* common.opt (optimize_fast): New Variable.
[official-gcc.git] / gcc / var-tracking.c
blob7543a5a0b86ab285da514d95f78fc7ffc38279e6
1 /* Variable tracking routines for the GNU compiler.
2 Copyright (C) 2002, 2003, 2004, 2005, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* This file contains the variable tracking pass. It computes where
22 variables are located (which registers or where in memory) at each position
23 in instruction stream and emits notes describing the locations.
24 Debug information (DWARF2 location lists) is finally generated from
25 these notes.
26 With this debug information, it is possible to show variables
27 even when debugging optimized code.
29 How does the variable tracking pass work?
31 First, it scans RTL code for uses, stores and clobbers (register/memory
32 references in instructions), for call insns and for stack adjustments
33 separately for each basic block and saves them to an array of micro
34 operations.
35 The micro operations of one instruction are ordered so that
36 pre-modifying stack adjustment < use < use with no var < call insn <
37 < set < clobber < post-modifying stack adjustment
39 Then, a forward dataflow analysis is performed to find out how locations
40 of variables change through code and to propagate the variable locations
41 along control flow graph.
42 The IN set for basic block BB is computed as a union of OUT sets of BB's
43 predecessors, the OUT set for BB is copied from the IN set for BB and
44 is changed according to micro operations in BB.
46 The IN and OUT sets for basic blocks consist of a current stack adjustment
47 (used for adjusting offset of variables addressed using stack pointer),
48 the table of structures describing the locations of parts of a variable
49 and for each physical register a linked list for each physical register.
50 The linked list is a list of variable parts stored in the register,
51 i.e. it is a list of triplets (reg, decl, offset) where decl is
52 REG_EXPR (reg) and offset is REG_OFFSET (reg). The linked list is used for
53 effective deleting appropriate variable parts when we set or clobber the
54 register.
56 There may be more than one variable part in a register. The linked lists
57 should be pretty short so it is a good data structure here.
58 For example in the following code, register allocator may assign same
59 register to variables A and B, and both of them are stored in the same
60 register in CODE:
62 if (cond)
63 set A;
64 else
65 set B;
66 CODE;
67 if (cond)
68 use A;
69 else
70 use B;
72 Finally, the NOTE_INSN_VAR_LOCATION notes describing the variable locations
73 are emitted to appropriate positions in RTL code. Each such a note describes
74 the location of one variable at the point in instruction stream where the
75 note is. There is no need to emit a note for each variable before each
76 instruction, we only emit these notes where the location of variable changes
77 (this means that we also emit notes for changes between the OUT set of the
78 previous block and the IN set of the current block).
80 The notes consist of two parts:
81 1. the declaration (from REG_EXPR or MEM_EXPR)
82 2. the location of a variable - it is either a simple register/memory
83 reference (for simple variables, for example int),
84 or a parallel of register/memory references (for a large variables
85 which consist of several parts, for example long long).
89 #include "config.h"
90 #include "system.h"
91 #include "coretypes.h"
92 #include "tm.h"
93 #include "rtl.h"
94 #include "tree.h"
95 #include "tm_p.h"
96 #include "hard-reg-set.h"
97 #include "basic-block.h"
98 #include "flags.h"
99 #include "output.h"
100 #include "insn-config.h"
101 #include "reload.h"
102 #include "sbitmap.h"
103 #include "alloc-pool.h"
104 #include "fibheap.h"
105 #include "hashtab.h"
106 #include "regs.h"
107 #include "expr.h"
108 #include "timevar.h"
109 #include "tree-pass.h"
110 #include "tree-flow.h"
111 #include "cselib.h"
112 #include "target.h"
113 #include "params.h"
114 #include "diagnostic.h"
115 #include "tree-pretty-print.h"
116 #include "pointer-set.h"
117 #include "recog.h"
119 /* var-tracking.c assumes that tree code with the same value as VALUE rtx code
120 has no chance to appear in REG_EXPR/MEM_EXPRs and isn't a decl.
121 Currently the value is the same as IDENTIFIER_NODE, which has such
122 a property. If this compile time assertion ever fails, make sure that
123 the new tree code that equals (int) VALUE has the same property. */
124 extern char check_value_val[(int) VALUE == (int) IDENTIFIER_NODE ? 1 : -1];
126 /* Type of micro operation. */
127 enum micro_operation_type
129 MO_USE, /* Use location (REG or MEM). */
130 MO_USE_NO_VAR,/* Use location which is not associated with a variable
131 or the variable is not trackable. */
132 MO_VAL_USE, /* Use location which is associated with a value. */
133 MO_VAL_LOC, /* Use location which appears in a debug insn. */
134 MO_VAL_SET, /* Set location associated with a value. */
135 MO_SET, /* Set location. */
136 MO_COPY, /* Copy the same portion of a variable from one
137 location to another. */
138 MO_CLOBBER, /* Clobber location. */
139 MO_CALL, /* Call insn. */
140 MO_ADJUST /* Adjust stack pointer. */
144 static const char * const ATTRIBUTE_UNUSED
145 micro_operation_type_name[] = {
146 "MO_USE",
147 "MO_USE_NO_VAR",
148 "MO_VAL_USE",
149 "MO_VAL_LOC",
150 "MO_VAL_SET",
151 "MO_SET",
152 "MO_COPY",
153 "MO_CLOBBER",
154 "MO_CALL",
155 "MO_ADJUST"
158 /* Where shall the note be emitted? BEFORE or AFTER the instruction.
159 Notes emitted as AFTER_CALL are to take effect during the call,
160 rather than after the call. */
161 enum emit_note_where
163 EMIT_NOTE_BEFORE_INSN,
164 EMIT_NOTE_AFTER_INSN,
165 EMIT_NOTE_AFTER_CALL_INSN
168 /* Structure holding information about micro operation. */
169 typedef struct micro_operation_def
171 /* Type of micro operation. */
172 enum micro_operation_type type;
174 /* The instruction which the micro operation is in, for MO_USE,
175 MO_USE_NO_VAR, MO_CALL and MO_ADJUST, or the subsequent
176 instruction or note in the original flow (before any var-tracking
177 notes are inserted, to simplify emission of notes), for MO_SET
178 and MO_CLOBBER. */
179 rtx insn;
181 union {
182 /* Location. For MO_SET and MO_COPY, this is the SET that
183 performs the assignment, if known, otherwise it is the target
184 of the assignment. For MO_VAL_USE and MO_VAL_SET, it is a
185 CONCAT of the VALUE and the LOC associated with it. For
186 MO_VAL_LOC, it is a CONCAT of the VALUE and the VAR_LOCATION
187 associated with it. */
188 rtx loc;
190 /* Stack adjustment. */
191 HOST_WIDE_INT adjust;
192 } u;
193 } micro_operation;
195 DEF_VEC_O(micro_operation);
196 DEF_VEC_ALLOC_O(micro_operation,heap);
198 /* A declaration of a variable, or an RTL value being handled like a
199 declaration. */
200 typedef void *decl_or_value;
202 /* Structure for passing some other parameters to function
203 emit_note_insn_var_location. */
204 typedef struct emit_note_data_def
206 /* The instruction which the note will be emitted before/after. */
207 rtx insn;
209 /* Where the note will be emitted (before/after insn)? */
210 enum emit_note_where where;
212 /* The variables and values active at this point. */
213 htab_t vars;
214 } emit_note_data;
216 /* Description of location of a part of a variable. The content of a physical
217 register is described by a chain of these structures.
218 The chains are pretty short (usually 1 or 2 elements) and thus
219 chain is the best data structure. */
220 typedef struct attrs_def
222 /* Pointer to next member of the list. */
223 struct attrs_def *next;
225 /* The rtx of register. */
226 rtx loc;
228 /* The declaration corresponding to LOC. */
229 decl_or_value dv;
231 /* Offset from start of DECL. */
232 HOST_WIDE_INT offset;
233 } *attrs;
235 /* Structure holding a refcounted hash table. If refcount > 1,
236 it must be first unshared before modified. */
237 typedef struct shared_hash_def
239 /* Reference count. */
240 int refcount;
242 /* Actual hash table. */
243 htab_t htab;
244 } *shared_hash;
246 /* Structure holding the IN or OUT set for a basic block. */
247 typedef struct dataflow_set_def
249 /* Adjustment of stack offset. */
250 HOST_WIDE_INT stack_adjust;
252 /* Attributes for registers (lists of attrs). */
253 attrs regs[FIRST_PSEUDO_REGISTER];
255 /* Variable locations. */
256 shared_hash vars;
258 /* Vars that is being traversed. */
259 shared_hash traversed_vars;
260 } dataflow_set;
262 /* The structure (one for each basic block) containing the information
263 needed for variable tracking. */
264 typedef struct variable_tracking_info_def
266 /* The vector of micro operations. */
267 VEC(micro_operation, heap) *mos;
269 /* The IN and OUT set for dataflow analysis. */
270 dataflow_set in;
271 dataflow_set out;
273 /* The permanent-in dataflow set for this block. This is used to
274 hold values for which we had to compute entry values. ??? This
275 should probably be dynamically allocated, to avoid using more
276 memory in non-debug builds. */
277 dataflow_set *permp;
279 /* Has the block been visited in DFS? */
280 bool visited;
282 /* Has the block been flooded in VTA? */
283 bool flooded;
285 } *variable_tracking_info;
287 /* Structure for chaining the locations. */
288 typedef struct location_chain_def
290 /* Next element in the chain. */
291 struct location_chain_def *next;
293 /* The location (REG, MEM or VALUE). */
294 rtx loc;
296 /* The "value" stored in this location. */
297 rtx set_src;
299 /* Initialized? */
300 enum var_init_status init;
301 } *location_chain;
303 /* Structure describing one part of variable. */
304 typedef struct variable_part_def
306 /* Chain of locations of the part. */
307 location_chain loc_chain;
309 /* Location which was last emitted to location list. */
310 rtx cur_loc;
312 /* The offset in the variable. */
313 HOST_WIDE_INT offset;
314 } variable_part;
316 /* Maximum number of location parts. */
317 #define MAX_VAR_PARTS 16
319 /* Structure describing where the variable is located. */
320 typedef struct variable_def
322 /* The declaration of the variable, or an RTL value being handled
323 like a declaration. */
324 decl_or_value dv;
326 /* Reference count. */
327 int refcount;
329 /* Number of variable parts. */
330 char n_var_parts;
332 /* True if this variable changed (any of its) cur_loc fields
333 during the current emit_notes_for_changes resp.
334 emit_notes_for_differences call. */
335 bool cur_loc_changed;
337 /* True if this variable_def struct is currently in the
338 changed_variables hash table. */
339 bool in_changed_variables;
341 /* The variable parts. */
342 variable_part var_part[1];
343 } *variable;
344 typedef const struct variable_def *const_variable;
346 /* Structure for chaining backlinks from referenced VALUEs to
347 DVs that are referencing them. */
348 typedef struct value_chain_def
350 /* Next value_chain entry. */
351 struct value_chain_def *next;
353 /* The declaration of the variable, or an RTL value
354 being handled like a declaration, whose var_parts[0].loc_chain
355 references the VALUE owning this value_chain. */
356 decl_or_value dv;
358 /* Reference count. */
359 int refcount;
360 } *value_chain;
361 typedef const struct value_chain_def *const_value_chain;
363 /* Pointer to the BB's information specific to variable tracking pass. */
364 #define VTI(BB) ((variable_tracking_info) (BB)->aux)
366 /* Macro to access MEM_OFFSET as an HOST_WIDE_INT. Evaluates MEM twice. */
367 #define INT_MEM_OFFSET(mem) (MEM_OFFSET (mem) ? INTVAL (MEM_OFFSET (mem)) : 0)
369 /* Alloc pool for struct attrs_def. */
370 static alloc_pool attrs_pool;
372 /* Alloc pool for struct variable_def with MAX_VAR_PARTS entries. */
373 static alloc_pool var_pool;
375 /* Alloc pool for struct variable_def with a single var_part entry. */
376 static alloc_pool valvar_pool;
378 /* Alloc pool for struct location_chain_def. */
379 static alloc_pool loc_chain_pool;
381 /* Alloc pool for struct shared_hash_def. */
382 static alloc_pool shared_hash_pool;
384 /* Alloc pool for struct value_chain_def. */
385 static alloc_pool value_chain_pool;
387 /* Changed variables, notes will be emitted for them. */
388 static htab_t changed_variables;
390 /* Links from VALUEs to DVs referencing them in their current loc_chains. */
391 static htab_t value_chains;
393 /* Shall notes be emitted? */
394 static bool emit_notes;
396 /* Empty shared hashtable. */
397 static shared_hash empty_shared_hash;
399 /* Scratch register bitmap used by cselib_expand_value_rtx. */
400 static bitmap scratch_regs = NULL;
402 /* Variable used to tell whether cselib_process_insn called our hook. */
403 static bool cselib_hook_called;
405 /* Local function prototypes. */
406 static void stack_adjust_offset_pre_post (rtx, HOST_WIDE_INT *,
407 HOST_WIDE_INT *);
408 static void insn_stack_adjust_offset_pre_post (rtx, HOST_WIDE_INT *,
409 HOST_WIDE_INT *);
410 static bool vt_stack_adjustments (void);
411 static hashval_t variable_htab_hash (const void *);
412 static int variable_htab_eq (const void *, const void *);
413 static void variable_htab_free (void *);
415 static void init_attrs_list_set (attrs *);
416 static void attrs_list_clear (attrs *);
417 static attrs attrs_list_member (attrs, decl_or_value, HOST_WIDE_INT);
418 static void attrs_list_insert (attrs *, decl_or_value, HOST_WIDE_INT, rtx);
419 static void attrs_list_copy (attrs *, attrs);
420 static void attrs_list_union (attrs *, attrs);
422 static void **unshare_variable (dataflow_set *set, void **slot, variable var,
423 enum var_init_status);
424 static void vars_copy (htab_t, htab_t);
425 static tree var_debug_decl (tree);
426 static void var_reg_set (dataflow_set *, rtx, enum var_init_status, rtx);
427 static void var_reg_delete_and_set (dataflow_set *, rtx, bool,
428 enum var_init_status, rtx);
429 static void var_reg_delete (dataflow_set *, rtx, bool);
430 static void var_regno_delete (dataflow_set *, int);
431 static void var_mem_set (dataflow_set *, rtx, enum var_init_status, rtx);
432 static void var_mem_delete_and_set (dataflow_set *, rtx, bool,
433 enum var_init_status, rtx);
434 static void var_mem_delete (dataflow_set *, rtx, bool);
436 static void dataflow_set_init (dataflow_set *);
437 static void dataflow_set_clear (dataflow_set *);
438 static void dataflow_set_copy (dataflow_set *, dataflow_set *);
439 static int variable_union_info_cmp_pos (const void *, const void *);
440 static void dataflow_set_union (dataflow_set *, dataflow_set *);
441 static location_chain find_loc_in_1pdv (rtx, variable, htab_t);
442 static bool canon_value_cmp (rtx, rtx);
443 static int loc_cmp (rtx, rtx);
444 static bool variable_part_different_p (variable_part *, variable_part *);
445 static bool onepart_variable_different_p (variable, variable);
446 static bool variable_different_p (variable, variable);
447 static bool dataflow_set_different (dataflow_set *, dataflow_set *);
448 static void dataflow_set_destroy (dataflow_set *);
450 static bool contains_symbol_ref (rtx);
451 static bool track_expr_p (tree, bool);
452 static bool same_variable_part_p (rtx, tree, HOST_WIDE_INT);
453 static int add_uses (rtx *, void *);
454 static void add_uses_1 (rtx *, void *);
455 static void add_stores (rtx, const_rtx, void *);
456 static bool compute_bb_dataflow (basic_block);
457 static bool vt_find_locations (void);
459 static void dump_attrs_list (attrs);
460 static int dump_var_slot (void **, void *);
461 static void dump_var (variable);
462 static void dump_vars (htab_t);
463 static void dump_dataflow_set (dataflow_set *);
464 static void dump_dataflow_sets (void);
466 static void variable_was_changed (variable, dataflow_set *);
467 static void **set_slot_part (dataflow_set *, rtx, void **,
468 decl_or_value, HOST_WIDE_INT,
469 enum var_init_status, rtx);
470 static void set_variable_part (dataflow_set *, rtx,
471 decl_or_value, HOST_WIDE_INT,
472 enum var_init_status, rtx, enum insert_option);
473 static void **clobber_slot_part (dataflow_set *, rtx,
474 void **, HOST_WIDE_INT, rtx);
475 static void clobber_variable_part (dataflow_set *, rtx,
476 decl_or_value, HOST_WIDE_INT, rtx);
477 static void **delete_slot_part (dataflow_set *, rtx, void **, HOST_WIDE_INT);
478 static void delete_variable_part (dataflow_set *, rtx,
479 decl_or_value, HOST_WIDE_INT);
480 static int emit_note_insn_var_location (void **, void *);
481 static void emit_notes_for_changes (rtx, enum emit_note_where, shared_hash);
482 static int emit_notes_for_differences_1 (void **, void *);
483 static int emit_notes_for_differences_2 (void **, void *);
484 static void emit_notes_for_differences (rtx, dataflow_set *, dataflow_set *);
485 static void emit_notes_in_bb (basic_block, dataflow_set *);
486 static void vt_emit_notes (void);
488 static bool vt_get_decl_and_offset (rtx, tree *, HOST_WIDE_INT *);
489 static void vt_add_function_parameters (void);
490 static bool vt_initialize (void);
491 static void vt_finalize (void);
493 /* Given a SET, calculate the amount of stack adjustment it contains
494 PRE- and POST-modifying stack pointer.
495 This function is similar to stack_adjust_offset. */
497 static void
498 stack_adjust_offset_pre_post (rtx pattern, HOST_WIDE_INT *pre,
499 HOST_WIDE_INT *post)
501 rtx src = SET_SRC (pattern);
502 rtx dest = SET_DEST (pattern);
503 enum rtx_code code;
505 if (dest == stack_pointer_rtx)
507 /* (set (reg sp) (plus (reg sp) (const_int))) */
508 code = GET_CODE (src);
509 if (! (code == PLUS || code == MINUS)
510 || XEXP (src, 0) != stack_pointer_rtx
511 || !CONST_INT_P (XEXP (src, 1)))
512 return;
514 if (code == MINUS)
515 *post += INTVAL (XEXP (src, 1));
516 else
517 *post -= INTVAL (XEXP (src, 1));
519 else if (MEM_P (dest))
521 /* (set (mem (pre_dec (reg sp))) (foo)) */
522 src = XEXP (dest, 0);
523 code = GET_CODE (src);
525 switch (code)
527 case PRE_MODIFY:
528 case POST_MODIFY:
529 if (XEXP (src, 0) == stack_pointer_rtx)
531 rtx val = XEXP (XEXP (src, 1), 1);
532 /* We handle only adjustments by constant amount. */
533 gcc_assert (GET_CODE (XEXP (src, 1)) == PLUS &&
534 CONST_INT_P (val));
536 if (code == PRE_MODIFY)
537 *pre -= INTVAL (val);
538 else
539 *post -= INTVAL (val);
540 break;
542 return;
544 case PRE_DEC:
545 if (XEXP (src, 0) == stack_pointer_rtx)
547 *pre += GET_MODE_SIZE (GET_MODE (dest));
548 break;
550 return;
552 case POST_DEC:
553 if (XEXP (src, 0) == stack_pointer_rtx)
555 *post += GET_MODE_SIZE (GET_MODE (dest));
556 break;
558 return;
560 case PRE_INC:
561 if (XEXP (src, 0) == stack_pointer_rtx)
563 *pre -= GET_MODE_SIZE (GET_MODE (dest));
564 break;
566 return;
568 case POST_INC:
569 if (XEXP (src, 0) == stack_pointer_rtx)
571 *post -= GET_MODE_SIZE (GET_MODE (dest));
572 break;
574 return;
576 default:
577 return;
582 /* Given an INSN, calculate the amount of stack adjustment it contains
583 PRE- and POST-modifying stack pointer. */
585 static void
586 insn_stack_adjust_offset_pre_post (rtx insn, HOST_WIDE_INT *pre,
587 HOST_WIDE_INT *post)
589 rtx pattern;
591 *pre = 0;
592 *post = 0;
594 pattern = PATTERN (insn);
595 if (RTX_FRAME_RELATED_P (insn))
597 rtx expr = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
598 if (expr)
599 pattern = XEXP (expr, 0);
602 if (GET_CODE (pattern) == SET)
603 stack_adjust_offset_pre_post (pattern, pre, post);
604 else if (GET_CODE (pattern) == PARALLEL
605 || GET_CODE (pattern) == SEQUENCE)
607 int i;
609 /* There may be stack adjustments inside compound insns. Search
610 for them. */
611 for ( i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
612 if (GET_CODE (XVECEXP (pattern, 0, i)) == SET)
613 stack_adjust_offset_pre_post (XVECEXP (pattern, 0, i), pre, post);
617 /* Compute stack adjustments for all blocks by traversing DFS tree.
618 Return true when the adjustments on all incoming edges are consistent.
619 Heavily borrowed from pre_and_rev_post_order_compute. */
621 static bool
622 vt_stack_adjustments (void)
624 edge_iterator *stack;
625 int sp;
627 /* Initialize entry block. */
628 VTI (ENTRY_BLOCK_PTR)->visited = true;
629 VTI (ENTRY_BLOCK_PTR)->in.stack_adjust = INCOMING_FRAME_SP_OFFSET;
630 VTI (ENTRY_BLOCK_PTR)->out.stack_adjust = INCOMING_FRAME_SP_OFFSET;
632 /* Allocate stack for back-tracking up CFG. */
633 stack = XNEWVEC (edge_iterator, n_basic_blocks + 1);
634 sp = 0;
636 /* Push the first edge on to the stack. */
637 stack[sp++] = ei_start (ENTRY_BLOCK_PTR->succs);
639 while (sp)
641 edge_iterator ei;
642 basic_block src;
643 basic_block dest;
645 /* Look at the edge on the top of the stack. */
646 ei = stack[sp - 1];
647 src = ei_edge (ei)->src;
648 dest = ei_edge (ei)->dest;
650 /* Check if the edge destination has been visited yet. */
651 if (!VTI (dest)->visited)
653 rtx insn;
654 HOST_WIDE_INT pre, post, offset;
655 VTI (dest)->visited = true;
656 VTI (dest)->in.stack_adjust = offset = VTI (src)->out.stack_adjust;
658 if (dest != EXIT_BLOCK_PTR)
659 for (insn = BB_HEAD (dest);
660 insn != NEXT_INSN (BB_END (dest));
661 insn = NEXT_INSN (insn))
662 if (INSN_P (insn))
664 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
665 offset += pre + post;
668 VTI (dest)->out.stack_adjust = offset;
670 if (EDGE_COUNT (dest->succs) > 0)
671 /* Since the DEST node has been visited for the first
672 time, check its successors. */
673 stack[sp++] = ei_start (dest->succs);
675 else
677 /* Check whether the adjustments on the edges are the same. */
678 if (VTI (dest)->in.stack_adjust != VTI (src)->out.stack_adjust)
680 free (stack);
681 return false;
684 if (! ei_one_before_end_p (ei))
685 /* Go to the next edge. */
686 ei_next (&stack[sp - 1]);
687 else
688 /* Return to previous level if there are no more edges. */
689 sp--;
693 free (stack);
694 return true;
697 /* arg_pointer_rtx resp. frame_pointer_rtx if stack_pointer_rtx or
698 hard_frame_pointer_rtx is being mapped to it and offset for it. */
699 static rtx cfa_base_rtx;
700 static HOST_WIDE_INT cfa_base_offset;
702 /* Compute a CFA-based value for the stack pointer. */
704 static inline rtx
705 compute_cfa_pointer (HOST_WIDE_INT adjustment)
707 return plus_constant (cfa_base_rtx, adjustment + cfa_base_offset);
710 /* Adjustment for hard_frame_pointer_rtx to cfa base reg,
711 or -1 if the replacement shouldn't be done. */
712 static HOST_WIDE_INT hard_frame_pointer_adjustment = -1;
714 /* Data for adjust_mems callback. */
716 struct adjust_mem_data
718 bool store;
719 enum machine_mode mem_mode;
720 HOST_WIDE_INT stack_adjust;
721 rtx side_effects;
724 /* Helper for adjust_mems. Return 1 if *loc is unsuitable for
725 transformation of wider mode arithmetics to narrower mode,
726 -1 if it is suitable and subexpressions shouldn't be
727 traversed and 0 if it is suitable and subexpressions should
728 be traversed. Called through for_each_rtx. */
730 static int
731 use_narrower_mode_test (rtx *loc, void *data)
733 rtx subreg = (rtx) data;
735 if (CONSTANT_P (*loc))
736 return -1;
737 switch (GET_CODE (*loc))
739 case REG:
740 if (cselib_lookup (*loc, GET_MODE (SUBREG_REG (subreg)), 0, VOIDmode))
741 return 1;
742 return -1;
743 case PLUS:
744 case MINUS:
745 case MULT:
746 return 0;
747 case ASHIFT:
748 if (for_each_rtx (&XEXP (*loc, 0), use_narrower_mode_test, data))
749 return 1;
750 else
751 return -1;
752 default:
753 return 1;
757 /* Transform X into narrower mode MODE from wider mode WMODE. */
759 static rtx
760 use_narrower_mode (rtx x, enum machine_mode mode, enum machine_mode wmode)
762 rtx op0, op1;
763 if (CONSTANT_P (x))
764 return lowpart_subreg (mode, x, wmode);
765 switch (GET_CODE (x))
767 case REG:
768 return lowpart_subreg (mode, x, wmode);
769 case PLUS:
770 case MINUS:
771 case MULT:
772 op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
773 op1 = use_narrower_mode (XEXP (x, 1), mode, wmode);
774 return simplify_gen_binary (GET_CODE (x), mode, op0, op1);
775 case ASHIFT:
776 op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
777 return simplify_gen_binary (ASHIFT, mode, op0, XEXP (x, 1));
778 default:
779 gcc_unreachable ();
783 /* Helper function for adjusting used MEMs. */
785 static rtx
786 adjust_mems (rtx loc, const_rtx old_rtx, void *data)
788 struct adjust_mem_data *amd = (struct adjust_mem_data *) data;
789 rtx mem, addr = loc, tem;
790 enum machine_mode mem_mode_save;
791 bool store_save;
792 switch (GET_CODE (loc))
794 case REG:
795 /* Don't do any sp or fp replacements outside of MEM addresses
796 on the LHS. */
797 if (amd->mem_mode == VOIDmode && amd->store)
798 return loc;
799 if (loc == stack_pointer_rtx
800 && !frame_pointer_needed
801 && cfa_base_rtx)
802 return compute_cfa_pointer (amd->stack_adjust);
803 else if (loc == hard_frame_pointer_rtx
804 && frame_pointer_needed
805 && hard_frame_pointer_adjustment != -1
806 && cfa_base_rtx)
807 return compute_cfa_pointer (hard_frame_pointer_adjustment);
808 gcc_checking_assert (loc != virtual_incoming_args_rtx);
809 return loc;
810 case MEM:
811 mem = loc;
812 if (!amd->store)
814 mem = targetm.delegitimize_address (mem);
815 if (mem != loc && !MEM_P (mem))
816 return simplify_replace_fn_rtx (mem, old_rtx, adjust_mems, data);
819 addr = XEXP (mem, 0);
820 mem_mode_save = amd->mem_mode;
821 amd->mem_mode = GET_MODE (mem);
822 store_save = amd->store;
823 amd->store = false;
824 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
825 amd->store = store_save;
826 amd->mem_mode = mem_mode_save;
827 if (mem == loc)
828 addr = targetm.delegitimize_address (addr);
829 if (addr != XEXP (mem, 0))
830 mem = replace_equiv_address_nv (mem, addr);
831 if (!amd->store)
832 mem = avoid_constant_pool_reference (mem);
833 return mem;
834 case PRE_INC:
835 case PRE_DEC:
836 addr = gen_rtx_PLUS (GET_MODE (loc), XEXP (loc, 0),
837 GEN_INT (GET_CODE (loc) == PRE_INC
838 ? GET_MODE_SIZE (amd->mem_mode)
839 : -GET_MODE_SIZE (amd->mem_mode)));
840 case POST_INC:
841 case POST_DEC:
842 if (addr == loc)
843 addr = XEXP (loc, 0);
844 gcc_assert (amd->mem_mode != VOIDmode && amd->mem_mode != BLKmode);
845 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
846 tem = gen_rtx_PLUS (GET_MODE (loc), XEXP (loc, 0),
847 GEN_INT ((GET_CODE (loc) == PRE_INC
848 || GET_CODE (loc) == POST_INC)
849 ? GET_MODE_SIZE (amd->mem_mode)
850 : -GET_MODE_SIZE (amd->mem_mode)));
851 amd->side_effects = alloc_EXPR_LIST (0,
852 gen_rtx_SET (VOIDmode,
853 XEXP (loc, 0),
854 tem),
855 amd->side_effects);
856 return addr;
857 case PRE_MODIFY:
858 addr = XEXP (loc, 1);
859 case POST_MODIFY:
860 if (addr == loc)
861 addr = XEXP (loc, 0);
862 gcc_assert (amd->mem_mode != VOIDmode);
863 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
864 amd->side_effects = alloc_EXPR_LIST (0,
865 gen_rtx_SET (VOIDmode,
866 XEXP (loc, 0),
867 XEXP (loc, 1)),
868 amd->side_effects);
869 return addr;
870 case SUBREG:
871 /* First try without delegitimization of whole MEMs and
872 avoid_constant_pool_reference, which is more likely to succeed. */
873 store_save = amd->store;
874 amd->store = true;
875 addr = simplify_replace_fn_rtx (SUBREG_REG (loc), old_rtx, adjust_mems,
876 data);
877 amd->store = store_save;
878 mem = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
879 if (mem == SUBREG_REG (loc))
881 tem = loc;
882 goto finish_subreg;
884 tem = simplify_gen_subreg (GET_MODE (loc), mem,
885 GET_MODE (SUBREG_REG (loc)),
886 SUBREG_BYTE (loc));
887 if (tem)
888 goto finish_subreg;
889 tem = simplify_gen_subreg (GET_MODE (loc), addr,
890 GET_MODE (SUBREG_REG (loc)),
891 SUBREG_BYTE (loc));
892 if (tem == NULL_RTX)
893 tem = gen_rtx_raw_SUBREG (GET_MODE (loc), addr, SUBREG_BYTE (loc));
894 finish_subreg:
895 if (MAY_HAVE_DEBUG_INSNS
896 && GET_CODE (tem) == SUBREG
897 && (GET_CODE (SUBREG_REG (tem)) == PLUS
898 || GET_CODE (SUBREG_REG (tem)) == MINUS
899 || GET_CODE (SUBREG_REG (tem)) == MULT
900 || GET_CODE (SUBREG_REG (tem)) == ASHIFT)
901 && GET_MODE_CLASS (GET_MODE (tem)) == MODE_INT
902 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (tem))) == MODE_INT
903 && GET_MODE_SIZE (GET_MODE (tem))
904 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (tem)))
905 && subreg_lowpart_p (tem)
906 && !for_each_rtx (&SUBREG_REG (tem), use_narrower_mode_test, tem))
907 return use_narrower_mode (SUBREG_REG (tem), GET_MODE (tem),
908 GET_MODE (SUBREG_REG (tem)));
909 return tem;
910 case ASM_OPERANDS:
911 /* Don't do any replacements in second and following
912 ASM_OPERANDS of inline-asm with multiple sets.
913 ASM_OPERANDS_INPUT_VEC, ASM_OPERANDS_INPUT_CONSTRAINT_VEC
914 and ASM_OPERANDS_LABEL_VEC need to be equal between
915 all the ASM_OPERANDs in the insn and adjust_insn will
916 fix this up. */
917 if (ASM_OPERANDS_OUTPUT_IDX (loc) != 0)
918 return loc;
919 break;
920 default:
921 break;
923 return NULL_RTX;
926 /* Helper function for replacement of uses. */
928 static void
929 adjust_mem_uses (rtx *x, void *data)
931 rtx new_x = simplify_replace_fn_rtx (*x, NULL_RTX, adjust_mems, data);
932 if (new_x != *x)
933 validate_change (NULL_RTX, x, new_x, true);
936 /* Helper function for replacement of stores. */
938 static void
939 adjust_mem_stores (rtx loc, const_rtx expr, void *data)
941 if (MEM_P (loc))
943 rtx new_dest = simplify_replace_fn_rtx (SET_DEST (expr), NULL_RTX,
944 adjust_mems, data);
945 if (new_dest != SET_DEST (expr))
947 rtx xexpr = CONST_CAST_RTX (expr);
948 validate_change (NULL_RTX, &SET_DEST (xexpr), new_dest, true);
953 /* Simplify INSN. Remove all {PRE,POST}_{INC,DEC,MODIFY} rtxes,
954 replace them with their value in the insn and add the side-effects
955 as other sets to the insn. */
957 static void
958 adjust_insn (basic_block bb, rtx insn)
960 struct adjust_mem_data amd;
961 rtx set;
962 amd.mem_mode = VOIDmode;
963 amd.stack_adjust = -VTI (bb)->out.stack_adjust;
964 amd.side_effects = NULL_RTX;
966 amd.store = true;
967 note_stores (PATTERN (insn), adjust_mem_stores, &amd);
969 amd.store = false;
970 if (GET_CODE (PATTERN (insn)) == PARALLEL
971 && asm_noperands (PATTERN (insn)) > 0
972 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
974 rtx body, set0;
975 int i;
977 /* inline-asm with multiple sets is tiny bit more complicated,
978 because the 3 vectors in ASM_OPERANDS need to be shared between
979 all ASM_OPERANDS in the instruction. adjust_mems will
980 not touch ASM_OPERANDS other than the first one, asm_noperands
981 test above needs to be called before that (otherwise it would fail)
982 and afterwards this code fixes it up. */
983 note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
984 body = PATTERN (insn);
985 set0 = XVECEXP (body, 0, 0);
986 gcc_checking_assert (GET_CODE (set0) == SET
987 && GET_CODE (SET_SRC (set0)) == ASM_OPERANDS
988 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set0)) == 0);
989 for (i = 1; i < XVECLEN (body, 0); i++)
990 if (GET_CODE (XVECEXP (body, 0, i)) != SET)
991 break;
992 else
994 set = XVECEXP (body, 0, i);
995 gcc_checking_assert (GET_CODE (SET_SRC (set)) == ASM_OPERANDS
996 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set))
997 == i);
998 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (set))
999 != ASM_OPERANDS_INPUT_VEC (SET_SRC (set0))
1000 || ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set))
1001 != ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0))
1002 || ASM_OPERANDS_LABEL_VEC (SET_SRC (set))
1003 != ASM_OPERANDS_LABEL_VEC (SET_SRC (set0)))
1005 rtx newsrc = shallow_copy_rtx (SET_SRC (set));
1006 ASM_OPERANDS_INPUT_VEC (newsrc)
1007 = ASM_OPERANDS_INPUT_VEC (SET_SRC (set0));
1008 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (newsrc)
1009 = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0));
1010 ASM_OPERANDS_LABEL_VEC (newsrc)
1011 = ASM_OPERANDS_LABEL_VEC (SET_SRC (set0));
1012 validate_change (NULL_RTX, &SET_SRC (set), newsrc, true);
1016 else
1017 note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
1019 /* For read-only MEMs containing some constant, prefer those
1020 constants. */
1021 set = single_set (insn);
1022 if (set && MEM_P (SET_SRC (set)) && MEM_READONLY_P (SET_SRC (set)))
1024 rtx note = find_reg_equal_equiv_note (insn);
1026 if (note && CONSTANT_P (XEXP (note, 0)))
1027 validate_change (NULL_RTX, &SET_SRC (set), XEXP (note, 0), true);
1030 if (amd.side_effects)
1032 rtx *pat, new_pat, s;
1033 int i, oldn, newn;
1035 pat = &PATTERN (insn);
1036 if (GET_CODE (*pat) == COND_EXEC)
1037 pat = &COND_EXEC_CODE (*pat);
1038 if (GET_CODE (*pat) == PARALLEL)
1039 oldn = XVECLEN (*pat, 0);
1040 else
1041 oldn = 1;
1042 for (s = amd.side_effects, newn = 0; s; newn++)
1043 s = XEXP (s, 1);
1044 new_pat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (oldn + newn));
1045 if (GET_CODE (*pat) == PARALLEL)
1046 for (i = 0; i < oldn; i++)
1047 XVECEXP (new_pat, 0, i) = XVECEXP (*pat, 0, i);
1048 else
1049 XVECEXP (new_pat, 0, 0) = *pat;
1050 for (s = amd.side_effects, i = oldn; i < oldn + newn; i++, s = XEXP (s, 1))
1051 XVECEXP (new_pat, 0, i) = XEXP (s, 0);
1052 free_EXPR_LIST_list (&amd.side_effects);
1053 validate_change (NULL_RTX, pat, new_pat, true);
1057 /* Return true if a decl_or_value DV is a DECL or NULL. */
1058 static inline bool
1059 dv_is_decl_p (decl_or_value dv)
1061 return !dv || (int) TREE_CODE ((tree) dv) != (int) VALUE;
1064 /* Return true if a decl_or_value is a VALUE rtl. */
1065 static inline bool
1066 dv_is_value_p (decl_or_value dv)
1068 return dv && !dv_is_decl_p (dv);
1071 /* Return the decl in the decl_or_value. */
1072 static inline tree
1073 dv_as_decl (decl_or_value dv)
1075 gcc_checking_assert (dv_is_decl_p (dv));
1076 return (tree) dv;
1079 /* Return the value in the decl_or_value. */
1080 static inline rtx
1081 dv_as_value (decl_or_value dv)
1083 gcc_checking_assert (dv_is_value_p (dv));
1084 return (rtx)dv;
1087 /* Return the opaque pointer in the decl_or_value. */
1088 static inline void *
1089 dv_as_opaque (decl_or_value dv)
1091 return dv;
1094 /* Return true if a decl_or_value must not have more than one variable
1095 part. */
1096 static inline bool
1097 dv_onepart_p (decl_or_value dv)
1099 tree decl;
1101 if (!MAY_HAVE_DEBUG_INSNS)
1102 return false;
1104 if (dv_is_value_p (dv))
1105 return true;
1107 decl = dv_as_decl (dv);
1109 if (!decl)
1110 return true;
1112 if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
1113 return true;
1115 return (target_for_debug_bind (decl) != NULL_TREE);
1118 /* Return the variable pool to be used for dv, depending on whether it
1119 can have multiple parts or not. */
1120 static inline alloc_pool
1121 dv_pool (decl_or_value dv)
1123 return dv_onepart_p (dv) ? valvar_pool : var_pool;
1126 /* Build a decl_or_value out of a decl. */
1127 static inline decl_or_value
1128 dv_from_decl (tree decl)
1130 decl_or_value dv;
1131 dv = decl;
1132 gcc_checking_assert (dv_is_decl_p (dv));
1133 return dv;
1136 /* Build a decl_or_value out of a value. */
1137 static inline decl_or_value
1138 dv_from_value (rtx value)
1140 decl_or_value dv;
1141 dv = value;
1142 gcc_checking_assert (dv_is_value_p (dv));
1143 return dv;
1146 extern void debug_dv (decl_or_value dv);
1148 DEBUG_FUNCTION void
1149 debug_dv (decl_or_value dv)
1151 if (dv_is_value_p (dv))
1152 debug_rtx (dv_as_value (dv));
1153 else
1154 debug_generic_stmt (dv_as_decl (dv));
1157 typedef unsigned int dvuid;
1159 /* Return the uid of DV. */
1161 static inline dvuid
1162 dv_uid (decl_or_value dv)
1164 if (dv_is_value_p (dv))
1165 return CSELIB_VAL_PTR (dv_as_value (dv))->uid;
1166 else
1167 return DECL_UID (dv_as_decl (dv));
1170 /* Compute the hash from the uid. */
1172 static inline hashval_t
1173 dv_uid2hash (dvuid uid)
1175 return uid;
1178 /* The hash function for a mask table in a shared_htab chain. */
1180 static inline hashval_t
1181 dv_htab_hash (decl_or_value dv)
1183 return dv_uid2hash (dv_uid (dv));
1186 /* The hash function for variable_htab, computes the hash value
1187 from the declaration of variable X. */
1189 static hashval_t
1190 variable_htab_hash (const void *x)
1192 const_variable const v = (const_variable) x;
1194 return dv_htab_hash (v->dv);
1197 /* Compare the declaration of variable X with declaration Y. */
1199 static int
1200 variable_htab_eq (const void *x, const void *y)
1202 const_variable const v = (const_variable) x;
1203 decl_or_value dv = CONST_CAST2 (decl_or_value, const void *, y);
1205 return (dv_as_opaque (v->dv) == dv_as_opaque (dv));
1208 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
1210 static void
1211 variable_htab_free (void *elem)
1213 int i;
1214 variable var = (variable) elem;
1215 location_chain node, next;
1217 gcc_checking_assert (var->refcount > 0);
1219 var->refcount--;
1220 if (var->refcount > 0)
1221 return;
1223 for (i = 0; i < var->n_var_parts; i++)
1225 for (node = var->var_part[i].loc_chain; node; node = next)
1227 next = node->next;
1228 pool_free (loc_chain_pool, node);
1230 var->var_part[i].loc_chain = NULL;
1232 pool_free (dv_pool (var->dv), var);
1235 /* The hash function for value_chains htab, computes the hash value
1236 from the VALUE. */
1238 static hashval_t
1239 value_chain_htab_hash (const void *x)
1241 const_value_chain const v = (const_value_chain) x;
1243 return dv_htab_hash (v->dv);
1246 /* Compare the VALUE X with VALUE Y. */
1248 static int
1249 value_chain_htab_eq (const void *x, const void *y)
1251 const_value_chain const v = (const_value_chain) x;
1252 decl_or_value dv = CONST_CAST2 (decl_or_value, const void *, y);
1254 return dv_as_opaque (v->dv) == dv_as_opaque (dv);
1257 /* Initialize the set (array) SET of attrs to empty lists. */
1259 static void
1260 init_attrs_list_set (attrs *set)
1262 int i;
1264 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1265 set[i] = NULL;
1268 /* Make the list *LISTP empty. */
1270 static void
1271 attrs_list_clear (attrs *listp)
1273 attrs list, next;
1275 for (list = *listp; list; list = next)
1277 next = list->next;
1278 pool_free (attrs_pool, list);
1280 *listp = NULL;
1283 /* Return true if the pair of DECL and OFFSET is the member of the LIST. */
1285 static attrs
1286 attrs_list_member (attrs list, decl_or_value dv, HOST_WIDE_INT offset)
1288 for (; list; list = list->next)
1289 if (dv_as_opaque (list->dv) == dv_as_opaque (dv) && list->offset == offset)
1290 return list;
1291 return NULL;
1294 /* Insert the triplet DECL, OFFSET, LOC to the list *LISTP. */
1296 static void
1297 attrs_list_insert (attrs *listp, decl_or_value dv,
1298 HOST_WIDE_INT offset, rtx loc)
1300 attrs list;
1302 list = (attrs) pool_alloc (attrs_pool);
1303 list->loc = loc;
1304 list->dv = dv;
1305 list->offset = offset;
1306 list->next = *listp;
1307 *listp = list;
1310 /* Copy all nodes from SRC and create a list *DSTP of the copies. */
1312 static void
1313 attrs_list_copy (attrs *dstp, attrs src)
1315 attrs n;
1317 attrs_list_clear (dstp);
1318 for (; src; src = src->next)
1320 n = (attrs) pool_alloc (attrs_pool);
1321 n->loc = src->loc;
1322 n->dv = src->dv;
1323 n->offset = src->offset;
1324 n->next = *dstp;
1325 *dstp = n;
1329 /* Add all nodes from SRC which are not in *DSTP to *DSTP. */
1331 static void
1332 attrs_list_union (attrs *dstp, attrs src)
1334 for (; src; src = src->next)
1336 if (!attrs_list_member (*dstp, src->dv, src->offset))
1337 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1341 /* Combine nodes that are not onepart nodes from SRC and SRC2 into
1342 *DSTP. */
1344 static void
1345 attrs_list_mpdv_union (attrs *dstp, attrs src, attrs src2)
1347 gcc_assert (!*dstp);
1348 for (; src; src = src->next)
1350 if (!dv_onepart_p (src->dv))
1351 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1353 for (src = src2; src; src = src->next)
1355 if (!dv_onepart_p (src->dv)
1356 && !attrs_list_member (*dstp, src->dv, src->offset))
1357 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1361 /* Shared hashtable support. */
1363 /* Return true if VARS is shared. */
1365 static inline bool
1366 shared_hash_shared (shared_hash vars)
1368 return vars->refcount > 1;
1371 /* Return the hash table for VARS. */
1373 static inline htab_t
1374 shared_hash_htab (shared_hash vars)
1376 return vars->htab;
1379 /* Return true if VAR is shared, or maybe because VARS is shared. */
1381 static inline bool
1382 shared_var_p (variable var, shared_hash vars)
1384 /* Don't count an entry in the changed_variables table as a duplicate. */
1385 return ((var->refcount > 1 + (int) var->in_changed_variables)
1386 || shared_hash_shared (vars));
1389 /* Copy variables into a new hash table. */
1391 static shared_hash
1392 shared_hash_unshare (shared_hash vars)
1394 shared_hash new_vars = (shared_hash) pool_alloc (shared_hash_pool);
1395 gcc_assert (vars->refcount > 1);
1396 new_vars->refcount = 1;
1397 new_vars->htab
1398 = htab_create (htab_elements (vars->htab) + 3, variable_htab_hash,
1399 variable_htab_eq, variable_htab_free);
1400 vars_copy (new_vars->htab, vars->htab);
1401 vars->refcount--;
1402 return new_vars;
1405 /* Increment reference counter on VARS and return it. */
1407 static inline shared_hash
1408 shared_hash_copy (shared_hash vars)
1410 vars->refcount++;
1411 return vars;
1414 /* Decrement reference counter and destroy hash table if not shared
1415 anymore. */
1417 static void
1418 shared_hash_destroy (shared_hash vars)
1420 gcc_checking_assert (vars->refcount > 0);
1421 if (--vars->refcount == 0)
1423 htab_delete (vars->htab);
1424 pool_free (shared_hash_pool, vars);
1428 /* Unshare *PVARS if shared and return slot for DV. If INS is
1429 INSERT, insert it if not already present. */
1431 static inline void **
1432 shared_hash_find_slot_unshare_1 (shared_hash *pvars, decl_or_value dv,
1433 hashval_t dvhash, enum insert_option ins)
1435 if (shared_hash_shared (*pvars))
1436 *pvars = shared_hash_unshare (*pvars);
1437 return htab_find_slot_with_hash (shared_hash_htab (*pvars), dv, dvhash, ins);
1440 static inline void **
1441 shared_hash_find_slot_unshare (shared_hash *pvars, decl_or_value dv,
1442 enum insert_option ins)
1444 return shared_hash_find_slot_unshare_1 (pvars, dv, dv_htab_hash (dv), ins);
1447 /* Return slot for DV, if it is already present in the hash table.
1448 If it is not present, insert it only VARS is not shared, otherwise
1449 return NULL. */
1451 static inline void **
1452 shared_hash_find_slot_1 (shared_hash vars, decl_or_value dv, hashval_t dvhash)
1454 return htab_find_slot_with_hash (shared_hash_htab (vars), dv, dvhash,
1455 shared_hash_shared (vars)
1456 ? NO_INSERT : INSERT);
1459 static inline void **
1460 shared_hash_find_slot (shared_hash vars, decl_or_value dv)
1462 return shared_hash_find_slot_1 (vars, dv, dv_htab_hash (dv));
1465 /* Return slot for DV only if it is already present in the hash table. */
1467 static inline void **
1468 shared_hash_find_slot_noinsert_1 (shared_hash vars, decl_or_value dv,
1469 hashval_t dvhash)
1471 return htab_find_slot_with_hash (shared_hash_htab (vars), dv, dvhash,
1472 NO_INSERT);
1475 static inline void **
1476 shared_hash_find_slot_noinsert (shared_hash vars, decl_or_value dv)
1478 return shared_hash_find_slot_noinsert_1 (vars, dv, dv_htab_hash (dv));
1481 /* Return variable for DV or NULL if not already present in the hash
1482 table. */
1484 static inline variable
1485 shared_hash_find_1 (shared_hash vars, decl_or_value dv, hashval_t dvhash)
1487 return (variable) htab_find_with_hash (shared_hash_htab (vars), dv, dvhash);
1490 static inline variable
1491 shared_hash_find (shared_hash vars, decl_or_value dv)
1493 return shared_hash_find_1 (vars, dv, dv_htab_hash (dv));
1496 /* Return true if TVAL is better than CVAL as a canonival value. We
1497 choose lowest-numbered VALUEs, using the RTX address as a
1498 tie-breaker. The idea is to arrange them into a star topology,
1499 such that all of them are at most one step away from the canonical
1500 value, and the canonical value has backlinks to all of them, in
1501 addition to all the actual locations. We don't enforce this
1502 topology throughout the entire dataflow analysis, though.
1505 static inline bool
1506 canon_value_cmp (rtx tval, rtx cval)
1508 return !cval
1509 || CSELIB_VAL_PTR (tval)->uid < CSELIB_VAL_PTR (cval)->uid;
1512 static bool dst_can_be_shared;
1514 /* Return a copy of a variable VAR and insert it to dataflow set SET. */
1516 static void **
1517 unshare_variable (dataflow_set *set, void **slot, variable var,
1518 enum var_init_status initialized)
1520 variable new_var;
1521 int i;
1523 new_var = (variable) pool_alloc (dv_pool (var->dv));
1524 new_var->dv = var->dv;
1525 new_var->refcount = 1;
1526 var->refcount--;
1527 new_var->n_var_parts = var->n_var_parts;
1528 new_var->cur_loc_changed = var->cur_loc_changed;
1529 var->cur_loc_changed = false;
1530 new_var->in_changed_variables = false;
1532 if (! flag_var_tracking_uninit)
1533 initialized = VAR_INIT_STATUS_INITIALIZED;
1535 for (i = 0; i < var->n_var_parts; i++)
1537 location_chain node;
1538 location_chain *nextp;
1540 new_var->var_part[i].offset = var->var_part[i].offset;
1541 nextp = &new_var->var_part[i].loc_chain;
1542 for (node = var->var_part[i].loc_chain; node; node = node->next)
1544 location_chain new_lc;
1546 new_lc = (location_chain) pool_alloc (loc_chain_pool);
1547 new_lc->next = NULL;
1548 if (node->init > initialized)
1549 new_lc->init = node->init;
1550 else
1551 new_lc->init = initialized;
1552 if (node->set_src && !(MEM_P (node->set_src)))
1553 new_lc->set_src = node->set_src;
1554 else
1555 new_lc->set_src = NULL;
1556 new_lc->loc = node->loc;
1558 *nextp = new_lc;
1559 nextp = &new_lc->next;
1562 new_var->var_part[i].cur_loc = var->var_part[i].cur_loc;
1565 dst_can_be_shared = false;
1566 if (shared_hash_shared (set->vars))
1567 slot = shared_hash_find_slot_unshare (&set->vars, var->dv, NO_INSERT);
1568 else if (set->traversed_vars && set->vars != set->traversed_vars)
1569 slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
1570 *slot = new_var;
1571 if (var->in_changed_variables)
1573 void **cslot
1574 = htab_find_slot_with_hash (changed_variables, var->dv,
1575 dv_htab_hash (var->dv), NO_INSERT);
1576 gcc_assert (*cslot == (void *) var);
1577 var->in_changed_variables = false;
1578 variable_htab_free (var);
1579 *cslot = new_var;
1580 new_var->in_changed_variables = true;
1582 return slot;
1585 /* Copy all variables from hash table SRC to hash table DST. */
1587 static void
1588 vars_copy (htab_t dst, htab_t src)
1590 htab_iterator hi;
1591 variable var;
1593 FOR_EACH_HTAB_ELEMENT (src, var, variable, hi)
1595 void **dstp;
1596 var->refcount++;
1597 dstp = htab_find_slot_with_hash (dst, var->dv,
1598 dv_htab_hash (var->dv),
1599 INSERT);
1600 *dstp = var;
1604 /* Map a decl to its main debug decl. */
1606 static inline tree
1607 var_debug_decl (tree decl)
1609 if (decl && DECL_P (decl)
1610 && DECL_DEBUG_EXPR_IS_FROM (decl))
1612 tree debugdecl = DECL_DEBUG_EXPR (decl);
1613 if (debugdecl && DECL_P (debugdecl))
1614 decl = debugdecl;
1617 return decl;
1620 /* Set the register LOC to contain DV, OFFSET. */
1622 static void
1623 var_reg_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1624 decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
1625 enum insert_option iopt)
1627 attrs node;
1628 bool decl_p = dv_is_decl_p (dv);
1630 if (decl_p)
1631 dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
1633 for (node = set->regs[REGNO (loc)]; node; node = node->next)
1634 if (dv_as_opaque (node->dv) == dv_as_opaque (dv)
1635 && node->offset == offset)
1636 break;
1637 if (!node)
1638 attrs_list_insert (&set->regs[REGNO (loc)], dv, offset, loc);
1639 set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
1642 /* Set the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). */
1644 static void
1645 var_reg_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1646 rtx set_src)
1648 tree decl = REG_EXPR (loc);
1649 HOST_WIDE_INT offset = REG_OFFSET (loc);
1651 var_reg_decl_set (set, loc, initialized,
1652 dv_from_decl (decl), offset, set_src, INSERT);
1655 static enum var_init_status
1656 get_init_value (dataflow_set *set, rtx loc, decl_or_value dv)
1658 variable var;
1659 int i;
1660 enum var_init_status ret_val = VAR_INIT_STATUS_UNKNOWN;
1662 if (! flag_var_tracking_uninit)
1663 return VAR_INIT_STATUS_INITIALIZED;
1665 var = shared_hash_find (set->vars, dv);
1666 if (var)
1668 for (i = 0; i < var->n_var_parts && ret_val == VAR_INIT_STATUS_UNKNOWN; i++)
1670 location_chain nextp;
1671 for (nextp = var->var_part[i].loc_chain; nextp; nextp = nextp->next)
1672 if (rtx_equal_p (nextp->loc, loc))
1674 ret_val = nextp->init;
1675 break;
1680 return ret_val;
1683 /* Delete current content of register LOC in dataflow set SET and set
1684 the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). If
1685 MODIFY is true, any other live copies of the same variable part are
1686 also deleted from the dataflow set, otherwise the variable part is
1687 assumed to be copied from another location holding the same
1688 part. */
1690 static void
1691 var_reg_delete_and_set (dataflow_set *set, rtx loc, bool modify,
1692 enum var_init_status initialized, rtx set_src)
1694 tree decl = REG_EXPR (loc);
1695 HOST_WIDE_INT offset = REG_OFFSET (loc);
1696 attrs node, next;
1697 attrs *nextp;
1699 decl = var_debug_decl (decl);
1701 if (initialized == VAR_INIT_STATUS_UNKNOWN)
1702 initialized = get_init_value (set, loc, dv_from_decl (decl));
1704 nextp = &set->regs[REGNO (loc)];
1705 for (node = *nextp; node; node = next)
1707 next = node->next;
1708 if (dv_as_opaque (node->dv) != decl || node->offset != offset)
1710 delete_variable_part (set, node->loc, node->dv, node->offset);
1711 pool_free (attrs_pool, node);
1712 *nextp = next;
1714 else
1716 node->loc = loc;
1717 nextp = &node->next;
1720 if (modify)
1721 clobber_variable_part (set, loc, dv_from_decl (decl), offset, set_src);
1722 var_reg_set (set, loc, initialized, set_src);
1725 /* Delete the association of register LOC in dataflow set SET with any
1726 variables that aren't onepart. If CLOBBER is true, also delete any
1727 other live copies of the same variable part, and delete the
1728 association with onepart dvs too. */
1730 static void
1731 var_reg_delete (dataflow_set *set, rtx loc, bool clobber)
1733 attrs *nextp = &set->regs[REGNO (loc)];
1734 attrs node, next;
1736 if (clobber)
1738 tree decl = REG_EXPR (loc);
1739 HOST_WIDE_INT offset = REG_OFFSET (loc);
1741 decl = var_debug_decl (decl);
1743 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
1746 for (node = *nextp; node; node = next)
1748 next = node->next;
1749 if (clobber || !dv_onepart_p (node->dv))
1751 delete_variable_part (set, node->loc, node->dv, node->offset);
1752 pool_free (attrs_pool, node);
1753 *nextp = next;
1755 else
1756 nextp = &node->next;
1760 /* Delete content of register with number REGNO in dataflow set SET. */
1762 static void
1763 var_regno_delete (dataflow_set *set, int regno)
1765 attrs *reg = &set->regs[regno];
1766 attrs node, next;
1768 for (node = *reg; node; node = next)
1770 next = node->next;
1771 delete_variable_part (set, node->loc, node->dv, node->offset);
1772 pool_free (attrs_pool, node);
1774 *reg = NULL;
1777 /* Set the location of DV, OFFSET as the MEM LOC. */
1779 static void
1780 var_mem_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1781 decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
1782 enum insert_option iopt)
1784 if (dv_is_decl_p (dv))
1785 dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
1787 set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
1790 /* Set the location part of variable MEM_EXPR (LOC) in dataflow set
1791 SET to LOC.
1792 Adjust the address first if it is stack pointer based. */
1794 static void
1795 var_mem_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1796 rtx set_src)
1798 tree decl = MEM_EXPR (loc);
1799 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
1801 var_mem_decl_set (set, loc, initialized,
1802 dv_from_decl (decl), offset, set_src, INSERT);
1805 /* Delete and set the location part of variable MEM_EXPR (LOC) in
1806 dataflow set SET to LOC. If MODIFY is true, any other live copies
1807 of the same variable part are also deleted from the dataflow set,
1808 otherwise the variable part is assumed to be copied from another
1809 location holding the same part.
1810 Adjust the address first if it is stack pointer based. */
1812 static void
1813 var_mem_delete_and_set (dataflow_set *set, rtx loc, bool modify,
1814 enum var_init_status initialized, rtx set_src)
1816 tree decl = MEM_EXPR (loc);
1817 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
1819 decl = var_debug_decl (decl);
1821 if (initialized == VAR_INIT_STATUS_UNKNOWN)
1822 initialized = get_init_value (set, loc, dv_from_decl (decl));
1824 if (modify)
1825 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, set_src);
1826 var_mem_set (set, loc, initialized, set_src);
1829 /* Delete the location part LOC from dataflow set SET. If CLOBBER is
1830 true, also delete any other live copies of the same variable part.
1831 Adjust the address first if it is stack pointer based. */
1833 static void
1834 var_mem_delete (dataflow_set *set, rtx loc, bool clobber)
1836 tree decl = MEM_EXPR (loc);
1837 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
1839 decl = var_debug_decl (decl);
1840 if (clobber)
1841 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
1842 delete_variable_part (set, loc, dv_from_decl (decl), offset);
1845 /* Bind a value to a location it was just stored in. If MODIFIED
1846 holds, assume the location was modified, detaching it from any
1847 values bound to it. */
1849 static void
1850 val_store (dataflow_set *set, rtx val, rtx loc, rtx insn, bool modified)
1852 cselib_val *v = CSELIB_VAL_PTR (val);
1854 gcc_assert (cselib_preserved_value_p (v));
1856 if (dump_file)
1858 fprintf (dump_file, "%i: ", INSN_UID (insn));
1859 print_inline_rtx (dump_file, val, 0);
1860 fprintf (dump_file, " stored in ");
1861 print_inline_rtx (dump_file, loc, 0);
1862 if (v->locs)
1864 struct elt_loc_list *l;
1865 for (l = v->locs; l; l = l->next)
1867 fprintf (dump_file, "\n%i: ", INSN_UID (l->setting_insn));
1868 print_inline_rtx (dump_file, l->loc, 0);
1871 fprintf (dump_file, "\n");
1874 if (REG_P (loc))
1876 if (modified)
1877 var_regno_delete (set, REGNO (loc));
1878 var_reg_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
1879 dv_from_value (val), 0, NULL_RTX, INSERT);
1881 else if (MEM_P (loc))
1882 var_mem_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
1883 dv_from_value (val), 0, NULL_RTX, INSERT);
1884 else
1885 set_variable_part (set, loc, dv_from_value (val), 0,
1886 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
1889 /* Reset this node, detaching all its equivalences. Return the slot
1890 in the variable hash table that holds dv, if there is one. */
1892 static void
1893 val_reset (dataflow_set *set, decl_or_value dv)
1895 variable var = shared_hash_find (set->vars, dv) ;
1896 location_chain node;
1897 rtx cval;
1899 if (!var || !var->n_var_parts)
1900 return;
1902 gcc_assert (var->n_var_parts == 1);
1904 cval = NULL;
1905 for (node = var->var_part[0].loc_chain; node; node = node->next)
1906 if (GET_CODE (node->loc) == VALUE
1907 && canon_value_cmp (node->loc, cval))
1908 cval = node->loc;
1910 for (node = var->var_part[0].loc_chain; node; node = node->next)
1911 if (GET_CODE (node->loc) == VALUE && cval != node->loc)
1913 /* Redirect the equivalence link to the new canonical
1914 value, or simply remove it if it would point at
1915 itself. */
1916 if (cval)
1917 set_variable_part (set, cval, dv_from_value (node->loc),
1918 0, node->init, node->set_src, NO_INSERT);
1919 delete_variable_part (set, dv_as_value (dv),
1920 dv_from_value (node->loc), 0);
1923 if (cval)
1925 decl_or_value cdv = dv_from_value (cval);
1927 /* Keep the remaining values connected, accummulating links
1928 in the canonical value. */
1929 for (node = var->var_part[0].loc_chain; node; node = node->next)
1931 if (node->loc == cval)
1932 continue;
1933 else if (GET_CODE (node->loc) == REG)
1934 var_reg_decl_set (set, node->loc, node->init, cdv, 0,
1935 node->set_src, NO_INSERT);
1936 else if (GET_CODE (node->loc) == MEM)
1937 var_mem_decl_set (set, node->loc, node->init, cdv, 0,
1938 node->set_src, NO_INSERT);
1939 else
1940 set_variable_part (set, node->loc, cdv, 0,
1941 node->init, node->set_src, NO_INSERT);
1945 /* We remove this last, to make sure that the canonical value is not
1946 removed to the point of requiring reinsertion. */
1947 if (cval)
1948 delete_variable_part (set, dv_as_value (dv), dv_from_value (cval), 0);
1950 clobber_variable_part (set, NULL, dv, 0, NULL);
1952 /* ??? Should we make sure there aren't other available values or
1953 variables whose values involve this one other than by
1954 equivalence? E.g., at the very least we should reset MEMs, those
1955 shouldn't be too hard to find cselib-looking up the value as an
1956 address, then locating the resulting value in our own hash
1957 table. */
1960 /* Find the values in a given location and map the val to another
1961 value, if it is unique, or add the location as one holding the
1962 value. */
1964 static void
1965 val_resolve (dataflow_set *set, rtx val, rtx loc, rtx insn)
1967 decl_or_value dv = dv_from_value (val);
1969 if (dump_file && (dump_flags & TDF_DETAILS))
1971 if (insn)
1972 fprintf (dump_file, "%i: ", INSN_UID (insn));
1973 else
1974 fprintf (dump_file, "head: ");
1975 print_inline_rtx (dump_file, val, 0);
1976 fputs (" is at ", dump_file);
1977 print_inline_rtx (dump_file, loc, 0);
1978 fputc ('\n', dump_file);
1981 val_reset (set, dv);
1983 if (REG_P (loc))
1985 attrs node, found = NULL;
1987 for (node = set->regs[REGNO (loc)]; node; node = node->next)
1988 if (dv_is_value_p (node->dv)
1989 && GET_MODE (dv_as_value (node->dv)) == GET_MODE (loc))
1991 found = node;
1993 /* Map incoming equivalences. ??? Wouldn't it be nice if
1994 we just started sharing the location lists? Maybe a
1995 circular list ending at the value itself or some
1996 such. */
1997 set_variable_part (set, dv_as_value (node->dv),
1998 dv_from_value (val), node->offset,
1999 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2000 set_variable_part (set, val, node->dv, node->offset,
2001 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2004 /* If we didn't find any equivalence, we need to remember that
2005 this value is held in the named register. */
2006 if (!found)
2007 var_reg_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
2008 dv_from_value (val), 0, NULL_RTX, INSERT);
2010 else if (MEM_P (loc))
2011 /* ??? Merge equivalent MEMs. */
2012 var_mem_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
2013 dv_from_value (val), 0, NULL_RTX, INSERT);
2014 else
2015 /* ??? Merge equivalent expressions. */
2016 set_variable_part (set, loc, dv_from_value (val), 0,
2017 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2020 /* Initialize dataflow set SET to be empty.
2021 VARS_SIZE is the initial size of hash table VARS. */
2023 static void
2024 dataflow_set_init (dataflow_set *set)
2026 init_attrs_list_set (set->regs);
2027 set->vars = shared_hash_copy (empty_shared_hash);
2028 set->stack_adjust = 0;
2029 set->traversed_vars = NULL;
2032 /* Delete the contents of dataflow set SET. */
2034 static void
2035 dataflow_set_clear (dataflow_set *set)
2037 int i;
2039 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2040 attrs_list_clear (&set->regs[i]);
2042 shared_hash_destroy (set->vars);
2043 set->vars = shared_hash_copy (empty_shared_hash);
2046 /* Copy the contents of dataflow set SRC to DST. */
2048 static void
2049 dataflow_set_copy (dataflow_set *dst, dataflow_set *src)
2051 int i;
2053 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2054 attrs_list_copy (&dst->regs[i], src->regs[i]);
2056 shared_hash_destroy (dst->vars);
2057 dst->vars = shared_hash_copy (src->vars);
2058 dst->stack_adjust = src->stack_adjust;
2061 /* Information for merging lists of locations for a given offset of variable.
2063 struct variable_union_info
2065 /* Node of the location chain. */
2066 location_chain lc;
2068 /* The sum of positions in the input chains. */
2069 int pos;
2071 /* The position in the chain of DST dataflow set. */
2072 int pos_dst;
2075 /* Buffer for location list sorting and its allocated size. */
2076 static struct variable_union_info *vui_vec;
2077 static int vui_allocated;
2079 /* Compare function for qsort, order the structures by POS element. */
2081 static int
2082 variable_union_info_cmp_pos (const void *n1, const void *n2)
2084 const struct variable_union_info *const i1 =
2085 (const struct variable_union_info *) n1;
2086 const struct variable_union_info *const i2 =
2087 ( const struct variable_union_info *) n2;
2089 if (i1->pos != i2->pos)
2090 return i1->pos - i2->pos;
2092 return (i1->pos_dst - i2->pos_dst);
2095 /* Compute union of location parts of variable *SLOT and the same variable
2096 from hash table DATA. Compute "sorted" union of the location chains
2097 for common offsets, i.e. the locations of a variable part are sorted by
2098 a priority where the priority is the sum of the positions in the 2 chains
2099 (if a location is only in one list the position in the second list is
2100 defined to be larger than the length of the chains).
2101 When we are updating the location parts the newest location is in the
2102 beginning of the chain, so when we do the described "sorted" union
2103 we keep the newest locations in the beginning. */
2105 static int
2106 variable_union (variable src, dataflow_set *set)
2108 variable dst;
2109 void **dstp;
2110 int i, j, k;
2112 dstp = shared_hash_find_slot (set->vars, src->dv);
2113 if (!dstp || !*dstp)
2115 src->refcount++;
2117 dst_can_be_shared = false;
2118 if (!dstp)
2119 dstp = shared_hash_find_slot_unshare (&set->vars, src->dv, INSERT);
2121 *dstp = src;
2123 /* Continue traversing the hash table. */
2124 return 1;
2126 else
2127 dst = (variable) *dstp;
2129 gcc_assert (src->n_var_parts);
2131 /* We can combine one-part variables very efficiently, because their
2132 entries are in canonical order. */
2133 if (dv_onepart_p (src->dv))
2135 location_chain *nodep, dnode, snode;
2137 gcc_assert (src->n_var_parts == 1
2138 && dst->n_var_parts == 1);
2140 snode = src->var_part[0].loc_chain;
2141 gcc_assert (snode);
2143 restart_onepart_unshared:
2144 nodep = &dst->var_part[0].loc_chain;
2145 dnode = *nodep;
2146 gcc_assert (dnode);
2148 while (snode)
2150 int r = dnode ? loc_cmp (dnode->loc, snode->loc) : 1;
2152 if (r > 0)
2154 location_chain nnode;
2156 if (shared_var_p (dst, set->vars))
2158 dstp = unshare_variable (set, dstp, dst,
2159 VAR_INIT_STATUS_INITIALIZED);
2160 dst = (variable)*dstp;
2161 goto restart_onepart_unshared;
2164 *nodep = nnode = (location_chain) pool_alloc (loc_chain_pool);
2165 nnode->loc = snode->loc;
2166 nnode->init = snode->init;
2167 if (!snode->set_src || MEM_P (snode->set_src))
2168 nnode->set_src = NULL;
2169 else
2170 nnode->set_src = snode->set_src;
2171 nnode->next = dnode;
2172 dnode = nnode;
2174 else if (r == 0)
2175 gcc_checking_assert (rtx_equal_p (dnode->loc, snode->loc));
2177 if (r >= 0)
2178 snode = snode->next;
2180 nodep = &dnode->next;
2181 dnode = *nodep;
2184 return 1;
2187 /* Count the number of location parts, result is K. */
2188 for (i = 0, j = 0, k = 0;
2189 i < src->n_var_parts && j < dst->n_var_parts; k++)
2191 if (src->var_part[i].offset == dst->var_part[j].offset)
2193 i++;
2194 j++;
2196 else if (src->var_part[i].offset < dst->var_part[j].offset)
2197 i++;
2198 else
2199 j++;
2201 k += src->n_var_parts - i;
2202 k += dst->n_var_parts - j;
2204 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
2205 thus there are at most MAX_VAR_PARTS different offsets. */
2206 gcc_assert (dv_onepart_p (dst->dv) ? k == 1 : k <= MAX_VAR_PARTS);
2208 if (dst->n_var_parts != k && shared_var_p (dst, set->vars))
2210 dstp = unshare_variable (set, dstp, dst, VAR_INIT_STATUS_UNKNOWN);
2211 dst = (variable)*dstp;
2214 i = src->n_var_parts - 1;
2215 j = dst->n_var_parts - 1;
2216 dst->n_var_parts = k;
2218 for (k--; k >= 0; k--)
2220 location_chain node, node2;
2222 if (i >= 0 && j >= 0
2223 && src->var_part[i].offset == dst->var_part[j].offset)
2225 /* Compute the "sorted" union of the chains, i.e. the locations which
2226 are in both chains go first, they are sorted by the sum of
2227 positions in the chains. */
2228 int dst_l, src_l;
2229 int ii, jj, n;
2230 struct variable_union_info *vui;
2232 /* If DST is shared compare the location chains.
2233 If they are different we will modify the chain in DST with
2234 high probability so make a copy of DST. */
2235 if (shared_var_p (dst, set->vars))
2237 for (node = src->var_part[i].loc_chain,
2238 node2 = dst->var_part[j].loc_chain; node && node2;
2239 node = node->next, node2 = node2->next)
2241 if (!((REG_P (node2->loc)
2242 && REG_P (node->loc)
2243 && REGNO (node2->loc) == REGNO (node->loc))
2244 || rtx_equal_p (node2->loc, node->loc)))
2246 if (node2->init < node->init)
2247 node2->init = node->init;
2248 break;
2251 if (node || node2)
2253 dstp = unshare_variable (set, dstp, dst,
2254 VAR_INIT_STATUS_UNKNOWN);
2255 dst = (variable)*dstp;
2259 src_l = 0;
2260 for (node = src->var_part[i].loc_chain; node; node = node->next)
2261 src_l++;
2262 dst_l = 0;
2263 for (node = dst->var_part[j].loc_chain; node; node = node->next)
2264 dst_l++;
2266 if (dst_l == 1)
2268 /* The most common case, much simpler, no qsort is needed. */
2269 location_chain dstnode = dst->var_part[j].loc_chain;
2270 dst->var_part[k].loc_chain = dstnode;
2271 dst->var_part[k].offset = dst->var_part[j].offset;
2272 node2 = dstnode;
2273 for (node = src->var_part[i].loc_chain; node; node = node->next)
2274 if (!((REG_P (dstnode->loc)
2275 && REG_P (node->loc)
2276 && REGNO (dstnode->loc) == REGNO (node->loc))
2277 || rtx_equal_p (dstnode->loc, node->loc)))
2279 location_chain new_node;
2281 /* Copy the location from SRC. */
2282 new_node = (location_chain) pool_alloc (loc_chain_pool);
2283 new_node->loc = node->loc;
2284 new_node->init = node->init;
2285 if (!node->set_src || MEM_P (node->set_src))
2286 new_node->set_src = NULL;
2287 else
2288 new_node->set_src = node->set_src;
2289 node2->next = new_node;
2290 node2 = new_node;
2292 node2->next = NULL;
2294 else
2296 if (src_l + dst_l > vui_allocated)
2298 vui_allocated = MAX (vui_allocated * 2, src_l + dst_l);
2299 vui_vec = XRESIZEVEC (struct variable_union_info, vui_vec,
2300 vui_allocated);
2302 vui = vui_vec;
2304 /* Fill in the locations from DST. */
2305 for (node = dst->var_part[j].loc_chain, jj = 0; node;
2306 node = node->next, jj++)
2308 vui[jj].lc = node;
2309 vui[jj].pos_dst = jj;
2311 /* Pos plus value larger than a sum of 2 valid positions. */
2312 vui[jj].pos = jj + src_l + dst_l;
2315 /* Fill in the locations from SRC. */
2316 n = dst_l;
2317 for (node = src->var_part[i].loc_chain, ii = 0; node;
2318 node = node->next, ii++)
2320 /* Find location from NODE. */
2321 for (jj = 0; jj < dst_l; jj++)
2323 if ((REG_P (vui[jj].lc->loc)
2324 && REG_P (node->loc)
2325 && REGNO (vui[jj].lc->loc) == REGNO (node->loc))
2326 || rtx_equal_p (vui[jj].lc->loc, node->loc))
2328 vui[jj].pos = jj + ii;
2329 break;
2332 if (jj >= dst_l) /* The location has not been found. */
2334 location_chain new_node;
2336 /* Copy the location from SRC. */
2337 new_node = (location_chain) pool_alloc (loc_chain_pool);
2338 new_node->loc = node->loc;
2339 new_node->init = node->init;
2340 if (!node->set_src || MEM_P (node->set_src))
2341 new_node->set_src = NULL;
2342 else
2343 new_node->set_src = node->set_src;
2344 vui[n].lc = new_node;
2345 vui[n].pos_dst = src_l + dst_l;
2346 vui[n].pos = ii + src_l + dst_l;
2347 n++;
2351 if (dst_l == 2)
2353 /* Special case still very common case. For dst_l == 2
2354 all entries dst_l ... n-1 are sorted, with for i >= dst_l
2355 vui[i].pos == i + src_l + dst_l. */
2356 if (vui[0].pos > vui[1].pos)
2358 /* Order should be 1, 0, 2... */
2359 dst->var_part[k].loc_chain = vui[1].lc;
2360 vui[1].lc->next = vui[0].lc;
2361 if (n >= 3)
2363 vui[0].lc->next = vui[2].lc;
2364 vui[n - 1].lc->next = NULL;
2366 else
2367 vui[0].lc->next = NULL;
2368 ii = 3;
2370 else
2372 dst->var_part[k].loc_chain = vui[0].lc;
2373 if (n >= 3 && vui[2].pos < vui[1].pos)
2375 /* Order should be 0, 2, 1, 3... */
2376 vui[0].lc->next = vui[2].lc;
2377 vui[2].lc->next = vui[1].lc;
2378 if (n >= 4)
2380 vui[1].lc->next = vui[3].lc;
2381 vui[n - 1].lc->next = NULL;
2383 else
2384 vui[1].lc->next = NULL;
2385 ii = 4;
2387 else
2389 /* Order should be 0, 1, 2... */
2390 ii = 1;
2391 vui[n - 1].lc->next = NULL;
2394 for (; ii < n; ii++)
2395 vui[ii - 1].lc->next = vui[ii].lc;
2397 else
2399 qsort (vui, n, sizeof (struct variable_union_info),
2400 variable_union_info_cmp_pos);
2402 /* Reconnect the nodes in sorted order. */
2403 for (ii = 1; ii < n; ii++)
2404 vui[ii - 1].lc->next = vui[ii].lc;
2405 vui[n - 1].lc->next = NULL;
2406 dst->var_part[k].loc_chain = vui[0].lc;
2409 dst->var_part[k].offset = dst->var_part[j].offset;
2411 i--;
2412 j--;
2414 else if ((i >= 0 && j >= 0
2415 && src->var_part[i].offset < dst->var_part[j].offset)
2416 || i < 0)
2418 dst->var_part[k] = dst->var_part[j];
2419 j--;
2421 else if ((i >= 0 && j >= 0
2422 && src->var_part[i].offset > dst->var_part[j].offset)
2423 || j < 0)
2425 location_chain *nextp;
2427 /* Copy the chain from SRC. */
2428 nextp = &dst->var_part[k].loc_chain;
2429 for (node = src->var_part[i].loc_chain; node; node = node->next)
2431 location_chain new_lc;
2433 new_lc = (location_chain) pool_alloc (loc_chain_pool);
2434 new_lc->next = NULL;
2435 new_lc->init = node->init;
2436 if (!node->set_src || MEM_P (node->set_src))
2437 new_lc->set_src = NULL;
2438 else
2439 new_lc->set_src = node->set_src;
2440 new_lc->loc = node->loc;
2442 *nextp = new_lc;
2443 nextp = &new_lc->next;
2446 dst->var_part[k].offset = src->var_part[i].offset;
2447 i--;
2449 dst->var_part[k].cur_loc = NULL;
2452 if (flag_var_tracking_uninit)
2453 for (i = 0; i < src->n_var_parts && i < dst->n_var_parts; i++)
2455 location_chain node, node2;
2456 for (node = src->var_part[i].loc_chain; node; node = node->next)
2457 for (node2 = dst->var_part[i].loc_chain; node2; node2 = node2->next)
2458 if (rtx_equal_p (node->loc, node2->loc))
2460 if (node->init > node2->init)
2461 node2->init = node->init;
2465 /* Continue traversing the hash table. */
2466 return 1;
2469 /* Compute union of dataflow sets SRC and DST and store it to DST. */
2471 static void
2472 dataflow_set_union (dataflow_set *dst, dataflow_set *src)
2474 int i;
2476 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2477 attrs_list_union (&dst->regs[i], src->regs[i]);
2479 if (dst->vars == empty_shared_hash)
2481 shared_hash_destroy (dst->vars);
2482 dst->vars = shared_hash_copy (src->vars);
2484 else
2486 htab_iterator hi;
2487 variable var;
2489 FOR_EACH_HTAB_ELEMENT (shared_hash_htab (src->vars), var, variable, hi)
2490 variable_union (var, dst);
2494 /* Whether the value is currently being expanded. */
2495 #define VALUE_RECURSED_INTO(x) \
2496 (RTL_FLAG_CHECK2 ("VALUE_RECURSED_INTO", (x), VALUE, DEBUG_EXPR)->used)
2497 /* Whether the value is in changed_variables hash table. */
2498 #define VALUE_CHANGED(x) \
2499 (RTL_FLAG_CHECK1 ("VALUE_CHANGED", (x), VALUE)->frame_related)
2500 /* Whether the decl is in changed_variables hash table. */
2501 #define DECL_CHANGED(x) TREE_VISITED (x)
2503 /* Record that DV has been added into resp. removed from changed_variables
2504 hashtable. */
2506 static inline void
2507 set_dv_changed (decl_or_value dv, bool newv)
2509 if (dv_is_value_p (dv))
2510 VALUE_CHANGED (dv_as_value (dv)) = newv;
2511 else
2512 DECL_CHANGED (dv_as_decl (dv)) = newv;
2515 /* Return true if DV is present in changed_variables hash table. */
2517 static inline bool
2518 dv_changed_p (decl_or_value dv)
2520 return (dv_is_value_p (dv)
2521 ? VALUE_CHANGED (dv_as_value (dv))
2522 : DECL_CHANGED (dv_as_decl (dv)));
2525 /* Return a location list node whose loc is rtx_equal to LOC, in the
2526 location list of a one-part variable or value VAR, or in that of
2527 any values recursively mentioned in the location lists. VARS must
2528 be in star-canonical form. */
2530 static location_chain
2531 find_loc_in_1pdv (rtx loc, variable var, htab_t vars)
2533 location_chain node;
2534 enum rtx_code loc_code;
2536 if (!var)
2537 return NULL;
2539 gcc_checking_assert (dv_onepart_p (var->dv));
2541 if (!var->n_var_parts)
2542 return NULL;
2544 gcc_checking_assert (var->var_part[0].offset == 0);
2545 gcc_checking_assert (loc != dv_as_opaque (var->dv));
2547 loc_code = GET_CODE (loc);
2548 for (node = var->var_part[0].loc_chain; node; node = node->next)
2550 decl_or_value dv;
2551 variable rvar;
2553 if (GET_CODE (node->loc) != loc_code)
2555 if (GET_CODE (node->loc) != VALUE)
2556 continue;
2558 else if (loc == node->loc)
2559 return node;
2560 else if (loc_code != VALUE)
2562 if (rtx_equal_p (loc, node->loc))
2563 return node;
2564 continue;
2567 /* Since we're in star-canonical form, we don't need to visit
2568 non-canonical nodes: one-part variables and non-canonical
2569 values would only point back to the canonical node. */
2570 if (dv_is_value_p (var->dv)
2571 && !canon_value_cmp (node->loc, dv_as_value (var->dv)))
2573 /* Skip all subsequent VALUEs. */
2574 while (node->next && GET_CODE (node->next->loc) == VALUE)
2576 node = node->next;
2577 gcc_checking_assert (!canon_value_cmp (node->loc,
2578 dv_as_value (var->dv)));
2579 if (loc == node->loc)
2580 return node;
2582 continue;
2585 gcc_checking_assert (node == var->var_part[0].loc_chain);
2586 gcc_checking_assert (!node->next);
2588 dv = dv_from_value (node->loc);
2589 rvar = (variable) htab_find_with_hash (vars, dv, dv_htab_hash (dv));
2590 return find_loc_in_1pdv (loc, rvar, vars);
2593 return NULL;
2596 /* Hash table iteration argument passed to variable_merge. */
2597 struct dfset_merge
2599 /* The set in which the merge is to be inserted. */
2600 dataflow_set *dst;
2601 /* The set that we're iterating in. */
2602 dataflow_set *cur;
2603 /* The set that may contain the other dv we are to merge with. */
2604 dataflow_set *src;
2605 /* Number of onepart dvs in src. */
2606 int src_onepart_cnt;
2609 /* Insert LOC in *DNODE, if it's not there yet. The list must be in
2610 loc_cmp order, and it is maintained as such. */
2612 static void
2613 insert_into_intersection (location_chain *nodep, rtx loc,
2614 enum var_init_status status)
2616 location_chain node;
2617 int r;
2619 for (node = *nodep; node; nodep = &node->next, node = *nodep)
2620 if ((r = loc_cmp (node->loc, loc)) == 0)
2622 node->init = MIN (node->init, status);
2623 return;
2625 else if (r > 0)
2626 break;
2628 node = (location_chain) pool_alloc (loc_chain_pool);
2630 node->loc = loc;
2631 node->set_src = NULL;
2632 node->init = status;
2633 node->next = *nodep;
2634 *nodep = node;
2637 /* Insert in DEST the intersection the locations present in both
2638 S1NODE and S2VAR, directly or indirectly. S1NODE is from a
2639 variable in DSM->cur, whereas S2VAR is from DSM->src. dvar is in
2640 DSM->dst. */
2642 static void
2643 intersect_loc_chains (rtx val, location_chain *dest, struct dfset_merge *dsm,
2644 location_chain s1node, variable s2var)
2646 dataflow_set *s1set = dsm->cur;
2647 dataflow_set *s2set = dsm->src;
2648 location_chain found;
2650 if (s2var)
2652 location_chain s2node;
2654 gcc_checking_assert (dv_onepart_p (s2var->dv));
2656 if (s2var->n_var_parts)
2658 gcc_checking_assert (s2var->var_part[0].offset == 0);
2659 s2node = s2var->var_part[0].loc_chain;
2661 for (; s1node && s2node;
2662 s1node = s1node->next, s2node = s2node->next)
2663 if (s1node->loc != s2node->loc)
2664 break;
2665 else if (s1node->loc == val)
2666 continue;
2667 else
2668 insert_into_intersection (dest, s1node->loc,
2669 MIN (s1node->init, s2node->init));
2673 for (; s1node; s1node = s1node->next)
2675 if (s1node->loc == val)
2676 continue;
2678 if ((found = find_loc_in_1pdv (s1node->loc, s2var,
2679 shared_hash_htab (s2set->vars))))
2681 insert_into_intersection (dest, s1node->loc,
2682 MIN (s1node->init, found->init));
2683 continue;
2686 if (GET_CODE (s1node->loc) == VALUE
2687 && !VALUE_RECURSED_INTO (s1node->loc))
2689 decl_or_value dv = dv_from_value (s1node->loc);
2690 variable svar = shared_hash_find (s1set->vars, dv);
2691 if (svar)
2693 if (svar->n_var_parts == 1)
2695 VALUE_RECURSED_INTO (s1node->loc) = true;
2696 intersect_loc_chains (val, dest, dsm,
2697 svar->var_part[0].loc_chain,
2698 s2var);
2699 VALUE_RECURSED_INTO (s1node->loc) = false;
2704 /* ??? if the location is equivalent to any location in src,
2705 searched recursively
2707 add to dst the values needed to represent the equivalence
2709 telling whether locations S is equivalent to another dv's
2710 location list:
2712 for each location D in the list
2714 if S and D satisfy rtx_equal_p, then it is present
2716 else if D is a value, recurse without cycles
2718 else if S and D have the same CODE and MODE
2720 for each operand oS and the corresponding oD
2722 if oS and oD are not equivalent, then S an D are not equivalent
2724 else if they are RTX vectors
2726 if any vector oS element is not equivalent to its respective oD,
2727 then S and D are not equivalent
2735 /* Return -1 if X should be before Y in a location list for a 1-part
2736 variable, 1 if Y should be before X, and 0 if they're equivalent
2737 and should not appear in the list. */
2739 static int
2740 loc_cmp (rtx x, rtx y)
2742 int i, j, r;
2743 RTX_CODE code = GET_CODE (x);
2744 const char *fmt;
2746 if (x == y)
2747 return 0;
2749 if (REG_P (x))
2751 if (!REG_P (y))
2752 return -1;
2753 gcc_assert (GET_MODE (x) == GET_MODE (y));
2754 if (REGNO (x) == REGNO (y))
2755 return 0;
2756 else if (REGNO (x) < REGNO (y))
2757 return -1;
2758 else
2759 return 1;
2762 if (REG_P (y))
2763 return 1;
2765 if (MEM_P (x))
2767 if (!MEM_P (y))
2768 return -1;
2769 gcc_assert (GET_MODE (x) == GET_MODE (y));
2770 return loc_cmp (XEXP (x, 0), XEXP (y, 0));
2773 if (MEM_P (y))
2774 return 1;
2776 if (GET_CODE (x) == VALUE)
2778 if (GET_CODE (y) != VALUE)
2779 return -1;
2780 /* Don't assert the modes are the same, that is true only
2781 when not recursing. (subreg:QI (value:SI 1:1) 0)
2782 and (subreg:QI (value:DI 2:2) 0) can be compared,
2783 even when the modes are different. */
2784 if (canon_value_cmp (x, y))
2785 return -1;
2786 else
2787 return 1;
2790 if (GET_CODE (y) == VALUE)
2791 return 1;
2793 if (GET_CODE (x) == GET_CODE (y))
2794 /* Compare operands below. */;
2795 else if (GET_CODE (x) < GET_CODE (y))
2796 return -1;
2797 else
2798 return 1;
2800 gcc_assert (GET_MODE (x) == GET_MODE (y));
2802 if (GET_CODE (x) == DEBUG_EXPR)
2804 if (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
2805 < DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)))
2806 return -1;
2807 gcc_checking_assert (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
2808 > DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)));
2809 return 1;
2812 fmt = GET_RTX_FORMAT (code);
2813 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2814 switch (fmt[i])
2816 case 'w':
2817 if (XWINT (x, i) == XWINT (y, i))
2818 break;
2819 else if (XWINT (x, i) < XWINT (y, i))
2820 return -1;
2821 else
2822 return 1;
2824 case 'n':
2825 case 'i':
2826 if (XINT (x, i) == XINT (y, i))
2827 break;
2828 else if (XINT (x, i) < XINT (y, i))
2829 return -1;
2830 else
2831 return 1;
2833 case 'V':
2834 case 'E':
2835 /* Compare the vector length first. */
2836 if (XVECLEN (x, i) == XVECLEN (y, i))
2837 /* Compare the vectors elements. */;
2838 else if (XVECLEN (x, i) < XVECLEN (y, i))
2839 return -1;
2840 else
2841 return 1;
2843 for (j = 0; j < XVECLEN (x, i); j++)
2844 if ((r = loc_cmp (XVECEXP (x, i, j),
2845 XVECEXP (y, i, j))))
2846 return r;
2847 break;
2849 case 'e':
2850 if ((r = loc_cmp (XEXP (x, i), XEXP (y, i))))
2851 return r;
2852 break;
2854 case 'S':
2855 case 's':
2856 if (XSTR (x, i) == XSTR (y, i))
2857 break;
2858 if (!XSTR (x, i))
2859 return -1;
2860 if (!XSTR (y, i))
2861 return 1;
2862 if ((r = strcmp (XSTR (x, i), XSTR (y, i))) == 0)
2863 break;
2864 else if (r < 0)
2865 return -1;
2866 else
2867 return 1;
2869 case 'u':
2870 /* These are just backpointers, so they don't matter. */
2871 break;
2873 case '0':
2874 case 't':
2875 break;
2877 /* It is believed that rtx's at this level will never
2878 contain anything but integers and other rtx's,
2879 except for within LABEL_REFs and SYMBOL_REFs. */
2880 default:
2881 gcc_unreachable ();
2884 return 0;
2887 /* If decl or value DVP refers to VALUE from *LOC, add backlinks
2888 from VALUE to DVP. */
2890 static int
2891 add_value_chain (rtx *loc, void *dvp)
2893 decl_or_value dv, ldv;
2894 value_chain vc, nvc;
2895 void **slot;
2897 if (GET_CODE (*loc) == VALUE)
2898 ldv = dv_from_value (*loc);
2899 else if (GET_CODE (*loc) == DEBUG_EXPR)
2900 ldv = dv_from_decl (DEBUG_EXPR_TREE_DECL (*loc));
2901 else
2902 return 0;
2904 if (dv_as_opaque (ldv) == dvp)
2905 return 0;
2907 dv = (decl_or_value) dvp;
2908 slot = htab_find_slot_with_hash (value_chains, ldv, dv_htab_hash (ldv),
2909 INSERT);
2910 if (!*slot)
2912 vc = (value_chain) pool_alloc (value_chain_pool);
2913 vc->dv = ldv;
2914 vc->next = NULL;
2915 vc->refcount = 0;
2916 *slot = (void *) vc;
2918 else
2920 for (vc = ((value_chain) *slot)->next; vc; vc = vc->next)
2921 if (dv_as_opaque (vc->dv) == dv_as_opaque (dv))
2922 break;
2923 if (vc)
2925 vc->refcount++;
2926 return 0;
2929 vc = (value_chain) *slot;
2930 nvc = (value_chain) pool_alloc (value_chain_pool);
2931 nvc->dv = dv;
2932 nvc->next = vc->next;
2933 nvc->refcount = 1;
2934 vc->next = nvc;
2935 return 0;
2938 /* If decl or value DVP refers to VALUEs from within LOC, add backlinks
2939 from those VALUEs to DVP. */
2941 static void
2942 add_value_chains (decl_or_value dv, rtx loc)
2944 if (GET_CODE (loc) == VALUE || GET_CODE (loc) == DEBUG_EXPR)
2946 add_value_chain (&loc, dv_as_opaque (dv));
2947 return;
2949 if (REG_P (loc))
2950 return;
2951 if (MEM_P (loc))
2952 loc = XEXP (loc, 0);
2953 for_each_rtx (&loc, add_value_chain, dv_as_opaque (dv));
2956 /* If CSELIB_VAL_PTR of value DV refer to VALUEs, add backlinks from those
2957 VALUEs to DV. Add the same time get rid of ASM_OPERANDS from locs list,
2958 that is something we never can express in .debug_info and can prevent
2959 reverse ops from being used. */
2961 static void
2962 add_cselib_value_chains (decl_or_value dv)
2964 struct elt_loc_list **l;
2966 for (l = &CSELIB_VAL_PTR (dv_as_value (dv))->locs; *l;)
2967 if (GET_CODE ((*l)->loc) == ASM_OPERANDS)
2968 *l = (*l)->next;
2969 else
2971 for_each_rtx (&(*l)->loc, add_value_chain, dv_as_opaque (dv));
2972 l = &(*l)->next;
2976 /* If decl or value DVP refers to VALUE from *LOC, remove backlinks
2977 from VALUE to DVP. */
2979 static int
2980 remove_value_chain (rtx *loc, void *dvp)
2982 decl_or_value dv, ldv;
2983 value_chain vc;
2984 void **slot;
2986 if (GET_CODE (*loc) == VALUE)
2987 ldv = dv_from_value (*loc);
2988 else if (GET_CODE (*loc) == DEBUG_EXPR)
2989 ldv = dv_from_decl (DEBUG_EXPR_TREE_DECL (*loc));
2990 else
2991 return 0;
2993 if (dv_as_opaque (ldv) == dvp)
2994 return 0;
2996 dv = (decl_or_value) dvp;
2997 slot = htab_find_slot_with_hash (value_chains, ldv, dv_htab_hash (ldv),
2998 NO_INSERT);
2999 for (vc = (value_chain) *slot; vc->next; vc = vc->next)
3000 if (dv_as_opaque (vc->next->dv) == dv_as_opaque (dv))
3002 value_chain dvc = vc->next;
3003 gcc_assert (dvc->refcount > 0);
3004 if (--dvc->refcount == 0)
3006 vc->next = dvc->next;
3007 pool_free (value_chain_pool, dvc);
3008 if (vc->next == NULL && vc == (value_chain) *slot)
3010 pool_free (value_chain_pool, vc);
3011 htab_clear_slot (value_chains, slot);
3014 return 0;
3016 gcc_unreachable ();
3019 /* If decl or value DVP refers to VALUEs from within LOC, remove backlinks
3020 from those VALUEs to DVP. */
3022 static void
3023 remove_value_chains (decl_or_value dv, rtx loc)
3025 if (GET_CODE (loc) == VALUE || GET_CODE (loc) == DEBUG_EXPR)
3027 remove_value_chain (&loc, dv_as_opaque (dv));
3028 return;
3030 if (REG_P (loc))
3031 return;
3032 if (MEM_P (loc))
3033 loc = XEXP (loc, 0);
3034 for_each_rtx (&loc, remove_value_chain, dv_as_opaque (dv));
3037 #if ENABLE_CHECKING
3038 /* If CSELIB_VAL_PTR of value DV refer to VALUEs, remove backlinks from those
3039 VALUEs to DV. */
3041 static void
3042 remove_cselib_value_chains (decl_or_value dv)
3044 struct elt_loc_list *l;
3046 for (l = CSELIB_VAL_PTR (dv_as_value (dv))->locs; l; l = l->next)
3047 for_each_rtx (&l->loc, remove_value_chain, dv_as_opaque (dv));
3050 /* Check the order of entries in one-part variables. */
3052 static int
3053 canonicalize_loc_order_check (void **slot, void *data ATTRIBUTE_UNUSED)
3055 variable var = (variable) *slot;
3056 decl_or_value dv = var->dv;
3057 location_chain node, next;
3059 #ifdef ENABLE_RTL_CHECKING
3060 int i;
3061 for (i = 0; i < var->n_var_parts; i++)
3062 gcc_assert (var->var_part[0].cur_loc == NULL);
3063 gcc_assert (!var->cur_loc_changed && !var->in_changed_variables);
3064 #endif
3066 if (!dv_onepart_p (dv))
3067 return 1;
3069 gcc_assert (var->n_var_parts == 1);
3070 node = var->var_part[0].loc_chain;
3071 gcc_assert (node);
3073 while ((next = node->next))
3075 gcc_assert (loc_cmp (node->loc, next->loc) < 0);
3076 node = next;
3079 return 1;
3081 #endif
3083 /* Mark with VALUE_RECURSED_INTO values that have neighbors that are
3084 more likely to be chosen as canonical for an equivalence set.
3085 Ensure less likely values can reach more likely neighbors, making
3086 the connections bidirectional. */
3088 static int
3089 canonicalize_values_mark (void **slot, void *data)
3091 dataflow_set *set = (dataflow_set *)data;
3092 variable var = (variable) *slot;
3093 decl_or_value dv = var->dv;
3094 rtx val;
3095 location_chain node;
3097 if (!dv_is_value_p (dv))
3098 return 1;
3100 gcc_checking_assert (var->n_var_parts == 1);
3102 val = dv_as_value (dv);
3104 for (node = var->var_part[0].loc_chain; node; node = node->next)
3105 if (GET_CODE (node->loc) == VALUE)
3107 if (canon_value_cmp (node->loc, val))
3108 VALUE_RECURSED_INTO (val) = true;
3109 else
3111 decl_or_value odv = dv_from_value (node->loc);
3112 void **oslot = shared_hash_find_slot_noinsert (set->vars, odv);
3114 oslot = set_slot_part (set, val, oslot, odv, 0,
3115 node->init, NULL_RTX);
3117 VALUE_RECURSED_INTO (node->loc) = true;
3121 return 1;
3124 /* Remove redundant entries from equivalence lists in onepart
3125 variables, canonicalizing equivalence sets into star shapes. */
3127 static int
3128 canonicalize_values_star (void **slot, void *data)
3130 dataflow_set *set = (dataflow_set *)data;
3131 variable var = (variable) *slot;
3132 decl_or_value dv = var->dv;
3133 location_chain node;
3134 decl_or_value cdv;
3135 rtx val, cval;
3136 void **cslot;
3137 bool has_value;
3138 bool has_marks;
3140 if (!dv_onepart_p (dv))
3141 return 1;
3143 gcc_checking_assert (var->n_var_parts == 1);
3145 if (dv_is_value_p (dv))
3147 cval = dv_as_value (dv);
3148 if (!VALUE_RECURSED_INTO (cval))
3149 return 1;
3150 VALUE_RECURSED_INTO (cval) = false;
3152 else
3153 cval = NULL_RTX;
3155 restart:
3156 val = cval;
3157 has_value = false;
3158 has_marks = false;
3160 gcc_assert (var->n_var_parts == 1);
3162 for (node = var->var_part[0].loc_chain; node; node = node->next)
3163 if (GET_CODE (node->loc) == VALUE)
3165 has_value = true;
3166 if (VALUE_RECURSED_INTO (node->loc))
3167 has_marks = true;
3168 if (canon_value_cmp (node->loc, cval))
3169 cval = node->loc;
3172 if (!has_value)
3173 return 1;
3175 if (cval == val)
3177 if (!has_marks || dv_is_decl_p (dv))
3178 return 1;
3180 /* Keep it marked so that we revisit it, either after visiting a
3181 child node, or after visiting a new parent that might be
3182 found out. */
3183 VALUE_RECURSED_INTO (val) = true;
3185 for (node = var->var_part[0].loc_chain; node; node = node->next)
3186 if (GET_CODE (node->loc) == VALUE
3187 && VALUE_RECURSED_INTO (node->loc))
3189 cval = node->loc;
3190 restart_with_cval:
3191 VALUE_RECURSED_INTO (cval) = false;
3192 dv = dv_from_value (cval);
3193 slot = shared_hash_find_slot_noinsert (set->vars, dv);
3194 if (!slot)
3196 gcc_assert (dv_is_decl_p (var->dv));
3197 /* The canonical value was reset and dropped.
3198 Remove it. */
3199 clobber_variable_part (set, NULL, var->dv, 0, NULL);
3200 return 1;
3202 var = (variable)*slot;
3203 gcc_assert (dv_is_value_p (var->dv));
3204 if (var->n_var_parts == 0)
3205 return 1;
3206 gcc_assert (var->n_var_parts == 1);
3207 goto restart;
3210 VALUE_RECURSED_INTO (val) = false;
3212 return 1;
3215 /* Push values to the canonical one. */
3216 cdv = dv_from_value (cval);
3217 cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
3219 for (node = var->var_part[0].loc_chain; node; node = node->next)
3220 if (node->loc != cval)
3222 cslot = set_slot_part (set, node->loc, cslot, cdv, 0,
3223 node->init, NULL_RTX);
3224 if (GET_CODE (node->loc) == VALUE)
3226 decl_or_value ndv = dv_from_value (node->loc);
3228 set_variable_part (set, cval, ndv, 0, node->init, NULL_RTX,
3229 NO_INSERT);
3231 if (canon_value_cmp (node->loc, val))
3233 /* If it could have been a local minimum, it's not any more,
3234 since it's now neighbor to cval, so it may have to push
3235 to it. Conversely, if it wouldn't have prevailed over
3236 val, then whatever mark it has is fine: if it was to
3237 push, it will now push to a more canonical node, but if
3238 it wasn't, then it has already pushed any values it might
3239 have to. */
3240 VALUE_RECURSED_INTO (node->loc) = true;
3241 /* Make sure we visit node->loc by ensuring we cval is
3242 visited too. */
3243 VALUE_RECURSED_INTO (cval) = true;
3245 else if (!VALUE_RECURSED_INTO (node->loc))
3246 /* If we have no need to "recurse" into this node, it's
3247 already "canonicalized", so drop the link to the old
3248 parent. */
3249 clobber_variable_part (set, cval, ndv, 0, NULL);
3251 else if (GET_CODE (node->loc) == REG)
3253 attrs list = set->regs[REGNO (node->loc)], *listp;
3255 /* Change an existing attribute referring to dv so that it
3256 refers to cdv, removing any duplicate this might
3257 introduce, and checking that no previous duplicates
3258 existed, all in a single pass. */
3260 while (list)
3262 if (list->offset == 0
3263 && (dv_as_opaque (list->dv) == dv_as_opaque (dv)
3264 || dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
3265 break;
3267 list = list->next;
3270 gcc_assert (list);
3271 if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
3273 list->dv = cdv;
3274 for (listp = &list->next; (list = *listp); listp = &list->next)
3276 if (list->offset)
3277 continue;
3279 if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
3281 *listp = list->next;
3282 pool_free (attrs_pool, list);
3283 list = *listp;
3284 break;
3287 gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (dv));
3290 else if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
3292 for (listp = &list->next; (list = *listp); listp = &list->next)
3294 if (list->offset)
3295 continue;
3297 if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
3299 *listp = list->next;
3300 pool_free (attrs_pool, list);
3301 list = *listp;
3302 break;
3305 gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (cdv));
3308 else
3309 gcc_unreachable ();
3311 #if ENABLE_CHECKING
3312 while (list)
3314 if (list->offset == 0
3315 && (dv_as_opaque (list->dv) == dv_as_opaque (dv)
3316 || dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
3317 gcc_unreachable ();
3319 list = list->next;
3321 #endif
3325 if (val)
3326 cslot = set_slot_part (set, val, cslot, cdv, 0,
3327 VAR_INIT_STATUS_INITIALIZED, NULL_RTX);
3329 slot = clobber_slot_part (set, cval, slot, 0, NULL);
3331 /* Variable may have been unshared. */
3332 var = (variable)*slot;
3333 gcc_checking_assert (var->n_var_parts && var->var_part[0].loc_chain->loc == cval
3334 && var->var_part[0].loc_chain->next == NULL);
3336 if (VALUE_RECURSED_INTO (cval))
3337 goto restart_with_cval;
3339 return 1;
3342 /* Bind one-part variables to the canonical value in an equivalence
3343 set. Not doing this causes dataflow convergence failure in rare
3344 circumstances, see PR42873. Unfortunately we can't do this
3345 efficiently as part of canonicalize_values_star, since we may not
3346 have determined or even seen the canonical value of a set when we
3347 get to a variable that references another member of the set. */
3349 static int
3350 canonicalize_vars_star (void **slot, void *data)
3352 dataflow_set *set = (dataflow_set *)data;
3353 variable var = (variable) *slot;
3354 decl_or_value dv = var->dv;
3355 location_chain node;
3356 rtx cval;
3357 decl_or_value cdv;
3358 void **cslot;
3359 variable cvar;
3360 location_chain cnode;
3362 if (!dv_onepart_p (dv) || dv_is_value_p (dv))
3363 return 1;
3365 gcc_assert (var->n_var_parts == 1);
3367 node = var->var_part[0].loc_chain;
3369 if (GET_CODE (node->loc) != VALUE)
3370 return 1;
3372 gcc_assert (!node->next);
3373 cval = node->loc;
3375 /* Push values to the canonical one. */
3376 cdv = dv_from_value (cval);
3377 cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
3378 if (!cslot)
3379 return 1;
3380 cvar = (variable)*cslot;
3381 gcc_assert (cvar->n_var_parts == 1);
3383 cnode = cvar->var_part[0].loc_chain;
3385 /* CVAL is canonical if its value list contains non-VALUEs or VALUEs
3386 that are not “more canonical” than it. */
3387 if (GET_CODE (cnode->loc) != VALUE
3388 || !canon_value_cmp (cnode->loc, cval))
3389 return 1;
3391 /* CVAL was found to be non-canonical. Change the variable to point
3392 to the canonical VALUE. */
3393 gcc_assert (!cnode->next);
3394 cval = cnode->loc;
3396 slot = set_slot_part (set, cval, slot, dv, 0,
3397 node->init, node->set_src);
3398 slot = clobber_slot_part (set, cval, slot, 0, node->set_src);
3400 return 1;
3403 /* Combine variable or value in *S1SLOT (in DSM->cur) with the
3404 corresponding entry in DSM->src. Multi-part variables are combined
3405 with variable_union, whereas onepart dvs are combined with
3406 intersection. */
3408 static int
3409 variable_merge_over_cur (variable s1var, struct dfset_merge *dsm)
3411 dataflow_set *dst = dsm->dst;
3412 void **dstslot;
3413 variable s2var, dvar = NULL;
3414 decl_or_value dv = s1var->dv;
3415 bool onepart = dv_onepart_p (dv);
3416 rtx val;
3417 hashval_t dvhash;
3418 location_chain node, *nodep;
3420 /* If the incoming onepart variable has an empty location list, then
3421 the intersection will be just as empty. For other variables,
3422 it's always union. */
3423 gcc_checking_assert (s1var->n_var_parts
3424 && s1var->var_part[0].loc_chain);
3426 if (!onepart)
3427 return variable_union (s1var, dst);
3429 gcc_checking_assert (s1var->n_var_parts == 1
3430 && s1var->var_part[0].offset == 0);
3432 dvhash = dv_htab_hash (dv);
3433 if (dv_is_value_p (dv))
3434 val = dv_as_value (dv);
3435 else
3436 val = NULL;
3438 s2var = shared_hash_find_1 (dsm->src->vars, dv, dvhash);
3439 if (!s2var)
3441 dst_can_be_shared = false;
3442 return 1;
3445 dsm->src_onepart_cnt--;
3446 gcc_assert (s2var->var_part[0].loc_chain
3447 && s2var->n_var_parts == 1
3448 && s2var->var_part[0].offset == 0);
3450 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
3451 if (dstslot)
3453 dvar = (variable)*dstslot;
3454 gcc_assert (dvar->refcount == 1
3455 && dvar->n_var_parts == 1
3456 && dvar->var_part[0].offset == 0);
3457 nodep = &dvar->var_part[0].loc_chain;
3459 else
3461 nodep = &node;
3462 node = NULL;
3465 if (!dstslot && !onepart_variable_different_p (s1var, s2var))
3467 dstslot = shared_hash_find_slot_unshare_1 (&dst->vars, dv,
3468 dvhash, INSERT);
3469 *dstslot = dvar = s2var;
3470 dvar->refcount++;
3472 else
3474 dst_can_be_shared = false;
3476 intersect_loc_chains (val, nodep, dsm,
3477 s1var->var_part[0].loc_chain, s2var);
3479 if (!dstslot)
3481 if (node)
3483 dvar = (variable) pool_alloc (dv_pool (dv));
3484 dvar->dv = dv;
3485 dvar->refcount = 1;
3486 dvar->n_var_parts = 1;
3487 dvar->cur_loc_changed = false;
3488 dvar->in_changed_variables = false;
3489 dvar->var_part[0].offset = 0;
3490 dvar->var_part[0].loc_chain = node;
3491 dvar->var_part[0].cur_loc = NULL;
3493 dstslot
3494 = shared_hash_find_slot_unshare_1 (&dst->vars, dv, dvhash,
3495 INSERT);
3496 gcc_assert (!*dstslot);
3497 *dstslot = dvar;
3499 else
3500 return 1;
3504 nodep = &dvar->var_part[0].loc_chain;
3505 while ((node = *nodep))
3507 location_chain *nextp = &node->next;
3509 if (GET_CODE (node->loc) == REG)
3511 attrs list;
3513 for (list = dst->regs[REGNO (node->loc)]; list; list = list->next)
3514 if (GET_MODE (node->loc) == GET_MODE (list->loc)
3515 && dv_is_value_p (list->dv))
3516 break;
3518 if (!list)
3519 attrs_list_insert (&dst->regs[REGNO (node->loc)],
3520 dv, 0, node->loc);
3521 /* If this value became canonical for another value that had
3522 this register, we want to leave it alone. */
3523 else if (dv_as_value (list->dv) != val)
3525 dstslot = set_slot_part (dst, dv_as_value (list->dv),
3526 dstslot, dv, 0,
3527 node->init, NULL_RTX);
3528 dstslot = delete_slot_part (dst, node->loc, dstslot, 0);
3530 /* Since nextp points into the removed node, we can't
3531 use it. The pointer to the next node moved to nodep.
3532 However, if the variable we're walking is unshared
3533 during our walk, we'll keep walking the location list
3534 of the previously-shared variable, in which case the
3535 node won't have been removed, and we'll want to skip
3536 it. That's why we test *nodep here. */
3537 if (*nodep != node)
3538 nextp = nodep;
3541 else
3542 /* Canonicalization puts registers first, so we don't have to
3543 walk it all. */
3544 break;
3545 nodep = nextp;
3548 if (dvar != (variable)*dstslot)
3549 dvar = (variable)*dstslot;
3550 nodep = &dvar->var_part[0].loc_chain;
3552 if (val)
3554 /* Mark all referenced nodes for canonicalization, and make sure
3555 we have mutual equivalence links. */
3556 VALUE_RECURSED_INTO (val) = true;
3557 for (node = *nodep; node; node = node->next)
3558 if (GET_CODE (node->loc) == VALUE)
3560 VALUE_RECURSED_INTO (node->loc) = true;
3561 set_variable_part (dst, val, dv_from_value (node->loc), 0,
3562 node->init, NULL, INSERT);
3565 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
3566 gcc_assert (*dstslot == dvar);
3567 canonicalize_values_star (dstslot, dst);
3568 gcc_checking_assert (dstslot
3569 == shared_hash_find_slot_noinsert_1 (dst->vars,
3570 dv, dvhash));
3571 dvar = (variable)*dstslot;
3573 else
3575 bool has_value = false, has_other = false;
3577 /* If we have one value and anything else, we're going to
3578 canonicalize this, so make sure all values have an entry in
3579 the table and are marked for canonicalization. */
3580 for (node = *nodep; node; node = node->next)
3582 if (GET_CODE (node->loc) == VALUE)
3584 /* If this was marked during register canonicalization,
3585 we know we have to canonicalize values. */
3586 if (has_value)
3587 has_other = true;
3588 has_value = true;
3589 if (has_other)
3590 break;
3592 else
3594 has_other = true;
3595 if (has_value)
3596 break;
3600 if (has_value && has_other)
3602 for (node = *nodep; node; node = node->next)
3604 if (GET_CODE (node->loc) == VALUE)
3606 decl_or_value dv = dv_from_value (node->loc);
3607 void **slot = NULL;
3609 if (shared_hash_shared (dst->vars))
3610 slot = shared_hash_find_slot_noinsert (dst->vars, dv);
3611 if (!slot)
3612 slot = shared_hash_find_slot_unshare (&dst->vars, dv,
3613 INSERT);
3614 if (!*slot)
3616 variable var = (variable) pool_alloc (dv_pool (dv));
3617 var->dv = dv;
3618 var->refcount = 1;
3619 var->n_var_parts = 1;
3620 var->cur_loc_changed = false;
3621 var->in_changed_variables = false;
3622 var->var_part[0].offset = 0;
3623 var->var_part[0].loc_chain = NULL;
3624 var->var_part[0].cur_loc = NULL;
3625 *slot = var;
3628 VALUE_RECURSED_INTO (node->loc) = true;
3632 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
3633 gcc_assert (*dstslot == dvar);
3634 canonicalize_values_star (dstslot, dst);
3635 gcc_checking_assert (dstslot
3636 == shared_hash_find_slot_noinsert_1 (dst->vars,
3637 dv, dvhash));
3638 dvar = (variable)*dstslot;
3642 if (!onepart_variable_different_p (dvar, s2var))
3644 variable_htab_free (dvar);
3645 *dstslot = dvar = s2var;
3646 dvar->refcount++;
3648 else if (s2var != s1var && !onepart_variable_different_p (dvar, s1var))
3650 variable_htab_free (dvar);
3651 *dstslot = dvar = s1var;
3652 dvar->refcount++;
3653 dst_can_be_shared = false;
3655 else
3656 dst_can_be_shared = false;
3658 return 1;
3661 /* Copy s2slot (in DSM->src) to DSM->dst if the variable is a
3662 multi-part variable. Unions of multi-part variables and
3663 intersections of one-part ones will be handled in
3664 variable_merge_over_cur(). */
3666 static int
3667 variable_merge_over_src (variable s2var, struct dfset_merge *dsm)
3669 dataflow_set *dst = dsm->dst;
3670 decl_or_value dv = s2var->dv;
3671 bool onepart = dv_onepart_p (dv);
3673 if (!onepart)
3675 void **dstp = shared_hash_find_slot (dst->vars, dv);
3676 *dstp = s2var;
3677 s2var->refcount++;
3678 return 1;
3681 dsm->src_onepart_cnt++;
3682 return 1;
3685 /* Combine dataflow set information from SRC2 into DST, using PDST
3686 to carry over information across passes. */
3688 static void
3689 dataflow_set_merge (dataflow_set *dst, dataflow_set *src2)
3691 dataflow_set cur = *dst;
3692 dataflow_set *src1 = &cur;
3693 struct dfset_merge dsm;
3694 int i;
3695 size_t src1_elems, src2_elems;
3696 htab_iterator hi;
3697 variable var;
3699 src1_elems = htab_elements (shared_hash_htab (src1->vars));
3700 src2_elems = htab_elements (shared_hash_htab (src2->vars));
3701 dataflow_set_init (dst);
3702 dst->stack_adjust = cur.stack_adjust;
3703 shared_hash_destroy (dst->vars);
3704 dst->vars = (shared_hash) pool_alloc (shared_hash_pool);
3705 dst->vars->refcount = 1;
3706 dst->vars->htab
3707 = htab_create (MAX (src1_elems, src2_elems), variable_htab_hash,
3708 variable_htab_eq, variable_htab_free);
3710 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3711 attrs_list_mpdv_union (&dst->regs[i], src1->regs[i], src2->regs[i]);
3713 dsm.dst = dst;
3714 dsm.src = src2;
3715 dsm.cur = src1;
3716 dsm.src_onepart_cnt = 0;
3718 FOR_EACH_HTAB_ELEMENT (shared_hash_htab (dsm.src->vars), var, variable, hi)
3719 variable_merge_over_src (var, &dsm);
3720 FOR_EACH_HTAB_ELEMENT (shared_hash_htab (dsm.cur->vars), var, variable, hi)
3721 variable_merge_over_cur (var, &dsm);
3723 if (dsm.src_onepart_cnt)
3724 dst_can_be_shared = false;
3726 dataflow_set_destroy (src1);
3729 /* Mark register equivalences. */
3731 static void
3732 dataflow_set_equiv_regs (dataflow_set *set)
3734 int i;
3735 attrs list, *listp;
3737 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3739 rtx canon[NUM_MACHINE_MODES];
3741 /* If the list is empty or one entry, no need to canonicalize
3742 anything. */
3743 if (set->regs[i] == NULL || set->regs[i]->next == NULL)
3744 continue;
3746 memset (canon, 0, sizeof (canon));
3748 for (list = set->regs[i]; list; list = list->next)
3749 if (list->offset == 0 && dv_is_value_p (list->dv))
3751 rtx val = dv_as_value (list->dv);
3752 rtx *cvalp = &canon[(int)GET_MODE (val)];
3753 rtx cval = *cvalp;
3755 if (canon_value_cmp (val, cval))
3756 *cvalp = val;
3759 for (list = set->regs[i]; list; list = list->next)
3760 if (list->offset == 0 && dv_onepart_p (list->dv))
3762 rtx cval = canon[(int)GET_MODE (list->loc)];
3764 if (!cval)
3765 continue;
3767 if (dv_is_value_p (list->dv))
3769 rtx val = dv_as_value (list->dv);
3771 if (val == cval)
3772 continue;
3774 VALUE_RECURSED_INTO (val) = true;
3775 set_variable_part (set, val, dv_from_value (cval), 0,
3776 VAR_INIT_STATUS_INITIALIZED,
3777 NULL, NO_INSERT);
3780 VALUE_RECURSED_INTO (cval) = true;
3781 set_variable_part (set, cval, list->dv, 0,
3782 VAR_INIT_STATUS_INITIALIZED, NULL, NO_INSERT);
3785 for (listp = &set->regs[i]; (list = *listp);
3786 listp = list ? &list->next : listp)
3787 if (list->offset == 0 && dv_onepart_p (list->dv))
3789 rtx cval = canon[(int)GET_MODE (list->loc)];
3790 void **slot;
3792 if (!cval)
3793 continue;
3795 if (dv_is_value_p (list->dv))
3797 rtx val = dv_as_value (list->dv);
3798 if (!VALUE_RECURSED_INTO (val))
3799 continue;
3802 slot = shared_hash_find_slot_noinsert (set->vars, list->dv);
3803 canonicalize_values_star (slot, set);
3804 if (*listp != list)
3805 list = NULL;
3810 /* Remove any redundant values in the location list of VAR, which must
3811 be unshared and 1-part. */
3813 static void
3814 remove_duplicate_values (variable var)
3816 location_chain node, *nodep;
3818 gcc_assert (dv_onepart_p (var->dv));
3819 gcc_assert (var->n_var_parts == 1);
3820 gcc_assert (var->refcount == 1);
3822 for (nodep = &var->var_part[0].loc_chain; (node = *nodep); )
3824 if (GET_CODE (node->loc) == VALUE)
3826 if (VALUE_RECURSED_INTO (node->loc))
3828 /* Remove duplicate value node. */
3829 *nodep = node->next;
3830 pool_free (loc_chain_pool, node);
3831 continue;
3833 else
3834 VALUE_RECURSED_INTO (node->loc) = true;
3836 nodep = &node->next;
3839 for (node = var->var_part[0].loc_chain; node; node = node->next)
3840 if (GET_CODE (node->loc) == VALUE)
3842 gcc_assert (VALUE_RECURSED_INTO (node->loc));
3843 VALUE_RECURSED_INTO (node->loc) = false;
3848 /* Hash table iteration argument passed to variable_post_merge. */
3849 struct dfset_post_merge
3851 /* The new input set for the current block. */
3852 dataflow_set *set;
3853 /* Pointer to the permanent input set for the current block, or
3854 NULL. */
3855 dataflow_set **permp;
3858 /* Create values for incoming expressions associated with one-part
3859 variables that don't have value numbers for them. */
3861 static int
3862 variable_post_merge_new_vals (void **slot, void *info)
3864 struct dfset_post_merge *dfpm = (struct dfset_post_merge *)info;
3865 dataflow_set *set = dfpm->set;
3866 variable var = (variable)*slot;
3867 location_chain node;
3869 if (!dv_onepart_p (var->dv) || !var->n_var_parts)
3870 return 1;
3872 gcc_assert (var->n_var_parts == 1);
3874 if (dv_is_decl_p (var->dv))
3876 bool check_dupes = false;
3878 restart:
3879 for (node = var->var_part[0].loc_chain; node; node = node->next)
3881 if (GET_CODE (node->loc) == VALUE)
3882 gcc_assert (!VALUE_RECURSED_INTO (node->loc));
3883 else if (GET_CODE (node->loc) == REG)
3885 attrs att, *attp, *curp = NULL;
3887 if (var->refcount != 1)
3889 slot = unshare_variable (set, slot, var,
3890 VAR_INIT_STATUS_INITIALIZED);
3891 var = (variable)*slot;
3892 goto restart;
3895 for (attp = &set->regs[REGNO (node->loc)]; (att = *attp);
3896 attp = &att->next)
3897 if (att->offset == 0
3898 && GET_MODE (att->loc) == GET_MODE (node->loc))
3900 if (dv_is_value_p (att->dv))
3902 rtx cval = dv_as_value (att->dv);
3903 node->loc = cval;
3904 check_dupes = true;
3905 break;
3907 else if (dv_as_opaque (att->dv) == dv_as_opaque (var->dv))
3908 curp = attp;
3911 if (!curp)
3913 curp = attp;
3914 while (*curp)
3915 if ((*curp)->offset == 0
3916 && GET_MODE ((*curp)->loc) == GET_MODE (node->loc)
3917 && dv_as_opaque ((*curp)->dv) == dv_as_opaque (var->dv))
3918 break;
3919 else
3920 curp = &(*curp)->next;
3921 gcc_assert (*curp);
3924 if (!att)
3926 decl_or_value cdv;
3927 rtx cval;
3929 if (!*dfpm->permp)
3931 *dfpm->permp = XNEW (dataflow_set);
3932 dataflow_set_init (*dfpm->permp);
3935 for (att = (*dfpm->permp)->regs[REGNO (node->loc)];
3936 att; att = att->next)
3937 if (GET_MODE (att->loc) == GET_MODE (node->loc))
3939 gcc_assert (att->offset == 0
3940 && dv_is_value_p (att->dv));
3941 val_reset (set, att->dv);
3942 break;
3945 if (att)
3947 cdv = att->dv;
3948 cval = dv_as_value (cdv);
3950 else
3952 /* Create a unique value to hold this register,
3953 that ought to be found and reused in
3954 subsequent rounds. */
3955 cselib_val *v;
3956 gcc_assert (!cselib_lookup (node->loc,
3957 GET_MODE (node->loc), 0,
3958 VOIDmode));
3959 v = cselib_lookup (node->loc, GET_MODE (node->loc), 1,
3960 VOIDmode);
3961 cselib_preserve_value (v);
3962 cselib_invalidate_rtx (node->loc);
3963 cval = v->val_rtx;
3964 cdv = dv_from_value (cval);
3965 if (dump_file)
3966 fprintf (dump_file,
3967 "Created new value %u:%u for reg %i\n",
3968 v->uid, v->hash, REGNO (node->loc));
3971 var_reg_decl_set (*dfpm->permp, node->loc,
3972 VAR_INIT_STATUS_INITIALIZED,
3973 cdv, 0, NULL, INSERT);
3975 node->loc = cval;
3976 check_dupes = true;
3979 /* Remove attribute referring to the decl, which now
3980 uses the value for the register, already existing or
3981 to be added when we bring perm in. */
3982 att = *curp;
3983 *curp = att->next;
3984 pool_free (attrs_pool, att);
3988 if (check_dupes)
3989 remove_duplicate_values (var);
3992 return 1;
3995 /* Reset values in the permanent set that are not associated with the
3996 chosen expression. */
3998 static int
3999 variable_post_merge_perm_vals (void **pslot, void *info)
4001 struct dfset_post_merge *dfpm = (struct dfset_post_merge *)info;
4002 dataflow_set *set = dfpm->set;
4003 variable pvar = (variable)*pslot, var;
4004 location_chain pnode;
4005 decl_or_value dv;
4006 attrs att;
4008 gcc_assert (dv_is_value_p (pvar->dv)
4009 && pvar->n_var_parts == 1);
4010 pnode = pvar->var_part[0].loc_chain;
4011 gcc_assert (pnode
4012 && !pnode->next
4013 && REG_P (pnode->loc));
4015 dv = pvar->dv;
4017 var = shared_hash_find (set->vars, dv);
4018 if (var)
4020 /* Although variable_post_merge_new_vals may have made decls
4021 non-star-canonical, values that pre-existed in canonical form
4022 remain canonical, and newly-created values reference a single
4023 REG, so they are canonical as well. Since VAR has the
4024 location list for a VALUE, using find_loc_in_1pdv for it is
4025 fine, since VALUEs don't map back to DECLs. */
4026 if (find_loc_in_1pdv (pnode->loc, var, shared_hash_htab (set->vars)))
4027 return 1;
4028 val_reset (set, dv);
4031 for (att = set->regs[REGNO (pnode->loc)]; att; att = att->next)
4032 if (att->offset == 0
4033 && GET_MODE (att->loc) == GET_MODE (pnode->loc)
4034 && dv_is_value_p (att->dv))
4035 break;
4037 /* If there is a value associated with this register already, create
4038 an equivalence. */
4039 if (att && dv_as_value (att->dv) != dv_as_value (dv))
4041 rtx cval = dv_as_value (att->dv);
4042 set_variable_part (set, cval, dv, 0, pnode->init, NULL, INSERT);
4043 set_variable_part (set, dv_as_value (dv), att->dv, 0, pnode->init,
4044 NULL, INSERT);
4046 else if (!att)
4048 attrs_list_insert (&set->regs[REGNO (pnode->loc)],
4049 dv, 0, pnode->loc);
4050 variable_union (pvar, set);
4053 return 1;
4056 /* Just checking stuff and registering register attributes for
4057 now. */
4059 static void
4060 dataflow_post_merge_adjust (dataflow_set *set, dataflow_set **permp)
4062 struct dfset_post_merge dfpm;
4064 dfpm.set = set;
4065 dfpm.permp = permp;
4067 htab_traverse (shared_hash_htab (set->vars), variable_post_merge_new_vals,
4068 &dfpm);
4069 if (*permp)
4070 htab_traverse (shared_hash_htab ((*permp)->vars),
4071 variable_post_merge_perm_vals, &dfpm);
4072 htab_traverse (shared_hash_htab (set->vars), canonicalize_values_star, set);
4073 htab_traverse (shared_hash_htab (set->vars), canonicalize_vars_star, set);
4076 /* Return a node whose loc is a MEM that refers to EXPR in the
4077 location list of a one-part variable or value VAR, or in that of
4078 any values recursively mentioned in the location lists. */
4080 static location_chain
4081 find_mem_expr_in_1pdv (tree expr, rtx val, htab_t vars)
4083 location_chain node;
4084 decl_or_value dv;
4085 variable var;
4086 location_chain where = NULL;
4088 if (!val)
4089 return NULL;
4091 gcc_assert (GET_CODE (val) == VALUE
4092 && !VALUE_RECURSED_INTO (val));
4094 dv = dv_from_value (val);
4095 var = (variable) htab_find_with_hash (vars, dv, dv_htab_hash (dv));
4097 if (!var)
4098 return NULL;
4100 gcc_assert (dv_onepart_p (var->dv));
4102 if (!var->n_var_parts)
4103 return NULL;
4105 gcc_assert (var->var_part[0].offset == 0);
4107 VALUE_RECURSED_INTO (val) = true;
4109 for (node = var->var_part[0].loc_chain; node; node = node->next)
4110 if (MEM_P (node->loc) && MEM_EXPR (node->loc) == expr
4111 && MEM_OFFSET (node->loc) == 0)
4113 where = node;
4114 break;
4116 else if (GET_CODE (node->loc) == VALUE
4117 && !VALUE_RECURSED_INTO (node->loc)
4118 && (where = find_mem_expr_in_1pdv (expr, node->loc, vars)))
4119 break;
4121 VALUE_RECURSED_INTO (val) = false;
4123 return where;
4126 /* Return TRUE if the value of MEM may vary across a call. */
4128 static bool
4129 mem_dies_at_call (rtx mem)
4131 tree expr = MEM_EXPR (mem);
4132 tree decl;
4134 if (!expr)
4135 return true;
4137 decl = get_base_address (expr);
4139 if (!decl)
4140 return true;
4142 if (!DECL_P (decl))
4143 return true;
4145 return (may_be_aliased (decl)
4146 || (!TREE_READONLY (decl) && is_global_var (decl)));
4149 /* Remove all MEMs from the location list of a hash table entry for a
4150 one-part variable, except those whose MEM attributes map back to
4151 the variable itself, directly or within a VALUE. */
4153 static int
4154 dataflow_set_preserve_mem_locs (void **slot, void *data)
4156 dataflow_set *set = (dataflow_set *) data;
4157 variable var = (variable) *slot;
4159 if (dv_is_decl_p (var->dv) && dv_onepart_p (var->dv))
4161 tree decl = dv_as_decl (var->dv);
4162 location_chain loc, *locp;
4163 bool changed = false;
4165 if (!var->n_var_parts)
4166 return 1;
4168 gcc_assert (var->n_var_parts == 1);
4170 if (shared_var_p (var, set->vars))
4172 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
4174 /* We want to remove dying MEMs that doesn't refer to
4175 DECL. */
4176 if (GET_CODE (loc->loc) == MEM
4177 && (MEM_EXPR (loc->loc) != decl
4178 || MEM_OFFSET (loc->loc))
4179 && !mem_dies_at_call (loc->loc))
4180 break;
4181 /* We want to move here MEMs that do refer to DECL. */
4182 else if (GET_CODE (loc->loc) == VALUE
4183 && find_mem_expr_in_1pdv (decl, loc->loc,
4184 shared_hash_htab (set->vars)))
4185 break;
4188 if (!loc)
4189 return 1;
4191 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
4192 var = (variable)*slot;
4193 gcc_assert (var->n_var_parts == 1);
4196 for (locp = &var->var_part[0].loc_chain, loc = *locp;
4197 loc; loc = *locp)
4199 rtx old_loc = loc->loc;
4200 if (GET_CODE (old_loc) == VALUE)
4202 location_chain mem_node
4203 = find_mem_expr_in_1pdv (decl, loc->loc,
4204 shared_hash_htab (set->vars));
4206 /* ??? This picks up only one out of multiple MEMs that
4207 refer to the same variable. Do we ever need to be
4208 concerned about dealing with more than one, or, given
4209 that they should all map to the same variable
4210 location, their addresses will have been merged and
4211 they will be regarded as equivalent? */
4212 if (mem_node)
4214 loc->loc = mem_node->loc;
4215 loc->set_src = mem_node->set_src;
4216 loc->init = MIN (loc->init, mem_node->init);
4220 if (GET_CODE (loc->loc) != MEM
4221 || (MEM_EXPR (loc->loc) == decl
4222 && MEM_OFFSET (loc->loc) == 0)
4223 || !mem_dies_at_call (loc->loc))
4225 if (old_loc != loc->loc && emit_notes)
4227 if (old_loc == var->var_part[0].cur_loc)
4229 changed = true;
4230 var->var_part[0].cur_loc = NULL;
4231 var->cur_loc_changed = true;
4233 add_value_chains (var->dv, loc->loc);
4234 remove_value_chains (var->dv, old_loc);
4236 locp = &loc->next;
4237 continue;
4240 if (emit_notes)
4242 remove_value_chains (var->dv, old_loc);
4243 if (old_loc == var->var_part[0].cur_loc)
4245 changed = true;
4246 var->var_part[0].cur_loc = NULL;
4247 var->cur_loc_changed = true;
4250 *locp = loc->next;
4251 pool_free (loc_chain_pool, loc);
4254 if (!var->var_part[0].loc_chain)
4256 var->n_var_parts--;
4257 changed = true;
4259 if (changed)
4260 variable_was_changed (var, set);
4263 return 1;
4266 /* Remove all MEMs from the location list of a hash table entry for a
4267 value. */
4269 static int
4270 dataflow_set_remove_mem_locs (void **slot, void *data)
4272 dataflow_set *set = (dataflow_set *) data;
4273 variable var = (variable) *slot;
4275 if (dv_is_value_p (var->dv))
4277 location_chain loc, *locp;
4278 bool changed = false;
4280 gcc_assert (var->n_var_parts == 1);
4282 if (shared_var_p (var, set->vars))
4284 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
4285 if (GET_CODE (loc->loc) == MEM
4286 && mem_dies_at_call (loc->loc))
4287 break;
4289 if (!loc)
4290 return 1;
4292 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
4293 var = (variable)*slot;
4294 gcc_assert (var->n_var_parts == 1);
4297 for (locp = &var->var_part[0].loc_chain, loc = *locp;
4298 loc; loc = *locp)
4300 if (GET_CODE (loc->loc) != MEM
4301 || !mem_dies_at_call (loc->loc))
4303 locp = &loc->next;
4304 continue;
4307 if (emit_notes)
4308 remove_value_chains (var->dv, loc->loc);
4309 *locp = loc->next;
4310 /* If we have deleted the location which was last emitted
4311 we have to emit new location so add the variable to set
4312 of changed variables. */
4313 if (var->var_part[0].cur_loc == loc->loc)
4315 changed = true;
4316 var->var_part[0].cur_loc = NULL;
4317 var->cur_loc_changed = true;
4319 pool_free (loc_chain_pool, loc);
4322 if (!var->var_part[0].loc_chain)
4324 var->n_var_parts--;
4325 changed = true;
4327 if (changed)
4328 variable_was_changed (var, set);
4331 return 1;
4334 /* Remove all variable-location information about call-clobbered
4335 registers, as well as associations between MEMs and VALUEs. */
4337 static void
4338 dataflow_set_clear_at_call (dataflow_set *set)
4340 int r;
4342 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
4343 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, r))
4344 var_regno_delete (set, r);
4346 if (MAY_HAVE_DEBUG_INSNS)
4348 set->traversed_vars = set->vars;
4349 htab_traverse (shared_hash_htab (set->vars),
4350 dataflow_set_preserve_mem_locs, set);
4351 set->traversed_vars = set->vars;
4352 htab_traverse (shared_hash_htab (set->vars), dataflow_set_remove_mem_locs,
4353 set);
4354 set->traversed_vars = NULL;
4358 static bool
4359 variable_part_different_p (variable_part *vp1, variable_part *vp2)
4361 location_chain lc1, lc2;
4363 for (lc1 = vp1->loc_chain; lc1; lc1 = lc1->next)
4365 for (lc2 = vp2->loc_chain; lc2; lc2 = lc2->next)
4367 if (REG_P (lc1->loc) && REG_P (lc2->loc))
4369 if (REGNO (lc1->loc) == REGNO (lc2->loc))
4370 break;
4372 if (rtx_equal_p (lc1->loc, lc2->loc))
4373 break;
4375 if (!lc2)
4376 return true;
4378 return false;
4381 /* Return true if one-part variables VAR1 and VAR2 are different.
4382 They must be in canonical order. */
4384 static bool
4385 onepart_variable_different_p (variable var1, variable var2)
4387 location_chain lc1, lc2;
4389 if (var1 == var2)
4390 return false;
4392 gcc_assert (var1->n_var_parts == 1
4393 && var2->n_var_parts == 1);
4395 lc1 = var1->var_part[0].loc_chain;
4396 lc2 = var2->var_part[0].loc_chain;
4398 gcc_assert (lc1 && lc2);
4400 while (lc1 && lc2)
4402 if (loc_cmp (lc1->loc, lc2->loc))
4403 return true;
4404 lc1 = lc1->next;
4405 lc2 = lc2->next;
4408 return lc1 != lc2;
4411 /* Return true if variables VAR1 and VAR2 are different. */
4413 static bool
4414 variable_different_p (variable var1, variable var2)
4416 int i;
4418 if (var1 == var2)
4419 return false;
4421 if (var1->n_var_parts != var2->n_var_parts)
4422 return true;
4424 for (i = 0; i < var1->n_var_parts; i++)
4426 if (var1->var_part[i].offset != var2->var_part[i].offset)
4427 return true;
4428 /* One-part values have locations in a canonical order. */
4429 if (i == 0 && var1->var_part[i].offset == 0 && dv_onepart_p (var1->dv))
4431 gcc_assert (var1->n_var_parts == 1
4432 && dv_as_opaque (var1->dv) == dv_as_opaque (var2->dv));
4433 return onepart_variable_different_p (var1, var2);
4435 if (variable_part_different_p (&var1->var_part[i], &var2->var_part[i]))
4436 return true;
4437 if (variable_part_different_p (&var2->var_part[i], &var1->var_part[i]))
4438 return true;
4440 return false;
4443 /* Return true if dataflow sets OLD_SET and NEW_SET differ. */
4445 static bool
4446 dataflow_set_different (dataflow_set *old_set, dataflow_set *new_set)
4448 htab_iterator hi;
4449 variable var1;
4451 if (old_set->vars == new_set->vars)
4452 return false;
4454 if (htab_elements (shared_hash_htab (old_set->vars))
4455 != htab_elements (shared_hash_htab (new_set->vars)))
4456 return true;
4458 FOR_EACH_HTAB_ELEMENT (shared_hash_htab (old_set->vars), var1, variable, hi)
4460 htab_t htab = shared_hash_htab (new_set->vars);
4461 variable var2 = (variable) htab_find_with_hash (htab, var1->dv,
4462 dv_htab_hash (var1->dv));
4463 if (!var2)
4465 if (dump_file && (dump_flags & TDF_DETAILS))
4467 fprintf (dump_file, "dataflow difference found: removal of:\n");
4468 dump_var (var1);
4470 return true;
4473 if (variable_different_p (var1, var2))
4475 if (dump_file && (dump_flags & TDF_DETAILS))
4477 fprintf (dump_file, "dataflow difference found: "
4478 "old and new follow:\n");
4479 dump_var (var1);
4480 dump_var (var2);
4482 return true;
4486 /* No need to traverse the second hashtab, if both have the same number
4487 of elements and the second one had all entries found in the first one,
4488 then it can't have any extra entries. */
4489 return false;
4492 /* Free the contents of dataflow set SET. */
4494 static void
4495 dataflow_set_destroy (dataflow_set *set)
4497 int i;
4499 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4500 attrs_list_clear (&set->regs[i]);
4502 shared_hash_destroy (set->vars);
4503 set->vars = NULL;
4506 /* Return true if RTL X contains a SYMBOL_REF. */
4508 static bool
4509 contains_symbol_ref (rtx x)
4511 const char *fmt;
4512 RTX_CODE code;
4513 int i;
4515 if (!x)
4516 return false;
4518 code = GET_CODE (x);
4519 if (code == SYMBOL_REF)
4520 return true;
4522 fmt = GET_RTX_FORMAT (code);
4523 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4525 if (fmt[i] == 'e')
4527 if (contains_symbol_ref (XEXP (x, i)))
4528 return true;
4530 else if (fmt[i] == 'E')
4532 int j;
4533 for (j = 0; j < XVECLEN (x, i); j++)
4534 if (contains_symbol_ref (XVECEXP (x, i, j)))
4535 return true;
4539 return false;
4542 /* Shall EXPR be tracked? */
4544 static bool
4545 track_expr_p (tree expr, bool need_rtl)
4547 rtx decl_rtl;
4548 tree realdecl;
4550 if (TREE_CODE (expr) == DEBUG_EXPR_DECL)
4551 return DECL_RTL_SET_P (expr);
4553 /* If EXPR is not a parameter or a variable do not track it. */
4554 if (TREE_CODE (expr) != VAR_DECL && TREE_CODE (expr) != PARM_DECL)
4555 return 0;
4557 /* It also must have a name... */
4558 if (!DECL_NAME (expr) && need_rtl)
4559 return 0;
4561 /* ... and a RTL assigned to it. */
4562 decl_rtl = DECL_RTL_IF_SET (expr);
4563 if (!decl_rtl && need_rtl)
4564 return 0;
4566 /* If this expression is really a debug alias of some other declaration, we
4567 don't need to track this expression if the ultimate declaration is
4568 ignored. */
4569 realdecl = expr;
4570 if (DECL_DEBUG_EXPR_IS_FROM (realdecl))
4572 realdecl = DECL_DEBUG_EXPR (realdecl);
4573 if (realdecl == NULL_TREE)
4574 realdecl = expr;
4575 else if (!DECL_P (realdecl))
4577 if (handled_component_p (realdecl))
4579 HOST_WIDE_INT bitsize, bitpos, maxsize;
4580 tree innerdecl
4581 = get_ref_base_and_extent (realdecl, &bitpos, &bitsize,
4582 &maxsize);
4583 if (!DECL_P (innerdecl)
4584 || DECL_IGNORED_P (innerdecl)
4585 || TREE_STATIC (innerdecl)
4586 || bitsize <= 0
4587 || bitpos + bitsize > 256
4588 || bitsize != maxsize)
4589 return 0;
4590 else
4591 realdecl = expr;
4593 else
4594 return 0;
4598 /* Do not track EXPR if REALDECL it should be ignored for debugging
4599 purposes. */
4600 if (DECL_IGNORED_P (realdecl))
4601 return 0;
4603 /* Do not track global variables until we are able to emit correct location
4604 list for them. */
4605 if (TREE_STATIC (realdecl))
4606 return 0;
4608 /* When the EXPR is a DECL for alias of some variable (see example)
4609 the TREE_STATIC flag is not used. Disable tracking all DECLs whose
4610 DECL_RTL contains SYMBOL_REF.
4612 Example:
4613 extern char **_dl_argv_internal __attribute__ ((alias ("_dl_argv")));
4614 char **_dl_argv;
4616 if (decl_rtl && MEM_P (decl_rtl)
4617 && contains_symbol_ref (XEXP (decl_rtl, 0)))
4618 return 0;
4620 /* If RTX is a memory it should not be very large (because it would be
4621 an array or struct). */
4622 if (decl_rtl && MEM_P (decl_rtl))
4624 /* Do not track structures and arrays. */
4625 if (GET_MODE (decl_rtl) == BLKmode
4626 || AGGREGATE_TYPE_P (TREE_TYPE (realdecl)))
4627 return 0;
4628 if (MEM_SIZE (decl_rtl)
4629 && INTVAL (MEM_SIZE (decl_rtl)) > MAX_VAR_PARTS)
4630 return 0;
4633 DECL_CHANGED (expr) = 0;
4634 DECL_CHANGED (realdecl) = 0;
4635 return 1;
4638 /* Determine whether a given LOC refers to the same variable part as
4639 EXPR+OFFSET. */
4641 static bool
4642 same_variable_part_p (rtx loc, tree expr, HOST_WIDE_INT offset)
4644 tree expr2;
4645 HOST_WIDE_INT offset2;
4647 if (! DECL_P (expr))
4648 return false;
4650 if (REG_P (loc))
4652 expr2 = REG_EXPR (loc);
4653 offset2 = REG_OFFSET (loc);
4655 else if (MEM_P (loc))
4657 expr2 = MEM_EXPR (loc);
4658 offset2 = INT_MEM_OFFSET (loc);
4660 else
4661 return false;
4663 if (! expr2 || ! DECL_P (expr2))
4664 return false;
4666 expr = var_debug_decl (expr);
4667 expr2 = var_debug_decl (expr2);
4669 return (expr == expr2 && offset == offset2);
4672 /* LOC is a REG or MEM that we would like to track if possible.
4673 If EXPR is null, we don't know what expression LOC refers to,
4674 otherwise it refers to EXPR + OFFSET. STORE_REG_P is true if
4675 LOC is an lvalue register.
4677 Return true if EXPR is nonnull and if LOC, or some lowpart of it,
4678 is something we can track. When returning true, store the mode of
4679 the lowpart we can track in *MODE_OUT (if nonnull) and its offset
4680 from EXPR in *OFFSET_OUT (if nonnull). */
4682 static bool
4683 track_loc_p (rtx loc, tree expr, HOST_WIDE_INT offset, bool store_reg_p,
4684 enum machine_mode *mode_out, HOST_WIDE_INT *offset_out)
4686 enum machine_mode mode;
4688 if (expr == NULL || !track_expr_p (expr, true))
4689 return false;
4691 /* If REG was a paradoxical subreg, its REG_ATTRS will describe the
4692 whole subreg, but only the old inner part is really relevant. */
4693 mode = GET_MODE (loc);
4694 if (REG_P (loc) && !HARD_REGISTER_NUM_P (ORIGINAL_REGNO (loc)))
4696 enum machine_mode pseudo_mode;
4698 pseudo_mode = PSEUDO_REGNO_MODE (ORIGINAL_REGNO (loc));
4699 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (pseudo_mode))
4701 offset += byte_lowpart_offset (pseudo_mode, mode);
4702 mode = pseudo_mode;
4706 /* If LOC is a paradoxical lowpart of EXPR, refer to EXPR itself.
4707 Do the same if we are storing to a register and EXPR occupies
4708 the whole of register LOC; in that case, the whole of EXPR is
4709 being changed. We exclude complex modes from the second case
4710 because the real and imaginary parts are represented as separate
4711 pseudo registers, even if the whole complex value fits into one
4712 hard register. */
4713 if ((GET_MODE_SIZE (mode) > GET_MODE_SIZE (DECL_MODE (expr))
4714 || (store_reg_p
4715 && !COMPLEX_MODE_P (DECL_MODE (expr))
4716 && hard_regno_nregs[REGNO (loc)][DECL_MODE (expr)] == 1))
4717 && offset + byte_lowpart_offset (DECL_MODE (expr), mode) == 0)
4719 mode = DECL_MODE (expr);
4720 offset = 0;
4723 if (offset < 0 || offset >= MAX_VAR_PARTS)
4724 return false;
4726 if (mode_out)
4727 *mode_out = mode;
4728 if (offset_out)
4729 *offset_out = offset;
4730 return true;
4733 /* Return the MODE lowpart of LOC, or null if LOC is not something we
4734 want to track. When returning nonnull, make sure that the attributes
4735 on the returned value are updated. */
4737 static rtx
4738 var_lowpart (enum machine_mode mode, rtx loc)
4740 unsigned int offset, reg_offset, regno;
4742 if (!REG_P (loc) && !MEM_P (loc))
4743 return NULL;
4745 if (GET_MODE (loc) == mode)
4746 return loc;
4748 offset = byte_lowpart_offset (mode, GET_MODE (loc));
4750 if (MEM_P (loc))
4751 return adjust_address_nv (loc, mode, offset);
4753 reg_offset = subreg_lowpart_offset (mode, GET_MODE (loc));
4754 regno = REGNO (loc) + subreg_regno_offset (REGNO (loc), GET_MODE (loc),
4755 reg_offset, mode);
4756 return gen_rtx_REG_offset (loc, mode, regno, offset);
4759 /* Carry information about uses and stores while walking rtx. */
4761 struct count_use_info
4763 /* The insn where the RTX is. */
4764 rtx insn;
4766 /* The basic block where insn is. */
4767 basic_block bb;
4769 /* The array of n_sets sets in the insn, as determined by cselib. */
4770 struct cselib_set *sets;
4771 int n_sets;
4773 /* True if we're counting stores, false otherwise. */
4774 bool store_p;
4777 /* Find a VALUE corresponding to X. */
4779 static inline cselib_val *
4780 find_use_val (rtx x, enum machine_mode mode, struct count_use_info *cui)
4782 int i;
4784 if (cui->sets)
4786 /* This is called after uses are set up and before stores are
4787 processed bycselib, so it's safe to look up srcs, but not
4788 dsts. So we look up expressions that appear in srcs or in
4789 dest expressions, but we search the sets array for dests of
4790 stores. */
4791 if (cui->store_p)
4793 for (i = 0; i < cui->n_sets; i++)
4794 if (cui->sets[i].dest == x)
4795 return cui->sets[i].src_elt;
4797 else
4798 return cselib_lookup (x, mode, 0, VOIDmode);
4801 return NULL;
4804 /* Helper function to get mode of MEM's address. */
4806 static inline enum machine_mode
4807 get_address_mode (rtx mem)
4809 enum machine_mode mode = GET_MODE (XEXP (mem, 0));
4810 if (mode != VOIDmode)
4811 return mode;
4812 return targetm.addr_space.address_mode (MEM_ADDR_SPACE (mem));
4815 /* Replace all registers and addresses in an expression with VALUE
4816 expressions that map back to them, unless the expression is a
4817 register. If no mapping is or can be performed, returns NULL. */
4819 static rtx
4820 replace_expr_with_values (rtx loc)
4822 if (REG_P (loc))
4823 return NULL;
4824 else if (MEM_P (loc))
4826 cselib_val *addr = cselib_lookup (XEXP (loc, 0),
4827 get_address_mode (loc), 0,
4828 GET_MODE (loc));
4829 if (addr)
4830 return replace_equiv_address_nv (loc, addr->val_rtx);
4831 else
4832 return NULL;
4834 else
4835 return cselib_subst_to_values (loc, VOIDmode);
4838 /* Determine what kind of micro operation to choose for a USE. Return
4839 MO_CLOBBER if no micro operation is to be generated. */
4841 static enum micro_operation_type
4842 use_type (rtx loc, struct count_use_info *cui, enum machine_mode *modep)
4844 tree expr;
4846 if (cui && cui->sets)
4848 if (GET_CODE (loc) == VAR_LOCATION)
4850 if (track_expr_p (PAT_VAR_LOCATION_DECL (loc), false))
4852 rtx ploc = PAT_VAR_LOCATION_LOC (loc);
4853 if (! VAR_LOC_UNKNOWN_P (ploc))
4855 cselib_val *val = cselib_lookup (ploc, GET_MODE (loc), 1,
4856 VOIDmode);
4858 /* ??? flag_float_store and volatile mems are never
4859 given values, but we could in theory use them for
4860 locations. */
4861 gcc_assert (val || 1);
4863 return MO_VAL_LOC;
4865 else
4866 return MO_CLOBBER;
4869 if (REG_P (loc) || MEM_P (loc))
4871 if (modep)
4872 *modep = GET_MODE (loc);
4873 if (cui->store_p)
4875 if (REG_P (loc)
4876 || (find_use_val (loc, GET_MODE (loc), cui)
4877 && cselib_lookup (XEXP (loc, 0),
4878 get_address_mode (loc), 0,
4879 GET_MODE (loc))))
4880 return MO_VAL_SET;
4882 else
4884 cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
4886 if (val && !cselib_preserved_value_p (val))
4887 return MO_VAL_USE;
4892 if (REG_P (loc))
4894 gcc_assert (REGNO (loc) < FIRST_PSEUDO_REGISTER);
4896 if (loc == cfa_base_rtx)
4897 return MO_CLOBBER;
4898 expr = REG_EXPR (loc);
4900 if (!expr)
4901 return MO_USE_NO_VAR;
4902 else if (target_for_debug_bind (var_debug_decl (expr)))
4903 return MO_CLOBBER;
4904 else if (track_loc_p (loc, expr, REG_OFFSET (loc),
4905 false, modep, NULL))
4906 return MO_USE;
4907 else
4908 return MO_USE_NO_VAR;
4910 else if (MEM_P (loc))
4912 expr = MEM_EXPR (loc);
4914 if (!expr)
4915 return MO_CLOBBER;
4916 else if (target_for_debug_bind (var_debug_decl (expr)))
4917 return MO_CLOBBER;
4918 else if (track_loc_p (loc, expr, INT_MEM_OFFSET (loc),
4919 false, modep, NULL))
4920 return MO_USE;
4921 else
4922 return MO_CLOBBER;
4925 return MO_CLOBBER;
4928 /* Log to OUT information about micro-operation MOPT involving X in
4929 INSN of BB. */
4931 static inline void
4932 log_op_type (rtx x, basic_block bb, rtx insn,
4933 enum micro_operation_type mopt, FILE *out)
4935 fprintf (out, "bb %i op %i insn %i %s ",
4936 bb->index, VEC_length (micro_operation, VTI (bb)->mos),
4937 INSN_UID (insn), micro_operation_type_name[mopt]);
4938 print_inline_rtx (out, x, 2);
4939 fputc ('\n', out);
4942 /* Tell whether the CONCAT used to holds a VALUE and its location
4943 needs value resolution, i.e., an attempt of mapping the location
4944 back to other incoming values. */
4945 #define VAL_NEEDS_RESOLUTION(x) \
4946 (RTL_FLAG_CHECK1 ("VAL_NEEDS_RESOLUTION", (x), CONCAT)->volatil)
4947 /* Whether the location in the CONCAT is a tracked expression, that
4948 should also be handled like a MO_USE. */
4949 #define VAL_HOLDS_TRACK_EXPR(x) \
4950 (RTL_FLAG_CHECK1 ("VAL_HOLDS_TRACK_EXPR", (x), CONCAT)->used)
4951 /* Whether the location in the CONCAT should be handled like a MO_COPY
4952 as well. */
4953 #define VAL_EXPR_IS_COPIED(x) \
4954 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_COPIED", (x), CONCAT)->jump)
4955 /* Whether the location in the CONCAT should be handled like a
4956 MO_CLOBBER as well. */
4957 #define VAL_EXPR_IS_CLOBBERED(x) \
4958 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_CLOBBERED", (x), CONCAT)->unchanging)
4959 /* Whether the location is a CONCAT of the MO_VAL_SET expression and
4960 a reverse operation that should be handled afterwards. */
4961 #define VAL_EXPR_HAS_REVERSE(x) \
4962 (RTL_FLAG_CHECK1 ("VAL_EXPR_HAS_REVERSE", (x), CONCAT)->return_val)
4964 /* All preserved VALUEs. */
4965 static VEC (rtx, heap) *preserved_values;
4967 /* Ensure VAL is preserved and remember it in a vector for vt_emit_notes. */
4969 static void
4970 preserve_value (cselib_val *val)
4972 cselib_preserve_value (val);
4973 VEC_safe_push (rtx, heap, preserved_values, val->val_rtx);
4976 /* Helper function for MO_VAL_LOC handling. Return non-zero if
4977 any rtxes not suitable for CONST use not replaced by VALUEs
4978 are discovered. */
4980 static int
4981 non_suitable_const (rtx *x, void *data ATTRIBUTE_UNUSED)
4983 if (*x == NULL_RTX)
4984 return 0;
4986 switch (GET_CODE (*x))
4988 case REG:
4989 case DEBUG_EXPR:
4990 case PC:
4991 case SCRATCH:
4992 case CC0:
4993 case ASM_INPUT:
4994 case ASM_OPERANDS:
4995 return 1;
4996 case MEM:
4997 return !MEM_READONLY_P (*x);
4998 default:
4999 return 0;
5003 /* Add uses (register and memory references) LOC which will be tracked
5004 to VTI (bb)->mos. INSN is instruction which the LOC is part of. */
5006 static int
5007 add_uses (rtx *ploc, void *data)
5009 rtx loc = *ploc;
5010 enum machine_mode mode = VOIDmode;
5011 struct count_use_info *cui = (struct count_use_info *)data;
5012 enum micro_operation_type type = use_type (loc, cui, &mode);
5014 if (type != MO_CLOBBER)
5016 basic_block bb = cui->bb;
5017 micro_operation mo;
5019 mo.type = type;
5020 mo.u.loc = type == MO_USE ? var_lowpart (mode, loc) : loc;
5021 mo.insn = cui->insn;
5023 if (type == MO_VAL_LOC)
5025 rtx oloc = loc;
5026 rtx vloc = PAT_VAR_LOCATION_LOC (oloc);
5027 cselib_val *val;
5029 gcc_assert (cui->sets);
5031 if (MEM_P (vloc)
5032 && !REG_P (XEXP (vloc, 0))
5033 && !MEM_P (XEXP (vloc, 0))
5034 && (GET_CODE (XEXP (vloc, 0)) != PLUS
5035 || XEXP (XEXP (vloc, 0), 0) != cfa_base_rtx
5036 || !CONST_INT_P (XEXP (XEXP (vloc, 0), 1))))
5038 rtx mloc = vloc;
5039 enum machine_mode address_mode = get_address_mode (mloc);
5040 cselib_val *val
5041 = cselib_lookup (XEXP (mloc, 0), address_mode, 0,
5042 GET_MODE (mloc));
5044 if (val && !cselib_preserved_value_p (val))
5046 micro_operation moa;
5047 preserve_value (val);
5048 mloc = cselib_subst_to_values (XEXP (mloc, 0),
5049 GET_MODE (mloc));
5050 moa.type = MO_VAL_USE;
5051 moa.insn = cui->insn;
5052 moa.u.loc = gen_rtx_CONCAT (address_mode,
5053 val->val_rtx, mloc);
5054 if (dump_file && (dump_flags & TDF_DETAILS))
5055 log_op_type (moa.u.loc, cui->bb, cui->insn,
5056 moa.type, dump_file);
5057 VEC_safe_push (micro_operation, heap, VTI (bb)->mos, &moa);
5061 if (CONSTANT_P (vloc)
5062 && (GET_CODE (vloc) != CONST
5063 || for_each_rtx (&vloc, non_suitable_const, NULL)))
5064 /* For constants don't look up any value. */;
5065 else if (!VAR_LOC_UNKNOWN_P (vloc)
5066 && (val = find_use_val (vloc, GET_MODE (oloc), cui)))
5068 enum machine_mode mode2;
5069 enum micro_operation_type type2;
5070 rtx nloc = replace_expr_with_values (vloc);
5072 if (nloc)
5074 oloc = shallow_copy_rtx (oloc);
5075 PAT_VAR_LOCATION_LOC (oloc) = nloc;
5078 oloc = gen_rtx_CONCAT (mode, val->val_rtx, oloc);
5080 type2 = use_type (vloc, 0, &mode2);
5082 gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
5083 || type2 == MO_CLOBBER);
5085 if (type2 == MO_CLOBBER
5086 && !cselib_preserved_value_p (val))
5088 VAL_NEEDS_RESOLUTION (oloc) = 1;
5089 preserve_value (val);
5092 else if (!VAR_LOC_UNKNOWN_P (vloc))
5094 oloc = shallow_copy_rtx (oloc);
5095 PAT_VAR_LOCATION_LOC (oloc) = gen_rtx_UNKNOWN_VAR_LOC ();
5098 mo.u.loc = oloc;
5100 else if (type == MO_VAL_USE)
5102 enum machine_mode mode2 = VOIDmode;
5103 enum micro_operation_type type2;
5104 cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
5105 rtx vloc, oloc = loc, nloc;
5107 gcc_assert (cui->sets);
5109 if (MEM_P (oloc)
5110 && !REG_P (XEXP (oloc, 0))
5111 && !MEM_P (XEXP (oloc, 0))
5112 && (GET_CODE (XEXP (oloc, 0)) != PLUS
5113 || XEXP (XEXP (oloc, 0), 0) != cfa_base_rtx
5114 || !CONST_INT_P (XEXP (XEXP (oloc, 0), 1))))
5116 rtx mloc = oloc;
5117 enum machine_mode address_mode = get_address_mode (mloc);
5118 cselib_val *val
5119 = cselib_lookup (XEXP (mloc, 0), address_mode, 0,
5120 GET_MODE (mloc));
5122 if (val && !cselib_preserved_value_p (val))
5124 micro_operation moa;
5125 preserve_value (val);
5126 mloc = cselib_subst_to_values (XEXP (mloc, 0),
5127 GET_MODE (mloc));
5128 moa.type = MO_VAL_USE;
5129 moa.insn = cui->insn;
5130 moa.u.loc = gen_rtx_CONCAT (address_mode,
5131 val->val_rtx, mloc);
5132 if (dump_file && (dump_flags & TDF_DETAILS))
5133 log_op_type (moa.u.loc, cui->bb, cui->insn,
5134 moa.type, dump_file);
5135 VEC_safe_push (micro_operation, heap, VTI (bb)->mos, &moa);
5139 type2 = use_type (loc, 0, &mode2);
5141 gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
5142 || type2 == MO_CLOBBER);
5144 if (type2 == MO_USE)
5145 vloc = var_lowpart (mode2, loc);
5146 else
5147 vloc = oloc;
5149 /* The loc of a MO_VAL_USE may have two forms:
5151 (concat val src): val is at src, a value-based
5152 representation.
5154 (concat (concat val use) src): same as above, with use as
5155 the MO_USE tracked value, if it differs from src.
5159 nloc = replace_expr_with_values (loc);
5160 if (!nloc)
5161 nloc = oloc;
5163 if (vloc != nloc)
5164 oloc = gen_rtx_CONCAT (mode2, val->val_rtx, vloc);
5165 else
5166 oloc = val->val_rtx;
5168 mo.u.loc = gen_rtx_CONCAT (mode, oloc, nloc);
5170 if (type2 == MO_USE)
5171 VAL_HOLDS_TRACK_EXPR (mo.u.loc) = 1;
5172 if (!cselib_preserved_value_p (val))
5174 VAL_NEEDS_RESOLUTION (mo.u.loc) = 1;
5175 preserve_value (val);
5178 else
5179 gcc_assert (type == MO_USE || type == MO_USE_NO_VAR);
5181 if (dump_file && (dump_flags & TDF_DETAILS))
5182 log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
5183 VEC_safe_push (micro_operation, heap, VTI (bb)->mos, &mo);
5186 return 0;
5189 /* Helper function for finding all uses of REG/MEM in X in insn INSN. */
5191 static void
5192 add_uses_1 (rtx *x, void *cui)
5194 for_each_rtx (x, add_uses, cui);
5197 /* Attempt to reverse the EXPR operation in the debug info. Say for
5198 reg1 = reg2 + 6 even when reg2 is no longer live we
5199 can express its value as VAL - 6. */
5201 static rtx
5202 reverse_op (rtx val, const_rtx expr)
5204 rtx src, arg, ret;
5205 cselib_val *v;
5206 enum rtx_code code;
5208 if (GET_CODE (expr) != SET)
5209 return NULL_RTX;
5211 if (!REG_P (SET_DEST (expr)) || GET_MODE (val) != GET_MODE (SET_DEST (expr)))
5212 return NULL_RTX;
5214 src = SET_SRC (expr);
5215 switch (GET_CODE (src))
5217 case PLUS:
5218 case MINUS:
5219 case XOR:
5220 case NOT:
5221 case NEG:
5222 if (!REG_P (XEXP (src, 0)))
5223 return NULL_RTX;
5224 break;
5225 case SIGN_EXTEND:
5226 case ZERO_EXTEND:
5227 if (!REG_P (XEXP (src, 0)) && !MEM_P (XEXP (src, 0)))
5228 return NULL_RTX;
5229 break;
5230 default:
5231 return NULL_RTX;
5234 if (!SCALAR_INT_MODE_P (GET_MODE (src)) || XEXP (src, 0) == cfa_base_rtx)
5235 return NULL_RTX;
5237 v = cselib_lookup (XEXP (src, 0), GET_MODE (XEXP (src, 0)), 0, VOIDmode);
5238 if (!v || !cselib_preserved_value_p (v))
5239 return NULL_RTX;
5241 switch (GET_CODE (src))
5243 case NOT:
5244 case NEG:
5245 if (GET_MODE (v->val_rtx) != GET_MODE (val))
5246 return NULL_RTX;
5247 ret = gen_rtx_fmt_e (GET_CODE (src), GET_MODE (val), val);
5248 break;
5249 case SIGN_EXTEND:
5250 case ZERO_EXTEND:
5251 ret = gen_lowpart_SUBREG (GET_MODE (v->val_rtx), val);
5252 break;
5253 case XOR:
5254 code = XOR;
5255 goto binary;
5256 case PLUS:
5257 code = MINUS;
5258 goto binary;
5259 case MINUS:
5260 code = PLUS;
5261 goto binary;
5262 binary:
5263 if (GET_MODE (v->val_rtx) != GET_MODE (val))
5264 return NULL_RTX;
5265 arg = XEXP (src, 1);
5266 if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
5268 arg = cselib_expand_value_rtx (arg, scratch_regs, 5);
5269 if (arg == NULL_RTX)
5270 return NULL_RTX;
5271 if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
5272 return NULL_RTX;
5274 ret = simplify_gen_binary (code, GET_MODE (val), val, arg);
5275 if (ret == val)
5276 /* Ensure ret isn't VALUE itself (which can happen e.g. for
5277 (plus (reg1) (reg2)) when reg2 is known to be 0), as that
5278 breaks a lot of routines during var-tracking. */
5279 ret = gen_rtx_fmt_ee (PLUS, GET_MODE (val), val, const0_rtx);
5280 break;
5281 default:
5282 gcc_unreachable ();
5285 return gen_rtx_CONCAT (GET_MODE (v->val_rtx), v->val_rtx, ret);
5288 /* Add stores (register and memory references) LOC which will be tracked
5289 to VTI (bb)->mos. EXPR is the RTL expression containing the store.
5290 CUIP->insn is instruction which the LOC is part of. */
5292 static void
5293 add_stores (rtx loc, const_rtx expr, void *cuip)
5295 enum machine_mode mode = VOIDmode, mode2;
5296 struct count_use_info *cui = (struct count_use_info *)cuip;
5297 basic_block bb = cui->bb;
5298 micro_operation mo;
5299 rtx oloc = loc, nloc, src = NULL;
5300 enum micro_operation_type type = use_type (loc, cui, &mode);
5301 bool track_p = false;
5302 cselib_val *v;
5303 bool resolve, preserve;
5304 rtx reverse;
5306 if (type == MO_CLOBBER)
5307 return;
5309 mode2 = mode;
5311 if (REG_P (loc))
5313 gcc_assert (loc != cfa_base_rtx);
5314 if ((GET_CODE (expr) == CLOBBER && type != MO_VAL_SET)
5315 || !(track_p = use_type (loc, NULL, &mode2) == MO_USE)
5316 || GET_CODE (expr) == CLOBBER)
5318 mo.type = MO_CLOBBER;
5319 mo.u.loc = loc;
5321 else
5323 if (GET_CODE (expr) == SET && SET_DEST (expr) == loc)
5324 src = var_lowpart (mode2, SET_SRC (expr));
5325 loc = var_lowpart (mode2, loc);
5327 if (src == NULL)
5329 mo.type = MO_SET;
5330 mo.u.loc = loc;
5332 else
5334 rtx xexpr = gen_rtx_SET (VOIDmode, loc, src);
5335 if (same_variable_part_p (src, REG_EXPR (loc), REG_OFFSET (loc)))
5336 mo.type = MO_COPY;
5337 else
5338 mo.type = MO_SET;
5339 mo.u.loc = xexpr;
5342 mo.insn = cui->insn;
5344 else if (MEM_P (loc)
5345 && ((track_p = use_type (loc, NULL, &mode2) == MO_USE)
5346 || cui->sets))
5348 if (MEM_P (loc) && type == MO_VAL_SET
5349 && !REG_P (XEXP (loc, 0))
5350 && !MEM_P (XEXP (loc, 0))
5351 && (GET_CODE (XEXP (loc, 0)) != PLUS
5352 || XEXP (XEXP (loc, 0), 0) != cfa_base_rtx
5353 || !CONST_INT_P (XEXP (XEXP (loc, 0), 1))))
5355 rtx mloc = loc;
5356 enum machine_mode address_mode = get_address_mode (mloc);
5357 cselib_val *val = cselib_lookup (XEXP (mloc, 0),
5358 address_mode, 0,
5359 GET_MODE (mloc));
5361 if (val && !cselib_preserved_value_p (val))
5363 preserve_value (val);
5364 mo.type = MO_VAL_USE;
5365 mloc = cselib_subst_to_values (XEXP (mloc, 0),
5366 GET_MODE (mloc));
5367 mo.u.loc = gen_rtx_CONCAT (address_mode, val->val_rtx, mloc);
5368 mo.insn = cui->insn;
5369 if (dump_file && (dump_flags & TDF_DETAILS))
5370 log_op_type (mo.u.loc, cui->bb, cui->insn,
5371 mo.type, dump_file);
5372 VEC_safe_push (micro_operation, heap, VTI (bb)->mos, &mo);
5376 if (GET_CODE (expr) == CLOBBER || !track_p)
5378 mo.type = MO_CLOBBER;
5379 mo.u.loc = track_p ? var_lowpart (mode2, loc) : loc;
5381 else
5383 if (GET_CODE (expr) == SET && SET_DEST (expr) == loc)
5384 src = var_lowpart (mode2, SET_SRC (expr));
5385 loc = var_lowpart (mode2, loc);
5387 if (src == NULL)
5389 mo.type = MO_SET;
5390 mo.u.loc = loc;
5392 else
5394 rtx xexpr = gen_rtx_SET (VOIDmode, loc, src);
5395 if (same_variable_part_p (SET_SRC (xexpr),
5396 MEM_EXPR (loc),
5397 INT_MEM_OFFSET (loc)))
5398 mo.type = MO_COPY;
5399 else
5400 mo.type = MO_SET;
5401 mo.u.loc = xexpr;
5404 mo.insn = cui->insn;
5406 else
5407 return;
5409 if (type != MO_VAL_SET)
5410 goto log_and_return;
5412 v = find_use_val (oloc, mode, cui);
5414 if (!v)
5415 goto log_and_return;
5417 resolve = preserve = !cselib_preserved_value_p (v);
5419 nloc = replace_expr_with_values (oloc);
5420 if (nloc)
5421 oloc = nloc;
5423 if (GET_CODE (PATTERN (cui->insn)) == COND_EXEC)
5425 cselib_val *oval = cselib_lookup (oloc, GET_MODE (oloc), 0, VOIDmode);
5427 gcc_assert (oval != v);
5428 gcc_assert (REG_P (oloc) || MEM_P (oloc));
5430 if (!cselib_preserved_value_p (oval))
5432 micro_operation moa;
5434 preserve_value (oval);
5436 moa.type = MO_VAL_USE;
5437 moa.u.loc = gen_rtx_CONCAT (mode, oval->val_rtx, oloc);
5438 VAL_NEEDS_RESOLUTION (moa.u.loc) = 1;
5439 moa.insn = cui->insn;
5441 if (dump_file && (dump_flags & TDF_DETAILS))
5442 log_op_type (moa.u.loc, cui->bb, cui->insn,
5443 moa.type, dump_file);
5444 VEC_safe_push (micro_operation, heap, VTI (bb)->mos, &moa);
5447 resolve = false;
5449 else if (resolve && GET_CODE (mo.u.loc) == SET)
5451 nloc = replace_expr_with_values (SET_SRC (expr));
5453 /* Avoid the mode mismatch between oexpr and expr. */
5454 if (!nloc && mode != mode2)
5456 nloc = SET_SRC (expr);
5457 gcc_assert (oloc == SET_DEST (expr));
5460 if (nloc)
5461 oloc = gen_rtx_SET (GET_MODE (mo.u.loc), oloc, nloc);
5462 else
5464 if (oloc == SET_DEST (mo.u.loc))
5465 /* No point in duplicating. */
5466 oloc = mo.u.loc;
5467 if (!REG_P (SET_SRC (mo.u.loc)))
5468 resolve = false;
5471 else if (!resolve)
5473 if (GET_CODE (mo.u.loc) == SET
5474 && oloc == SET_DEST (mo.u.loc))
5475 /* No point in duplicating. */
5476 oloc = mo.u.loc;
5478 else
5479 resolve = false;
5481 loc = gen_rtx_CONCAT (mode, v->val_rtx, oloc);
5483 if (mo.u.loc != oloc)
5484 loc = gen_rtx_CONCAT (GET_MODE (mo.u.loc), loc, mo.u.loc);
5486 /* The loc of a MO_VAL_SET may have various forms:
5488 (concat val dst): dst now holds val
5490 (concat val (set dst src)): dst now holds val, copied from src
5492 (concat (concat val dstv) dst): dst now holds val; dstv is dst
5493 after replacing mems and non-top-level regs with values.
5495 (concat (concat val dstv) (set dst src)): dst now holds val,
5496 copied from src. dstv is a value-based representation of dst, if
5497 it differs from dst. If resolution is needed, src is a REG, and
5498 its mode is the same as that of val.
5500 (concat (concat val (set dstv srcv)) (set dst src)): src
5501 copied to dst, holding val. dstv and srcv are value-based
5502 representations of dst and src, respectively.
5506 if (GET_CODE (PATTERN (cui->insn)) != COND_EXEC)
5508 reverse = reverse_op (v->val_rtx, expr);
5509 if (reverse)
5511 loc = gen_rtx_CONCAT (GET_MODE (mo.u.loc), loc, reverse);
5512 VAL_EXPR_HAS_REVERSE (loc) = 1;
5516 mo.u.loc = loc;
5518 if (track_p)
5519 VAL_HOLDS_TRACK_EXPR (loc) = 1;
5520 if (preserve)
5522 VAL_NEEDS_RESOLUTION (loc) = resolve;
5523 preserve_value (v);
5525 if (mo.type == MO_CLOBBER)
5526 VAL_EXPR_IS_CLOBBERED (loc) = 1;
5527 if (mo.type == MO_COPY)
5528 VAL_EXPR_IS_COPIED (loc) = 1;
5530 mo.type = MO_VAL_SET;
5532 log_and_return:
5533 if (dump_file && (dump_flags & TDF_DETAILS))
5534 log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
5535 VEC_safe_push (micro_operation, heap, VTI (bb)->mos, &mo);
5538 /* Callback for cselib_record_sets_hook, that records as micro
5539 operations uses and stores in an insn after cselib_record_sets has
5540 analyzed the sets in an insn, but before it modifies the stored
5541 values in the internal tables, unless cselib_record_sets doesn't
5542 call it directly (perhaps because we're not doing cselib in the
5543 first place, in which case sets and n_sets will be 0). */
5545 static void
5546 add_with_sets (rtx insn, struct cselib_set *sets, int n_sets)
5548 basic_block bb = BLOCK_FOR_INSN (insn);
5549 int n1, n2;
5550 struct count_use_info cui;
5551 micro_operation *mos;
5553 cselib_hook_called = true;
5555 cui.insn = insn;
5556 cui.bb = bb;
5557 cui.sets = sets;
5558 cui.n_sets = n_sets;
5560 n1 = VEC_length (micro_operation, VTI (bb)->mos);
5561 cui.store_p = false;
5562 note_uses (&PATTERN (insn), add_uses_1, &cui);
5563 n2 = VEC_length (micro_operation, VTI (bb)->mos) - 1;
5564 mos = VEC_address (micro_operation, VTI (bb)->mos);
5566 /* Order the MO_USEs to be before MO_USE_NO_VARs and MO_VAL_USE, and
5567 MO_VAL_LOC last. */
5568 while (n1 < n2)
5570 while (n1 < n2 && mos[n1].type == MO_USE)
5571 n1++;
5572 while (n1 < n2 && mos[n2].type != MO_USE)
5573 n2--;
5574 if (n1 < n2)
5576 micro_operation sw;
5578 sw = mos[n1];
5579 mos[n1] = mos[n2];
5580 mos[n2] = sw;
5584 n2 = VEC_length (micro_operation, VTI (bb)->mos) - 1;
5585 while (n1 < n2)
5587 while (n1 < n2 && mos[n1].type != MO_VAL_LOC)
5588 n1++;
5589 while (n1 < n2 && mos[n2].type == MO_VAL_LOC)
5590 n2--;
5591 if (n1 < n2)
5593 micro_operation sw;
5595 sw = mos[n1];
5596 mos[n1] = mos[n2];
5597 mos[n2] = sw;
5601 if (CALL_P (insn))
5603 micro_operation mo;
5605 mo.type = MO_CALL;
5606 mo.insn = insn;
5607 mo.u.loc = NULL_RTX;
5609 if (dump_file && (dump_flags & TDF_DETAILS))
5610 log_op_type (PATTERN (insn), bb, insn, mo.type, dump_file);
5611 VEC_safe_push (micro_operation, heap, VTI (bb)->mos, &mo);
5614 n1 = VEC_length (micro_operation, VTI (bb)->mos);
5615 /* This will record NEXT_INSN (insn), such that we can
5616 insert notes before it without worrying about any
5617 notes that MO_USEs might emit after the insn. */
5618 cui.store_p = true;
5619 note_stores (PATTERN (insn), add_stores, &cui);
5620 n2 = VEC_length (micro_operation, VTI (bb)->mos) - 1;
5621 mos = VEC_address (micro_operation, VTI (bb)->mos);
5623 /* Order the MO_VAL_USEs first (note_stores does nothing
5624 on DEBUG_INSNs, so there are no MO_VAL_LOCs from this
5625 insn), then MO_CLOBBERs, then MO_SET/MO_COPY/MO_VAL_SET. */
5626 while (n1 < n2)
5628 while (n1 < n2 && mos[n1].type == MO_VAL_USE)
5629 n1++;
5630 while (n1 < n2 && mos[n2].type != MO_VAL_USE)
5631 n2--;
5632 if (n1 < n2)
5634 micro_operation sw;
5636 sw = mos[n1];
5637 mos[n1] = mos[n2];
5638 mos[n2] = sw;
5642 n2 = VEC_length (micro_operation, VTI (bb)->mos) - 1;
5643 while (n1 < n2)
5645 while (n1 < n2 && mos[n1].type == MO_CLOBBER)
5646 n1++;
5647 while (n1 < n2 && mos[n2].type != MO_CLOBBER)
5648 n2--;
5649 if (n1 < n2)
5651 micro_operation sw;
5653 sw = mos[n1];
5654 mos[n1] = mos[n2];
5655 mos[n2] = sw;
5660 static enum var_init_status
5661 find_src_status (dataflow_set *in, rtx src)
5663 tree decl = NULL_TREE;
5664 enum var_init_status status = VAR_INIT_STATUS_UNINITIALIZED;
5666 if (! flag_var_tracking_uninit)
5667 status = VAR_INIT_STATUS_INITIALIZED;
5669 if (src && REG_P (src))
5670 decl = var_debug_decl (REG_EXPR (src));
5671 else if (src && MEM_P (src))
5672 decl = var_debug_decl (MEM_EXPR (src));
5674 if (src && decl)
5675 status = get_init_value (in, src, dv_from_decl (decl));
5677 return status;
5680 /* SRC is the source of an assignment. Use SET to try to find what
5681 was ultimately assigned to SRC. Return that value if known,
5682 otherwise return SRC itself. */
5684 static rtx
5685 find_src_set_src (dataflow_set *set, rtx src)
5687 tree decl = NULL_TREE; /* The variable being copied around. */
5688 rtx set_src = NULL_RTX; /* The value for "decl" stored in "src". */
5689 variable var;
5690 location_chain nextp;
5691 int i;
5692 bool found;
5694 if (src && REG_P (src))
5695 decl = var_debug_decl (REG_EXPR (src));
5696 else if (src && MEM_P (src))
5697 decl = var_debug_decl (MEM_EXPR (src));
5699 if (src && decl)
5701 decl_or_value dv = dv_from_decl (decl);
5703 var = shared_hash_find (set->vars, dv);
5704 if (var)
5706 found = false;
5707 for (i = 0; i < var->n_var_parts && !found; i++)
5708 for (nextp = var->var_part[i].loc_chain; nextp && !found;
5709 nextp = nextp->next)
5710 if (rtx_equal_p (nextp->loc, src))
5712 set_src = nextp->set_src;
5713 found = true;
5719 return set_src;
5722 /* Compute the changes of variable locations in the basic block BB. */
5724 static bool
5725 compute_bb_dataflow (basic_block bb)
5727 unsigned int i;
5728 micro_operation *mo;
5729 bool changed;
5730 dataflow_set old_out;
5731 dataflow_set *in = &VTI (bb)->in;
5732 dataflow_set *out = &VTI (bb)->out;
5734 dataflow_set_init (&old_out);
5735 dataflow_set_copy (&old_out, out);
5736 dataflow_set_copy (out, in);
5738 FOR_EACH_VEC_ELT (micro_operation, VTI (bb)->mos, i, mo)
5740 rtx insn = mo->insn;
5742 switch (mo->type)
5744 case MO_CALL:
5745 dataflow_set_clear_at_call (out);
5746 break;
5748 case MO_USE:
5750 rtx loc = mo->u.loc;
5752 if (REG_P (loc))
5753 var_reg_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
5754 else if (MEM_P (loc))
5755 var_mem_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
5757 break;
5759 case MO_VAL_LOC:
5761 rtx loc = mo->u.loc;
5762 rtx val, vloc;
5763 tree var;
5765 if (GET_CODE (loc) == CONCAT)
5767 val = XEXP (loc, 0);
5768 vloc = XEXP (loc, 1);
5770 else
5772 val = NULL_RTX;
5773 vloc = loc;
5776 var = PAT_VAR_LOCATION_DECL (vloc);
5778 clobber_variable_part (out, NULL_RTX,
5779 dv_from_decl (var), 0, NULL_RTX);
5780 if (val)
5782 if (VAL_NEEDS_RESOLUTION (loc))
5783 val_resolve (out, val, PAT_VAR_LOCATION_LOC (vloc), insn);
5784 set_variable_part (out, val, dv_from_decl (var), 0,
5785 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
5786 INSERT);
5788 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
5789 set_variable_part (out, PAT_VAR_LOCATION_LOC (vloc),
5790 dv_from_decl (var), 0,
5791 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
5792 INSERT);
5794 break;
5796 case MO_VAL_USE:
5798 rtx loc = mo->u.loc;
5799 rtx val, vloc, uloc;
5801 vloc = uloc = XEXP (loc, 1);
5802 val = XEXP (loc, 0);
5804 if (GET_CODE (val) == CONCAT)
5806 uloc = XEXP (val, 1);
5807 val = XEXP (val, 0);
5810 if (VAL_NEEDS_RESOLUTION (loc))
5811 val_resolve (out, val, vloc, insn);
5812 else
5813 val_store (out, val, uloc, insn, false);
5815 if (VAL_HOLDS_TRACK_EXPR (loc))
5817 if (GET_CODE (uloc) == REG)
5818 var_reg_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
5819 NULL);
5820 else if (GET_CODE (uloc) == MEM)
5821 var_mem_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
5822 NULL);
5825 break;
5827 case MO_VAL_SET:
5829 rtx loc = mo->u.loc;
5830 rtx val, vloc, uloc, reverse = NULL_RTX;
5832 vloc = loc;
5833 if (VAL_EXPR_HAS_REVERSE (loc))
5835 reverse = XEXP (loc, 1);
5836 vloc = XEXP (loc, 0);
5838 uloc = XEXP (vloc, 1);
5839 val = XEXP (vloc, 0);
5840 vloc = uloc;
5842 if (GET_CODE (val) == CONCAT)
5844 vloc = XEXP (val, 1);
5845 val = XEXP (val, 0);
5848 if (GET_CODE (vloc) == SET)
5850 rtx vsrc = SET_SRC (vloc);
5852 gcc_assert (val != vsrc);
5853 gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
5855 vloc = SET_DEST (vloc);
5857 if (VAL_NEEDS_RESOLUTION (loc))
5858 val_resolve (out, val, vsrc, insn);
5860 else if (VAL_NEEDS_RESOLUTION (loc))
5862 gcc_assert (GET_CODE (uloc) == SET
5863 && GET_CODE (SET_SRC (uloc)) == REG);
5864 val_resolve (out, val, SET_SRC (uloc), insn);
5867 if (VAL_HOLDS_TRACK_EXPR (loc))
5869 if (VAL_EXPR_IS_CLOBBERED (loc))
5871 if (REG_P (uloc))
5872 var_reg_delete (out, uloc, true);
5873 else if (MEM_P (uloc))
5874 var_mem_delete (out, uloc, true);
5876 else
5878 bool copied_p = VAL_EXPR_IS_COPIED (loc);
5879 rtx set_src = NULL;
5880 enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
5882 if (GET_CODE (uloc) == SET)
5884 set_src = SET_SRC (uloc);
5885 uloc = SET_DEST (uloc);
5888 if (copied_p)
5890 if (flag_var_tracking_uninit)
5892 status = find_src_status (in, set_src);
5894 if (status == VAR_INIT_STATUS_UNKNOWN)
5895 status = find_src_status (out, set_src);
5898 set_src = find_src_set_src (in, set_src);
5901 if (REG_P (uloc))
5902 var_reg_delete_and_set (out, uloc, !copied_p,
5903 status, set_src);
5904 else if (MEM_P (uloc))
5905 var_mem_delete_and_set (out, uloc, !copied_p,
5906 status, set_src);
5909 else if (REG_P (uloc))
5910 var_regno_delete (out, REGNO (uloc));
5912 val_store (out, val, vloc, insn, true);
5914 if (reverse)
5915 val_store (out, XEXP (reverse, 0), XEXP (reverse, 1),
5916 insn, false);
5918 break;
5920 case MO_SET:
5922 rtx loc = mo->u.loc;
5923 rtx set_src = NULL;
5925 if (GET_CODE (loc) == SET)
5927 set_src = SET_SRC (loc);
5928 loc = SET_DEST (loc);
5931 if (REG_P (loc))
5932 var_reg_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
5933 set_src);
5934 else if (MEM_P (loc))
5935 var_mem_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
5936 set_src);
5938 break;
5940 case MO_COPY:
5942 rtx loc = mo->u.loc;
5943 enum var_init_status src_status;
5944 rtx set_src = NULL;
5946 if (GET_CODE (loc) == SET)
5948 set_src = SET_SRC (loc);
5949 loc = SET_DEST (loc);
5952 if (! flag_var_tracking_uninit)
5953 src_status = VAR_INIT_STATUS_INITIALIZED;
5954 else
5956 src_status = find_src_status (in, set_src);
5958 if (src_status == VAR_INIT_STATUS_UNKNOWN)
5959 src_status = find_src_status (out, set_src);
5962 set_src = find_src_set_src (in, set_src);
5964 if (REG_P (loc))
5965 var_reg_delete_and_set (out, loc, false, src_status, set_src);
5966 else if (MEM_P (loc))
5967 var_mem_delete_and_set (out, loc, false, src_status, set_src);
5969 break;
5971 case MO_USE_NO_VAR:
5973 rtx loc = mo->u.loc;
5975 if (REG_P (loc))
5976 var_reg_delete (out, loc, false);
5977 else if (MEM_P (loc))
5978 var_mem_delete (out, loc, false);
5980 break;
5982 case MO_CLOBBER:
5984 rtx loc = mo->u.loc;
5986 if (REG_P (loc))
5987 var_reg_delete (out, loc, true);
5988 else if (MEM_P (loc))
5989 var_mem_delete (out, loc, true);
5991 break;
5993 case MO_ADJUST:
5994 out->stack_adjust += mo->u.adjust;
5995 break;
5999 if (MAY_HAVE_DEBUG_INSNS)
6001 dataflow_set_equiv_regs (out);
6002 htab_traverse (shared_hash_htab (out->vars), canonicalize_values_mark,
6003 out);
6004 htab_traverse (shared_hash_htab (out->vars), canonicalize_values_star,
6005 out);
6006 #if ENABLE_CHECKING
6007 htab_traverse (shared_hash_htab (out->vars),
6008 canonicalize_loc_order_check, out);
6009 #endif
6011 changed = dataflow_set_different (&old_out, out);
6012 dataflow_set_destroy (&old_out);
6013 return changed;
6016 /* Find the locations of variables in the whole function. */
6018 static bool
6019 vt_find_locations (void)
6021 fibheap_t worklist, pending, fibheap_swap;
6022 sbitmap visited, in_worklist, in_pending, sbitmap_swap;
6023 basic_block bb;
6024 edge e;
6025 int *bb_order;
6026 int *rc_order;
6027 int i;
6028 int htabsz = 0;
6029 int htabmax = PARAM_VALUE (PARAM_MAX_VARTRACK_SIZE);
6030 bool success = true;
6032 timevar_push (TV_VAR_TRACKING_DATAFLOW);
6033 /* Compute reverse completion order of depth first search of the CFG
6034 so that the data-flow runs faster. */
6035 rc_order = XNEWVEC (int, n_basic_blocks - NUM_FIXED_BLOCKS);
6036 bb_order = XNEWVEC (int, last_basic_block);
6037 pre_and_rev_post_order_compute (NULL, rc_order, false);
6038 for (i = 0; i < n_basic_blocks - NUM_FIXED_BLOCKS; i++)
6039 bb_order[rc_order[i]] = i;
6040 free (rc_order);
6042 worklist = fibheap_new ();
6043 pending = fibheap_new ();
6044 visited = sbitmap_alloc (last_basic_block);
6045 in_worklist = sbitmap_alloc (last_basic_block);
6046 in_pending = sbitmap_alloc (last_basic_block);
6047 sbitmap_zero (in_worklist);
6049 FOR_EACH_BB (bb)
6050 fibheap_insert (pending, bb_order[bb->index], bb);
6051 sbitmap_ones (in_pending);
6053 while (success && !fibheap_empty (pending))
6055 fibheap_swap = pending;
6056 pending = worklist;
6057 worklist = fibheap_swap;
6058 sbitmap_swap = in_pending;
6059 in_pending = in_worklist;
6060 in_worklist = sbitmap_swap;
6062 sbitmap_zero (visited);
6064 while (!fibheap_empty (worklist))
6066 bb = (basic_block) fibheap_extract_min (worklist);
6067 RESET_BIT (in_worklist, bb->index);
6068 gcc_assert (!TEST_BIT (visited, bb->index));
6069 if (!TEST_BIT (visited, bb->index))
6071 bool changed;
6072 edge_iterator ei;
6073 int oldinsz, oldoutsz;
6075 SET_BIT (visited, bb->index);
6077 if (VTI (bb)->in.vars)
6079 htabsz
6080 -= (htab_size (shared_hash_htab (VTI (bb)->in.vars))
6081 + htab_size (shared_hash_htab (VTI (bb)->out.vars)));
6082 oldinsz
6083 = htab_elements (shared_hash_htab (VTI (bb)->in.vars));
6084 oldoutsz
6085 = htab_elements (shared_hash_htab (VTI (bb)->out.vars));
6087 else
6088 oldinsz = oldoutsz = 0;
6090 if (MAY_HAVE_DEBUG_INSNS)
6092 dataflow_set *in = &VTI (bb)->in, *first_out = NULL;
6093 bool first = true, adjust = false;
6095 /* Calculate the IN set as the intersection of
6096 predecessor OUT sets. */
6098 dataflow_set_clear (in);
6099 dst_can_be_shared = true;
6101 FOR_EACH_EDGE (e, ei, bb->preds)
6102 if (!VTI (e->src)->flooded)
6103 gcc_assert (bb_order[bb->index]
6104 <= bb_order[e->src->index]);
6105 else if (first)
6107 dataflow_set_copy (in, &VTI (e->src)->out);
6108 first_out = &VTI (e->src)->out;
6109 first = false;
6111 else
6113 dataflow_set_merge (in, &VTI (e->src)->out);
6114 adjust = true;
6117 if (adjust)
6119 dataflow_post_merge_adjust (in, &VTI (bb)->permp);
6120 #if ENABLE_CHECKING
6121 /* Merge and merge_adjust should keep entries in
6122 canonical order. */
6123 htab_traverse (shared_hash_htab (in->vars),
6124 canonicalize_loc_order_check,
6125 in);
6126 #endif
6127 if (dst_can_be_shared)
6129 shared_hash_destroy (in->vars);
6130 in->vars = shared_hash_copy (first_out->vars);
6134 VTI (bb)->flooded = true;
6136 else
6138 /* Calculate the IN set as union of predecessor OUT sets. */
6139 dataflow_set_clear (&VTI (bb)->in);
6140 FOR_EACH_EDGE (e, ei, bb->preds)
6141 dataflow_set_union (&VTI (bb)->in, &VTI (e->src)->out);
6144 changed = compute_bb_dataflow (bb);
6145 htabsz += (htab_size (shared_hash_htab (VTI (bb)->in.vars))
6146 + htab_size (shared_hash_htab (VTI (bb)->out.vars)));
6148 if (htabmax && htabsz > htabmax)
6150 if (MAY_HAVE_DEBUG_INSNS)
6151 inform (DECL_SOURCE_LOCATION (cfun->decl),
6152 "variable tracking size limit exceeded with "
6153 "-fvar-tracking-assignments, retrying without");
6154 else
6155 inform (DECL_SOURCE_LOCATION (cfun->decl),
6156 "variable tracking size limit exceeded");
6157 success = false;
6158 break;
6161 if (changed)
6163 FOR_EACH_EDGE (e, ei, bb->succs)
6165 if (e->dest == EXIT_BLOCK_PTR)
6166 continue;
6168 if (TEST_BIT (visited, e->dest->index))
6170 if (!TEST_BIT (in_pending, e->dest->index))
6172 /* Send E->DEST to next round. */
6173 SET_BIT (in_pending, e->dest->index);
6174 fibheap_insert (pending,
6175 bb_order[e->dest->index],
6176 e->dest);
6179 else if (!TEST_BIT (in_worklist, e->dest->index))
6181 /* Add E->DEST to current round. */
6182 SET_BIT (in_worklist, e->dest->index);
6183 fibheap_insert (worklist, bb_order[e->dest->index],
6184 e->dest);
6189 if (dump_file)
6190 fprintf (dump_file,
6191 "BB %i: in %i (was %i), out %i (was %i), rem %i + %i, tsz %i\n",
6192 bb->index,
6193 (int)htab_elements (shared_hash_htab (VTI (bb)->in.vars)),
6194 oldinsz,
6195 (int)htab_elements (shared_hash_htab (VTI (bb)->out.vars)),
6196 oldoutsz,
6197 (int)worklist->nodes, (int)pending->nodes, htabsz);
6199 if (dump_file && (dump_flags & TDF_DETAILS))
6201 fprintf (dump_file, "BB %i IN:\n", bb->index);
6202 dump_dataflow_set (&VTI (bb)->in);
6203 fprintf (dump_file, "BB %i OUT:\n", bb->index);
6204 dump_dataflow_set (&VTI (bb)->out);
6210 if (success && MAY_HAVE_DEBUG_INSNS)
6211 FOR_EACH_BB (bb)
6212 gcc_assert (VTI (bb)->flooded);
6214 free (bb_order);
6215 fibheap_delete (worklist);
6216 fibheap_delete (pending);
6217 sbitmap_free (visited);
6218 sbitmap_free (in_worklist);
6219 sbitmap_free (in_pending);
6221 timevar_pop (TV_VAR_TRACKING_DATAFLOW);
6222 return success;
6225 /* Print the content of the LIST to dump file. */
6227 static void
6228 dump_attrs_list (attrs list)
6230 for (; list; list = list->next)
6232 if (dv_is_decl_p (list->dv))
6233 print_mem_expr (dump_file, dv_as_decl (list->dv));
6234 else
6235 print_rtl_single (dump_file, dv_as_value (list->dv));
6236 fprintf (dump_file, "+" HOST_WIDE_INT_PRINT_DEC, list->offset);
6238 fprintf (dump_file, "\n");
6241 /* Print the information about variable *SLOT to dump file. */
6243 static int
6244 dump_var_slot (void **slot, void *data ATTRIBUTE_UNUSED)
6246 variable var = (variable) *slot;
6248 dump_var (var);
6250 /* Continue traversing the hash table. */
6251 return 1;
6254 /* Print the information about variable VAR to dump file. */
6256 static void
6257 dump_var (variable var)
6259 int i;
6260 location_chain node;
6262 if (dv_is_decl_p (var->dv))
6264 const_tree decl = dv_as_decl (var->dv);
6266 if (DECL_NAME (decl))
6268 fprintf (dump_file, " name: %s",
6269 IDENTIFIER_POINTER (DECL_NAME (decl)));
6270 if (dump_flags & TDF_UID)
6271 fprintf (dump_file, "D.%u", DECL_UID (decl));
6273 else if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
6274 fprintf (dump_file, " name: D#%u", DEBUG_TEMP_UID (decl));
6275 else
6276 fprintf (dump_file, " name: D.%u", DECL_UID (decl));
6277 fprintf (dump_file, "\n");
6279 else
6281 fputc (' ', dump_file);
6282 print_rtl_single (dump_file, dv_as_value (var->dv));
6285 for (i = 0; i < var->n_var_parts; i++)
6287 fprintf (dump_file, " offset %ld\n",
6288 (long) var->var_part[i].offset);
6289 for (node = var->var_part[i].loc_chain; node; node = node->next)
6291 fprintf (dump_file, " ");
6292 if (node->init == VAR_INIT_STATUS_UNINITIALIZED)
6293 fprintf (dump_file, "[uninit]");
6294 print_rtl_single (dump_file, node->loc);
6299 /* Print the information about variables from hash table VARS to dump file. */
6301 static void
6302 dump_vars (htab_t vars)
6304 if (htab_elements (vars) > 0)
6306 fprintf (dump_file, "Variables:\n");
6307 htab_traverse (vars, dump_var_slot, NULL);
6311 /* Print the dataflow set SET to dump file. */
6313 static void
6314 dump_dataflow_set (dataflow_set *set)
6316 int i;
6318 fprintf (dump_file, "Stack adjustment: " HOST_WIDE_INT_PRINT_DEC "\n",
6319 set->stack_adjust);
6320 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
6322 if (set->regs[i])
6324 fprintf (dump_file, "Reg %d:", i);
6325 dump_attrs_list (set->regs[i]);
6328 dump_vars (shared_hash_htab (set->vars));
6329 fprintf (dump_file, "\n");
6332 /* Print the IN and OUT sets for each basic block to dump file. */
6334 static void
6335 dump_dataflow_sets (void)
6337 basic_block bb;
6339 FOR_EACH_BB (bb)
6341 fprintf (dump_file, "\nBasic block %d:\n", bb->index);
6342 fprintf (dump_file, "IN:\n");
6343 dump_dataflow_set (&VTI (bb)->in);
6344 fprintf (dump_file, "OUT:\n");
6345 dump_dataflow_set (&VTI (bb)->out);
6349 /* Add variable VAR to the hash table of changed variables and
6350 if it has no locations delete it from SET's hash table. */
6352 static void
6353 variable_was_changed (variable var, dataflow_set *set)
6355 hashval_t hash = dv_htab_hash (var->dv);
6357 if (emit_notes)
6359 void **slot;
6360 bool old_cur_loc_changed = false;
6362 /* Remember this decl or VALUE has been added to changed_variables. */
6363 set_dv_changed (var->dv, true);
6365 slot = htab_find_slot_with_hash (changed_variables,
6366 var->dv,
6367 hash, INSERT);
6369 if (*slot)
6371 variable old_var = (variable) *slot;
6372 gcc_assert (old_var->in_changed_variables);
6373 old_var->in_changed_variables = false;
6374 old_cur_loc_changed = old_var->cur_loc_changed;
6375 variable_htab_free (*slot);
6377 if (set && var->n_var_parts == 0)
6379 variable empty_var;
6381 empty_var = (variable) pool_alloc (dv_pool (var->dv));
6382 empty_var->dv = var->dv;
6383 empty_var->refcount = 1;
6384 empty_var->n_var_parts = 0;
6385 empty_var->cur_loc_changed = true;
6386 empty_var->in_changed_variables = true;
6387 *slot = empty_var;
6388 goto drop_var;
6390 else
6392 var->refcount++;
6393 var->in_changed_variables = true;
6394 /* If within processing one uop a variable is deleted
6395 and then readded, we need to assume it has changed. */
6396 if (old_cur_loc_changed)
6397 var->cur_loc_changed = true;
6398 *slot = var;
6401 else
6403 gcc_assert (set);
6404 if (var->n_var_parts == 0)
6406 void **slot;
6408 drop_var:
6409 slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
6410 if (slot)
6412 if (shared_hash_shared (set->vars))
6413 slot = shared_hash_find_slot_unshare (&set->vars, var->dv,
6414 NO_INSERT);
6415 htab_clear_slot (shared_hash_htab (set->vars), slot);
6421 /* Look for the index in VAR->var_part corresponding to OFFSET.
6422 Return -1 if not found. If INSERTION_POINT is non-NULL, the
6423 referenced int will be set to the index that the part has or should
6424 have, if it should be inserted. */
6426 static inline int
6427 find_variable_location_part (variable var, HOST_WIDE_INT offset,
6428 int *insertion_point)
6430 int pos, low, high;
6432 /* Find the location part. */
6433 low = 0;
6434 high = var->n_var_parts;
6435 while (low != high)
6437 pos = (low + high) / 2;
6438 if (var->var_part[pos].offset < offset)
6439 low = pos + 1;
6440 else
6441 high = pos;
6443 pos = low;
6445 if (insertion_point)
6446 *insertion_point = pos;
6448 if (pos < var->n_var_parts && var->var_part[pos].offset == offset)
6449 return pos;
6451 return -1;
6454 static void **
6455 set_slot_part (dataflow_set *set, rtx loc, void **slot,
6456 decl_or_value dv, HOST_WIDE_INT offset,
6457 enum var_init_status initialized, rtx set_src)
6459 int pos;
6460 location_chain node, next;
6461 location_chain *nextp;
6462 variable var;
6463 bool onepart = dv_onepart_p (dv);
6465 gcc_assert (offset == 0 || !onepart);
6466 gcc_assert (loc != dv_as_opaque (dv));
6468 var = (variable) *slot;
6470 if (! flag_var_tracking_uninit)
6471 initialized = VAR_INIT_STATUS_INITIALIZED;
6473 if (!var)
6475 /* Create new variable information. */
6476 var = (variable) pool_alloc (dv_pool (dv));
6477 var->dv = dv;
6478 var->refcount = 1;
6479 var->n_var_parts = 1;
6480 var->cur_loc_changed = false;
6481 var->in_changed_variables = false;
6482 var->var_part[0].offset = offset;
6483 var->var_part[0].loc_chain = NULL;
6484 var->var_part[0].cur_loc = NULL;
6485 *slot = var;
6486 pos = 0;
6487 nextp = &var->var_part[0].loc_chain;
6489 else if (onepart)
6491 int r = -1, c = 0;
6493 gcc_assert (dv_as_opaque (var->dv) == dv_as_opaque (dv));
6495 pos = 0;
6497 if (GET_CODE (loc) == VALUE)
6499 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
6500 nextp = &node->next)
6501 if (GET_CODE (node->loc) == VALUE)
6503 if (node->loc == loc)
6505 r = 0;
6506 break;
6508 if (canon_value_cmp (node->loc, loc))
6509 c++;
6510 else
6512 r = 1;
6513 break;
6516 else if (REG_P (node->loc) || MEM_P (node->loc))
6517 c++;
6518 else
6520 r = 1;
6521 break;
6524 else if (REG_P (loc))
6526 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
6527 nextp = &node->next)
6528 if (REG_P (node->loc))
6530 if (REGNO (node->loc) < REGNO (loc))
6531 c++;
6532 else
6534 if (REGNO (node->loc) == REGNO (loc))
6535 r = 0;
6536 else
6537 r = 1;
6538 break;
6541 else
6543 r = 1;
6544 break;
6547 else if (MEM_P (loc))
6549 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
6550 nextp = &node->next)
6551 if (REG_P (node->loc))
6552 c++;
6553 else if (MEM_P (node->loc))
6555 if ((r = loc_cmp (XEXP (node->loc, 0), XEXP (loc, 0))) >= 0)
6556 break;
6557 else
6558 c++;
6560 else
6562 r = 1;
6563 break;
6566 else
6567 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
6568 nextp = &node->next)
6569 if ((r = loc_cmp (node->loc, loc)) >= 0)
6570 break;
6571 else
6572 c++;
6574 if (r == 0)
6575 return slot;
6577 if (shared_var_p (var, set->vars))
6579 slot = unshare_variable (set, slot, var, initialized);
6580 var = (variable)*slot;
6581 for (nextp = &var->var_part[0].loc_chain; c;
6582 nextp = &(*nextp)->next)
6583 c--;
6584 gcc_assert ((!node && !*nextp) || node->loc == (*nextp)->loc);
6587 else
6589 int inspos = 0;
6591 gcc_assert (dv_as_decl (var->dv) == dv_as_decl (dv));
6593 pos = find_variable_location_part (var, offset, &inspos);
6595 if (pos >= 0)
6597 node = var->var_part[pos].loc_chain;
6599 if (node
6600 && ((REG_P (node->loc) && REG_P (loc)
6601 && REGNO (node->loc) == REGNO (loc))
6602 || rtx_equal_p (node->loc, loc)))
6604 /* LOC is in the beginning of the chain so we have nothing
6605 to do. */
6606 if (node->init < initialized)
6607 node->init = initialized;
6608 if (set_src != NULL)
6609 node->set_src = set_src;
6611 return slot;
6613 else
6615 /* We have to make a copy of a shared variable. */
6616 if (shared_var_p (var, set->vars))
6618 slot = unshare_variable (set, slot, var, initialized);
6619 var = (variable)*slot;
6623 else
6625 /* We have not found the location part, new one will be created. */
6627 /* We have to make a copy of the shared variable. */
6628 if (shared_var_p (var, set->vars))
6630 slot = unshare_variable (set, slot, var, initialized);
6631 var = (variable)*slot;
6634 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
6635 thus there are at most MAX_VAR_PARTS different offsets. */
6636 gcc_assert (var->n_var_parts < MAX_VAR_PARTS
6637 && (!var->n_var_parts || !dv_onepart_p (var->dv)));
6639 /* We have to move the elements of array starting at index
6640 inspos to the next position. */
6641 for (pos = var->n_var_parts; pos > inspos; pos--)
6642 var->var_part[pos] = var->var_part[pos - 1];
6644 var->n_var_parts++;
6645 var->var_part[pos].offset = offset;
6646 var->var_part[pos].loc_chain = NULL;
6647 var->var_part[pos].cur_loc = NULL;
6650 /* Delete the location from the list. */
6651 nextp = &var->var_part[pos].loc_chain;
6652 for (node = var->var_part[pos].loc_chain; node; node = next)
6654 next = node->next;
6655 if ((REG_P (node->loc) && REG_P (loc)
6656 && REGNO (node->loc) == REGNO (loc))
6657 || rtx_equal_p (node->loc, loc))
6659 /* Save these values, to assign to the new node, before
6660 deleting this one. */
6661 if (node->init > initialized)
6662 initialized = node->init;
6663 if (node->set_src != NULL && set_src == NULL)
6664 set_src = node->set_src;
6665 if (var->var_part[pos].cur_loc == node->loc)
6667 var->var_part[pos].cur_loc = NULL;
6668 var->cur_loc_changed = true;
6670 pool_free (loc_chain_pool, node);
6671 *nextp = next;
6672 break;
6674 else
6675 nextp = &node->next;
6678 nextp = &var->var_part[pos].loc_chain;
6681 /* Add the location to the beginning. */
6682 node = (location_chain) pool_alloc (loc_chain_pool);
6683 node->loc = loc;
6684 node->init = initialized;
6685 node->set_src = set_src;
6686 node->next = *nextp;
6687 *nextp = node;
6689 if (onepart && emit_notes)
6690 add_value_chains (var->dv, loc);
6692 /* If no location was emitted do so. */
6693 if (var->var_part[pos].cur_loc == NULL)
6694 variable_was_changed (var, set);
6696 return slot;
6699 /* Set the part of variable's location in the dataflow set SET. The
6700 variable part is specified by variable's declaration in DV and
6701 offset OFFSET and the part's location by LOC. IOPT should be
6702 NO_INSERT if the variable is known to be in SET already and the
6703 variable hash table must not be resized, and INSERT otherwise. */
6705 static void
6706 set_variable_part (dataflow_set *set, rtx loc,
6707 decl_or_value dv, HOST_WIDE_INT offset,
6708 enum var_init_status initialized, rtx set_src,
6709 enum insert_option iopt)
6711 void **slot;
6713 if (iopt == NO_INSERT)
6714 slot = shared_hash_find_slot_noinsert (set->vars, dv);
6715 else
6717 slot = shared_hash_find_slot (set->vars, dv);
6718 if (!slot)
6719 slot = shared_hash_find_slot_unshare (&set->vars, dv, iopt);
6721 slot = set_slot_part (set, loc, slot, dv, offset, initialized, set_src);
6724 /* Remove all recorded register locations for the given variable part
6725 from dataflow set SET, except for those that are identical to loc.
6726 The variable part is specified by variable's declaration or value
6727 DV and offset OFFSET. */
6729 static void **
6730 clobber_slot_part (dataflow_set *set, rtx loc, void **slot,
6731 HOST_WIDE_INT offset, rtx set_src)
6733 variable var = (variable) *slot;
6734 int pos = find_variable_location_part (var, offset, NULL);
6736 if (pos >= 0)
6738 location_chain node, next;
6740 /* Remove the register locations from the dataflow set. */
6741 next = var->var_part[pos].loc_chain;
6742 for (node = next; node; node = next)
6744 next = node->next;
6745 if (node->loc != loc
6746 && (!flag_var_tracking_uninit
6747 || !set_src
6748 || MEM_P (set_src)
6749 || !rtx_equal_p (set_src, node->set_src)))
6751 if (REG_P (node->loc))
6753 attrs anode, anext;
6754 attrs *anextp;
6756 /* Remove the variable part from the register's
6757 list, but preserve any other variable parts
6758 that might be regarded as live in that same
6759 register. */
6760 anextp = &set->regs[REGNO (node->loc)];
6761 for (anode = *anextp; anode; anode = anext)
6763 anext = anode->next;
6764 if (dv_as_opaque (anode->dv) == dv_as_opaque (var->dv)
6765 && anode->offset == offset)
6767 pool_free (attrs_pool, anode);
6768 *anextp = anext;
6770 else
6771 anextp = &anode->next;
6775 slot = delete_slot_part (set, node->loc, slot, offset);
6780 return slot;
6783 /* Remove all recorded register locations for the given variable part
6784 from dataflow set SET, except for those that are identical to loc.
6785 The variable part is specified by variable's declaration or value
6786 DV and offset OFFSET. */
6788 static void
6789 clobber_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
6790 HOST_WIDE_INT offset, rtx set_src)
6792 void **slot;
6794 if (!dv_as_opaque (dv)
6795 || (!dv_is_value_p (dv) && ! DECL_P (dv_as_decl (dv))))
6796 return;
6798 slot = shared_hash_find_slot_noinsert (set->vars, dv);
6799 if (!slot)
6800 return;
6802 slot = clobber_slot_part (set, loc, slot, offset, set_src);
6805 /* Delete the part of variable's location from dataflow set SET. The
6806 variable part is specified by its SET->vars slot SLOT and offset
6807 OFFSET and the part's location by LOC. */
6809 static void **
6810 delete_slot_part (dataflow_set *set, rtx loc, void **slot,
6811 HOST_WIDE_INT offset)
6813 variable var = (variable) *slot;
6814 int pos = find_variable_location_part (var, offset, NULL);
6816 if (pos >= 0)
6818 location_chain node, next;
6819 location_chain *nextp;
6820 bool changed;
6822 if (shared_var_p (var, set->vars))
6824 /* If the variable contains the location part we have to
6825 make a copy of the variable. */
6826 for (node = var->var_part[pos].loc_chain; node;
6827 node = node->next)
6829 if ((REG_P (node->loc) && REG_P (loc)
6830 && REGNO (node->loc) == REGNO (loc))
6831 || rtx_equal_p (node->loc, loc))
6833 slot = unshare_variable (set, slot, var,
6834 VAR_INIT_STATUS_UNKNOWN);
6835 var = (variable)*slot;
6836 break;
6841 /* Delete the location part. */
6842 changed = false;
6843 nextp = &var->var_part[pos].loc_chain;
6844 for (node = *nextp; node; node = next)
6846 next = node->next;
6847 if ((REG_P (node->loc) && REG_P (loc)
6848 && REGNO (node->loc) == REGNO (loc))
6849 || rtx_equal_p (node->loc, loc))
6851 if (emit_notes && pos == 0 && dv_onepart_p (var->dv))
6852 remove_value_chains (var->dv, node->loc);
6853 /* If we have deleted the location which was last emitted
6854 we have to emit new location so add the variable to set
6855 of changed variables. */
6856 if (var->var_part[pos].cur_loc == node->loc)
6858 changed = true;
6859 var->var_part[pos].cur_loc = NULL;
6860 var->cur_loc_changed = true;
6862 pool_free (loc_chain_pool, node);
6863 *nextp = next;
6864 break;
6866 else
6867 nextp = &node->next;
6870 if (var->var_part[pos].loc_chain == NULL)
6872 changed = true;
6873 var->n_var_parts--;
6874 if (emit_notes)
6875 var->cur_loc_changed = true;
6876 while (pos < var->n_var_parts)
6878 var->var_part[pos] = var->var_part[pos + 1];
6879 pos++;
6882 if (changed)
6883 variable_was_changed (var, set);
6886 return slot;
6889 /* Delete the part of variable's location from dataflow set SET. The
6890 variable part is specified by variable's declaration or value DV
6891 and offset OFFSET and the part's location by LOC. */
6893 static void
6894 delete_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
6895 HOST_WIDE_INT offset)
6897 void **slot = shared_hash_find_slot_noinsert (set->vars, dv);
6898 if (!slot)
6899 return;
6901 slot = delete_slot_part (set, loc, slot, offset);
6904 /* Structure for passing some other parameters to function
6905 vt_expand_loc_callback. */
6906 struct expand_loc_callback_data
6908 /* The variables and values active at this point. */
6909 htab_t vars;
6911 /* True in vt_expand_loc_dummy calls, no rtl should be allocated.
6912 Non-NULL should be returned if vt_expand_loc would return
6913 non-NULL in that case, NULL otherwise. cur_loc_changed should be
6914 computed and cur_loc recomputed when possible (but just once
6915 per emit_notes_for_changes call). */
6916 bool dummy;
6918 /* True if expansion of subexpressions had to recompute some
6919 VALUE/DEBUG_EXPR_DECL's cur_loc or used a VALUE/DEBUG_EXPR_DECL
6920 whose cur_loc has been already recomputed during current
6921 emit_notes_for_changes call. */
6922 bool cur_loc_changed;
6925 /* Callback for cselib_expand_value, that looks for expressions
6926 holding the value in the var-tracking hash tables. Return X for
6927 standard processing, anything else is to be used as-is. */
6929 static rtx
6930 vt_expand_loc_callback (rtx x, bitmap regs, int max_depth, void *data)
6932 struct expand_loc_callback_data *elcd
6933 = (struct expand_loc_callback_data *) data;
6934 bool dummy = elcd->dummy;
6935 bool cur_loc_changed = elcd->cur_loc_changed;
6936 decl_or_value dv;
6937 variable var;
6938 location_chain loc;
6939 rtx result, subreg, xret;
6941 switch (GET_CODE (x))
6943 case SUBREG:
6944 if (dummy)
6946 if (cselib_dummy_expand_value_rtx_cb (SUBREG_REG (x), regs,
6947 max_depth - 1,
6948 vt_expand_loc_callback, data))
6949 return pc_rtx;
6950 else
6951 return NULL;
6954 subreg = cselib_expand_value_rtx_cb (SUBREG_REG (x), regs,
6955 max_depth - 1,
6956 vt_expand_loc_callback, data);
6958 if (!subreg)
6959 return NULL;
6961 result = simplify_gen_subreg (GET_MODE (x), subreg,
6962 GET_MODE (SUBREG_REG (x)),
6963 SUBREG_BYTE (x));
6965 /* Invalid SUBREGs are ok in debug info. ??? We could try
6966 alternate expansions for the VALUE as well. */
6967 if (!result)
6968 result = gen_rtx_raw_SUBREG (GET_MODE (x), subreg, SUBREG_BYTE (x));
6970 return result;
6972 case DEBUG_EXPR:
6973 dv = dv_from_decl (DEBUG_EXPR_TREE_DECL (x));
6974 xret = NULL;
6975 break;
6977 case VALUE:
6978 dv = dv_from_value (x);
6979 xret = x;
6980 break;
6982 default:
6983 return x;
6986 if (VALUE_RECURSED_INTO (x))
6987 return NULL;
6989 var = (variable) htab_find_with_hash (elcd->vars, dv, dv_htab_hash (dv));
6991 if (!var)
6993 if (dummy && dv_changed_p (dv))
6994 elcd->cur_loc_changed = true;
6995 return xret;
6998 if (var->n_var_parts == 0)
7000 if (dummy)
7001 elcd->cur_loc_changed = true;
7002 return xret;
7005 gcc_assert (var->n_var_parts == 1);
7007 VALUE_RECURSED_INTO (x) = true;
7008 result = NULL;
7010 if (var->var_part[0].cur_loc)
7012 if (dummy)
7014 if (cselib_dummy_expand_value_rtx_cb (var->var_part[0].cur_loc, regs,
7015 max_depth,
7016 vt_expand_loc_callback, data))
7017 result = pc_rtx;
7019 else
7020 result = cselib_expand_value_rtx_cb (var->var_part[0].cur_loc, regs,
7021 max_depth,
7022 vt_expand_loc_callback, data);
7023 if (result)
7024 set_dv_changed (dv, false);
7026 if (!result && dv_changed_p (dv))
7028 set_dv_changed (dv, false);
7029 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
7030 if (loc->loc == var->var_part[0].cur_loc)
7031 continue;
7032 else if (dummy)
7034 elcd->cur_loc_changed = cur_loc_changed;
7035 if (cselib_dummy_expand_value_rtx_cb (loc->loc, regs, max_depth,
7036 vt_expand_loc_callback,
7037 data))
7039 result = pc_rtx;
7040 break;
7043 else
7045 result = cselib_expand_value_rtx_cb (loc->loc, regs, max_depth,
7046 vt_expand_loc_callback, data);
7047 if (result)
7048 break;
7050 if (dummy && (result || var->var_part[0].cur_loc))
7051 var->cur_loc_changed = true;
7052 var->var_part[0].cur_loc = loc ? loc->loc : NULL_RTX;
7054 if (dummy)
7056 if (var->cur_loc_changed)
7057 elcd->cur_loc_changed = true;
7058 else if (!result && var->var_part[0].cur_loc == NULL_RTX)
7059 elcd->cur_loc_changed = cur_loc_changed;
7062 VALUE_RECURSED_INTO (x) = false;
7063 if (result)
7064 return result;
7065 else
7066 return xret;
7069 /* Expand VALUEs in LOC, using VARS as well as cselib's equivalence
7070 tables. */
7072 static rtx
7073 vt_expand_loc (rtx loc, htab_t vars)
7075 struct expand_loc_callback_data data;
7077 if (!MAY_HAVE_DEBUG_INSNS)
7078 return loc;
7080 data.vars = vars;
7081 data.dummy = false;
7082 data.cur_loc_changed = false;
7083 loc = cselib_expand_value_rtx_cb (loc, scratch_regs, 8,
7084 vt_expand_loc_callback, &data);
7086 if (loc && MEM_P (loc))
7087 loc = targetm.delegitimize_address (loc);
7088 return loc;
7091 /* Like vt_expand_loc, but only return true/false (whether vt_expand_loc
7092 would succeed or not, without actually allocating new rtxes. */
7094 static bool
7095 vt_expand_loc_dummy (rtx loc, htab_t vars, bool *pcur_loc_changed)
7097 struct expand_loc_callback_data data;
7098 bool ret;
7100 gcc_assert (MAY_HAVE_DEBUG_INSNS);
7101 data.vars = vars;
7102 data.dummy = true;
7103 data.cur_loc_changed = false;
7104 ret = cselib_dummy_expand_value_rtx_cb (loc, scratch_regs, 8,
7105 vt_expand_loc_callback, &data);
7106 *pcur_loc_changed = data.cur_loc_changed;
7107 return ret;
7110 /* Emit the NOTE_INSN_VAR_LOCATION for variable *VARP. DATA contains
7111 additional parameters: WHERE specifies whether the note shall be emitted
7112 before or after instruction INSN. */
7114 static int
7115 emit_note_insn_var_location (void **varp, void *data)
7117 variable var = (variable) *varp;
7118 rtx insn = ((emit_note_data *)data)->insn;
7119 enum emit_note_where where = ((emit_note_data *)data)->where;
7120 htab_t vars = ((emit_note_data *)data)->vars;
7121 rtx note, note_vl;
7122 int i, j, n_var_parts;
7123 bool complete;
7124 enum var_init_status initialized = VAR_INIT_STATUS_UNINITIALIZED;
7125 HOST_WIDE_INT last_limit;
7126 tree type_size_unit;
7127 HOST_WIDE_INT offsets[MAX_VAR_PARTS];
7128 rtx loc[MAX_VAR_PARTS];
7129 tree decl;
7130 location_chain lc;
7132 if (dv_is_value_p (var->dv))
7133 goto value_or_debug_decl;
7135 decl = dv_as_decl (var->dv);
7137 if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
7138 goto value_or_debug_decl;
7140 complete = true;
7141 last_limit = 0;
7142 n_var_parts = 0;
7143 if (!MAY_HAVE_DEBUG_INSNS)
7145 for (i = 0; i < var->n_var_parts; i++)
7146 if (var->var_part[i].cur_loc == NULL && var->var_part[i].loc_chain)
7148 var->var_part[i].cur_loc = var->var_part[i].loc_chain->loc;
7149 var->cur_loc_changed = true;
7151 if (var->n_var_parts == 0)
7152 var->cur_loc_changed = true;
7154 if (!var->cur_loc_changed)
7155 goto clear;
7156 for (i = 0; i < var->n_var_parts; i++)
7158 enum machine_mode mode, wider_mode;
7159 rtx loc2;
7161 if (last_limit < var->var_part[i].offset)
7163 complete = false;
7164 break;
7166 else if (last_limit > var->var_part[i].offset)
7167 continue;
7168 offsets[n_var_parts] = var->var_part[i].offset;
7169 if (!var->var_part[i].cur_loc)
7171 complete = false;
7172 continue;
7174 loc2 = vt_expand_loc (var->var_part[i].cur_loc, vars);
7175 if (!loc2)
7177 complete = false;
7178 continue;
7180 loc[n_var_parts] = loc2;
7181 mode = GET_MODE (var->var_part[i].cur_loc);
7182 if (mode == VOIDmode && dv_onepart_p (var->dv))
7183 mode = DECL_MODE (decl);
7184 for (lc = var->var_part[i].loc_chain; lc; lc = lc->next)
7185 if (var->var_part[i].cur_loc == lc->loc)
7187 initialized = lc->init;
7188 break;
7190 gcc_assert (lc);
7191 last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
7193 /* Attempt to merge adjacent registers or memory. */
7194 wider_mode = GET_MODE_WIDER_MODE (mode);
7195 for (j = i + 1; j < var->n_var_parts; j++)
7196 if (last_limit <= var->var_part[j].offset)
7197 break;
7198 if (j < var->n_var_parts
7199 && wider_mode != VOIDmode
7200 && var->var_part[j].cur_loc
7201 && mode == GET_MODE (var->var_part[j].cur_loc)
7202 && (REG_P (loc[n_var_parts]) || MEM_P (loc[n_var_parts]))
7203 && last_limit == var->var_part[j].offset
7204 && (loc2 = vt_expand_loc (var->var_part[j].cur_loc, vars))
7205 && GET_CODE (loc[n_var_parts]) == GET_CODE (loc2))
7207 rtx new_loc = NULL;
7209 if (REG_P (loc[n_var_parts])
7210 && hard_regno_nregs[REGNO (loc[n_var_parts])][mode] * 2
7211 == hard_regno_nregs[REGNO (loc[n_var_parts])][wider_mode]
7212 && end_hard_regno (mode, REGNO (loc[n_var_parts]))
7213 == REGNO (loc2))
7215 if (! WORDS_BIG_ENDIAN && ! BYTES_BIG_ENDIAN)
7216 new_loc = simplify_subreg (wider_mode, loc[n_var_parts],
7217 mode, 0);
7218 else if (WORDS_BIG_ENDIAN && BYTES_BIG_ENDIAN)
7219 new_loc = simplify_subreg (wider_mode, loc2, mode, 0);
7220 if (new_loc)
7222 if (!REG_P (new_loc)
7223 || REGNO (new_loc) != REGNO (loc[n_var_parts]))
7224 new_loc = NULL;
7225 else
7226 REG_ATTRS (new_loc) = REG_ATTRS (loc[n_var_parts]);
7229 else if (MEM_P (loc[n_var_parts])
7230 && GET_CODE (XEXP (loc2, 0)) == PLUS
7231 && REG_P (XEXP (XEXP (loc2, 0), 0))
7232 && CONST_INT_P (XEXP (XEXP (loc2, 0), 1)))
7234 if ((REG_P (XEXP (loc[n_var_parts], 0))
7235 && rtx_equal_p (XEXP (loc[n_var_parts], 0),
7236 XEXP (XEXP (loc2, 0), 0))
7237 && INTVAL (XEXP (XEXP (loc2, 0), 1))
7238 == GET_MODE_SIZE (mode))
7239 || (GET_CODE (XEXP (loc[n_var_parts], 0)) == PLUS
7240 && CONST_INT_P (XEXP (XEXP (loc[n_var_parts], 0), 1))
7241 && rtx_equal_p (XEXP (XEXP (loc[n_var_parts], 0), 0),
7242 XEXP (XEXP (loc2, 0), 0))
7243 && INTVAL (XEXP (XEXP (loc[n_var_parts], 0), 1))
7244 + GET_MODE_SIZE (mode)
7245 == INTVAL (XEXP (XEXP (loc2, 0), 1))))
7246 new_loc = adjust_address_nv (loc[n_var_parts],
7247 wider_mode, 0);
7250 if (new_loc)
7252 loc[n_var_parts] = new_loc;
7253 mode = wider_mode;
7254 last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
7255 i = j;
7258 ++n_var_parts;
7260 type_size_unit = TYPE_SIZE_UNIT (TREE_TYPE (decl));
7261 if ((unsigned HOST_WIDE_INT) last_limit < TREE_INT_CST_LOW (type_size_unit))
7262 complete = false;
7264 if (! flag_var_tracking_uninit)
7265 initialized = VAR_INIT_STATUS_INITIALIZED;
7267 note_vl = NULL_RTX;
7268 if (!complete)
7269 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, NULL_RTX,
7270 (int) initialized);
7271 else if (n_var_parts == 1)
7273 rtx expr_list;
7275 if (offsets[0] || GET_CODE (loc[0]) == PARALLEL)
7276 expr_list = gen_rtx_EXPR_LIST (VOIDmode, loc[0], GEN_INT (offsets[0]));
7277 else
7278 expr_list = loc[0];
7280 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, expr_list,
7281 (int) initialized);
7283 else if (n_var_parts)
7285 rtx parallel;
7287 for (i = 0; i < n_var_parts; i++)
7288 loc[i]
7289 = gen_rtx_EXPR_LIST (VOIDmode, loc[i], GEN_INT (offsets[i]));
7291 parallel = gen_rtx_PARALLEL (VOIDmode,
7292 gen_rtvec_v (n_var_parts, loc));
7293 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl,
7294 parallel, (int) initialized);
7297 if (where != EMIT_NOTE_BEFORE_INSN)
7299 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
7300 if (where == EMIT_NOTE_AFTER_CALL_INSN)
7301 NOTE_DURING_CALL_P (note) = true;
7303 else
7305 /* Make sure that the call related notes come first. */
7306 while (NEXT_INSN (insn)
7307 && NOTE_P (insn)
7308 && NOTE_DURING_CALL_P (insn))
7309 insn = NEXT_INSN (insn);
7310 if (NOTE_P (insn) && NOTE_DURING_CALL_P (insn))
7311 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
7312 else
7313 note = emit_note_before (NOTE_INSN_VAR_LOCATION, insn);
7315 NOTE_VAR_LOCATION (note) = note_vl;
7317 clear:
7318 set_dv_changed (var->dv, false);
7319 var->cur_loc_changed = false;
7320 gcc_assert (var->in_changed_variables);
7321 var->in_changed_variables = false;
7322 htab_clear_slot (changed_variables, varp);
7324 /* Continue traversing the hash table. */
7325 return 1;
7327 value_or_debug_decl:
7328 if (dv_changed_p (var->dv) && var->n_var_parts)
7330 location_chain lc;
7331 bool cur_loc_changed;
7333 if (var->var_part[0].cur_loc
7334 && vt_expand_loc_dummy (var->var_part[0].cur_loc, vars,
7335 &cur_loc_changed))
7336 goto clear;
7337 for (lc = var->var_part[0].loc_chain; lc; lc = lc->next)
7338 if (lc->loc != var->var_part[0].cur_loc
7339 && vt_expand_loc_dummy (lc->loc, vars, &cur_loc_changed))
7340 break;
7341 var->var_part[0].cur_loc = lc ? lc->loc : NULL_RTX;
7343 goto clear;
7346 DEF_VEC_P (variable);
7347 DEF_VEC_ALLOC_P (variable, heap);
7349 /* Stack of variable_def pointers that need processing with
7350 check_changed_vars_2. */
7352 static VEC (variable, heap) *changed_variables_stack;
7354 /* VALUEs with no variables that need set_dv_changed (val, false)
7355 called before check_changed_vars_3. */
7357 static VEC (rtx, heap) *changed_values_stack;
7359 /* Helper function for check_changed_vars_1 and check_changed_vars_2. */
7361 static void
7362 check_changed_vars_0 (decl_or_value dv, htab_t htab)
7364 value_chain vc
7365 = (value_chain) htab_find_with_hash (value_chains, dv, dv_htab_hash (dv));
7367 if (vc == NULL)
7368 return;
7369 for (vc = vc->next; vc; vc = vc->next)
7370 if (!dv_changed_p (vc->dv))
7372 variable vcvar
7373 = (variable) htab_find_with_hash (htab, vc->dv,
7374 dv_htab_hash (vc->dv));
7375 if (vcvar)
7377 set_dv_changed (vc->dv, true);
7378 VEC_safe_push (variable, heap, changed_variables_stack, vcvar);
7380 else if (dv_is_value_p (vc->dv))
7382 set_dv_changed (vc->dv, true);
7383 VEC_safe_push (rtx, heap, changed_values_stack,
7384 dv_as_value (vc->dv));
7385 check_changed_vars_0 (vc->dv, htab);
7390 /* Populate changed_variables_stack with variable_def pointers
7391 that need variable_was_changed called on them. */
7393 static int
7394 check_changed_vars_1 (void **slot, void *data)
7396 variable var = (variable) *slot;
7397 htab_t htab = (htab_t) data;
7399 if (dv_is_value_p (var->dv)
7400 || TREE_CODE (dv_as_decl (var->dv)) == DEBUG_EXPR_DECL)
7401 check_changed_vars_0 (var->dv, htab);
7402 return 1;
7405 /* Add VAR to changed_variables and also for VALUEs add recursively
7406 all DVs that aren't in changed_variables yet but reference the
7407 VALUE from its loc_chain. */
7409 static void
7410 check_changed_vars_2 (variable var, htab_t htab)
7412 variable_was_changed (var, NULL);
7413 if (dv_is_value_p (var->dv)
7414 || TREE_CODE (dv_as_decl (var->dv)) == DEBUG_EXPR_DECL)
7415 check_changed_vars_0 (var->dv, htab);
7418 /* For each changed decl (except DEBUG_EXPR_DECLs) recompute
7419 cur_loc if needed (and cur_loc of all VALUEs and DEBUG_EXPR_DECLs
7420 it needs and are also in changed variables) and track whether
7421 cur_loc (or anything it uses to compute location) had to change
7422 during the current emit_notes_for_changes call. */
7424 static int
7425 check_changed_vars_3 (void **slot, void *data)
7427 variable var = (variable) *slot;
7428 htab_t vars = (htab_t) data;
7429 int i;
7430 location_chain lc;
7431 bool cur_loc_changed;
7433 if (dv_is_value_p (var->dv)
7434 || TREE_CODE (dv_as_decl (var->dv)) == DEBUG_EXPR_DECL)
7435 return 1;
7437 for (i = 0; i < var->n_var_parts; i++)
7439 if (var->var_part[i].cur_loc
7440 && vt_expand_loc_dummy (var->var_part[i].cur_loc, vars,
7441 &cur_loc_changed))
7443 if (cur_loc_changed)
7444 var->cur_loc_changed = true;
7445 continue;
7447 for (lc = var->var_part[i].loc_chain; lc; lc = lc->next)
7448 if (lc->loc != var->var_part[i].cur_loc
7449 && vt_expand_loc_dummy (lc->loc, vars, &cur_loc_changed))
7450 break;
7451 if (lc || var->var_part[i].cur_loc)
7452 var->cur_loc_changed = true;
7453 var->var_part[i].cur_loc = lc ? lc->loc : NULL_RTX;
7455 if (var->n_var_parts == 0)
7456 var->cur_loc_changed = true;
7457 return 1;
7460 /* Emit NOTE_INSN_VAR_LOCATION note for each variable from a chain
7461 CHANGED_VARIABLES and delete this chain. WHERE specifies whether the notes
7462 shall be emitted before of after instruction INSN. */
7464 static void
7465 emit_notes_for_changes (rtx insn, enum emit_note_where where,
7466 shared_hash vars)
7468 emit_note_data data;
7469 htab_t htab = shared_hash_htab (vars);
7471 if (!htab_elements (changed_variables))
7472 return;
7474 if (MAY_HAVE_DEBUG_INSNS)
7476 /* Unfortunately this has to be done in two steps, because
7477 we can't traverse a hashtab into which we are inserting
7478 through variable_was_changed. */
7479 htab_traverse (changed_variables, check_changed_vars_1, htab);
7480 while (VEC_length (variable, changed_variables_stack) > 0)
7481 check_changed_vars_2 (VEC_pop (variable, changed_variables_stack),
7482 htab);
7483 while (VEC_length (rtx, changed_values_stack) > 0)
7484 set_dv_changed (dv_from_value (VEC_pop (rtx, changed_values_stack)),
7485 false);
7486 htab_traverse (changed_variables, check_changed_vars_3, htab);
7489 data.insn = insn;
7490 data.where = where;
7491 data.vars = htab;
7493 htab_traverse (changed_variables, emit_note_insn_var_location, &data);
7496 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it differs from the
7497 same variable in hash table DATA or is not there at all. */
7499 static int
7500 emit_notes_for_differences_1 (void **slot, void *data)
7502 htab_t new_vars = (htab_t) data;
7503 variable old_var, new_var;
7505 old_var = (variable) *slot;
7506 new_var = (variable) htab_find_with_hash (new_vars, old_var->dv,
7507 dv_htab_hash (old_var->dv));
7509 if (!new_var)
7511 /* Variable has disappeared. */
7512 variable empty_var;
7514 empty_var = (variable) pool_alloc (dv_pool (old_var->dv));
7515 empty_var->dv = old_var->dv;
7516 empty_var->refcount = 0;
7517 empty_var->n_var_parts = 0;
7518 empty_var->cur_loc_changed = false;
7519 empty_var->in_changed_variables = false;
7520 if (dv_onepart_p (old_var->dv))
7522 location_chain lc;
7524 gcc_assert (old_var->n_var_parts == 1);
7525 for (lc = old_var->var_part[0].loc_chain; lc; lc = lc->next)
7526 remove_value_chains (old_var->dv, lc->loc);
7528 variable_was_changed (empty_var, NULL);
7529 /* Continue traversing the hash table. */
7530 return 1;
7532 if (variable_different_p (old_var, new_var))
7534 if (dv_onepart_p (old_var->dv))
7536 location_chain lc1, lc2;
7538 gcc_assert (old_var->n_var_parts == 1
7539 && new_var->n_var_parts == 1);
7540 lc1 = old_var->var_part[0].loc_chain;
7541 lc2 = new_var->var_part[0].loc_chain;
7542 while (lc1
7543 && lc2
7544 && ((REG_P (lc1->loc) && REG_P (lc2->loc))
7545 || rtx_equal_p (lc1->loc, lc2->loc)))
7547 lc1 = lc1->next;
7548 lc2 = lc2->next;
7550 for (; lc2; lc2 = lc2->next)
7551 add_value_chains (old_var->dv, lc2->loc);
7552 for (; lc1; lc1 = lc1->next)
7553 remove_value_chains (old_var->dv, lc1->loc);
7555 variable_was_changed (new_var, NULL);
7557 /* Update cur_loc. */
7558 if (old_var != new_var)
7560 int i;
7561 for (i = 0; i < new_var->n_var_parts; i++)
7563 new_var->var_part[i].cur_loc = NULL;
7564 if (old_var->n_var_parts != new_var->n_var_parts
7565 || old_var->var_part[i].offset != new_var->var_part[i].offset)
7566 new_var->cur_loc_changed = true;
7567 else if (old_var->var_part[i].cur_loc != NULL)
7569 location_chain lc;
7570 rtx cur_loc = old_var->var_part[i].cur_loc;
7572 for (lc = new_var->var_part[i].loc_chain; lc; lc = lc->next)
7573 if (lc->loc == cur_loc
7574 || rtx_equal_p (cur_loc, lc->loc))
7576 new_var->var_part[i].cur_loc = lc->loc;
7577 break;
7579 if (lc == NULL)
7580 new_var->cur_loc_changed = true;
7585 /* Continue traversing the hash table. */
7586 return 1;
7589 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it is not in hash
7590 table DATA. */
7592 static int
7593 emit_notes_for_differences_2 (void **slot, void *data)
7595 htab_t old_vars = (htab_t) data;
7596 variable old_var, new_var;
7598 new_var = (variable) *slot;
7599 old_var = (variable) htab_find_with_hash (old_vars, new_var->dv,
7600 dv_htab_hash (new_var->dv));
7601 if (!old_var)
7603 int i;
7604 /* Variable has appeared. */
7605 if (dv_onepart_p (new_var->dv))
7607 location_chain lc;
7609 gcc_assert (new_var->n_var_parts == 1);
7610 for (lc = new_var->var_part[0].loc_chain; lc; lc = lc->next)
7611 add_value_chains (new_var->dv, lc->loc);
7613 for (i = 0; i < new_var->n_var_parts; i++)
7614 new_var->var_part[i].cur_loc = NULL;
7615 variable_was_changed (new_var, NULL);
7618 /* Continue traversing the hash table. */
7619 return 1;
7622 /* Emit notes before INSN for differences between dataflow sets OLD_SET and
7623 NEW_SET. */
7625 static void
7626 emit_notes_for_differences (rtx insn, dataflow_set *old_set,
7627 dataflow_set *new_set)
7629 htab_traverse (shared_hash_htab (old_set->vars),
7630 emit_notes_for_differences_1,
7631 shared_hash_htab (new_set->vars));
7632 htab_traverse (shared_hash_htab (new_set->vars),
7633 emit_notes_for_differences_2,
7634 shared_hash_htab (old_set->vars));
7635 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, new_set->vars);
7638 /* Emit the notes for changes of location parts in the basic block BB. */
7640 static void
7641 emit_notes_in_bb (basic_block bb, dataflow_set *set)
7643 unsigned int i;
7644 micro_operation *mo;
7646 dataflow_set_clear (set);
7647 dataflow_set_copy (set, &VTI (bb)->in);
7649 FOR_EACH_VEC_ELT (micro_operation, VTI (bb)->mos, i, mo)
7651 rtx insn = mo->insn;
7653 switch (mo->type)
7655 case MO_CALL:
7656 dataflow_set_clear_at_call (set);
7657 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_CALL_INSN, set->vars);
7658 break;
7660 case MO_USE:
7662 rtx loc = mo->u.loc;
7664 if (REG_P (loc))
7665 var_reg_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
7666 else
7667 var_mem_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
7669 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
7671 break;
7673 case MO_VAL_LOC:
7675 rtx loc = mo->u.loc;
7676 rtx val, vloc;
7677 tree var;
7679 if (GET_CODE (loc) == CONCAT)
7681 val = XEXP (loc, 0);
7682 vloc = XEXP (loc, 1);
7684 else
7686 val = NULL_RTX;
7687 vloc = loc;
7690 var = PAT_VAR_LOCATION_DECL (vloc);
7692 clobber_variable_part (set, NULL_RTX,
7693 dv_from_decl (var), 0, NULL_RTX);
7694 if (val)
7696 if (VAL_NEEDS_RESOLUTION (loc))
7697 val_resolve (set, val, PAT_VAR_LOCATION_LOC (vloc), insn);
7698 set_variable_part (set, val, dv_from_decl (var), 0,
7699 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
7700 INSERT);
7702 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
7703 set_variable_part (set, PAT_VAR_LOCATION_LOC (vloc),
7704 dv_from_decl (var), 0,
7705 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
7706 INSERT);
7708 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
7710 break;
7712 case MO_VAL_USE:
7714 rtx loc = mo->u.loc;
7715 rtx val, vloc, uloc;
7717 vloc = uloc = XEXP (loc, 1);
7718 val = XEXP (loc, 0);
7720 if (GET_CODE (val) == CONCAT)
7722 uloc = XEXP (val, 1);
7723 val = XEXP (val, 0);
7726 if (VAL_NEEDS_RESOLUTION (loc))
7727 val_resolve (set, val, vloc, insn);
7728 else
7729 val_store (set, val, uloc, insn, false);
7731 if (VAL_HOLDS_TRACK_EXPR (loc))
7733 if (GET_CODE (uloc) == REG)
7734 var_reg_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
7735 NULL);
7736 else if (GET_CODE (uloc) == MEM)
7737 var_mem_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
7738 NULL);
7741 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, set->vars);
7743 break;
7745 case MO_VAL_SET:
7747 rtx loc = mo->u.loc;
7748 rtx val, vloc, uloc, reverse = NULL_RTX;
7750 vloc = loc;
7751 if (VAL_EXPR_HAS_REVERSE (loc))
7753 reverse = XEXP (loc, 1);
7754 vloc = XEXP (loc, 0);
7756 uloc = XEXP (vloc, 1);
7757 val = XEXP (vloc, 0);
7758 vloc = uloc;
7760 if (GET_CODE (val) == CONCAT)
7762 vloc = XEXP (val, 1);
7763 val = XEXP (val, 0);
7766 if (GET_CODE (vloc) == SET)
7768 rtx vsrc = SET_SRC (vloc);
7770 gcc_assert (val != vsrc);
7771 gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
7773 vloc = SET_DEST (vloc);
7775 if (VAL_NEEDS_RESOLUTION (loc))
7776 val_resolve (set, val, vsrc, insn);
7778 else if (VAL_NEEDS_RESOLUTION (loc))
7780 gcc_assert (GET_CODE (uloc) == SET
7781 && GET_CODE (SET_SRC (uloc)) == REG);
7782 val_resolve (set, val, SET_SRC (uloc), insn);
7785 if (VAL_HOLDS_TRACK_EXPR (loc))
7787 if (VAL_EXPR_IS_CLOBBERED (loc))
7789 if (REG_P (uloc))
7790 var_reg_delete (set, uloc, true);
7791 else if (MEM_P (uloc))
7792 var_mem_delete (set, uloc, true);
7794 else
7796 bool copied_p = VAL_EXPR_IS_COPIED (loc);
7797 rtx set_src = NULL;
7798 enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
7800 if (GET_CODE (uloc) == SET)
7802 set_src = SET_SRC (uloc);
7803 uloc = SET_DEST (uloc);
7806 if (copied_p)
7808 status = find_src_status (set, set_src);
7810 set_src = find_src_set_src (set, set_src);
7813 if (REG_P (uloc))
7814 var_reg_delete_and_set (set, uloc, !copied_p,
7815 status, set_src);
7816 else if (MEM_P (uloc))
7817 var_mem_delete_and_set (set, uloc, !copied_p,
7818 status, set_src);
7821 else if (REG_P (uloc))
7822 var_regno_delete (set, REGNO (uloc));
7824 val_store (set, val, vloc, insn, true);
7826 if (reverse)
7827 val_store (set, XEXP (reverse, 0), XEXP (reverse, 1),
7828 insn, false);
7830 emit_notes_for_changes (NEXT_INSN (insn), EMIT_NOTE_BEFORE_INSN,
7831 set->vars);
7833 break;
7835 case MO_SET:
7837 rtx loc = mo->u.loc;
7838 rtx set_src = NULL;
7840 if (GET_CODE (loc) == SET)
7842 set_src = SET_SRC (loc);
7843 loc = SET_DEST (loc);
7846 if (REG_P (loc))
7847 var_reg_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
7848 set_src);
7849 else
7850 var_mem_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
7851 set_src);
7853 emit_notes_for_changes (NEXT_INSN (insn), EMIT_NOTE_BEFORE_INSN,
7854 set->vars);
7856 break;
7858 case MO_COPY:
7860 rtx loc = mo->u.loc;
7861 enum var_init_status src_status;
7862 rtx set_src = NULL;
7864 if (GET_CODE (loc) == SET)
7866 set_src = SET_SRC (loc);
7867 loc = SET_DEST (loc);
7870 src_status = find_src_status (set, set_src);
7871 set_src = find_src_set_src (set, set_src);
7873 if (REG_P (loc))
7874 var_reg_delete_and_set (set, loc, false, src_status, set_src);
7875 else
7876 var_mem_delete_and_set (set, loc, false, src_status, set_src);
7878 emit_notes_for_changes (NEXT_INSN (insn), EMIT_NOTE_BEFORE_INSN,
7879 set->vars);
7881 break;
7883 case MO_USE_NO_VAR:
7885 rtx loc = mo->u.loc;
7887 if (REG_P (loc))
7888 var_reg_delete (set, loc, false);
7889 else
7890 var_mem_delete (set, loc, false);
7892 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
7894 break;
7896 case MO_CLOBBER:
7898 rtx loc = mo->u.loc;
7900 if (REG_P (loc))
7901 var_reg_delete (set, loc, true);
7902 else
7903 var_mem_delete (set, loc, true);
7905 emit_notes_for_changes (NEXT_INSN (insn), EMIT_NOTE_BEFORE_INSN,
7906 set->vars);
7908 break;
7910 case MO_ADJUST:
7911 set->stack_adjust += mo->u.adjust;
7912 break;
7917 /* Emit notes for the whole function. */
7919 static void
7920 vt_emit_notes (void)
7922 basic_block bb;
7923 dataflow_set cur;
7925 gcc_assert (!htab_elements (changed_variables));
7927 /* Free memory occupied by the out hash tables, as they aren't used
7928 anymore. */
7929 FOR_EACH_BB (bb)
7930 dataflow_set_clear (&VTI (bb)->out);
7932 /* Enable emitting notes by functions (mainly by set_variable_part and
7933 delete_variable_part). */
7934 emit_notes = true;
7936 if (MAY_HAVE_DEBUG_INSNS)
7938 unsigned int i;
7939 rtx val;
7941 FOR_EACH_VEC_ELT (rtx, preserved_values, i, val)
7942 add_cselib_value_chains (dv_from_value (val));
7943 changed_variables_stack = VEC_alloc (variable, heap, 40);
7944 changed_values_stack = VEC_alloc (rtx, heap, 40);
7947 dataflow_set_init (&cur);
7949 FOR_EACH_BB (bb)
7951 /* Emit the notes for changes of variable locations between two
7952 subsequent basic blocks. */
7953 emit_notes_for_differences (BB_HEAD (bb), &cur, &VTI (bb)->in);
7955 /* Emit the notes for the changes in the basic block itself. */
7956 emit_notes_in_bb (bb, &cur);
7958 /* Free memory occupied by the in hash table, we won't need it
7959 again. */
7960 dataflow_set_clear (&VTI (bb)->in);
7962 #ifdef ENABLE_CHECKING
7963 htab_traverse (shared_hash_htab (cur.vars),
7964 emit_notes_for_differences_1,
7965 shared_hash_htab (empty_shared_hash));
7966 if (MAY_HAVE_DEBUG_INSNS)
7968 unsigned int i;
7969 rtx val;
7971 FOR_EACH_VEC_ELT (rtx, preserved_values, i, val)
7972 remove_cselib_value_chains (dv_from_value (val));
7973 gcc_assert (htab_elements (value_chains) == 0);
7975 #endif
7976 dataflow_set_destroy (&cur);
7978 if (MAY_HAVE_DEBUG_INSNS)
7980 VEC_free (variable, heap, changed_variables_stack);
7981 VEC_free (rtx, heap, changed_values_stack);
7984 emit_notes = false;
7987 /* If there is a declaration and offset associated with register/memory RTL
7988 assign declaration to *DECLP and offset to *OFFSETP, and return true. */
7990 static bool
7991 vt_get_decl_and_offset (rtx rtl, tree *declp, HOST_WIDE_INT *offsetp)
7993 if (REG_P (rtl))
7995 if (REG_ATTRS (rtl))
7997 *declp = REG_EXPR (rtl);
7998 *offsetp = REG_OFFSET (rtl);
7999 return true;
8002 else if (MEM_P (rtl))
8004 if (MEM_ATTRS (rtl))
8006 *declp = MEM_EXPR (rtl);
8007 *offsetp = INT_MEM_OFFSET (rtl);
8008 return true;
8011 return false;
8014 /* Insert function parameter PARM in IN and OUT sets of ENTRY_BLOCK. */
8016 static void
8017 vt_add_function_parameter (tree parm)
8019 rtx decl_rtl = DECL_RTL_IF_SET (parm);
8020 rtx incoming = DECL_INCOMING_RTL (parm);
8021 tree decl;
8022 enum machine_mode mode;
8023 HOST_WIDE_INT offset;
8024 dataflow_set *out;
8025 decl_or_value dv;
8027 if (TREE_CODE (parm) != PARM_DECL)
8028 return;
8030 if (!decl_rtl || !incoming)
8031 return;
8033 if (GET_MODE (decl_rtl) == BLKmode || GET_MODE (incoming) == BLKmode)
8034 return;
8036 if (!vt_get_decl_and_offset (incoming, &decl, &offset))
8038 if (REG_P (incoming) || MEM_P (incoming))
8040 /* This means argument is passed by invisible reference. */
8041 offset = 0;
8042 decl = parm;
8043 incoming = gen_rtx_MEM (GET_MODE (decl_rtl), incoming);
8045 else
8047 if (!vt_get_decl_and_offset (decl_rtl, &decl, &offset))
8048 return;
8049 offset += byte_lowpart_offset (GET_MODE (incoming),
8050 GET_MODE (decl_rtl));
8054 if (!decl)
8055 return;
8057 if (parm != decl)
8059 /* Assume that DECL_RTL was a pseudo that got spilled to
8060 memory. The spill slot sharing code will force the
8061 memory to reference spill_slot_decl (%sfp), so we don't
8062 match above. That's ok, the pseudo must have referenced
8063 the entire parameter, so just reset OFFSET. */
8064 gcc_assert (decl == get_spill_slot_decl (false));
8065 offset = 0;
8068 if (!track_loc_p (incoming, parm, offset, false, &mode, &offset))
8069 return;
8071 out = &VTI (ENTRY_BLOCK_PTR)->out;
8073 dv = dv_from_decl (parm);
8075 if (target_for_debug_bind (parm)
8076 /* We can't deal with these right now, because this kind of
8077 variable is single-part. ??? We could handle parallels
8078 that describe multiple locations for the same single
8079 value, but ATM we don't. */
8080 && GET_CODE (incoming) != PARALLEL)
8082 cselib_val *val;
8084 /* ??? We shouldn't ever hit this, but it may happen because
8085 arguments passed by invisible reference aren't dealt with
8086 above: incoming-rtl will have Pmode rather than the
8087 expected mode for the type. */
8088 if (offset)
8089 return;
8091 val = cselib_lookup (var_lowpart (mode, incoming), mode, true,
8092 VOIDmode);
8094 /* ??? Float-typed values in memory are not handled by
8095 cselib. */
8096 if (val)
8098 preserve_value (val);
8099 set_variable_part (out, val->val_rtx, dv, offset,
8100 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
8101 dv = dv_from_value (val->val_rtx);
8105 if (REG_P (incoming))
8107 incoming = var_lowpart (mode, incoming);
8108 gcc_assert (REGNO (incoming) < FIRST_PSEUDO_REGISTER);
8109 attrs_list_insert (&out->regs[REGNO (incoming)], dv, offset,
8110 incoming);
8111 set_variable_part (out, incoming, dv, offset,
8112 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
8114 else if (MEM_P (incoming))
8116 incoming = var_lowpart (mode, incoming);
8117 set_variable_part (out, incoming, dv, offset,
8118 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
8122 /* Insert function parameters to IN and OUT sets of ENTRY_BLOCK. */
8124 static void
8125 vt_add_function_parameters (void)
8127 tree parm;
8129 for (parm = DECL_ARGUMENTS (current_function_decl);
8130 parm; parm = DECL_CHAIN (parm))
8131 vt_add_function_parameter (parm);
8133 if (DECL_HAS_VALUE_EXPR_P (DECL_RESULT (current_function_decl)))
8135 tree vexpr = DECL_VALUE_EXPR (DECL_RESULT (current_function_decl));
8137 if (TREE_CODE (vexpr) == INDIRECT_REF)
8138 vexpr = TREE_OPERAND (vexpr, 0);
8140 if (TREE_CODE (vexpr) == PARM_DECL
8141 && DECL_ARTIFICIAL (vexpr)
8142 && !DECL_IGNORED_P (vexpr)
8143 && DECL_NAMELESS (vexpr))
8144 vt_add_function_parameter (vexpr);
8147 if (MAY_HAVE_DEBUG_INSNS)
8149 cselib_preserve_only_values ();
8150 cselib_reset_table (cselib_get_next_uid ());
8155 /* Return true if INSN in the prologue initializes hard_frame_pointer_rtx. */
8157 static bool
8158 fp_setter (rtx insn)
8160 rtx pat = PATTERN (insn);
8161 if (RTX_FRAME_RELATED_P (insn))
8163 rtx expr = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
8164 if (expr)
8165 pat = XEXP (expr, 0);
8167 if (GET_CODE (pat) == SET)
8168 return SET_DEST (pat) == hard_frame_pointer_rtx;
8169 else if (GET_CODE (pat) == PARALLEL)
8171 int i;
8172 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
8173 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
8174 && SET_DEST (XVECEXP (pat, 0, i)) == hard_frame_pointer_rtx)
8175 return true;
8177 return false;
8180 /* Initialize cfa_base_rtx, create a preserved VALUE for it and
8181 ensure it isn't flushed during cselib_reset_table.
8182 Can be called only if frame_pointer_rtx resp. arg_pointer_rtx
8183 has been eliminated. */
8185 static void
8186 vt_init_cfa_base (void)
8188 cselib_val *val;
8190 #ifdef FRAME_POINTER_CFA_OFFSET
8191 cfa_base_rtx = frame_pointer_rtx;
8192 cfa_base_offset = -FRAME_POINTER_CFA_OFFSET (current_function_decl);
8193 #else
8194 cfa_base_rtx = arg_pointer_rtx;
8195 cfa_base_offset = -ARG_POINTER_CFA_OFFSET (current_function_decl);
8196 #endif
8197 if (cfa_base_rtx == hard_frame_pointer_rtx
8198 || !fixed_regs[REGNO (cfa_base_rtx)])
8200 cfa_base_rtx = NULL_RTX;
8201 return;
8203 if (!MAY_HAVE_DEBUG_INSNS)
8204 return;
8206 /* Tell alias analysis that cfa_base_rtx should share
8207 find_base_term value with stack pointer or hard frame pointer. */
8208 vt_equate_reg_base_value (cfa_base_rtx,
8209 frame_pointer_needed
8210 ? hard_frame_pointer_rtx : stack_pointer_rtx);
8211 val = cselib_lookup_from_insn (cfa_base_rtx, GET_MODE (cfa_base_rtx), 1,
8212 VOIDmode, get_insns ());
8213 preserve_value (val);
8214 cselib_preserve_cfa_base_value (val, REGNO (cfa_base_rtx));
8215 var_reg_decl_set (&VTI (ENTRY_BLOCK_PTR)->out, cfa_base_rtx,
8216 VAR_INIT_STATUS_INITIALIZED, dv_from_value (val->val_rtx),
8217 0, NULL_RTX, INSERT);
8220 /* Allocate and initialize the data structures for variable tracking
8221 and parse the RTL to get the micro operations. */
8223 static bool
8224 vt_initialize (void)
8226 basic_block bb, prologue_bb = NULL;
8227 HOST_WIDE_INT fp_cfa_offset = -1;
8229 alloc_aux_for_blocks (sizeof (struct variable_tracking_info_def));
8231 attrs_pool = create_alloc_pool ("attrs_def pool",
8232 sizeof (struct attrs_def), 1024);
8233 var_pool = create_alloc_pool ("variable_def pool",
8234 sizeof (struct variable_def)
8235 + (MAX_VAR_PARTS - 1)
8236 * sizeof (((variable)NULL)->var_part[0]), 64);
8237 loc_chain_pool = create_alloc_pool ("location_chain_def pool",
8238 sizeof (struct location_chain_def),
8239 1024);
8240 shared_hash_pool = create_alloc_pool ("shared_hash_def pool",
8241 sizeof (struct shared_hash_def), 256);
8242 empty_shared_hash = (shared_hash) pool_alloc (shared_hash_pool);
8243 empty_shared_hash->refcount = 1;
8244 empty_shared_hash->htab
8245 = htab_create (1, variable_htab_hash, variable_htab_eq,
8246 variable_htab_free);
8247 changed_variables = htab_create (10, variable_htab_hash, variable_htab_eq,
8248 variable_htab_free);
8249 if (MAY_HAVE_DEBUG_INSNS)
8251 value_chain_pool = create_alloc_pool ("value_chain_def pool",
8252 sizeof (struct value_chain_def),
8253 1024);
8254 value_chains = htab_create (32, value_chain_htab_hash,
8255 value_chain_htab_eq, NULL);
8258 /* Init the IN and OUT sets. */
8259 FOR_ALL_BB (bb)
8261 VTI (bb)->visited = false;
8262 VTI (bb)->flooded = false;
8263 dataflow_set_init (&VTI (bb)->in);
8264 dataflow_set_init (&VTI (bb)->out);
8265 VTI (bb)->permp = NULL;
8268 if (MAY_HAVE_DEBUG_INSNS)
8270 cselib_init (CSELIB_RECORD_MEMORY | CSELIB_PRESERVE_CONSTANTS);
8271 scratch_regs = BITMAP_ALLOC (NULL);
8272 valvar_pool = create_alloc_pool ("small variable_def pool",
8273 sizeof (struct variable_def), 256);
8274 preserved_values = VEC_alloc (rtx, heap, 256);
8276 else
8278 scratch_regs = NULL;
8279 valvar_pool = NULL;
8282 if (!frame_pointer_needed)
8284 rtx reg, elim;
8286 if (!vt_stack_adjustments ())
8287 return false;
8289 #ifdef FRAME_POINTER_CFA_OFFSET
8290 reg = frame_pointer_rtx;
8291 #else
8292 reg = arg_pointer_rtx;
8293 #endif
8294 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
8295 if (elim != reg)
8297 if (GET_CODE (elim) == PLUS)
8298 elim = XEXP (elim, 0);
8299 if (elim == stack_pointer_rtx)
8300 vt_init_cfa_base ();
8303 else if (!crtl->stack_realign_tried)
8305 rtx reg, elim;
8307 #ifdef FRAME_POINTER_CFA_OFFSET
8308 reg = frame_pointer_rtx;
8309 fp_cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
8310 #else
8311 reg = arg_pointer_rtx;
8312 fp_cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
8313 #endif
8314 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
8315 if (elim != reg)
8317 if (GET_CODE (elim) == PLUS)
8319 fp_cfa_offset -= INTVAL (XEXP (elim, 1));
8320 elim = XEXP (elim, 0);
8322 if (elim != hard_frame_pointer_rtx)
8323 fp_cfa_offset = -1;
8324 else
8325 prologue_bb = single_succ (ENTRY_BLOCK_PTR);
8329 hard_frame_pointer_adjustment = -1;
8331 FOR_EACH_BB (bb)
8333 rtx insn;
8334 HOST_WIDE_INT pre, post = 0;
8335 basic_block first_bb, last_bb;
8337 if (MAY_HAVE_DEBUG_INSNS)
8339 cselib_record_sets_hook = add_with_sets;
8340 if (dump_file && (dump_flags & TDF_DETAILS))
8341 fprintf (dump_file, "first value: %i\n",
8342 cselib_get_next_uid ());
8345 first_bb = bb;
8346 for (;;)
8348 edge e;
8349 if (bb->next_bb == EXIT_BLOCK_PTR
8350 || ! single_pred_p (bb->next_bb))
8351 break;
8352 e = find_edge (bb, bb->next_bb);
8353 if (! e || (e->flags & EDGE_FALLTHRU) == 0)
8354 break;
8355 bb = bb->next_bb;
8357 last_bb = bb;
8359 /* Add the micro-operations to the vector. */
8360 FOR_BB_BETWEEN (bb, first_bb, last_bb->next_bb, next_bb)
8362 HOST_WIDE_INT offset = VTI (bb)->out.stack_adjust;
8363 VTI (bb)->out.stack_adjust = VTI (bb)->in.stack_adjust;
8364 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
8365 insn = NEXT_INSN (insn))
8367 if (INSN_P (insn))
8369 if (!frame_pointer_needed)
8371 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
8372 if (pre)
8374 micro_operation mo;
8375 mo.type = MO_ADJUST;
8376 mo.u.adjust = pre;
8377 mo.insn = insn;
8378 if (dump_file && (dump_flags & TDF_DETAILS))
8379 log_op_type (PATTERN (insn), bb, insn,
8380 MO_ADJUST, dump_file);
8381 VEC_safe_push (micro_operation, heap, VTI (bb)->mos,
8382 &mo);
8383 VTI (bb)->out.stack_adjust += pre;
8387 cselib_hook_called = false;
8388 adjust_insn (bb, insn);
8389 if (MAY_HAVE_DEBUG_INSNS)
8391 cselib_process_insn (insn);
8392 if (dump_file && (dump_flags & TDF_DETAILS))
8394 print_rtl_single (dump_file, insn);
8395 dump_cselib_table (dump_file);
8398 if (!cselib_hook_called)
8399 add_with_sets (insn, 0, 0);
8400 cancel_changes (0);
8402 if (!frame_pointer_needed && post)
8404 micro_operation mo;
8405 mo.type = MO_ADJUST;
8406 mo.u.adjust = post;
8407 mo.insn = insn;
8408 if (dump_file && (dump_flags & TDF_DETAILS))
8409 log_op_type (PATTERN (insn), bb, insn,
8410 MO_ADJUST, dump_file);
8411 VEC_safe_push (micro_operation, heap, VTI (bb)->mos,
8412 &mo);
8413 VTI (bb)->out.stack_adjust += post;
8416 if (bb == prologue_bb
8417 && hard_frame_pointer_adjustment == -1
8418 && RTX_FRAME_RELATED_P (insn)
8419 && fp_setter (insn))
8421 vt_init_cfa_base ();
8422 hard_frame_pointer_adjustment = fp_cfa_offset;
8426 gcc_assert (offset == VTI (bb)->out.stack_adjust);
8429 bb = last_bb;
8431 if (MAY_HAVE_DEBUG_INSNS)
8433 cselib_preserve_only_values ();
8434 cselib_reset_table (cselib_get_next_uid ());
8435 cselib_record_sets_hook = NULL;
8439 hard_frame_pointer_adjustment = -1;
8440 VTI (ENTRY_BLOCK_PTR)->flooded = true;
8441 vt_add_function_parameters ();
8442 cfa_base_rtx = NULL_RTX;
8443 return true;
8446 /* Get rid of all debug insns from the insn stream. */
8448 static void
8449 delete_debug_insns (void)
8451 basic_block bb;
8452 rtx insn, next;
8454 if (!MAY_HAVE_DEBUG_INSNS)
8455 return;
8457 FOR_EACH_BB (bb)
8459 FOR_BB_INSNS_SAFE (bb, insn, next)
8460 if (DEBUG_INSN_P (insn))
8461 delete_insn (insn);
8465 /* Run a fast, BB-local only version of var tracking, to take care of
8466 information that we don't do global analysis on, such that not all
8467 information is lost. If SKIPPED holds, we're skipping the global
8468 pass entirely, so we should try to use information it would have
8469 handled as well.. */
8471 static void
8472 vt_debug_insns_local (bool skipped ATTRIBUTE_UNUSED)
8474 /* ??? Just skip it all for now. */
8475 delete_debug_insns ();
8478 /* Free the data structures needed for variable tracking. */
8480 static void
8481 vt_finalize (void)
8483 basic_block bb;
8485 FOR_EACH_BB (bb)
8487 VEC_free (micro_operation, heap, VTI (bb)->mos);
8490 FOR_ALL_BB (bb)
8492 dataflow_set_destroy (&VTI (bb)->in);
8493 dataflow_set_destroy (&VTI (bb)->out);
8494 if (VTI (bb)->permp)
8496 dataflow_set_destroy (VTI (bb)->permp);
8497 XDELETE (VTI (bb)->permp);
8500 free_aux_for_blocks ();
8501 htab_delete (empty_shared_hash->htab);
8502 htab_delete (changed_variables);
8503 free_alloc_pool (attrs_pool);
8504 free_alloc_pool (var_pool);
8505 free_alloc_pool (loc_chain_pool);
8506 free_alloc_pool (shared_hash_pool);
8508 if (MAY_HAVE_DEBUG_INSNS)
8510 htab_delete (value_chains);
8511 free_alloc_pool (value_chain_pool);
8512 free_alloc_pool (valvar_pool);
8513 VEC_free (rtx, heap, preserved_values);
8514 cselib_finish ();
8515 BITMAP_FREE (scratch_regs);
8516 scratch_regs = NULL;
8519 if (vui_vec)
8520 XDELETEVEC (vui_vec);
8521 vui_vec = NULL;
8522 vui_allocated = 0;
8525 /* The entry point to variable tracking pass. */
8527 static inline unsigned int
8528 variable_tracking_main_1 (void)
8530 bool success;
8532 if (flag_var_tracking_assignments < 0)
8534 delete_debug_insns ();
8535 return 0;
8538 if (n_basic_blocks > 500 && n_edges / n_basic_blocks >= 20)
8540 vt_debug_insns_local (true);
8541 return 0;
8544 mark_dfs_back_edges ();
8545 if (!vt_initialize ())
8547 vt_finalize ();
8548 vt_debug_insns_local (true);
8549 return 0;
8552 success = vt_find_locations ();
8554 if (!success && flag_var_tracking_assignments > 0)
8556 vt_finalize ();
8558 delete_debug_insns ();
8560 /* This is later restored by our caller. */
8561 flag_var_tracking_assignments = 0;
8563 success = vt_initialize ();
8564 gcc_assert (success);
8566 success = vt_find_locations ();
8569 if (!success)
8571 vt_finalize ();
8572 vt_debug_insns_local (false);
8573 return 0;
8576 if (dump_file && (dump_flags & TDF_DETAILS))
8578 dump_dataflow_sets ();
8579 dump_flow_info (dump_file, dump_flags);
8582 timevar_push (TV_VAR_TRACKING_EMIT);
8583 vt_emit_notes ();
8584 timevar_pop (TV_VAR_TRACKING_EMIT);
8586 vt_finalize ();
8587 vt_debug_insns_local (false);
8588 return 0;
8591 unsigned int
8592 variable_tracking_main (void)
8594 unsigned int ret;
8595 int save = flag_var_tracking_assignments;
8597 ret = variable_tracking_main_1 ();
8599 flag_var_tracking_assignments = save;
8601 return ret;
8604 static bool
8605 gate_handle_var_tracking (void)
8607 return (flag_var_tracking);
8612 struct rtl_opt_pass pass_variable_tracking =
8615 RTL_PASS,
8616 "vartrack", /* name */
8617 gate_handle_var_tracking, /* gate */
8618 variable_tracking_main, /* execute */
8619 NULL, /* sub */
8620 NULL, /* next */
8621 0, /* static_pass_number */
8622 TV_VAR_TRACKING, /* tv_id */
8623 0, /* properties_required */
8624 0, /* properties_provided */
8625 0, /* properties_destroyed */
8626 0, /* todo_flags_start */
8627 TODO_dump_func | TODO_verify_rtl_sharing/* todo_flags_finish */