
(E
) mod Abits
= 0 then
257 -- Here we have a situation where the Esize is not a multiple of the
258 -- alignment. We must either increase Esize or reduce the alignment to
259 -- correct this situation.
261 -- The case in which we can decrease the alignment is where the
262 -- alignment was not set by an alignment clause, and the type in
263 -- question is a discrete type, where it is definitely safe to reduce
264 -- the alignment. For example:
266 -- t : integer range 1 .. 2;
269 -- In this situation, the initial alignment of t is 4, copied from
270 -- the Integer base type, but it is safe to reduce it to 1 at this
271 -- stage, since we will only be loading a single storage unit.
273 if Is_Discrete_Type
(Etype
(E
))
274 and then not Has_Alignment_Clause
(E
)
278 exit when Esize
(E
) mod Abits
= 0;
281 Init_Alignment
(E
, Abits
/ SSU
);
285 -- Now the only possible approach left is to increase the Esize but we
286 -- can't do that if the size was set by a specific clause.
290 ("size for& is not a multiple of alignment",
293 -- Otherwise we can indeed increase the size to a multiple of alignment
296 Set_Esize
(E
, ((Esize
(E
) + (Abits
- 1)) / Abits
) * Abits
);
298 end Adjust_Esize_Alignment
;
307 Right_Opnd
: Node_Id
) return Node_Id
313 -- Case of right operand is a constant
315 if Compile_Time_Known_Value
(Right_Opnd
) then
317 R
:= Expr_Value
(Right_Opnd
);
319 -- Case of left operand is a constant
321 elsif Compile_Time_Known_Value
(Left_Opnd
) then
323 R
:= Expr_Value
(Left_Opnd
);
325 -- Neither operand is a constant, do the addition with no optimization
328 return Make_Op_Add
(Loc
, Left_Opnd
, Right_Opnd
);
331 -- Case of left operand is an addition
333 if Nkind
(L
) = N_Op_Add
then
335 -- (C1 + E) + C2 = (C1 + C2) + E
337 if Compile_Time_Known_Value
(Sinfo
.Left_Opnd
(L
)) then
339 (Sinfo
.Left_Opnd
(L
),
340 Expr_Value
(Sinfo
.Left_Opnd
(L
)) + R
);
343 -- (E + C1) + C2 = E + (C1 + C2)
345 elsif Compile_Time_Known_Value
(Sinfo
.Right_Opnd
(L
)) then
347 (Sinfo
.Right_Opnd
(L
),
348 Expr_Value
(Sinfo
.Right_Opnd
(L
)) + R
);
352 -- Case of left operand is a subtraction
354 elsif Nkind
(L
) = N_Op_Subtract
then
356 -- (C1 - E) + C2 = (C1 + C2) + E
358 if Compile_Time_Known_Value
(Sinfo
.Left_Opnd
(L
)) then
360 (Sinfo
.Left_Opnd
(L
),
361 Expr_Value
(Sinfo
.Left_Opnd
(L
)) + R
);
364 -- (E - C1) + C2 = E - (C1 - C2)
366 elsif Compile_Time_Known_Value
(Sinfo
.Right_Opnd
(L
)) then
368 (Sinfo
.Right_Opnd
(L
),
369 Expr_Value
(Sinfo
.Right_Opnd
(L
)) - R
);
374 -- Not optimizable, do the addition
376 return Make_Op_Add
(Loc
, Left_Opnd
, Right_Opnd
);
383 function Assoc_Multiply
386 Right_Opnd
: Node_Id
) return Node_Id
392 -- Case of right operand is a constant
394 if Compile_Time_Known_Value
(Right_Opnd
) then
396 R
:= Expr_Value
(Right_Opnd
);
398 -- Case of left operand is a constant
400 elsif Compile_Time_Known_Value
(Left_Opnd
) then
402 R
:= Expr_Value
(Left_Opnd
);
404 -- Neither operand is a constant, do the multiply with no optimization
407 return Make_Op_Multiply
(Loc
, Left_Opnd
, Right_Opnd
);
410 -- Case of left operand is an multiplication
412 if Nkind
(L
) = N_Op_Multiply
then
414 -- (C1 * E) * C2 = (C1 * C2) + E
416 if Compile_Time_Known_Value
(Sinfo
.Left_Opnd
(L
)) then
418 (Sinfo
.Left_Opnd
(L
),
419 Expr_Value
(Sinfo
.Left_Opnd
(L
)) * R
);
422 -- (E * C1) * C2 = E * (C1 * C2)
424 elsif Compile_Time_Known_Value
(Sinfo
.Right_Opnd
(L
)) then
426 (Sinfo
.Right_Opnd
(L
),
427 Expr_Value
(Sinfo
.Right_Opnd
(L
)) * R
);
432 -- Not optimizable, do the multiplication
434 return Make_Op_Multiply
(Loc
, Left_Opnd
, Right_Opnd
);
441 function Assoc_Subtract
444 Right_Opnd
: Node_Id
) return Node_Id
450 -- Case of right operand is a constant
452 if Compile_Time_Known_Value
(Right_Opnd
) then
454 R
:= Expr_Value
(Right_Opnd
);
456 -- Right operand is a constant, do the subtract with no optimization
459 return Make_Op_Subtract
(Loc
, Left_Opnd
, Right_Opnd
);
462 -- Case of left operand is an addition
464 if Nkind
(L
) = N_Op_Add
then
466 -- (C1 + E) - C2 = (C1 - C2) + E
468 if Compile_Time_Known_Value
(Sinfo
.Left_Opnd
(L
)) then
470 (Sinfo
.Left_Opnd
(L
),
471 Expr_Value
(Sinfo
.Left_Opnd
(L
)) - R
);
474 -- (E + C1) - C2 = E + (C1 - C2)
476 elsif Compile_Time_Known_Value
(Sinfo
.Right_Opnd
(L
)) then
478 (Sinfo
.Right_Opnd
(L
),
479 Expr_Value
(Sinfo
.Right_Opnd
(L
)) - R
);
483 -- Case of left operand is a subtraction
485 elsif Nkind
(L
) = N_Op_Subtract
then
487 -- (C1 - E) - C2 = (C1 - C2) + E
489 if Compile_Time_Known_Value
(Sinfo
.Left_Opnd
(L
)) then
491 (Sinfo
.Left_Opnd
(L
),
492 Expr_Value
(Sinfo
.Left_Opnd
(L
)) + R
);
495 -- (E - C1) - C2 = E - (C1 + C2)
497 elsif Compile_Time_Known_Value
(Sinfo
.Right_Opnd
(L
)) then
499 (Sinfo
.Right_Opnd
(L
),
500 Expr_Value
(Sinfo
.Right_Opnd
(L
)) + R
);
505 -- Not optimizable, do the subtraction
507 return Make_Op_Subtract
(Loc
, Left_Opnd
, Right_Opnd
);
514 function Bits_To_SU
(N
: Node_Id
) return Node_Id
is
516 if Nkind
(N
) = N_Integer_Literal
then
517 Set_Intval
(N
, (Intval
(N
) + (SSU
- 1)) / SSU
);
527 function Compute_Length
(Lo
: Node_Id
; Hi
: Node_Id
) return Node_Id
is
528 Loc
: constant Source_Ptr
:= Sloc
(Lo
);
529 Typ
: constant Entity_Id
:= Etype
(Lo
);
536 -- If the bounds are First and Last attributes for the same dimension
537 -- and both have prefixes that denotes the same entity, then we create
538 -- and return a Length attribute. This may allow the back end to
539 -- generate better code in cases where it already has the length.
541 if Nkind
(Lo
) = N_Attribute_Reference
542 and then Attribute_Name
(Lo
) = Name_First
543 and then Nkind
(Hi
) = N_Attribute_Reference
544 and then Attribute_Name
(Hi
) = Name_Last
545 and then Is_Entity_Name
(Prefix
(Lo
))
546 and then Is_Entity_Name
(Prefix
(Hi
))
547 and then Entity
(Prefix
(Lo
)) = Entity
(Prefix
(Hi
))
552 if Present
(First
(Expressions
(Lo
))) then
553 Lo_Dim
:= Expr_Value
(First
(Expressions
(Lo
)));
556 if Present
(First
(Expressions
(Hi
))) then
557 Hi_Dim
:= Expr_Value
(First
(Expressions
(Hi
)));
560 if Lo_Dim
= Hi_Dim
then
562 Make_Attribute_Reference
(Loc
,
563 Prefix
=> New_Occurrence_Of
564 (Entity
(Prefix
(Lo
)), Loc
),
565 Attribute_Name
=> Name_Length
,
566 Expressions
=> New_List
567 (Make_Integer_Literal
(Loc
, Lo_Dim
)));
571 Lo_Op
:= New_Copy_Tree
(Lo
);
572 Hi_Op
:= New_Copy_Tree
(Hi
);
574 -- If type is enumeration type, then use Pos attribute to convert
575 -- to integer type for which subtraction is a permitted operation.
577 if Is_Enumeration_Type
(Typ
) then
579 Make_Attribute_Reference
(Loc
,
580 Prefix
=> New_Occurrence_Of
(Typ
, Loc
),
581 Attribute_Name
=> Name_Pos
,
582 Expressions
=> New_List
(Lo_Op
));
585 Make_Attribute_Reference
(Loc
,
586 Prefix
=> New_Occurrence_Of
(Typ
, Loc
),
587 Attribute_Name
=> Name_Pos
,
588 Expressions
=> New_List
(Hi_Op
));
596 Right_Opnd
=> Lo_Op
),
597 Right_Opnd
=> Make_Integer_Literal
(Loc
, 1));
600 ----------------------
601 -- Expr_From_SO_Ref --
602 ----------------------
604 function Expr_From_SO_Ref
607 Comp
: Entity_Id
:= Empty
) return Node_Id
612 if Is_Dynamic_SO_Ref
(D
) then
613 Ent
:= Get_Dynamic_SO_Entity
(D
);
615 if Is_Discrim_SO_Function
(Ent
) then
617 -- If a component is passed in whose type matches the type of
618 -- the function formal, then select that component from the "V"
619 -- parameter rather than passing "V" directly.
622 and then Base_Type
(Etype
(Comp
))
623 = Base_Type
(Etype
(First_Formal
(Ent
)))
626 Make_Function_Call
(Loc
,
627 Name
=> New_Occurrence_Of
(Ent
, Loc
),
628 Parameter_Associations
=> New_List
(
629 Make_Selected_Component
(Loc
,
630 Prefix
=> Make_Identifier
(Loc
, Vname
),
631 Selector_Name
=> New_Occurrence_Of
(Comp
, Loc
))));
635 Make_Function_Call
(Loc
,
636 Name
=> New_Occurrence_Of
(Ent
, Loc
),
637 Parameter_Associations
=> New_List
(
638 Make_Identifier
(Loc
, Vname
)));
642 return New_Occurrence_Of
(Ent
, Loc
);
646 return Make_Integer_Literal
(Loc
, D
);
648 end Expr_From_SO_Ref
;
650 ---------------------
651 -- Get_Max_SU_Size --
652 ---------------------
654 function Get_Max_SU_Size
(E
: Entity_Id
) return Node_Id
is
655 Loc
: constant Source_Ptr
:= Sloc
(E
);
663 type Val_Status_Type
is (Const
, Dynamic
);
665 type Val_Type
(Status
: Val_Status_Type
:= Const
) is
668 when Const
=> Val
: Uint
;
669 when Dynamic
=> Nod
: Node_Id
;
672 -- Shows the status of the value so far. Const means that the value is
673 -- constant, and Val is the current constant value. Dynamic means that
674 -- the value is dynamic, and in this case Nod is the Node_Id of the
675 -- expression to compute the value.
678 -- Calculated value so far if Size.Status = Const,
679 -- or expression value so far if Size.Status = Dynamic.
681 SU_Convert_Required
: Boolean := False;
682 -- This is set to True if the final result must be converted from bits
683 -- to storage units (rounding up to a storage unit boundary).
685 -----------------------
686 -- Local Subprograms --
687 -----------------------
689 procedure Max_Discrim
(N
: in out Node_Id
);
690 -- If the node N represents a discriminant, replace it by the maximum
691 -- value of the discriminant.
693 procedure Min_Discrim
(N
: in out Node_Id
);
694 -- If the node N represents a discriminant, replace it by the minimum
695 -- value of the discriminant.
701 procedure Max_Discrim
(N
: in out Node_Id
) is
703 if Nkind
(N
) = N_Identifier
704 and then Ekind
(Entity
(N
)) = E_Discriminant
706 N
:= Type_High_Bound
(Etype
(N
));
714 procedure Min_Discrim
(N
: in out Node_Id
) is
716 if Nkind
(N
) = N_Identifier
717 and then Ekind
(Entity
(N
)) = E_Discriminant
719 N
:= Type_Low_Bound
(Etype
(N
));
723 -- Start of processing for Get_Max_SU_Size
726 pragma Assert
(Size_Depends_On_Discriminant
(E
));
728 -- Initialize status from component size
730 if Known_Static_Component_Size
(E
) then
731 Size
:= (Const
, Component_Size
(E
));
734 Size
:= (Dynamic
, Expr_From_SO_Ref
(Loc
, Component_Size
(E
)));
737 -- Loop through indexes
739 Indx
:= First_Index
(E
);
740 while Present
(Indx
) loop
741 Ityp
:= Etype
(Indx
);
742 Lo
:= Type_Low_Bound
(Ityp
);
743 Hi
:= Type_High_Bound
(Ityp
);
748 -- Value of the current subscript range is statically known
750 if Compile_Time_Known_Value
(Lo
)
751 and then Compile_Time_Known_Value
(Hi
)
753 S
:= Expr_Value
(Hi
) - Expr_Value
(Lo
) + 1;
755 -- If known flat bound, entire size of array is zero
758 return Make_Integer_Literal
(Loc
, 0);
761 -- Current value is constant, evolve value
763 if Size
.Status
= Const
then
764 Size
.Val
:= Size
.Val
* S
;
766 -- Current value is dynamic
769 -- An interesting little optimization, if we have a pending
770 -- conversion from bits to storage units, and the current
771 -- length is a multiple of the storage unit size, then we
772 -- can take the factor out here statically, avoiding some
773 -- extra dynamic computations at the end.
775 if SU_Convert_Required
and then S
mod SSU
= 0 then
777 SU_Convert_Required
:= False;
782 Left_Opnd
=> Size
.Nod
,
784 Make_Integer_Literal
(Loc
, Intval
=> S
));
787 -- Value of the current subscript range is dynamic
790 -- If the current size value is constant, then here is where we
791 -- make a transition to dynamic values, which are always stored
792 -- in storage units, However, we do not want to convert to SU's
793 -- too soon, consider the case of a packed array of single bits,
794 -- we want to do the SU conversion after computing the size in
797 if Size
.Status
= Const
then
799 -- If the current value is a multiple of the storage unit,
800 -- then most certainly we can do the conversion now, simply
801 -- by dividing the current value by the storage unit value.
802 -- If this works, we set SU_Convert_Required to False.
804 if Size
.Val
mod SSU
= 0 then
807 (Dynamic
, Make_Integer_Literal
(Loc
, Size
.Val
/ SSU
));
808 SU_Convert_Required
:= False;
810 -- Otherwise, we go ahead and convert the value in bits, and
811 -- set SU_Convert_Required to True to ensure that the final
812 -- value is indeed properly converted.
815 Size
:= (Dynamic
, Make_Integer_Literal
(Loc
, Size
.Val
));
816 SU_Convert_Required
:= True;
822 Len
:= Compute_Length
(Lo
, Hi
);
824 -- Check possible range of Len
830 pragma Warnings
(Off
, LHi
);
834 Determine_Range
(Len
, OK
, LLo
, LHi
);
836 Len
:= Convert_To
(Standard_Unsigned
, Len
);
838 -- If we cannot verify that range cannot be super-flat, we need
839 -- a max with zero, since length must be non-negative.
841 if not OK
or else LLo
< 0 then
843 Make_Attribute_Reference
(Loc
,
845 New_Occurrence_Of
(Standard_Unsigned
, Loc
),
846 Attribute_Name
=> Name_Max
,
847 Expressions
=> New_List
(
848 Make_Integer_Literal
(Loc
, 0),
857 -- Here after processing all bounds to set sizes. If the value is a
858 -- constant, then it is bits, so we convert to storage units.
860 if Size
.Status
= Const
then
861 return Bits_To_SU
(Make_Integer_Literal
(Loc
, Size
.Val
));
863 -- Case where the value is dynamic
866 -- Do convert from bits to SU's if needed
868 if SU_Convert_Required
then
870 -- The expression required is (Size.Nod + SU - 1) / SU
876 Left_Opnd
=> Size
.Nod
,
877 Right_Opnd
=> Make_Integer_Literal
(Loc
, SSU
- 1)),
878 Right_Opnd
=> Make_Integer_Literal
(Loc
, SSU
));
885 -----------------------
886 -- Layout_Array_Type --
887 -----------------------
889 procedure Layout_Array_Type
(E
: Entity_Id
) is
890 Loc
: constant Source_Ptr
:= Sloc
(E
);
891 Ctyp
: constant Entity_Id
:= Component_Type
(E
);
899 Insert_Typ
: Entity_Id
;
900 -- This is the type with which any generated constants or functions
901 -- will be associated (i.e. inserted into the freeze actions). This
902 -- is normally the type being laid out. The exception occurs when
903 -- we are laying out Itype's which are local to a record type, and
904 -- whose scope is this record type. Such types do not have freeze
905 -- nodes (because we have no place to put them).
907 ------------------------------------
908 -- How An Array Type is Laid Out --
909 ------------------------------------
911 -- Here is what goes on. We need to multiply the component size of the
912 -- array (which has already been set) by the length of each of the
913 -- indexes. If all these values are known at compile time, then the
914 -- resulting size of the array is the appropriate constant value.
916 -- If the component size or at least one bound is dynamic (but no
917 -- discriminants are present), then the size will be computed as an
918 -- expression that calculates the proper size.
920 -- If there is at least one discriminant bound, then the size is also
921 -- computed as an expression, but this expression contains discriminant
922 -- values which are obtained by selecting from a function parameter, and
923 -- the size is given by a function that is passed the variant record in
924 -- question, and whose body is the expression.
926 type Val_Status_Type
is (Const
, Dynamic
, Discrim
);
928 type Val_Type
(Status
: Val_Status_Type
:= Const
) is
933 -- Calculated value so far if Val_Status = Const
935 when Dynamic | Discrim
=>
937 -- Expression value so far if Val_Status /= Const
941 -- Records the value or expression computed so far. Const means that
942 -- the value is constant, and Val is the current constant value.
943 -- Dynamic means that the value is dynamic, and in this case Nod is
944 -- the Node_Id of the expression to compute the value, and Discrim
945 -- means that at least one bound is a discriminant, in which case Nod
946 -- is the expression so far (which will be the body of the function).
949 -- Value of size computed so far. See comments above
951 Vtyp
: Entity_Id
:= Empty
;
952 -- Variant record type for the formal parameter of the discriminant
953 -- function V if Status = Discrim.
955 SU_Convert_Required
: Boolean := False;
956 -- This is set to True if the final result must be converted from
957 -- bits to storage units (rounding up to a storage unit boundary).
959 Storage_Divisor
: Uint
:= UI_From_Int
(SSU
);
960 -- This is the amount that a nonstatic computed size will be divided
961 -- by to convert it from bits to storage units. This is normally
962 -- equal to SSU, but can be reduced in the case of packed components
963 -- that fit evenly into a storage unit.
965 Make_Size_Function
: Boolean := False;
966 -- Indicates whether to request that SO_Ref_From_Expr should
967 -- encapsulate the array size expression in a function.
969 procedure Discrimify
(N
: in out Node_Id
);
970 -- If N represents a discriminant, then the Size.Status is set to
971 -- Discrim, and Vtyp is set. The parameter N is replaced with the
972 -- proper expression to extract the discriminant value from V.
978 procedure Discrimify
(N
: in out Node_Id
) is
983 if Nkind
(N
) = N_Identifier
984 and then Ekind
(Entity
(N
)) = E_Discriminant
986 Set_Size_Depends_On_Discriminant
(E
);
988 if Size
.Status
/= Discrim
then
989 Decl
:= Parent
(Parent
(Entity
(N
)));
990 Size
:= (Discrim
, Size
.Nod
);
991 Vtyp
:= Defining_Identifier
(Decl
);
997 Make_Selected_Component
(Loc
,
998 Prefix
=> Make_Identifier
(Loc
, Vname
),
999 Selector_Name
=> New_Occurrence_Of
(Entity
(N
), Loc
));
1001 -- Set the Etype attributes of the selected name and its prefix.
1002 -- Analyze_And_Resolve can't be called here because the Vname
1003 -- entity denoted by the prefix will not yet exist (it's created
1004 -- by SO_Ref_From_Expr, called at the end of Layout_Array_Type).
1006 Set_Etype
(Prefix
(N
), Vtyp
);
1011 -- Start of processing for Layout_Array_Type
1014 -- Default alignment is component alignment
1016 if Unknown_Alignment
(E
) then
1017 Set_Alignment
(E
, Alignment
(Ctyp
));
1020 -- Calculate proper type for insertions
1022 if Is_Record_Type
(Underlying_Type
(Scope
(E
))) then
1023 Insert_Typ
:= Underlying_Type
(Scope
(E
));
1028 -- If the component type is a generic formal type then there's no point
1029 -- in determining a size for the array type.
1031 if Is_Generic_Type
(Ctyp
) then
1035 -- Deal with component size if base type
1037 if Ekind
(E
) = E_Array_Type
then
1039 -- Cannot do anything if Esize of component type unknown
1041 if Unknown_Esize
(Ctyp
) then
1045 -- Set component size if not set already
1047 if Unknown_Component_Size
(E
) then
1048 Set_Component_Size
(E
, Esize
(Ctyp
));
1052 -- (RM 13.3 (48)) says that the size of an unconstrained array
1053 -- is implementation defined. We choose to leave it as Unknown
1054 -- here, and the actual behavior is determined by the back end.
1056 if not Is_Constrained
(E
) then
1060 -- Initialize status from component size
1062 if Known_Static_Component_Size
(E
) then
1063 Size
:= (Const
, Component_Size
(E
));
1066 Size
:= (Dynamic
, Expr_From_SO_Ref
(Loc
, Component_Size
(E
)));
1069 -- Loop to process array indexes
1071 Indx
:= First_Index
(E
);
1072 while Present
(Indx
) loop
1073 Ityp
:= Etype
(Indx
);
1075 -- If an index of the array is a generic formal type then there is
1076 -- no point in determining a size for the array type.
1078 if Is_Generic_Type
(Ityp
) then
1082 Lo
:= Type_Low_Bound
(Ityp
);
1083 Hi
:= Type_High_Bound
(Ityp
);
1085 -- Value of the current subscript range is statically known
1087 if Compile_Time_Known_Value
(Lo
)
1088 and then Compile_Time_Known_Value
(Hi
)
1090 S
:= Expr_Value
(Hi
) - Expr_Value
(Lo
) + 1;
1092 -- If known flat bound, entire size of array is zero
1095 Set_Esize
(E
, Uint_0
);
1096 Set_RM_Size
(E
, Uint_0
);
1100 -- If constant, evolve value
1102 if Size
.Status
= Const
then
1103 Size
.Val
:= Size
.Val
* S
;
1105 -- Current value is dynamic
1108 -- An interesting little optimization, if we have a pending
1109 -- conversion from bits to storage units, and the current
1110 -- length is a multiple of the storage unit size, then we
1111 -- can take the factor out here statically, avoiding some
1112 -- extra dynamic computations at the end.
1114 if SU_Convert_Required
and then S
mod SSU
= 0 then
1116 SU_Convert_Required
:= False;
1119 -- Now go ahead and evolve the expression
1122 Assoc_Multiply
(Loc
,
1123 Left_Opnd
=> Size
.Nod
,
1125 Make_Integer_Literal
(Loc
, Intval
=> S
));
1128 -- Value of the current subscript range is dynamic
1131 -- If the current size value is constant, then here is where we
1132 -- make a transition to dynamic values, which are always stored
1133 -- in storage units, However, we do not want to convert to SU's
1134 -- too soon, consider the case of a packed array of single bits,
1135 -- we want to do the SU conversion after computing the size in
1138 if Size
.Status
= Const
then
1140 -- If the current value is a multiple of the storage unit,
1141 -- then most certainly we can do the conversion now, simply
1142 -- by dividing the current value by the storage unit value.
1143 -- If this works, we set SU_Convert_Required to False.
1145 if Size
.Val
mod SSU
= 0 then
1147 (Dynamic
, Make_Integer_Literal
(Loc
, Size
.Val
/ SSU
));
1148 SU_Convert_Required
:= False;
1150 -- If the current value is a factor of the storage unit, then
1151 -- we can use a value of one for the size and reduce the
1152 -- strength of the later division.
1154 elsif SSU
mod Size
.Val
= 0 then
1155 Storage_Divisor
:= SSU
/ Size
.Val
;
1156 Size
:= (Dynamic
, Make_Integer_Literal
(Loc
, Uint_1
));
1157 SU_Convert_Required
:= True;
1159 -- Otherwise, we go ahead and convert the value in bits, and
1160 -- set SU_Convert_Required to True to ensure that the final
1161 -- value is indeed properly converted.
1164 Size
:= (Dynamic
, Make_Integer_Literal
(Loc
, Size
.Val
));
1165 SU_Convert_Required
:= True;
1172 -- Length is hi-lo+1
1174 Len
:= Compute_Length
(Lo
, Hi
);
1176 -- If Len isn't a Length attribute, then its range needs to be
1177 -- checked a possible Max with zero needs to be computed.
1179 if Nkind
(Len
) /= N_Attribute_Reference
1180 or else Attribute_Name
(Len
) /= Name_Length
1188 -- Check possible range of Len
1190 Set_Parent
(Len
, E
);
1191 Determine_Range
(Len
, OK
, LLo
, LHi
);
1193 Len
:= Convert_To
(Standard_Unsigned
, Len
);
1195 -- If range definitely flat or superflat,
1196 -- result size is zero
1198 if OK
and then LHi
<= 0 then
1199 Set_Esize
(E
, Uint_0
);
1200 Set_RM_Size
(E
, Uint_0
);
1204 -- If we cannot verify that range cannot be super-flat, we
1205 -- need a max with zero, since length cannot be negative.
1207 if not OK
or else LLo
< 0 then
1209 Make_Attribute_Reference
(Loc
,
1211 New_Occurrence_Of
(Standard_Unsigned
, Loc
),
1212 Attribute_Name
=> Name_Max
,
1213 Expressions
=> New_List
(
1214 Make_Integer_Literal
(Loc
, 0),
1220 -- At this stage, Len has the expression for the length
1223 Assoc_Multiply
(Loc
,
1224 Left_Opnd
=> Size
.Nod
,
1231 -- Here after processing all bounds to set sizes. If the value is a
1232 -- constant, then it is bits, and the only thing we need to do is to
1233 -- check against explicit given size and do alignment adjust.
1235 if Size
.Status
= Const
then
1236 Set_And_Check_Static_Size
(E
, Size
.Val
, Size
.Val
);
1237 Adjust_Esize_Alignment
(E
);
1239 -- Case where the value is dynamic
1242 -- Do convert from bits to SU's if needed
1244 if SU_Convert_Required
then
1246 -- The expression required is:
1247 -- (Size.Nod + Storage_Divisor - 1) / Storage_Divisor
1250 Make_Op_Divide
(Loc
,
1253 Left_Opnd
=> Size
.Nod
,
1254 Right_Opnd
=> Make_Integer_Literal
1255 (Loc
, Storage_Divisor
- 1)),
1256 Right_Opnd
=> Make_Integer_Literal
(Loc
, Storage_Divisor
));
1259 -- If the array entity is not declared at the library level and its
1260 -- not nested within a subprogram that is marked for inlining, then
1261 -- we request that the size expression be encapsulated in a function.
1262 -- Since this expression is not needed in most cases, we prefer not
1263 -- to incur the overhead of the computation on calls to the enclosing
1264 -- subprogram except for subprograms that require the size.
1266 if not Is_Library_Level_Entity
(E
) then
1267 Make_Size_Function
:= True;
1270 Parent_Subp
: Entity_Id
:= Enclosing_Subprogram
(E
);
1273 while Present
(Parent_Subp
) loop
1274 if Is_Inlined
(Parent_Subp
) then
1275 Make_Size_Function
:= False;
1279 Parent_Subp
:= Enclosing_Subprogram
(Parent_Subp
);
1284 -- Now set the dynamic size (the Value_Size is always the same as the
1285 -- Object_Size for arrays whose length is dynamic).
1287 -- ??? If Size.Status = Dynamic, Vtyp will not have been set.
1288 -- The added initialization sets it to Empty now, but is this
1294 (Size
.Nod
, Insert_Typ
, Vtyp
, Make_Func
=> Make_Size_Function
));
1295 Set_RM_Size
(E
, Esize
(E
));
1297 end Layout_Array_Type
;
1299 ------------------------------------------
1300 -- Compute_Size_Depends_On_Discriminant --
1301 ------------------------------------------
1303 procedure Compute_Size_Depends_On_Discriminant
(E
: Entity_Id
) is
1308 Res
: Boolean := False;
1311 -- Loop to process array indexes
1313 Indx
:= First_Index
(E
);
1314 while Present
(Indx
) loop
1315 Ityp
:= Etype
(Indx
);
1317 -- If an index of the array is a generic formal type then there is
1318 -- no point in determining a size for the array type.
1320 if Is_Generic_Type
(Ityp
) then
1324 Lo
:= Type_Low_Bound
(Ityp
);
1325 Hi
:= Type_High_Bound
(Ityp
);
1327 if (Nkind
(Lo
) = N_Identifier
1328 and then Ekind
(Entity
(Lo
)) = E_Discriminant
)
1330 (Nkind
(Hi
) = N_Identifier
1331 and then Ekind
(Entity
(Hi
)) = E_Discriminant
)
1340 Set_Size_Depends_On_Discriminant
(E
);
1342 end Compute_Size_Depends_On_Discriminant
;
1348 procedure Layout_Object
(E
: Entity_Id
) is
1349 T
: constant Entity_Id
:= Etype
(E
);
1352 -- Nothing to do if backend does layout
1354 if not Frontend_Layout_On_Target
then
1358 -- Set size if not set for object and known for type. Use the RM_Size if
1359 -- that is known for the type and Esize is not.
1361 if Unknown_Esize
(E
) then
1362 if Known_Esize
(T
) then
1363 Set_Esize
(E
, Esize
(T
));
1365 elsif Known_RM_Size
(T
) then
1366 Set_Esize
(E
, RM_Size
(T
));
1370 -- Set alignment from type if unknown and type alignment known
1372 if Unknown_Alignment
(E
) and then Known_Alignment
(T
) then
1373 Set_Alignment
(E
, Alignment
(T
));
1376 -- Make sure size and alignment are consistent
1378 Adjust_Esize_Alignment
(E
);
1380 -- Final adjustment, if we don't know the alignment, and the Esize was
1381 -- not set by an explicit Object_Size attribute clause, then we reset
1382 -- the Esize to unknown, since we really don't know it.
1384 if Unknown_Alignment
(E
)
1385 and then not Has_Size_Clause
(E
)
1387 Set_Esize
(E
, Uint_0
);
1391 ------------------------
1392 -- Layout_Record_Type --
1393 ------------------------
1395 procedure Layout_Record_Type
(E
: Entity_Id
) is
1396 Loc
: constant Source_Ptr
:= Sloc
(E
);
1400 -- Current component being laid out
1402 Prev_Comp
: Entity_Id
;
1403 -- Previous laid out component
1405 procedure Get_Next_Component_Location
1406 (Prev_Comp
: Entity_Id
;
1408 New_Npos
: out SO_Ref
;
1409 New_Fbit
: out SO_Ref
;
1410 New_NPMax
: out SO_Ref
;
1411 Force_SU
: Boolean);
1412 -- Given the previous component in Prev_Comp, which is already laid
1413 -- out, and the alignment of the following component, lays out the
1414 -- following component, and returns its starting position in New_Npos
1415 -- (Normalized_Position value), New_Fbit (Normalized_First_Bit value),
1416 -- and New_NPMax (Normalized_Position_Max value). If Prev_Comp is empty
1417 -- (no previous component is present), then New_Npos, New_Fbit and
1418 -- New_NPMax are all set to zero on return. This procedure is also
1419 -- used to compute the size of a record or variant by giving it the
1420 -- last component, and the record alignment. Force_SU is used to force
1421 -- the new component location to be aligned on a storage unit boundary,
1422 -- even in a packed record, False means that the new position does not
1423 -- need to be bumped to a storage unit boundary, True means a storage
1424 -- unit boundary is always required.
1426 procedure Layout_Component
(Comp
: Entity_Id
; Prev_Comp
: Entity_Id
);
1427 -- Lays out component Comp, given Prev_Comp, the previously laid-out
1428 -- component (Prev_Comp = Empty if no components laid out yet). The
1429 -- alignment of the record itself is also updated if needed. Both
1430 -- Comp and Prev_Comp can be either components or discriminants.
1432 procedure Layout_Components
1436 RM_Siz
: out SO_Ref
);
1437 -- This procedure lays out the components of the given component list
1438 -- which contains the components starting with From and ending with To.
1439 -- The Next_Entity chain is used to traverse the components. On entry,
1440 -- Prev_Comp is set to the component preceding the list, so that the
1441 -- list is laid out after this component. Prev_Comp is set to Empty if
1442 -- the component list is to be laid out starting at the start of the
1443 -- record. On return, the components are all laid out, and Prev_Comp is
1444 -- set to the last laid out component. On return, Esiz is set to the
1445 -- resulting Object_Size value, which is the length of the record up
1446 -- to and including the last laid out entity. For Esiz, the value is
1447 -- adjusted to match the alignment of the record. RM_Siz is similarly
1448 -- set to the resulting Value_Size value, which is the same length, but
1449 -- not adjusted to meet the alignment. Note that in the case of variant
1450 -- records, Esiz represents the maximum size.
1452 procedure Layout_Non_Variant_Record
;
1453 -- Procedure called to lay out a non-variant record type or subtype
1455 procedure Layout_Variant_Record
;
1456 -- Procedure called to lay out a variant record type. Decl is set to the
1457 -- full type declaration for the variant record.
1459 ---------------------------------
1460 -- Get_Next_Component_Location --
1461 ---------------------------------
1463 procedure Get_Next_Component_Location
1464 (Prev_Comp
: Entity_Id
;
1466 New_Npos
: out SO_Ref
;
1467 New_Fbit
: out SO_Ref
;
1468 New_NPMax
: out SO_Ref
;
1472 -- No previous component, return zero position
1474 if No
(Prev_Comp
) then
1477 New_NPMax
:= Uint_0
;
1481 -- Here we have a previous component
1484 Loc
: constant Source_Ptr
:= Sloc
(Prev_Comp
);
1486 Old_Npos
: constant SO_Ref
:= Normalized_Position
(Prev_Comp
);
1487 Old_Fbit
: constant SO_Ref
:= Normalized_First_Bit
(Prev_Comp
);
1488 Old_NPMax
: constant SO_Ref
:= Normalized_Position_Max
(Prev_Comp
);
1489 Old_Esiz
: constant SO_Ref
:= Esize
(Prev_Comp
);
1491 Old_Maxsz
: Node_Id
;
1492 -- Expression representing maximum size of previous component
1495 -- Case where previous field had a dynamic size
1497 if Is_Dynamic_SO_Ref
(Esize
(Prev_Comp
)) then
1499 -- If the previous field had a dynamic length, then it is
1500 -- required to occupy an integral number of storage units,
1501 -- and start on a storage unit boundary. This means that
1502 -- the Normalized_First_Bit value is zero in the previous
1503 -- component, and the new value is also set to zero.
1507 -- In this case, the new position is given by an expression
1508 -- that is the sum of old normalized position and old size.
1514 Expr_From_SO_Ref
(Loc
, Old_Npos
),
1516 Expr_From_SO_Ref
(Loc
, Old_Esiz
, Prev_Comp
)),
1520 -- Get maximum size of previous component
1522 if Size_Depends_On_Discriminant
(Etype
(Prev_Comp
)) then
1523 Old_Maxsz
:= Get_Max_SU_Size
(Etype
(Prev_Comp
));
1525 Old_Maxsz
:= Expr_From_SO_Ref
(Loc
, Old_Esiz
, Prev_Comp
);
1528 -- Now we can compute the new max position. If the max size
1529 -- is static and the old position is static, then we can
1530 -- compute the new position statically.
1532 if Nkind
(Old_Maxsz
) = N_Integer_Literal
1533 and then Known_Static_Normalized_Position_Max
(Prev_Comp
)
1535 New_NPMax
:= Old_NPMax
+ Intval
(Old_Maxsz
);
1537 -- Otherwise new max position is dynamic
1543 Left_Opnd
=> Expr_From_SO_Ref
(Loc
, Old_NPMax
),
1544 Right_Opnd
=> Old_Maxsz
),
1549 -- Previous field has known static Esize
1552 New_Fbit
:= Old_Fbit
+ Old_Esiz
;
1554 -- Bump New_Fbit to storage unit boundary if required
1556 if New_Fbit
/= 0 and then Force_SU
then
1557 New_Fbit
:= (New_Fbit
+ SSU
- 1) / SSU
* SSU
;
1560 -- If old normalized position is static, we can go ahead and
1561 -- compute the new normalized position directly.
1563 if Known_Static_Normalized_Position
(Prev_Comp
) then
1564 New_Npos
:= Old_Npos
;
1566 if New_Fbit
>= SSU
then
1567 New_Npos
:= New_Npos
+ New_Fbit
/ SSU
;
1568 New_Fbit
:= New_Fbit
mod SSU
;
1571 -- Bump alignment if stricter than prev
1573 if Align
> Alignment
(Etype
(Prev_Comp
)) then
1574 New_Npos
:= (New_Npos
+ Align
- 1) / Align
* Align
;
1577 -- The max position is always equal to the position if
1578 -- the latter is static, since arrays depending on the
1579 -- values of discriminants never have static sizes.
1581 New_NPMax
:= New_Npos
;
1584 -- Case of old normalized position is dynamic
1587 -- If new bit position is within the current storage unit,
1588 -- we can just copy the old position as the result position
1589 -- (we have already set the new first bit value).
1591 if New_Fbit
< SSU
then
1592 New_Npos
:= Old_Npos
;
1593 New_NPMax
:= Old_NPMax
;
1595 -- If new bit position is past the current storage unit, we
1596 -- need to generate a new dynamic value for the position
1597 -- ??? need to deal with alignment
1603 Left_Opnd
=> Expr_From_SO_Ref
(Loc
, Old_Npos
),
1605 Make_Integer_Literal
(Loc
,
1606 Intval
=> New_Fbit
/ SSU
)),
1613 Left_Opnd
=> Expr_From_SO_Ref
(Loc
, Old_NPMax
),
1615 Make_Integer_Literal
(Loc
,
1616 Intval
=> New_Fbit
/ SSU
)),
1619 New_Fbit
:= New_Fbit
mod SSU
;
1624 end Get_Next_Component_Location
;
1626 ----------------------
1627 -- Layout_Component --
1628 ----------------------
1630 procedure Layout_Component
(Comp
: Entity_Id
; Prev_Comp
: Entity_Id
) is
1631 Ctyp
: constant Entity_Id
:= Etype
(Comp
);
1632 ORC
: constant Entity_Id
:= Original_Record_Component
(Comp
);
1639 -- Increase alignment of record if necessary. Note that we do not
1640 -- do this for packed records, which have an alignment of one by
1641 -- default, or for records for which an explicit alignment was
1642 -- specified with an alignment clause.
1644 if not Is_Packed
(E
)
1645 and then not Has_Alignment_Clause
(E
)
1646 and then Alignment
(Ctyp
) > Alignment
(E
)
1648 Set_Alignment
(E
, Alignment
(Ctyp
));
1651 -- If original component set, then use same layout
1653 if Present
(ORC
) and then ORC
/= Comp
then
1654 Set_Normalized_Position
(Comp
, Normalized_Position
(ORC
));
1655 Set_Normalized_First_Bit
(Comp
, Normalized_First_Bit
(ORC
));
1656 Set_Normalized_Position_Max
(Comp
, Normalized_Position_Max
(ORC
));
1657 Set_Component_Bit_Offset
(Comp
, Component_Bit_Offset
(ORC
));
1658 Set_Esize
(Comp
, Esize
(ORC
));
1662 -- Parent field is always at start of record, this will overlap
1663 -- the actual fields that are part of the parent, and that's fine
1665 if Chars
(Comp
) = Name_uParent
then
1666 Set_Normalized_Position
(Comp
, Uint_0
);
1667 Set_Normalized_First_Bit
(Comp
, Uint_0
);
1668 Set_Normalized_Position_Max
(Comp
, Uint_0
);
1669 Set_Component_Bit_Offset
(Comp
, Uint_0
);
1670 Set_Esize
(Comp
, Esize
(Ctyp
));
1674 -- Check case of type of component has a scope of the record we are
1675 -- laying out. When this happens, the type in question is an Itype
1676 -- that has not yet been laid out (that's because such types do not
1677 -- get frozen in the normal manner, because there is no place for
1678 -- the freeze nodes).
1680 if Scope
(Ctyp
) = E
then
1684 -- If component already laid out, then we are done
1686 if Known_Normalized_Position
(Comp
) then
1690 -- Set size of component from type. We use the Esize except in a
1691 -- packed record, where we use the RM_Size (since that is what the
1692 -- RM_Size value, as distinct from the Object_Size is useful for).
1694 if Is_Packed
(E
) then
1695 Set_Esize
(Comp
, RM_Size
(Ctyp
));
1697 Set_Esize
(Comp
, Esize
(Ctyp
));
1700 -- Compute the component position from the previous one. See if
1701 -- current component requires being on a storage unit boundary.
1703 -- If record is not packed, we always go to a storage unit boundary
1705 if not Is_Packed
(E
) then
1711 -- Elementary types do not need SU boundary in packed record
1713 if Is_Elementary_Type
(Ctyp
) then
1716 -- Packed array types with a modular packed array type do not
1717 -- force a storage unit boundary (since the code generation
1718 -- treats these as equivalent to the underlying modular type),
1720 elsif Is_Array_Type
(Ctyp
)
1721 and then Is_Bit_Packed_Array
(Ctyp
)
1722 and then Is_Modular_Integer_Type
(Packed_Array_Type
(Ctyp
))
1726 -- Record types with known length less than or equal to the length
1727 -- of long long integer can also be unaligned, since they can be
1728 -- treated as scalars.
1730 elsif Is_Record_Type
(Ctyp
)
1731 and then not Is_Dynamic_SO_Ref
(Esize
(Ctyp
))
1732 and then Esize
(Ctyp
) <= Esize
(Standard_Long_Long_Integer
)
1736 -- All other cases force a storage unit boundary, even when packed
1743 -- Now get the next component location
1745 Get_Next_Component_Location
1746 (Prev_Comp
, Alignment
(Ctyp
), Npos
, Fbit
, NPMax
, Forc
);
1747 Set_Normalized_Position
(Comp
, Npos
);
1748 Set_Normalized_First_Bit
(Comp
, Fbit
);
1749 Set_Normalized_Position_Max
(Comp
, NPMax
);
1751 -- Set Component_Bit_Offset in the static case
1753 if Known_Static_Normalized_Position
(Comp
)
1754 and then Known_Normalized_First_Bit
(Comp
)
1756 Set_Component_Bit_Offset
(Comp
, SSU
* Npos
+ Fbit
);
1758 end Layout_Component
;
1760 -----------------------
1761 -- Layout_Components --
1762 -----------------------
1764 procedure Layout_Components
1768 RM_Siz
: out SO_Ref
)
1775 -- Only lay out components if there are some to lay out
1777 if Present
(From
) then
1779 -- Lay out components with no component clauses
1783 if Ekind
(Comp
) = E_Component
1784 or else Ekind
(Comp
) = E_Discriminant
1786 -- The compatibility of component clauses with composite
1787 -- types isn't checked in Sem_Ch13, so we check it here.
1789 if Present
(Component_Clause
(Comp
)) then
1790 if Is_Composite_Type
(Etype
(Comp
))
1791 and then Esize
(Comp
) < RM_Size
(Etype
(Comp
))
1793 Error_Msg_Uint_1
:= RM_Size
(Etype
(Comp
));
1795 ("size for & too small, minimum allowed is ^",
1796 Component_Clause
(Comp
),
1801 Layout_Component
(Comp
, Prev_Comp
);
1806 exit when Comp
= To
;
1811 -- Set size fields, both are zero if no components
1813 if No
(Prev_Comp
) then
1817 -- If record subtype with non-static discriminants, then we don't
1818 -- know which variant will be the one which gets chosen. We don't
1819 -- just want to set the maximum size from the base, because the
1820 -- size should depend on the particular variant.
1822 -- What we do is to use the RM_Size of the base type, which has
1823 -- the necessary conditional computation of the size, using the
1824 -- size information for the particular variant chosen. Records
1825 -- with default discriminants for example have an Esize that is
1826 -- set to the maximum of all variants, but that's not what we
1827 -- want for a constrained subtype.
1829 elsif Ekind
(E
) = E_Record_Subtype
1830 and then not Has_Static_Discriminants
(E
)
1833 BT
: constant Node_Id
:= Base_Type
(E
);
1835 Esiz
:= RM_Size
(BT
);
1836 RM_Siz
:= RM_Size
(BT
);
1837 Set_Alignment
(E
, Alignment
(BT
));
1841 -- First the object size, for which we align past the last field
1842 -- to the alignment of the record (the object size is required to
1843 -- be a multiple of the alignment).
1845 Get_Next_Component_Location
1853 -- If the resulting normalized position is a dynamic reference,
1854 -- then the size is dynamic, and is stored in storage units. In
1855 -- this case, we set the RM_Size to the same value, it is simply
1856 -- not worth distinguishing Esize and RM_Size values in the
1857 -- dynamic case, since the RM has nothing to say about them.
1859 -- Note that a size cannot have been given in this case, since
1860 -- size specifications cannot be given for variable length types.
1863 Align
: constant Uint
:= Alignment
(E
);
1866 if Is_Dynamic_SO_Ref
(End_Npos
) then
1869 -- Set the Object_Size allowing for the alignment. In the
1870 -- dynamic case, we must do the actual runtime computation.
1871 -- We can skip this in the non-packed record case if the
1872 -- last component has a smaller alignment than the overall
1873 -- record alignment.
1875 if Is_Dynamic_SO_Ref
(End_NPMax
) then
1879 or else Alignment
(Etype
(Prev_Comp
)) < Align
1881 -- The expression we build is:
1882 -- (expr + align - 1) / align * align
1887 Make_Op_Multiply
(Loc
,
1889 Make_Op_Divide
(Loc
,
1893 Expr_From_SO_Ref
(Loc
, Esiz
),
1895 Make_Integer_Literal
(Loc
,
1896 Intval
=> Align
- 1)),
1898 Make_Integer_Literal
(Loc
, Align
)),
1900 Make_Integer_Literal
(Loc
, Align
)),
1905 -- Here Esiz is static, so we can adjust the alignment
1906 -- directly go give the required aligned value.
1909 Esiz
:= (End_NPMax
+ Align
- 1) / Align
* Align
* SSU
;
1912 -- Case where computed size is static
1915 -- The ending size was computed in Npos in storage units,
1916 -- but the actual size is stored in bits, so adjust
1917 -- accordingly. We also adjust the size to match the
1920 Esiz
:= (End_NPMax
+ Align
- 1) / Align
* Align
* SSU
;
1922 -- Compute the resulting Value_Size (RM_Size). For this
1923 -- purpose we do not force alignment of the record or
1924 -- storage size alignment of the result.
1926 Get_Next_Component_Location
1934 RM_Siz
:= End_Npos
* SSU
+ End_Fbit
;
1935 Set_And_Check_Static_Size
(E
, Esiz
, RM_Siz
);
1939 end Layout_Components
;
1941 -------------------------------
1942 -- Layout_Non_Variant_Record --
1943 -------------------------------
1945 procedure Layout_Non_Variant_Record
is
1949 Layout_Components
(First_Entity
(E
), Last_Entity
(E
), Esiz
, RM_Siz
);
1950 Set_Esize
(E
, Esiz
);
1951 Set_RM_Size
(E
, RM_Siz
);
1952 end Layout_Non_Variant_Record
;
1954 ---------------------------
1955 -- Layout_Variant_Record --
1956 ---------------------------
1958 procedure Layout_Variant_Record
is
1959 Tdef
: constant Node_Id
:= Type_Definition
(Decl
);
1960 First_Discr
: Entity_Id
;
1961 Last_Discr
: Entity_Id
;
1965 pragma Warnings
(Off
, SO_Ref
);
1967 RM_Siz_Expr
: Node_Id
:= Empty
;
1968 -- Expression for the evolving RM_Siz value. This is typically an if
1969 -- expression which involves tests of discriminant values that are
1970 -- formed as references to the entity V. At the end of scanning all
1971 -- the components, a suitable function is constructed in which V is
1974 -----------------------
1975 -- Local Subprograms --
1976 -----------------------
1978 procedure Layout_Component_List
1981 RM_Siz_Expr
: out Node_Id
);
1982 -- Recursive procedure, called to lay out one component list Esiz
1983 -- and RM_Siz_Expr are set to the Object_Size and Value_Size values
1984 -- respectively representing the record size up to and including the
1985 -- last component in the component list (including any variants in
1986 -- this component list). RM_Siz_Expr is returned as an expression
1987 -- which may in the general case involve some references to the
1988 -- discriminants of the current record value, referenced by selecting
1989 -- from the entity V.
1991 ---------------------------
1992 -- Layout_Component_List --
1993 ---------------------------
1995 procedure Layout_Component_List
1998 RM_Siz_Expr
: out Node_Id
)
2000 Citems
: constant List_Id
:= Component_Items
(Clist
);
2001 Vpart
: constant Node_Id
:= Variant_Part
(Clist
);
2005 RMS_Ent
: Entity_Id
;
2008 if Is_Non_Empty_List
(Citems
) then
2010 (From
=> Defining_Identifier
(First
(Citems
)),
2011 To
=> Defining_Identifier
(Last
(Citems
)),
2015 Layout_Components
(Empty
, Empty
, Esiz
, RM_Siz
);
2018 -- Case where no variants are present in the component list
2022 -- The Esiz value has been correctly set by the call to
2023 -- Layout_Components, so there is nothing more to be done.
2025 -- For RM_Siz, we have an SO_Ref value, which we must convert
2026 -- to an appropriate expression.
2028 if Is_Static_SO_Ref
(RM_Siz
) then
2030 Make_Integer_Literal
(Loc
,
2034 RMS_Ent
:= Get_Dynamic_SO_Entity
(RM_Siz
);
2036 -- If the size is represented by a function, then we create
2037 -- an appropriate function call using V as the parameter to
2040 if Is_Discrim_SO_Function
(RMS_Ent
) then
2042 Make_Function_Call
(Loc
,
2043 Name
=> New_Occurrence_Of
(RMS_Ent
, Loc
),
2044 Parameter_Associations
=> New_List
(
2045 Make_Identifier
(Loc
, Vname
)));
2047 -- If the size is represented by a constant, then the
2048 -- expression we want is a reference to this constant
2051 RM_Siz_Expr
:= New_Occurrence_Of
(RMS_Ent
, Loc
);
2055 -- Case where variants are present in this component list
2065 D_Entity
: Entity_Id
;
2068 RM_Siz_Expr
:= Empty
;
2071 Var
:= Last
(Variants
(Vpart
));
2072 while Present
(Var
) loop
2074 Layout_Component_List
2075 (Component_List
(Var
), EsizV
, RM_SizV
);
2077 -- Set the Object_Size. If this is the first variant,
2078 -- we just set the size of this first variant.
2080 if Var
= Last
(Variants
(Vpart
)) then
2083 -- Otherwise the Object_Size is formed as a maximum
2084 -- of Esiz so far from previous variants, and the new
2085 -- Esiz value from the variant we just processed.
2087 -- If both values are static, we can just compute the
2088 -- maximum directly to save building junk nodes.
2090 elsif not Is_Dynamic_SO_Ref
(Esiz
)
2091 and then not Is_Dynamic_SO_Ref
(EsizV
)
2093 Esiz
:= UI_Max
(Esiz
, EsizV
);
2095 -- If either value is dynamic, then we have to generate
2096 -- an appropriate Standard_Unsigned'Max attribute call.
2097 -- If one of the values is static then it needs to be
2098 -- converted from bits to storage units to be compatible
2099 -- with the dynamic value.
2102 if Is_Static_SO_Ref
(Esiz
) then
2103 Esiz
:= (Esiz
+ SSU
- 1) / SSU
;
2106 if Is_Static_SO_Ref
(EsizV
) then
2107 EsizV
:= (EsizV
+ SSU
- 1) / SSU
;
2112 (Make_Attribute_Reference
(Loc
,
2113 Attribute_Name
=> Name_Max
,
2115 New_Occurrence_Of
(Standard_Unsigned
, Loc
),
2116 Expressions
=> New_List
(
2117 Expr_From_SO_Ref
(Loc
, Esiz
),
2118 Expr_From_SO_Ref
(Loc
, EsizV
))),
2123 -- Now deal with Value_Size (RM_Siz). We are aiming at
2124 -- an expression that looks like:
2126 -- if xxDx (V.disc) then rmsiz1
2127 -- else if xxDx (V.disc) then rmsiz2
2130 -- Where rmsiz1, rmsiz2... are the RM_Siz values for the
2131 -- individual variants, and xxDx are the discriminant
2132 -- checking functions generated for the variant type.
2134 -- If this is the first variant, we simply set the result
2135 -- as the expression. Note that this takes care of the
2138 if No
(RM_Siz_Expr
) then
2140 -- If this is the only variant and the size is a
2141 -- literal, then use bit size as is, otherwise convert
2142 -- to storage units and continue to the next variant.
2145 and then Nkind
(RM_SizV
) = N_Integer_Literal
2147 RM_Siz_Expr
:= RM_SizV
;
2149 RM_Siz_Expr
:= Bits_To_SU
(RM_SizV
);
2152 -- Otherwise construct the appropriate test
2155 -- The test to be used in general is a call to the
2156 -- discriminant checking function. However, it is
2157 -- definitely worth special casing the very common
2158 -- case where a single value is involved.
2160 Dchoice
:= First
(Discrete_Choices
(Var
));
2162 if No
(Next
(Dchoice
))
2163 and then Nkind
(Dchoice
) /= N_Range
2165 -- Discriminant to be tested
2168 Make_Selected_Component
(Loc
,
2170 Make_Identifier
(Loc
, Vname
),
2173 (Entity
(Name
(Vpart
)), Loc
));
2177 Left_Opnd
=> Discrim
,
2178 Right_Opnd
=> New_Copy
(Dchoice
));
2180 -- Generate a call to the discriminant-checking
2181 -- function for the variant. Note that the result
2182 -- has to be complemented since the function returns
2183 -- False when the passed discriminant value matches.
2186 -- The checking function takes all of the type's
2187 -- discriminants as parameters, so a list of all
2188 -- the selected discriminants must be constructed.
2191 D_Entity
:= First_Discriminant
(E
);
2192 while Present
(D_Entity
) loop
2194 Make_Selected_Component
(Loc
,
2196 Make_Identifier
(Loc
, Vname
),
2198 New_Occurrence_Of
(D_Entity
, Loc
)),
2201 D_Entity
:= Next_Discriminant
(D_Entity
);
2207 Make_Function_Call
(Loc
,
2210 (Dcheck_Function
(Var
), Loc
),
2211 Parameter_Associations
=>
2216 Make_If_Expression
(Loc
,
2219 (Dtest
, Bits_To_SU
(RM_SizV
), RM_Siz_Expr
));
2226 end Layout_Component_List
;
2228 Others_Present
: Boolean;
2229 pragma Warnings
(Off
, Others_Present
);
2230 -- Indicates others present, not used in this case
2232 procedure Non_Static_Choice_Error
(Choice
: Node_Id
);
2233 -- Error routine invoked by the generic instantiation below when
2234 -- the variant part has a nonstatic choice.
2236 package Variant_Choices_Processing
is new
2237 Generic_Check_Choices
2238 (Process_Empty_Choice
=> No_OP
,
2239 Process_Non_Static_Choice
=> Non_Static_Choice_Error
,
2240 Process_Associated_Node
=> No_OP
);
2241 use Variant_Choices_Processing
;
2243 -----------------------------
2244 -- Non_Static_Choice_Error --
2245 -----------------------------
2247 procedure Non_Static_Choice_Error
(Choice
: Node_Id
) is
2249 Flag_Non_Static_Expr
2250 ("choice given in case expression is not static!", Choice
);
2251 end Non_Static_Choice_Error
;
2253 -- Start of processing for Layout_Variant_Record
2256 -- Call Check_Choices here to ensure that Others_Discrete_Choices
2257 -- gets set on any 'others' choice before the discriminant-checking
2258 -- functions are generated. Otherwise the function for the 'others'
2259 -- alternative will unconditionally return True, causing discriminant
2260 -- checks to fail. However, Check_Choices is now normally delayed
2261 -- until the type's freeze entity is processed, due to requirements
2262 -- coming from subtype predicates, so doing it at this point is
2263 -- probably not right in general, but it's not clear how else to deal
2264 -- with this situation. Perhaps we should only generate declarations
2265 -- for the checking functions here, and somehow delay generation of
2266 -- their bodies, but that would be a nontrivial change. ???
2269 VP
: constant Node_Id
:=
2270 Variant_Part
(Component_List
(Type_Definition
(Decl
)));
2273 (VP
, Variants
(VP
), Etype
(Name
(VP
)), Others_Present
);
2276 -- We need the discriminant checking functions, since we generate
2277 -- calls to these functions for the RM_Size expression, so make
2278 -- sure that these functions have been constructed in time.
2280 Build_Discr_Checking_Funcs
(Decl
);
2282 -- Lay out the discriminants
2284 First_Discr
:= First_Discriminant
(E
);
2285 Last_Discr
:= First_Discr
;
2286 while Present
(Next_Discriminant
(Last_Discr
)) loop
2287 Next_Discriminant
(Last_Discr
);
2291 (From
=> First_Discr
,
2296 -- Lay out the main component list (this will make recursive calls
2297 -- to lay out all component lists nested within variants).
2299 Layout_Component_List
(Component_List
(Tdef
), Esiz
, RM_Siz_Expr
);
2300 Set_Esize
(E
, Esiz
);
2302 -- If the RM_Size is a literal, set its value
2304 if Nkind
(RM_Siz_Expr
) = N_Integer_Literal
then
2305 Set_RM_Size
(E
, Intval
(RM_Siz_Expr
));
2307 -- Otherwise we construct a dynamic SO_Ref
2316 end Layout_Variant_Record
;
2318 -- Start of processing for Layout_Record_Type
2321 -- If this is a cloned subtype, just copy the size fields from the
2322 -- original, nothing else needs to be done in this case, since the
2323 -- components themselves are all shared.
2325 if Ekind_In
(E
, E_Record_Subtype
, E_Class_Wide_Subtype
)
2326 and then Present
(Cloned_Subtype
(E
))
2328 Set_Esize
(E
, Esize
(Cloned_Subtype
(E
)));
2329 Set_RM_Size
(E
, RM_Size
(Cloned_Subtype
(E
)));
2330 Set_Alignment
(E
, Alignment
(Cloned_Subtype
(E
)));
2332 -- Another special case, class-wide types. The RM says that the size
2333 -- of such types is implementation defined (RM 13.3(48)). What we do
2334 -- here is to leave the fields set as unknown values, and the backend
2335 -- determines the actual behavior.
2337 elsif Ekind
(E
) = E_Class_Wide_Type
then
2343 -- Initialize alignment conservatively to 1. This value will be
2344 -- increased as necessary during processing of the record.
2346 if Unknown_Alignment
(E
) then
2347 Set_Alignment
(E
, Uint_1
);
2350 -- Initialize previous component. This is Empty unless there are
2351 -- components which have already been laid out by component clauses.
2352 -- If there are such components, we start our lay out of the
2353 -- remaining components following the last such component.
2357 Comp
:= First_Component_Or_Discriminant
(E
);
2358 while Present
(Comp
) loop
2359 if Present
(Component_Clause
(Comp
)) then
2362 Component_Bit_Offset
(Comp
) >
2363 Component_Bit_Offset
(Prev_Comp
)
2369 Next_Component_Or_Discriminant
(Comp
);
2372 -- We have two separate circuits, one for non-variant records and
2373 -- one for variant records. For non-variant records, we simply go
2374 -- through the list of components. This handles all the non-variant
2375 -- cases including those cases of subtypes where there is no full
2376 -- type declaration, so the tree cannot be used to drive the layout.
2377 -- For variant records, we have to drive the layout from the tree
2378 -- since we need to understand the variant structure in this case.
2380 if Present
(Full_View
(E
)) then
2381 Decl
:= Declaration_Node
(Full_View
(E
));
2383 Decl
:= Declaration_Node
(E
);
2386 -- Scan all the components
2388 if Nkind
(Decl
) = N_Full_Type_Declaration
2389 and then Has_Discriminants
(E
)
2390 and then Nkind
(Type_Definition
(Decl
)) = N_Record_Definition
2391 and then Present
(Component_List
(Type_Definition
(Decl
)))
2393 Present
(Variant_Part
(Component_List
(Type_Definition
(Decl
))))
2395 Layout_Variant_Record
;
2397 Layout_Non_Variant_Record
;
2400 end Layout_Record_Type
;
2406 procedure Layout_Type
(E
: Entity_Id
) is
2407 Desig_Type
: Entity_Id
;
2410 -- For string literal types, for now, kill the size always, this is
2411 -- because gigi does not like or need the size to be set ???
2413 if Ekind
(E
) = E_String_Literal_Subtype
then
2414 Set_Esize
(E
, Uint_0
);
2415 Set_RM_Size
(E
, Uint_0
);
2419 -- For access types, set size/alignment. This is system address size,
2420 -- except for fat pointers (unconstrained array access types), where the
2421 -- size is two times the address size, to accommodate the two pointers
2422 -- that are required for a fat pointer (data and template). Note that
2423 -- E_Access_Protected_Subprogram_Type is not an access type for this
2424 -- purpose since it is not a pointer but is equivalent to a record. For
2425 -- access subtypes, copy the size from the base type since Gigi
2426 -- represents them the same way.
2428 if Is_Access_Type
(E
) then
2430 Desig_Type
:= Underlying_Type
(Designated_Type
(E
));
2432 -- If we only have a limited view of the type, see whether the
2433 -- non-limited view is available.
2435 if From_Limited_With
(Designated_Type
(E
))
2436 and then Ekind
(Designated_Type
(E
)) = E_Incomplete_Type
2437 and then Present
(Non_Limited_View
(Designated_Type
(E
)))
2439 Desig_Type
:= Non_Limited_View
(Designated_Type
(E
));
2442 -- If Esize already set (e.g. by a size clause), then nothing further
2445 if Known_Esize
(E
) then
2448 -- Access to subprogram is a strange beast, and we let the backend
2449 -- figure out what is needed (it may be some kind of fat pointer,
2450 -- including the static link for example.
2452 elsif Is_Access_Protected_Subprogram_Type
(E
) then
2455 -- For access subtypes, copy the size information from base type
2457 elsif Ekind
(E
) = E_Access_Subtype
then
2458 Set_Size_Info
(E
, Base_Type
(E
));
2459 Set_RM_Size
(E
, RM_Size
(Base_Type
(E
)));
2461 -- For other access types, we use either address size, or, if a fat
2462 -- pointer is used (pointer-to-unconstrained array case), twice the
2463 -- address size to accommodate a fat pointer.
2465 elsif Present
(Desig_Type
)
2466 and then Is_Array_Type
(Desig_Type
)
2467 and then not Is_Constrained
(Desig_Type
)
2468 and then not Has_Completion_In_Body
(Desig_Type
)
2469 and then not Debug_Flag_6
2471 Init_Size
(E
, 2 * System_Address_Size
);
2473 -- Check for bad convention set
2475 if Warn_On_Export_Import
2477 (Convention
(E
) = Convention_C
2479 Convention
(E
) = Convention_CPP
)
2482 ("?x?this access type does not correspond to C pointer", E
);
2485 -- If the designated type is a limited view it is unanalyzed. We can
2486 -- examine the declaration itself to determine whether it will need a
2489 elsif Present
(Desig_Type
)
2490 and then Present
(Parent
(Desig_Type
))
2491 and then Nkind
(Parent
(Desig_Type
)) = N_Full_Type_Declaration
2493 Nkind
(Type_Definition
(Parent
(Desig_Type
)))
2494 = N_Unconstrained_Array_Definition
2495 and then not Debug_Flag_6
2497 Init_Size
(E
, 2 * System_Address_Size
);
2499 -- When the target is AAMP, access-to-subprogram types are fat
2500 -- pointers consisting of the subprogram address and a static link,
2501 -- with the exception of library-level access types (including
2502 -- library-level anonymous access types, such as for components),
2503 -- where a simple subprogram address is used.
2505 elsif AAMP_On_Target
2507 ((Ekind
(E
) = E_Access_Subprogram_Type
2508 and then Present
(Enclosing_Subprogram
(E
)))
2510 (Ekind
(E
) = E_Anonymous_Access_Subprogram_Type
2512 (not Is_Local_Anonymous_Access
(E
)
2513 or else Present
(Enclosing_Subprogram
(E
)))))
2515 Init_Size
(E
, 2 * System_Address_Size
);
2517 Init_Size
(E
, System_Address_Size
);
2520 -- On VMS, reset size to 32 for convention C access type if no
2521 -- explicit size clause is given and the default size is 64. Really
2522 -- we do not know the size, since depending on options for the VMS
2523 -- compiler, the size of a pointer type can be 32 or 64, but choosing
2524 -- 32 as the default improves compatibility with legacy VMS code.
2526 -- Note: we do not use Has_Size_Clause in the test below, because we
2527 -- want to catch the case of a derived type inheriting a size clause.
2528 -- We want to consider this to be an explicit size clause for this
2529 -- purpose, since it would be weird not to inherit the size in this
2532 -- We do NOT do this if we are in -gnatdm mode on a non-VMS target
2533 -- since in that case we want the normal pointer representation.
2535 if Opt
.True_VMS_Target
2536 and then (Convention
(E
) = Convention_C
2538 Convention
(E
) = Convention_CPP
)
2539 and then No
(Get_Attribute_Definition_Clause
(E
, Attribute_Size
))
2540 and then Esize
(E
) = 64
2545 Set_Elem_Alignment
(E
);
2547 -- Scalar types: set size and alignment
2549 elsif Is_Scalar_Type
(E
) then
2551 -- For discrete types, the RM_Size and Esize must be set already,
2552 -- since this is part of the earlier processing and the front end is
2553 -- always required to lay out the sizes of such types (since they are
2554 -- available as static attributes). All we do is to check that this
2555 -- rule is indeed obeyed.
2557 if Is_Discrete_Type
(E
) then
2559 -- If the RM_Size is not set, then here is where we set it
2561 -- Note: an RM_Size of zero looks like not set here, but this
2562 -- is a rare case, and we can simply reset it without any harm.
2564 if not Known_RM_Size
(E
) then
2565 Set_Discrete_RM_Size
(E
);
2568 -- If Esize for a discrete type is not set then set it
2570 if not Known_Esize
(E
) then
2576 -- If size is big enough, set it and exit
2578 if S
>= RM_Size
(E
) then
2582 -- If the RM_Size is greater than 64 (happens only when
2583 -- strange values are specified by the user, then Esize
2584 -- is simply a copy of RM_Size, it will be further
2585 -- refined later on)
2588 Set_Esize
(E
, RM_Size
(E
));
2591 -- Otherwise double possible size and keep trying
2600 -- For non-discrete scalar types, if the RM_Size is not set, then set
2601 -- it now to a copy of the Esize if the Esize is set.
2604 if Known_Esize
(E
) and then Unknown_RM_Size
(E
) then
2605 Set_RM_Size
(E
, Esize
(E
));
2609 Set_Elem_Alignment
(E
);
2611 -- Non-elementary (composite) types
2614 -- For packed arrays, take size and alignment values from the packed
2615 -- array type if a packed array type has been created and the fields
2616 -- are not currently set.
2618 if Is_Array_Type
(E
) and then Present
(Packed_Array_Type
(E
)) then
2620 PAT
: constant Entity_Id
:= Packed_Array_Type
(E
);
2623 if Unknown_Esize
(E
) then
2624 Set_Esize
(E
, Esize
(PAT
));
2627 if Unknown_RM_Size
(E
) then
2628 Set_RM_Size
(E
, RM_Size
(PAT
));
2631 if Unknown_Alignment
(E
) then
2632 Set_Alignment
(E
, Alignment
(PAT
));
2637 -- If Esize is set, and RM_Size is not, RM_Size is copied from Esize.
2638 -- At least for now this seems reasonable, and is in any case needed
2639 -- for compatibility with old versions of gigi.
2641 if Known_Esize
(E
) and then Unknown_RM_Size
(E
) then
2642 Set_RM_Size
(E
, Esize
(E
));
2645 -- For array base types, set component size if object size of the
2646 -- component type is known and is a small power of 2 (8, 16, 32, 64),
2647 -- since this is what will always be used.
2649 if Ekind
(E
) = E_Array_Type
2650 and then Unknown_Component_Size
(E
)
2653 CT
: constant Entity_Id
:= Component_Type
(E
);
2656 -- For some reasons, access types can cause trouble, So let's
2657 -- just do this for scalar types ???
2660 and then Is_Scalar_Type
(CT
)
2661 and then Known_Static_Esize
(CT
)
2664 S
: constant Uint
:= Esize
(CT
);
2666 if Addressable
(S
) then
2667 Set_Component_Size
(E
, S
);
2675 -- Lay out array and record types if front end layout set
2677 if Frontend_Layout_On_Target
then
2678 if Is_Array_Type
(E
) and then not Is_Bit_Packed_Array
(E
) then
2679 Layout_Array_Type
(E
);
2680 elsif Is_Record_Type
(E
) then
2681 Layout_Record_Type
(E
);
2684 -- Case of backend layout, we still do a little in the front end
2687 -- Processing for record types
2689 if Is_Record_Type
(E
) then
2691 -- Special remaining processing for record types with a known
2692 -- size of 16, 32, or 64 bits whose alignment is not yet set.
2693 -- For these types, we set a corresponding alignment matching
2694 -- the size if possible, or as large as possible if not.
2696 if Convention
(E
) = Convention_Ada
2697 and then not Debug_Flag_Q
2699 Set_Composite_Alignment
(E
);
2702 -- Processing for array types
2704 elsif Is_Array_Type
(E
) then
2706 -- For arrays that are required to be atomic, we do the same
2707 -- processing as described above for short records, since we
2708 -- really need to have the alignment set for the whole array.
2710 if Is_Atomic
(E
) and then not Debug_Flag_Q
then
2711 Set_Composite_Alignment
(E
);
2714 -- For unpacked array types, set an alignment of 1 if we know
2715 -- that the component alignment is not greater than 1. The reason
2716 -- we do this is to avoid unnecessary copying of slices of such
2717 -- arrays when passed to subprogram parameters (see special test
2718 -- in Exp_Ch6.Expand_Actuals).
2720 if not Is_Packed
(E
)
2721 and then Unknown_Alignment
(E
)
2723 if Known_Static_Component_Size
(E
)
2724 and then Component_Size
(E
) = 1
2726 Set_Alignment
(E
, Uint_1
);
2730 -- We need to know whether the size depends on the value of one
2731 -- or more discriminants to select the return mechanism. Skip if
2732 -- errors are present, to prevent cascaded messages.
2734 if Serious_Errors_Detected
= 0 then
2735 Compute_Size_Depends_On_Discriminant
(E
);
2741 -- Final step is to check that Esize and RM_Size are compatible
2743 if Known_Static_Esize
(E
) and then Known_Static_RM_Size
(E
) then
2744 if Esize
(E
) < RM_Size
(E
) then
2746 -- Esize is less than RM_Size. That's not good. First we test
2747 -- whether this was set deliberately with an Object_Size clause
2748 -- and if so, object to the clause.
2750 if Has_Object_Size_Clause
(E
) then
2751 Error_Msg_Uint_1
:= RM_Size
(E
);
2753 ("object size is too small, minimum allowed is ^",
2754 Expression
(Get_Attribute_Definition_Clause
2755 (E
, Attribute_Object_Size
)));
2758 -- Adjust Esize up to RM_Size value
2761 Size
: constant Uint
:= RM_Size
(E
);
2764 Set_Esize
(E
, RM_Size
(E
));
2766 -- For scalar types, increase Object_Size to power of 2, but
2767 -- not less than a storage unit in any case (i.e., normally
2768 -- this means it will be storage-unit addressable).
2770 if Is_Scalar_Type
(E
) then
2771 if Size
<= System_Storage_Unit
then
2772 Init_Esize
(E
, System_Storage_Unit
);
2773 elsif Size
<= 16 then
2775 elsif Size
<= 32 then
2778 Set_Esize
(E
, (Size
+ 63) / 64 * 64);
2781 -- Finally, make sure that alignment is consistent with
2782 -- the newly assigned size.
2784 while Alignment
(E
) * System_Storage_Unit
< Esize
(E
)
2785 and then Alignment
(E
) < Maximum_Alignment
2787 Set_Alignment
(E
, 2 * Alignment
(E
));
2795 ---------------------
2796 -- Rewrite_Integer --
2797 ---------------------
2799 procedure Rewrite_Integer
(N
: Node_Id
; V
: Uint
) is
2800 Loc
: constant Source_Ptr
:= Sloc
(N
);
2801 Typ
: constant Entity_Id
:= Etype
(N
);
2803 Rewrite
(N
, Make_Integer_Literal
(Loc
, Intval
=> V
));
2805 end Rewrite_Integer
;
2807 -------------------------------
2808 -- Set_And_Check_Static_Size --
2809 -------------------------------
2811 procedure Set_And_Check_Static_Size
2818 procedure Check_Size_Too_Small
(Spec
: Uint
; Min
: Uint
);
2819 -- Spec is the number of bit specified in the size clause, and Min is
2820 -- the minimum computed size. An error is given that the specified size
2821 -- is too small if Spec < Min, and in this case both Esize and RM_Size
2822 -- are set to unknown in E. The error message is posted on node SC.
2824 procedure Check_Unused_Bits
(Spec
: Uint
; Max
: Uint
);
2825 -- Spec is the number of bits specified in the size clause, and Max is
2826 -- the maximum computed size. A warning is given about unused bits if
2827 -- Spec > Max. This warning is posted on node SC.
2829 --------------------------
2830 -- Check_Size_Too_Small --
2831 --------------------------
2833 procedure Check_Size_Too_Small
(Spec
: Uint
; Min
: Uint
) is
2836 Error_Msg_Uint_1
:= Min
;
2837 Error_Msg_NE
("size for & too small, minimum allowed is ^", SC
, E
);
2841 end Check_Size_Too_Small
;
2843 -----------------------
2844 -- Check_Unused_Bits --
2845 -----------------------
2847 procedure Check_Unused_Bits
(Spec
: Uint
; Max
: Uint
) is
2850 Error_Msg_Uint_1
:= Spec
- Max
;
2851 Error_Msg_NE
("??^ bits of & unused", SC
, E
);
2853 end Check_Unused_Bits
;
2855 -- Start of processing for Set_And_Check_Static_Size
2858 -- Case where Object_Size (Esize) is already set by a size clause
2860 if Known_Static_Esize
(E
) then
2861 SC
:= Size_Clause
(E
);
2864 SC
:= Get_Attribute_Definition_Clause
(E
, Attribute_Object_Size
);
2867 -- Perform checks on specified size against computed sizes
2869 if Present
(SC
) then
2870 Check_Unused_Bits
(Esize
(E
), Esiz
);
2871 Check_Size_Too_Small
(Esize
(E
), RM_Siz
);
2875 -- Case where Value_Size (RM_Size) is set by specific Value_Size clause
2876 -- (we do not need to worry about Value_Size being set by a Size clause,
2877 -- since that will have set Esize as well, and we already took care of
2880 if Known_Static_RM_Size
(E
) then
2881 SC
:= Get_Attribute_Definition_Clause
(E
, Attribute_Value_Size
);
2883 -- Perform checks on specified size against computed sizes
2885 if Present
(SC
) then
2886 Check_Unused_Bits
(RM_Size
(E
), Esiz
);
2887 Check_Size_Too_Small
(RM_Size
(E
), RM_Siz
);
2891 -- Set sizes if unknown
2893 if Unknown_Esize
(E
) then
2894 Set_Esize
(E
, Esiz
);
2897 if Unknown_RM_Size
(E
) then
2898 Set_RM_Size
(E
, RM_Siz
);
2900 end Set_And_Check_Static_Size
;
2902 -----------------------------
2903 -- Set_Composite_Alignment --
2904 -----------------------------
2906 procedure Set_Composite_Alignment
(E
: Entity_Id
) is
2911 -- If alignment is already set, then nothing to do
2913 if Known_Alignment
(E
) then
2917 -- Alignment is not known, see if we can set it, taking into account
2918 -- the setting of the Optimize_Alignment mode.
2920 -- If Optimize_Alignment is set to Space, then we try to give packed
2921 -- records an aligmment of 1, unless there is some reason we can't.
2923 if Optimize_Alignment_Space
(E
)
2924 and then Is_Record_Type
(E
)
2925 and then Is_Packed
(E
)
2927 -- No effect for record with atomic components
2929 if Is_Atomic
(E
) then
2930 Error_Msg_N
("Optimize_Alignment has no effect for &??", E
);
2931 Error_Msg_N
("\pragma ignored for atomic record??", E
);
2935 -- No effect if independent components
2937 if Has_Independent_Components
(E
) then
2938 Error_Msg_N
("Optimize_Alignment has no effect for &??", E
);
2940 ("\pragma ignored for record with independent components??", E
);
2944 -- No effect if any component is atomic or is a by reference type
2949 Ent
:= First_Component_Or_Discriminant
(E
);
2950 while Present
(Ent
) loop
2951 if Is_By_Reference_Type
(Etype
(Ent
))
2952 or else Is_Atomic
(Etype
(Ent
))
2953 or else Is_Atomic
(Ent
)
2955 Error_Msg_N
("Optimize_Alignment has no effect for &??", E
);
2957 ("\pragma is ignored if atomic components present??", E
);
2960 Next_Component_Or_Discriminant
(Ent
);
2965 -- Optimize_Alignment has no effect on variable length record
2967 if not Size_Known_At_Compile_Time
(E
) then
2968 Error_Msg_N
("Optimize_Alignment has no effect for &??", E
);
2969 Error_Msg_N
("\pragma is ignored for variable length record??", E
);
2973 -- All tests passed, we can set alignment to 1
2977 -- Not a record, or not packed
2980 -- The only other cases we worry about here are where the size is
2981 -- statically known at compile time.
2983 if Known_Static_Esize
(E
) then
2986 elsif Unknown_Esize
(E
)
2987 and then Known_Static_RM_Size
(E
)
2995 -- Size is known, alignment is not set
2997 -- Reset alignment to match size if the known size is exactly 2, 4,
2998 -- or 8 storage units.
3000 if Siz
= 2 * System_Storage_Unit
then
3002 elsif Siz
= 4 * System_Storage_Unit
then
3004 elsif Siz
= 8 * System_Storage_Unit
then
3007 -- If Optimize_Alignment is set to Space, then make sure the
3008 -- alignment matches the size, for example, if the size is 17
3009 -- bytes then we want an alignment of 1 for the type.
3011 elsif Optimize_Alignment_Space
(E
) then
3012 if Siz
mod (8 * System_Storage_Unit
) = 0 then
3014 elsif Siz
mod (4 * System_Storage_Unit
) = 0 then
3016 elsif Siz
mod (2 * System_Storage_Unit
) = 0 then
3022 -- If Optimize_Alignment is set to Time, then we reset for odd
3023 -- "in between sizes", for example a 17 bit record is given an
3024 -- alignment of 4. Note that this matches the old VMS behavior
3025 -- in versions of GNAT prior to 6.1.1.
3027 elsif Optimize_Alignment_Time
(E
)
3028 and then Siz
> System_Storage_Unit
3029 and then Siz
<= 8 * System_Storage_Unit
3031 if Siz
<= 2 * System_Storage_Unit
then
3033 elsif Siz
<= 4 * System_Storage_Unit
then
3035 else -- Siz <= 8 * System_Storage_Unit then
3039 -- No special alignment fiddling needed
3046 -- Here we have Set Align to the proposed improved value. Make sure the
3047 -- value set does not exceed Maximum_Alignment for the target.
3049 if Align
> Maximum_Alignment
then
3050 Align
:= Maximum_Alignment
;
3053 -- Further processing for record types only to reduce the alignment
3054 -- set by the above processing in some specific cases. We do not
3055 -- do this for atomic records, since we need max alignment there,
3057 if Is_Record_Type
(E
) and then not Is_Atomic
(E
) then
3059 -- For records, there is generally no point in setting alignment
3060 -- higher than word size since we cannot do better than move by
3061 -- words in any case. Omit this if we are optimizing for time,
3062 -- since conceivably we may be able to do better.
3064 if Align
> System_Word_Size
/ System_Storage_Unit
3065 and then not Optimize_Alignment_Time
(E
)
3067 Align
:= System_Word_Size
/ System_Storage_Unit
;
3070 -- Check components. If any component requires a higher alignment,
3071 -- then we set that higher alignment in any case. Don't do this if
3072 -- we have Optimize_Alignment set to Space. Note that that covers
3073 -- the case of packed records, where we already set alignment to 1.
3075 if not Optimize_Alignment_Space
(E
) then
3080 Comp
:= First_Component
(E
);
3081 while Present
(Comp
) loop
3082 if Known_Alignment
(Etype
(Comp
)) then
3084 Calign
: constant Uint
:= Alignment
(Etype
(Comp
));
3087 -- The cases to process are when the alignment of the
3088 -- component type is larger than the alignment we have
3089 -- so far, and either there is no component clause for
3090 -- the component, or the length set by the component
3091 -- clause matches the length of the component type.
3095 (Unknown_Esize
(Comp
)
3096 or else (Known_Static_Esize
(Comp
)
3099 Calign
* System_Storage_Unit
))
3101 Align
:= UI_To_Int
(Calign
);
3106 Next_Component
(Comp
);
3112 -- Set chosen alignment, and increase Esize if necessary to match the
3113 -- chosen alignment.
3115 Set_Alignment
(E
, UI_From_Int
(Align
));
3117 if Known_Static_Esize
(E
)
3118 and then Esize
(E
) < Align
* System_Storage_Unit
3120 Set_Esize
(E
, UI_From_Int
(Align
* System_Storage_Unit
));
3122 end Set_Composite_Alignment
;
3124 --------------------------
3125 -- Set_Discrete_RM_Size --
3126 --------------------------
3128 procedure Set_Discrete_RM_Size
(Def_Id
: Entity_Id
) is
3129 FST
: constant Entity_Id
:= First_Subtype
(Def_Id
);
3132 -- All discrete types except for the base types in standard are
3133 -- constrained, so indicate this by setting Is_Constrained.
3135 Set_Is_Constrained
(Def_Id
);
3137 -- Set generic types to have an unknown size, since the representation
3138 -- of a generic type is irrelevant, in view of the fact that they have
3139 -- nothing to do with code.
3141 if Is_Generic_Type
(Root_Type
(FST
)) then
3142 Set_RM_Size
(Def_Id
, Uint_0
);
3144 -- If the subtype statically matches the first subtype, then it is
3145 -- required to have exactly the same layout. This is required by
3146 -- aliasing considerations.
3148 elsif Def_Id
/= FST
and then
3149 Subtypes_Statically_Match
(Def_Id
, FST
)
3151 Set_RM_Size
(Def_Id
, RM_Size
(FST
));
3152 Set_Size_Info
(Def_Id
, FST
);
3154 -- In all other cases the RM_Size is set to the minimum size. Note that
3155 -- this routine is never called for subtypes for which the RM_Size is
3156 -- set explicitly by an attribute clause.
3159 Set_RM_Size
(Def_Id
, UI_From_Int
(Minimum_Size
(Def_Id
)));
3161 end Set_Discrete_RM_Size
;
3163 ------------------------
3164 -- Set_Elem_Alignment --
3165 ------------------------
3167 procedure Set_Elem_Alignment
(E
: Entity_Id
) is
3169 -- Do not set alignment for packed array types, unless we are doing
3170 -- front end layout, because otherwise this is always handled in the
3173 if Is_Packed_Array_Type
(E
) and then not Frontend_Layout_On_Target
then
3176 -- If there is an alignment clause, then we respect it
3178 elsif Has_Alignment_Clause
(E
) then
3181 -- If the size is not set, then don't attempt to set the alignment. This
3182 -- happens in the backend layout case for access-to-subprogram types.
3184 elsif not Known_Static_Esize
(E
) then
3187 -- For access types, do not set the alignment if the size is less than
3188 -- the allowed minimum size. This avoids cascaded error messages.
3190 elsif Is_Access_Type
(E
)
3191 and then Esize
(E
) < System_Address_Size
3196 -- Here we calculate the alignment as the largest power of two multiple
3197 -- of System.Storage_Unit that does not exceed either the object size of
3198 -- the type, or the maximum allowed alignment.
3204 Max_Alignment
: Nat
;
3207 -- The given Esize may be larger that int'last because of a previous
3208 -- error, and the call to UI_To_Int will fail, so use default.
3210 if Esize
(E
) / SSU
> Ttypes
.Maximum_Alignment
then
3211 S
:= Ttypes
.Maximum_Alignment
;
3213 -- If this is an access type and the target doesn't have strict
3214 -- alignment and we are not doing front end layout, then cap the
3215 -- alignment to that of a regular access type. This will avoid
3216 -- giving fat pointers twice the usual alignment for no practical
3217 -- benefit since the misalignment doesn't really matter.
3219 elsif Is_Access_Type
(E
)
3220 and then not Target_Strict_Alignment
3221 and then not Frontend_Layout_On_Target
3223 S
:= System_Address_Size
/ SSU
;
3226 S
:= UI_To_Int
(Esize
(E
)) / SSU
;
3229 -- If the default alignment of "double" floating-point types is
3230 -- specifically capped, enforce the cap.
3232 if Ttypes
.Target_Double_Float_Alignment
> 0
3234 and then Is_Floating_Point_Type
(E
)
3236 Max_Alignment
:= Ttypes
.Target_Double_Float_Alignment
;
3238 -- If the default alignment of "double" or larger scalar types is
3239 -- specifically capped, enforce the cap.
3241 elsif Ttypes
.Target_Double_Scalar_Alignment
> 0
3243 and then Is_Scalar_Type
(E
)
3245 Max_Alignment
:= Ttypes
.Target_Double_Scalar_Alignment
;
3247 -- Otherwise enforce the overall alignment cap
3250 Max_Alignment
:= Ttypes
.Maximum_Alignment
;
3254 while 2 * A
<= Max_Alignment
and then 2 * A
<= S
loop
3258 -- If alignment is currently not set, then we can safetly set it to
3259 -- this new calculated value.
3261 if Unknown_Alignment
(E
) then
3262 Init_Alignment
(E
, A
);
3264 -- Cases where we have inherited an alignment
3266 -- For constructed types, always reset the alignment, these are
3267 -- Generally invisible to the user anyway, and that way we are
3268 -- sure that no constructed types have weird alignments.
3270 elsif not Comes_From_Source
(E
) then
3271 Init_Alignment
(E
, A
);
3273 -- If this inherited alignment is the same as the one we computed,
3274 -- then obviously everything is fine, and we do not need to reset it.
3276 elsif Alignment
(E
) = A
then
3279 -- Now we come to the difficult cases where we have inherited an
3280 -- alignment and size, but overridden the size but not the alignment.
3282 elsif Has_Size_Clause
(E
) or else Has_Object_Size_Clause
(E
) then
3284 -- This is tricky, it might be thought that we should try to
3285 -- inherit the alignment, since that's what the RM implies, but
3286 -- that leads to complex rules and oddities. Consider for example:
3288 -- type R is new Character;
3289 -- for R'Size use 16;
3291 -- It seems quite bogus in this case to inherit an alignment of 1
3292 -- from the parent type Character. Furthermore, if that's what the
3293 -- programmer really wanted for some odd reason, then they could
3294 -- specify the alignment they wanted.
3296 -- Furthermore we really don't want to inherit the alignment in
3297 -- the case of a specified Object_Size for a subtype, since then
3298 -- there would be no way of overriding to give a reasonable value
3299 -- (we don't have an Object_Subtype attribute). Consider:
3301 -- subtype R is new Character;
3302 -- for R'Object_Size use 16;
3304 -- If we inherit the alignment of 1, then we have an odd
3305 -- inefficient alignment for the subtype, which cannot be fixed.
3307 -- So we make the decision that if Size (or Object_Size) is given
3308 -- (and, in the case of a first subtype, the alignment is not set
3309 -- with a specific alignment clause). We reset the alignment to
3310 -- the appropriate value for the specified size. This is a nice
3311 -- simple rule to implement and document.
3313 -- There is one slight glitch, which is that a confirming size
3314 -- clause can now change the alignment, which, if we really think
3315 -- that confirming rep clauses should have no effect, is a no-no.
3317 -- type R is new Character;
3318 -- for R'Alignment use 2;
3320 -- for S'Size use Character'Size;
3322 -- Now the alignment of S is 1 instead of 2, as a result of
3323 -- applying the above rule to the confirming rep clause for S. Not
3324 -- clear this is worth worrying about. If we recorded whether a
3325 -- size clause was confirming we could avoid this, but right now
3326 -- we have no way of doing that or easily figuring it out, so we
3329 -- Historical note. In versions of GNAT prior to Nov 6th, 2010, an
3330 -- odd distinction was made between inherited alignments greater
3331 -- than the computed alignment (where the larger alignment was
3332 -- inherited) and inherited alignments smaller than the computed
3333 -- alignment (where the smaller alignment was overridden). This
3334 -- was a dubious fix to get around an ACATS problem which seems
3335 -- to have disappeared anyway, and in any case, this peculiarity
3336 -- was never documented.
3338 Init_Alignment
(E
, A
);
3340 -- If no Size (or Object_Size) was specified, then we inherited the
3341 -- object size, so we should inherit the alignment as well and not
3342 -- modify it. This takes care of cases like:
3344 -- type R is new Integer;
3345 -- for R'Alignment use 1;
3348 -- Here we have R has a default Object_Size of 32, and a specified
3349 -- alignment of 1, and it seeems right for S to inherit both values.
3355 end Set_Elem_Alignment
;
3357 ----------------------
3358 -- SO_Ref_From_Expr --
3359 ----------------------
3361 function SO_Ref_From_Expr
3363 Ins_Type
: Entity_Id
;
3364 Vtype
: Entity_Id
:= Empty
;
3365 Make_Func
: Boolean := False) return Dynamic_SO_Ref
3367 Loc
: constant Source_Ptr
:= Sloc
(Ins_Type
);
3368 K
: constant Entity_Id
:= Make_Temporary
(Loc
, 'K');
3371 Vtype_Primary_View
: Entity_Id
;
3373 function Check_Node_V_Ref
(N
: Node_Id
) return Traverse_Result
;
3374 -- Function used to check one node for reference to V
3376 function Has_V_Ref
is new Traverse_Func
(Check_Node_V_Ref
);
3377 -- Function used to traverse tree to check for reference to V
3379 ----------------------
3380 -- Check_Node_V_Ref --
3381 ----------------------
3383 function Check_Node_V_Ref
(N
: Node_Id
) return Traverse_Result
is
3385 if Nkind
(N
) = N_Identifier
then
3386 if Chars
(N
) = Vname
then
3395 end Check_Node_V_Ref
;
3397 -- Start of processing for SO_Ref_From_Expr
3400 -- Case of expression is an integer literal, in this case we just
3401 -- return the value (which must always be non-negative, since size
3402 -- and offset values can never be negative).
3404 if Nkind
(Expr
) = N_Integer_Literal
then
3405 pragma Assert
(Intval
(Expr
) >= 0);
3406 return Intval
(Expr
);
3409 -- Case where there is a reference to V, create function
3411 if Has_V_Ref
(Expr
) = Abandon
then
3413 pragma Assert
(Present
(Vtype
));
3415 -- Check whether Vtype is a view of a private type and ensure that
3416 -- we use the primary view of the type (which is denoted by its
3417 -- Etype, whether it's the type's partial or full view entity).
3418 -- This is needed to make sure that we use the same (primary) view
3419 -- of the type for all V formals, whether the current view of the
3420 -- type is the partial or full view, so that types will always
3421 -- match on calls from one size function to another.
3423 if Has_Private_Declaration
(Vtype
) then
3424 Vtype_Primary_View
:= Etype
(Vtype
);
3426 Vtype_Primary_View
:= Vtype
;
3429 Set_Is_Discrim_SO_Function
(K
);
3432 Make_Subprogram_Body
(Loc
,
3435 Make_Function_Specification
(Loc
,
3436 Defining_Unit_Name
=> K
,
3437 Parameter_Specifications
=> New_List
(
3438 Make_Parameter_Specification
(Loc
,
3439 Defining_Identifier
=>
3440 Make_Defining_Identifier
(Loc
, Chars
=> Vname
),
3442 New_Occurrence_Of
(Vtype_Primary_View
, Loc
))),
3443 Result_Definition
=>
3444 New_Occurrence_Of
(Standard_Unsigned
, Loc
)),
3446 Declarations
=> Empty_List
,
3448 Handled_Statement_Sequence
=>
3449 Make_Handled_Sequence_Of_Statements
(Loc
,
3450 Statements
=> New_List
(
3451 Make_Simple_Return_Statement
(Loc
,
3452 Expression
=> Expr
))));
3454 -- The caller requests that the expression be encapsulated in a
3455 -- parameterless function.
3457 elsif Make_Func
then
3459 Make_Subprogram_Body
(Loc
,
3462 Make_Function_Specification
(Loc
,
3463 Defining_Unit_Name
=> K
,
3464 Parameter_Specifications
=> Empty_List
,
3465 Result_Definition
=>
3466 New_Occurrence_Of
(Standard_Unsigned
, Loc
)),
3468 Declarations
=> Empty_List
,
3470 Handled_Statement_Sequence
=>
3471 Make_Handled_Sequence_Of_Statements
(Loc
,
3472 Statements
=> New_List
(
3473 Make_Simple_Return_Statement
(Loc
, Expression
=> Expr
))));
3475 -- No reference to V and function not requested, so create a constant
3479 Make_Object_Declaration
(Loc
,
3480 Defining_Identifier
=> K
,
3481 Object_Definition
=>
3482 New_Occurrence_Of
(Standard_Unsigned
, Loc
),
3483 Constant_Present
=> True,
3484 Expression
=> Expr
);
3487 Append_Freeze_Action
(Ins_Type
, Decl
);
3489 return Create_Dynamic_SO_Ref
(K
);
3490 end SO_Ref_From_Expr
;