Change use to type-based pool allocator in
[official-gcc.git] / gcc / expmed.c
blob4b2b02659e7803088dfd66b59bfc9b78b59ceb54
1 /* Medium-level subroutines: convert bit-field store and extract
2 and shifts, multiplies and divides to rtl instructions.
3 Copyright (C) 1987-2015 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "diagnostic-core.h"
27 #include "rtl.h"
28 #include "hash-set.h"
29 #include "machmode.h"
30 #include "vec.h"
31 #include "double-int.h"
32 #include "input.h"
33 #include "alias.h"
34 #include "symtab.h"
35 #include "wide-int.h"
36 #include "inchash.h"
37 #include "tree.h"
38 #include "fold-const.h"
39 #include "stor-layout.h"
40 #include "tm_p.h"
41 #include "flags.h"
42 #include "insn-config.h"
43 #include "hashtab.h"
44 #include "hard-reg-set.h"
45 #include "function.h"
46 #include "statistics.h"
47 #include "real.h"
48 #include "fixed-value.h"
49 #include "expmed.h"
50 #include "dojump.h"
51 #include "explow.h"
52 #include "calls.h"
53 #include "emit-rtl.h"
54 #include "varasm.h"
55 #include "stmt.h"
56 #include "expr.h"
57 #include "insn-codes.h"
58 #include "optabs.h"
59 #include "recog.h"
60 #include "langhooks.h"
61 #include "predict.h"
62 #include "basic-block.h"
63 #include "df.h"
64 #include "target.h"
66 struct target_expmed default_target_expmed;
67 #if SWITCHABLE_TARGET
68 struct target_expmed *this_target_expmed = &default_target_expmed;
69 #endif
71 static void store_fixed_bit_field (rtx, unsigned HOST_WIDE_INT,
72 unsigned HOST_WIDE_INT,
73 unsigned HOST_WIDE_INT,
74 unsigned HOST_WIDE_INT,
75 rtx);
76 static void store_fixed_bit_field_1 (rtx, unsigned HOST_WIDE_INT,
77 unsigned HOST_WIDE_INT,
78 rtx);
79 static void store_split_bit_field (rtx, unsigned HOST_WIDE_INT,
80 unsigned HOST_WIDE_INT,
81 unsigned HOST_WIDE_INT,
82 unsigned HOST_WIDE_INT,
83 rtx);
84 static rtx extract_fixed_bit_field (machine_mode, rtx,
85 unsigned HOST_WIDE_INT,
86 unsigned HOST_WIDE_INT, rtx, int);
87 static rtx extract_fixed_bit_field_1 (machine_mode, rtx,
88 unsigned HOST_WIDE_INT,
89 unsigned HOST_WIDE_INT, rtx, int);
90 static rtx lshift_value (machine_mode, unsigned HOST_WIDE_INT, int);
91 static rtx extract_split_bit_field (rtx, unsigned HOST_WIDE_INT,
92 unsigned HOST_WIDE_INT, int);
93 static void do_cmp_and_jump (rtx, rtx, enum rtx_code, machine_mode, rtx_code_label *);
94 static rtx expand_smod_pow2 (machine_mode, rtx, HOST_WIDE_INT);
95 static rtx expand_sdiv_pow2 (machine_mode, rtx, HOST_WIDE_INT);
97 /* Return a constant integer mask value of mode MODE with BITSIZE ones
98 followed by BITPOS zeros, or the complement of that if COMPLEMENT.
99 The mask is truncated if necessary to the width of mode MODE. The
100 mask is zero-extended if BITSIZE+BITPOS is too small for MODE. */
102 static inline rtx
103 mask_rtx (machine_mode mode, int bitpos, int bitsize, bool complement)
105 return immed_wide_int_const
106 (wi::shifted_mask (bitpos, bitsize, complement,
107 GET_MODE_PRECISION (mode)), mode);
110 /* Test whether a value is zero of a power of two. */
111 #define EXACT_POWER_OF_2_OR_ZERO_P(x) \
112 (((x) & ((x) - (unsigned HOST_WIDE_INT) 1)) == 0)
114 struct init_expmed_rtl
116 rtx reg;
117 rtx plus;
118 rtx neg;
119 rtx mult;
120 rtx sdiv;
121 rtx udiv;
122 rtx sdiv_32;
123 rtx smod_32;
124 rtx wide_mult;
125 rtx wide_lshr;
126 rtx wide_trunc;
127 rtx shift;
128 rtx shift_mult;
129 rtx shift_add;
130 rtx shift_sub0;
131 rtx shift_sub1;
132 rtx zext;
133 rtx trunc;
135 rtx pow2[MAX_BITS_PER_WORD];
136 rtx cint[MAX_BITS_PER_WORD];
139 static void
140 init_expmed_one_conv (struct init_expmed_rtl *all, machine_mode to_mode,
141 machine_mode from_mode, bool speed)
143 int to_size, from_size;
144 rtx which;
146 to_size = GET_MODE_PRECISION (to_mode);
147 from_size = GET_MODE_PRECISION (from_mode);
149 /* Most partial integers have a precision less than the "full"
150 integer it requires for storage. In case one doesn't, for
151 comparison purposes here, reduce the bit size by one in that
152 case. */
153 if (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT
154 && exact_log2 (to_size) != -1)
155 to_size --;
156 if (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT
157 && exact_log2 (from_size) != -1)
158 from_size --;
160 /* Assume cost of zero-extend and sign-extend is the same. */
161 which = (to_size < from_size ? all->trunc : all->zext);
163 PUT_MODE (all->reg, from_mode);
164 set_convert_cost (to_mode, from_mode, speed, set_src_cost (which, speed));
167 static void
168 init_expmed_one_mode (struct init_expmed_rtl *all,
169 machine_mode mode, int speed)
171 int m, n, mode_bitsize;
172 machine_mode mode_from;
174 mode_bitsize = GET_MODE_UNIT_BITSIZE (mode);
176 PUT_MODE (all->reg, mode);
177 PUT_MODE (all->plus, mode);
178 PUT_MODE (all->neg, mode);
179 PUT_MODE (all->mult, mode);
180 PUT_MODE (all->sdiv, mode);
181 PUT_MODE (all->udiv, mode);
182 PUT_MODE (all->sdiv_32, mode);
183 PUT_MODE (all->smod_32, mode);
184 PUT_MODE (all->wide_trunc, mode);
185 PUT_MODE (all->shift, mode);
186 PUT_MODE (all->shift_mult, mode);
187 PUT_MODE (all->shift_add, mode);
188 PUT_MODE (all->shift_sub0, mode);
189 PUT_MODE (all->shift_sub1, mode);
190 PUT_MODE (all->zext, mode);
191 PUT_MODE (all->trunc, mode);
193 set_add_cost (speed, mode, set_src_cost (all->plus, speed));
194 set_neg_cost (speed, mode, set_src_cost (all->neg, speed));
195 set_mul_cost (speed, mode, set_src_cost (all->mult, speed));
196 set_sdiv_cost (speed, mode, set_src_cost (all->sdiv, speed));
197 set_udiv_cost (speed, mode, set_src_cost (all->udiv, speed));
199 set_sdiv_pow2_cheap (speed, mode, (set_src_cost (all->sdiv_32, speed)
200 <= 2 * add_cost (speed, mode)));
201 set_smod_pow2_cheap (speed, mode, (set_src_cost (all->smod_32, speed)
202 <= 4 * add_cost (speed, mode)));
204 set_shift_cost (speed, mode, 0, 0);
206 int cost = add_cost (speed, mode);
207 set_shiftadd_cost (speed, mode, 0, cost);
208 set_shiftsub0_cost (speed, mode, 0, cost);
209 set_shiftsub1_cost (speed, mode, 0, cost);
212 n = MIN (MAX_BITS_PER_WORD, mode_bitsize);
213 for (m = 1; m < n; m++)
215 XEXP (all->shift, 1) = all->cint[m];
216 XEXP (all->shift_mult, 1) = all->pow2[m];
218 set_shift_cost (speed, mode, m, set_src_cost (all->shift, speed));
219 set_shiftadd_cost (speed, mode, m, set_src_cost (all->shift_add, speed));
220 set_shiftsub0_cost (speed, mode, m, set_src_cost (all->shift_sub0, speed));
221 set_shiftsub1_cost (speed, mode, m, set_src_cost (all->shift_sub1, speed));
224 if (SCALAR_INT_MODE_P (mode))
226 for (mode_from = MIN_MODE_INT; mode_from <= MAX_MODE_INT;
227 mode_from = (machine_mode)(mode_from + 1))
228 init_expmed_one_conv (all, mode, mode_from, speed);
230 if (GET_MODE_CLASS (mode) == MODE_INT)
232 machine_mode wider_mode = GET_MODE_WIDER_MODE (mode);
233 if (wider_mode != VOIDmode)
235 PUT_MODE (all->zext, wider_mode);
236 PUT_MODE (all->wide_mult, wider_mode);
237 PUT_MODE (all->wide_lshr, wider_mode);
238 XEXP (all->wide_lshr, 1) = GEN_INT (mode_bitsize);
240 set_mul_widen_cost (speed, wider_mode,
241 set_src_cost (all->wide_mult, speed));
242 set_mul_highpart_cost (speed, mode,
243 set_src_cost (all->wide_trunc, speed));
248 void
249 init_expmed (void)
251 struct init_expmed_rtl all;
252 machine_mode mode = QImode;
253 int m, speed;
255 memset (&all, 0, sizeof all);
256 for (m = 1; m < MAX_BITS_PER_WORD; m++)
258 all.pow2[m] = GEN_INT ((HOST_WIDE_INT) 1 << m);
259 all.cint[m] = GEN_INT (m);
262 /* Avoid using hard regs in ways which may be unsupported. */
263 all.reg = gen_raw_REG (mode, LAST_VIRTUAL_REGISTER + 1);
264 all.plus = gen_rtx_PLUS (mode, all.reg, all.reg);
265 all.neg = gen_rtx_NEG (mode, all.reg);
266 all.mult = gen_rtx_MULT (mode, all.reg, all.reg);
267 all.sdiv = gen_rtx_DIV (mode, all.reg, all.reg);
268 all.udiv = gen_rtx_UDIV (mode, all.reg, all.reg);
269 all.sdiv_32 = gen_rtx_DIV (mode, all.reg, all.pow2[5]);
270 all.smod_32 = gen_rtx_MOD (mode, all.reg, all.pow2[5]);
271 all.zext = gen_rtx_ZERO_EXTEND (mode, all.reg);
272 all.wide_mult = gen_rtx_MULT (mode, all.zext, all.zext);
273 all.wide_lshr = gen_rtx_LSHIFTRT (mode, all.wide_mult, all.reg);
274 all.wide_trunc = gen_rtx_TRUNCATE (mode, all.wide_lshr);
275 all.shift = gen_rtx_ASHIFT (mode, all.reg, all.reg);
276 all.shift_mult = gen_rtx_MULT (mode, all.reg, all.reg);
277 all.shift_add = gen_rtx_PLUS (mode, all.shift_mult, all.reg);
278 all.shift_sub0 = gen_rtx_MINUS (mode, all.shift_mult, all.reg);
279 all.shift_sub1 = gen_rtx_MINUS (mode, all.reg, all.shift_mult);
280 all.trunc = gen_rtx_TRUNCATE (mode, all.reg);
282 for (speed = 0; speed < 2; speed++)
284 crtl->maybe_hot_insn_p = speed;
285 set_zero_cost (speed, set_src_cost (const0_rtx, speed));
287 for (mode = MIN_MODE_INT; mode <= MAX_MODE_INT;
288 mode = (machine_mode)(mode + 1))
289 init_expmed_one_mode (&all, mode, speed);
291 if (MIN_MODE_PARTIAL_INT != VOIDmode)
292 for (mode = MIN_MODE_PARTIAL_INT; mode <= MAX_MODE_PARTIAL_INT;
293 mode = (machine_mode)(mode + 1))
294 init_expmed_one_mode (&all, mode, speed);
296 if (MIN_MODE_VECTOR_INT != VOIDmode)
297 for (mode = MIN_MODE_VECTOR_INT; mode <= MAX_MODE_VECTOR_INT;
298 mode = (machine_mode)(mode + 1))
299 init_expmed_one_mode (&all, mode, speed);
302 if (alg_hash_used_p ())
304 struct alg_hash_entry *p = alg_hash_entry_ptr (0);
305 memset (p, 0, sizeof (*p) * NUM_ALG_HASH_ENTRIES);
307 else
308 set_alg_hash_used_p (true);
309 default_rtl_profile ();
311 ggc_free (all.trunc);
312 ggc_free (all.shift_sub1);
313 ggc_free (all.shift_sub0);
314 ggc_free (all.shift_add);
315 ggc_free (all.shift_mult);
316 ggc_free (all.shift);
317 ggc_free (all.wide_trunc);
318 ggc_free (all.wide_lshr);
319 ggc_free (all.wide_mult);
320 ggc_free (all.zext);
321 ggc_free (all.smod_32);
322 ggc_free (all.sdiv_32);
323 ggc_free (all.udiv);
324 ggc_free (all.sdiv);
325 ggc_free (all.mult);
326 ggc_free (all.neg);
327 ggc_free (all.plus);
328 ggc_free (all.reg);
331 /* Return an rtx representing minus the value of X.
332 MODE is the intended mode of the result,
333 useful if X is a CONST_INT. */
336 negate_rtx (machine_mode mode, rtx x)
338 rtx result = simplify_unary_operation (NEG, mode, x, mode);
340 if (result == 0)
341 result = expand_unop (mode, neg_optab, x, NULL_RTX, 0);
343 return result;
346 /* Adjust bitfield memory MEM so that it points to the first unit of mode
347 MODE that contains a bitfield of size BITSIZE at bit position BITNUM.
348 If MODE is BLKmode, return a reference to every byte in the bitfield.
349 Set *NEW_BITNUM to the bit position of the field within the new memory. */
351 static rtx
352 narrow_bit_field_mem (rtx mem, machine_mode mode,
353 unsigned HOST_WIDE_INT bitsize,
354 unsigned HOST_WIDE_INT bitnum,
355 unsigned HOST_WIDE_INT *new_bitnum)
357 if (mode == BLKmode)
359 *new_bitnum = bitnum % BITS_PER_UNIT;
360 HOST_WIDE_INT offset = bitnum / BITS_PER_UNIT;
361 HOST_WIDE_INT size = ((*new_bitnum + bitsize + BITS_PER_UNIT - 1)
362 / BITS_PER_UNIT);
363 return adjust_bitfield_address_size (mem, mode, offset, size);
365 else
367 unsigned int unit = GET_MODE_BITSIZE (mode);
368 *new_bitnum = bitnum % unit;
369 HOST_WIDE_INT offset = (bitnum - *new_bitnum) / BITS_PER_UNIT;
370 return adjust_bitfield_address (mem, mode, offset);
374 /* The caller wants to perform insertion or extraction PATTERN on a
375 bitfield of size BITSIZE at BITNUM bits into memory operand OP0.
376 BITREGION_START and BITREGION_END are as for store_bit_field
377 and FIELDMODE is the natural mode of the field.
379 Search for a mode that is compatible with the memory access
380 restrictions and (where applicable) with a register insertion or
381 extraction. Return the new memory on success, storing the adjusted
382 bit position in *NEW_BITNUM. Return null otherwise. */
384 static rtx
385 adjust_bit_field_mem_for_reg (enum extraction_pattern pattern,
386 rtx op0, HOST_WIDE_INT bitsize,
387 HOST_WIDE_INT bitnum,
388 unsigned HOST_WIDE_INT bitregion_start,
389 unsigned HOST_WIDE_INT bitregion_end,
390 machine_mode fieldmode,
391 unsigned HOST_WIDE_INT *new_bitnum)
393 bit_field_mode_iterator iter (bitsize, bitnum, bitregion_start,
394 bitregion_end, MEM_ALIGN (op0),
395 MEM_VOLATILE_P (op0));
396 machine_mode best_mode;
397 if (iter.next_mode (&best_mode))
399 /* We can use a memory in BEST_MODE. See whether this is true for
400 any wider modes. All other things being equal, we prefer to
401 use the widest mode possible because it tends to expose more
402 CSE opportunities. */
403 if (!iter.prefer_smaller_modes ())
405 /* Limit the search to the mode required by the corresponding
406 register insertion or extraction instruction, if any. */
407 machine_mode limit_mode = word_mode;
408 extraction_insn insn;
409 if (get_best_reg_extraction_insn (&insn, pattern,
410 GET_MODE_BITSIZE (best_mode),
411 fieldmode))
412 limit_mode = insn.field_mode;
414 machine_mode wider_mode;
415 while (iter.next_mode (&wider_mode)
416 && GET_MODE_SIZE (wider_mode) <= GET_MODE_SIZE (limit_mode))
417 best_mode = wider_mode;
419 return narrow_bit_field_mem (op0, best_mode, bitsize, bitnum,
420 new_bitnum);
422 return NULL_RTX;
425 /* Return true if a bitfield of size BITSIZE at bit number BITNUM within
426 a structure of mode STRUCT_MODE represents a lowpart subreg. The subreg
427 offset is then BITNUM / BITS_PER_UNIT. */
429 static bool
430 lowpart_bit_field_p (unsigned HOST_WIDE_INT bitnum,
431 unsigned HOST_WIDE_INT bitsize,
432 machine_mode struct_mode)
434 if (BYTES_BIG_ENDIAN)
435 return (bitnum % BITS_PER_UNIT == 0
436 && (bitnum + bitsize == GET_MODE_BITSIZE (struct_mode)
437 || (bitnum + bitsize) % BITS_PER_WORD == 0));
438 else
439 return bitnum % BITS_PER_WORD == 0;
442 /* Return true if -fstrict-volatile-bitfields applies to an access of OP0
443 containing BITSIZE bits starting at BITNUM, with field mode FIELDMODE.
444 Return false if the access would touch memory outside the range
445 BITREGION_START to BITREGION_END for conformance to the C++ memory
446 model. */
448 static bool
449 strict_volatile_bitfield_p (rtx op0, unsigned HOST_WIDE_INT bitsize,
450 unsigned HOST_WIDE_INT bitnum,
451 machine_mode fieldmode,
452 unsigned HOST_WIDE_INT bitregion_start,
453 unsigned HOST_WIDE_INT bitregion_end)
455 unsigned HOST_WIDE_INT modesize = GET_MODE_BITSIZE (fieldmode);
457 /* -fstrict-volatile-bitfields must be enabled and we must have a
458 volatile MEM. */
459 if (!MEM_P (op0)
460 || !MEM_VOLATILE_P (op0)
461 || flag_strict_volatile_bitfields <= 0)
462 return false;
464 /* Non-integral modes likely only happen with packed structures.
465 Punt. */
466 if (!SCALAR_INT_MODE_P (fieldmode))
467 return false;
469 /* The bit size must not be larger than the field mode, and
470 the field mode must not be larger than a word. */
471 if (bitsize > modesize || modesize > BITS_PER_WORD)
472 return false;
474 /* Check for cases of unaligned fields that must be split. */
475 if (bitnum % modesize + bitsize > modesize)
476 return false;
478 /* The memory must be sufficiently aligned for a MODESIZE access.
479 This condition guarantees, that the memory access will not
480 touch anything after the end of the structure. */
481 if (MEM_ALIGN (op0) < modesize)
482 return false;
484 /* Check for cases where the C++ memory model applies. */
485 if (bitregion_end != 0
486 && (bitnum - bitnum % modesize < bitregion_start
487 || bitnum - bitnum % modesize + modesize - 1 > bitregion_end))
488 return false;
490 return true;
493 /* Return true if OP is a memory and if a bitfield of size BITSIZE at
494 bit number BITNUM can be treated as a simple value of mode MODE. */
496 static bool
497 simple_mem_bitfield_p (rtx op0, unsigned HOST_WIDE_INT bitsize,
498 unsigned HOST_WIDE_INT bitnum, machine_mode mode)
500 return (MEM_P (op0)
501 && bitnum % BITS_PER_UNIT == 0
502 && bitsize == GET_MODE_BITSIZE (mode)
503 && (!SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (op0))
504 || (bitnum % GET_MODE_ALIGNMENT (mode) == 0
505 && MEM_ALIGN (op0) >= GET_MODE_ALIGNMENT (mode))));
508 /* Try to use instruction INSV to store VALUE into a field of OP0.
509 BITSIZE and BITNUM are as for store_bit_field. */
511 static bool
512 store_bit_field_using_insv (const extraction_insn *insv, rtx op0,
513 unsigned HOST_WIDE_INT bitsize,
514 unsigned HOST_WIDE_INT bitnum,
515 rtx value)
517 struct expand_operand ops[4];
518 rtx value1;
519 rtx xop0 = op0;
520 rtx_insn *last = get_last_insn ();
521 bool copy_back = false;
523 machine_mode op_mode = insv->field_mode;
524 unsigned int unit = GET_MODE_BITSIZE (op_mode);
525 if (bitsize == 0 || bitsize > unit)
526 return false;
528 if (MEM_P (xop0))
529 /* Get a reference to the first byte of the field. */
530 xop0 = narrow_bit_field_mem (xop0, insv->struct_mode, bitsize, bitnum,
531 &bitnum);
532 else
534 /* Convert from counting within OP0 to counting in OP_MODE. */
535 if (BYTES_BIG_ENDIAN)
536 bitnum += unit - GET_MODE_BITSIZE (GET_MODE (op0));
538 /* If xop0 is a register, we need it in OP_MODE
539 to make it acceptable to the format of insv. */
540 if (GET_CODE (xop0) == SUBREG)
541 /* We can't just change the mode, because this might clobber op0,
542 and we will need the original value of op0 if insv fails. */
543 xop0 = gen_rtx_SUBREG (op_mode, SUBREG_REG (xop0), SUBREG_BYTE (xop0));
544 if (REG_P (xop0) && GET_MODE (xop0) != op_mode)
545 xop0 = gen_lowpart_SUBREG (op_mode, xop0);
548 /* If the destination is a paradoxical subreg such that we need a
549 truncate to the inner mode, perform the insertion on a temporary and
550 truncate the result to the original destination. Note that we can't
551 just truncate the paradoxical subreg as (truncate:N (subreg:W (reg:N
552 X) 0)) is (reg:N X). */
553 if (GET_CODE (xop0) == SUBREG
554 && REG_P (SUBREG_REG (xop0))
555 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (SUBREG_REG (xop0)),
556 op_mode))
558 rtx tem = gen_reg_rtx (op_mode);
559 emit_move_insn (tem, xop0);
560 xop0 = tem;
561 copy_back = true;
564 /* There are similar overflow check at the start of store_bit_field_1,
565 but that only check the situation where the field lies completely
566 outside the register, while there do have situation where the field
567 lies partialy in the register, we need to adjust bitsize for this
568 partial overflow situation. Without this fix, pr48335-2.c on big-endian
569 will broken on those arch support bit insert instruction, like arm, aarch64
570 etc. */
571 if (bitsize + bitnum > unit && bitnum < unit)
573 warning (OPT_Wextra, "write of %wu-bit data outside the bound of "
574 "destination object, data truncated into %wu-bit",
575 bitsize, unit - bitnum);
576 bitsize = unit - bitnum;
579 /* If BITS_BIG_ENDIAN is zero on a BYTES_BIG_ENDIAN machine, we count
580 "backwards" from the size of the unit we are inserting into.
581 Otherwise, we count bits from the most significant on a
582 BYTES/BITS_BIG_ENDIAN machine. */
584 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
585 bitnum = unit - bitsize - bitnum;
587 /* Convert VALUE to op_mode (which insv insn wants) in VALUE1. */
588 value1 = value;
589 if (GET_MODE (value) != op_mode)
591 if (GET_MODE_BITSIZE (GET_MODE (value)) >= bitsize)
593 /* Optimization: Don't bother really extending VALUE
594 if it has all the bits we will actually use. However,
595 if we must narrow it, be sure we do it correctly. */
597 if (GET_MODE_SIZE (GET_MODE (value)) < GET_MODE_SIZE (op_mode))
599 rtx tmp;
601 tmp = simplify_subreg (op_mode, value1, GET_MODE (value), 0);
602 if (! tmp)
603 tmp = simplify_gen_subreg (op_mode,
604 force_reg (GET_MODE (value),
605 value1),
606 GET_MODE (value), 0);
607 value1 = tmp;
609 else
610 value1 = gen_lowpart (op_mode, value1);
612 else if (CONST_INT_P (value))
613 value1 = gen_int_mode (INTVAL (value), op_mode);
614 else
615 /* Parse phase is supposed to make VALUE's data type
616 match that of the component reference, which is a type
617 at least as wide as the field; so VALUE should have
618 a mode that corresponds to that type. */
619 gcc_assert (CONSTANT_P (value));
622 create_fixed_operand (&ops[0], xop0);
623 create_integer_operand (&ops[1], bitsize);
624 create_integer_operand (&ops[2], bitnum);
625 create_input_operand (&ops[3], value1, op_mode);
626 if (maybe_expand_insn (insv->icode, 4, ops))
628 if (copy_back)
629 convert_move (op0, xop0, true);
630 return true;
632 delete_insns_since (last);
633 return false;
636 /* A subroutine of store_bit_field, with the same arguments. Return true
637 if the operation could be implemented.
639 If FALLBACK_P is true, fall back to store_fixed_bit_field if we have
640 no other way of implementing the operation. If FALLBACK_P is false,
641 return false instead. */
643 static bool
644 store_bit_field_1 (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
645 unsigned HOST_WIDE_INT bitnum,
646 unsigned HOST_WIDE_INT bitregion_start,
647 unsigned HOST_WIDE_INT bitregion_end,
648 machine_mode fieldmode,
649 rtx value, bool fallback_p)
651 rtx op0 = str_rtx;
652 rtx orig_value;
654 while (GET_CODE (op0) == SUBREG)
656 /* The following line once was done only if WORDS_BIG_ENDIAN,
657 but I think that is a mistake. WORDS_BIG_ENDIAN is
658 meaningful at a much higher level; when structures are copied
659 between memory and regs, the higher-numbered regs
660 always get higher addresses. */
661 int inner_mode_size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)));
662 int outer_mode_size = GET_MODE_SIZE (GET_MODE (op0));
663 int byte_offset = 0;
665 /* Paradoxical subregs need special handling on big endian machines. */
666 if (SUBREG_BYTE (op0) == 0 && inner_mode_size < outer_mode_size)
668 int difference = inner_mode_size - outer_mode_size;
670 if (WORDS_BIG_ENDIAN)
671 byte_offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
672 if (BYTES_BIG_ENDIAN)
673 byte_offset += difference % UNITS_PER_WORD;
675 else
676 byte_offset = SUBREG_BYTE (op0);
678 bitnum += byte_offset * BITS_PER_UNIT;
679 op0 = SUBREG_REG (op0);
682 /* No action is needed if the target is a register and if the field
683 lies completely outside that register. This can occur if the source
684 code contains an out-of-bounds access to a small array. */
685 if (REG_P (op0) && bitnum >= GET_MODE_BITSIZE (GET_MODE (op0)))
686 return true;
688 /* Use vec_set patterns for inserting parts of vectors whenever
689 available. */
690 if (VECTOR_MODE_P (GET_MODE (op0))
691 && !MEM_P (op0)
692 && optab_handler (vec_set_optab, GET_MODE (op0)) != CODE_FOR_nothing
693 && fieldmode == GET_MODE_INNER (GET_MODE (op0))
694 && bitsize == GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))
695 && !(bitnum % GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))))
697 struct expand_operand ops[3];
698 machine_mode outermode = GET_MODE (op0);
699 machine_mode innermode = GET_MODE_INNER (outermode);
700 enum insn_code icode = optab_handler (vec_set_optab, outermode);
701 int pos = bitnum / GET_MODE_BITSIZE (innermode);
703 create_fixed_operand (&ops[0], op0);
704 create_input_operand (&ops[1], value, innermode);
705 create_integer_operand (&ops[2], pos);
706 if (maybe_expand_insn (icode, 3, ops))
707 return true;
710 /* If the target is a register, overwriting the entire object, or storing
711 a full-word or multi-word field can be done with just a SUBREG. */
712 if (!MEM_P (op0)
713 && bitsize == GET_MODE_BITSIZE (fieldmode)
714 && ((bitsize == GET_MODE_BITSIZE (GET_MODE (op0)) && bitnum == 0)
715 || (bitsize % BITS_PER_WORD == 0 && bitnum % BITS_PER_WORD == 0)))
717 /* Use the subreg machinery either to narrow OP0 to the required
718 words or to cope with mode punning between equal-sized modes.
719 In the latter case, use subreg on the rhs side, not lhs. */
720 rtx sub;
722 if (bitsize == GET_MODE_BITSIZE (GET_MODE (op0)))
724 sub = simplify_gen_subreg (GET_MODE (op0), value, fieldmode, 0);
725 if (sub)
727 emit_move_insn (op0, sub);
728 return true;
731 else
733 sub = simplify_gen_subreg (fieldmode, op0, GET_MODE (op0),
734 bitnum / BITS_PER_UNIT);
735 if (sub)
737 emit_move_insn (sub, value);
738 return true;
743 /* If the target is memory, storing any naturally aligned field can be
744 done with a simple store. For targets that support fast unaligned
745 memory, any naturally sized, unit aligned field can be done directly. */
746 if (simple_mem_bitfield_p (op0, bitsize, bitnum, fieldmode))
748 op0 = adjust_bitfield_address (op0, fieldmode, bitnum / BITS_PER_UNIT);
749 emit_move_insn (op0, value);
750 return true;
753 /* Make sure we are playing with integral modes. Pun with subregs
754 if we aren't. This must come after the entire register case above,
755 since that case is valid for any mode. The following cases are only
756 valid for integral modes. */
758 machine_mode imode = int_mode_for_mode (GET_MODE (op0));
759 if (imode != GET_MODE (op0))
761 if (MEM_P (op0))
762 op0 = adjust_bitfield_address_size (op0, imode, 0, MEM_SIZE (op0));
763 else
765 gcc_assert (imode != BLKmode);
766 op0 = gen_lowpart (imode, op0);
771 /* Storing an lsb-aligned field in a register
772 can be done with a movstrict instruction. */
774 if (!MEM_P (op0)
775 && lowpart_bit_field_p (bitnum, bitsize, GET_MODE (op0))
776 && bitsize == GET_MODE_BITSIZE (fieldmode)
777 && optab_handler (movstrict_optab, fieldmode) != CODE_FOR_nothing)
779 struct expand_operand ops[2];
780 enum insn_code icode = optab_handler (movstrict_optab, fieldmode);
781 rtx arg0 = op0;
782 unsigned HOST_WIDE_INT subreg_off;
784 if (GET_CODE (arg0) == SUBREG)
786 /* Else we've got some float mode source being extracted into
787 a different float mode destination -- this combination of
788 subregs results in Severe Tire Damage. */
789 gcc_assert (GET_MODE (SUBREG_REG (arg0)) == fieldmode
790 || GET_MODE_CLASS (fieldmode) == MODE_INT
791 || GET_MODE_CLASS (fieldmode) == MODE_PARTIAL_INT);
792 arg0 = SUBREG_REG (arg0);
795 subreg_off = bitnum / BITS_PER_UNIT;
796 if (validate_subreg (fieldmode, GET_MODE (arg0), arg0, subreg_off))
798 arg0 = gen_rtx_SUBREG (fieldmode, arg0, subreg_off);
800 create_fixed_operand (&ops[0], arg0);
801 /* Shrink the source operand to FIELDMODE. */
802 create_convert_operand_to (&ops[1], value, fieldmode, false);
803 if (maybe_expand_insn (icode, 2, ops))
804 return true;
808 /* Handle fields bigger than a word. */
810 if (bitsize > BITS_PER_WORD)
812 /* Here we transfer the words of the field
813 in the order least significant first.
814 This is because the most significant word is the one which may
815 be less than full.
816 However, only do that if the value is not BLKmode. */
818 unsigned int backwards = WORDS_BIG_ENDIAN && fieldmode != BLKmode;
819 unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
820 unsigned int i;
821 rtx_insn *last;
823 /* This is the mode we must force value to, so that there will be enough
824 subwords to extract. Note that fieldmode will often (always?) be
825 VOIDmode, because that is what store_field uses to indicate that this
826 is a bit field, but passing VOIDmode to operand_subword_force
827 is not allowed. */
828 fieldmode = GET_MODE (value);
829 if (fieldmode == VOIDmode)
830 fieldmode = smallest_mode_for_size (nwords * BITS_PER_WORD, MODE_INT);
832 last = get_last_insn ();
833 for (i = 0; i < nwords; i++)
835 /* If I is 0, use the low-order word in both field and target;
836 if I is 1, use the next to lowest word; and so on. */
837 unsigned int wordnum = (backwards
838 ? GET_MODE_SIZE (fieldmode) / UNITS_PER_WORD
839 - i - 1
840 : i);
841 unsigned int bit_offset = (backwards
842 ? MAX ((int) bitsize - ((int) i + 1)
843 * BITS_PER_WORD,
845 : (int) i * BITS_PER_WORD);
846 rtx value_word = operand_subword_force (value, wordnum, fieldmode);
847 unsigned HOST_WIDE_INT new_bitsize =
848 MIN (BITS_PER_WORD, bitsize - i * BITS_PER_WORD);
850 /* If the remaining chunk doesn't have full wordsize we have
851 to make sure that for big endian machines the higher order
852 bits are used. */
853 if (new_bitsize < BITS_PER_WORD && BYTES_BIG_ENDIAN && !backwards)
854 value_word = simplify_expand_binop (word_mode, lshr_optab,
855 value_word,
856 GEN_INT (BITS_PER_WORD
857 - new_bitsize),
858 NULL_RTX, true,
859 OPTAB_LIB_WIDEN);
861 if (!store_bit_field_1 (op0, new_bitsize,
862 bitnum + bit_offset,
863 bitregion_start, bitregion_end,
864 word_mode,
865 value_word, fallback_p))
867 delete_insns_since (last);
868 return false;
871 return true;
874 /* If VALUE has a floating-point or complex mode, access it as an
875 integer of the corresponding size. This can occur on a machine
876 with 64 bit registers that uses SFmode for float. It can also
877 occur for unaligned float or complex fields. */
878 orig_value = value;
879 if (GET_MODE (value) != VOIDmode
880 && GET_MODE_CLASS (GET_MODE (value)) != MODE_INT
881 && GET_MODE_CLASS (GET_MODE (value)) != MODE_PARTIAL_INT)
883 value = gen_reg_rtx (int_mode_for_mode (GET_MODE (value)));
884 emit_move_insn (gen_lowpart (GET_MODE (orig_value), value), orig_value);
887 /* If OP0 is a multi-word register, narrow it to the affected word.
888 If the region spans two words, defer to store_split_bit_field. */
889 if (!MEM_P (op0) && GET_MODE_SIZE (GET_MODE (op0)) > UNITS_PER_WORD)
891 op0 = simplify_gen_subreg (word_mode, op0, GET_MODE (op0),
892 bitnum / BITS_PER_WORD * UNITS_PER_WORD);
893 gcc_assert (op0);
894 bitnum %= BITS_PER_WORD;
895 if (bitnum + bitsize > BITS_PER_WORD)
897 if (!fallback_p)
898 return false;
900 store_split_bit_field (op0, bitsize, bitnum, bitregion_start,
901 bitregion_end, value);
902 return true;
906 /* From here on we can assume that the field to be stored in fits
907 within a word. If the destination is a register, it too fits
908 in a word. */
910 extraction_insn insv;
911 if (!MEM_P (op0)
912 && get_best_reg_extraction_insn (&insv, EP_insv,
913 GET_MODE_BITSIZE (GET_MODE (op0)),
914 fieldmode)
915 && store_bit_field_using_insv (&insv, op0, bitsize, bitnum, value))
916 return true;
918 /* If OP0 is a memory, try copying it to a register and seeing if a
919 cheap register alternative is available. */
920 if (MEM_P (op0))
922 if (get_best_mem_extraction_insn (&insv, EP_insv, bitsize, bitnum,
923 fieldmode)
924 && store_bit_field_using_insv (&insv, op0, bitsize, bitnum, value))
925 return true;
927 rtx_insn *last = get_last_insn ();
929 /* Try loading part of OP0 into a register, inserting the bitfield
930 into that, and then copying the result back to OP0. */
931 unsigned HOST_WIDE_INT bitpos;
932 rtx xop0 = adjust_bit_field_mem_for_reg (EP_insv, op0, bitsize, bitnum,
933 bitregion_start, bitregion_end,
934 fieldmode, &bitpos);
935 if (xop0)
937 rtx tempreg = copy_to_reg (xop0);
938 if (store_bit_field_1 (tempreg, bitsize, bitpos,
939 bitregion_start, bitregion_end,
940 fieldmode, orig_value, false))
942 emit_move_insn (xop0, tempreg);
943 return true;
945 delete_insns_since (last);
949 if (!fallback_p)
950 return false;
952 store_fixed_bit_field (op0, bitsize, bitnum, bitregion_start,
953 bitregion_end, value);
954 return true;
957 /* Generate code to store value from rtx VALUE
958 into a bit-field within structure STR_RTX
959 containing BITSIZE bits starting at bit BITNUM.
961 BITREGION_START is bitpos of the first bitfield in this region.
962 BITREGION_END is the bitpos of the ending bitfield in this region.
963 These two fields are 0, if the C++ memory model does not apply,
964 or we are not interested in keeping track of bitfield regions.
966 FIELDMODE is the machine-mode of the FIELD_DECL node for this field. */
968 void
969 store_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
970 unsigned HOST_WIDE_INT bitnum,
971 unsigned HOST_WIDE_INT bitregion_start,
972 unsigned HOST_WIDE_INT bitregion_end,
973 machine_mode fieldmode,
974 rtx value)
976 /* Handle -fstrict-volatile-bitfields in the cases where it applies. */
977 if (strict_volatile_bitfield_p (str_rtx, bitsize, bitnum, fieldmode,
978 bitregion_start, bitregion_end))
980 /* Storing of a full word can be done with a simple store.
981 We know here that the field can be accessed with one single
982 instruction. For targets that support unaligned memory,
983 an unaligned access may be necessary. */
984 if (bitsize == GET_MODE_BITSIZE (fieldmode))
986 str_rtx = adjust_bitfield_address (str_rtx, fieldmode,
987 bitnum / BITS_PER_UNIT);
988 gcc_assert (bitnum % BITS_PER_UNIT == 0);
989 emit_move_insn (str_rtx, value);
991 else
993 rtx temp;
995 str_rtx = narrow_bit_field_mem (str_rtx, fieldmode, bitsize, bitnum,
996 &bitnum);
997 gcc_assert (bitnum + bitsize <= GET_MODE_BITSIZE (fieldmode));
998 temp = copy_to_reg (str_rtx);
999 if (!store_bit_field_1 (temp, bitsize, bitnum, 0, 0,
1000 fieldmode, value, true))
1001 gcc_unreachable ();
1003 emit_move_insn (str_rtx, temp);
1006 return;
1009 /* Under the C++0x memory model, we must not touch bits outside the
1010 bit region. Adjust the address to start at the beginning of the
1011 bit region. */
1012 if (MEM_P (str_rtx) && bitregion_start > 0)
1014 machine_mode bestmode;
1015 HOST_WIDE_INT offset, size;
1017 gcc_assert ((bitregion_start % BITS_PER_UNIT) == 0);
1019 offset = bitregion_start / BITS_PER_UNIT;
1020 bitnum -= bitregion_start;
1021 size = (bitnum + bitsize + BITS_PER_UNIT - 1) / BITS_PER_UNIT;
1022 bitregion_end -= bitregion_start;
1023 bitregion_start = 0;
1024 bestmode = get_best_mode (bitsize, bitnum,
1025 bitregion_start, bitregion_end,
1026 MEM_ALIGN (str_rtx), VOIDmode,
1027 MEM_VOLATILE_P (str_rtx));
1028 str_rtx = adjust_bitfield_address_size (str_rtx, bestmode, offset, size);
1031 if (!store_bit_field_1 (str_rtx, bitsize, bitnum,
1032 bitregion_start, bitregion_end,
1033 fieldmode, value, true))
1034 gcc_unreachable ();
1037 /* Use shifts and boolean operations to store VALUE into a bit field of
1038 width BITSIZE in OP0, starting at bit BITNUM. */
1040 static void
1041 store_fixed_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
1042 unsigned HOST_WIDE_INT bitnum,
1043 unsigned HOST_WIDE_INT bitregion_start,
1044 unsigned HOST_WIDE_INT bitregion_end,
1045 rtx value)
1047 /* There is a case not handled here:
1048 a structure with a known alignment of just a halfword
1049 and a field split across two aligned halfwords within the structure.
1050 Or likewise a structure with a known alignment of just a byte
1051 and a field split across two bytes.
1052 Such cases are not supposed to be able to occur. */
1054 if (MEM_P (op0))
1056 machine_mode mode = GET_MODE (op0);
1057 if (GET_MODE_BITSIZE (mode) == 0
1058 || GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (word_mode))
1059 mode = word_mode;
1060 mode = get_best_mode (bitsize, bitnum, bitregion_start, bitregion_end,
1061 MEM_ALIGN (op0), mode, MEM_VOLATILE_P (op0));
1063 if (mode == VOIDmode)
1065 /* The only way this should occur is if the field spans word
1066 boundaries. */
1067 store_split_bit_field (op0, bitsize, bitnum, bitregion_start,
1068 bitregion_end, value);
1069 return;
1072 op0 = narrow_bit_field_mem (op0, mode, bitsize, bitnum, &bitnum);
1075 store_fixed_bit_field_1 (op0, bitsize, bitnum, value);
1078 /* Helper function for store_fixed_bit_field, stores
1079 the bit field always using the MODE of OP0. */
1081 static void
1082 store_fixed_bit_field_1 (rtx op0, unsigned HOST_WIDE_INT bitsize,
1083 unsigned HOST_WIDE_INT bitnum,
1084 rtx value)
1086 machine_mode mode;
1087 rtx temp;
1088 int all_zero = 0;
1089 int all_one = 0;
1091 mode = GET_MODE (op0);
1092 gcc_assert (SCALAR_INT_MODE_P (mode));
1094 /* Note that bitsize + bitnum can be greater than GET_MODE_BITSIZE (mode)
1095 for invalid input, such as f5 from gcc.dg/pr48335-2.c. */
1097 if (BYTES_BIG_ENDIAN)
1098 /* BITNUM is the distance between our msb
1099 and that of the containing datum.
1100 Convert it to the distance from the lsb. */
1101 bitnum = GET_MODE_BITSIZE (mode) - bitsize - bitnum;
1103 /* Now BITNUM is always the distance between our lsb
1104 and that of OP0. */
1106 /* Shift VALUE left by BITNUM bits. If VALUE is not constant,
1107 we must first convert its mode to MODE. */
1109 if (CONST_INT_P (value))
1111 unsigned HOST_WIDE_INT v = UINTVAL (value);
1113 if (bitsize < HOST_BITS_PER_WIDE_INT)
1114 v &= ((unsigned HOST_WIDE_INT) 1 << bitsize) - 1;
1116 if (v == 0)
1117 all_zero = 1;
1118 else if ((bitsize < HOST_BITS_PER_WIDE_INT
1119 && v == ((unsigned HOST_WIDE_INT) 1 << bitsize) - 1)
1120 || (bitsize == HOST_BITS_PER_WIDE_INT
1121 && v == (unsigned HOST_WIDE_INT) -1))
1122 all_one = 1;
1124 value = lshift_value (mode, v, bitnum);
1126 else
1128 int must_and = (GET_MODE_BITSIZE (GET_MODE (value)) != bitsize
1129 && bitnum + bitsize != GET_MODE_BITSIZE (mode));
1131 if (GET_MODE (value) != mode)
1132 value = convert_to_mode (mode, value, 1);
1134 if (must_and)
1135 value = expand_binop (mode, and_optab, value,
1136 mask_rtx (mode, 0, bitsize, 0),
1137 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1138 if (bitnum > 0)
1139 value = expand_shift (LSHIFT_EXPR, mode, value,
1140 bitnum, NULL_RTX, 1);
1143 /* Now clear the chosen bits in OP0,
1144 except that if VALUE is -1 we need not bother. */
1145 /* We keep the intermediates in registers to allow CSE to combine
1146 consecutive bitfield assignments. */
1148 temp = force_reg (mode, op0);
1150 if (! all_one)
1152 temp = expand_binop (mode, and_optab, temp,
1153 mask_rtx (mode, bitnum, bitsize, 1),
1154 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1155 temp = force_reg (mode, temp);
1158 /* Now logical-or VALUE into OP0, unless it is zero. */
1160 if (! all_zero)
1162 temp = expand_binop (mode, ior_optab, temp, value,
1163 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1164 temp = force_reg (mode, temp);
1167 if (op0 != temp)
1169 op0 = copy_rtx (op0);
1170 emit_move_insn (op0, temp);
1174 /* Store a bit field that is split across multiple accessible memory objects.
1176 OP0 is the REG, SUBREG or MEM rtx for the first of the objects.
1177 BITSIZE is the field width; BITPOS the position of its first bit
1178 (within the word).
1179 VALUE is the value to store.
1181 This does not yet handle fields wider than BITS_PER_WORD. */
1183 static void
1184 store_split_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
1185 unsigned HOST_WIDE_INT bitpos,
1186 unsigned HOST_WIDE_INT bitregion_start,
1187 unsigned HOST_WIDE_INT bitregion_end,
1188 rtx value)
1190 unsigned int unit;
1191 unsigned int bitsdone = 0;
1193 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
1194 much at a time. */
1195 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
1196 unit = BITS_PER_WORD;
1197 else
1198 unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);
1200 /* If OP0 is a memory with a mode, then UNIT must not be larger than
1201 OP0's mode as well. Otherwise, store_fixed_bit_field will call us
1202 again, and we will mutually recurse forever. */
1203 if (MEM_P (op0) && GET_MODE_BITSIZE (GET_MODE (op0)) > 0)
1204 unit = MIN (unit, GET_MODE_BITSIZE (GET_MODE (op0)));
1206 /* If VALUE is a constant other than a CONST_INT, get it into a register in
1207 WORD_MODE. If we can do this using gen_lowpart_common, do so. Note
1208 that VALUE might be a floating-point constant. */
1209 if (CONSTANT_P (value) && !CONST_INT_P (value))
1211 rtx word = gen_lowpart_common (word_mode, value);
1213 if (word && (value != word))
1214 value = word;
1215 else
1216 value = gen_lowpart_common (word_mode,
1217 force_reg (GET_MODE (value) != VOIDmode
1218 ? GET_MODE (value)
1219 : word_mode, value));
1222 while (bitsdone < bitsize)
1224 unsigned HOST_WIDE_INT thissize;
1225 rtx part, word;
1226 unsigned HOST_WIDE_INT thispos;
1227 unsigned HOST_WIDE_INT offset;
1229 offset = (bitpos + bitsdone) / unit;
1230 thispos = (bitpos + bitsdone) % unit;
1232 /* When region of bytes we can touch is restricted, decrease
1233 UNIT close to the end of the region as needed. If op0 is a REG
1234 or SUBREG of REG, don't do this, as there can't be data races
1235 on a register and we can expand shorter code in some cases. */
1236 if (bitregion_end
1237 && unit > BITS_PER_UNIT
1238 && bitpos + bitsdone - thispos + unit > bitregion_end + 1
1239 && !REG_P (op0)
1240 && (GET_CODE (op0) != SUBREG || !REG_P (SUBREG_REG (op0))))
1242 unit = unit / 2;
1243 continue;
1246 /* THISSIZE must not overrun a word boundary. Otherwise,
1247 store_fixed_bit_field will call us again, and we will mutually
1248 recurse forever. */
1249 thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
1250 thissize = MIN (thissize, unit - thispos);
1252 if (BYTES_BIG_ENDIAN)
1254 /* Fetch successively less significant portions. */
1255 if (CONST_INT_P (value))
1256 part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
1257 >> (bitsize - bitsdone - thissize))
1258 & (((HOST_WIDE_INT) 1 << thissize) - 1));
1259 else
1261 int total_bits = GET_MODE_BITSIZE (GET_MODE (value));
1262 /* The args are chosen so that the last part includes the
1263 lsb. Give extract_bit_field the value it needs (with
1264 endianness compensation) to fetch the piece we want. */
1265 part = extract_fixed_bit_field (word_mode, value, thissize,
1266 total_bits - bitsize + bitsdone,
1267 NULL_RTX, 1);
1270 else
1272 /* Fetch successively more significant portions. */
1273 if (CONST_INT_P (value))
1274 part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
1275 >> bitsdone)
1276 & (((HOST_WIDE_INT) 1 << thissize) - 1));
1277 else
1278 part = extract_fixed_bit_field (word_mode, value, thissize,
1279 bitsdone, NULL_RTX, 1);
1282 /* If OP0 is a register, then handle OFFSET here.
1284 When handling multiword bitfields, extract_bit_field may pass
1285 down a word_mode SUBREG of a larger REG for a bitfield that actually
1286 crosses a word boundary. Thus, for a SUBREG, we must find
1287 the current word starting from the base register. */
1288 if (GET_CODE (op0) == SUBREG)
1290 int word_offset = (SUBREG_BYTE (op0) / UNITS_PER_WORD)
1291 + (offset * unit / BITS_PER_WORD);
1292 machine_mode sub_mode = GET_MODE (SUBREG_REG (op0));
1293 if (sub_mode != BLKmode && GET_MODE_SIZE (sub_mode) < UNITS_PER_WORD)
1294 word = word_offset ? const0_rtx : op0;
1295 else
1296 word = operand_subword_force (SUBREG_REG (op0), word_offset,
1297 GET_MODE (SUBREG_REG (op0)));
1298 offset &= BITS_PER_WORD / unit - 1;
1300 else if (REG_P (op0))
1302 machine_mode op0_mode = GET_MODE (op0);
1303 if (op0_mode != BLKmode && GET_MODE_SIZE (op0_mode) < UNITS_PER_WORD)
1304 word = offset ? const0_rtx : op0;
1305 else
1306 word = operand_subword_force (op0, offset * unit / BITS_PER_WORD,
1307 GET_MODE (op0));
1308 offset &= BITS_PER_WORD / unit - 1;
1310 else
1311 word = op0;
1313 /* OFFSET is in UNITs, and UNIT is in bits. If WORD is const0_rtx,
1314 it is just an out-of-bounds access. Ignore it. */
1315 if (word != const0_rtx)
1316 store_fixed_bit_field (word, thissize, offset * unit + thispos,
1317 bitregion_start, bitregion_end, part);
1318 bitsdone += thissize;
1322 /* A subroutine of extract_bit_field_1 that converts return value X
1323 to either MODE or TMODE. MODE, TMODE and UNSIGNEDP are arguments
1324 to extract_bit_field. */
1326 static rtx
1327 convert_extracted_bit_field (rtx x, machine_mode mode,
1328 machine_mode tmode, bool unsignedp)
1330 if (GET_MODE (x) == tmode || GET_MODE (x) == mode)
1331 return x;
1333 /* If the x mode is not a scalar integral, first convert to the
1334 integer mode of that size and then access it as a floating-point
1335 value via a SUBREG. */
1336 if (!SCALAR_INT_MODE_P (tmode))
1338 machine_mode smode;
1340 smode = mode_for_size (GET_MODE_BITSIZE (tmode), MODE_INT, 0);
1341 x = convert_to_mode (smode, x, unsignedp);
1342 x = force_reg (smode, x);
1343 return gen_lowpart (tmode, x);
1346 return convert_to_mode (tmode, x, unsignedp);
1349 /* Try to use an ext(z)v pattern to extract a field from OP0.
1350 Return the extracted value on success, otherwise return null.
1351 EXT_MODE is the mode of the extraction and the other arguments
1352 are as for extract_bit_field. */
1354 static rtx
1355 extract_bit_field_using_extv (const extraction_insn *extv, rtx op0,
1356 unsigned HOST_WIDE_INT bitsize,
1357 unsigned HOST_WIDE_INT bitnum,
1358 int unsignedp, rtx target,
1359 machine_mode mode, machine_mode tmode)
1361 struct expand_operand ops[4];
1362 rtx spec_target = target;
1363 rtx spec_target_subreg = 0;
1364 machine_mode ext_mode = extv->field_mode;
1365 unsigned unit = GET_MODE_BITSIZE (ext_mode);
1367 if (bitsize == 0 || unit < bitsize)
1368 return NULL_RTX;
1370 if (MEM_P (op0))
1371 /* Get a reference to the first byte of the field. */
1372 op0 = narrow_bit_field_mem (op0, extv->struct_mode, bitsize, bitnum,
1373 &bitnum);
1374 else
1376 /* Convert from counting within OP0 to counting in EXT_MODE. */
1377 if (BYTES_BIG_ENDIAN)
1378 bitnum += unit - GET_MODE_BITSIZE (GET_MODE (op0));
1380 /* If op0 is a register, we need it in EXT_MODE to make it
1381 acceptable to the format of ext(z)v. */
1382 if (GET_CODE (op0) == SUBREG && GET_MODE (op0) != ext_mode)
1383 return NULL_RTX;
1384 if (REG_P (op0) && GET_MODE (op0) != ext_mode)
1385 op0 = gen_lowpart_SUBREG (ext_mode, op0);
1388 /* If BITS_BIG_ENDIAN is zero on a BYTES_BIG_ENDIAN machine, we count
1389 "backwards" from the size of the unit we are extracting from.
1390 Otherwise, we count bits from the most significant on a
1391 BYTES/BITS_BIG_ENDIAN machine. */
1393 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
1394 bitnum = unit - bitsize - bitnum;
1396 if (target == 0)
1397 target = spec_target = gen_reg_rtx (tmode);
1399 if (GET_MODE (target) != ext_mode)
1401 /* Don't use LHS paradoxical subreg if explicit truncation is needed
1402 between the mode of the extraction (word_mode) and the target
1403 mode. Instead, create a temporary and use convert_move to set
1404 the target. */
1405 if (REG_P (target)
1406 && TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (target), ext_mode))
1408 target = gen_lowpart (ext_mode, target);
1409 if (GET_MODE_PRECISION (ext_mode)
1410 > GET_MODE_PRECISION (GET_MODE (spec_target)))
1411 spec_target_subreg = target;
1413 else
1414 target = gen_reg_rtx (ext_mode);
1417 create_output_operand (&ops[0], target, ext_mode);
1418 create_fixed_operand (&ops[1], op0);
1419 create_integer_operand (&ops[2], bitsize);
1420 create_integer_operand (&ops[3], bitnum);
1421 if (maybe_expand_insn (extv->icode, 4, ops))
1423 target = ops[0].value;
1424 if (target == spec_target)
1425 return target;
1426 if (target == spec_target_subreg)
1427 return spec_target;
1428 return convert_extracted_bit_field (target, mode, tmode, unsignedp);
1430 return NULL_RTX;
1433 /* A subroutine of extract_bit_field, with the same arguments.
1434 If FALLBACK_P is true, fall back to extract_fixed_bit_field
1435 if we can find no other means of implementing the operation.
1436 if FALLBACK_P is false, return NULL instead. */
1438 static rtx
1439 extract_bit_field_1 (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
1440 unsigned HOST_WIDE_INT bitnum, int unsignedp, rtx target,
1441 machine_mode mode, machine_mode tmode,
1442 bool fallback_p)
1444 rtx op0 = str_rtx;
1445 machine_mode int_mode;
1446 machine_mode mode1;
1448 if (tmode == VOIDmode)
1449 tmode = mode;
1451 while (GET_CODE (op0) == SUBREG)
1453 bitnum += SUBREG_BYTE (op0) * BITS_PER_UNIT;
1454 op0 = SUBREG_REG (op0);
1457 /* If we have an out-of-bounds access to a register, just return an
1458 uninitialized register of the required mode. This can occur if the
1459 source code contains an out-of-bounds access to a small array. */
1460 if (REG_P (op0) && bitnum >= GET_MODE_BITSIZE (GET_MODE (op0)))
1461 return gen_reg_rtx (tmode);
1463 if (REG_P (op0)
1464 && mode == GET_MODE (op0)
1465 && bitnum == 0
1466 && bitsize == GET_MODE_BITSIZE (GET_MODE (op0)))
1468 /* We're trying to extract a full register from itself. */
1469 return op0;
1472 /* See if we can get a better vector mode before extracting. */
1473 if (VECTOR_MODE_P (GET_MODE (op0))
1474 && !MEM_P (op0)
1475 && GET_MODE_INNER (GET_MODE (op0)) != tmode)
1477 machine_mode new_mode;
1479 if (GET_MODE_CLASS (tmode) == MODE_FLOAT)
1480 new_mode = MIN_MODE_VECTOR_FLOAT;
1481 else if (GET_MODE_CLASS (tmode) == MODE_FRACT)
1482 new_mode = MIN_MODE_VECTOR_FRACT;
1483 else if (GET_MODE_CLASS (tmode) == MODE_UFRACT)
1484 new_mode = MIN_MODE_VECTOR_UFRACT;
1485 else if (GET_MODE_CLASS (tmode) == MODE_ACCUM)
1486 new_mode = MIN_MODE_VECTOR_ACCUM;
1487 else if (GET_MODE_CLASS (tmode) == MODE_UACCUM)
1488 new_mode = MIN_MODE_VECTOR_UACCUM;
1489 else
1490 new_mode = MIN_MODE_VECTOR_INT;
1492 for (; new_mode != VOIDmode ; new_mode = GET_MODE_WIDER_MODE (new_mode))
1493 if (GET_MODE_SIZE (new_mode) == GET_MODE_SIZE (GET_MODE (op0))
1494 && targetm.vector_mode_supported_p (new_mode))
1495 break;
1496 if (new_mode != VOIDmode)
1497 op0 = gen_lowpart (new_mode, op0);
1500 /* Use vec_extract patterns for extracting parts of vectors whenever
1501 available. */
1502 if (VECTOR_MODE_P (GET_MODE (op0))
1503 && !MEM_P (op0)
1504 && optab_handler (vec_extract_optab, GET_MODE (op0)) != CODE_FOR_nothing
1505 && ((bitnum + bitsize - 1) / GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))
1506 == bitnum / GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))))
1508 struct expand_operand ops[3];
1509 machine_mode outermode = GET_MODE (op0);
1510 machine_mode innermode = GET_MODE_INNER (outermode);
1511 enum insn_code icode = optab_handler (vec_extract_optab, outermode);
1512 unsigned HOST_WIDE_INT pos = bitnum / GET_MODE_BITSIZE (innermode);
1514 create_output_operand (&ops[0], target, innermode);
1515 create_input_operand (&ops[1], op0, outermode);
1516 create_integer_operand (&ops[2], pos);
1517 if (maybe_expand_insn (icode, 3, ops))
1519 target = ops[0].value;
1520 if (GET_MODE (target) != mode)
1521 return gen_lowpart (tmode, target);
1522 return target;
1526 /* Make sure we are playing with integral modes. Pun with subregs
1527 if we aren't. */
1529 machine_mode imode = int_mode_for_mode (GET_MODE (op0));
1530 if (imode != GET_MODE (op0))
1532 if (MEM_P (op0))
1533 op0 = adjust_bitfield_address_size (op0, imode, 0, MEM_SIZE (op0));
1534 else if (imode != BLKmode)
1536 op0 = gen_lowpart (imode, op0);
1538 /* If we got a SUBREG, force it into a register since we
1539 aren't going to be able to do another SUBREG on it. */
1540 if (GET_CODE (op0) == SUBREG)
1541 op0 = force_reg (imode, op0);
1543 else if (REG_P (op0))
1545 rtx reg, subreg;
1546 imode = smallest_mode_for_size (GET_MODE_BITSIZE (GET_MODE (op0)),
1547 MODE_INT);
1548 reg = gen_reg_rtx (imode);
1549 subreg = gen_lowpart_SUBREG (GET_MODE (op0), reg);
1550 emit_move_insn (subreg, op0);
1551 op0 = reg;
1552 bitnum += SUBREG_BYTE (subreg) * BITS_PER_UNIT;
1554 else
1556 HOST_WIDE_INT size = GET_MODE_SIZE (GET_MODE (op0));
1557 rtx mem = assign_stack_temp (GET_MODE (op0), size);
1558 emit_move_insn (mem, op0);
1559 op0 = adjust_bitfield_address_size (mem, BLKmode, 0, size);
1564 /* ??? We currently assume TARGET is at least as big as BITSIZE.
1565 If that's wrong, the solution is to test for it and set TARGET to 0
1566 if needed. */
1568 /* Get the mode of the field to use for atomic access or subreg
1569 conversion. */
1570 mode1 = mode;
1571 if (SCALAR_INT_MODE_P (tmode))
1573 machine_mode try_mode = mode_for_size (bitsize,
1574 GET_MODE_CLASS (tmode), 0);
1575 if (try_mode != BLKmode)
1576 mode1 = try_mode;
1578 gcc_assert (mode1 != BLKmode);
1580 /* Extraction of a full MODE1 value can be done with a subreg as long
1581 as the least significant bit of the value is the least significant
1582 bit of either OP0 or a word of OP0. */
1583 if (!MEM_P (op0)
1584 && lowpart_bit_field_p (bitnum, bitsize, GET_MODE (op0))
1585 && bitsize == GET_MODE_BITSIZE (mode1)
1586 && TRULY_NOOP_TRUNCATION_MODES_P (mode1, GET_MODE (op0)))
1588 rtx sub = simplify_gen_subreg (mode1, op0, GET_MODE (op0),
1589 bitnum / BITS_PER_UNIT);
1590 if (sub)
1591 return convert_extracted_bit_field (sub, mode, tmode, unsignedp);
1594 /* Extraction of a full MODE1 value can be done with a load as long as
1595 the field is on a byte boundary and is sufficiently aligned. */
1596 if (simple_mem_bitfield_p (op0, bitsize, bitnum, mode1))
1598 op0 = adjust_bitfield_address (op0, mode1, bitnum / BITS_PER_UNIT);
1599 return convert_extracted_bit_field (op0, mode, tmode, unsignedp);
1602 /* Handle fields bigger than a word. */
1604 if (bitsize > BITS_PER_WORD)
1606 /* Here we transfer the words of the field
1607 in the order least significant first.
1608 This is because the most significant word is the one which may
1609 be less than full. */
1611 unsigned int backwards = WORDS_BIG_ENDIAN;
1612 unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
1613 unsigned int i;
1614 rtx_insn *last;
1616 if (target == 0 || !REG_P (target) || !valid_multiword_target_p (target))
1617 target = gen_reg_rtx (mode);
1619 /* In case we're about to clobber a base register or something
1620 (see gcc.c-torture/execute/20040625-1.c). */
1621 if (reg_mentioned_p (target, str_rtx))
1622 target = gen_reg_rtx (mode);
1624 /* Indicate for flow that the entire target reg is being set. */
1625 emit_clobber (target);
1627 last = get_last_insn ();
1628 for (i = 0; i < nwords; i++)
1630 /* If I is 0, use the low-order word in both field and target;
1631 if I is 1, use the next to lowest word; and so on. */
1632 /* Word number in TARGET to use. */
1633 unsigned int wordnum
1634 = (backwards
1635 ? GET_MODE_SIZE (GET_MODE (target)) / UNITS_PER_WORD - i - 1
1636 : i);
1637 /* Offset from start of field in OP0. */
1638 unsigned int bit_offset = (backwards
1639 ? MAX ((int) bitsize - ((int) i + 1)
1640 * BITS_PER_WORD,
1642 : (int) i * BITS_PER_WORD);
1643 rtx target_part = operand_subword (target, wordnum, 1, VOIDmode);
1644 rtx result_part
1645 = extract_bit_field_1 (op0, MIN (BITS_PER_WORD,
1646 bitsize - i * BITS_PER_WORD),
1647 bitnum + bit_offset, 1, target_part,
1648 mode, word_mode, fallback_p);
1650 gcc_assert (target_part);
1651 if (!result_part)
1653 delete_insns_since (last);
1654 return NULL;
1657 if (result_part != target_part)
1658 emit_move_insn (target_part, result_part);
1661 if (unsignedp)
1663 /* Unless we've filled TARGET, the upper regs in a multi-reg value
1664 need to be zero'd out. */
1665 if (GET_MODE_SIZE (GET_MODE (target)) > nwords * UNITS_PER_WORD)
1667 unsigned int i, total_words;
1669 total_words = GET_MODE_SIZE (GET_MODE (target)) / UNITS_PER_WORD;
1670 for (i = nwords; i < total_words; i++)
1671 emit_move_insn
1672 (operand_subword (target,
1673 backwards ? total_words - i - 1 : i,
1674 1, VOIDmode),
1675 const0_rtx);
1677 return target;
1680 /* Signed bit field: sign-extend with two arithmetic shifts. */
1681 target = expand_shift (LSHIFT_EXPR, mode, target,
1682 GET_MODE_BITSIZE (mode) - bitsize, NULL_RTX, 0);
1683 return expand_shift (RSHIFT_EXPR, mode, target,
1684 GET_MODE_BITSIZE (mode) - bitsize, NULL_RTX, 0);
1687 /* If OP0 is a multi-word register, narrow it to the affected word.
1688 If the region spans two words, defer to extract_split_bit_field. */
1689 if (!MEM_P (op0) && GET_MODE_SIZE (GET_MODE (op0)) > UNITS_PER_WORD)
1691 op0 = simplify_gen_subreg (word_mode, op0, GET_MODE (op0),
1692 bitnum / BITS_PER_WORD * UNITS_PER_WORD);
1693 bitnum %= BITS_PER_WORD;
1694 if (bitnum + bitsize > BITS_PER_WORD)
1696 if (!fallback_p)
1697 return NULL_RTX;
1698 target = extract_split_bit_field (op0, bitsize, bitnum, unsignedp);
1699 return convert_extracted_bit_field (target, mode, tmode, unsignedp);
1703 /* From here on we know the desired field is smaller than a word.
1704 If OP0 is a register, it too fits within a word. */
1705 enum extraction_pattern pattern = unsignedp ? EP_extzv : EP_extv;
1706 extraction_insn extv;
1707 if (!MEM_P (op0)
1708 /* ??? We could limit the structure size to the part of OP0 that
1709 contains the field, with appropriate checks for endianness
1710 and TRULY_NOOP_TRUNCATION. */
1711 && get_best_reg_extraction_insn (&extv, pattern,
1712 GET_MODE_BITSIZE (GET_MODE (op0)),
1713 tmode))
1715 rtx result = extract_bit_field_using_extv (&extv, op0, bitsize, bitnum,
1716 unsignedp, target, mode,
1717 tmode);
1718 if (result)
1719 return result;
1722 /* If OP0 is a memory, try copying it to a register and seeing if a
1723 cheap register alternative is available. */
1724 if (MEM_P (op0))
1726 if (get_best_mem_extraction_insn (&extv, pattern, bitsize, bitnum,
1727 tmode))
1729 rtx result = extract_bit_field_using_extv (&extv, op0, bitsize,
1730 bitnum, unsignedp,
1731 target, mode,
1732 tmode);
1733 if (result)
1734 return result;
1737 rtx_insn *last = get_last_insn ();
1739 /* Try loading part of OP0 into a register and extracting the
1740 bitfield from that. */
1741 unsigned HOST_WIDE_INT bitpos;
1742 rtx xop0 = adjust_bit_field_mem_for_reg (pattern, op0, bitsize, bitnum,
1743 0, 0, tmode, &bitpos);
1744 if (xop0)
1746 xop0 = copy_to_reg (xop0);
1747 rtx result = extract_bit_field_1 (xop0, bitsize, bitpos,
1748 unsignedp, target,
1749 mode, tmode, false);
1750 if (result)
1751 return result;
1752 delete_insns_since (last);
1756 if (!fallback_p)
1757 return NULL;
1759 /* Find a correspondingly-sized integer field, so we can apply
1760 shifts and masks to it. */
1761 int_mode = int_mode_for_mode (tmode);
1762 if (int_mode == BLKmode)
1763 int_mode = int_mode_for_mode (mode);
1764 /* Should probably push op0 out to memory and then do a load. */
1765 gcc_assert (int_mode != BLKmode);
1767 target = extract_fixed_bit_field (int_mode, op0, bitsize, bitnum,
1768 target, unsignedp);
1769 return convert_extracted_bit_field (target, mode, tmode, unsignedp);
1772 /* Generate code to extract a byte-field from STR_RTX
1773 containing BITSIZE bits, starting at BITNUM,
1774 and put it in TARGET if possible (if TARGET is nonzero).
1775 Regardless of TARGET, we return the rtx for where the value is placed.
1777 STR_RTX is the structure containing the byte (a REG or MEM).
1778 UNSIGNEDP is nonzero if this is an unsigned bit field.
1779 MODE is the natural mode of the field value once extracted.
1780 TMODE is the mode the caller would like the value to have;
1781 but the value may be returned with type MODE instead.
1783 If a TARGET is specified and we can store in it at no extra cost,
1784 we do so, and return TARGET.
1785 Otherwise, we return a REG of mode TMODE or MODE, with TMODE preferred
1786 if they are equally easy. */
1789 extract_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
1790 unsigned HOST_WIDE_INT bitnum, int unsignedp, rtx target,
1791 machine_mode mode, machine_mode tmode)
1793 machine_mode mode1;
1795 /* Handle -fstrict-volatile-bitfields in the cases where it applies. */
1796 if (GET_MODE_BITSIZE (GET_MODE (str_rtx)) > 0)
1797 mode1 = GET_MODE (str_rtx);
1798 else if (target && GET_MODE_BITSIZE (GET_MODE (target)) > 0)
1799 mode1 = GET_MODE (target);
1800 else
1801 mode1 = tmode;
1803 if (strict_volatile_bitfield_p (str_rtx, bitsize, bitnum, mode1, 0, 0))
1805 /* Extraction of a full MODE1 value can be done with a simple load.
1806 We know here that the field can be accessed with one single
1807 instruction. For targets that support unaligned memory,
1808 an unaligned access may be necessary. */
1809 if (bitsize == GET_MODE_BITSIZE (mode1))
1811 rtx result = adjust_bitfield_address (str_rtx, mode1,
1812 bitnum / BITS_PER_UNIT);
1813 gcc_assert (bitnum % BITS_PER_UNIT == 0);
1814 return convert_extracted_bit_field (result, mode, tmode, unsignedp);
1817 str_rtx = narrow_bit_field_mem (str_rtx, mode1, bitsize, bitnum,
1818 &bitnum);
1819 gcc_assert (bitnum + bitsize <= GET_MODE_BITSIZE (mode1));
1820 str_rtx = copy_to_reg (str_rtx);
1823 return extract_bit_field_1 (str_rtx, bitsize, bitnum, unsignedp,
1824 target, mode, tmode, true);
1827 /* Use shifts and boolean operations to extract a field of BITSIZE bits
1828 from bit BITNUM of OP0.
1830 UNSIGNEDP is nonzero for an unsigned bit field (don't sign-extend value).
1831 If TARGET is nonzero, attempts to store the value there
1832 and return TARGET, but this is not guaranteed.
1833 If TARGET is not used, create a pseudo-reg of mode TMODE for the value. */
1835 static rtx
1836 extract_fixed_bit_field (machine_mode tmode, rtx op0,
1837 unsigned HOST_WIDE_INT bitsize,
1838 unsigned HOST_WIDE_INT bitnum, rtx target,
1839 int unsignedp)
1841 if (MEM_P (op0))
1843 machine_mode mode
1844 = get_best_mode (bitsize, bitnum, 0, 0, MEM_ALIGN (op0), word_mode,
1845 MEM_VOLATILE_P (op0));
1847 if (mode == VOIDmode)
1848 /* The only way this should occur is if the field spans word
1849 boundaries. */
1850 return extract_split_bit_field (op0, bitsize, bitnum, unsignedp);
1852 op0 = narrow_bit_field_mem (op0, mode, bitsize, bitnum, &bitnum);
1855 return extract_fixed_bit_field_1 (tmode, op0, bitsize, bitnum,
1856 target, unsignedp);
1859 /* Helper function for extract_fixed_bit_field, extracts
1860 the bit field always using the MODE of OP0. */
1862 static rtx
1863 extract_fixed_bit_field_1 (machine_mode tmode, rtx op0,
1864 unsigned HOST_WIDE_INT bitsize,
1865 unsigned HOST_WIDE_INT bitnum, rtx target,
1866 int unsignedp)
1868 machine_mode mode = GET_MODE (op0);
1869 gcc_assert (SCALAR_INT_MODE_P (mode));
1871 /* Note that bitsize + bitnum can be greater than GET_MODE_BITSIZE (mode)
1872 for invalid input, such as extract equivalent of f5 from
1873 gcc.dg/pr48335-2.c. */
1875 if (BYTES_BIG_ENDIAN)
1876 /* BITNUM is the distance between our msb and that of OP0.
1877 Convert it to the distance from the lsb. */
1878 bitnum = GET_MODE_BITSIZE (mode) - bitsize - bitnum;
1880 /* Now BITNUM is always the distance between the field's lsb and that of OP0.
1881 We have reduced the big-endian case to the little-endian case. */
1883 if (unsignedp)
1885 if (bitnum)
1887 /* If the field does not already start at the lsb,
1888 shift it so it does. */
1889 /* Maybe propagate the target for the shift. */
1890 rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
1891 if (tmode != mode)
1892 subtarget = 0;
1893 op0 = expand_shift (RSHIFT_EXPR, mode, op0, bitnum, subtarget, 1);
1895 /* Convert the value to the desired mode. */
1896 if (mode != tmode)
1897 op0 = convert_to_mode (tmode, op0, 1);
1899 /* Unless the msb of the field used to be the msb when we shifted,
1900 mask out the upper bits. */
1902 if (GET_MODE_BITSIZE (mode) != bitnum + bitsize)
1903 return expand_binop (GET_MODE (op0), and_optab, op0,
1904 mask_rtx (GET_MODE (op0), 0, bitsize, 0),
1905 target, 1, OPTAB_LIB_WIDEN);
1906 return op0;
1909 /* To extract a signed bit-field, first shift its msb to the msb of the word,
1910 then arithmetic-shift its lsb to the lsb of the word. */
1911 op0 = force_reg (mode, op0);
1913 /* Find the narrowest integer mode that contains the field. */
1915 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1916 mode = GET_MODE_WIDER_MODE (mode))
1917 if (GET_MODE_BITSIZE (mode) >= bitsize + bitnum)
1919 op0 = convert_to_mode (mode, op0, 0);
1920 break;
1923 if (mode != tmode)
1924 target = 0;
1926 if (GET_MODE_BITSIZE (mode) != (bitsize + bitnum))
1928 int amount = GET_MODE_BITSIZE (mode) - (bitsize + bitnum);
1929 /* Maybe propagate the target for the shift. */
1930 rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
1931 op0 = expand_shift (LSHIFT_EXPR, mode, op0, amount, subtarget, 1);
1934 return expand_shift (RSHIFT_EXPR, mode, op0,
1935 GET_MODE_BITSIZE (mode) - bitsize, target, 0);
1938 /* Return a constant integer (CONST_INT or CONST_DOUBLE) rtx with the value
1939 VALUE << BITPOS. */
1941 static rtx
1942 lshift_value (machine_mode mode, unsigned HOST_WIDE_INT value,
1943 int bitpos)
1945 return immed_wide_int_const (wi::lshift (value, bitpos), mode);
1948 /* Extract a bit field that is split across two words
1949 and return an RTX for the result.
1951 OP0 is the REG, SUBREG or MEM rtx for the first of the two words.
1952 BITSIZE is the field width; BITPOS, position of its first bit, in the word.
1953 UNSIGNEDP is 1 if should zero-extend the contents; else sign-extend. */
1955 static rtx
1956 extract_split_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
1957 unsigned HOST_WIDE_INT bitpos, int unsignedp)
1959 unsigned int unit;
1960 unsigned int bitsdone = 0;
1961 rtx result = NULL_RTX;
1962 int first = 1;
1964 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
1965 much at a time. */
1966 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
1967 unit = BITS_PER_WORD;
1968 else
1969 unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);
1971 while (bitsdone < bitsize)
1973 unsigned HOST_WIDE_INT thissize;
1974 rtx part, word;
1975 unsigned HOST_WIDE_INT thispos;
1976 unsigned HOST_WIDE_INT offset;
1978 offset = (bitpos + bitsdone) / unit;
1979 thispos = (bitpos + bitsdone) % unit;
1981 /* THISSIZE must not overrun a word boundary. Otherwise,
1982 extract_fixed_bit_field will call us again, and we will mutually
1983 recurse forever. */
1984 thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
1985 thissize = MIN (thissize, unit - thispos);
1987 /* If OP0 is a register, then handle OFFSET here.
1989 When handling multiword bitfields, extract_bit_field may pass
1990 down a word_mode SUBREG of a larger REG for a bitfield that actually
1991 crosses a word boundary. Thus, for a SUBREG, we must find
1992 the current word starting from the base register. */
1993 if (GET_CODE (op0) == SUBREG)
1995 int word_offset = (SUBREG_BYTE (op0) / UNITS_PER_WORD) + offset;
1996 word = operand_subword_force (SUBREG_REG (op0), word_offset,
1997 GET_MODE (SUBREG_REG (op0)));
1998 offset = 0;
2000 else if (REG_P (op0))
2002 word = operand_subword_force (op0, offset, GET_MODE (op0));
2003 offset = 0;
2005 else
2006 word = op0;
2008 /* Extract the parts in bit-counting order,
2009 whose meaning is determined by BYTES_PER_UNIT.
2010 OFFSET is in UNITs, and UNIT is in bits. */
2011 part = extract_fixed_bit_field (word_mode, word, thissize,
2012 offset * unit + thispos, 0, 1);
2013 bitsdone += thissize;
2015 /* Shift this part into place for the result. */
2016 if (BYTES_BIG_ENDIAN)
2018 if (bitsize != bitsdone)
2019 part = expand_shift (LSHIFT_EXPR, word_mode, part,
2020 bitsize - bitsdone, 0, 1);
2022 else
2024 if (bitsdone != thissize)
2025 part = expand_shift (LSHIFT_EXPR, word_mode, part,
2026 bitsdone - thissize, 0, 1);
2029 if (first)
2030 result = part;
2031 else
2032 /* Combine the parts with bitwise or. This works
2033 because we extracted each part as an unsigned bit field. */
2034 result = expand_binop (word_mode, ior_optab, part, result, NULL_RTX, 1,
2035 OPTAB_LIB_WIDEN);
2037 first = 0;
2040 /* Unsigned bit field: we are done. */
2041 if (unsignedp)
2042 return result;
2043 /* Signed bit field: sign-extend with two arithmetic shifts. */
2044 result = expand_shift (LSHIFT_EXPR, word_mode, result,
2045 BITS_PER_WORD - bitsize, NULL_RTX, 0);
2046 return expand_shift (RSHIFT_EXPR, word_mode, result,
2047 BITS_PER_WORD - bitsize, NULL_RTX, 0);
2050 /* Try to read the low bits of SRC as an rvalue of mode MODE, preserving
2051 the bit pattern. SRC_MODE is the mode of SRC; if this is smaller than
2052 MODE, fill the upper bits with zeros. Fail if the layout of either
2053 mode is unknown (as for CC modes) or if the extraction would involve
2054 unprofitable mode punning. Return the value on success, otherwise
2055 return null.
2057 This is different from gen_lowpart* in these respects:
2059 - the returned value must always be considered an rvalue
2061 - when MODE is wider than SRC_MODE, the extraction involves
2062 a zero extension
2064 - when MODE is smaller than SRC_MODE, the extraction involves
2065 a truncation (and is thus subject to TRULY_NOOP_TRUNCATION).
2067 In other words, this routine performs a computation, whereas the
2068 gen_lowpart* routines are conceptually lvalue or rvalue subreg
2069 operations. */
2072 extract_low_bits (machine_mode mode, machine_mode src_mode, rtx src)
2074 machine_mode int_mode, src_int_mode;
2076 if (mode == src_mode)
2077 return src;
2079 if (CONSTANT_P (src))
2081 /* simplify_gen_subreg can't be used here, as if simplify_subreg
2082 fails, it will happily create (subreg (symbol_ref)) or similar
2083 invalid SUBREGs. */
2084 unsigned int byte = subreg_lowpart_offset (mode, src_mode);
2085 rtx ret = simplify_subreg (mode, src, src_mode, byte);
2086 if (ret)
2087 return ret;
2089 if (GET_MODE (src) == VOIDmode
2090 || !validate_subreg (mode, src_mode, src, byte))
2091 return NULL_RTX;
2093 src = force_reg (GET_MODE (src), src);
2094 return gen_rtx_SUBREG (mode, src, byte);
2097 if (GET_MODE_CLASS (mode) == MODE_CC || GET_MODE_CLASS (src_mode) == MODE_CC)
2098 return NULL_RTX;
2100 if (GET_MODE_BITSIZE (mode) == GET_MODE_BITSIZE (src_mode)
2101 && MODES_TIEABLE_P (mode, src_mode))
2103 rtx x = gen_lowpart_common (mode, src);
2104 if (x)
2105 return x;
2108 src_int_mode = int_mode_for_mode (src_mode);
2109 int_mode = int_mode_for_mode (mode);
2110 if (src_int_mode == BLKmode || int_mode == BLKmode)
2111 return NULL_RTX;
2113 if (!MODES_TIEABLE_P (src_int_mode, src_mode))
2114 return NULL_RTX;
2115 if (!MODES_TIEABLE_P (int_mode, mode))
2116 return NULL_RTX;
2118 src = gen_lowpart (src_int_mode, src);
2119 src = convert_modes (int_mode, src_int_mode, src, true);
2120 src = gen_lowpart (mode, src);
2121 return src;
2124 /* Add INC into TARGET. */
2126 void
2127 expand_inc (rtx target, rtx inc)
2129 rtx value = expand_binop (GET_MODE (target), add_optab,
2130 target, inc,
2131 target, 0, OPTAB_LIB_WIDEN);
2132 if (value != target)
2133 emit_move_insn (target, value);
2136 /* Subtract DEC from TARGET. */
2138 void
2139 expand_dec (rtx target, rtx dec)
2141 rtx value = expand_binop (GET_MODE (target), sub_optab,
2142 target, dec,
2143 target, 0, OPTAB_LIB_WIDEN);
2144 if (value != target)
2145 emit_move_insn (target, value);
2148 /* Output a shift instruction for expression code CODE,
2149 with SHIFTED being the rtx for the value to shift,
2150 and AMOUNT the rtx for the amount to shift by.
2151 Store the result in the rtx TARGET, if that is convenient.
2152 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2153 Return the rtx for where the value is. */
2155 static rtx
2156 expand_shift_1 (enum tree_code code, machine_mode mode, rtx shifted,
2157 rtx amount, rtx target, int unsignedp)
2159 rtx op1, temp = 0;
2160 int left = (code == LSHIFT_EXPR || code == LROTATE_EXPR);
2161 int rotate = (code == LROTATE_EXPR || code == RROTATE_EXPR);
2162 optab lshift_optab = ashl_optab;
2163 optab rshift_arith_optab = ashr_optab;
2164 optab rshift_uns_optab = lshr_optab;
2165 optab lrotate_optab = rotl_optab;
2166 optab rrotate_optab = rotr_optab;
2167 machine_mode op1_mode;
2168 machine_mode scalar_mode = mode;
2169 int attempt;
2170 bool speed = optimize_insn_for_speed_p ();
2172 if (VECTOR_MODE_P (mode))
2173 scalar_mode = GET_MODE_INNER (mode);
2174 op1 = amount;
2175 op1_mode = GET_MODE (op1);
2177 /* Determine whether the shift/rotate amount is a vector, or scalar. If the
2178 shift amount is a vector, use the vector/vector shift patterns. */
2179 if (VECTOR_MODE_P (mode) && VECTOR_MODE_P (op1_mode))
2181 lshift_optab = vashl_optab;
2182 rshift_arith_optab = vashr_optab;
2183 rshift_uns_optab = vlshr_optab;
2184 lrotate_optab = vrotl_optab;
2185 rrotate_optab = vrotr_optab;
2188 /* Previously detected shift-counts computed by NEGATE_EXPR
2189 and shifted in the other direction; but that does not work
2190 on all machines. */
2192 if (SHIFT_COUNT_TRUNCATED)
2194 if (CONST_INT_P (op1)
2195 && ((unsigned HOST_WIDE_INT) INTVAL (op1) >=
2196 (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (scalar_mode)))
2197 op1 = GEN_INT ((unsigned HOST_WIDE_INT) INTVAL (op1)
2198 % GET_MODE_BITSIZE (scalar_mode));
2199 else if (GET_CODE (op1) == SUBREG
2200 && subreg_lowpart_p (op1)
2201 && SCALAR_INT_MODE_P (GET_MODE (SUBREG_REG (op1)))
2202 && SCALAR_INT_MODE_P (GET_MODE (op1)))
2203 op1 = SUBREG_REG (op1);
2206 /* Canonicalize rotates by constant amount. If op1 is bitsize / 2,
2207 prefer left rotation, if op1 is from bitsize / 2 + 1 to
2208 bitsize - 1, use other direction of rotate with 1 .. bitsize / 2 - 1
2209 amount instead. */
2210 if (rotate
2211 && CONST_INT_P (op1)
2212 && IN_RANGE (INTVAL (op1), GET_MODE_BITSIZE (scalar_mode) / 2 + left,
2213 GET_MODE_BITSIZE (scalar_mode) - 1))
2215 op1 = GEN_INT (GET_MODE_BITSIZE (scalar_mode) - INTVAL (op1));
2216 left = !left;
2217 code = left ? LROTATE_EXPR : RROTATE_EXPR;
2220 /* Rotation of 16bit values by 8 bits is effectively equivalent to a bswaphi.
2221 Note that this is not the case for bigger values. For instance a rotation
2222 of 0x01020304 by 16 bits gives 0x03040102 which is different from
2223 0x04030201 (bswapsi). */
2224 if (rotate
2225 && CONST_INT_P (op1)
2226 && INTVAL (op1) == BITS_PER_UNIT
2227 && GET_MODE_SIZE (scalar_mode) == 2
2228 && optab_handler (bswap_optab, HImode) != CODE_FOR_nothing)
2229 return expand_unop (HImode, bswap_optab, shifted, NULL_RTX,
2230 unsignedp);
2232 if (op1 == const0_rtx)
2233 return shifted;
2235 /* Check whether its cheaper to implement a left shift by a constant
2236 bit count by a sequence of additions. */
2237 if (code == LSHIFT_EXPR
2238 && CONST_INT_P (op1)
2239 && INTVAL (op1) > 0
2240 && INTVAL (op1) < GET_MODE_PRECISION (scalar_mode)
2241 && INTVAL (op1) < MAX_BITS_PER_WORD
2242 && (shift_cost (speed, mode, INTVAL (op1))
2243 > INTVAL (op1) * add_cost (speed, mode))
2244 && shift_cost (speed, mode, INTVAL (op1)) != MAX_COST)
2246 int i;
2247 for (i = 0; i < INTVAL (op1); i++)
2249 temp = force_reg (mode, shifted);
2250 shifted = expand_binop (mode, add_optab, temp, temp, NULL_RTX,
2251 unsignedp, OPTAB_LIB_WIDEN);
2253 return shifted;
2256 for (attempt = 0; temp == 0 && attempt < 3; attempt++)
2258 enum optab_methods methods;
2260 if (attempt == 0)
2261 methods = OPTAB_DIRECT;
2262 else if (attempt == 1)
2263 methods = OPTAB_WIDEN;
2264 else
2265 methods = OPTAB_LIB_WIDEN;
2267 if (rotate)
2269 /* Widening does not work for rotation. */
2270 if (methods == OPTAB_WIDEN)
2271 continue;
2272 else if (methods == OPTAB_LIB_WIDEN)
2274 /* If we have been unable to open-code this by a rotation,
2275 do it as the IOR of two shifts. I.e., to rotate A
2276 by N bits, compute
2277 (A << N) | ((unsigned) A >> ((-N) & (C - 1)))
2278 where C is the bitsize of A.
2280 It is theoretically possible that the target machine might
2281 not be able to perform either shift and hence we would
2282 be making two libcalls rather than just the one for the
2283 shift (similarly if IOR could not be done). We will allow
2284 this extremely unlikely lossage to avoid complicating the
2285 code below. */
2287 rtx subtarget = target == shifted ? 0 : target;
2288 rtx new_amount, other_amount;
2289 rtx temp1;
2291 new_amount = op1;
2292 if (op1 == const0_rtx)
2293 return shifted;
2294 else if (CONST_INT_P (op1))
2295 other_amount = GEN_INT (GET_MODE_BITSIZE (scalar_mode)
2296 - INTVAL (op1));
2297 else
2299 other_amount
2300 = simplify_gen_unary (NEG, GET_MODE (op1),
2301 op1, GET_MODE (op1));
2302 HOST_WIDE_INT mask = GET_MODE_PRECISION (scalar_mode) - 1;
2303 other_amount
2304 = simplify_gen_binary (AND, GET_MODE (op1), other_amount,
2305 gen_int_mode (mask, GET_MODE (op1)));
2308 shifted = force_reg (mode, shifted);
2310 temp = expand_shift_1 (left ? LSHIFT_EXPR : RSHIFT_EXPR,
2311 mode, shifted, new_amount, 0, 1);
2312 temp1 = expand_shift_1 (left ? RSHIFT_EXPR : LSHIFT_EXPR,
2313 mode, shifted, other_amount,
2314 subtarget, 1);
2315 return expand_binop (mode, ior_optab, temp, temp1, target,
2316 unsignedp, methods);
2319 temp = expand_binop (mode,
2320 left ? lrotate_optab : rrotate_optab,
2321 shifted, op1, target, unsignedp, methods);
2323 else if (unsignedp)
2324 temp = expand_binop (mode,
2325 left ? lshift_optab : rshift_uns_optab,
2326 shifted, op1, target, unsignedp, methods);
2328 /* Do arithmetic shifts.
2329 Also, if we are going to widen the operand, we can just as well
2330 use an arithmetic right-shift instead of a logical one. */
2331 if (temp == 0 && ! rotate
2332 && (! unsignedp || (! left && methods == OPTAB_WIDEN)))
2334 enum optab_methods methods1 = methods;
2336 /* If trying to widen a log shift to an arithmetic shift,
2337 don't accept an arithmetic shift of the same size. */
2338 if (unsignedp)
2339 methods1 = OPTAB_MUST_WIDEN;
2341 /* Arithmetic shift */
2343 temp = expand_binop (mode,
2344 left ? lshift_optab : rshift_arith_optab,
2345 shifted, op1, target, unsignedp, methods1);
2348 /* We used to try extzv here for logical right shifts, but that was
2349 only useful for one machine, the VAX, and caused poor code
2350 generation there for lshrdi3, so the code was deleted and a
2351 define_expand for lshrsi3 was added to vax.md. */
2354 gcc_assert (temp);
2355 return temp;
2358 /* Output a shift instruction for expression code CODE,
2359 with SHIFTED being the rtx for the value to shift,
2360 and AMOUNT the amount to shift by.
2361 Store the result in the rtx TARGET, if that is convenient.
2362 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2363 Return the rtx for where the value is. */
2366 expand_shift (enum tree_code code, machine_mode mode, rtx shifted,
2367 int amount, rtx target, int unsignedp)
2369 return expand_shift_1 (code, mode,
2370 shifted, GEN_INT (amount), target, unsignedp);
2373 /* Output a shift instruction for expression code CODE,
2374 with SHIFTED being the rtx for the value to shift,
2375 and AMOUNT the tree for the amount to shift by.
2376 Store the result in the rtx TARGET, if that is convenient.
2377 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2378 Return the rtx for where the value is. */
2381 expand_variable_shift (enum tree_code code, machine_mode mode, rtx shifted,
2382 tree amount, rtx target, int unsignedp)
2384 return expand_shift_1 (code, mode,
2385 shifted, expand_normal (amount), target, unsignedp);
2389 /* Indicates the type of fixup needed after a constant multiplication.
2390 BASIC_VARIANT means no fixup is needed, NEGATE_VARIANT means that
2391 the result should be negated, and ADD_VARIANT means that the
2392 multiplicand should be added to the result. */
2393 enum mult_variant {basic_variant, negate_variant, add_variant};
2395 static void synth_mult (struct algorithm *, unsigned HOST_WIDE_INT,
2396 const struct mult_cost *, machine_mode mode);
2397 static bool choose_mult_variant (machine_mode, HOST_WIDE_INT,
2398 struct algorithm *, enum mult_variant *, int);
2399 static rtx expand_mult_const (machine_mode, rtx, HOST_WIDE_INT, rtx,
2400 const struct algorithm *, enum mult_variant);
2401 static unsigned HOST_WIDE_INT invert_mod2n (unsigned HOST_WIDE_INT, int);
2402 static rtx extract_high_half (machine_mode, rtx);
2403 static rtx expmed_mult_highpart (machine_mode, rtx, rtx, rtx, int, int);
2404 static rtx expmed_mult_highpart_optab (machine_mode, rtx, rtx, rtx,
2405 int, int);
2406 /* Compute and return the best algorithm for multiplying by T.
2407 The algorithm must cost less than cost_limit
2408 If retval.cost >= COST_LIMIT, no algorithm was found and all
2409 other field of the returned struct are undefined.
2410 MODE is the machine mode of the multiplication. */
2412 static void
2413 synth_mult (struct algorithm *alg_out, unsigned HOST_WIDE_INT t,
2414 const struct mult_cost *cost_limit, machine_mode mode)
2416 int m;
2417 struct algorithm *alg_in, *best_alg;
2418 struct mult_cost best_cost;
2419 struct mult_cost new_limit;
2420 int op_cost, op_latency;
2421 unsigned HOST_WIDE_INT orig_t = t;
2422 unsigned HOST_WIDE_INT q;
2423 int maxm, hash_index;
2424 bool cache_hit = false;
2425 enum alg_code cache_alg = alg_zero;
2426 bool speed = optimize_insn_for_speed_p ();
2427 machine_mode imode;
2428 struct alg_hash_entry *entry_ptr;
2430 /* Indicate that no algorithm is yet found. If no algorithm
2431 is found, this value will be returned and indicate failure. */
2432 alg_out->cost.cost = cost_limit->cost + 1;
2433 alg_out->cost.latency = cost_limit->latency + 1;
2435 if (cost_limit->cost < 0
2436 || (cost_limit->cost == 0 && cost_limit->latency <= 0))
2437 return;
2439 /* Be prepared for vector modes. */
2440 imode = GET_MODE_INNER (mode);
2441 if (imode == VOIDmode)
2442 imode = mode;
2444 maxm = MIN (BITS_PER_WORD, GET_MODE_BITSIZE (imode));
2446 /* Restrict the bits of "t" to the multiplication's mode. */
2447 t &= GET_MODE_MASK (imode);
2449 /* t == 1 can be done in zero cost. */
2450 if (t == 1)
2452 alg_out->ops = 1;
2453 alg_out->cost.cost = 0;
2454 alg_out->cost.latency = 0;
2455 alg_out->op[0] = alg_m;
2456 return;
2459 /* t == 0 sometimes has a cost. If it does and it exceeds our limit,
2460 fail now. */
2461 if (t == 0)
2463 if (MULT_COST_LESS (cost_limit, zero_cost (speed)))
2464 return;
2465 else
2467 alg_out->ops = 1;
2468 alg_out->cost.cost = zero_cost (speed);
2469 alg_out->cost.latency = zero_cost (speed);
2470 alg_out->op[0] = alg_zero;
2471 return;
2475 /* We'll be needing a couple extra algorithm structures now. */
2477 alg_in = XALLOCA (struct algorithm);
2478 best_alg = XALLOCA (struct algorithm);
2479 best_cost = *cost_limit;
2481 /* Compute the hash index. */
2482 hash_index = (t ^ (unsigned int) mode ^ (speed * 256)) % NUM_ALG_HASH_ENTRIES;
2484 /* See if we already know what to do for T. */
2485 entry_ptr = alg_hash_entry_ptr (hash_index);
2486 if (entry_ptr->t == t
2487 && entry_ptr->mode == mode
2488 && entry_ptr->mode == mode
2489 && entry_ptr->speed == speed
2490 && entry_ptr->alg != alg_unknown)
2492 cache_alg = entry_ptr->alg;
2494 if (cache_alg == alg_impossible)
2496 /* The cache tells us that it's impossible to synthesize
2497 multiplication by T within entry_ptr->cost. */
2498 if (!CHEAPER_MULT_COST (&entry_ptr->cost, cost_limit))
2499 /* COST_LIMIT is at least as restrictive as the one
2500 recorded in the hash table, in which case we have no
2501 hope of synthesizing a multiplication. Just
2502 return. */
2503 return;
2505 /* If we get here, COST_LIMIT is less restrictive than the
2506 one recorded in the hash table, so we may be able to
2507 synthesize a multiplication. Proceed as if we didn't
2508 have the cache entry. */
2510 else
2512 if (CHEAPER_MULT_COST (cost_limit, &entry_ptr->cost))
2513 /* The cached algorithm shows that this multiplication
2514 requires more cost than COST_LIMIT. Just return. This
2515 way, we don't clobber this cache entry with
2516 alg_impossible but retain useful information. */
2517 return;
2519 cache_hit = true;
2521 switch (cache_alg)
2523 case alg_shift:
2524 goto do_alg_shift;
2526 case alg_add_t_m2:
2527 case alg_sub_t_m2:
2528 goto do_alg_addsub_t_m2;
2530 case alg_add_factor:
2531 case alg_sub_factor:
2532 goto do_alg_addsub_factor;
2534 case alg_add_t2_m:
2535 goto do_alg_add_t2_m;
2537 case alg_sub_t2_m:
2538 goto do_alg_sub_t2_m;
2540 default:
2541 gcc_unreachable ();
2546 /* If we have a group of zero bits at the low-order part of T, try
2547 multiplying by the remaining bits and then doing a shift. */
2549 if ((t & 1) == 0)
2551 do_alg_shift:
2552 m = floor_log2 (t & -t); /* m = number of low zero bits */
2553 if (m < maxm)
2555 q = t >> m;
2556 /* The function expand_shift will choose between a shift and
2557 a sequence of additions, so the observed cost is given as
2558 MIN (m * add_cost(speed, mode), shift_cost(speed, mode, m)). */
2559 op_cost = m * add_cost (speed, mode);
2560 if (shift_cost (speed, mode, m) < op_cost)
2561 op_cost = shift_cost (speed, mode, m);
2562 new_limit.cost = best_cost.cost - op_cost;
2563 new_limit.latency = best_cost.latency - op_cost;
2564 synth_mult (alg_in, q, &new_limit, mode);
2566 alg_in->cost.cost += op_cost;
2567 alg_in->cost.latency += op_cost;
2568 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2570 best_cost = alg_in->cost;
2571 std::swap (alg_in, best_alg);
2572 best_alg->log[best_alg->ops] = m;
2573 best_alg->op[best_alg->ops] = alg_shift;
2576 /* See if treating ORIG_T as a signed number yields a better
2577 sequence. Try this sequence only for a negative ORIG_T
2578 as it would be useless for a non-negative ORIG_T. */
2579 if ((HOST_WIDE_INT) orig_t < 0)
2581 /* Shift ORIG_T as follows because a right shift of a
2582 negative-valued signed type is implementation
2583 defined. */
2584 q = ~(~orig_t >> m);
2585 /* The function expand_shift will choose between a shift
2586 and a sequence of additions, so the observed cost is
2587 given as MIN (m * add_cost(speed, mode),
2588 shift_cost(speed, mode, m)). */
2589 op_cost = m * add_cost (speed, mode);
2590 if (shift_cost (speed, mode, m) < op_cost)
2591 op_cost = shift_cost (speed, mode, m);
2592 new_limit.cost = best_cost.cost - op_cost;
2593 new_limit.latency = best_cost.latency - op_cost;
2594 synth_mult (alg_in, q, &new_limit, mode);
2596 alg_in->cost.cost += op_cost;
2597 alg_in->cost.latency += op_cost;
2598 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2600 best_cost = alg_in->cost;
2601 std::swap (alg_in, best_alg);
2602 best_alg->log[best_alg->ops] = m;
2603 best_alg->op[best_alg->ops] = alg_shift;
2607 if (cache_hit)
2608 goto done;
2611 /* If we have an odd number, add or subtract one. */
2612 if ((t & 1) != 0)
2614 unsigned HOST_WIDE_INT w;
2616 do_alg_addsub_t_m2:
2617 for (w = 1; (w & t) != 0; w <<= 1)
2619 /* If T was -1, then W will be zero after the loop. This is another
2620 case where T ends with ...111. Handling this with (T + 1) and
2621 subtract 1 produces slightly better code and results in algorithm
2622 selection much faster than treating it like the ...0111 case
2623 below. */
2624 if (w == 0
2625 || (w > 2
2626 /* Reject the case where t is 3.
2627 Thus we prefer addition in that case. */
2628 && t != 3))
2630 /* T ends with ...111. Multiply by (T + 1) and subtract T. */
2632 op_cost = add_cost (speed, mode);
2633 new_limit.cost = best_cost.cost - op_cost;
2634 new_limit.latency = best_cost.latency - op_cost;
2635 synth_mult (alg_in, t + 1, &new_limit, mode);
2637 alg_in->cost.cost += op_cost;
2638 alg_in->cost.latency += op_cost;
2639 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2641 best_cost = alg_in->cost;
2642 std::swap (alg_in, best_alg);
2643 best_alg->log[best_alg->ops] = 0;
2644 best_alg->op[best_alg->ops] = alg_sub_t_m2;
2647 else
2649 /* T ends with ...01 or ...011. Multiply by (T - 1) and add T. */
2651 op_cost = add_cost (speed, mode);
2652 new_limit.cost = best_cost.cost - op_cost;
2653 new_limit.latency = best_cost.latency - op_cost;
2654 synth_mult (alg_in, t - 1, &new_limit, mode);
2656 alg_in->cost.cost += op_cost;
2657 alg_in->cost.latency += op_cost;
2658 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2660 best_cost = alg_in->cost;
2661 std::swap (alg_in, best_alg);
2662 best_alg->log[best_alg->ops] = 0;
2663 best_alg->op[best_alg->ops] = alg_add_t_m2;
2667 /* We may be able to calculate a * -7, a * -15, a * -31, etc
2668 quickly with a - a * n for some appropriate constant n. */
2669 m = exact_log2 (-orig_t + 1);
2670 if (m >= 0 && m < maxm)
2672 op_cost = add_cost (speed, mode) + shift_cost (speed, mode, m);
2673 /* If the target has a cheap shift-and-subtract insn use
2674 that in preference to a shift insn followed by a sub insn.
2675 Assume that the shift-and-sub is "atomic" with a latency
2676 equal to it's cost, otherwise assume that on superscalar
2677 hardware the shift may be executed concurrently with the
2678 earlier steps in the algorithm. */
2679 if (shiftsub1_cost (speed, mode, m) <= op_cost)
2681 op_cost = shiftsub1_cost (speed, mode, m);
2682 op_latency = op_cost;
2684 else
2685 op_latency = add_cost (speed, mode);
2687 new_limit.cost = best_cost.cost - op_cost;
2688 new_limit.latency = best_cost.latency - op_latency;
2689 synth_mult (alg_in, (unsigned HOST_WIDE_INT) (-orig_t + 1) >> m,
2690 &new_limit, mode);
2692 alg_in->cost.cost += op_cost;
2693 alg_in->cost.latency += op_latency;
2694 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2696 best_cost = alg_in->cost;
2697 std::swap (alg_in, best_alg);
2698 best_alg->log[best_alg->ops] = m;
2699 best_alg->op[best_alg->ops] = alg_sub_t_m2;
2703 if (cache_hit)
2704 goto done;
2707 /* Look for factors of t of the form
2708 t = q(2**m +- 1), 2 <= m <= floor(log2(t - 1)).
2709 If we find such a factor, we can multiply by t using an algorithm that
2710 multiplies by q, shift the result by m and add/subtract it to itself.
2712 We search for large factors first and loop down, even if large factors
2713 are less probable than small; if we find a large factor we will find a
2714 good sequence quickly, and therefore be able to prune (by decreasing
2715 COST_LIMIT) the search. */
2717 do_alg_addsub_factor:
2718 for (m = floor_log2 (t - 1); m >= 2; m--)
2720 unsigned HOST_WIDE_INT d;
2722 d = ((unsigned HOST_WIDE_INT) 1 << m) + 1;
2723 if (t % d == 0 && t > d && m < maxm
2724 && (!cache_hit || cache_alg == alg_add_factor))
2726 op_cost = add_cost (speed, mode) + shift_cost (speed, mode, m);
2727 if (shiftadd_cost (speed, mode, m) <= op_cost)
2728 op_cost = shiftadd_cost (speed, mode, m);
2730 op_latency = op_cost;
2733 new_limit.cost = best_cost.cost - op_cost;
2734 new_limit.latency = best_cost.latency - op_latency;
2735 synth_mult (alg_in, t / d, &new_limit, mode);
2737 alg_in->cost.cost += op_cost;
2738 alg_in->cost.latency += op_latency;
2739 if (alg_in->cost.latency < op_cost)
2740 alg_in->cost.latency = op_cost;
2741 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2743 best_cost = alg_in->cost;
2744 std::swap (alg_in, best_alg);
2745 best_alg->log[best_alg->ops] = m;
2746 best_alg->op[best_alg->ops] = alg_add_factor;
2748 /* Other factors will have been taken care of in the recursion. */
2749 break;
2752 d = ((unsigned HOST_WIDE_INT) 1 << m) - 1;
2753 if (t % d == 0 && t > d && m < maxm
2754 && (!cache_hit || cache_alg == alg_sub_factor))
2756 op_cost = add_cost (speed, mode) + shift_cost (speed, mode, m);
2757 if (shiftsub0_cost (speed, mode, m) <= op_cost)
2758 op_cost = shiftsub0_cost (speed, mode, m);
2760 op_latency = op_cost;
2762 new_limit.cost = best_cost.cost - op_cost;
2763 new_limit.latency = best_cost.latency - op_latency;
2764 synth_mult (alg_in, t / d, &new_limit, mode);
2766 alg_in->cost.cost += op_cost;
2767 alg_in->cost.latency += op_latency;
2768 if (alg_in->cost.latency < op_cost)
2769 alg_in->cost.latency = op_cost;
2770 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2772 best_cost = alg_in->cost;
2773 std::swap (alg_in, best_alg);
2774 best_alg->log[best_alg->ops] = m;
2775 best_alg->op[best_alg->ops] = alg_sub_factor;
2777 break;
2780 if (cache_hit)
2781 goto done;
2783 /* Try shift-and-add (load effective address) instructions,
2784 i.e. do a*3, a*5, a*9. */
2785 if ((t & 1) != 0)
2787 do_alg_add_t2_m:
2788 q = t - 1;
2789 q = q & -q;
2790 m = exact_log2 (q);
2791 if (m >= 0 && m < maxm)
2793 op_cost = shiftadd_cost (speed, mode, m);
2794 new_limit.cost = best_cost.cost - op_cost;
2795 new_limit.latency = best_cost.latency - op_cost;
2796 synth_mult (alg_in, (t - 1) >> m, &new_limit, mode);
2798 alg_in->cost.cost += op_cost;
2799 alg_in->cost.latency += op_cost;
2800 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2802 best_cost = alg_in->cost;
2803 std::swap (alg_in, best_alg);
2804 best_alg->log[best_alg->ops] = m;
2805 best_alg->op[best_alg->ops] = alg_add_t2_m;
2808 if (cache_hit)
2809 goto done;
2811 do_alg_sub_t2_m:
2812 q = t + 1;
2813 q = q & -q;
2814 m = exact_log2 (q);
2815 if (m >= 0 && m < maxm)
2817 op_cost = shiftsub0_cost (speed, mode, m);
2818 new_limit.cost = best_cost.cost - op_cost;
2819 new_limit.latency = best_cost.latency - op_cost;
2820 synth_mult (alg_in, (t + 1) >> m, &new_limit, mode);
2822 alg_in->cost.cost += op_cost;
2823 alg_in->cost.latency += op_cost;
2824 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2826 best_cost = alg_in->cost;
2827 std::swap (alg_in, best_alg);
2828 best_alg->log[best_alg->ops] = m;
2829 best_alg->op[best_alg->ops] = alg_sub_t2_m;
2832 if (cache_hit)
2833 goto done;
2836 done:
2837 /* If best_cost has not decreased, we have not found any algorithm. */
2838 if (!CHEAPER_MULT_COST (&best_cost, cost_limit))
2840 /* We failed to find an algorithm. Record alg_impossible for
2841 this case (that is, <T, MODE, COST_LIMIT>) so that next time
2842 we are asked to find an algorithm for T within the same or
2843 lower COST_LIMIT, we can immediately return to the
2844 caller. */
2845 entry_ptr->t = t;
2846 entry_ptr->mode = mode;
2847 entry_ptr->speed = speed;
2848 entry_ptr->alg = alg_impossible;
2849 entry_ptr->cost = *cost_limit;
2850 return;
2853 /* Cache the result. */
2854 if (!cache_hit)
2856 entry_ptr->t = t;
2857 entry_ptr->mode = mode;
2858 entry_ptr->speed = speed;
2859 entry_ptr->alg = best_alg->op[best_alg->ops];
2860 entry_ptr->cost.cost = best_cost.cost;
2861 entry_ptr->cost.latency = best_cost.latency;
2864 /* If we are getting a too long sequence for `struct algorithm'
2865 to record, make this search fail. */
2866 if (best_alg->ops == MAX_BITS_PER_WORD)
2867 return;
2869 /* Copy the algorithm from temporary space to the space at alg_out.
2870 We avoid using structure assignment because the majority of
2871 best_alg is normally undefined, and this is a critical function. */
2872 alg_out->ops = best_alg->ops + 1;
2873 alg_out->cost = best_cost;
2874 memcpy (alg_out->op, best_alg->op,
2875 alg_out->ops * sizeof *alg_out->op);
2876 memcpy (alg_out->log, best_alg->log,
2877 alg_out->ops * sizeof *alg_out->log);
2880 /* Find the cheapest way of multiplying a value of mode MODE by VAL.
2881 Try three variations:
2883 - a shift/add sequence based on VAL itself
2884 - a shift/add sequence based on -VAL, followed by a negation
2885 - a shift/add sequence based on VAL - 1, followed by an addition.
2887 Return true if the cheapest of these cost less than MULT_COST,
2888 describing the algorithm in *ALG and final fixup in *VARIANT. */
2890 static bool
2891 choose_mult_variant (machine_mode mode, HOST_WIDE_INT val,
2892 struct algorithm *alg, enum mult_variant *variant,
2893 int mult_cost)
2895 struct algorithm alg2;
2896 struct mult_cost limit;
2897 int op_cost;
2898 bool speed = optimize_insn_for_speed_p ();
2900 /* Fail quickly for impossible bounds. */
2901 if (mult_cost < 0)
2902 return false;
2904 /* Ensure that mult_cost provides a reasonable upper bound.
2905 Any constant multiplication can be performed with less
2906 than 2 * bits additions. */
2907 op_cost = 2 * GET_MODE_UNIT_BITSIZE (mode) * add_cost (speed, mode);
2908 if (mult_cost > op_cost)
2909 mult_cost = op_cost;
2911 *variant = basic_variant;
2912 limit.cost = mult_cost;
2913 limit.latency = mult_cost;
2914 synth_mult (alg, val, &limit, mode);
2916 /* This works only if the inverted value actually fits in an
2917 `unsigned int' */
2918 if (HOST_BITS_PER_INT >= GET_MODE_UNIT_BITSIZE (mode))
2920 op_cost = neg_cost (speed, mode);
2921 if (MULT_COST_LESS (&alg->cost, mult_cost))
2923 limit.cost = alg->cost.cost - op_cost;
2924 limit.latency = alg->cost.latency - op_cost;
2926 else
2928 limit.cost = mult_cost - op_cost;
2929 limit.latency = mult_cost - op_cost;
2932 synth_mult (&alg2, -val, &limit, mode);
2933 alg2.cost.cost += op_cost;
2934 alg2.cost.latency += op_cost;
2935 if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
2936 *alg = alg2, *variant = negate_variant;
2939 /* This proves very useful for division-by-constant. */
2940 op_cost = add_cost (speed, mode);
2941 if (MULT_COST_LESS (&alg->cost, mult_cost))
2943 limit.cost = alg->cost.cost - op_cost;
2944 limit.latency = alg->cost.latency - op_cost;
2946 else
2948 limit.cost = mult_cost - op_cost;
2949 limit.latency = mult_cost - op_cost;
2952 synth_mult (&alg2, val - 1, &limit, mode);
2953 alg2.cost.cost += op_cost;
2954 alg2.cost.latency += op_cost;
2955 if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
2956 *alg = alg2, *variant = add_variant;
2958 return MULT_COST_LESS (&alg->cost, mult_cost);
2961 /* A subroutine of expand_mult, used for constant multiplications.
2962 Multiply OP0 by VAL in mode MODE, storing the result in TARGET if
2963 convenient. Use the shift/add sequence described by ALG and apply
2964 the final fixup specified by VARIANT. */
2966 static rtx
2967 expand_mult_const (machine_mode mode, rtx op0, HOST_WIDE_INT val,
2968 rtx target, const struct algorithm *alg,
2969 enum mult_variant variant)
2971 HOST_WIDE_INT val_so_far;
2972 rtx_insn *insn;
2973 rtx accum, tem;
2974 int opno;
2975 machine_mode nmode;
2977 /* Avoid referencing memory over and over and invalid sharing
2978 on SUBREGs. */
2979 op0 = force_reg (mode, op0);
2981 /* ACCUM starts out either as OP0 or as a zero, depending on
2982 the first operation. */
2984 if (alg->op[0] == alg_zero)
2986 accum = copy_to_mode_reg (mode, CONST0_RTX (mode));
2987 val_so_far = 0;
2989 else if (alg->op[0] == alg_m)
2991 accum = copy_to_mode_reg (mode, op0);
2992 val_so_far = 1;
2994 else
2995 gcc_unreachable ();
2997 for (opno = 1; opno < alg->ops; opno++)
2999 int log = alg->log[opno];
3000 rtx shift_subtarget = optimize ? 0 : accum;
3001 rtx add_target
3002 = (opno == alg->ops - 1 && target != 0 && variant != add_variant
3003 && !optimize)
3004 ? target : 0;
3005 rtx accum_target = optimize ? 0 : accum;
3006 rtx accum_inner;
3008 switch (alg->op[opno])
3010 case alg_shift:
3011 tem = expand_shift (LSHIFT_EXPR, mode, accum, log, NULL_RTX, 0);
3012 /* REG_EQUAL note will be attached to the following insn. */
3013 emit_move_insn (accum, tem);
3014 val_so_far <<= log;
3015 break;
3017 case alg_add_t_m2:
3018 tem = expand_shift (LSHIFT_EXPR, mode, op0, log, NULL_RTX, 0);
3019 accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
3020 add_target ? add_target : accum_target);
3021 val_so_far += (HOST_WIDE_INT) 1 << log;
3022 break;
3024 case alg_sub_t_m2:
3025 tem = expand_shift (LSHIFT_EXPR, mode, op0, log, NULL_RTX, 0);
3026 accum = force_operand (gen_rtx_MINUS (mode, accum, tem),
3027 add_target ? add_target : accum_target);
3028 val_so_far -= (HOST_WIDE_INT) 1 << log;
3029 break;
3031 case alg_add_t2_m:
3032 accum = expand_shift (LSHIFT_EXPR, mode, accum,
3033 log, shift_subtarget, 0);
3034 accum = force_operand (gen_rtx_PLUS (mode, accum, op0),
3035 add_target ? add_target : accum_target);
3036 val_so_far = (val_so_far << log) + 1;
3037 break;
3039 case alg_sub_t2_m:
3040 accum = expand_shift (LSHIFT_EXPR, mode, accum,
3041 log, shift_subtarget, 0);
3042 accum = force_operand (gen_rtx_MINUS (mode, accum, op0),
3043 add_target ? add_target : accum_target);
3044 val_so_far = (val_so_far << log) - 1;
3045 break;
3047 case alg_add_factor:
3048 tem = expand_shift (LSHIFT_EXPR, mode, accum, log, NULL_RTX, 0);
3049 accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
3050 add_target ? add_target : accum_target);
3051 val_so_far += val_so_far << log;
3052 break;
3054 case alg_sub_factor:
3055 tem = expand_shift (LSHIFT_EXPR, mode, accum, log, NULL_RTX, 0);
3056 accum = force_operand (gen_rtx_MINUS (mode, tem, accum),
3057 (add_target
3058 ? add_target : (optimize ? 0 : tem)));
3059 val_so_far = (val_so_far << log) - val_so_far;
3060 break;
3062 default:
3063 gcc_unreachable ();
3066 if (SCALAR_INT_MODE_P (mode))
3068 /* Write a REG_EQUAL note on the last insn so that we can cse
3069 multiplication sequences. Note that if ACCUM is a SUBREG,
3070 we've set the inner register and must properly indicate that. */
3071 tem = op0, nmode = mode;
3072 accum_inner = accum;
3073 if (GET_CODE (accum) == SUBREG)
3075 accum_inner = SUBREG_REG (accum);
3076 nmode = GET_MODE (accum_inner);
3077 tem = gen_lowpart (nmode, op0);
3080 insn = get_last_insn ();
3081 set_dst_reg_note (insn, REG_EQUAL,
3082 gen_rtx_MULT (nmode, tem,
3083 gen_int_mode (val_so_far, nmode)),
3084 accum_inner);
3088 if (variant == negate_variant)
3090 val_so_far = -val_so_far;
3091 accum = expand_unop (mode, neg_optab, accum, target, 0);
3093 else if (variant == add_variant)
3095 val_so_far = val_so_far + 1;
3096 accum = force_operand (gen_rtx_PLUS (mode, accum, op0), target);
3099 /* Compare only the bits of val and val_so_far that are significant
3100 in the result mode, to avoid sign-/zero-extension confusion. */
3101 nmode = GET_MODE_INNER (mode);
3102 if (nmode == VOIDmode)
3103 nmode = mode;
3104 val &= GET_MODE_MASK (nmode);
3105 val_so_far &= GET_MODE_MASK (nmode);
3106 gcc_assert (val == val_so_far);
3108 return accum;
3111 /* Perform a multiplication and return an rtx for the result.
3112 MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
3113 TARGET is a suggestion for where to store the result (an rtx).
3115 We check specially for a constant integer as OP1.
3116 If you want this check for OP0 as well, then before calling
3117 you should swap the two operands if OP0 would be constant. */
3120 expand_mult (machine_mode mode, rtx op0, rtx op1, rtx target,
3121 int unsignedp)
3123 enum mult_variant variant;
3124 struct algorithm algorithm;
3125 rtx scalar_op1;
3126 int max_cost;
3127 bool speed = optimize_insn_for_speed_p ();
3128 bool do_trapv = flag_trapv && SCALAR_INT_MODE_P (mode) && !unsignedp;
3130 if (CONSTANT_P (op0))
3131 std::swap (op0, op1);
3133 /* For vectors, there are several simplifications that can be made if
3134 all elements of the vector constant are identical. */
3135 scalar_op1 = op1;
3136 if (GET_CODE (op1) == CONST_VECTOR)
3138 int i, n = CONST_VECTOR_NUNITS (op1);
3139 scalar_op1 = CONST_VECTOR_ELT (op1, 0);
3140 for (i = 1; i < n; ++i)
3141 if (!rtx_equal_p (scalar_op1, CONST_VECTOR_ELT (op1, i)))
3142 goto skip_scalar;
3145 if (INTEGRAL_MODE_P (mode))
3147 rtx fake_reg;
3148 HOST_WIDE_INT coeff;
3149 bool is_neg;
3150 int mode_bitsize;
3152 if (op1 == CONST0_RTX (mode))
3153 return op1;
3154 if (op1 == CONST1_RTX (mode))
3155 return op0;
3156 if (op1 == CONSTM1_RTX (mode))
3157 return expand_unop (mode, do_trapv ? negv_optab : neg_optab,
3158 op0, target, 0);
3160 if (do_trapv)
3161 goto skip_synth;
3163 /* If mode is integer vector mode, check if the backend supports
3164 vector lshift (by scalar or vector) at all. If not, we can't use
3165 synthetized multiply. */
3166 if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT
3167 && optab_handler (vashl_optab, mode) == CODE_FOR_nothing
3168 && optab_handler (ashl_optab, mode) == CODE_FOR_nothing)
3169 goto skip_synth;
3171 /* These are the operations that are potentially turned into
3172 a sequence of shifts and additions. */
3173 mode_bitsize = GET_MODE_UNIT_BITSIZE (mode);
3175 /* synth_mult does an `unsigned int' multiply. As long as the mode is
3176 less than or equal in size to `unsigned int' this doesn't matter.
3177 If the mode is larger than `unsigned int', then synth_mult works
3178 only if the constant value exactly fits in an `unsigned int' without
3179 any truncation. This means that multiplying by negative values does
3180 not work; results are off by 2^32 on a 32 bit machine. */
3181 if (CONST_INT_P (scalar_op1))
3183 coeff = INTVAL (scalar_op1);
3184 is_neg = coeff < 0;
3186 #if TARGET_SUPPORTS_WIDE_INT
3187 else if (CONST_WIDE_INT_P (scalar_op1))
3188 #else
3189 else if (CONST_DOUBLE_AS_INT_P (scalar_op1))
3190 #endif
3192 int shift = wi::exact_log2 (std::make_pair (scalar_op1, mode));
3193 /* Perfect power of 2 (other than 1, which is handled above). */
3194 if (shift > 0)
3195 return expand_shift (LSHIFT_EXPR, mode, op0,
3196 shift, target, unsignedp);
3197 else
3198 goto skip_synth;
3200 else
3201 goto skip_synth;
3203 /* We used to test optimize here, on the grounds that it's better to
3204 produce a smaller program when -O is not used. But this causes
3205 such a terrible slowdown sometimes that it seems better to always
3206 use synth_mult. */
3208 /* Special case powers of two. */
3209 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff)
3210 && !(is_neg && mode_bitsize > HOST_BITS_PER_WIDE_INT))
3211 return expand_shift (LSHIFT_EXPR, mode, op0,
3212 floor_log2 (coeff), target, unsignedp);
3214 fake_reg = gen_raw_REG (mode, LAST_VIRTUAL_REGISTER + 1);
3216 /* Attempt to handle multiplication of DImode values by negative
3217 coefficients, by performing the multiplication by a positive
3218 multiplier and then inverting the result. */
3219 if (is_neg && mode_bitsize > HOST_BITS_PER_WIDE_INT)
3221 /* Its safe to use -coeff even for INT_MIN, as the
3222 result is interpreted as an unsigned coefficient.
3223 Exclude cost of op0 from max_cost to match the cost
3224 calculation of the synth_mult. */
3225 coeff = -(unsigned HOST_WIDE_INT) coeff;
3226 max_cost = (set_src_cost (gen_rtx_MULT (mode, fake_reg, op1), speed)
3227 - neg_cost (speed, mode));
3228 if (max_cost <= 0)
3229 goto skip_synth;
3231 /* Special case powers of two. */
3232 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff))
3234 rtx temp = expand_shift (LSHIFT_EXPR, mode, op0,
3235 floor_log2 (coeff), target, unsignedp);
3236 return expand_unop (mode, neg_optab, temp, target, 0);
3239 if (choose_mult_variant (mode, coeff, &algorithm, &variant,
3240 max_cost))
3242 rtx temp = expand_mult_const (mode, op0, coeff, NULL_RTX,
3243 &algorithm, variant);
3244 return expand_unop (mode, neg_optab, temp, target, 0);
3246 goto skip_synth;
3249 /* Exclude cost of op0 from max_cost to match the cost
3250 calculation of the synth_mult. */
3251 max_cost = set_src_cost (gen_rtx_MULT (mode, fake_reg, op1), speed);
3252 if (choose_mult_variant (mode, coeff, &algorithm, &variant, max_cost))
3253 return expand_mult_const (mode, op0, coeff, target,
3254 &algorithm, variant);
3256 skip_synth:
3258 /* Expand x*2.0 as x+x. */
3259 if (CONST_DOUBLE_AS_FLOAT_P (scalar_op1))
3261 REAL_VALUE_TYPE d;
3262 REAL_VALUE_FROM_CONST_DOUBLE (d, scalar_op1);
3264 if (REAL_VALUES_EQUAL (d, dconst2))
3266 op0 = force_reg (GET_MODE (op0), op0);
3267 return expand_binop (mode, add_optab, op0, op0,
3268 target, unsignedp, OPTAB_LIB_WIDEN);
3271 skip_scalar:
3273 /* This used to use umul_optab if unsigned, but for non-widening multiply
3274 there is no difference between signed and unsigned. */
3275 op0 = expand_binop (mode, do_trapv ? smulv_optab : smul_optab,
3276 op0, op1, target, unsignedp, OPTAB_LIB_WIDEN);
3277 gcc_assert (op0);
3278 return op0;
3281 /* Return a cost estimate for multiplying a register by the given
3282 COEFFicient in the given MODE and SPEED. */
3285 mult_by_coeff_cost (HOST_WIDE_INT coeff, machine_mode mode, bool speed)
3287 int max_cost;
3288 struct algorithm algorithm;
3289 enum mult_variant variant;
3291 rtx fake_reg = gen_raw_REG (mode, LAST_VIRTUAL_REGISTER + 1);
3292 max_cost = set_src_cost (gen_rtx_MULT (mode, fake_reg, fake_reg), speed);
3293 if (choose_mult_variant (mode, coeff, &algorithm, &variant, max_cost))
3294 return algorithm.cost.cost;
3295 else
3296 return max_cost;
3299 /* Perform a widening multiplication and return an rtx for the result.
3300 MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
3301 TARGET is a suggestion for where to store the result (an rtx).
3302 THIS_OPTAB is the optab we should use, it must be either umul_widen_optab
3303 or smul_widen_optab.
3305 We check specially for a constant integer as OP1, comparing the
3306 cost of a widening multiply against the cost of a sequence of shifts
3307 and adds. */
3310 expand_widening_mult (machine_mode mode, rtx op0, rtx op1, rtx target,
3311 int unsignedp, optab this_optab)
3313 bool speed = optimize_insn_for_speed_p ();
3314 rtx cop1;
3316 if (CONST_INT_P (op1)
3317 && GET_MODE (op0) != VOIDmode
3318 && (cop1 = convert_modes (mode, GET_MODE (op0), op1,
3319 this_optab == umul_widen_optab))
3320 && CONST_INT_P (cop1)
3321 && (INTVAL (cop1) >= 0
3322 || HWI_COMPUTABLE_MODE_P (mode)))
3324 HOST_WIDE_INT coeff = INTVAL (cop1);
3325 int max_cost;
3326 enum mult_variant variant;
3327 struct algorithm algorithm;
3329 if (coeff == 0)
3330 return CONST0_RTX (mode);
3332 /* Special case powers of two. */
3333 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff))
3335 op0 = convert_to_mode (mode, op0, this_optab == umul_widen_optab);
3336 return expand_shift (LSHIFT_EXPR, mode, op0,
3337 floor_log2 (coeff), target, unsignedp);
3340 /* Exclude cost of op0 from max_cost to match the cost
3341 calculation of the synth_mult. */
3342 max_cost = mul_widen_cost (speed, mode);
3343 if (choose_mult_variant (mode, coeff, &algorithm, &variant,
3344 max_cost))
3346 op0 = convert_to_mode (mode, op0, this_optab == umul_widen_optab);
3347 return expand_mult_const (mode, op0, coeff, target,
3348 &algorithm, variant);
3351 return expand_binop (mode, this_optab, op0, op1, target,
3352 unsignedp, OPTAB_LIB_WIDEN);
3355 /* Choose a minimal N + 1 bit approximation to 1/D that can be used to
3356 replace division by D, and put the least significant N bits of the result
3357 in *MULTIPLIER_PTR and return the most significant bit.
3359 The width of operations is N (should be <= HOST_BITS_PER_WIDE_INT), the
3360 needed precision is in PRECISION (should be <= N).
3362 PRECISION should be as small as possible so this function can choose
3363 multiplier more freely.
3365 The rounded-up logarithm of D is placed in *lgup_ptr. A shift count that
3366 is to be used for a final right shift is placed in *POST_SHIFT_PTR.
3368 Using this function, x/D will be equal to (x * m) >> (*POST_SHIFT_PTR),
3369 where m is the full HOST_BITS_PER_WIDE_INT + 1 bit multiplier. */
3371 unsigned HOST_WIDE_INT
3372 choose_multiplier (unsigned HOST_WIDE_INT d, int n, int precision,
3373 unsigned HOST_WIDE_INT *multiplier_ptr,
3374 int *post_shift_ptr, int *lgup_ptr)
3376 int lgup, post_shift;
3377 int pow, pow2;
3379 /* lgup = ceil(log2(divisor)); */
3380 lgup = ceil_log2 (d);
3382 gcc_assert (lgup <= n);
3384 pow = n + lgup;
3385 pow2 = n + lgup - precision;
3387 /* mlow = 2^(N + lgup)/d */
3388 wide_int val = wi::set_bit_in_zero (pow, HOST_BITS_PER_DOUBLE_INT);
3389 wide_int mlow = wi::udiv_trunc (val, d);
3391 /* mhigh = (2^(N + lgup) + 2^(N + lgup - precision))/d */
3392 val |= wi::set_bit_in_zero (pow2, HOST_BITS_PER_DOUBLE_INT);
3393 wide_int mhigh = wi::udiv_trunc (val, d);
3395 /* If precision == N, then mlow, mhigh exceed 2^N
3396 (but they do not exceed 2^(N+1)). */
3398 /* Reduce to lowest terms. */
3399 for (post_shift = lgup; post_shift > 0; post_shift--)
3401 unsigned HOST_WIDE_INT ml_lo = wi::extract_uhwi (mlow, 1,
3402 HOST_BITS_PER_WIDE_INT);
3403 unsigned HOST_WIDE_INT mh_lo = wi::extract_uhwi (mhigh, 1,
3404 HOST_BITS_PER_WIDE_INT);
3405 if (ml_lo >= mh_lo)
3406 break;
3408 mlow = wi::uhwi (ml_lo, HOST_BITS_PER_DOUBLE_INT);
3409 mhigh = wi::uhwi (mh_lo, HOST_BITS_PER_DOUBLE_INT);
3412 *post_shift_ptr = post_shift;
3413 *lgup_ptr = lgup;
3414 if (n < HOST_BITS_PER_WIDE_INT)
3416 unsigned HOST_WIDE_INT mask = ((unsigned HOST_WIDE_INT) 1 << n) - 1;
3417 *multiplier_ptr = mhigh.to_uhwi () & mask;
3418 return mhigh.to_uhwi () >= mask;
3420 else
3422 *multiplier_ptr = mhigh.to_uhwi ();
3423 return wi::extract_uhwi (mhigh, HOST_BITS_PER_WIDE_INT, 1);
3427 /* Compute the inverse of X mod 2**n, i.e., find Y such that X * Y is
3428 congruent to 1 (mod 2**N). */
3430 static unsigned HOST_WIDE_INT
3431 invert_mod2n (unsigned HOST_WIDE_INT x, int n)
3433 /* Solve x*y == 1 (mod 2^n), where x is odd. Return y. */
3435 /* The algorithm notes that the choice y = x satisfies
3436 x*y == 1 mod 2^3, since x is assumed odd.
3437 Each iteration doubles the number of bits of significance in y. */
3439 unsigned HOST_WIDE_INT mask;
3440 unsigned HOST_WIDE_INT y = x;
3441 int nbit = 3;
3443 mask = (n == HOST_BITS_PER_WIDE_INT
3444 ? ~(unsigned HOST_WIDE_INT) 0
3445 : ((unsigned HOST_WIDE_INT) 1 << n) - 1);
3447 while (nbit < n)
3449 y = y * (2 - x*y) & mask; /* Modulo 2^N */
3450 nbit *= 2;
3452 return y;
3455 /* Emit code to adjust ADJ_OPERAND after multiplication of wrong signedness
3456 flavor of OP0 and OP1. ADJ_OPERAND is already the high half of the
3457 product OP0 x OP1. If UNSIGNEDP is nonzero, adjust the signed product
3458 to become unsigned, if UNSIGNEDP is zero, adjust the unsigned product to
3459 become signed.
3461 The result is put in TARGET if that is convenient.
3463 MODE is the mode of operation. */
3466 expand_mult_highpart_adjust (machine_mode mode, rtx adj_operand, rtx op0,
3467 rtx op1, rtx target, int unsignedp)
3469 rtx tem;
3470 enum rtx_code adj_code = unsignedp ? PLUS : MINUS;
3472 tem = expand_shift (RSHIFT_EXPR, mode, op0,
3473 GET_MODE_BITSIZE (mode) - 1, NULL_RTX, 0);
3474 tem = expand_and (mode, tem, op1, NULL_RTX);
3475 adj_operand
3476 = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
3477 adj_operand);
3479 tem = expand_shift (RSHIFT_EXPR, mode, op1,
3480 GET_MODE_BITSIZE (mode) - 1, NULL_RTX, 0);
3481 tem = expand_and (mode, tem, op0, NULL_RTX);
3482 target = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
3483 target);
3485 return target;
3488 /* Subroutine of expmed_mult_highpart. Return the MODE high part of OP. */
3490 static rtx
3491 extract_high_half (machine_mode mode, rtx op)
3493 machine_mode wider_mode;
3495 if (mode == word_mode)
3496 return gen_highpart (mode, op);
3498 gcc_assert (!SCALAR_FLOAT_MODE_P (mode));
3500 wider_mode = GET_MODE_WIDER_MODE (mode);
3501 op = expand_shift (RSHIFT_EXPR, wider_mode, op,
3502 GET_MODE_BITSIZE (mode), 0, 1);
3503 return convert_modes (mode, wider_mode, op, 0);
3506 /* Like expmed_mult_highpart, but only consider using a multiplication
3507 optab. OP1 is an rtx for the constant operand. */
3509 static rtx
3510 expmed_mult_highpart_optab (machine_mode mode, rtx op0, rtx op1,
3511 rtx target, int unsignedp, int max_cost)
3513 rtx narrow_op1 = gen_int_mode (INTVAL (op1), mode);
3514 machine_mode wider_mode;
3515 optab moptab;
3516 rtx tem;
3517 int size;
3518 bool speed = optimize_insn_for_speed_p ();
3520 gcc_assert (!SCALAR_FLOAT_MODE_P (mode));
3522 wider_mode = GET_MODE_WIDER_MODE (mode);
3523 size = GET_MODE_BITSIZE (mode);
3525 /* Firstly, try using a multiplication insn that only generates the needed
3526 high part of the product, and in the sign flavor of unsignedp. */
3527 if (mul_highpart_cost (speed, mode) < max_cost)
3529 moptab = unsignedp ? umul_highpart_optab : smul_highpart_optab;
3530 tem = expand_binop (mode, moptab, op0, narrow_op1, target,
3531 unsignedp, OPTAB_DIRECT);
3532 if (tem)
3533 return tem;
3536 /* Secondly, same as above, but use sign flavor opposite of unsignedp.
3537 Need to adjust the result after the multiplication. */
3538 if (size - 1 < BITS_PER_WORD
3539 && (mul_highpart_cost (speed, mode)
3540 + 2 * shift_cost (speed, mode, size-1)
3541 + 4 * add_cost (speed, mode) < max_cost))
3543 moptab = unsignedp ? smul_highpart_optab : umul_highpart_optab;
3544 tem = expand_binop (mode, moptab, op0, narrow_op1, target,
3545 unsignedp, OPTAB_DIRECT);
3546 if (tem)
3547 /* We used the wrong signedness. Adjust the result. */
3548 return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1,
3549 tem, unsignedp);
3552 /* Try widening multiplication. */
3553 moptab = unsignedp ? umul_widen_optab : smul_widen_optab;
3554 if (widening_optab_handler (moptab, wider_mode, mode) != CODE_FOR_nothing
3555 && mul_widen_cost (speed, wider_mode) < max_cost)
3557 tem = expand_binop (wider_mode, moptab, op0, narrow_op1, 0,
3558 unsignedp, OPTAB_WIDEN);
3559 if (tem)
3560 return extract_high_half (mode, tem);
3563 /* Try widening the mode and perform a non-widening multiplication. */
3564 if (optab_handler (smul_optab, wider_mode) != CODE_FOR_nothing
3565 && size - 1 < BITS_PER_WORD
3566 && (mul_cost (speed, wider_mode) + shift_cost (speed, mode, size-1)
3567 < max_cost))
3569 rtx_insn *insns;
3570 rtx wop0, wop1;
3572 /* We need to widen the operands, for example to ensure the
3573 constant multiplier is correctly sign or zero extended.
3574 Use a sequence to clean-up any instructions emitted by
3575 the conversions if things don't work out. */
3576 start_sequence ();
3577 wop0 = convert_modes (wider_mode, mode, op0, unsignedp);
3578 wop1 = convert_modes (wider_mode, mode, op1, unsignedp);
3579 tem = expand_binop (wider_mode, smul_optab, wop0, wop1, 0,
3580 unsignedp, OPTAB_WIDEN);
3581 insns = get_insns ();
3582 end_sequence ();
3584 if (tem)
3586 emit_insn (insns);
3587 return extract_high_half (mode, tem);
3591 /* Try widening multiplication of opposite signedness, and adjust. */
3592 moptab = unsignedp ? smul_widen_optab : umul_widen_optab;
3593 if (widening_optab_handler (moptab, wider_mode, mode) != CODE_FOR_nothing
3594 && size - 1 < BITS_PER_WORD
3595 && (mul_widen_cost (speed, wider_mode)
3596 + 2 * shift_cost (speed, mode, size-1)
3597 + 4 * add_cost (speed, mode) < max_cost))
3599 tem = expand_binop (wider_mode, moptab, op0, narrow_op1,
3600 NULL_RTX, ! unsignedp, OPTAB_WIDEN);
3601 if (tem != 0)
3603 tem = extract_high_half (mode, tem);
3604 /* We used the wrong signedness. Adjust the result. */
3605 return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1,
3606 target, unsignedp);
3610 return 0;
3613 /* Emit code to multiply OP0 and OP1 (where OP1 is an integer constant),
3614 putting the high half of the result in TARGET if that is convenient,
3615 and return where the result is. If the operation can not be performed,
3616 0 is returned.
3618 MODE is the mode of operation and result.
3620 UNSIGNEDP nonzero means unsigned multiply.
3622 MAX_COST is the total allowed cost for the expanded RTL. */
3624 static rtx
3625 expmed_mult_highpart (machine_mode mode, rtx op0, rtx op1,
3626 rtx target, int unsignedp, int max_cost)
3628 machine_mode wider_mode = GET_MODE_WIDER_MODE (mode);
3629 unsigned HOST_WIDE_INT cnst1;
3630 int extra_cost;
3631 bool sign_adjust = false;
3632 enum mult_variant variant;
3633 struct algorithm alg;
3634 rtx tem;
3635 bool speed = optimize_insn_for_speed_p ();
3637 gcc_assert (!SCALAR_FLOAT_MODE_P (mode));
3638 /* We can't support modes wider than HOST_BITS_PER_INT. */
3639 gcc_assert (HWI_COMPUTABLE_MODE_P (mode));
3641 cnst1 = INTVAL (op1) & GET_MODE_MASK (mode);
3643 /* We can't optimize modes wider than BITS_PER_WORD.
3644 ??? We might be able to perform double-word arithmetic if
3645 mode == word_mode, however all the cost calculations in
3646 synth_mult etc. assume single-word operations. */
3647 if (GET_MODE_BITSIZE (wider_mode) > BITS_PER_WORD)
3648 return expmed_mult_highpart_optab (mode, op0, op1, target,
3649 unsignedp, max_cost);
3651 extra_cost = shift_cost (speed, mode, GET_MODE_BITSIZE (mode) - 1);
3653 /* Check whether we try to multiply by a negative constant. */
3654 if (!unsignedp && ((cnst1 >> (GET_MODE_BITSIZE (mode) - 1)) & 1))
3656 sign_adjust = true;
3657 extra_cost += add_cost (speed, mode);
3660 /* See whether shift/add multiplication is cheap enough. */
3661 if (choose_mult_variant (wider_mode, cnst1, &alg, &variant,
3662 max_cost - extra_cost))
3664 /* See whether the specialized multiplication optabs are
3665 cheaper than the shift/add version. */
3666 tem = expmed_mult_highpart_optab (mode, op0, op1, target, unsignedp,
3667 alg.cost.cost + extra_cost);
3668 if (tem)
3669 return tem;
3671 tem = convert_to_mode (wider_mode, op0, unsignedp);
3672 tem = expand_mult_const (wider_mode, tem, cnst1, 0, &alg, variant);
3673 tem = extract_high_half (mode, tem);
3675 /* Adjust result for signedness. */
3676 if (sign_adjust)
3677 tem = force_operand (gen_rtx_MINUS (mode, tem, op0), tem);
3679 return tem;
3681 return expmed_mult_highpart_optab (mode, op0, op1, target,
3682 unsignedp, max_cost);
3686 /* Expand signed modulus of OP0 by a power of two D in mode MODE. */
3688 static rtx
3689 expand_smod_pow2 (machine_mode mode, rtx op0, HOST_WIDE_INT d)
3691 rtx result, temp, shift;
3692 rtx_code_label *label;
3693 int logd;
3694 int prec = GET_MODE_PRECISION (mode);
3696 logd = floor_log2 (d);
3697 result = gen_reg_rtx (mode);
3699 /* Avoid conditional branches when they're expensive. */
3700 if (BRANCH_COST (optimize_insn_for_speed_p (), false) >= 2
3701 && optimize_insn_for_speed_p ())
3703 rtx signmask = emit_store_flag (result, LT, op0, const0_rtx,
3704 mode, 0, -1);
3705 if (signmask)
3707 HOST_WIDE_INT masklow = ((HOST_WIDE_INT) 1 << logd) - 1;
3708 signmask = force_reg (mode, signmask);
3709 shift = GEN_INT (GET_MODE_BITSIZE (mode) - logd);
3711 /* Use the rtx_cost of a LSHIFTRT instruction to determine
3712 which instruction sequence to use. If logical right shifts
3713 are expensive the use 2 XORs, 2 SUBs and an AND, otherwise
3714 use a LSHIFTRT, 1 ADD, 1 SUB and an AND. */
3716 temp = gen_rtx_LSHIFTRT (mode, result, shift);
3717 if (optab_handler (lshr_optab, mode) == CODE_FOR_nothing
3718 || (set_src_cost (temp, optimize_insn_for_speed_p ())
3719 > COSTS_N_INSNS (2)))
3721 temp = expand_binop (mode, xor_optab, op0, signmask,
3722 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3723 temp = expand_binop (mode, sub_optab, temp, signmask,
3724 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3725 temp = expand_binop (mode, and_optab, temp,
3726 gen_int_mode (masklow, mode),
3727 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3728 temp = expand_binop (mode, xor_optab, temp, signmask,
3729 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3730 temp = expand_binop (mode, sub_optab, temp, signmask,
3731 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3733 else
3735 signmask = expand_binop (mode, lshr_optab, signmask, shift,
3736 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3737 signmask = force_reg (mode, signmask);
3739 temp = expand_binop (mode, add_optab, op0, signmask,
3740 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3741 temp = expand_binop (mode, and_optab, temp,
3742 gen_int_mode (masklow, mode),
3743 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3744 temp = expand_binop (mode, sub_optab, temp, signmask,
3745 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3747 return temp;
3751 /* Mask contains the mode's signbit and the significant bits of the
3752 modulus. By including the signbit in the operation, many targets
3753 can avoid an explicit compare operation in the following comparison
3754 against zero. */
3755 wide_int mask = wi::mask (logd, false, prec);
3756 mask = wi::set_bit (mask, prec - 1);
3758 temp = expand_binop (mode, and_optab, op0,
3759 immed_wide_int_const (mask, mode),
3760 result, 1, OPTAB_LIB_WIDEN);
3761 if (temp != result)
3762 emit_move_insn (result, temp);
3764 label = gen_label_rtx ();
3765 do_cmp_and_jump (result, const0_rtx, GE, mode, label);
3767 temp = expand_binop (mode, sub_optab, result, const1_rtx, result,
3768 0, OPTAB_LIB_WIDEN);
3770 mask = wi::mask (logd, true, prec);
3771 temp = expand_binop (mode, ior_optab, temp,
3772 immed_wide_int_const (mask, mode),
3773 result, 1, OPTAB_LIB_WIDEN);
3774 temp = expand_binop (mode, add_optab, temp, const1_rtx, result,
3775 0, OPTAB_LIB_WIDEN);
3776 if (temp != result)
3777 emit_move_insn (result, temp);
3778 emit_label (label);
3779 return result;
3782 /* Expand signed division of OP0 by a power of two D in mode MODE.
3783 This routine is only called for positive values of D. */
3785 static rtx
3786 expand_sdiv_pow2 (machine_mode mode, rtx op0, HOST_WIDE_INT d)
3788 rtx temp;
3789 rtx_code_label *label;
3790 int logd;
3792 logd = floor_log2 (d);
3794 if (d == 2
3795 && BRANCH_COST (optimize_insn_for_speed_p (),
3796 false) >= 1)
3798 temp = gen_reg_rtx (mode);
3799 temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, 1);
3800 temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
3801 0, OPTAB_LIB_WIDEN);
3802 return expand_shift (RSHIFT_EXPR, mode, temp, logd, NULL_RTX, 0);
3805 if (HAVE_conditional_move
3806 && BRANCH_COST (optimize_insn_for_speed_p (), false) >= 2)
3808 rtx temp2;
3810 start_sequence ();
3811 temp2 = copy_to_mode_reg (mode, op0);
3812 temp = expand_binop (mode, add_optab, temp2, gen_int_mode (d - 1, mode),
3813 NULL_RTX, 0, OPTAB_LIB_WIDEN);
3814 temp = force_reg (mode, temp);
3816 /* Construct "temp2 = (temp2 < 0) ? temp : temp2". */
3817 temp2 = emit_conditional_move (temp2, LT, temp2, const0_rtx,
3818 mode, temp, temp2, mode, 0);
3819 if (temp2)
3821 rtx_insn *seq = get_insns ();
3822 end_sequence ();
3823 emit_insn (seq);
3824 return expand_shift (RSHIFT_EXPR, mode, temp2, logd, NULL_RTX, 0);
3826 end_sequence ();
3829 if (BRANCH_COST (optimize_insn_for_speed_p (),
3830 false) >= 2)
3832 int ushift = GET_MODE_BITSIZE (mode) - logd;
3834 temp = gen_reg_rtx (mode);
3835 temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, -1);
3836 if (GET_MODE_BITSIZE (mode) >= BITS_PER_WORD
3837 || shift_cost (optimize_insn_for_speed_p (), mode, ushift)
3838 > COSTS_N_INSNS (1))
3839 temp = expand_binop (mode, and_optab, temp, gen_int_mode (d - 1, mode),
3840 NULL_RTX, 0, OPTAB_LIB_WIDEN);
3841 else
3842 temp = expand_shift (RSHIFT_EXPR, mode, temp,
3843 ushift, NULL_RTX, 1);
3844 temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
3845 0, OPTAB_LIB_WIDEN);
3846 return expand_shift (RSHIFT_EXPR, mode, temp, logd, NULL_RTX, 0);
3849 label = gen_label_rtx ();
3850 temp = copy_to_mode_reg (mode, op0);
3851 do_cmp_and_jump (temp, const0_rtx, GE, mode, label);
3852 expand_inc (temp, gen_int_mode (d - 1, mode));
3853 emit_label (label);
3854 return expand_shift (RSHIFT_EXPR, mode, temp, logd, NULL_RTX, 0);
3857 /* Emit the code to divide OP0 by OP1, putting the result in TARGET
3858 if that is convenient, and returning where the result is.
3859 You may request either the quotient or the remainder as the result;
3860 specify REM_FLAG nonzero to get the remainder.
3862 CODE is the expression code for which kind of division this is;
3863 it controls how rounding is done. MODE is the machine mode to use.
3864 UNSIGNEDP nonzero means do unsigned division. */
3866 /* ??? For CEIL_MOD_EXPR, can compute incorrect remainder with ANDI
3867 and then correct it by or'ing in missing high bits
3868 if result of ANDI is nonzero.
3869 For ROUND_MOD_EXPR, can use ANDI and then sign-extend the result.
3870 This could optimize to a bfexts instruction.
3871 But C doesn't use these operations, so their optimizations are
3872 left for later. */
3873 /* ??? For modulo, we don't actually need the highpart of the first product,
3874 the low part will do nicely. And for small divisors, the second multiply
3875 can also be a low-part only multiply or even be completely left out.
3876 E.g. to calculate the remainder of a division by 3 with a 32 bit
3877 multiply, multiply with 0x55555556 and extract the upper two bits;
3878 the result is exact for inputs up to 0x1fffffff.
3879 The input range can be reduced by using cross-sum rules.
3880 For odd divisors >= 3, the following table gives right shift counts
3881 so that if a number is shifted by an integer multiple of the given
3882 amount, the remainder stays the same:
3883 2, 4, 3, 6, 10, 12, 4, 8, 18, 6, 11, 20, 18, 0, 5, 10, 12, 0, 12, 20,
3884 14, 12, 23, 21, 8, 0, 20, 18, 0, 0, 6, 12, 0, 22, 0, 18, 20, 30, 0, 0,
3885 0, 8, 0, 11, 12, 10, 36, 0, 30, 0, 0, 12, 0, 0, 0, 0, 44, 12, 24, 0,
3886 20, 0, 7, 14, 0, 18, 36, 0, 0, 46, 60, 0, 42, 0, 15, 24, 20, 0, 0, 33,
3887 0, 20, 0, 0, 18, 0, 60, 0, 0, 0, 0, 0, 40, 18, 0, 0, 12
3889 Cross-sum rules for even numbers can be derived by leaving as many bits
3890 to the right alone as the divisor has zeros to the right.
3891 E.g. if x is an unsigned 32 bit number:
3892 (x mod 12) == (((x & 1023) + ((x >> 8) & ~3)) * 0x15555558 >> 2 * 3) >> 28
3896 expand_divmod (int rem_flag, enum tree_code code, machine_mode mode,
3897 rtx op0, rtx op1, rtx target, int unsignedp)
3899 machine_mode compute_mode;
3900 rtx tquotient;
3901 rtx quotient = 0, remainder = 0;
3902 rtx_insn *last;
3903 int size;
3904 rtx_insn *insn;
3905 optab optab1, optab2;
3906 int op1_is_constant, op1_is_pow2 = 0;
3907 int max_cost, extra_cost;
3908 static HOST_WIDE_INT last_div_const = 0;
3909 bool speed = optimize_insn_for_speed_p ();
3911 op1_is_constant = CONST_INT_P (op1);
3912 if (op1_is_constant)
3914 unsigned HOST_WIDE_INT ext_op1 = UINTVAL (op1);
3915 if (unsignedp)
3916 ext_op1 &= GET_MODE_MASK (mode);
3917 op1_is_pow2 = ((EXACT_POWER_OF_2_OR_ZERO_P (ext_op1)
3918 || (! unsignedp && EXACT_POWER_OF_2_OR_ZERO_P (-ext_op1))));
3922 This is the structure of expand_divmod:
3924 First comes code to fix up the operands so we can perform the operations
3925 correctly and efficiently.
3927 Second comes a switch statement with code specific for each rounding mode.
3928 For some special operands this code emits all RTL for the desired
3929 operation, for other cases, it generates only a quotient and stores it in
3930 QUOTIENT. The case for trunc division/remainder might leave quotient = 0,
3931 to indicate that it has not done anything.
3933 Last comes code that finishes the operation. If QUOTIENT is set and
3934 REM_FLAG is set, the remainder is computed as OP0 - QUOTIENT * OP1. If
3935 QUOTIENT is not set, it is computed using trunc rounding.
3937 We try to generate special code for division and remainder when OP1 is a
3938 constant. If |OP1| = 2**n we can use shifts and some other fast
3939 operations. For other values of OP1, we compute a carefully selected
3940 fixed-point approximation m = 1/OP1, and generate code that multiplies OP0
3941 by m.
3943 In all cases but EXACT_DIV_EXPR, this multiplication requires the upper
3944 half of the product. Different strategies for generating the product are
3945 implemented in expmed_mult_highpart.
3947 If what we actually want is the remainder, we generate that by another
3948 by-constant multiplication and a subtraction. */
3950 /* We shouldn't be called with OP1 == const1_rtx, but some of the
3951 code below will malfunction if we are, so check here and handle
3952 the special case if so. */
3953 if (op1 == const1_rtx)
3954 return rem_flag ? const0_rtx : op0;
3956 /* When dividing by -1, we could get an overflow.
3957 negv_optab can handle overflows. */
3958 if (! unsignedp && op1 == constm1_rtx)
3960 if (rem_flag)
3961 return const0_rtx;
3962 return expand_unop (mode, flag_trapv && GET_MODE_CLASS (mode) == MODE_INT
3963 ? negv_optab : neg_optab, op0, target, 0);
3966 if (target
3967 /* Don't use the function value register as a target
3968 since we have to read it as well as write it,
3969 and function-inlining gets confused by this. */
3970 && ((REG_P (target) && REG_FUNCTION_VALUE_P (target))
3971 /* Don't clobber an operand while doing a multi-step calculation. */
3972 || ((rem_flag || op1_is_constant)
3973 && (reg_mentioned_p (target, op0)
3974 || (MEM_P (op0) && MEM_P (target))))
3975 || reg_mentioned_p (target, op1)
3976 || (MEM_P (op1) && MEM_P (target))))
3977 target = 0;
3979 /* Get the mode in which to perform this computation. Normally it will
3980 be MODE, but sometimes we can't do the desired operation in MODE.
3981 If so, pick a wider mode in which we can do the operation. Convert
3982 to that mode at the start to avoid repeated conversions.
3984 First see what operations we need. These depend on the expression
3985 we are evaluating. (We assume that divxx3 insns exist under the
3986 same conditions that modxx3 insns and that these insns don't normally
3987 fail. If these assumptions are not correct, we may generate less
3988 efficient code in some cases.)
3990 Then see if we find a mode in which we can open-code that operation
3991 (either a division, modulus, or shift). Finally, check for the smallest
3992 mode for which we can do the operation with a library call. */
3994 /* We might want to refine this now that we have division-by-constant
3995 optimization. Since expmed_mult_highpart tries so many variants, it is
3996 not straightforward to generalize this. Maybe we should make an array
3997 of possible modes in init_expmed? Save this for GCC 2.7. */
3999 optab1 = ((op1_is_pow2 && op1 != const0_rtx)
4000 ? (unsignedp ? lshr_optab : ashr_optab)
4001 : (unsignedp ? udiv_optab : sdiv_optab));
4002 optab2 = ((op1_is_pow2 && op1 != const0_rtx)
4003 ? optab1
4004 : (unsignedp ? udivmod_optab : sdivmod_optab));
4006 for (compute_mode = mode; compute_mode != VOIDmode;
4007 compute_mode = GET_MODE_WIDER_MODE (compute_mode))
4008 if (optab_handler (optab1, compute_mode) != CODE_FOR_nothing
4009 || optab_handler (optab2, compute_mode) != CODE_FOR_nothing)
4010 break;
4012 if (compute_mode == VOIDmode)
4013 for (compute_mode = mode; compute_mode != VOIDmode;
4014 compute_mode = GET_MODE_WIDER_MODE (compute_mode))
4015 if (optab_libfunc (optab1, compute_mode)
4016 || optab_libfunc (optab2, compute_mode))
4017 break;
4019 /* If we still couldn't find a mode, use MODE, but expand_binop will
4020 probably die. */
4021 if (compute_mode == VOIDmode)
4022 compute_mode = mode;
4024 if (target && GET_MODE (target) == compute_mode)
4025 tquotient = target;
4026 else
4027 tquotient = gen_reg_rtx (compute_mode);
4029 size = GET_MODE_BITSIZE (compute_mode);
4030 #if 0
4031 /* It should be possible to restrict the precision to GET_MODE_BITSIZE
4032 (mode), and thereby get better code when OP1 is a constant. Do that
4033 later. It will require going over all usages of SIZE below. */
4034 size = GET_MODE_BITSIZE (mode);
4035 #endif
4037 /* Only deduct something for a REM if the last divide done was
4038 for a different constant. Then set the constant of the last
4039 divide. */
4040 max_cost = (unsignedp
4041 ? udiv_cost (speed, compute_mode)
4042 : sdiv_cost (speed, compute_mode));
4043 if (rem_flag && ! (last_div_const != 0 && op1_is_constant
4044 && INTVAL (op1) == last_div_const))
4045 max_cost -= (mul_cost (speed, compute_mode)
4046 + add_cost (speed, compute_mode));
4048 last_div_const = ! rem_flag && op1_is_constant ? INTVAL (op1) : 0;
4050 /* Now convert to the best mode to use. */
4051 if (compute_mode != mode)
4053 op0 = convert_modes (compute_mode, mode, op0, unsignedp);
4054 op1 = convert_modes (compute_mode, mode, op1, unsignedp);
4056 /* convert_modes may have placed op1 into a register, so we
4057 must recompute the following. */
4058 op1_is_constant = CONST_INT_P (op1);
4059 op1_is_pow2 = (op1_is_constant
4060 && ((EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
4061 || (! unsignedp
4062 && EXACT_POWER_OF_2_OR_ZERO_P (-UINTVAL (op1))))));
4065 /* If one of the operands is a volatile MEM, copy it into a register. */
4067 if (MEM_P (op0) && MEM_VOLATILE_P (op0))
4068 op0 = force_reg (compute_mode, op0);
4069 if (MEM_P (op1) && MEM_VOLATILE_P (op1))
4070 op1 = force_reg (compute_mode, op1);
4072 /* If we need the remainder or if OP1 is constant, we need to
4073 put OP0 in a register in case it has any queued subexpressions. */
4074 if (rem_flag || op1_is_constant)
4075 op0 = force_reg (compute_mode, op0);
4077 last = get_last_insn ();
4079 /* Promote floor rounding to trunc rounding for unsigned operations. */
4080 if (unsignedp)
4082 if (code == FLOOR_DIV_EXPR)
4083 code = TRUNC_DIV_EXPR;
4084 if (code == FLOOR_MOD_EXPR)
4085 code = TRUNC_MOD_EXPR;
4086 if (code == EXACT_DIV_EXPR && op1_is_pow2)
4087 code = TRUNC_DIV_EXPR;
4090 if (op1 != const0_rtx)
4091 switch (code)
4093 case TRUNC_MOD_EXPR:
4094 case TRUNC_DIV_EXPR:
4095 if (op1_is_constant)
4097 if (unsignedp)
4099 unsigned HOST_WIDE_INT mh, ml;
4100 int pre_shift, post_shift;
4101 int dummy;
4102 unsigned HOST_WIDE_INT d = (INTVAL (op1)
4103 & GET_MODE_MASK (compute_mode));
4105 if (EXACT_POWER_OF_2_OR_ZERO_P (d))
4107 pre_shift = floor_log2 (d);
4108 if (rem_flag)
4110 unsigned HOST_WIDE_INT mask
4111 = ((unsigned HOST_WIDE_INT) 1 << pre_shift) - 1;
4112 remainder
4113 = expand_binop (compute_mode, and_optab, op0,
4114 gen_int_mode (mask, compute_mode),
4115 remainder, 1,
4116 OPTAB_LIB_WIDEN);
4117 if (remainder)
4118 return gen_lowpart (mode, remainder);
4120 quotient = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4121 pre_shift, tquotient, 1);
4123 else if (size <= HOST_BITS_PER_WIDE_INT)
4125 if (d >= ((unsigned HOST_WIDE_INT) 1 << (size - 1)))
4127 /* Most significant bit of divisor is set; emit an scc
4128 insn. */
4129 quotient = emit_store_flag_force (tquotient, GEU, op0, op1,
4130 compute_mode, 1, 1);
4132 else
4134 /* Find a suitable multiplier and right shift count
4135 instead of multiplying with D. */
4137 mh = choose_multiplier (d, size, size,
4138 &ml, &post_shift, &dummy);
4140 /* If the suggested multiplier is more than SIZE bits,
4141 we can do better for even divisors, using an
4142 initial right shift. */
4143 if (mh != 0 && (d & 1) == 0)
4145 pre_shift = floor_log2 (d & -d);
4146 mh = choose_multiplier (d >> pre_shift, size,
4147 size - pre_shift,
4148 &ml, &post_shift, &dummy);
4149 gcc_assert (!mh);
4151 else
4152 pre_shift = 0;
4154 if (mh != 0)
4156 rtx t1, t2, t3, t4;
4158 if (post_shift - 1 >= BITS_PER_WORD)
4159 goto fail1;
4161 extra_cost
4162 = (shift_cost (speed, compute_mode, post_shift - 1)
4163 + shift_cost (speed, compute_mode, 1)
4164 + 2 * add_cost (speed, compute_mode));
4165 t1 = expmed_mult_highpart
4166 (compute_mode, op0,
4167 gen_int_mode (ml, compute_mode),
4168 NULL_RTX, 1, max_cost - extra_cost);
4169 if (t1 == 0)
4170 goto fail1;
4171 t2 = force_operand (gen_rtx_MINUS (compute_mode,
4172 op0, t1),
4173 NULL_RTX);
4174 t3 = expand_shift (RSHIFT_EXPR, compute_mode,
4175 t2, 1, NULL_RTX, 1);
4176 t4 = force_operand (gen_rtx_PLUS (compute_mode,
4177 t1, t3),
4178 NULL_RTX);
4179 quotient = expand_shift
4180 (RSHIFT_EXPR, compute_mode, t4,
4181 post_shift - 1, tquotient, 1);
4183 else
4185 rtx t1, t2;
4187 if (pre_shift >= BITS_PER_WORD
4188 || post_shift >= BITS_PER_WORD)
4189 goto fail1;
4191 t1 = expand_shift
4192 (RSHIFT_EXPR, compute_mode, op0,
4193 pre_shift, NULL_RTX, 1);
4194 extra_cost
4195 = (shift_cost (speed, compute_mode, pre_shift)
4196 + shift_cost (speed, compute_mode, post_shift));
4197 t2 = expmed_mult_highpart
4198 (compute_mode, t1,
4199 gen_int_mode (ml, compute_mode),
4200 NULL_RTX, 1, max_cost - extra_cost);
4201 if (t2 == 0)
4202 goto fail1;
4203 quotient = expand_shift
4204 (RSHIFT_EXPR, compute_mode, t2,
4205 post_shift, tquotient, 1);
4209 else /* Too wide mode to use tricky code */
4210 break;
4212 insn = get_last_insn ();
4213 if (insn != last)
4214 set_dst_reg_note (insn, REG_EQUAL,
4215 gen_rtx_UDIV (compute_mode, op0, op1),
4216 quotient);
4218 else /* TRUNC_DIV, signed */
4220 unsigned HOST_WIDE_INT ml;
4221 int lgup, post_shift;
4222 rtx mlr;
4223 HOST_WIDE_INT d = INTVAL (op1);
4224 unsigned HOST_WIDE_INT abs_d;
4226 /* Since d might be INT_MIN, we have to cast to
4227 unsigned HOST_WIDE_INT before negating to avoid
4228 undefined signed overflow. */
4229 abs_d = (d >= 0
4230 ? (unsigned HOST_WIDE_INT) d
4231 : - (unsigned HOST_WIDE_INT) d);
4233 /* n rem d = n rem -d */
4234 if (rem_flag && d < 0)
4236 d = abs_d;
4237 op1 = gen_int_mode (abs_d, compute_mode);
4240 if (d == 1)
4241 quotient = op0;
4242 else if (d == -1)
4243 quotient = expand_unop (compute_mode, neg_optab, op0,
4244 tquotient, 0);
4245 else if (HOST_BITS_PER_WIDE_INT >= size
4246 && abs_d == (unsigned HOST_WIDE_INT) 1 << (size - 1))
4248 /* This case is not handled correctly below. */
4249 quotient = emit_store_flag (tquotient, EQ, op0, op1,
4250 compute_mode, 1, 1);
4251 if (quotient == 0)
4252 goto fail1;
4254 else if (EXACT_POWER_OF_2_OR_ZERO_P (d)
4255 && (rem_flag
4256 ? smod_pow2_cheap (speed, compute_mode)
4257 : sdiv_pow2_cheap (speed, compute_mode))
4258 /* We assume that cheap metric is true if the
4259 optab has an expander for this mode. */
4260 && ((optab_handler ((rem_flag ? smod_optab
4261 : sdiv_optab),
4262 compute_mode)
4263 != CODE_FOR_nothing)
4264 || (optab_handler (sdivmod_optab,
4265 compute_mode)
4266 != CODE_FOR_nothing)))
4268 else if (EXACT_POWER_OF_2_OR_ZERO_P (abs_d))
4270 if (rem_flag)
4272 remainder = expand_smod_pow2 (compute_mode, op0, d);
4273 if (remainder)
4274 return gen_lowpart (mode, remainder);
4277 if (sdiv_pow2_cheap (speed, compute_mode)
4278 && ((optab_handler (sdiv_optab, compute_mode)
4279 != CODE_FOR_nothing)
4280 || (optab_handler (sdivmod_optab, compute_mode)
4281 != CODE_FOR_nothing)))
4282 quotient = expand_divmod (0, TRUNC_DIV_EXPR,
4283 compute_mode, op0,
4284 gen_int_mode (abs_d,
4285 compute_mode),
4286 NULL_RTX, 0);
4287 else
4288 quotient = expand_sdiv_pow2 (compute_mode, op0, abs_d);
4290 /* We have computed OP0 / abs(OP1). If OP1 is negative,
4291 negate the quotient. */
4292 if (d < 0)
4294 insn = get_last_insn ();
4295 if (insn != last
4296 && abs_d < ((unsigned HOST_WIDE_INT) 1
4297 << (HOST_BITS_PER_WIDE_INT - 1)))
4298 set_dst_reg_note (insn, REG_EQUAL,
4299 gen_rtx_DIV (compute_mode, op0,
4300 gen_int_mode
4301 (abs_d,
4302 compute_mode)),
4303 quotient);
4305 quotient = expand_unop (compute_mode, neg_optab,
4306 quotient, quotient, 0);
4309 else if (size <= HOST_BITS_PER_WIDE_INT)
4311 choose_multiplier (abs_d, size, size - 1,
4312 &ml, &post_shift, &lgup);
4313 if (ml < (unsigned HOST_WIDE_INT) 1 << (size - 1))
4315 rtx t1, t2, t3;
4317 if (post_shift >= BITS_PER_WORD
4318 || size - 1 >= BITS_PER_WORD)
4319 goto fail1;
4321 extra_cost = (shift_cost (speed, compute_mode, post_shift)
4322 + shift_cost (speed, compute_mode, size - 1)
4323 + add_cost (speed, compute_mode));
4324 t1 = expmed_mult_highpart
4325 (compute_mode, op0, gen_int_mode (ml, compute_mode),
4326 NULL_RTX, 0, max_cost - extra_cost);
4327 if (t1 == 0)
4328 goto fail1;
4329 t2 = expand_shift
4330 (RSHIFT_EXPR, compute_mode, t1,
4331 post_shift, NULL_RTX, 0);
4332 t3 = expand_shift
4333 (RSHIFT_EXPR, compute_mode, op0,
4334 size - 1, NULL_RTX, 0);
4335 if (d < 0)
4336 quotient
4337 = force_operand (gen_rtx_MINUS (compute_mode,
4338 t3, t2),
4339 tquotient);
4340 else
4341 quotient
4342 = force_operand (gen_rtx_MINUS (compute_mode,
4343 t2, t3),
4344 tquotient);
4346 else
4348 rtx t1, t2, t3, t4;
4350 if (post_shift >= BITS_PER_WORD
4351 || size - 1 >= BITS_PER_WORD)
4352 goto fail1;
4354 ml |= (~(unsigned HOST_WIDE_INT) 0) << (size - 1);
4355 mlr = gen_int_mode (ml, compute_mode);
4356 extra_cost = (shift_cost (speed, compute_mode, post_shift)
4357 + shift_cost (speed, compute_mode, size - 1)
4358 + 2 * add_cost (speed, compute_mode));
4359 t1 = expmed_mult_highpart (compute_mode, op0, mlr,
4360 NULL_RTX, 0,
4361 max_cost - extra_cost);
4362 if (t1 == 0)
4363 goto fail1;
4364 t2 = force_operand (gen_rtx_PLUS (compute_mode,
4365 t1, op0),
4366 NULL_RTX);
4367 t3 = expand_shift
4368 (RSHIFT_EXPR, compute_mode, t2,
4369 post_shift, NULL_RTX, 0);
4370 t4 = expand_shift
4371 (RSHIFT_EXPR, compute_mode, op0,
4372 size - 1, NULL_RTX, 0);
4373 if (d < 0)
4374 quotient
4375 = force_operand (gen_rtx_MINUS (compute_mode,
4376 t4, t3),
4377 tquotient);
4378 else
4379 quotient
4380 = force_operand (gen_rtx_MINUS (compute_mode,
4381 t3, t4),
4382 tquotient);
4385 else /* Too wide mode to use tricky code */
4386 break;
4388 insn = get_last_insn ();
4389 if (insn != last)
4390 set_dst_reg_note (insn, REG_EQUAL,
4391 gen_rtx_DIV (compute_mode, op0, op1),
4392 quotient);
4394 break;
4396 fail1:
4397 delete_insns_since (last);
4398 break;
4400 case FLOOR_DIV_EXPR:
4401 case FLOOR_MOD_EXPR:
4402 /* We will come here only for signed operations. */
4403 if (op1_is_constant && HOST_BITS_PER_WIDE_INT >= size)
4405 unsigned HOST_WIDE_INT mh, ml;
4406 int pre_shift, lgup, post_shift;
4407 HOST_WIDE_INT d = INTVAL (op1);
4409 if (d > 0)
4411 /* We could just as easily deal with negative constants here,
4412 but it does not seem worth the trouble for GCC 2.6. */
4413 if (EXACT_POWER_OF_2_OR_ZERO_P (d))
4415 pre_shift = floor_log2 (d);
4416 if (rem_flag)
4418 unsigned HOST_WIDE_INT mask
4419 = ((unsigned HOST_WIDE_INT) 1 << pre_shift) - 1;
4420 remainder = expand_binop
4421 (compute_mode, and_optab, op0,
4422 gen_int_mode (mask, compute_mode),
4423 remainder, 0, OPTAB_LIB_WIDEN);
4424 if (remainder)
4425 return gen_lowpart (mode, remainder);
4427 quotient = expand_shift
4428 (RSHIFT_EXPR, compute_mode, op0,
4429 pre_shift, tquotient, 0);
4431 else
4433 rtx t1, t2, t3, t4;
4435 mh = choose_multiplier (d, size, size - 1,
4436 &ml, &post_shift, &lgup);
4437 gcc_assert (!mh);
4439 if (post_shift < BITS_PER_WORD
4440 && size - 1 < BITS_PER_WORD)
4442 t1 = expand_shift
4443 (RSHIFT_EXPR, compute_mode, op0,
4444 size - 1, NULL_RTX, 0);
4445 t2 = expand_binop (compute_mode, xor_optab, op0, t1,
4446 NULL_RTX, 0, OPTAB_WIDEN);
4447 extra_cost = (shift_cost (speed, compute_mode, post_shift)
4448 + shift_cost (speed, compute_mode, size - 1)
4449 + 2 * add_cost (speed, compute_mode));
4450 t3 = expmed_mult_highpart
4451 (compute_mode, t2, gen_int_mode (ml, compute_mode),
4452 NULL_RTX, 1, max_cost - extra_cost);
4453 if (t3 != 0)
4455 t4 = expand_shift
4456 (RSHIFT_EXPR, compute_mode, t3,
4457 post_shift, NULL_RTX, 1);
4458 quotient = expand_binop (compute_mode, xor_optab,
4459 t4, t1, tquotient, 0,
4460 OPTAB_WIDEN);
4465 else
4467 rtx nsign, t1, t2, t3, t4;
4468 t1 = force_operand (gen_rtx_PLUS (compute_mode,
4469 op0, constm1_rtx), NULL_RTX);
4470 t2 = expand_binop (compute_mode, ior_optab, op0, t1, NULL_RTX,
4471 0, OPTAB_WIDEN);
4472 nsign = expand_shift
4473 (RSHIFT_EXPR, compute_mode, t2,
4474 size - 1, NULL_RTX, 0);
4475 t3 = force_operand (gen_rtx_MINUS (compute_mode, t1, nsign),
4476 NULL_RTX);
4477 t4 = expand_divmod (0, TRUNC_DIV_EXPR, compute_mode, t3, op1,
4478 NULL_RTX, 0);
4479 if (t4)
4481 rtx t5;
4482 t5 = expand_unop (compute_mode, one_cmpl_optab, nsign,
4483 NULL_RTX, 0);
4484 quotient = force_operand (gen_rtx_PLUS (compute_mode,
4485 t4, t5),
4486 tquotient);
4491 if (quotient != 0)
4492 break;
4493 delete_insns_since (last);
4495 /* Try using an instruction that produces both the quotient and
4496 remainder, using truncation. We can easily compensate the quotient
4497 or remainder to get floor rounding, once we have the remainder.
4498 Notice that we compute also the final remainder value here,
4499 and return the result right away. */
4500 if (target == 0 || GET_MODE (target) != compute_mode)
4501 target = gen_reg_rtx (compute_mode);
4503 if (rem_flag)
4505 remainder
4506 = REG_P (target) ? target : gen_reg_rtx (compute_mode);
4507 quotient = gen_reg_rtx (compute_mode);
4509 else
4511 quotient
4512 = REG_P (target) ? target : gen_reg_rtx (compute_mode);
4513 remainder = gen_reg_rtx (compute_mode);
4516 if (expand_twoval_binop (sdivmod_optab, op0, op1,
4517 quotient, remainder, 0))
4519 /* This could be computed with a branch-less sequence.
4520 Save that for later. */
4521 rtx tem;
4522 rtx_code_label *label = gen_label_rtx ();
4523 do_cmp_and_jump (remainder, const0_rtx, EQ, compute_mode, label);
4524 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4525 NULL_RTX, 0, OPTAB_WIDEN);
4526 do_cmp_and_jump (tem, const0_rtx, GE, compute_mode, label);
4527 expand_dec (quotient, const1_rtx);
4528 expand_inc (remainder, op1);
4529 emit_label (label);
4530 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4533 /* No luck with division elimination or divmod. Have to do it
4534 by conditionally adjusting op0 *and* the result. */
4536 rtx_code_label *label1, *label2, *label3, *label4, *label5;
4537 rtx adjusted_op0;
4538 rtx tem;
4540 quotient = gen_reg_rtx (compute_mode);
4541 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4542 label1 = gen_label_rtx ();
4543 label2 = gen_label_rtx ();
4544 label3 = gen_label_rtx ();
4545 label4 = gen_label_rtx ();
4546 label5 = gen_label_rtx ();
4547 do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2);
4548 do_cmp_and_jump (adjusted_op0, const0_rtx, LT, compute_mode, label1);
4549 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4550 quotient, 0, OPTAB_LIB_WIDEN);
4551 if (tem != quotient)
4552 emit_move_insn (quotient, tem);
4553 emit_jump_insn (gen_jump (label5));
4554 emit_barrier ();
4555 emit_label (label1);
4556 expand_inc (adjusted_op0, const1_rtx);
4557 emit_jump_insn (gen_jump (label4));
4558 emit_barrier ();
4559 emit_label (label2);
4560 do_cmp_and_jump (adjusted_op0, const0_rtx, GT, compute_mode, label3);
4561 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4562 quotient, 0, OPTAB_LIB_WIDEN);
4563 if (tem != quotient)
4564 emit_move_insn (quotient, tem);
4565 emit_jump_insn (gen_jump (label5));
4566 emit_barrier ();
4567 emit_label (label3);
4568 expand_dec (adjusted_op0, const1_rtx);
4569 emit_label (label4);
4570 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4571 quotient, 0, OPTAB_LIB_WIDEN);
4572 if (tem != quotient)
4573 emit_move_insn (quotient, tem);
4574 expand_dec (quotient, const1_rtx);
4575 emit_label (label5);
4577 break;
4579 case CEIL_DIV_EXPR:
4580 case CEIL_MOD_EXPR:
4581 if (unsignedp)
4583 if (op1_is_constant && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1)))
4585 rtx t1, t2, t3;
4586 unsigned HOST_WIDE_INT d = INTVAL (op1);
4587 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4588 floor_log2 (d), tquotient, 1);
4589 t2 = expand_binop (compute_mode, and_optab, op0,
4590 gen_int_mode (d - 1, compute_mode),
4591 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4592 t3 = gen_reg_rtx (compute_mode);
4593 t3 = emit_store_flag (t3, NE, t2, const0_rtx,
4594 compute_mode, 1, 1);
4595 if (t3 == 0)
4597 rtx_code_label *lab;
4598 lab = gen_label_rtx ();
4599 do_cmp_and_jump (t2, const0_rtx, EQ, compute_mode, lab);
4600 expand_inc (t1, const1_rtx);
4601 emit_label (lab);
4602 quotient = t1;
4604 else
4605 quotient = force_operand (gen_rtx_PLUS (compute_mode,
4606 t1, t3),
4607 tquotient);
4608 break;
4611 /* Try using an instruction that produces both the quotient and
4612 remainder, using truncation. We can easily compensate the
4613 quotient or remainder to get ceiling rounding, once we have the
4614 remainder. Notice that we compute also the final remainder
4615 value here, and return the result right away. */
4616 if (target == 0 || GET_MODE (target) != compute_mode)
4617 target = gen_reg_rtx (compute_mode);
4619 if (rem_flag)
4621 remainder = (REG_P (target)
4622 ? target : gen_reg_rtx (compute_mode));
4623 quotient = gen_reg_rtx (compute_mode);
4625 else
4627 quotient = (REG_P (target)
4628 ? target : gen_reg_rtx (compute_mode));
4629 remainder = gen_reg_rtx (compute_mode);
4632 if (expand_twoval_binop (udivmod_optab, op0, op1, quotient,
4633 remainder, 1))
4635 /* This could be computed with a branch-less sequence.
4636 Save that for later. */
4637 rtx_code_label *label = gen_label_rtx ();
4638 do_cmp_and_jump (remainder, const0_rtx, EQ,
4639 compute_mode, label);
4640 expand_inc (quotient, const1_rtx);
4641 expand_dec (remainder, op1);
4642 emit_label (label);
4643 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4646 /* No luck with division elimination or divmod. Have to do it
4647 by conditionally adjusting op0 *and* the result. */
4649 rtx_code_label *label1, *label2;
4650 rtx adjusted_op0, tem;
4652 quotient = gen_reg_rtx (compute_mode);
4653 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4654 label1 = gen_label_rtx ();
4655 label2 = gen_label_rtx ();
4656 do_cmp_and_jump (adjusted_op0, const0_rtx, NE,
4657 compute_mode, label1);
4658 emit_move_insn (quotient, const0_rtx);
4659 emit_jump_insn (gen_jump (label2));
4660 emit_barrier ();
4661 emit_label (label1);
4662 expand_dec (adjusted_op0, const1_rtx);
4663 tem = expand_binop (compute_mode, udiv_optab, adjusted_op0, op1,
4664 quotient, 1, OPTAB_LIB_WIDEN);
4665 if (tem != quotient)
4666 emit_move_insn (quotient, tem);
4667 expand_inc (quotient, const1_rtx);
4668 emit_label (label2);
4671 else /* signed */
4673 if (op1_is_constant && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
4674 && INTVAL (op1) >= 0)
4676 /* This is extremely similar to the code for the unsigned case
4677 above. For 2.7 we should merge these variants, but for
4678 2.6.1 I don't want to touch the code for unsigned since that
4679 get used in C. The signed case will only be used by other
4680 languages (Ada). */
4682 rtx t1, t2, t3;
4683 unsigned HOST_WIDE_INT d = INTVAL (op1);
4684 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4685 floor_log2 (d), tquotient, 0);
4686 t2 = expand_binop (compute_mode, and_optab, op0,
4687 gen_int_mode (d - 1, compute_mode),
4688 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4689 t3 = gen_reg_rtx (compute_mode);
4690 t3 = emit_store_flag (t3, NE, t2, const0_rtx,
4691 compute_mode, 1, 1);
4692 if (t3 == 0)
4694 rtx_code_label *lab;
4695 lab = gen_label_rtx ();
4696 do_cmp_and_jump (t2, const0_rtx, EQ, compute_mode, lab);
4697 expand_inc (t1, const1_rtx);
4698 emit_label (lab);
4699 quotient = t1;
4701 else
4702 quotient = force_operand (gen_rtx_PLUS (compute_mode,
4703 t1, t3),
4704 tquotient);
4705 break;
4708 /* Try using an instruction that produces both the quotient and
4709 remainder, using truncation. We can easily compensate the
4710 quotient or remainder to get ceiling rounding, once we have the
4711 remainder. Notice that we compute also the final remainder
4712 value here, and return the result right away. */
4713 if (target == 0 || GET_MODE (target) != compute_mode)
4714 target = gen_reg_rtx (compute_mode);
4715 if (rem_flag)
4717 remainder= (REG_P (target)
4718 ? target : gen_reg_rtx (compute_mode));
4719 quotient = gen_reg_rtx (compute_mode);
4721 else
4723 quotient = (REG_P (target)
4724 ? target : gen_reg_rtx (compute_mode));
4725 remainder = gen_reg_rtx (compute_mode);
4728 if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient,
4729 remainder, 0))
4731 /* This could be computed with a branch-less sequence.
4732 Save that for later. */
4733 rtx tem;
4734 rtx_code_label *label = gen_label_rtx ();
4735 do_cmp_and_jump (remainder, const0_rtx, EQ,
4736 compute_mode, label);
4737 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4738 NULL_RTX, 0, OPTAB_WIDEN);
4739 do_cmp_and_jump (tem, const0_rtx, LT, compute_mode, label);
4740 expand_inc (quotient, const1_rtx);
4741 expand_dec (remainder, op1);
4742 emit_label (label);
4743 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4746 /* No luck with division elimination or divmod. Have to do it
4747 by conditionally adjusting op0 *and* the result. */
4749 rtx_code_label *label1, *label2, *label3, *label4, *label5;
4750 rtx adjusted_op0;
4751 rtx tem;
4753 quotient = gen_reg_rtx (compute_mode);
4754 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4755 label1 = gen_label_rtx ();
4756 label2 = gen_label_rtx ();
4757 label3 = gen_label_rtx ();
4758 label4 = gen_label_rtx ();
4759 label5 = gen_label_rtx ();
4760 do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2);
4761 do_cmp_and_jump (adjusted_op0, const0_rtx, GT,
4762 compute_mode, label1);
4763 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4764 quotient, 0, OPTAB_LIB_WIDEN);
4765 if (tem != quotient)
4766 emit_move_insn (quotient, tem);
4767 emit_jump_insn (gen_jump (label5));
4768 emit_barrier ();
4769 emit_label (label1);
4770 expand_dec (adjusted_op0, const1_rtx);
4771 emit_jump_insn (gen_jump (label4));
4772 emit_barrier ();
4773 emit_label (label2);
4774 do_cmp_and_jump (adjusted_op0, const0_rtx, LT,
4775 compute_mode, label3);
4776 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4777 quotient, 0, OPTAB_LIB_WIDEN);
4778 if (tem != quotient)
4779 emit_move_insn (quotient, tem);
4780 emit_jump_insn (gen_jump (label5));
4781 emit_barrier ();
4782 emit_label (label3);
4783 expand_inc (adjusted_op0, const1_rtx);
4784 emit_label (label4);
4785 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4786 quotient, 0, OPTAB_LIB_WIDEN);
4787 if (tem != quotient)
4788 emit_move_insn (quotient, tem);
4789 expand_inc (quotient, const1_rtx);
4790 emit_label (label5);
4793 break;
4795 case EXACT_DIV_EXPR:
4796 if (op1_is_constant && HOST_BITS_PER_WIDE_INT >= size)
4798 HOST_WIDE_INT d = INTVAL (op1);
4799 unsigned HOST_WIDE_INT ml;
4800 int pre_shift;
4801 rtx t1;
4803 pre_shift = floor_log2 (d & -d);
4804 ml = invert_mod2n (d >> pre_shift, size);
4805 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4806 pre_shift, NULL_RTX, unsignedp);
4807 quotient = expand_mult (compute_mode, t1,
4808 gen_int_mode (ml, compute_mode),
4809 NULL_RTX, 1);
4811 insn = get_last_insn ();
4812 set_dst_reg_note (insn, REG_EQUAL,
4813 gen_rtx_fmt_ee (unsignedp ? UDIV : DIV,
4814 compute_mode, op0, op1),
4815 quotient);
4817 break;
4819 case ROUND_DIV_EXPR:
4820 case ROUND_MOD_EXPR:
4821 if (unsignedp)
4823 rtx tem;
4824 rtx_code_label *label;
4825 label = gen_label_rtx ();
4826 quotient = gen_reg_rtx (compute_mode);
4827 remainder = gen_reg_rtx (compute_mode);
4828 if (expand_twoval_binop (udivmod_optab, op0, op1, quotient, remainder, 1) == 0)
4830 rtx tem;
4831 quotient = expand_binop (compute_mode, udiv_optab, op0, op1,
4832 quotient, 1, OPTAB_LIB_WIDEN);
4833 tem = expand_mult (compute_mode, quotient, op1, NULL_RTX, 1);
4834 remainder = expand_binop (compute_mode, sub_optab, op0, tem,
4835 remainder, 1, OPTAB_LIB_WIDEN);
4837 tem = plus_constant (compute_mode, op1, -1);
4838 tem = expand_shift (RSHIFT_EXPR, compute_mode, tem, 1, NULL_RTX, 1);
4839 do_cmp_and_jump (remainder, tem, LEU, compute_mode, label);
4840 expand_inc (quotient, const1_rtx);
4841 expand_dec (remainder, op1);
4842 emit_label (label);
4844 else
4846 rtx abs_rem, abs_op1, tem, mask;
4847 rtx_code_label *label;
4848 label = gen_label_rtx ();
4849 quotient = gen_reg_rtx (compute_mode);
4850 remainder = gen_reg_rtx (compute_mode);
4851 if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient, remainder, 0) == 0)
4853 rtx tem;
4854 quotient = expand_binop (compute_mode, sdiv_optab, op0, op1,
4855 quotient, 0, OPTAB_LIB_WIDEN);
4856 tem = expand_mult (compute_mode, quotient, op1, NULL_RTX, 0);
4857 remainder = expand_binop (compute_mode, sub_optab, op0, tem,
4858 remainder, 0, OPTAB_LIB_WIDEN);
4860 abs_rem = expand_abs (compute_mode, remainder, NULL_RTX, 1, 0);
4861 abs_op1 = expand_abs (compute_mode, op1, NULL_RTX, 1, 0);
4862 tem = expand_shift (LSHIFT_EXPR, compute_mode, abs_rem,
4863 1, NULL_RTX, 1);
4864 do_cmp_and_jump (tem, abs_op1, LTU, compute_mode, label);
4865 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4866 NULL_RTX, 0, OPTAB_WIDEN);
4867 mask = expand_shift (RSHIFT_EXPR, compute_mode, tem,
4868 size - 1, NULL_RTX, 0);
4869 tem = expand_binop (compute_mode, xor_optab, mask, const1_rtx,
4870 NULL_RTX, 0, OPTAB_WIDEN);
4871 tem = expand_binop (compute_mode, sub_optab, tem, mask,
4872 NULL_RTX, 0, OPTAB_WIDEN);
4873 expand_inc (quotient, tem);
4874 tem = expand_binop (compute_mode, xor_optab, mask, op1,
4875 NULL_RTX, 0, OPTAB_WIDEN);
4876 tem = expand_binop (compute_mode, sub_optab, tem, mask,
4877 NULL_RTX, 0, OPTAB_WIDEN);
4878 expand_dec (remainder, tem);
4879 emit_label (label);
4881 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4883 default:
4884 gcc_unreachable ();
4887 if (quotient == 0)
4889 if (target && GET_MODE (target) != compute_mode)
4890 target = 0;
4892 if (rem_flag)
4894 /* Try to produce the remainder without producing the quotient.
4895 If we seem to have a divmod pattern that does not require widening,
4896 don't try widening here. We should really have a WIDEN argument
4897 to expand_twoval_binop, since what we'd really like to do here is
4898 1) try a mod insn in compute_mode
4899 2) try a divmod insn in compute_mode
4900 3) try a div insn in compute_mode and multiply-subtract to get
4901 remainder
4902 4) try the same things with widening allowed. */
4903 remainder
4904 = sign_expand_binop (compute_mode, umod_optab, smod_optab,
4905 op0, op1, target,
4906 unsignedp,
4907 ((optab_handler (optab2, compute_mode)
4908 != CODE_FOR_nothing)
4909 ? OPTAB_DIRECT : OPTAB_WIDEN));
4910 if (remainder == 0)
4912 /* No luck there. Can we do remainder and divide at once
4913 without a library call? */
4914 remainder = gen_reg_rtx (compute_mode);
4915 if (! expand_twoval_binop ((unsignedp
4916 ? udivmod_optab
4917 : sdivmod_optab),
4918 op0, op1,
4919 NULL_RTX, remainder, unsignedp))
4920 remainder = 0;
4923 if (remainder)
4924 return gen_lowpart (mode, remainder);
4927 /* Produce the quotient. Try a quotient insn, but not a library call.
4928 If we have a divmod in this mode, use it in preference to widening
4929 the div (for this test we assume it will not fail). Note that optab2
4930 is set to the one of the two optabs that the call below will use. */
4931 quotient
4932 = sign_expand_binop (compute_mode, udiv_optab, sdiv_optab,
4933 op0, op1, rem_flag ? NULL_RTX : target,
4934 unsignedp,
4935 ((optab_handler (optab2, compute_mode)
4936 != CODE_FOR_nothing)
4937 ? OPTAB_DIRECT : OPTAB_WIDEN));
4939 if (quotient == 0)
4941 /* No luck there. Try a quotient-and-remainder insn,
4942 keeping the quotient alone. */
4943 quotient = gen_reg_rtx (compute_mode);
4944 if (! expand_twoval_binop (unsignedp ? udivmod_optab : sdivmod_optab,
4945 op0, op1,
4946 quotient, NULL_RTX, unsignedp))
4948 quotient = 0;
4949 if (! rem_flag)
4950 /* Still no luck. If we are not computing the remainder,
4951 use a library call for the quotient. */
4952 quotient = sign_expand_binop (compute_mode,
4953 udiv_optab, sdiv_optab,
4954 op0, op1, target,
4955 unsignedp, OPTAB_LIB_WIDEN);
4960 if (rem_flag)
4962 if (target && GET_MODE (target) != compute_mode)
4963 target = 0;
4965 if (quotient == 0)
4967 /* No divide instruction either. Use library for remainder. */
4968 remainder = sign_expand_binop (compute_mode, umod_optab, smod_optab,
4969 op0, op1, target,
4970 unsignedp, OPTAB_LIB_WIDEN);
4971 /* No remainder function. Try a quotient-and-remainder
4972 function, keeping the remainder. */
4973 if (!remainder)
4975 remainder = gen_reg_rtx (compute_mode);
4976 if (!expand_twoval_binop_libfunc
4977 (unsignedp ? udivmod_optab : sdivmod_optab,
4978 op0, op1,
4979 NULL_RTX, remainder,
4980 unsignedp ? UMOD : MOD))
4981 remainder = NULL_RTX;
4984 else
4986 /* We divided. Now finish doing X - Y * (X / Y). */
4987 remainder = expand_mult (compute_mode, quotient, op1,
4988 NULL_RTX, unsignedp);
4989 remainder = expand_binop (compute_mode, sub_optab, op0,
4990 remainder, target, unsignedp,
4991 OPTAB_LIB_WIDEN);
4995 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4998 /* Return a tree node with data type TYPE, describing the value of X.
4999 Usually this is an VAR_DECL, if there is no obvious better choice.
5000 X may be an expression, however we only support those expressions
5001 generated by loop.c. */
5003 tree
5004 make_tree (tree type, rtx x)
5006 tree t;
5008 switch (GET_CODE (x))
5010 case CONST_INT:
5011 case CONST_WIDE_INT:
5012 t = wide_int_to_tree (type, std::make_pair (x, TYPE_MODE (type)));
5013 return t;
5015 case CONST_DOUBLE:
5016 STATIC_ASSERT (HOST_BITS_PER_WIDE_INT * 2 <= MAX_BITSIZE_MODE_ANY_INT);
5017 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (x) == VOIDmode)
5018 t = wide_int_to_tree (type,
5019 wide_int::from_array (&CONST_DOUBLE_LOW (x), 2,
5020 HOST_BITS_PER_WIDE_INT * 2));
5021 else
5023 REAL_VALUE_TYPE d;
5025 REAL_VALUE_FROM_CONST_DOUBLE (d, x);
5026 t = build_real (type, d);
5029 return t;
5031 case CONST_VECTOR:
5033 int units = CONST_VECTOR_NUNITS (x);
5034 tree itype = TREE_TYPE (type);
5035 tree *elts;
5036 int i;
5038 /* Build a tree with vector elements. */
5039 elts = XALLOCAVEC (tree, units);
5040 for (i = units - 1; i >= 0; --i)
5042 rtx elt = CONST_VECTOR_ELT (x, i);
5043 elts[i] = make_tree (itype, elt);
5046 return build_vector (type, elts);
5049 case PLUS:
5050 return fold_build2 (PLUS_EXPR, type, make_tree (type, XEXP (x, 0)),
5051 make_tree (type, XEXP (x, 1)));
5053 case MINUS:
5054 return fold_build2 (MINUS_EXPR, type, make_tree (type, XEXP (x, 0)),
5055 make_tree (type, XEXP (x, 1)));
5057 case NEG:
5058 return fold_build1 (NEGATE_EXPR, type, make_tree (type, XEXP (x, 0)));
5060 case MULT:
5061 return fold_build2 (MULT_EXPR, type, make_tree (type, XEXP (x, 0)),
5062 make_tree (type, XEXP (x, 1)));
5064 case ASHIFT:
5065 return fold_build2 (LSHIFT_EXPR, type, make_tree (type, XEXP (x, 0)),
5066 make_tree (type, XEXP (x, 1)));
5068 case LSHIFTRT:
5069 t = unsigned_type_for (type);
5070 return fold_convert (type, build2 (RSHIFT_EXPR, t,
5071 make_tree (t, XEXP (x, 0)),
5072 make_tree (type, XEXP (x, 1))));
5074 case ASHIFTRT:
5075 t = signed_type_for (type);
5076 return fold_convert (type, build2 (RSHIFT_EXPR, t,
5077 make_tree (t, XEXP (x, 0)),
5078 make_tree (type, XEXP (x, 1))));
5080 case DIV:
5081 if (TREE_CODE (type) != REAL_TYPE)
5082 t = signed_type_for (type);
5083 else
5084 t = type;
5086 return fold_convert (type, build2 (TRUNC_DIV_EXPR, t,
5087 make_tree (t, XEXP (x, 0)),
5088 make_tree (t, XEXP (x, 1))));
5089 case UDIV:
5090 t = unsigned_type_for (type);
5091 return fold_convert (type, build2 (TRUNC_DIV_EXPR, t,
5092 make_tree (t, XEXP (x, 0)),
5093 make_tree (t, XEXP (x, 1))));
5095 case SIGN_EXTEND:
5096 case ZERO_EXTEND:
5097 t = lang_hooks.types.type_for_mode (GET_MODE (XEXP (x, 0)),
5098 GET_CODE (x) == ZERO_EXTEND);
5099 return fold_convert (type, make_tree (t, XEXP (x, 0)));
5101 case CONST:
5102 return make_tree (type, XEXP (x, 0));
5104 case SYMBOL_REF:
5105 t = SYMBOL_REF_DECL (x);
5106 if (t)
5107 return fold_convert (type, build_fold_addr_expr (t));
5108 /* else fall through. */
5110 default:
5111 t = build_decl (RTL_LOCATION (x), VAR_DECL, NULL_TREE, type);
5113 /* If TYPE is a POINTER_TYPE, we might need to convert X from
5114 address mode to pointer mode. */
5115 if (POINTER_TYPE_P (type))
5116 x = convert_memory_address_addr_space
5117 (TYPE_MODE (type), x, TYPE_ADDR_SPACE (TREE_TYPE (type)));
5119 /* Note that we do *not* use SET_DECL_RTL here, because we do not
5120 want set_decl_rtl to go adjusting REG_ATTRS for this temporary. */
5121 t->decl_with_rtl.rtl = x;
5123 return t;
5127 /* Compute the logical-and of OP0 and OP1, storing it in TARGET
5128 and returning TARGET.
5130 If TARGET is 0, a pseudo-register or constant is returned. */
5133 expand_and (machine_mode mode, rtx op0, rtx op1, rtx target)
5135 rtx tem = 0;
5137 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
5138 tem = simplify_binary_operation (AND, mode, op0, op1);
5139 if (tem == 0)
5140 tem = expand_binop (mode, and_optab, op0, op1, target, 0, OPTAB_LIB_WIDEN);
5142 if (target == 0)
5143 target = tem;
5144 else if (tem != target)
5145 emit_move_insn (target, tem);
5146 return target;
5149 /* Helper function for emit_store_flag. */
5151 emit_cstore (rtx target, enum insn_code icode, enum rtx_code code,
5152 machine_mode mode, machine_mode compare_mode,
5153 int unsignedp, rtx x, rtx y, int normalizep,
5154 machine_mode target_mode)
5156 struct expand_operand ops[4];
5157 rtx op0, comparison, subtarget;
5158 rtx_insn *last;
5159 machine_mode result_mode = targetm.cstore_mode (icode);
5161 last = get_last_insn ();
5162 x = prepare_operand (icode, x, 2, mode, compare_mode, unsignedp);
5163 y = prepare_operand (icode, y, 3, mode, compare_mode, unsignedp);
5164 if (!x || !y)
5166 delete_insns_since (last);
5167 return NULL_RTX;
5170 if (target_mode == VOIDmode)
5171 target_mode = result_mode;
5172 if (!target)
5173 target = gen_reg_rtx (target_mode);
5175 comparison = gen_rtx_fmt_ee (code, result_mode, x, y);
5177 create_output_operand (&ops[0], optimize ? NULL_RTX : target, result_mode);
5178 create_fixed_operand (&ops[1], comparison);
5179 create_fixed_operand (&ops[2], x);
5180 create_fixed_operand (&ops[3], y);
5181 if (!maybe_expand_insn (icode, 4, ops))
5183 delete_insns_since (last);
5184 return NULL_RTX;
5186 subtarget = ops[0].value;
5188 /* If we are converting to a wider mode, first convert to
5189 TARGET_MODE, then normalize. This produces better combining
5190 opportunities on machines that have a SIGN_EXTRACT when we are
5191 testing a single bit. This mostly benefits the 68k.
5193 If STORE_FLAG_VALUE does not have the sign bit set when
5194 interpreted in MODE, we can do this conversion as unsigned, which
5195 is usually more efficient. */
5196 if (GET_MODE_SIZE (target_mode) > GET_MODE_SIZE (result_mode))
5198 convert_move (target, subtarget,
5199 val_signbit_known_clear_p (result_mode,
5200 STORE_FLAG_VALUE));
5201 op0 = target;
5202 result_mode = target_mode;
5204 else
5205 op0 = subtarget;
5207 /* If we want to keep subexpressions around, don't reuse our last
5208 target. */
5209 if (optimize)
5210 subtarget = 0;
5212 /* Now normalize to the proper value in MODE. Sometimes we don't
5213 have to do anything. */
5214 if (normalizep == 0 || normalizep == STORE_FLAG_VALUE)
5216 /* STORE_FLAG_VALUE might be the most negative number, so write
5217 the comparison this way to avoid a compiler-time warning. */
5218 else if (- normalizep == STORE_FLAG_VALUE)
5219 op0 = expand_unop (result_mode, neg_optab, op0, subtarget, 0);
5221 /* We don't want to use STORE_FLAG_VALUE < 0 below since this makes
5222 it hard to use a value of just the sign bit due to ANSI integer
5223 constant typing rules. */
5224 else if (val_signbit_known_set_p (result_mode, STORE_FLAG_VALUE))
5225 op0 = expand_shift (RSHIFT_EXPR, result_mode, op0,
5226 GET_MODE_BITSIZE (result_mode) - 1, subtarget,
5227 normalizep == 1);
5228 else
5230 gcc_assert (STORE_FLAG_VALUE & 1);
5232 op0 = expand_and (result_mode, op0, const1_rtx, subtarget);
5233 if (normalizep == -1)
5234 op0 = expand_unop (result_mode, neg_optab, op0, op0, 0);
5237 /* If we were converting to a smaller mode, do the conversion now. */
5238 if (target_mode != result_mode)
5240 convert_move (target, op0, 0);
5241 return target;
5243 else
5244 return op0;
5248 /* A subroutine of emit_store_flag only including "tricks" that do not
5249 need a recursive call. These are kept separate to avoid infinite
5250 loops. */
5252 static rtx
5253 emit_store_flag_1 (rtx target, enum rtx_code code, rtx op0, rtx op1,
5254 machine_mode mode, int unsignedp, int normalizep,
5255 machine_mode target_mode)
5257 rtx subtarget;
5258 enum insn_code icode;
5259 machine_mode compare_mode;
5260 enum mode_class mclass;
5261 enum rtx_code scode;
5263 if (unsignedp)
5264 code = unsigned_condition (code);
5265 scode = swap_condition (code);
5267 /* If one operand is constant, make it the second one. Only do this
5268 if the other operand is not constant as well. */
5270 if (swap_commutative_operands_p (op0, op1))
5272 std::swap (op0, op1);
5273 code = swap_condition (code);
5276 if (mode == VOIDmode)
5277 mode = GET_MODE (op0);
5279 /* For some comparisons with 1 and -1, we can convert this to
5280 comparisons with zero. This will often produce more opportunities for
5281 store-flag insns. */
5283 switch (code)
5285 case LT:
5286 if (op1 == const1_rtx)
5287 op1 = const0_rtx, code = LE;
5288 break;
5289 case LE:
5290 if (op1 == constm1_rtx)
5291 op1 = const0_rtx, code = LT;
5292 break;
5293 case GE:
5294 if (op1 == const1_rtx)
5295 op1 = const0_rtx, code = GT;
5296 break;
5297 case GT:
5298 if (op1 == constm1_rtx)
5299 op1 = const0_rtx, code = GE;
5300 break;
5301 case GEU:
5302 if (op1 == const1_rtx)
5303 op1 = const0_rtx, code = NE;
5304 break;
5305 case LTU:
5306 if (op1 == const1_rtx)
5307 op1 = const0_rtx, code = EQ;
5308 break;
5309 default:
5310 break;
5313 /* If we are comparing a double-word integer with zero or -1, we can
5314 convert the comparison into one involving a single word. */
5315 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD * 2
5316 && GET_MODE_CLASS (mode) == MODE_INT
5317 && (!MEM_P (op0) || ! MEM_VOLATILE_P (op0)))
5319 rtx tem;
5320 if ((code == EQ || code == NE)
5321 && (op1 == const0_rtx || op1 == constm1_rtx))
5323 rtx op00, op01;
5325 /* Do a logical OR or AND of the two words and compare the
5326 result. */
5327 op00 = simplify_gen_subreg (word_mode, op0, mode, 0);
5328 op01 = simplify_gen_subreg (word_mode, op0, mode, UNITS_PER_WORD);
5329 tem = expand_binop (word_mode,
5330 op1 == const0_rtx ? ior_optab : and_optab,
5331 op00, op01, NULL_RTX, unsignedp,
5332 OPTAB_DIRECT);
5334 if (tem != 0)
5335 tem = emit_store_flag (NULL_RTX, code, tem, op1, word_mode,
5336 unsignedp, normalizep);
5338 else if ((code == LT || code == GE) && op1 == const0_rtx)
5340 rtx op0h;
5342 /* If testing the sign bit, can just test on high word. */
5343 op0h = simplify_gen_subreg (word_mode, op0, mode,
5344 subreg_highpart_offset (word_mode,
5345 mode));
5346 tem = emit_store_flag (NULL_RTX, code, op0h, op1, word_mode,
5347 unsignedp, normalizep);
5349 else
5350 tem = NULL_RTX;
5352 if (tem)
5354 if (target_mode == VOIDmode || GET_MODE (tem) == target_mode)
5355 return tem;
5356 if (!target)
5357 target = gen_reg_rtx (target_mode);
5359 convert_move (target, tem,
5360 !val_signbit_known_set_p (word_mode,
5361 (normalizep ? normalizep
5362 : STORE_FLAG_VALUE)));
5363 return target;
5367 /* If this is A < 0 or A >= 0, we can do this by taking the ones
5368 complement of A (for GE) and shifting the sign bit to the low bit. */
5369 if (op1 == const0_rtx && (code == LT || code == GE)
5370 && GET_MODE_CLASS (mode) == MODE_INT
5371 && (normalizep || STORE_FLAG_VALUE == 1
5372 || val_signbit_p (mode, STORE_FLAG_VALUE)))
5374 subtarget = target;
5376 if (!target)
5377 target_mode = mode;
5379 /* If the result is to be wider than OP0, it is best to convert it
5380 first. If it is to be narrower, it is *incorrect* to convert it
5381 first. */
5382 else if (GET_MODE_SIZE (target_mode) > GET_MODE_SIZE (mode))
5384 op0 = convert_modes (target_mode, mode, op0, 0);
5385 mode = target_mode;
5388 if (target_mode != mode)
5389 subtarget = 0;
5391 if (code == GE)
5392 op0 = expand_unop (mode, one_cmpl_optab, op0,
5393 ((STORE_FLAG_VALUE == 1 || normalizep)
5394 ? 0 : subtarget), 0);
5396 if (STORE_FLAG_VALUE == 1 || normalizep)
5397 /* If we are supposed to produce a 0/1 value, we want to do
5398 a logical shift from the sign bit to the low-order bit; for
5399 a -1/0 value, we do an arithmetic shift. */
5400 op0 = expand_shift (RSHIFT_EXPR, mode, op0,
5401 GET_MODE_BITSIZE (mode) - 1,
5402 subtarget, normalizep != -1);
5404 if (mode != target_mode)
5405 op0 = convert_modes (target_mode, mode, op0, 0);
5407 return op0;
5410 mclass = GET_MODE_CLASS (mode);
5411 for (compare_mode = mode; compare_mode != VOIDmode;
5412 compare_mode = GET_MODE_WIDER_MODE (compare_mode))
5414 machine_mode optab_mode = mclass == MODE_CC ? CCmode : compare_mode;
5415 icode = optab_handler (cstore_optab, optab_mode);
5416 if (icode != CODE_FOR_nothing)
5418 do_pending_stack_adjust ();
5419 rtx tem = emit_cstore (target, icode, code, mode, compare_mode,
5420 unsignedp, op0, op1, normalizep, target_mode);
5421 if (tem)
5422 return tem;
5424 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
5426 tem = emit_cstore (target, icode, scode, mode, compare_mode,
5427 unsignedp, op1, op0, normalizep, target_mode);
5428 if (tem)
5429 return tem;
5431 break;
5435 return 0;
5438 /* Emit a store-flags instruction for comparison CODE on OP0 and OP1
5439 and storing in TARGET. Normally return TARGET.
5440 Return 0 if that cannot be done.
5442 MODE is the mode to use for OP0 and OP1 should they be CONST_INTs. If
5443 it is VOIDmode, they cannot both be CONST_INT.
5445 UNSIGNEDP is for the case where we have to widen the operands
5446 to perform the operation. It says to use zero-extension.
5448 NORMALIZEP is 1 if we should convert the result to be either zero
5449 or one. Normalize is -1 if we should convert the result to be
5450 either zero or -1. If NORMALIZEP is zero, the result will be left
5451 "raw" out of the scc insn. */
5454 emit_store_flag (rtx target, enum rtx_code code, rtx op0, rtx op1,
5455 machine_mode mode, int unsignedp, int normalizep)
5457 machine_mode target_mode = target ? GET_MODE (target) : VOIDmode;
5458 enum rtx_code rcode;
5459 rtx subtarget;
5460 rtx tem, trueval;
5461 rtx_insn *last;
5463 /* If we compare constants, we shouldn't use a store-flag operation,
5464 but a constant load. We can get there via the vanilla route that
5465 usually generates a compare-branch sequence, but will in this case
5466 fold the comparison to a constant, and thus elide the branch. */
5467 if (CONSTANT_P (op0) && CONSTANT_P (op1))
5468 return NULL_RTX;
5470 tem = emit_store_flag_1 (target, code, op0, op1, mode, unsignedp, normalizep,
5471 target_mode);
5472 if (tem)
5473 return tem;
5475 /* If we reached here, we can't do this with a scc insn, however there
5476 are some comparisons that can be done in other ways. Don't do any
5477 of these cases if branches are very cheap. */
5478 if (BRANCH_COST (optimize_insn_for_speed_p (), false) == 0)
5479 return 0;
5481 /* See what we need to return. We can only return a 1, -1, or the
5482 sign bit. */
5484 if (normalizep == 0)
5486 if (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
5487 normalizep = STORE_FLAG_VALUE;
5489 else if (val_signbit_p (mode, STORE_FLAG_VALUE))
5491 else
5492 return 0;
5495 last = get_last_insn ();
5497 /* If optimizing, use different pseudo registers for each insn, instead
5498 of reusing the same pseudo. This leads to better CSE, but slows
5499 down the compiler, since there are more pseudos */
5500 subtarget = (!optimize
5501 && (target_mode == mode)) ? target : NULL_RTX;
5502 trueval = GEN_INT (normalizep ? normalizep : STORE_FLAG_VALUE);
5504 /* For floating-point comparisons, try the reverse comparison or try
5505 changing the "orderedness" of the comparison. */
5506 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
5508 enum rtx_code first_code;
5509 bool and_them;
5511 rcode = reverse_condition_maybe_unordered (code);
5512 if (can_compare_p (rcode, mode, ccp_store_flag)
5513 && (code == ORDERED || code == UNORDERED
5514 || (! HONOR_NANS (mode) && (code == LTGT || code == UNEQ))
5515 || (! HONOR_SNANS (mode) && (code == EQ || code == NE))))
5517 int want_add = ((STORE_FLAG_VALUE == 1 && normalizep == -1)
5518 || (STORE_FLAG_VALUE == -1 && normalizep == 1));
5520 /* For the reverse comparison, use either an addition or a XOR. */
5521 if (want_add
5522 && rtx_cost (GEN_INT (normalizep), PLUS, 1,
5523 optimize_insn_for_speed_p ()) == 0)
5525 tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
5526 STORE_FLAG_VALUE, target_mode);
5527 if (tem)
5528 return expand_binop (target_mode, add_optab, tem,
5529 gen_int_mode (normalizep, target_mode),
5530 target, 0, OPTAB_WIDEN);
5532 else if (!want_add
5533 && rtx_cost (trueval, XOR, 1,
5534 optimize_insn_for_speed_p ()) == 0)
5536 tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
5537 normalizep, target_mode);
5538 if (tem)
5539 return expand_binop (target_mode, xor_optab, tem, trueval,
5540 target, INTVAL (trueval) >= 0, OPTAB_WIDEN);
5544 delete_insns_since (last);
5546 /* Cannot split ORDERED and UNORDERED, only try the above trick. */
5547 if (code == ORDERED || code == UNORDERED)
5548 return 0;
5550 and_them = split_comparison (code, mode, &first_code, &code);
5552 /* If there are no NaNs, the first comparison should always fall through.
5553 Effectively change the comparison to the other one. */
5554 if (!HONOR_NANS (mode))
5556 gcc_assert (first_code == (and_them ? ORDERED : UNORDERED));
5557 return emit_store_flag_1 (target, code, op0, op1, mode, 0, normalizep,
5558 target_mode);
5561 if (!HAVE_conditional_move)
5562 return 0;
5564 /* Try using a setcc instruction for ORDERED/UNORDERED, followed by a
5565 conditional move. */
5566 tem = emit_store_flag_1 (subtarget, first_code, op0, op1, mode, 0,
5567 normalizep, target_mode);
5568 if (tem == 0)
5569 return 0;
5571 if (and_them)
5572 tem = emit_conditional_move (target, code, op0, op1, mode,
5573 tem, const0_rtx, GET_MODE (tem), 0);
5574 else
5575 tem = emit_conditional_move (target, code, op0, op1, mode,
5576 trueval, tem, GET_MODE (tem), 0);
5578 if (tem == 0)
5579 delete_insns_since (last);
5580 return tem;
5583 /* The remaining tricks only apply to integer comparisons. */
5585 if (GET_MODE_CLASS (mode) != MODE_INT)
5586 return 0;
5588 /* If this is an equality comparison of integers, we can try to exclusive-or
5589 (or subtract) the two operands and use a recursive call to try the
5590 comparison with zero. Don't do any of these cases if branches are
5591 very cheap. */
5593 if ((code == EQ || code == NE) && op1 != const0_rtx)
5595 tem = expand_binop (mode, xor_optab, op0, op1, subtarget, 1,
5596 OPTAB_WIDEN);
5598 if (tem == 0)
5599 tem = expand_binop (mode, sub_optab, op0, op1, subtarget, 1,
5600 OPTAB_WIDEN);
5601 if (tem != 0)
5602 tem = emit_store_flag (target, code, tem, const0_rtx,
5603 mode, unsignedp, normalizep);
5604 if (tem != 0)
5605 return tem;
5607 delete_insns_since (last);
5610 /* For integer comparisons, try the reverse comparison. However, for
5611 small X and if we'd have anyway to extend, implementing "X != 0"
5612 as "-(int)X >> 31" is still cheaper than inverting "(int)X == 0". */
5613 rcode = reverse_condition (code);
5614 if (can_compare_p (rcode, mode, ccp_store_flag)
5615 && ! (optab_handler (cstore_optab, mode) == CODE_FOR_nothing
5616 && code == NE
5617 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
5618 && op1 == const0_rtx))
5620 int want_add = ((STORE_FLAG_VALUE == 1 && normalizep == -1)
5621 || (STORE_FLAG_VALUE == -1 && normalizep == 1));
5623 /* Again, for the reverse comparison, use either an addition or a XOR. */
5624 if (want_add
5625 && rtx_cost (GEN_INT (normalizep), PLUS, 1,
5626 optimize_insn_for_speed_p ()) == 0)
5628 tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
5629 STORE_FLAG_VALUE, target_mode);
5630 if (tem != 0)
5631 tem = expand_binop (target_mode, add_optab, tem,
5632 gen_int_mode (normalizep, target_mode),
5633 target, 0, OPTAB_WIDEN);
5635 else if (!want_add
5636 && rtx_cost (trueval, XOR, 1,
5637 optimize_insn_for_speed_p ()) == 0)
5639 tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
5640 normalizep, target_mode);
5641 if (tem != 0)
5642 tem = expand_binop (target_mode, xor_optab, tem, trueval, target,
5643 INTVAL (trueval) >= 0, OPTAB_WIDEN);
5646 if (tem != 0)
5647 return tem;
5648 delete_insns_since (last);
5651 /* Some other cases we can do are EQ, NE, LE, and GT comparisons with
5652 the constant zero. Reject all other comparisons at this point. Only
5653 do LE and GT if branches are expensive since they are expensive on
5654 2-operand machines. */
5656 if (op1 != const0_rtx
5657 || (code != EQ && code != NE
5658 && (BRANCH_COST (optimize_insn_for_speed_p (),
5659 false) <= 1 || (code != LE && code != GT))))
5660 return 0;
5662 /* Try to put the result of the comparison in the sign bit. Assume we can't
5663 do the necessary operation below. */
5665 tem = 0;
5667 /* To see if A <= 0, compute (A | (A - 1)). A <= 0 iff that result has
5668 the sign bit set. */
5670 if (code == LE)
5672 /* This is destructive, so SUBTARGET can't be OP0. */
5673 if (rtx_equal_p (subtarget, op0))
5674 subtarget = 0;
5676 tem = expand_binop (mode, sub_optab, op0, const1_rtx, subtarget, 0,
5677 OPTAB_WIDEN);
5678 if (tem)
5679 tem = expand_binop (mode, ior_optab, op0, tem, subtarget, 0,
5680 OPTAB_WIDEN);
5683 /* To see if A > 0, compute (((signed) A) << BITS) - A, where BITS is the
5684 number of bits in the mode of OP0, minus one. */
5686 if (code == GT)
5688 if (rtx_equal_p (subtarget, op0))
5689 subtarget = 0;
5691 tem = expand_shift (RSHIFT_EXPR, mode, op0,
5692 GET_MODE_BITSIZE (mode) - 1,
5693 subtarget, 0);
5694 tem = expand_binop (mode, sub_optab, tem, op0, subtarget, 0,
5695 OPTAB_WIDEN);
5698 if (code == EQ || code == NE)
5700 /* For EQ or NE, one way to do the comparison is to apply an operation
5701 that converts the operand into a positive number if it is nonzero
5702 or zero if it was originally zero. Then, for EQ, we subtract 1 and
5703 for NE we negate. This puts the result in the sign bit. Then we
5704 normalize with a shift, if needed.
5706 Two operations that can do the above actions are ABS and FFS, so try
5707 them. If that doesn't work, and MODE is smaller than a full word,
5708 we can use zero-extension to the wider mode (an unsigned conversion)
5709 as the operation. */
5711 /* Note that ABS doesn't yield a positive number for INT_MIN, but
5712 that is compensated by the subsequent overflow when subtracting
5713 one / negating. */
5715 if (optab_handler (abs_optab, mode) != CODE_FOR_nothing)
5716 tem = expand_unop (mode, abs_optab, op0, subtarget, 1);
5717 else if (optab_handler (ffs_optab, mode) != CODE_FOR_nothing)
5718 tem = expand_unop (mode, ffs_optab, op0, subtarget, 1);
5719 else if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
5721 tem = convert_modes (word_mode, mode, op0, 1);
5722 mode = word_mode;
5725 if (tem != 0)
5727 if (code == EQ)
5728 tem = expand_binop (mode, sub_optab, tem, const1_rtx, subtarget,
5729 0, OPTAB_WIDEN);
5730 else
5731 tem = expand_unop (mode, neg_optab, tem, subtarget, 0);
5734 /* If we couldn't do it that way, for NE we can "or" the two's complement
5735 of the value with itself. For EQ, we take the one's complement of
5736 that "or", which is an extra insn, so we only handle EQ if branches
5737 are expensive. */
5739 if (tem == 0
5740 && (code == NE
5741 || BRANCH_COST (optimize_insn_for_speed_p (),
5742 false) > 1))
5744 if (rtx_equal_p (subtarget, op0))
5745 subtarget = 0;
5747 tem = expand_unop (mode, neg_optab, op0, subtarget, 0);
5748 tem = expand_binop (mode, ior_optab, tem, op0, subtarget, 0,
5749 OPTAB_WIDEN);
5751 if (tem && code == EQ)
5752 tem = expand_unop (mode, one_cmpl_optab, tem, subtarget, 0);
5756 if (tem && normalizep)
5757 tem = expand_shift (RSHIFT_EXPR, mode, tem,
5758 GET_MODE_BITSIZE (mode) - 1,
5759 subtarget, normalizep == 1);
5761 if (tem)
5763 if (!target)
5765 else if (GET_MODE (tem) != target_mode)
5767 convert_move (target, tem, 0);
5768 tem = target;
5770 else if (!subtarget)
5772 emit_move_insn (target, tem);
5773 tem = target;
5776 else
5777 delete_insns_since (last);
5779 return tem;
5782 /* Like emit_store_flag, but always succeeds. */
5785 emit_store_flag_force (rtx target, enum rtx_code code, rtx op0, rtx op1,
5786 machine_mode mode, int unsignedp, int normalizep)
5788 rtx tem;
5789 rtx_code_label *label;
5790 rtx trueval, falseval;
5792 /* First see if emit_store_flag can do the job. */
5793 tem = emit_store_flag (target, code, op0, op1, mode, unsignedp, normalizep);
5794 if (tem != 0)
5795 return tem;
5797 if (!target)
5798 target = gen_reg_rtx (word_mode);
5800 /* If this failed, we have to do this with set/compare/jump/set code.
5801 For foo != 0, if foo is in OP0, just replace it with 1 if nonzero. */
5802 trueval = normalizep ? GEN_INT (normalizep) : const1_rtx;
5803 if (code == NE
5804 && GET_MODE_CLASS (mode) == MODE_INT
5805 && REG_P (target)
5806 && op0 == target
5807 && op1 == const0_rtx)
5809 label = gen_label_rtx ();
5810 do_compare_rtx_and_jump (target, const0_rtx, EQ, unsignedp, mode,
5811 NULL_RTX, NULL, label, -1);
5812 emit_move_insn (target, trueval);
5813 emit_label (label);
5814 return target;
5817 if (!REG_P (target)
5818 || reg_mentioned_p (target, op0) || reg_mentioned_p (target, op1))
5819 target = gen_reg_rtx (GET_MODE (target));
5821 /* Jump in the right direction if the target cannot implement CODE
5822 but can jump on its reverse condition. */
5823 falseval = const0_rtx;
5824 if (! can_compare_p (code, mode, ccp_jump)
5825 && (! FLOAT_MODE_P (mode)
5826 || code == ORDERED || code == UNORDERED
5827 || (! HONOR_NANS (mode) && (code == LTGT || code == UNEQ))
5828 || (! HONOR_SNANS (mode) && (code == EQ || code == NE))))
5830 enum rtx_code rcode;
5831 if (FLOAT_MODE_P (mode))
5832 rcode = reverse_condition_maybe_unordered (code);
5833 else
5834 rcode = reverse_condition (code);
5836 /* Canonicalize to UNORDERED for the libcall. */
5837 if (can_compare_p (rcode, mode, ccp_jump)
5838 || (code == ORDERED && ! can_compare_p (ORDERED, mode, ccp_jump)))
5840 falseval = trueval;
5841 trueval = const0_rtx;
5842 code = rcode;
5846 emit_move_insn (target, trueval);
5847 label = gen_label_rtx ();
5848 do_compare_rtx_and_jump (op0, op1, code, unsignedp, mode, NULL_RTX, NULL,
5849 label, -1);
5851 emit_move_insn (target, falseval);
5852 emit_label (label);
5854 return target;
5857 /* Perform possibly multi-word comparison and conditional jump to LABEL
5858 if ARG1 OP ARG2 true where ARG1 and ARG2 are of mode MODE. This is
5859 now a thin wrapper around do_compare_rtx_and_jump. */
5861 static void
5862 do_cmp_and_jump (rtx arg1, rtx arg2, enum rtx_code op, machine_mode mode,
5863 rtx_code_label *label)
5865 int unsignedp = (op == LTU || op == LEU || op == GTU || op == GEU);
5866 do_compare_rtx_and_jump (arg1, arg2, op, unsignedp, mode, NULL_RTX,
5867 NULL, label, -1);