1 /* Medium-level subroutines: convert bit-field store and extract
2 and shifts, multiplies and divides to rtl instructions.
3 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
26 #include "coretypes.h"
33 #include "insn-config.h"
38 #include "langhooks.h"
40 static void store_fixed_bit_field (rtx
, unsigned HOST_WIDE_INT
,
41 unsigned HOST_WIDE_INT
,
42 unsigned HOST_WIDE_INT
, rtx
);
43 static void store_split_bit_field (rtx
, unsigned HOST_WIDE_INT
,
44 unsigned HOST_WIDE_INT
, rtx
);
45 static rtx
extract_fixed_bit_field (enum machine_mode
, rtx
,
46 unsigned HOST_WIDE_INT
,
47 unsigned HOST_WIDE_INT
,
48 unsigned HOST_WIDE_INT
, rtx
, int);
49 static rtx
mask_rtx (enum machine_mode
, int, int, int);
50 static rtx
lshift_value (enum machine_mode
, rtx
, int, int);
51 static rtx
extract_split_bit_field (rtx
, unsigned HOST_WIDE_INT
,
52 unsigned HOST_WIDE_INT
, int);
53 static void do_cmp_and_jump (rtx
, rtx
, enum rtx_code
, enum machine_mode
, rtx
);
54 static rtx
expand_smod_pow2 (enum machine_mode
, rtx
, HOST_WIDE_INT
);
55 static rtx
expand_sdiv_pow2 (enum machine_mode
, rtx
, HOST_WIDE_INT
);
57 /* Test whether a value is zero of a power of two. */
58 #define EXACT_POWER_OF_2_OR_ZERO_P(x) (((x) & ((x) - 1)) == 0)
60 /* Nonzero means divides or modulus operations are relatively cheap for
61 powers of two, so don't use branches; emit the operation instead.
62 Usually, this will mean that the MD file will emit non-branch
65 static bool sdiv_pow2_cheap
[NUM_MACHINE_MODES
];
66 static bool smod_pow2_cheap
[NUM_MACHINE_MODES
];
68 #ifndef SLOW_UNALIGNED_ACCESS
69 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
72 /* For compilers that support multiple targets with different word sizes,
73 MAX_BITS_PER_WORD contains the biggest value of BITS_PER_WORD. An example
74 is the H8/300(H) compiler. */
76 #ifndef MAX_BITS_PER_WORD
77 #define MAX_BITS_PER_WORD BITS_PER_WORD
80 /* Reduce conditional compilation elsewhere. */
83 #define CODE_FOR_insv CODE_FOR_nothing
84 #define gen_insv(a,b,c,d) NULL_RTX
88 #define CODE_FOR_extv CODE_FOR_nothing
89 #define gen_extv(a,b,c,d) NULL_RTX
93 #define CODE_FOR_extzv CODE_FOR_nothing
94 #define gen_extzv(a,b,c,d) NULL_RTX
97 /* Cost of various pieces of RTL. Note that some of these are indexed by
98 shift count and some by mode. */
100 static int add_cost
[NUM_MACHINE_MODES
];
101 static int neg_cost
[NUM_MACHINE_MODES
];
102 static int shift_cost
[NUM_MACHINE_MODES
][MAX_BITS_PER_WORD
];
103 static int shiftadd_cost
[NUM_MACHINE_MODES
][MAX_BITS_PER_WORD
];
104 static int shiftsub_cost
[NUM_MACHINE_MODES
][MAX_BITS_PER_WORD
];
105 static int mul_cost
[NUM_MACHINE_MODES
];
106 static int div_cost
[NUM_MACHINE_MODES
];
107 static int mul_widen_cost
[NUM_MACHINE_MODES
];
108 static int mul_highpart_cost
[NUM_MACHINE_MODES
];
115 struct rtx_def reg
; rtunion reg_fld
[2];
116 struct rtx_def plus
; rtunion plus_fld1
;
118 struct rtx_def udiv
; rtunion udiv_fld1
;
119 struct rtx_def mult
; rtunion mult_fld1
;
120 struct rtx_def div
; rtunion div_fld1
;
121 struct rtx_def mod
; rtunion mod_fld1
;
123 struct rtx_def wide_mult
; rtunion wide_mult_fld1
;
124 struct rtx_def wide_lshr
; rtunion wide_lshr_fld1
;
125 struct rtx_def wide_trunc
;
126 struct rtx_def shift
; rtunion shift_fld1
;
127 struct rtx_def shift_mult
; rtunion shift_mult_fld1
;
128 struct rtx_def shift_add
; rtunion shift_add_fld1
;
129 struct rtx_def shift_sub
; rtunion shift_sub_fld1
;
132 rtx pow2
[MAX_BITS_PER_WORD
];
133 rtx cint
[MAX_BITS_PER_WORD
];
135 enum machine_mode mode
, wider_mode
;
137 zero_cost
= rtx_cost (const0_rtx
, 0);
139 for (m
= 1; m
< MAX_BITS_PER_WORD
; m
++)
141 pow2
[m
] = GEN_INT ((HOST_WIDE_INT
) 1 << m
);
142 cint
[m
] = GEN_INT (m
);
145 memset (&all
, 0, sizeof all
);
147 PUT_CODE (&all
.reg
, REG
);
148 /* Avoid using hard regs in ways which may be unsupported. */
149 REGNO (&all
.reg
) = LAST_VIRTUAL_REGISTER
+ 1;
151 PUT_CODE (&all
.plus
, PLUS
);
152 XEXP (&all
.plus
, 0) = &all
.reg
;
153 XEXP (&all
.plus
, 1) = &all
.reg
;
155 PUT_CODE (&all
.neg
, NEG
);
156 XEXP (&all
.neg
, 0) = &all
.reg
;
158 PUT_CODE (&all
.udiv
, UDIV
);
159 XEXP (&all
.udiv
, 0) = &all
.reg
;
160 XEXP (&all
.udiv
, 1) = &all
.reg
;
162 PUT_CODE (&all
.mult
, MULT
);
163 XEXP (&all
.mult
, 0) = &all
.reg
;
164 XEXP (&all
.mult
, 1) = &all
.reg
;
166 PUT_CODE (&all
.div
, DIV
);
167 XEXP (&all
.div
, 0) = &all
.reg
;
168 XEXP (&all
.div
, 1) = 32 < MAX_BITS_PER_WORD
? cint
[32] : GEN_INT (32);
170 PUT_CODE (&all
.mod
, MOD
);
171 XEXP (&all
.mod
, 0) = &all
.reg
;
172 XEXP (&all
.mod
, 1) = XEXP (&all
.div
, 1);
174 PUT_CODE (&all
.zext
, ZERO_EXTEND
);
175 XEXP (&all
.zext
, 0) = &all
.reg
;
177 PUT_CODE (&all
.wide_mult
, MULT
);
178 XEXP (&all
.wide_mult
, 0) = &all
.zext
;
179 XEXP (&all
.wide_mult
, 1) = &all
.zext
;
181 PUT_CODE (&all
.wide_lshr
, LSHIFTRT
);
182 XEXP (&all
.wide_lshr
, 0) = &all
.wide_mult
;
184 PUT_CODE (&all
.wide_trunc
, TRUNCATE
);
185 XEXP (&all
.wide_trunc
, 0) = &all
.wide_lshr
;
187 PUT_CODE (&all
.shift
, ASHIFT
);
188 XEXP (&all
.shift
, 0) = &all
.reg
;
190 PUT_CODE (&all
.shift_mult
, MULT
);
191 XEXP (&all
.shift_mult
, 0) = &all
.reg
;
193 PUT_CODE (&all
.shift_add
, PLUS
);
194 XEXP (&all
.shift_add
, 0) = &all
.shift_mult
;
195 XEXP (&all
.shift_add
, 1) = &all
.reg
;
197 PUT_CODE (&all
.shift_sub
, MINUS
);
198 XEXP (&all
.shift_sub
, 0) = &all
.shift_mult
;
199 XEXP (&all
.shift_sub
, 1) = &all
.reg
;
201 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
203 mode
= GET_MODE_WIDER_MODE (mode
))
205 PUT_MODE (&all
.reg
, mode
);
206 PUT_MODE (&all
.plus
, mode
);
207 PUT_MODE (&all
.neg
, mode
);
208 PUT_MODE (&all
.udiv
, mode
);
209 PUT_MODE (&all
.mult
, mode
);
210 PUT_MODE (&all
.div
, mode
);
211 PUT_MODE (&all
.mod
, mode
);
212 PUT_MODE (&all
.wide_trunc
, mode
);
213 PUT_MODE (&all
.shift
, mode
);
214 PUT_MODE (&all
.shift_mult
, mode
);
215 PUT_MODE (&all
.shift_add
, mode
);
216 PUT_MODE (&all
.shift_sub
, mode
);
218 add_cost
[mode
] = rtx_cost (&all
.plus
, SET
);
219 neg_cost
[mode
] = rtx_cost (&all
.neg
, SET
);
220 div_cost
[mode
] = rtx_cost (&all
.udiv
, SET
);
221 mul_cost
[mode
] = rtx_cost (&all
.mult
, SET
);
223 sdiv_pow2_cheap
[mode
] = (rtx_cost (&all
.div
, SET
) <= 2 * add_cost
[mode
]);
224 smod_pow2_cheap
[mode
] = (rtx_cost (&all
.mod
, SET
) <= 4 * add_cost
[mode
]);
226 wider_mode
= GET_MODE_WIDER_MODE (mode
);
227 if (wider_mode
!= VOIDmode
)
229 PUT_MODE (&all
.zext
, wider_mode
);
230 PUT_MODE (&all
.wide_mult
, wider_mode
);
231 PUT_MODE (&all
.wide_lshr
, wider_mode
);
232 XEXP (&all
.wide_lshr
, 1) = GEN_INT (GET_MODE_BITSIZE (mode
));
234 mul_widen_cost
[wider_mode
] = rtx_cost (&all
.wide_mult
, SET
);
235 mul_highpart_cost
[mode
] = rtx_cost (&all
.wide_trunc
, SET
);
238 shift_cost
[mode
][0] = 0;
239 shiftadd_cost
[mode
][0] = shiftsub_cost
[mode
][0] = add_cost
[mode
];
241 n
= MIN (MAX_BITS_PER_WORD
, GET_MODE_BITSIZE (mode
));
242 for (m
= 1; m
< n
; m
++)
244 XEXP (&all
.shift
, 1) = cint
[m
];
245 XEXP (&all
.shift_mult
, 1) = pow2
[m
];
247 shift_cost
[mode
][m
] = rtx_cost (&all
.shift
, SET
);
248 shiftadd_cost
[mode
][m
] = rtx_cost (&all
.shift_add
, SET
);
249 shiftsub_cost
[mode
][m
] = rtx_cost (&all
.shift_sub
, SET
);
254 /* Return an rtx representing minus the value of X.
255 MODE is the intended mode of the result,
256 useful if X is a CONST_INT. */
259 negate_rtx (enum machine_mode mode
, rtx x
)
261 rtx result
= simplify_unary_operation (NEG
, mode
, x
, mode
);
264 result
= expand_unop (mode
, neg_optab
, x
, NULL_RTX
, 0);
269 /* Report on the availability of insv/extv/extzv and the desired mode
270 of each of their operands. Returns MAX_MACHINE_MODE if HAVE_foo
271 is false; else the mode of the specified operand. If OPNO is -1,
272 all the caller cares about is whether the insn is available. */
274 mode_for_extraction (enum extraction_pattern pattern
, int opno
)
276 const struct insn_data
*data
;
283 data
= &insn_data
[CODE_FOR_insv
];
286 return MAX_MACHINE_MODE
;
291 data
= &insn_data
[CODE_FOR_extv
];
294 return MAX_MACHINE_MODE
;
299 data
= &insn_data
[CODE_FOR_extzv
];
302 return MAX_MACHINE_MODE
;
311 /* Everyone who uses this function used to follow it with
312 if (result == VOIDmode) result = word_mode; */
313 if (data
->operand
[opno
].mode
== VOIDmode
)
315 return data
->operand
[opno
].mode
;
319 /* Generate code to store value from rtx VALUE
320 into a bit-field within structure STR_RTX
321 containing BITSIZE bits starting at bit BITNUM.
322 FIELDMODE is the machine-mode of the FIELD_DECL node for this field.
323 ALIGN is the alignment that STR_RTX is known to have.
324 TOTAL_SIZE is the size of the structure in bytes, or -1 if varying. */
326 /* ??? Note that there are two different ideas here for how
327 to determine the size to count bits within, for a register.
328 One is BITS_PER_WORD, and the other is the size of operand 3
331 If operand 3 of the insv pattern is VOIDmode, then we will use BITS_PER_WORD
332 else, we use the mode of operand 3. */
335 store_bit_field (rtx str_rtx
, unsigned HOST_WIDE_INT bitsize
,
336 unsigned HOST_WIDE_INT bitnum
, enum machine_mode fieldmode
,
340 = (MEM_P (str_rtx
)) ? BITS_PER_UNIT
: BITS_PER_WORD
;
341 unsigned HOST_WIDE_INT offset
, bitpos
;
346 enum machine_mode op_mode
= mode_for_extraction (EP_insv
, 3);
348 while (GET_CODE (op0
) == SUBREG
)
350 /* The following line once was done only if WORDS_BIG_ENDIAN,
351 but I think that is a mistake. WORDS_BIG_ENDIAN is
352 meaningful at a much higher level; when structures are copied
353 between memory and regs, the higher-numbered regs
354 always get higher addresses. */
355 bitnum
+= SUBREG_BYTE (op0
) * BITS_PER_UNIT
;
356 op0
= SUBREG_REG (op0
);
359 /* No action is needed if the target is a register and if the field
360 lies completely outside that register. This can occur if the source
361 code contains an out-of-bounds access to a small array. */
362 if (REG_P (op0
) && bitnum
>= GET_MODE_BITSIZE (GET_MODE (op0
)))
365 /* Use vec_set patterns for inserting parts of vectors whenever
367 if (VECTOR_MODE_P (GET_MODE (op0
))
369 && (vec_set_optab
->handlers
[GET_MODE (op0
)].insn_code
371 && fieldmode
== GET_MODE_INNER (GET_MODE (op0
))
372 && bitsize
== GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0
)))
373 && !(bitnum
% GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0
)))))
375 enum machine_mode outermode
= GET_MODE (op0
);
376 enum machine_mode innermode
= GET_MODE_INNER (outermode
);
377 int icode
= (int) vec_set_optab
->handlers
[outermode
].insn_code
;
378 int pos
= bitnum
/ GET_MODE_BITSIZE (innermode
);
379 rtx rtxpos
= GEN_INT (pos
);
383 enum machine_mode mode0
= insn_data
[icode
].operand
[0].mode
;
384 enum machine_mode mode1
= insn_data
[icode
].operand
[1].mode
;
385 enum machine_mode mode2
= insn_data
[icode
].operand
[2].mode
;
389 if (! (*insn_data
[icode
].operand
[1].predicate
) (src
, mode1
))
390 src
= copy_to_mode_reg (mode1
, src
);
392 if (! (*insn_data
[icode
].operand
[2].predicate
) (rtxpos
, mode2
))
393 rtxpos
= copy_to_mode_reg (mode1
, rtxpos
);
395 /* We could handle this, but we should always be called with a pseudo
396 for our targets and all insns should take them as outputs. */
397 gcc_assert ((*insn_data
[icode
].operand
[0].predicate
) (dest
, mode0
)
398 && (*insn_data
[icode
].operand
[1].predicate
) (src
, mode1
)
399 && (*insn_data
[icode
].operand
[2].predicate
) (rtxpos
, mode2
));
400 pat
= GEN_FCN (icode
) (dest
, src
, rtxpos
);
413 int old_generating_concat_p
= generating_concat_p
;
414 generating_concat_p
= 0;
415 value
= force_not_mem (value
);
416 generating_concat_p
= old_generating_concat_p
;
419 /* If the target is a register, overwriting the entire object, or storing
420 a full-word or multi-word field can be done with just a SUBREG.
422 If the target is memory, storing any naturally aligned field can be
423 done with a simple store. For targets that support fast unaligned
424 memory, any naturally sized, unit aligned field can be done directly. */
426 offset
= bitnum
/ unit
;
427 bitpos
= bitnum
% unit
;
428 byte_offset
= (bitnum
% BITS_PER_WORD
) / BITS_PER_UNIT
429 + (offset
* UNITS_PER_WORD
);
432 && bitsize
== GET_MODE_BITSIZE (fieldmode
)
434 ? ((GET_MODE_SIZE (fieldmode
) >= UNITS_PER_WORD
435 || GET_MODE_SIZE (GET_MODE (op0
)) == GET_MODE_SIZE (fieldmode
))
436 && byte_offset
% GET_MODE_SIZE (fieldmode
) == 0)
437 : (! SLOW_UNALIGNED_ACCESS (fieldmode
, MEM_ALIGN (op0
))
438 || (offset
* BITS_PER_UNIT
% bitsize
== 0
439 && MEM_ALIGN (op0
) % GET_MODE_BITSIZE (fieldmode
) == 0))))
441 if (GET_MODE (op0
) != fieldmode
)
444 op0
= adjust_address (op0
, fieldmode
, offset
);
446 op0
= simplify_gen_subreg (fieldmode
, op0
, GET_MODE (op0
),
449 emit_move_insn (op0
, value
);
453 /* Make sure we are playing with integral modes. Pun with subregs
454 if we aren't. This must come after the entire register case above,
455 since that case is valid for any mode. The following cases are only
456 valid for integral modes. */
458 enum machine_mode imode
= int_mode_for_mode (GET_MODE (op0
));
459 if (imode
!= GET_MODE (op0
))
462 op0
= adjust_address (op0
, imode
, 0);
465 gcc_assert (imode
!= BLKmode
);
466 op0
= gen_lowpart (imode
, op0
);
471 /* We may be accessing data outside the field, which means
472 we can alias adjacent data. */
475 op0
= shallow_copy_rtx (op0
);
476 set_mem_alias_set (op0
, 0);
477 set_mem_expr (op0
, 0);
480 /* If OP0 is a register, BITPOS must count within a word.
481 But as we have it, it counts within whatever size OP0 now has.
482 On a bigendian machine, these are not the same, so convert. */
485 && unit
> GET_MODE_BITSIZE (GET_MODE (op0
)))
486 bitpos
+= unit
- GET_MODE_BITSIZE (GET_MODE (op0
));
488 /* Storing an lsb-aligned field in a register
489 can be done with a movestrict instruction. */
492 && (BYTES_BIG_ENDIAN
? bitpos
+ bitsize
== unit
: bitpos
== 0)
493 && bitsize
== GET_MODE_BITSIZE (fieldmode
)
494 && (movstrict_optab
->handlers
[fieldmode
].insn_code
495 != CODE_FOR_nothing
))
497 int icode
= movstrict_optab
->handlers
[fieldmode
].insn_code
;
499 /* Get appropriate low part of the value being stored. */
500 if (GET_CODE (value
) == CONST_INT
|| REG_P (value
))
501 value
= gen_lowpart (fieldmode
, value
);
502 else if (!(GET_CODE (value
) == SYMBOL_REF
503 || GET_CODE (value
) == LABEL_REF
504 || GET_CODE (value
) == CONST
))
505 value
= convert_to_mode (fieldmode
, value
, 0);
507 if (! (*insn_data
[icode
].operand
[1].predicate
) (value
, fieldmode
))
508 value
= copy_to_mode_reg (fieldmode
, value
);
510 if (GET_CODE (op0
) == SUBREG
)
512 /* Else we've got some float mode source being extracted into
513 a different float mode destination -- this combination of
514 subregs results in Severe Tire Damage. */
515 gcc_assert (GET_MODE (SUBREG_REG (op0
)) == fieldmode
516 || GET_MODE_CLASS (fieldmode
) == MODE_INT
517 || GET_MODE_CLASS (fieldmode
) == MODE_PARTIAL_INT
);
518 op0
= SUBREG_REG (op0
);
521 emit_insn (GEN_FCN (icode
)
522 (gen_rtx_SUBREG (fieldmode
, op0
,
523 (bitnum
% BITS_PER_WORD
) / BITS_PER_UNIT
524 + (offset
* UNITS_PER_WORD
)),
530 /* Handle fields bigger than a word. */
532 if (bitsize
> BITS_PER_WORD
)
534 /* Here we transfer the words of the field
535 in the order least significant first.
536 This is because the most significant word is the one which may
538 However, only do that if the value is not BLKmode. */
540 unsigned int backwards
= WORDS_BIG_ENDIAN
&& fieldmode
!= BLKmode
;
541 unsigned int nwords
= (bitsize
+ (BITS_PER_WORD
- 1)) / BITS_PER_WORD
;
544 /* This is the mode we must force value to, so that there will be enough
545 subwords to extract. Note that fieldmode will often (always?) be
546 VOIDmode, because that is what store_field uses to indicate that this
547 is a bit field, but passing VOIDmode to operand_subword_force
549 fieldmode
= GET_MODE (value
);
550 if (fieldmode
== VOIDmode
)
551 fieldmode
= smallest_mode_for_size (nwords
* BITS_PER_WORD
, MODE_INT
);
553 for (i
= 0; i
< nwords
; i
++)
555 /* If I is 0, use the low-order word in both field and target;
556 if I is 1, use the next to lowest word; and so on. */
557 unsigned int wordnum
= (backwards
? nwords
- i
- 1 : i
);
558 unsigned int bit_offset
= (backwards
559 ? MAX ((int) bitsize
- ((int) i
+ 1)
562 : (int) i
* BITS_PER_WORD
);
564 store_bit_field (op0
, MIN (BITS_PER_WORD
,
565 bitsize
- i
* BITS_PER_WORD
),
566 bitnum
+ bit_offset
, word_mode
,
567 operand_subword_force (value
, wordnum
, fieldmode
));
572 /* From here on we can assume that the field to be stored in is
573 a full-word (whatever type that is), since it is shorter than a word. */
575 /* OFFSET is the number of words or bytes (UNIT says which)
576 from STR_RTX to the first word or byte containing part of the field. */
581 || GET_MODE_SIZE (GET_MODE (op0
)) > UNITS_PER_WORD
)
585 /* Since this is a destination (lvalue), we can't copy
586 it to a pseudo. We can remove a SUBREG that does not
587 change the size of the operand. Such a SUBREG may
588 have been added above. */
589 gcc_assert (GET_CODE (op0
) == SUBREG
590 && (GET_MODE_SIZE (GET_MODE (op0
))
591 == GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0
)))));
592 op0
= SUBREG_REG (op0
);
594 op0
= gen_rtx_SUBREG (mode_for_size (BITS_PER_WORD
, MODE_INT
, 0),
595 op0
, (offset
* UNITS_PER_WORD
));
600 /* If VALUE has a floating-point or complex mode, access it as an
601 integer of the corresponding size. This can occur on a machine
602 with 64 bit registers that uses SFmode for float. It can also
603 occur for unaligned float or complex fields. */
605 if (GET_MODE (value
) != VOIDmode
606 && GET_MODE_CLASS (GET_MODE (value
)) != MODE_INT
607 && GET_MODE_CLASS (GET_MODE (value
)) != MODE_PARTIAL_INT
)
609 value
= gen_reg_rtx (int_mode_for_mode (GET_MODE (value
)));
610 emit_move_insn (gen_lowpart (GET_MODE (orig_value
), value
), orig_value
);
613 /* Now OFFSET is nonzero only if OP0 is memory
614 and is therefore always measured in bytes. */
617 && GET_MODE (value
) != BLKmode
618 && !(bitsize
== 1 && GET_CODE (value
) == CONST_INT
)
619 /* Ensure insv's size is wide enough for this field. */
620 && (GET_MODE_BITSIZE (op_mode
) >= bitsize
)
621 && ! ((REG_P (op0
) || GET_CODE (op0
) == SUBREG
)
622 && (bitsize
+ bitpos
> GET_MODE_BITSIZE (op_mode
))))
624 int xbitpos
= bitpos
;
627 rtx last
= get_last_insn ();
629 enum machine_mode maxmode
= mode_for_extraction (EP_insv
, 3);
630 int save_volatile_ok
= volatile_ok
;
634 /* If this machine's insv can only insert into a register, copy OP0
635 into a register and save it back later. */
636 /* This used to check flag_force_mem, but that was a serious
637 de-optimization now that flag_force_mem is enabled by -O2. */
639 && ! ((*insn_data
[(int) CODE_FOR_insv
].operand
[0].predicate
)
643 enum machine_mode bestmode
;
645 /* Get the mode to use for inserting into this field. If OP0 is
646 BLKmode, get the smallest mode consistent with the alignment. If
647 OP0 is a non-BLKmode object that is no wider than MAXMODE, use its
648 mode. Otherwise, use the smallest mode containing the field. */
650 if (GET_MODE (op0
) == BLKmode
651 || GET_MODE_SIZE (GET_MODE (op0
)) > GET_MODE_SIZE (maxmode
))
653 = get_best_mode (bitsize
, bitnum
, MEM_ALIGN (op0
), maxmode
,
654 MEM_VOLATILE_P (op0
));
656 bestmode
= GET_MODE (op0
);
658 if (bestmode
== VOIDmode
659 || (SLOW_UNALIGNED_ACCESS (bestmode
, MEM_ALIGN (op0
))
660 && GET_MODE_BITSIZE (bestmode
) > MEM_ALIGN (op0
)))
663 /* Adjust address to point to the containing unit of that mode.
664 Compute offset as multiple of this unit, counting in bytes. */
665 unit
= GET_MODE_BITSIZE (bestmode
);
666 offset
= (bitnum
/ unit
) * GET_MODE_SIZE (bestmode
);
667 bitpos
= bitnum
% unit
;
668 op0
= adjust_address (op0
, bestmode
, offset
);
670 /* Fetch that unit, store the bitfield in it, then store
672 tempreg
= copy_to_reg (op0
);
673 store_bit_field (tempreg
, bitsize
, bitpos
, fieldmode
, orig_value
);
674 emit_move_insn (op0
, tempreg
);
677 volatile_ok
= save_volatile_ok
;
679 /* Add OFFSET into OP0's address. */
681 xop0
= adjust_address (xop0
, byte_mode
, offset
);
683 /* If xop0 is a register, we need it in MAXMODE
684 to make it acceptable to the format of insv. */
685 if (GET_CODE (xop0
) == SUBREG
)
686 /* We can't just change the mode, because this might clobber op0,
687 and we will need the original value of op0 if insv fails. */
688 xop0
= gen_rtx_SUBREG (maxmode
, SUBREG_REG (xop0
), SUBREG_BYTE (xop0
));
689 if (REG_P (xop0
) && GET_MODE (xop0
) != maxmode
)
690 xop0
= gen_rtx_SUBREG (maxmode
, xop0
, 0);
692 /* On big-endian machines, we count bits from the most significant.
693 If the bit field insn does not, we must invert. */
695 if (BITS_BIG_ENDIAN
!= BYTES_BIG_ENDIAN
)
696 xbitpos
= unit
- bitsize
- xbitpos
;
698 /* We have been counting XBITPOS within UNIT.
699 Count instead within the size of the register. */
700 if (BITS_BIG_ENDIAN
&& !MEM_P (xop0
))
701 xbitpos
+= GET_MODE_BITSIZE (maxmode
) - unit
;
703 unit
= GET_MODE_BITSIZE (maxmode
);
705 /* Convert VALUE to maxmode (which insv insn wants) in VALUE1. */
707 if (GET_MODE (value
) != maxmode
)
709 if (GET_MODE_BITSIZE (GET_MODE (value
)) >= bitsize
)
711 /* Optimization: Don't bother really extending VALUE
712 if it has all the bits we will actually use. However,
713 if we must narrow it, be sure we do it correctly. */
715 if (GET_MODE_SIZE (GET_MODE (value
)) < GET_MODE_SIZE (maxmode
))
719 tmp
= simplify_subreg (maxmode
, value1
, GET_MODE (value
), 0);
721 tmp
= simplify_gen_subreg (maxmode
,
722 force_reg (GET_MODE (value
),
724 GET_MODE (value
), 0);
728 value1
= gen_lowpart (maxmode
, value1
);
730 else if (GET_CODE (value
) == CONST_INT
)
731 value1
= gen_int_mode (INTVAL (value
), maxmode
);
733 /* Parse phase is supposed to make VALUE's data type
734 match that of the component reference, which is a type
735 at least as wide as the field; so VALUE should have
736 a mode that corresponds to that type. */
737 gcc_assert (CONSTANT_P (value
));
740 /* If this machine's insv insists on a register,
741 get VALUE1 into a register. */
742 if (! ((*insn_data
[(int) CODE_FOR_insv
].operand
[3].predicate
)
744 value1
= force_reg (maxmode
, value1
);
746 pat
= gen_insv (xop0
, GEN_INT (bitsize
), GEN_INT (xbitpos
), value1
);
751 delete_insns_since (last
);
752 store_fixed_bit_field (op0
, offset
, bitsize
, bitpos
, value
);
757 /* Insv is not available; store using shifts and boolean ops. */
758 store_fixed_bit_field (op0
, offset
, bitsize
, bitpos
, value
);
762 /* Use shifts and boolean operations to store VALUE
763 into a bit field of width BITSIZE
764 in a memory location specified by OP0 except offset by OFFSET bytes.
765 (OFFSET must be 0 if OP0 is a register.)
766 The field starts at position BITPOS within the byte.
767 (If OP0 is a register, it may be a full word or a narrower mode,
768 but BITPOS still counts within a full word,
769 which is significant on bigendian machines.) */
772 store_fixed_bit_field (rtx op0
, unsigned HOST_WIDE_INT offset
,
773 unsigned HOST_WIDE_INT bitsize
,
774 unsigned HOST_WIDE_INT bitpos
, rtx value
)
776 enum machine_mode mode
;
777 unsigned int total_bits
= BITS_PER_WORD
;
782 /* There is a case not handled here:
783 a structure with a known alignment of just a halfword
784 and a field split across two aligned halfwords within the structure.
785 Or likewise a structure with a known alignment of just a byte
786 and a field split across two bytes.
787 Such cases are not supposed to be able to occur. */
789 if (REG_P (op0
) || GET_CODE (op0
) == SUBREG
)
791 gcc_assert (!offset
);
792 /* Special treatment for a bit field split across two registers. */
793 if (bitsize
+ bitpos
> BITS_PER_WORD
)
795 store_split_bit_field (op0
, bitsize
, bitpos
, value
);
801 /* Get the proper mode to use for this field. We want a mode that
802 includes the entire field. If such a mode would be larger than
803 a word, we won't be doing the extraction the normal way.
804 We don't want a mode bigger than the destination. */
806 mode
= GET_MODE (op0
);
807 if (GET_MODE_BITSIZE (mode
) == 0
808 || GET_MODE_BITSIZE (mode
) > GET_MODE_BITSIZE (word_mode
))
810 mode
= get_best_mode (bitsize
, bitpos
+ offset
* BITS_PER_UNIT
,
811 MEM_ALIGN (op0
), mode
, MEM_VOLATILE_P (op0
));
813 if (mode
== VOIDmode
)
815 /* The only way this should occur is if the field spans word
817 store_split_bit_field (op0
, bitsize
, bitpos
+ offset
* BITS_PER_UNIT
,
822 total_bits
= GET_MODE_BITSIZE (mode
);
824 /* Make sure bitpos is valid for the chosen mode. Adjust BITPOS to
825 be in the range 0 to total_bits-1, and put any excess bytes in
827 if (bitpos
>= total_bits
)
829 offset
+= (bitpos
/ total_bits
) * (total_bits
/ BITS_PER_UNIT
);
830 bitpos
-= ((bitpos
/ total_bits
) * (total_bits
/ BITS_PER_UNIT
)
834 /* Get ref to an aligned byte, halfword, or word containing the field.
835 Adjust BITPOS to be position within a word,
836 and OFFSET to be the offset of that word.
837 Then alter OP0 to refer to that word. */
838 bitpos
+= (offset
% (total_bits
/ BITS_PER_UNIT
)) * BITS_PER_UNIT
;
839 offset
-= (offset
% (total_bits
/ BITS_PER_UNIT
));
840 op0
= adjust_address (op0
, mode
, offset
);
843 mode
= GET_MODE (op0
);
845 /* Now MODE is either some integral mode for a MEM as OP0,
846 or is a full-word for a REG as OP0. TOTAL_BITS corresponds.
847 The bit field is contained entirely within OP0.
848 BITPOS is the starting bit number within OP0.
849 (OP0's mode may actually be narrower than MODE.) */
851 if (BYTES_BIG_ENDIAN
)
852 /* BITPOS is the distance between our msb
853 and that of the containing datum.
854 Convert it to the distance from the lsb. */
855 bitpos
= total_bits
- bitsize
- bitpos
;
857 /* Now BITPOS is always the distance between our lsb
860 /* Shift VALUE left by BITPOS bits. If VALUE is not constant,
861 we must first convert its mode to MODE. */
863 if (GET_CODE (value
) == CONST_INT
)
865 HOST_WIDE_INT v
= INTVAL (value
);
867 if (bitsize
< HOST_BITS_PER_WIDE_INT
)
868 v
&= ((HOST_WIDE_INT
) 1 << bitsize
) - 1;
872 else if ((bitsize
< HOST_BITS_PER_WIDE_INT
873 && v
== ((HOST_WIDE_INT
) 1 << bitsize
) - 1)
874 || (bitsize
== HOST_BITS_PER_WIDE_INT
&& v
== -1))
877 value
= lshift_value (mode
, value
, bitpos
, bitsize
);
881 int must_and
= (GET_MODE_BITSIZE (GET_MODE (value
)) != bitsize
882 && bitpos
+ bitsize
!= GET_MODE_BITSIZE (mode
));
884 if (GET_MODE (value
) != mode
)
886 if ((REG_P (value
) || GET_CODE (value
) == SUBREG
)
887 && GET_MODE_SIZE (mode
) < GET_MODE_SIZE (GET_MODE (value
)))
888 value
= gen_lowpart (mode
, value
);
890 value
= convert_to_mode (mode
, value
, 1);
894 value
= expand_binop (mode
, and_optab
, value
,
895 mask_rtx (mode
, 0, bitsize
, 0),
896 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
898 value
= expand_shift (LSHIFT_EXPR
, mode
, value
,
899 build_int_cst (NULL_TREE
, bitpos
), NULL_RTX
, 1);
902 /* Now clear the chosen bits in OP0,
903 except that if VALUE is -1 we need not bother. */
905 subtarget
= (REG_P (op0
) || ! flag_force_mem
) ? op0
: 0;
909 temp
= expand_binop (mode
, and_optab
, op0
,
910 mask_rtx (mode
, bitpos
, bitsize
, 1),
911 subtarget
, 1, OPTAB_LIB_WIDEN
);
917 /* Now logical-or VALUE into OP0, unless it is zero. */
920 temp
= expand_binop (mode
, ior_optab
, temp
, value
,
921 subtarget
, 1, OPTAB_LIB_WIDEN
);
923 emit_move_insn (op0
, temp
);
926 /* Store a bit field that is split across multiple accessible memory objects.
928 OP0 is the REG, SUBREG or MEM rtx for the first of the objects.
929 BITSIZE is the field width; BITPOS the position of its first bit
931 VALUE is the value to store.
933 This does not yet handle fields wider than BITS_PER_WORD. */
936 store_split_bit_field (rtx op0
, unsigned HOST_WIDE_INT bitsize
,
937 unsigned HOST_WIDE_INT bitpos
, rtx value
)
940 unsigned int bitsdone
= 0;
942 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
944 if (REG_P (op0
) || GET_CODE (op0
) == SUBREG
)
945 unit
= BITS_PER_WORD
;
947 unit
= MIN (MEM_ALIGN (op0
), BITS_PER_WORD
);
949 /* If VALUE is a constant other than a CONST_INT, get it into a register in
950 WORD_MODE. If we can do this using gen_lowpart_common, do so. Note
951 that VALUE might be a floating-point constant. */
952 if (CONSTANT_P (value
) && GET_CODE (value
) != CONST_INT
)
954 rtx word
= gen_lowpart_common (word_mode
, value
);
956 if (word
&& (value
!= word
))
959 value
= gen_lowpart_common (word_mode
,
960 force_reg (GET_MODE (value
) != VOIDmode
962 : word_mode
, value
));
965 while (bitsdone
< bitsize
)
967 unsigned HOST_WIDE_INT thissize
;
969 unsigned HOST_WIDE_INT thispos
;
970 unsigned HOST_WIDE_INT offset
;
972 offset
= (bitpos
+ bitsdone
) / unit
;
973 thispos
= (bitpos
+ bitsdone
) % unit
;
975 /* THISSIZE must not overrun a word boundary. Otherwise,
976 store_fixed_bit_field will call us again, and we will mutually
978 thissize
= MIN (bitsize
- bitsdone
, BITS_PER_WORD
);
979 thissize
= MIN (thissize
, unit
- thispos
);
981 if (BYTES_BIG_ENDIAN
)
985 /* We must do an endian conversion exactly the same way as it is
986 done in extract_bit_field, so that the two calls to
987 extract_fixed_bit_field will have comparable arguments. */
988 if (!MEM_P (value
) || GET_MODE (value
) == BLKmode
)
989 total_bits
= BITS_PER_WORD
;
991 total_bits
= GET_MODE_BITSIZE (GET_MODE (value
));
993 /* Fetch successively less significant portions. */
994 if (GET_CODE (value
) == CONST_INT
)
995 part
= GEN_INT (((unsigned HOST_WIDE_INT
) (INTVAL (value
))
996 >> (bitsize
- bitsdone
- thissize
))
997 & (((HOST_WIDE_INT
) 1 << thissize
) - 1));
999 /* The args are chosen so that the last part includes the
1000 lsb. Give extract_bit_field the value it needs (with
1001 endianness compensation) to fetch the piece we want. */
1002 part
= extract_fixed_bit_field (word_mode
, value
, 0, thissize
,
1003 total_bits
- bitsize
+ bitsdone
,
1008 /* Fetch successively more significant portions. */
1009 if (GET_CODE (value
) == CONST_INT
)
1010 part
= GEN_INT (((unsigned HOST_WIDE_INT
) (INTVAL (value
))
1012 & (((HOST_WIDE_INT
) 1 << thissize
) - 1));
1014 part
= extract_fixed_bit_field (word_mode
, value
, 0, thissize
,
1015 bitsdone
, NULL_RTX
, 1);
1018 /* If OP0 is a register, then handle OFFSET here.
1020 When handling multiword bitfields, extract_bit_field may pass
1021 down a word_mode SUBREG of a larger REG for a bitfield that actually
1022 crosses a word boundary. Thus, for a SUBREG, we must find
1023 the current word starting from the base register. */
1024 if (GET_CODE (op0
) == SUBREG
)
1026 int word_offset
= (SUBREG_BYTE (op0
) / UNITS_PER_WORD
) + offset
;
1027 word
= operand_subword_force (SUBREG_REG (op0
), word_offset
,
1028 GET_MODE (SUBREG_REG (op0
)));
1031 else if (REG_P (op0
))
1033 word
= operand_subword_force (op0
, offset
, GET_MODE (op0
));
1039 /* OFFSET is in UNITs, and UNIT is in bits.
1040 store_fixed_bit_field wants offset in bytes. */
1041 store_fixed_bit_field (word
, offset
* unit
/ BITS_PER_UNIT
, thissize
,
1043 bitsdone
+= thissize
;
1047 /* Generate code to extract a byte-field from STR_RTX
1048 containing BITSIZE bits, starting at BITNUM,
1049 and put it in TARGET if possible (if TARGET is nonzero).
1050 Regardless of TARGET, we return the rtx for where the value is placed.
1052 STR_RTX is the structure containing the byte (a REG or MEM).
1053 UNSIGNEDP is nonzero if this is an unsigned bit field.
1054 MODE is the natural mode of the field value once extracted.
1055 TMODE is the mode the caller would like the value to have;
1056 but the value may be returned with type MODE instead.
1058 TOTAL_SIZE is the size in bytes of the containing structure,
1061 If a TARGET is specified and we can store in it at no extra cost,
1062 we do so, and return TARGET.
1063 Otherwise, we return a REG of mode TMODE or MODE, with TMODE preferred
1064 if they are equally easy. */
1067 extract_bit_field (rtx str_rtx
, unsigned HOST_WIDE_INT bitsize
,
1068 unsigned HOST_WIDE_INT bitnum
, int unsignedp
, rtx target
,
1069 enum machine_mode mode
, enum machine_mode tmode
)
1072 = (MEM_P (str_rtx
)) ? BITS_PER_UNIT
: BITS_PER_WORD
;
1073 unsigned HOST_WIDE_INT offset
, bitpos
;
1075 rtx spec_target
= target
;
1076 rtx spec_target_subreg
= 0;
1077 enum machine_mode int_mode
;
1078 enum machine_mode extv_mode
= mode_for_extraction (EP_extv
, 0);
1079 enum machine_mode extzv_mode
= mode_for_extraction (EP_extzv
, 0);
1080 enum machine_mode mode1
;
1083 if (tmode
== VOIDmode
)
1086 while (GET_CODE (op0
) == SUBREG
)
1088 bitnum
+= SUBREG_BYTE (op0
) * BITS_PER_UNIT
;
1089 op0
= SUBREG_REG (op0
);
1092 /* If we have an out-of-bounds access to a register, just return an
1093 uninitialized register of the required mode. This can occur if the
1094 source code contains an out-of-bounds access to a small array. */
1095 if (REG_P (op0
) && bitnum
>= GET_MODE_BITSIZE (GET_MODE (op0
)))
1096 return gen_reg_rtx (tmode
);
1099 && mode
== GET_MODE (op0
)
1101 && bitsize
== GET_MODE_BITSIZE (GET_MODE (op0
)))
1103 /* We're trying to extract a full register from itself. */
1107 /* Use vec_extract patterns for extracting parts of vectors whenever
1109 if (VECTOR_MODE_P (GET_MODE (op0
))
1111 && (vec_extract_optab
->handlers
[GET_MODE (op0
)].insn_code
1112 != CODE_FOR_nothing
)
1113 && ((bitnum
+ bitsize
- 1) / GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0
)))
1114 == bitnum
/ GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0
)))))
1116 enum machine_mode outermode
= GET_MODE (op0
);
1117 enum machine_mode innermode
= GET_MODE_INNER (outermode
);
1118 int icode
= (int) vec_extract_optab
->handlers
[outermode
].insn_code
;
1119 unsigned HOST_WIDE_INT pos
= bitnum
/ GET_MODE_BITSIZE (innermode
);
1120 rtx rtxpos
= GEN_INT (pos
);
1122 rtx dest
= NULL
, pat
, seq
;
1123 enum machine_mode mode0
= insn_data
[icode
].operand
[0].mode
;
1124 enum machine_mode mode1
= insn_data
[icode
].operand
[1].mode
;
1125 enum machine_mode mode2
= insn_data
[icode
].operand
[2].mode
;
1127 if (innermode
== tmode
|| innermode
== mode
)
1131 dest
= gen_reg_rtx (innermode
);
1135 if (! (*insn_data
[icode
].operand
[0].predicate
) (dest
, mode0
))
1136 dest
= copy_to_mode_reg (mode0
, dest
);
1138 if (! (*insn_data
[icode
].operand
[1].predicate
) (src
, mode1
))
1139 src
= copy_to_mode_reg (mode1
, src
);
1141 if (! (*insn_data
[icode
].operand
[2].predicate
) (rtxpos
, mode2
))
1142 rtxpos
= copy_to_mode_reg (mode1
, rtxpos
);
1144 /* We could handle this, but we should always be called with a pseudo
1145 for our targets and all insns should take them as outputs. */
1146 gcc_assert ((*insn_data
[icode
].operand
[0].predicate
) (dest
, mode0
)
1147 && (*insn_data
[icode
].operand
[1].predicate
) (src
, mode1
)
1148 && (*insn_data
[icode
].operand
[2].predicate
) (rtxpos
, mode2
));
1150 pat
= GEN_FCN (icode
) (dest
, src
, rtxpos
);
1161 /* Make sure we are playing with integral modes. Pun with subregs
1164 enum machine_mode imode
= int_mode_for_mode (GET_MODE (op0
));
1165 if (imode
!= GET_MODE (op0
))
1168 op0
= adjust_address (op0
, imode
, 0);
1171 gcc_assert (imode
!= BLKmode
);
1172 op0
= gen_lowpart (imode
, op0
);
1174 /* If we got a SUBREG, force it into a register since we
1175 aren't going to be able to do another SUBREG on it. */
1176 if (GET_CODE (op0
) == SUBREG
)
1177 op0
= force_reg (imode
, op0
);
1182 /* We may be accessing data outside the field, which means
1183 we can alias adjacent data. */
1186 op0
= shallow_copy_rtx (op0
);
1187 set_mem_alias_set (op0
, 0);
1188 set_mem_expr (op0
, 0);
1191 /* Extraction of a full-word or multi-word value from a structure
1192 in a register or aligned memory can be done with just a SUBREG.
1193 A subword value in the least significant part of a register
1194 can also be extracted with a SUBREG. For this, we need the
1195 byte offset of the value in op0. */
1197 bitpos
= bitnum
% unit
;
1198 offset
= bitnum
/ unit
;
1199 byte_offset
= bitpos
/ BITS_PER_UNIT
+ offset
* UNITS_PER_WORD
;
1201 /* If OP0 is a register, BITPOS must count within a word.
1202 But as we have it, it counts within whatever size OP0 now has.
1203 On a bigendian machine, these are not the same, so convert. */
1204 if (BYTES_BIG_ENDIAN
1206 && unit
> GET_MODE_BITSIZE (GET_MODE (op0
)))
1207 bitpos
+= unit
- GET_MODE_BITSIZE (GET_MODE (op0
));
1209 /* ??? We currently assume TARGET is at least as big as BITSIZE.
1210 If that's wrong, the solution is to test for it and set TARGET to 0
1213 /* Only scalar integer modes can be converted via subregs. There is an
1214 additional problem for FP modes here in that they can have a precision
1215 which is different from the size. mode_for_size uses precision, but
1216 we want a mode based on the size, so we must avoid calling it for FP
1218 mode1
= (SCALAR_INT_MODE_P (tmode
)
1219 ? mode_for_size (bitsize
, GET_MODE_CLASS (tmode
), 0)
1222 if (((bitsize
>= BITS_PER_WORD
&& bitsize
== GET_MODE_BITSIZE (mode
)
1223 && bitpos
% BITS_PER_WORD
== 0)
1224 || (mode1
!= BLKmode
1225 /* ??? The big endian test here is wrong. This is correct
1226 if the value is in a register, and if mode_for_size is not
1227 the same mode as op0. This causes us to get unnecessarily
1228 inefficient code from the Thumb port when -mbig-endian. */
1229 && (BYTES_BIG_ENDIAN
1230 ? bitpos
+ bitsize
== BITS_PER_WORD
1233 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode
),
1234 GET_MODE_BITSIZE (GET_MODE (op0
)))
1235 && GET_MODE_SIZE (mode1
) != 0
1236 && byte_offset
% GET_MODE_SIZE (mode1
) == 0)
1238 && (! SLOW_UNALIGNED_ACCESS (mode
, MEM_ALIGN (op0
))
1239 || (offset
* BITS_PER_UNIT
% bitsize
== 0
1240 && MEM_ALIGN (op0
) % bitsize
== 0)))))
1242 if (mode1
!= GET_MODE (op0
))
1245 op0
= adjust_address (op0
, mode1
, offset
);
1248 rtx sub
= simplify_gen_subreg (mode1
, op0
, GET_MODE (op0
),
1251 goto no_subreg_mode_swap
;
1256 return convert_to_mode (tmode
, op0
, unsignedp
);
1259 no_subreg_mode_swap
:
1261 /* Handle fields bigger than a word. */
1263 if (bitsize
> BITS_PER_WORD
)
1265 /* Here we transfer the words of the field
1266 in the order least significant first.
1267 This is because the most significant word is the one which may
1268 be less than full. */
1270 unsigned int nwords
= (bitsize
+ (BITS_PER_WORD
- 1)) / BITS_PER_WORD
;
1273 if (target
== 0 || !REG_P (target
))
1274 target
= gen_reg_rtx (mode
);
1276 /* Indicate for flow that the entire target reg is being set. */
1277 emit_insn (gen_rtx_CLOBBER (VOIDmode
, target
));
1279 for (i
= 0; i
< nwords
; i
++)
1281 /* If I is 0, use the low-order word in both field and target;
1282 if I is 1, use the next to lowest word; and so on. */
1283 /* Word number in TARGET to use. */
1284 unsigned int wordnum
1286 ? GET_MODE_SIZE (GET_MODE (target
)) / UNITS_PER_WORD
- i
- 1
1288 /* Offset from start of field in OP0. */
1289 unsigned int bit_offset
= (WORDS_BIG_ENDIAN
1290 ? MAX (0, ((int) bitsize
- ((int) i
+ 1)
1291 * (int) BITS_PER_WORD
))
1292 : (int) i
* BITS_PER_WORD
);
1293 rtx target_part
= operand_subword (target
, wordnum
, 1, VOIDmode
);
1295 = extract_bit_field (op0
, MIN (BITS_PER_WORD
,
1296 bitsize
- i
* BITS_PER_WORD
),
1297 bitnum
+ bit_offset
, 1, target_part
, mode
,
1300 gcc_assert (target_part
);
1302 if (result_part
!= target_part
)
1303 emit_move_insn (target_part
, result_part
);
1308 /* Unless we've filled TARGET, the upper regs in a multi-reg value
1309 need to be zero'd out. */
1310 if (GET_MODE_SIZE (GET_MODE (target
)) > nwords
* UNITS_PER_WORD
)
1312 unsigned int i
, total_words
;
1314 total_words
= GET_MODE_SIZE (GET_MODE (target
)) / UNITS_PER_WORD
;
1315 for (i
= nwords
; i
< total_words
; i
++)
1317 (operand_subword (target
,
1318 WORDS_BIG_ENDIAN
? total_words
- i
- 1 : i
,
1325 /* Signed bit field: sign-extend with two arithmetic shifts. */
1326 target
= expand_shift (LSHIFT_EXPR
, mode
, target
,
1327 build_int_cst (NULL_TREE
,
1328 GET_MODE_BITSIZE (mode
) - bitsize
),
1330 return expand_shift (RSHIFT_EXPR
, mode
, target
,
1331 build_int_cst (NULL_TREE
,
1332 GET_MODE_BITSIZE (mode
) - bitsize
),
1336 /* From here on we know the desired field is smaller than a word. */
1338 /* Check if there is a correspondingly-sized integer field, so we can
1339 safely extract it as one size of integer, if necessary; then
1340 truncate or extend to the size that is wanted; then use SUBREGs or
1341 convert_to_mode to get one of the modes we really wanted. */
1343 int_mode
= int_mode_for_mode (tmode
);
1344 if (int_mode
== BLKmode
)
1345 int_mode
= int_mode_for_mode (mode
);
1346 /* Should probably push op0 out to memory and then do a load. */
1347 gcc_assert (int_mode
!= BLKmode
);
1349 /* OFFSET is the number of words or bytes (UNIT says which)
1350 from STR_RTX to the first word or byte containing part of the field. */
1354 || GET_MODE_SIZE (GET_MODE (op0
)) > UNITS_PER_WORD
)
1357 op0
= copy_to_reg (op0
);
1358 op0
= gen_rtx_SUBREG (mode_for_size (BITS_PER_WORD
, MODE_INT
, 0),
1359 op0
, (offset
* UNITS_PER_WORD
));
1364 /* Now OFFSET is nonzero only for memory operands. */
1369 && (GET_MODE_BITSIZE (extzv_mode
) >= bitsize
)
1370 && ! ((REG_P (op0
) || GET_CODE (op0
) == SUBREG
)
1371 && (bitsize
+ bitpos
> GET_MODE_BITSIZE (extzv_mode
))))
1373 unsigned HOST_WIDE_INT xbitpos
= bitpos
, xoffset
= offset
;
1374 rtx bitsize_rtx
, bitpos_rtx
;
1375 rtx last
= get_last_insn ();
1377 rtx xtarget
= target
;
1378 rtx xspec_target
= spec_target
;
1379 rtx xspec_target_subreg
= spec_target_subreg
;
1381 enum machine_mode maxmode
= mode_for_extraction (EP_extzv
, 0);
1385 int save_volatile_ok
= volatile_ok
;
1388 /* Is the memory operand acceptable? */
1389 if (! ((*insn_data
[(int) CODE_FOR_extzv
].operand
[1].predicate
)
1390 (xop0
, GET_MODE (xop0
))))
1392 /* No, load into a reg and extract from there. */
1393 enum machine_mode bestmode
;
1395 /* Get the mode to use for inserting into this field. If
1396 OP0 is BLKmode, get the smallest mode consistent with the
1397 alignment. If OP0 is a non-BLKmode object that is no
1398 wider than MAXMODE, use its mode. Otherwise, use the
1399 smallest mode containing the field. */
1401 if (GET_MODE (xop0
) == BLKmode
1402 || (GET_MODE_SIZE (GET_MODE (op0
))
1403 > GET_MODE_SIZE (maxmode
)))
1404 bestmode
= get_best_mode (bitsize
, bitnum
,
1405 MEM_ALIGN (xop0
), maxmode
,
1406 MEM_VOLATILE_P (xop0
));
1408 bestmode
= GET_MODE (xop0
);
1410 if (bestmode
== VOIDmode
1411 || (SLOW_UNALIGNED_ACCESS (bestmode
, MEM_ALIGN (xop0
))
1412 && GET_MODE_BITSIZE (bestmode
) > MEM_ALIGN (xop0
)))
1415 /* Compute offset as multiple of this unit,
1416 counting in bytes. */
1417 unit
= GET_MODE_BITSIZE (bestmode
);
1418 xoffset
= (bitnum
/ unit
) * GET_MODE_SIZE (bestmode
);
1419 xbitpos
= bitnum
% unit
;
1420 xop0
= adjust_address (xop0
, bestmode
, xoffset
);
1422 /* Fetch it to a register in that size. */
1423 xop0
= force_reg (bestmode
, xop0
);
1425 /* XBITPOS counts within UNIT, which is what is expected. */
1428 /* Get ref to first byte containing part of the field. */
1429 xop0
= adjust_address (xop0
, byte_mode
, xoffset
);
1431 volatile_ok
= save_volatile_ok
;
1434 /* If op0 is a register, we need it in MAXMODE (which is usually
1435 SImode). to make it acceptable to the format of extzv. */
1436 if (GET_CODE (xop0
) == SUBREG
&& GET_MODE (xop0
) != maxmode
)
1438 if (REG_P (xop0
) && GET_MODE (xop0
) != maxmode
)
1439 xop0
= gen_rtx_SUBREG (maxmode
, xop0
, 0);
1441 /* On big-endian machines, we count bits from the most significant.
1442 If the bit field insn does not, we must invert. */
1443 if (BITS_BIG_ENDIAN
!= BYTES_BIG_ENDIAN
)
1444 xbitpos
= unit
- bitsize
- xbitpos
;
1446 /* Now convert from counting within UNIT to counting in MAXMODE. */
1447 if (BITS_BIG_ENDIAN
&& !MEM_P (xop0
))
1448 xbitpos
+= GET_MODE_BITSIZE (maxmode
) - unit
;
1450 unit
= GET_MODE_BITSIZE (maxmode
);
1453 || (flag_force_mem
&& MEM_P (xtarget
)))
1454 xtarget
= xspec_target
= gen_reg_rtx (tmode
);
1456 if (GET_MODE (xtarget
) != maxmode
)
1458 if (REG_P (xtarget
))
1460 int wider
= (GET_MODE_SIZE (maxmode
)
1461 > GET_MODE_SIZE (GET_MODE (xtarget
)));
1462 xtarget
= gen_lowpart (maxmode
, xtarget
);
1464 xspec_target_subreg
= xtarget
;
1467 xtarget
= gen_reg_rtx (maxmode
);
1470 /* If this machine's extzv insists on a register target,
1471 make sure we have one. */
1472 if (! ((*insn_data
[(int) CODE_FOR_extzv
].operand
[0].predicate
)
1473 (xtarget
, maxmode
)))
1474 xtarget
= gen_reg_rtx (maxmode
);
1476 bitsize_rtx
= GEN_INT (bitsize
);
1477 bitpos_rtx
= GEN_INT (xbitpos
);
1479 pat
= gen_extzv (xtarget
, xop0
, bitsize_rtx
, bitpos_rtx
);
1484 spec_target
= xspec_target
;
1485 spec_target_subreg
= xspec_target_subreg
;
1489 delete_insns_since (last
);
1490 target
= extract_fixed_bit_field (int_mode
, op0
, offset
, bitsize
,
1496 target
= extract_fixed_bit_field (int_mode
, op0
, offset
, bitsize
,
1502 && (GET_MODE_BITSIZE (extv_mode
) >= bitsize
)
1503 && ! ((REG_P (op0
) || GET_CODE (op0
) == SUBREG
)
1504 && (bitsize
+ bitpos
> GET_MODE_BITSIZE (extv_mode
))))
1506 int xbitpos
= bitpos
, xoffset
= offset
;
1507 rtx bitsize_rtx
, bitpos_rtx
;
1508 rtx last
= get_last_insn ();
1509 rtx xop0
= op0
, xtarget
= target
;
1510 rtx xspec_target
= spec_target
;
1511 rtx xspec_target_subreg
= spec_target_subreg
;
1513 enum machine_mode maxmode
= mode_for_extraction (EP_extv
, 0);
1517 /* Is the memory operand acceptable? */
1518 if (! ((*insn_data
[(int) CODE_FOR_extv
].operand
[1].predicate
)
1519 (xop0
, GET_MODE (xop0
))))
1521 /* No, load into a reg and extract from there. */
1522 enum machine_mode bestmode
;
1524 /* Get the mode to use for inserting into this field. If
1525 OP0 is BLKmode, get the smallest mode consistent with the
1526 alignment. If OP0 is a non-BLKmode object that is no
1527 wider than MAXMODE, use its mode. Otherwise, use the
1528 smallest mode containing the field. */
1530 if (GET_MODE (xop0
) == BLKmode
1531 || (GET_MODE_SIZE (GET_MODE (op0
))
1532 > GET_MODE_SIZE (maxmode
)))
1533 bestmode
= get_best_mode (bitsize
, bitnum
,
1534 MEM_ALIGN (xop0
), maxmode
,
1535 MEM_VOLATILE_P (xop0
));
1537 bestmode
= GET_MODE (xop0
);
1539 if (bestmode
== VOIDmode
1540 || (SLOW_UNALIGNED_ACCESS (bestmode
, MEM_ALIGN (xop0
))
1541 && GET_MODE_BITSIZE (bestmode
) > MEM_ALIGN (xop0
)))
1544 /* Compute offset as multiple of this unit,
1545 counting in bytes. */
1546 unit
= GET_MODE_BITSIZE (bestmode
);
1547 xoffset
= (bitnum
/ unit
) * GET_MODE_SIZE (bestmode
);
1548 xbitpos
= bitnum
% unit
;
1549 xop0
= adjust_address (xop0
, bestmode
, xoffset
);
1551 /* Fetch it to a register in that size. */
1552 xop0
= force_reg (bestmode
, xop0
);
1554 /* XBITPOS counts within UNIT, which is what is expected. */
1557 /* Get ref to first byte containing part of the field. */
1558 xop0
= adjust_address (xop0
, byte_mode
, xoffset
);
1561 /* If op0 is a register, we need it in MAXMODE (which is usually
1562 SImode) to make it acceptable to the format of extv. */
1563 if (GET_CODE (xop0
) == SUBREG
&& GET_MODE (xop0
) != maxmode
)
1565 if (REG_P (xop0
) && GET_MODE (xop0
) != maxmode
)
1566 xop0
= gen_rtx_SUBREG (maxmode
, xop0
, 0);
1568 /* On big-endian machines, we count bits from the most significant.
1569 If the bit field insn does not, we must invert. */
1570 if (BITS_BIG_ENDIAN
!= BYTES_BIG_ENDIAN
)
1571 xbitpos
= unit
- bitsize
- xbitpos
;
1573 /* XBITPOS counts within a size of UNIT.
1574 Adjust to count within a size of MAXMODE. */
1575 if (BITS_BIG_ENDIAN
&& !MEM_P (xop0
))
1576 xbitpos
+= (GET_MODE_BITSIZE (maxmode
) - unit
);
1578 unit
= GET_MODE_BITSIZE (maxmode
);
1581 || (flag_force_mem
&& MEM_P (xtarget
)))
1582 xtarget
= xspec_target
= gen_reg_rtx (tmode
);
1584 if (GET_MODE (xtarget
) != maxmode
)
1586 if (REG_P (xtarget
))
1588 int wider
= (GET_MODE_SIZE (maxmode
)
1589 > GET_MODE_SIZE (GET_MODE (xtarget
)));
1590 xtarget
= gen_lowpart (maxmode
, xtarget
);
1592 xspec_target_subreg
= xtarget
;
1595 xtarget
= gen_reg_rtx (maxmode
);
1598 /* If this machine's extv insists on a register target,
1599 make sure we have one. */
1600 if (! ((*insn_data
[(int) CODE_FOR_extv
].operand
[0].predicate
)
1601 (xtarget
, maxmode
)))
1602 xtarget
= gen_reg_rtx (maxmode
);
1604 bitsize_rtx
= GEN_INT (bitsize
);
1605 bitpos_rtx
= GEN_INT (xbitpos
);
1607 pat
= gen_extv (xtarget
, xop0
, bitsize_rtx
, bitpos_rtx
);
1612 spec_target
= xspec_target
;
1613 spec_target_subreg
= xspec_target_subreg
;
1617 delete_insns_since (last
);
1618 target
= extract_fixed_bit_field (int_mode
, op0
, offset
, bitsize
,
1624 target
= extract_fixed_bit_field (int_mode
, op0
, offset
, bitsize
,
1627 if (target
== spec_target
)
1629 if (target
== spec_target_subreg
)
1631 if (GET_MODE (target
) != tmode
&& GET_MODE (target
) != mode
)
1633 /* If the target mode is not a scalar integral, first convert to the
1634 integer mode of that size and then access it as a floating-point
1635 value via a SUBREG. */
1636 if (!SCALAR_INT_MODE_P (tmode
))
1638 enum machine_mode smode
1639 = mode_for_size (GET_MODE_BITSIZE (tmode
), MODE_INT
, 0);
1640 target
= convert_to_mode (smode
, target
, unsignedp
);
1641 target
= force_reg (smode
, target
);
1642 return gen_lowpart (tmode
, target
);
1645 return convert_to_mode (tmode
, target
, unsignedp
);
1650 /* Extract a bit field using shifts and boolean operations
1651 Returns an rtx to represent the value.
1652 OP0 addresses a register (word) or memory (byte).
1653 BITPOS says which bit within the word or byte the bit field starts in.
1654 OFFSET says how many bytes farther the bit field starts;
1655 it is 0 if OP0 is a register.
1656 BITSIZE says how many bits long the bit field is.
1657 (If OP0 is a register, it may be narrower than a full word,
1658 but BITPOS still counts within a full word,
1659 which is significant on bigendian machines.)
1661 UNSIGNEDP is nonzero for an unsigned bit field (don't sign-extend value).
1662 If TARGET is nonzero, attempts to store the value there
1663 and return TARGET, but this is not guaranteed.
1664 If TARGET is not used, create a pseudo-reg of mode TMODE for the value. */
1667 extract_fixed_bit_field (enum machine_mode tmode
, rtx op0
,
1668 unsigned HOST_WIDE_INT offset
,
1669 unsigned HOST_WIDE_INT bitsize
,
1670 unsigned HOST_WIDE_INT bitpos
, rtx target
,
1673 unsigned int total_bits
= BITS_PER_WORD
;
1674 enum machine_mode mode
;
1676 if (GET_CODE (op0
) == SUBREG
|| REG_P (op0
))
1678 /* Special treatment for a bit field split across two registers. */
1679 if (bitsize
+ bitpos
> BITS_PER_WORD
)
1680 return extract_split_bit_field (op0
, bitsize
, bitpos
, unsignedp
);
1684 /* Get the proper mode to use for this field. We want a mode that
1685 includes the entire field. If such a mode would be larger than
1686 a word, we won't be doing the extraction the normal way. */
1688 mode
= get_best_mode (bitsize
, bitpos
+ offset
* BITS_PER_UNIT
,
1689 MEM_ALIGN (op0
), word_mode
, MEM_VOLATILE_P (op0
));
1691 if (mode
== VOIDmode
)
1692 /* The only way this should occur is if the field spans word
1694 return extract_split_bit_field (op0
, bitsize
,
1695 bitpos
+ offset
* BITS_PER_UNIT
,
1698 total_bits
= GET_MODE_BITSIZE (mode
);
1700 /* Make sure bitpos is valid for the chosen mode. Adjust BITPOS to
1701 be in the range 0 to total_bits-1, and put any excess bytes in
1703 if (bitpos
>= total_bits
)
1705 offset
+= (bitpos
/ total_bits
) * (total_bits
/ BITS_PER_UNIT
);
1706 bitpos
-= ((bitpos
/ total_bits
) * (total_bits
/ BITS_PER_UNIT
)
1710 /* Get ref to an aligned byte, halfword, or word containing the field.
1711 Adjust BITPOS to be position within a word,
1712 and OFFSET to be the offset of that word.
1713 Then alter OP0 to refer to that word. */
1714 bitpos
+= (offset
% (total_bits
/ BITS_PER_UNIT
)) * BITS_PER_UNIT
;
1715 offset
-= (offset
% (total_bits
/ BITS_PER_UNIT
));
1716 op0
= adjust_address (op0
, mode
, offset
);
1719 mode
= GET_MODE (op0
);
1721 if (BYTES_BIG_ENDIAN
)
1722 /* BITPOS is the distance between our msb and that of OP0.
1723 Convert it to the distance from the lsb. */
1724 bitpos
= total_bits
- bitsize
- bitpos
;
1726 /* Now BITPOS is always the distance between the field's lsb and that of OP0.
1727 We have reduced the big-endian case to the little-endian case. */
1733 /* If the field does not already start at the lsb,
1734 shift it so it does. */
1735 tree amount
= build_int_cst (NULL_TREE
, bitpos
);
1736 /* Maybe propagate the target for the shift. */
1737 /* But not if we will return it--could confuse integrate.c. */
1738 rtx subtarget
= (target
!= 0 && REG_P (target
) ? target
: 0);
1739 if (tmode
!= mode
) subtarget
= 0;
1740 op0
= expand_shift (RSHIFT_EXPR
, mode
, op0
, amount
, subtarget
, 1);
1742 /* Convert the value to the desired mode. */
1744 op0
= convert_to_mode (tmode
, op0
, 1);
1746 /* Unless the msb of the field used to be the msb when we shifted,
1747 mask out the upper bits. */
1749 if (GET_MODE_BITSIZE (mode
) != bitpos
+ bitsize
)
1750 return expand_binop (GET_MODE (op0
), and_optab
, op0
,
1751 mask_rtx (GET_MODE (op0
), 0, bitsize
, 0),
1752 target
, 1, OPTAB_LIB_WIDEN
);
1756 /* To extract a signed bit-field, first shift its msb to the msb of the word,
1757 then arithmetic-shift its lsb to the lsb of the word. */
1758 op0
= force_reg (mode
, op0
);
1762 /* Find the narrowest integer mode that contains the field. */
1764 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= VOIDmode
;
1765 mode
= GET_MODE_WIDER_MODE (mode
))
1766 if (GET_MODE_BITSIZE (mode
) >= bitsize
+ bitpos
)
1768 op0
= convert_to_mode (mode
, op0
, 0);
1772 if (GET_MODE_BITSIZE (mode
) != (bitsize
+ bitpos
))
1775 = build_int_cst (NULL_TREE
,
1776 GET_MODE_BITSIZE (mode
) - (bitsize
+ bitpos
));
1777 /* Maybe propagate the target for the shift. */
1778 rtx subtarget
= (target
!= 0 && REG_P (target
) ? target
: 0);
1779 op0
= expand_shift (LSHIFT_EXPR
, mode
, op0
, amount
, subtarget
, 1);
1782 return expand_shift (RSHIFT_EXPR
, mode
, op0
,
1783 build_int_cst (NULL_TREE
,
1784 GET_MODE_BITSIZE (mode
) - bitsize
),
1788 /* Return a constant integer (CONST_INT or CONST_DOUBLE) mask value
1789 of mode MODE with BITSIZE ones followed by BITPOS zeros, or the
1790 complement of that if COMPLEMENT. The mask is truncated if
1791 necessary to the width of mode MODE. The mask is zero-extended if
1792 BITSIZE+BITPOS is too small for MODE. */
1795 mask_rtx (enum machine_mode mode
, int bitpos
, int bitsize
, int complement
)
1797 HOST_WIDE_INT masklow
, maskhigh
;
1801 else if (bitpos
< HOST_BITS_PER_WIDE_INT
)
1802 masklow
= (HOST_WIDE_INT
) -1 << bitpos
;
1806 if (bitpos
+ bitsize
< HOST_BITS_PER_WIDE_INT
)
1807 masklow
&= ((unsigned HOST_WIDE_INT
) -1
1808 >> (HOST_BITS_PER_WIDE_INT
- bitpos
- bitsize
));
1810 if (bitpos
<= HOST_BITS_PER_WIDE_INT
)
1813 maskhigh
= (HOST_WIDE_INT
) -1 << (bitpos
- HOST_BITS_PER_WIDE_INT
);
1817 else if (bitpos
+ bitsize
> HOST_BITS_PER_WIDE_INT
)
1818 maskhigh
&= ((unsigned HOST_WIDE_INT
) -1
1819 >> (2 * HOST_BITS_PER_WIDE_INT
- bitpos
- bitsize
));
1825 maskhigh
= ~maskhigh
;
1829 return immed_double_const (masklow
, maskhigh
, mode
);
1832 /* Return a constant integer (CONST_INT or CONST_DOUBLE) rtx with the value
1833 VALUE truncated to BITSIZE bits and then shifted left BITPOS bits. */
1836 lshift_value (enum machine_mode mode
, rtx value
, int bitpos
, int bitsize
)
1838 unsigned HOST_WIDE_INT v
= INTVAL (value
);
1839 HOST_WIDE_INT low
, high
;
1841 if (bitsize
< HOST_BITS_PER_WIDE_INT
)
1842 v
&= ~((HOST_WIDE_INT
) -1 << bitsize
);
1844 if (bitpos
< HOST_BITS_PER_WIDE_INT
)
1847 high
= (bitpos
> 0 ? (v
>> (HOST_BITS_PER_WIDE_INT
- bitpos
)) : 0);
1852 high
= v
<< (bitpos
- HOST_BITS_PER_WIDE_INT
);
1855 return immed_double_const (low
, high
, mode
);
1858 /* Extract a bit field from a memory by forcing the alignment of the
1859 memory. This efficient only if the field spans at least 4 boundaries.
1862 BITSIZE is the field width; BITPOS is the position of the first bit.
1863 UNSIGNEDP is true if the result should be zero-extended. */
1866 extract_force_align_mem_bit_field (rtx op0
, unsigned HOST_WIDE_INT bitsize
,
1867 unsigned HOST_WIDE_INT bitpos
,
1870 enum machine_mode mode
, dmode
;
1871 unsigned int m_bitsize
, m_size
;
1872 unsigned int sign_shift_up
, sign_shift_dn
;
1873 rtx base
, a1
, a2
, v1
, v2
, comb
, shift
, result
, start
;
1875 /* Choose a mode that will fit BITSIZE. */
1876 mode
= smallest_mode_for_size (bitsize
, MODE_INT
);
1877 m_size
= GET_MODE_SIZE (mode
);
1878 m_bitsize
= GET_MODE_BITSIZE (mode
);
1880 /* Choose a mode twice as wide. Fail if no such mode exists. */
1881 dmode
= mode_for_size (m_bitsize
* 2, MODE_INT
, false);
1882 if (dmode
== BLKmode
)
1885 do_pending_stack_adjust ();
1886 start
= get_last_insn ();
1888 /* At the end, we'll need an additional shift to deal with sign/zero
1889 extension. By default this will be a left+right shift of the
1890 appropriate size. But we may be able to eliminate one of them. */
1891 sign_shift_up
= sign_shift_dn
= m_bitsize
- bitsize
;
1893 if (STRICT_ALIGNMENT
)
1895 base
= plus_constant (XEXP (op0
, 0), bitpos
/ BITS_PER_UNIT
);
1896 bitpos
%= BITS_PER_UNIT
;
1898 /* We load two values to be concatenate. There's an edge condition
1899 that bears notice -- an aligned value at the end of a page can
1900 only load one value lest we segfault. So the two values we load
1901 are at "base & -size" and "(base + size - 1) & -size". If base
1902 is unaligned, the addresses will be aligned and sequential; if
1903 base is aligned, the addresses will both be equal to base. */
1905 a1
= expand_simple_binop (Pmode
, AND
, force_operand (base
, NULL
),
1906 GEN_INT (-(HOST_WIDE_INT
)m_size
),
1907 NULL
, true, OPTAB_LIB_WIDEN
);
1908 mark_reg_pointer (a1
, m_bitsize
);
1909 v1
= gen_rtx_MEM (mode
, a1
);
1910 set_mem_align (v1
, m_bitsize
);
1911 v1
= force_reg (mode
, validize_mem (v1
));
1913 a2
= plus_constant (base
, GET_MODE_SIZE (mode
) - 1);
1914 a2
= expand_simple_binop (Pmode
, AND
, force_operand (a2
, NULL
),
1915 GEN_INT (-(HOST_WIDE_INT
)m_size
),
1916 NULL
, true, OPTAB_LIB_WIDEN
);
1917 v2
= gen_rtx_MEM (mode
, a2
);
1918 set_mem_align (v2
, m_bitsize
);
1919 v2
= force_reg (mode
, validize_mem (v2
));
1921 /* Combine these two values into a double-word value. */
1922 if (m_bitsize
== BITS_PER_WORD
)
1924 comb
= gen_reg_rtx (dmode
);
1925 emit_insn (gen_rtx_CLOBBER (VOIDmode
, comb
));
1926 emit_move_insn (gen_rtx_SUBREG (mode
, comb
, 0), v1
);
1927 emit_move_insn (gen_rtx_SUBREG (mode
, comb
, m_size
), v2
);
1931 if (BYTES_BIG_ENDIAN
)
1932 comb
= v1
, v1
= v2
, v2
= comb
;
1933 v1
= convert_modes (dmode
, mode
, v1
, true);
1936 v2
= convert_modes (dmode
, mode
, v2
, true);
1937 v2
= expand_simple_binop (dmode
, ASHIFT
, v2
, GEN_INT (m_bitsize
),
1938 NULL
, true, OPTAB_LIB_WIDEN
);
1941 comb
= expand_simple_binop (dmode
, IOR
, v1
, v2
, NULL
,
1942 true, OPTAB_LIB_WIDEN
);
1947 shift
= expand_simple_binop (Pmode
, AND
, base
, GEN_INT (m_size
- 1),
1948 NULL
, true, OPTAB_LIB_WIDEN
);
1949 shift
= expand_mult (Pmode
, shift
, GEN_INT (BITS_PER_UNIT
), NULL
, 1);
1953 if (sign_shift_up
<= bitpos
)
1954 bitpos
-= sign_shift_up
, sign_shift_up
= 0;
1955 shift
= expand_simple_binop (Pmode
, PLUS
, shift
, GEN_INT (bitpos
),
1956 NULL
, true, OPTAB_LIB_WIDEN
);
1961 unsigned HOST_WIDE_INT offset
= bitpos
/ BITS_PER_UNIT
;
1962 bitpos
%= BITS_PER_UNIT
;
1964 /* When strict alignment is not required, we can just load directly
1965 from memory without masking. If the remaining BITPOS offset is
1966 small enough, we may be able to do all operations in MODE as
1967 opposed to DMODE. */
1968 if (bitpos
+ bitsize
<= m_bitsize
)
1970 comb
= adjust_address (op0
, dmode
, offset
);
1972 if (sign_shift_up
<= bitpos
)
1973 bitpos
-= sign_shift_up
, sign_shift_up
= 0;
1974 shift
= GEN_INT (bitpos
);
1977 /* Shift down the double-word such that the requested value is at bit 0. */
1978 if (shift
!= const0_rtx
)
1979 comb
= expand_simple_binop (dmode
, unsignedp
? LSHIFTRT
: ASHIFTRT
,
1980 comb
, shift
, NULL
, unsignedp
, OPTAB_LIB_WIDEN
);
1984 /* If the field exactly matches MODE, then all we need to do is return the
1985 lowpart. Otherwise, shift to get the sign bits set properly. */
1986 result
= force_reg (mode
, gen_lowpart (mode
, comb
));
1989 result
= expand_simple_binop (mode
, ASHIFT
, result
,
1990 GEN_INT (sign_shift_up
),
1991 NULL_RTX
, 0, OPTAB_LIB_WIDEN
);
1993 result
= expand_simple_binop (mode
, unsignedp
? LSHIFTRT
: ASHIFTRT
,
1994 result
, GEN_INT (sign_shift_dn
),
1995 NULL_RTX
, 0, OPTAB_LIB_WIDEN
);
2000 delete_insns_since (start
);
2004 /* Extract a bit field that is split across two words
2005 and return an RTX for the result.
2007 OP0 is the REG, SUBREG or MEM rtx for the first of the two words.
2008 BITSIZE is the field width; BITPOS, position of its first bit, in the word.
2009 UNSIGNEDP is 1 if should zero-extend the contents; else sign-extend. */
2012 extract_split_bit_field (rtx op0
, unsigned HOST_WIDE_INT bitsize
,
2013 unsigned HOST_WIDE_INT bitpos
, int unsignedp
)
2016 unsigned int bitsdone
= 0;
2017 rtx result
= NULL_RTX
;
2020 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
2022 if (REG_P (op0
) || GET_CODE (op0
) == SUBREG
)
2023 unit
= BITS_PER_WORD
;
2026 unit
= MIN (MEM_ALIGN (op0
), BITS_PER_WORD
);
2027 if (0 && bitsize
/ unit
> 2)
2029 rtx tmp
= extract_force_align_mem_bit_field (op0
, bitsize
, bitpos
,
2036 while (bitsdone
< bitsize
)
2038 unsigned HOST_WIDE_INT thissize
;
2040 unsigned HOST_WIDE_INT thispos
;
2041 unsigned HOST_WIDE_INT offset
;
2043 offset
= (bitpos
+ bitsdone
) / unit
;
2044 thispos
= (bitpos
+ bitsdone
) % unit
;
2046 /* THISSIZE must not overrun a word boundary. Otherwise,
2047 extract_fixed_bit_field will call us again, and we will mutually
2049 thissize
= MIN (bitsize
- bitsdone
, BITS_PER_WORD
);
2050 thissize
= MIN (thissize
, unit
- thispos
);
2052 /* If OP0 is a register, then handle OFFSET here.
2054 When handling multiword bitfields, extract_bit_field may pass
2055 down a word_mode SUBREG of a larger REG for a bitfield that actually
2056 crosses a word boundary. Thus, for a SUBREG, we must find
2057 the current word starting from the base register. */
2058 if (GET_CODE (op0
) == SUBREG
)
2060 int word_offset
= (SUBREG_BYTE (op0
) / UNITS_PER_WORD
) + offset
;
2061 word
= operand_subword_force (SUBREG_REG (op0
), word_offset
,
2062 GET_MODE (SUBREG_REG (op0
)));
2065 else if (REG_P (op0
))
2067 word
= operand_subword_force (op0
, offset
, GET_MODE (op0
));
2073 /* Extract the parts in bit-counting order,
2074 whose meaning is determined by BYTES_PER_UNIT.
2075 OFFSET is in UNITs, and UNIT is in bits.
2076 extract_fixed_bit_field wants offset in bytes. */
2077 part
= extract_fixed_bit_field (word_mode
, word
,
2078 offset
* unit
/ BITS_PER_UNIT
,
2079 thissize
, thispos
, 0, 1);
2080 bitsdone
+= thissize
;
2082 /* Shift this part into place for the result. */
2083 if (BYTES_BIG_ENDIAN
)
2085 if (bitsize
!= bitsdone
)
2086 part
= expand_shift (LSHIFT_EXPR
, word_mode
, part
,
2087 build_int_cst (NULL_TREE
, bitsize
- bitsdone
),
2092 if (bitsdone
!= thissize
)
2093 part
= expand_shift (LSHIFT_EXPR
, word_mode
, part
,
2094 build_int_cst (NULL_TREE
,
2095 bitsdone
- thissize
), 0, 1);
2101 /* Combine the parts with bitwise or. This works
2102 because we extracted each part as an unsigned bit field. */
2103 result
= expand_binop (word_mode
, ior_optab
, part
, result
, NULL_RTX
, 1,
2109 /* Unsigned bit field: we are done. */
2112 /* Signed bit field: sign-extend with two arithmetic shifts. */
2113 result
= expand_shift (LSHIFT_EXPR
, word_mode
, result
,
2114 build_int_cst (NULL_TREE
, BITS_PER_WORD
- bitsize
),
2116 return expand_shift (RSHIFT_EXPR
, word_mode
, result
,
2117 build_int_cst (NULL_TREE
, BITS_PER_WORD
- bitsize
),
2121 /* Add INC into TARGET. */
2124 expand_inc (rtx target
, rtx inc
)
2126 rtx value
= expand_binop (GET_MODE (target
), add_optab
,
2128 target
, 0, OPTAB_LIB_WIDEN
);
2129 if (value
!= target
)
2130 emit_move_insn (target
, value
);
2133 /* Subtract DEC from TARGET. */
2136 expand_dec (rtx target
, rtx dec
)
2138 rtx value
= expand_binop (GET_MODE (target
), sub_optab
,
2140 target
, 0, OPTAB_LIB_WIDEN
);
2141 if (value
!= target
)
2142 emit_move_insn (target
, value
);
2145 /* Output a shift instruction for expression code CODE,
2146 with SHIFTED being the rtx for the value to shift,
2147 and AMOUNT the tree for the amount to shift by.
2148 Store the result in the rtx TARGET, if that is convenient.
2149 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2150 Return the rtx for where the value is. */
2153 expand_shift (enum tree_code code
, enum machine_mode mode
, rtx shifted
,
2154 tree amount
, rtx target
, int unsignedp
)
2157 int left
= (code
== LSHIFT_EXPR
|| code
== LROTATE_EXPR
);
2158 int rotate
= (code
== LROTATE_EXPR
|| code
== RROTATE_EXPR
);
2161 /* Previously detected shift-counts computed by NEGATE_EXPR
2162 and shifted in the other direction; but that does not work
2165 op1
= expand_expr (amount
, NULL_RTX
, VOIDmode
, 0);
2167 if (SHIFT_COUNT_TRUNCATED
)
2169 if (GET_CODE (op1
) == CONST_INT
2170 && ((unsigned HOST_WIDE_INT
) INTVAL (op1
) >=
2171 (unsigned HOST_WIDE_INT
) GET_MODE_BITSIZE (mode
)))
2172 op1
= GEN_INT ((unsigned HOST_WIDE_INT
) INTVAL (op1
)
2173 % GET_MODE_BITSIZE (mode
));
2174 else if (GET_CODE (op1
) == SUBREG
2175 && subreg_lowpart_p (op1
))
2176 op1
= SUBREG_REG (op1
);
2179 if (op1
== const0_rtx
)
2182 /* Check whether its cheaper to implement a left shift by a constant
2183 bit count by a sequence of additions. */
2184 if (code
== LSHIFT_EXPR
2185 && GET_CODE (op1
) == CONST_INT
2187 && INTVAL (op1
) < GET_MODE_BITSIZE (mode
)
2188 && shift_cost
[mode
][INTVAL (op1
)] > INTVAL (op1
) * add_cost
[mode
])
2191 for (i
= 0; i
< INTVAL (op1
); i
++)
2193 temp
= force_reg (mode
, shifted
);
2194 shifted
= expand_binop (mode
, add_optab
, temp
, temp
, NULL_RTX
,
2195 unsignedp
, OPTAB_LIB_WIDEN
);
2200 for (try = 0; temp
== 0 && try < 3; try++)
2202 enum optab_methods methods
;
2205 methods
= OPTAB_DIRECT
;
2207 methods
= OPTAB_WIDEN
;
2209 methods
= OPTAB_LIB_WIDEN
;
2213 /* Widening does not work for rotation. */
2214 if (methods
== OPTAB_WIDEN
)
2216 else if (methods
== OPTAB_LIB_WIDEN
)
2218 /* If we have been unable to open-code this by a rotation,
2219 do it as the IOR of two shifts. I.e., to rotate A
2220 by N bits, compute (A << N) | ((unsigned) A >> (C - N))
2221 where C is the bitsize of A.
2223 It is theoretically possible that the target machine might
2224 not be able to perform either shift and hence we would
2225 be making two libcalls rather than just the one for the
2226 shift (similarly if IOR could not be done). We will allow
2227 this extremely unlikely lossage to avoid complicating the
2230 rtx subtarget
= target
== shifted
? 0 : target
;
2232 tree type
= TREE_TYPE (amount
);
2233 tree new_amount
= make_tree (type
, op1
);
2235 = fold_build2 (MINUS_EXPR
, type
,
2236 build_int_cst (type
, GET_MODE_BITSIZE (mode
)),
2239 shifted
= force_reg (mode
, shifted
);
2241 temp
= expand_shift (left
? LSHIFT_EXPR
: RSHIFT_EXPR
,
2242 mode
, shifted
, new_amount
, subtarget
, 1);
2243 temp1
= expand_shift (left
? RSHIFT_EXPR
: LSHIFT_EXPR
,
2244 mode
, shifted
, other_amount
, 0, 1);
2245 return expand_binop (mode
, ior_optab
, temp
, temp1
, target
,
2246 unsignedp
, methods
);
2249 temp
= expand_binop (mode
,
2250 left
? rotl_optab
: rotr_optab
,
2251 shifted
, op1
, target
, unsignedp
, methods
);
2253 /* If we don't have the rotate, but we are rotating by a constant
2254 that is in range, try a rotate in the opposite direction. */
2256 if (temp
== 0 && GET_CODE (op1
) == CONST_INT
2258 && (unsigned int) INTVAL (op1
) < GET_MODE_BITSIZE (mode
))
2259 temp
= expand_binop (mode
,
2260 left
? rotr_optab
: rotl_optab
,
2262 GEN_INT (GET_MODE_BITSIZE (mode
)
2264 target
, unsignedp
, methods
);
2267 temp
= expand_binop (mode
,
2268 left
? ashl_optab
: lshr_optab
,
2269 shifted
, op1
, target
, unsignedp
, methods
);
2271 /* Do arithmetic shifts.
2272 Also, if we are going to widen the operand, we can just as well
2273 use an arithmetic right-shift instead of a logical one. */
2274 if (temp
== 0 && ! rotate
2275 && (! unsignedp
|| (! left
&& methods
== OPTAB_WIDEN
)))
2277 enum optab_methods methods1
= methods
;
2279 /* If trying to widen a log shift to an arithmetic shift,
2280 don't accept an arithmetic shift of the same size. */
2282 methods1
= OPTAB_MUST_WIDEN
;
2284 /* Arithmetic shift */
2286 temp
= expand_binop (mode
,
2287 left
? ashl_optab
: ashr_optab
,
2288 shifted
, op1
, target
, unsignedp
, methods1
);
2291 /* We used to try extzv here for logical right shifts, but that was
2292 only useful for one machine, the VAX, and caused poor code
2293 generation there for lshrdi3, so the code was deleted and a
2294 define_expand for lshrsi3 was added to vax.md. */
2301 enum alg_code
{ alg_unknown
, alg_zero
, alg_m
, alg_shift
,
2302 alg_add_t_m2
, alg_sub_t_m2
,
2303 alg_add_factor
, alg_sub_factor
,
2304 alg_add_t2_m
, alg_sub_t2_m
};
2306 /* This structure holds the "cost" of a multiply sequence. The
2307 "cost" field holds the total rtx_cost of every operator in the
2308 synthetic multiplication sequence, hence cost(a op b) is defined
2309 as rtx_cost(op) + cost(a) + cost(b), where cost(leaf) is zero.
2310 The "latency" field holds the minimum possible latency of the
2311 synthetic multiply, on a hypothetical infinitely parallel CPU.
2312 This is the critical path, or the maximum height, of the expression
2313 tree which is the sum of rtx_costs on the most expensive path from
2314 any leaf to the root. Hence latency(a op b) is defined as zero for
2315 leaves and rtx_cost(op) + max(latency(a), latency(b)) otherwise. */
2318 short cost
; /* Total rtx_cost of the multiplication sequence. */
2319 short latency
; /* The latency of the multiplication sequence. */
2322 /* This macro is used to compare a pointer to a mult_cost against an
2323 single integer "rtx_cost" value. This is equivalent to the macro
2324 CHEAPER_MULT_COST(X,Z) where Z = {Y,Y}. */
2325 #define MULT_COST_LESS(X,Y) ((X)->cost < (Y) \
2326 || ((X)->cost == (Y) && (X)->latency < (Y)))
2328 /* This macro is used to compare two pointers to mult_costs against
2329 each other. The macro returns true if X is cheaper than Y.
2330 Currently, the cheaper of two mult_costs is the one with the
2331 lower "cost". If "cost"s are tied, the lower latency is cheaper. */
2332 #define CHEAPER_MULT_COST(X,Y) ((X)->cost < (Y)->cost \
2333 || ((X)->cost == (Y)->cost \
2334 && (X)->latency < (Y)->latency))
2336 /* This structure records a sequence of operations.
2337 `ops' is the number of operations recorded.
2338 `cost' is their total cost.
2339 The operations are stored in `op' and the corresponding
2340 logarithms of the integer coefficients in `log'.
2342 These are the operations:
2343 alg_zero total := 0;
2344 alg_m total := multiplicand;
2345 alg_shift total := total * coeff
2346 alg_add_t_m2 total := total + multiplicand * coeff;
2347 alg_sub_t_m2 total := total - multiplicand * coeff;
2348 alg_add_factor total := total * coeff + total;
2349 alg_sub_factor total := total * coeff - total;
2350 alg_add_t2_m total := total * coeff + multiplicand;
2351 alg_sub_t2_m total := total * coeff - multiplicand;
2353 The first operand must be either alg_zero or alg_m. */
2357 struct mult_cost cost
;
2359 /* The size of the OP and LOG fields are not directly related to the
2360 word size, but the worst-case algorithms will be if we have few
2361 consecutive ones or zeros, i.e., a multiplicand like 10101010101...
2362 In that case we will generate shift-by-2, add, shift-by-2, add,...,
2363 in total wordsize operations. */
2364 enum alg_code op
[MAX_BITS_PER_WORD
];
2365 char log
[MAX_BITS_PER_WORD
];
2368 /* The entry for our multiplication cache/hash table. */
2369 struct alg_hash_entry
{
2370 /* The number we are multiplying by. */
2373 /* The mode in which we are multiplying something by T. */
2374 enum machine_mode mode
;
2376 /* The best multiplication algorithm for t. */
2380 /* The number of cache/hash entries. */
2381 #define NUM_ALG_HASH_ENTRIES 307
2383 /* Each entry of ALG_HASH caches alg_code for some integer. This is
2384 actually a hash table. If we have a collision, that the older
2385 entry is kicked out. */
2386 static struct alg_hash_entry alg_hash
[NUM_ALG_HASH_ENTRIES
];
2388 /* Indicates the type of fixup needed after a constant multiplication.
2389 BASIC_VARIANT means no fixup is needed, NEGATE_VARIANT means that
2390 the result should be negated, and ADD_VARIANT means that the
2391 multiplicand should be added to the result. */
2392 enum mult_variant
{basic_variant
, negate_variant
, add_variant
};
2394 static void synth_mult (struct algorithm
*, unsigned HOST_WIDE_INT
,
2395 const struct mult_cost
*, enum machine_mode mode
);
2396 static bool choose_mult_variant (enum machine_mode
, HOST_WIDE_INT
,
2397 struct algorithm
*, enum mult_variant
*, int);
2398 static rtx
expand_mult_const (enum machine_mode
, rtx
, HOST_WIDE_INT
, rtx
,
2399 const struct algorithm
*, enum mult_variant
);
2400 static unsigned HOST_WIDE_INT
choose_multiplier (unsigned HOST_WIDE_INT
, int,
2401 int, rtx
*, int *, int *);
2402 static unsigned HOST_WIDE_INT
invert_mod2n (unsigned HOST_WIDE_INT
, int);
2403 static rtx
extract_high_half (enum machine_mode
, rtx
);
2404 static rtx
expand_mult_highpart (enum machine_mode
, rtx
, rtx
, rtx
, int, int);
2405 static rtx
expand_mult_highpart_optab (enum machine_mode
, rtx
, rtx
, rtx
,
2407 /* Compute and return the best algorithm for multiplying by T.
2408 The algorithm must cost less than cost_limit
2409 If retval.cost >= COST_LIMIT, no algorithm was found and all
2410 other field of the returned struct are undefined.
2411 MODE is the machine mode of the multiplication. */
2414 synth_mult (struct algorithm
*alg_out
, unsigned HOST_WIDE_INT t
,
2415 const struct mult_cost
*cost_limit
, enum machine_mode mode
)
2418 struct algorithm
*alg_in
, *best_alg
;
2419 struct mult_cost best_cost
;
2420 struct mult_cost new_limit
;
2421 int op_cost
, op_latency
;
2422 unsigned HOST_WIDE_INT q
;
2423 int maxm
= MIN (BITS_PER_WORD
, GET_MODE_BITSIZE (mode
));
2425 bool cache_hit
= false;
2426 enum alg_code cache_alg
= alg_zero
;
2428 /* Indicate that no algorithm is yet found. If no algorithm
2429 is found, this value will be returned and indicate failure. */
2430 alg_out
->cost
.cost
= cost_limit
->cost
+ 1;
2431 alg_out
->cost
.latency
= cost_limit
->latency
+ 1;
2433 if (cost_limit
->cost
< 0
2434 || (cost_limit
->cost
== 0 && cost_limit
->latency
<= 0))
2437 /* Restrict the bits of "t" to the multiplication's mode. */
2438 t
&= GET_MODE_MASK (mode
);
2440 /* t == 1 can be done in zero cost. */
2444 alg_out
->cost
.cost
= 0;
2445 alg_out
->cost
.latency
= 0;
2446 alg_out
->op
[0] = alg_m
;
2450 /* t == 0 sometimes has a cost. If it does and it exceeds our limit,
2454 if (MULT_COST_LESS (cost_limit
, zero_cost
))
2459 alg_out
->cost
.cost
= zero_cost
;
2460 alg_out
->cost
.latency
= zero_cost
;
2461 alg_out
->op
[0] = alg_zero
;
2466 /* We'll be needing a couple extra algorithm structures now. */
2468 alg_in
= alloca (sizeof (struct algorithm
));
2469 best_alg
= alloca (sizeof (struct algorithm
));
2470 best_cost
= *cost_limit
;
2472 /* Compute the hash index. */
2473 hash_index
= (t
^ (unsigned int) mode
) % NUM_ALG_HASH_ENTRIES
;
2475 /* See if we already know what to do for T. */
2476 if (alg_hash
[hash_index
].t
== t
2477 && alg_hash
[hash_index
].mode
== mode
2478 && alg_hash
[hash_index
].alg
!= alg_unknown
)
2481 cache_alg
= alg_hash
[hash_index
].alg
;
2489 goto do_alg_addsub_t_m2
;
2491 case alg_add_factor
:
2492 case alg_sub_factor
:
2493 goto do_alg_addsub_factor
;
2496 goto do_alg_add_t2_m
;
2499 goto do_alg_sub_t2_m
;
2506 /* If we have a group of zero bits at the low-order part of T, try
2507 multiplying by the remaining bits and then doing a shift. */
2512 m
= floor_log2 (t
& -t
); /* m = number of low zero bits */
2516 /* The function expand_shift will choose between a shift and
2517 a sequence of additions, so the observed cost is given as
2518 MIN (m * add_cost[mode], shift_cost[mode][m]). */
2519 op_cost
= m
* add_cost
[mode
];
2520 if (shift_cost
[mode
][m
] < op_cost
)
2521 op_cost
= shift_cost
[mode
][m
];
2522 new_limit
.cost
= best_cost
.cost
- op_cost
;
2523 new_limit
.latency
= best_cost
.latency
- op_cost
;
2524 synth_mult (alg_in
, q
, &new_limit
, mode
);
2526 alg_in
->cost
.cost
+= op_cost
;
2527 alg_in
->cost
.latency
+= op_cost
;
2528 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2530 struct algorithm
*x
;
2531 best_cost
= alg_in
->cost
;
2532 x
= alg_in
, alg_in
= best_alg
, best_alg
= x
;
2533 best_alg
->log
[best_alg
->ops
] = m
;
2534 best_alg
->op
[best_alg
->ops
] = alg_shift
;
2541 /* If we have an odd number, add or subtract one. */
2544 unsigned HOST_WIDE_INT w
;
2547 for (w
= 1; (w
& t
) != 0; w
<<= 1)
2549 /* If T was -1, then W will be zero after the loop. This is another
2550 case where T ends with ...111. Handling this with (T + 1) and
2551 subtract 1 produces slightly better code and results in algorithm
2552 selection much faster than treating it like the ...0111 case
2556 /* Reject the case where t is 3.
2557 Thus we prefer addition in that case. */
2560 /* T ends with ...111. Multiply by (T + 1) and subtract 1. */
2562 op_cost
= add_cost
[mode
];
2563 new_limit
.cost
= best_cost
.cost
- op_cost
;
2564 new_limit
.latency
= best_cost
.latency
- op_cost
;
2565 synth_mult (alg_in
, t
+ 1, &new_limit
, mode
);
2567 alg_in
->cost
.cost
+= op_cost
;
2568 alg_in
->cost
.latency
+= op_cost
;
2569 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2571 struct algorithm
*x
;
2572 best_cost
= alg_in
->cost
;
2573 x
= alg_in
, alg_in
= best_alg
, best_alg
= x
;
2574 best_alg
->log
[best_alg
->ops
] = 0;
2575 best_alg
->op
[best_alg
->ops
] = alg_sub_t_m2
;
2580 /* T ends with ...01 or ...011. Multiply by (T - 1) and add 1. */
2582 op_cost
= add_cost
[mode
];
2583 new_limit
.cost
= best_cost
.cost
- op_cost
;
2584 new_limit
.latency
= best_cost
.latency
- op_cost
;
2585 synth_mult (alg_in
, t
- 1, &new_limit
, mode
);
2587 alg_in
->cost
.cost
+= op_cost
;
2588 alg_in
->cost
.latency
+= op_cost
;
2589 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2591 struct algorithm
*x
;
2592 best_cost
= alg_in
->cost
;
2593 x
= alg_in
, alg_in
= best_alg
, best_alg
= x
;
2594 best_alg
->log
[best_alg
->ops
] = 0;
2595 best_alg
->op
[best_alg
->ops
] = alg_add_t_m2
;
2602 /* Look for factors of t of the form
2603 t = q(2**m +- 1), 2 <= m <= floor(log2(t - 1)).
2604 If we find such a factor, we can multiply by t using an algorithm that
2605 multiplies by q, shift the result by m and add/subtract it to itself.
2607 We search for large factors first and loop down, even if large factors
2608 are less probable than small; if we find a large factor we will find a
2609 good sequence quickly, and therefore be able to prune (by decreasing
2610 COST_LIMIT) the search. */
2612 do_alg_addsub_factor
:
2613 for (m
= floor_log2 (t
- 1); m
>= 2; m
--)
2615 unsigned HOST_WIDE_INT d
;
2617 d
= ((unsigned HOST_WIDE_INT
) 1 << m
) + 1;
2618 if (t
% d
== 0 && t
> d
&& m
< maxm
2619 && (!cache_hit
|| cache_alg
== alg_add_factor
))
2621 /* If the target has a cheap shift-and-add instruction use
2622 that in preference to a shift insn followed by an add insn.
2623 Assume that the shift-and-add is "atomic" with a latency
2624 equal to its cost, otherwise assume that on superscalar
2625 hardware the shift may be executed concurrently with the
2626 earlier steps in the algorithm. */
2627 op_cost
= add_cost
[mode
] + shift_cost
[mode
][m
];
2628 if (shiftadd_cost
[mode
][m
] < op_cost
)
2630 op_cost
= shiftadd_cost
[mode
][m
];
2631 op_latency
= op_cost
;
2634 op_latency
= add_cost
[mode
];
2636 new_limit
.cost
= best_cost
.cost
- op_cost
;
2637 new_limit
.latency
= best_cost
.latency
- op_latency
;
2638 synth_mult (alg_in
, t
/ d
, &new_limit
, mode
);
2640 alg_in
->cost
.cost
+= op_cost
;
2641 alg_in
->cost
.latency
+= op_latency
;
2642 if (alg_in
->cost
.latency
< op_cost
)
2643 alg_in
->cost
.latency
= op_cost
;
2644 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2646 struct algorithm
*x
;
2647 best_cost
= alg_in
->cost
;
2648 x
= alg_in
, alg_in
= best_alg
, best_alg
= x
;
2649 best_alg
->log
[best_alg
->ops
] = m
;
2650 best_alg
->op
[best_alg
->ops
] = alg_add_factor
;
2652 /* Other factors will have been taken care of in the recursion. */
2656 d
= ((unsigned HOST_WIDE_INT
) 1 << m
) - 1;
2657 if (t
% d
== 0 && t
> d
&& m
< maxm
2658 && (!cache_hit
|| cache_alg
== alg_sub_factor
))
2660 /* If the target has a cheap shift-and-subtract insn use
2661 that in preference to a shift insn followed by a sub insn.
2662 Assume that the shift-and-sub is "atomic" with a latency
2663 equal to it's cost, otherwise assume that on superscalar
2664 hardware the shift may be executed concurrently with the
2665 earlier steps in the algorithm. */
2666 op_cost
= add_cost
[mode
] + shift_cost
[mode
][m
];
2667 if (shiftsub_cost
[mode
][m
] < op_cost
)
2669 op_cost
= shiftsub_cost
[mode
][m
];
2670 op_latency
= op_cost
;
2673 op_latency
= add_cost
[mode
];
2675 new_limit
.cost
= best_cost
.cost
- op_cost
;
2676 new_limit
.latency
= best_cost
.latency
- op_latency
;
2677 synth_mult (alg_in
, t
/ d
, &new_limit
, mode
);
2679 alg_in
->cost
.cost
+= op_cost
;
2680 alg_in
->cost
.latency
+= op_latency
;
2681 if (alg_in
->cost
.latency
< op_cost
)
2682 alg_in
->cost
.latency
= op_cost
;
2683 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2685 struct algorithm
*x
;
2686 best_cost
= alg_in
->cost
;
2687 x
= alg_in
, alg_in
= best_alg
, best_alg
= x
;
2688 best_alg
->log
[best_alg
->ops
] = m
;
2689 best_alg
->op
[best_alg
->ops
] = alg_sub_factor
;
2697 /* Try shift-and-add (load effective address) instructions,
2698 i.e. do a*3, a*5, a*9. */
2705 if (m
>= 0 && m
< maxm
)
2707 op_cost
= shiftadd_cost
[mode
][m
];
2708 new_limit
.cost
= best_cost
.cost
- op_cost
;
2709 new_limit
.latency
= best_cost
.latency
- op_cost
;
2710 synth_mult (alg_in
, (t
- 1) >> m
, &new_limit
, mode
);
2712 alg_in
->cost
.cost
+= op_cost
;
2713 alg_in
->cost
.latency
+= op_cost
;
2714 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2716 struct algorithm
*x
;
2717 best_cost
= alg_in
->cost
;
2718 x
= alg_in
, alg_in
= best_alg
, best_alg
= x
;
2719 best_alg
->log
[best_alg
->ops
] = m
;
2720 best_alg
->op
[best_alg
->ops
] = alg_add_t2_m
;
2730 if (m
>= 0 && m
< maxm
)
2732 op_cost
= shiftsub_cost
[mode
][m
];
2733 new_limit
.cost
= best_cost
.cost
- op_cost
;
2734 new_limit
.latency
= best_cost
.latency
- op_cost
;
2735 synth_mult (alg_in
, (t
+ 1) >> m
, &new_limit
, mode
);
2737 alg_in
->cost
.cost
+= op_cost
;
2738 alg_in
->cost
.latency
+= op_cost
;
2739 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2741 struct algorithm
*x
;
2742 best_cost
= alg_in
->cost
;
2743 x
= alg_in
, alg_in
= best_alg
, best_alg
= x
;
2744 best_alg
->log
[best_alg
->ops
] = m
;
2745 best_alg
->op
[best_alg
->ops
] = alg_sub_t2_m
;
2753 /* If best_cost has not decreased, we have not found any algorithm. */
2754 if (!CHEAPER_MULT_COST (&best_cost
, cost_limit
))
2757 /* Cache the result. */
2760 alg_hash
[hash_index
].t
= t
;
2761 alg_hash
[hash_index
].mode
= mode
;
2762 alg_hash
[hash_index
].alg
= best_alg
->op
[best_alg
->ops
];
2765 /* If we are getting a too long sequence for `struct algorithm'
2766 to record, make this search fail. */
2767 if (best_alg
->ops
== MAX_BITS_PER_WORD
)
2770 /* Copy the algorithm from temporary space to the space at alg_out.
2771 We avoid using structure assignment because the majority of
2772 best_alg is normally undefined, and this is a critical function. */
2773 alg_out
->ops
= best_alg
->ops
+ 1;
2774 alg_out
->cost
= best_cost
;
2775 memcpy (alg_out
->op
, best_alg
->op
,
2776 alg_out
->ops
* sizeof *alg_out
->op
);
2777 memcpy (alg_out
->log
, best_alg
->log
,
2778 alg_out
->ops
* sizeof *alg_out
->log
);
2781 /* Find the cheapest way of multiplying a value of mode MODE by VAL.
2782 Try three variations:
2784 - a shift/add sequence based on VAL itself
2785 - a shift/add sequence based on -VAL, followed by a negation
2786 - a shift/add sequence based on VAL - 1, followed by an addition.
2788 Return true if the cheapest of these cost less than MULT_COST,
2789 describing the algorithm in *ALG and final fixup in *VARIANT. */
2792 choose_mult_variant (enum machine_mode mode
, HOST_WIDE_INT val
,
2793 struct algorithm
*alg
, enum mult_variant
*variant
,
2796 struct algorithm alg2
;
2797 struct mult_cost limit
;
2800 *variant
= basic_variant
;
2801 limit
.cost
= mult_cost
;
2802 limit
.latency
= mult_cost
;
2803 synth_mult (alg
, val
, &limit
, mode
);
2805 /* This works only if the inverted value actually fits in an
2807 if (HOST_BITS_PER_INT
>= GET_MODE_BITSIZE (mode
))
2809 op_cost
= neg_cost
[mode
];
2810 if (MULT_COST_LESS (&alg
->cost
, mult_cost
))
2812 limit
.cost
= alg
->cost
.cost
- op_cost
;
2813 limit
.latency
= alg
->cost
.latency
- op_cost
;
2817 limit
.cost
= mult_cost
- op_cost
;
2818 limit
.latency
= mult_cost
- op_cost
;
2821 synth_mult (&alg2
, -val
, &limit
, mode
);
2822 alg2
.cost
.cost
+= op_cost
;
2823 alg2
.cost
.latency
+= op_cost
;
2824 if (CHEAPER_MULT_COST (&alg2
.cost
, &alg
->cost
))
2825 *alg
= alg2
, *variant
= negate_variant
;
2828 /* This proves very useful for division-by-constant. */
2829 op_cost
= add_cost
[mode
];
2830 if (MULT_COST_LESS (&alg
->cost
, mult_cost
))
2832 limit
.cost
= alg
->cost
.cost
- op_cost
;
2833 limit
.latency
= alg
->cost
.latency
- op_cost
;
2837 limit
.cost
= mult_cost
- op_cost
;
2838 limit
.latency
= mult_cost
- op_cost
;
2841 synth_mult (&alg2
, val
- 1, &limit
, mode
);
2842 alg2
.cost
.cost
+= op_cost
;
2843 alg2
.cost
.latency
+= op_cost
;
2844 if (CHEAPER_MULT_COST (&alg2
.cost
, &alg
->cost
))
2845 *alg
= alg2
, *variant
= add_variant
;
2847 return MULT_COST_LESS (&alg
->cost
, mult_cost
);
2850 /* A subroutine of expand_mult, used for constant multiplications.
2851 Multiply OP0 by VAL in mode MODE, storing the result in TARGET if
2852 convenient. Use the shift/add sequence described by ALG and apply
2853 the final fixup specified by VARIANT. */
2856 expand_mult_const (enum machine_mode mode
, rtx op0
, HOST_WIDE_INT val
,
2857 rtx target
, const struct algorithm
*alg
,
2858 enum mult_variant variant
)
2860 HOST_WIDE_INT val_so_far
;
2861 rtx insn
, accum
, tem
;
2863 enum machine_mode nmode
;
2865 /* Avoid referencing memory over and over.
2866 For speed, but also for correctness when mem is volatile. */
2868 op0
= force_reg (mode
, op0
);
2870 /* ACCUM starts out either as OP0 or as a zero, depending on
2871 the first operation. */
2873 if (alg
->op
[0] == alg_zero
)
2875 accum
= copy_to_mode_reg (mode
, const0_rtx
);
2878 else if (alg
->op
[0] == alg_m
)
2880 accum
= copy_to_mode_reg (mode
, op0
);
2886 for (opno
= 1; opno
< alg
->ops
; opno
++)
2888 int log
= alg
->log
[opno
];
2889 rtx shift_subtarget
= optimize
? 0 : accum
;
2891 = (opno
== alg
->ops
- 1 && target
!= 0 && variant
!= add_variant
2894 rtx accum_target
= optimize
? 0 : accum
;
2896 switch (alg
->op
[opno
])
2899 accum
= expand_shift (LSHIFT_EXPR
, mode
, accum
,
2900 build_int_cst (NULL_TREE
, log
),
2906 tem
= expand_shift (LSHIFT_EXPR
, mode
, op0
,
2907 build_int_cst (NULL_TREE
, log
),
2909 accum
= force_operand (gen_rtx_PLUS (mode
, accum
, tem
),
2910 add_target
? add_target
: accum_target
);
2911 val_so_far
+= (HOST_WIDE_INT
) 1 << log
;
2915 tem
= expand_shift (LSHIFT_EXPR
, mode
, op0
,
2916 build_int_cst (NULL_TREE
, log
),
2918 accum
= force_operand (gen_rtx_MINUS (mode
, accum
, tem
),
2919 add_target
? add_target
: accum_target
);
2920 val_so_far
-= (HOST_WIDE_INT
) 1 << log
;
2924 accum
= expand_shift (LSHIFT_EXPR
, mode
, accum
,
2925 build_int_cst (NULL_TREE
, log
),
2928 accum
= force_operand (gen_rtx_PLUS (mode
, accum
, op0
),
2929 add_target
? add_target
: accum_target
);
2930 val_so_far
= (val_so_far
<< log
) + 1;
2934 accum
= expand_shift (LSHIFT_EXPR
, mode
, accum
,
2935 build_int_cst (NULL_TREE
, log
),
2936 shift_subtarget
, 0);
2937 accum
= force_operand (gen_rtx_MINUS (mode
, accum
, op0
),
2938 add_target
? add_target
: accum_target
);
2939 val_so_far
= (val_so_far
<< log
) - 1;
2942 case alg_add_factor
:
2943 tem
= expand_shift (LSHIFT_EXPR
, mode
, accum
,
2944 build_int_cst (NULL_TREE
, log
),
2946 accum
= force_operand (gen_rtx_PLUS (mode
, accum
, tem
),
2947 add_target
? add_target
: accum_target
);
2948 val_so_far
+= val_so_far
<< log
;
2951 case alg_sub_factor
:
2952 tem
= expand_shift (LSHIFT_EXPR
, mode
, accum
,
2953 build_int_cst (NULL_TREE
, log
),
2955 accum
= force_operand (gen_rtx_MINUS (mode
, tem
, accum
),
2957 ? add_target
: (optimize
? 0 : tem
)));
2958 val_so_far
= (val_so_far
<< log
) - val_so_far
;
2965 /* Write a REG_EQUAL note on the last insn so that we can cse
2966 multiplication sequences. Note that if ACCUM is a SUBREG,
2967 we've set the inner register and must properly indicate
2970 tem
= op0
, nmode
= mode
;
2971 if (GET_CODE (accum
) == SUBREG
)
2973 nmode
= GET_MODE (SUBREG_REG (accum
));
2974 tem
= gen_lowpart (nmode
, op0
);
2977 insn
= get_last_insn ();
2978 set_unique_reg_note (insn
, REG_EQUAL
,
2979 gen_rtx_MULT (nmode
, tem
, GEN_INT (val_so_far
)));
2982 if (variant
== negate_variant
)
2984 val_so_far
= -val_so_far
;
2985 accum
= expand_unop (mode
, neg_optab
, accum
, target
, 0);
2987 else if (variant
== add_variant
)
2989 val_so_far
= val_so_far
+ 1;
2990 accum
= force_operand (gen_rtx_PLUS (mode
, accum
, op0
), target
);
2993 /* Compare only the bits of val and val_so_far that are significant
2994 in the result mode, to avoid sign-/zero-extension confusion. */
2995 val
&= GET_MODE_MASK (mode
);
2996 val_so_far
&= GET_MODE_MASK (mode
);
2997 gcc_assert (val
== val_so_far
);
3002 /* Perform a multiplication and return an rtx for the result.
3003 MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
3004 TARGET is a suggestion for where to store the result (an rtx).
3006 We check specially for a constant integer as OP1.
3007 If you want this check for OP0 as well, then before calling
3008 you should swap the two operands if OP0 would be constant. */
3011 expand_mult (enum machine_mode mode
, rtx op0
, rtx op1
, rtx target
,
3014 enum mult_variant variant
;
3015 struct algorithm algorithm
;
3018 /* Handling const0_rtx here allows us to use zero as a rogue value for
3020 if (op1
== const0_rtx
)
3022 if (op1
== const1_rtx
)
3024 if (op1
== constm1_rtx
)
3025 return expand_unop (mode
,
3026 GET_MODE_CLASS (mode
) == MODE_INT
3027 && !unsignedp
&& flag_trapv
3028 ? negv_optab
: neg_optab
,
3031 /* These are the operations that are potentially turned into a sequence
3032 of shifts and additions. */
3033 if (SCALAR_INT_MODE_P (mode
)
3034 && (unsignedp
|| !flag_trapv
))
3036 HOST_WIDE_INT coeff
= 0;
3038 /* synth_mult does an `unsigned int' multiply. As long as the mode is
3039 less than or equal in size to `unsigned int' this doesn't matter.
3040 If the mode is larger than `unsigned int', then synth_mult works
3041 only if the constant value exactly fits in an `unsigned int' without
3042 any truncation. This means that multiplying by negative values does
3043 not work; results are off by 2^32 on a 32 bit machine. */
3045 if (GET_CODE (op1
) == CONST_INT
)
3047 /* Attempt to handle multiplication of DImode values by negative
3048 coefficients, by performing the multiplication by a positive
3049 multiplier and then inverting the result. */
3050 if (INTVAL (op1
) < 0
3051 && GET_MODE_BITSIZE (mode
) > HOST_BITS_PER_WIDE_INT
)
3053 /* Its safe to use -INTVAL (op1) even for INT_MIN, as the
3054 result is interpreted as an unsigned coefficient. */
3055 max_cost
= rtx_cost (gen_rtx_MULT (mode
, op0
, op1
), SET
)
3058 && choose_mult_variant (mode
, -INTVAL (op1
), &algorithm
,
3059 &variant
, max_cost
))
3061 rtx temp
= expand_mult_const (mode
, op0
, -INTVAL (op1
),
3062 NULL_RTX
, &algorithm
,
3064 return expand_unop (mode
, neg_optab
, temp
, target
, 0);
3067 else coeff
= INTVAL (op1
);
3069 else if (GET_CODE (op1
) == CONST_DOUBLE
)
3071 /* If we are multiplying in DImode, it may still be a win
3072 to try to work with shifts and adds. */
3073 if (CONST_DOUBLE_HIGH (op1
) == 0)
3074 coeff
= CONST_DOUBLE_LOW (op1
);
3075 else if (CONST_DOUBLE_LOW (op1
) == 0
3076 && EXACT_POWER_OF_2_OR_ZERO_P (CONST_DOUBLE_HIGH (op1
)))
3078 int shift
= floor_log2 (CONST_DOUBLE_HIGH (op1
))
3079 + HOST_BITS_PER_WIDE_INT
;
3080 return expand_shift (LSHIFT_EXPR
, mode
, op0
,
3081 build_int_cst (NULL_TREE
, shift
),
3086 /* We used to test optimize here, on the grounds that it's better to
3087 produce a smaller program when -O is not used. But this causes
3088 such a terrible slowdown sometimes that it seems better to always
3092 /* Special case powers of two. */
3093 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff
))
3094 return expand_shift (LSHIFT_EXPR
, mode
, op0
,
3095 build_int_cst (NULL_TREE
, floor_log2 (coeff
)),
3098 max_cost
= rtx_cost (gen_rtx_MULT (mode
, op0
, op1
), SET
);
3099 if (choose_mult_variant (mode
, coeff
, &algorithm
, &variant
,
3101 return expand_mult_const (mode
, op0
, coeff
, target
,
3102 &algorithm
, variant
);
3106 if (GET_CODE (op0
) == CONST_DOUBLE
)
3113 /* Expand x*2.0 as x+x. */
3114 if (GET_CODE (op1
) == CONST_DOUBLE
3115 && GET_MODE_CLASS (mode
) == MODE_FLOAT
)
3118 REAL_VALUE_FROM_CONST_DOUBLE (d
, op1
);
3120 if (REAL_VALUES_EQUAL (d
, dconst2
))
3122 op0
= force_reg (GET_MODE (op0
), op0
);
3123 return expand_binop (mode
, add_optab
, op0
, op0
,
3124 target
, unsignedp
, OPTAB_LIB_WIDEN
);
3128 /* This used to use umul_optab if unsigned, but for non-widening multiply
3129 there is no difference between signed and unsigned. */
3130 op0
= expand_binop (mode
,
3132 && flag_trapv
&& (GET_MODE_CLASS(mode
) == MODE_INT
)
3133 ? smulv_optab
: smul_optab
,
3134 op0
, op1
, target
, unsignedp
, OPTAB_LIB_WIDEN
);
3139 /* Return the smallest n such that 2**n >= X. */
3142 ceil_log2 (unsigned HOST_WIDE_INT x
)
3144 return floor_log2 (x
- 1) + 1;
3147 /* Choose a minimal N + 1 bit approximation to 1/D that can be used to
3148 replace division by D, and put the least significant N bits of the result
3149 in *MULTIPLIER_PTR and return the most significant bit.
3151 The width of operations is N (should be <= HOST_BITS_PER_WIDE_INT), the
3152 needed precision is in PRECISION (should be <= N).
3154 PRECISION should be as small as possible so this function can choose
3155 multiplier more freely.
3157 The rounded-up logarithm of D is placed in *lgup_ptr. A shift count that
3158 is to be used for a final right shift is placed in *POST_SHIFT_PTR.
3160 Using this function, x/D will be equal to (x * m) >> (*POST_SHIFT_PTR),
3161 where m is the full HOST_BITS_PER_WIDE_INT + 1 bit multiplier. */
3164 unsigned HOST_WIDE_INT
3165 choose_multiplier (unsigned HOST_WIDE_INT d
, int n
, int precision
,
3166 rtx
*multiplier_ptr
, int *post_shift_ptr
, int *lgup_ptr
)
3168 HOST_WIDE_INT mhigh_hi
, mlow_hi
;
3169 unsigned HOST_WIDE_INT mhigh_lo
, mlow_lo
;
3170 int lgup
, post_shift
;
3172 unsigned HOST_WIDE_INT nl
, dummy1
;
3173 HOST_WIDE_INT nh
, dummy2
;
3175 /* lgup = ceil(log2(divisor)); */
3176 lgup
= ceil_log2 (d
);
3178 gcc_assert (lgup
<= n
);
3181 pow2
= n
+ lgup
- precision
;
3183 /* We could handle this with some effort, but this case is much
3184 better handled directly with a scc insn, so rely on caller using
3186 gcc_assert (pow
!= 2 * HOST_BITS_PER_WIDE_INT
);
3188 /* mlow = 2^(N + lgup)/d */
3189 if (pow
>= HOST_BITS_PER_WIDE_INT
)
3191 nh
= (HOST_WIDE_INT
) 1 << (pow
- HOST_BITS_PER_WIDE_INT
);
3197 nl
= (unsigned HOST_WIDE_INT
) 1 << pow
;
3199 div_and_round_double (TRUNC_DIV_EXPR
, 1, nl
, nh
, d
, (HOST_WIDE_INT
) 0,
3200 &mlow_lo
, &mlow_hi
, &dummy1
, &dummy2
);
3202 /* mhigh = (2^(N + lgup) + 2^N + lgup - precision)/d */
3203 if (pow2
>= HOST_BITS_PER_WIDE_INT
)
3204 nh
|= (HOST_WIDE_INT
) 1 << (pow2
- HOST_BITS_PER_WIDE_INT
);
3206 nl
|= (unsigned HOST_WIDE_INT
) 1 << pow2
;
3207 div_and_round_double (TRUNC_DIV_EXPR
, 1, nl
, nh
, d
, (HOST_WIDE_INT
) 0,
3208 &mhigh_lo
, &mhigh_hi
, &dummy1
, &dummy2
);
3210 gcc_assert (!mhigh_hi
|| nh
- d
< d
);
3211 gcc_assert (mhigh_hi
<= 1 && mlow_hi
<= 1);
3212 /* Assert that mlow < mhigh. */
3213 gcc_assert (mlow_hi
< mhigh_hi
3214 || (mlow_hi
== mhigh_hi
&& mlow_lo
< mhigh_lo
));
3216 /* If precision == N, then mlow, mhigh exceed 2^N
3217 (but they do not exceed 2^(N+1)). */
3219 /* Reduce to lowest terms. */
3220 for (post_shift
= lgup
; post_shift
> 0; post_shift
--)
3222 unsigned HOST_WIDE_INT ml_lo
= (mlow_hi
<< (HOST_BITS_PER_WIDE_INT
- 1)) | (mlow_lo
>> 1);
3223 unsigned HOST_WIDE_INT mh_lo
= (mhigh_hi
<< (HOST_BITS_PER_WIDE_INT
- 1)) | (mhigh_lo
>> 1);
3233 *post_shift_ptr
= post_shift
;
3235 if (n
< HOST_BITS_PER_WIDE_INT
)
3237 unsigned HOST_WIDE_INT mask
= ((unsigned HOST_WIDE_INT
) 1 << n
) - 1;
3238 *multiplier_ptr
= GEN_INT (mhigh_lo
& mask
);
3239 return mhigh_lo
>= mask
;
3243 *multiplier_ptr
= GEN_INT (mhigh_lo
);
3248 /* Compute the inverse of X mod 2**n, i.e., find Y such that X * Y is
3249 congruent to 1 (mod 2**N). */
3251 static unsigned HOST_WIDE_INT
3252 invert_mod2n (unsigned HOST_WIDE_INT x
, int n
)
3254 /* Solve x*y == 1 (mod 2^n), where x is odd. Return y. */
3256 /* The algorithm notes that the choice y = x satisfies
3257 x*y == 1 mod 2^3, since x is assumed odd.
3258 Each iteration doubles the number of bits of significance in y. */
3260 unsigned HOST_WIDE_INT mask
;
3261 unsigned HOST_WIDE_INT y
= x
;
3264 mask
= (n
== HOST_BITS_PER_WIDE_INT
3265 ? ~(unsigned HOST_WIDE_INT
) 0
3266 : ((unsigned HOST_WIDE_INT
) 1 << n
) - 1);
3270 y
= y
* (2 - x
*y
) & mask
; /* Modulo 2^N */
3276 /* Emit code to adjust ADJ_OPERAND after multiplication of wrong signedness
3277 flavor of OP0 and OP1. ADJ_OPERAND is already the high half of the
3278 product OP0 x OP1. If UNSIGNEDP is nonzero, adjust the signed product
3279 to become unsigned, if UNSIGNEDP is zero, adjust the unsigned product to
3282 The result is put in TARGET if that is convenient.
3284 MODE is the mode of operation. */
3287 expand_mult_highpart_adjust (enum machine_mode mode
, rtx adj_operand
, rtx op0
,
3288 rtx op1
, rtx target
, int unsignedp
)
3291 enum rtx_code adj_code
= unsignedp
? PLUS
: MINUS
;
3293 tem
= expand_shift (RSHIFT_EXPR
, mode
, op0
,
3294 build_int_cst (NULL_TREE
, GET_MODE_BITSIZE (mode
) - 1),
3296 tem
= expand_and (mode
, tem
, op1
, NULL_RTX
);
3298 = force_operand (gen_rtx_fmt_ee (adj_code
, mode
, adj_operand
, tem
),
3301 tem
= expand_shift (RSHIFT_EXPR
, mode
, op1
,
3302 build_int_cst (NULL_TREE
, GET_MODE_BITSIZE (mode
) - 1),
3304 tem
= expand_and (mode
, tem
, op0
, NULL_RTX
);
3305 target
= force_operand (gen_rtx_fmt_ee (adj_code
, mode
, adj_operand
, tem
),
3311 /* Subroutine of expand_mult_highpart. Return the MODE high part of OP. */
3314 extract_high_half (enum machine_mode mode
, rtx op
)
3316 enum machine_mode wider_mode
;
3318 if (mode
== word_mode
)
3319 return gen_highpart (mode
, op
);
3321 wider_mode
= GET_MODE_WIDER_MODE (mode
);
3322 op
= expand_shift (RSHIFT_EXPR
, wider_mode
, op
,
3323 build_int_cst (NULL_TREE
, GET_MODE_BITSIZE (mode
)), 0, 1);
3324 return convert_modes (mode
, wider_mode
, op
, 0);
3327 /* Like expand_mult_highpart, but only consider using a multiplication
3328 optab. OP1 is an rtx for the constant operand. */
3331 expand_mult_highpart_optab (enum machine_mode mode
, rtx op0
, rtx op1
,
3332 rtx target
, int unsignedp
, int max_cost
)
3334 rtx narrow_op1
= gen_int_mode (INTVAL (op1
), mode
);
3335 enum machine_mode wider_mode
;
3340 wider_mode
= GET_MODE_WIDER_MODE (mode
);
3341 size
= GET_MODE_BITSIZE (mode
);
3343 /* Firstly, try using a multiplication insn that only generates the needed
3344 high part of the product, and in the sign flavor of unsignedp. */
3345 if (mul_highpart_cost
[mode
] < max_cost
)
3347 moptab
= unsignedp
? umul_highpart_optab
: smul_highpart_optab
;
3348 tem
= expand_binop (mode
, moptab
, op0
, narrow_op1
, target
,
3349 unsignedp
, OPTAB_DIRECT
);
3354 /* Secondly, same as above, but use sign flavor opposite of unsignedp.
3355 Need to adjust the result after the multiplication. */
3356 if (size
- 1 < BITS_PER_WORD
3357 && (mul_highpart_cost
[mode
] + 2 * shift_cost
[mode
][size
-1]
3358 + 4 * add_cost
[mode
] < max_cost
))
3360 moptab
= unsignedp
? smul_highpart_optab
: umul_highpart_optab
;
3361 tem
= expand_binop (mode
, moptab
, op0
, narrow_op1
, target
,
3362 unsignedp
, OPTAB_DIRECT
);
3364 /* We used the wrong signedness. Adjust the result. */
3365 return expand_mult_highpart_adjust (mode
, tem
, op0
, narrow_op1
,
3369 /* Try widening multiplication. */
3370 moptab
= unsignedp
? umul_widen_optab
: smul_widen_optab
;
3371 if (moptab
->handlers
[wider_mode
].insn_code
!= CODE_FOR_nothing
3372 && mul_widen_cost
[wider_mode
] < max_cost
)
3374 tem
= expand_binop (wider_mode
, moptab
, op0
, narrow_op1
, 0,
3375 unsignedp
, OPTAB_WIDEN
);
3377 return extract_high_half (mode
, tem
);
3380 /* Try widening the mode and perform a non-widening multiplication. */
3381 if (smul_optab
->handlers
[wider_mode
].insn_code
!= CODE_FOR_nothing
3382 && size
- 1 < BITS_PER_WORD
3383 && mul_cost
[wider_mode
] + shift_cost
[mode
][size
-1] < max_cost
)
3385 rtx insns
, wop0
, wop1
;
3387 /* We need to widen the operands, for example to ensure the
3388 constant multiplier is correctly sign or zero extended.
3389 Use a sequence to clean-up any instructions emitted by
3390 the conversions if things don't work out. */
3392 wop0
= convert_modes (wider_mode
, mode
, op0
, unsignedp
);
3393 wop1
= convert_modes (wider_mode
, mode
, op1
, unsignedp
);
3394 tem
= expand_binop (wider_mode
, smul_optab
, wop0
, wop1
, 0,
3395 unsignedp
, OPTAB_WIDEN
);
3396 insns
= get_insns ();
3402 return extract_high_half (mode
, tem
);
3406 /* Try widening multiplication of opposite signedness, and adjust. */
3407 moptab
= unsignedp
? smul_widen_optab
: umul_widen_optab
;
3408 if (moptab
->handlers
[wider_mode
].insn_code
!= CODE_FOR_nothing
3409 && size
- 1 < BITS_PER_WORD
3410 && (mul_widen_cost
[wider_mode
] + 2 * shift_cost
[mode
][size
-1]
3411 + 4 * add_cost
[mode
] < max_cost
))
3413 tem
= expand_binop (wider_mode
, moptab
, op0
, narrow_op1
,
3414 NULL_RTX
, ! unsignedp
, OPTAB_WIDEN
);
3417 tem
= extract_high_half (mode
, tem
);
3418 /* We used the wrong signedness. Adjust the result. */
3419 return expand_mult_highpart_adjust (mode
, tem
, op0
, narrow_op1
,
3427 /* Emit code to multiply OP0 and OP1 (where OP1 is an integer constant),
3428 putting the high half of the result in TARGET if that is convenient,
3429 and return where the result is. If the operation can not be performed,
3432 MODE is the mode of operation and result.
3434 UNSIGNEDP nonzero means unsigned multiply.
3436 MAX_COST is the total allowed cost for the expanded RTL. */
3439 expand_mult_highpart (enum machine_mode mode
, rtx op0
, rtx op1
,
3440 rtx target
, int unsignedp
, int max_cost
)
3442 enum machine_mode wider_mode
= GET_MODE_WIDER_MODE (mode
);
3443 unsigned HOST_WIDE_INT cnst1
;
3445 bool sign_adjust
= false;
3446 enum mult_variant variant
;
3447 struct algorithm alg
;
3450 /* We can't support modes wider than HOST_BITS_PER_INT. */
3451 gcc_assert (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
);
3453 cnst1
= INTVAL (op1
) & GET_MODE_MASK (mode
);
3455 /* We can't optimize modes wider than BITS_PER_WORD.
3456 ??? We might be able to perform double-word arithmetic if
3457 mode == word_mode, however all the cost calculations in
3458 synth_mult etc. assume single-word operations. */
3459 if (GET_MODE_BITSIZE (wider_mode
) > BITS_PER_WORD
)
3460 return expand_mult_highpart_optab (mode
, op0
, op1
, target
,
3461 unsignedp
, max_cost
);
3463 extra_cost
= shift_cost
[mode
][GET_MODE_BITSIZE (mode
) - 1];
3465 /* Check whether we try to multiply by a negative constant. */
3466 if (!unsignedp
&& ((cnst1
>> (GET_MODE_BITSIZE (mode
) - 1)) & 1))
3469 extra_cost
+= add_cost
[mode
];
3472 /* See whether shift/add multiplication is cheap enough. */
3473 if (choose_mult_variant (wider_mode
, cnst1
, &alg
, &variant
,
3474 max_cost
- extra_cost
))
3476 /* See whether the specialized multiplication optabs are
3477 cheaper than the shift/add version. */
3478 tem
= expand_mult_highpart_optab (mode
, op0
, op1
, target
, unsignedp
,
3479 alg
.cost
.cost
+ extra_cost
);
3483 tem
= convert_to_mode (wider_mode
, op0
, unsignedp
);
3484 tem
= expand_mult_const (wider_mode
, tem
, cnst1
, 0, &alg
, variant
);
3485 tem
= extract_high_half (mode
, tem
);
3487 /* Adjust result for signedness. */
3489 tem
= force_operand (gen_rtx_MINUS (mode
, tem
, op0
), tem
);
3493 return expand_mult_highpart_optab (mode
, op0
, op1
, target
,
3494 unsignedp
, max_cost
);
3498 /* Expand signed modulus of OP0 by a power of two D in mode MODE. */
3501 expand_smod_pow2 (enum machine_mode mode
, rtx op0
, HOST_WIDE_INT d
)
3503 unsigned HOST_WIDE_INT masklow
, maskhigh
;
3504 rtx result
, temp
, shift
, label
;
3507 logd
= floor_log2 (d
);
3508 result
= gen_reg_rtx (mode
);
3510 /* Avoid conditional branches when they're expensive. */
3511 if (BRANCH_COST
>= 2
3514 rtx signmask
= emit_store_flag (result
, LT
, op0
, const0_rtx
,
3518 signmask
= force_reg (mode
, signmask
);
3519 masklow
= ((HOST_WIDE_INT
) 1 << logd
) - 1;
3520 shift
= GEN_INT (GET_MODE_BITSIZE (mode
) - logd
);
3522 /* Use the rtx_cost of a LSHIFTRT instruction to determine
3523 which instruction sequence to use. If logical right shifts
3524 are expensive the use 2 XORs, 2 SUBs and an AND, otherwise
3525 use a LSHIFTRT, 1 ADD, 1 SUB and an AND. */
3527 temp
= gen_rtx_LSHIFTRT (mode
, result
, shift
);
3528 if (lshr_optab
->handlers
[mode
].insn_code
== CODE_FOR_nothing
3529 || rtx_cost (temp
, SET
) > COSTS_N_INSNS (2))
3531 temp
= expand_binop (mode
, xor_optab
, op0
, signmask
,
3532 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3533 temp
= expand_binop (mode
, sub_optab
, temp
, signmask
,
3534 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3535 temp
= expand_binop (mode
, and_optab
, temp
, GEN_INT (masklow
),
3536 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3537 temp
= expand_binop (mode
, xor_optab
, temp
, signmask
,
3538 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3539 temp
= expand_binop (mode
, sub_optab
, temp
, signmask
,
3540 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3544 signmask
= expand_binop (mode
, lshr_optab
, signmask
, shift
,
3545 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3546 signmask
= force_reg (mode
, signmask
);
3548 temp
= expand_binop (mode
, add_optab
, op0
, signmask
,
3549 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3550 temp
= expand_binop (mode
, and_optab
, temp
, GEN_INT (masklow
),
3551 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3552 temp
= expand_binop (mode
, sub_optab
, temp
, signmask
,
3553 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3559 /* Mask contains the mode's signbit and the significant bits of the
3560 modulus. By including the signbit in the operation, many targets
3561 can avoid an explicit compare operation in the following comparison
3564 masklow
= ((HOST_WIDE_INT
) 1 << logd
) - 1;
3565 if (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
3567 masklow
|= (HOST_WIDE_INT
) -1 << (GET_MODE_BITSIZE (mode
) - 1);
3571 maskhigh
= (HOST_WIDE_INT
) -1
3572 << (GET_MODE_BITSIZE (mode
) - HOST_BITS_PER_WIDE_INT
- 1);
3574 temp
= expand_binop (mode
, and_optab
, op0
,
3575 immed_double_const (masklow
, maskhigh
, mode
),
3576 result
, 1, OPTAB_LIB_WIDEN
);
3578 emit_move_insn (result
, temp
);
3580 label
= gen_label_rtx ();
3581 do_cmp_and_jump (result
, const0_rtx
, GE
, mode
, label
);
3583 temp
= expand_binop (mode
, sub_optab
, result
, const1_rtx
, result
,
3584 0, OPTAB_LIB_WIDEN
);
3585 masklow
= (HOST_WIDE_INT
) -1 << logd
;
3587 temp
= expand_binop (mode
, ior_optab
, temp
,
3588 immed_double_const (masklow
, maskhigh
, mode
),
3589 result
, 1, OPTAB_LIB_WIDEN
);
3590 temp
= expand_binop (mode
, add_optab
, temp
, const1_rtx
, result
,
3591 0, OPTAB_LIB_WIDEN
);
3593 emit_move_insn (result
, temp
);
3598 /* Expand signed division of OP0 by a power of two D in mode MODE.
3599 This routine is only called for positive values of D. */
3602 expand_sdiv_pow2 (enum machine_mode mode
, rtx op0
, HOST_WIDE_INT d
)
3608 logd
= floor_log2 (d
);
3609 shift
= build_int_cst (NULL_TREE
, logd
);
3611 if (d
== 2 && BRANCH_COST
>= 1)
3613 temp
= gen_reg_rtx (mode
);
3614 temp
= emit_store_flag (temp
, LT
, op0
, const0_rtx
, mode
, 0, 1);
3615 temp
= expand_binop (mode
, add_optab
, temp
, op0
, NULL_RTX
,
3616 0, OPTAB_LIB_WIDEN
);
3617 return expand_shift (RSHIFT_EXPR
, mode
, temp
, shift
, NULL_RTX
, 0);
3620 #ifdef HAVE_conditional_move
3621 if (BRANCH_COST
>= 2)
3625 /* ??? emit_conditional_move forces a stack adjustment via
3626 compare_from_rtx so, if the sequence is discarded, it will
3627 be lost. Do it now instead. */
3628 do_pending_stack_adjust ();
3631 temp2
= copy_to_mode_reg (mode
, op0
);
3632 temp
= expand_binop (mode
, add_optab
, temp2
, GEN_INT (d
-1),
3633 NULL_RTX
, 0, OPTAB_LIB_WIDEN
);
3634 temp
= force_reg (mode
, temp
);
3636 /* Construct "temp2 = (temp2 < 0) ? temp : temp2". */
3637 temp2
= emit_conditional_move (temp2
, LT
, temp2
, const0_rtx
,
3638 mode
, temp
, temp2
, mode
, 0);
3641 rtx seq
= get_insns ();
3644 return expand_shift (RSHIFT_EXPR
, mode
, temp2
, shift
, NULL_RTX
, 0);
3650 if (BRANCH_COST
>= 2)
3652 int ushift
= GET_MODE_BITSIZE (mode
) - logd
;
3654 temp
= gen_reg_rtx (mode
);
3655 temp
= emit_store_flag (temp
, LT
, op0
, const0_rtx
, mode
, 0, -1);
3656 if (shift_cost
[mode
][ushift
] > COSTS_N_INSNS (1))
3657 temp
= expand_binop (mode
, and_optab
, temp
, GEN_INT (d
- 1),
3658 NULL_RTX
, 0, OPTAB_LIB_WIDEN
);
3660 temp
= expand_shift (RSHIFT_EXPR
, mode
, temp
,
3661 build_int_cst (NULL_TREE
, ushift
),
3663 temp
= expand_binop (mode
, add_optab
, temp
, op0
, NULL_RTX
,
3664 0, OPTAB_LIB_WIDEN
);
3665 return expand_shift (RSHIFT_EXPR
, mode
, temp
, shift
, NULL_RTX
, 0);
3668 label
= gen_label_rtx ();
3669 temp
= copy_to_mode_reg (mode
, op0
);
3670 do_cmp_and_jump (temp
, const0_rtx
, GE
, mode
, label
);
3671 expand_inc (temp
, GEN_INT (d
- 1));
3673 return expand_shift (RSHIFT_EXPR
, mode
, temp
, shift
, NULL_RTX
, 0);
3676 /* Emit the code to divide OP0 by OP1, putting the result in TARGET
3677 if that is convenient, and returning where the result is.
3678 You may request either the quotient or the remainder as the result;
3679 specify REM_FLAG nonzero to get the remainder.
3681 CODE is the expression code for which kind of division this is;
3682 it controls how rounding is done. MODE is the machine mode to use.
3683 UNSIGNEDP nonzero means do unsigned division. */
3685 /* ??? For CEIL_MOD_EXPR, can compute incorrect remainder with ANDI
3686 and then correct it by or'ing in missing high bits
3687 if result of ANDI is nonzero.
3688 For ROUND_MOD_EXPR, can use ANDI and then sign-extend the result.
3689 This could optimize to a bfexts instruction.
3690 But C doesn't use these operations, so their optimizations are
3692 /* ??? For modulo, we don't actually need the highpart of the first product,
3693 the low part will do nicely. And for small divisors, the second multiply
3694 can also be a low-part only multiply or even be completely left out.
3695 E.g. to calculate the remainder of a division by 3 with a 32 bit
3696 multiply, multiply with 0x55555556 and extract the upper two bits;
3697 the result is exact for inputs up to 0x1fffffff.
3698 The input range can be reduced by using cross-sum rules.
3699 For odd divisors >= 3, the following table gives right shift counts
3700 so that if a number is shifted by an integer multiple of the given
3701 amount, the remainder stays the same:
3702 2, 4, 3, 6, 10, 12, 4, 8, 18, 6, 11, 20, 18, 0, 5, 10, 12, 0, 12, 20,
3703 14, 12, 23, 21, 8, 0, 20, 18, 0, 0, 6, 12, 0, 22, 0, 18, 20, 30, 0, 0,
3704 0, 8, 0, 11, 12, 10, 36, 0, 30, 0, 0, 12, 0, 0, 0, 0, 44, 12, 24, 0,
3705 20, 0, 7, 14, 0, 18, 36, 0, 0, 46, 60, 0, 42, 0, 15, 24, 20, 0, 0, 33,
3706 0, 20, 0, 0, 18, 0, 60, 0, 0, 0, 0, 0, 40, 18, 0, 0, 12
3708 Cross-sum rules for even numbers can be derived by leaving as many bits
3709 to the right alone as the divisor has zeros to the right.
3710 E.g. if x is an unsigned 32 bit number:
3711 (x mod 12) == (((x & 1023) + ((x >> 8) & ~3)) * 0x15555558 >> 2 * 3) >> 28
3715 expand_divmod (int rem_flag
, enum tree_code code
, enum machine_mode mode
,
3716 rtx op0
, rtx op1
, rtx target
, int unsignedp
)
3718 enum machine_mode compute_mode
;
3720 rtx quotient
= 0, remainder
= 0;
3724 optab optab1
, optab2
;
3725 int op1_is_constant
, op1_is_pow2
= 0;
3726 int max_cost
, extra_cost
;
3727 static HOST_WIDE_INT last_div_const
= 0;
3728 static HOST_WIDE_INT ext_op1
;
3730 op1_is_constant
= GET_CODE (op1
) == CONST_INT
;
3731 if (op1_is_constant
)
3733 ext_op1
= INTVAL (op1
);
3735 ext_op1
&= GET_MODE_MASK (mode
);
3736 op1_is_pow2
= ((EXACT_POWER_OF_2_OR_ZERO_P (ext_op1
)
3737 || (! unsignedp
&& EXACT_POWER_OF_2_OR_ZERO_P (-ext_op1
))));
3741 This is the structure of expand_divmod:
3743 First comes code to fix up the operands so we can perform the operations
3744 correctly and efficiently.
3746 Second comes a switch statement with code specific for each rounding mode.
3747 For some special operands this code emits all RTL for the desired
3748 operation, for other cases, it generates only a quotient and stores it in
3749 QUOTIENT. The case for trunc division/remainder might leave quotient = 0,
3750 to indicate that it has not done anything.
3752 Last comes code that finishes the operation. If QUOTIENT is set and
3753 REM_FLAG is set, the remainder is computed as OP0 - QUOTIENT * OP1. If
3754 QUOTIENT is not set, it is computed using trunc rounding.
3756 We try to generate special code for division and remainder when OP1 is a
3757 constant. If |OP1| = 2**n we can use shifts and some other fast
3758 operations. For other values of OP1, we compute a carefully selected
3759 fixed-point approximation m = 1/OP1, and generate code that multiplies OP0
3762 In all cases but EXACT_DIV_EXPR, this multiplication requires the upper
3763 half of the product. Different strategies for generating the product are
3764 implemented in expand_mult_highpart.
3766 If what we actually want is the remainder, we generate that by another
3767 by-constant multiplication and a subtraction. */
3769 /* We shouldn't be called with OP1 == const1_rtx, but some of the
3770 code below will malfunction if we are, so check here and handle
3771 the special case if so. */
3772 if (op1
== const1_rtx
)
3773 return rem_flag
? const0_rtx
: op0
;
3775 /* When dividing by -1, we could get an overflow.
3776 negv_optab can handle overflows. */
3777 if (! unsignedp
&& op1
== constm1_rtx
)
3781 return expand_unop (mode
, flag_trapv
&& GET_MODE_CLASS(mode
) == MODE_INT
3782 ? negv_optab
: neg_optab
, op0
, target
, 0);
3786 /* Don't use the function value register as a target
3787 since we have to read it as well as write it,
3788 and function-inlining gets confused by this. */
3789 && ((REG_P (target
) && REG_FUNCTION_VALUE_P (target
))
3790 /* Don't clobber an operand while doing a multi-step calculation. */
3791 || ((rem_flag
|| op1_is_constant
)
3792 && (reg_mentioned_p (target
, op0
)
3793 || (MEM_P (op0
) && MEM_P (target
))))
3794 || reg_mentioned_p (target
, op1
)
3795 || (MEM_P (op1
) && MEM_P (target
))))
3798 /* Get the mode in which to perform this computation. Normally it will
3799 be MODE, but sometimes we can't do the desired operation in MODE.
3800 If so, pick a wider mode in which we can do the operation. Convert
3801 to that mode at the start to avoid repeated conversions.
3803 First see what operations we need. These depend on the expression
3804 we are evaluating. (We assume that divxx3 insns exist under the
3805 same conditions that modxx3 insns and that these insns don't normally
3806 fail. If these assumptions are not correct, we may generate less
3807 efficient code in some cases.)
3809 Then see if we find a mode in which we can open-code that operation
3810 (either a division, modulus, or shift). Finally, check for the smallest
3811 mode for which we can do the operation with a library call. */
3813 /* We might want to refine this now that we have division-by-constant
3814 optimization. Since expand_mult_highpart tries so many variants, it is
3815 not straightforward to generalize this. Maybe we should make an array
3816 of possible modes in init_expmed? Save this for GCC 2.7. */
3818 optab1
= ((op1_is_pow2
&& op1
!= const0_rtx
)
3819 ? (unsignedp
? lshr_optab
: ashr_optab
)
3820 : (unsignedp
? udiv_optab
: sdiv_optab
));
3821 optab2
= ((op1_is_pow2
&& op1
!= const0_rtx
)
3823 : (unsignedp
? udivmod_optab
: sdivmod_optab
));
3825 for (compute_mode
= mode
; compute_mode
!= VOIDmode
;
3826 compute_mode
= GET_MODE_WIDER_MODE (compute_mode
))
3827 if (optab1
->handlers
[compute_mode
].insn_code
!= CODE_FOR_nothing
3828 || optab2
->handlers
[compute_mode
].insn_code
!= CODE_FOR_nothing
)
3831 if (compute_mode
== VOIDmode
)
3832 for (compute_mode
= mode
; compute_mode
!= VOIDmode
;
3833 compute_mode
= GET_MODE_WIDER_MODE (compute_mode
))
3834 if (optab1
->handlers
[compute_mode
].libfunc
3835 || optab2
->handlers
[compute_mode
].libfunc
)
3838 /* If we still couldn't find a mode, use MODE, but expand_binop will
3840 if (compute_mode
== VOIDmode
)
3841 compute_mode
= mode
;
3843 if (target
&& GET_MODE (target
) == compute_mode
)
3846 tquotient
= gen_reg_rtx (compute_mode
);
3848 size
= GET_MODE_BITSIZE (compute_mode
);
3850 /* It should be possible to restrict the precision to GET_MODE_BITSIZE
3851 (mode), and thereby get better code when OP1 is a constant. Do that
3852 later. It will require going over all usages of SIZE below. */
3853 size
= GET_MODE_BITSIZE (mode
);
3856 /* Only deduct something for a REM if the last divide done was
3857 for a different constant. Then set the constant of the last
3859 max_cost
= div_cost
[compute_mode
]
3860 - (rem_flag
&& ! (last_div_const
!= 0 && op1_is_constant
3861 && INTVAL (op1
) == last_div_const
)
3862 ? mul_cost
[compute_mode
] + add_cost
[compute_mode
]
3865 last_div_const
= ! rem_flag
&& op1_is_constant
? INTVAL (op1
) : 0;
3867 /* Now convert to the best mode to use. */
3868 if (compute_mode
!= mode
)
3870 op0
= convert_modes (compute_mode
, mode
, op0
, unsignedp
);
3871 op1
= convert_modes (compute_mode
, mode
, op1
, unsignedp
);
3873 /* convert_modes may have placed op1 into a register, so we
3874 must recompute the following. */
3875 op1_is_constant
= GET_CODE (op1
) == CONST_INT
;
3876 op1_is_pow2
= (op1_is_constant
3877 && ((EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1
))
3879 && EXACT_POWER_OF_2_OR_ZERO_P (-INTVAL (op1
)))))) ;
3882 /* If one of the operands is a volatile MEM, copy it into a register. */
3884 if (MEM_P (op0
) && MEM_VOLATILE_P (op0
))
3885 op0
= force_reg (compute_mode
, op0
);
3886 if (MEM_P (op1
) && MEM_VOLATILE_P (op1
))
3887 op1
= force_reg (compute_mode
, op1
);
3889 /* If we need the remainder or if OP1 is constant, we need to
3890 put OP0 in a register in case it has any queued subexpressions. */
3891 if (rem_flag
|| op1_is_constant
)
3892 op0
= force_reg (compute_mode
, op0
);
3894 last
= get_last_insn ();
3896 /* Promote floor rounding to trunc rounding for unsigned operations. */
3899 if (code
== FLOOR_DIV_EXPR
)
3900 code
= TRUNC_DIV_EXPR
;
3901 if (code
== FLOOR_MOD_EXPR
)
3902 code
= TRUNC_MOD_EXPR
;
3903 if (code
== EXACT_DIV_EXPR
&& op1_is_pow2
)
3904 code
= TRUNC_DIV_EXPR
;
3907 if (op1
!= const0_rtx
)
3910 case TRUNC_MOD_EXPR
:
3911 case TRUNC_DIV_EXPR
:
3912 if (op1_is_constant
)
3916 unsigned HOST_WIDE_INT mh
;
3917 int pre_shift
, post_shift
;
3920 unsigned HOST_WIDE_INT d
= (INTVAL (op1
)
3921 & GET_MODE_MASK (compute_mode
));
3923 if (EXACT_POWER_OF_2_OR_ZERO_P (d
))
3925 pre_shift
= floor_log2 (d
);
3929 = expand_binop (compute_mode
, and_optab
, op0
,
3930 GEN_INT (((HOST_WIDE_INT
) 1 << pre_shift
) - 1),
3934 return gen_lowpart (mode
, remainder
);
3936 quotient
= expand_shift (RSHIFT_EXPR
, compute_mode
, op0
,
3937 build_int_cst (NULL_TREE
,
3941 else if (size
<= HOST_BITS_PER_WIDE_INT
)
3943 if (d
>= ((unsigned HOST_WIDE_INT
) 1 << (size
- 1)))
3945 /* Most significant bit of divisor is set; emit an scc
3947 quotient
= emit_store_flag (tquotient
, GEU
, op0
, op1
,
3948 compute_mode
, 1, 1);
3954 /* Find a suitable multiplier and right shift count
3955 instead of multiplying with D. */
3957 mh
= choose_multiplier (d
, size
, size
,
3958 &ml
, &post_shift
, &dummy
);
3960 /* If the suggested multiplier is more than SIZE bits,
3961 we can do better for even divisors, using an
3962 initial right shift. */
3963 if (mh
!= 0 && (d
& 1) == 0)
3965 pre_shift
= floor_log2 (d
& -d
);
3966 mh
= choose_multiplier (d
>> pre_shift
, size
,
3968 &ml
, &post_shift
, &dummy
);
3978 if (post_shift
- 1 >= BITS_PER_WORD
)
3982 = (shift_cost
[compute_mode
][post_shift
- 1]
3983 + shift_cost
[compute_mode
][1]
3984 + 2 * add_cost
[compute_mode
]);
3985 t1
= expand_mult_highpart (compute_mode
, op0
, ml
,
3987 max_cost
- extra_cost
);
3990 t2
= force_operand (gen_rtx_MINUS (compute_mode
,
3994 (RSHIFT_EXPR
, compute_mode
, t2
,
3995 build_int_cst (NULL_TREE
, 1),
3997 t4
= force_operand (gen_rtx_PLUS (compute_mode
,
4000 quotient
= expand_shift
4001 (RSHIFT_EXPR
, compute_mode
, t4
,
4002 build_int_cst (NULL_TREE
, post_shift
- 1),
4009 if (pre_shift
>= BITS_PER_WORD
4010 || post_shift
>= BITS_PER_WORD
)
4014 (RSHIFT_EXPR
, compute_mode
, op0
,
4015 build_int_cst (NULL_TREE
, pre_shift
),
4018 = (shift_cost
[compute_mode
][pre_shift
]
4019 + shift_cost
[compute_mode
][post_shift
]);
4020 t2
= expand_mult_highpart (compute_mode
, t1
, ml
,
4022 max_cost
- extra_cost
);
4025 quotient
= expand_shift
4026 (RSHIFT_EXPR
, compute_mode
, t2
,
4027 build_int_cst (NULL_TREE
, post_shift
),
4032 else /* Too wide mode to use tricky code */
4035 insn
= get_last_insn ();
4037 && (set
= single_set (insn
)) != 0
4038 && SET_DEST (set
) == quotient
)
4039 set_unique_reg_note (insn
,
4041 gen_rtx_UDIV (compute_mode
, op0
, op1
));
4043 else /* TRUNC_DIV, signed */
4045 unsigned HOST_WIDE_INT ml
;
4046 int lgup
, post_shift
;
4048 HOST_WIDE_INT d
= INTVAL (op1
);
4049 unsigned HOST_WIDE_INT abs_d
= d
>= 0 ? d
: -d
;
4051 /* n rem d = n rem -d */
4052 if (rem_flag
&& d
< 0)
4055 op1
= gen_int_mode (abs_d
, compute_mode
);
4061 quotient
= expand_unop (compute_mode
, neg_optab
, op0
,
4063 else if (abs_d
== (unsigned HOST_WIDE_INT
) 1 << (size
- 1))
4065 /* This case is not handled correctly below. */
4066 quotient
= emit_store_flag (tquotient
, EQ
, op0
, op1
,
4067 compute_mode
, 1, 1);
4071 else if (EXACT_POWER_OF_2_OR_ZERO_P (d
)
4072 && (rem_flag
? smod_pow2_cheap
[compute_mode
]
4073 : sdiv_pow2_cheap
[compute_mode
])
4074 /* We assume that cheap metric is true if the
4075 optab has an expander for this mode. */
4076 && (((rem_flag
? smod_optab
: sdiv_optab
)
4077 ->handlers
[compute_mode
].insn_code
4078 != CODE_FOR_nothing
)
4079 || (sdivmod_optab
->handlers
[compute_mode
]
4080 .insn_code
!= CODE_FOR_nothing
)))
4082 else if (EXACT_POWER_OF_2_OR_ZERO_P (abs_d
))
4086 remainder
= expand_smod_pow2 (compute_mode
, op0
, d
);
4088 return gen_lowpart (mode
, remainder
);
4091 if (sdiv_pow2_cheap
[compute_mode
]
4092 && ((sdiv_optab
->handlers
[compute_mode
].insn_code
4093 != CODE_FOR_nothing
)
4094 || (sdivmod_optab
->handlers
[compute_mode
].insn_code
4095 != CODE_FOR_nothing
)))
4096 quotient
= expand_divmod (0, TRUNC_DIV_EXPR
,
4098 gen_int_mode (abs_d
,
4102 quotient
= expand_sdiv_pow2 (compute_mode
, op0
, abs_d
);
4104 /* We have computed OP0 / abs(OP1). If OP1 is negative,
4105 negate the quotient. */
4108 insn
= get_last_insn ();
4110 && (set
= single_set (insn
)) != 0
4111 && SET_DEST (set
) == quotient
4112 && abs_d
< ((unsigned HOST_WIDE_INT
) 1
4113 << (HOST_BITS_PER_WIDE_INT
- 1)))
4114 set_unique_reg_note (insn
,
4116 gen_rtx_DIV (compute_mode
,
4123 quotient
= expand_unop (compute_mode
, neg_optab
,
4124 quotient
, quotient
, 0);
4127 else if (size
<= HOST_BITS_PER_WIDE_INT
)
4129 choose_multiplier (abs_d
, size
, size
- 1,
4130 &mlr
, &post_shift
, &lgup
);
4131 ml
= (unsigned HOST_WIDE_INT
) INTVAL (mlr
);
4132 if (ml
< (unsigned HOST_WIDE_INT
) 1 << (size
- 1))
4136 if (post_shift
>= BITS_PER_WORD
4137 || size
- 1 >= BITS_PER_WORD
)
4140 extra_cost
= (shift_cost
[compute_mode
][post_shift
]
4141 + shift_cost
[compute_mode
][size
- 1]
4142 + add_cost
[compute_mode
]);
4143 t1
= expand_mult_highpart (compute_mode
, op0
, mlr
,
4145 max_cost
- extra_cost
);
4149 (RSHIFT_EXPR
, compute_mode
, t1
,
4150 build_int_cst (NULL_TREE
, post_shift
),
4153 (RSHIFT_EXPR
, compute_mode
, op0
,
4154 build_int_cst (NULL_TREE
, size
- 1),
4158 = force_operand (gen_rtx_MINUS (compute_mode
,
4163 = force_operand (gen_rtx_MINUS (compute_mode
,
4171 if (post_shift
>= BITS_PER_WORD
4172 || size
- 1 >= BITS_PER_WORD
)
4175 ml
|= (~(unsigned HOST_WIDE_INT
) 0) << (size
- 1);
4176 mlr
= gen_int_mode (ml
, compute_mode
);
4177 extra_cost
= (shift_cost
[compute_mode
][post_shift
]
4178 + shift_cost
[compute_mode
][size
- 1]
4179 + 2 * add_cost
[compute_mode
]);
4180 t1
= expand_mult_highpart (compute_mode
, op0
, mlr
,
4182 max_cost
- extra_cost
);
4185 t2
= force_operand (gen_rtx_PLUS (compute_mode
,
4189 (RSHIFT_EXPR
, compute_mode
, t2
,
4190 build_int_cst (NULL_TREE
, post_shift
),
4193 (RSHIFT_EXPR
, compute_mode
, op0
,
4194 build_int_cst (NULL_TREE
, size
- 1),
4198 = force_operand (gen_rtx_MINUS (compute_mode
,
4203 = force_operand (gen_rtx_MINUS (compute_mode
,
4208 else /* Too wide mode to use tricky code */
4211 insn
= get_last_insn ();
4213 && (set
= single_set (insn
)) != 0
4214 && SET_DEST (set
) == quotient
)
4215 set_unique_reg_note (insn
,
4217 gen_rtx_DIV (compute_mode
, op0
, op1
));
4222 delete_insns_since (last
);
4225 case FLOOR_DIV_EXPR
:
4226 case FLOOR_MOD_EXPR
:
4227 /* We will come here only for signed operations. */
4228 if (op1_is_constant
&& HOST_BITS_PER_WIDE_INT
>= size
)
4230 unsigned HOST_WIDE_INT mh
;
4231 int pre_shift
, lgup
, post_shift
;
4232 HOST_WIDE_INT d
= INTVAL (op1
);
4237 /* We could just as easily deal with negative constants here,
4238 but it does not seem worth the trouble for GCC 2.6. */
4239 if (EXACT_POWER_OF_2_OR_ZERO_P (d
))
4241 pre_shift
= floor_log2 (d
);
4244 remainder
= expand_binop (compute_mode
, and_optab
, op0
,
4245 GEN_INT (((HOST_WIDE_INT
) 1 << pre_shift
) - 1),
4246 remainder
, 0, OPTAB_LIB_WIDEN
);
4248 return gen_lowpart (mode
, remainder
);
4250 quotient
= expand_shift
4251 (RSHIFT_EXPR
, compute_mode
, op0
,
4252 build_int_cst (NULL_TREE
, pre_shift
),
4259 mh
= choose_multiplier (d
, size
, size
- 1,
4260 &ml
, &post_shift
, &lgup
);
4263 if (post_shift
< BITS_PER_WORD
4264 && size
- 1 < BITS_PER_WORD
)
4267 (RSHIFT_EXPR
, compute_mode
, op0
,
4268 build_int_cst (NULL_TREE
, size
- 1),
4270 t2
= expand_binop (compute_mode
, xor_optab
, op0
, t1
,
4271 NULL_RTX
, 0, OPTAB_WIDEN
);
4272 extra_cost
= (shift_cost
[compute_mode
][post_shift
]
4273 + shift_cost
[compute_mode
][size
- 1]
4274 + 2 * add_cost
[compute_mode
]);
4275 t3
= expand_mult_highpart (compute_mode
, t2
, ml
,
4277 max_cost
- extra_cost
);
4281 (RSHIFT_EXPR
, compute_mode
, t3
,
4282 build_int_cst (NULL_TREE
, post_shift
),
4284 quotient
= expand_binop (compute_mode
, xor_optab
,
4285 t4
, t1
, tquotient
, 0,
4293 rtx nsign
, t1
, t2
, t3
, t4
;
4294 t1
= force_operand (gen_rtx_PLUS (compute_mode
,
4295 op0
, constm1_rtx
), NULL_RTX
);
4296 t2
= expand_binop (compute_mode
, ior_optab
, op0
, t1
, NULL_RTX
,
4298 nsign
= expand_shift
4299 (RSHIFT_EXPR
, compute_mode
, t2
,
4300 build_int_cst (NULL_TREE
, size
- 1),
4302 t3
= force_operand (gen_rtx_MINUS (compute_mode
, t1
, nsign
),
4304 t4
= expand_divmod (0, TRUNC_DIV_EXPR
, compute_mode
, t3
, op1
,
4309 t5
= expand_unop (compute_mode
, one_cmpl_optab
, nsign
,
4311 quotient
= force_operand (gen_rtx_PLUS (compute_mode
,
4320 delete_insns_since (last
);
4322 /* Try using an instruction that produces both the quotient and
4323 remainder, using truncation. We can easily compensate the quotient
4324 or remainder to get floor rounding, once we have the remainder.
4325 Notice that we compute also the final remainder value here,
4326 and return the result right away. */
4327 if (target
== 0 || GET_MODE (target
) != compute_mode
)
4328 target
= gen_reg_rtx (compute_mode
);
4333 = REG_P (target
) ? target
: gen_reg_rtx (compute_mode
);
4334 quotient
= gen_reg_rtx (compute_mode
);
4339 = REG_P (target
) ? target
: gen_reg_rtx (compute_mode
);
4340 remainder
= gen_reg_rtx (compute_mode
);
4343 if (expand_twoval_binop (sdivmod_optab
, op0
, op1
,
4344 quotient
, remainder
, 0))
4346 /* This could be computed with a branch-less sequence.
4347 Save that for later. */
4349 rtx label
= gen_label_rtx ();
4350 do_cmp_and_jump (remainder
, const0_rtx
, EQ
, compute_mode
, label
);
4351 tem
= expand_binop (compute_mode
, xor_optab
, op0
, op1
,
4352 NULL_RTX
, 0, OPTAB_WIDEN
);
4353 do_cmp_and_jump (tem
, const0_rtx
, GE
, compute_mode
, label
);
4354 expand_dec (quotient
, const1_rtx
);
4355 expand_inc (remainder
, op1
);
4357 return gen_lowpart (mode
, rem_flag
? remainder
: quotient
);
4360 /* No luck with division elimination or divmod. Have to do it
4361 by conditionally adjusting op0 *and* the result. */
4363 rtx label1
, label2
, label3
, label4
, label5
;
4367 quotient
= gen_reg_rtx (compute_mode
);
4368 adjusted_op0
= copy_to_mode_reg (compute_mode
, op0
);
4369 label1
= gen_label_rtx ();
4370 label2
= gen_label_rtx ();
4371 label3
= gen_label_rtx ();
4372 label4
= gen_label_rtx ();
4373 label5
= gen_label_rtx ();
4374 do_cmp_and_jump (op1
, const0_rtx
, LT
, compute_mode
, label2
);
4375 do_cmp_and_jump (adjusted_op0
, const0_rtx
, LT
, compute_mode
, label1
);
4376 tem
= expand_binop (compute_mode
, sdiv_optab
, adjusted_op0
, op1
,
4377 quotient
, 0, OPTAB_LIB_WIDEN
);
4378 if (tem
!= quotient
)
4379 emit_move_insn (quotient
, tem
);
4380 emit_jump_insn (gen_jump (label5
));
4382 emit_label (label1
);
4383 expand_inc (adjusted_op0
, const1_rtx
);
4384 emit_jump_insn (gen_jump (label4
));
4386 emit_label (label2
);
4387 do_cmp_and_jump (adjusted_op0
, const0_rtx
, GT
, compute_mode
, label3
);
4388 tem
= expand_binop (compute_mode
, sdiv_optab
, adjusted_op0
, op1
,
4389 quotient
, 0, OPTAB_LIB_WIDEN
);
4390 if (tem
!= quotient
)
4391 emit_move_insn (quotient
, tem
);
4392 emit_jump_insn (gen_jump (label5
));
4394 emit_label (label3
);
4395 expand_dec (adjusted_op0
, const1_rtx
);
4396 emit_label (label4
);
4397 tem
= expand_binop (compute_mode
, sdiv_optab
, adjusted_op0
, op1
,
4398 quotient
, 0, OPTAB_LIB_WIDEN
);
4399 if (tem
!= quotient
)
4400 emit_move_insn (quotient
, tem
);
4401 expand_dec (quotient
, const1_rtx
);
4402 emit_label (label5
);
4410 if (op1_is_constant
&& EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1
)))
4413 unsigned HOST_WIDE_INT d
= INTVAL (op1
);
4414 t1
= expand_shift (RSHIFT_EXPR
, compute_mode
, op0
,
4415 build_int_cst (NULL_TREE
, floor_log2 (d
)),
4417 t2
= expand_binop (compute_mode
, and_optab
, op0
,
4419 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
4420 t3
= gen_reg_rtx (compute_mode
);
4421 t3
= emit_store_flag (t3
, NE
, t2
, const0_rtx
,
4422 compute_mode
, 1, 1);
4426 lab
= gen_label_rtx ();
4427 do_cmp_and_jump (t2
, const0_rtx
, EQ
, compute_mode
, lab
);
4428 expand_inc (t1
, const1_rtx
);
4433 quotient
= force_operand (gen_rtx_PLUS (compute_mode
,
4439 /* Try using an instruction that produces both the quotient and
4440 remainder, using truncation. We can easily compensate the
4441 quotient or remainder to get ceiling rounding, once we have the
4442 remainder. Notice that we compute also the final remainder
4443 value here, and return the result right away. */
4444 if (target
== 0 || GET_MODE (target
) != compute_mode
)
4445 target
= gen_reg_rtx (compute_mode
);
4449 remainder
= (REG_P (target
)
4450 ? target
: gen_reg_rtx (compute_mode
));
4451 quotient
= gen_reg_rtx (compute_mode
);
4455 quotient
= (REG_P (target
)
4456 ? target
: gen_reg_rtx (compute_mode
));
4457 remainder
= gen_reg_rtx (compute_mode
);
4460 if (expand_twoval_binop (udivmod_optab
, op0
, op1
, quotient
,
4463 /* This could be computed with a branch-less sequence.
4464 Save that for later. */
4465 rtx label
= gen_label_rtx ();
4466 do_cmp_and_jump (remainder
, const0_rtx
, EQ
,
4467 compute_mode
, label
);
4468 expand_inc (quotient
, const1_rtx
);
4469 expand_dec (remainder
, op1
);
4471 return gen_lowpart (mode
, rem_flag
? remainder
: quotient
);
4474 /* No luck with division elimination or divmod. Have to do it
4475 by conditionally adjusting op0 *and* the result. */
4478 rtx adjusted_op0
, tem
;
4480 quotient
= gen_reg_rtx (compute_mode
);
4481 adjusted_op0
= copy_to_mode_reg (compute_mode
, op0
);
4482 label1
= gen_label_rtx ();
4483 label2
= gen_label_rtx ();
4484 do_cmp_and_jump (adjusted_op0
, const0_rtx
, NE
,
4485 compute_mode
, label1
);
4486 emit_move_insn (quotient
, const0_rtx
);
4487 emit_jump_insn (gen_jump (label2
));
4489 emit_label (label1
);
4490 expand_dec (adjusted_op0
, const1_rtx
);
4491 tem
= expand_binop (compute_mode
, udiv_optab
, adjusted_op0
, op1
,
4492 quotient
, 1, OPTAB_LIB_WIDEN
);
4493 if (tem
!= quotient
)
4494 emit_move_insn (quotient
, tem
);
4495 expand_inc (quotient
, const1_rtx
);
4496 emit_label (label2
);
4501 if (op1_is_constant
&& EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1
))
4502 && INTVAL (op1
) >= 0)
4504 /* This is extremely similar to the code for the unsigned case
4505 above. For 2.7 we should merge these variants, but for
4506 2.6.1 I don't want to touch the code for unsigned since that
4507 get used in C. The signed case will only be used by other
4511 unsigned HOST_WIDE_INT d
= INTVAL (op1
);
4512 t1
= expand_shift (RSHIFT_EXPR
, compute_mode
, op0
,
4513 build_int_cst (NULL_TREE
, floor_log2 (d
)),
4515 t2
= expand_binop (compute_mode
, and_optab
, op0
,
4517 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
4518 t3
= gen_reg_rtx (compute_mode
);
4519 t3
= emit_store_flag (t3
, NE
, t2
, const0_rtx
,
4520 compute_mode
, 1, 1);
4524 lab
= gen_label_rtx ();
4525 do_cmp_and_jump (t2
, const0_rtx
, EQ
, compute_mode
, lab
);
4526 expand_inc (t1
, const1_rtx
);
4531 quotient
= force_operand (gen_rtx_PLUS (compute_mode
,
4537 /* Try using an instruction that produces both the quotient and
4538 remainder, using truncation. We can easily compensate the
4539 quotient or remainder to get ceiling rounding, once we have the
4540 remainder. Notice that we compute also the final remainder
4541 value here, and return the result right away. */
4542 if (target
== 0 || GET_MODE (target
) != compute_mode
)
4543 target
= gen_reg_rtx (compute_mode
);
4546 remainder
= (REG_P (target
)
4547 ? target
: gen_reg_rtx (compute_mode
));
4548 quotient
= gen_reg_rtx (compute_mode
);
4552 quotient
= (REG_P (target
)
4553 ? target
: gen_reg_rtx (compute_mode
));
4554 remainder
= gen_reg_rtx (compute_mode
);
4557 if (expand_twoval_binop (sdivmod_optab
, op0
, op1
, quotient
,
4560 /* This could be computed with a branch-less sequence.
4561 Save that for later. */
4563 rtx label
= gen_label_rtx ();
4564 do_cmp_and_jump (remainder
, const0_rtx
, EQ
,
4565 compute_mode
, label
);
4566 tem
= expand_binop (compute_mode
, xor_optab
, op0
, op1
,
4567 NULL_RTX
, 0, OPTAB_WIDEN
);
4568 do_cmp_and_jump (tem
, const0_rtx
, LT
, compute_mode
, label
);
4569 expand_inc (quotient
, const1_rtx
);
4570 expand_dec (remainder
, op1
);
4572 return gen_lowpart (mode
, rem_flag
? remainder
: quotient
);
4575 /* No luck with division elimination or divmod. Have to do it
4576 by conditionally adjusting op0 *and* the result. */
4578 rtx label1
, label2
, label3
, label4
, label5
;
4582 quotient
= gen_reg_rtx (compute_mode
);
4583 adjusted_op0
= copy_to_mode_reg (compute_mode
, op0
);
4584 label1
= gen_label_rtx ();
4585 label2
= gen_label_rtx ();
4586 label3
= gen_label_rtx ();
4587 label4
= gen_label_rtx ();
4588 label5
= gen_label_rtx ();
4589 do_cmp_and_jump (op1
, const0_rtx
, LT
, compute_mode
, label2
);
4590 do_cmp_and_jump (adjusted_op0
, const0_rtx
, GT
,
4591 compute_mode
, label1
);
4592 tem
= expand_binop (compute_mode
, sdiv_optab
, adjusted_op0
, op1
,
4593 quotient
, 0, OPTAB_LIB_WIDEN
);
4594 if (tem
!= quotient
)
4595 emit_move_insn (quotient
, tem
);
4596 emit_jump_insn (gen_jump (label5
));
4598 emit_label (label1
);
4599 expand_dec (adjusted_op0
, const1_rtx
);
4600 emit_jump_insn (gen_jump (label4
));
4602 emit_label (label2
);
4603 do_cmp_and_jump (adjusted_op0
, const0_rtx
, LT
,
4604 compute_mode
, label3
);
4605 tem
= expand_binop (compute_mode
, sdiv_optab
, adjusted_op0
, op1
,
4606 quotient
, 0, OPTAB_LIB_WIDEN
);
4607 if (tem
!= quotient
)
4608 emit_move_insn (quotient
, tem
);
4609 emit_jump_insn (gen_jump (label5
));
4611 emit_label (label3
);
4612 expand_inc (adjusted_op0
, const1_rtx
);
4613 emit_label (label4
);
4614 tem
= expand_binop (compute_mode
, sdiv_optab
, adjusted_op0
, op1
,
4615 quotient
, 0, OPTAB_LIB_WIDEN
);
4616 if (tem
!= quotient
)
4617 emit_move_insn (quotient
, tem
);
4618 expand_inc (quotient
, const1_rtx
);
4619 emit_label (label5
);
4624 case EXACT_DIV_EXPR
:
4625 if (op1_is_constant
&& HOST_BITS_PER_WIDE_INT
>= size
)
4627 HOST_WIDE_INT d
= INTVAL (op1
);
4628 unsigned HOST_WIDE_INT ml
;
4632 pre_shift
= floor_log2 (d
& -d
);
4633 ml
= invert_mod2n (d
>> pre_shift
, size
);
4634 t1
= expand_shift (RSHIFT_EXPR
, compute_mode
, op0
,
4635 build_int_cst (NULL_TREE
, pre_shift
),
4636 NULL_RTX
, unsignedp
);
4637 quotient
= expand_mult (compute_mode
, t1
,
4638 gen_int_mode (ml
, compute_mode
),
4641 insn
= get_last_insn ();
4642 set_unique_reg_note (insn
,
4644 gen_rtx_fmt_ee (unsignedp
? UDIV
: DIV
,
4650 case ROUND_DIV_EXPR
:
4651 case ROUND_MOD_EXPR
:
4656 label
= gen_label_rtx ();
4657 quotient
= gen_reg_rtx (compute_mode
);
4658 remainder
= gen_reg_rtx (compute_mode
);
4659 if (expand_twoval_binop (udivmod_optab
, op0
, op1
, quotient
, remainder
, 1) == 0)
4662 quotient
= expand_binop (compute_mode
, udiv_optab
, op0
, op1
,
4663 quotient
, 1, OPTAB_LIB_WIDEN
);
4664 tem
= expand_mult (compute_mode
, quotient
, op1
, NULL_RTX
, 1);
4665 remainder
= expand_binop (compute_mode
, sub_optab
, op0
, tem
,
4666 remainder
, 1, OPTAB_LIB_WIDEN
);
4668 tem
= plus_constant (op1
, -1);
4669 tem
= expand_shift (RSHIFT_EXPR
, compute_mode
, tem
,
4670 build_int_cst (NULL_TREE
, 1),
4672 do_cmp_and_jump (remainder
, tem
, LEU
, compute_mode
, label
);
4673 expand_inc (quotient
, const1_rtx
);
4674 expand_dec (remainder
, op1
);
4679 rtx abs_rem
, abs_op1
, tem
, mask
;
4681 label
= gen_label_rtx ();
4682 quotient
= gen_reg_rtx (compute_mode
);
4683 remainder
= gen_reg_rtx (compute_mode
);
4684 if (expand_twoval_binop (sdivmod_optab
, op0
, op1
, quotient
, remainder
, 0) == 0)
4687 quotient
= expand_binop (compute_mode
, sdiv_optab
, op0
, op1
,
4688 quotient
, 0, OPTAB_LIB_WIDEN
);
4689 tem
= expand_mult (compute_mode
, quotient
, op1
, NULL_RTX
, 0);
4690 remainder
= expand_binop (compute_mode
, sub_optab
, op0
, tem
,
4691 remainder
, 0, OPTAB_LIB_WIDEN
);
4693 abs_rem
= expand_abs (compute_mode
, remainder
, NULL_RTX
, 1, 0);
4694 abs_op1
= expand_abs (compute_mode
, op1
, NULL_RTX
, 1, 0);
4695 tem
= expand_shift (LSHIFT_EXPR
, compute_mode
, abs_rem
,
4696 build_int_cst (NULL_TREE
, 1),
4698 do_cmp_and_jump (tem
, abs_op1
, LTU
, compute_mode
, label
);
4699 tem
= expand_binop (compute_mode
, xor_optab
, op0
, op1
,
4700 NULL_RTX
, 0, OPTAB_WIDEN
);
4701 mask
= expand_shift (RSHIFT_EXPR
, compute_mode
, tem
,
4702 build_int_cst (NULL_TREE
, size
- 1),
4704 tem
= expand_binop (compute_mode
, xor_optab
, mask
, const1_rtx
,
4705 NULL_RTX
, 0, OPTAB_WIDEN
);
4706 tem
= expand_binop (compute_mode
, sub_optab
, tem
, mask
,
4707 NULL_RTX
, 0, OPTAB_WIDEN
);
4708 expand_inc (quotient
, tem
);
4709 tem
= expand_binop (compute_mode
, xor_optab
, mask
, op1
,
4710 NULL_RTX
, 0, OPTAB_WIDEN
);
4711 tem
= expand_binop (compute_mode
, sub_optab
, tem
, mask
,
4712 NULL_RTX
, 0, OPTAB_WIDEN
);
4713 expand_dec (remainder
, tem
);
4716 return gen_lowpart (mode
, rem_flag
? remainder
: quotient
);
4724 if (target
&& GET_MODE (target
) != compute_mode
)
4729 /* Try to produce the remainder without producing the quotient.
4730 If we seem to have a divmod pattern that does not require widening,
4731 don't try widening here. We should really have a WIDEN argument
4732 to expand_twoval_binop, since what we'd really like to do here is
4733 1) try a mod insn in compute_mode
4734 2) try a divmod insn in compute_mode
4735 3) try a div insn in compute_mode and multiply-subtract to get
4737 4) try the same things with widening allowed. */
4739 = sign_expand_binop (compute_mode
, umod_optab
, smod_optab
,
4742 ((optab2
->handlers
[compute_mode
].insn_code
4743 != CODE_FOR_nothing
)
4744 ? OPTAB_DIRECT
: OPTAB_WIDEN
));
4747 /* No luck there. Can we do remainder and divide at once
4748 without a library call? */
4749 remainder
= gen_reg_rtx (compute_mode
);
4750 if (! expand_twoval_binop ((unsignedp
4754 NULL_RTX
, remainder
, unsignedp
))
4759 return gen_lowpart (mode
, remainder
);
4762 /* Produce the quotient. Try a quotient insn, but not a library call.
4763 If we have a divmod in this mode, use it in preference to widening
4764 the div (for this test we assume it will not fail). Note that optab2
4765 is set to the one of the two optabs that the call below will use. */
4767 = sign_expand_binop (compute_mode
, udiv_optab
, sdiv_optab
,
4768 op0
, op1
, rem_flag
? NULL_RTX
: target
,
4770 ((optab2
->handlers
[compute_mode
].insn_code
4771 != CODE_FOR_nothing
)
4772 ? OPTAB_DIRECT
: OPTAB_WIDEN
));
4776 /* No luck there. Try a quotient-and-remainder insn,
4777 keeping the quotient alone. */
4778 quotient
= gen_reg_rtx (compute_mode
);
4779 if (! expand_twoval_binop (unsignedp
? udivmod_optab
: sdivmod_optab
,
4781 quotient
, NULL_RTX
, unsignedp
))
4785 /* Still no luck. If we are not computing the remainder,
4786 use a library call for the quotient. */
4787 quotient
= sign_expand_binop (compute_mode
,
4788 udiv_optab
, sdiv_optab
,
4790 unsignedp
, OPTAB_LIB_WIDEN
);
4797 if (target
&& GET_MODE (target
) != compute_mode
)
4802 /* No divide instruction either. Use library for remainder. */
4803 remainder
= sign_expand_binop (compute_mode
, umod_optab
, smod_optab
,
4805 unsignedp
, OPTAB_LIB_WIDEN
);
4806 /* No remainder function. Try a quotient-and-remainder
4807 function, keeping the remainder. */
4810 remainder
= gen_reg_rtx (compute_mode
);
4811 if (!expand_twoval_binop_libfunc
4812 (unsignedp
? udivmod_optab
: sdivmod_optab
,
4814 NULL_RTX
, remainder
,
4815 unsignedp
? UMOD
: MOD
))
4816 remainder
= NULL_RTX
;
4821 /* We divided. Now finish doing X - Y * (X / Y). */
4822 remainder
= expand_mult (compute_mode
, quotient
, op1
,
4823 NULL_RTX
, unsignedp
);
4824 remainder
= expand_binop (compute_mode
, sub_optab
, op0
,
4825 remainder
, target
, unsignedp
,
4830 return gen_lowpart (mode
, rem_flag
? remainder
: quotient
);
4833 /* Return a tree node with data type TYPE, describing the value of X.
4834 Usually this is an VAR_DECL, if there is no obvious better choice.
4835 X may be an expression, however we only support those expressions
4836 generated by loop.c. */
4839 make_tree (tree type
, rtx x
)
4843 switch (GET_CODE (x
))
4847 HOST_WIDE_INT hi
= 0;
4850 && !(TYPE_UNSIGNED (type
)
4851 && (GET_MODE_BITSIZE (TYPE_MODE (type
))
4852 < HOST_BITS_PER_WIDE_INT
)))
4855 t
= build_int_cst_wide (type
, INTVAL (x
), hi
);
4861 if (GET_MODE (x
) == VOIDmode
)
4862 t
= build_int_cst_wide (type
,
4863 CONST_DOUBLE_LOW (x
), CONST_DOUBLE_HIGH (x
));
4868 REAL_VALUE_FROM_CONST_DOUBLE (d
, x
);
4869 t
= build_real (type
, d
);
4880 units
= CONST_VECTOR_NUNITS (x
);
4882 /* Build a tree with vector elements. */
4883 for (i
= units
- 1; i
>= 0; --i
)
4885 elt
= CONST_VECTOR_ELT (x
, i
);
4886 t
= tree_cons (NULL_TREE
, make_tree (type
, elt
), t
);
4889 return build_vector (type
, t
);
4893 return fold_build2 (PLUS_EXPR
, type
, make_tree (type
, XEXP (x
, 0)),
4894 make_tree (type
, XEXP (x
, 1)));
4897 return fold_build2 (MINUS_EXPR
, type
, make_tree (type
, XEXP (x
, 0)),
4898 make_tree (type
, XEXP (x
, 1)));
4901 return fold_build1 (NEGATE_EXPR
, type
, make_tree (type
, XEXP (x
, 0)));
4904 return fold_build2 (MULT_EXPR
, type
, make_tree (type
, XEXP (x
, 0)),
4905 make_tree (type
, XEXP (x
, 1)));
4908 return fold_build2 (LSHIFT_EXPR
, type
, make_tree (type
, XEXP (x
, 0)),
4909 make_tree (type
, XEXP (x
, 1)));
4912 t
= lang_hooks
.types
.unsigned_type (type
);
4913 return fold_convert (type
, build2 (RSHIFT_EXPR
, t
,
4914 make_tree (t
, XEXP (x
, 0)),
4915 make_tree (type
, XEXP (x
, 1))));
4918 t
= lang_hooks
.types
.signed_type (type
);
4919 return fold_convert (type
, build2 (RSHIFT_EXPR
, t
,
4920 make_tree (t
, XEXP (x
, 0)),
4921 make_tree (type
, XEXP (x
, 1))));
4924 if (TREE_CODE (type
) != REAL_TYPE
)
4925 t
= lang_hooks
.types
.signed_type (type
);
4929 return fold_convert (type
, build2 (TRUNC_DIV_EXPR
, t
,
4930 make_tree (t
, XEXP (x
, 0)),
4931 make_tree (t
, XEXP (x
, 1))));
4933 t
= lang_hooks
.types
.unsigned_type (type
);
4934 return fold_convert (type
, build2 (TRUNC_DIV_EXPR
, t
,
4935 make_tree (t
, XEXP (x
, 0)),
4936 make_tree (t
, XEXP (x
, 1))));
4940 t
= lang_hooks
.types
.type_for_mode (GET_MODE (XEXP (x
, 0)),
4941 GET_CODE (x
) == ZERO_EXTEND
);
4942 return fold_convert (type
, make_tree (t
, XEXP (x
, 0)));
4945 t
= build_decl (VAR_DECL
, NULL_TREE
, type
);
4947 /* If TYPE is a POINTER_TYPE, X might be Pmode with TYPE_MODE being
4948 ptr_mode. So convert. */
4949 if (POINTER_TYPE_P (type
))
4950 x
= convert_memory_address (TYPE_MODE (type
), x
);
4952 /* Note that we do *not* use SET_DECL_RTL here, because we do not
4953 want set_decl_rtl to go adjusting REG_ATTRS for this temporary. */
4960 /* Check whether the multiplication X * MULT + ADD overflows.
4961 X, MULT and ADD must be CONST_*.
4962 MODE is the machine mode for the computation.
4963 X and MULT must have mode MODE. ADD may have a different mode.
4964 So can X (defaults to same as MODE).
4965 UNSIGNEDP is nonzero to do unsigned multiplication. */
4968 const_mult_add_overflow_p (rtx x
, rtx mult
, rtx add
,
4969 enum machine_mode mode
, int unsignedp
)
4971 tree type
, mult_type
, add_type
, result
;
4973 type
= lang_hooks
.types
.type_for_mode (mode
, unsignedp
);
4975 /* In order to get a proper overflow indication from an unsigned
4976 type, we have to pretend that it's a sizetype. */
4980 /* FIXME:It would be nice if we could step directly from this
4981 type to its sizetype equivalent. */
4982 mult_type
= build_distinct_type_copy (type
);
4983 TYPE_IS_SIZETYPE (mult_type
) = 1;
4986 add_type
= (GET_MODE (add
) == VOIDmode
? mult_type
4987 : lang_hooks
.types
.type_for_mode (GET_MODE (add
), unsignedp
));
4989 result
= fold_build2 (PLUS_EXPR
, mult_type
,
4990 fold_build2 (MULT_EXPR
, mult_type
,
4991 make_tree (mult_type
, x
),
4992 make_tree (mult_type
, mult
)),
4993 make_tree (add_type
, add
));
4995 return TREE_CONSTANT_OVERFLOW (result
);
4998 /* Return an rtx representing the value of X * MULT + ADD.
4999 TARGET is a suggestion for where to store the result (an rtx).
5000 MODE is the machine mode for the computation.
5001 X and MULT must have mode MODE. ADD may have a different mode.
5002 So can X (defaults to same as MODE).
5003 UNSIGNEDP is nonzero to do unsigned multiplication.
5004 This may emit insns. */
5007 expand_mult_add (rtx x
, rtx target
, rtx mult
, rtx add
, enum machine_mode mode
,
5010 tree type
= lang_hooks
.types
.type_for_mode (mode
, unsignedp
);
5011 tree add_type
= (GET_MODE (add
) == VOIDmode
5012 ? type
: lang_hooks
.types
.type_for_mode (GET_MODE (add
),
5014 tree result
= fold_build2 (PLUS_EXPR
, type
,
5015 fold_build2 (MULT_EXPR
, type
,
5016 make_tree (type
, x
),
5017 make_tree (type
, mult
)),
5018 make_tree (add_type
, add
));
5020 return expand_expr (result
, target
, VOIDmode
, 0);
5023 /* Compute the logical-and of OP0 and OP1, storing it in TARGET
5024 and returning TARGET.
5026 If TARGET is 0, a pseudo-register or constant is returned. */
5029 expand_and (enum machine_mode mode
, rtx op0
, rtx op1
, rtx target
)
5033 if (GET_MODE (op0
) == VOIDmode
&& GET_MODE (op1
) == VOIDmode
)
5034 tem
= simplify_binary_operation (AND
, mode
, op0
, op1
);
5036 tem
= expand_binop (mode
, and_optab
, op0
, op1
, target
, 0, OPTAB_LIB_WIDEN
);
5040 else if (tem
!= target
)
5041 emit_move_insn (target
, tem
);
5045 /* Emit a store-flags instruction for comparison CODE on OP0 and OP1
5046 and storing in TARGET. Normally return TARGET.
5047 Return 0 if that cannot be done.
5049 MODE is the mode to use for OP0 and OP1 should they be CONST_INTs. If
5050 it is VOIDmode, they cannot both be CONST_INT.
5052 UNSIGNEDP is for the case where we have to widen the operands
5053 to perform the operation. It says to use zero-extension.
5055 NORMALIZEP is 1 if we should convert the result to be either zero
5056 or one. Normalize is -1 if we should convert the result to be
5057 either zero or -1. If NORMALIZEP is zero, the result will be left
5058 "raw" out of the scc insn. */
5061 emit_store_flag (rtx target
, enum rtx_code code
, rtx op0
, rtx op1
,
5062 enum machine_mode mode
, int unsignedp
, int normalizep
)
5065 enum insn_code icode
;
5066 enum machine_mode compare_mode
;
5067 enum machine_mode target_mode
= GET_MODE (target
);
5069 rtx last
= get_last_insn ();
5070 rtx pattern
, comparison
;
5073 code
= unsigned_condition (code
);
5075 /* If one operand is constant, make it the second one. Only do this
5076 if the other operand is not constant as well. */
5078 if (swap_commutative_operands_p (op0
, op1
))
5083 code
= swap_condition (code
);
5086 if (mode
== VOIDmode
)
5087 mode
= GET_MODE (op0
);
5089 /* For some comparisons with 1 and -1, we can convert this to
5090 comparisons with zero. This will often produce more opportunities for
5091 store-flag insns. */
5096 if (op1
== const1_rtx
)
5097 op1
= const0_rtx
, code
= LE
;
5100 if (op1
== constm1_rtx
)
5101 op1
= const0_rtx
, code
= LT
;
5104 if (op1
== const1_rtx
)
5105 op1
= const0_rtx
, code
= GT
;
5108 if (op1
== constm1_rtx
)
5109 op1
= const0_rtx
, code
= GE
;
5112 if (op1
== const1_rtx
)
5113 op1
= const0_rtx
, code
= NE
;
5116 if (op1
== const1_rtx
)
5117 op1
= const0_rtx
, code
= EQ
;
5123 /* If we are comparing a double-word integer with zero or -1, we can
5124 convert the comparison into one involving a single word. */
5125 if (GET_MODE_BITSIZE (mode
) == BITS_PER_WORD
* 2
5126 && GET_MODE_CLASS (mode
) == MODE_INT
5127 && (!MEM_P (op0
) || ! MEM_VOLATILE_P (op0
)))
5129 if ((code
== EQ
|| code
== NE
)
5130 && (op1
== const0_rtx
|| op1
== constm1_rtx
))
5132 rtx op00
, op01
, op0both
;
5134 /* Do a logical OR or AND of the two words and compare the result. */
5135 op00
= simplify_gen_subreg (word_mode
, op0
, mode
, 0);
5136 op01
= simplify_gen_subreg (word_mode
, op0
, mode
, UNITS_PER_WORD
);
5137 op0both
= expand_binop (word_mode
,
5138 op1
== const0_rtx
? ior_optab
: and_optab
,
5139 op00
, op01
, NULL_RTX
, unsignedp
, OPTAB_DIRECT
);
5142 return emit_store_flag (target
, code
, op0both
, op1
, word_mode
,
5143 unsignedp
, normalizep
);
5145 else if ((code
== LT
|| code
== GE
) && op1
== const0_rtx
)
5149 /* If testing the sign bit, can just test on high word. */
5150 op0h
= simplify_gen_subreg (word_mode
, op0
, mode
,
5151 subreg_highpart_offset (word_mode
, mode
));
5152 return emit_store_flag (target
, code
, op0h
, op1
, word_mode
,
5153 unsignedp
, normalizep
);
5157 /* From now on, we won't change CODE, so set ICODE now. */
5158 icode
= setcc_gen_code
[(int) code
];
5160 /* If this is A < 0 or A >= 0, we can do this by taking the ones
5161 complement of A (for GE) and shifting the sign bit to the low bit. */
5162 if (op1
== const0_rtx
&& (code
== LT
|| code
== GE
)
5163 && GET_MODE_CLASS (mode
) == MODE_INT
5164 && (normalizep
|| STORE_FLAG_VALUE
== 1
5165 || (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
5166 && ((STORE_FLAG_VALUE
& GET_MODE_MASK (mode
))
5167 == (unsigned HOST_WIDE_INT
) 1 << (GET_MODE_BITSIZE (mode
) - 1)))))
5171 /* If the result is to be wider than OP0, it is best to convert it
5172 first. If it is to be narrower, it is *incorrect* to convert it
5174 if (GET_MODE_SIZE (target_mode
) > GET_MODE_SIZE (mode
))
5176 op0
= convert_modes (target_mode
, mode
, op0
, 0);
5180 if (target_mode
!= mode
)
5184 op0
= expand_unop (mode
, one_cmpl_optab
, op0
,
5185 ((STORE_FLAG_VALUE
== 1 || normalizep
)
5186 ? 0 : subtarget
), 0);
5188 if (STORE_FLAG_VALUE
== 1 || normalizep
)
5189 /* If we are supposed to produce a 0/1 value, we want to do
5190 a logical shift from the sign bit to the low-order bit; for
5191 a -1/0 value, we do an arithmetic shift. */
5192 op0
= expand_shift (RSHIFT_EXPR
, mode
, op0
,
5193 size_int (GET_MODE_BITSIZE (mode
) - 1),
5194 subtarget
, normalizep
!= -1);
5196 if (mode
!= target_mode
)
5197 op0
= convert_modes (target_mode
, mode
, op0
, 0);
5202 if (icode
!= CODE_FOR_nothing
)
5204 insn_operand_predicate_fn pred
;
5206 /* We think we may be able to do this with a scc insn. Emit the
5207 comparison and then the scc insn. */
5209 do_pending_stack_adjust ();
5210 last
= get_last_insn ();
5213 = compare_from_rtx (op0
, op1
, code
, unsignedp
, mode
, NULL_RTX
);
5214 if (CONSTANT_P (comparison
))
5216 switch (GET_CODE (comparison
))
5219 if (comparison
== const0_rtx
)
5223 #ifdef FLOAT_STORE_FLAG_VALUE
5225 if (comparison
== CONST0_RTX (GET_MODE (comparison
)))
5233 if (normalizep
== 1)
5235 if (normalizep
== -1)
5237 return const_true_rtx
;
5240 /* The code of COMPARISON may not match CODE if compare_from_rtx
5241 decided to swap its operands and reverse the original code.
5243 We know that compare_from_rtx returns either a CONST_INT or
5244 a new comparison code, so it is safe to just extract the
5245 code from COMPARISON. */
5246 code
= GET_CODE (comparison
);
5248 /* Get a reference to the target in the proper mode for this insn. */
5249 compare_mode
= insn_data
[(int) icode
].operand
[0].mode
;
5251 pred
= insn_data
[(int) icode
].operand
[0].predicate
;
5252 if (optimize
|| ! (*pred
) (subtarget
, compare_mode
))
5253 subtarget
= gen_reg_rtx (compare_mode
);
5255 pattern
= GEN_FCN (icode
) (subtarget
);
5258 emit_insn (pattern
);
5260 /* If we are converting to a wider mode, first convert to
5261 TARGET_MODE, then normalize. This produces better combining
5262 opportunities on machines that have a SIGN_EXTRACT when we are
5263 testing a single bit. This mostly benefits the 68k.
5265 If STORE_FLAG_VALUE does not have the sign bit set when
5266 interpreted in COMPARE_MODE, we can do this conversion as
5267 unsigned, which is usually more efficient. */
5268 if (GET_MODE_SIZE (target_mode
) > GET_MODE_SIZE (compare_mode
))
5270 convert_move (target
, subtarget
,
5271 (GET_MODE_BITSIZE (compare_mode
)
5272 <= HOST_BITS_PER_WIDE_INT
)
5273 && 0 == (STORE_FLAG_VALUE
5274 & ((HOST_WIDE_INT
) 1
5275 << (GET_MODE_BITSIZE (compare_mode
) -1))));
5277 compare_mode
= target_mode
;
5282 /* If we want to keep subexpressions around, don't reuse our
5288 /* Now normalize to the proper value in COMPARE_MODE. Sometimes
5289 we don't have to do anything. */
5290 if (normalizep
== 0 || normalizep
== STORE_FLAG_VALUE
)
5292 /* STORE_FLAG_VALUE might be the most negative number, so write
5293 the comparison this way to avoid a compiler-time warning. */
5294 else if (- normalizep
== STORE_FLAG_VALUE
)
5295 op0
= expand_unop (compare_mode
, neg_optab
, op0
, subtarget
, 0);
5297 /* We don't want to use STORE_FLAG_VALUE < 0 below since this
5298 makes it hard to use a value of just the sign bit due to
5299 ANSI integer constant typing rules. */
5300 else if (GET_MODE_BITSIZE (compare_mode
) <= HOST_BITS_PER_WIDE_INT
5301 && (STORE_FLAG_VALUE
5302 & ((HOST_WIDE_INT
) 1
5303 << (GET_MODE_BITSIZE (compare_mode
) - 1))))
5304 op0
= expand_shift (RSHIFT_EXPR
, compare_mode
, op0
,
5305 size_int (GET_MODE_BITSIZE (compare_mode
) - 1),
5306 subtarget
, normalizep
== 1);
5309 gcc_assert (STORE_FLAG_VALUE
& 1);
5311 op0
= expand_and (compare_mode
, op0
, const1_rtx
, subtarget
);
5312 if (normalizep
== -1)
5313 op0
= expand_unop (compare_mode
, neg_optab
, op0
, op0
, 0);
5316 /* If we were converting to a smaller mode, do the
5318 if (target_mode
!= compare_mode
)
5320 convert_move (target
, op0
, 0);
5328 delete_insns_since (last
);
5330 /* If optimizing, use different pseudo registers for each insn, instead
5331 of reusing the same pseudo. This leads to better CSE, but slows
5332 down the compiler, since there are more pseudos */
5333 subtarget
= (!optimize
5334 && (target_mode
== mode
)) ? target
: NULL_RTX
;
5336 /* If we reached here, we can't do this with a scc insn. However, there
5337 are some comparisons that can be done directly. For example, if
5338 this is an equality comparison of integers, we can try to exclusive-or
5339 (or subtract) the two operands and use a recursive call to try the
5340 comparison with zero. Don't do any of these cases if branches are
5344 && GET_MODE_CLASS (mode
) == MODE_INT
&& (code
== EQ
|| code
== NE
)
5345 && op1
!= const0_rtx
)
5347 tem
= expand_binop (mode
, xor_optab
, op0
, op1
, subtarget
, 1,
5351 tem
= expand_binop (mode
, sub_optab
, op0
, op1
, subtarget
, 1,
5354 tem
= emit_store_flag (target
, code
, tem
, const0_rtx
,
5355 mode
, unsignedp
, normalizep
);
5357 delete_insns_since (last
);
5361 /* Some other cases we can do are EQ, NE, LE, and GT comparisons with
5362 the constant zero. Reject all other comparisons at this point. Only
5363 do LE and GT if branches are expensive since they are expensive on
5364 2-operand machines. */
5366 if (BRANCH_COST
== 0
5367 || GET_MODE_CLASS (mode
) != MODE_INT
|| op1
!= const0_rtx
5368 || (code
!= EQ
&& code
!= NE
5369 && (BRANCH_COST
<= 1 || (code
!= LE
&& code
!= GT
))))
5372 /* See what we need to return. We can only return a 1, -1, or the
5375 if (normalizep
== 0)
5377 if (STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
5378 normalizep
= STORE_FLAG_VALUE
;
5380 else if (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
5381 && ((STORE_FLAG_VALUE
& GET_MODE_MASK (mode
))
5382 == (unsigned HOST_WIDE_INT
) 1 << (GET_MODE_BITSIZE (mode
) - 1)))
5388 /* Try to put the result of the comparison in the sign bit. Assume we can't
5389 do the necessary operation below. */
5393 /* To see if A <= 0, compute (A | (A - 1)). A <= 0 iff that result has
5394 the sign bit set. */
5398 /* This is destructive, so SUBTARGET can't be OP0. */
5399 if (rtx_equal_p (subtarget
, op0
))
5402 tem
= expand_binop (mode
, sub_optab
, op0
, const1_rtx
, subtarget
, 0,
5405 tem
= expand_binop (mode
, ior_optab
, op0
, tem
, subtarget
, 0,
5409 /* To see if A > 0, compute (((signed) A) << BITS) - A, where BITS is the
5410 number of bits in the mode of OP0, minus one. */
5414 if (rtx_equal_p (subtarget
, op0
))
5417 tem
= expand_shift (RSHIFT_EXPR
, mode
, op0
,
5418 size_int (GET_MODE_BITSIZE (mode
) - 1),
5420 tem
= expand_binop (mode
, sub_optab
, tem
, op0
, subtarget
, 0,
5424 if (code
== EQ
|| code
== NE
)
5426 /* For EQ or NE, one way to do the comparison is to apply an operation
5427 that converts the operand into a positive number if it is nonzero
5428 or zero if it was originally zero. Then, for EQ, we subtract 1 and
5429 for NE we negate. This puts the result in the sign bit. Then we
5430 normalize with a shift, if needed.
5432 Two operations that can do the above actions are ABS and FFS, so try
5433 them. If that doesn't work, and MODE is smaller than a full word,
5434 we can use zero-extension to the wider mode (an unsigned conversion)
5435 as the operation. */
5437 /* Note that ABS doesn't yield a positive number for INT_MIN, but
5438 that is compensated by the subsequent overflow when subtracting
5441 if (abs_optab
->handlers
[mode
].insn_code
!= CODE_FOR_nothing
)
5442 tem
= expand_unop (mode
, abs_optab
, op0
, subtarget
, 1);
5443 else if (ffs_optab
->handlers
[mode
].insn_code
!= CODE_FOR_nothing
)
5444 tem
= expand_unop (mode
, ffs_optab
, op0
, subtarget
, 1);
5445 else if (GET_MODE_SIZE (mode
) < UNITS_PER_WORD
)
5447 tem
= convert_modes (word_mode
, mode
, op0
, 1);
5454 tem
= expand_binop (mode
, sub_optab
, tem
, const1_rtx
, subtarget
,
5457 tem
= expand_unop (mode
, neg_optab
, tem
, subtarget
, 0);
5460 /* If we couldn't do it that way, for NE we can "or" the two's complement
5461 of the value with itself. For EQ, we take the one's complement of
5462 that "or", which is an extra insn, so we only handle EQ if branches
5465 if (tem
== 0 && (code
== NE
|| BRANCH_COST
> 1))
5467 if (rtx_equal_p (subtarget
, op0
))
5470 tem
= expand_unop (mode
, neg_optab
, op0
, subtarget
, 0);
5471 tem
= expand_binop (mode
, ior_optab
, tem
, op0
, subtarget
, 0,
5474 if (tem
&& code
== EQ
)
5475 tem
= expand_unop (mode
, one_cmpl_optab
, tem
, subtarget
, 0);
5479 if (tem
&& normalizep
)
5480 tem
= expand_shift (RSHIFT_EXPR
, mode
, tem
,
5481 size_int (GET_MODE_BITSIZE (mode
) - 1),
5482 subtarget
, normalizep
== 1);
5486 if (GET_MODE (tem
) != target_mode
)
5488 convert_move (target
, tem
, 0);
5491 else if (!subtarget
)
5493 emit_move_insn (target
, tem
);
5498 delete_insns_since (last
);
5503 /* Like emit_store_flag, but always succeeds. */
5506 emit_store_flag_force (rtx target
, enum rtx_code code
, rtx op0
, rtx op1
,
5507 enum machine_mode mode
, int unsignedp
, int normalizep
)
5511 /* First see if emit_store_flag can do the job. */
5512 tem
= emit_store_flag (target
, code
, op0
, op1
, mode
, unsignedp
, normalizep
);
5516 if (normalizep
== 0)
5519 /* If this failed, we have to do this with set/compare/jump/set code. */
5522 || reg_mentioned_p (target
, op0
) || reg_mentioned_p (target
, op1
))
5523 target
= gen_reg_rtx (GET_MODE (target
));
5525 emit_move_insn (target
, const1_rtx
);
5526 label
= gen_label_rtx ();
5527 do_compare_rtx_and_jump (op0
, op1
, code
, unsignedp
, mode
, NULL_RTX
,
5530 emit_move_insn (target
, const0_rtx
);
5536 /* Perform possibly multi-word comparison and conditional jump to LABEL
5537 if ARG1 OP ARG2 true where ARG1 and ARG2 are of mode MODE
5539 The algorithm is based on the code in expr.c:do_jump.
5541 Note that this does not perform a general comparison. Only
5542 variants generated within expmed.c are correctly handled, others
5543 could be handled if needed. */
5546 do_cmp_and_jump (rtx arg1
, rtx arg2
, enum rtx_code op
, enum machine_mode mode
,
5549 /* If this mode is an integer too wide to compare properly,
5550 compare word by word. Rely on cse to optimize constant cases. */
5552 if (GET_MODE_CLASS (mode
) == MODE_INT
5553 && ! can_compare_p (op
, mode
, ccp_jump
))
5555 rtx label2
= gen_label_rtx ();
5560 do_jump_by_parts_greater_rtx (mode
, 1, arg2
, arg1
, label2
, label
);
5564 do_jump_by_parts_greater_rtx (mode
, 1, arg1
, arg2
, label
, label2
);
5568 do_jump_by_parts_greater_rtx (mode
, 0, arg2
, arg1
, label2
, label
);
5572 do_jump_by_parts_greater_rtx (mode
, 0, arg1
, arg2
, label2
, label
);
5576 do_jump_by_parts_greater_rtx (mode
, 0, arg2
, arg1
, label
, label2
);
5579 /* do_jump_by_parts_equality_rtx compares with zero. Luckily
5580 that's the only equality operations we do */
5582 gcc_assert (arg2
== const0_rtx
&& mode
== GET_MODE(arg1
));
5583 do_jump_by_parts_equality_rtx (arg1
, label2
, label
);
5587 gcc_assert (arg2
== const0_rtx
&& mode
== GET_MODE(arg1
));
5588 do_jump_by_parts_equality_rtx (arg1
, label
, label2
);
5595 emit_label (label2
);
5598 emit_cmp_and_jump_insns (arg1
, arg2
, op
, NULL_RTX
, mode
, 0, label
);