1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2015, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Aspects
; use Aspects
;
27 with Atree
; use Atree
;
28 with Checks
; use Checks
;
29 with Debug
; use Debug
;
30 with Elists
; use Elists
;
31 with Einfo
; use Einfo
;
32 with Errout
; use Errout
;
33 with Eval_Fat
; use Eval_Fat
;
34 with Exp_Ch3
; use Exp_Ch3
;
35 with Exp_Ch9
; use Exp_Ch9
;
36 with Exp_Disp
; use Exp_Disp
;
37 with Exp_Dist
; use Exp_Dist
;
38 with Exp_Tss
; use Exp_Tss
;
39 with Exp_Util
; use Exp_Util
;
40 with Fname
; use Fname
;
41 with Freeze
; use Freeze
;
42 with Ghost
; use Ghost
;
43 with Itypes
; use Itypes
;
44 with Layout
; use Layout
;
46 with Lib
.Xref
; use Lib
.Xref
;
47 with Namet
; use Namet
;
48 with Nmake
; use Nmake
;
50 with Restrict
; use Restrict
;
51 with Rident
; use Rident
;
52 with Rtsfind
; use Rtsfind
;
54 with Sem_Aux
; use Sem_Aux
;
55 with Sem_Case
; use Sem_Case
;
56 with Sem_Cat
; use Sem_Cat
;
57 with Sem_Ch6
; use Sem_Ch6
;
58 with Sem_Ch7
; use Sem_Ch7
;
59 with Sem_Ch8
; use Sem_Ch8
;
60 with Sem_Ch10
; use Sem_Ch10
;
61 with Sem_Ch12
; use Sem_Ch12
;
62 with Sem_Ch13
; use Sem_Ch13
;
63 with Sem_Dim
; use Sem_Dim
;
64 with Sem_Disp
; use Sem_Disp
;
65 with Sem_Dist
; use Sem_Dist
;
66 with Sem_Elim
; use Sem_Elim
;
67 with Sem_Eval
; use Sem_Eval
;
68 with Sem_Mech
; use Sem_Mech
;
69 with Sem_Prag
; use Sem_Prag
;
70 with Sem_Res
; use Sem_Res
;
71 with Sem_Smem
; use Sem_Smem
;
72 with Sem_Type
; use Sem_Type
;
73 with Sem_Util
; use Sem_Util
;
74 with Sem_Warn
; use Sem_Warn
;
75 with Stand
; use Stand
;
76 with Sinfo
; use Sinfo
;
77 with Sinput
; use Sinput
;
78 with Snames
; use Snames
;
79 with Targparm
; use Targparm
;
80 with Tbuild
; use Tbuild
;
81 with Ttypes
; use Ttypes
;
82 with Uintp
; use Uintp
;
83 with Urealp
; use Urealp
;
85 package body Sem_Ch3
is
87 -----------------------
88 -- Local Subprograms --
89 -----------------------
91 procedure Add_Interface_Tag_Components
(N
: Node_Id
; Typ
: Entity_Id
);
92 -- Ada 2005 (AI-251): Add the tag components corresponding to all the
93 -- abstract interface types implemented by a record type or a derived
96 procedure Analyze_Object_Contract
(Obj_Id
: Entity_Id
);
97 -- Analyze all delayed pragmas chained on the contract of object Obj_Id as
98 -- if they appeared at the end of the declarative region. The pragmas to be
106 procedure Build_Derived_Type
108 Parent_Type
: Entity_Id
;
109 Derived_Type
: Entity_Id
;
110 Is_Completion
: Boolean;
111 Derive_Subps
: Boolean := True);
112 -- Create and decorate a Derived_Type given the Parent_Type entity. N is
113 -- the N_Full_Type_Declaration node containing the derived type definition.
114 -- Parent_Type is the entity for the parent type in the derived type
115 -- definition and Derived_Type the actual derived type. Is_Completion must
116 -- be set to False if Derived_Type is the N_Defining_Identifier node in N
117 -- (i.e. Derived_Type = Defining_Identifier (N)). In this case N is not the
118 -- completion of a private type declaration. If Is_Completion is set to
119 -- True, N is the completion of a private type declaration and Derived_Type
120 -- is different from the defining identifier inside N (i.e. Derived_Type /=
121 -- Defining_Identifier (N)). Derive_Subps indicates whether the parent
122 -- subprograms should be derived. The only case where this parameter is
123 -- False is when Build_Derived_Type is recursively called to process an
124 -- implicit derived full type for a type derived from a private type (in
125 -- that case the subprograms must only be derived for the private view of
128 -- ??? These flags need a bit of re-examination and re-documentation:
129 -- ??? are they both necessary (both seem related to the recursion)?
131 procedure Build_Derived_Access_Type
133 Parent_Type
: Entity_Id
;
134 Derived_Type
: Entity_Id
);
135 -- Subsidiary procedure to Build_Derived_Type. For a derived access type,
136 -- create an implicit base if the parent type is constrained or if the
137 -- subtype indication has a constraint.
139 procedure Build_Derived_Array_Type
141 Parent_Type
: Entity_Id
;
142 Derived_Type
: Entity_Id
);
143 -- Subsidiary procedure to Build_Derived_Type. For a derived array type,
144 -- create an implicit base if the parent type is constrained or if the
145 -- subtype indication has a constraint.
147 procedure Build_Derived_Concurrent_Type
149 Parent_Type
: Entity_Id
;
150 Derived_Type
: Entity_Id
);
151 -- Subsidiary procedure to Build_Derived_Type. For a derived task or
152 -- protected type, inherit entries and protected subprograms, check
153 -- legality of discriminant constraints if any.
155 procedure Build_Derived_Enumeration_Type
157 Parent_Type
: Entity_Id
;
158 Derived_Type
: Entity_Id
);
159 -- Subsidiary procedure to Build_Derived_Type. For a derived enumeration
160 -- type, we must create a new list of literals. Types derived from
161 -- Character and [Wide_]Wide_Character are special-cased.
163 procedure Build_Derived_Numeric_Type
165 Parent_Type
: Entity_Id
;
166 Derived_Type
: Entity_Id
);
167 -- Subsidiary procedure to Build_Derived_Type. For numeric types, create
168 -- an anonymous base type, and propagate constraint to subtype if needed.
170 procedure Build_Derived_Private_Type
172 Parent_Type
: Entity_Id
;
173 Derived_Type
: Entity_Id
;
174 Is_Completion
: Boolean;
175 Derive_Subps
: Boolean := True);
176 -- Subsidiary procedure to Build_Derived_Type. This procedure is complex
177 -- because the parent may or may not have a completion, and the derivation
178 -- may itself be a completion.
180 procedure Build_Derived_Record_Type
182 Parent_Type
: Entity_Id
;
183 Derived_Type
: Entity_Id
;
184 Derive_Subps
: Boolean := True);
185 -- Subsidiary procedure used for tagged and untagged record types
186 -- by Build_Derived_Type and Analyze_Private_Extension_Declaration.
187 -- All parameters are as in Build_Derived_Type except that N, in
188 -- addition to being an N_Full_Type_Declaration node, can also be an
189 -- N_Private_Extension_Declaration node. See the definition of this routine
190 -- for much more info. Derive_Subps indicates whether subprograms should be
191 -- derived from the parent type. The only case where Derive_Subps is False
192 -- is for an implicit derived full type for a type derived from a private
193 -- type (see Build_Derived_Type).
195 procedure Build_Discriminal
(Discrim
: Entity_Id
);
196 -- Create the discriminal corresponding to discriminant Discrim, that is
197 -- the parameter corresponding to Discrim to be used in initialization
198 -- procedures for the type where Discrim is a discriminant. Discriminals
199 -- are not used during semantic analysis, and are not fully defined
200 -- entities until expansion. Thus they are not given a scope until
201 -- initialization procedures are built.
203 function Build_Discriminant_Constraints
206 Derived_Def
: Boolean := False) return Elist_Id
;
207 -- Validate discriminant constraints and return the list of the constraints
208 -- in order of discriminant declarations, where T is the discriminated
209 -- unconstrained type. Def is the N_Subtype_Indication node where the
210 -- discriminants constraints for T are specified. Derived_Def is True
211 -- when building the discriminant constraints in a derived type definition
212 -- of the form "type D (...) is new T (xxx)". In this case T is the parent
213 -- type and Def is the constraint "(xxx)" on T and this routine sets the
214 -- Corresponding_Discriminant field of the discriminants in the derived
215 -- type D to point to the corresponding discriminants in the parent type T.
217 procedure Build_Discriminated_Subtype
221 Related_Nod
: Node_Id
;
222 For_Access
: Boolean := False);
223 -- Subsidiary procedure to Constrain_Discriminated_Type and to
224 -- Process_Incomplete_Dependents. Given
226 -- T (a possibly discriminated base type)
227 -- Def_Id (a very partially built subtype for T),
229 -- the call completes Def_Id to be the appropriate E_*_Subtype.
231 -- The Elist is the list of discriminant constraints if any (it is set
232 -- to No_Elist if T is not a discriminated type, and to an empty list if
233 -- T has discriminants but there are no discriminant constraints). The
234 -- Related_Nod is the same as Decl_Node in Create_Constrained_Components.
235 -- The For_Access says whether or not this subtype is really constraining
236 -- an access type. That is its sole purpose is the designated type of an
237 -- access type -- in which case a Private_Subtype Is_For_Access_Subtype
238 -- is built to avoid freezing T when the access subtype is frozen.
240 function Build_Scalar_Bound
243 Der_T
: Entity_Id
) return Node_Id
;
244 -- The bounds of a derived scalar type are conversions of the bounds of
245 -- the parent type. Optimize the representation if the bounds are literals.
246 -- Needs a more complete spec--what are the parameters exactly, and what
247 -- exactly is the returned value, and how is Bound affected???
249 procedure Build_Underlying_Full_View
253 -- If the completion of a private type is itself derived from a private
254 -- type, or if the full view of a private subtype is itself private, the
255 -- back-end has no way to compute the actual size of this type. We build
256 -- an internal subtype declaration of the proper parent type to convey
257 -- this information. This extra mechanism is needed because a full
258 -- view cannot itself have a full view (it would get clobbered during
261 procedure Check_Access_Discriminant_Requires_Limited
264 -- Check the restriction that the type to which an access discriminant
265 -- belongs must be a concurrent type or a descendant of a type with
266 -- the reserved word 'limited' in its declaration.
268 procedure Check_Anonymous_Access_Components
272 Comp_List
: Node_Id
);
273 -- Ada 2005 AI-382: an access component in a record definition can refer to
274 -- the enclosing record, in which case it denotes the type itself, and not
275 -- the current instance of the type. We create an anonymous access type for
276 -- the component, and flag it as an access to a component, so accessibility
277 -- checks are properly performed on it. The declaration of the access type
278 -- is placed ahead of that of the record to prevent order-of-elaboration
279 -- circularity issues in Gigi. We create an incomplete type for the record
280 -- declaration, which is the designated type of the anonymous access.
282 procedure Check_Delta_Expression
(E
: Node_Id
);
283 -- Check that the expression represented by E is suitable for use as a
284 -- delta expression, i.e. it is of real type and is static.
286 procedure Check_Digits_Expression
(E
: Node_Id
);
287 -- Check that the expression represented by E is suitable for use as a
288 -- digits expression, i.e. it is of integer type, positive and static.
290 procedure Check_Initialization
(T
: Entity_Id
; Exp
: Node_Id
);
291 -- Validate the initialization of an object declaration. T is the required
292 -- type, and Exp is the initialization expression.
294 procedure Check_Interfaces
(N
: Node_Id
; Def
: Node_Id
);
295 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
297 procedure Check_Or_Process_Discriminants
300 Prev
: Entity_Id
:= Empty
);
301 -- If N is the full declaration of the completion T of an incomplete or
302 -- private type, check its discriminants (which are already known to be
303 -- conformant with those of the partial view, see Find_Type_Name),
304 -- otherwise process them. Prev is the entity of the partial declaration,
307 procedure Check_Real_Bound
(Bound
: Node_Id
);
308 -- Check given bound for being of real type and static. If not, post an
309 -- appropriate message, and rewrite the bound with the real literal zero.
311 procedure Constant_Redeclaration
315 -- Various checks on legality of full declaration of deferred constant.
316 -- Id is the entity for the redeclaration, N is the N_Object_Declaration,
317 -- node. The caller has not yet set any attributes of this entity.
319 function Contain_Interface
321 Ifaces
: Elist_Id
) return Boolean;
322 -- Ada 2005: Determine whether Iface is present in the list Ifaces
324 procedure Convert_Scalar_Bounds
326 Parent_Type
: Entity_Id
;
327 Derived_Type
: Entity_Id
;
329 -- For derived scalar types, convert the bounds in the type definition to
330 -- the derived type, and complete their analysis. Given a constraint of the
331 -- form ".. new T range Lo .. Hi", Lo and Hi are analyzed and resolved with
332 -- T'Base, the parent_type. The bounds of the derived type (the anonymous
333 -- base) are copies of Lo and Hi. Finally, the bounds of the derived
334 -- subtype are conversions of those bounds to the derived_type, so that
335 -- their typing is consistent.
337 procedure Copy_Array_Base_Type_Attributes
(T1
, T2
: Entity_Id
);
338 -- Copies attributes from array base type T2 to array base type T1. Copies
339 -- only attributes that apply to base types, but not subtypes.
341 procedure Copy_Array_Subtype_Attributes
(T1
, T2
: Entity_Id
);
342 -- Copies attributes from array subtype T2 to array subtype T1. Copies
343 -- attributes that apply to both subtypes and base types.
345 procedure Create_Constrained_Components
349 Constraints
: Elist_Id
);
350 -- Build the list of entities for a constrained discriminated record
351 -- subtype. If a component depends on a discriminant, replace its subtype
352 -- using the discriminant values in the discriminant constraint. Subt
353 -- is the defining identifier for the subtype whose list of constrained
354 -- entities we will create. Decl_Node is the type declaration node where
355 -- we will attach all the itypes created. Typ is the base discriminated
356 -- type for the subtype Subt. Constraints is the list of discriminant
357 -- constraints for Typ.
359 function Constrain_Component_Type
361 Constrained_Typ
: Entity_Id
;
362 Related_Node
: Node_Id
;
364 Constraints
: Elist_Id
) return Entity_Id
;
365 -- Given a discriminated base type Typ, a list of discriminant constraints,
366 -- Constraints, for Typ and a component Comp of Typ, create and return the
367 -- type corresponding to Etype (Comp) where all discriminant references
368 -- are replaced with the corresponding constraint. If Etype (Comp) contains
369 -- no discriminant references then it is returned as-is. Constrained_Typ
370 -- is the final constrained subtype to which the constrained component
371 -- belongs. Related_Node is the node where we attach all created itypes.
373 procedure Constrain_Access
374 (Def_Id
: in out Entity_Id
;
376 Related_Nod
: Node_Id
);
377 -- Apply a list of constraints to an access type. If Def_Id is empty, it is
378 -- an anonymous type created for a subtype indication. In that case it is
379 -- created in the procedure and attached to Related_Nod.
381 procedure Constrain_Array
382 (Def_Id
: in out Entity_Id
;
384 Related_Nod
: Node_Id
;
385 Related_Id
: Entity_Id
;
387 -- Apply a list of index constraints to an unconstrained array type. The
388 -- first parameter is the entity for the resulting subtype. A value of
389 -- Empty for Def_Id indicates that an implicit type must be created, but
390 -- creation is delayed (and must be done by this procedure) because other
391 -- subsidiary implicit types must be created first (which is why Def_Id
392 -- is an in/out parameter). The second parameter is a subtype indication
393 -- node for the constrained array to be created (e.g. something of the
394 -- form string (1 .. 10)). Related_Nod gives the place where this type
395 -- has to be inserted in the tree. The Related_Id and Suffix parameters
396 -- are used to build the associated Implicit type name.
398 procedure Constrain_Concurrent
399 (Def_Id
: in out Entity_Id
;
401 Related_Nod
: Node_Id
;
402 Related_Id
: Entity_Id
;
404 -- Apply list of discriminant constraints to an unconstrained concurrent
407 -- SI is the N_Subtype_Indication node containing the constraint and
408 -- the unconstrained type to constrain.
410 -- Def_Id is the entity for the resulting constrained subtype. A value
411 -- of Empty for Def_Id indicates that an implicit type must be created,
412 -- but creation is delayed (and must be done by this procedure) because
413 -- other subsidiary implicit types must be created first (which is why
414 -- Def_Id is an in/out parameter).
416 -- Related_Nod gives the place where this type has to be inserted
419 -- The last two arguments are used to create its external name if needed.
421 function Constrain_Corresponding_Record
422 (Prot_Subt
: Entity_Id
;
423 Corr_Rec
: Entity_Id
;
424 Related_Nod
: Node_Id
) return Entity_Id
;
425 -- When constraining a protected type or task type with discriminants,
426 -- constrain the corresponding record with the same discriminant values.
428 procedure Constrain_Decimal
(Def_Id
: Node_Id
; S
: Node_Id
);
429 -- Constrain a decimal fixed point type with a digits constraint and/or a
430 -- range constraint, and build E_Decimal_Fixed_Point_Subtype entity.
432 procedure Constrain_Discriminated_Type
435 Related_Nod
: Node_Id
;
436 For_Access
: Boolean := False);
437 -- Process discriminant constraints of composite type. Verify that values
438 -- have been provided for all discriminants, that the original type is
439 -- unconstrained, and that the types of the supplied expressions match
440 -- the discriminant types. The first three parameters are like in routine
441 -- Constrain_Concurrent. See Build_Discriminated_Subtype for an explanation
444 procedure Constrain_Enumeration
(Def_Id
: Node_Id
; S
: Node_Id
);
445 -- Constrain an enumeration type with a range constraint. This is identical
446 -- to Constrain_Integer, but for the Ekind of the resulting subtype.
448 procedure Constrain_Float
(Def_Id
: Node_Id
; S
: Node_Id
);
449 -- Constrain a floating point type with either a digits constraint
450 -- and/or a range constraint, building a E_Floating_Point_Subtype.
452 procedure Constrain_Index
455 Related_Nod
: Node_Id
;
456 Related_Id
: Entity_Id
;
459 -- Process an index constraint S in a constrained array declaration. The
460 -- constraint can be a subtype name, or a range with or without an explicit
461 -- subtype mark. The index is the corresponding index of the unconstrained
462 -- array. The Related_Id and Suffix parameters are used to build the
463 -- associated Implicit type name.
465 procedure Constrain_Integer
(Def_Id
: Node_Id
; S
: Node_Id
);
466 -- Build subtype of a signed or modular integer type
468 procedure Constrain_Ordinary_Fixed
(Def_Id
: Node_Id
; S
: Node_Id
);
469 -- Constrain an ordinary fixed point type with a range constraint, and
470 -- build an E_Ordinary_Fixed_Point_Subtype entity.
472 procedure Copy_And_Swap
(Priv
, Full
: Entity_Id
);
473 -- Copy the Priv entity into the entity of its full declaration then swap
474 -- the two entities in such a manner that the former private type is now
475 -- seen as a full type.
477 procedure Decimal_Fixed_Point_Type_Declaration
480 -- Create a new decimal fixed point type, and apply the constraint to
481 -- obtain a subtype of this new type.
483 procedure Complete_Private_Subtype
486 Full_Base
: Entity_Id
;
487 Related_Nod
: Node_Id
);
488 -- Complete the implicit full view of a private subtype by setting the
489 -- appropriate semantic fields. If the full view of the parent is a record
490 -- type, build constrained components of subtype.
492 procedure Derive_Progenitor_Subprograms
493 (Parent_Type
: Entity_Id
;
494 Tagged_Type
: Entity_Id
);
495 -- Ada 2005 (AI-251): To complete type derivation, collect the primitive
496 -- operations of progenitors of Tagged_Type, and replace the subsidiary
497 -- subtypes with Tagged_Type, to build the specs of the inherited interface
498 -- primitives. The derived primitives are aliased to those of the
499 -- interface. This routine takes care also of transferring to the full view
500 -- subprograms associated with the partial view of Tagged_Type that cover
501 -- interface primitives.
503 procedure Derived_Standard_Character
505 Parent_Type
: Entity_Id
;
506 Derived_Type
: Entity_Id
);
507 -- Subsidiary procedure to Build_Derived_Enumeration_Type which handles
508 -- derivations from types Standard.Character and Standard.Wide_Character.
510 procedure Derived_Type_Declaration
513 Is_Completion
: Boolean);
514 -- Process a derived type declaration. Build_Derived_Type is invoked
515 -- to process the actual derived type definition. Parameters N and
516 -- Is_Completion have the same meaning as in Build_Derived_Type.
517 -- T is the N_Defining_Identifier for the entity defined in the
518 -- N_Full_Type_Declaration node N, that is T is the derived type.
520 procedure Enumeration_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
);
521 -- Insert each literal in symbol table, as an overloadable identifier. Each
522 -- enumeration type is mapped into a sequence of integers, and each literal
523 -- is defined as a constant with integer value. If any of the literals are
524 -- character literals, the type is a character type, which means that
525 -- strings are legal aggregates for arrays of components of the type.
527 function Expand_To_Stored_Constraint
529 Constraint
: Elist_Id
) return Elist_Id
;
530 -- Given a constraint (i.e. a list of expressions) on the discriminants of
531 -- Typ, expand it into a constraint on the stored discriminants and return
532 -- the new list of expressions constraining the stored discriminants.
534 function Find_Type_Of_Object
536 Related_Nod
: Node_Id
) return Entity_Id
;
537 -- Get type entity for object referenced by Obj_Def, attaching the implicit
538 -- types generated to Related_Nod.
540 procedure Floating_Point_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
);
541 -- Create a new float and apply the constraint to obtain subtype of it
543 function Has_Range_Constraint
(N
: Node_Id
) return Boolean;
544 -- Given an N_Subtype_Indication node N, return True if a range constraint
545 -- is present, either directly, or as part of a digits or delta constraint.
546 -- In addition, a digits constraint in the decimal case returns True, since
547 -- it establishes a default range if no explicit range is present.
549 function Inherit_Components
551 Parent_Base
: Entity_Id
;
552 Derived_Base
: Entity_Id
;
554 Inherit_Discr
: Boolean;
555 Discs
: Elist_Id
) return Elist_Id
;
556 -- Called from Build_Derived_Record_Type to inherit the components of
557 -- Parent_Base (a base type) into the Derived_Base (the derived base type).
558 -- For more information on derived types and component inheritance please
559 -- consult the comment above the body of Build_Derived_Record_Type.
561 -- N is the original derived type declaration
563 -- Is_Tagged is set if we are dealing with tagged types
565 -- If Inherit_Discr is set, Derived_Base inherits its discriminants from
566 -- Parent_Base, otherwise no discriminants are inherited.
568 -- Discs gives the list of constraints that apply to Parent_Base in the
569 -- derived type declaration. If Discs is set to No_Elist, then we have
570 -- the following situation:
572 -- type Parent (D1..Dn : ..) is [tagged] record ...;
573 -- type Derived is new Parent [with ...];
575 -- which gets treated as
577 -- type Derived (D1..Dn : ..) is new Parent (D1,..,Dn) [with ...];
579 -- For untagged types the returned value is an association list. The list
580 -- starts from the association (Parent_Base => Derived_Base), and then it
581 -- contains a sequence of the associations of the form
583 -- (Old_Component => New_Component),
585 -- where Old_Component is the Entity_Id of a component in Parent_Base and
586 -- New_Component is the Entity_Id of the corresponding component in
587 -- Derived_Base. For untagged records, this association list is needed when
588 -- copying the record declaration for the derived base. In the tagged case
589 -- the value returned is irrelevant.
591 procedure Inherit_Predicate_Flags
(Subt
, Par
: Entity_Id
);
592 -- Propagate static and dynamic predicate flags from a parent to the
593 -- subtype in a subtype declaration with and without constraints.
595 function Is_EVF_Procedure
(Subp
: Entity_Id
) return Boolean;
596 -- Subsidiary to Check_Abstract_Overriding and Derive_Subprogram.
597 -- Determine whether subprogram Subp is a procedure subject to pragma
598 -- Extensions_Visible with value False and has at least one controlling
599 -- parameter of mode OUT.
601 function Is_Valid_Constraint_Kind
603 Constraint_Kind
: Node_Kind
) return Boolean;
604 -- Returns True if it is legal to apply the given kind of constraint to the
605 -- given kind of type (index constraint to an array type, for example).
607 procedure Modular_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
);
608 -- Create new modular type. Verify that modulus is in bounds
610 procedure New_Concatenation_Op
(Typ
: Entity_Id
);
611 -- Create an abbreviated declaration for an operator in order to
612 -- materialize concatenation on array types.
614 procedure Ordinary_Fixed_Point_Type_Declaration
617 -- Create a new ordinary fixed point type, and apply the constraint to
618 -- obtain subtype of it.
620 procedure Prepare_Private_Subtype_Completion
622 Related_Nod
: Node_Id
);
623 -- Id is a subtype of some private type. Creates the full declaration
624 -- associated with Id whenever possible, i.e. when the full declaration
625 -- of the base type is already known. Records each subtype into
626 -- Private_Dependents of the base type.
628 procedure Process_Incomplete_Dependents
632 -- Process all entities that depend on an incomplete type. There include
633 -- subtypes, subprogram types that mention the incomplete type in their
634 -- profiles, and subprogram with access parameters that designate the
637 -- Inc_T is the defining identifier of an incomplete type declaration, its
638 -- Ekind is E_Incomplete_Type.
640 -- N is the corresponding N_Full_Type_Declaration for Inc_T.
642 -- Full_T is N's defining identifier.
644 -- Subtypes of incomplete types with discriminants are completed when the
645 -- parent type is. This is simpler than private subtypes, because they can
646 -- only appear in the same scope, and there is no need to exchange views.
647 -- Similarly, access_to_subprogram types may have a parameter or a return
648 -- type that is an incomplete type, and that must be replaced with the
651 -- If the full type is tagged, subprogram with access parameters that
652 -- designated the incomplete may be primitive operations of the full type,
653 -- and have to be processed accordingly.
655 procedure Process_Real_Range_Specification
(Def
: Node_Id
);
656 -- Given the type definition for a real type, this procedure processes and
657 -- checks the real range specification of this type definition if one is
658 -- present. If errors are found, error messages are posted, and the
659 -- Real_Range_Specification of Def is reset to Empty.
661 procedure Propagate_Default_Init_Cond_Attributes
662 (From_Typ
: Entity_Id
;
664 Parent_To_Derivation
: Boolean := False;
665 Private_To_Full_View
: Boolean := False);
666 -- Subsidiary to routines Build_Derived_Type and Process_Full_View. Inherit
667 -- all attributes related to pragma Default_Initial_Condition from From_Typ
668 -- to To_Typ. Flag Parent_To_Derivation should be set when the context is
669 -- the creation of a derived type. Flag Private_To_Full_View should be set
670 -- when processing both views of a private type.
672 procedure Record_Type_Declaration
676 -- Process a record type declaration (for both untagged and tagged
677 -- records). Parameters T and N are exactly like in procedure
678 -- Derived_Type_Declaration, except that no flag Is_Completion is needed
679 -- for this routine. If this is the completion of an incomplete type
680 -- declaration, Prev is the entity of the incomplete declaration, used for
681 -- cross-referencing. Otherwise Prev = T.
683 procedure Record_Type_Definition
(Def
: Node_Id
; Prev_T
: Entity_Id
);
684 -- This routine is used to process the actual record type definition (both
685 -- for untagged and tagged records). Def is a record type definition node.
686 -- This procedure analyzes the components in this record type definition.
687 -- Prev_T is the entity for the enclosing record type. It is provided so
688 -- that its Has_Task flag can be set if any of the component have Has_Task
689 -- set. If the declaration is the completion of an incomplete type
690 -- declaration, Prev_T is the original incomplete type, whose full view is
693 procedure Replace_Components
(Typ
: Entity_Id
; Decl
: Node_Id
);
694 -- Subsidiary to Build_Derived_Record_Type. For untagged records, we
695 -- build a copy of the declaration tree of the parent, and we create
696 -- independently the list of components for the derived type. Semantic
697 -- information uses the component entities, but record representation
698 -- clauses are validated on the declaration tree. This procedure replaces
699 -- discriminants and components in the declaration with those that have
700 -- been created by Inherit_Components.
702 procedure Set_Fixed_Range
707 -- Build a range node with the given bounds and set it as the Scalar_Range
708 -- of the given fixed-point type entity. Loc is the source location used
709 -- for the constructed range. See body for further details.
711 procedure Set_Scalar_Range_For_Subtype
715 -- This routine is used to set the scalar range field for a subtype given
716 -- Def_Id, the entity for the subtype, and R, the range expression for the
717 -- scalar range. Subt provides the parent subtype to be used to analyze,
718 -- resolve, and check the given range.
720 procedure Set_Default_SSO
(T
: Entity_Id
);
721 -- T is the entity for an array or record being declared. This procedure
722 -- sets the flags SSO_Set_Low_By_Default/SSO_Set_High_By_Default according
723 -- to the setting of Opt.Default_SSO.
725 procedure Signed_Integer_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
);
726 -- Create a new signed integer entity, and apply the constraint to obtain
727 -- the required first named subtype of this type.
729 procedure Set_Stored_Constraint_From_Discriminant_Constraint
731 -- E is some record type. This routine computes E's Stored_Constraint
732 -- from its Discriminant_Constraint.
734 procedure Diagnose_Interface
(N
: Node_Id
; E
: Entity_Id
);
735 -- Check that an entity in a list of progenitors is an interface,
736 -- emit error otherwise.
738 -----------------------
739 -- Access_Definition --
740 -----------------------
742 function Access_Definition
743 (Related_Nod
: Node_Id
;
744 N
: Node_Id
) return Entity_Id
746 Anon_Type
: Entity_Id
;
747 Anon_Scope
: Entity_Id
;
748 Desig_Type
: Entity_Id
;
749 Enclosing_Prot_Type
: Entity_Id
:= Empty
;
752 Check_SPARK_05_Restriction
("access type is not allowed", N
);
754 if Is_Entry
(Current_Scope
)
755 and then Is_Task_Type
(Etype
(Scope
(Current_Scope
)))
757 Error_Msg_N
("task entries cannot have access parameters", N
);
761 -- Ada 2005: For an object declaration the corresponding anonymous
762 -- type is declared in the current scope.
764 -- If the access definition is the return type of another access to
765 -- function, scope is the current one, because it is the one of the
766 -- current type declaration, except for the pathological case below.
768 if Nkind_In
(Related_Nod
, N_Object_Declaration
,
769 N_Access_Function_Definition
)
771 Anon_Scope
:= Current_Scope
;
773 -- A pathological case: function returning access functions that
774 -- return access functions, etc. Each anonymous access type created
775 -- is in the enclosing scope of the outermost function.
782 while Nkind_In
(Par
, N_Access_Function_Definition
,
788 if Nkind
(Par
) = N_Function_Specification
then
789 Anon_Scope
:= Scope
(Defining_Entity
(Par
));
793 -- For the anonymous function result case, retrieve the scope of the
794 -- function specification's associated entity rather than using the
795 -- current scope. The current scope will be the function itself if the
796 -- formal part is currently being analyzed, but will be the parent scope
797 -- in the case of a parameterless function, and we always want to use
798 -- the function's parent scope. Finally, if the function is a child
799 -- unit, we must traverse the tree to retrieve the proper entity.
801 elsif Nkind
(Related_Nod
) = N_Function_Specification
802 and then Nkind
(Parent
(N
)) /= N_Parameter_Specification
804 -- If the current scope is a protected type, the anonymous access
805 -- is associated with one of the protected operations, and must
806 -- be available in the scope that encloses the protected declaration.
807 -- Otherwise the type is in the scope enclosing the subprogram.
809 -- If the function has formals, The return type of a subprogram
810 -- declaration is analyzed in the scope of the subprogram (see
811 -- Process_Formals) and thus the protected type, if present, is
812 -- the scope of the current function scope.
814 if Ekind
(Current_Scope
) = E_Protected_Type
then
815 Enclosing_Prot_Type
:= Current_Scope
;
817 elsif Ekind
(Current_Scope
) = E_Function
818 and then Ekind
(Scope
(Current_Scope
)) = E_Protected_Type
820 Enclosing_Prot_Type
:= Scope
(Current_Scope
);
823 if Present
(Enclosing_Prot_Type
) then
824 Anon_Scope
:= Scope
(Enclosing_Prot_Type
);
827 Anon_Scope
:= Scope
(Defining_Entity
(Related_Nod
));
830 -- For an access type definition, if the current scope is a child
831 -- unit it is the scope of the type.
833 elsif Is_Compilation_Unit
(Current_Scope
) then
834 Anon_Scope
:= Current_Scope
;
836 -- For access formals, access components, and access discriminants, the
837 -- scope is that of the enclosing declaration,
840 Anon_Scope
:= Scope
(Current_Scope
);
845 (E_Anonymous_Access_Type
, Related_Nod
, Scope_Id
=> Anon_Scope
);
848 and then Ada_Version
>= Ada_2005
850 Error_Msg_N
("ALL is not permitted for anonymous access types", N
);
853 -- Ada 2005 (AI-254): In case of anonymous access to subprograms call
854 -- the corresponding semantic routine
856 if Present
(Access_To_Subprogram_Definition
(N
)) then
858 -- Compiler runtime units are compiled in Ada 2005 mode when building
859 -- the runtime library but must also be compilable in Ada 95 mode
860 -- (when bootstrapping the compiler).
862 Check_Compiler_Unit
("anonymous access to subprogram", N
);
864 Access_Subprogram_Declaration
865 (T_Name
=> Anon_Type
,
866 T_Def
=> Access_To_Subprogram_Definition
(N
));
868 if Ekind
(Anon_Type
) = E_Access_Protected_Subprogram_Type
then
870 (Anon_Type
, E_Anonymous_Access_Protected_Subprogram_Type
);
872 Set_Ekind
(Anon_Type
, E_Anonymous_Access_Subprogram_Type
);
875 Set_Can_Use_Internal_Rep
876 (Anon_Type
, not Always_Compatible_Rep_On_Target
);
878 -- If the anonymous access is associated with a protected operation,
879 -- create a reference to it after the enclosing protected definition
880 -- because the itype will be used in the subsequent bodies.
882 -- If the anonymous access itself is protected, a full type
883 -- declaratiton will be created for it, so that the equivalent
884 -- record type can be constructed. For further details, see
885 -- Replace_Anonymous_Access_To_Protected-Subprogram.
887 if Ekind
(Current_Scope
) = E_Protected_Type
888 and then not Protected_Present
(Access_To_Subprogram_Definition
(N
))
890 Build_Itype_Reference
(Anon_Type
, Parent
(Current_Scope
));
896 Find_Type
(Subtype_Mark
(N
));
897 Desig_Type
:= Entity
(Subtype_Mark
(N
));
899 Set_Directly_Designated_Type
(Anon_Type
, Desig_Type
);
900 Set_Etype
(Anon_Type
, Anon_Type
);
902 -- Make sure the anonymous access type has size and alignment fields
903 -- set, as required by gigi. This is necessary in the case of the
904 -- Task_Body_Procedure.
906 if not Has_Private_Component
(Desig_Type
) then
907 Layout_Type
(Anon_Type
);
910 -- Ada 2005 (AI-231): Ada 2005 semantics for anonymous access differs
911 -- from Ada 95 semantics. In Ada 2005, anonymous access must specify if
912 -- the null value is allowed. In Ada 95 the null value is never allowed.
914 if Ada_Version
>= Ada_2005
then
915 Set_Can_Never_Be_Null
(Anon_Type
, Null_Exclusion_Present
(N
));
917 Set_Can_Never_Be_Null
(Anon_Type
, True);
920 -- The anonymous access type is as public as the discriminated type or
921 -- subprogram that defines it. It is imported (for back-end purposes)
922 -- if the designated type is.
924 Set_Is_Public
(Anon_Type
, Is_Public
(Scope
(Anon_Type
)));
926 -- Ada 2005 (AI-231): Propagate the access-constant attribute
928 Set_Is_Access_Constant
(Anon_Type
, Constant_Present
(N
));
930 -- The context is either a subprogram declaration, object declaration,
931 -- or an access discriminant, in a private or a full type declaration.
932 -- In the case of a subprogram, if the designated type is incomplete,
933 -- the operation will be a primitive operation of the full type, to be
934 -- updated subsequently. If the type is imported through a limited_with
935 -- clause, the subprogram is not a primitive operation of the type
936 -- (which is declared elsewhere in some other scope).
938 if Ekind
(Desig_Type
) = E_Incomplete_Type
939 and then not From_Limited_With
(Desig_Type
)
940 and then Is_Overloadable
(Current_Scope
)
942 Append_Elmt
(Current_Scope
, Private_Dependents
(Desig_Type
));
943 Set_Has_Delayed_Freeze
(Current_Scope
);
946 -- Ada 2005: If the designated type is an interface that may contain
947 -- tasks, create a Master entity for the declaration. This must be done
948 -- before expansion of the full declaration, because the declaration may
949 -- include an expression that is an allocator, whose expansion needs the
950 -- proper Master for the created tasks.
952 if Nkind
(Related_Nod
) = N_Object_Declaration
and then Expander_Active
954 if Is_Interface
(Desig_Type
) and then Is_Limited_Record
(Desig_Type
)
956 Build_Class_Wide_Master
(Anon_Type
);
958 -- Similarly, if the type is an anonymous access that designates
959 -- tasks, create a master entity for it in the current context.
961 elsif Has_Task
(Desig_Type
) and then Comes_From_Source
(Related_Nod
)
963 Build_Master_Entity
(Defining_Identifier
(Related_Nod
));
964 Build_Master_Renaming
(Anon_Type
);
968 -- For a private component of a protected type, it is imperative that
969 -- the back-end elaborate the type immediately after the protected
970 -- declaration, because this type will be used in the declarations
971 -- created for the component within each protected body, so we must
972 -- create an itype reference for it now.
974 if Nkind
(Parent
(Related_Nod
)) = N_Protected_Definition
then
975 Build_Itype_Reference
(Anon_Type
, Parent
(Parent
(Related_Nod
)));
977 -- Similarly, if the access definition is the return result of a
978 -- function, create an itype reference for it because it will be used
979 -- within the function body. For a regular function that is not a
980 -- compilation unit, insert reference after the declaration. For a
981 -- protected operation, insert it after the enclosing protected type
982 -- declaration. In either case, do not create a reference for a type
983 -- obtained through a limited_with clause, because this would introduce
984 -- semantic dependencies.
986 -- Similarly, do not create a reference if the designated type is a
987 -- generic formal, because no use of it will reach the backend.
989 elsif Nkind
(Related_Nod
) = N_Function_Specification
990 and then not From_Limited_With
(Desig_Type
)
991 and then not Is_Generic_Type
(Desig_Type
)
993 if Present
(Enclosing_Prot_Type
) then
994 Build_Itype_Reference
(Anon_Type
, Parent
(Enclosing_Prot_Type
));
996 elsif Is_List_Member
(Parent
(Related_Nod
))
997 and then Nkind
(Parent
(N
)) /= N_Parameter_Specification
999 Build_Itype_Reference
(Anon_Type
, Parent
(Related_Nod
));
1002 -- Finally, create an itype reference for an object declaration of an
1003 -- anonymous access type. This is strictly necessary only for deferred
1004 -- constants, but in any case will avoid out-of-scope problems in the
1007 elsif Nkind
(Related_Nod
) = N_Object_Declaration
then
1008 Build_Itype_Reference
(Anon_Type
, Related_Nod
);
1012 end Access_Definition
;
1014 -----------------------------------
1015 -- Access_Subprogram_Declaration --
1016 -----------------------------------
1018 procedure Access_Subprogram_Declaration
1019 (T_Name
: Entity_Id
;
1022 procedure Check_For_Premature_Usage
(Def
: Node_Id
);
1023 -- Check that type T_Name is not used, directly or recursively, as a
1024 -- parameter or a return type in Def. Def is either a subtype, an
1025 -- access_definition, or an access_to_subprogram_definition.
1027 -------------------------------
1028 -- Check_For_Premature_Usage --
1029 -------------------------------
1031 procedure Check_For_Premature_Usage
(Def
: Node_Id
) is
1035 -- Check for a subtype mark
1037 if Nkind
(Def
) in N_Has_Etype
then
1038 if Etype
(Def
) = T_Name
then
1040 ("type& cannot be used before end of its declaration", Def
);
1043 -- If this is not a subtype, then this is an access_definition
1045 elsif Nkind
(Def
) = N_Access_Definition
then
1046 if Present
(Access_To_Subprogram_Definition
(Def
)) then
1047 Check_For_Premature_Usage
1048 (Access_To_Subprogram_Definition
(Def
));
1050 Check_For_Premature_Usage
(Subtype_Mark
(Def
));
1053 -- The only cases left are N_Access_Function_Definition and
1054 -- N_Access_Procedure_Definition.
1057 if Present
(Parameter_Specifications
(Def
)) then
1058 Param
:= First
(Parameter_Specifications
(Def
));
1059 while Present
(Param
) loop
1060 Check_For_Premature_Usage
(Parameter_Type
(Param
));
1061 Param
:= Next
(Param
);
1065 if Nkind
(Def
) = N_Access_Function_Definition
then
1066 Check_For_Premature_Usage
(Result_Definition
(Def
));
1069 end Check_For_Premature_Usage
;
1073 Formals
: constant List_Id
:= Parameter_Specifications
(T_Def
);
1076 Desig_Type
: constant Entity_Id
:=
1077 Create_Itype
(E_Subprogram_Type
, Parent
(T_Def
));
1079 -- Start of processing for Access_Subprogram_Declaration
1082 Check_SPARK_05_Restriction
("access type is not allowed", T_Def
);
1084 -- Associate the Itype node with the inner full-type declaration or
1085 -- subprogram spec or entry body. This is required to handle nested
1086 -- anonymous declarations. For example:
1089 -- (X : access procedure
1090 -- (Y : access procedure
1093 D_Ityp
:= Associated_Node_For_Itype
(Desig_Type
);
1094 while not (Nkind_In
(D_Ityp
, N_Full_Type_Declaration
,
1095 N_Private_Type_Declaration
,
1096 N_Private_Extension_Declaration
,
1097 N_Procedure_Specification
,
1098 N_Function_Specification
,
1102 Nkind_In
(D_Ityp
, N_Object_Declaration
,
1103 N_Object_Renaming_Declaration
,
1104 N_Formal_Object_Declaration
,
1105 N_Formal_Type_Declaration
,
1106 N_Task_Type_Declaration
,
1107 N_Protected_Type_Declaration
))
1109 D_Ityp
:= Parent
(D_Ityp
);
1110 pragma Assert
(D_Ityp
/= Empty
);
1113 Set_Associated_Node_For_Itype
(Desig_Type
, D_Ityp
);
1115 if Nkind_In
(D_Ityp
, N_Procedure_Specification
,
1116 N_Function_Specification
)
1118 Set_Scope
(Desig_Type
, Scope
(Defining_Entity
(D_Ityp
)));
1120 elsif Nkind_In
(D_Ityp
, N_Full_Type_Declaration
,
1121 N_Object_Declaration
,
1122 N_Object_Renaming_Declaration
,
1123 N_Formal_Type_Declaration
)
1125 Set_Scope
(Desig_Type
, Scope
(Defining_Identifier
(D_Ityp
)));
1128 if Nkind
(T_Def
) = N_Access_Function_Definition
then
1129 if Nkind
(Result_Definition
(T_Def
)) = N_Access_Definition
then
1131 Acc
: constant Node_Id
:= Result_Definition
(T_Def
);
1134 if Present
(Access_To_Subprogram_Definition
(Acc
))
1136 Protected_Present
(Access_To_Subprogram_Definition
(Acc
))
1140 Replace_Anonymous_Access_To_Protected_Subprogram
1146 Access_Definition
(T_Def
, Result_Definition
(T_Def
)));
1151 Analyze
(Result_Definition
(T_Def
));
1154 Typ
: constant Entity_Id
:= Entity
(Result_Definition
(T_Def
));
1157 -- If a null exclusion is imposed on the result type, then
1158 -- create a null-excluding itype (an access subtype) and use
1159 -- it as the function's Etype.
1161 if Is_Access_Type
(Typ
)
1162 and then Null_Exclusion_In_Return_Present
(T_Def
)
1164 Set_Etype
(Desig_Type
,
1165 Create_Null_Excluding_Itype
1167 Related_Nod
=> T_Def
,
1168 Scope_Id
=> Current_Scope
));
1171 if From_Limited_With
(Typ
) then
1173 -- AI05-151: Incomplete types are allowed in all basic
1174 -- declarations, including access to subprograms.
1176 if Ada_Version
>= Ada_2012
then
1181 ("illegal use of incomplete type&",
1182 Result_Definition
(T_Def
), Typ
);
1185 elsif Ekind
(Current_Scope
) = E_Package
1186 and then In_Private_Part
(Current_Scope
)
1188 if Ekind
(Typ
) = E_Incomplete_Type
then
1189 Append_Elmt
(Desig_Type
, Private_Dependents
(Typ
));
1191 elsif Is_Class_Wide_Type
(Typ
)
1192 and then Ekind
(Etype
(Typ
)) = E_Incomplete_Type
1195 (Desig_Type
, Private_Dependents
(Etype
(Typ
)));
1199 Set_Etype
(Desig_Type
, Typ
);
1204 if not (Is_Type
(Etype
(Desig_Type
))) then
1206 ("expect type in function specification",
1207 Result_Definition
(T_Def
));
1211 Set_Etype
(Desig_Type
, Standard_Void_Type
);
1214 if Present
(Formals
) then
1215 Push_Scope
(Desig_Type
);
1217 -- Some special tests here. These special tests can be removed
1218 -- if and when Itypes always have proper parent pointers to their
1221 -- Special test 1) Link defining_identifier of formals. Required by
1222 -- First_Formal to provide its functionality.
1228 F
:= First
(Formals
);
1230 -- In ASIS mode, the access_to_subprogram may be analyzed twice,
1231 -- when it is part of an unconstrained type and subtype expansion
1232 -- is disabled. To avoid back-end problems with shared profiles,
1233 -- use previous subprogram type as the designated type, and then
1234 -- remove scope added above.
1236 if ASIS_Mode
and then Present
(Scope
(Defining_Identifier
(F
)))
1238 Set_Etype
(T_Name
, T_Name
);
1239 Init_Size_Align
(T_Name
);
1240 Set_Directly_Designated_Type
(T_Name
,
1241 Scope
(Defining_Identifier
(F
)));
1246 while Present
(F
) loop
1247 if No
(Parent
(Defining_Identifier
(F
))) then
1248 Set_Parent
(Defining_Identifier
(F
), F
);
1255 Process_Formals
(Formals
, Parent
(T_Def
));
1257 -- Special test 2) End_Scope requires that the parent pointer be set
1258 -- to something reasonable, but Itypes don't have parent pointers. So
1259 -- we set it and then unset it ???
1261 Set_Parent
(Desig_Type
, T_Name
);
1263 Set_Parent
(Desig_Type
, Empty
);
1266 -- Check for premature usage of the type being defined
1268 Check_For_Premature_Usage
(T_Def
);
1270 -- The return type and/or any parameter type may be incomplete. Mark the
1271 -- subprogram_type as depending on the incomplete type, so that it can
1272 -- be updated when the full type declaration is seen. This only applies
1273 -- to incomplete types declared in some enclosing scope, not to limited
1274 -- views from other packages.
1276 -- Prior to Ada 2012, access to functions can only have in_parameters.
1278 if Present
(Formals
) then
1279 Formal
:= First_Formal
(Desig_Type
);
1280 while Present
(Formal
) loop
1281 if Ekind
(Formal
) /= E_In_Parameter
1282 and then Nkind
(T_Def
) = N_Access_Function_Definition
1283 and then Ada_Version
< Ada_2012
1285 Error_Msg_N
("functions can only have IN parameters", Formal
);
1288 if Ekind
(Etype
(Formal
)) = E_Incomplete_Type
1289 and then In_Open_Scopes
(Scope
(Etype
(Formal
)))
1291 Append_Elmt
(Desig_Type
, Private_Dependents
(Etype
(Formal
)));
1292 Set_Has_Delayed_Freeze
(Desig_Type
);
1295 Next_Formal
(Formal
);
1299 -- Check whether an indirect call without actuals may be possible. This
1300 -- is used when resolving calls whose result is then indexed.
1302 May_Need_Actuals
(Desig_Type
);
1304 -- If the return type is incomplete, this is legal as long as the type
1305 -- is declared in the current scope and will be completed in it (rather
1306 -- than being part of limited view).
1308 if Ekind
(Etype
(Desig_Type
)) = E_Incomplete_Type
1309 and then not Has_Delayed_Freeze
(Desig_Type
)
1310 and then In_Open_Scopes
(Scope
(Etype
(Desig_Type
)))
1312 Append_Elmt
(Desig_Type
, Private_Dependents
(Etype
(Desig_Type
)));
1313 Set_Has_Delayed_Freeze
(Desig_Type
);
1316 Check_Delayed_Subprogram
(Desig_Type
);
1318 if Protected_Present
(T_Def
) then
1319 Set_Ekind
(T_Name
, E_Access_Protected_Subprogram_Type
);
1320 Set_Convention
(Desig_Type
, Convention_Protected
);
1322 Set_Ekind
(T_Name
, E_Access_Subprogram_Type
);
1325 Set_Can_Use_Internal_Rep
(T_Name
, not Always_Compatible_Rep_On_Target
);
1327 Set_Etype
(T_Name
, T_Name
);
1328 Init_Size_Align
(T_Name
);
1329 Set_Directly_Designated_Type
(T_Name
, Desig_Type
);
1331 Generate_Reference_To_Formals
(T_Name
);
1333 -- Ada 2005 (AI-231): Propagate the null-excluding attribute
1335 Set_Can_Never_Be_Null
(T_Name
, Null_Exclusion_Present
(T_Def
));
1337 Check_Restriction
(No_Access_Subprograms
, T_Def
);
1338 end Access_Subprogram_Declaration
;
1340 ----------------------------
1341 -- Access_Type_Declaration --
1342 ----------------------------
1344 procedure Access_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
1345 P
: constant Node_Id
:= Parent
(Def
);
1346 S
: constant Node_Id
:= Subtype_Indication
(Def
);
1348 Full_Desig
: Entity_Id
;
1351 Check_SPARK_05_Restriction
("access type is not allowed", Def
);
1353 -- Check for permissible use of incomplete type
1355 if Nkind
(S
) /= N_Subtype_Indication
then
1358 if Ekind
(Root_Type
(Entity
(S
))) = E_Incomplete_Type
then
1359 Set_Directly_Designated_Type
(T
, Entity
(S
));
1361 -- If the designated type is a limited view, we cannot tell if
1362 -- the full view contains tasks, and there is no way to handle
1363 -- that full view in a client. We create a master entity for the
1364 -- scope, which will be used when a client determines that one
1367 if From_Limited_With
(Entity
(S
))
1368 and then not Is_Class_Wide_Type
(Entity
(S
))
1370 Set_Ekind
(T
, E_Access_Type
);
1371 Build_Master_Entity
(T
);
1372 Build_Master_Renaming
(T
);
1376 Set_Directly_Designated_Type
(T
, Process_Subtype
(S
, P
, T
, 'P'));
1379 -- If the access definition is of the form: ACCESS NOT NULL ..
1380 -- the subtype indication must be of an access type. Create
1381 -- a null-excluding subtype of it.
1383 if Null_Excluding_Subtype
(Def
) then
1384 if not Is_Access_Type
(Entity
(S
)) then
1385 Error_Msg_N
("null exclusion must apply to access type", Def
);
1389 Loc
: constant Source_Ptr
:= Sloc
(S
);
1391 Nam
: constant Entity_Id
:= Make_Temporary
(Loc
, 'S');
1395 Make_Subtype_Declaration
(Loc
,
1396 Defining_Identifier
=> Nam
,
1397 Subtype_Indication
=>
1398 New_Occurrence_Of
(Entity
(S
), Loc
));
1399 Set_Null_Exclusion_Present
(Decl
);
1400 Insert_Before
(Parent
(Def
), Decl
);
1402 Set_Entity
(S
, Nam
);
1408 Set_Directly_Designated_Type
(T
,
1409 Process_Subtype
(S
, P
, T
, 'P'));
1412 if All_Present
(Def
) or Constant_Present
(Def
) then
1413 Set_Ekind
(T
, E_General_Access_Type
);
1415 Set_Ekind
(T
, E_Access_Type
);
1418 Full_Desig
:= Designated_Type
(T
);
1420 if Base_Type
(Full_Desig
) = T
then
1421 Error_Msg_N
("access type cannot designate itself", S
);
1423 -- In Ada 2005, the type may have a limited view through some unit in
1424 -- its own context, allowing the following circularity that cannot be
1425 -- detected earlier.
1427 elsif Is_Class_Wide_Type
(Full_Desig
) and then Etype
(Full_Desig
) = T
1430 ("access type cannot designate its own classwide type", S
);
1432 -- Clean up indication of tagged status to prevent cascaded errors
1434 Set_Is_Tagged_Type
(T
, False);
1439 -- If the type has appeared already in a with_type clause, it is frozen
1440 -- and the pointer size is already set. Else, initialize.
1442 if not From_Limited_With
(T
) then
1443 Init_Size_Align
(T
);
1446 -- Note that Has_Task is always false, since the access type itself
1447 -- is not a task type. See Einfo for more description on this point.
1448 -- Exactly the same consideration applies to Has_Controlled_Component
1449 -- and to Has_Protected.
1451 Set_Has_Task
(T
, False);
1452 Set_Has_Controlled_Component
(T
, False);
1453 Set_Has_Protected
(T
, False);
1455 -- Initialize field Finalization_Master explicitly to Empty, to avoid
1456 -- problems where an incomplete view of this entity has been previously
1457 -- established by a limited with and an overlaid version of this field
1458 -- (Stored_Constraint) was initialized for the incomplete view.
1460 -- This reset is performed in most cases except where the access type
1461 -- has been created for the purposes of allocating or deallocating a
1462 -- build-in-place object. Such access types have explicitly set pools
1463 -- and finalization masters.
1465 if No
(Associated_Storage_Pool
(T
)) then
1466 Set_Finalization_Master
(T
, Empty
);
1469 -- Ada 2005 (AI-231): Propagate the null-excluding and access-constant
1472 Set_Can_Never_Be_Null
(T
, Null_Exclusion_Present
(Def
));
1473 Set_Is_Access_Constant
(T
, Constant_Present
(Def
));
1474 end Access_Type_Declaration
;
1476 ----------------------------------
1477 -- Add_Interface_Tag_Components --
1478 ----------------------------------
1480 procedure Add_Interface_Tag_Components
(N
: Node_Id
; Typ
: Entity_Id
) is
1481 Loc
: constant Source_Ptr
:= Sloc
(N
);
1485 procedure Add_Tag
(Iface
: Entity_Id
);
1486 -- Add tag for one of the progenitor interfaces
1492 procedure Add_Tag
(Iface
: Entity_Id
) is
1499 pragma Assert
(Is_Tagged_Type
(Iface
) and then Is_Interface
(Iface
));
1501 -- This is a reasonable place to propagate predicates
1503 if Has_Predicates
(Iface
) then
1504 Set_Has_Predicates
(Typ
);
1508 Make_Component_Definition
(Loc
,
1509 Aliased_Present
=> True,
1510 Subtype_Indication
=>
1511 New_Occurrence_Of
(RTE
(RE_Interface_Tag
), Loc
));
1513 Tag
:= Make_Temporary
(Loc
, 'V');
1516 Make_Component_Declaration
(Loc
,
1517 Defining_Identifier
=> Tag
,
1518 Component_Definition
=> Def
);
1520 Analyze_Component_Declaration
(Decl
);
1522 Set_Analyzed
(Decl
);
1523 Set_Ekind
(Tag
, E_Component
);
1525 Set_Is_Aliased
(Tag
);
1526 Set_Related_Type
(Tag
, Iface
);
1527 Init_Component_Location
(Tag
);
1529 pragma Assert
(Is_Frozen
(Iface
));
1531 Set_DT_Entry_Count
(Tag
,
1532 DT_Entry_Count
(First_Entity
(Iface
)));
1534 if No
(Last_Tag
) then
1537 Insert_After
(Last_Tag
, Decl
);
1542 -- If the ancestor has discriminants we need to give special support
1543 -- to store the offset_to_top value of the secondary dispatch tables.
1544 -- For this purpose we add a supplementary component just after the
1545 -- field that contains the tag associated with each secondary DT.
1547 if Typ
/= Etype
(Typ
) and then Has_Discriminants
(Etype
(Typ
)) then
1549 Make_Component_Definition
(Loc
,
1550 Subtype_Indication
=>
1551 New_Occurrence_Of
(RTE
(RE_Storage_Offset
), Loc
));
1553 Offset
:= Make_Temporary
(Loc
, 'V');
1556 Make_Component_Declaration
(Loc
,
1557 Defining_Identifier
=> Offset
,
1558 Component_Definition
=> Def
);
1560 Analyze_Component_Declaration
(Decl
);
1562 Set_Analyzed
(Decl
);
1563 Set_Ekind
(Offset
, E_Component
);
1564 Set_Is_Aliased
(Offset
);
1565 Set_Related_Type
(Offset
, Iface
);
1566 Init_Component_Location
(Offset
);
1567 Insert_After
(Last_Tag
, Decl
);
1578 -- Start of processing for Add_Interface_Tag_Components
1581 if not RTE_Available
(RE_Interface_Tag
) then
1583 ("(Ada 2005) interface types not supported by this run-time!",
1588 if Ekind
(Typ
) /= E_Record_Type
1589 or else (Is_Concurrent_Record_Type
(Typ
)
1590 and then Is_Empty_List
(Abstract_Interface_List
(Typ
)))
1591 or else (not Is_Concurrent_Record_Type
(Typ
)
1592 and then No
(Interfaces
(Typ
))
1593 and then Is_Empty_Elmt_List
(Interfaces
(Typ
)))
1598 -- Find the current last tag
1600 if Nkind
(Type_Definition
(N
)) = N_Derived_Type_Definition
then
1601 Ext
:= Record_Extension_Part
(Type_Definition
(N
));
1603 pragma Assert
(Nkind
(Type_Definition
(N
)) = N_Record_Definition
);
1604 Ext
:= Type_Definition
(N
);
1609 if not (Present
(Component_List
(Ext
))) then
1610 Set_Null_Present
(Ext
, False);
1612 Set_Component_List
(Ext
,
1613 Make_Component_List
(Loc
,
1614 Component_Items
=> L
,
1615 Null_Present
=> False));
1617 if Nkind
(Type_Definition
(N
)) = N_Derived_Type_Definition
then
1618 L
:= Component_Items
1620 (Record_Extension_Part
1621 (Type_Definition
(N
))));
1623 L
:= Component_Items
1625 (Type_Definition
(N
)));
1628 -- Find the last tag component
1631 while Present
(Comp
) loop
1632 if Nkind
(Comp
) = N_Component_Declaration
1633 and then Is_Tag
(Defining_Identifier
(Comp
))
1642 -- At this point L references the list of components and Last_Tag
1643 -- references the current last tag (if any). Now we add the tag
1644 -- corresponding with all the interfaces that are not implemented
1647 if Present
(Interfaces
(Typ
)) then
1648 Elmt
:= First_Elmt
(Interfaces
(Typ
));
1649 while Present
(Elmt
) loop
1650 Add_Tag
(Node
(Elmt
));
1654 end Add_Interface_Tag_Components
;
1656 -------------------------------------
1657 -- Add_Internal_Interface_Entities --
1658 -------------------------------------
1660 procedure Add_Internal_Interface_Entities
(Tagged_Type
: Entity_Id
) is
1663 Iface_Elmt
: Elmt_Id
;
1664 Iface_Prim
: Entity_Id
;
1665 Ifaces_List
: Elist_Id
;
1666 New_Subp
: Entity_Id
:= Empty
;
1668 Restore_Scope
: Boolean := False;
1671 pragma Assert
(Ada_Version
>= Ada_2005
1672 and then Is_Record_Type
(Tagged_Type
)
1673 and then Is_Tagged_Type
(Tagged_Type
)
1674 and then Has_Interfaces
(Tagged_Type
)
1675 and then not Is_Interface
(Tagged_Type
));
1677 -- Ensure that the internal entities are added to the scope of the type
1679 if Scope
(Tagged_Type
) /= Current_Scope
then
1680 Push_Scope
(Scope
(Tagged_Type
));
1681 Restore_Scope
:= True;
1684 Collect_Interfaces
(Tagged_Type
, Ifaces_List
);
1686 Iface_Elmt
:= First_Elmt
(Ifaces_List
);
1687 while Present
(Iface_Elmt
) loop
1688 Iface
:= Node
(Iface_Elmt
);
1690 -- Originally we excluded here from this processing interfaces that
1691 -- are parents of Tagged_Type because their primitives are located
1692 -- in the primary dispatch table (and hence no auxiliary internal
1693 -- entities are required to handle secondary dispatch tables in such
1694 -- case). However, these auxiliary entities are also required to
1695 -- handle derivations of interfaces in formals of generics (see
1696 -- Derive_Subprograms).
1698 Elmt
:= First_Elmt
(Primitive_Operations
(Iface
));
1699 while Present
(Elmt
) loop
1700 Iface_Prim
:= Node
(Elmt
);
1702 if not Is_Predefined_Dispatching_Operation
(Iface_Prim
) then
1704 Find_Primitive_Covering_Interface
1705 (Tagged_Type
=> Tagged_Type
,
1706 Iface_Prim
=> Iface_Prim
);
1708 if No
(Prim
) and then Serious_Errors_Detected
> 0 then
1712 pragma Assert
(Present
(Prim
));
1714 -- Ada 2012 (AI05-0197): If the name of the covering primitive
1715 -- differs from the name of the interface primitive then it is
1716 -- a private primitive inherited from a parent type. In such
1717 -- case, given that Tagged_Type covers the interface, the
1718 -- inherited private primitive becomes visible. For such
1719 -- purpose we add a new entity that renames the inherited
1720 -- private primitive.
1722 if Chars
(Prim
) /= Chars
(Iface_Prim
) then
1723 pragma Assert
(Has_Suffix
(Prim
, 'P'));
1725 (New_Subp
=> New_Subp
,
1726 Parent_Subp
=> Iface_Prim
,
1727 Derived_Type
=> Tagged_Type
,
1728 Parent_Type
=> Iface
);
1729 Set_Alias
(New_Subp
, Prim
);
1730 Set_Is_Abstract_Subprogram
1731 (New_Subp
, Is_Abstract_Subprogram
(Prim
));
1735 (New_Subp
=> New_Subp
,
1736 Parent_Subp
=> Iface_Prim
,
1737 Derived_Type
=> Tagged_Type
,
1738 Parent_Type
=> Iface
);
1740 -- Ada 2005 (AI-251): Decorate internal entity Iface_Subp
1741 -- associated with interface types. These entities are
1742 -- only registered in the list of primitives of its
1743 -- corresponding tagged type because they are only used
1744 -- to fill the contents of the secondary dispatch tables.
1745 -- Therefore they are removed from the homonym chains.
1747 Set_Is_Hidden
(New_Subp
);
1748 Set_Is_Internal
(New_Subp
);
1749 Set_Alias
(New_Subp
, Prim
);
1750 Set_Is_Abstract_Subprogram
1751 (New_Subp
, Is_Abstract_Subprogram
(Prim
));
1752 Set_Interface_Alias
(New_Subp
, Iface_Prim
);
1754 -- If the returned type is an interface then propagate it to
1755 -- the returned type. Needed by the thunk to generate the code
1756 -- which displaces "this" to reference the corresponding
1757 -- secondary dispatch table in the returned object.
1759 if Is_Interface
(Etype
(Iface_Prim
)) then
1760 Set_Etype
(New_Subp
, Etype
(Iface_Prim
));
1763 -- Internal entities associated with interface types are only
1764 -- registered in the list of primitives of the tagged type.
1765 -- They are only used to fill the contents of the secondary
1766 -- dispatch tables. Therefore they are not needed in the
1769 Remove_Homonym
(New_Subp
);
1771 -- Hidden entities associated with interfaces must have set
1772 -- the Has_Delay_Freeze attribute to ensure that, in case
1773 -- of locally defined tagged types (or compiling with static
1774 -- dispatch tables generation disabled) the corresponding
1775 -- entry of the secondary dispatch table is filled when such
1776 -- an entity is frozen. This is an expansion activity that must
1777 -- be suppressed for ASIS because it leads to gigi elaboration
1778 -- issues in annotate mode.
1780 if not ASIS_Mode
then
1781 Set_Has_Delayed_Freeze
(New_Subp
);
1789 Next_Elmt
(Iface_Elmt
);
1792 if Restore_Scope
then
1795 end Add_Internal_Interface_Entities
;
1797 -----------------------------------
1798 -- Analyze_Component_Declaration --
1799 -----------------------------------
1801 procedure Analyze_Component_Declaration
(N
: Node_Id
) is
1802 Loc
: constant Source_Ptr
:= Sloc
(Component_Definition
(N
));
1803 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
1804 E
: constant Node_Id
:= Expression
(N
);
1805 Typ
: constant Node_Id
:=
1806 Subtype_Indication
(Component_Definition
(N
));
1810 function Contains_POC
(Constr
: Node_Id
) return Boolean;
1811 -- Determines whether a constraint uses the discriminant of a record
1812 -- type thus becoming a per-object constraint (POC).
1814 function Is_Known_Limited
(Typ
: Entity_Id
) return Boolean;
1815 -- Typ is the type of the current component, check whether this type is
1816 -- a limited type. Used to validate declaration against that of
1817 -- enclosing record.
1823 function Contains_POC
(Constr
: Node_Id
) return Boolean is
1825 -- Prevent cascaded errors
1827 if Error_Posted
(Constr
) then
1831 case Nkind
(Constr
) is
1832 when N_Attribute_Reference
=>
1833 return Attribute_Name
(Constr
) = Name_Access
1834 and then Prefix
(Constr
) = Scope
(Entity
(Prefix
(Constr
)));
1836 when N_Discriminant_Association
=>
1837 return Denotes_Discriminant
(Expression
(Constr
));
1839 when N_Identifier
=>
1840 return Denotes_Discriminant
(Constr
);
1842 when N_Index_Or_Discriminant_Constraint
=>
1847 IDC
:= First
(Constraints
(Constr
));
1848 while Present
(IDC
) loop
1850 -- One per-object constraint is sufficient
1852 if Contains_POC
(IDC
) then
1863 return Denotes_Discriminant
(Low_Bound
(Constr
))
1865 Denotes_Discriminant
(High_Bound
(Constr
));
1867 when N_Range_Constraint
=>
1868 return Denotes_Discriminant
(Range_Expression
(Constr
));
1876 ----------------------
1877 -- Is_Known_Limited --
1878 ----------------------
1880 function Is_Known_Limited
(Typ
: Entity_Id
) return Boolean is
1881 P
: constant Entity_Id
:= Etype
(Typ
);
1882 R
: constant Entity_Id
:= Root_Type
(Typ
);
1885 if Is_Limited_Record
(Typ
) then
1888 -- If the root type is limited (and not a limited interface)
1889 -- so is the current type
1891 elsif Is_Limited_Record
(R
)
1892 and then (not Is_Interface
(R
) or else not Is_Limited_Interface
(R
))
1896 -- Else the type may have a limited interface progenitor, but a
1897 -- limited record parent.
1899 elsif R
/= P
and then Is_Limited_Record
(P
) then
1905 end Is_Known_Limited
;
1907 -- Start of processing for Analyze_Component_Declaration
1910 Generate_Definition
(Id
);
1913 if Present
(Typ
) then
1914 T
:= Find_Type_Of_Object
1915 (Subtype_Indication
(Component_Definition
(N
)), N
);
1917 if not Nkind_In
(Typ
, N_Identifier
, N_Expanded_Name
) then
1918 Check_SPARK_05_Restriction
("subtype mark required", Typ
);
1921 -- Ada 2005 (AI-230): Access Definition case
1924 pragma Assert
(Present
1925 (Access_Definition
(Component_Definition
(N
))));
1927 T
:= Access_Definition
1929 N
=> Access_Definition
(Component_Definition
(N
)));
1930 Set_Is_Local_Anonymous_Access
(T
);
1932 -- Ada 2005 (AI-254)
1934 if Present
(Access_To_Subprogram_Definition
1935 (Access_Definition
(Component_Definition
(N
))))
1936 and then Protected_Present
(Access_To_Subprogram_Definition
1938 (Component_Definition
(N
))))
1940 T
:= Replace_Anonymous_Access_To_Protected_Subprogram
(N
);
1944 -- If the subtype is a constrained subtype of the enclosing record,
1945 -- (which must have a partial view) the back-end does not properly
1946 -- handle the recursion. Rewrite the component declaration with an
1947 -- explicit subtype indication, which is acceptable to Gigi. We can copy
1948 -- the tree directly because side effects have already been removed from
1949 -- discriminant constraints.
1951 if Ekind
(T
) = E_Access_Subtype
1952 and then Is_Entity_Name
(Subtype_Indication
(Component_Definition
(N
)))
1953 and then Comes_From_Source
(T
)
1954 and then Nkind
(Parent
(T
)) = N_Subtype_Declaration
1955 and then Etype
(Directly_Designated_Type
(T
)) = Current_Scope
1958 (Subtype_Indication
(Component_Definition
(N
)),
1959 New_Copy_Tree
(Subtype_Indication
(Parent
(T
))));
1960 T
:= Find_Type_Of_Object
1961 (Subtype_Indication
(Component_Definition
(N
)), N
);
1964 -- If the component declaration includes a default expression, then we
1965 -- check that the component is not of a limited type (RM 3.7(5)),
1966 -- and do the special preanalysis of the expression (see section on
1967 -- "Handling of Default and Per-Object Expressions" in the spec of
1971 Check_SPARK_05_Restriction
("default expression is not allowed", E
);
1972 Preanalyze_Default_Expression
(E
, T
);
1973 Check_Initialization
(T
, E
);
1975 if Ada_Version
>= Ada_2005
1976 and then Ekind
(T
) = E_Anonymous_Access_Type
1977 and then Etype
(E
) /= Any_Type
1979 -- Check RM 3.9.2(9): "if the expected type for an expression is
1980 -- an anonymous access-to-specific tagged type, then the object
1981 -- designated by the expression shall not be dynamically tagged
1982 -- unless it is a controlling operand in a call on a dispatching
1985 if Is_Tagged_Type
(Directly_Designated_Type
(T
))
1987 Ekind
(Directly_Designated_Type
(T
)) /= E_Class_Wide_Type
1989 Ekind
(Directly_Designated_Type
(Etype
(E
))) =
1993 ("access to specific tagged type required (RM 3.9.2(9))", E
);
1996 -- (Ada 2005: AI-230): Accessibility check for anonymous
1999 if Type_Access_Level
(Etype
(E
)) >
2000 Deepest_Type_Access_Level
(T
)
2003 ("expression has deeper access level than component " &
2004 "(RM 3.10.2 (12.2))", E
);
2007 -- The initialization expression is a reference to an access
2008 -- discriminant. The type of the discriminant is always deeper
2009 -- than any access type.
2011 if Ekind
(Etype
(E
)) = E_Anonymous_Access_Type
2012 and then Is_Entity_Name
(E
)
2013 and then Ekind
(Entity
(E
)) = E_In_Parameter
2014 and then Present
(Discriminal_Link
(Entity
(E
)))
2017 ("discriminant has deeper accessibility level than target",
2023 -- The parent type may be a private view with unknown discriminants,
2024 -- and thus unconstrained. Regular components must be constrained.
2026 if not Is_Definite_Subtype
(T
) and then Chars
(Id
) /= Name_uParent
then
2027 if Is_Class_Wide_Type
(T
) then
2029 ("class-wide subtype with unknown discriminants" &
2030 " in component declaration",
2031 Subtype_Indication
(Component_Definition
(N
)));
2034 ("unconstrained subtype in component declaration",
2035 Subtype_Indication
(Component_Definition
(N
)));
2038 -- Components cannot be abstract, except for the special case of
2039 -- the _Parent field (case of extending an abstract tagged type)
2041 elsif Is_Abstract_Type
(T
) and then Chars
(Id
) /= Name_uParent
then
2042 Error_Msg_N
("type of a component cannot be abstract", N
);
2046 Set_Is_Aliased
(Id
, Aliased_Present
(Component_Definition
(N
)));
2048 -- The component declaration may have a per-object constraint, set
2049 -- the appropriate flag in the defining identifier of the subtype.
2051 if Present
(Subtype_Indication
(Component_Definition
(N
))) then
2053 Sindic
: constant Node_Id
:=
2054 Subtype_Indication
(Component_Definition
(N
));
2056 if Nkind
(Sindic
) = N_Subtype_Indication
2057 and then Present
(Constraint
(Sindic
))
2058 and then Contains_POC
(Constraint
(Sindic
))
2060 Set_Has_Per_Object_Constraint
(Id
);
2065 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
2066 -- out some static checks.
2068 if Ada_Version
>= Ada_2005
and then Can_Never_Be_Null
(T
) then
2069 Null_Exclusion_Static_Checks
(N
);
2072 -- If this component is private (or depends on a private type), flag the
2073 -- record type to indicate that some operations are not available.
2075 P
:= Private_Component
(T
);
2079 -- Check for circular definitions
2081 if P
= Any_Type
then
2082 Set_Etype
(Id
, Any_Type
);
2084 -- There is a gap in the visibility of operations only if the
2085 -- component type is not defined in the scope of the record type.
2087 elsif Scope
(P
) = Scope
(Current_Scope
) then
2090 elsif Is_Limited_Type
(P
) then
2091 Set_Is_Limited_Composite
(Current_Scope
);
2094 Set_Is_Private_Composite
(Current_Scope
);
2099 and then Is_Limited_Type
(T
)
2100 and then Chars
(Id
) /= Name_uParent
2101 and then Is_Tagged_Type
(Current_Scope
)
2103 if Is_Derived_Type
(Current_Scope
)
2104 and then not Is_Known_Limited
(Current_Scope
)
2107 ("extension of nonlimited type cannot have limited components",
2110 if Is_Interface
(Root_Type
(Current_Scope
)) then
2112 ("\limitedness is not inherited from limited interface", N
);
2113 Error_Msg_N
("\add LIMITED to type indication", N
);
2116 Explain_Limited_Type
(T
, N
);
2117 Set_Etype
(Id
, Any_Type
);
2118 Set_Is_Limited_Composite
(Current_Scope
, False);
2120 elsif not Is_Derived_Type
(Current_Scope
)
2121 and then not Is_Limited_Record
(Current_Scope
)
2122 and then not Is_Concurrent_Type
(Current_Scope
)
2125 ("nonlimited tagged type cannot have limited components", N
);
2126 Explain_Limited_Type
(T
, N
);
2127 Set_Etype
(Id
, Any_Type
);
2128 Set_Is_Limited_Composite
(Current_Scope
, False);
2132 -- If the component is an unconstrained task or protected type with
2133 -- discriminants, the component and the enclosing record are limited
2134 -- and the component is constrained by its default values. Compute
2135 -- its actual subtype, else it may be allocated the maximum size by
2136 -- the backend, and possibly overflow.
2138 if Is_Concurrent_Type
(T
)
2139 and then not Is_Constrained
(T
)
2140 and then Has_Discriminants
(T
)
2141 and then not Has_Discriminants
(Current_Scope
)
2144 Act_T
: constant Entity_Id
:= Build_Default_Subtype
(T
, N
);
2147 Set_Etype
(Id
, Act_T
);
2149 -- Rewrite component definition to use the constrained subtype
2151 Rewrite
(Component_Definition
(N
),
2152 Make_Component_Definition
(Loc
,
2153 Subtype_Indication
=> New_Occurrence_Of
(Act_T
, Loc
)));
2157 Set_Original_Record_Component
(Id
, Id
);
2159 if Has_Aspects
(N
) then
2160 Analyze_Aspect_Specifications
(N
, Id
);
2163 Analyze_Dimension
(N
);
2164 end Analyze_Component_Declaration
;
2166 --------------------------
2167 -- Analyze_Declarations --
2168 --------------------------
2170 procedure Analyze_Declarations
(L
: List_Id
) is
2173 procedure Adjust_Decl
;
2174 -- Adjust Decl not to include implicit label declarations, since these
2175 -- have strange Sloc values that result in elaboration check problems.
2176 -- (They have the sloc of the label as found in the source, and that
2177 -- is ahead of the current declarative part).
2179 procedure Handle_Late_Controlled_Primitive
(Body_Decl
: Node_Id
);
2180 -- Determine whether Body_Decl denotes the body of a late controlled
2181 -- primitive (either Initialize, Adjust or Finalize). If this is the
2182 -- case, add a proper spec if the body lacks one. The spec is inserted
2183 -- before Body_Decl and immedately analyzed.
2185 procedure Remove_Visible_Refinements
(Spec_Id
: Entity_Id
);
2186 -- Spec_Id is the entity of a package that may define abstract states.
2187 -- If the states have visible refinement, remove the visibility of each
2188 -- constituent at the end of the package body declarations.
2194 procedure Adjust_Decl
is
2196 while Present
(Prev
(Decl
))
2197 and then Nkind
(Decl
) = N_Implicit_Label_Declaration
2203 --------------------------------------
2204 -- Handle_Late_Controlled_Primitive --
2205 --------------------------------------
2207 procedure Handle_Late_Controlled_Primitive
(Body_Decl
: Node_Id
) is
2208 Body_Spec
: constant Node_Id
:= Specification
(Body_Decl
);
2209 Body_Id
: constant Entity_Id
:= Defining_Entity
(Body_Spec
);
2210 Loc
: constant Source_Ptr
:= Sloc
(Body_Id
);
2211 Params
: constant List_Id
:=
2212 Parameter_Specifications
(Body_Spec
);
2214 Spec_Id
: Entity_Id
;
2218 -- Consider only procedure bodies whose name matches one of the three
2219 -- controlled primitives.
2221 if Nkind
(Body_Spec
) /= N_Procedure_Specification
2222 or else not Nam_In
(Chars
(Body_Id
), Name_Adjust
,
2228 -- A controlled primitive must have exactly one formal which is not
2229 -- an anonymous access type.
2231 elsif List_Length
(Params
) /= 1 then
2235 Typ
:= Parameter_Type
(First
(Params
));
2237 if Nkind
(Typ
) = N_Access_Definition
then
2243 -- The type of the formal must be derived from [Limited_]Controlled
2245 if not Is_Controlled
(Entity
(Typ
)) then
2249 -- Check whether a specification exists for this body. We do not
2250 -- analyze the spec of the body in full, because it will be analyzed
2251 -- again when the body is properly analyzed, and we cannot create
2252 -- duplicate entries in the formals chain. We look for an explicit
2253 -- specification because the body may be an overriding operation and
2254 -- an inherited spec may be present.
2256 Spec_Id
:= Current_Entity
(Body_Id
);
2258 while Present
(Spec_Id
) loop
2259 if Ekind_In
(Spec_Id
, E_Procedure
, E_Generic_Procedure
)
2260 and then Scope
(Spec_Id
) = Current_Scope
2261 and then Present
(First_Formal
(Spec_Id
))
2262 and then No
(Next_Formal
(First_Formal
(Spec_Id
)))
2263 and then Etype
(First_Formal
(Spec_Id
)) = Entity
(Typ
)
2264 and then Comes_From_Source
(Spec_Id
)
2269 Spec_Id
:= Homonym
(Spec_Id
);
2272 -- At this point the body is known to be a late controlled primitive.
2273 -- Generate a matching spec and insert it before the body. Note the
2274 -- use of Copy_Separate_Tree - we want an entirely separate semantic
2275 -- tree in this case.
2277 Spec
:= Copy_Separate_Tree
(Body_Spec
);
2279 -- Ensure that the subprogram declaration does not inherit the null
2280 -- indicator from the body as we now have a proper spec/body pair.
2282 Set_Null_Present
(Spec
, False);
2284 Insert_Before_And_Analyze
(Body_Decl
,
2285 Make_Subprogram_Declaration
(Loc
, Specification
=> Spec
));
2286 end Handle_Late_Controlled_Primitive
;
2288 --------------------------------
2289 -- Remove_Visible_Refinements --
2290 --------------------------------
2292 procedure Remove_Visible_Refinements
(Spec_Id
: Entity_Id
) is
2293 State_Elmt
: Elmt_Id
;
2295 if Present
(Abstract_States
(Spec_Id
)) then
2296 State_Elmt
:= First_Elmt
(Abstract_States
(Spec_Id
));
2297 while Present
(State_Elmt
) loop
2298 Set_Has_Visible_Refinement
(Node
(State_Elmt
), False);
2299 Next_Elmt
(State_Elmt
);
2302 end Remove_Visible_Refinements
;
2306 Context
: Node_Id
:= Empty
;
2307 Freeze_From
: Entity_Id
:= Empty
;
2308 Next_Decl
: Node_Id
;
2309 Pack_Decl
: Node_Id
:= Empty
;
2311 Body_Seen
: Boolean := False;
2312 -- Flag set when the first body [stub] is encountered
2314 -- Start of processing for Analyze_Declarations
2317 if Restriction_Check_Required
(SPARK_05
) then
2318 Check_Later_Vs_Basic_Declarations
(L
, During_Parsing
=> False);
2322 while Present
(Decl
) loop
2324 -- Package spec cannot contain a package declaration in SPARK
2326 if Nkind
(Decl
) = N_Package_Declaration
2327 and then Nkind
(Parent
(L
)) = N_Package_Specification
2329 Check_SPARK_05_Restriction
2330 ("package specification cannot contain a package declaration",
2334 -- Complete analysis of declaration
2337 Next_Decl
:= Next
(Decl
);
2339 if No
(Freeze_From
) then
2340 Freeze_From
:= First_Entity
(Current_Scope
);
2343 -- At the end of a declarative part, freeze remaining entities
2344 -- declared in it. The end of the visible declarations of package
2345 -- specification is not the end of a declarative part if private
2346 -- declarations are present. The end of a package declaration is a
2347 -- freezing point only if it a library package. A task definition or
2348 -- protected type definition is not a freeze point either. Finally,
2349 -- we do not freeze entities in generic scopes, because there is no
2350 -- code generated for them and freeze nodes will be generated for
2353 -- The end of a package instantiation is not a freeze point, but
2354 -- for now we make it one, because the generic body is inserted
2355 -- (currently) immediately after. Generic instantiations will not
2356 -- be a freeze point once delayed freezing of bodies is implemented.
2357 -- (This is needed in any case for early instantiations ???).
2359 if No
(Next_Decl
) then
2360 if Nkind_In
(Parent
(L
), N_Component_List
,
2362 N_Protected_Definition
)
2366 elsif Nkind
(Parent
(L
)) /= N_Package_Specification
then
2367 if Nkind
(Parent
(L
)) = N_Package_Body
then
2368 Freeze_From
:= First_Entity
(Current_Scope
);
2371 -- There may have been several freezing points previously,
2372 -- for example object declarations or subprogram bodies, but
2373 -- at the end of a declarative part we check freezing from
2374 -- the beginning, even though entities may already be frozen,
2375 -- in order to perform visibility checks on delayed aspects.
2378 Freeze_All
(First_Entity
(Current_Scope
), Decl
);
2379 Freeze_From
:= Last_Entity
(Current_Scope
);
2381 elsif Scope
(Current_Scope
) /= Standard_Standard
2382 and then not Is_Child_Unit
(Current_Scope
)
2383 and then No
(Generic_Parent
(Parent
(L
)))
2387 elsif L
/= Visible_Declarations
(Parent
(L
))
2388 or else No
(Private_Declarations
(Parent
(L
)))
2389 or else Is_Empty_List
(Private_Declarations
(Parent
(L
)))
2392 Freeze_All
(First_Entity
(Current_Scope
), Decl
);
2393 Freeze_From
:= Last_Entity
(Current_Scope
);
2396 -- If next node is a body then freeze all types before the body.
2397 -- An exception occurs for some expander-generated bodies. If these
2398 -- are generated at places where in general language rules would not
2399 -- allow a freeze point, then we assume that the expander has
2400 -- explicitly checked that all required types are properly frozen,
2401 -- and we do not cause general freezing here. This special circuit
2402 -- is used when the encountered body is marked as having already
2405 -- In all other cases (bodies that come from source, and expander
2406 -- generated bodies that have not been analyzed yet), freeze all
2407 -- types now. Note that in the latter case, the expander must take
2408 -- care to attach the bodies at a proper place in the tree so as to
2409 -- not cause unwanted freezing at that point.
2411 elsif not Analyzed
(Next_Decl
) and then Is_Body
(Next_Decl
) then
2413 -- When a controlled type is frozen, the expander generates stream
2414 -- and controlled type support routines. If the freeze is caused
2415 -- by the stand alone body of Initialize, Adjust and Finalize, the
2416 -- expander will end up using the wrong version of these routines
2417 -- as the body has not been processed yet. To remedy this, detect
2418 -- a late controlled primitive and create a proper spec for it.
2419 -- This ensures that the primitive will override its inherited
2420 -- counterpart before the freeze takes place.
2422 -- If the declaration we just processed is a body, do not attempt
2423 -- to examine Next_Decl as the late primitive idiom can only apply
2424 -- to the first encountered body.
2426 -- The spec of the late primitive is not generated in ASIS mode to
2427 -- ensure a consistent list of primitives that indicates the true
2428 -- semantic structure of the program (which is not relevant when
2429 -- generating executable code.
2431 -- ??? a cleaner approach may be possible and/or this solution
2432 -- could be extended to general-purpose late primitives, TBD.
2434 if not ASIS_Mode
and then not Body_Seen
and then not Is_Body
(Decl
)
2438 if Nkind
(Next_Decl
) = N_Subprogram_Body
then
2439 Handle_Late_Controlled_Primitive
(Next_Decl
);
2444 Freeze_All
(Freeze_From
, Decl
);
2445 Freeze_From
:= Last_Entity
(Current_Scope
);
2451 -- Analyze the contracts of packages and their bodies
2454 Context
:= Parent
(L
);
2456 if Nkind
(Context
) = N_Package_Specification
then
2457 Pack_Decl
:= Parent
(Context
);
2459 -- When a package has private declarations, its contract must be
2460 -- analyzed at the end of the said declarations. This way both the
2461 -- analysis and freeze actions are properly synchronized in case
2462 -- of private type use within the contract.
2464 if L
= Private_Declarations
(Context
) then
2465 Analyze_Package_Contract
(Defining_Entity
(Context
));
2467 -- Build the bodies of the default initial condition procedures
2468 -- for all types subject to pragma Default_Initial_Condition.
2469 -- From a purely Ada stand point, this is a freezing activity,
2470 -- however freezing is not available under GNATprove_Mode. To
2471 -- accomodate both scenarios, the bodies are build at the end
2472 -- of private declaration analysis.
2474 Build_Default_Init_Cond_Procedure_Bodies
(L
);
2476 -- Otherwise the contract is analyzed at the end of the visible
2479 elsif L
= Visible_Declarations
(Context
)
2480 and then No
(Private_Declarations
(Context
))
2482 Analyze_Package_Contract
(Defining_Entity
(Context
));
2485 elsif Nkind
(Context
) = N_Package_Body
then
2486 Pack_Decl
:= Context
;
2487 Analyze_Package_Body_Contract
(Defining_Entity
(Context
));
2490 -- Analyze the contracts of all subprogram declarations, subprogram
2491 -- bodies and variables now due to the delayed visibility needs of
2492 -- of their aspects and pragmas. Capture global references in generic
2493 -- subprograms or bodies.
2496 while Present
(Decl
) loop
2497 if Nkind
(Decl
) = N_Object_Declaration
then
2498 Analyze_Object_Contract
(Defining_Entity
(Decl
));
2500 elsif Nkind_In
(Decl
, N_Abstract_Subprogram_Declaration
,
2501 N_Generic_Subprogram_Declaration
,
2502 N_Subprogram_Declaration
)
2504 Analyze_Subprogram_Contract
(Defining_Entity
(Decl
));
2506 elsif Nkind
(Decl
) = N_Subprogram_Body
then
2507 Analyze_Subprogram_Body_Contract
(Defining_Entity
(Decl
));
2509 elsif Nkind
(Decl
) = N_Subprogram_Body_Stub
then
2510 Analyze_Subprogram_Body_Stub_Contract
(Defining_Entity
(Decl
));
2513 -- Capture all global references in a generic subprogram or a body
2514 -- [stub] now that the contract has been analyzed.
2516 if Nkind_In
(Decl
, N_Generic_Subprogram_Declaration
,
2518 N_Subprogram_Body_Stub
)
2519 and then Is_Generic_Declaration_Or_Body
(Decl
)
2521 Save_Global_References_In_Contract
2522 (Templ
=> Original_Node
(Decl
),
2523 Gen_Id
=> Corresponding_Spec_Of
(Decl
));
2529 -- The owner of the declarations is a package [body]
2531 if Present
(Pack_Decl
) then
2533 -- Capture all global references in a generic package or a body
2534 -- after all nested generic subprograms and bodies were subjected
2535 -- to the same processing.
2537 if Is_Generic_Declaration_Or_Body
(Pack_Decl
) then
2538 Save_Global_References_In_Contract
2539 (Templ
=> Original_Node
(Pack_Decl
),
2540 Gen_Id
=> Corresponding_Spec_Of
(Pack_Decl
));
2543 -- State refinements are visible upto the end the of the package
2544 -- body declarations. Hide the state refinements from visibility
2545 -- to restore the original state conditions.
2547 if Nkind
(Pack_Decl
) = N_Package_Body
then
2548 Remove_Visible_Refinements
(Corresponding_Spec
(Pack_Decl
));
2552 end Analyze_Declarations
;
2554 -----------------------------------
2555 -- Analyze_Full_Type_Declaration --
2556 -----------------------------------
2558 procedure Analyze_Full_Type_Declaration
(N
: Node_Id
) is
2559 Def
: constant Node_Id
:= Type_Definition
(N
);
2560 Def_Id
: constant Entity_Id
:= Defining_Identifier
(N
);
2561 GM
: constant Ghost_Mode_Type
:= Ghost_Mode
;
2565 Is_Remote
: constant Boolean :=
2566 (Is_Remote_Types
(Current_Scope
)
2567 or else Is_Remote_Call_Interface
(Current_Scope
))
2568 and then not (In_Private_Part
(Current_Scope
)
2569 or else In_Package_Body
(Current_Scope
));
2571 procedure Check_Ops_From_Incomplete_Type
;
2572 -- If there is a tagged incomplete partial view of the type, traverse
2573 -- the primitives of the incomplete view and change the type of any
2574 -- controlling formals and result to indicate the full view. The
2575 -- primitives will be added to the full type's primitive operations
2576 -- list later in Sem_Disp.Check_Operation_From_Incomplete_Type (which
2577 -- is called from Process_Incomplete_Dependents).
2579 procedure Restore_Globals
;
2580 -- Restore the values of all saved global variables
2582 ------------------------------------
2583 -- Check_Ops_From_Incomplete_Type --
2584 ------------------------------------
2586 procedure Check_Ops_From_Incomplete_Type
is
2593 and then Ekind
(Prev
) = E_Incomplete_Type
2594 and then Is_Tagged_Type
(Prev
)
2595 and then Is_Tagged_Type
(T
)
2597 Elmt
:= First_Elmt
(Primitive_Operations
(Prev
));
2598 while Present
(Elmt
) loop
2601 Formal
:= First_Formal
(Op
);
2602 while Present
(Formal
) loop
2603 if Etype
(Formal
) = Prev
then
2604 Set_Etype
(Formal
, T
);
2607 Next_Formal
(Formal
);
2610 if Etype
(Op
) = Prev
then
2617 end Check_Ops_From_Incomplete_Type
;
2619 ---------------------
2620 -- Restore_Globals --
2621 ---------------------
2623 procedure Restore_Globals
is
2626 end Restore_Globals
;
2628 -- Start of processing for Analyze_Full_Type_Declaration
2631 Prev
:= Find_Type_Name
(N
);
2633 -- The type declaration may be subject to pragma Ghost with policy
2634 -- Ignore. Set the mode now to ensure that any nodes generated during
2635 -- analysis and expansion are properly flagged as ignored Ghost.
2637 Set_Ghost_Mode
(N
, Prev
);
2639 -- The full view, if present, now points to the current type. If there
2640 -- is an incomplete partial view, set a link to it, to simplify the
2641 -- retrieval of primitive operations of the type.
2643 -- Ada 2005 (AI-50217): If the type was previously decorated when
2644 -- imported through a LIMITED WITH clause, it appears as incomplete
2645 -- but has no full view.
2647 if Ekind
(Prev
) = E_Incomplete_Type
2648 and then Present
(Full_View
(Prev
))
2650 T
:= Full_View
(Prev
);
2651 Set_Incomplete_View
(N
, Parent
(Prev
));
2656 Set_Is_Pure
(T
, Is_Pure
(Current_Scope
));
2658 -- We set the flag Is_First_Subtype here. It is needed to set the
2659 -- corresponding flag for the Implicit class-wide-type created
2660 -- during tagged types processing.
2662 Set_Is_First_Subtype
(T
, True);
2664 -- Only composite types other than array types are allowed to have
2669 -- For derived types, the rule will be checked once we've figured
2670 -- out the parent type.
2672 when N_Derived_Type_Definition
=>
2675 -- For record types, discriminants are allowed, unless we are in
2678 when N_Record_Definition
=>
2679 if Present
(Discriminant_Specifications
(N
)) then
2680 Check_SPARK_05_Restriction
2681 ("discriminant type is not allowed",
2683 (First
(Discriminant_Specifications
(N
))));
2687 if Present
(Discriminant_Specifications
(N
)) then
2689 ("elementary or array type cannot have discriminants",
2691 (First
(Discriminant_Specifications
(N
))));
2695 -- Elaborate the type definition according to kind, and generate
2696 -- subsidiary (implicit) subtypes where needed. We skip this if it was
2697 -- already done (this happens during the reanalysis that follows a call
2698 -- to the high level optimizer).
2700 if not Analyzed
(T
) then
2704 when N_Access_To_Subprogram_Definition
=>
2705 Access_Subprogram_Declaration
(T
, Def
);
2707 -- If this is a remote access to subprogram, we must create the
2708 -- equivalent fat pointer type, and related subprograms.
2711 Process_Remote_AST_Declaration
(N
);
2714 -- Validate categorization rule against access type declaration
2715 -- usually a violation in Pure unit, Shared_Passive unit.
2717 Validate_Access_Type_Declaration
(T
, N
);
2719 when N_Access_To_Object_Definition
=>
2720 Access_Type_Declaration
(T
, Def
);
2722 -- Validate categorization rule against access type declaration
2723 -- usually a violation in Pure unit, Shared_Passive unit.
2725 Validate_Access_Type_Declaration
(T
, N
);
2727 -- If we are in a Remote_Call_Interface package and define a
2728 -- RACW, then calling stubs and specific stream attributes
2732 and then Is_Remote_Access_To_Class_Wide_Type
(Def_Id
)
2734 Add_RACW_Features
(Def_Id
);
2737 when N_Array_Type_Definition
=>
2738 Array_Type_Declaration
(T
, Def
);
2740 when N_Derived_Type_Definition
=>
2741 Derived_Type_Declaration
(T
, N
, T
/= Def_Id
);
2743 when N_Enumeration_Type_Definition
=>
2744 Enumeration_Type_Declaration
(T
, Def
);
2746 when N_Floating_Point_Definition
=>
2747 Floating_Point_Type_Declaration
(T
, Def
);
2749 when N_Decimal_Fixed_Point_Definition
=>
2750 Decimal_Fixed_Point_Type_Declaration
(T
, Def
);
2752 when N_Ordinary_Fixed_Point_Definition
=>
2753 Ordinary_Fixed_Point_Type_Declaration
(T
, Def
);
2755 when N_Signed_Integer_Type_Definition
=>
2756 Signed_Integer_Type_Declaration
(T
, Def
);
2758 when N_Modular_Type_Definition
=>
2759 Modular_Type_Declaration
(T
, Def
);
2761 when N_Record_Definition
=>
2762 Record_Type_Declaration
(T
, N
, Prev
);
2764 -- If declaration has a parse error, nothing to elaborate.
2770 raise Program_Error
;
2775 if Etype
(T
) = Any_Type
then
2780 -- Controlled type is not allowed in SPARK
2782 if Is_Visibly_Controlled
(T
) then
2783 Check_SPARK_05_Restriction
("controlled type is not allowed", N
);
2786 -- A type declared within a Ghost region is automatically Ghost
2787 -- (SPARK RM 6.9(2)).
2789 if Ghost_Mode
> None
then
2790 Set_Is_Ghost_Entity
(T
);
2793 -- Some common processing for all types
2795 Set_Depends_On_Private
(T
, Has_Private_Component
(T
));
2796 Check_Ops_From_Incomplete_Type
;
2798 -- Both the declared entity, and its anonymous base type if one was
2799 -- created, need freeze nodes allocated.
2802 B
: constant Entity_Id
:= Base_Type
(T
);
2805 -- In the case where the base type differs from the first subtype, we
2806 -- pre-allocate a freeze node, and set the proper link to the first
2807 -- subtype. Freeze_Entity will use this preallocated freeze node when
2808 -- it freezes the entity.
2810 -- This does not apply if the base type is a generic type, whose
2811 -- declaration is independent of the current derived definition.
2813 if B
/= T
and then not Is_Generic_Type
(B
) then
2814 Ensure_Freeze_Node
(B
);
2815 Set_First_Subtype_Link
(Freeze_Node
(B
), T
);
2818 -- A type that is imported through a limited_with clause cannot
2819 -- generate any code, and thus need not be frozen. However, an access
2820 -- type with an imported designated type needs a finalization list,
2821 -- which may be referenced in some other package that has non-limited
2822 -- visibility on the designated type. Thus we must create the
2823 -- finalization list at the point the access type is frozen, to
2824 -- prevent unsatisfied references at link time.
2826 if not From_Limited_With
(T
) or else Is_Access_Type
(T
) then
2827 Set_Has_Delayed_Freeze
(T
);
2831 -- Case where T is the full declaration of some private type which has
2832 -- been swapped in Defining_Identifier (N).
2834 if T
/= Def_Id
and then Is_Private_Type
(Def_Id
) then
2835 Process_Full_View
(N
, T
, Def_Id
);
2837 -- Record the reference. The form of this is a little strange, since
2838 -- the full declaration has been swapped in. So the first parameter
2839 -- here represents the entity to which a reference is made which is
2840 -- the "real" entity, i.e. the one swapped in, and the second
2841 -- parameter provides the reference location.
2843 -- Also, we want to kill Has_Pragma_Unreferenced temporarily here
2844 -- since we don't want a complaint about the full type being an
2845 -- unwanted reference to the private type
2848 B
: constant Boolean := Has_Pragma_Unreferenced
(T
);
2850 Set_Has_Pragma_Unreferenced
(T
, False);
2851 Generate_Reference
(T
, T
, 'c');
2852 Set_Has_Pragma_Unreferenced
(T
, B
);
2855 Set_Completion_Referenced
(Def_Id
);
2857 -- For completion of incomplete type, process incomplete dependents
2858 -- and always mark the full type as referenced (it is the incomplete
2859 -- type that we get for any real reference).
2861 elsif Ekind
(Prev
) = E_Incomplete_Type
then
2862 Process_Incomplete_Dependents
(N
, T
, Prev
);
2863 Generate_Reference
(Prev
, Def_Id
, 'c');
2864 Set_Completion_Referenced
(Def_Id
);
2866 -- If not private type or incomplete type completion, this is a real
2867 -- definition of a new entity, so record it.
2870 Generate_Definition
(Def_Id
);
2873 -- Propagate any pending access types whose finalization masters need to
2874 -- be fully initialized from the partial to the full view. Guard against
2875 -- an illegal full view that remains unanalyzed.
2877 if Is_Type
(Def_Id
) and then Is_Incomplete_Or_Private_Type
(Prev
) then
2878 Set_Pending_Access_Types
(Def_Id
, Pending_Access_Types
(Prev
));
2881 if Chars
(Scope
(Def_Id
)) = Name_System
2882 and then Chars
(Def_Id
) = Name_Address
2883 and then Is_Predefined_File_Name
(Unit_File_Name
(Get_Source_Unit
(N
)))
2885 Set_Is_Descendent_Of_Address
(Def_Id
);
2886 Set_Is_Descendent_Of_Address
(Base_Type
(Def_Id
));
2887 Set_Is_Descendent_Of_Address
(Prev
);
2890 Set_Optimize_Alignment_Flags
(Def_Id
);
2891 Check_Eliminated
(Def_Id
);
2893 -- If the declaration is a completion and aspects are present, apply
2894 -- them to the entity for the type which is currently the partial
2895 -- view, but which is the one that will be frozen.
2897 if Has_Aspects
(N
) then
2899 -- In most cases the partial view is a private type, and both views
2900 -- appear in different declarative parts. In the unusual case where
2901 -- the partial view is incomplete, perform the analysis on the
2902 -- full view, to prevent freezing anomalies with the corresponding
2903 -- class-wide type, which otherwise might be frozen before the
2904 -- dispatch table is built.
2907 and then Ekind
(Prev
) /= E_Incomplete_Type
2909 Analyze_Aspect_Specifications
(N
, Prev
);
2914 Analyze_Aspect_Specifications
(N
, Def_Id
);
2919 end Analyze_Full_Type_Declaration
;
2921 ----------------------------------
2922 -- Analyze_Incomplete_Type_Decl --
2923 ----------------------------------
2925 procedure Analyze_Incomplete_Type_Decl
(N
: Node_Id
) is
2926 F
: constant Boolean := Is_Pure
(Current_Scope
);
2927 GM
: constant Ghost_Mode_Type
:= Ghost_Mode
;
2931 Check_SPARK_05_Restriction
("incomplete type is not allowed", N
);
2933 -- The incomplete type declaration may be subject to pragma Ghost with
2934 -- policy Ignore. Set the mode now to ensure that any nodes generated
2935 -- during analysis and expansion are properly flagged as ignored Ghost.
2938 Generate_Definition
(Defining_Identifier
(N
));
2940 -- Process an incomplete declaration. The identifier must not have been
2941 -- declared already in the scope. However, an incomplete declaration may
2942 -- appear in the private part of a package, for a private type that has
2943 -- already been declared.
2945 -- In this case, the discriminants (if any) must match
2947 T
:= Find_Type_Name
(N
);
2949 Set_Ekind
(T
, E_Incomplete_Type
);
2950 Init_Size_Align
(T
);
2951 Set_Is_First_Subtype
(T
, True);
2954 -- An incomplete type declared within a Ghost region is automatically
2955 -- Ghost (SPARK RM 6.9(2)).
2957 if Ghost_Mode
> None
then
2958 Set_Is_Ghost_Entity
(T
);
2961 -- Ada 2005 (AI-326): Minimum decoration to give support to tagged
2962 -- incomplete types.
2964 if Tagged_Present
(N
) then
2965 Set_Is_Tagged_Type
(T
, True);
2966 Set_No_Tagged_Streams_Pragma
(T
, No_Tagged_Streams
);
2967 Make_Class_Wide_Type
(T
);
2968 Set_Direct_Primitive_Operations
(T
, New_Elmt_List
);
2973 Set_Stored_Constraint
(T
, No_Elist
);
2975 if Present
(Discriminant_Specifications
(N
)) then
2976 Process_Discriminants
(N
);
2981 -- If the type has discriminants, non-trivial subtypes may be
2982 -- declared before the full view of the type. The full views of those
2983 -- subtypes will be built after the full view of the type.
2985 Set_Private_Dependents
(T
, New_Elmt_List
);
2988 -- Restore the original Ghost mode once analysis and expansion have
2992 end Analyze_Incomplete_Type_Decl
;
2994 -----------------------------------
2995 -- Analyze_Interface_Declaration --
2996 -----------------------------------
2998 procedure Analyze_Interface_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
2999 CW
: constant Entity_Id
:= Class_Wide_Type
(T
);
3002 Set_Is_Tagged_Type
(T
);
3003 Set_No_Tagged_Streams_Pragma
(T
, No_Tagged_Streams
);
3005 Set_Is_Limited_Record
(T
, Limited_Present
(Def
)
3006 or else Task_Present
(Def
)
3007 or else Protected_Present
(Def
)
3008 or else Synchronized_Present
(Def
));
3010 -- Type is abstract if full declaration carries keyword, or if previous
3011 -- partial view did.
3013 Set_Is_Abstract_Type
(T
);
3014 Set_Is_Interface
(T
);
3016 -- Type is a limited interface if it includes the keyword limited, task,
3017 -- protected, or synchronized.
3019 Set_Is_Limited_Interface
3020 (T
, Limited_Present
(Def
)
3021 or else Protected_Present
(Def
)
3022 or else Synchronized_Present
(Def
)
3023 or else Task_Present
(Def
));
3025 Set_Interfaces
(T
, New_Elmt_List
);
3026 Set_Direct_Primitive_Operations
(T
, New_Elmt_List
);
3028 -- Complete the decoration of the class-wide entity if it was already
3029 -- built (i.e. during the creation of the limited view)
3031 if Present
(CW
) then
3032 Set_Is_Interface
(CW
);
3033 Set_Is_Limited_Interface
(CW
, Is_Limited_Interface
(T
));
3036 -- Check runtime support for synchronized interfaces
3038 if VM_Target
= No_VM
3039 and then (Is_Task_Interface
(T
)
3040 or else Is_Protected_Interface
(T
)
3041 or else Is_Synchronized_Interface
(T
))
3042 and then not RTE_Available
(RE_Select_Specific_Data
)
3044 Error_Msg_CRT
("synchronized interfaces", T
);
3046 end Analyze_Interface_Declaration
;
3048 -----------------------------
3049 -- Analyze_Itype_Reference --
3050 -----------------------------
3052 -- Nothing to do. This node is placed in the tree only for the benefit of
3053 -- back end processing, and has no effect on the semantic processing.
3055 procedure Analyze_Itype_Reference
(N
: Node_Id
) is
3057 pragma Assert
(Is_Itype
(Itype
(N
)));
3059 end Analyze_Itype_Reference
;
3061 --------------------------------
3062 -- Analyze_Number_Declaration --
3063 --------------------------------
3065 procedure Analyze_Number_Declaration
(N
: Node_Id
) is
3066 GM
: constant Ghost_Mode_Type
:= Ghost_Mode
;
3068 procedure Restore_Globals
;
3069 -- Restore the values of all saved global variables
3071 ---------------------
3072 -- Restore_Globals --
3073 ---------------------
3075 procedure Restore_Globals
is
3078 end Restore_Globals
;
3082 E
: constant Node_Id
:= Expression
(N
);
3083 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
3084 Index
: Interp_Index
;
3088 -- Start of processing for Analyze_Number_Declaration
3091 -- The number declaration may be subject to pragma Ghost with policy
3092 -- Ignore. Set the mode now to ensure that any nodes generated during
3093 -- analysis and expansion are properly flagged as ignored Ghost.
3097 Generate_Definition
(Id
);
3100 -- A number declared within a Ghost region is automatically Ghost
3101 -- (SPARK RM 6.9(2)).
3103 if Ghost_Mode
> None
then
3104 Set_Is_Ghost_Entity
(Id
);
3107 -- This is an optimization of a common case of an integer literal
3109 if Nkind
(E
) = N_Integer_Literal
then
3110 Set_Is_Static_Expression
(E
, True);
3111 Set_Etype
(E
, Universal_Integer
);
3113 Set_Etype
(Id
, Universal_Integer
);
3114 Set_Ekind
(Id
, E_Named_Integer
);
3115 Set_Is_Frozen
(Id
, True);
3121 Set_Is_Pure
(Id
, Is_Pure
(Current_Scope
));
3123 -- Process expression, replacing error by integer zero, to avoid
3124 -- cascaded errors or aborts further along in the processing
3126 -- Replace Error by integer zero, which seems least likely to cause
3130 Rewrite
(E
, Make_Integer_Literal
(Sloc
(E
), Uint_0
));
3131 Set_Error_Posted
(E
);
3136 -- Verify that the expression is static and numeric. If
3137 -- the expression is overloaded, we apply the preference
3138 -- rule that favors root numeric types.
3140 if not Is_Overloaded
(E
) then
3142 if Has_Dynamic_Predicate_Aspect
(T
) then
3144 ("subtype has dynamic predicate, "
3145 & "not allowed in number declaration", N
);
3151 Get_First_Interp
(E
, Index
, It
);
3152 while Present
(It
.Typ
) loop
3153 if (Is_Integer_Type
(It
.Typ
) or else Is_Real_Type
(It
.Typ
))
3154 and then (Scope
(Base_Type
(It
.Typ
))) = Standard_Standard
3156 if T
= Any_Type
then
3159 elsif It
.Typ
= Universal_Real
3161 It
.Typ
= Universal_Integer
3163 -- Choose universal interpretation over any other
3170 Get_Next_Interp
(Index
, It
);
3174 if Is_Integer_Type
(T
) then
3176 Set_Etype
(Id
, Universal_Integer
);
3177 Set_Ekind
(Id
, E_Named_Integer
);
3179 elsif Is_Real_Type
(T
) then
3181 -- Because the real value is converted to universal_real, this is a
3182 -- legal context for a universal fixed expression.
3184 if T
= Universal_Fixed
then
3186 Loc
: constant Source_Ptr
:= Sloc
(N
);
3187 Conv
: constant Node_Id
:= Make_Type_Conversion
(Loc
,
3189 New_Occurrence_Of
(Universal_Real
, Loc
),
3190 Expression
=> Relocate_Node
(E
));
3197 elsif T
= Any_Fixed
then
3198 Error_Msg_N
("illegal context for mixed mode operation", E
);
3200 -- Expression is of the form : universal_fixed * integer. Try to
3201 -- resolve as universal_real.
3203 T
:= Universal_Real
;
3208 Set_Etype
(Id
, Universal_Real
);
3209 Set_Ekind
(Id
, E_Named_Real
);
3212 Wrong_Type
(E
, Any_Numeric
);
3216 Set_Ekind
(Id
, E_Constant
);
3217 Set_Never_Set_In_Source
(Id
, True);
3218 Set_Is_True_Constant
(Id
, True);
3224 if Nkind_In
(E
, N_Integer_Literal
, N_Real_Literal
) then
3225 Set_Etype
(E
, Etype
(Id
));
3228 if not Is_OK_Static_Expression
(E
) then
3229 Flag_Non_Static_Expr
3230 ("non-static expression used in number declaration!", E
);
3231 Rewrite
(E
, Make_Integer_Literal
(Sloc
(N
), 1));
3232 Set_Etype
(E
, Any_Type
);
3236 end Analyze_Number_Declaration
;
3238 -----------------------------
3239 -- Analyze_Object_Contract --
3240 -----------------------------
3242 procedure Analyze_Object_Contract
(Obj_Id
: Entity_Id
) is
3243 Obj_Typ
: constant Entity_Id
:= Etype
(Obj_Id
);
3244 AR_Val
: Boolean := False;
3245 AW_Val
: Boolean := False;
3246 ER_Val
: Boolean := False;
3247 EW_Val
: Boolean := False;
3249 Seen
: Boolean := False;
3252 -- The loop parameter in an element iterator over a formal container
3253 -- is declared with an object declaration but no contracts apply.
3255 if Ekind
(Obj_Id
) = E_Loop_Parameter
then
3259 -- Constant related checks
3261 if Ekind
(Obj_Id
) = E_Constant
then
3263 -- A constant cannot be effectively volatile. This check is only
3264 -- relevant with SPARK_Mode on as it is not a standard Ada legality
3265 -- rule. Do not flag internally-generated constants that map generic
3266 -- formals to actuals in instantiations (SPARK RM 7.1.3(6)).
3269 and then Is_Effectively_Volatile
(Obj_Id
)
3270 and then No
(Corresponding_Generic_Association
(Parent
(Obj_Id
)))
3272 -- Don't give this for internally generated entities (such as the
3273 -- FIRST and LAST temporaries generated for bounds).
3275 and then Comes_From_Source
(Obj_Id
)
3277 Error_Msg_N
("constant cannot be volatile", Obj_Id
);
3280 -- Variable related checks
3282 else pragma Assert
(Ekind
(Obj_Id
) = E_Variable
);
3284 -- The following checks are only relevant when SPARK_Mode is on as
3285 -- they are not standard Ada legality rules. Internally generated
3286 -- temporaries are ignored.
3288 if SPARK_Mode
= On
and then Comes_From_Source
(Obj_Id
) then
3289 if Is_Effectively_Volatile
(Obj_Id
) then
3291 -- The declaration of an effectively volatile object must
3292 -- appear at the library level (SPARK RM 7.1.3(7), C.6(6)).
3294 if not Is_Library_Level_Entity
(Obj_Id
) then
3296 ("volatile variable & must be declared at library level",
3299 -- An object of a discriminated type cannot be effectively
3300 -- volatile (SPARK RM C.6(4)).
3302 elsif Has_Discriminants
(Obj_Typ
) then
3304 ("discriminated object & cannot be volatile", Obj_Id
);
3306 -- An object of a tagged type cannot be effectively volatile
3307 -- (SPARK RM C.6(5)).
3309 elsif Is_Tagged_Type
(Obj_Typ
) then
3310 Error_Msg_N
("tagged object & cannot be volatile", Obj_Id
);
3313 -- The object is not effectively volatile
3316 -- A non-effectively volatile object cannot have effectively
3317 -- volatile components (SPARK RM 7.1.3(7)).
3319 if not Is_Effectively_Volatile
(Obj_Id
)
3320 and then Has_Volatile_Component
(Obj_Typ
)
3323 ("non-volatile object & cannot have volatile components",
3329 if Is_Ghost_Entity
(Obj_Id
) then
3331 -- A Ghost object cannot be effectively volatile (SPARK RM 6.9(8))
3333 if Is_Effectively_Volatile
(Obj_Id
) then
3334 Error_Msg_N
("ghost variable & cannot be volatile", Obj_Id
);
3336 -- A Ghost object cannot be imported or exported (SPARK RM 6.9(8))
3338 elsif Is_Imported
(Obj_Id
) then
3339 Error_Msg_N
("ghost object & cannot be imported", Obj_Id
);
3341 elsif Is_Exported
(Obj_Id
) then
3342 Error_Msg_N
("ghost object & cannot be exported", Obj_Id
);
3346 -- Analyze all external properties
3348 Prag
:= Get_Pragma
(Obj_Id
, Pragma_Async_Readers
);
3350 if Present
(Prag
) then
3351 Analyze_External_Property_In_Decl_Part
(Prag
, AR_Val
);
3355 Prag
:= Get_Pragma
(Obj_Id
, Pragma_Async_Writers
);
3357 if Present
(Prag
) then
3358 Analyze_External_Property_In_Decl_Part
(Prag
, AW_Val
);
3362 Prag
:= Get_Pragma
(Obj_Id
, Pragma_Effective_Reads
);
3364 if Present
(Prag
) then
3365 Analyze_External_Property_In_Decl_Part
(Prag
, ER_Val
);
3369 Prag
:= Get_Pragma
(Obj_Id
, Pragma_Effective_Writes
);
3371 if Present
(Prag
) then
3372 Analyze_External_Property_In_Decl_Part
(Prag
, EW_Val
);
3376 -- Verify the mutual interaction of the various external properties
3379 Check_External_Properties
(Obj_Id
, AR_Val
, AW_Val
, ER_Val
, EW_Val
);
3383 -- Check whether the lack of indicator Part_Of agrees with the placement
3384 -- of the object with respect to the state space.
3386 Prag
:= Get_Pragma
(Obj_Id
, Pragma_Part_Of
);
3389 Check_Missing_Part_Of
(Obj_Id
);
3392 -- A ghost object cannot be imported or exported (SPARK RM 6.9(8))
3394 if Is_Ghost_Entity
(Obj_Id
) then
3395 if Is_Exported
(Obj_Id
) then
3396 Error_Msg_N
("ghost object & cannot be exported", Obj_Id
);
3398 elsif Is_Imported
(Obj_Id
) then
3399 Error_Msg_N
("ghost object & cannot be imported", Obj_Id
);
3402 end Analyze_Object_Contract
;
3404 --------------------------------
3405 -- Analyze_Object_Declaration --
3406 --------------------------------
3408 procedure Analyze_Object_Declaration
(N
: Node_Id
) is
3409 Loc
: constant Source_Ptr
:= Sloc
(N
);
3410 GM
: constant Ghost_Mode_Type
:= Ghost_Mode
;
3411 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
3415 E
: Node_Id
:= Expression
(N
);
3416 -- E is set to Expression (N) throughout this routine. When
3417 -- Expression (N) is modified, E is changed accordingly.
3419 Prev_Entity
: Entity_Id
:= Empty
;
3421 function Count_Tasks
(T
: Entity_Id
) return Uint
;
3422 -- This function is called when a non-generic library level object of a
3423 -- task type is declared. Its function is to count the static number of
3424 -- tasks declared within the type (it is only called if Has_Tasks is set
3425 -- for T). As a side effect, if an array of tasks with non-static bounds
3426 -- or a variant record type is encountered, Check_Restrictions is called
3427 -- indicating the count is unknown.
3429 function Delayed_Aspect_Present
return Boolean;
3430 -- If the declaration has an expression that is an aggregate, and it
3431 -- has aspects that require delayed analysis, the resolution of the
3432 -- aggregate must be deferred to the freeze point of the objet. This
3433 -- special processing was created for address clauses, but it must
3434 -- also apply to Alignment. This must be done before the aspect
3435 -- specifications are analyzed because we must handle the aggregate
3436 -- before the analysis of the object declaration is complete.
3438 -- Any other relevant delayed aspects on object declarations ???
3440 procedure Restore_Globals
;
3441 -- Restore the values of all saved global variables
3447 function Count_Tasks
(T
: Entity_Id
) return Uint
is
3453 if Is_Task_Type
(T
) then
3456 elsif Is_Record_Type
(T
) then
3457 if Has_Discriminants
(T
) then
3458 Check_Restriction
(Max_Tasks
, N
);
3463 C
:= First_Component
(T
);
3464 while Present
(C
) loop
3465 V
:= V
+ Count_Tasks
(Etype
(C
));
3472 elsif Is_Array_Type
(T
) then
3473 X
:= First_Index
(T
);
3474 V
:= Count_Tasks
(Component_Type
(T
));
3475 while Present
(X
) loop
3478 if not Is_OK_Static_Subtype
(C
) then
3479 Check_Restriction
(Max_Tasks
, N
);
3482 V
:= V
* (UI_Max
(Uint_0
,
3483 Expr_Value
(Type_High_Bound
(C
)) -
3484 Expr_Value
(Type_Low_Bound
(C
)) + Uint_1
));
3497 ----------------------------
3498 -- Delayed_Aspect_Present --
3499 ----------------------------
3501 function Delayed_Aspect_Present
return Boolean is
3506 if Present
(Aspect_Specifications
(N
)) then
3507 A
:= First
(Aspect_Specifications
(N
));
3508 A_Id
:= Get_Aspect_Id
(Chars
(Identifier
(A
)));
3509 while Present
(A
) loop
3510 if A_Id
= Aspect_Alignment
or else A_Id
= Aspect_Address
then
3519 end Delayed_Aspect_Present
;
3521 ---------------------
3522 -- Restore_Globals --
3523 ---------------------
3525 procedure Restore_Globals
is
3528 end Restore_Globals
;
3530 -- Start of processing for Analyze_Object_Declaration
3533 -- There are three kinds of implicit types generated by an
3534 -- object declaration:
3536 -- 1. Those generated by the original Object Definition
3538 -- 2. Those generated by the Expression
3540 -- 3. Those used to constrain the Object Definition with the
3541 -- expression constraints when the definition is unconstrained.
3543 -- They must be generated in this order to avoid order of elaboration
3544 -- issues. Thus the first step (after entering the name) is to analyze
3545 -- the object definition.
3547 if Constant_Present
(N
) then
3548 Prev_Entity
:= Current_Entity_In_Scope
(Id
);
3550 if Present
(Prev_Entity
)
3552 -- If the homograph is an implicit subprogram, it is overridden
3553 -- by the current declaration.
3555 ((Is_Overloadable
(Prev_Entity
)
3556 and then Is_Inherited_Operation
(Prev_Entity
))
3558 -- The current object is a discriminal generated for an entry
3559 -- family index. Even though the index is a constant, in this
3560 -- particular context there is no true constant redeclaration.
3561 -- Enter_Name will handle the visibility.
3564 (Is_Discriminal
(Id
)
3565 and then Ekind
(Discriminal_Link
(Id
)) =
3566 E_Entry_Index_Parameter
)
3568 -- The current object is the renaming for a generic declared
3569 -- within the instance.
3572 (Ekind
(Prev_Entity
) = E_Package
3573 and then Nkind
(Parent
(Prev_Entity
)) =
3574 N_Package_Renaming_Declaration
3575 and then not Comes_From_Source
(Prev_Entity
)
3577 Is_Generic_Instance
(Renamed_Entity
(Prev_Entity
))))
3579 Prev_Entity
:= Empty
;
3583 -- The object declaration may be subject to pragma Ghost with policy
3584 -- Ignore. Set the mode now to ensure that any nodes generated during
3585 -- analysis and expansion are properly flagged as ignored Ghost.
3587 Set_Ghost_Mode
(N
, Prev_Entity
);
3589 if Present
(Prev_Entity
) then
3590 Constant_Redeclaration
(Id
, N
, T
);
3592 Generate_Reference
(Prev_Entity
, Id
, 'c');
3593 Set_Completion_Referenced
(Id
);
3595 if Error_Posted
(N
) then
3597 -- Type mismatch or illegal redeclaration, Do not analyze
3598 -- expression to avoid cascaded errors.
3600 T
:= Find_Type_Of_Object
(Object_Definition
(N
), N
);
3602 Set_Ekind
(Id
, E_Variable
);
3606 -- In the normal case, enter identifier at the start to catch premature
3607 -- usage in the initialization expression.
3610 Generate_Definition
(Id
);
3613 Mark_Coextensions
(N
, Object_Definition
(N
));
3615 T
:= Find_Type_Of_Object
(Object_Definition
(N
), N
);
3617 if Nkind
(Object_Definition
(N
)) = N_Access_Definition
3619 (Access_To_Subprogram_Definition
(Object_Definition
(N
)))
3620 and then Protected_Present
3621 (Access_To_Subprogram_Definition
(Object_Definition
(N
)))
3623 T
:= Replace_Anonymous_Access_To_Protected_Subprogram
(N
);
3626 if Error_Posted
(Id
) then
3628 Set_Ekind
(Id
, E_Variable
);
3633 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
3634 -- out some static checks
3636 if Ada_Version
>= Ada_2005
and then Can_Never_Be_Null
(T
) then
3638 -- In case of aggregates we must also take care of the correct
3639 -- initialization of nested aggregates bug this is done at the
3640 -- point of the analysis of the aggregate (see sem_aggr.adb).
3642 if Present
(Expression
(N
))
3643 and then Nkind
(Expression
(N
)) = N_Aggregate
3649 Save_Typ
: constant Entity_Id
:= Etype
(Id
);
3651 Set_Etype
(Id
, T
); -- Temp. decoration for static checks
3652 Null_Exclusion_Static_Checks
(N
);
3653 Set_Etype
(Id
, Save_Typ
);
3658 -- Object is marked pure if it is in a pure scope
3660 Set_Is_Pure
(Id
, Is_Pure
(Current_Scope
));
3662 -- If deferred constant, make sure context is appropriate. We detect
3663 -- a deferred constant as a constant declaration with no expression.
3664 -- A deferred constant can appear in a package body if its completion
3665 -- is by means of an interface pragma.
3667 if Constant_Present
(N
) and then No
(E
) then
3669 -- A deferred constant may appear in the declarative part of the
3670 -- following constructs:
3674 -- extended return statements
3677 -- subprogram bodies
3680 -- When declared inside a package spec, a deferred constant must be
3681 -- completed by a full constant declaration or pragma Import. In all
3682 -- other cases, the only proper completion is pragma Import. Extended
3683 -- return statements are flagged as invalid contexts because they do
3684 -- not have a declarative part and so cannot accommodate the pragma.
3686 if Ekind
(Current_Scope
) = E_Return_Statement
then
3688 ("invalid context for deferred constant declaration (RM 7.4)",
3691 ("\declaration requires an initialization expression",
3693 Set_Constant_Present
(N
, False);
3695 -- In Ada 83, deferred constant must be of private type
3697 elsif not Is_Private_Type
(T
) then
3698 if Ada_Version
= Ada_83
and then Comes_From_Source
(N
) then
3700 ("(Ada 83) deferred constant must be private type", N
);
3704 -- If not a deferred constant, then the object declaration freezes
3705 -- its type, unless the object is of an anonymous type and has delayed
3706 -- aspects. In that case the type is frozen when the object itself is.
3709 Check_Fully_Declared
(T
, N
);
3711 if Has_Delayed_Aspects
(Id
)
3712 and then Is_Array_Type
(T
)
3713 and then Is_Itype
(T
)
3715 Set_Has_Delayed_Freeze
(T
);
3717 Freeze_Before
(N
, T
);
3721 -- If the object was created by a constrained array definition, then
3722 -- set the link in both the anonymous base type and anonymous subtype
3723 -- that are built to represent the array type to point to the object.
3725 if Nkind
(Object_Definition
(Declaration_Node
(Id
))) =
3726 N_Constrained_Array_Definition
3728 Set_Related_Array_Object
(T
, Id
);
3729 Set_Related_Array_Object
(Base_Type
(T
), Id
);
3732 -- Special checks for protected objects not at library level
3734 if Is_Protected_Type
(T
)
3735 and then not Is_Library_Level_Entity
(Id
)
3737 Check_Restriction
(No_Local_Protected_Objects
, Id
);
3739 -- Protected objects with interrupt handlers must be at library level
3741 -- Ada 2005: This test is not needed (and the corresponding clause
3742 -- in the RM is removed) because accessibility checks are sufficient
3743 -- to make handlers not at the library level illegal.
3745 -- AI05-0303: The AI is in fact a binding interpretation, and thus
3746 -- applies to the '95 version of the language as well.
3748 if Has_Interrupt_Handler
(T
) and then Ada_Version
< Ada_95
then
3750 ("interrupt object can only be declared at library level", Id
);
3754 -- The actual subtype of the object is the nominal subtype, unless
3755 -- the nominal one is unconstrained and obtained from the expression.
3759 -- These checks should be performed before the initialization expression
3760 -- is considered, so that the Object_Definition node is still the same
3761 -- as in source code.
3763 -- In SPARK, the nominal subtype is always given by a subtype mark
3764 -- and must not be unconstrained. (The only exception to this is the
3765 -- acceptance of declarations of constants of type String.)
3767 if not Nkind_In
(Object_Definition
(N
), N_Expanded_Name
, N_Identifier
)
3769 Check_SPARK_05_Restriction
3770 ("subtype mark required", Object_Definition
(N
));
3772 elsif Is_Array_Type
(T
)
3773 and then not Is_Constrained
(T
)
3774 and then T
/= Standard_String
3776 Check_SPARK_05_Restriction
3777 ("subtype mark of constrained type expected",
3778 Object_Definition
(N
));
3781 -- There are no aliased objects in SPARK
3783 if Aliased_Present
(N
) then
3784 Check_SPARK_05_Restriction
("aliased object is not allowed", N
);
3787 -- Process initialization expression if present and not in error
3789 if Present
(E
) and then E
/= Error
then
3791 -- Generate an error in case of CPP class-wide object initialization.
3792 -- Required because otherwise the expansion of the class-wide
3793 -- assignment would try to use 'size to initialize the object
3794 -- (primitive that is not available in CPP tagged types).
3796 if Is_Class_Wide_Type
(Act_T
)
3798 (Is_CPP_Class
(Root_Type
(Etype
(Act_T
)))
3800 (Present
(Full_View
(Root_Type
(Etype
(Act_T
))))
3802 Is_CPP_Class
(Full_View
(Root_Type
(Etype
(Act_T
))))))
3805 ("predefined assignment not available for 'C'P'P tagged types",
3809 Mark_Coextensions
(N
, E
);
3812 -- In case of errors detected in the analysis of the expression,
3813 -- decorate it with the expected type to avoid cascaded errors
3815 if No
(Etype
(E
)) then
3819 -- If an initialization expression is present, then we set the
3820 -- Is_True_Constant flag. It will be reset if this is a variable
3821 -- and it is indeed modified.
3823 Set_Is_True_Constant
(Id
, True);
3825 -- If we are analyzing a constant declaration, set its completion
3826 -- flag after analyzing and resolving the expression.
3828 if Constant_Present
(N
) then
3829 Set_Has_Completion
(Id
);
3832 -- Set type and resolve (type may be overridden later on). Note:
3833 -- Ekind (Id) must still be E_Void at this point so that incorrect
3834 -- early usage within E is properly diagnosed.
3838 -- If the expression is an aggregate we must look ahead to detect
3839 -- the possible presence of an address clause, and defer resolution
3840 -- and expansion of the aggregate to the freeze point of the entity.
3842 if Comes_From_Source
(N
)
3843 and then Expander_Active
3844 and then Nkind
(E
) = N_Aggregate
3845 and then (Present
(Following_Address_Clause
(N
))
3846 or else Delayed_Aspect_Present
)
3854 -- No further action needed if E is a call to an inlined function
3855 -- which returns an unconstrained type and it has been expanded into
3856 -- a procedure call. In that case N has been replaced by an object
3857 -- declaration without initializing expression and it has been
3858 -- analyzed (see Expand_Inlined_Call).
3860 if Back_End_Inlining
3861 and then Expander_Active
3862 and then Nkind
(E
) = N_Function_Call
3863 and then Nkind
(Name
(E
)) in N_Has_Entity
3864 and then Is_Inlined
(Entity
(Name
(E
)))
3865 and then not Is_Constrained
(Etype
(E
))
3866 and then Analyzed
(N
)
3867 and then No
(Expression
(N
))
3873 -- If E is null and has been replaced by an N_Raise_Constraint_Error
3874 -- node (which was marked already-analyzed), we need to set the type
3875 -- to something other than Any_Access in order to keep gigi happy.
3877 if Etype
(E
) = Any_Access
then
3881 -- If the object is an access to variable, the initialization
3882 -- expression cannot be an access to constant.
3884 if Is_Access_Type
(T
)
3885 and then not Is_Access_Constant
(T
)
3886 and then Is_Access_Type
(Etype
(E
))
3887 and then Is_Access_Constant
(Etype
(E
))
3890 ("access to variable cannot be initialized with an "
3891 & "access-to-constant expression", E
);
3894 if not Assignment_OK
(N
) then
3895 Check_Initialization
(T
, E
);
3898 Check_Unset_Reference
(E
);
3900 -- If this is a variable, then set current value. If this is a
3901 -- declared constant of a scalar type with a static expression,
3902 -- indicate that it is always valid.
3904 if not Constant_Present
(N
) then
3905 if Compile_Time_Known_Value
(E
) then
3906 Set_Current_Value
(Id
, E
);
3909 elsif Is_Scalar_Type
(T
) and then Is_OK_Static_Expression
(E
) then
3910 Set_Is_Known_Valid
(Id
);
3913 -- Deal with setting of null flags
3915 if Is_Access_Type
(T
) then
3916 if Known_Non_Null
(E
) then
3917 Set_Is_Known_Non_Null
(Id
, True);
3918 elsif Known_Null
(E
) and then not Can_Never_Be_Null
(Id
) then
3919 Set_Is_Known_Null
(Id
, True);
3923 -- Check incorrect use of dynamically tagged expressions
3925 if Is_Tagged_Type
(T
) then
3926 Check_Dynamically_Tagged_Expression
3932 Apply_Scalar_Range_Check
(E
, T
);
3933 Apply_Static_Length_Check
(E
, T
);
3935 if Nkind
(Original_Node
(N
)) = N_Object_Declaration
3936 and then Comes_From_Source
(Original_Node
(N
))
3938 -- Only call test if needed
3940 and then Restriction_Check_Required
(SPARK_05
)
3941 and then not Is_SPARK_05_Initialization_Expr
(Original_Node
(E
))
3943 Check_SPARK_05_Restriction
3944 ("initialization expression is not appropriate", E
);
3947 -- A formal parameter of a specific tagged type whose related
3948 -- subprogram is subject to pragma Extensions_Visible with value
3949 -- "False" cannot be implicitly converted to a class-wide type by
3950 -- means of an initialization expression (SPARK RM 6.1.7(3)).
3952 if Is_Class_Wide_Type
(T
) and then Is_EVF_Expression
(E
) then
3954 ("formal parameter with Extensions_Visible False cannot be "
3955 & "implicitly converted to class-wide type", E
);
3959 -- If the No_Streams restriction is set, check that the type of the
3960 -- object is not, and does not contain, any subtype derived from
3961 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
3962 -- Has_Stream just for efficiency reasons. There is no point in
3963 -- spending time on a Has_Stream check if the restriction is not set.
3965 if Restriction_Check_Required
(No_Streams
) then
3966 if Has_Stream
(T
) then
3967 Check_Restriction
(No_Streams
, N
);
3971 -- Deal with predicate check before we start to do major rewriting. It
3972 -- is OK to initialize and then check the initialized value, since the
3973 -- object goes out of scope if we get a predicate failure. Note that we
3974 -- do this in the analyzer and not the expander because the analyzer
3975 -- does some substantial rewriting in some cases.
3977 -- We need a predicate check if the type has predicates, and if either
3978 -- there is an initializing expression, or for default initialization
3979 -- when we have at least one case of an explicit default initial value
3980 -- and then this is not an internal declaration whose initialization
3981 -- comes later (as for an aggregate expansion).
3983 if not Suppress_Assignment_Checks
(N
)
3984 and then Present
(Predicate_Function
(T
))
3985 and then not No_Initialization
(N
)
3989 Is_Partially_Initialized_Type
(T
, Include_Implicit
=> False))
3991 -- If the type has a static predicate and the expression is known at
3992 -- compile time, see if the expression satisfies the predicate.
3995 Check_Expression_Against_Static_Predicate
(E
, T
);
3999 Make_Predicate_Check
(T
, New_Occurrence_Of
(Id
, Loc
)));
4002 -- Case of unconstrained type
4004 if not Is_Definite_Subtype
(T
) then
4006 -- In SPARK, a declaration of unconstrained type is allowed
4007 -- only for constants of type string.
4009 if Is_String_Type
(T
) and then not Constant_Present
(N
) then
4010 Check_SPARK_05_Restriction
4011 ("declaration of object of unconstrained type not allowed", N
);
4014 -- Nothing to do in deferred constant case
4016 if Constant_Present
(N
) and then No
(E
) then
4019 -- Case of no initialization present
4022 if No_Initialization
(N
) then
4025 elsif Is_Class_Wide_Type
(T
) then
4027 ("initialization required in class-wide declaration ", N
);
4031 ("unconstrained subtype not allowed (need initialization)",
4032 Object_Definition
(N
));
4034 if Is_Record_Type
(T
) and then Has_Discriminants
(T
) then
4036 ("\provide initial value or explicit discriminant values",
4037 Object_Definition
(N
));
4040 ("\or give default discriminant values for type&",
4041 Object_Definition
(N
), T
);
4043 elsif Is_Array_Type
(T
) then
4045 ("\provide initial value or explicit array bounds",
4046 Object_Definition
(N
));
4050 -- Case of initialization present but in error. Set initial
4051 -- expression as absent (but do not make above complaints)
4053 elsif E
= Error
then
4054 Set_Expression
(N
, Empty
);
4057 -- Case of initialization present
4060 -- Check restrictions in Ada 83
4062 if not Constant_Present
(N
) then
4064 -- Unconstrained variables not allowed in Ada 83 mode
4066 if Ada_Version
= Ada_83
4067 and then Comes_From_Source
(Object_Definition
(N
))
4070 ("(Ada 83) unconstrained variable not allowed",
4071 Object_Definition
(N
));
4075 -- Now we constrain the variable from the initializing expression
4077 -- If the expression is an aggregate, it has been expanded into
4078 -- individual assignments. Retrieve the actual type from the
4079 -- expanded construct.
4081 if Is_Array_Type
(T
)
4082 and then No_Initialization
(N
)
4083 and then Nkind
(Original_Node
(E
)) = N_Aggregate
4087 -- In case of class-wide interface object declarations we delay
4088 -- the generation of the equivalent record type declarations until
4089 -- its expansion because there are cases in they are not required.
4091 elsif Is_Interface
(T
) then
4094 -- In GNATprove mode, Expand_Subtype_From_Expr does nothing. Thus,
4095 -- we should prevent the generation of another Itype with the
4096 -- same name as the one already generated, or we end up with
4097 -- two identical types in GNATprove.
4099 elsif GNATprove_Mode
then
4102 -- If the type is an unchecked union, no subtype can be built from
4103 -- the expression. Rewrite declaration as a renaming, which the
4104 -- back-end can handle properly. This is a rather unusual case,
4105 -- because most unchecked_union declarations have default values
4106 -- for discriminants and are thus not indefinite.
4108 elsif Is_Unchecked_Union
(T
) then
4109 if Constant_Present
(N
) or else Nkind
(E
) = N_Function_Call
then
4110 Set_Ekind
(Id
, E_Constant
);
4112 Set_Ekind
(Id
, E_Variable
);
4115 -- An object declared within a Ghost region is automatically
4116 -- Ghost (SPARK RM 6.9(2)).
4118 if Comes_From_Source
(Id
) and then Ghost_Mode
> None
then
4119 Set_Is_Ghost_Entity
(Id
);
4121 -- The Ghost policy in effect at the point of declaration
4122 -- and at the point of completion must match
4123 -- (SPARK RM 6.9(14)).
4125 if Present
(Prev_Entity
)
4126 and then Is_Ghost_Entity
(Prev_Entity
)
4128 Check_Ghost_Completion
(Prev_Entity
, Id
);
4133 Make_Object_Renaming_Declaration
(Loc
,
4134 Defining_Identifier
=> Id
,
4135 Subtype_Mark
=> New_Occurrence_Of
(T
, Loc
),
4138 Set_Renamed_Object
(Id
, E
);
4139 Freeze_Before
(N
, T
);
4146 Expand_Subtype_From_Expr
(N
, T
, Object_Definition
(N
), E
);
4147 Act_T
:= Find_Type_Of_Object
(Object_Definition
(N
), N
);
4150 Set_Is_Constr_Subt_For_U_Nominal
(Act_T
);
4152 if Aliased_Present
(N
) then
4153 Set_Is_Constr_Subt_For_UN_Aliased
(Act_T
);
4156 Freeze_Before
(N
, Act_T
);
4157 Freeze_Before
(N
, T
);
4160 elsif Is_Array_Type
(T
)
4161 and then No_Initialization
(N
)
4162 and then Nkind
(Original_Node
(E
)) = N_Aggregate
4164 if not Is_Entity_Name
(Object_Definition
(N
)) then
4166 Check_Compile_Time_Size
(Act_T
);
4168 if Aliased_Present
(N
) then
4169 Set_Is_Constr_Subt_For_UN_Aliased
(Act_T
);
4173 -- When the given object definition and the aggregate are specified
4174 -- independently, and their lengths might differ do a length check.
4175 -- This cannot happen if the aggregate is of the form (others =>...)
4177 if not Is_Constrained
(T
) then
4180 elsif Nkind
(E
) = N_Raise_Constraint_Error
then
4182 -- Aggregate is statically illegal. Place back in declaration
4184 Set_Expression
(N
, E
);
4185 Set_No_Initialization
(N
, False);
4187 elsif T
= Etype
(E
) then
4190 elsif Nkind
(E
) = N_Aggregate
4191 and then Present
(Component_Associations
(E
))
4192 and then Present
(Choices
(First
(Component_Associations
(E
))))
4193 and then Nkind
(First
4194 (Choices
(First
(Component_Associations
(E
))))) = N_Others_Choice
4199 Apply_Length_Check
(E
, T
);
4202 -- If the type is limited unconstrained with defaulted discriminants and
4203 -- there is no expression, then the object is constrained by the
4204 -- defaults, so it is worthwhile building the corresponding subtype.
4206 elsif (Is_Limited_Record
(T
) or else Is_Concurrent_Type
(T
))
4207 and then not Is_Constrained
(T
)
4208 and then Has_Discriminants
(T
)
4211 Act_T
:= Build_Default_Subtype
(T
, N
);
4213 -- Ada 2005: A limited object may be initialized by means of an
4214 -- aggregate. If the type has default discriminants it has an
4215 -- unconstrained nominal type, Its actual subtype will be obtained
4216 -- from the aggregate, and not from the default discriminants.
4221 Rewrite
(Object_Definition
(N
), New_Occurrence_Of
(Act_T
, Loc
));
4223 elsif Nkind
(E
) = N_Function_Call
4224 and then Constant_Present
(N
)
4225 and then Has_Unconstrained_Elements
(Etype
(E
))
4227 -- The back-end has problems with constants of a discriminated type
4228 -- with defaults, if the initial value is a function call. We
4229 -- generate an intermediate temporary that will receive a reference
4230 -- to the result of the call. The initialization expression then
4231 -- becomes a dereference of that temporary.
4233 Remove_Side_Effects
(E
);
4235 -- If this is a constant declaration of an unconstrained type and
4236 -- the initialization is an aggregate, we can use the subtype of the
4237 -- aggregate for the declared entity because it is immutable.
4239 elsif not Is_Constrained
(T
)
4240 and then Has_Discriminants
(T
)
4241 and then Constant_Present
(N
)
4242 and then not Has_Unchecked_Union
(T
)
4243 and then Nkind
(E
) = N_Aggregate
4248 -- Check No_Wide_Characters restriction
4250 Check_Wide_Character_Restriction
(T
, Object_Definition
(N
));
4252 -- Indicate this is not set in source. Certainly true for constants, and
4253 -- true for variables so far (will be reset for a variable if and when
4254 -- we encounter a modification in the source).
4256 Set_Never_Set_In_Source
(Id
);
4258 -- Now establish the proper kind and type of the object
4260 if Constant_Present
(N
) then
4261 Set_Ekind
(Id
, E_Constant
);
4262 Set_Is_True_Constant
(Id
);
4265 Set_Ekind
(Id
, E_Variable
);
4267 -- A variable is set as shared passive if it appears in a shared
4268 -- passive package, and is at the outer level. This is not done for
4269 -- entities generated during expansion, because those are always
4270 -- manipulated locally.
4272 if Is_Shared_Passive
(Current_Scope
)
4273 and then Is_Library_Level_Entity
(Id
)
4274 and then Comes_From_Source
(Id
)
4276 Set_Is_Shared_Passive
(Id
);
4277 Check_Shared_Var
(Id
, T
, N
);
4280 -- Set Has_Initial_Value if initializing expression present. Note
4281 -- that if there is no initializing expression, we leave the state
4282 -- of this flag unchanged (usually it will be False, but notably in
4283 -- the case of exception choice variables, it will already be true).
4286 Set_Has_Initial_Value
(Id
);
4290 -- Initialize alignment and size and capture alignment setting
4292 Init_Alignment
(Id
);
4294 Set_Optimize_Alignment_Flags
(Id
);
4296 -- An object declared within a Ghost region is automatically Ghost
4297 -- (SPARK RM 6.9(2)).
4299 if Comes_From_Source
(Id
)
4300 and then (Ghost_Mode
> None
4301 or else (Present
(Prev_Entity
)
4302 and then Is_Ghost_Entity
(Prev_Entity
)))
4304 Set_Is_Ghost_Entity
(Id
);
4306 -- The Ghost policy in effect at the point of declaration and at the
4307 -- point of completion must match (SPARK RM 6.9(14)).
4309 if Present
(Prev_Entity
) and then Is_Ghost_Entity
(Prev_Entity
) then
4310 Check_Ghost_Completion
(Prev_Entity
, Id
);
4314 -- Deal with aliased case
4316 if Aliased_Present
(N
) then
4317 Set_Is_Aliased
(Id
);
4319 -- If the object is aliased and the type is unconstrained with
4320 -- defaulted discriminants and there is no expression, then the
4321 -- object is constrained by the defaults, so it is worthwhile
4322 -- building the corresponding subtype.
4324 -- Ada 2005 (AI-363): If the aliased object is discriminated and
4325 -- unconstrained, then only establish an actual subtype if the
4326 -- nominal subtype is indefinite. In definite cases the object is
4327 -- unconstrained in Ada 2005.
4330 and then Is_Record_Type
(T
)
4331 and then not Is_Constrained
(T
)
4332 and then Has_Discriminants
(T
)
4333 and then (Ada_Version
< Ada_2005
4334 or else not Is_Definite_Subtype
(T
))
4336 Set_Actual_Subtype
(Id
, Build_Default_Subtype
(T
, N
));
4340 -- Now we can set the type of the object
4342 Set_Etype
(Id
, Act_T
);
4344 -- Non-constant object is marked to be treated as volatile if type is
4345 -- volatile and we clear the Current_Value setting that may have been
4346 -- set above. Doing so for constants isn't required and might interfere
4347 -- with possible uses of the object as a static expression in contexts
4348 -- incompatible with volatility (e.g. as a case-statement alternative).
4350 if Ekind
(Id
) /= E_Constant
and then Treat_As_Volatile
(Etype
(Id
)) then
4351 Set_Treat_As_Volatile
(Id
);
4352 Set_Current_Value
(Id
, Empty
);
4355 -- Deal with controlled types
4357 if Has_Controlled_Component
(Etype
(Id
))
4358 or else Is_Controlled
(Etype
(Id
))
4360 if not Is_Library_Level_Entity
(Id
) then
4361 Check_Restriction
(No_Nested_Finalization
, N
);
4363 Validate_Controlled_Object
(Id
);
4367 if Has_Task
(Etype
(Id
)) then
4368 Check_Restriction
(No_Tasking
, N
);
4370 -- Deal with counting max tasks
4372 -- Nothing to do if inside a generic
4374 if Inside_A_Generic
then
4377 -- If library level entity, then count tasks
4379 elsif Is_Library_Level_Entity
(Id
) then
4380 Check_Restriction
(Max_Tasks
, N
, Count_Tasks
(Etype
(Id
)));
4382 -- If not library level entity, then indicate we don't know max
4383 -- tasks and also check task hierarchy restriction and blocking
4384 -- operation (since starting a task is definitely blocking).
4387 Check_Restriction
(Max_Tasks
, N
);
4388 Check_Restriction
(No_Task_Hierarchy
, N
);
4389 Check_Potentially_Blocking_Operation
(N
);
4392 -- A rather specialized test. If we see two tasks being declared
4393 -- of the same type in the same object declaration, and the task
4394 -- has an entry with an address clause, we know that program error
4395 -- will be raised at run time since we can't have two tasks with
4396 -- entries at the same address.
4398 if Is_Task_Type
(Etype
(Id
)) and then More_Ids
(N
) then
4403 E
:= First_Entity
(Etype
(Id
));
4404 while Present
(E
) loop
4405 if Ekind
(E
) = E_Entry
4406 and then Present
(Get_Attribute_Definition_Clause
4407 (E
, Attribute_Address
))
4409 Error_Msg_Warn
:= SPARK_Mode
/= On
;
4411 ("more than one task with same entry address<<", N
);
4412 Error_Msg_N
("\Program_Error [<<", N
);
4414 Make_Raise_Program_Error
(Loc
,
4415 Reason
=> PE_Duplicated_Entry_Address
));
4425 -- Some simple constant-propagation: if the expression is a constant
4426 -- string initialized with a literal, share the literal. This avoids
4430 and then Is_Entity_Name
(E
)
4431 and then Ekind
(Entity
(E
)) = E_Constant
4432 and then Base_Type
(Etype
(E
)) = Standard_String
4435 Val
: constant Node_Id
:= Constant_Value
(Entity
(E
));
4437 if Present
(Val
) and then Nkind
(Val
) = N_String_Literal
then
4438 Rewrite
(E
, New_Copy
(Val
));
4443 -- Another optimization: if the nominal subtype is unconstrained and
4444 -- the expression is a function call that returns an unconstrained
4445 -- type, rewrite the declaration as a renaming of the result of the
4446 -- call. The exceptions below are cases where the copy is expected,
4447 -- either by the back end (Aliased case) or by the semantics, as for
4448 -- initializing controlled types or copying tags for classwide types.
4451 and then Nkind
(E
) = N_Explicit_Dereference
4452 and then Nkind
(Original_Node
(E
)) = N_Function_Call
4453 and then not Is_Library_Level_Entity
(Id
)
4454 and then not Is_Constrained
(Underlying_Type
(T
))
4455 and then not Is_Aliased
(Id
)
4456 and then not Is_Class_Wide_Type
(T
)
4457 and then not Is_Controlled_Active
(T
)
4458 and then not Has_Controlled_Component
(Base_Type
(T
))
4459 and then Expander_Active
4462 Make_Object_Renaming_Declaration
(Loc
,
4463 Defining_Identifier
=> Id
,
4464 Access_Definition
=> Empty
,
4465 Subtype_Mark
=> New_Occurrence_Of
4466 (Base_Type
(Etype
(Id
)), Loc
),
4469 Set_Renamed_Object
(Id
, E
);
4471 -- Force generation of debugging information for the constant and for
4472 -- the renamed function call.
4474 Set_Debug_Info_Needed
(Id
);
4475 Set_Debug_Info_Needed
(Entity
(Prefix
(E
)));
4478 if Present
(Prev_Entity
)
4479 and then Is_Frozen
(Prev_Entity
)
4480 and then not Error_Posted
(Id
)
4482 Error_Msg_N
("full constant declaration appears too late", N
);
4485 Check_Eliminated
(Id
);
4487 -- Deal with setting In_Private_Part flag if in private part
4489 if Ekind
(Scope
(Id
)) = E_Package
4490 and then In_Private_Part
(Scope
(Id
))
4492 Set_In_Private_Part
(Id
);
4495 -- Check for violation of No_Local_Timing_Events
4497 if Restriction_Check_Required
(No_Local_Timing_Events
)
4498 and then not Is_Library_Level_Entity
(Id
)
4499 and then Is_RTE
(Etype
(Id
), RE_Timing_Event
)
4501 Check_Restriction
(No_Local_Timing_Events
, N
);
4505 -- Initialize the refined state of a variable here because this is a
4506 -- common destination for legal and illegal object declarations.
4508 if Ekind
(Id
) = E_Variable
then
4509 Set_Encapsulating_State
(Id
, Empty
);
4512 if Has_Aspects
(N
) then
4513 Analyze_Aspect_Specifications
(N
, Id
);
4516 Analyze_Dimension
(N
);
4518 -- Verify whether the object declaration introduces an illegal hidden
4519 -- state within a package subject to a null abstract state.
4521 if Ekind
(Id
) = E_Variable
then
4522 Check_No_Hidden_State
(Id
);
4526 end Analyze_Object_Declaration
;
4528 ---------------------------
4529 -- Analyze_Others_Choice --
4530 ---------------------------
4532 -- Nothing to do for the others choice node itself, the semantic analysis
4533 -- of the others choice will occur as part of the processing of the parent
4535 procedure Analyze_Others_Choice
(N
: Node_Id
) is
4536 pragma Warnings
(Off
, N
);
4539 end Analyze_Others_Choice
;
4541 -------------------------------------------
4542 -- Analyze_Private_Extension_Declaration --
4543 -------------------------------------------
4545 procedure Analyze_Private_Extension_Declaration
(N
: Node_Id
) is
4546 GM
: constant Ghost_Mode_Type
:= Ghost_Mode
;
4547 Indic
: constant Node_Id
:= Subtype_Indication
(N
);
4548 T
: constant Entity_Id
:= Defining_Identifier
(N
);
4549 Parent_Base
: Entity_Id
;
4550 Parent_Type
: Entity_Id
;
4553 -- The private extension declaration may be subject to pragma Ghost with
4554 -- policy Ignore. Set the mode now to ensure that any nodes generated
4555 -- during analysis and expansion are properly flagged as ignored Ghost.
4559 -- Ada 2005 (AI-251): Decorate all names in list of ancestor interfaces
4561 if Is_Non_Empty_List
(Interface_List
(N
)) then
4567 Intf
:= First
(Interface_List
(N
));
4568 while Present
(Intf
) loop
4569 T
:= Find_Type_Of_Subtype_Indic
(Intf
);
4571 Diagnose_Interface
(Intf
, T
);
4577 Generate_Definition
(T
);
4579 -- For other than Ada 2012, just enter the name in the current scope
4581 if Ada_Version
< Ada_2012
then
4584 -- Ada 2012 (AI05-0162): Enter the name in the current scope handling
4585 -- case of private type that completes an incomplete type.
4592 Prev
:= Find_Type_Name
(N
);
4594 pragma Assert
(Prev
= T
4595 or else (Ekind
(Prev
) = E_Incomplete_Type
4596 and then Present
(Full_View
(Prev
))
4597 and then Full_View
(Prev
) = T
));
4601 Parent_Type
:= Find_Type_Of_Subtype_Indic
(Indic
);
4602 Parent_Base
:= Base_Type
(Parent_Type
);
4604 if Parent_Type
= Any_Type
or else Etype
(Parent_Type
) = Any_Type
then
4605 Set_Ekind
(T
, Ekind
(Parent_Type
));
4606 Set_Etype
(T
, Any_Type
);
4609 elsif not Is_Tagged_Type
(Parent_Type
) then
4611 ("parent of type extension must be a tagged type ", Indic
);
4614 elsif Ekind_In
(Parent_Type
, E_Void
, E_Incomplete_Type
) then
4615 Error_Msg_N
("premature derivation of incomplete type", Indic
);
4618 elsif Is_Concurrent_Type
(Parent_Type
) then
4620 ("parent type of a private extension cannot be "
4621 & "a synchronized tagged type (RM 3.9.1 (3/1))", N
);
4623 Set_Etype
(T
, Any_Type
);
4624 Set_Ekind
(T
, E_Limited_Private_Type
);
4625 Set_Private_Dependents
(T
, New_Elmt_List
);
4626 Set_Error_Posted
(T
);
4630 -- Perhaps the parent type should be changed to the class-wide type's
4631 -- specific type in this case to prevent cascading errors ???
4633 if Is_Class_Wide_Type
(Parent_Type
) then
4635 ("parent of type extension must not be a class-wide type", Indic
);
4639 if (not Is_Package_Or_Generic_Package
(Current_Scope
)
4640 and then Nkind
(Parent
(N
)) /= N_Generic_Subprogram_Declaration
)
4641 or else In_Private_Part
(Current_Scope
)
4644 Error_Msg_N
("invalid context for private extension", N
);
4647 -- Set common attributes
4649 Set_Is_Pure
(T
, Is_Pure
(Current_Scope
));
4650 Set_Scope
(T
, Current_Scope
);
4651 Set_Ekind
(T
, E_Record_Type_With_Private
);
4652 Init_Size_Align
(T
);
4653 Set_Default_SSO
(T
);
4655 Set_Etype
(T
, Parent_Base
);
4656 Set_Has_Task
(T
, Has_Task
(Parent_Base
));
4657 Set_Has_Protected
(T
, Has_Task
(Parent_Base
));
4659 Set_Convention
(T
, Convention
(Parent_Type
));
4660 Set_First_Rep_Item
(T
, First_Rep_Item
(Parent_Type
));
4661 Set_Is_First_Subtype
(T
);
4662 Make_Class_Wide_Type
(T
);
4664 if Unknown_Discriminants_Present
(N
) then
4665 Set_Discriminant_Constraint
(T
, No_Elist
);
4668 Build_Derived_Record_Type
(N
, Parent_Type
, T
);
4670 -- Propagate inherited invariant information. The new type has
4671 -- invariants, if the parent type has inheritable invariants,
4672 -- and these invariants can in turn be inherited.
4674 if Has_Inheritable_Invariants
(Parent_Type
) then
4675 Set_Has_Inheritable_Invariants
(T
);
4676 Set_Has_Invariants
(T
);
4679 -- Ada 2005 (AI-443): Synchronized private extension or a rewritten
4680 -- synchronized formal derived type.
4682 if Ada_Version
>= Ada_2005
and then Synchronized_Present
(N
) then
4683 Set_Is_Limited_Record
(T
);
4685 -- Formal derived type case
4687 if Is_Generic_Type
(T
) then
4689 -- The parent must be a tagged limited type or a synchronized
4692 if (not Is_Tagged_Type
(Parent_Type
)
4693 or else not Is_Limited_Type
(Parent_Type
))
4695 (not Is_Interface
(Parent_Type
)
4696 or else not Is_Synchronized_Interface
(Parent_Type
))
4698 Error_Msg_NE
("parent type of & must be tagged limited " &
4699 "or synchronized", N
, T
);
4702 -- The progenitors (if any) must be limited or synchronized
4705 if Present
(Interfaces
(T
)) then
4708 Iface_Elmt
: Elmt_Id
;
4711 Iface_Elmt
:= First_Elmt
(Interfaces
(T
));
4712 while Present
(Iface_Elmt
) loop
4713 Iface
:= Node
(Iface_Elmt
);
4715 if not Is_Limited_Interface
(Iface
)
4716 and then not Is_Synchronized_Interface
(Iface
)
4718 Error_Msg_NE
("progenitor & must be limited " &
4719 "or synchronized", N
, Iface
);
4722 Next_Elmt
(Iface_Elmt
);
4727 -- Regular derived extension, the parent must be a limited or
4728 -- synchronized interface.
4731 if not Is_Interface
(Parent_Type
)
4732 or else (not Is_Limited_Interface
(Parent_Type
)
4733 and then not Is_Synchronized_Interface
(Parent_Type
))
4736 ("parent type of & must be limited interface", N
, T
);
4740 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
4741 -- extension with a synchronized parent must be explicitly declared
4742 -- synchronized, because the full view will be a synchronized type.
4743 -- This must be checked before the check for limited types below,
4744 -- to ensure that types declared limited are not allowed to extend
4745 -- synchronized interfaces.
4747 elsif Is_Interface
(Parent_Type
)
4748 and then Is_Synchronized_Interface
(Parent_Type
)
4749 and then not Synchronized_Present
(N
)
4752 ("private extension of& must be explicitly synchronized",
4755 elsif Limited_Present
(N
) then
4756 Set_Is_Limited_Record
(T
);
4758 if not Is_Limited_Type
(Parent_Type
)
4760 (not Is_Interface
(Parent_Type
)
4761 or else not Is_Limited_Interface
(Parent_Type
))
4763 Error_Msg_NE
("parent type& of limited extension must be limited",
4769 if Has_Aspects
(N
) then
4770 Analyze_Aspect_Specifications
(N
, T
);
4773 -- Restore the original Ghost mode once analysis and expansion have
4777 end Analyze_Private_Extension_Declaration
;
4779 ---------------------------------
4780 -- Analyze_Subtype_Declaration --
4781 ---------------------------------
4783 procedure Analyze_Subtype_Declaration
4785 Skip
: Boolean := False)
4787 GM
: constant Ghost_Mode_Type
:= Ghost_Mode
;
4788 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
4789 R_Checks
: Check_Result
;
4793 -- The subtype declaration may be subject to pragma Ghost with policy
4794 -- Ignore. Set the mode now to ensure that any nodes generated during
4795 -- analysis and expansion are properly flagged as ignored Ghost.
4799 Generate_Definition
(Id
);
4800 Set_Is_Pure
(Id
, Is_Pure
(Current_Scope
));
4801 Init_Size_Align
(Id
);
4803 -- The following guard condition on Enter_Name is to handle cases where
4804 -- the defining identifier has already been entered into the scope but
4805 -- the declaration as a whole needs to be analyzed.
4807 -- This case in particular happens for derived enumeration types. The
4808 -- derived enumeration type is processed as an inserted enumeration type
4809 -- declaration followed by a rewritten subtype declaration. The defining
4810 -- identifier, however, is entered into the name scope very early in the
4811 -- processing of the original type declaration and therefore needs to be
4812 -- avoided here, when the created subtype declaration is analyzed. (See
4813 -- Build_Derived_Types)
4815 -- This also happens when the full view of a private type is derived
4816 -- type with constraints. In this case the entity has been introduced
4817 -- in the private declaration.
4819 -- Finally this happens in some complex cases when validity checks are
4820 -- enabled, where the same subtype declaration may be analyzed twice.
4821 -- This can happen if the subtype is created by the pre-analysis of
4822 -- an attribute tht gives the range of a loop statement, and the loop
4823 -- itself appears within an if_statement that will be rewritten during
4827 or else (Present
(Etype
(Id
))
4828 and then (Is_Private_Type
(Etype
(Id
))
4829 or else Is_Task_Type
(Etype
(Id
))
4830 or else Is_Rewrite_Substitution
(N
)))
4834 elsif Current_Entity
(Id
) = Id
then
4841 T
:= Process_Subtype
(Subtype_Indication
(N
), N
, Id
, 'P');
4843 -- Class-wide equivalent types of records with unknown discriminants
4844 -- involve the generation of an itype which serves as the private view
4845 -- of a constrained record subtype. In such cases the base type of the
4846 -- current subtype we are processing is the private itype. Use the full
4847 -- of the private itype when decorating various attributes.
4850 and then Is_Private_Type
(T
)
4851 and then Present
(Full_View
(T
))
4856 -- Inherit common attributes
4858 Set_Is_Volatile
(Id
, Is_Volatile
(T
));
4859 Set_Treat_As_Volatile
(Id
, Treat_As_Volatile
(T
));
4860 Set_Is_Generic_Type
(Id
, Is_Generic_Type
(Base_Type
(T
)));
4861 Set_Convention
(Id
, Convention
(T
));
4863 -- If ancestor has predicates then so does the subtype, and in addition
4864 -- we must delay the freeze to properly arrange predicate inheritance.
4866 -- The Ancestor_Type test is really unpleasant, there seem to be cases
4867 -- in which T = ID, so the above tests and assignments do nothing???
4869 if Has_Predicates
(T
)
4870 or else (Present
(Ancestor_Subtype
(T
))
4871 and then Has_Predicates
(Ancestor_Subtype
(T
)))
4873 Set_Has_Predicates
(Id
);
4874 Set_Has_Delayed_Freeze
(Id
);
4877 -- Subtype of Boolean cannot have a constraint in SPARK
4879 if Is_Boolean_Type
(T
)
4880 and then Nkind
(Subtype_Indication
(N
)) = N_Subtype_Indication
4882 Check_SPARK_05_Restriction
4883 ("subtype of Boolean cannot have constraint", N
);
4886 if Nkind
(Subtype_Indication
(N
)) = N_Subtype_Indication
then
4888 Cstr
: constant Node_Id
:= Constraint
(Subtype_Indication
(N
));
4894 if Nkind
(Cstr
) = N_Index_Or_Discriminant_Constraint
then
4895 One_Cstr
:= First
(Constraints
(Cstr
));
4896 while Present
(One_Cstr
) loop
4898 -- Index or discriminant constraint in SPARK must be a
4902 Nkind_In
(One_Cstr
, N_Identifier
, N_Expanded_Name
)
4904 Check_SPARK_05_Restriction
4905 ("subtype mark required", One_Cstr
);
4907 -- String subtype must have a lower bound of 1 in SPARK.
4908 -- Note that we do not need to test for the non-static case
4909 -- here, since that was already taken care of in
4910 -- Process_Range_Expr_In_Decl.
4912 elsif Base_Type
(T
) = Standard_String
then
4913 Get_Index_Bounds
(One_Cstr
, Low
, High
);
4915 if Is_OK_Static_Expression
(Low
)
4916 and then Expr_Value
(Low
) /= 1
4918 Check_SPARK_05_Restriction
4919 ("String subtype must have lower bound of 1", N
);
4929 -- In the case where there is no constraint given in the subtype
4930 -- indication, Process_Subtype just returns the Subtype_Mark, so its
4931 -- semantic attributes must be established here.
4933 if Nkind
(Subtype_Indication
(N
)) /= N_Subtype_Indication
then
4934 Set_Etype
(Id
, Base_Type
(T
));
4936 -- Subtype of unconstrained array without constraint is not allowed
4939 if Is_Array_Type
(T
) and then not Is_Constrained
(T
) then
4940 Check_SPARK_05_Restriction
4941 ("subtype of unconstrained array must have constraint", N
);
4946 Set_Ekind
(Id
, E_Array_Subtype
);
4947 Copy_Array_Subtype_Attributes
(Id
, T
);
4949 when Decimal_Fixed_Point_Kind
=>
4950 Set_Ekind
(Id
, E_Decimal_Fixed_Point_Subtype
);
4951 Set_Digits_Value
(Id
, Digits_Value
(T
));
4952 Set_Delta_Value
(Id
, Delta_Value
(T
));
4953 Set_Scale_Value
(Id
, Scale_Value
(T
));
4954 Set_Small_Value
(Id
, Small_Value
(T
));
4955 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
4956 Set_Machine_Radix_10
(Id
, Machine_Radix_10
(T
));
4957 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4958 Set_Is_Known_Valid
(Id
, Is_Known_Valid
(T
));
4959 Set_RM_Size
(Id
, RM_Size
(T
));
4961 when Enumeration_Kind
=>
4962 Set_Ekind
(Id
, E_Enumeration_Subtype
);
4963 Set_First_Literal
(Id
, First_Literal
(Base_Type
(T
)));
4964 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
4965 Set_Is_Character_Type
(Id
, Is_Character_Type
(T
));
4966 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4967 Set_Is_Known_Valid
(Id
, Is_Known_Valid
(T
));
4968 Set_RM_Size
(Id
, RM_Size
(T
));
4969 Inherit_Predicate_Flags
(Id
, T
);
4971 when Ordinary_Fixed_Point_Kind
=>
4972 Set_Ekind
(Id
, E_Ordinary_Fixed_Point_Subtype
);
4973 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
4974 Set_Small_Value
(Id
, Small_Value
(T
));
4975 Set_Delta_Value
(Id
, Delta_Value
(T
));
4976 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4977 Set_Is_Known_Valid
(Id
, Is_Known_Valid
(T
));
4978 Set_RM_Size
(Id
, RM_Size
(T
));
4981 Set_Ekind
(Id
, E_Floating_Point_Subtype
);
4982 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
4983 Set_Digits_Value
(Id
, Digits_Value
(T
));
4984 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4986 when Signed_Integer_Kind
=>
4987 Set_Ekind
(Id
, E_Signed_Integer_Subtype
);
4988 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
4989 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4990 Set_Is_Known_Valid
(Id
, Is_Known_Valid
(T
));
4991 Set_RM_Size
(Id
, RM_Size
(T
));
4992 Inherit_Predicate_Flags
(Id
, T
);
4994 when Modular_Integer_Kind
=>
4995 Set_Ekind
(Id
, E_Modular_Integer_Subtype
);
4996 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
4997 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4998 Set_Is_Known_Valid
(Id
, Is_Known_Valid
(T
));
4999 Set_RM_Size
(Id
, RM_Size
(T
));
5000 Inherit_Predicate_Flags
(Id
, T
);
5002 when Class_Wide_Kind
=>
5003 Set_Ekind
(Id
, E_Class_Wide_Subtype
);
5004 Set_Class_Wide_Type
(Id
, Class_Wide_Type
(T
));
5005 Set_Cloned_Subtype
(Id
, T
);
5006 Set_Is_Tagged_Type
(Id
, True);
5007 Set_Has_Unknown_Discriminants
5009 Set_No_Tagged_Streams_Pragma
5010 (Id
, No_Tagged_Streams_Pragma
(T
));
5012 if Ekind
(T
) = E_Class_Wide_Subtype
then
5013 Set_Equivalent_Type
(Id
, Equivalent_Type
(T
));
5016 when E_Record_Type | E_Record_Subtype
=>
5017 Set_Ekind
(Id
, E_Record_Subtype
);
5019 if Ekind
(T
) = E_Record_Subtype
5020 and then Present
(Cloned_Subtype
(T
))
5022 Set_Cloned_Subtype
(Id
, Cloned_Subtype
(T
));
5024 Set_Cloned_Subtype
(Id
, T
);
5027 Set_First_Entity
(Id
, First_Entity
(T
));
5028 Set_Last_Entity
(Id
, Last_Entity
(T
));
5029 Set_Has_Discriminants
(Id
, Has_Discriminants
(T
));
5030 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
5031 Set_Is_Limited_Record
(Id
, Is_Limited_Record
(T
));
5032 Set_Has_Implicit_Dereference
5033 (Id
, Has_Implicit_Dereference
(T
));
5034 Set_Has_Unknown_Discriminants
5035 (Id
, Has_Unknown_Discriminants
(T
));
5037 if Has_Discriminants
(T
) then
5038 Set_Discriminant_Constraint
5039 (Id
, Discriminant_Constraint
(T
));
5040 Set_Stored_Constraint_From_Discriminant_Constraint
(Id
);
5042 elsif Has_Unknown_Discriminants
(Id
) then
5043 Set_Discriminant_Constraint
(Id
, No_Elist
);
5046 if Is_Tagged_Type
(T
) then
5047 Set_Is_Tagged_Type
(Id
, True);
5048 Set_No_Tagged_Streams_Pragma
5049 (Id
, No_Tagged_Streams_Pragma
(T
));
5050 Set_Is_Abstract_Type
(Id
, Is_Abstract_Type
(T
));
5051 Set_Direct_Primitive_Operations
5052 (Id
, Direct_Primitive_Operations
(T
));
5053 Set_Class_Wide_Type
(Id
, Class_Wide_Type
(T
));
5055 if Is_Interface
(T
) then
5056 Set_Is_Interface
(Id
);
5057 Set_Is_Limited_Interface
(Id
, Is_Limited_Interface
(T
));
5061 when Private_Kind
=>
5062 Set_Ekind
(Id
, Subtype_Kind
(Ekind
(T
)));
5063 Set_Has_Discriminants
(Id
, Has_Discriminants
(T
));
5064 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
5065 Set_First_Entity
(Id
, First_Entity
(T
));
5066 Set_Last_Entity
(Id
, Last_Entity
(T
));
5067 Set_Private_Dependents
(Id
, New_Elmt_List
);
5068 Set_Is_Limited_Record
(Id
, Is_Limited_Record
(T
));
5069 Set_Has_Implicit_Dereference
5070 (Id
, Has_Implicit_Dereference
(T
));
5071 Set_Has_Unknown_Discriminants
5072 (Id
, Has_Unknown_Discriminants
(T
));
5073 Set_Known_To_Have_Preelab_Init
5074 (Id
, Known_To_Have_Preelab_Init
(T
));
5076 if Is_Tagged_Type
(T
) then
5077 Set_Is_Tagged_Type
(Id
);
5078 Set_No_Tagged_Streams_Pragma
(Id
,
5079 No_Tagged_Streams_Pragma
(T
));
5080 Set_Is_Abstract_Type
(Id
, Is_Abstract_Type
(T
));
5081 Set_Class_Wide_Type
(Id
, Class_Wide_Type
(T
));
5082 Set_Direct_Primitive_Operations
(Id
,
5083 Direct_Primitive_Operations
(T
));
5086 -- In general the attributes of the subtype of a private type
5087 -- are the attributes of the partial view of parent. However,
5088 -- the full view may be a discriminated type, and the subtype
5089 -- must share the discriminant constraint to generate correct
5090 -- calls to initialization procedures.
5092 if Has_Discriminants
(T
) then
5093 Set_Discriminant_Constraint
5094 (Id
, Discriminant_Constraint
(T
));
5095 Set_Stored_Constraint_From_Discriminant_Constraint
(Id
);
5097 elsif Present
(Full_View
(T
))
5098 and then Has_Discriminants
(Full_View
(T
))
5100 Set_Discriminant_Constraint
5101 (Id
, Discriminant_Constraint
(Full_View
(T
)));
5102 Set_Stored_Constraint_From_Discriminant_Constraint
(Id
);
5104 -- This would seem semantically correct, but apparently
5105 -- generates spurious errors about missing components ???
5107 -- Set_Has_Discriminants (Id);
5110 Prepare_Private_Subtype_Completion
(Id
, N
);
5112 -- If this is the subtype of a constrained private type with
5113 -- discriminants that has got a full view and we also have
5114 -- built a completion just above, show that the completion
5115 -- is a clone of the full view to the back-end.
5117 if Has_Discriminants
(T
)
5118 and then not Has_Unknown_Discriminants
(T
)
5119 and then not Is_Empty_Elmt_List
(Discriminant_Constraint
(T
))
5120 and then Present
(Full_View
(T
))
5121 and then Present
(Full_View
(Id
))
5123 Set_Cloned_Subtype
(Full_View
(Id
), Full_View
(T
));
5127 Set_Ekind
(Id
, E_Access_Subtype
);
5128 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
5129 Set_Is_Access_Constant
5130 (Id
, Is_Access_Constant
(T
));
5131 Set_Directly_Designated_Type
5132 (Id
, Designated_Type
(T
));
5133 Set_Can_Never_Be_Null
(Id
, Can_Never_Be_Null
(T
));
5135 -- A Pure library_item must not contain the declaration of a
5136 -- named access type, except within a subprogram, generic
5137 -- subprogram, task unit, or protected unit, or if it has
5138 -- a specified Storage_Size of zero (RM05-10.2.1(15.4-15.5)).
5140 if Comes_From_Source
(Id
)
5141 and then In_Pure_Unit
5142 and then not In_Subprogram_Task_Protected_Unit
5143 and then not No_Pool_Assigned
(Id
)
5146 ("named access types not allowed in pure unit", N
);
5149 when Concurrent_Kind
=>
5150 Set_Ekind
(Id
, Subtype_Kind
(Ekind
(T
)));
5151 Set_Corresponding_Record_Type
(Id
,
5152 Corresponding_Record_Type
(T
));
5153 Set_First_Entity
(Id
, First_Entity
(T
));
5154 Set_First_Private_Entity
(Id
, First_Private_Entity
(T
));
5155 Set_Has_Discriminants
(Id
, Has_Discriminants
(T
));
5156 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
5157 Set_Is_Tagged_Type
(Id
, Is_Tagged_Type
(T
));
5158 Set_Last_Entity
(Id
, Last_Entity
(T
));
5160 if Is_Tagged_Type
(T
) then
5161 Set_No_Tagged_Streams_Pragma
5162 (Id
, No_Tagged_Streams_Pragma
(T
));
5165 if Has_Discriminants
(T
) then
5166 Set_Discriminant_Constraint
5167 (Id
, Discriminant_Constraint
(T
));
5168 Set_Stored_Constraint_From_Discriminant_Constraint
(Id
);
5171 when Incomplete_Kind
=>
5172 if Ada_Version
>= Ada_2005
then
5174 -- In Ada 2005 an incomplete type can be explicitly tagged:
5175 -- propagate indication. Note that we also have to include
5176 -- subtypes for Ada 2012 extended use of incomplete types.
5178 Set_Ekind
(Id
, E_Incomplete_Subtype
);
5179 Set_Is_Tagged_Type
(Id
, Is_Tagged_Type
(T
));
5180 Set_Private_Dependents
(Id
, New_Elmt_List
);
5182 if Is_Tagged_Type
(Id
) then
5183 Set_No_Tagged_Streams_Pragma
5184 (Id
, No_Tagged_Streams_Pragma
(T
));
5185 Set_Direct_Primitive_Operations
(Id
, New_Elmt_List
);
5188 -- Ada 2005 (AI-412): Decorate an incomplete subtype of an
5189 -- incomplete type visible through a limited with clause.
5191 if From_Limited_With
(T
)
5192 and then Present
(Non_Limited_View
(T
))
5194 Set_From_Limited_With
(Id
);
5195 Set_Non_Limited_View
(Id
, Non_Limited_View
(T
));
5197 -- Ada 2005 (AI-412): Add the regular incomplete subtype
5198 -- to the private dependents of the original incomplete
5199 -- type for future transformation.
5202 Append_Elmt
(Id
, Private_Dependents
(T
));
5205 -- If the subtype name denotes an incomplete type an error
5206 -- was already reported by Process_Subtype.
5209 Set_Etype
(Id
, Any_Type
);
5213 raise Program_Error
;
5217 if Etype
(Id
) = Any_Type
then
5221 -- Some common processing on all types
5223 Set_Size_Info
(Id
, T
);
5224 Set_First_Rep_Item
(Id
, First_Rep_Item
(T
));
5226 -- If the parent type is a generic actual, so is the subtype. This may
5227 -- happen in a nested instance. Why Comes_From_Source test???
5229 if not Comes_From_Source
(N
) then
5230 Set_Is_Generic_Actual_Type
(Id
, Is_Generic_Actual_Type
(T
));
5235 Set_Is_Immediately_Visible
(Id
, True);
5236 Set_Depends_On_Private
(Id
, Has_Private_Component
(T
));
5237 Set_Is_Descendent_Of_Address
(Id
, Is_Descendent_Of_Address
(T
));
5239 if Is_Interface
(T
) then
5240 Set_Is_Interface
(Id
);
5243 if Present
(Generic_Parent_Type
(N
))
5245 (Nkind
(Parent
(Generic_Parent_Type
(N
))) /=
5246 N_Formal_Type_Declaration
5247 or else Nkind
(Formal_Type_Definition
5248 (Parent
(Generic_Parent_Type
(N
)))) /=
5249 N_Formal_Private_Type_Definition
)
5251 if Is_Tagged_Type
(Id
) then
5253 -- If this is a generic actual subtype for a synchronized type,
5254 -- the primitive operations are those of the corresponding record
5255 -- for which there is a separate subtype declaration.
5257 if Is_Concurrent_Type
(Id
) then
5259 elsif Is_Class_Wide_Type
(Id
) then
5260 Derive_Subprograms
(Generic_Parent_Type
(N
), Id
, Etype
(T
));
5262 Derive_Subprograms
(Generic_Parent_Type
(N
), Id
, T
);
5265 elsif Scope
(Etype
(Id
)) /= Standard_Standard
then
5266 Derive_Subprograms
(Generic_Parent_Type
(N
), Id
);
5270 if Is_Private_Type
(T
) and then Present
(Full_View
(T
)) then
5271 Conditional_Delay
(Id
, Full_View
(T
));
5273 -- The subtypes of components or subcomponents of protected types
5274 -- do not need freeze nodes, which would otherwise appear in the
5275 -- wrong scope (before the freeze node for the protected type). The
5276 -- proper subtypes are those of the subcomponents of the corresponding
5279 elsif Ekind
(Scope
(Id
)) /= E_Protected_Type
5280 and then Present
(Scope
(Scope
(Id
))) -- error defense
5281 and then Ekind
(Scope
(Scope
(Id
))) /= E_Protected_Type
5283 Conditional_Delay
(Id
, T
);
5286 -- Check that Constraint_Error is raised for a scalar subtype indication
5287 -- when the lower or upper bound of a non-null range lies outside the
5288 -- range of the type mark.
5290 if Nkind
(Subtype_Indication
(N
)) = N_Subtype_Indication
then
5291 if Is_Scalar_Type
(Etype
(Id
))
5292 and then Scalar_Range
(Id
) /=
5293 Scalar_Range
(Etype
(Subtype_Mark
5294 (Subtype_Indication
(N
))))
5298 Etype
(Subtype_Mark
(Subtype_Indication
(N
))));
5300 -- In the array case, check compatibility for each index
5302 elsif Is_Array_Type
(Etype
(Id
)) and then Present
(First_Index
(Id
))
5304 -- This really should be a subprogram that finds the indications
5308 Subt_Index
: Node_Id
:= First_Index
(Id
);
5309 Target_Index
: Node_Id
:=
5311 (Subtype_Mark
(Subtype_Indication
(N
))));
5312 Has_Dyn_Chk
: Boolean := Has_Dynamic_Range_Check
(N
);
5315 while Present
(Subt_Index
) loop
5316 if ((Nkind
(Subt_Index
) = N_Identifier
5317 and then Ekind
(Entity
(Subt_Index
)) in Scalar_Kind
)
5318 or else Nkind
(Subt_Index
) = N_Subtype_Indication
)
5320 Nkind
(Scalar_Range
(Etype
(Subt_Index
))) = N_Range
5323 Target_Typ
: constant Entity_Id
:=
5324 Etype
(Target_Index
);
5328 (Scalar_Range
(Etype
(Subt_Index
)),
5331 Defining_Identifier
(N
));
5333 -- Reset Has_Dynamic_Range_Check on the subtype to
5334 -- prevent elision of the index check due to a dynamic
5335 -- check generated for a preceding index (needed since
5336 -- Insert_Range_Checks tries to avoid generating
5337 -- redundant checks on a given declaration).
5339 Set_Has_Dynamic_Range_Check
(N
, False);
5345 Sloc
(Defining_Identifier
(N
)));
5347 -- Record whether this index involved a dynamic check
5350 Has_Dyn_Chk
or else Has_Dynamic_Range_Check
(N
);
5354 Next_Index
(Subt_Index
);
5355 Next_Index
(Target_Index
);
5358 -- Finally, mark whether the subtype involves dynamic checks
5360 Set_Has_Dynamic_Range_Check
(N
, Has_Dyn_Chk
);
5365 -- A type invariant applies to any subtype in its scope, in particular
5366 -- to a generic actual.
5368 if Has_Invariants
(T
) and then In_Open_Scopes
(Scope
(T
)) then
5369 Set_Has_Invariants
(Id
);
5370 Set_Invariant_Procedure
(Id
, Invariant_Procedure
(T
));
5373 -- Make sure that generic actual types are properly frozen. The subtype
5374 -- is marked as a generic actual type when the enclosing instance is
5375 -- analyzed, so here we identify the subtype from the tree structure.
5378 and then Is_Generic_Actual_Type
(Id
)
5379 and then In_Instance
5380 and then not Comes_From_Source
(N
)
5381 and then Nkind
(Subtype_Indication
(N
)) /= N_Subtype_Indication
5382 and then Is_Frozen
(T
)
5384 Freeze_Before
(N
, Id
);
5387 Set_Optimize_Alignment_Flags
(Id
);
5388 Check_Eliminated
(Id
);
5391 if Has_Aspects
(N
) then
5392 Analyze_Aspect_Specifications
(N
, Id
);
5395 Analyze_Dimension
(N
);
5397 -- Restore the original Ghost mode once analysis and expansion have
5401 end Analyze_Subtype_Declaration
;
5403 --------------------------------
5404 -- Analyze_Subtype_Indication --
5405 --------------------------------
5407 procedure Analyze_Subtype_Indication
(N
: Node_Id
) is
5408 T
: constant Entity_Id
:= Subtype_Mark
(N
);
5409 R
: constant Node_Id
:= Range_Expression
(Constraint
(N
));
5416 Set_Etype
(N
, Etype
(R
));
5417 Resolve
(R
, Entity
(T
));
5419 Set_Error_Posted
(R
);
5420 Set_Error_Posted
(T
);
5422 end Analyze_Subtype_Indication
;
5424 --------------------------
5425 -- Analyze_Variant_Part --
5426 --------------------------
5428 procedure Analyze_Variant_Part
(N
: Node_Id
) is
5429 Discr_Name
: Node_Id
;
5430 Discr_Type
: Entity_Id
;
5432 procedure Process_Variant
(A
: Node_Id
);
5433 -- Analyze declarations for a single variant
5435 package Analyze_Variant_Choices
is
5436 new Generic_Analyze_Choices
(Process_Variant
);
5437 use Analyze_Variant_Choices
;
5439 ---------------------
5440 -- Process_Variant --
5441 ---------------------
5443 procedure Process_Variant
(A
: Node_Id
) is
5444 CL
: constant Node_Id
:= Component_List
(A
);
5446 if not Null_Present
(CL
) then
5447 Analyze_Declarations
(Component_Items
(CL
));
5449 if Present
(Variant_Part
(CL
)) then
5450 Analyze
(Variant_Part
(CL
));
5453 end Process_Variant
;
5455 -- Start of processing for Analyze_Variant_Part
5458 Discr_Name
:= Name
(N
);
5459 Analyze
(Discr_Name
);
5461 -- If Discr_Name bad, get out (prevent cascaded errors)
5463 if Etype
(Discr_Name
) = Any_Type
then
5467 -- Check invalid discriminant in variant part
5469 if Ekind
(Entity
(Discr_Name
)) /= E_Discriminant
then
5470 Error_Msg_N
("invalid discriminant name in variant part", Discr_Name
);
5473 Discr_Type
:= Etype
(Entity
(Discr_Name
));
5475 if not Is_Discrete_Type
(Discr_Type
) then
5477 ("discriminant in a variant part must be of a discrete type",
5482 -- Now analyze the choices, which also analyzes the declarations that
5483 -- are associated with each choice.
5485 Analyze_Choices
(Variants
(N
), Discr_Type
);
5487 -- Note: we used to instantiate and call Check_Choices here to check
5488 -- that the choices covered the discriminant, but it's too early to do
5489 -- that because of statically predicated subtypes, whose analysis may
5490 -- be deferred to their freeze point which may be as late as the freeze
5491 -- point of the containing record. So this call is now to be found in
5492 -- Freeze_Record_Declaration.
5494 end Analyze_Variant_Part
;
5496 ----------------------------
5497 -- Array_Type_Declaration --
5498 ----------------------------
5500 procedure Array_Type_Declaration
(T
: in out Entity_Id
; Def
: Node_Id
) is
5501 Component_Def
: constant Node_Id
:= Component_Definition
(Def
);
5502 Component_Typ
: constant Node_Id
:= Subtype_Indication
(Component_Def
);
5503 Element_Type
: Entity_Id
;
5504 Implicit_Base
: Entity_Id
;
5506 Related_Id
: Entity_Id
:= Empty
;
5508 P
: constant Node_Id
:= Parent
(Def
);
5512 if Nkind
(Def
) = N_Constrained_Array_Definition
then
5513 Index
:= First
(Discrete_Subtype_Definitions
(Def
));
5515 Index
:= First
(Subtype_Marks
(Def
));
5518 -- Find proper names for the implicit types which may be public. In case
5519 -- of anonymous arrays we use the name of the first object of that type
5523 Related_Id
:= Defining_Identifier
(P
);
5529 while Present
(Index
) loop
5532 -- Test for odd case of trying to index a type by the type itself
5534 if Is_Entity_Name
(Index
) and then Entity
(Index
) = T
then
5535 Error_Msg_N
("type& cannot be indexed by itself", Index
);
5536 Set_Entity
(Index
, Standard_Boolean
);
5537 Set_Etype
(Index
, Standard_Boolean
);
5540 -- Check SPARK restriction requiring a subtype mark
5542 if not Nkind_In
(Index
, N_Identifier
, N_Expanded_Name
) then
5543 Check_SPARK_05_Restriction
("subtype mark required", Index
);
5546 -- Add a subtype declaration for each index of private array type
5547 -- declaration whose etype is also private. For example:
5550 -- type Index is private;
5552 -- type Table is array (Index) of ...
5555 -- This is currently required by the expander for the internally
5556 -- generated equality subprogram of records with variant parts in
5557 -- which the etype of some component is such private type.
5559 if Ekind
(Current_Scope
) = E_Package
5560 and then In_Private_Part
(Current_Scope
)
5561 and then Has_Private_Declaration
(Etype
(Index
))
5564 Loc
: constant Source_Ptr
:= Sloc
(Def
);
5569 New_E
:= Make_Temporary
(Loc
, 'T');
5570 Set_Is_Internal
(New_E
);
5573 Make_Subtype_Declaration
(Loc
,
5574 Defining_Identifier
=> New_E
,
5575 Subtype_Indication
=>
5576 New_Occurrence_Of
(Etype
(Index
), Loc
));
5578 Insert_Before
(Parent
(Def
), Decl
);
5580 Set_Etype
(Index
, New_E
);
5582 -- If the index is a range the Entity attribute is not
5583 -- available. Example:
5586 -- type T is private;
5588 -- type T is new Natural;
5589 -- Table : array (T(1) .. T(10)) of Boolean;
5592 if Nkind
(Index
) /= N_Range
then
5593 Set_Entity
(Index
, New_E
);
5598 Make_Index
(Index
, P
, Related_Id
, Nb_Index
);
5600 -- Check error of subtype with predicate for index type
5602 Bad_Predicated_Subtype_Use
5603 ("subtype& has predicate, not allowed as index subtype",
5604 Index
, Etype
(Index
));
5606 -- Move to next index
5609 Nb_Index
:= Nb_Index
+ 1;
5612 -- Process subtype indication if one is present
5614 if Present
(Component_Typ
) then
5615 Element_Type
:= Process_Subtype
(Component_Typ
, P
, Related_Id
, 'C');
5617 Set_Etype
(Component_Typ
, Element_Type
);
5619 if not Nkind_In
(Component_Typ
, N_Identifier
, N_Expanded_Name
) then
5620 Check_SPARK_05_Restriction
5621 ("subtype mark required", Component_Typ
);
5624 -- Ada 2005 (AI-230): Access Definition case
5626 else pragma Assert
(Present
(Access_Definition
(Component_Def
)));
5628 -- Indicate that the anonymous access type is created by the
5629 -- array type declaration.
5631 Element_Type
:= Access_Definition
5633 N
=> Access_Definition
(Component_Def
));
5634 Set_Is_Local_Anonymous_Access
(Element_Type
);
5636 -- Propagate the parent. This field is needed if we have to generate
5637 -- the master_id associated with an anonymous access to task type
5638 -- component (see Expand_N_Full_Type_Declaration.Build_Master)
5640 Set_Parent
(Element_Type
, Parent
(T
));
5642 -- Ada 2005 (AI-230): In case of components that are anonymous access
5643 -- types the level of accessibility depends on the enclosing type
5646 Set_Scope
(Element_Type
, Current_Scope
); -- Ada 2005 (AI-230)
5648 -- Ada 2005 (AI-254)
5651 CD
: constant Node_Id
:=
5652 Access_To_Subprogram_Definition
5653 (Access_Definition
(Component_Def
));
5655 if Present
(CD
) and then Protected_Present
(CD
) then
5657 Replace_Anonymous_Access_To_Protected_Subprogram
(Def
);
5662 -- Constrained array case
5665 T
:= Create_Itype
(E_Void
, P
, Related_Id
, 'T');
5668 if Nkind
(Def
) = N_Constrained_Array_Definition
then
5670 -- Establish Implicit_Base as unconstrained base type
5672 Implicit_Base
:= Create_Itype
(E_Array_Type
, P
, Related_Id
, 'B');
5674 Set_Etype
(Implicit_Base
, Implicit_Base
);
5675 Set_Scope
(Implicit_Base
, Current_Scope
);
5676 Set_Has_Delayed_Freeze
(Implicit_Base
);
5677 Set_Default_SSO
(Implicit_Base
);
5679 -- The constrained array type is a subtype of the unconstrained one
5681 Set_Ekind
(T
, E_Array_Subtype
);
5682 Init_Size_Align
(T
);
5683 Set_Etype
(T
, Implicit_Base
);
5684 Set_Scope
(T
, Current_Scope
);
5685 Set_Is_Constrained
(T
);
5687 First
(Discrete_Subtype_Definitions
(Def
)));
5688 Set_Has_Delayed_Freeze
(T
);
5690 -- Complete setup of implicit base type
5692 Set_First_Index
(Implicit_Base
, First_Index
(T
));
5693 Set_Component_Type
(Implicit_Base
, Element_Type
);
5694 Set_Has_Task
(Implicit_Base
, Has_Task
(Element_Type
));
5695 Set_Has_Protected
(Implicit_Base
, Has_Protected
(Element_Type
));
5696 Set_Component_Size
(Implicit_Base
, Uint_0
);
5697 Set_Packed_Array_Impl_Type
(Implicit_Base
, Empty
);
5698 Set_Has_Controlled_Component
(Implicit_Base
,
5699 Has_Controlled_Component
(Element_Type
)
5700 or else Is_Controlled_Active
(Element_Type
));
5701 Set_Finalize_Storage_Only
(Implicit_Base
,
5702 Finalize_Storage_Only
(Element_Type
));
5704 -- Inherit the "ghostness" from the constrained array type
5706 if Is_Ghost_Entity
(T
) or else Ghost_Mode
> None
then
5707 Set_Is_Ghost_Entity
(Implicit_Base
);
5710 -- Unconstrained array case
5713 Set_Ekind
(T
, E_Array_Type
);
5714 Init_Size_Align
(T
);
5716 Set_Scope
(T
, Current_Scope
);
5717 Set_Component_Size
(T
, Uint_0
);
5718 Set_Is_Constrained
(T
, False);
5719 Set_First_Index
(T
, First
(Subtype_Marks
(Def
)));
5720 Set_Has_Delayed_Freeze
(T
, True);
5721 Set_Has_Task
(T
, Has_Task
(Element_Type
));
5722 Set_Has_Protected
(T
, Has_Protected
(Element_Type
));
5723 Set_Has_Controlled_Component
(T
, Has_Controlled_Component
5726 Is_Controlled_Active
(Element_Type
));
5727 Set_Finalize_Storage_Only
(T
, Finalize_Storage_Only
5729 Set_Default_SSO
(T
);
5732 -- Common attributes for both cases
5734 Set_Component_Type
(Base_Type
(T
), Element_Type
);
5735 Set_Packed_Array_Impl_Type
(T
, Empty
);
5737 if Aliased_Present
(Component_Definition
(Def
)) then
5738 Check_SPARK_05_Restriction
5739 ("aliased is not allowed", Component_Definition
(Def
));
5740 Set_Has_Aliased_Components
(Etype
(T
));
5743 -- Ada 2005 (AI-231): Propagate the null-excluding attribute to the
5744 -- array type to ensure that objects of this type are initialized.
5746 if Ada_Version
>= Ada_2005
and then Can_Never_Be_Null
(Element_Type
) then
5747 Set_Can_Never_Be_Null
(T
);
5749 if Null_Exclusion_Present
(Component_Definition
(Def
))
5751 -- No need to check itypes because in their case this check was
5752 -- done at their point of creation
5754 and then not Is_Itype
(Element_Type
)
5757 ("`NOT NULL` not allowed (null already excluded)",
5758 Subtype_Indication
(Component_Definition
(Def
)));
5762 Priv
:= Private_Component
(Element_Type
);
5764 if Present
(Priv
) then
5766 -- Check for circular definitions
5768 if Priv
= Any_Type
then
5769 Set_Component_Type
(Etype
(T
), Any_Type
);
5771 -- There is a gap in the visibility of operations on the composite
5772 -- type only if the component type is defined in a different scope.
5774 elsif Scope
(Priv
) = Current_Scope
then
5777 elsif Is_Limited_Type
(Priv
) then
5778 Set_Is_Limited_Composite
(Etype
(T
));
5779 Set_Is_Limited_Composite
(T
);
5781 Set_Is_Private_Composite
(Etype
(T
));
5782 Set_Is_Private_Composite
(T
);
5786 -- A syntax error in the declaration itself may lead to an empty index
5787 -- list, in which case do a minimal patch.
5789 if No
(First_Index
(T
)) then
5790 Error_Msg_N
("missing index definition in array type declaration", T
);
5793 Indexes
: constant List_Id
:=
5794 New_List
(New_Occurrence_Of
(Any_Id
, Sloc
(T
)));
5796 Set_Discrete_Subtype_Definitions
(Def
, Indexes
);
5797 Set_First_Index
(T
, First
(Indexes
));
5802 -- Create a concatenation operator for the new type. Internal array
5803 -- types created for packed entities do not need such, they are
5804 -- compatible with the user-defined type.
5806 if Number_Dimensions
(T
) = 1
5807 and then not Is_Packed_Array_Impl_Type
(T
)
5809 New_Concatenation_Op
(T
);
5812 -- In the case of an unconstrained array the parser has already verified
5813 -- that all the indexes are unconstrained but we still need to make sure
5814 -- that the element type is constrained.
5816 if not Is_Definite_Subtype
(Element_Type
) then
5818 ("unconstrained element type in array declaration",
5819 Subtype_Indication
(Component_Def
));
5821 elsif Is_Abstract_Type
(Element_Type
) then
5823 ("the type of a component cannot be abstract",
5824 Subtype_Indication
(Component_Def
));
5827 -- There may be an invariant declared for the component type, but
5828 -- the construction of the component invariant checking procedure
5829 -- takes place during expansion.
5830 end Array_Type_Declaration
;
5832 ------------------------------------------------------
5833 -- Replace_Anonymous_Access_To_Protected_Subprogram --
5834 ------------------------------------------------------
5836 function Replace_Anonymous_Access_To_Protected_Subprogram
5837 (N
: Node_Id
) return Entity_Id
5839 Loc
: constant Source_Ptr
:= Sloc
(N
);
5841 Curr_Scope
: constant Scope_Stack_Entry
:=
5842 Scope_Stack
.Table
(Scope_Stack
.Last
);
5844 Anon
: constant Entity_Id
:= Make_Temporary
(Loc
, 'S');
5847 -- Access definition in declaration
5850 -- Object definition or formal definition with an access definition
5853 -- Declaration of anonymous access to subprogram type
5856 -- Original specification in access to subprogram
5861 Set_Is_Internal
(Anon
);
5864 when N_Component_Declaration |
5865 N_Unconstrained_Array_Definition |
5866 N_Constrained_Array_Definition
=>
5867 Comp
:= Component_Definition
(N
);
5868 Acc
:= Access_Definition
(Comp
);
5870 when N_Discriminant_Specification
=>
5871 Comp
:= Discriminant_Type
(N
);
5874 when N_Parameter_Specification
=>
5875 Comp
:= Parameter_Type
(N
);
5878 when N_Access_Function_Definition
=>
5879 Comp
:= Result_Definition
(N
);
5882 when N_Object_Declaration
=>
5883 Comp
:= Object_Definition
(N
);
5886 when N_Function_Specification
=>
5887 Comp
:= Result_Definition
(N
);
5891 raise Program_Error
;
5894 Spec
:= Access_To_Subprogram_Definition
(Acc
);
5897 Make_Full_Type_Declaration
(Loc
,
5898 Defining_Identifier
=> Anon
,
5899 Type_Definition
=> Copy_Separate_Tree
(Spec
));
5901 Mark_Rewrite_Insertion
(Decl
);
5903 -- In ASIS mode, analyze the profile on the original node, because
5904 -- the separate copy does not provide enough links to recover the
5905 -- original tree. Analysis is limited to type annotations, within
5906 -- a temporary scope that serves as an anonymous subprogram to collect
5907 -- otherwise useless temporaries and itypes.
5911 Typ
: constant Entity_Id
:= Make_Temporary
(Loc
, 'S');
5914 if Nkind
(Spec
) = N_Access_Function_Definition
then
5915 Set_Ekind
(Typ
, E_Function
);
5917 Set_Ekind
(Typ
, E_Procedure
);
5920 Set_Parent
(Typ
, N
);
5921 Set_Scope
(Typ
, Current_Scope
);
5924 -- Nothing to do if procedure is parameterless
5926 if Present
(Parameter_Specifications
(Spec
)) then
5927 Process_Formals
(Parameter_Specifications
(Spec
), Spec
);
5930 if Nkind
(Spec
) = N_Access_Function_Definition
then
5932 Def
: constant Node_Id
:= Result_Definition
(Spec
);
5935 -- The result might itself be an anonymous access type, so
5938 if Nkind
(Def
) = N_Access_Definition
then
5939 if Present
(Access_To_Subprogram_Definition
(Def
)) then
5942 Replace_Anonymous_Access_To_Protected_Subprogram
5945 Find_Type
(Subtype_Mark
(Def
));
5958 -- Insert the new declaration in the nearest enclosing scope. If the
5959 -- node is a body and N is its return type, the declaration belongs in
5960 -- the enclosing scope.
5964 if Nkind
(P
) = N_Subprogram_Body
5965 and then Nkind
(N
) = N_Function_Specification
5970 while Present
(P
) and then not Has_Declarations
(P
) loop
5974 pragma Assert
(Present
(P
));
5976 if Nkind
(P
) = N_Package_Specification
then
5977 Prepend
(Decl
, Visible_Declarations
(P
));
5979 Prepend
(Decl
, Declarations
(P
));
5982 -- Replace the anonymous type with an occurrence of the new declaration.
5983 -- In all cases the rewritten node does not have the null-exclusion
5984 -- attribute because (if present) it was already inherited by the
5985 -- anonymous entity (Anon). Thus, in case of components we do not
5986 -- inherit this attribute.
5988 if Nkind
(N
) = N_Parameter_Specification
then
5989 Rewrite
(Comp
, New_Occurrence_Of
(Anon
, Loc
));
5990 Set_Etype
(Defining_Identifier
(N
), Anon
);
5991 Set_Null_Exclusion_Present
(N
, False);
5993 elsif Nkind
(N
) = N_Object_Declaration
then
5994 Rewrite
(Comp
, New_Occurrence_Of
(Anon
, Loc
));
5995 Set_Etype
(Defining_Identifier
(N
), Anon
);
5997 elsif Nkind
(N
) = N_Access_Function_Definition
then
5998 Rewrite
(Comp
, New_Occurrence_Of
(Anon
, Loc
));
6000 elsif Nkind
(N
) = N_Function_Specification
then
6001 Rewrite
(Comp
, New_Occurrence_Of
(Anon
, Loc
));
6002 Set_Etype
(Defining_Unit_Name
(N
), Anon
);
6006 Make_Component_Definition
(Loc
,
6007 Subtype_Indication
=> New_Occurrence_Of
(Anon
, Loc
)));
6010 Mark_Rewrite_Insertion
(Comp
);
6012 if Nkind_In
(N
, N_Object_Declaration
, N_Access_Function_Definition
) then
6016 -- Temporarily remove the current scope (record or subprogram) from
6017 -- the stack to add the new declarations to the enclosing scope.
6019 Scope_Stack
.Decrement_Last
;
6021 Set_Is_Itype
(Anon
);
6022 Scope_Stack
.Append
(Curr_Scope
);
6025 Set_Ekind
(Anon
, E_Anonymous_Access_Protected_Subprogram_Type
);
6026 Set_Can_Use_Internal_Rep
(Anon
, not Always_Compatible_Rep_On_Target
);
6028 end Replace_Anonymous_Access_To_Protected_Subprogram
;
6030 -------------------------------
6031 -- Build_Derived_Access_Type --
6032 -------------------------------
6034 procedure Build_Derived_Access_Type
6036 Parent_Type
: Entity_Id
;
6037 Derived_Type
: Entity_Id
)
6039 S
: constant Node_Id
:= Subtype_Indication
(Type_Definition
(N
));
6041 Desig_Type
: Entity_Id
;
6043 Discr_Con_Elist
: Elist_Id
;
6044 Discr_Con_El
: Elmt_Id
;
6048 -- Set the designated type so it is available in case this is an access
6049 -- to a self-referential type, e.g. a standard list type with a next
6050 -- pointer. Will be reset after subtype is built.
6052 Set_Directly_Designated_Type
6053 (Derived_Type
, Designated_Type
(Parent_Type
));
6055 Subt
:= Process_Subtype
(S
, N
);
6057 if Nkind
(S
) /= N_Subtype_Indication
6058 and then Subt
/= Base_Type
(Subt
)
6060 Set_Ekind
(Derived_Type
, E_Access_Subtype
);
6063 if Ekind
(Derived_Type
) = E_Access_Subtype
then
6065 Pbase
: constant Entity_Id
:= Base_Type
(Parent_Type
);
6066 Ibase
: constant Entity_Id
:=
6067 Create_Itype
(Ekind
(Pbase
), N
, Derived_Type
, 'B');
6068 Svg_Chars
: constant Name_Id
:= Chars
(Ibase
);
6069 Svg_Next_E
: constant Entity_Id
:= Next_Entity
(Ibase
);
6072 Copy_Node
(Pbase
, Ibase
);
6074 Set_Chars
(Ibase
, Svg_Chars
);
6075 Set_Next_Entity
(Ibase
, Svg_Next_E
);
6076 Set_Sloc
(Ibase
, Sloc
(Derived_Type
));
6077 Set_Scope
(Ibase
, Scope
(Derived_Type
));
6078 Set_Freeze_Node
(Ibase
, Empty
);
6079 Set_Is_Frozen
(Ibase
, False);
6080 Set_Comes_From_Source
(Ibase
, False);
6081 Set_Is_First_Subtype
(Ibase
, False);
6083 Set_Etype
(Ibase
, Pbase
);
6084 Set_Etype
(Derived_Type
, Ibase
);
6088 Set_Directly_Designated_Type
6089 (Derived_Type
, Designated_Type
(Subt
));
6091 Set_Is_Constrained
(Derived_Type
, Is_Constrained
(Subt
));
6092 Set_Is_Access_Constant
(Derived_Type
, Is_Access_Constant
(Parent_Type
));
6093 Set_Size_Info
(Derived_Type
, Parent_Type
);
6094 Set_RM_Size
(Derived_Type
, RM_Size
(Parent_Type
));
6095 Set_Depends_On_Private
(Derived_Type
,
6096 Has_Private_Component
(Derived_Type
));
6097 Conditional_Delay
(Derived_Type
, Subt
);
6099 -- Ada 2005 (AI-231): Set the null-exclusion attribute, and verify
6100 -- that it is not redundant.
6102 if Null_Exclusion_Present
(Type_Definition
(N
)) then
6103 Set_Can_Never_Be_Null
(Derived_Type
);
6105 -- What is with the "AND THEN FALSE" here ???
6107 if Can_Never_Be_Null
(Parent_Type
)
6111 ("`NOT NULL` not allowed (& already excludes null)",
6115 elsif Can_Never_Be_Null
(Parent_Type
) then
6116 Set_Can_Never_Be_Null
(Derived_Type
);
6119 -- Note: we do not copy the Storage_Size_Variable, since we always go to
6120 -- the root type for this information.
6122 -- Apply range checks to discriminants for derived record case
6123 -- ??? THIS CODE SHOULD NOT BE HERE REALLY.
6125 Desig_Type
:= Designated_Type
(Derived_Type
);
6126 if Is_Composite_Type
(Desig_Type
)
6127 and then (not Is_Array_Type
(Desig_Type
))
6128 and then Has_Discriminants
(Desig_Type
)
6129 and then Base_Type
(Desig_Type
) /= Desig_Type
6131 Discr_Con_Elist
:= Discriminant_Constraint
(Desig_Type
);
6132 Discr_Con_El
:= First_Elmt
(Discr_Con_Elist
);
6134 Discr
:= First_Discriminant
(Base_Type
(Desig_Type
));
6135 while Present
(Discr_Con_El
) loop
6136 Apply_Range_Check
(Node
(Discr_Con_El
), Etype
(Discr
));
6137 Next_Elmt
(Discr_Con_El
);
6138 Next_Discriminant
(Discr
);
6141 end Build_Derived_Access_Type
;
6143 ------------------------------
6144 -- Build_Derived_Array_Type --
6145 ------------------------------
6147 procedure Build_Derived_Array_Type
6149 Parent_Type
: Entity_Id
;
6150 Derived_Type
: Entity_Id
)
6152 Loc
: constant Source_Ptr
:= Sloc
(N
);
6153 Tdef
: constant Node_Id
:= Type_Definition
(N
);
6154 Indic
: constant Node_Id
:= Subtype_Indication
(Tdef
);
6155 Parent_Base
: constant Entity_Id
:= Base_Type
(Parent_Type
);
6156 Implicit_Base
: Entity_Id
;
6157 New_Indic
: Node_Id
;
6159 procedure Make_Implicit_Base
;
6160 -- If the parent subtype is constrained, the derived type is a subtype
6161 -- of an implicit base type derived from the parent base.
6163 ------------------------
6164 -- Make_Implicit_Base --
6165 ------------------------
6167 procedure Make_Implicit_Base
is
6170 Create_Itype
(Ekind
(Parent_Base
), N
, Derived_Type
, 'B');
6172 Set_Ekind
(Implicit_Base
, Ekind
(Parent_Base
));
6173 Set_Etype
(Implicit_Base
, Parent_Base
);
6175 Copy_Array_Subtype_Attributes
(Implicit_Base
, Parent_Base
);
6176 Copy_Array_Base_Type_Attributes
(Implicit_Base
, Parent_Base
);
6178 Set_Has_Delayed_Freeze
(Implicit_Base
, True);
6180 -- Inherit the "ghostness" from the parent base type
6182 if Is_Ghost_Entity
(Parent_Base
) or else Ghost_Mode
> None
then
6183 Set_Is_Ghost_Entity
(Implicit_Base
);
6185 end Make_Implicit_Base
;
6187 -- Start of processing for Build_Derived_Array_Type
6190 if not Is_Constrained
(Parent_Type
) then
6191 if Nkind
(Indic
) /= N_Subtype_Indication
then
6192 Set_Ekind
(Derived_Type
, E_Array_Type
);
6194 Copy_Array_Subtype_Attributes
(Derived_Type
, Parent_Type
);
6195 Copy_Array_Base_Type_Attributes
(Derived_Type
, Parent_Type
);
6197 Set_Has_Delayed_Freeze
(Derived_Type
, True);
6201 Set_Etype
(Derived_Type
, Implicit_Base
);
6204 Make_Subtype_Declaration
(Loc
,
6205 Defining_Identifier
=> Derived_Type
,
6206 Subtype_Indication
=>
6207 Make_Subtype_Indication
(Loc
,
6208 Subtype_Mark
=> New_Occurrence_Of
(Implicit_Base
, Loc
),
6209 Constraint
=> Constraint
(Indic
)));
6211 Rewrite
(N
, New_Indic
);
6216 if Nkind
(Indic
) /= N_Subtype_Indication
then
6219 Set_Ekind
(Derived_Type
, Ekind
(Parent_Type
));
6220 Set_Etype
(Derived_Type
, Implicit_Base
);
6221 Copy_Array_Subtype_Attributes
(Derived_Type
, Parent_Type
);
6224 Error_Msg_N
("illegal constraint on constrained type", Indic
);
6228 -- If parent type is not a derived type itself, and is declared in
6229 -- closed scope (e.g. a subprogram), then we must explicitly introduce
6230 -- the new type's concatenation operator since Derive_Subprograms
6231 -- will not inherit the parent's operator. If the parent type is
6232 -- unconstrained, the operator is of the unconstrained base type.
6234 if Number_Dimensions
(Parent_Type
) = 1
6235 and then not Is_Limited_Type
(Parent_Type
)
6236 and then not Is_Derived_Type
(Parent_Type
)
6237 and then not Is_Package_Or_Generic_Package
6238 (Scope
(Base_Type
(Parent_Type
)))
6240 if not Is_Constrained
(Parent_Type
)
6241 and then Is_Constrained
(Derived_Type
)
6243 New_Concatenation_Op
(Implicit_Base
);
6245 New_Concatenation_Op
(Derived_Type
);
6248 end Build_Derived_Array_Type
;
6250 -----------------------------------
6251 -- Build_Derived_Concurrent_Type --
6252 -----------------------------------
6254 procedure Build_Derived_Concurrent_Type
6256 Parent_Type
: Entity_Id
;
6257 Derived_Type
: Entity_Id
)
6259 Loc
: constant Source_Ptr
:= Sloc
(N
);
6261 Corr_Record
: constant Entity_Id
:= Make_Temporary
(Loc
, 'C');
6262 Corr_Decl
: Node_Id
;
6263 Corr_Decl_Needed
: Boolean;
6264 -- If the derived type has fewer discriminants than its parent, the
6265 -- corresponding record is also a derived type, in order to account for
6266 -- the bound discriminants. We create a full type declaration for it in
6269 Constraint_Present
: constant Boolean :=
6270 Nkind
(Subtype_Indication
(Type_Definition
(N
))) =
6271 N_Subtype_Indication
;
6273 D_Constraint
: Node_Id
;
6274 New_Constraint
: Elist_Id
;
6275 Old_Disc
: Entity_Id
;
6276 New_Disc
: Entity_Id
;
6280 Set_Stored_Constraint
(Derived_Type
, No_Elist
);
6281 Corr_Decl_Needed
:= False;
6284 if Present
(Discriminant_Specifications
(N
))
6285 and then Constraint_Present
6287 Old_Disc
:= First_Discriminant
(Parent_Type
);
6288 New_Disc
:= First
(Discriminant_Specifications
(N
));
6289 while Present
(New_Disc
) and then Present
(Old_Disc
) loop
6290 Next_Discriminant
(Old_Disc
);
6295 if Present
(Old_Disc
) and then Expander_Active
then
6297 -- The new type has fewer discriminants, so we need to create a new
6298 -- corresponding record, which is derived from the corresponding
6299 -- record of the parent, and has a stored constraint that captures
6300 -- the values of the discriminant constraints. The corresponding
6301 -- record is needed only if expander is active and code generation is
6304 -- The type declaration for the derived corresponding record has the
6305 -- same discriminant part and constraints as the current declaration.
6306 -- Copy the unanalyzed tree to build declaration.
6308 Corr_Decl_Needed
:= True;
6309 New_N
:= Copy_Separate_Tree
(N
);
6312 Make_Full_Type_Declaration
(Loc
,
6313 Defining_Identifier
=> Corr_Record
,
6314 Discriminant_Specifications
=>
6315 Discriminant_Specifications
(New_N
),
6317 Make_Derived_Type_Definition
(Loc
,
6318 Subtype_Indication
=>
6319 Make_Subtype_Indication
(Loc
,
6322 (Corresponding_Record_Type
(Parent_Type
), Loc
),
6325 (Subtype_Indication
(Type_Definition
(New_N
))))));
6328 -- Copy Storage_Size and Relative_Deadline variables if task case
6330 if Is_Task_Type
(Parent_Type
) then
6331 Set_Storage_Size_Variable
(Derived_Type
,
6332 Storage_Size_Variable
(Parent_Type
));
6333 Set_Relative_Deadline_Variable
(Derived_Type
,
6334 Relative_Deadline_Variable
(Parent_Type
));
6337 if Present
(Discriminant_Specifications
(N
)) then
6338 Push_Scope
(Derived_Type
);
6339 Check_Or_Process_Discriminants
(N
, Derived_Type
);
6341 if Constraint_Present
then
6343 Expand_To_Stored_Constraint
6345 Build_Discriminant_Constraints
6347 Subtype_Indication
(Type_Definition
(N
)), True));
6352 elsif Constraint_Present
then
6354 -- Build constrained subtype, copying the constraint, and derive
6355 -- from it to create a derived constrained type.
6358 Loc
: constant Source_Ptr
:= Sloc
(N
);
6359 Anon
: constant Entity_Id
:=
6360 Make_Defining_Identifier
(Loc
,
6361 Chars
=> New_External_Name
(Chars
(Derived_Type
), 'T'));
6366 Make_Subtype_Declaration
(Loc
,
6367 Defining_Identifier
=> Anon
,
6368 Subtype_Indication
=>
6369 New_Copy_Tree
(Subtype_Indication
(Type_Definition
(N
))));
6370 Insert_Before
(N
, Decl
);
6373 Rewrite
(Subtype_Indication
(Type_Definition
(N
)),
6374 New_Occurrence_Of
(Anon
, Loc
));
6375 Set_Analyzed
(Derived_Type
, False);
6381 -- By default, operations and private data are inherited from parent.
6382 -- However, in the presence of bound discriminants, a new corresponding
6383 -- record will be created, see below.
6385 Set_Has_Discriminants
6386 (Derived_Type
, Has_Discriminants
(Parent_Type
));
6387 Set_Corresponding_Record_Type
6388 (Derived_Type
, Corresponding_Record_Type
(Parent_Type
));
6390 -- Is_Constrained is set according the parent subtype, but is set to
6391 -- False if the derived type is declared with new discriminants.
6395 (Is_Constrained
(Parent_Type
) or else Constraint_Present
)
6396 and then not Present
(Discriminant_Specifications
(N
)));
6398 if Constraint_Present
then
6399 if not Has_Discriminants
(Parent_Type
) then
6400 Error_Msg_N
("untagged parent must have discriminants", N
);
6402 elsif Present
(Discriminant_Specifications
(N
)) then
6404 -- Verify that new discriminants are used to constrain old ones
6409 (Constraint
(Subtype_Indication
(Type_Definition
(N
)))));
6411 Old_Disc
:= First_Discriminant
(Parent_Type
);
6413 while Present
(D_Constraint
) loop
6414 if Nkind
(D_Constraint
) /= N_Discriminant_Association
then
6416 -- Positional constraint. If it is a reference to a new
6417 -- discriminant, it constrains the corresponding old one.
6419 if Nkind
(D_Constraint
) = N_Identifier
then
6420 New_Disc
:= First_Discriminant
(Derived_Type
);
6421 while Present
(New_Disc
) loop
6422 exit when Chars
(New_Disc
) = Chars
(D_Constraint
);
6423 Next_Discriminant
(New_Disc
);
6426 if Present
(New_Disc
) then
6427 Set_Corresponding_Discriminant
(New_Disc
, Old_Disc
);
6431 Next_Discriminant
(Old_Disc
);
6433 -- if this is a named constraint, search by name for the old
6434 -- discriminants constrained by the new one.
6436 elsif Nkind
(Expression
(D_Constraint
)) = N_Identifier
then
6438 -- Find new discriminant with that name
6440 New_Disc
:= First_Discriminant
(Derived_Type
);
6441 while Present
(New_Disc
) loop
6443 Chars
(New_Disc
) = Chars
(Expression
(D_Constraint
));
6444 Next_Discriminant
(New_Disc
);
6447 if Present
(New_Disc
) then
6449 -- Verify that new discriminant renames some discriminant
6450 -- of the parent type, and associate the new discriminant
6451 -- with one or more old ones that it renames.
6457 Selector
:= First
(Selector_Names
(D_Constraint
));
6458 while Present
(Selector
) loop
6459 Old_Disc
:= First_Discriminant
(Parent_Type
);
6460 while Present
(Old_Disc
) loop
6461 exit when Chars
(Old_Disc
) = Chars
(Selector
);
6462 Next_Discriminant
(Old_Disc
);
6465 if Present
(Old_Disc
) then
6466 Set_Corresponding_Discriminant
6467 (New_Disc
, Old_Disc
);
6476 Next
(D_Constraint
);
6479 New_Disc
:= First_Discriminant
(Derived_Type
);
6480 while Present
(New_Disc
) loop
6481 if No
(Corresponding_Discriminant
(New_Disc
)) then
6483 ("new discriminant& must constrain old one", N
, New_Disc
);
6486 Subtypes_Statically_Compatible
6488 Etype
(Corresponding_Discriminant
(New_Disc
)))
6491 ("& not statically compatible with parent discriminant",
6495 Next_Discriminant
(New_Disc
);
6499 elsif Present
(Discriminant_Specifications
(N
)) then
6501 ("missing discriminant constraint in untagged derivation", N
);
6504 -- The entity chain of the derived type includes the new discriminants
6505 -- but shares operations with the parent.
6507 if Present
(Discriminant_Specifications
(N
)) then
6508 Old_Disc
:= First_Discriminant
(Parent_Type
);
6509 while Present
(Old_Disc
) loop
6510 if No
(Next_Entity
(Old_Disc
))
6511 or else Ekind
(Next_Entity
(Old_Disc
)) /= E_Discriminant
6514 (Last_Entity
(Derived_Type
), Next_Entity
(Old_Disc
));
6518 Next_Discriminant
(Old_Disc
);
6522 Set_First_Entity
(Derived_Type
, First_Entity
(Parent_Type
));
6523 if Has_Discriminants
(Parent_Type
) then
6524 Set_Is_Constrained
(Derived_Type
, Is_Constrained
(Parent_Type
));
6525 Set_Discriminant_Constraint
(
6526 Derived_Type
, Discriminant_Constraint
(Parent_Type
));
6530 Set_Last_Entity
(Derived_Type
, Last_Entity
(Parent_Type
));
6532 Set_Has_Completion
(Derived_Type
);
6534 if Corr_Decl_Needed
then
6535 Set_Stored_Constraint
(Derived_Type
, New_Constraint
);
6536 Insert_After
(N
, Corr_Decl
);
6537 Analyze
(Corr_Decl
);
6538 Set_Corresponding_Record_Type
(Derived_Type
, Corr_Record
);
6540 end Build_Derived_Concurrent_Type
;
6542 ------------------------------------
6543 -- Build_Derived_Enumeration_Type --
6544 ------------------------------------
6546 procedure Build_Derived_Enumeration_Type
6548 Parent_Type
: Entity_Id
;
6549 Derived_Type
: Entity_Id
)
6551 Loc
: constant Source_Ptr
:= Sloc
(N
);
6552 Def
: constant Node_Id
:= Type_Definition
(N
);
6553 Indic
: constant Node_Id
:= Subtype_Indication
(Def
);
6554 Implicit_Base
: Entity_Id
;
6555 Literal
: Entity_Id
;
6556 New_Lit
: Entity_Id
;
6557 Literals_List
: List_Id
;
6558 Type_Decl
: Node_Id
;
6560 Rang_Expr
: Node_Id
;
6563 -- Since types Standard.Character and Standard.[Wide_]Wide_Character do
6564 -- not have explicit literals lists we need to process types derived
6565 -- from them specially. This is handled by Derived_Standard_Character.
6566 -- If the parent type is a generic type, there are no literals either,
6567 -- and we construct the same skeletal representation as for the generic
6570 if Is_Standard_Character_Type
(Parent_Type
) then
6571 Derived_Standard_Character
(N
, Parent_Type
, Derived_Type
);
6573 elsif Is_Generic_Type
(Root_Type
(Parent_Type
)) then
6579 if Nkind
(Indic
) /= N_Subtype_Indication
then
6581 Make_Attribute_Reference
(Loc
,
6582 Attribute_Name
=> Name_First
,
6583 Prefix
=> New_Occurrence_Of
(Derived_Type
, Loc
));
6584 Set_Etype
(Lo
, Derived_Type
);
6587 Make_Attribute_Reference
(Loc
,
6588 Attribute_Name
=> Name_Last
,
6589 Prefix
=> New_Occurrence_Of
(Derived_Type
, Loc
));
6590 Set_Etype
(Hi
, Derived_Type
);
6592 Set_Scalar_Range
(Derived_Type
,
6598 -- Analyze subtype indication and verify compatibility
6599 -- with parent type.
6601 if Base_Type
(Process_Subtype
(Indic
, N
)) /=
6602 Base_Type
(Parent_Type
)
6605 ("illegal constraint for formal discrete type", N
);
6611 -- If a constraint is present, analyze the bounds to catch
6612 -- premature usage of the derived literals.
6614 if Nkind
(Indic
) = N_Subtype_Indication
6615 and then Nkind
(Range_Expression
(Constraint
(Indic
))) = N_Range
6617 Analyze
(Low_Bound
(Range_Expression
(Constraint
(Indic
))));
6618 Analyze
(High_Bound
(Range_Expression
(Constraint
(Indic
))));
6621 -- Introduce an implicit base type for the derived type even if there
6622 -- is no constraint attached to it, since this seems closer to the
6623 -- Ada semantics. Build a full type declaration tree for the derived
6624 -- type using the implicit base type as the defining identifier. The
6625 -- build a subtype declaration tree which applies the constraint (if
6626 -- any) have it replace the derived type declaration.
6628 Literal
:= First_Literal
(Parent_Type
);
6629 Literals_List
:= New_List
;
6630 while Present
(Literal
)
6631 and then Ekind
(Literal
) = E_Enumeration_Literal
6633 -- Literals of the derived type have the same representation as
6634 -- those of the parent type, but this representation can be
6635 -- overridden by an explicit representation clause. Indicate
6636 -- that there is no explicit representation given yet. These
6637 -- derived literals are implicit operations of the new type,
6638 -- and can be overridden by explicit ones.
6640 if Nkind
(Literal
) = N_Defining_Character_Literal
then
6642 Make_Defining_Character_Literal
(Loc
, Chars
(Literal
));
6644 New_Lit
:= Make_Defining_Identifier
(Loc
, Chars
(Literal
));
6647 Set_Ekind
(New_Lit
, E_Enumeration_Literal
);
6648 Set_Enumeration_Pos
(New_Lit
, Enumeration_Pos
(Literal
));
6649 Set_Enumeration_Rep
(New_Lit
, Enumeration_Rep
(Literal
));
6650 Set_Enumeration_Rep_Expr
(New_Lit
, Empty
);
6651 Set_Alias
(New_Lit
, Literal
);
6652 Set_Is_Known_Valid
(New_Lit
, True);
6654 Append
(New_Lit
, Literals_List
);
6655 Next_Literal
(Literal
);
6659 Make_Defining_Identifier
(Sloc
(Derived_Type
),
6660 Chars
=> New_External_Name
(Chars
(Derived_Type
), 'B'));
6662 -- Indicate the proper nature of the derived type. This must be done
6663 -- before analysis of the literals, to recognize cases when a literal
6664 -- may be hidden by a previous explicit function definition (cf.
6667 Set_Ekind
(Derived_Type
, E_Enumeration_Subtype
);
6668 Set_Etype
(Derived_Type
, Implicit_Base
);
6671 Make_Full_Type_Declaration
(Loc
,
6672 Defining_Identifier
=> Implicit_Base
,
6673 Discriminant_Specifications
=> No_List
,
6675 Make_Enumeration_Type_Definition
(Loc
, Literals_List
));
6677 Mark_Rewrite_Insertion
(Type_Decl
);
6678 Insert_Before
(N
, Type_Decl
);
6679 Analyze
(Type_Decl
);
6681 -- The anonymous base now has a full declaration, but this base
6682 -- is not a first subtype.
6684 Set_Is_First_Subtype
(Implicit_Base
, False);
6686 -- After the implicit base is analyzed its Etype needs to be changed
6687 -- to reflect the fact that it is derived from the parent type which
6688 -- was ignored during analysis. We also set the size at this point.
6690 Set_Etype
(Implicit_Base
, Parent_Type
);
6692 Set_Size_Info
(Implicit_Base
, Parent_Type
);
6693 Set_RM_Size
(Implicit_Base
, RM_Size
(Parent_Type
));
6694 Set_First_Rep_Item
(Implicit_Base
, First_Rep_Item
(Parent_Type
));
6696 -- Copy other flags from parent type
6698 Set_Has_Non_Standard_Rep
6699 (Implicit_Base
, Has_Non_Standard_Rep
6701 Set_Has_Pragma_Ordered
6702 (Implicit_Base
, Has_Pragma_Ordered
6704 Set_Has_Delayed_Freeze
(Implicit_Base
);
6706 -- Process the subtype indication including a validation check on the
6707 -- constraint, if any. If a constraint is given, its bounds must be
6708 -- implicitly converted to the new type.
6710 if Nkind
(Indic
) = N_Subtype_Indication
then
6712 R
: constant Node_Id
:=
6713 Range_Expression
(Constraint
(Indic
));
6716 if Nkind
(R
) = N_Range
then
6717 Hi
:= Build_Scalar_Bound
6718 (High_Bound
(R
), Parent_Type
, Implicit_Base
);
6719 Lo
:= Build_Scalar_Bound
6720 (Low_Bound
(R
), Parent_Type
, Implicit_Base
);
6723 -- Constraint is a Range attribute. Replace with explicit
6724 -- mention of the bounds of the prefix, which must be a
6727 Analyze
(Prefix
(R
));
6729 Convert_To
(Implicit_Base
,
6730 Make_Attribute_Reference
(Loc
,
6731 Attribute_Name
=> Name_Last
,
6733 New_Occurrence_Of
(Entity
(Prefix
(R
)), Loc
)));
6736 Convert_To
(Implicit_Base
,
6737 Make_Attribute_Reference
(Loc
,
6738 Attribute_Name
=> Name_First
,
6740 New_Occurrence_Of
(Entity
(Prefix
(R
)), Loc
)));
6747 (Type_High_Bound
(Parent_Type
),
6748 Parent_Type
, Implicit_Base
);
6751 (Type_Low_Bound
(Parent_Type
),
6752 Parent_Type
, Implicit_Base
);
6760 -- If we constructed a default range for the case where no range
6761 -- was given, then the expressions in the range must not freeze
6762 -- since they do not correspond to expressions in the source.
6764 if Nkind
(Indic
) /= N_Subtype_Indication
then
6765 Set_Must_Not_Freeze
(Lo
);
6766 Set_Must_Not_Freeze
(Hi
);
6767 Set_Must_Not_Freeze
(Rang_Expr
);
6771 Make_Subtype_Declaration
(Loc
,
6772 Defining_Identifier
=> Derived_Type
,
6773 Subtype_Indication
=>
6774 Make_Subtype_Indication
(Loc
,
6775 Subtype_Mark
=> New_Occurrence_Of
(Implicit_Base
, Loc
),
6777 Make_Range_Constraint
(Loc
,
6778 Range_Expression
=> Rang_Expr
))));
6782 -- Propagate the aspects from the original type declaration to the
6783 -- declaration of the implicit base.
6785 Move_Aspects
(From
=> Original_Node
(N
), To
=> Type_Decl
);
6787 -- Apply a range check. Since this range expression doesn't have an
6788 -- Etype, we have to specifically pass the Source_Typ parameter. Is
6791 if Nkind
(Indic
) = N_Subtype_Indication
then
6793 (Range_Expression
(Constraint
(Indic
)), Parent_Type
,
6794 Source_Typ
=> Entity
(Subtype_Mark
(Indic
)));
6797 end Build_Derived_Enumeration_Type
;
6799 --------------------------------
6800 -- Build_Derived_Numeric_Type --
6801 --------------------------------
6803 procedure Build_Derived_Numeric_Type
6805 Parent_Type
: Entity_Id
;
6806 Derived_Type
: Entity_Id
)
6808 Loc
: constant Source_Ptr
:= Sloc
(N
);
6809 Tdef
: constant Node_Id
:= Type_Definition
(N
);
6810 Indic
: constant Node_Id
:= Subtype_Indication
(Tdef
);
6811 Parent_Base
: constant Entity_Id
:= Base_Type
(Parent_Type
);
6812 No_Constraint
: constant Boolean := Nkind
(Indic
) /=
6813 N_Subtype_Indication
;
6814 Implicit_Base
: Entity_Id
;
6820 -- Process the subtype indication including a validation check on
6821 -- the constraint if any.
6823 Discard_Node
(Process_Subtype
(Indic
, N
));
6825 -- Introduce an implicit base type for the derived type even if there
6826 -- is no constraint attached to it, since this seems closer to the Ada
6830 Create_Itype
(Ekind
(Parent_Base
), N
, Derived_Type
, 'B');
6832 Set_Etype
(Implicit_Base
, Parent_Base
);
6833 Set_Ekind
(Implicit_Base
, Ekind
(Parent_Base
));
6834 Set_Size_Info
(Implicit_Base
, Parent_Base
);
6835 Set_First_Rep_Item
(Implicit_Base
, First_Rep_Item
(Parent_Base
));
6836 Set_Parent
(Implicit_Base
, Parent
(Derived_Type
));
6837 Set_Is_Known_Valid
(Implicit_Base
, Is_Known_Valid
(Parent_Base
));
6839 -- Set RM Size for discrete type or decimal fixed-point type
6840 -- Ordinary fixed-point is excluded, why???
6842 if Is_Discrete_Type
(Parent_Base
)
6843 or else Is_Decimal_Fixed_Point_Type
(Parent_Base
)
6845 Set_RM_Size
(Implicit_Base
, RM_Size
(Parent_Base
));
6848 Set_Has_Delayed_Freeze
(Implicit_Base
);
6850 Lo
:= New_Copy_Tree
(Type_Low_Bound
(Parent_Base
));
6851 Hi
:= New_Copy_Tree
(Type_High_Bound
(Parent_Base
));
6853 Set_Scalar_Range
(Implicit_Base
,
6858 if Has_Infinities
(Parent_Base
) then
6859 Set_Includes_Infinities
(Scalar_Range
(Implicit_Base
));
6862 -- The Derived_Type, which is the entity of the declaration, is a
6863 -- subtype of the implicit base. Its Ekind is a subtype, even in the
6864 -- absence of an explicit constraint.
6866 Set_Etype
(Derived_Type
, Implicit_Base
);
6868 -- If we did not have a constraint, then the Ekind is set from the
6869 -- parent type (otherwise Process_Subtype has set the bounds)
6871 if No_Constraint
then
6872 Set_Ekind
(Derived_Type
, Subtype_Kind
(Ekind
(Parent_Type
)));
6875 -- If we did not have a range constraint, then set the range from the
6876 -- parent type. Otherwise, the Process_Subtype call has set the bounds.
6878 if No_Constraint
or else not Has_Range_Constraint
(Indic
) then
6879 Set_Scalar_Range
(Derived_Type
,
6881 Low_Bound
=> New_Copy_Tree
(Type_Low_Bound
(Parent_Type
)),
6882 High_Bound
=> New_Copy_Tree
(Type_High_Bound
(Parent_Type
))));
6883 Set_Is_Constrained
(Derived_Type
, Is_Constrained
(Parent_Type
));
6885 if Has_Infinities
(Parent_Type
) then
6886 Set_Includes_Infinities
(Scalar_Range
(Derived_Type
));
6889 Set_Is_Known_Valid
(Derived_Type
, Is_Known_Valid
(Parent_Type
));
6892 Set_Is_Descendent_Of_Address
(Derived_Type
,
6893 Is_Descendent_Of_Address
(Parent_Type
));
6894 Set_Is_Descendent_Of_Address
(Implicit_Base
,
6895 Is_Descendent_Of_Address
(Parent_Type
));
6897 -- Set remaining type-specific fields, depending on numeric type
6899 if Is_Modular_Integer_Type
(Parent_Type
) then
6900 Set_Modulus
(Implicit_Base
, Modulus
(Parent_Base
));
6902 Set_Non_Binary_Modulus
6903 (Implicit_Base
, Non_Binary_Modulus
(Parent_Base
));
6906 (Implicit_Base
, Is_Known_Valid
(Parent_Base
));
6908 elsif Is_Floating_Point_Type
(Parent_Type
) then
6910 -- Digits of base type is always copied from the digits value of
6911 -- the parent base type, but the digits of the derived type will
6912 -- already have been set if there was a constraint present.
6914 Set_Digits_Value
(Implicit_Base
, Digits_Value
(Parent_Base
));
6915 Set_Float_Rep
(Implicit_Base
, Float_Rep
(Parent_Base
));
6917 if No_Constraint
then
6918 Set_Digits_Value
(Derived_Type
, Digits_Value
(Parent_Type
));
6921 elsif Is_Fixed_Point_Type
(Parent_Type
) then
6923 -- Small of base type and derived type are always copied from the
6924 -- parent base type, since smalls never change. The delta of the
6925 -- base type is also copied from the parent base type. However the
6926 -- delta of the derived type will have been set already if a
6927 -- constraint was present.
6929 Set_Small_Value
(Derived_Type
, Small_Value
(Parent_Base
));
6930 Set_Small_Value
(Implicit_Base
, Small_Value
(Parent_Base
));
6931 Set_Delta_Value
(Implicit_Base
, Delta_Value
(Parent_Base
));
6933 if No_Constraint
then
6934 Set_Delta_Value
(Derived_Type
, Delta_Value
(Parent_Type
));
6937 -- The scale and machine radix in the decimal case are always
6938 -- copied from the parent base type.
6940 if Is_Decimal_Fixed_Point_Type
(Parent_Type
) then
6941 Set_Scale_Value
(Derived_Type
, Scale_Value
(Parent_Base
));
6942 Set_Scale_Value
(Implicit_Base
, Scale_Value
(Parent_Base
));
6944 Set_Machine_Radix_10
6945 (Derived_Type
, Machine_Radix_10
(Parent_Base
));
6946 Set_Machine_Radix_10
6947 (Implicit_Base
, Machine_Radix_10
(Parent_Base
));
6949 Set_Digits_Value
(Implicit_Base
, Digits_Value
(Parent_Base
));
6951 if No_Constraint
then
6952 Set_Digits_Value
(Derived_Type
, Digits_Value
(Parent_Base
));
6955 -- the analysis of the subtype_indication sets the
6956 -- digits value of the derived type.
6963 if Is_Integer_Type
(Parent_Type
) then
6964 Set_Has_Shift_Operator
6965 (Implicit_Base
, Has_Shift_Operator
(Parent_Type
));
6968 -- The type of the bounds is that of the parent type, and they
6969 -- must be converted to the derived type.
6971 Convert_Scalar_Bounds
(N
, Parent_Type
, Derived_Type
, Loc
);
6973 -- The implicit_base should be frozen when the derived type is frozen,
6974 -- but note that it is used in the conversions of the bounds. For fixed
6975 -- types we delay the determination of the bounds until the proper
6976 -- freezing point. For other numeric types this is rejected by GCC, for
6977 -- reasons that are currently unclear (???), so we choose to freeze the
6978 -- implicit base now. In the case of integers and floating point types
6979 -- this is harmless because subsequent representation clauses cannot
6980 -- affect anything, but it is still baffling that we cannot use the
6981 -- same mechanism for all derived numeric types.
6983 -- There is a further complication: actually some representation
6984 -- clauses can affect the implicit base type. For example, attribute
6985 -- definition clauses for stream-oriented attributes need to set the
6986 -- corresponding TSS entries on the base type, and this normally
6987 -- cannot be done after the base type is frozen, so the circuitry in
6988 -- Sem_Ch13.New_Stream_Subprogram must account for this possibility
6989 -- and not use Set_TSS in this case.
6991 -- There are also consequences for the case of delayed representation
6992 -- aspects for some cases. For example, a Size aspect is delayed and
6993 -- should not be evaluated to the freeze point. This early freezing
6994 -- means that the size attribute evaluation happens too early???
6996 if Is_Fixed_Point_Type
(Parent_Type
) then
6997 Conditional_Delay
(Implicit_Base
, Parent_Type
);
6999 Freeze_Before
(N
, Implicit_Base
);
7001 end Build_Derived_Numeric_Type
;
7003 --------------------------------
7004 -- Build_Derived_Private_Type --
7005 --------------------------------
7007 procedure Build_Derived_Private_Type
7009 Parent_Type
: Entity_Id
;
7010 Derived_Type
: Entity_Id
;
7011 Is_Completion
: Boolean;
7012 Derive_Subps
: Boolean := True)
7014 Loc
: constant Source_Ptr
:= Sloc
(N
);
7015 Par_Base
: constant Entity_Id
:= Base_Type
(Parent_Type
);
7016 Par_Scope
: constant Entity_Id
:= Scope
(Par_Base
);
7017 Full_N
: constant Node_Id
:= New_Copy_Tree
(N
);
7018 Full_Der
: Entity_Id
:= New_Copy
(Derived_Type
);
7021 procedure Build_Full_Derivation
;
7022 -- Build full derivation, i.e. derive from the full view
7024 procedure Copy_And_Build
;
7025 -- Copy derived type declaration, replace parent with its full view,
7026 -- and build derivation
7028 ---------------------------
7029 -- Build_Full_Derivation --
7030 ---------------------------
7032 procedure Build_Full_Derivation
is
7034 -- If parent scope is not open, install the declarations
7036 if not In_Open_Scopes
(Par_Scope
) then
7037 Install_Private_Declarations
(Par_Scope
);
7038 Install_Visible_Declarations
(Par_Scope
);
7040 Uninstall_Declarations
(Par_Scope
);
7042 -- If parent scope is open and in another unit, and parent has a
7043 -- completion, then the derivation is taking place in the visible
7044 -- part of a child unit. In that case retrieve the full view of
7045 -- the parent momentarily.
7047 elsif not In_Same_Source_Unit
(N
, Parent_Type
) then
7048 Full_P
:= Full_View
(Parent_Type
);
7049 Exchange_Declarations
(Parent_Type
);
7051 Exchange_Declarations
(Full_P
);
7053 -- Otherwise it is a local derivation
7058 end Build_Full_Derivation
;
7060 --------------------
7061 -- Copy_And_Build --
7062 --------------------
7064 procedure Copy_And_Build
is
7065 Full_Parent
: Entity_Id
:= Parent_Type
;
7068 -- If the parent is itself derived from another private type,
7069 -- installing the private declarations has not affected its
7070 -- privacy status, so use its own full view explicitly.
7072 if Is_Private_Type
(Full_Parent
)
7073 and then Present
(Full_View
(Full_Parent
))
7075 Full_Parent
:= Full_View
(Full_Parent
);
7078 -- And its underlying full view if necessary
7080 if Is_Private_Type
(Full_Parent
)
7081 and then Present
(Underlying_Full_View
(Full_Parent
))
7083 Full_Parent
:= Underlying_Full_View
(Full_Parent
);
7086 -- For record, access and most enumeration types, derivation from
7087 -- the full view requires a fully-fledged declaration. In the other
7088 -- cases, just use an itype.
7090 if Ekind
(Full_Parent
) in Record_Kind
7091 or else Ekind
(Full_Parent
) in Access_Kind
7093 (Ekind
(Full_Parent
) in Enumeration_Kind
7094 and then not Is_Standard_Character_Type
(Full_Parent
)
7095 and then not Is_Generic_Type
(Root_Type
(Full_Parent
)))
7097 -- Copy and adjust declaration to provide a completion for what
7098 -- is originally a private declaration. Indicate that full view
7099 -- is internally generated.
7101 Set_Comes_From_Source
(Full_N
, False);
7102 Set_Comes_From_Source
(Full_Der
, False);
7103 Set_Parent
(Full_Der
, Full_N
);
7104 Set_Defining_Identifier
(Full_N
, Full_Der
);
7106 -- If there are no constraints, adjust the subtype mark
7108 if Nkind
(Subtype_Indication
(Type_Definition
(Full_N
))) /=
7109 N_Subtype_Indication
7111 Set_Subtype_Indication
7112 (Type_Definition
(Full_N
),
7113 New_Occurrence_Of
(Full_Parent
, Sloc
(Full_N
)));
7116 Insert_After
(N
, Full_N
);
7118 -- Build full view of derived type from full view of parent which
7119 -- is now installed. Subprograms have been derived on the partial
7120 -- view, the completion does not derive them anew.
7122 if Ekind
(Full_Parent
) in Record_Kind
then
7124 -- If parent type is tagged, the completion inherits the proper
7125 -- primitive operations.
7127 if Is_Tagged_Type
(Parent_Type
) then
7128 Build_Derived_Record_Type
7129 (Full_N
, Full_Parent
, Full_Der
, Derive_Subps
);
7131 Build_Derived_Record_Type
7132 (Full_N
, Full_Parent
, Full_Der
, Derive_Subps
=> False);
7137 (Full_N
, Full_Parent
, Full_Der
,
7138 Is_Completion
=> False, Derive_Subps
=> False);
7141 -- The full declaration has been introduced into the tree and
7142 -- processed in the step above. It should not be analyzed again
7143 -- (when encountered later in the current list of declarations)
7144 -- to prevent spurious name conflicts. The full entity remains
7147 Set_Analyzed
(Full_N
);
7151 Make_Defining_Identifier
(Sloc
(Derived_Type
),
7152 Chars
=> Chars
(Derived_Type
));
7153 Set_Is_Itype
(Full_Der
);
7154 Set_Associated_Node_For_Itype
(Full_Der
, N
);
7155 Set_Parent
(Full_Der
, N
);
7157 (N
, Full_Parent
, Full_Der
,
7158 Is_Completion
=> False, Derive_Subps
=> False);
7161 Set_Has_Private_Declaration
(Full_Der
);
7162 Set_Has_Private_Declaration
(Derived_Type
);
7164 Set_Scope
(Full_Der
, Scope
(Derived_Type
));
7165 Set_Is_First_Subtype
(Full_Der
, Is_First_Subtype
(Derived_Type
));
7166 Set_Has_Size_Clause
(Full_Der
, False);
7167 Set_Has_Alignment_Clause
(Full_Der
, False);
7168 Set_Has_Delayed_Freeze
(Full_Der
);
7169 Set_Is_Frozen
(Full_Der
, False);
7170 Set_Freeze_Node
(Full_Der
, Empty
);
7171 Set_Depends_On_Private
(Full_Der
, Has_Private_Component
(Full_Der
));
7172 Set_Is_Public
(Full_Der
, Is_Public
(Derived_Type
));
7174 -- The convention on the base type may be set in the private part
7175 -- and not propagated to the subtype until later, so we obtain the
7176 -- convention from the base type of the parent.
7178 Set_Convention
(Full_Der
, Convention
(Base_Type
(Full_Parent
)));
7181 -- Start of processing for Build_Derived_Private_Type
7184 if Is_Tagged_Type
(Parent_Type
) then
7185 Full_P
:= Full_View
(Parent_Type
);
7187 -- A type extension of a type with unknown discriminants is an
7188 -- indefinite type that the back-end cannot handle directly.
7189 -- We treat it as a private type, and build a completion that is
7190 -- derived from the full view of the parent, and hopefully has
7191 -- known discriminants.
7193 -- If the full view of the parent type has an underlying record view,
7194 -- use it to generate the underlying record view of this derived type
7195 -- (required for chains of derivations with unknown discriminants).
7197 -- Minor optimization: we avoid the generation of useless underlying
7198 -- record view entities if the private type declaration has unknown
7199 -- discriminants but its corresponding full view has no
7202 if Has_Unknown_Discriminants
(Parent_Type
)
7203 and then Present
(Full_P
)
7204 and then (Has_Discriminants
(Full_P
)
7205 or else Present
(Underlying_Record_View
(Full_P
)))
7206 and then not In_Open_Scopes
(Par_Scope
)
7207 and then Expander_Active
7210 Full_Der
: constant Entity_Id
:= Make_Temporary
(Loc
, 'T');
7211 New_Ext
: constant Node_Id
:=
7213 (Record_Extension_Part
(Type_Definition
(N
)));
7217 Build_Derived_Record_Type
7218 (N
, Parent_Type
, Derived_Type
, Derive_Subps
);
7220 -- Build anonymous completion, as a derivation from the full
7221 -- view of the parent. This is not a completion in the usual
7222 -- sense, because the current type is not private.
7225 Make_Full_Type_Declaration
(Loc
,
7226 Defining_Identifier
=> Full_Der
,
7228 Make_Derived_Type_Definition
(Loc
,
7229 Subtype_Indication
=>
7231 (Subtype_Indication
(Type_Definition
(N
))),
7232 Record_Extension_Part
=> New_Ext
));
7234 -- If the parent type has an underlying record view, use it
7235 -- here to build the new underlying record view.
7237 if Present
(Underlying_Record_View
(Full_P
)) then
7239 (Nkind
(Subtype_Indication
(Type_Definition
(Decl
)))
7241 Set_Entity
(Subtype_Indication
(Type_Definition
(Decl
)),
7242 Underlying_Record_View
(Full_P
));
7245 Install_Private_Declarations
(Par_Scope
);
7246 Install_Visible_Declarations
(Par_Scope
);
7247 Insert_Before
(N
, Decl
);
7249 -- Mark entity as an underlying record view before analysis,
7250 -- to avoid generating the list of its primitive operations
7251 -- (which is not really required for this entity) and thus
7252 -- prevent spurious errors associated with missing overriding
7253 -- of abstract primitives (overridden only for Derived_Type).
7255 Set_Ekind
(Full_Der
, E_Record_Type
);
7256 Set_Is_Underlying_Record_View
(Full_Der
);
7257 Set_Default_SSO
(Full_Der
);
7261 pragma Assert
(Has_Discriminants
(Full_Der
)
7262 and then not Has_Unknown_Discriminants
(Full_Der
));
7264 Uninstall_Declarations
(Par_Scope
);
7266 -- Freeze the underlying record view, to prevent generation of
7267 -- useless dispatching information, which is simply shared with
7268 -- the real derived type.
7270 Set_Is_Frozen
(Full_Der
);
7272 -- If the derived type has access discriminants, create
7273 -- references to their anonymous types now, to prevent
7274 -- back-end problems when their first use is in generated
7275 -- bodies of primitives.
7281 E
:= First_Entity
(Full_Der
);
7283 while Present
(E
) loop
7284 if Ekind
(E
) = E_Discriminant
7285 and then Ekind
(Etype
(E
)) = E_Anonymous_Access_Type
7287 Build_Itype_Reference
(Etype
(E
), Decl
);
7294 -- Set up links between real entity and underlying record view
7296 Set_Underlying_Record_View
(Derived_Type
, Base_Type
(Full_Der
));
7297 Set_Underlying_Record_View
(Base_Type
(Full_Der
), Derived_Type
);
7300 -- If discriminants are known, build derived record
7303 Build_Derived_Record_Type
7304 (N
, Parent_Type
, Derived_Type
, Derive_Subps
);
7309 elsif Has_Discriminants
(Parent_Type
) then
7311 -- Build partial view of derived type from partial view of parent.
7312 -- This must be done before building the full derivation because the
7313 -- second derivation will modify the discriminants of the first and
7314 -- the discriminants are chained with the rest of the components in
7315 -- the full derivation.
7317 Build_Derived_Record_Type
7318 (N
, Parent_Type
, Derived_Type
, Derive_Subps
);
7320 -- Build the full derivation if this is not the anonymous derived
7321 -- base type created by Build_Derived_Record_Type in the constrained
7322 -- case (see point 5. of its head comment) since we build it for the
7323 -- derived subtype. And skip it for protected types altogether, as
7324 -- gigi does not use these types directly.
7326 if Present
(Full_View
(Parent_Type
))
7327 and then not Is_Itype
(Derived_Type
)
7328 and then not (Ekind
(Full_View
(Parent_Type
)) in Protected_Kind
)
7331 Der_Base
: constant Entity_Id
:= Base_Type
(Derived_Type
);
7333 Last_Discr
: Entity_Id
;
7336 -- If this is not a completion, construct the implicit full
7337 -- view by deriving from the full view of the parent type.
7338 -- But if this is a completion, the derived private type
7339 -- being built is a full view and the full derivation can
7340 -- only be its underlying full view.
7342 Build_Full_Derivation
;
7344 if not Is_Completion
then
7345 Set_Full_View
(Derived_Type
, Full_Der
);
7347 Set_Underlying_Full_View
(Derived_Type
, Full_Der
);
7350 if not Is_Base_Type
(Derived_Type
) then
7351 Set_Full_View
(Der_Base
, Base_Type
(Full_Der
));
7354 -- Copy the discriminant list from full view to the partial
7355 -- view (base type and its subtype). Gigi requires that the
7356 -- partial and full views have the same discriminants.
7358 -- Note that since the partial view points to discriminants
7359 -- in the full view, their scope will be that of the full
7360 -- view. This might cause some front end problems and need
7363 Discr
:= First_Discriminant
(Base_Type
(Full_Der
));
7364 Set_First_Entity
(Der_Base
, Discr
);
7367 Last_Discr
:= Discr
;
7368 Next_Discriminant
(Discr
);
7369 exit when No
(Discr
);
7372 Set_Last_Entity
(Der_Base
, Last_Discr
);
7373 Set_First_Entity
(Derived_Type
, First_Entity
(Der_Base
));
7374 Set_Last_Entity
(Derived_Type
, Last_Entity
(Der_Base
));
7376 Set_Stored_Constraint
7377 (Full_Der
, Stored_Constraint
(Derived_Type
));
7381 elsif Present
(Full_View
(Parent_Type
))
7382 and then Has_Discriminants
(Full_View
(Parent_Type
))
7384 if Has_Unknown_Discriminants
(Parent_Type
)
7385 and then Nkind
(Subtype_Indication
(Type_Definition
(N
))) =
7386 N_Subtype_Indication
7389 ("cannot constrain type with unknown discriminants",
7390 Subtype_Indication
(Type_Definition
(N
)));
7394 -- If this is not a completion, construct the implicit full view by
7395 -- deriving from the full view of the parent type. But if this is a
7396 -- completion, the derived private type being built is a full view
7397 -- and the full derivation can only be its underlying full view.
7399 Build_Full_Derivation
;
7401 if not Is_Completion
then
7402 Set_Full_View
(Derived_Type
, Full_Der
);
7404 Set_Underlying_Full_View
(Derived_Type
, Full_Der
);
7407 -- In any case, the primitive operations are inherited from the
7408 -- parent type, not from the internal full view.
7410 Set_Etype
(Base_Type
(Derived_Type
), Base_Type
(Parent_Type
));
7412 if Derive_Subps
then
7413 Derive_Subprograms
(Parent_Type
, Derived_Type
);
7416 Set_Stored_Constraint
(Derived_Type
, No_Elist
);
7418 (Derived_Type
, Is_Constrained
(Full_View
(Parent_Type
)));
7421 -- Untagged type, No discriminants on either view
7423 if Nkind
(Subtype_Indication
(Type_Definition
(N
))) =
7424 N_Subtype_Indication
7427 ("illegal constraint on type without discriminants", N
);
7430 if Present
(Discriminant_Specifications
(N
))
7431 and then Present
(Full_View
(Parent_Type
))
7432 and then not Is_Tagged_Type
(Full_View
(Parent_Type
))
7434 Error_Msg_N
("cannot add discriminants to untagged type", N
);
7437 Set_Stored_Constraint
(Derived_Type
, No_Elist
);
7438 Set_Is_Constrained
(Derived_Type
, Is_Constrained
(Parent_Type
));
7439 Set_Is_Controlled
(Derived_Type
, Is_Controlled
(Parent_Type
));
7440 Set_Disable_Controlled
(Derived_Type
, Disable_Controlled
7442 Set_Has_Controlled_Component
7443 (Derived_Type
, Has_Controlled_Component
7446 -- Direct controlled types do not inherit Finalize_Storage_Only flag
7448 if not Is_Controlled_Active
(Parent_Type
) then
7449 Set_Finalize_Storage_Only
7450 (Base_Type
(Derived_Type
), Finalize_Storage_Only
(Parent_Type
));
7453 -- If this is not a completion, construct the implicit full view by
7454 -- deriving from the full view of the parent type.
7456 -- ??? If the parent is untagged private and its completion is
7457 -- tagged, this mechanism will not work because we cannot derive from
7458 -- the tagged full view unless we have an extension.
7460 if Present
(Full_View
(Parent_Type
))
7461 and then not Is_Tagged_Type
(Full_View
(Parent_Type
))
7462 and then not Is_Completion
7464 Build_Full_Derivation
;
7465 Set_Full_View
(Derived_Type
, Full_Der
);
7469 Set_Has_Unknown_Discriminants
(Derived_Type
,
7470 Has_Unknown_Discriminants
(Parent_Type
));
7472 if Is_Private_Type
(Derived_Type
) then
7473 Set_Private_Dependents
(Derived_Type
, New_Elmt_List
);
7476 -- If the parent base type is in scope, add the derived type to its
7477 -- list of private dependents, because its full view may become
7478 -- visible subsequently (in a nested private part, a body, or in a
7479 -- further child unit).
7481 if Is_Private_Type
(Par_Base
) and then In_Open_Scopes
(Par_Scope
) then
7482 Append_Elmt
(Derived_Type
, Private_Dependents
(Parent_Type
));
7484 -- Check for unusual case where a type completed by a private
7485 -- derivation occurs within a package nested in a child unit, and
7486 -- the parent is declared in an ancestor.
7488 if Is_Child_Unit
(Scope
(Current_Scope
))
7489 and then Is_Completion
7490 and then In_Private_Part
(Current_Scope
)
7491 and then Scope
(Parent_Type
) /= Current_Scope
7493 -- Note that if the parent has a completion in the private part,
7494 -- (which is itself a derivation from some other private type)
7495 -- it is that completion that is visible, there is no full view
7496 -- available, and no special processing is needed.
7498 and then Present
(Full_View
(Parent_Type
))
7500 -- In this case, the full view of the parent type will become
7501 -- visible in the body of the enclosing child, and only then will
7502 -- the current type be possibly non-private. Build an underlying
7503 -- full view that will be installed when the enclosing child body
7506 if Present
(Underlying_Full_View
(Derived_Type
)) then
7507 Full_Der
:= Underlying_Full_View
(Derived_Type
);
7509 Build_Full_Derivation
;
7510 Set_Underlying_Full_View
(Derived_Type
, Full_Der
);
7513 -- The full view will be used to swap entities on entry/exit to
7514 -- the body, and must appear in the entity list for the package.
7516 Append_Entity
(Full_Der
, Scope
(Derived_Type
));
7519 end Build_Derived_Private_Type
;
7521 -------------------------------
7522 -- Build_Derived_Record_Type --
7523 -------------------------------
7527 -- Ideally we would like to use the same model of type derivation for
7528 -- tagged and untagged record types. Unfortunately this is not quite
7529 -- possible because the semantics of representation clauses is different
7530 -- for tagged and untagged records under inheritance. Consider the
7533 -- type R (...) is [tagged] record ... end record;
7534 -- type T (...) is new R (...) [with ...];
7536 -- The representation clauses for T can specify a completely different
7537 -- record layout from R's. Hence the same component can be placed in two
7538 -- very different positions in objects of type T and R. If R and T are
7539 -- tagged types, representation clauses for T can only specify the layout
7540 -- of non inherited components, thus components that are common in R and T
7541 -- have the same position in objects of type R and T.
7543 -- This has two implications. The first is that the entire tree for R's
7544 -- declaration needs to be copied for T in the untagged case, so that T
7545 -- can be viewed as a record type of its own with its own representation
7546 -- clauses. The second implication is the way we handle discriminants.
7547 -- Specifically, in the untagged case we need a way to communicate to Gigi
7548 -- what are the real discriminants in the record, while for the semantics
7549 -- we need to consider those introduced by the user to rename the
7550 -- discriminants in the parent type. This is handled by introducing the
7551 -- notion of stored discriminants. See below for more.
7553 -- Fortunately the way regular components are inherited can be handled in
7554 -- the same way in tagged and untagged types.
7556 -- To complicate things a bit more the private view of a private extension
7557 -- cannot be handled in the same way as the full view (for one thing the
7558 -- semantic rules are somewhat different). We will explain what differs
7561 -- 2. DISCRIMINANTS UNDER INHERITANCE
7563 -- The semantic rules governing the discriminants of derived types are
7566 -- type Derived_Type_Name [KNOWN_DISCRIMINANT_PART] is new
7567 -- [abstract] Parent_Type_Name [CONSTRAINT] [RECORD_EXTENSION_PART]
7569 -- If parent type has discriminants, then the discriminants that are
7570 -- declared in the derived type are [3.4 (11)]:
7572 -- o The discriminants specified by a new KNOWN_DISCRIMINANT_PART, if
7575 -- o Otherwise, each discriminant of the parent type (implicitly declared
7576 -- in the same order with the same specifications). In this case, the
7577 -- discriminants are said to be "inherited", or if unknown in the parent
7578 -- are also unknown in the derived type.
7580 -- Furthermore if a KNOWN_DISCRIMINANT_PART is provided, then [3.7(13-18)]:
7582 -- o The parent subtype must be constrained;
7584 -- o If the parent type is not a tagged type, then each discriminant of
7585 -- the derived type must be used in the constraint defining a parent
7586 -- subtype. [Implementation note: This ensures that the new discriminant
7587 -- can share storage with an existing discriminant.]
7589 -- For the derived type each discriminant of the parent type is either
7590 -- inherited, constrained to equal some new discriminant of the derived
7591 -- type, or constrained to the value of an expression.
7593 -- When inherited or constrained to equal some new discriminant, the
7594 -- parent discriminant and the discriminant of the derived type are said
7597 -- If a discriminant of the parent type is constrained to a specific value
7598 -- in the derived type definition, then the discriminant is said to be
7599 -- "specified" by that derived type definition.
7601 -- 3. DISCRIMINANTS IN DERIVED UNTAGGED RECORD TYPES
7603 -- We have spoken about stored discriminants in point 1 (introduction)
7604 -- above. There are two sort of stored discriminants: implicit and
7605 -- explicit. As long as the derived type inherits the same discriminants as
7606 -- the root record type, stored discriminants are the same as regular
7607 -- discriminants, and are said to be implicit. However, if any discriminant
7608 -- in the root type was renamed in the derived type, then the derived
7609 -- type will contain explicit stored discriminants. Explicit stored
7610 -- discriminants are discriminants in addition to the semantically visible
7611 -- discriminants defined for the derived type. Stored discriminants are
7612 -- used by Gigi to figure out what are the physical discriminants in
7613 -- objects of the derived type (see precise definition in einfo.ads).
7614 -- As an example, consider the following:
7616 -- type R (D1, D2, D3 : Int) is record ... end record;
7617 -- type T1 is new R;
7618 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1);
7619 -- type T3 is new T2;
7620 -- type T4 (Y : Int) is new T3 (Y, 99);
7622 -- The following table summarizes the discriminants and stored
7623 -- discriminants in R and T1 through T4.
7625 -- Type Discrim Stored Discrim Comment
7626 -- R (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in R
7627 -- T1 (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in T1
7628 -- T2 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T2
7629 -- T3 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T3
7630 -- T4 (Y) (D1, D2, D3) Girder discrims EXPLICIT in T4
7632 -- Field Corresponding_Discriminant (abbreviated CD below) allows us to
7633 -- find the corresponding discriminant in the parent type, while
7634 -- Original_Record_Component (abbreviated ORC below), the actual physical
7635 -- component that is renamed. Finally the field Is_Completely_Hidden
7636 -- (abbreviated ICH below) is set for all explicit stored discriminants
7637 -- (see einfo.ads for more info). For the above example this gives:
7639 -- Discrim CD ORC ICH
7640 -- ^^^^^^^ ^^ ^^^ ^^^
7641 -- D1 in R empty itself no
7642 -- D2 in R empty itself no
7643 -- D3 in R empty itself no
7645 -- D1 in T1 D1 in R itself no
7646 -- D2 in T1 D2 in R itself no
7647 -- D3 in T1 D3 in R itself no
7649 -- X1 in T2 D3 in T1 D3 in T2 no
7650 -- X2 in T2 D1 in T1 D1 in T2 no
7651 -- D1 in T2 empty itself yes
7652 -- D2 in T2 empty itself yes
7653 -- D3 in T2 empty itself yes
7655 -- X1 in T3 X1 in T2 D3 in T3 no
7656 -- X2 in T3 X2 in T2 D1 in T3 no
7657 -- D1 in T3 empty itself yes
7658 -- D2 in T3 empty itself yes
7659 -- D3 in T3 empty itself yes
7661 -- Y in T4 X1 in T3 D3 in T3 no
7662 -- D1 in T3 empty itself yes
7663 -- D2 in T3 empty itself yes
7664 -- D3 in T3 empty itself yes
7666 -- 4. DISCRIMINANTS IN DERIVED TAGGED RECORD TYPES
7668 -- Type derivation for tagged types is fairly straightforward. If no
7669 -- discriminants are specified by the derived type, these are inherited
7670 -- from the parent. No explicit stored discriminants are ever necessary.
7671 -- The only manipulation that is done to the tree is that of adding a
7672 -- _parent field with parent type and constrained to the same constraint
7673 -- specified for the parent in the derived type definition. For instance:
7675 -- type R (D1, D2, D3 : Int) is tagged record ... end record;
7676 -- type T1 is new R with null record;
7677 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with null record;
7679 -- are changed into:
7681 -- type T1 (D1, D2, D3 : Int) is new R (D1, D2, D3) with record
7682 -- _parent : R (D1, D2, D3);
7685 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with record
7686 -- _parent : T1 (X2, 88, X1);
7689 -- The discriminants actually present in R, T1 and T2 as well as their CD,
7690 -- ORC and ICH fields are:
7692 -- Discrim CD ORC ICH
7693 -- ^^^^^^^ ^^ ^^^ ^^^
7694 -- D1 in R empty itself no
7695 -- D2 in R empty itself no
7696 -- D3 in R empty itself no
7698 -- D1 in T1 D1 in R D1 in R no
7699 -- D2 in T1 D2 in R D2 in R no
7700 -- D3 in T1 D3 in R D3 in R no
7702 -- X1 in T2 D3 in T1 D3 in R no
7703 -- X2 in T2 D1 in T1 D1 in R no
7705 -- 5. FIRST TRANSFORMATION FOR DERIVED RECORDS
7707 -- Regardless of whether we dealing with a tagged or untagged type
7708 -- we will transform all derived type declarations of the form
7710 -- type T is new R (...) [with ...];
7712 -- subtype S is R (...);
7713 -- type T is new S [with ...];
7715 -- type BT is new R [with ...];
7716 -- subtype T is BT (...);
7718 -- That is, the base derived type is constrained only if it has no
7719 -- discriminants. The reason for doing this is that GNAT's semantic model
7720 -- assumes that a base type with discriminants is unconstrained.
7722 -- Note that, strictly speaking, the above transformation is not always
7723 -- correct. Consider for instance the following excerpt from ACVC b34011a:
7725 -- procedure B34011A is
7726 -- type REC (D : integer := 0) is record
7731 -- type T6 is new Rec;
7732 -- function F return T6;
7737 -- type U is new T6 (Q6.F.I); -- ERROR: Q6.F.
7740 -- The definition of Q6.U is illegal. However transforming Q6.U into
7742 -- type BaseU is new T6;
7743 -- subtype U is BaseU (Q6.F.I)
7745 -- turns U into a legal subtype, which is incorrect. To avoid this problem
7746 -- we always analyze the constraint (in this case (Q6.F.I)) before applying
7747 -- the transformation described above.
7749 -- There is another instance where the above transformation is incorrect.
7753 -- type Base (D : Integer) is tagged null record;
7754 -- procedure P (X : Base);
7756 -- type Der is new Base (2) with null record;
7757 -- procedure P (X : Der);
7760 -- Then the above transformation turns this into
7762 -- type Der_Base is new Base with null record;
7763 -- -- procedure P (X : Base) is implicitly inherited here
7764 -- -- as procedure P (X : Der_Base).
7766 -- subtype Der is Der_Base (2);
7767 -- procedure P (X : Der);
7768 -- -- The overriding of P (X : Der_Base) is illegal since we
7769 -- -- have a parameter conformance problem.
7771 -- To get around this problem, after having semantically processed Der_Base
7772 -- and the rewritten subtype declaration for Der, we copy Der_Base field
7773 -- Discriminant_Constraint from Der so that when parameter conformance is
7774 -- checked when P is overridden, no semantic errors are flagged.
7776 -- 6. SECOND TRANSFORMATION FOR DERIVED RECORDS
7778 -- Regardless of whether we are dealing with a tagged or untagged type
7779 -- we will transform all derived type declarations of the form
7781 -- type R (D1, .., Dn : ...) is [tagged] record ...;
7782 -- type T is new R [with ...];
7784 -- type T (D1, .., Dn : ...) is new R (D1, .., Dn) [with ...];
7786 -- The reason for such transformation is that it allows us to implement a
7787 -- very clean form of component inheritance as explained below.
7789 -- Note that this transformation is not achieved by direct tree rewriting
7790 -- and manipulation, but rather by redoing the semantic actions that the
7791 -- above transformation will entail. This is done directly in routine
7792 -- Inherit_Components.
7794 -- 7. TYPE DERIVATION AND COMPONENT INHERITANCE
7796 -- In both tagged and untagged derived types, regular non discriminant
7797 -- components are inherited in the derived type from the parent type. In
7798 -- the absence of discriminants component, inheritance is straightforward
7799 -- as components can simply be copied from the parent.
7801 -- If the parent has discriminants, inheriting components constrained with
7802 -- these discriminants requires caution. Consider the following example:
7804 -- type R (D1, D2 : Positive) is [tagged] record
7805 -- S : String (D1 .. D2);
7808 -- type T1 is new R [with null record];
7809 -- type T2 (X : positive) is new R (1, X) [with null record];
7811 -- As explained in 6. above, T1 is rewritten as
7812 -- type T1 (D1, D2 : Positive) is new R (D1, D2) [with null record];
7813 -- which makes the treatment for T1 and T2 identical.
7815 -- What we want when inheriting S, is that references to D1 and D2 in R are
7816 -- replaced with references to their correct constraints, i.e. D1 and D2 in
7817 -- T1 and 1 and X in T2. So all R's discriminant references are replaced
7818 -- with either discriminant references in the derived type or expressions.
7819 -- This replacement is achieved as follows: before inheriting R's
7820 -- components, a subtype R (D1, D2) for T1 (resp. R (1, X) for T2) is
7821 -- created in the scope of T1 (resp. scope of T2) so that discriminants D1
7822 -- and D2 of T1 are visible (resp. discriminant X of T2 is visible).
7823 -- For T2, for instance, this has the effect of replacing String (D1 .. D2)
7824 -- by String (1 .. X).
7826 -- 8. TYPE DERIVATION IN PRIVATE TYPE EXTENSIONS
7828 -- We explain here the rules governing private type extensions relevant to
7829 -- type derivation. These rules are explained on the following example:
7831 -- type D [(...)] is new A [(...)] with private; <-- partial view
7832 -- type D [(...)] is new P [(...)] with null record; <-- full view
7834 -- Type A is called the ancestor subtype of the private extension.
7835 -- Type P is the parent type of the full view of the private extension. It
7836 -- must be A or a type derived from A.
7838 -- The rules concerning the discriminants of private type extensions are
7841 -- o If a private extension inherits known discriminants from the ancestor
7842 -- subtype, then the full view must also inherit its discriminants from
7843 -- the ancestor subtype and the parent subtype of the full view must be
7844 -- constrained if and only if the ancestor subtype is constrained.
7846 -- o If a partial view has unknown discriminants, then the full view may
7847 -- define a definite or an indefinite subtype, with or without
7850 -- o If a partial view has neither known nor unknown discriminants, then
7851 -- the full view must define a definite subtype.
7853 -- o If the ancestor subtype of a private extension has constrained
7854 -- discriminants, then the parent subtype of the full view must impose a
7855 -- statically matching constraint on those discriminants.
7857 -- This means that only the following forms of private extensions are
7860 -- type D is new A with private; <-- partial view
7861 -- type D is new P with null record; <-- full view
7863 -- If A has no discriminants than P has no discriminants, otherwise P must
7864 -- inherit A's discriminants.
7866 -- type D is new A (...) with private; <-- partial view
7867 -- type D is new P (:::) with null record; <-- full view
7869 -- P must inherit A's discriminants and (...) and (:::) must statically
7872 -- subtype A is R (...);
7873 -- type D is new A with private; <-- partial view
7874 -- type D is new P with null record; <-- full view
7876 -- P must have inherited R's discriminants and must be derived from A or
7877 -- any of its subtypes.
7879 -- type D (..) is new A with private; <-- partial view
7880 -- type D (..) is new P [(:::)] with null record; <-- full view
7882 -- No specific constraints on P's discriminants or constraint (:::).
7883 -- Note that A can be unconstrained, but the parent subtype P must either
7884 -- be constrained or (:::) must be present.
7886 -- type D (..) is new A [(...)] with private; <-- partial view
7887 -- type D (..) is new P [(:::)] with null record; <-- full view
7889 -- P's constraints on A's discriminants must statically match those
7890 -- imposed by (...).
7892 -- 9. IMPLEMENTATION OF TYPE DERIVATION FOR PRIVATE EXTENSIONS
7894 -- The full view of a private extension is handled exactly as described
7895 -- above. The model chose for the private view of a private extension is
7896 -- the same for what concerns discriminants (i.e. they receive the same
7897 -- treatment as in the tagged case). However, the private view of the
7898 -- private extension always inherits the components of the parent base,
7899 -- without replacing any discriminant reference. Strictly speaking this is
7900 -- incorrect. However, Gigi never uses this view to generate code so this
7901 -- is a purely semantic issue. In theory, a set of transformations similar
7902 -- to those given in 5. and 6. above could be applied to private views of
7903 -- private extensions to have the same model of component inheritance as
7904 -- for non private extensions. However, this is not done because it would
7905 -- further complicate private type processing. Semantically speaking, this
7906 -- leaves us in an uncomfortable situation. As an example consider:
7909 -- type R (D : integer) is tagged record
7910 -- S : String (1 .. D);
7912 -- procedure P (X : R);
7913 -- type T is new R (1) with private;
7915 -- type T is new R (1) with null record;
7918 -- This is transformed into:
7921 -- type R (D : integer) is tagged record
7922 -- S : String (1 .. D);
7924 -- procedure P (X : R);
7925 -- type T is new R (1) with private;
7927 -- type BaseT is new R with null record;
7928 -- subtype T is BaseT (1);
7931 -- (strictly speaking the above is incorrect Ada)
7933 -- From the semantic standpoint the private view of private extension T
7934 -- should be flagged as constrained since one can clearly have
7938 -- in a unit withing Pack. However, when deriving subprograms for the
7939 -- private view of private extension T, T must be seen as unconstrained
7940 -- since T has discriminants (this is a constraint of the current
7941 -- subprogram derivation model). Thus, when processing the private view of
7942 -- a private extension such as T, we first mark T as unconstrained, we
7943 -- process it, we perform program derivation and just before returning from
7944 -- Build_Derived_Record_Type we mark T as constrained.
7946 -- ??? Are there are other uncomfortable cases that we will have to
7949 -- 10. RECORD_TYPE_WITH_PRIVATE complications
7951 -- Types that are derived from a visible record type and have a private
7952 -- extension present other peculiarities. They behave mostly like private
7953 -- types, but if they have primitive operations defined, these will not
7954 -- have the proper signatures for further inheritance, because other
7955 -- primitive operations will use the implicit base that we define for
7956 -- private derivations below. This affect subprogram inheritance (see
7957 -- Derive_Subprograms for details). We also derive the implicit base from
7958 -- the base type of the full view, so that the implicit base is a record
7959 -- type and not another private type, This avoids infinite loops.
7961 procedure Build_Derived_Record_Type
7963 Parent_Type
: Entity_Id
;
7964 Derived_Type
: Entity_Id
;
7965 Derive_Subps
: Boolean := True)
7967 Discriminant_Specs
: constant Boolean :=
7968 Present
(Discriminant_Specifications
(N
));
7969 Is_Tagged
: constant Boolean := Is_Tagged_Type
(Parent_Type
);
7970 Loc
: constant Source_Ptr
:= Sloc
(N
);
7971 Private_Extension
: constant Boolean :=
7972 Nkind
(N
) = N_Private_Extension_Declaration
;
7973 Assoc_List
: Elist_Id
;
7974 Constraint_Present
: Boolean;
7976 Discrim
: Entity_Id
;
7978 Inherit_Discrims
: Boolean := False;
7979 Last_Discrim
: Entity_Id
;
7980 New_Base
: Entity_Id
;
7982 New_Discrs
: Elist_Id
;
7983 New_Indic
: Node_Id
;
7984 Parent_Base
: Entity_Id
;
7985 Save_Etype
: Entity_Id
;
7986 Save_Discr_Constr
: Elist_Id
;
7987 Save_Next_Entity
: Entity_Id
;
7990 Discs
: Elist_Id
:= New_Elmt_List
;
7991 -- An empty Discs list means that there were no constraints in the
7992 -- subtype indication or that there was an error processing it.
7995 if Ekind
(Parent_Type
) = E_Record_Type_With_Private
7996 and then Present
(Full_View
(Parent_Type
))
7997 and then Has_Discriminants
(Parent_Type
)
7999 Parent_Base
:= Base_Type
(Full_View
(Parent_Type
));
8001 Parent_Base
:= Base_Type
(Parent_Type
);
8004 -- AI05-0115 : if this is a derivation from a private type in some
8005 -- other scope that may lead to invisible components for the derived
8006 -- type, mark it accordingly.
8008 if Is_Private_Type
(Parent_Type
) then
8009 if Scope
(Parent_Type
) = Scope
(Derived_Type
) then
8012 elsif In_Open_Scopes
(Scope
(Parent_Type
))
8013 and then In_Private_Part
(Scope
(Parent_Type
))
8018 Set_Has_Private_Ancestor
(Derived_Type
);
8022 Set_Has_Private_Ancestor
8023 (Derived_Type
, Has_Private_Ancestor
(Parent_Type
));
8026 -- Before we start the previously documented transformations, here is
8027 -- little fix for size and alignment of tagged types. Normally when we
8028 -- derive type D from type P, we copy the size and alignment of P as the
8029 -- default for D, and in the absence of explicit representation clauses
8030 -- for D, the size and alignment are indeed the same as the parent.
8032 -- But this is wrong for tagged types, since fields may be added, and
8033 -- the default size may need to be larger, and the default alignment may
8034 -- need to be larger.
8036 -- We therefore reset the size and alignment fields in the tagged case.
8037 -- Note that the size and alignment will in any case be at least as
8038 -- large as the parent type (since the derived type has a copy of the
8039 -- parent type in the _parent field)
8041 -- The type is also marked as being tagged here, which is needed when
8042 -- processing components with a self-referential anonymous access type
8043 -- in the call to Check_Anonymous_Access_Components below. Note that
8044 -- this flag is also set later on for completeness.
8047 Set_Is_Tagged_Type
(Derived_Type
);
8048 Init_Size_Align
(Derived_Type
);
8051 -- STEP 0a: figure out what kind of derived type declaration we have
8053 if Private_Extension
then
8055 Set_Ekind
(Derived_Type
, E_Record_Type_With_Private
);
8056 Set_Default_SSO
(Derived_Type
);
8059 Type_Def
:= Type_Definition
(N
);
8061 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
8062 -- Parent_Base can be a private type or private extension. However,
8063 -- for tagged types with an extension the newly added fields are
8064 -- visible and hence the Derived_Type is always an E_Record_Type.
8065 -- (except that the parent may have its own private fields).
8066 -- For untagged types we preserve the Ekind of the Parent_Base.
8068 if Present
(Record_Extension_Part
(Type_Def
)) then
8069 Set_Ekind
(Derived_Type
, E_Record_Type
);
8070 Set_Default_SSO
(Derived_Type
);
8072 -- Create internal access types for components with anonymous
8075 if Ada_Version
>= Ada_2005
then
8076 Check_Anonymous_Access_Components
8077 (N
, Derived_Type
, Derived_Type
,
8078 Component_List
(Record_Extension_Part
(Type_Def
)));
8082 Set_Ekind
(Derived_Type
, Ekind
(Parent_Base
));
8086 -- Indic can either be an N_Identifier if the subtype indication
8087 -- contains no constraint or an N_Subtype_Indication if the subtype
8088 -- indication has a constraint.
8090 Indic
:= Subtype_Indication
(Type_Def
);
8091 Constraint_Present
:= (Nkind
(Indic
) = N_Subtype_Indication
);
8093 -- Check that the type has visible discriminants. The type may be
8094 -- a private type with unknown discriminants whose full view has
8095 -- discriminants which are invisible.
8097 if Constraint_Present
then
8098 if not Has_Discriminants
(Parent_Base
)
8100 (Has_Unknown_Discriminants
(Parent_Base
)
8101 and then Is_Private_Type
(Parent_Base
))
8104 ("invalid constraint: type has no discriminant",
8105 Constraint
(Indic
));
8107 Constraint_Present
:= False;
8108 Rewrite
(Indic
, New_Copy_Tree
(Subtype_Mark
(Indic
)));
8110 elsif Is_Constrained
(Parent_Type
) then
8112 ("invalid constraint: parent type is already constrained",
8113 Constraint
(Indic
));
8115 Constraint_Present
:= False;
8116 Rewrite
(Indic
, New_Copy_Tree
(Subtype_Mark
(Indic
)));
8120 -- STEP 0b: If needed, apply transformation given in point 5. above
8122 if not Private_Extension
8123 and then Has_Discriminants
(Parent_Type
)
8124 and then not Discriminant_Specs
8125 and then (Is_Constrained
(Parent_Type
) or else Constraint_Present
)
8127 -- First, we must analyze the constraint (see comment in point 5.)
8128 -- The constraint may come from the subtype indication of the full
8131 if Constraint_Present
then
8132 New_Discrs
:= Build_Discriminant_Constraints
(Parent_Type
, Indic
);
8134 -- If there is no explicit constraint, there might be one that is
8135 -- inherited from a constrained parent type. In that case verify that
8136 -- it conforms to the constraint in the partial view. In perverse
8137 -- cases the parent subtypes of the partial and full view can have
8138 -- different constraints.
8140 elsif Present
(Stored_Constraint
(Parent_Type
)) then
8141 New_Discrs
:= Stored_Constraint
(Parent_Type
);
8144 New_Discrs
:= No_Elist
;
8147 if Has_Discriminants
(Derived_Type
)
8148 and then Has_Private_Declaration
(Derived_Type
)
8149 and then Present
(Discriminant_Constraint
(Derived_Type
))
8150 and then Present
(New_Discrs
)
8152 -- Verify that constraints of the full view statically match
8153 -- those given in the partial view.
8159 C1
:= First_Elmt
(New_Discrs
);
8160 C2
:= First_Elmt
(Discriminant_Constraint
(Derived_Type
));
8161 while Present
(C1
) and then Present
(C2
) loop
8162 if Fully_Conformant_Expressions
(Node
(C1
), Node
(C2
))
8164 (Is_OK_Static_Expression
(Node
(C1
))
8165 and then Is_OK_Static_Expression
(Node
(C2
))
8167 Expr_Value
(Node
(C1
)) = Expr_Value
(Node
(C2
)))
8172 if Constraint_Present
then
8174 ("constraint not conformant to previous declaration",
8178 ("constraint of full view is incompatible "
8179 & "with partial view", N
);
8189 -- Insert and analyze the declaration for the unconstrained base type
8191 New_Base
:= Create_Itype
(Ekind
(Derived_Type
), N
, Derived_Type
, 'B');
8194 Make_Full_Type_Declaration
(Loc
,
8195 Defining_Identifier
=> New_Base
,
8197 Make_Derived_Type_Definition
(Loc
,
8198 Abstract_Present
=> Abstract_Present
(Type_Def
),
8199 Limited_Present
=> Limited_Present
(Type_Def
),
8200 Subtype_Indication
=>
8201 New_Occurrence_Of
(Parent_Base
, Loc
),
8202 Record_Extension_Part
=>
8203 Relocate_Node
(Record_Extension_Part
(Type_Def
)),
8204 Interface_List
=> Interface_List
(Type_Def
)));
8206 Set_Parent
(New_Decl
, Parent
(N
));
8207 Mark_Rewrite_Insertion
(New_Decl
);
8208 Insert_Before
(N
, New_Decl
);
8210 -- In the extension case, make sure ancestor is frozen appropriately
8211 -- (see also non-discriminated case below).
8213 if Present
(Record_Extension_Part
(Type_Def
))
8214 or else Is_Interface
(Parent_Base
)
8216 Freeze_Before
(New_Decl
, Parent_Type
);
8219 -- Note that this call passes False for the Derive_Subps parameter
8220 -- because subprogram derivation is deferred until after creating
8221 -- the subtype (see below).
8224 (New_Decl
, Parent_Base
, New_Base
,
8225 Is_Completion
=> False, Derive_Subps
=> False);
8227 -- ??? This needs re-examination to determine whether the
8228 -- above call can simply be replaced by a call to Analyze.
8230 Set_Analyzed
(New_Decl
);
8232 -- Insert and analyze the declaration for the constrained subtype
8234 if Constraint_Present
then
8236 Make_Subtype_Indication
(Loc
,
8237 Subtype_Mark
=> New_Occurrence_Of
(New_Base
, Loc
),
8238 Constraint
=> Relocate_Node
(Constraint
(Indic
)));
8242 Constr_List
: constant List_Id
:= New_List
;
8247 C
:= First_Elmt
(Discriminant_Constraint
(Parent_Type
));
8248 while Present
(C
) loop
8251 -- It is safe here to call New_Copy_Tree since we called
8252 -- Force_Evaluation on each constraint previously
8253 -- in Build_Discriminant_Constraints.
8255 Append
(New_Copy_Tree
(Expr
), To
=> Constr_List
);
8261 Make_Subtype_Indication
(Loc
,
8262 Subtype_Mark
=> New_Occurrence_Of
(New_Base
, Loc
),
8264 Make_Index_Or_Discriminant_Constraint
(Loc
, Constr_List
));
8269 Make_Subtype_Declaration
(Loc
,
8270 Defining_Identifier
=> Derived_Type
,
8271 Subtype_Indication
=> New_Indic
));
8275 -- Derivation of subprograms must be delayed until the full subtype
8276 -- has been established, to ensure proper overriding of subprograms
8277 -- inherited by full types. If the derivations occurred as part of
8278 -- the call to Build_Derived_Type above, then the check for type
8279 -- conformance would fail because earlier primitive subprograms
8280 -- could still refer to the full type prior the change to the new
8281 -- subtype and hence would not match the new base type created here.
8282 -- Subprograms are not derived, however, when Derive_Subps is False
8283 -- (since otherwise there could be redundant derivations).
8285 if Derive_Subps
then
8286 Derive_Subprograms
(Parent_Type
, Derived_Type
);
8289 -- For tagged types the Discriminant_Constraint of the new base itype
8290 -- is inherited from the first subtype so that no subtype conformance
8291 -- problem arise when the first subtype overrides primitive
8292 -- operations inherited by the implicit base type.
8295 Set_Discriminant_Constraint
8296 (New_Base
, Discriminant_Constraint
(Derived_Type
));
8302 -- If we get here Derived_Type will have no discriminants or it will be
8303 -- a discriminated unconstrained base type.
8305 -- STEP 1a: perform preliminary actions/checks for derived tagged types
8309 -- The parent type is frozen for non-private extensions (RM 13.14(7))
8310 -- The declaration of a specific descendant of an interface type
8311 -- freezes the interface type (RM 13.14).
8313 if not Private_Extension
or else Is_Interface
(Parent_Base
) then
8314 Freeze_Before
(N
, Parent_Type
);
8317 -- In Ada 2005 (AI-344), the restriction that a derived tagged type
8318 -- cannot be declared at a deeper level than its parent type is
8319 -- removed. The check on derivation within a generic body is also
8320 -- relaxed, but there's a restriction that a derived tagged type
8321 -- cannot be declared in a generic body if it's derived directly
8322 -- or indirectly from a formal type of that generic.
8324 if Ada_Version
>= Ada_2005
then
8325 if Present
(Enclosing_Generic_Body
(Derived_Type
)) then
8327 Ancestor_Type
: Entity_Id
;
8330 -- Check to see if any ancestor of the derived type is a
8333 Ancestor_Type
:= Parent_Type
;
8334 while not Is_Generic_Type
(Ancestor_Type
)
8335 and then Etype
(Ancestor_Type
) /= Ancestor_Type
8337 Ancestor_Type
:= Etype
(Ancestor_Type
);
8340 -- If the derived type does have a formal type as an
8341 -- ancestor, then it's an error if the derived type is
8342 -- declared within the body of the generic unit that
8343 -- declares the formal type in its generic formal part. It's
8344 -- sufficient to check whether the ancestor type is declared
8345 -- inside the same generic body as the derived type (such as
8346 -- within a nested generic spec), in which case the
8347 -- derivation is legal. If the formal type is declared
8348 -- outside of that generic body, then it's guaranteed that
8349 -- the derived type is declared within the generic body of
8350 -- the generic unit declaring the formal type.
8352 if Is_Generic_Type
(Ancestor_Type
)
8353 and then Enclosing_Generic_Body
(Ancestor_Type
) /=
8354 Enclosing_Generic_Body
(Derived_Type
)
8357 ("parent type of& must not be descendant of formal type"
8358 & " of an enclosing generic body",
8359 Indic
, Derived_Type
);
8364 elsif Type_Access_Level
(Derived_Type
) /=
8365 Type_Access_Level
(Parent_Type
)
8366 and then not Is_Generic_Type
(Derived_Type
)
8368 if Is_Controlled
(Parent_Type
) then
8370 ("controlled type must be declared at the library level",
8374 ("type extension at deeper accessibility level than parent",
8380 GB
: constant Node_Id
:= Enclosing_Generic_Body
(Derived_Type
);
8383 and then GB
/= Enclosing_Generic_Body
(Parent_Base
)
8386 ("parent type of& must not be outside generic body"
8388 Indic
, Derived_Type
);
8394 -- Ada 2005 (AI-251)
8396 if Ada_Version
>= Ada_2005
and then Is_Tagged
then
8398 -- "The declaration of a specific descendant of an interface type
8399 -- freezes the interface type" (RM 13.14).
8404 if Is_Non_Empty_List
(Interface_List
(Type_Def
)) then
8405 Iface
:= First
(Interface_List
(Type_Def
));
8406 while Present
(Iface
) loop
8407 Freeze_Before
(N
, Etype
(Iface
));
8414 -- STEP 1b : preliminary cleanup of the full view of private types
8416 -- If the type is already marked as having discriminants, then it's the
8417 -- completion of a private type or private extension and we need to
8418 -- retain the discriminants from the partial view if the current
8419 -- declaration has Discriminant_Specifications so that we can verify
8420 -- conformance. However, we must remove any existing components that
8421 -- were inherited from the parent (and attached in Copy_And_Swap)
8422 -- because the full type inherits all appropriate components anyway, and
8423 -- we do not want the partial view's components interfering.
8425 if Has_Discriminants
(Derived_Type
) and then Discriminant_Specs
then
8426 Discrim
:= First_Discriminant
(Derived_Type
);
8428 Last_Discrim
:= Discrim
;
8429 Next_Discriminant
(Discrim
);
8430 exit when No
(Discrim
);
8433 Set_Last_Entity
(Derived_Type
, Last_Discrim
);
8435 -- In all other cases wipe out the list of inherited components (even
8436 -- inherited discriminants), it will be properly rebuilt here.
8439 Set_First_Entity
(Derived_Type
, Empty
);
8440 Set_Last_Entity
(Derived_Type
, Empty
);
8443 -- STEP 1c: Initialize some flags for the Derived_Type
8445 -- The following flags must be initialized here so that
8446 -- Process_Discriminants can check that discriminants of tagged types do
8447 -- not have a default initial value and that access discriminants are
8448 -- only specified for limited records. For completeness, these flags are
8449 -- also initialized along with all the other flags below.
8451 -- AI-419: Limitedness is not inherited from an interface parent, so to
8452 -- be limited in that case the type must be explicitly declared as
8453 -- limited. However, task and protected interfaces are always limited.
8455 if Limited_Present
(Type_Def
) then
8456 Set_Is_Limited_Record
(Derived_Type
);
8458 elsif Is_Limited_Record
(Parent_Type
)
8459 or else (Present
(Full_View
(Parent_Type
))
8460 and then Is_Limited_Record
(Full_View
(Parent_Type
)))
8462 if not Is_Interface
(Parent_Type
)
8463 or else Is_Synchronized_Interface
(Parent_Type
)
8464 or else Is_Protected_Interface
(Parent_Type
)
8465 or else Is_Task_Interface
(Parent_Type
)
8467 Set_Is_Limited_Record
(Derived_Type
);
8471 -- STEP 2a: process discriminants of derived type if any
8473 Push_Scope
(Derived_Type
);
8475 if Discriminant_Specs
then
8476 Set_Has_Unknown_Discriminants
(Derived_Type
, False);
8478 -- The following call initializes fields Has_Discriminants and
8479 -- Discriminant_Constraint, unless we are processing the completion
8480 -- of a private type declaration.
8482 Check_Or_Process_Discriminants
(N
, Derived_Type
);
8484 -- For untagged types, the constraint on the Parent_Type must be
8485 -- present and is used to rename the discriminants.
8487 if not Is_Tagged
and then not Has_Discriminants
(Parent_Type
) then
8488 Error_Msg_N
("untagged parent must have discriminants", Indic
);
8490 elsif not Is_Tagged
and then not Constraint_Present
then
8492 ("discriminant constraint needed for derived untagged records",
8495 -- Otherwise the parent subtype must be constrained unless we have a
8496 -- private extension.
8498 elsif not Constraint_Present
8499 and then not Private_Extension
8500 and then not Is_Constrained
(Parent_Type
)
8503 ("unconstrained type not allowed in this context", Indic
);
8505 elsif Constraint_Present
then
8506 -- The following call sets the field Corresponding_Discriminant
8507 -- for the discriminants in the Derived_Type.
8509 Discs
:= Build_Discriminant_Constraints
(Parent_Type
, Indic
, True);
8511 -- For untagged types all new discriminants must rename
8512 -- discriminants in the parent. For private extensions new
8513 -- discriminants cannot rename old ones (implied by [7.3(13)]).
8515 Discrim
:= First_Discriminant
(Derived_Type
);
8516 while Present
(Discrim
) loop
8518 and then No
(Corresponding_Discriminant
(Discrim
))
8521 ("new discriminants must constrain old ones", Discrim
);
8523 elsif Private_Extension
8524 and then Present
(Corresponding_Discriminant
(Discrim
))
8527 ("only static constraints allowed for parent"
8528 & " discriminants in the partial view", Indic
);
8532 -- If a new discriminant is used in the constraint, then its
8533 -- subtype must be statically compatible with the parent
8534 -- discriminant's subtype (3.7(15)).
8536 -- However, if the record contains an array constrained by
8537 -- the discriminant but with some different bound, the compiler
8538 -- attemps to create a smaller range for the discriminant type.
8539 -- (See exp_ch3.Adjust_Discriminants). In this case, where
8540 -- the discriminant type is a scalar type, the check must use
8541 -- the original discriminant type in the parent declaration.
8544 Corr_Disc
: constant Entity_Id
:=
8545 Corresponding_Discriminant
(Discrim
);
8546 Disc_Type
: constant Entity_Id
:= Etype
(Discrim
);
8547 Corr_Type
: Entity_Id
;
8550 if Present
(Corr_Disc
) then
8551 if Is_Scalar_Type
(Disc_Type
) then
8553 Entity
(Discriminant_Type
(Parent
(Corr_Disc
)));
8555 Corr_Type
:= Etype
(Corr_Disc
);
8559 Subtypes_Statically_Compatible
(Disc_Type
, Corr_Type
)
8562 ("subtype must be compatible "
8563 & "with parent discriminant",
8569 Next_Discriminant
(Discrim
);
8572 -- Check whether the constraints of the full view statically
8573 -- match those imposed by the parent subtype [7.3(13)].
8575 if Present
(Stored_Constraint
(Derived_Type
)) then
8580 C1
:= First_Elmt
(Discs
);
8581 C2
:= First_Elmt
(Stored_Constraint
(Derived_Type
));
8582 while Present
(C1
) and then Present
(C2
) loop
8584 Fully_Conformant_Expressions
(Node
(C1
), Node
(C2
))
8587 ("not conformant with previous declaration",
8598 -- STEP 2b: No new discriminants, inherit discriminants if any
8601 if Private_Extension
then
8602 Set_Has_Unknown_Discriminants
8604 Has_Unknown_Discriminants
(Parent_Type
)
8605 or else Unknown_Discriminants_Present
(N
));
8607 -- The partial view of the parent may have unknown discriminants,
8608 -- but if the full view has discriminants and the parent type is
8609 -- in scope they must be inherited.
8611 elsif Has_Unknown_Discriminants
(Parent_Type
)
8613 (not Has_Discriminants
(Parent_Type
)
8614 or else not In_Open_Scopes
(Scope
(Parent_Type
)))
8616 Set_Has_Unknown_Discriminants
(Derived_Type
);
8619 if not Has_Unknown_Discriminants
(Derived_Type
)
8620 and then not Has_Unknown_Discriminants
(Parent_Base
)
8621 and then Has_Discriminants
(Parent_Type
)
8623 Inherit_Discrims
:= True;
8624 Set_Has_Discriminants
8625 (Derived_Type
, True);
8626 Set_Discriminant_Constraint
8627 (Derived_Type
, Discriminant_Constraint
(Parent_Base
));
8630 -- The following test is true for private types (remember
8631 -- transformation 5. is not applied to those) and in an error
8634 if Constraint_Present
then
8635 Discs
:= Build_Discriminant_Constraints
(Parent_Type
, Indic
);
8638 -- For now mark a new derived type as constrained only if it has no
8639 -- discriminants. At the end of Build_Derived_Record_Type we properly
8640 -- set this flag in the case of private extensions. See comments in
8641 -- point 9. just before body of Build_Derived_Record_Type.
8645 not (Inherit_Discrims
8646 or else Has_Unknown_Discriminants
(Derived_Type
)));
8649 -- STEP 3: initialize fields of derived type
8651 Set_Is_Tagged_Type
(Derived_Type
, Is_Tagged
);
8652 Set_Stored_Constraint
(Derived_Type
, No_Elist
);
8654 -- Ada 2005 (AI-251): Private type-declarations can implement interfaces
8655 -- but cannot be interfaces
8657 if not Private_Extension
8658 and then Ekind
(Derived_Type
) /= E_Private_Type
8659 and then Ekind
(Derived_Type
) /= E_Limited_Private_Type
8661 if Interface_Present
(Type_Def
) then
8662 Analyze_Interface_Declaration
(Derived_Type
, Type_Def
);
8665 Set_Interfaces
(Derived_Type
, No_Elist
);
8668 -- Fields inherited from the Parent_Type
8670 Set_Has_Specified_Layout
8671 (Derived_Type
, Has_Specified_Layout
(Parent_Type
));
8672 Set_Is_Limited_Composite
8673 (Derived_Type
, Is_Limited_Composite
(Parent_Type
));
8674 Set_Is_Private_Composite
8675 (Derived_Type
, Is_Private_Composite
(Parent_Type
));
8677 if Is_Tagged_Type
(Parent_Type
) then
8678 Set_No_Tagged_Streams_Pragma
8679 (Derived_Type
, No_Tagged_Streams_Pragma
(Parent_Type
));
8682 -- Fields inherited from the Parent_Base
8684 Set_Has_Controlled_Component
8685 (Derived_Type
, Has_Controlled_Component
(Parent_Base
));
8686 Set_Has_Non_Standard_Rep
8687 (Derived_Type
, Has_Non_Standard_Rep
(Parent_Base
));
8688 Set_Has_Primitive_Operations
8689 (Derived_Type
, Has_Primitive_Operations
(Parent_Base
));
8691 -- Fields inherited from the Parent_Base in the non-private case
8693 if Ekind
(Derived_Type
) = E_Record_Type
then
8694 Set_Has_Complex_Representation
8695 (Derived_Type
, Has_Complex_Representation
(Parent_Base
));
8698 -- Fields inherited from the Parent_Base for record types
8700 if Is_Record_Type
(Derived_Type
) then
8702 Parent_Full
: Entity_Id
;
8705 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
8706 -- Parent_Base can be a private type or private extension. Go
8707 -- to the full view here to get the E_Record_Type specific flags.
8709 if Present
(Full_View
(Parent_Base
)) then
8710 Parent_Full
:= Full_View
(Parent_Base
);
8712 Parent_Full
:= Parent_Base
;
8715 Set_OK_To_Reorder_Components
8716 (Derived_Type
, OK_To_Reorder_Components
(Parent_Full
));
8720 -- Set fields for private derived types
8722 if Is_Private_Type
(Derived_Type
) then
8723 Set_Depends_On_Private
(Derived_Type
, True);
8724 Set_Private_Dependents
(Derived_Type
, New_Elmt_List
);
8726 -- Inherit fields from non private record types. If this is the
8727 -- completion of a derivation from a private type, the parent itself
8728 -- is private, and the attributes come from its full view, which must
8732 if Is_Private_Type
(Parent_Base
)
8733 and then not Is_Record_Type
(Parent_Base
)
8735 Set_Component_Alignment
8736 (Derived_Type
, Component_Alignment
(Full_View
(Parent_Base
)));
8738 (Derived_Type
, C_Pass_By_Copy
(Full_View
(Parent_Base
)));
8740 Set_Component_Alignment
8741 (Derived_Type
, Component_Alignment
(Parent_Base
));
8743 (Derived_Type
, C_Pass_By_Copy
(Parent_Base
));
8747 -- Set fields for tagged types
8750 Set_Direct_Primitive_Operations
(Derived_Type
, New_Elmt_List
);
8752 -- All tagged types defined in Ada.Finalization are controlled
8754 if Chars
(Scope
(Derived_Type
)) = Name_Finalization
8755 and then Chars
(Scope
(Scope
(Derived_Type
))) = Name_Ada
8756 and then Scope
(Scope
(Scope
(Derived_Type
))) = Standard_Standard
8758 Set_Is_Controlled
(Derived_Type
);
8760 Set_Is_Controlled
(Derived_Type
, Is_Controlled
(Parent_Base
));
8763 -- Minor optimization: there is no need to generate the class-wide
8764 -- entity associated with an underlying record view.
8766 if not Is_Underlying_Record_View
(Derived_Type
) then
8767 Make_Class_Wide_Type
(Derived_Type
);
8770 Set_Is_Abstract_Type
(Derived_Type
, Abstract_Present
(Type_Def
));
8772 if Has_Discriminants
(Derived_Type
)
8773 and then Constraint_Present
8775 Set_Stored_Constraint
8776 (Derived_Type
, Expand_To_Stored_Constraint
(Parent_Base
, Discs
));
8779 if Ada_Version
>= Ada_2005
then
8781 Ifaces_List
: Elist_Id
;
8784 -- Checks rules 3.9.4 (13/2 and 14/2)
8786 if Comes_From_Source
(Derived_Type
)
8787 and then not Is_Private_Type
(Derived_Type
)
8788 and then Is_Interface
(Parent_Type
)
8789 and then not Is_Interface
(Derived_Type
)
8791 if Is_Task_Interface
(Parent_Type
) then
8793 ("(Ada 2005) task type required (RM 3.9.4 (13.2))",
8796 elsif Is_Protected_Interface
(Parent_Type
) then
8798 ("(Ada 2005) protected type required (RM 3.9.4 (14.2))",
8803 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
8805 Check_Interfaces
(N
, Type_Def
);
8807 -- Ada 2005 (AI-251): Collect the list of progenitors that are
8808 -- not already in the parents.
8812 Ifaces_List
=> Ifaces_List
,
8813 Exclude_Parents
=> True);
8815 Set_Interfaces
(Derived_Type
, Ifaces_List
);
8817 -- If the derived type is the anonymous type created for
8818 -- a declaration whose parent has a constraint, propagate
8819 -- the interface list to the source type. This must be done
8820 -- prior to the completion of the analysis of the source type
8821 -- because the components in the extension may contain current
8822 -- instances whose legality depends on some ancestor.
8824 if Is_Itype
(Derived_Type
) then
8826 Def
: constant Node_Id
:=
8827 Associated_Node_For_Itype
(Derived_Type
);
8830 and then Nkind
(Def
) = N_Full_Type_Declaration
8833 (Defining_Identifier
(Def
), Ifaces_List
);
8838 -- Propagate inherited invariant information of parents
8841 if Ada_Version
>= Ada_2012
8842 and then not Is_Interface
(Derived_Type
)
8844 if Has_Inheritable_Invariants
(Parent_Type
) then
8845 Set_Has_Invariants
(Derived_Type
);
8846 Set_Has_Inheritable_Invariants
(Derived_Type
);
8848 elsif not Is_Empty_Elmt_List
(Ifaces_List
) then
8853 AI
:= First_Elmt
(Ifaces_List
);
8854 while Present
(AI
) loop
8855 if Has_Inheritable_Invariants
(Node
(AI
)) then
8856 Set_Has_Invariants
(Derived_Type
);
8857 Set_Has_Inheritable_Invariants
(Derived_Type
);
8868 -- A type extension is automatically Ghost when one of its
8869 -- progenitors is Ghost (SPARK RM 6.9(9)). This property is
8870 -- also inherited when the parent type is Ghost, but this is
8871 -- done in Build_Derived_Type as the mechanism also handles
8872 -- untagged derivations.
8874 if Implements_Ghost_Interface
(Derived_Type
) then
8875 Set_Is_Ghost_Entity
(Derived_Type
);
8881 Set_Is_Packed
(Derived_Type
, Is_Packed
(Parent_Base
));
8882 Set_Has_Non_Standard_Rep
8883 (Derived_Type
, Has_Non_Standard_Rep
(Parent_Base
));
8886 -- STEP 4: Inherit components from the parent base and constrain them.
8887 -- Apply the second transformation described in point 6. above.
8889 if (not Is_Empty_Elmt_List
(Discs
) or else Inherit_Discrims
)
8890 or else not Has_Discriminants
(Parent_Type
)
8891 or else not Is_Constrained
(Parent_Type
)
8895 Constrs
:= Discriminant_Constraint
(Parent_Type
);
8900 (N
, Parent_Base
, Derived_Type
, Is_Tagged
, Inherit_Discrims
, Constrs
);
8902 -- STEP 5a: Copy the parent record declaration for untagged types
8904 if not Is_Tagged
then
8906 -- Discriminant_Constraint (Derived_Type) has been properly
8907 -- constructed. Save it and temporarily set it to Empty because we
8908 -- do not want the call to New_Copy_Tree below to mess this list.
8910 if Has_Discriminants
(Derived_Type
) then
8911 Save_Discr_Constr
:= Discriminant_Constraint
(Derived_Type
);
8912 Set_Discriminant_Constraint
(Derived_Type
, No_Elist
);
8914 Save_Discr_Constr
:= No_Elist
;
8917 -- Save the Etype field of Derived_Type. It is correctly set now,
8918 -- but the call to New_Copy tree may remap it to point to itself,
8919 -- which is not what we want. Ditto for the Next_Entity field.
8921 Save_Etype
:= Etype
(Derived_Type
);
8922 Save_Next_Entity
:= Next_Entity
(Derived_Type
);
8924 -- Assoc_List maps all stored discriminants in the Parent_Base to
8925 -- stored discriminants in the Derived_Type. It is fundamental that
8926 -- no types or itypes with discriminants other than the stored
8927 -- discriminants appear in the entities declared inside
8928 -- Derived_Type, since the back end cannot deal with it.
8932 (Parent
(Parent_Base
), Map
=> Assoc_List
, New_Sloc
=> Loc
);
8934 -- Restore the fields saved prior to the New_Copy_Tree call
8935 -- and compute the stored constraint.
8937 Set_Etype
(Derived_Type
, Save_Etype
);
8938 Set_Next_Entity
(Derived_Type
, Save_Next_Entity
);
8940 if Has_Discriminants
(Derived_Type
) then
8941 Set_Discriminant_Constraint
8942 (Derived_Type
, Save_Discr_Constr
);
8943 Set_Stored_Constraint
8944 (Derived_Type
, Expand_To_Stored_Constraint
(Parent_Type
, Discs
));
8945 Replace_Components
(Derived_Type
, New_Decl
);
8946 Set_Has_Implicit_Dereference
8947 (Derived_Type
, Has_Implicit_Dereference
(Parent_Type
));
8950 -- Insert the new derived type declaration
8952 Rewrite
(N
, New_Decl
);
8954 -- STEP 5b: Complete the processing for record extensions in generics
8956 -- There is no completion for record extensions declared in the
8957 -- parameter part of a generic, so we need to complete processing for
8958 -- these generic record extensions here. The Record_Type_Definition call
8959 -- will change the Ekind of the components from E_Void to E_Component.
8961 elsif Private_Extension
and then Is_Generic_Type
(Derived_Type
) then
8962 Record_Type_Definition
(Empty
, Derived_Type
);
8964 -- STEP 5c: Process the record extension for non private tagged types
8966 elsif not Private_Extension
then
8967 Expand_Record_Extension
(Derived_Type
, Type_Def
);
8969 -- Note : previously in ASIS mode we set the Parent_Subtype of the
8970 -- derived type to propagate some semantic information. This led
8971 -- to other ASIS failures and has been removed.
8973 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
8974 -- implemented interfaces if we are in expansion mode
8977 and then Has_Interfaces
(Derived_Type
)
8979 Add_Interface_Tag_Components
(N
, Derived_Type
);
8982 -- Analyze the record extension
8984 Record_Type_Definition
8985 (Record_Extension_Part
(Type_Def
), Derived_Type
);
8990 -- Nothing else to do if there is an error in the derivation.
8991 -- An unusual case: the full view may be derived from a type in an
8992 -- instance, when the partial view was used illegally as an actual
8993 -- in that instance, leading to a circular definition.
8995 if Etype
(Derived_Type
) = Any_Type
8996 or else Etype
(Parent_Type
) = Derived_Type
9001 -- Set delayed freeze and then derive subprograms, we need to do
9002 -- this in this order so that derived subprograms inherit the
9003 -- derived freeze if necessary.
9005 Set_Has_Delayed_Freeze
(Derived_Type
);
9007 if Derive_Subps
then
9008 Derive_Subprograms
(Parent_Type
, Derived_Type
);
9011 -- If we have a private extension which defines a constrained derived
9012 -- type mark as constrained here after we have derived subprograms. See
9013 -- comment on point 9. just above the body of Build_Derived_Record_Type.
9015 if Private_Extension
and then Inherit_Discrims
then
9016 if Constraint_Present
and then not Is_Empty_Elmt_List
(Discs
) then
9017 Set_Is_Constrained
(Derived_Type
, True);
9018 Set_Discriminant_Constraint
(Derived_Type
, Discs
);
9020 elsif Is_Constrained
(Parent_Type
) then
9022 (Derived_Type
, True);
9023 Set_Discriminant_Constraint
9024 (Derived_Type
, Discriminant_Constraint
(Parent_Type
));
9028 -- Update the class-wide type, which shares the now-completed entity
9029 -- list with its specific type. In case of underlying record views,
9030 -- we do not generate the corresponding class wide entity.
9033 and then not Is_Underlying_Record_View
(Derived_Type
)
9036 (Class_Wide_Type
(Derived_Type
), First_Entity
(Derived_Type
));
9038 (Class_Wide_Type
(Derived_Type
), Last_Entity
(Derived_Type
));
9041 Check_Function_Writable_Actuals
(N
);
9042 end Build_Derived_Record_Type
;
9044 ------------------------
9045 -- Build_Derived_Type --
9046 ------------------------
9048 procedure Build_Derived_Type
9050 Parent_Type
: Entity_Id
;
9051 Derived_Type
: Entity_Id
;
9052 Is_Completion
: Boolean;
9053 Derive_Subps
: Boolean := True)
9055 Parent_Base
: constant Entity_Id
:= Base_Type
(Parent_Type
);
9058 -- Set common attributes
9060 Set_Scope
(Derived_Type
, Current_Scope
);
9062 Set_Etype
(Derived_Type
, Parent_Base
);
9063 Set_Ekind
(Derived_Type
, Ekind
(Parent_Base
));
9064 Set_Has_Task
(Derived_Type
, Has_Task
(Parent_Base
));
9065 Set_Has_Protected
(Derived_Type
, Has_Protected
(Parent_Base
));
9067 Set_Size_Info
(Derived_Type
, Parent_Type
);
9068 Set_RM_Size
(Derived_Type
, RM_Size
(Parent_Type
));
9069 Set_Is_Controlled
(Derived_Type
, Is_Controlled
(Parent_Type
));
9070 Set_Disable_Controlled
(Derived_Type
, Disable_Controlled
(Parent_Type
));
9072 Set_Is_Tagged_Type
(Derived_Type
, Is_Tagged_Type
(Parent_Type
));
9073 Set_Is_Volatile
(Derived_Type
, Is_Volatile
(Parent_Type
));
9075 if Is_Tagged_Type
(Derived_Type
) then
9076 Set_No_Tagged_Streams_Pragma
9077 (Derived_Type
, No_Tagged_Streams_Pragma
(Parent_Type
));
9080 -- If the parent has primitive routines, set the derived type link
9082 if Has_Primitive_Operations
(Parent_Type
) then
9083 Set_Derived_Type_Link
(Parent_Base
, Derived_Type
);
9086 -- If the parent type is a private subtype, the convention on the base
9087 -- type may be set in the private part, and not propagated to the
9088 -- subtype until later, so we obtain the convention from the base type.
9090 Set_Convention
(Derived_Type
, Convention
(Parent_Base
));
9092 -- Set SSO default for record or array type
9094 if (Is_Array_Type
(Derived_Type
) or else Is_Record_Type
(Derived_Type
))
9095 and then Is_Base_Type
(Derived_Type
)
9097 Set_Default_SSO
(Derived_Type
);
9100 -- Propagate invariant information. The new type has invariants if
9101 -- they are inherited from the parent type, and these invariants can
9102 -- be further inherited, so both flags are set.
9104 -- We similarly inherit predicates
9106 if Has_Predicates
(Parent_Type
) then
9107 Set_Has_Predicates
(Derived_Type
);
9110 -- The derived type inherits the representation clauses of the parent
9112 Inherit_Rep_Item_Chain
(Derived_Type
, Parent_Type
);
9114 -- Propagate the attributes related to pragma Default_Initial_Condition
9115 -- from the parent type to the private extension. A derived type always
9116 -- inherits the default initial condition flag from the parent type. If
9117 -- the derived type carries its own Default_Initial_Condition pragma,
9118 -- the flag is later reset in Analyze_Pragma. Note that both flags are
9119 -- mutually exclusive.
9121 Propagate_Default_Init_Cond_Attributes
9122 (From_Typ
=> Parent_Type
,
9123 To_Typ
=> Derived_Type
,
9124 Parent_To_Derivation
=> True);
9126 -- If the parent type has delayed rep aspects, then mark the derived
9127 -- type as possibly inheriting a delayed rep aspect.
9129 if Has_Delayed_Rep_Aspects
(Parent_Type
) then
9130 Set_May_Inherit_Delayed_Rep_Aspects
(Derived_Type
);
9133 -- Propagate the attributes related to pragma Ghost from the parent type
9134 -- to the derived type or type extension (SPARK RM 6.9(9)).
9136 if Is_Ghost_Entity
(Parent_Type
) then
9137 Set_Is_Ghost_Entity
(Derived_Type
);
9140 -- Type dependent processing
9142 case Ekind
(Parent_Type
) is
9143 when Numeric_Kind
=>
9144 Build_Derived_Numeric_Type
(N
, Parent_Type
, Derived_Type
);
9147 Build_Derived_Array_Type
(N
, Parent_Type
, Derived_Type
);
9151 | Class_Wide_Kind
=>
9152 Build_Derived_Record_Type
9153 (N
, Parent_Type
, Derived_Type
, Derive_Subps
);
9156 when Enumeration_Kind
=>
9157 Build_Derived_Enumeration_Type
(N
, Parent_Type
, Derived_Type
);
9160 Build_Derived_Access_Type
(N
, Parent_Type
, Derived_Type
);
9162 when Incomplete_Or_Private_Kind
=>
9163 Build_Derived_Private_Type
9164 (N
, Parent_Type
, Derived_Type
, Is_Completion
, Derive_Subps
);
9166 -- For discriminated types, the derivation includes deriving
9167 -- primitive operations. For others it is done below.
9169 if Is_Tagged_Type
(Parent_Type
)
9170 or else Has_Discriminants
(Parent_Type
)
9171 or else (Present
(Full_View
(Parent_Type
))
9172 and then Has_Discriminants
(Full_View
(Parent_Type
)))
9177 when Concurrent_Kind
=>
9178 Build_Derived_Concurrent_Type
(N
, Parent_Type
, Derived_Type
);
9181 raise Program_Error
;
9184 -- Nothing more to do if some error occurred
9186 if Etype
(Derived_Type
) = Any_Type
then
9190 -- Set delayed freeze and then derive subprograms, we need to do this
9191 -- in this order so that derived subprograms inherit the derived freeze
9194 Set_Has_Delayed_Freeze
(Derived_Type
);
9196 if Derive_Subps
then
9197 Derive_Subprograms
(Parent_Type
, Derived_Type
);
9200 Set_Has_Primitive_Operations
9201 (Base_Type
(Derived_Type
), Has_Primitive_Operations
(Parent_Type
));
9202 end Build_Derived_Type
;
9204 -----------------------
9205 -- Build_Discriminal --
9206 -----------------------
9208 procedure Build_Discriminal
(Discrim
: Entity_Id
) is
9209 D_Minal
: Entity_Id
;
9210 CR_Disc
: Entity_Id
;
9213 -- A discriminal has the same name as the discriminant
9215 D_Minal
:= Make_Defining_Identifier
(Sloc
(Discrim
), Chars
(Discrim
));
9217 Set_Ekind
(D_Minal
, E_In_Parameter
);
9218 Set_Mechanism
(D_Minal
, Default_Mechanism
);
9219 Set_Etype
(D_Minal
, Etype
(Discrim
));
9220 Set_Scope
(D_Minal
, Current_Scope
);
9222 Set_Discriminal
(Discrim
, D_Minal
);
9223 Set_Discriminal_Link
(D_Minal
, Discrim
);
9225 -- For task types, build at once the discriminants of the corresponding
9226 -- record, which are needed if discriminants are used in entry defaults
9227 -- and in family bounds.
9229 if Is_Concurrent_Type
(Current_Scope
)
9231 Is_Limited_Type
(Current_Scope
)
9233 CR_Disc
:= Make_Defining_Identifier
(Sloc
(Discrim
), Chars
(Discrim
));
9235 Set_Ekind
(CR_Disc
, E_In_Parameter
);
9236 Set_Mechanism
(CR_Disc
, Default_Mechanism
);
9237 Set_Etype
(CR_Disc
, Etype
(Discrim
));
9238 Set_Scope
(CR_Disc
, Current_Scope
);
9239 Set_Discriminal_Link
(CR_Disc
, Discrim
);
9240 Set_CR_Discriminant
(Discrim
, CR_Disc
);
9242 end Build_Discriminal
;
9244 ------------------------------------
9245 -- Build_Discriminant_Constraints --
9246 ------------------------------------
9248 function Build_Discriminant_Constraints
9251 Derived_Def
: Boolean := False) return Elist_Id
9253 C
: constant Node_Id
:= Constraint
(Def
);
9254 Nb_Discr
: constant Nat
:= Number_Discriminants
(T
);
9256 Discr_Expr
: array (1 .. Nb_Discr
) of Node_Id
:= (others => Empty
);
9257 -- Saves the expression corresponding to a given discriminant in T
9259 function Pos_Of_Discr
(T
: Entity_Id
; D
: Entity_Id
) return Nat
;
9260 -- Return the Position number within array Discr_Expr of a discriminant
9261 -- D within the discriminant list of the discriminated type T.
9263 procedure Process_Discriminant_Expression
9266 -- If this is a discriminant constraint on a partial view, do not
9267 -- generate an overflow check on the discriminant expression. The check
9268 -- will be generated when constraining the full view. Otherwise the
9269 -- backend creates duplicate symbols for the temporaries corresponding
9270 -- to the expressions to be checked, causing spurious assembler errors.
9276 function Pos_Of_Discr
(T
: Entity_Id
; D
: Entity_Id
) return Nat
is
9280 Disc
:= First_Discriminant
(T
);
9281 for J
in Discr_Expr
'Range loop
9286 Next_Discriminant
(Disc
);
9289 -- Note: Since this function is called on discriminants that are
9290 -- known to belong to the discriminated type, falling through the
9291 -- loop with no match signals an internal compiler error.
9293 raise Program_Error
;
9296 -------------------------------------
9297 -- Process_Discriminant_Expression --
9298 -------------------------------------
9300 procedure Process_Discriminant_Expression
9304 BDT
: constant Entity_Id
:= Base_Type
(Etype
(D
));
9307 -- If this is a discriminant constraint on a partial view, do
9308 -- not generate an overflow on the discriminant expression. The
9309 -- check will be generated when constraining the full view.
9311 if Is_Private_Type
(T
)
9312 and then Present
(Full_View
(T
))
9314 Analyze_And_Resolve
(Expr
, BDT
, Suppress
=> Overflow_Check
);
9316 Analyze_And_Resolve
(Expr
, BDT
);
9318 end Process_Discriminant_Expression
;
9320 -- Declarations local to Build_Discriminant_Constraints
9324 Elist
: constant Elist_Id
:= New_Elmt_List
;
9332 Discrim_Present
: Boolean := False;
9334 -- Start of processing for Build_Discriminant_Constraints
9337 -- The following loop will process positional associations only.
9338 -- For a positional association, the (single) discriminant is
9339 -- implicitly specified by position, in textual order (RM 3.7.2).
9341 Discr
:= First_Discriminant
(T
);
9342 Constr
:= First
(Constraints
(C
));
9343 for D
in Discr_Expr
'Range loop
9344 exit when Nkind
(Constr
) = N_Discriminant_Association
;
9347 Error_Msg_N
("too few discriminants given in constraint", C
);
9348 return New_Elmt_List
;
9350 elsif Nkind
(Constr
) = N_Range
9351 or else (Nkind
(Constr
) = N_Attribute_Reference
9352 and then Attribute_Name
(Constr
) = Name_Range
)
9355 ("a range is not a valid discriminant constraint", Constr
);
9356 Discr_Expr
(D
) := Error
;
9359 Process_Discriminant_Expression
(Constr
, Discr
);
9360 Discr_Expr
(D
) := Constr
;
9363 Next_Discriminant
(Discr
);
9367 if No
(Discr
) and then Present
(Constr
) then
9368 Error_Msg_N
("too many discriminants given in constraint", Constr
);
9369 return New_Elmt_List
;
9372 -- Named associations can be given in any order, but if both positional
9373 -- and named associations are used in the same discriminant constraint,
9374 -- then positional associations must occur first, at their normal
9375 -- position. Hence once a named association is used, the rest of the
9376 -- discriminant constraint must use only named associations.
9378 while Present
(Constr
) loop
9380 -- Positional association forbidden after a named association
9382 if Nkind
(Constr
) /= N_Discriminant_Association
then
9383 Error_Msg_N
("positional association follows named one", Constr
);
9384 return New_Elmt_List
;
9386 -- Otherwise it is a named association
9389 -- E records the type of the discriminants in the named
9390 -- association. All the discriminants specified in the same name
9391 -- association must have the same type.
9395 -- Search the list of discriminants in T to see if the simple name
9396 -- given in the constraint matches any of them.
9398 Id
:= First
(Selector_Names
(Constr
));
9399 while Present
(Id
) loop
9402 -- If Original_Discriminant is present, we are processing a
9403 -- generic instantiation and this is an instance node. We need
9404 -- to find the name of the corresponding discriminant in the
9405 -- actual record type T and not the name of the discriminant in
9406 -- the generic formal. Example:
9409 -- type G (D : int) is private;
9411 -- subtype W is G (D => 1);
9413 -- type Rec (X : int) is record ... end record;
9414 -- package Q is new P (G => Rec);
9416 -- At the point of the instantiation, formal type G is Rec
9417 -- and therefore when reanalyzing "subtype W is G (D => 1);"
9418 -- which really looks like "subtype W is Rec (D => 1);" at
9419 -- the point of instantiation, we want to find the discriminant
9420 -- that corresponds to D in Rec, i.e. X.
9422 if Present
(Original_Discriminant
(Id
))
9423 and then In_Instance
9425 Discr
:= Find_Corresponding_Discriminant
(Id
, T
);
9429 Discr
:= First_Discriminant
(T
);
9430 while Present
(Discr
) loop
9431 if Chars
(Discr
) = Chars
(Id
) then
9436 Next_Discriminant
(Discr
);
9440 Error_Msg_N
("& does not match any discriminant", Id
);
9441 return New_Elmt_List
;
9443 -- If the parent type is a generic formal, preserve the
9444 -- name of the discriminant for subsequent instances.
9445 -- see comment at the beginning of this if statement.
9447 elsif Is_Generic_Type
(Root_Type
(T
)) then
9448 Set_Original_Discriminant
(Id
, Discr
);
9452 Position
:= Pos_Of_Discr
(T
, Discr
);
9454 if Present
(Discr_Expr
(Position
)) then
9455 Error_Msg_N
("duplicate constraint for discriminant&", Id
);
9458 -- Each discriminant specified in the same named association
9459 -- must be associated with a separate copy of the
9460 -- corresponding expression.
9462 if Present
(Next
(Id
)) then
9463 Expr
:= New_Copy_Tree
(Expression
(Constr
));
9464 Set_Parent
(Expr
, Parent
(Expression
(Constr
)));
9466 Expr
:= Expression
(Constr
);
9469 Discr_Expr
(Position
) := Expr
;
9470 Process_Discriminant_Expression
(Expr
, Discr
);
9473 -- A discriminant association with more than one discriminant
9474 -- name is only allowed if the named discriminants are all of
9475 -- the same type (RM 3.7.1(8)).
9478 E
:= Base_Type
(Etype
(Discr
));
9480 elsif Base_Type
(Etype
(Discr
)) /= E
then
9482 ("all discriminants in an association " &
9483 "must have the same type", Id
);
9493 -- A discriminant constraint must provide exactly one value for each
9494 -- discriminant of the type (RM 3.7.1(8)).
9496 for J
in Discr_Expr
'Range loop
9497 if No
(Discr_Expr
(J
)) then
9498 Error_Msg_N
("too few discriminants given in constraint", C
);
9499 return New_Elmt_List
;
9503 -- Determine if there are discriminant expressions in the constraint
9505 for J
in Discr_Expr
'Range loop
9506 if Denotes_Discriminant
9507 (Discr_Expr
(J
), Check_Concurrent
=> True)
9509 Discrim_Present
:= True;
9513 -- Build an element list consisting of the expressions given in the
9514 -- discriminant constraint and apply the appropriate checks. The list
9515 -- is constructed after resolving any named discriminant associations
9516 -- and therefore the expressions appear in the textual order of the
9519 Discr
:= First_Discriminant
(T
);
9520 for J
in Discr_Expr
'Range loop
9521 if Discr_Expr
(J
) /= Error
then
9522 Append_Elmt
(Discr_Expr
(J
), Elist
);
9524 -- If any of the discriminant constraints is given by a
9525 -- discriminant and we are in a derived type declaration we
9526 -- have a discriminant renaming. Establish link between new
9527 -- and old discriminant.
9529 if Denotes_Discriminant
(Discr_Expr
(J
)) then
9531 Set_Corresponding_Discriminant
9532 (Entity
(Discr_Expr
(J
)), Discr
);
9535 -- Force the evaluation of non-discriminant expressions.
9536 -- If we have found a discriminant in the constraint 3.4(26)
9537 -- and 3.8(18) demand that no range checks are performed are
9538 -- after evaluation. If the constraint is for a component
9539 -- definition that has a per-object constraint, expressions are
9540 -- evaluated but not checked either. In all other cases perform
9544 if Discrim_Present
then
9547 elsif Nkind
(Parent
(Parent
(Def
))) = N_Component_Declaration
9549 Has_Per_Object_Constraint
9550 (Defining_Identifier
(Parent
(Parent
(Def
))))
9554 elsif Is_Access_Type
(Etype
(Discr
)) then
9555 Apply_Constraint_Check
(Discr_Expr
(J
), Etype
(Discr
));
9558 Apply_Range_Check
(Discr_Expr
(J
), Etype
(Discr
));
9561 Force_Evaluation
(Discr_Expr
(J
));
9564 -- Check that the designated type of an access discriminant's
9565 -- expression is not a class-wide type unless the discriminant's
9566 -- designated type is also class-wide.
9568 if Ekind
(Etype
(Discr
)) = E_Anonymous_Access_Type
9569 and then not Is_Class_Wide_Type
9570 (Designated_Type
(Etype
(Discr
)))
9571 and then Etype
(Discr_Expr
(J
)) /= Any_Type
9572 and then Is_Class_Wide_Type
9573 (Designated_Type
(Etype
(Discr_Expr
(J
))))
9575 Wrong_Type
(Discr_Expr
(J
), Etype
(Discr
));
9577 elsif Is_Access_Type
(Etype
(Discr
))
9578 and then not Is_Access_Constant
(Etype
(Discr
))
9579 and then Is_Access_Type
(Etype
(Discr_Expr
(J
)))
9580 and then Is_Access_Constant
(Etype
(Discr_Expr
(J
)))
9583 ("constraint for discriminant& must be access to variable",
9588 Next_Discriminant
(Discr
);
9592 end Build_Discriminant_Constraints
;
9594 ---------------------------------
9595 -- Build_Discriminated_Subtype --
9596 ---------------------------------
9598 procedure Build_Discriminated_Subtype
9602 Related_Nod
: Node_Id
;
9603 For_Access
: Boolean := False)
9605 Has_Discrs
: constant Boolean := Has_Discriminants
(T
);
9606 Constrained
: constant Boolean :=
9608 and then not Is_Empty_Elmt_List
(Elist
)
9609 and then not Is_Class_Wide_Type
(T
))
9610 or else Is_Constrained
(T
);
9613 if Ekind
(T
) = E_Record_Type
then
9615 Set_Ekind
(Def_Id
, E_Private_Subtype
);
9616 Set_Is_For_Access_Subtype
(Def_Id
, True);
9618 Set_Ekind
(Def_Id
, E_Record_Subtype
);
9621 -- Inherit preelaboration flag from base, for types for which it
9622 -- may have been set: records, private types, protected types.
9624 Set_Known_To_Have_Preelab_Init
9625 (Def_Id
, Known_To_Have_Preelab_Init
(T
));
9627 elsif Ekind
(T
) = E_Task_Type
then
9628 Set_Ekind
(Def_Id
, E_Task_Subtype
);
9630 elsif Ekind
(T
) = E_Protected_Type
then
9631 Set_Ekind
(Def_Id
, E_Protected_Subtype
);
9632 Set_Known_To_Have_Preelab_Init
9633 (Def_Id
, Known_To_Have_Preelab_Init
(T
));
9635 elsif Is_Private_Type
(T
) then
9636 Set_Ekind
(Def_Id
, Subtype_Kind
(Ekind
(T
)));
9637 Set_Known_To_Have_Preelab_Init
9638 (Def_Id
, Known_To_Have_Preelab_Init
(T
));
9640 -- Private subtypes may have private dependents
9642 Set_Private_Dependents
(Def_Id
, New_Elmt_List
);
9644 elsif Is_Class_Wide_Type
(T
) then
9645 Set_Ekind
(Def_Id
, E_Class_Wide_Subtype
);
9648 -- Incomplete type. Attach subtype to list of dependents, to be
9649 -- completed with full view of parent type, unless is it the
9650 -- designated subtype of a record component within an init_proc.
9651 -- This last case arises for a component of an access type whose
9652 -- designated type is incomplete (e.g. a Taft Amendment type).
9653 -- The designated subtype is within an inner scope, and needs no
9654 -- elaboration, because only the access type is needed in the
9655 -- initialization procedure.
9657 Set_Ekind
(Def_Id
, Ekind
(T
));
9659 if For_Access
and then Within_Init_Proc
then
9662 Append_Elmt
(Def_Id
, Private_Dependents
(T
));
9666 Set_Etype
(Def_Id
, T
);
9667 Init_Size_Align
(Def_Id
);
9668 Set_Has_Discriminants
(Def_Id
, Has_Discrs
);
9669 Set_Is_Constrained
(Def_Id
, Constrained
);
9671 Set_First_Entity
(Def_Id
, First_Entity
(T
));
9672 Set_Last_Entity
(Def_Id
, Last_Entity
(T
));
9673 Set_Has_Implicit_Dereference
9674 (Def_Id
, Has_Implicit_Dereference
(T
));
9676 -- If the subtype is the completion of a private declaration, there may
9677 -- have been representation clauses for the partial view, and they must
9678 -- be preserved. Build_Derived_Type chains the inherited clauses with
9679 -- the ones appearing on the extension. If this comes from a subtype
9680 -- declaration, all clauses are inherited.
9682 if No
(First_Rep_Item
(Def_Id
)) then
9683 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
9686 if Is_Tagged_Type
(T
) then
9687 Set_Is_Tagged_Type
(Def_Id
);
9688 Set_No_Tagged_Streams_Pragma
(Def_Id
, No_Tagged_Streams_Pragma
(T
));
9689 Make_Class_Wide_Type
(Def_Id
);
9692 Set_Stored_Constraint
(Def_Id
, No_Elist
);
9695 Set_Discriminant_Constraint
(Def_Id
, Elist
);
9696 Set_Stored_Constraint_From_Discriminant_Constraint
(Def_Id
);
9699 if Is_Tagged_Type
(T
) then
9701 -- Ada 2005 (AI-251): In case of concurrent types we inherit the
9702 -- concurrent record type (which has the list of primitive
9705 if Ada_Version
>= Ada_2005
9706 and then Is_Concurrent_Type
(T
)
9708 Set_Corresponding_Record_Type
(Def_Id
,
9709 Corresponding_Record_Type
(T
));
9711 Set_Direct_Primitive_Operations
(Def_Id
,
9712 Direct_Primitive_Operations
(T
));
9715 Set_Is_Abstract_Type
(Def_Id
, Is_Abstract_Type
(T
));
9718 -- Subtypes introduced by component declarations do not need to be
9719 -- marked as delayed, and do not get freeze nodes, because the semantics
9720 -- verifies that the parents of the subtypes are frozen before the
9721 -- enclosing record is frozen.
9723 if not Is_Type
(Scope
(Def_Id
)) then
9724 Set_Depends_On_Private
(Def_Id
, Depends_On_Private
(T
));
9726 if Is_Private_Type
(T
)
9727 and then Present
(Full_View
(T
))
9729 Conditional_Delay
(Def_Id
, Full_View
(T
));
9731 Conditional_Delay
(Def_Id
, T
);
9735 if Is_Record_Type
(T
) then
9736 Set_Is_Limited_Record
(Def_Id
, Is_Limited_Record
(T
));
9739 and then not Is_Empty_Elmt_List
(Elist
)
9740 and then not For_Access
9742 Create_Constrained_Components
(Def_Id
, Related_Nod
, T
, Elist
);
9743 elsif not For_Access
then
9744 Set_Cloned_Subtype
(Def_Id
, T
);
9747 end Build_Discriminated_Subtype
;
9749 ---------------------------
9750 -- Build_Itype_Reference --
9751 ---------------------------
9753 procedure Build_Itype_Reference
9757 IR
: constant Node_Id
:= Make_Itype_Reference
(Sloc
(Nod
));
9760 -- Itype references are only created for use by the back-end
9762 if Inside_A_Generic
then
9765 Set_Itype
(IR
, Ityp
);
9766 Insert_After
(Nod
, IR
);
9768 end Build_Itype_Reference
;
9770 ------------------------
9771 -- Build_Scalar_Bound --
9772 ------------------------
9774 function Build_Scalar_Bound
9777 Der_T
: Entity_Id
) return Node_Id
9779 New_Bound
: Entity_Id
;
9782 -- Note: not clear why this is needed, how can the original bound
9783 -- be unanalyzed at this point? and if it is, what business do we
9784 -- have messing around with it? and why is the base type of the
9785 -- parent type the right type for the resolution. It probably is
9786 -- not. It is OK for the new bound we are creating, but not for
9787 -- the old one??? Still if it never happens, no problem.
9789 Analyze_And_Resolve
(Bound
, Base_Type
(Par_T
));
9791 if Nkind_In
(Bound
, N_Integer_Literal
, N_Real_Literal
) then
9792 New_Bound
:= New_Copy
(Bound
);
9793 Set_Etype
(New_Bound
, Der_T
);
9794 Set_Analyzed
(New_Bound
);
9796 elsif Is_Entity_Name
(Bound
) then
9797 New_Bound
:= OK_Convert_To
(Der_T
, New_Copy
(Bound
));
9799 -- The following is almost certainly wrong. What business do we have
9800 -- relocating a node (Bound) that is presumably still attached to
9801 -- the tree elsewhere???
9804 New_Bound
:= OK_Convert_To
(Der_T
, Relocate_Node
(Bound
));
9807 Set_Etype
(New_Bound
, Der_T
);
9809 end Build_Scalar_Bound
;
9811 --------------------------------
9812 -- Build_Underlying_Full_View --
9813 --------------------------------
9815 procedure Build_Underlying_Full_View
9820 Loc
: constant Source_Ptr
:= Sloc
(N
);
9821 Subt
: constant Entity_Id
:=
9822 Make_Defining_Identifier
9823 (Loc
, New_External_Name
(Chars
(Typ
), 'S'));
9830 procedure Set_Discriminant_Name
(Id
: Node_Id
);
9831 -- If the derived type has discriminants, they may rename discriminants
9832 -- of the parent. When building the full view of the parent, we need to
9833 -- recover the names of the original discriminants if the constraint is
9834 -- given by named associations.
9836 ---------------------------
9837 -- Set_Discriminant_Name --
9838 ---------------------------
9840 procedure Set_Discriminant_Name
(Id
: Node_Id
) is
9844 Set_Original_Discriminant
(Id
, Empty
);
9846 if Has_Discriminants
(Typ
) then
9847 Disc
:= First_Discriminant
(Typ
);
9848 while Present
(Disc
) loop
9849 if Chars
(Disc
) = Chars
(Id
)
9850 and then Present
(Corresponding_Discriminant
(Disc
))
9852 Set_Chars
(Id
, Chars
(Corresponding_Discriminant
(Disc
)));
9854 Next_Discriminant
(Disc
);
9857 end Set_Discriminant_Name
;
9859 -- Start of processing for Build_Underlying_Full_View
9862 if Nkind
(N
) = N_Full_Type_Declaration
then
9863 Constr
:= Constraint
(Subtype_Indication
(Type_Definition
(N
)));
9865 elsif Nkind
(N
) = N_Subtype_Declaration
then
9866 Constr
:= New_Copy_Tree
(Constraint
(Subtype_Indication
(N
)));
9868 elsif Nkind
(N
) = N_Component_Declaration
then
9871 (Constraint
(Subtype_Indication
(Component_Definition
(N
))));
9874 raise Program_Error
;
9877 C
:= First
(Constraints
(Constr
));
9878 while Present
(C
) loop
9879 if Nkind
(C
) = N_Discriminant_Association
then
9880 Id
:= First
(Selector_Names
(C
));
9881 while Present
(Id
) loop
9882 Set_Discriminant_Name
(Id
);
9891 Make_Subtype_Declaration
(Loc
,
9892 Defining_Identifier
=> Subt
,
9893 Subtype_Indication
=>
9894 Make_Subtype_Indication
(Loc
,
9895 Subtype_Mark
=> New_Occurrence_Of
(Par
, Loc
),
9896 Constraint
=> New_Copy_Tree
(Constr
)));
9898 -- If this is a component subtype for an outer itype, it is not
9899 -- a list member, so simply set the parent link for analysis: if
9900 -- the enclosing type does not need to be in a declarative list,
9901 -- neither do the components.
9903 if Is_List_Member
(N
)
9904 and then Nkind
(N
) /= N_Component_Declaration
9906 Insert_Before
(N
, Indic
);
9908 Set_Parent
(Indic
, Parent
(N
));
9912 Set_Underlying_Full_View
(Typ
, Full_View
(Subt
));
9913 end Build_Underlying_Full_View
;
9915 -------------------------------
9916 -- Check_Abstract_Overriding --
9917 -------------------------------
9919 procedure Check_Abstract_Overriding
(T
: Entity_Id
) is
9920 Alias_Subp
: Entity_Id
;
9926 procedure Check_Pragma_Implemented
(Subp
: Entity_Id
);
9927 -- Ada 2012 (AI05-0030): Subprogram Subp overrides an interface routine
9928 -- which has pragma Implemented already set. Check whether Subp's entity
9929 -- kind conforms to the implementation kind of the overridden routine.
9931 procedure Check_Pragma_Implemented
9933 Iface_Subp
: Entity_Id
);
9934 -- Ada 2012 (AI05-0030): Subprogram Subp overrides interface routine
9935 -- Iface_Subp and both entities have pragma Implemented already set on
9936 -- them. Check whether the two implementation kinds are conforming.
9938 procedure Inherit_Pragma_Implemented
9940 Iface_Subp
: Entity_Id
);
9941 -- Ada 2012 (AI05-0030): Interface primitive Subp overrides interface
9942 -- subprogram Iface_Subp which has been marked by pragma Implemented.
9943 -- Propagate the implementation kind of Iface_Subp to Subp.
9945 ------------------------------
9946 -- Check_Pragma_Implemented --
9947 ------------------------------
9949 procedure Check_Pragma_Implemented
(Subp
: Entity_Id
) is
9950 Iface_Alias
: constant Entity_Id
:= Interface_Alias
(Subp
);
9951 Impl_Kind
: constant Name_Id
:= Implementation_Kind
(Iface_Alias
);
9952 Subp_Alias
: constant Entity_Id
:= Alias
(Subp
);
9953 Contr_Typ
: Entity_Id
;
9954 Impl_Subp
: Entity_Id
;
9957 -- Subp must have an alias since it is a hidden entity used to link
9958 -- an interface subprogram to its overriding counterpart.
9960 pragma Assert
(Present
(Subp_Alias
));
9962 -- Handle aliases to synchronized wrappers
9964 Impl_Subp
:= Subp_Alias
;
9966 if Is_Primitive_Wrapper
(Impl_Subp
) then
9967 Impl_Subp
:= Wrapped_Entity
(Impl_Subp
);
9970 -- Extract the type of the controlling formal
9972 Contr_Typ
:= Etype
(First_Formal
(Subp_Alias
));
9974 if Is_Concurrent_Record_Type
(Contr_Typ
) then
9975 Contr_Typ
:= Corresponding_Concurrent_Type
(Contr_Typ
);
9978 -- An interface subprogram whose implementation kind is By_Entry must
9979 -- be implemented by an entry.
9981 if Impl_Kind
= Name_By_Entry
9982 and then Ekind
(Impl_Subp
) /= E_Entry
9984 Error_Msg_Node_2
:= Iface_Alias
;
9986 ("type & must implement abstract subprogram & with an entry",
9987 Subp_Alias
, Contr_Typ
);
9989 elsif Impl_Kind
= Name_By_Protected_Procedure
then
9991 -- An interface subprogram whose implementation kind is By_
9992 -- Protected_Procedure cannot be implemented by a primitive
9993 -- procedure of a task type.
9995 if Ekind
(Contr_Typ
) /= E_Protected_Type
then
9996 Error_Msg_Node_2
:= Contr_Typ
;
9998 ("interface subprogram & cannot be implemented by a " &
9999 "primitive procedure of task type &", Subp_Alias
,
10002 -- An interface subprogram whose implementation kind is By_
10003 -- Protected_Procedure must be implemented by a procedure.
10005 elsif Ekind
(Impl_Subp
) /= E_Procedure
then
10006 Error_Msg_Node_2
:= Iface_Alias
;
10008 ("type & must implement abstract subprogram & with a " &
10009 "procedure", Subp_Alias
, Contr_Typ
);
10011 elsif Present
(Get_Rep_Pragma
(Impl_Subp
, Name_Implemented
))
10012 and then Implementation_Kind
(Impl_Subp
) /= Impl_Kind
10014 Error_Msg_Name_1
:= Impl_Kind
;
10016 ("overriding operation& must have synchronization%",
10020 -- If primitive has Optional synchronization, overriding operation
10021 -- must match if it has an explicit synchronization..
10023 elsif Present
(Get_Rep_Pragma
(Impl_Subp
, Name_Implemented
))
10024 and then Implementation_Kind
(Impl_Subp
) /= Impl_Kind
10026 Error_Msg_Name_1
:= Impl_Kind
;
10028 ("overriding operation& must have syncrhonization%",
10031 end Check_Pragma_Implemented
;
10033 ------------------------------
10034 -- Check_Pragma_Implemented --
10035 ------------------------------
10037 procedure Check_Pragma_Implemented
10039 Iface_Subp
: Entity_Id
)
10041 Iface_Kind
: constant Name_Id
:= Implementation_Kind
(Iface_Subp
);
10042 Subp_Kind
: constant Name_Id
:= Implementation_Kind
(Subp
);
10045 -- Ada 2012 (AI05-0030): The implementation kinds of an overridden
10046 -- and overriding subprogram are different. In general this is an
10047 -- error except when the implementation kind of the overridden
10048 -- subprograms is By_Any or Optional.
10050 if Iface_Kind
/= Subp_Kind
10051 and then Iface_Kind
/= Name_By_Any
10052 and then Iface_Kind
/= Name_Optional
10054 if Iface_Kind
= Name_By_Entry
then
10056 ("incompatible implementation kind, overridden subprogram " &
10057 "is marked By_Entry", Subp
);
10060 ("incompatible implementation kind, overridden subprogram " &
10061 "is marked By_Protected_Procedure", Subp
);
10064 end Check_Pragma_Implemented
;
10066 --------------------------------
10067 -- Inherit_Pragma_Implemented --
10068 --------------------------------
10070 procedure Inherit_Pragma_Implemented
10072 Iface_Subp
: Entity_Id
)
10074 Iface_Kind
: constant Name_Id
:= Implementation_Kind
(Iface_Subp
);
10075 Loc
: constant Source_Ptr
:= Sloc
(Subp
);
10076 Impl_Prag
: Node_Id
;
10079 -- Since the implementation kind is stored as a representation item
10080 -- rather than a flag, create a pragma node.
10084 Chars
=> Name_Implemented
,
10085 Pragma_Argument_Associations
=> New_List
(
10086 Make_Pragma_Argument_Association
(Loc
,
10087 Expression
=> New_Occurrence_Of
(Subp
, Loc
)),
10089 Make_Pragma_Argument_Association
(Loc
,
10090 Expression
=> Make_Identifier
(Loc
, Iface_Kind
))));
10092 -- The pragma doesn't need to be analyzed because it is internally
10093 -- built. It is safe to directly register it as a rep item since we
10094 -- are only interested in the characters of the implementation kind.
10096 Record_Rep_Item
(Subp
, Impl_Prag
);
10097 end Inherit_Pragma_Implemented
;
10099 -- Start of processing for Check_Abstract_Overriding
10102 Op_List
:= Primitive_Operations
(T
);
10104 -- Loop to check primitive operations
10106 Elmt
:= First_Elmt
(Op_List
);
10107 while Present
(Elmt
) loop
10108 Subp
:= Node
(Elmt
);
10109 Alias_Subp
:= Alias
(Subp
);
10111 -- Inherited subprograms are identified by the fact that they do not
10112 -- come from source, and the associated source location is the
10113 -- location of the first subtype of the derived type.
10115 -- Ada 2005 (AI-228): Apply the rules of RM-3.9.3(6/2) for
10116 -- subprograms that "require overriding".
10118 -- Special exception, do not complain about failure to override the
10119 -- stream routines _Input and _Output, as well as the primitive
10120 -- operations used in dispatching selects since we always provide
10121 -- automatic overridings for these subprograms.
10123 -- Also ignore this rule for convention CIL since .NET libraries
10124 -- do bizarre things with interfaces???
10126 -- The partial view of T may have been a private extension, for
10127 -- which inherited functions dispatching on result are abstract.
10128 -- If the full view is a null extension, there is no need for
10129 -- overriding in Ada 2005, but wrappers need to be built for them
10130 -- (see exp_ch3, Build_Controlling_Function_Wrappers).
10132 if Is_Null_Extension
(T
)
10133 and then Has_Controlling_Result
(Subp
)
10134 and then Ada_Version
>= Ada_2005
10135 and then Present
(Alias_Subp
)
10136 and then not Comes_From_Source
(Subp
)
10137 and then not Is_Abstract_Subprogram
(Alias_Subp
)
10138 and then not Is_Access_Type
(Etype
(Subp
))
10142 -- Ada 2005 (AI-251): Internal entities of interfaces need no
10143 -- processing because this check is done with the aliased
10146 elsif Present
(Interface_Alias
(Subp
)) then
10149 elsif (Is_Abstract_Subprogram
(Subp
)
10150 or else Requires_Overriding
(Subp
)
10152 (Has_Controlling_Result
(Subp
)
10153 and then Present
(Alias_Subp
)
10154 and then not Comes_From_Source
(Subp
)
10155 and then Sloc
(Subp
) = Sloc
(First_Subtype
(T
))))
10156 and then not Is_TSS
(Subp
, TSS_Stream_Input
)
10157 and then not Is_TSS
(Subp
, TSS_Stream_Output
)
10158 and then not Is_Abstract_Type
(T
)
10159 and then Convention
(T
) /= Convention_CIL
10160 and then not Is_Predefined_Interface_Primitive
(Subp
)
10162 -- Ada 2005 (AI-251): Do not consider hidden entities associated
10163 -- with abstract interface types because the check will be done
10164 -- with the aliased entity (otherwise we generate a duplicated
10167 and then not Present
(Interface_Alias
(Subp
))
10169 if Present
(Alias_Subp
) then
10171 -- Only perform the check for a derived subprogram when the
10172 -- type has an explicit record extension. This avoids incorrect
10173 -- flagging of abstract subprograms for the case of a type
10174 -- without an extension that is derived from a formal type
10175 -- with a tagged actual (can occur within a private part).
10177 -- Ada 2005 (AI-391): In the case of an inherited function with
10178 -- a controlling result of the type, the rule does not apply if
10179 -- the type is a null extension (unless the parent function
10180 -- itself is abstract, in which case the function must still be
10181 -- be overridden). The expander will generate an overriding
10182 -- wrapper function calling the parent subprogram (see
10183 -- Exp_Ch3.Make_Controlling_Wrapper_Functions).
10185 Type_Def
:= Type_Definition
(Parent
(T
));
10187 if Nkind
(Type_Def
) = N_Derived_Type_Definition
10188 and then Present
(Record_Extension_Part
(Type_Def
))
10190 (Ada_Version
< Ada_2005
10191 or else not Is_Null_Extension
(T
)
10192 or else Ekind
(Subp
) = E_Procedure
10193 or else not Has_Controlling_Result
(Subp
)
10194 or else Is_Abstract_Subprogram
(Alias_Subp
)
10195 or else Requires_Overriding
(Subp
)
10196 or else Is_Access_Type
(Etype
(Subp
)))
10198 -- Avoid reporting error in case of abstract predefined
10199 -- primitive inherited from interface type because the
10200 -- body of internally generated predefined primitives
10201 -- of tagged types are generated later by Freeze_Type
10203 if Is_Interface
(Root_Type
(T
))
10204 and then Is_Abstract_Subprogram
(Subp
)
10205 and then Is_Predefined_Dispatching_Operation
(Subp
)
10206 and then not Comes_From_Source
(Ultimate_Alias
(Subp
))
10210 -- A null extension is not obliged to override an inherited
10211 -- procedure subject to pragma Extensions_Visible with value
10212 -- False and at least one controlling OUT parameter
10213 -- (SPARK RM 6.1.7(6)).
10215 elsif Is_Null_Extension
(T
)
10216 and then Is_EVF_Procedure
(Subp
)
10222 ("type must be declared abstract or & overridden",
10225 -- Traverse the whole chain of aliased subprograms to
10226 -- complete the error notification. This is especially
10227 -- useful for traceability of the chain of entities when
10228 -- the subprogram corresponds with an interface
10229 -- subprogram (which may be defined in another package).
10231 if Present
(Alias_Subp
) then
10237 while Present
(Alias
(E
)) loop
10239 -- Avoid reporting redundant errors on entities
10240 -- inherited from interfaces
10242 if Sloc
(E
) /= Sloc
(T
) then
10243 Error_Msg_Sloc
:= Sloc
(E
);
10245 ("\& has been inherited #", T
, Subp
);
10251 Error_Msg_Sloc
:= Sloc
(E
);
10253 -- AI05-0068: report if there is an overriding
10254 -- non-abstract subprogram that is invisible.
10257 and then not Is_Abstract_Subprogram
(E
)
10260 ("\& subprogram# is not visible",
10263 -- Clarify the case where a non-null extension must
10264 -- override inherited procedure subject to pragma
10265 -- Extensions_Visible with value False and at least
10266 -- one controlling OUT param.
10268 elsif Is_EVF_Procedure
(E
) then
10270 ("\& # is subject to Extensions_Visible False",
10275 ("\& has been inherited from subprogram #",
10282 -- Ada 2005 (AI-345): Protected or task type implementing
10283 -- abstract interfaces.
10285 elsif Is_Concurrent_Record_Type
(T
)
10286 and then Present
(Interfaces
(T
))
10288 -- There is no need to check here RM 9.4(11.9/3) since we
10289 -- are processing the corresponding record type and the
10290 -- mode of the overriding subprograms was verified by
10291 -- Check_Conformance when the corresponding concurrent
10292 -- type declaration was analyzed.
10295 ("interface subprogram & must be overridden", T
, Subp
);
10297 -- Examine primitive operations of synchronized type to find
10298 -- homonyms that have the wrong profile.
10304 Prim
:= First_Entity
(Corresponding_Concurrent_Type
(T
));
10305 while Present
(Prim
) loop
10306 if Chars
(Prim
) = Chars
(Subp
) then
10308 ("profile is not type conformant with prefixed "
10309 & "view profile of inherited operation&",
10313 Next_Entity
(Prim
);
10319 Error_Msg_Node_2
:= T
;
10321 ("abstract subprogram& not allowed for type&", Subp
);
10323 -- Also post unconditional warning on the type (unconditional
10324 -- so that if there are more than one of these cases, we get
10325 -- them all, and not just the first one).
10327 Error_Msg_Node_2
:= Subp
;
10328 Error_Msg_N
("nonabstract type& has abstract subprogram&!", T
);
10331 -- A subprogram subject to pragma Extensions_Visible with value
10332 -- "True" cannot override a subprogram subject to the same pragma
10333 -- with value "False" (SPARK RM 6.1.7(5)).
10335 elsif Extensions_Visible_Status
(Subp
) = Extensions_Visible_True
10336 and then Present
(Overridden_Operation
(Subp
))
10337 and then Extensions_Visible_Status
(Overridden_Operation
(Subp
)) =
10338 Extensions_Visible_False
10340 Error_Msg_Sloc
:= Sloc
(Overridden_Operation
(Subp
));
10342 ("subprogram & with Extensions_Visible True cannot override "
10343 & "subprogram # with Extensions_Visible False", Subp
);
10346 -- Ada 2012 (AI05-0030): Perform checks related to pragma Implemented
10348 -- Subp is an expander-generated procedure which maps an interface
10349 -- alias to a protected wrapper. The interface alias is flagged by
10350 -- pragma Implemented. Ensure that Subp is a procedure when the
10351 -- implementation kind is By_Protected_Procedure or an entry when
10354 if Ada_Version
>= Ada_2012
10355 and then Is_Hidden
(Subp
)
10356 and then Present
(Interface_Alias
(Subp
))
10357 and then Has_Rep_Pragma
(Interface_Alias
(Subp
), Name_Implemented
)
10359 Check_Pragma_Implemented
(Subp
);
10362 -- Subp is an interface primitive which overrides another interface
10363 -- primitive marked with pragma Implemented.
10365 if Ada_Version
>= Ada_2012
10366 and then Present
(Overridden_Operation
(Subp
))
10367 and then Has_Rep_Pragma
10368 (Overridden_Operation
(Subp
), Name_Implemented
)
10370 -- If the overriding routine is also marked by Implemented, check
10371 -- that the two implementation kinds are conforming.
10373 if Has_Rep_Pragma
(Subp
, Name_Implemented
) then
10374 Check_Pragma_Implemented
10376 Iface_Subp
=> Overridden_Operation
(Subp
));
10378 -- Otherwise the overriding routine inherits the implementation
10379 -- kind from the overridden subprogram.
10382 Inherit_Pragma_Implemented
10384 Iface_Subp
=> Overridden_Operation
(Subp
));
10388 -- If the operation is a wrapper for a synchronized primitive, it
10389 -- may be called indirectly through a dispatching select. We assume
10390 -- that it will be referenced elsewhere indirectly, and suppress
10391 -- warnings about an unused entity.
10393 if Is_Primitive_Wrapper
(Subp
)
10394 and then Present
(Wrapped_Entity
(Subp
))
10396 Set_Referenced
(Wrapped_Entity
(Subp
));
10401 end Check_Abstract_Overriding
;
10403 ------------------------------------------------
10404 -- Check_Access_Discriminant_Requires_Limited --
10405 ------------------------------------------------
10407 procedure Check_Access_Discriminant_Requires_Limited
10412 -- A discriminant_specification for an access discriminant shall appear
10413 -- only in the declaration for a task or protected type, or for a type
10414 -- with the reserved word 'limited' in its definition or in one of its
10415 -- ancestors (RM 3.7(10)).
10417 -- AI-0063: The proper condition is that type must be immutably limited,
10418 -- or else be a partial view.
10420 if Nkind
(Discriminant_Type
(D
)) = N_Access_Definition
then
10421 if Is_Limited_View
(Current_Scope
)
10423 (Nkind
(Parent
(Current_Scope
)) = N_Private_Type_Declaration
10424 and then Limited_Present
(Parent
(Current_Scope
)))
10430 ("access discriminants allowed only for limited types", Loc
);
10433 end Check_Access_Discriminant_Requires_Limited
;
10435 -----------------------------------
10436 -- Check_Aliased_Component_Types --
10437 -----------------------------------
10439 procedure Check_Aliased_Component_Types
(T
: Entity_Id
) is
10443 -- ??? Also need to check components of record extensions, but not
10444 -- components of protected types (which are always limited).
10446 -- Ada 2005: AI-363 relaxes this rule, to allow heap objects of such
10447 -- types to be unconstrained. This is safe because it is illegal to
10448 -- create access subtypes to such types with explicit discriminant
10451 if not Is_Limited_Type
(T
) then
10452 if Ekind
(T
) = E_Record_Type
then
10453 C
:= First_Component
(T
);
10454 while Present
(C
) loop
10456 and then Has_Discriminants
(Etype
(C
))
10457 and then not Is_Constrained
(Etype
(C
))
10458 and then not In_Instance_Body
10459 and then Ada_Version
< Ada_2005
10462 ("aliased component must be constrained (RM 3.6(11))",
10466 Next_Component
(C
);
10469 elsif Ekind
(T
) = E_Array_Type
then
10470 if Has_Aliased_Components
(T
)
10471 and then Has_Discriminants
(Component_Type
(T
))
10472 and then not Is_Constrained
(Component_Type
(T
))
10473 and then not In_Instance_Body
10474 and then Ada_Version
< Ada_2005
10477 ("aliased component type must be constrained (RM 3.6(11))",
10482 end Check_Aliased_Component_Types
;
10484 ---------------------------------------
10485 -- Check_Anonymous_Access_Components --
10486 ---------------------------------------
10488 procedure Check_Anonymous_Access_Components
10489 (Typ_Decl
: Node_Id
;
10492 Comp_List
: Node_Id
)
10494 Loc
: constant Source_Ptr
:= Sloc
(Typ_Decl
);
10495 Anon_Access
: Entity_Id
;
10498 Comp_Def
: Node_Id
;
10500 Type_Def
: Node_Id
;
10502 procedure Build_Incomplete_Type_Declaration
;
10503 -- If the record type contains components that include an access to the
10504 -- current record, then create an incomplete type declaration for the
10505 -- record, to be used as the designated type of the anonymous access.
10506 -- This is done only once, and only if there is no previous partial
10507 -- view of the type.
10509 function Designates_T
(Subt
: Node_Id
) return Boolean;
10510 -- Check whether a node designates the enclosing record type, or 'Class
10513 function Mentions_T
(Acc_Def
: Node_Id
) return Boolean;
10514 -- Check whether an access definition includes a reference to
10515 -- the enclosing record type. The reference can be a subtype mark
10516 -- in the access definition itself, a 'Class attribute reference, or
10517 -- recursively a reference appearing in a parameter specification
10518 -- or result definition of an access_to_subprogram definition.
10520 --------------------------------------
10521 -- Build_Incomplete_Type_Declaration --
10522 --------------------------------------
10524 procedure Build_Incomplete_Type_Declaration
is
10529 -- Is_Tagged indicates whether the type is tagged. It is tagged if
10530 -- it's "is new ... with record" or else "is tagged record ...".
10532 Is_Tagged
: constant Boolean :=
10533 (Nkind
(Type_Definition
(Typ_Decl
)) = N_Derived_Type_Definition
10535 Present
(Record_Extension_Part
(Type_Definition
(Typ_Decl
))))
10537 (Nkind
(Type_Definition
(Typ_Decl
)) = N_Record_Definition
10538 and then Tagged_Present
(Type_Definition
(Typ_Decl
)));
10541 -- If there is a previous partial view, no need to create a new one
10542 -- If the partial view, given by Prev, is incomplete, If Prev is
10543 -- a private declaration, full declaration is flagged accordingly.
10545 if Prev
/= Typ
then
10547 Make_Class_Wide_Type
(Prev
);
10548 Set_Class_Wide_Type
(Typ
, Class_Wide_Type
(Prev
));
10549 Set_Etype
(Class_Wide_Type
(Typ
), Typ
);
10554 elsif Has_Private_Declaration
(Typ
) then
10556 -- If we refer to T'Class inside T, and T is the completion of a
10557 -- private type, then make sure the class-wide type exists.
10560 Make_Class_Wide_Type
(Typ
);
10565 -- If there was a previous anonymous access type, the incomplete
10566 -- type declaration will have been created already.
10568 elsif Present
(Current_Entity
(Typ
))
10569 and then Ekind
(Current_Entity
(Typ
)) = E_Incomplete_Type
10570 and then Full_View
(Current_Entity
(Typ
)) = Typ
10573 and then Comes_From_Source
(Current_Entity
(Typ
))
10574 and then not Is_Tagged_Type
(Current_Entity
(Typ
))
10576 Make_Class_Wide_Type
(Typ
);
10578 ("incomplete view of tagged type should be declared tagged??",
10579 Parent
(Current_Entity
(Typ
)));
10584 Inc_T
:= Make_Defining_Identifier
(Loc
, Chars
(Typ
));
10585 Decl
:= Make_Incomplete_Type_Declaration
(Loc
, Inc_T
);
10587 -- Type has already been inserted into the current scope. Remove
10588 -- it, and add incomplete declaration for type, so that subsequent
10589 -- anonymous access types can use it. The entity is unchained from
10590 -- the homonym list and from immediate visibility. After analysis,
10591 -- the entity in the incomplete declaration becomes immediately
10592 -- visible in the record declaration that follows.
10594 H
:= Current_Entity
(Typ
);
10597 Set_Name_Entity_Id
(Chars
(Typ
), Homonym
(Typ
));
10600 and then Homonym
(H
) /= Typ
10602 H
:= Homonym
(Typ
);
10605 Set_Homonym
(H
, Homonym
(Typ
));
10608 Insert_Before
(Typ_Decl
, Decl
);
10610 Set_Full_View
(Inc_T
, Typ
);
10614 -- Create a common class-wide type for both views, and set the
10615 -- Etype of the class-wide type to the full view.
10617 Make_Class_Wide_Type
(Inc_T
);
10618 Set_Class_Wide_Type
(Typ
, Class_Wide_Type
(Inc_T
));
10619 Set_Etype
(Class_Wide_Type
(Typ
), Typ
);
10622 end Build_Incomplete_Type_Declaration
;
10628 function Designates_T
(Subt
: Node_Id
) return Boolean is
10629 Type_Id
: constant Name_Id
:= Chars
(Typ
);
10631 function Names_T
(Nam
: Node_Id
) return Boolean;
10632 -- The record type has not been introduced in the current scope
10633 -- yet, so we must examine the name of the type itself, either
10634 -- an identifier T, or an expanded name of the form P.T, where
10635 -- P denotes the current scope.
10641 function Names_T
(Nam
: Node_Id
) return Boolean is
10643 if Nkind
(Nam
) = N_Identifier
then
10644 return Chars
(Nam
) = Type_Id
;
10646 elsif Nkind
(Nam
) = N_Selected_Component
then
10647 if Chars
(Selector_Name
(Nam
)) = Type_Id
then
10648 if Nkind
(Prefix
(Nam
)) = N_Identifier
then
10649 return Chars
(Prefix
(Nam
)) = Chars
(Current_Scope
);
10651 elsif Nkind
(Prefix
(Nam
)) = N_Selected_Component
then
10652 return Chars
(Selector_Name
(Prefix
(Nam
))) =
10653 Chars
(Current_Scope
);
10667 -- Start of processing for Designates_T
10670 if Nkind
(Subt
) = N_Identifier
then
10671 return Chars
(Subt
) = Type_Id
;
10673 -- Reference can be through an expanded name which has not been
10674 -- analyzed yet, and which designates enclosing scopes.
10676 elsif Nkind
(Subt
) = N_Selected_Component
then
10677 if Names_T
(Subt
) then
10680 -- Otherwise it must denote an entity that is already visible.
10681 -- The access definition may name a subtype of the enclosing
10682 -- type, if there is a previous incomplete declaration for it.
10685 Find_Selected_Component
(Subt
);
10687 Is_Entity_Name
(Subt
)
10688 and then Scope
(Entity
(Subt
)) = Current_Scope
10690 (Chars
(Base_Type
(Entity
(Subt
))) = Type_Id
10692 (Is_Class_Wide_Type
(Entity
(Subt
))
10694 Chars
(Etype
(Base_Type
(Entity
(Subt
)))) =
10698 -- A reference to the current type may appear as the prefix of
10699 -- a 'Class attribute.
10701 elsif Nkind
(Subt
) = N_Attribute_Reference
10702 and then Attribute_Name
(Subt
) = Name_Class
10704 return Names_T
(Prefix
(Subt
));
10715 function Mentions_T
(Acc_Def
: Node_Id
) return Boolean is
10716 Param_Spec
: Node_Id
;
10718 Acc_Subprg
: constant Node_Id
:=
10719 Access_To_Subprogram_Definition
(Acc_Def
);
10722 if No
(Acc_Subprg
) then
10723 return Designates_T
(Subtype_Mark
(Acc_Def
));
10726 -- Component is an access_to_subprogram: examine its formals,
10727 -- and result definition in the case of an access_to_function.
10729 Param_Spec
:= First
(Parameter_Specifications
(Acc_Subprg
));
10730 while Present
(Param_Spec
) loop
10731 if Nkind
(Parameter_Type
(Param_Spec
)) = N_Access_Definition
10732 and then Mentions_T
(Parameter_Type
(Param_Spec
))
10736 elsif Designates_T
(Parameter_Type
(Param_Spec
)) then
10743 if Nkind
(Acc_Subprg
) = N_Access_Function_Definition
then
10744 if Nkind
(Result_Definition
(Acc_Subprg
)) =
10745 N_Access_Definition
10747 return Mentions_T
(Result_Definition
(Acc_Subprg
));
10749 return Designates_T
(Result_Definition
(Acc_Subprg
));
10756 -- Start of processing for Check_Anonymous_Access_Components
10759 if No
(Comp_List
) then
10763 Comp
:= First
(Component_Items
(Comp_List
));
10764 while Present
(Comp
) loop
10765 if Nkind
(Comp
) = N_Component_Declaration
10767 (Access_Definition
(Component_Definition
(Comp
)))
10769 Mentions_T
(Access_Definition
(Component_Definition
(Comp
)))
10771 Comp_Def
:= Component_Definition
(Comp
);
10773 Access_To_Subprogram_Definition
(Access_Definition
(Comp_Def
));
10775 Build_Incomplete_Type_Declaration
;
10776 Anon_Access
:= Make_Temporary
(Loc
, 'S');
10778 -- Create a declaration for the anonymous access type: either
10779 -- an access_to_object or an access_to_subprogram.
10781 if Present
(Acc_Def
) then
10782 if Nkind
(Acc_Def
) = N_Access_Function_Definition
then
10784 Make_Access_Function_Definition
(Loc
,
10785 Parameter_Specifications
=>
10786 Parameter_Specifications
(Acc_Def
),
10787 Result_Definition
=> Result_Definition
(Acc_Def
));
10790 Make_Access_Procedure_Definition
(Loc
,
10791 Parameter_Specifications
=>
10792 Parameter_Specifications
(Acc_Def
));
10797 Make_Access_To_Object_Definition
(Loc
,
10798 Subtype_Indication
=>
10800 (Subtype_Mark
(Access_Definition
(Comp_Def
))));
10802 Set_Constant_Present
10803 (Type_Def
, Constant_Present
(Access_Definition
(Comp_Def
)));
10805 (Type_Def
, All_Present
(Access_Definition
(Comp_Def
)));
10808 Set_Null_Exclusion_Present
10810 Null_Exclusion_Present
(Access_Definition
(Comp_Def
)));
10813 Make_Full_Type_Declaration
(Loc
,
10814 Defining_Identifier
=> Anon_Access
,
10815 Type_Definition
=> Type_Def
);
10817 Insert_Before
(Typ_Decl
, Decl
);
10820 -- If an access to subprogram, create the extra formals
10822 if Present
(Acc_Def
) then
10823 Create_Extra_Formals
(Designated_Type
(Anon_Access
));
10825 -- If an access to object, preserve entity of designated type,
10826 -- for ASIS use, before rewriting the component definition.
10833 Desig
:= Entity
(Subtype_Indication
(Type_Def
));
10835 -- If the access definition is to the current record,
10836 -- the visible entity at this point is an incomplete
10837 -- type. Retrieve the full view to simplify ASIS queries
10839 if Ekind
(Desig
) = E_Incomplete_Type
then
10840 Desig
:= Full_View
(Desig
);
10844 (Subtype_Mark
(Access_Definition
(Comp_Def
)), Desig
);
10849 Make_Component_Definition
(Loc
,
10850 Subtype_Indication
=>
10851 New_Occurrence_Of
(Anon_Access
, Loc
)));
10853 if Ekind
(Designated_Type
(Anon_Access
)) = E_Subprogram_Type
then
10854 Set_Ekind
(Anon_Access
, E_Anonymous_Access_Subprogram_Type
);
10856 Set_Ekind
(Anon_Access
, E_Anonymous_Access_Type
);
10859 Set_Is_Local_Anonymous_Access
(Anon_Access
);
10865 if Present
(Variant_Part
(Comp_List
)) then
10869 V
:= First_Non_Pragma
(Variants
(Variant_Part
(Comp_List
)));
10870 while Present
(V
) loop
10871 Check_Anonymous_Access_Components
10872 (Typ_Decl
, Typ
, Prev
, Component_List
(V
));
10873 Next_Non_Pragma
(V
);
10877 end Check_Anonymous_Access_Components
;
10879 ----------------------
10880 -- Check_Completion --
10881 ----------------------
10883 procedure Check_Completion
(Body_Id
: Node_Id
:= Empty
) is
10886 procedure Post_Error
;
10887 -- Post error message for lack of completion for entity E
10893 procedure Post_Error
is
10894 procedure Missing_Body
;
10895 -- Output missing body message
10901 procedure Missing_Body
is
10903 -- Spec is in same unit, so we can post on spec
10905 if In_Same_Source_Unit
(Body_Id
, E
) then
10906 Error_Msg_N
("missing body for &", E
);
10908 -- Spec is in a separate unit, so we have to post on the body
10911 Error_Msg_NE
("missing body for & declared#!", Body_Id
, E
);
10915 -- Start of processing for Post_Error
10918 if not Comes_From_Source
(E
) then
10919 if Ekind_In
(E
, E_Task_Type
, E_Protected_Type
) then
10921 -- It may be an anonymous protected type created for a
10922 -- single variable. Post error on variable, if present.
10928 Var
:= First_Entity
(Current_Scope
);
10929 while Present
(Var
) loop
10930 exit when Etype
(Var
) = E
10931 and then Comes_From_Source
(Var
);
10936 if Present
(Var
) then
10943 -- If a generated entity has no completion, then either previous
10944 -- semantic errors have disabled the expansion phase, or else we had
10945 -- missing subunits, or else we are compiling without expansion,
10946 -- or else something is very wrong.
10948 if not Comes_From_Source
(E
) then
10950 (Serious_Errors_Detected
> 0
10951 or else Configurable_Run_Time_Violations
> 0
10952 or else Subunits_Missing
10953 or else not Expander_Active
);
10956 -- Here for source entity
10959 -- Here if no body to post the error message, so we post the error
10960 -- on the declaration that has no completion. This is not really
10961 -- the right place to post it, think about this later ???
10963 if No
(Body_Id
) then
10964 if Is_Type
(E
) then
10966 ("missing full declaration for }", Parent
(E
), E
);
10968 Error_Msg_NE
("missing body for &", Parent
(E
), E
);
10971 -- Package body has no completion for a declaration that appears
10972 -- in the corresponding spec. Post error on the body, with a
10973 -- reference to the non-completed declaration.
10976 Error_Msg_Sloc
:= Sloc
(E
);
10978 if Is_Type
(E
) then
10979 Error_Msg_NE
("missing full declaration for }!", Body_Id
, E
);
10981 elsif Is_Overloadable
(E
)
10982 and then Current_Entity_In_Scope
(E
) /= E
10984 -- It may be that the completion is mistyped and appears as
10985 -- a distinct overloading of the entity.
10988 Candidate
: constant Entity_Id
:=
10989 Current_Entity_In_Scope
(E
);
10990 Decl
: constant Node_Id
:=
10991 Unit_Declaration_Node
(Candidate
);
10994 if Is_Overloadable
(Candidate
)
10995 and then Ekind
(Candidate
) = Ekind
(E
)
10996 and then Nkind
(Decl
) = N_Subprogram_Body
10997 and then Acts_As_Spec
(Decl
)
10999 Check_Type_Conformant
(Candidate
, E
);
11015 Pack_Id
: constant Entity_Id
:= Current_Scope
;
11017 -- Start of processing for Check_Completion
11020 E
:= First_Entity
(Pack_Id
);
11021 while Present
(E
) loop
11022 if Is_Intrinsic_Subprogram
(E
) then
11025 -- The following situation requires special handling: a child unit
11026 -- that appears in the context clause of the body of its parent:
11028 -- procedure Parent.Child (...);
11030 -- with Parent.Child;
11031 -- package body Parent is
11033 -- Here Parent.Child appears as a local entity, but should not be
11034 -- flagged as requiring completion, because it is a compilation
11037 -- Ignore missing completion for a subprogram that does not come from
11038 -- source (including the _Call primitive operation of RAS types,
11039 -- which has to have the flag Comes_From_Source for other purposes):
11040 -- we assume that the expander will provide the missing completion.
11041 -- In case of previous errors, other expansion actions that provide
11042 -- bodies for null procedures with not be invoked, so inhibit message
11045 -- Note that E_Operator is not in the list that follows, because
11046 -- this kind is reserved for predefined operators, that are
11047 -- intrinsic and do not need completion.
11049 elsif Ekind_In
(E
, E_Function
,
11051 E_Generic_Function
,
11052 E_Generic_Procedure
)
11054 if Has_Completion
(E
) then
11057 elsif Is_Subprogram
(E
) and then Is_Abstract_Subprogram
(E
) then
11060 elsif Is_Subprogram
(E
)
11061 and then (not Comes_From_Source
(E
)
11062 or else Chars
(E
) = Name_uCall
)
11067 Nkind
(Parent
(Unit_Declaration_Node
(E
))) = N_Compilation_Unit
11071 elsif Nkind
(Parent
(E
)) = N_Procedure_Specification
11072 and then Null_Present
(Parent
(E
))
11073 and then Serious_Errors_Detected
> 0
11081 elsif Is_Entry
(E
) then
11082 if not Has_Completion
(E
) and then
11083 (Ekind
(Scope
(E
)) = E_Protected_Object
11084 or else Ekind
(Scope
(E
)) = E_Protected_Type
)
11089 elsif Is_Package_Or_Generic_Package
(E
) then
11090 if Unit_Requires_Body
(E
) then
11091 if not Has_Completion
(E
)
11092 and then Nkind
(Parent
(Unit_Declaration_Node
(E
))) /=
11098 elsif not Is_Child_Unit
(E
) then
11099 May_Need_Implicit_Body
(E
);
11102 -- A formal incomplete type (Ada 2012) does not require a completion;
11103 -- other incomplete type declarations do.
11105 elsif Ekind
(E
) = E_Incomplete_Type
11106 and then No
(Underlying_Type
(E
))
11107 and then not Is_Generic_Type
(E
)
11111 elsif Ekind_In
(E
, E_Task_Type
, E_Protected_Type
)
11112 and then not Has_Completion
(E
)
11116 -- A single task declared in the current scope is a constant, verify
11117 -- that the body of its anonymous type is in the same scope. If the
11118 -- task is defined elsewhere, this may be a renaming declaration for
11119 -- which no completion is needed.
11121 elsif Ekind
(E
) = E_Constant
11122 and then Ekind
(Etype
(E
)) = E_Task_Type
11123 and then not Has_Completion
(Etype
(E
))
11124 and then Scope
(Etype
(E
)) = Current_Scope
11128 elsif Ekind
(E
) = E_Protected_Object
11129 and then not Has_Completion
(Etype
(E
))
11133 elsif Ekind
(E
) = E_Record_Type
then
11134 if Is_Tagged_Type
(E
) then
11135 Check_Abstract_Overriding
(E
);
11136 Check_Conventions
(E
);
11139 Check_Aliased_Component_Types
(E
);
11141 elsif Ekind
(E
) = E_Array_Type
then
11142 Check_Aliased_Component_Types
(E
);
11148 end Check_Completion
;
11150 ------------------------------------
11151 -- Check_CPP_Type_Has_No_Defaults --
11152 ------------------------------------
11154 procedure Check_CPP_Type_Has_No_Defaults
(T
: Entity_Id
) is
11155 Tdef
: constant Node_Id
:= Type_Definition
(Declaration_Node
(T
));
11160 -- Obtain the component list
11162 if Nkind
(Tdef
) = N_Record_Definition
then
11163 Clist
:= Component_List
(Tdef
);
11164 else pragma Assert
(Nkind
(Tdef
) = N_Derived_Type_Definition
);
11165 Clist
:= Component_List
(Record_Extension_Part
(Tdef
));
11168 -- Check all components to ensure no default expressions
11170 if Present
(Clist
) then
11171 Comp
:= First
(Component_Items
(Clist
));
11172 while Present
(Comp
) loop
11173 if Present
(Expression
(Comp
)) then
11175 ("component of imported 'C'P'P type cannot have "
11176 & "default expression", Expression
(Comp
));
11182 end Check_CPP_Type_Has_No_Defaults
;
11184 ----------------------------
11185 -- Check_Delta_Expression --
11186 ----------------------------
11188 procedure Check_Delta_Expression
(E
: Node_Id
) is
11190 if not (Is_Real_Type
(Etype
(E
))) then
11191 Wrong_Type
(E
, Any_Real
);
11193 elsif not Is_OK_Static_Expression
(E
) then
11194 Flag_Non_Static_Expr
11195 ("non-static expression used for delta value!", E
);
11197 elsif not UR_Is_Positive
(Expr_Value_R
(E
)) then
11198 Error_Msg_N
("delta expression must be positive", E
);
11204 -- If any of above errors occurred, then replace the incorrect
11205 -- expression by the real 0.1, which should prevent further errors.
11208 Make_Real_Literal
(Sloc
(E
), Ureal_Tenth
));
11209 Analyze_And_Resolve
(E
, Standard_Float
);
11210 end Check_Delta_Expression
;
11212 -----------------------------
11213 -- Check_Digits_Expression --
11214 -----------------------------
11216 procedure Check_Digits_Expression
(E
: Node_Id
) is
11218 if not (Is_Integer_Type
(Etype
(E
))) then
11219 Wrong_Type
(E
, Any_Integer
);
11221 elsif not Is_OK_Static_Expression
(E
) then
11222 Flag_Non_Static_Expr
11223 ("non-static expression used for digits value!", E
);
11225 elsif Expr_Value
(E
) <= 0 then
11226 Error_Msg_N
("digits value must be greater than zero", E
);
11232 -- If any of above errors occurred, then replace the incorrect
11233 -- expression by the integer 1, which should prevent further errors.
11235 Rewrite
(E
, Make_Integer_Literal
(Sloc
(E
), 1));
11236 Analyze_And_Resolve
(E
, Standard_Integer
);
11238 end Check_Digits_Expression
;
11240 --------------------------
11241 -- Check_Initialization --
11242 --------------------------
11244 procedure Check_Initialization
(T
: Entity_Id
; Exp
: Node_Id
) is
11246 -- Special processing for limited types
11248 if Is_Limited_Type
(T
)
11249 and then not In_Instance
11250 and then not In_Inlined_Body
11252 if not OK_For_Limited_Init
(T
, Exp
) then
11254 -- In GNAT mode, this is just a warning, to allow it to be evilly
11255 -- turned off. Otherwise it is a real error.
11259 ("??cannot initialize entities of limited type!", Exp
);
11261 elsif Ada_Version
< Ada_2005
then
11263 -- The side effect removal machinery may generate illegal Ada
11264 -- code to avoid the usage of access types and 'reference in
11265 -- SPARK mode. Since this is legal code with respect to theorem
11266 -- proving, do not emit the error.
11269 and then Nkind
(Exp
) = N_Function_Call
11270 and then Nkind
(Parent
(Exp
)) = N_Object_Declaration
11271 and then not Comes_From_Source
11272 (Defining_Identifier
(Parent
(Exp
)))
11278 ("cannot initialize entities of limited type", Exp
);
11279 Explain_Limited_Type
(T
, Exp
);
11283 -- Specialize error message according to kind of illegal
11284 -- initial expression.
11286 if Nkind
(Exp
) = N_Type_Conversion
11287 and then Nkind
(Expression
(Exp
)) = N_Function_Call
11290 ("illegal context for call"
11291 & " to function with limited result", Exp
);
11295 ("initialization of limited object requires aggregate "
11296 & "or function call", Exp
);
11302 -- In gnatc or gnatprove mode, make sure set Do_Range_Check flag gets
11303 -- set unless we can be sure that no range check is required.
11305 if (GNATprove_Mode
or not Expander_Active
)
11306 and then Is_Scalar_Type
(T
)
11307 and then not Is_In_Range
(Exp
, T
, Assume_Valid
=> True)
11309 Set_Do_Range_Check
(Exp
);
11311 end Check_Initialization
;
11313 ----------------------
11314 -- Check_Interfaces --
11315 ----------------------
11317 procedure Check_Interfaces
(N
: Node_Id
; Def
: Node_Id
) is
11318 Parent_Type
: constant Entity_Id
:= Etype
(Defining_Identifier
(N
));
11321 Iface_Def
: Node_Id
;
11322 Iface_Typ
: Entity_Id
;
11323 Parent_Node
: Node_Id
;
11325 Is_Task
: Boolean := False;
11326 -- Set True if parent type or any progenitor is a task interface
11328 Is_Protected
: Boolean := False;
11329 -- Set True if parent type or any progenitor is a protected interface
11331 procedure Check_Ifaces
(Iface_Def
: Node_Id
; Error_Node
: Node_Id
);
11332 -- Check that a progenitor is compatible with declaration. If an error
11333 -- message is output, it is posted on Error_Node.
11339 procedure Check_Ifaces
(Iface_Def
: Node_Id
; Error_Node
: Node_Id
) is
11340 Iface_Id
: constant Entity_Id
:=
11341 Defining_Identifier
(Parent
(Iface_Def
));
11342 Type_Def
: Node_Id
;
11345 if Nkind
(N
) = N_Private_Extension_Declaration
then
11348 Type_Def
:= Type_Definition
(N
);
11351 if Is_Task_Interface
(Iface_Id
) then
11354 elsif Is_Protected_Interface
(Iface_Id
) then
11355 Is_Protected
:= True;
11358 if Is_Synchronized_Interface
(Iface_Id
) then
11360 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
11361 -- extension derived from a synchronized interface must explicitly
11362 -- be declared synchronized, because the full view will be a
11363 -- synchronized type.
11365 if Nkind
(N
) = N_Private_Extension_Declaration
then
11366 if not Synchronized_Present
(N
) then
11368 ("private extension of& must be explicitly synchronized",
11372 -- However, by 3.9.4(16/2), a full type that is a record extension
11373 -- is never allowed to derive from a synchronized interface (note
11374 -- that interfaces must be excluded from this check, because those
11375 -- are represented by derived type definitions in some cases).
11377 elsif Nkind
(Type_Definition
(N
)) = N_Derived_Type_Definition
11378 and then not Interface_Present
(Type_Definition
(N
))
11380 Error_Msg_N
("record extension cannot derive from synchronized "
11381 & "interface", Error_Node
);
11385 -- Check that the characteristics of the progenitor are compatible
11386 -- with the explicit qualifier in the declaration.
11387 -- The check only applies to qualifiers that come from source.
11388 -- Limited_Present also appears in the declaration of corresponding
11389 -- records, and the check does not apply to them.
11391 if Limited_Present
(Type_Def
)
11393 Is_Concurrent_Record_Type
(Defining_Identifier
(N
))
11395 if Is_Limited_Interface
(Parent_Type
)
11396 and then not Is_Limited_Interface
(Iface_Id
)
11399 ("progenitor & must be limited interface",
11400 Error_Node
, Iface_Id
);
11403 (Task_Present
(Iface_Def
)
11404 or else Protected_Present
(Iface_Def
)
11405 or else Synchronized_Present
(Iface_Def
))
11406 and then Nkind
(N
) /= N_Private_Extension_Declaration
11407 and then not Error_Posted
(N
)
11410 ("progenitor & must be limited interface",
11411 Error_Node
, Iface_Id
);
11414 -- Protected interfaces can only inherit from limited, synchronized
11415 -- or protected interfaces.
11417 elsif Nkind
(N
) = N_Full_Type_Declaration
11418 and then Protected_Present
(Type_Def
)
11420 if Limited_Present
(Iface_Def
)
11421 or else Synchronized_Present
(Iface_Def
)
11422 or else Protected_Present
(Iface_Def
)
11426 elsif Task_Present
(Iface_Def
) then
11427 Error_Msg_N
("(Ada 2005) protected interface cannot inherit "
11428 & "from task interface", Error_Node
);
11431 Error_Msg_N
("(Ada 2005) protected interface cannot inherit "
11432 & "from non-limited interface", Error_Node
);
11435 -- Ada 2005 (AI-345): Synchronized interfaces can only inherit from
11436 -- limited and synchronized.
11438 elsif Synchronized_Present
(Type_Def
) then
11439 if Limited_Present
(Iface_Def
)
11440 or else Synchronized_Present
(Iface_Def
)
11444 elsif Protected_Present
(Iface_Def
)
11445 and then Nkind
(N
) /= N_Private_Extension_Declaration
11447 Error_Msg_N
("(Ada 2005) synchronized interface cannot inherit "
11448 & "from protected interface", Error_Node
);
11450 elsif Task_Present
(Iface_Def
)
11451 and then Nkind
(N
) /= N_Private_Extension_Declaration
11453 Error_Msg_N
("(Ada 2005) synchronized interface cannot inherit "
11454 & "from task interface", Error_Node
);
11456 elsif not Is_Limited_Interface
(Iface_Id
) then
11457 Error_Msg_N
("(Ada 2005) synchronized interface cannot inherit "
11458 & "from non-limited interface", Error_Node
);
11461 -- Ada 2005 (AI-345): Task interfaces can only inherit from limited,
11462 -- synchronized or task interfaces.
11464 elsif Nkind
(N
) = N_Full_Type_Declaration
11465 and then Task_Present
(Type_Def
)
11467 if Limited_Present
(Iface_Def
)
11468 or else Synchronized_Present
(Iface_Def
)
11469 or else Task_Present
(Iface_Def
)
11473 elsif Protected_Present
(Iface_Def
) then
11474 Error_Msg_N
("(Ada 2005) task interface cannot inherit from "
11475 & "protected interface", Error_Node
);
11478 Error_Msg_N
("(Ada 2005) task interface cannot inherit from "
11479 & "non-limited interface", Error_Node
);
11484 -- Start of processing for Check_Interfaces
11487 if Is_Interface
(Parent_Type
) then
11488 if Is_Task_Interface
(Parent_Type
) then
11491 elsif Is_Protected_Interface
(Parent_Type
) then
11492 Is_Protected
:= True;
11496 if Nkind
(N
) = N_Private_Extension_Declaration
then
11498 -- Check that progenitors are compatible with declaration
11500 Iface
:= First
(Interface_List
(Def
));
11501 while Present
(Iface
) loop
11502 Iface_Typ
:= Find_Type_Of_Subtype_Indic
(Iface
);
11504 Parent_Node
:= Parent
(Base_Type
(Iface_Typ
));
11505 Iface_Def
:= Type_Definition
(Parent_Node
);
11507 if not Is_Interface
(Iface_Typ
) then
11508 Diagnose_Interface
(Iface
, Iface_Typ
);
11510 Check_Ifaces
(Iface_Def
, Iface
);
11516 if Is_Task
and Is_Protected
then
11518 ("type cannot derive from task and protected interface", N
);
11524 -- Full type declaration of derived type.
11525 -- Check compatibility with parent if it is interface type
11527 if Nkind
(Type_Definition
(N
)) = N_Derived_Type_Definition
11528 and then Is_Interface
(Parent_Type
)
11530 Parent_Node
:= Parent
(Parent_Type
);
11532 -- More detailed checks for interface varieties
11535 (Iface_Def
=> Type_Definition
(Parent_Node
),
11536 Error_Node
=> Subtype_Indication
(Type_Definition
(N
)));
11539 Iface
:= First
(Interface_List
(Def
));
11540 while Present
(Iface
) loop
11541 Iface_Typ
:= Find_Type_Of_Subtype_Indic
(Iface
);
11543 Parent_Node
:= Parent
(Base_Type
(Iface_Typ
));
11544 Iface_Def
:= Type_Definition
(Parent_Node
);
11546 if not Is_Interface
(Iface_Typ
) then
11547 Diagnose_Interface
(Iface
, Iface_Typ
);
11550 -- "The declaration of a specific descendant of an interface
11551 -- type freezes the interface type" RM 13.14
11553 Freeze_Before
(N
, Iface_Typ
);
11554 Check_Ifaces
(Iface_Def
, Error_Node
=> Iface
);
11560 if Is_Task
and Is_Protected
then
11562 ("type cannot derive from task and protected interface", N
);
11564 end Check_Interfaces
;
11566 ------------------------------------
11567 -- Check_Or_Process_Discriminants --
11568 ------------------------------------
11570 -- If an incomplete or private type declaration was already given for the
11571 -- type, the discriminants may have already been processed if they were
11572 -- present on the incomplete declaration. In this case a full conformance
11573 -- check has been performed in Find_Type_Name, and we then recheck here
11574 -- some properties that can't be checked on the partial view alone.
11575 -- Otherwise we call Process_Discriminants.
11577 procedure Check_Or_Process_Discriminants
11580 Prev
: Entity_Id
:= Empty
)
11583 if Has_Discriminants
(T
) then
11585 -- Discriminants are already set on T if they were already present
11586 -- on the partial view. Make them visible to component declarations.
11590 -- Discriminant on T (full view) referencing expr on partial view
11592 Prev_D
: Entity_Id
;
11593 -- Entity of corresponding discriminant on partial view
11596 -- Discriminant specification for full view, expression is
11597 -- the syntactic copy on full view (which has been checked for
11598 -- conformance with partial view), only used here to post error
11602 D
:= First_Discriminant
(T
);
11603 New_D
:= First
(Discriminant_Specifications
(N
));
11604 while Present
(D
) loop
11605 Prev_D
:= Current_Entity
(D
);
11606 Set_Current_Entity
(D
);
11607 Set_Is_Immediately_Visible
(D
);
11608 Set_Homonym
(D
, Prev_D
);
11610 -- Handle the case where there is an untagged partial view and
11611 -- the full view is tagged: must disallow discriminants with
11612 -- defaults, unless compiling for Ada 2012, which allows a
11613 -- limited tagged type to have defaulted discriminants (see
11614 -- AI05-0214). However, suppress error here if it was already
11615 -- reported on the default expression of the partial view.
11617 if Is_Tagged_Type
(T
)
11618 and then Present
(Expression
(Parent
(D
)))
11619 and then (not Is_Limited_Type
(Current_Scope
)
11620 or else Ada_Version
< Ada_2012
)
11621 and then not Error_Posted
(Expression
(Parent
(D
)))
11623 if Ada_Version
>= Ada_2012
then
11625 ("discriminants of nonlimited tagged type cannot have "
11627 Expression
(New_D
));
11630 ("discriminants of tagged type cannot have defaults",
11631 Expression
(New_D
));
11635 -- Ada 2005 (AI-230): Access discriminant allowed in
11636 -- non-limited record types.
11638 if Ada_Version
< Ada_2005
then
11640 -- This restriction gets applied to the full type here. It
11641 -- has already been applied earlier to the partial view.
11643 Check_Access_Discriminant_Requires_Limited
(Parent
(D
), N
);
11646 Next_Discriminant
(D
);
11651 elsif Present
(Discriminant_Specifications
(N
)) then
11652 Process_Discriminants
(N
, Prev
);
11654 end Check_Or_Process_Discriminants
;
11656 ----------------------
11657 -- Check_Real_Bound --
11658 ----------------------
11660 procedure Check_Real_Bound
(Bound
: Node_Id
) is
11662 if not Is_Real_Type
(Etype
(Bound
)) then
11664 ("bound in real type definition must be of real type", Bound
);
11666 elsif not Is_OK_Static_Expression
(Bound
) then
11667 Flag_Non_Static_Expr
11668 ("non-static expression used for real type bound!", Bound
);
11675 (Bound
, Make_Real_Literal
(Sloc
(Bound
), Ureal_0
));
11677 Resolve
(Bound
, Standard_Float
);
11678 end Check_Real_Bound
;
11680 ------------------------------
11681 -- Complete_Private_Subtype --
11682 ------------------------------
11684 procedure Complete_Private_Subtype
11687 Full_Base
: Entity_Id
;
11688 Related_Nod
: Node_Id
)
11690 Save_Next_Entity
: Entity_Id
;
11691 Save_Homonym
: Entity_Id
;
11694 -- Set semantic attributes for (implicit) private subtype completion.
11695 -- If the full type has no discriminants, then it is a copy of the
11696 -- full view of the base. Otherwise, it is a subtype of the base with
11697 -- a possible discriminant constraint. Save and restore the original
11698 -- Next_Entity field of full to ensure that the calls to Copy_Node do
11699 -- not corrupt the entity chain.
11701 -- Note that the type of the full view is the same entity as the type
11702 -- of the partial view. In this fashion, the subtype has access to the
11703 -- correct view of the parent.
11705 Save_Next_Entity
:= Next_Entity
(Full
);
11706 Save_Homonym
:= Homonym
(Priv
);
11708 case Ekind
(Full_Base
) is
11709 when E_Record_Type |
11715 Copy_Node
(Priv
, Full
);
11717 Set_Has_Discriminants
11718 (Full
, Has_Discriminants
(Full_Base
));
11719 Set_Has_Unknown_Discriminants
11720 (Full
, Has_Unknown_Discriminants
(Full_Base
));
11721 Set_First_Entity
(Full
, First_Entity
(Full_Base
));
11722 Set_Last_Entity
(Full
, Last_Entity
(Full_Base
));
11724 -- If the underlying base type is constrained, we know that the
11725 -- full view of the subtype is constrained as well (the converse
11726 -- is not necessarily true).
11728 if Is_Constrained
(Full_Base
) then
11729 Set_Is_Constrained
(Full
);
11733 Copy_Node
(Full_Base
, Full
);
11735 Set_Chars
(Full
, Chars
(Priv
));
11736 Conditional_Delay
(Full
, Priv
);
11737 Set_Sloc
(Full
, Sloc
(Priv
));
11740 Set_Next_Entity
(Full
, Save_Next_Entity
);
11741 Set_Homonym
(Full
, Save_Homonym
);
11742 Set_Associated_Node_For_Itype
(Full
, Related_Nod
);
11744 -- Set common attributes for all subtypes: kind, convention, etc.
11746 Set_Ekind
(Full
, Subtype_Kind
(Ekind
(Full_Base
)));
11747 Set_Convention
(Full
, Convention
(Full_Base
));
11749 -- The Etype of the full view is inconsistent. Gigi needs to see the
11750 -- structural full view, which is what the current scheme gives: the
11751 -- Etype of the full view is the etype of the full base. However, if the
11752 -- full base is a derived type, the full view then looks like a subtype
11753 -- of the parent, not a subtype of the full base. If instead we write:
11755 -- Set_Etype (Full, Full_Base);
11757 -- then we get inconsistencies in the front-end (confusion between
11758 -- views). Several outstanding bugs are related to this ???
11760 Set_Is_First_Subtype
(Full
, False);
11761 Set_Scope
(Full
, Scope
(Priv
));
11762 Set_Size_Info
(Full
, Full_Base
);
11763 Set_RM_Size
(Full
, RM_Size
(Full_Base
));
11764 Set_Is_Itype
(Full
);
11766 -- A subtype of a private-type-without-discriminants, whose full-view
11767 -- has discriminants with default expressions, is not constrained.
11769 if not Has_Discriminants
(Priv
) then
11770 Set_Is_Constrained
(Full
, Is_Constrained
(Full_Base
));
11772 if Has_Discriminants
(Full_Base
) then
11773 Set_Discriminant_Constraint
11774 (Full
, Discriminant_Constraint
(Full_Base
));
11776 -- The partial view may have been indefinite, the full view
11779 Set_Has_Unknown_Discriminants
11780 (Full
, Has_Unknown_Discriminants
(Full_Base
));
11784 Set_First_Rep_Item
(Full
, First_Rep_Item
(Full_Base
));
11785 Set_Depends_On_Private
(Full
, Has_Private_Component
(Full
));
11787 -- Freeze the private subtype entity if its parent is delayed, and not
11788 -- already frozen. We skip this processing if the type is an anonymous
11789 -- subtype of a record component, or is the corresponding record of a
11790 -- protected type, since these are processed when the enclosing type
11793 if not Is_Type
(Scope
(Full
)) then
11794 Set_Has_Delayed_Freeze
(Full
,
11795 Has_Delayed_Freeze
(Full_Base
)
11796 and then (not Is_Frozen
(Full_Base
)));
11799 Set_Freeze_Node
(Full
, Empty
);
11800 Set_Is_Frozen
(Full
, False);
11801 Set_Full_View
(Priv
, Full
);
11803 if Has_Discriminants
(Full
) then
11804 Set_Stored_Constraint_From_Discriminant_Constraint
(Full
);
11805 Set_Stored_Constraint
(Priv
, Stored_Constraint
(Full
));
11807 if Has_Unknown_Discriminants
(Full
) then
11808 Set_Discriminant_Constraint
(Full
, No_Elist
);
11812 if Ekind
(Full_Base
) = E_Record_Type
11813 and then Has_Discriminants
(Full_Base
)
11814 and then Has_Discriminants
(Priv
) -- might not, if errors
11815 and then not Has_Unknown_Discriminants
(Priv
)
11816 and then not Is_Empty_Elmt_List
(Discriminant_Constraint
(Priv
))
11818 Create_Constrained_Components
11819 (Full
, Related_Nod
, Full_Base
, Discriminant_Constraint
(Priv
));
11821 -- If the full base is itself derived from private, build a congruent
11822 -- subtype of its underlying type, for use by the back end. For a
11823 -- constrained record component, the declaration cannot be placed on
11824 -- the component list, but it must nevertheless be built an analyzed, to
11825 -- supply enough information for Gigi to compute the size of component.
11827 elsif Ekind
(Full_Base
) in Private_Kind
11828 and then Is_Derived_Type
(Full_Base
)
11829 and then Has_Discriminants
(Full_Base
)
11830 and then (Ekind
(Current_Scope
) /= E_Record_Subtype
)
11832 if not Is_Itype
(Priv
)
11834 Nkind
(Subtype_Indication
(Parent
(Priv
))) = N_Subtype_Indication
11836 Build_Underlying_Full_View
11837 (Parent
(Priv
), Full
, Etype
(Full_Base
));
11839 elsif Nkind
(Related_Nod
) = N_Component_Declaration
then
11840 Build_Underlying_Full_View
(Related_Nod
, Full
, Etype
(Full_Base
));
11843 elsif Is_Record_Type
(Full_Base
) then
11845 -- Show Full is simply a renaming of Full_Base
11847 Set_Cloned_Subtype
(Full
, Full_Base
);
11850 -- It is unsafe to share the bounds of a scalar type, because the Itype
11851 -- is elaborated on demand, and if a bound is non-static then different
11852 -- orders of elaboration in different units will lead to different
11853 -- external symbols.
11855 if Is_Scalar_Type
(Full_Base
) then
11856 Set_Scalar_Range
(Full
,
11857 Make_Range
(Sloc
(Related_Nod
),
11859 Duplicate_Subexpr_No_Checks
(Type_Low_Bound
(Full_Base
)),
11861 Duplicate_Subexpr_No_Checks
(Type_High_Bound
(Full_Base
))));
11863 -- This completion inherits the bounds of the full parent, but if
11864 -- the parent is an unconstrained floating point type, so is the
11867 if Is_Floating_Point_Type
(Full_Base
) then
11868 Set_Includes_Infinities
11869 (Scalar_Range
(Full
), Has_Infinities
(Full_Base
));
11873 -- ??? It seems that a lot of fields are missing that should be copied
11874 -- from Full_Base to Full. Here are some that are introduced in a
11875 -- non-disruptive way but a cleanup is necessary.
11877 if Is_Tagged_Type
(Full_Base
) then
11878 Set_Is_Tagged_Type
(Full
);
11879 Set_Direct_Primitive_Operations
11880 (Full
, Direct_Primitive_Operations
(Full_Base
));
11881 Set_No_Tagged_Streams_Pragma
11882 (Full
, No_Tagged_Streams_Pragma
(Full_Base
));
11884 -- Inherit class_wide type of full_base in case the partial view was
11885 -- not tagged. Otherwise it has already been created when the private
11886 -- subtype was analyzed.
11888 if No
(Class_Wide_Type
(Full
)) then
11889 Set_Class_Wide_Type
(Full
, Class_Wide_Type
(Full_Base
));
11892 -- If this is a subtype of a protected or task type, constrain its
11893 -- corresponding record, unless this is a subtype without constraints,
11894 -- i.e. a simple renaming as with an actual subtype in an instance.
11896 elsif Is_Concurrent_Type
(Full_Base
) then
11897 if Has_Discriminants
(Full
)
11898 and then Present
(Corresponding_Record_Type
(Full_Base
))
11900 not Is_Empty_Elmt_List
(Discriminant_Constraint
(Full
))
11902 Set_Corresponding_Record_Type
(Full
,
11903 Constrain_Corresponding_Record
11904 (Full
, Corresponding_Record_Type
(Full_Base
), Related_Nod
));
11907 Set_Corresponding_Record_Type
(Full
,
11908 Corresponding_Record_Type
(Full_Base
));
11912 -- Link rep item chain, and also setting of Has_Predicates from private
11913 -- subtype to full subtype, since we will need these on the full subtype
11914 -- to create the predicate function. Note that the full subtype may
11915 -- already have rep items, inherited from the full view of the base
11916 -- type, so we must be sure not to overwrite these entries.
11921 Next_Item
: Node_Id
;
11924 Item
:= First_Rep_Item
(Full
);
11926 -- If no existing rep items on full type, we can just link directly
11927 -- to the list of items on the private type, if any exist.. Same if
11928 -- the rep items are only those inherited from the base
11931 or else Nkind
(Item
) /= N_Aspect_Specification
11932 or else Entity
(Item
) = Full_Base
)
11933 and then Present
(First_Rep_Item
(Priv
))
11935 Set_First_Rep_Item
(Full
, First_Rep_Item
(Priv
));
11937 -- Otherwise, search to the end of items currently linked to the full
11938 -- subtype and append the private items to the end. However, if Priv
11939 -- and Full already have the same list of rep items, then the append
11940 -- is not done, as that would create a circularity.
11942 elsif Item
/= First_Rep_Item
(Priv
) then
11945 Next_Item
:= Next_Rep_Item
(Item
);
11946 exit when No
(Next_Item
);
11949 -- If the private view has aspect specifications, the full view
11950 -- inherits them. Since these aspects may already have been
11951 -- attached to the full view during derivation, do not append
11952 -- them if already present.
11954 if Item
= First_Rep_Item
(Priv
) then
11960 -- And link the private type items at the end of the chain
11963 Set_Next_Rep_Item
(Item
, First_Rep_Item
(Priv
));
11968 -- Make sure Has_Predicates is set on full type if it is set on the
11969 -- private type. Note that it may already be set on the full type and
11970 -- if so, we don't want to unset it. Similarly, propagate information
11971 -- about delayed aspects, because the corresponding pragmas must be
11972 -- analyzed when one of the views is frozen. This last step is needed
11973 -- in particular when the full type is a scalar type for which an
11974 -- anonymous base type is constructed.
11976 if Has_Predicates
(Priv
) then
11977 Set_Has_Predicates
(Full
);
11980 if Has_Delayed_Aspects
(Priv
) then
11981 Set_Has_Delayed_Aspects
(Full
);
11983 end Complete_Private_Subtype
;
11985 ----------------------------
11986 -- Constant_Redeclaration --
11987 ----------------------------
11989 procedure Constant_Redeclaration
11994 Prev
: constant Entity_Id
:= Current_Entity_In_Scope
(Id
);
11995 Obj_Def
: constant Node_Id
:= Object_Definition
(N
);
11998 procedure Check_Possible_Deferred_Completion
11999 (Prev_Id
: Entity_Id
;
12000 Prev_Obj_Def
: Node_Id
;
12001 Curr_Obj_Def
: Node_Id
);
12002 -- Determine whether the two object definitions describe the partial
12003 -- and the full view of a constrained deferred constant. Generate
12004 -- a subtype for the full view and verify that it statically matches
12005 -- the subtype of the partial view.
12007 procedure Check_Recursive_Declaration
(Typ
: Entity_Id
);
12008 -- If deferred constant is an access type initialized with an allocator,
12009 -- check whether there is an illegal recursion in the definition,
12010 -- through a default value of some record subcomponent. This is normally
12011 -- detected when generating init procs, but requires this additional
12012 -- mechanism when expansion is disabled.
12014 ----------------------------------------
12015 -- Check_Possible_Deferred_Completion --
12016 ----------------------------------------
12018 procedure Check_Possible_Deferred_Completion
12019 (Prev_Id
: Entity_Id
;
12020 Prev_Obj_Def
: Node_Id
;
12021 Curr_Obj_Def
: Node_Id
)
12024 if Nkind
(Prev_Obj_Def
) = N_Subtype_Indication
12025 and then Present
(Constraint
(Prev_Obj_Def
))
12026 and then Nkind
(Curr_Obj_Def
) = N_Subtype_Indication
12027 and then Present
(Constraint
(Curr_Obj_Def
))
12030 Loc
: constant Source_Ptr
:= Sloc
(N
);
12031 Def_Id
: constant Entity_Id
:= Make_Temporary
(Loc
, 'S');
12032 Decl
: constant Node_Id
:=
12033 Make_Subtype_Declaration
(Loc
,
12034 Defining_Identifier
=> Def_Id
,
12035 Subtype_Indication
=>
12036 Relocate_Node
(Curr_Obj_Def
));
12039 Insert_Before_And_Analyze
(N
, Decl
);
12040 Set_Etype
(Id
, Def_Id
);
12042 if not Subtypes_Statically_Match
(Etype
(Prev_Id
), Def_Id
) then
12043 Error_Msg_Sloc
:= Sloc
(Prev_Id
);
12044 Error_Msg_N
("subtype does not statically match deferred "
12045 & "declaration #", N
);
12049 end Check_Possible_Deferred_Completion
;
12051 ---------------------------------
12052 -- Check_Recursive_Declaration --
12053 ---------------------------------
12055 procedure Check_Recursive_Declaration
(Typ
: Entity_Id
) is
12059 if Is_Record_Type
(Typ
) then
12060 Comp
:= First_Component
(Typ
);
12061 while Present
(Comp
) loop
12062 if Comes_From_Source
(Comp
) then
12063 if Present
(Expression
(Parent
(Comp
)))
12064 and then Is_Entity_Name
(Expression
(Parent
(Comp
)))
12065 and then Entity
(Expression
(Parent
(Comp
))) = Prev
12067 Error_Msg_Sloc
:= Sloc
(Parent
(Comp
));
12069 ("illegal circularity with declaration for & #",
12073 elsif Is_Record_Type
(Etype
(Comp
)) then
12074 Check_Recursive_Declaration
(Etype
(Comp
));
12078 Next_Component
(Comp
);
12081 end Check_Recursive_Declaration
;
12083 -- Start of processing for Constant_Redeclaration
12086 if Nkind
(Parent
(Prev
)) = N_Object_Declaration
then
12087 if Nkind
(Object_Definition
12088 (Parent
(Prev
))) = N_Subtype_Indication
12090 -- Find type of new declaration. The constraints of the two
12091 -- views must match statically, but there is no point in
12092 -- creating an itype for the full view.
12094 if Nkind
(Obj_Def
) = N_Subtype_Indication
then
12095 Find_Type
(Subtype_Mark
(Obj_Def
));
12096 New_T
:= Entity
(Subtype_Mark
(Obj_Def
));
12099 Find_Type
(Obj_Def
);
12100 New_T
:= Entity
(Obj_Def
);
12106 -- The full view may impose a constraint, even if the partial
12107 -- view does not, so construct the subtype.
12109 New_T
:= Find_Type_Of_Object
(Obj_Def
, N
);
12114 -- Current declaration is illegal, diagnosed below in Enter_Name
12120 -- If previous full declaration or a renaming declaration exists, or if
12121 -- a homograph is present, let Enter_Name handle it, either with an
12122 -- error or with the removal of an overridden implicit subprogram.
12123 -- The previous one is a full declaration if it has an expression
12124 -- (which in the case of an aggregate is indicated by the Init flag).
12126 if Ekind
(Prev
) /= E_Constant
12127 or else Nkind
(Parent
(Prev
)) = N_Object_Renaming_Declaration
12128 or else Present
(Expression
(Parent
(Prev
)))
12129 or else Has_Init_Expression
(Parent
(Prev
))
12130 or else Present
(Full_View
(Prev
))
12134 -- Verify that types of both declarations match, or else that both types
12135 -- are anonymous access types whose designated subtypes statically match
12136 -- (as allowed in Ada 2005 by AI-385).
12138 elsif Base_Type
(Etype
(Prev
)) /= Base_Type
(New_T
)
12140 (Ekind
(Etype
(Prev
)) /= E_Anonymous_Access_Type
12141 or else Ekind
(Etype
(New_T
)) /= E_Anonymous_Access_Type
12142 or else Is_Access_Constant
(Etype
(New_T
)) /=
12143 Is_Access_Constant
(Etype
(Prev
))
12144 or else Can_Never_Be_Null
(Etype
(New_T
)) /=
12145 Can_Never_Be_Null
(Etype
(Prev
))
12146 or else Null_Exclusion_Present
(Parent
(Prev
)) /=
12147 Null_Exclusion_Present
(Parent
(Id
))
12148 or else not Subtypes_Statically_Match
12149 (Designated_Type
(Etype
(Prev
)),
12150 Designated_Type
(Etype
(New_T
))))
12152 Error_Msg_Sloc
:= Sloc
(Prev
);
12153 Error_Msg_N
("type does not match declaration#", N
);
12154 Set_Full_View
(Prev
, Id
);
12155 Set_Etype
(Id
, Any_Type
);
12157 -- A deferred constant whose type is an anonymous array is always
12158 -- illegal (unless imported). A detailed error message might be
12159 -- helpful for Ada beginners.
12161 if Nkind
(Object_Definition
(Parent
(Prev
)))
12162 = N_Constrained_Array_Definition
12163 and then Nkind
(Object_Definition
(N
))
12164 = N_Constrained_Array_Definition
12166 Error_Msg_N
("\each anonymous array is a distinct type", N
);
12167 Error_Msg_N
("a deferred constant must have a named type",
12168 Object_Definition
(Parent
(Prev
)));
12172 Null_Exclusion_Present
(Parent
(Prev
))
12173 and then not Null_Exclusion_Present
(N
)
12175 Error_Msg_Sloc
:= Sloc
(Prev
);
12176 Error_Msg_N
("null-exclusion does not match declaration#", N
);
12177 Set_Full_View
(Prev
, Id
);
12178 Set_Etype
(Id
, Any_Type
);
12180 -- If so, process the full constant declaration
12183 -- RM 7.4 (6): If the subtype defined by the subtype_indication in
12184 -- the deferred declaration is constrained, then the subtype defined
12185 -- by the subtype_indication in the full declaration shall match it
12188 Check_Possible_Deferred_Completion
12190 Prev_Obj_Def
=> Object_Definition
(Parent
(Prev
)),
12191 Curr_Obj_Def
=> Obj_Def
);
12193 Set_Full_View
(Prev
, Id
);
12194 Set_Is_Public
(Id
, Is_Public
(Prev
));
12195 Set_Is_Internal
(Id
);
12196 Append_Entity
(Id
, Current_Scope
);
12198 -- Check ALIASED present if present before (RM 7.4(7))
12200 if Is_Aliased
(Prev
)
12201 and then not Aliased_Present
(N
)
12203 Error_Msg_Sloc
:= Sloc
(Prev
);
12204 Error_Msg_N
("ALIASED required (see declaration #)", N
);
12207 -- Check that placement is in private part and that the incomplete
12208 -- declaration appeared in the visible part.
12210 if Ekind
(Current_Scope
) = E_Package
12211 and then not In_Private_Part
(Current_Scope
)
12213 Error_Msg_Sloc
:= Sloc
(Prev
);
12215 ("full constant for declaration # must be in private part", N
);
12217 elsif Ekind
(Current_Scope
) = E_Package
12219 List_Containing
(Parent
(Prev
)) /=
12220 Visible_Declarations
(Package_Specification
(Current_Scope
))
12223 ("deferred constant must be declared in visible part",
12227 if Is_Access_Type
(T
)
12228 and then Nkind
(Expression
(N
)) = N_Allocator
12230 Check_Recursive_Declaration
(Designated_Type
(T
));
12233 -- A deferred constant is a visible entity. If type has invariants,
12234 -- verify that the initial value satisfies them.
12236 if Has_Invariants
(T
) and then Present
(Invariant_Procedure
(T
)) then
12238 Make_Invariant_Call
(New_Occurrence_Of
(Prev
, Sloc
(N
))));
12241 end Constant_Redeclaration
;
12243 ----------------------
12244 -- Constrain_Access --
12245 ----------------------
12247 procedure Constrain_Access
12248 (Def_Id
: in out Entity_Id
;
12250 Related_Nod
: Node_Id
)
12252 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
12253 Desig_Type
: constant Entity_Id
:= Designated_Type
(T
);
12254 Desig_Subtype
: Entity_Id
:= Create_Itype
(E_Void
, Related_Nod
);
12255 Constraint_OK
: Boolean := True;
12258 if Is_Array_Type
(Desig_Type
) then
12259 Constrain_Array
(Desig_Subtype
, S
, Related_Nod
, Def_Id
, 'P');
12261 elsif (Is_Record_Type
(Desig_Type
)
12262 or else Is_Incomplete_Or_Private_Type
(Desig_Type
))
12263 and then not Is_Constrained
(Desig_Type
)
12265 -- ??? The following code is a temporary bypass to ignore a
12266 -- discriminant constraint on access type if it is constraining
12267 -- the current record. Avoid creating the implicit subtype of the
12268 -- record we are currently compiling since right now, we cannot
12269 -- handle these. For now, just return the access type itself.
12271 if Desig_Type
= Current_Scope
12272 and then No
(Def_Id
)
12274 Set_Ekind
(Desig_Subtype
, E_Record_Subtype
);
12275 Def_Id
:= Entity
(Subtype_Mark
(S
));
12277 -- This call added to ensure that the constraint is analyzed
12278 -- (needed for a B test). Note that we still return early from
12279 -- this procedure to avoid recursive processing. ???
12281 Constrain_Discriminated_Type
12282 (Desig_Subtype
, S
, Related_Nod
, For_Access
=> True);
12286 -- Enforce rule that the constraint is illegal if there is an
12287 -- unconstrained view of the designated type. This means that the
12288 -- partial view (either a private type declaration or a derivation
12289 -- from a private type) has no discriminants. (Defect Report
12290 -- 8652/0008, Technical Corrigendum 1, checked by ACATS B371001).
12292 -- Rule updated for Ada 2005: The private type is said to have
12293 -- a constrained partial view, given that objects of the type
12294 -- can be declared. Furthermore, the rule applies to all access
12295 -- types, unlike the rule concerning default discriminants (see
12298 if (Ekind
(T
) = E_General_Access_Type
or else Ada_Version
>= Ada_2005
)
12299 and then Has_Private_Declaration
(Desig_Type
)
12300 and then In_Open_Scopes
(Scope
(Desig_Type
))
12301 and then Has_Discriminants
(Desig_Type
)
12304 Pack
: constant Node_Id
:=
12305 Unit_Declaration_Node
(Scope
(Desig_Type
));
12310 if Nkind
(Pack
) = N_Package_Declaration
then
12311 Decls
:= Visible_Declarations
(Specification
(Pack
));
12312 Decl
:= First
(Decls
);
12313 while Present
(Decl
) loop
12314 if (Nkind
(Decl
) = N_Private_Type_Declaration
12315 and then Chars
(Defining_Identifier
(Decl
)) =
12316 Chars
(Desig_Type
))
12319 (Nkind
(Decl
) = N_Full_Type_Declaration
12321 Chars
(Defining_Identifier
(Decl
)) =
12323 and then Is_Derived_Type
(Desig_Type
)
12325 Has_Private_Declaration
(Etype
(Desig_Type
)))
12327 if No
(Discriminant_Specifications
(Decl
)) then
12329 ("cannot constrain access type if designated "
12330 & "type has constrained partial view", S
);
12342 Constrain_Discriminated_Type
(Desig_Subtype
, S
, Related_Nod
,
12343 For_Access
=> True);
12345 elsif Is_Concurrent_Type
(Desig_Type
)
12346 and then not Is_Constrained
(Desig_Type
)
12348 Constrain_Concurrent
(Desig_Subtype
, S
, Related_Nod
, Desig_Type
, ' ');
12351 Error_Msg_N
("invalid constraint on access type", S
);
12353 -- We simply ignore an invalid constraint
12355 Desig_Subtype
:= Desig_Type
;
12356 Constraint_OK
:= False;
12359 if No
(Def_Id
) then
12360 Def_Id
:= Create_Itype
(E_Access_Subtype
, Related_Nod
);
12362 Set_Ekind
(Def_Id
, E_Access_Subtype
);
12365 if Constraint_OK
then
12366 Set_Etype
(Def_Id
, Base_Type
(T
));
12368 if Is_Private_Type
(Desig_Type
) then
12369 Prepare_Private_Subtype_Completion
(Desig_Subtype
, Related_Nod
);
12372 Set_Etype
(Def_Id
, Any_Type
);
12375 Set_Size_Info
(Def_Id
, T
);
12376 Set_Is_Constrained
(Def_Id
, Constraint_OK
);
12377 Set_Directly_Designated_Type
(Def_Id
, Desig_Subtype
);
12378 Set_Depends_On_Private
(Def_Id
, Has_Private_Component
(Def_Id
));
12379 Set_Is_Access_Constant
(Def_Id
, Is_Access_Constant
(T
));
12381 Conditional_Delay
(Def_Id
, T
);
12383 -- AI-363 : Subtypes of general access types whose designated types have
12384 -- default discriminants are disallowed. In instances, the rule has to
12385 -- be checked against the actual, of which T is the subtype. In a
12386 -- generic body, the rule is checked assuming that the actual type has
12387 -- defaulted discriminants.
12389 if Ada_Version
>= Ada_2005
or else Warn_On_Ada_2005_Compatibility
then
12390 if Ekind
(Base_Type
(T
)) = E_General_Access_Type
12391 and then Has_Defaulted_Discriminants
(Desig_Type
)
12393 if Ada_Version
< Ada_2005
then
12395 ("access subtype of general access type would not " &
12396 "be allowed in Ada 2005?y?", S
);
12399 ("access subtype of general access type not allowed", S
);
12402 Error_Msg_N
("\discriminants have defaults", S
);
12404 elsif Is_Access_Type
(T
)
12405 and then Is_Generic_Type
(Desig_Type
)
12406 and then Has_Discriminants
(Desig_Type
)
12407 and then In_Package_Body
(Current_Scope
)
12409 if Ada_Version
< Ada_2005
then
12411 ("access subtype would not be allowed in generic body "
12412 & "in Ada 2005?y?", S
);
12415 ("access subtype not allowed in generic body", S
);
12419 ("\designated type is a discriminated formal", S
);
12422 end Constrain_Access
;
12424 ---------------------
12425 -- Constrain_Array --
12426 ---------------------
12428 procedure Constrain_Array
12429 (Def_Id
: in out Entity_Id
;
12431 Related_Nod
: Node_Id
;
12432 Related_Id
: Entity_Id
;
12433 Suffix
: Character)
12435 C
: constant Node_Id
:= Constraint
(SI
);
12436 Number_Of_Constraints
: Nat
:= 0;
12439 Constraint_OK
: Boolean := True;
12442 T
:= Entity
(Subtype_Mark
(SI
));
12444 if Is_Access_Type
(T
) then
12445 T
:= Designated_Type
(T
);
12448 -- If an index constraint follows a subtype mark in a subtype indication
12449 -- then the type or subtype denoted by the subtype mark must not already
12450 -- impose an index constraint. The subtype mark must denote either an
12451 -- unconstrained array type or an access type whose designated type
12452 -- is such an array type... (RM 3.6.1)
12454 if Is_Constrained
(T
) then
12455 Error_Msg_N
("array type is already constrained", Subtype_Mark
(SI
));
12456 Constraint_OK
:= False;
12459 S
:= First
(Constraints
(C
));
12460 while Present
(S
) loop
12461 Number_Of_Constraints
:= Number_Of_Constraints
+ 1;
12465 -- In either case, the index constraint must provide a discrete
12466 -- range for each index of the array type and the type of each
12467 -- discrete range must be the same as that of the corresponding
12468 -- index. (RM 3.6.1)
12470 if Number_Of_Constraints
/= Number_Dimensions
(T
) then
12471 Error_Msg_NE
("incorrect number of index constraints for }", C
, T
);
12472 Constraint_OK
:= False;
12475 S
:= First
(Constraints
(C
));
12476 Index
:= First_Index
(T
);
12479 -- Apply constraints to each index type
12481 for J
in 1 .. Number_Of_Constraints
loop
12482 Constrain_Index
(Index
, S
, Related_Nod
, Related_Id
, Suffix
, J
);
12490 if No
(Def_Id
) then
12492 Create_Itype
(E_Array_Subtype
, Related_Nod
, Related_Id
, Suffix
);
12493 Set_Parent
(Def_Id
, Related_Nod
);
12496 Set_Ekind
(Def_Id
, E_Array_Subtype
);
12499 Set_Size_Info
(Def_Id
, (T
));
12500 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
12501 Set_Etype
(Def_Id
, Base_Type
(T
));
12503 if Constraint_OK
then
12504 Set_First_Index
(Def_Id
, First
(Constraints
(C
)));
12506 Set_First_Index
(Def_Id
, First_Index
(T
));
12509 Set_Is_Constrained
(Def_Id
, True);
12510 Set_Is_Aliased
(Def_Id
, Is_Aliased
(T
));
12511 Set_Depends_On_Private
(Def_Id
, Has_Private_Component
(Def_Id
));
12513 Set_Is_Private_Composite
(Def_Id
, Is_Private_Composite
(T
));
12514 Set_Is_Limited_Composite
(Def_Id
, Is_Limited_Composite
(T
));
12516 -- A subtype does not inherit the Packed_Array_Impl_Type of is parent.
12517 -- We need to initialize the attribute because if Def_Id is previously
12518 -- analyzed through a limited_with clause, it will have the attributes
12519 -- of an incomplete type, one of which is an Elist that overlaps the
12520 -- Packed_Array_Impl_Type field.
12522 Set_Packed_Array_Impl_Type
(Def_Id
, Empty
);
12524 -- Build a freeze node if parent still needs one. Also make sure that
12525 -- the Depends_On_Private status is set because the subtype will need
12526 -- reprocessing at the time the base type does, and also we must set a
12527 -- conditional delay.
12529 Set_Depends_On_Private
(Def_Id
, Depends_On_Private
(T
));
12530 Conditional_Delay
(Def_Id
, T
);
12531 end Constrain_Array
;
12533 ------------------------------
12534 -- Constrain_Component_Type --
12535 ------------------------------
12537 function Constrain_Component_Type
12539 Constrained_Typ
: Entity_Id
;
12540 Related_Node
: Node_Id
;
12542 Constraints
: Elist_Id
) return Entity_Id
12544 Loc
: constant Source_Ptr
:= Sloc
(Constrained_Typ
);
12545 Compon_Type
: constant Entity_Id
:= Etype
(Comp
);
12547 function Build_Constrained_Array_Type
12548 (Old_Type
: Entity_Id
) return Entity_Id
;
12549 -- If Old_Type is an array type, one of whose indexes is constrained
12550 -- by a discriminant, build an Itype whose constraint replaces the
12551 -- discriminant with its value in the constraint.
12553 function Build_Constrained_Discriminated_Type
12554 (Old_Type
: Entity_Id
) return Entity_Id
;
12555 -- Ditto for record components
12557 function Build_Constrained_Access_Type
12558 (Old_Type
: Entity_Id
) return Entity_Id
;
12559 -- Ditto for access types. Makes use of previous two functions, to
12560 -- constrain designated type.
12562 function Build_Subtype
(T
: Entity_Id
; C
: List_Id
) return Entity_Id
;
12563 -- T is an array or discriminated type, C is a list of constraints
12564 -- that apply to T. This routine builds the constrained subtype.
12566 function Is_Discriminant
(Expr
: Node_Id
) return Boolean;
12567 -- Returns True if Expr is a discriminant
12569 function Get_Discr_Value
(Discrim
: Entity_Id
) return Node_Id
;
12570 -- Find the value of discriminant Discrim in Constraint
12572 -----------------------------------
12573 -- Build_Constrained_Access_Type --
12574 -----------------------------------
12576 function Build_Constrained_Access_Type
12577 (Old_Type
: Entity_Id
) return Entity_Id
12579 Desig_Type
: constant Entity_Id
:= Designated_Type
(Old_Type
);
12581 Desig_Subtype
: Entity_Id
;
12585 -- if the original access type was not embedded in the enclosing
12586 -- type definition, there is no need to produce a new access
12587 -- subtype. In fact every access type with an explicit constraint
12588 -- generates an itype whose scope is the enclosing record.
12590 if not Is_Type
(Scope
(Old_Type
)) then
12593 elsif Is_Array_Type
(Desig_Type
) then
12594 Desig_Subtype
:= Build_Constrained_Array_Type
(Desig_Type
);
12596 elsif Has_Discriminants
(Desig_Type
) then
12598 -- This may be an access type to an enclosing record type for
12599 -- which we are constructing the constrained components. Return
12600 -- the enclosing record subtype. This is not always correct,
12601 -- but avoids infinite recursion. ???
12603 Desig_Subtype
:= Any_Type
;
12605 for J
in reverse 0 .. Scope_Stack
.Last
loop
12606 Scop
:= Scope_Stack
.Table
(J
).Entity
;
12609 and then Base_Type
(Scop
) = Base_Type
(Desig_Type
)
12611 Desig_Subtype
:= Scop
;
12614 exit when not Is_Type
(Scop
);
12617 if Desig_Subtype
= Any_Type
then
12619 Build_Constrained_Discriminated_Type
(Desig_Type
);
12626 if Desig_Subtype
/= Desig_Type
then
12628 -- The Related_Node better be here or else we won't be able
12629 -- to attach new itypes to a node in the tree.
12631 pragma Assert
(Present
(Related_Node
));
12633 Itype
:= Create_Itype
(E_Access_Subtype
, Related_Node
);
12635 Set_Etype
(Itype
, Base_Type
(Old_Type
));
12636 Set_Size_Info
(Itype
, (Old_Type
));
12637 Set_Directly_Designated_Type
(Itype
, Desig_Subtype
);
12638 Set_Depends_On_Private
(Itype
, Has_Private_Component
12640 Set_Is_Access_Constant
(Itype
, Is_Access_Constant
12643 -- The new itype needs freezing when it depends on a not frozen
12644 -- type and the enclosing subtype needs freezing.
12646 if Has_Delayed_Freeze
(Constrained_Typ
)
12647 and then not Is_Frozen
(Constrained_Typ
)
12649 Conditional_Delay
(Itype
, Base_Type
(Old_Type
));
12657 end Build_Constrained_Access_Type
;
12659 ----------------------------------
12660 -- Build_Constrained_Array_Type --
12661 ----------------------------------
12663 function Build_Constrained_Array_Type
12664 (Old_Type
: Entity_Id
) return Entity_Id
12668 Old_Index
: Node_Id
;
12669 Range_Node
: Node_Id
;
12670 Constr_List
: List_Id
;
12672 Need_To_Create_Itype
: Boolean := False;
12675 Old_Index
:= First_Index
(Old_Type
);
12676 while Present
(Old_Index
) loop
12677 Get_Index_Bounds
(Old_Index
, Lo_Expr
, Hi_Expr
);
12679 if Is_Discriminant
(Lo_Expr
)
12681 Is_Discriminant
(Hi_Expr
)
12683 Need_To_Create_Itype
:= True;
12686 Next_Index
(Old_Index
);
12689 if Need_To_Create_Itype
then
12690 Constr_List
:= New_List
;
12692 Old_Index
:= First_Index
(Old_Type
);
12693 while Present
(Old_Index
) loop
12694 Get_Index_Bounds
(Old_Index
, Lo_Expr
, Hi_Expr
);
12696 if Is_Discriminant
(Lo_Expr
) then
12697 Lo_Expr
:= Get_Discr_Value
(Lo_Expr
);
12700 if Is_Discriminant
(Hi_Expr
) then
12701 Hi_Expr
:= Get_Discr_Value
(Hi_Expr
);
12706 (Loc
, New_Copy_Tree
(Lo_Expr
), New_Copy_Tree
(Hi_Expr
));
12708 Append
(Range_Node
, To
=> Constr_List
);
12710 Next_Index
(Old_Index
);
12713 return Build_Subtype
(Old_Type
, Constr_List
);
12718 end Build_Constrained_Array_Type
;
12720 ------------------------------------------
12721 -- Build_Constrained_Discriminated_Type --
12722 ------------------------------------------
12724 function Build_Constrained_Discriminated_Type
12725 (Old_Type
: Entity_Id
) return Entity_Id
12728 Constr_List
: List_Id
;
12729 Old_Constraint
: Elmt_Id
;
12731 Need_To_Create_Itype
: Boolean := False;
12734 Old_Constraint
:= First_Elmt
(Discriminant_Constraint
(Old_Type
));
12735 while Present
(Old_Constraint
) loop
12736 Expr
:= Node
(Old_Constraint
);
12738 if Is_Discriminant
(Expr
) then
12739 Need_To_Create_Itype
:= True;
12742 Next_Elmt
(Old_Constraint
);
12745 if Need_To_Create_Itype
then
12746 Constr_List
:= New_List
;
12748 Old_Constraint
:= First_Elmt
(Discriminant_Constraint
(Old_Type
));
12749 while Present
(Old_Constraint
) loop
12750 Expr
:= Node
(Old_Constraint
);
12752 if Is_Discriminant
(Expr
) then
12753 Expr
:= Get_Discr_Value
(Expr
);
12756 Append
(New_Copy_Tree
(Expr
), To
=> Constr_List
);
12758 Next_Elmt
(Old_Constraint
);
12761 return Build_Subtype
(Old_Type
, Constr_List
);
12766 end Build_Constrained_Discriminated_Type
;
12768 -------------------
12769 -- Build_Subtype --
12770 -------------------
12772 function Build_Subtype
(T
: Entity_Id
; C
: List_Id
) return Entity_Id
is
12774 Subtyp_Decl
: Node_Id
;
12775 Def_Id
: Entity_Id
;
12776 Btyp
: Entity_Id
:= Base_Type
(T
);
12779 -- The Related_Node better be here or else we won't be able to
12780 -- attach new itypes to a node in the tree.
12782 pragma Assert
(Present
(Related_Node
));
12784 -- If the view of the component's type is incomplete or private
12785 -- with unknown discriminants, then the constraint must be applied
12786 -- to the full type.
12788 if Has_Unknown_Discriminants
(Btyp
)
12789 and then Present
(Underlying_Type
(Btyp
))
12791 Btyp
:= Underlying_Type
(Btyp
);
12795 Make_Subtype_Indication
(Loc
,
12796 Subtype_Mark
=> New_Occurrence_Of
(Btyp
, Loc
),
12797 Constraint
=> Make_Index_Or_Discriminant_Constraint
(Loc
, C
));
12799 Def_Id
:= Create_Itype
(Ekind
(T
), Related_Node
);
12802 Make_Subtype_Declaration
(Loc
,
12803 Defining_Identifier
=> Def_Id
,
12804 Subtype_Indication
=> Indic
);
12806 Set_Parent
(Subtyp_Decl
, Parent
(Related_Node
));
12808 -- Itypes must be analyzed with checks off (see package Itypes)
12810 Analyze
(Subtyp_Decl
, Suppress
=> All_Checks
);
12815 ---------------------
12816 -- Get_Discr_Value --
12817 ---------------------
12819 function Get_Discr_Value
(Discrim
: Entity_Id
) return Node_Id
is
12824 -- The discriminant may be declared for the type, in which case we
12825 -- find it by iterating over the list of discriminants. If the
12826 -- discriminant is inherited from a parent type, it appears as the
12827 -- corresponding discriminant of the current type. This will be the
12828 -- case when constraining an inherited component whose constraint is
12829 -- given by a discriminant of the parent.
12831 D
:= First_Discriminant
(Typ
);
12832 E
:= First_Elmt
(Constraints
);
12834 while Present
(D
) loop
12835 if D
= Entity
(Discrim
)
12836 or else D
= CR_Discriminant
(Entity
(Discrim
))
12837 or else Corresponding_Discriminant
(D
) = Entity
(Discrim
)
12842 Next_Discriminant
(D
);
12846 -- The Corresponding_Discriminant mechanism is incomplete, because
12847 -- the correspondence between new and old discriminants is not one
12848 -- to one: one new discriminant can constrain several old ones. In
12849 -- that case, scan sequentially the stored_constraint, the list of
12850 -- discriminants of the parents, and the constraints.
12852 -- Previous code checked for the present of the Stored_Constraint
12853 -- list for the derived type, but did not use it at all. Should it
12854 -- be present when the component is a discriminated task type?
12856 if Is_Derived_Type
(Typ
)
12857 and then Scope
(Entity
(Discrim
)) = Etype
(Typ
)
12859 D
:= First_Discriminant
(Etype
(Typ
));
12860 E
:= First_Elmt
(Constraints
);
12861 while Present
(D
) loop
12862 if D
= Entity
(Discrim
) then
12866 Next_Discriminant
(D
);
12871 -- Something is wrong if we did not find the value
12873 raise Program_Error
;
12874 end Get_Discr_Value
;
12876 ---------------------
12877 -- Is_Discriminant --
12878 ---------------------
12880 function Is_Discriminant
(Expr
: Node_Id
) return Boolean is
12881 Discrim_Scope
: Entity_Id
;
12884 if Denotes_Discriminant
(Expr
) then
12885 Discrim_Scope
:= Scope
(Entity
(Expr
));
12887 -- Either we have a reference to one of Typ's discriminants,
12889 pragma Assert
(Discrim_Scope
= Typ
12891 -- or to the discriminants of the parent type, in the case
12892 -- of a derivation of a tagged type with variants.
12894 or else Discrim_Scope
= Etype
(Typ
)
12895 or else Full_View
(Discrim_Scope
) = Etype
(Typ
)
12897 -- or same as above for the case where the discriminants
12898 -- were declared in Typ's private view.
12900 or else (Is_Private_Type
(Discrim_Scope
)
12901 and then Chars
(Discrim_Scope
) = Chars
(Typ
))
12903 -- or else we are deriving from the full view and the
12904 -- discriminant is declared in the private entity.
12906 or else (Is_Private_Type
(Typ
)
12907 and then Chars
(Discrim_Scope
) = Chars
(Typ
))
12909 -- Or we are constrained the corresponding record of a
12910 -- synchronized type that completes a private declaration.
12912 or else (Is_Concurrent_Record_Type
(Typ
)
12914 Corresponding_Concurrent_Type
(Typ
) = Discrim_Scope
)
12916 -- or we have a class-wide type, in which case make sure the
12917 -- discriminant found belongs to the root type.
12919 or else (Is_Class_Wide_Type
(Typ
)
12920 and then Etype
(Typ
) = Discrim_Scope
));
12925 -- In all other cases we have something wrong
12928 end Is_Discriminant
;
12930 -- Start of processing for Constrain_Component_Type
12933 if Nkind
(Parent
(Comp
)) = N_Component_Declaration
12934 and then Comes_From_Source
(Parent
(Comp
))
12935 and then Comes_From_Source
12936 (Subtype_Indication
(Component_Definition
(Parent
(Comp
))))
12939 (Subtype_Indication
(Component_Definition
(Parent
(Comp
))))
12941 return Compon_Type
;
12943 elsif Is_Array_Type
(Compon_Type
) then
12944 return Build_Constrained_Array_Type
(Compon_Type
);
12946 elsif Has_Discriminants
(Compon_Type
) then
12947 return Build_Constrained_Discriminated_Type
(Compon_Type
);
12949 elsif Is_Access_Type
(Compon_Type
) then
12950 return Build_Constrained_Access_Type
(Compon_Type
);
12953 return Compon_Type
;
12955 end Constrain_Component_Type
;
12957 --------------------------
12958 -- Constrain_Concurrent --
12959 --------------------------
12961 -- For concurrent types, the associated record value type carries the same
12962 -- discriminants, so when we constrain a concurrent type, we must constrain
12963 -- the corresponding record type as well.
12965 procedure Constrain_Concurrent
12966 (Def_Id
: in out Entity_Id
;
12968 Related_Nod
: Node_Id
;
12969 Related_Id
: Entity_Id
;
12970 Suffix
: Character)
12972 -- Retrieve Base_Type to ensure getting to the concurrent type in the
12973 -- case of a private subtype (needed when only doing semantic analysis).
12975 T_Ent
: Entity_Id
:= Base_Type
(Entity
(Subtype_Mark
(SI
)));
12979 if Is_Access_Type
(T_Ent
) then
12980 T_Ent
:= Designated_Type
(T_Ent
);
12983 T_Val
:= Corresponding_Record_Type
(T_Ent
);
12985 if Present
(T_Val
) then
12987 if No
(Def_Id
) then
12988 Def_Id
:= Create_Itype
(E_Void
, Related_Nod
, Related_Id
, Suffix
);
12990 -- Elaborate itype now, as it may be used in a subsequent
12991 -- synchronized operation in another scope.
12993 if Nkind
(Related_Nod
) = N_Full_Type_Declaration
then
12994 Build_Itype_Reference
(Def_Id
, Related_Nod
);
12998 Constrain_Discriminated_Type
(Def_Id
, SI
, Related_Nod
);
13000 Set_Depends_On_Private
(Def_Id
, Has_Private_Component
(Def_Id
));
13001 Set_Corresponding_Record_Type
(Def_Id
,
13002 Constrain_Corresponding_Record
(Def_Id
, T_Val
, Related_Nod
));
13005 -- If there is no associated record, expansion is disabled and this
13006 -- is a generic context. Create a subtype in any case, so that
13007 -- semantic analysis can proceed.
13009 if No
(Def_Id
) then
13010 Def_Id
:= Create_Itype
(E_Void
, Related_Nod
, Related_Id
, Suffix
);
13013 Constrain_Discriminated_Type
(Def_Id
, SI
, Related_Nod
);
13015 end Constrain_Concurrent
;
13017 ------------------------------------
13018 -- Constrain_Corresponding_Record --
13019 ------------------------------------
13021 function Constrain_Corresponding_Record
13022 (Prot_Subt
: Entity_Id
;
13023 Corr_Rec
: Entity_Id
;
13024 Related_Nod
: Node_Id
) return Entity_Id
13026 T_Sub
: constant Entity_Id
:=
13027 Create_Itype
(E_Record_Subtype
, Related_Nod
, Corr_Rec
, 'C');
13030 Set_Etype
(T_Sub
, Corr_Rec
);
13031 Set_Has_Discriminants
(T_Sub
, Has_Discriminants
(Prot_Subt
));
13032 Set_Is_Constrained
(T_Sub
, True);
13033 Set_First_Entity
(T_Sub
, First_Entity
(Corr_Rec
));
13034 Set_Last_Entity
(T_Sub
, Last_Entity
(Corr_Rec
));
13036 if Has_Discriminants
(Prot_Subt
) then -- False only if errors.
13037 Set_Discriminant_Constraint
13038 (T_Sub
, Discriminant_Constraint
(Prot_Subt
));
13039 Set_Stored_Constraint_From_Discriminant_Constraint
(T_Sub
);
13040 Create_Constrained_Components
13041 (T_Sub
, Related_Nod
, Corr_Rec
, Discriminant_Constraint
(T_Sub
));
13044 Set_Depends_On_Private
(T_Sub
, Has_Private_Component
(T_Sub
));
13046 if Ekind
(Scope
(Prot_Subt
)) /= E_Record_Type
then
13047 Conditional_Delay
(T_Sub
, Corr_Rec
);
13050 -- This is a component subtype: it will be frozen in the context of
13051 -- the enclosing record's init_proc, so that discriminant references
13052 -- are resolved to discriminals. (Note: we used to skip freezing
13053 -- altogether in that case, which caused errors downstream for
13054 -- components of a bit packed array type).
13056 Set_Has_Delayed_Freeze
(T_Sub
);
13060 end Constrain_Corresponding_Record
;
13062 -----------------------
13063 -- Constrain_Decimal --
13064 -----------------------
13066 procedure Constrain_Decimal
(Def_Id
: Node_Id
; S
: Node_Id
) is
13067 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
13068 C
: constant Node_Id
:= Constraint
(S
);
13069 Loc
: constant Source_Ptr
:= Sloc
(C
);
13070 Range_Expr
: Node_Id
;
13071 Digits_Expr
: Node_Id
;
13076 Set_Ekind
(Def_Id
, E_Decimal_Fixed_Point_Subtype
);
13078 if Nkind
(C
) = N_Range_Constraint
then
13079 Range_Expr
:= Range_Expression
(C
);
13080 Digits_Val
:= Digits_Value
(T
);
13083 pragma Assert
(Nkind
(C
) = N_Digits_Constraint
);
13085 Check_SPARK_05_Restriction
("digits constraint is not allowed", S
);
13087 Digits_Expr
:= Digits_Expression
(C
);
13088 Analyze_And_Resolve
(Digits_Expr
, Any_Integer
);
13090 Check_Digits_Expression
(Digits_Expr
);
13091 Digits_Val
:= Expr_Value
(Digits_Expr
);
13093 if Digits_Val
> Digits_Value
(T
) then
13095 ("digits expression is incompatible with subtype", C
);
13096 Digits_Val
:= Digits_Value
(T
);
13099 if Present
(Range_Constraint
(C
)) then
13100 Range_Expr
:= Range_Expression
(Range_Constraint
(C
));
13102 Range_Expr
:= Empty
;
13106 Set_Etype
(Def_Id
, Base_Type
(T
));
13107 Set_Size_Info
(Def_Id
, (T
));
13108 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
13109 Set_Delta_Value
(Def_Id
, Delta_Value
(T
));
13110 Set_Scale_Value
(Def_Id
, Scale_Value
(T
));
13111 Set_Small_Value
(Def_Id
, Small_Value
(T
));
13112 Set_Machine_Radix_10
(Def_Id
, Machine_Radix_10
(T
));
13113 Set_Digits_Value
(Def_Id
, Digits_Val
);
13115 -- Manufacture range from given digits value if no range present
13117 if No
(Range_Expr
) then
13118 Bound_Val
:= (Ureal_10
** Digits_Val
- Ureal_1
) * Small_Value
(T
);
13122 Convert_To
(T
, Make_Real_Literal
(Loc
, (-Bound_Val
))),
13124 Convert_To
(T
, Make_Real_Literal
(Loc
, Bound_Val
)));
13127 Set_Scalar_Range_For_Subtype
(Def_Id
, Range_Expr
, T
);
13128 Set_Discrete_RM_Size
(Def_Id
);
13130 -- Unconditionally delay the freeze, since we cannot set size
13131 -- information in all cases correctly until the freeze point.
13133 Set_Has_Delayed_Freeze
(Def_Id
);
13134 end Constrain_Decimal
;
13136 ----------------------------------
13137 -- Constrain_Discriminated_Type --
13138 ----------------------------------
13140 procedure Constrain_Discriminated_Type
13141 (Def_Id
: Entity_Id
;
13143 Related_Nod
: Node_Id
;
13144 For_Access
: Boolean := False)
13146 E
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
13149 Elist
: Elist_Id
:= New_Elmt_List
;
13151 procedure Fixup_Bad_Constraint
;
13152 -- This is called after finding a bad constraint, and after having
13153 -- posted an appropriate error message. The mission is to leave the
13154 -- entity T in as reasonable state as possible.
13156 --------------------------
13157 -- Fixup_Bad_Constraint --
13158 --------------------------
13160 procedure Fixup_Bad_Constraint
is
13162 -- Set a reasonable Ekind for the entity. For an incomplete type,
13163 -- we can't do much, but for other types, we can set the proper
13164 -- corresponding subtype kind.
13166 if Ekind
(T
) = E_Incomplete_Type
then
13167 Set_Ekind
(Def_Id
, Ekind
(T
));
13169 Set_Ekind
(Def_Id
, Subtype_Kind
(Ekind
(T
)));
13172 -- Set Etype to the known type, to reduce chances of cascaded errors
13174 Set_Etype
(Def_Id
, E
);
13175 Set_Error_Posted
(Def_Id
);
13176 end Fixup_Bad_Constraint
;
13178 -- Start of processing for Constrain_Discriminated_Type
13181 C
:= Constraint
(S
);
13183 -- A discriminant constraint is only allowed in a subtype indication,
13184 -- after a subtype mark. This subtype mark must denote either a type
13185 -- with discriminants, or an access type whose designated type is a
13186 -- type with discriminants. A discriminant constraint specifies the
13187 -- values of these discriminants (RM 3.7.2(5)).
13189 T
:= Base_Type
(Entity
(Subtype_Mark
(S
)));
13191 if Is_Access_Type
(T
) then
13192 T
:= Designated_Type
(T
);
13195 -- Ada 2005 (AI-412): Constrained incomplete subtypes are illegal.
13196 -- Avoid generating an error for access-to-incomplete subtypes.
13198 if Ada_Version
>= Ada_2005
13199 and then Ekind
(T
) = E_Incomplete_Type
13200 and then Nkind
(Parent
(S
)) = N_Subtype_Declaration
13201 and then not Is_Itype
(Def_Id
)
13203 -- A little sanity check, emit an error message if the type
13204 -- has discriminants to begin with. Type T may be a regular
13205 -- incomplete type or imported via a limited with clause.
13207 if Has_Discriminants
(T
)
13208 or else (From_Limited_With
(T
)
13209 and then Present
(Non_Limited_View
(T
))
13210 and then Nkind
(Parent
(Non_Limited_View
(T
))) =
13211 N_Full_Type_Declaration
13212 and then Present
(Discriminant_Specifications
13213 (Parent
(Non_Limited_View
(T
)))))
13216 ("(Ada 2005) incomplete subtype may not be constrained", C
);
13218 Error_Msg_N
("invalid constraint: type has no discriminant", C
);
13221 Fixup_Bad_Constraint
;
13224 -- Check that the type has visible discriminants. The type may be
13225 -- a private type with unknown discriminants whose full view has
13226 -- discriminants which are invisible.
13228 elsif not Has_Discriminants
(T
)
13230 (Has_Unknown_Discriminants
(T
)
13231 and then Is_Private_Type
(T
))
13233 Error_Msg_N
("invalid constraint: type has no discriminant", C
);
13234 Fixup_Bad_Constraint
;
13237 elsif Is_Constrained
(E
)
13238 or else (Ekind
(E
) = E_Class_Wide_Subtype
13239 and then Present
(Discriminant_Constraint
(E
)))
13241 Error_Msg_N
("type is already constrained", Subtype_Mark
(S
));
13242 Fixup_Bad_Constraint
;
13246 -- T may be an unconstrained subtype (e.g. a generic actual).
13247 -- Constraint applies to the base type.
13249 T
:= Base_Type
(T
);
13251 Elist
:= Build_Discriminant_Constraints
(T
, S
);
13253 -- If the list returned was empty we had an error in building the
13254 -- discriminant constraint. We have also already signalled an error
13255 -- in the incomplete type case
13257 if Is_Empty_Elmt_List
(Elist
) then
13258 Fixup_Bad_Constraint
;
13262 Build_Discriminated_Subtype
(T
, Def_Id
, Elist
, Related_Nod
, For_Access
);
13263 end Constrain_Discriminated_Type
;
13265 ---------------------------
13266 -- Constrain_Enumeration --
13267 ---------------------------
13269 procedure Constrain_Enumeration
(Def_Id
: Node_Id
; S
: Node_Id
) is
13270 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
13271 C
: constant Node_Id
:= Constraint
(S
);
13274 Set_Ekind
(Def_Id
, E_Enumeration_Subtype
);
13276 Set_First_Literal
(Def_Id
, First_Literal
(Base_Type
(T
)));
13278 Set_Etype
(Def_Id
, Base_Type
(T
));
13279 Set_Size_Info
(Def_Id
, (T
));
13280 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
13281 Set_Is_Character_Type
(Def_Id
, Is_Character_Type
(T
));
13283 Set_Scalar_Range_For_Subtype
(Def_Id
, Range_Expression
(C
), T
);
13285 Set_Discrete_RM_Size
(Def_Id
);
13286 end Constrain_Enumeration
;
13288 ----------------------
13289 -- Constrain_Float --
13290 ----------------------
13292 procedure Constrain_Float
(Def_Id
: Node_Id
; S
: Node_Id
) is
13293 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
13299 Set_Ekind
(Def_Id
, E_Floating_Point_Subtype
);
13301 Set_Etype
(Def_Id
, Base_Type
(T
));
13302 Set_Size_Info
(Def_Id
, (T
));
13303 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
13305 -- Process the constraint
13307 C
:= Constraint
(S
);
13309 -- Digits constraint present
13311 if Nkind
(C
) = N_Digits_Constraint
then
13313 Check_SPARK_05_Restriction
("digits constraint is not allowed", S
);
13314 Check_Restriction
(No_Obsolescent_Features
, C
);
13316 if Warn_On_Obsolescent_Feature
then
13318 ("subtype digits constraint is an " &
13319 "obsolescent feature (RM J.3(8))?j?", C
);
13322 D
:= Digits_Expression
(C
);
13323 Analyze_And_Resolve
(D
, Any_Integer
);
13324 Check_Digits_Expression
(D
);
13325 Set_Digits_Value
(Def_Id
, Expr_Value
(D
));
13327 -- Check that digits value is in range. Obviously we can do this
13328 -- at compile time, but it is strictly a runtime check, and of
13329 -- course there is an ACVC test that checks this.
13331 if Digits_Value
(Def_Id
) > Digits_Value
(T
) then
13332 Error_Msg_Uint_1
:= Digits_Value
(T
);
13333 Error_Msg_N
("??digits value is too large, maximum is ^", D
);
13335 Make_Raise_Constraint_Error
(Sloc
(D
),
13336 Reason
=> CE_Range_Check_Failed
);
13337 Insert_Action
(Declaration_Node
(Def_Id
), Rais
);
13340 C
:= Range_Constraint
(C
);
13342 -- No digits constraint present
13345 Set_Digits_Value
(Def_Id
, Digits_Value
(T
));
13348 -- Range constraint present
13350 if Nkind
(C
) = N_Range_Constraint
then
13351 Set_Scalar_Range_For_Subtype
(Def_Id
, Range_Expression
(C
), T
);
13353 -- No range constraint present
13356 pragma Assert
(No
(C
));
13357 Set_Scalar_Range
(Def_Id
, Scalar_Range
(T
));
13360 Set_Is_Constrained
(Def_Id
);
13361 end Constrain_Float
;
13363 ---------------------
13364 -- Constrain_Index --
13365 ---------------------
13367 procedure Constrain_Index
13370 Related_Nod
: Node_Id
;
13371 Related_Id
: Entity_Id
;
13372 Suffix
: Character;
13373 Suffix_Index
: Nat
)
13375 Def_Id
: Entity_Id
;
13376 R
: Node_Id
:= Empty
;
13377 T
: constant Entity_Id
:= Etype
(Index
);
13381 Create_Itype
(E_Void
, Related_Nod
, Related_Id
, Suffix
, Suffix_Index
);
13382 Set_Etype
(Def_Id
, Base_Type
(T
));
13384 if Nkind
(S
) = N_Range
13386 (Nkind
(S
) = N_Attribute_Reference
13387 and then Attribute_Name
(S
) = Name_Range
)
13389 -- A Range attribute will be transformed into N_Range by Resolve
13395 Process_Range_Expr_In_Decl
(R
, T
);
13397 if not Error_Posted
(S
)
13399 (Nkind
(S
) /= N_Range
13400 or else not Covers
(T
, (Etype
(Low_Bound
(S
))))
13401 or else not Covers
(T
, (Etype
(High_Bound
(S
)))))
13403 if Base_Type
(T
) /= Any_Type
13404 and then Etype
(Low_Bound
(S
)) /= Any_Type
13405 and then Etype
(High_Bound
(S
)) /= Any_Type
13407 Error_Msg_N
("range expected", S
);
13411 elsif Nkind
(S
) = N_Subtype_Indication
then
13413 -- The parser has verified that this is a discrete indication
13415 Resolve_Discrete_Subtype_Indication
(S
, T
);
13416 Bad_Predicated_Subtype_Use
13417 ("subtype& has predicate, not allowed in index constraint",
13418 S
, Entity
(Subtype_Mark
(S
)));
13420 R
:= Range_Expression
(Constraint
(S
));
13422 -- Capture values of bounds and generate temporaries for them if
13423 -- needed, since checks may cause duplication of the expressions
13424 -- which must not be reevaluated.
13426 -- The forced evaluation removes side effects from expressions, which
13427 -- should occur also in GNATprove mode. Otherwise, we end up with
13428 -- unexpected insertions of actions at places where this is not
13429 -- supposed to occur, e.g. on default parameters of a call.
13431 if Expander_Active
or GNATprove_Mode
then
13433 (Low_Bound
(R
), Related_Id
=> Def_Id
, Is_Low_Bound
=> True);
13435 (High_Bound
(R
), Related_Id
=> Def_Id
, Is_High_Bound
=> True);
13438 elsif Nkind
(S
) = N_Discriminant_Association
then
13440 -- Syntactically valid in subtype indication
13442 Error_Msg_N
("invalid index constraint", S
);
13443 Rewrite
(S
, New_Occurrence_Of
(T
, Sloc
(S
)));
13446 -- Subtype_Mark case, no anonymous subtypes to construct
13451 if Is_Entity_Name
(S
) then
13452 if not Is_Type
(Entity
(S
)) then
13453 Error_Msg_N
("expect subtype mark for index constraint", S
);
13455 elsif Base_Type
(Entity
(S
)) /= Base_Type
(T
) then
13456 Wrong_Type
(S
, Base_Type
(T
));
13458 -- Check error of subtype with predicate in index constraint
13461 Bad_Predicated_Subtype_Use
13462 ("subtype& has predicate, not allowed in index constraint",
13469 Error_Msg_N
("invalid index constraint", S
);
13470 Rewrite
(S
, New_Occurrence_Of
(T
, Sloc
(S
)));
13475 -- Complete construction of the Itype
13477 if Is_Modular_Integer_Type
(T
) then
13478 Set_Ekind
(Def_Id
, E_Modular_Integer_Subtype
);
13480 elsif Is_Integer_Type
(T
) then
13481 Set_Ekind
(Def_Id
, E_Signed_Integer_Subtype
);
13484 Set_Ekind
(Def_Id
, E_Enumeration_Subtype
);
13485 Set_Is_Character_Type
(Def_Id
, Is_Character_Type
(T
));
13486 Set_First_Literal
(Def_Id
, First_Literal
(T
));
13489 Set_Size_Info
(Def_Id
, (T
));
13490 Set_RM_Size
(Def_Id
, RM_Size
(T
));
13491 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
13493 Set_Scalar_Range
(Def_Id
, R
);
13495 Set_Etype
(S
, Def_Id
);
13496 Set_Discrete_RM_Size
(Def_Id
);
13497 end Constrain_Index
;
13499 -----------------------
13500 -- Constrain_Integer --
13501 -----------------------
13503 procedure Constrain_Integer
(Def_Id
: Node_Id
; S
: Node_Id
) is
13504 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
13505 C
: constant Node_Id
:= Constraint
(S
);
13508 Set_Scalar_Range_For_Subtype
(Def_Id
, Range_Expression
(C
), T
);
13510 if Is_Modular_Integer_Type
(T
) then
13511 Set_Ekind
(Def_Id
, E_Modular_Integer_Subtype
);
13513 Set_Ekind
(Def_Id
, E_Signed_Integer_Subtype
);
13516 Set_Etype
(Def_Id
, Base_Type
(T
));
13517 Set_Size_Info
(Def_Id
, (T
));
13518 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
13519 Set_Discrete_RM_Size
(Def_Id
);
13520 end Constrain_Integer
;
13522 ------------------------------
13523 -- Constrain_Ordinary_Fixed --
13524 ------------------------------
13526 procedure Constrain_Ordinary_Fixed
(Def_Id
: Node_Id
; S
: Node_Id
) is
13527 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
13533 Set_Ekind
(Def_Id
, E_Ordinary_Fixed_Point_Subtype
);
13534 Set_Etype
(Def_Id
, Base_Type
(T
));
13535 Set_Size_Info
(Def_Id
, (T
));
13536 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
13537 Set_Small_Value
(Def_Id
, Small_Value
(T
));
13539 -- Process the constraint
13541 C
:= Constraint
(S
);
13543 -- Delta constraint present
13545 if Nkind
(C
) = N_Delta_Constraint
then
13547 Check_SPARK_05_Restriction
("delta constraint is not allowed", S
);
13548 Check_Restriction
(No_Obsolescent_Features
, C
);
13550 if Warn_On_Obsolescent_Feature
then
13552 ("subtype delta constraint is an " &
13553 "obsolescent feature (RM J.3(7))?j?");
13556 D
:= Delta_Expression
(C
);
13557 Analyze_And_Resolve
(D
, Any_Real
);
13558 Check_Delta_Expression
(D
);
13559 Set_Delta_Value
(Def_Id
, Expr_Value_R
(D
));
13561 -- Check that delta value is in range. Obviously we can do this
13562 -- at compile time, but it is strictly a runtime check, and of
13563 -- course there is an ACVC test that checks this.
13565 if Delta_Value
(Def_Id
) < Delta_Value
(T
) then
13566 Error_Msg_N
("??delta value is too small", D
);
13568 Make_Raise_Constraint_Error
(Sloc
(D
),
13569 Reason
=> CE_Range_Check_Failed
);
13570 Insert_Action
(Declaration_Node
(Def_Id
), Rais
);
13573 C
:= Range_Constraint
(C
);
13575 -- No delta constraint present
13578 Set_Delta_Value
(Def_Id
, Delta_Value
(T
));
13581 -- Range constraint present
13583 if Nkind
(C
) = N_Range_Constraint
then
13584 Set_Scalar_Range_For_Subtype
(Def_Id
, Range_Expression
(C
), T
);
13586 -- No range constraint present
13589 pragma Assert
(No
(C
));
13590 Set_Scalar_Range
(Def_Id
, Scalar_Range
(T
));
13593 Set_Discrete_RM_Size
(Def_Id
);
13595 -- Unconditionally delay the freeze, since we cannot set size
13596 -- information in all cases correctly until the freeze point.
13598 Set_Has_Delayed_Freeze
(Def_Id
);
13599 end Constrain_Ordinary_Fixed
;
13601 -----------------------
13602 -- Contain_Interface --
13603 -----------------------
13605 function Contain_Interface
13606 (Iface
: Entity_Id
;
13607 Ifaces
: Elist_Id
) return Boolean
13609 Iface_Elmt
: Elmt_Id
;
13612 if Present
(Ifaces
) then
13613 Iface_Elmt
:= First_Elmt
(Ifaces
);
13614 while Present
(Iface_Elmt
) loop
13615 if Node
(Iface_Elmt
) = Iface
then
13619 Next_Elmt
(Iface_Elmt
);
13624 end Contain_Interface
;
13626 ---------------------------
13627 -- Convert_Scalar_Bounds --
13628 ---------------------------
13630 procedure Convert_Scalar_Bounds
13632 Parent_Type
: Entity_Id
;
13633 Derived_Type
: Entity_Id
;
13636 Implicit_Base
: constant Entity_Id
:= Base_Type
(Derived_Type
);
13643 -- Defend against previous errors
13645 if No
(Scalar_Range
(Derived_Type
)) then
13646 Check_Error_Detected
;
13650 Lo
:= Build_Scalar_Bound
13651 (Type_Low_Bound
(Derived_Type
),
13652 Parent_Type
, Implicit_Base
);
13654 Hi
:= Build_Scalar_Bound
13655 (Type_High_Bound
(Derived_Type
),
13656 Parent_Type
, Implicit_Base
);
13663 Set_Includes_Infinities
(Rng
, Has_Infinities
(Derived_Type
));
13665 Set_Parent
(Rng
, N
);
13666 Set_Scalar_Range
(Derived_Type
, Rng
);
13668 -- Analyze the bounds
13670 Analyze_And_Resolve
(Lo
, Implicit_Base
);
13671 Analyze_And_Resolve
(Hi
, Implicit_Base
);
13673 -- Analyze the range itself, except that we do not analyze it if
13674 -- the bounds are real literals, and we have a fixed-point type.
13675 -- The reason for this is that we delay setting the bounds in this
13676 -- case till we know the final Small and Size values (see circuit
13677 -- in Freeze.Freeze_Fixed_Point_Type for further details).
13679 if Is_Fixed_Point_Type
(Parent_Type
)
13680 and then Nkind
(Lo
) = N_Real_Literal
13681 and then Nkind
(Hi
) = N_Real_Literal
13685 -- Here we do the analysis of the range
13687 -- Note: we do this manually, since if we do a normal Analyze and
13688 -- Resolve call, there are problems with the conversions used for
13689 -- the derived type range.
13692 Set_Etype
(Rng
, Implicit_Base
);
13693 Set_Analyzed
(Rng
, True);
13695 end Convert_Scalar_Bounds
;
13697 -------------------
13698 -- Copy_And_Swap --
13699 -------------------
13701 procedure Copy_And_Swap
(Priv
, Full
: Entity_Id
) is
13703 -- Initialize new full declaration entity by copying the pertinent
13704 -- fields of the corresponding private declaration entity.
13706 -- We temporarily set Ekind to a value appropriate for a type to
13707 -- avoid assert failures in Einfo from checking for setting type
13708 -- attributes on something that is not a type. Ekind (Priv) is an
13709 -- appropriate choice, since it allowed the attributes to be set
13710 -- in the first place. This Ekind value will be modified later.
13712 Set_Ekind
(Full
, Ekind
(Priv
));
13714 -- Also set Etype temporarily to Any_Type, again, in the absence
13715 -- of errors, it will be properly reset, and if there are errors,
13716 -- then we want a value of Any_Type to remain.
13718 Set_Etype
(Full
, Any_Type
);
13720 -- Now start copying attributes
13722 Set_Has_Discriminants
(Full
, Has_Discriminants
(Priv
));
13724 if Has_Discriminants
(Full
) then
13725 Set_Discriminant_Constraint
(Full
, Discriminant_Constraint
(Priv
));
13726 Set_Stored_Constraint
(Full
, Stored_Constraint
(Priv
));
13729 Set_First_Rep_Item
(Full
, First_Rep_Item
(Priv
));
13730 Set_Homonym
(Full
, Homonym
(Priv
));
13731 Set_Is_Immediately_Visible
(Full
, Is_Immediately_Visible
(Priv
));
13732 Set_Is_Public
(Full
, Is_Public
(Priv
));
13733 Set_Is_Pure
(Full
, Is_Pure
(Priv
));
13734 Set_Is_Tagged_Type
(Full
, Is_Tagged_Type
(Priv
));
13735 Set_Has_Pragma_Unmodified
(Full
, Has_Pragma_Unmodified
(Priv
));
13736 Set_Has_Pragma_Unreferenced
(Full
, Has_Pragma_Unreferenced
(Priv
));
13737 Set_Has_Pragma_Unreferenced_Objects
13738 (Full
, Has_Pragma_Unreferenced_Objects
13741 Conditional_Delay
(Full
, Priv
);
13743 if Is_Tagged_Type
(Full
) then
13744 Set_Direct_Primitive_Operations
13745 (Full
, Direct_Primitive_Operations
(Priv
));
13746 Set_No_Tagged_Streams_Pragma
13747 (Full
, No_Tagged_Streams_Pragma
(Priv
));
13749 if Is_Base_Type
(Priv
) then
13750 Set_Class_Wide_Type
(Full
, Class_Wide_Type
(Priv
));
13754 Set_Is_Volatile
(Full
, Is_Volatile
(Priv
));
13755 Set_Treat_As_Volatile
(Full
, Treat_As_Volatile
(Priv
));
13756 Set_Scope
(Full
, Scope
(Priv
));
13757 Set_Next_Entity
(Full
, Next_Entity
(Priv
));
13758 Set_First_Entity
(Full
, First_Entity
(Priv
));
13759 Set_Last_Entity
(Full
, Last_Entity
(Priv
));
13761 -- If access types have been recorded for later handling, keep them in
13762 -- the full view so that they get handled when the full view freeze
13763 -- node is expanded.
13765 if Present
(Freeze_Node
(Priv
))
13766 and then Present
(Access_Types_To_Process
(Freeze_Node
(Priv
)))
13768 Ensure_Freeze_Node
(Full
);
13769 Set_Access_Types_To_Process
13770 (Freeze_Node
(Full
),
13771 Access_Types_To_Process
(Freeze_Node
(Priv
)));
13774 -- Swap the two entities. Now Private is the full type entity and Full
13775 -- is the private one. They will be swapped back at the end of the
13776 -- private part. This swapping ensures that the entity that is visible
13777 -- in the private part is the full declaration.
13779 Exchange_Entities
(Priv
, Full
);
13780 Append_Entity
(Full
, Scope
(Full
));
13783 -------------------------------------
13784 -- Copy_Array_Base_Type_Attributes --
13785 -------------------------------------
13787 procedure Copy_Array_Base_Type_Attributes
(T1
, T2
: Entity_Id
) is
13789 Set_Component_Alignment
(T1
, Component_Alignment
(T2
));
13790 Set_Component_Type
(T1
, Component_Type
(T2
));
13791 Set_Component_Size
(T1
, Component_Size
(T2
));
13792 Set_Has_Controlled_Component
(T1
, Has_Controlled_Component
(T2
));
13793 Set_Has_Non_Standard_Rep
(T1
, Has_Non_Standard_Rep
(T2
));
13794 Set_Has_Protected
(T1
, Has_Protected
(T2
));
13795 Set_Has_Task
(T1
, Has_Task
(T2
));
13796 Set_Is_Packed
(T1
, Is_Packed
(T2
));
13797 Set_Has_Aliased_Components
(T1
, Has_Aliased_Components
(T2
));
13798 Set_Has_Atomic_Components
(T1
, Has_Atomic_Components
(T2
));
13799 Set_Has_Volatile_Components
(T1
, Has_Volatile_Components
(T2
));
13800 end Copy_Array_Base_Type_Attributes
;
13802 -----------------------------------
13803 -- Copy_Array_Subtype_Attributes --
13804 -----------------------------------
13806 procedure Copy_Array_Subtype_Attributes
(T1
, T2
: Entity_Id
) is
13808 Set_Size_Info
(T1
, T2
);
13810 Set_First_Index
(T1
, First_Index
(T2
));
13811 Set_Is_Aliased
(T1
, Is_Aliased
(T2
));
13812 Set_Is_Volatile
(T1
, Is_Volatile
(T2
));
13813 Set_Treat_As_Volatile
(T1
, Treat_As_Volatile
(T2
));
13814 Set_Is_Constrained
(T1
, Is_Constrained
(T2
));
13815 Set_Depends_On_Private
(T1
, Has_Private_Component
(T2
));
13816 Inherit_Rep_Item_Chain
(T1
, T2
);
13817 Set_Convention
(T1
, Convention
(T2
));
13818 Set_Is_Limited_Composite
(T1
, Is_Limited_Composite
(T2
));
13819 Set_Is_Private_Composite
(T1
, Is_Private_Composite
(T2
));
13820 Set_Packed_Array_Impl_Type
(T1
, Packed_Array_Impl_Type
(T2
));
13821 end Copy_Array_Subtype_Attributes
;
13823 -----------------------------------
13824 -- Create_Constrained_Components --
13825 -----------------------------------
13827 procedure Create_Constrained_Components
13829 Decl_Node
: Node_Id
;
13831 Constraints
: Elist_Id
)
13833 Loc
: constant Source_Ptr
:= Sloc
(Subt
);
13834 Comp_List
: constant Elist_Id
:= New_Elmt_List
;
13835 Parent_Type
: constant Entity_Id
:= Etype
(Typ
);
13836 Assoc_List
: constant List_Id
:= New_List
;
13837 Discr_Val
: Elmt_Id
;
13841 Is_Static
: Boolean := True;
13843 procedure Collect_Fixed_Components
(Typ
: Entity_Id
);
13844 -- Collect parent type components that do not appear in a variant part
13846 procedure Create_All_Components
;
13847 -- Iterate over Comp_List to create the components of the subtype
13849 function Create_Component
(Old_Compon
: Entity_Id
) return Entity_Id
;
13850 -- Creates a new component from Old_Compon, copying all the fields from
13851 -- it, including its Etype, inserts the new component in the Subt entity
13852 -- chain and returns the new component.
13854 function Is_Variant_Record
(T
: Entity_Id
) return Boolean;
13855 -- If true, and discriminants are static, collect only components from
13856 -- variants selected by discriminant values.
13858 ------------------------------
13859 -- Collect_Fixed_Components --
13860 ------------------------------
13862 procedure Collect_Fixed_Components
(Typ
: Entity_Id
) is
13864 -- Build association list for discriminants, and find components of the
13865 -- variant part selected by the values of the discriminants.
13867 Old_C
:= First_Discriminant
(Typ
);
13868 Discr_Val
:= First_Elmt
(Constraints
);
13869 while Present
(Old_C
) loop
13870 Append_To
(Assoc_List
,
13871 Make_Component_Association
(Loc
,
13872 Choices
=> New_List
(New_Occurrence_Of
(Old_C
, Loc
)),
13873 Expression
=> New_Copy
(Node
(Discr_Val
))));
13875 Next_Elmt
(Discr_Val
);
13876 Next_Discriminant
(Old_C
);
13879 -- The tag and the possible parent component are unconditionally in
13882 if Is_Tagged_Type
(Typ
) or else Has_Controlled_Component
(Typ
) then
13883 Old_C
:= First_Component
(Typ
);
13884 while Present
(Old_C
) loop
13885 if Nam_In
(Chars
(Old_C
), Name_uTag
, Name_uParent
) then
13886 Append_Elmt
(Old_C
, Comp_List
);
13889 Next_Component
(Old_C
);
13892 end Collect_Fixed_Components
;
13894 ---------------------------
13895 -- Create_All_Components --
13896 ---------------------------
13898 procedure Create_All_Components
is
13902 Comp
:= First_Elmt
(Comp_List
);
13903 while Present
(Comp
) loop
13904 Old_C
:= Node
(Comp
);
13905 New_C
:= Create_Component
(Old_C
);
13909 Constrain_Component_Type
13910 (Old_C
, Subt
, Decl_Node
, Typ
, Constraints
));
13911 Set_Is_Public
(New_C
, Is_Public
(Subt
));
13915 end Create_All_Components
;
13917 ----------------------
13918 -- Create_Component --
13919 ----------------------
13921 function Create_Component
(Old_Compon
: Entity_Id
) return Entity_Id
is
13922 New_Compon
: constant Entity_Id
:= New_Copy
(Old_Compon
);
13925 if Ekind
(Old_Compon
) = E_Discriminant
13926 and then Is_Completely_Hidden
(Old_Compon
)
13928 -- This is a shadow discriminant created for a discriminant of
13929 -- the parent type, which needs to be present in the subtype.
13930 -- Give the shadow discriminant an internal name that cannot
13931 -- conflict with that of visible components.
13933 Set_Chars
(New_Compon
, New_Internal_Name
('C'));
13936 -- Set the parent so we have a proper link for freezing etc. This is
13937 -- not a real parent pointer, since of course our parent does not own
13938 -- up to us and reference us, we are an illegitimate child of the
13939 -- original parent.
13941 Set_Parent
(New_Compon
, Parent
(Old_Compon
));
13943 -- If the old component's Esize was already determined and is a
13944 -- static value, then the new component simply inherits it. Otherwise
13945 -- the old component's size may require run-time determination, but
13946 -- the new component's size still might be statically determinable
13947 -- (if, for example it has a static constraint). In that case we want
13948 -- Layout_Type to recompute the component's size, so we reset its
13949 -- size and positional fields.
13951 if Frontend_Layout_On_Target
13952 and then not Known_Static_Esize
(Old_Compon
)
13954 Set_Esize
(New_Compon
, Uint_0
);
13955 Init_Normalized_First_Bit
(New_Compon
);
13956 Init_Normalized_Position
(New_Compon
);
13957 Init_Normalized_Position_Max
(New_Compon
);
13960 -- We do not want this node marked as Comes_From_Source, since
13961 -- otherwise it would get first class status and a separate cross-
13962 -- reference line would be generated. Illegitimate children do not
13963 -- rate such recognition.
13965 Set_Comes_From_Source
(New_Compon
, False);
13967 -- But it is a real entity, and a birth certificate must be properly
13968 -- registered by entering it into the entity list.
13970 Enter_Name
(New_Compon
);
13973 end Create_Component
;
13975 -----------------------
13976 -- Is_Variant_Record --
13977 -----------------------
13979 function Is_Variant_Record
(T
: Entity_Id
) return Boolean is
13981 return Nkind
(Parent
(T
)) = N_Full_Type_Declaration
13982 and then Nkind
(Type_Definition
(Parent
(T
))) = N_Record_Definition
13983 and then Present
(Component_List
(Type_Definition
(Parent
(T
))))
13986 (Variant_Part
(Component_List
(Type_Definition
(Parent
(T
)))));
13987 end Is_Variant_Record
;
13989 -- Start of processing for Create_Constrained_Components
13992 pragma Assert
(Subt
/= Base_Type
(Subt
));
13993 pragma Assert
(Typ
= Base_Type
(Typ
));
13995 Set_First_Entity
(Subt
, Empty
);
13996 Set_Last_Entity
(Subt
, Empty
);
13998 -- Check whether constraint is fully static, in which case we can
13999 -- optimize the list of components.
14001 Discr_Val
:= First_Elmt
(Constraints
);
14002 while Present
(Discr_Val
) loop
14003 if not Is_OK_Static_Expression
(Node
(Discr_Val
)) then
14004 Is_Static
:= False;
14008 Next_Elmt
(Discr_Val
);
14011 Set_Has_Static_Discriminants
(Subt
, Is_Static
);
14015 -- Inherit the discriminants of the parent type
14017 Add_Discriminants
: declare
14023 Old_C
:= First_Discriminant
(Typ
);
14025 while Present
(Old_C
) loop
14026 Num_Disc
:= Num_Disc
+ 1;
14027 New_C
:= Create_Component
(Old_C
);
14028 Set_Is_Public
(New_C
, Is_Public
(Subt
));
14029 Next_Discriminant
(Old_C
);
14032 -- For an untagged derived subtype, the number of discriminants may
14033 -- be smaller than the number of inherited discriminants, because
14034 -- several of them may be renamed by a single new discriminant or
14035 -- constrained. In this case, add the hidden discriminants back into
14036 -- the subtype, because they need to be present if the optimizer of
14037 -- the GCC 4.x back-end decides to break apart assignments between
14038 -- objects using the parent view into member-wise assignments.
14042 if Is_Derived_Type
(Typ
)
14043 and then not Is_Tagged_Type
(Typ
)
14045 Old_C
:= First_Stored_Discriminant
(Typ
);
14047 while Present
(Old_C
) loop
14048 Num_Gird
:= Num_Gird
+ 1;
14049 Next_Stored_Discriminant
(Old_C
);
14053 if Num_Gird
> Num_Disc
then
14055 -- Find out multiple uses of new discriminants, and add hidden
14056 -- components for the extra renamed discriminants. We recognize
14057 -- multiple uses through the Corresponding_Discriminant of a
14058 -- new discriminant: if it constrains several old discriminants,
14059 -- this field points to the last one in the parent type. The
14060 -- stored discriminants of the derived type have the same name
14061 -- as those of the parent.
14065 New_Discr
: Entity_Id
;
14066 Old_Discr
: Entity_Id
;
14069 Constr
:= First_Elmt
(Stored_Constraint
(Typ
));
14070 Old_Discr
:= First_Stored_Discriminant
(Typ
);
14071 while Present
(Constr
) loop
14072 if Is_Entity_Name
(Node
(Constr
))
14073 and then Ekind
(Entity
(Node
(Constr
))) = E_Discriminant
14075 New_Discr
:= Entity
(Node
(Constr
));
14077 if Chars
(Corresponding_Discriminant
(New_Discr
)) /=
14080 -- The new discriminant has been used to rename a
14081 -- subsequent old discriminant. Introduce a shadow
14082 -- component for the current old discriminant.
14084 New_C
:= Create_Component
(Old_Discr
);
14085 Set_Original_Record_Component
(New_C
, Old_Discr
);
14089 -- The constraint has eliminated the old discriminant.
14090 -- Introduce a shadow component.
14092 New_C
:= Create_Component
(Old_Discr
);
14093 Set_Original_Record_Component
(New_C
, Old_Discr
);
14096 Next_Elmt
(Constr
);
14097 Next_Stored_Discriminant
(Old_Discr
);
14101 end Add_Discriminants
;
14104 and then Is_Variant_Record
(Typ
)
14106 Collect_Fixed_Components
(Typ
);
14108 Gather_Components
(
14110 Component_List
(Type_Definition
(Parent
(Typ
))),
14111 Governed_By
=> Assoc_List
,
14113 Report_Errors
=> Errors
);
14114 pragma Assert
(not Errors
);
14116 Create_All_Components
;
14118 -- If the subtype declaration is created for a tagged type derivation
14119 -- with constraints, we retrieve the record definition of the parent
14120 -- type to select the components of the proper variant.
14123 and then Is_Tagged_Type
(Typ
)
14124 and then Nkind
(Parent
(Typ
)) = N_Full_Type_Declaration
14126 Nkind
(Type_Definition
(Parent
(Typ
))) = N_Derived_Type_Definition
14127 and then Is_Variant_Record
(Parent_Type
)
14129 Collect_Fixed_Components
(Typ
);
14133 Component_List
(Type_Definition
(Parent
(Parent_Type
))),
14134 Governed_By
=> Assoc_List
,
14136 Report_Errors
=> Errors
);
14138 -- Note: previously there was a check at this point that no errors
14139 -- were detected. As a consequence of AI05-220 there may be an error
14140 -- if an inherited discriminant that controls a variant has a non-
14141 -- static constraint.
14143 -- If the tagged derivation has a type extension, collect all the
14144 -- new components therein.
14146 if Present
(Record_Extension_Part
(Type_Definition
(Parent
(Typ
))))
14148 Old_C
:= First_Component
(Typ
);
14149 while Present
(Old_C
) loop
14150 if Original_Record_Component
(Old_C
) = Old_C
14151 and then Chars
(Old_C
) /= Name_uTag
14152 and then Chars
(Old_C
) /= Name_uParent
14154 Append_Elmt
(Old_C
, Comp_List
);
14157 Next_Component
(Old_C
);
14161 Create_All_Components
;
14164 -- If discriminants are not static, or if this is a multi-level type
14165 -- extension, we have to include all components of the parent type.
14167 Old_C
:= First_Component
(Typ
);
14168 while Present
(Old_C
) loop
14169 New_C
:= Create_Component
(Old_C
);
14173 Constrain_Component_Type
14174 (Old_C
, Subt
, Decl_Node
, Typ
, Constraints
));
14175 Set_Is_Public
(New_C
, Is_Public
(Subt
));
14177 Next_Component
(Old_C
);
14182 end Create_Constrained_Components
;
14184 ------------------------------------------
14185 -- Decimal_Fixed_Point_Type_Declaration --
14186 ------------------------------------------
14188 procedure Decimal_Fixed_Point_Type_Declaration
14192 Loc
: constant Source_Ptr
:= Sloc
(Def
);
14193 Digs_Expr
: constant Node_Id
:= Digits_Expression
(Def
);
14194 Delta_Expr
: constant Node_Id
:= Delta_Expression
(Def
);
14195 Implicit_Base
: Entity_Id
;
14202 Check_SPARK_05_Restriction
14203 ("decimal fixed point type is not allowed", Def
);
14204 Check_Restriction
(No_Fixed_Point
, Def
);
14206 -- Create implicit base type
14209 Create_Itype
(E_Decimal_Fixed_Point_Type
, Parent
(Def
), T
, 'B');
14210 Set_Etype
(Implicit_Base
, Implicit_Base
);
14212 -- Analyze and process delta expression
14214 Analyze_And_Resolve
(Delta_Expr
, Universal_Real
);
14216 Check_Delta_Expression
(Delta_Expr
);
14217 Delta_Val
:= Expr_Value_R
(Delta_Expr
);
14219 -- Check delta is power of 10, and determine scale value from it
14225 Scale_Val
:= Uint_0
;
14228 if Val
< Ureal_1
then
14229 while Val
< Ureal_1
loop
14230 Val
:= Val
* Ureal_10
;
14231 Scale_Val
:= Scale_Val
+ 1;
14234 if Scale_Val
> 18 then
14235 Error_Msg_N
("scale exceeds maximum value of 18", Def
);
14236 Scale_Val
:= UI_From_Int
(+18);
14240 while Val
> Ureal_1
loop
14241 Val
:= Val
/ Ureal_10
;
14242 Scale_Val
:= Scale_Val
- 1;
14245 if Scale_Val
< -18 then
14246 Error_Msg_N
("scale is less than minimum value of -18", Def
);
14247 Scale_Val
:= UI_From_Int
(-18);
14251 if Val
/= Ureal_1
then
14252 Error_Msg_N
("delta expression must be a power of 10", Def
);
14253 Delta_Val
:= Ureal_10
** (-Scale_Val
);
14257 -- Set delta, scale and small (small = delta for decimal type)
14259 Set_Delta_Value
(Implicit_Base
, Delta_Val
);
14260 Set_Scale_Value
(Implicit_Base
, Scale_Val
);
14261 Set_Small_Value
(Implicit_Base
, Delta_Val
);
14263 -- Analyze and process digits expression
14265 Analyze_And_Resolve
(Digs_Expr
, Any_Integer
);
14266 Check_Digits_Expression
(Digs_Expr
);
14267 Digs_Val
:= Expr_Value
(Digs_Expr
);
14269 if Digs_Val
> 18 then
14270 Digs_Val
:= UI_From_Int
(+18);
14271 Error_Msg_N
("digits value out of range, maximum is 18", Digs_Expr
);
14274 Set_Digits_Value
(Implicit_Base
, Digs_Val
);
14275 Bound_Val
:= UR_From_Uint
(10 ** Digs_Val
- 1) * Delta_Val
;
14277 -- Set range of base type from digits value for now. This will be
14278 -- expanded to represent the true underlying base range by Freeze.
14280 Set_Fixed_Range
(Implicit_Base
, Loc
, -Bound_Val
, Bound_Val
);
14282 -- Note: We leave size as zero for now, size will be set at freeze
14283 -- time. We have to do this for ordinary fixed-point, because the size
14284 -- depends on the specified small, and we might as well do the same for
14285 -- decimal fixed-point.
14287 pragma Assert
(Esize
(Implicit_Base
) = Uint_0
);
14289 -- If there are bounds given in the declaration use them as the
14290 -- bounds of the first named subtype.
14292 if Present
(Real_Range_Specification
(Def
)) then
14294 RRS
: constant Node_Id
:= Real_Range_Specification
(Def
);
14295 Low
: constant Node_Id
:= Low_Bound
(RRS
);
14296 High
: constant Node_Id
:= High_Bound
(RRS
);
14301 Analyze_And_Resolve
(Low
, Any_Real
);
14302 Analyze_And_Resolve
(High
, Any_Real
);
14303 Check_Real_Bound
(Low
);
14304 Check_Real_Bound
(High
);
14305 Low_Val
:= Expr_Value_R
(Low
);
14306 High_Val
:= Expr_Value_R
(High
);
14308 if Low_Val
< (-Bound_Val
) then
14310 ("range low bound too small for digits value", Low
);
14311 Low_Val
:= -Bound_Val
;
14314 if High_Val
> Bound_Val
then
14316 ("range high bound too large for digits value", High
);
14317 High_Val
:= Bound_Val
;
14320 Set_Fixed_Range
(T
, Loc
, Low_Val
, High_Val
);
14323 -- If no explicit range, use range that corresponds to given
14324 -- digits value. This will end up as the final range for the
14328 Set_Fixed_Range
(T
, Loc
, -Bound_Val
, Bound_Val
);
14331 -- Complete entity for first subtype. The inheritance of the rep item
14332 -- chain ensures that SPARK-related pragmas are not clobbered when the
14333 -- decimal fixed point type acts as a full view of a private type.
14335 Set_Ekind
(T
, E_Decimal_Fixed_Point_Subtype
);
14336 Set_Etype
(T
, Implicit_Base
);
14337 Set_Size_Info
(T
, Implicit_Base
);
14338 Inherit_Rep_Item_Chain
(T
, Implicit_Base
);
14339 Set_Digits_Value
(T
, Digs_Val
);
14340 Set_Delta_Value
(T
, Delta_Val
);
14341 Set_Small_Value
(T
, Delta_Val
);
14342 Set_Scale_Value
(T
, Scale_Val
);
14343 Set_Is_Constrained
(T
);
14344 end Decimal_Fixed_Point_Type_Declaration
;
14346 -----------------------------------
14347 -- Derive_Progenitor_Subprograms --
14348 -----------------------------------
14350 procedure Derive_Progenitor_Subprograms
14351 (Parent_Type
: Entity_Id
;
14352 Tagged_Type
: Entity_Id
)
14357 Iface_Elmt
: Elmt_Id
;
14358 Iface_Subp
: Entity_Id
;
14359 New_Subp
: Entity_Id
:= Empty
;
14360 Prim_Elmt
: Elmt_Id
;
14365 pragma Assert
(Ada_Version
>= Ada_2005
14366 and then Is_Record_Type
(Tagged_Type
)
14367 and then Is_Tagged_Type
(Tagged_Type
)
14368 and then Has_Interfaces
(Tagged_Type
));
14370 -- Step 1: Transfer to the full-view primitives associated with the
14371 -- partial-view that cover interface primitives. Conceptually this
14372 -- work should be done later by Process_Full_View; done here to
14373 -- simplify its implementation at later stages. It can be safely
14374 -- done here because interfaces must be visible in the partial and
14375 -- private view (RM 7.3(7.3/2)).
14377 -- Small optimization: This work is only required if the parent may
14378 -- have entities whose Alias attribute reference an interface primitive.
14379 -- Such a situation may occur if the parent is an abstract type and the
14380 -- primitive has not been yet overridden or if the parent is a generic
14381 -- formal type covering interfaces.
14383 -- If the tagged type is not abstract, it cannot have abstract
14384 -- primitives (the only entities in the list of primitives of
14385 -- non-abstract tagged types that can reference abstract primitives
14386 -- through its Alias attribute are the internal entities that have
14387 -- attribute Interface_Alias, and these entities are generated later
14388 -- by Add_Internal_Interface_Entities).
14390 if In_Private_Part
(Current_Scope
)
14391 and then (Is_Abstract_Type
(Parent_Type
)
14393 Is_Generic_Type
(Parent_Type
))
14395 Elmt
:= First_Elmt
(Primitive_Operations
(Tagged_Type
));
14396 while Present
(Elmt
) loop
14397 Subp
:= Node
(Elmt
);
14399 -- At this stage it is not possible to have entities in the list
14400 -- of primitives that have attribute Interface_Alias.
14402 pragma Assert
(No
(Interface_Alias
(Subp
)));
14404 Typ
:= Find_Dispatching_Type
(Ultimate_Alias
(Subp
));
14406 if Is_Interface
(Typ
) then
14407 E
:= Find_Primitive_Covering_Interface
14408 (Tagged_Type
=> Tagged_Type
,
14409 Iface_Prim
=> Subp
);
14412 and then Find_Dispatching_Type
(Ultimate_Alias
(E
)) /= Typ
14414 Replace_Elmt
(Elmt
, E
);
14415 Remove_Homonym
(Subp
);
14423 -- Step 2: Add primitives of progenitors that are not implemented by
14424 -- parents of Tagged_Type.
14426 if Present
(Interfaces
(Base_Type
(Tagged_Type
))) then
14427 Iface_Elmt
:= First_Elmt
(Interfaces
(Base_Type
(Tagged_Type
)));
14428 while Present
(Iface_Elmt
) loop
14429 Iface
:= Node
(Iface_Elmt
);
14431 Prim_Elmt
:= First_Elmt
(Primitive_Operations
(Iface
));
14432 while Present
(Prim_Elmt
) loop
14433 Iface_Subp
:= Node
(Prim_Elmt
);
14435 -- Exclude derivation of predefined primitives except those
14436 -- that come from source, or are inherited from one that comes
14437 -- from source. Required to catch declarations of equality
14438 -- operators of interfaces. For example:
14440 -- type Iface is interface;
14441 -- function "=" (Left, Right : Iface) return Boolean;
14443 if not Is_Predefined_Dispatching_Operation
(Iface_Subp
)
14444 or else Comes_From_Source
(Ultimate_Alias
(Iface_Subp
))
14446 E
:= Find_Primitive_Covering_Interface
14447 (Tagged_Type
=> Tagged_Type
,
14448 Iface_Prim
=> Iface_Subp
);
14450 -- If not found we derive a new primitive leaving its alias
14451 -- attribute referencing the interface primitive.
14455 (New_Subp
, Iface_Subp
, Tagged_Type
, Iface
);
14457 -- Ada 2012 (AI05-0197): If the covering primitive's name
14458 -- differs from the name of the interface primitive then it
14459 -- is a private primitive inherited from a parent type. In
14460 -- such case, given that Tagged_Type covers the interface,
14461 -- the inherited private primitive becomes visible. For such
14462 -- purpose we add a new entity that renames the inherited
14463 -- private primitive.
14465 elsif Chars
(E
) /= Chars
(Iface_Subp
) then
14466 pragma Assert
(Has_Suffix
(E
, 'P'));
14468 (New_Subp
, Iface_Subp
, Tagged_Type
, Iface
);
14469 Set_Alias
(New_Subp
, E
);
14470 Set_Is_Abstract_Subprogram
(New_Subp
,
14471 Is_Abstract_Subprogram
(E
));
14473 -- Propagate to the full view interface entities associated
14474 -- with the partial view.
14476 elsif In_Private_Part
(Current_Scope
)
14477 and then Present
(Alias
(E
))
14478 and then Alias
(E
) = Iface_Subp
14480 List_Containing
(Parent
(E
)) /=
14481 Private_Declarations
14483 (Unit_Declaration_Node
(Current_Scope
)))
14485 Append_Elmt
(E
, Primitive_Operations
(Tagged_Type
));
14489 Next_Elmt
(Prim_Elmt
);
14492 Next_Elmt
(Iface_Elmt
);
14495 end Derive_Progenitor_Subprograms
;
14497 -----------------------
14498 -- Derive_Subprogram --
14499 -----------------------
14501 procedure Derive_Subprogram
14502 (New_Subp
: in out Entity_Id
;
14503 Parent_Subp
: Entity_Id
;
14504 Derived_Type
: Entity_Id
;
14505 Parent_Type
: Entity_Id
;
14506 Actual_Subp
: Entity_Id
:= Empty
)
14508 Formal
: Entity_Id
;
14509 -- Formal parameter of parent primitive operation
14511 Formal_Of_Actual
: Entity_Id
;
14512 -- Formal parameter of actual operation, when the derivation is to
14513 -- create a renaming for a primitive operation of an actual in an
14516 New_Formal
: Entity_Id
;
14517 -- Formal of inherited operation
14519 Visible_Subp
: Entity_Id
:= Parent_Subp
;
14521 function Is_Private_Overriding
return Boolean;
14522 -- If Subp is a private overriding of a visible operation, the inherited
14523 -- operation derives from the overridden op (even though its body is the
14524 -- overriding one) and the inherited operation is visible now. See
14525 -- sem_disp to see the full details of the handling of the overridden
14526 -- subprogram, which is removed from the list of primitive operations of
14527 -- the type. The overridden subprogram is saved locally in Visible_Subp,
14528 -- and used to diagnose abstract operations that need overriding in the
14531 procedure Replace_Type
(Id
, New_Id
: Entity_Id
);
14532 -- When the type is an anonymous access type, create a new access type
14533 -- designating the derived type.
14535 procedure Set_Derived_Name
;
14536 -- This procedure sets the appropriate Chars name for New_Subp. This
14537 -- is normally just a copy of the parent name. An exception arises for
14538 -- type support subprograms, where the name is changed to reflect the
14539 -- name of the derived type, e.g. if type foo is derived from type bar,
14540 -- then a procedure barDA is derived with a name fooDA.
14542 ---------------------------
14543 -- Is_Private_Overriding --
14544 ---------------------------
14546 function Is_Private_Overriding
return Boolean is
14550 -- If the parent is not a dispatching operation there is no
14551 -- need to investigate overridings
14553 if not Is_Dispatching_Operation
(Parent_Subp
) then
14557 -- The visible operation that is overridden is a homonym of the
14558 -- parent subprogram. We scan the homonym chain to find the one
14559 -- whose alias is the subprogram we are deriving.
14561 Prev
:= Current_Entity
(Parent_Subp
);
14562 while Present
(Prev
) loop
14563 if Ekind
(Prev
) = Ekind
(Parent_Subp
)
14564 and then Alias
(Prev
) = Parent_Subp
14565 and then Scope
(Parent_Subp
) = Scope
(Prev
)
14566 and then not Is_Hidden
(Prev
)
14568 Visible_Subp
:= Prev
;
14572 Prev
:= Homonym
(Prev
);
14576 end Is_Private_Overriding
;
14582 procedure Replace_Type
(Id
, New_Id
: Entity_Id
) is
14583 Id_Type
: constant Entity_Id
:= Etype
(Id
);
14584 Acc_Type
: Entity_Id
;
14585 Par
: constant Node_Id
:= Parent
(Derived_Type
);
14588 -- When the type is an anonymous access type, create a new access
14589 -- type designating the derived type. This itype must be elaborated
14590 -- at the point of the derivation, not on subsequent calls that may
14591 -- be out of the proper scope for Gigi, so we insert a reference to
14592 -- it after the derivation.
14594 if Ekind
(Id_Type
) = E_Anonymous_Access_Type
then
14596 Desig_Typ
: Entity_Id
:= Designated_Type
(Id_Type
);
14599 if Ekind
(Desig_Typ
) = E_Record_Type_With_Private
14600 and then Present
(Full_View
(Desig_Typ
))
14601 and then not Is_Private_Type
(Parent_Type
)
14603 Desig_Typ
:= Full_View
(Desig_Typ
);
14606 if Base_Type
(Desig_Typ
) = Base_Type
(Parent_Type
)
14608 -- Ada 2005 (AI-251): Handle also derivations of abstract
14609 -- interface primitives.
14611 or else (Is_Interface
(Desig_Typ
)
14612 and then not Is_Class_Wide_Type
(Desig_Typ
))
14614 Acc_Type
:= New_Copy
(Id_Type
);
14615 Set_Etype
(Acc_Type
, Acc_Type
);
14616 Set_Scope
(Acc_Type
, New_Subp
);
14618 -- Set size of anonymous access type. If we have an access
14619 -- to an unconstrained array, this is a fat pointer, so it
14620 -- is sizes at twice addtress size.
14622 if Is_Array_Type
(Desig_Typ
)
14623 and then not Is_Constrained
(Desig_Typ
)
14625 Init_Size
(Acc_Type
, 2 * System_Address_Size
);
14627 -- Other cases use a thin pointer
14630 Init_Size
(Acc_Type
, System_Address_Size
);
14633 -- Set remaining characterstics of anonymous access type
14635 Init_Alignment
(Acc_Type
);
14636 Set_Directly_Designated_Type
(Acc_Type
, Derived_Type
);
14638 Set_Etype
(New_Id
, Acc_Type
);
14639 Set_Scope
(New_Id
, New_Subp
);
14641 -- Create a reference to it
14643 Build_Itype_Reference
(Acc_Type
, Parent
(Derived_Type
));
14646 Set_Etype
(New_Id
, Id_Type
);
14650 -- In Ada2012, a formal may have an incomplete type but the type
14651 -- derivation that inherits the primitive follows the full view.
14653 elsif Base_Type
(Id_Type
) = Base_Type
(Parent_Type
)
14655 (Ekind
(Id_Type
) = E_Record_Type_With_Private
14656 and then Present
(Full_View
(Id_Type
))
14658 Base_Type
(Full_View
(Id_Type
)) = Base_Type
(Parent_Type
))
14660 (Ada_Version
>= Ada_2012
14661 and then Ekind
(Id_Type
) = E_Incomplete_Type
14662 and then Full_View
(Id_Type
) = Parent_Type
)
14664 -- Constraint checks on formals are generated during expansion,
14665 -- based on the signature of the original subprogram. The bounds
14666 -- of the derived type are not relevant, and thus we can use
14667 -- the base type for the formals. However, the return type may be
14668 -- used in a context that requires that the proper static bounds
14669 -- be used (a case statement, for example) and for those cases
14670 -- we must use the derived type (first subtype), not its base.
14672 -- If the derived_type_definition has no constraints, we know that
14673 -- the derived type has the same constraints as the first subtype
14674 -- of the parent, and we can also use it rather than its base,
14675 -- which can lead to more efficient code.
14677 if Etype
(Id
) = Parent_Type
then
14678 if Is_Scalar_Type
(Parent_Type
)
14680 Subtypes_Statically_Compatible
(Parent_Type
, Derived_Type
)
14682 Set_Etype
(New_Id
, Derived_Type
);
14684 elsif Nkind
(Par
) = N_Full_Type_Declaration
14686 Nkind
(Type_Definition
(Par
)) = N_Derived_Type_Definition
14689 (Subtype_Indication
(Type_Definition
(Par
)))
14691 Set_Etype
(New_Id
, Derived_Type
);
14694 Set_Etype
(New_Id
, Base_Type
(Derived_Type
));
14698 Set_Etype
(New_Id
, Base_Type
(Derived_Type
));
14702 Set_Etype
(New_Id
, Etype
(Id
));
14706 ----------------------
14707 -- Set_Derived_Name --
14708 ----------------------
14710 procedure Set_Derived_Name
is
14711 Nm
: constant TSS_Name_Type
:= Get_TSS_Name
(Parent_Subp
);
14713 if Nm
= TSS_Null
then
14714 Set_Chars
(New_Subp
, Chars
(Parent_Subp
));
14716 Set_Chars
(New_Subp
, Make_TSS_Name
(Base_Type
(Derived_Type
), Nm
));
14718 end Set_Derived_Name
;
14720 -- Start of processing for Derive_Subprogram
14723 New_Subp
:= New_Entity
(Nkind
(Parent_Subp
), Sloc
(Derived_Type
));
14724 Set_Ekind
(New_Subp
, Ekind
(Parent_Subp
));
14726 -- Check whether the inherited subprogram is a private operation that
14727 -- should be inherited but not yet made visible. Such subprograms can
14728 -- become visible at a later point (e.g., the private part of a public
14729 -- child unit) via Declare_Inherited_Private_Subprograms. If the
14730 -- following predicate is true, then this is not such a private
14731 -- operation and the subprogram simply inherits the name of the parent
14732 -- subprogram. Note the special check for the names of controlled
14733 -- operations, which are currently exempted from being inherited with
14734 -- a hidden name because they must be findable for generation of
14735 -- implicit run-time calls.
14737 if not Is_Hidden
(Parent_Subp
)
14738 or else Is_Internal
(Parent_Subp
)
14739 or else Is_Private_Overriding
14740 or else Is_Internal_Name
(Chars
(Parent_Subp
))
14741 or else Nam_In
(Chars
(Parent_Subp
), Name_Initialize
,
14747 -- An inherited dispatching equality will be overridden by an internally
14748 -- generated one, or by an explicit one, so preserve its name and thus
14749 -- its entry in the dispatch table. Otherwise, if Parent_Subp is a
14750 -- private operation it may become invisible if the full view has
14751 -- progenitors, and the dispatch table will be malformed.
14752 -- We check that the type is limited to handle the anomalous declaration
14753 -- of Limited_Controlled, which is derived from a non-limited type, and
14754 -- which is handled specially elsewhere as well.
14756 elsif Chars
(Parent_Subp
) = Name_Op_Eq
14757 and then Is_Dispatching_Operation
(Parent_Subp
)
14758 and then Etype
(Parent_Subp
) = Standard_Boolean
14759 and then not Is_Limited_Type
(Etype
(First_Formal
(Parent_Subp
)))
14761 Etype
(First_Formal
(Parent_Subp
)) =
14762 Etype
(Next_Formal
(First_Formal
(Parent_Subp
)))
14766 -- If parent is hidden, this can be a regular derivation if the
14767 -- parent is immediately visible in a non-instantiating context,
14768 -- or if we are in the private part of an instance. This test
14769 -- should still be refined ???
14771 -- The test for In_Instance_Not_Visible avoids inheriting the derived
14772 -- operation as a non-visible operation in cases where the parent
14773 -- subprogram might not be visible now, but was visible within the
14774 -- original generic, so it would be wrong to make the inherited
14775 -- subprogram non-visible now. (Not clear if this test is fully
14776 -- correct; are there any cases where we should declare the inherited
14777 -- operation as not visible to avoid it being overridden, e.g., when
14778 -- the parent type is a generic actual with private primitives ???)
14780 -- (they should be treated the same as other private inherited
14781 -- subprograms, but it's not clear how to do this cleanly). ???
14783 elsif (In_Open_Scopes
(Scope
(Base_Type
(Parent_Type
)))
14784 and then Is_Immediately_Visible
(Parent_Subp
)
14785 and then not In_Instance
)
14786 or else In_Instance_Not_Visible
14790 -- Ada 2005 (AI-251): Regular derivation if the parent subprogram
14791 -- overrides an interface primitive because interface primitives
14792 -- must be visible in the partial view of the parent (RM 7.3 (7.3/2))
14794 elsif Ada_Version
>= Ada_2005
14795 and then Is_Dispatching_Operation
(Parent_Subp
)
14796 and then Covers_Some_Interface
(Parent_Subp
)
14800 -- Otherwise, the type is inheriting a private operation, so enter
14801 -- it with a special name so it can't be overridden.
14804 Set_Chars
(New_Subp
, New_External_Name
(Chars
(Parent_Subp
), 'P'));
14807 Set_Parent
(New_Subp
, Parent
(Derived_Type
));
14809 if Present
(Actual_Subp
) then
14810 Replace_Type
(Actual_Subp
, New_Subp
);
14812 Replace_Type
(Parent_Subp
, New_Subp
);
14815 Conditional_Delay
(New_Subp
, Parent_Subp
);
14817 -- If we are creating a renaming for a primitive operation of an
14818 -- actual of a generic derived type, we must examine the signature
14819 -- of the actual primitive, not that of the generic formal, which for
14820 -- example may be an interface. However the name and initial value
14821 -- of the inherited operation are those of the formal primitive.
14823 Formal
:= First_Formal
(Parent_Subp
);
14825 if Present
(Actual_Subp
) then
14826 Formal_Of_Actual
:= First_Formal
(Actual_Subp
);
14828 Formal_Of_Actual
:= Empty
;
14831 while Present
(Formal
) loop
14832 New_Formal
:= New_Copy
(Formal
);
14834 -- Normally we do not go copying parents, but in the case of
14835 -- formals, we need to link up to the declaration (which is the
14836 -- parameter specification), and it is fine to link up to the
14837 -- original formal's parameter specification in this case.
14839 Set_Parent
(New_Formal
, Parent
(Formal
));
14840 Append_Entity
(New_Formal
, New_Subp
);
14842 if Present
(Formal_Of_Actual
) then
14843 Replace_Type
(Formal_Of_Actual
, New_Formal
);
14844 Next_Formal
(Formal_Of_Actual
);
14846 Replace_Type
(Formal
, New_Formal
);
14849 Next_Formal
(Formal
);
14852 -- If this derivation corresponds to a tagged generic actual, then
14853 -- primitive operations rename those of the actual. Otherwise the
14854 -- primitive operations rename those of the parent type, If the parent
14855 -- renames an intrinsic operator, so does the new subprogram. We except
14856 -- concatenation, which is always properly typed, and does not get
14857 -- expanded as other intrinsic operations.
14859 if No
(Actual_Subp
) then
14860 if Is_Intrinsic_Subprogram
(Parent_Subp
) then
14861 Set_Is_Intrinsic_Subprogram
(New_Subp
);
14863 if Present
(Alias
(Parent_Subp
))
14864 and then Chars
(Parent_Subp
) /= Name_Op_Concat
14866 Set_Alias
(New_Subp
, Alias
(Parent_Subp
));
14868 Set_Alias
(New_Subp
, Parent_Subp
);
14872 Set_Alias
(New_Subp
, Parent_Subp
);
14876 Set_Alias
(New_Subp
, Actual_Subp
);
14879 -- Inherit the "ghostness" from the parent subprogram
14881 if Is_Ghost_Entity
(Alias
(New_Subp
)) then
14882 Set_Is_Ghost_Entity
(New_Subp
);
14885 -- Derived subprograms of a tagged type must inherit the convention
14886 -- of the parent subprogram (a requirement of AI-117). Derived
14887 -- subprograms of untagged types simply get convention Ada by default.
14889 -- If the derived type is a tagged generic formal type with unknown
14890 -- discriminants, its convention is intrinsic (RM 6.3.1 (8)).
14892 -- However, if the type is derived from a generic formal, the further
14893 -- inherited subprogram has the convention of the non-generic ancestor.
14894 -- Otherwise there would be no way to override the operation.
14895 -- (This is subject to forthcoming ARG discussions).
14897 if Is_Tagged_Type
(Derived_Type
) then
14898 if Is_Generic_Type
(Derived_Type
)
14899 and then Has_Unknown_Discriminants
(Derived_Type
)
14901 Set_Convention
(New_Subp
, Convention_Intrinsic
);
14904 if Is_Generic_Type
(Parent_Type
)
14905 and then Has_Unknown_Discriminants
(Parent_Type
)
14907 Set_Convention
(New_Subp
, Convention
(Alias
(Parent_Subp
)));
14909 Set_Convention
(New_Subp
, Convention
(Parent_Subp
));
14914 -- Predefined controlled operations retain their name even if the parent
14915 -- is hidden (see above), but they are not primitive operations if the
14916 -- ancestor is not visible, for example if the parent is a private
14917 -- extension completed with a controlled extension. Note that a full
14918 -- type that is controlled can break privacy: the flag Is_Controlled is
14919 -- set on both views of the type.
14921 if Is_Controlled
(Parent_Type
)
14922 and then Nam_In
(Chars
(Parent_Subp
), Name_Initialize
,
14925 and then Is_Hidden
(Parent_Subp
)
14926 and then not Is_Visibly_Controlled
(Parent_Type
)
14928 Set_Is_Hidden
(New_Subp
);
14931 Set_Is_Imported
(New_Subp
, Is_Imported
(Parent_Subp
));
14932 Set_Is_Exported
(New_Subp
, Is_Exported
(Parent_Subp
));
14934 if Ekind
(Parent_Subp
) = E_Procedure
then
14935 Set_Is_Valued_Procedure
14936 (New_Subp
, Is_Valued_Procedure
(Parent_Subp
));
14938 Set_Has_Controlling_Result
14939 (New_Subp
, Has_Controlling_Result
(Parent_Subp
));
14942 -- No_Return must be inherited properly. If this is overridden in the
14943 -- case of a dispatching operation, then a check is made in Sem_Disp
14944 -- that the overriding operation is also No_Return (no such check is
14945 -- required for the case of non-dispatching operation.
14947 Set_No_Return
(New_Subp
, No_Return
(Parent_Subp
));
14949 -- A derived function with a controlling result is abstract. If the
14950 -- Derived_Type is a nonabstract formal generic derived type, then
14951 -- inherited operations are not abstract: the required check is done at
14952 -- instantiation time. If the derivation is for a generic actual, the
14953 -- function is not abstract unless the actual is.
14955 if Is_Generic_Type
(Derived_Type
)
14956 and then not Is_Abstract_Type
(Derived_Type
)
14960 -- Ada 2005 (AI-228): Calculate the "require overriding" and "abstract"
14961 -- properties of the subprogram, as defined in RM-3.9.3(4/2-6/2).
14963 -- A subprogram subject to pragma Extensions_Visible with value False
14964 -- requires overriding if the subprogram has at least one controlling
14965 -- OUT parameter (SPARK RM 6.1.7(6)).
14967 elsif Ada_Version
>= Ada_2005
14968 and then (Is_Abstract_Subprogram
(Alias
(New_Subp
))
14969 or else (Is_Tagged_Type
(Derived_Type
)
14970 and then Etype
(New_Subp
) = Derived_Type
14971 and then not Is_Null_Extension
(Derived_Type
))
14972 or else (Is_Tagged_Type
(Derived_Type
)
14973 and then Ekind
(Etype
(New_Subp
)) =
14974 E_Anonymous_Access_Type
14975 and then Designated_Type
(Etype
(New_Subp
)) =
14977 and then not Is_Null_Extension
(Derived_Type
))
14978 or else (Comes_From_Source
(Alias
(New_Subp
))
14979 and then Is_EVF_Procedure
(Alias
(New_Subp
))))
14980 and then No
(Actual_Subp
)
14982 if not Is_Tagged_Type
(Derived_Type
)
14983 or else Is_Abstract_Type
(Derived_Type
)
14984 or else Is_Abstract_Subprogram
(Alias
(New_Subp
))
14986 Set_Is_Abstract_Subprogram
(New_Subp
);
14988 Set_Requires_Overriding
(New_Subp
);
14991 elsif Ada_Version
< Ada_2005
14992 and then (Is_Abstract_Subprogram
(Alias
(New_Subp
))
14993 or else (Is_Tagged_Type
(Derived_Type
)
14994 and then Etype
(New_Subp
) = Derived_Type
14995 and then No
(Actual_Subp
)))
14997 Set_Is_Abstract_Subprogram
(New_Subp
);
14999 -- AI05-0097 : an inherited operation that dispatches on result is
15000 -- abstract if the derived type is abstract, even if the parent type
15001 -- is concrete and the derived type is a null extension.
15003 elsif Has_Controlling_Result
(Alias
(New_Subp
))
15004 and then Is_Abstract_Type
(Etype
(New_Subp
))
15006 Set_Is_Abstract_Subprogram
(New_Subp
);
15008 -- Finally, if the parent type is abstract we must verify that all
15009 -- inherited operations are either non-abstract or overridden, or that
15010 -- the derived type itself is abstract (this check is performed at the
15011 -- end of a package declaration, in Check_Abstract_Overriding). A
15012 -- private overriding in the parent type will not be visible in the
15013 -- derivation if we are not in an inner package or in a child unit of
15014 -- the parent type, in which case the abstractness of the inherited
15015 -- operation is carried to the new subprogram.
15017 elsif Is_Abstract_Type
(Parent_Type
)
15018 and then not In_Open_Scopes
(Scope
(Parent_Type
))
15019 and then Is_Private_Overriding
15020 and then Is_Abstract_Subprogram
(Visible_Subp
)
15022 if No
(Actual_Subp
) then
15023 Set_Alias
(New_Subp
, Visible_Subp
);
15024 Set_Is_Abstract_Subprogram
(New_Subp
, True);
15027 -- If this is a derivation for an instance of a formal derived
15028 -- type, abstractness comes from the primitive operation of the
15029 -- actual, not from the operation inherited from the ancestor.
15031 Set_Is_Abstract_Subprogram
15032 (New_Subp
, Is_Abstract_Subprogram
(Actual_Subp
));
15036 New_Overloaded_Entity
(New_Subp
, Derived_Type
);
15038 -- Check for case of a derived subprogram for the instantiation of a
15039 -- formal derived tagged type, if so mark the subprogram as dispatching
15040 -- and inherit the dispatching attributes of the actual subprogram. The
15041 -- derived subprogram is effectively renaming of the actual subprogram,
15042 -- so it needs to have the same attributes as the actual.
15044 if Present
(Actual_Subp
)
15045 and then Is_Dispatching_Operation
(Actual_Subp
)
15047 Set_Is_Dispatching_Operation
(New_Subp
);
15049 if Present
(DTC_Entity
(Actual_Subp
)) then
15050 Set_DTC_Entity
(New_Subp
, DTC_Entity
(Actual_Subp
));
15051 Set_DT_Position_Value
(New_Subp
, DT_Position
(Actual_Subp
));
15055 -- Indicate that a derived subprogram does not require a body and that
15056 -- it does not require processing of default expressions.
15058 Set_Has_Completion
(New_Subp
);
15059 Set_Default_Expressions_Processed
(New_Subp
);
15061 if Ekind
(New_Subp
) = E_Function
then
15062 Set_Mechanism
(New_Subp
, Mechanism
(Parent_Subp
));
15064 end Derive_Subprogram
;
15066 ------------------------
15067 -- Derive_Subprograms --
15068 ------------------------
15070 procedure Derive_Subprograms
15071 (Parent_Type
: Entity_Id
;
15072 Derived_Type
: Entity_Id
;
15073 Generic_Actual
: Entity_Id
:= Empty
)
15075 Op_List
: constant Elist_Id
:=
15076 Collect_Primitive_Operations
(Parent_Type
);
15078 function Check_Derived_Type
return Boolean;
15079 -- Check that all the entities derived from Parent_Type are found in
15080 -- the list of primitives of Derived_Type exactly in the same order.
15082 procedure Derive_Interface_Subprogram
15083 (New_Subp
: in out Entity_Id
;
15085 Actual_Subp
: Entity_Id
);
15086 -- Derive New_Subp from the ultimate alias of the parent subprogram Subp
15087 -- (which is an interface primitive). If Generic_Actual is present then
15088 -- Actual_Subp is the actual subprogram corresponding with the generic
15089 -- subprogram Subp.
15091 function Check_Derived_Type
return Boolean is
15095 New_Subp
: Entity_Id
;
15100 -- Traverse list of entities in the current scope searching for
15101 -- an incomplete type whose full-view is derived type
15103 E
:= First_Entity
(Scope
(Derived_Type
));
15104 while Present
(E
) and then E
/= Derived_Type
loop
15105 if Ekind
(E
) = E_Incomplete_Type
15106 and then Present
(Full_View
(E
))
15107 and then Full_View
(E
) = Derived_Type
15109 -- Disable this test if Derived_Type completes an incomplete
15110 -- type because in such case more primitives can be added
15111 -- later to the list of primitives of Derived_Type by routine
15112 -- Process_Incomplete_Dependents
15117 E
:= Next_Entity
(E
);
15120 List
:= Collect_Primitive_Operations
(Derived_Type
);
15121 Elmt
:= First_Elmt
(List
);
15123 Op_Elmt
:= First_Elmt
(Op_List
);
15124 while Present
(Op_Elmt
) loop
15125 Subp
:= Node
(Op_Elmt
);
15126 New_Subp
:= Node
(Elmt
);
15128 -- At this early stage Derived_Type has no entities with attribute
15129 -- Interface_Alias. In addition, such primitives are always
15130 -- located at the end of the list of primitives of Parent_Type.
15131 -- Therefore, if found we can safely stop processing pending
15134 exit when Present
(Interface_Alias
(Subp
));
15136 -- Handle hidden entities
15138 if not Is_Predefined_Dispatching_Operation
(Subp
)
15139 and then Is_Hidden
(Subp
)
15141 if Present
(New_Subp
)
15142 and then Primitive_Names_Match
(Subp
, New_Subp
)
15148 if not Present
(New_Subp
)
15149 or else Ekind
(Subp
) /= Ekind
(New_Subp
)
15150 or else not Primitive_Names_Match
(Subp
, New_Subp
)
15158 Next_Elmt
(Op_Elmt
);
15162 end Check_Derived_Type
;
15164 ---------------------------------
15165 -- Derive_Interface_Subprogram --
15166 ---------------------------------
15168 procedure Derive_Interface_Subprogram
15169 (New_Subp
: in out Entity_Id
;
15171 Actual_Subp
: Entity_Id
)
15173 Iface_Subp
: constant Entity_Id
:= Ultimate_Alias
(Subp
);
15174 Iface_Type
: constant Entity_Id
:= Find_Dispatching_Type
(Iface_Subp
);
15177 pragma Assert
(Is_Interface
(Iface_Type
));
15180 (New_Subp
=> New_Subp
,
15181 Parent_Subp
=> Iface_Subp
,
15182 Derived_Type
=> Derived_Type
,
15183 Parent_Type
=> Iface_Type
,
15184 Actual_Subp
=> Actual_Subp
);
15186 -- Given that this new interface entity corresponds with a primitive
15187 -- of the parent that was not overridden we must leave it associated
15188 -- with its parent primitive to ensure that it will share the same
15189 -- dispatch table slot when overridden.
15191 if No
(Actual_Subp
) then
15192 Set_Alias
(New_Subp
, Subp
);
15194 -- For instantiations this is not needed since the previous call to
15195 -- Derive_Subprogram leaves the entity well decorated.
15198 pragma Assert
(Alias
(New_Subp
) = Actual_Subp
);
15201 end Derive_Interface_Subprogram
;
15205 Alias_Subp
: Entity_Id
;
15206 Act_List
: Elist_Id
;
15207 Act_Elmt
: Elmt_Id
;
15208 Act_Subp
: Entity_Id
:= Empty
;
15210 Need_Search
: Boolean := False;
15211 New_Subp
: Entity_Id
:= Empty
;
15212 Parent_Base
: Entity_Id
;
15215 -- Start of processing for Derive_Subprograms
15218 if Ekind
(Parent_Type
) = E_Record_Type_With_Private
15219 and then Has_Discriminants
(Parent_Type
)
15220 and then Present
(Full_View
(Parent_Type
))
15222 Parent_Base
:= Full_View
(Parent_Type
);
15224 Parent_Base
:= Parent_Type
;
15227 if Present
(Generic_Actual
) then
15228 Act_List
:= Collect_Primitive_Operations
(Generic_Actual
);
15229 Act_Elmt
:= First_Elmt
(Act_List
);
15231 Act_List
:= No_Elist
;
15232 Act_Elmt
:= No_Elmt
;
15235 -- Derive primitives inherited from the parent. Note that if the generic
15236 -- actual is present, this is not really a type derivation, it is a
15237 -- completion within an instance.
15239 -- Case 1: Derived_Type does not implement interfaces
15241 if not Is_Tagged_Type
(Derived_Type
)
15242 or else (not Has_Interfaces
(Derived_Type
)
15243 and then not (Present
(Generic_Actual
)
15244 and then Has_Interfaces
(Generic_Actual
)))
15246 Elmt
:= First_Elmt
(Op_List
);
15247 while Present
(Elmt
) loop
15248 Subp
:= Node
(Elmt
);
15250 -- Literals are derived earlier in the process of building the
15251 -- derived type, and are skipped here.
15253 if Ekind
(Subp
) = E_Enumeration_Literal
then
15256 -- The actual is a direct descendant and the common primitive
15257 -- operations appear in the same order.
15259 -- If the generic parent type is present, the derived type is an
15260 -- instance of a formal derived type, and within the instance its
15261 -- operations are those of the actual. We derive from the formal
15262 -- type but make the inherited operations aliases of the
15263 -- corresponding operations of the actual.
15266 pragma Assert
(No
(Node
(Act_Elmt
))
15267 or else (Primitive_Names_Match
(Subp
, Node
(Act_Elmt
))
15270 (Subp
, Node
(Act_Elmt
),
15271 Skip_Controlling_Formals
=> True)));
15274 (New_Subp
, Subp
, Derived_Type
, Parent_Base
, Node
(Act_Elmt
));
15276 if Present
(Act_Elmt
) then
15277 Next_Elmt
(Act_Elmt
);
15284 -- Case 2: Derived_Type implements interfaces
15287 -- If the parent type has no predefined primitives we remove
15288 -- predefined primitives from the list of primitives of generic
15289 -- actual to simplify the complexity of this algorithm.
15291 if Present
(Generic_Actual
) then
15293 Has_Predefined_Primitives
: Boolean := False;
15296 -- Check if the parent type has predefined primitives
15298 Elmt
:= First_Elmt
(Op_List
);
15299 while Present
(Elmt
) loop
15300 Subp
:= Node
(Elmt
);
15302 if Is_Predefined_Dispatching_Operation
(Subp
)
15303 and then not Comes_From_Source
(Ultimate_Alias
(Subp
))
15305 Has_Predefined_Primitives
:= True;
15312 -- Remove predefined primitives of Generic_Actual. We must use
15313 -- an auxiliary list because in case of tagged types the value
15314 -- returned by Collect_Primitive_Operations is the value stored
15315 -- in its Primitive_Operations attribute (and we don't want to
15316 -- modify its current contents).
15318 if not Has_Predefined_Primitives
then
15320 Aux_List
: constant Elist_Id
:= New_Elmt_List
;
15323 Elmt
:= First_Elmt
(Act_List
);
15324 while Present
(Elmt
) loop
15325 Subp
:= Node
(Elmt
);
15327 if not Is_Predefined_Dispatching_Operation
(Subp
)
15328 or else Comes_From_Source
(Subp
)
15330 Append_Elmt
(Subp
, Aux_List
);
15336 Act_List
:= Aux_List
;
15340 Act_Elmt
:= First_Elmt
(Act_List
);
15341 Act_Subp
:= Node
(Act_Elmt
);
15345 -- Stage 1: If the generic actual is not present we derive the
15346 -- primitives inherited from the parent type. If the generic parent
15347 -- type is present, the derived type is an instance of a formal
15348 -- derived type, and within the instance its operations are those of
15349 -- the actual. We derive from the formal type but make the inherited
15350 -- operations aliases of the corresponding operations of the actual.
15352 Elmt
:= First_Elmt
(Op_List
);
15353 while Present
(Elmt
) loop
15354 Subp
:= Node
(Elmt
);
15355 Alias_Subp
:= Ultimate_Alias
(Subp
);
15357 -- Do not derive internal entities of the parent that link
15358 -- interface primitives with their covering primitive. These
15359 -- entities will be added to this type when frozen.
15361 if Present
(Interface_Alias
(Subp
)) then
15365 -- If the generic actual is present find the corresponding
15366 -- operation in the generic actual. If the parent type is a
15367 -- direct ancestor of the derived type then, even if it is an
15368 -- interface, the operations are inherited from the primary
15369 -- dispatch table and are in the proper order. If we detect here
15370 -- that primitives are not in the same order we traverse the list
15371 -- of primitive operations of the actual to find the one that
15372 -- implements the interface primitive.
15376 (Present
(Generic_Actual
)
15377 and then Present
(Act_Subp
)
15379 (Primitive_Names_Match
(Subp
, Act_Subp
)
15381 Type_Conformant
(Subp
, Act_Subp
,
15382 Skip_Controlling_Formals
=> True)))
15384 pragma Assert
(not Is_Ancestor
(Parent_Base
, Generic_Actual
,
15385 Use_Full_View
=> True));
15387 -- Remember that we need searching for all pending primitives
15389 Need_Search
:= True;
15391 -- Handle entities associated with interface primitives
15393 if Present
(Alias_Subp
)
15394 and then Is_Interface
(Find_Dispatching_Type
(Alias_Subp
))
15395 and then not Is_Predefined_Dispatching_Operation
(Subp
)
15397 -- Search for the primitive in the homonym chain
15400 Find_Primitive_Covering_Interface
15401 (Tagged_Type
=> Generic_Actual
,
15402 Iface_Prim
=> Alias_Subp
);
15404 -- Previous search may not locate primitives covering
15405 -- interfaces defined in generics units or instantiations.
15406 -- (it fails if the covering primitive has formals whose
15407 -- type is also defined in generics or instantiations).
15408 -- In such case we search in the list of primitives of the
15409 -- generic actual for the internal entity that links the
15410 -- interface primitive and the covering primitive.
15413 and then Is_Generic_Type
(Parent_Type
)
15415 -- This code has been designed to handle only generic
15416 -- formals that implement interfaces that are defined
15417 -- in a generic unit or instantiation. If this code is
15418 -- needed for other cases we must review it because
15419 -- (given that it relies on Original_Location to locate
15420 -- the primitive of Generic_Actual that covers the
15421 -- interface) it could leave linked through attribute
15422 -- Alias entities of unrelated instantiations).
15426 (Scope
(Find_Dispatching_Type
(Alias_Subp
)))
15428 Instantiation_Depth
15429 (Sloc
(Find_Dispatching_Type
(Alias_Subp
))) > 0);
15432 Iface_Prim_Loc
: constant Source_Ptr
:=
15433 Original_Location
(Sloc
(Alias_Subp
));
15440 First_Elmt
(Primitive_Operations
(Generic_Actual
));
15442 Search
: while Present
(Elmt
) loop
15443 Prim
:= Node
(Elmt
);
15445 if Present
(Interface_Alias
(Prim
))
15446 and then Original_Location
15447 (Sloc
(Interface_Alias
(Prim
))) =
15450 Act_Subp
:= Alias
(Prim
);
15459 pragma Assert
(Present
(Act_Subp
)
15460 or else Is_Abstract_Type
(Generic_Actual
)
15461 or else Serious_Errors_Detected
> 0);
15463 -- Handle predefined primitives plus the rest of user-defined
15467 Act_Elmt
:= First_Elmt
(Act_List
);
15468 while Present
(Act_Elmt
) loop
15469 Act_Subp
:= Node
(Act_Elmt
);
15471 exit when Primitive_Names_Match
(Subp
, Act_Subp
)
15472 and then Type_Conformant
15474 Skip_Controlling_Formals
=> True)
15475 and then No
(Interface_Alias
(Act_Subp
));
15477 Next_Elmt
(Act_Elmt
);
15480 if No
(Act_Elmt
) then
15486 -- Case 1: If the parent is a limited interface then it has the
15487 -- predefined primitives of synchronized interfaces. However, the
15488 -- actual type may be a non-limited type and hence it does not
15489 -- have such primitives.
15491 if Present
(Generic_Actual
)
15492 and then not Present
(Act_Subp
)
15493 and then Is_Limited_Interface
(Parent_Base
)
15494 and then Is_Predefined_Interface_Primitive
(Subp
)
15498 -- Case 2: Inherit entities associated with interfaces that were
15499 -- not covered by the parent type. We exclude here null interface
15500 -- primitives because they do not need special management.
15502 -- We also exclude interface operations that are renamings. If the
15503 -- subprogram is an explicit renaming of an interface primitive,
15504 -- it is a regular primitive operation, and the presence of its
15505 -- alias is not relevant: it has to be derived like any other
15508 elsif Present
(Alias
(Subp
))
15509 and then Nkind
(Unit_Declaration_Node
(Subp
)) /=
15510 N_Subprogram_Renaming_Declaration
15511 and then Is_Interface
(Find_Dispatching_Type
(Alias_Subp
))
15513 (Nkind
(Parent
(Alias_Subp
)) = N_Procedure_Specification
15514 and then Null_Present
(Parent
(Alias_Subp
)))
15516 -- If this is an abstract private type then we transfer the
15517 -- derivation of the interface primitive from the partial view
15518 -- to the full view. This is safe because all the interfaces
15519 -- must be visible in the partial view. Done to avoid adding
15520 -- a new interface derivation to the private part of the
15521 -- enclosing package; otherwise this new derivation would be
15522 -- decorated as hidden when the analysis of the enclosing
15523 -- package completes.
15525 if Is_Abstract_Type
(Derived_Type
)
15526 and then In_Private_Part
(Current_Scope
)
15527 and then Has_Private_Declaration
(Derived_Type
)
15530 Partial_View
: Entity_Id
;
15535 Partial_View
:= First_Entity
(Current_Scope
);
15537 exit when No
(Partial_View
)
15538 or else (Has_Private_Declaration
(Partial_View
)
15540 Full_View
(Partial_View
) = Derived_Type
);
15542 Next_Entity
(Partial_View
);
15545 -- If the partial view was not found then the source code
15546 -- has errors and the derivation is not needed.
15548 if Present
(Partial_View
) then
15550 First_Elmt
(Primitive_Operations
(Partial_View
));
15551 while Present
(Elmt
) loop
15552 Ent
:= Node
(Elmt
);
15554 if Present
(Alias
(Ent
))
15555 and then Ultimate_Alias
(Ent
) = Alias
(Subp
)
15558 (Ent
, Primitive_Operations
(Derived_Type
));
15565 -- If the interface primitive was not found in the
15566 -- partial view then this interface primitive was
15567 -- overridden. We add a derivation to activate in
15568 -- Derive_Progenitor_Subprograms the machinery to
15572 Derive_Interface_Subprogram
15573 (New_Subp
=> New_Subp
,
15575 Actual_Subp
=> Act_Subp
);
15580 Derive_Interface_Subprogram
15581 (New_Subp
=> New_Subp
,
15583 Actual_Subp
=> Act_Subp
);
15586 -- Case 3: Common derivation
15590 (New_Subp
=> New_Subp
,
15591 Parent_Subp
=> Subp
,
15592 Derived_Type
=> Derived_Type
,
15593 Parent_Type
=> Parent_Base
,
15594 Actual_Subp
=> Act_Subp
);
15597 -- No need to update Act_Elm if we must search for the
15598 -- corresponding operation in the generic actual
15601 and then Present
(Act_Elmt
)
15603 Next_Elmt
(Act_Elmt
);
15604 Act_Subp
:= Node
(Act_Elmt
);
15611 -- Inherit additional operations from progenitors. If the derived
15612 -- type is a generic actual, there are not new primitive operations
15613 -- for the type because it has those of the actual, and therefore
15614 -- nothing needs to be done. The renamings generated above are not
15615 -- primitive operations, and their purpose is simply to make the
15616 -- proper operations visible within an instantiation.
15618 if No
(Generic_Actual
) then
15619 Derive_Progenitor_Subprograms
(Parent_Base
, Derived_Type
);
15623 -- Final check: Direct descendants must have their primitives in the
15624 -- same order. We exclude from this test untagged types and instances
15625 -- of formal derived types. We skip this test if we have already
15626 -- reported serious errors in the sources.
15628 pragma Assert
(not Is_Tagged_Type
(Derived_Type
)
15629 or else Present
(Generic_Actual
)
15630 or else Serious_Errors_Detected
> 0
15631 or else Check_Derived_Type
);
15632 end Derive_Subprograms
;
15634 --------------------------------
15635 -- Derived_Standard_Character --
15636 --------------------------------
15638 procedure Derived_Standard_Character
15640 Parent_Type
: Entity_Id
;
15641 Derived_Type
: Entity_Id
)
15643 Loc
: constant Source_Ptr
:= Sloc
(N
);
15644 Def
: constant Node_Id
:= Type_Definition
(N
);
15645 Indic
: constant Node_Id
:= Subtype_Indication
(Def
);
15646 Parent_Base
: constant Entity_Id
:= Base_Type
(Parent_Type
);
15647 Implicit_Base
: constant Entity_Id
:=
15649 (E_Enumeration_Type
, N
, Derived_Type
, 'B');
15655 Discard_Node
(Process_Subtype
(Indic
, N
));
15657 Set_Etype
(Implicit_Base
, Parent_Base
);
15658 Set_Size_Info
(Implicit_Base
, Root_Type
(Parent_Type
));
15659 Set_RM_Size
(Implicit_Base
, RM_Size
(Root_Type
(Parent_Type
)));
15661 Set_Is_Character_Type
(Implicit_Base
, True);
15662 Set_Has_Delayed_Freeze
(Implicit_Base
);
15664 -- The bounds of the implicit base are the bounds of the parent base.
15665 -- Note that their type is the parent base.
15667 Lo
:= New_Copy_Tree
(Type_Low_Bound
(Parent_Base
));
15668 Hi
:= New_Copy_Tree
(Type_High_Bound
(Parent_Base
));
15670 Set_Scalar_Range
(Implicit_Base
,
15673 High_Bound
=> Hi
));
15675 Conditional_Delay
(Derived_Type
, Parent_Type
);
15677 Set_Ekind
(Derived_Type
, E_Enumeration_Subtype
);
15678 Set_Etype
(Derived_Type
, Implicit_Base
);
15679 Set_Size_Info
(Derived_Type
, Parent_Type
);
15681 if Unknown_RM_Size
(Derived_Type
) then
15682 Set_RM_Size
(Derived_Type
, RM_Size
(Parent_Type
));
15685 Set_Is_Character_Type
(Derived_Type
, True);
15687 if Nkind
(Indic
) /= N_Subtype_Indication
then
15689 -- If no explicit constraint, the bounds are those
15690 -- of the parent type.
15692 Lo
:= New_Copy_Tree
(Type_Low_Bound
(Parent_Type
));
15693 Hi
:= New_Copy_Tree
(Type_High_Bound
(Parent_Type
));
15694 Set_Scalar_Range
(Derived_Type
, Make_Range
(Loc
, Lo
, Hi
));
15697 Convert_Scalar_Bounds
(N
, Parent_Type
, Derived_Type
, Loc
);
15699 -- Because the implicit base is used in the conversion of the bounds, we
15700 -- have to freeze it now. This is similar to what is done for numeric
15701 -- types, and it equally suspicious, but otherwise a non-static bound
15702 -- will have a reference to an unfrozen type, which is rejected by Gigi
15703 -- (???). This requires specific care for definition of stream
15704 -- attributes. For details, see comments at the end of
15705 -- Build_Derived_Numeric_Type.
15707 Freeze_Before
(N
, Implicit_Base
);
15708 end Derived_Standard_Character
;
15710 ------------------------------
15711 -- Derived_Type_Declaration --
15712 ------------------------------
15714 procedure Derived_Type_Declaration
15717 Is_Completion
: Boolean)
15719 Parent_Type
: Entity_Id
;
15721 function Comes_From_Generic
(Typ
: Entity_Id
) return Boolean;
15722 -- Check whether the parent type is a generic formal, or derives
15723 -- directly or indirectly from one.
15725 ------------------------
15726 -- Comes_From_Generic --
15727 ------------------------
15729 function Comes_From_Generic
(Typ
: Entity_Id
) return Boolean is
15731 if Is_Generic_Type
(Typ
) then
15734 elsif Is_Generic_Type
(Root_Type
(Parent_Type
)) then
15737 elsif Is_Private_Type
(Typ
)
15738 and then Present
(Full_View
(Typ
))
15739 and then Is_Generic_Type
(Root_Type
(Full_View
(Typ
)))
15743 elsif Is_Generic_Actual_Type
(Typ
) then
15749 end Comes_From_Generic
;
15753 Def
: constant Node_Id
:= Type_Definition
(N
);
15754 Iface_Def
: Node_Id
;
15755 Indic
: constant Node_Id
:= Subtype_Indication
(Def
);
15756 Extension
: constant Node_Id
:= Record_Extension_Part
(Def
);
15757 Parent_Node
: Node_Id
;
15760 -- Start of processing for Derived_Type_Declaration
15763 Parent_Type
:= Find_Type_Of_Subtype_Indic
(Indic
);
15765 -- Ada 2005 (AI-251): In case of interface derivation check that the
15766 -- parent is also an interface.
15768 if Interface_Present
(Def
) then
15769 Check_SPARK_05_Restriction
("interface is not allowed", Def
);
15771 if not Is_Interface
(Parent_Type
) then
15772 Diagnose_Interface
(Indic
, Parent_Type
);
15775 Parent_Node
:= Parent
(Base_Type
(Parent_Type
));
15776 Iface_Def
:= Type_Definition
(Parent_Node
);
15778 -- Ada 2005 (AI-251): Limited interfaces can only inherit from
15779 -- other limited interfaces.
15781 if Limited_Present
(Def
) then
15782 if Limited_Present
(Iface_Def
) then
15785 elsif Protected_Present
(Iface_Def
) then
15787 ("descendant of& must be declared"
15788 & " as a protected interface",
15791 elsif Synchronized_Present
(Iface_Def
) then
15793 ("descendant of& must be declared"
15794 & " as a synchronized interface",
15797 elsif Task_Present
(Iface_Def
) then
15799 ("descendant of& must be declared as a task interface",
15804 ("(Ada 2005) limited interface cannot "
15805 & "inherit from non-limited interface", Indic
);
15808 -- Ada 2005 (AI-345): Non-limited interfaces can only inherit
15809 -- from non-limited or limited interfaces.
15811 elsif not Protected_Present
(Def
)
15812 and then not Synchronized_Present
(Def
)
15813 and then not Task_Present
(Def
)
15815 if Limited_Present
(Iface_Def
) then
15818 elsif Protected_Present
(Iface_Def
) then
15820 ("descendant of& must be declared"
15821 & " as a protected interface",
15824 elsif Synchronized_Present
(Iface_Def
) then
15826 ("descendant of& must be declared"
15827 & " as a synchronized interface",
15830 elsif Task_Present
(Iface_Def
) then
15832 ("descendant of& must be declared as a task interface",
15841 if Is_Tagged_Type
(Parent_Type
)
15842 and then Is_Concurrent_Type
(Parent_Type
)
15843 and then not Is_Interface
(Parent_Type
)
15846 ("parent type of a record extension cannot be "
15847 & "a synchronized tagged type (RM 3.9.1 (3/1))", N
);
15848 Set_Etype
(T
, Any_Type
);
15852 -- Ada 2005 (AI-251): Decorate all the names in the list of ancestor
15855 if Is_Tagged_Type
(Parent_Type
)
15856 and then Is_Non_Empty_List
(Interface_List
(Def
))
15863 Intf
:= First
(Interface_List
(Def
));
15864 while Present
(Intf
) loop
15865 T
:= Find_Type_Of_Subtype_Indic
(Intf
);
15867 if not Is_Interface
(T
) then
15868 Diagnose_Interface
(Intf
, T
);
15870 -- Check the rules of 3.9.4(12/2) and 7.5(2/2) that disallow
15871 -- a limited type from having a nonlimited progenitor.
15873 elsif (Limited_Present
(Def
)
15874 or else (not Is_Interface
(Parent_Type
)
15875 and then Is_Limited_Type
(Parent_Type
)))
15876 and then not Is_Limited_Interface
(T
)
15879 ("progenitor interface& of limited type must be limited",
15888 if Parent_Type
= Any_Type
15889 or else Etype
(Parent_Type
) = Any_Type
15890 or else (Is_Class_Wide_Type
(Parent_Type
)
15891 and then Etype
(Parent_Type
) = T
)
15893 -- If Parent_Type is undefined or illegal, make new type into a
15894 -- subtype of Any_Type, and set a few attributes to prevent cascaded
15895 -- errors. If this is a self-definition, emit error now.
15897 if T
= Parent_Type
or else T
= Etype
(Parent_Type
) then
15898 Error_Msg_N
("type cannot be used in its own definition", Indic
);
15901 Set_Ekind
(T
, Ekind
(Parent_Type
));
15902 Set_Etype
(T
, Any_Type
);
15903 Set_Scalar_Range
(T
, Scalar_Range
(Any_Type
));
15905 if Is_Tagged_Type
(T
)
15906 and then Is_Record_Type
(T
)
15908 Set_Direct_Primitive_Operations
(T
, New_Elmt_List
);
15914 -- Ada 2005 (AI-251): The case in which the parent of the full-view is
15915 -- an interface is special because the list of interfaces in the full
15916 -- view can be given in any order. For example:
15918 -- type A is interface;
15919 -- type B is interface and A;
15920 -- type D is new B with private;
15922 -- type D is new A and B with null record; -- 1 --
15924 -- In this case we perform the following transformation of -1-:
15926 -- type D is new B and A with null record;
15928 -- If the parent of the full-view covers the parent of the partial-view
15929 -- we have two possible cases:
15931 -- 1) They have the same parent
15932 -- 2) The parent of the full-view implements some further interfaces
15934 -- In both cases we do not need to perform the transformation. In the
15935 -- first case the source program is correct and the transformation is
15936 -- not needed; in the second case the source program does not fulfill
15937 -- the no-hidden interfaces rule (AI-396) and the error will be reported
15940 -- This transformation not only simplifies the rest of the analysis of
15941 -- this type declaration but also simplifies the correct generation of
15942 -- the object layout to the expander.
15944 if In_Private_Part
(Current_Scope
)
15945 and then Is_Interface
(Parent_Type
)
15949 Partial_View
: Entity_Id
;
15950 Partial_View_Parent
: Entity_Id
;
15951 New_Iface
: Node_Id
;
15954 -- Look for the associated private type declaration
15956 Partial_View
:= First_Entity
(Current_Scope
);
15958 exit when No
(Partial_View
)
15959 or else (Has_Private_Declaration
(Partial_View
)
15960 and then Full_View
(Partial_View
) = T
);
15962 Next_Entity
(Partial_View
);
15965 -- If the partial view was not found then the source code has
15966 -- errors and the transformation is not needed.
15968 if Present
(Partial_View
) then
15969 Partial_View_Parent
:= Etype
(Partial_View
);
15971 -- If the parent of the full-view covers the parent of the
15972 -- partial-view we have nothing else to do.
15974 if Interface_Present_In_Ancestor
15975 (Parent_Type
, Partial_View_Parent
)
15979 -- Traverse the list of interfaces of the full-view to look
15980 -- for the parent of the partial-view and perform the tree
15984 Iface
:= First
(Interface_List
(Def
));
15985 while Present
(Iface
) loop
15986 if Etype
(Iface
) = Etype
(Partial_View
) then
15987 Rewrite
(Subtype_Indication
(Def
),
15988 New_Copy
(Subtype_Indication
15989 (Parent
(Partial_View
))));
15992 Make_Identifier
(Sloc
(N
), Chars
(Parent_Type
));
15993 Append
(New_Iface
, Interface_List
(Def
));
15995 -- Analyze the transformed code
15997 Derived_Type_Declaration
(T
, N
, Is_Completion
);
16008 -- Only composite types other than array types are allowed to have
16011 if Present
(Discriminant_Specifications
(N
)) then
16012 if (Is_Elementary_Type
(Parent_Type
)
16014 Is_Array_Type
(Parent_Type
))
16015 and then not Error_Posted
(N
)
16018 ("elementary or array type cannot have discriminants",
16019 Defining_Identifier
(First
(Discriminant_Specifications
(N
))));
16020 Set_Has_Discriminants
(T
, False);
16022 -- The type is allowed to have discriminants
16025 Check_SPARK_05_Restriction
("discriminant type is not allowed", N
);
16029 -- In Ada 83, a derived type defined in a package specification cannot
16030 -- be used for further derivation until the end of its visible part.
16031 -- Note that derivation in the private part of the package is allowed.
16033 if Ada_Version
= Ada_83
16034 and then Is_Derived_Type
(Parent_Type
)
16035 and then In_Visible_Part
(Scope
(Parent_Type
))
16037 if Ada_Version
= Ada_83
and then Comes_From_Source
(Indic
) then
16039 ("(Ada 83): premature use of type for derivation", Indic
);
16043 -- Check for early use of incomplete or private type
16045 if Ekind_In
(Parent_Type
, E_Void
, E_Incomplete_Type
) then
16046 Error_Msg_N
("premature derivation of incomplete type", Indic
);
16049 elsif (Is_Incomplete_Or_Private_Type
(Parent_Type
)
16050 and then not Comes_From_Generic
(Parent_Type
))
16051 or else Has_Private_Component
(Parent_Type
)
16053 -- The ancestor type of a formal type can be incomplete, in which
16054 -- case only the operations of the partial view are available in the
16055 -- generic. Subsequent checks may be required when the full view is
16056 -- analyzed to verify that a derivation from a tagged type has an
16059 if Nkind
(Original_Node
(N
)) = N_Formal_Type_Declaration
then
16062 elsif No
(Underlying_Type
(Parent_Type
))
16063 or else Has_Private_Component
(Parent_Type
)
16066 ("premature derivation of derived or private type", Indic
);
16068 -- Flag the type itself as being in error, this prevents some
16069 -- nasty problems with subsequent uses of the malformed type.
16071 Set_Error_Posted
(T
);
16073 -- Check that within the immediate scope of an untagged partial
16074 -- view it's illegal to derive from the partial view if the
16075 -- full view is tagged. (7.3(7))
16077 -- We verify that the Parent_Type is a partial view by checking
16078 -- that it is not a Full_Type_Declaration (i.e. a private type or
16079 -- private extension declaration), to distinguish a partial view
16080 -- from a derivation from a private type which also appears as
16081 -- E_Private_Type. If the parent base type is not declared in an
16082 -- enclosing scope there is no need to check.
16084 elsif Present
(Full_View
(Parent_Type
))
16085 and then Nkind
(Parent
(Parent_Type
)) /= N_Full_Type_Declaration
16086 and then not Is_Tagged_Type
(Parent_Type
)
16087 and then Is_Tagged_Type
(Full_View
(Parent_Type
))
16088 and then In_Open_Scopes
(Scope
(Base_Type
(Parent_Type
)))
16091 ("premature derivation from type with tagged full view",
16096 -- Check that form of derivation is appropriate
16098 Taggd
:= Is_Tagged_Type
(Parent_Type
);
16100 -- Set the parent type to the class-wide type's specific type in this
16101 -- case to prevent cascading errors
16103 if Present
(Extension
) and then Is_Class_Wide_Type
(Parent_Type
) then
16104 Error_Msg_N
("parent type must not be a class-wide type", Indic
);
16105 Set_Etype
(T
, Etype
(Parent_Type
));
16109 if Present
(Extension
) and then not Taggd
then
16111 ("type derived from untagged type cannot have extension", Indic
);
16113 elsif No
(Extension
) and then Taggd
then
16115 -- If this declaration is within a private part (or body) of a
16116 -- generic instantiation then the derivation is allowed (the parent
16117 -- type can only appear tagged in this case if it's a generic actual
16118 -- type, since it would otherwise have been rejected in the analysis
16119 -- of the generic template).
16121 if not Is_Generic_Actual_Type
(Parent_Type
)
16122 or else In_Visible_Part
(Scope
(Parent_Type
))
16124 if Is_Class_Wide_Type
(Parent_Type
) then
16126 ("parent type must not be a class-wide type", Indic
);
16128 -- Use specific type to prevent cascaded errors.
16130 Parent_Type
:= Etype
(Parent_Type
);
16134 ("type derived from tagged type must have extension", Indic
);
16139 -- AI-443: Synchronized formal derived types require a private
16140 -- extension. There is no point in checking the ancestor type or
16141 -- the progenitors since the construct is wrong to begin with.
16143 if Ada_Version
>= Ada_2005
16144 and then Is_Generic_Type
(T
)
16145 and then Present
(Original_Node
(N
))
16148 Decl
: constant Node_Id
:= Original_Node
(N
);
16151 if Nkind
(Decl
) = N_Formal_Type_Declaration
16152 and then Nkind
(Formal_Type_Definition
(Decl
)) =
16153 N_Formal_Derived_Type_Definition
16154 and then Synchronized_Present
(Formal_Type_Definition
(Decl
))
16155 and then No
(Extension
)
16157 -- Avoid emitting a duplicate error message
16159 and then not Error_Posted
(Indic
)
16162 ("synchronized derived type must have extension", N
);
16167 if Null_Exclusion_Present
(Def
)
16168 and then not Is_Access_Type
(Parent_Type
)
16170 Error_Msg_N
("null exclusion can only apply to an access type", N
);
16173 -- Avoid deriving parent primitives of underlying record views
16175 Build_Derived_Type
(N
, Parent_Type
, T
, Is_Completion
,
16176 Derive_Subps
=> not Is_Underlying_Record_View
(T
));
16178 -- AI-419: The parent type of an explicitly limited derived type must
16179 -- be a limited type or a limited interface.
16181 if Limited_Present
(Def
) then
16182 Set_Is_Limited_Record
(T
);
16184 if Is_Interface
(T
) then
16185 Set_Is_Limited_Interface
(T
);
16188 if not Is_Limited_Type
(Parent_Type
)
16190 (not Is_Interface
(Parent_Type
)
16191 or else not Is_Limited_Interface
(Parent_Type
))
16193 -- AI05-0096: a derivation in the private part of an instance is
16194 -- legal if the generic formal is untagged limited, and the actual
16197 if Is_Generic_Actual_Type
(Parent_Type
)
16198 and then In_Private_Part
(Current_Scope
)
16201 (Generic_Parent_Type
(Parent
(Parent_Type
)))
16207 ("parent type& of limited type must be limited",
16213 -- In SPARK, there are no derived type definitions other than type
16214 -- extensions of tagged record types.
16216 if No
(Extension
) then
16217 Check_SPARK_05_Restriction
16218 ("derived type is not allowed", Original_Node
(N
));
16220 end Derived_Type_Declaration
;
16222 ------------------------
16223 -- Diagnose_Interface --
16224 ------------------------
16226 procedure Diagnose_Interface
(N
: Node_Id
; E
: Entity_Id
) is
16228 if not Is_Interface
(E
) and then E
/= Any_Type
then
16229 Error_Msg_NE
("(Ada 2005) & must be an interface", N
, E
);
16231 end Diagnose_Interface
;
16233 ----------------------------------
16234 -- Enumeration_Type_Declaration --
16235 ----------------------------------
16237 procedure Enumeration_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
16244 -- Create identifier node representing lower bound
16246 B_Node
:= New_Node
(N_Identifier
, Sloc
(Def
));
16247 L
:= First
(Literals
(Def
));
16248 Set_Chars
(B_Node
, Chars
(L
));
16249 Set_Entity
(B_Node
, L
);
16250 Set_Etype
(B_Node
, T
);
16251 Set_Is_Static_Expression
(B_Node
, True);
16253 R_Node
:= New_Node
(N_Range
, Sloc
(Def
));
16254 Set_Low_Bound
(R_Node
, B_Node
);
16256 Set_Ekind
(T
, E_Enumeration_Type
);
16257 Set_First_Literal
(T
, L
);
16259 Set_Is_Constrained
(T
);
16263 -- Loop through literals of enumeration type setting pos and rep values
16264 -- except that if the Ekind is already set, then it means the literal
16265 -- was already constructed (case of a derived type declaration and we
16266 -- should not disturb the Pos and Rep values.
16268 while Present
(L
) loop
16269 if Ekind
(L
) /= E_Enumeration_Literal
then
16270 Set_Ekind
(L
, E_Enumeration_Literal
);
16271 Set_Enumeration_Pos
(L
, Ev
);
16272 Set_Enumeration_Rep
(L
, Ev
);
16273 Set_Is_Known_Valid
(L
, True);
16277 New_Overloaded_Entity
(L
);
16278 Generate_Definition
(L
);
16279 Set_Convention
(L
, Convention_Intrinsic
);
16281 -- Case of character literal
16283 if Nkind
(L
) = N_Defining_Character_Literal
then
16284 Set_Is_Character_Type
(T
, True);
16286 -- Check violation of No_Wide_Characters
16288 if Restriction_Check_Required
(No_Wide_Characters
) then
16289 Get_Name_String
(Chars
(L
));
16291 if Name_Len
>= 3 and then Name_Buffer
(1 .. 2) = "QW" then
16292 Check_Restriction
(No_Wide_Characters
, L
);
16301 -- Now create a node representing upper bound
16303 B_Node
:= New_Node
(N_Identifier
, Sloc
(Def
));
16304 Set_Chars
(B_Node
, Chars
(Last
(Literals
(Def
))));
16305 Set_Entity
(B_Node
, Last
(Literals
(Def
)));
16306 Set_Etype
(B_Node
, T
);
16307 Set_Is_Static_Expression
(B_Node
, True);
16309 Set_High_Bound
(R_Node
, B_Node
);
16311 -- Initialize various fields of the type. Some of this information
16312 -- may be overwritten later through rep.clauses.
16314 Set_Scalar_Range
(T
, R_Node
);
16315 Set_RM_Size
(T
, UI_From_Int
(Minimum_Size
(T
)));
16316 Set_Enum_Esize
(T
);
16317 Set_Enum_Pos_To_Rep
(T
, Empty
);
16319 -- Set Discard_Names if configuration pragma set, or if there is
16320 -- a parameterless pragma in the current declarative region
16322 if Global_Discard_Names
or else Discard_Names
(Scope
(T
)) then
16323 Set_Discard_Names
(T
);
16326 -- Process end label if there is one
16328 if Present
(Def
) then
16329 Process_End_Label
(Def
, 'e', T
);
16331 end Enumeration_Type_Declaration
;
16333 ---------------------------------
16334 -- Expand_To_Stored_Constraint --
16335 ---------------------------------
16337 function Expand_To_Stored_Constraint
16339 Constraint
: Elist_Id
) return Elist_Id
16341 Explicitly_Discriminated_Type
: Entity_Id
;
16342 Expansion
: Elist_Id
;
16343 Discriminant
: Entity_Id
;
16345 function Type_With_Explicit_Discrims
(Id
: Entity_Id
) return Entity_Id
;
16346 -- Find the nearest type that actually specifies discriminants
16348 ---------------------------------
16349 -- Type_With_Explicit_Discrims --
16350 ---------------------------------
16352 function Type_With_Explicit_Discrims
(Id
: Entity_Id
) return Entity_Id
is
16353 Typ
: constant E
:= Base_Type
(Id
);
16356 if Ekind
(Typ
) in Incomplete_Or_Private_Kind
then
16357 if Present
(Full_View
(Typ
)) then
16358 return Type_With_Explicit_Discrims
(Full_View
(Typ
));
16362 if Has_Discriminants
(Typ
) then
16367 if Etype
(Typ
) = Typ
then
16369 elsif Has_Discriminants
(Typ
) then
16372 return Type_With_Explicit_Discrims
(Etype
(Typ
));
16375 end Type_With_Explicit_Discrims
;
16377 -- Start of processing for Expand_To_Stored_Constraint
16380 if No
(Constraint
) or else Is_Empty_Elmt_List
(Constraint
) then
16384 Explicitly_Discriminated_Type
:= Type_With_Explicit_Discrims
(Typ
);
16386 if No
(Explicitly_Discriminated_Type
) then
16390 Expansion
:= New_Elmt_List
;
16393 First_Stored_Discriminant
(Explicitly_Discriminated_Type
);
16394 while Present
(Discriminant
) loop
16396 (Get_Discriminant_Value
16397 (Discriminant
, Explicitly_Discriminated_Type
, Constraint
),
16399 Next_Stored_Discriminant
(Discriminant
);
16403 end Expand_To_Stored_Constraint
;
16405 ---------------------------
16406 -- Find_Hidden_Interface --
16407 ---------------------------
16409 function Find_Hidden_Interface
16411 Dest
: Elist_Id
) return Entity_Id
16414 Iface_Elmt
: Elmt_Id
;
16417 if Present
(Src
) and then Present
(Dest
) then
16418 Iface_Elmt
:= First_Elmt
(Src
);
16419 while Present
(Iface_Elmt
) loop
16420 Iface
:= Node
(Iface_Elmt
);
16422 if Is_Interface
(Iface
)
16423 and then not Contain_Interface
(Iface
, Dest
)
16428 Next_Elmt
(Iface_Elmt
);
16433 end Find_Hidden_Interface
;
16435 --------------------
16436 -- Find_Type_Name --
16437 --------------------
16439 function Find_Type_Name
(N
: Node_Id
) return Entity_Id
is
16440 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
16442 New_Id
: Entity_Id
;
16443 Prev_Par
: Node_Id
;
16445 procedure Check_Duplicate_Aspects
;
16446 -- Check that aspects specified in a completion have not been specified
16447 -- already in the partial view. Type_Invariant and others can be
16448 -- specified on either view but never on both.
16450 procedure Tag_Mismatch
;
16451 -- Diagnose a tagged partial view whose full view is untagged.
16452 -- We post the message on the full view, with a reference to
16453 -- the previous partial view. The partial view can be private
16454 -- or incomplete, and these are handled in a different manner,
16455 -- so we determine the position of the error message from the
16456 -- respective slocs of both.
16458 -----------------------------
16459 -- Check_Duplicate_Aspects --
16460 -----------------------------
16461 procedure Check_Duplicate_Aspects
is
16462 Prev_Aspects
: constant List_Id
:= Aspect_Specifications
(Prev_Par
);
16463 Full_Aspects
: constant List_Id
:= Aspect_Specifications
(N
);
16464 F_Spec
, P_Spec
: Node_Id
;
16467 if Present
(Prev_Aspects
) and then Present
(Full_Aspects
) then
16468 F_Spec
:= First
(Full_Aspects
);
16469 while Present
(F_Spec
) loop
16470 P_Spec
:= First
(Prev_Aspects
);
16471 while Present
(P_Spec
) loop
16472 if Chars
(Identifier
(P_Spec
)) = Chars
(Identifier
(F_Spec
))
16475 ("aspect already specified in private declaration",
16487 end Check_Duplicate_Aspects
;
16493 procedure Tag_Mismatch
is
16495 if Sloc
(Prev
) < Sloc
(Id
) then
16496 if Ada_Version
>= Ada_2012
16497 and then Nkind
(N
) = N_Private_Type_Declaration
16500 ("declaration of private } must be a tagged type ", Id
, Prev
);
16503 ("full declaration of } must be a tagged type ", Id
, Prev
);
16507 if Ada_Version
>= Ada_2012
16508 and then Nkind
(N
) = N_Private_Type_Declaration
16511 ("declaration of private } must be a tagged type ", Prev
, Id
);
16514 ("full declaration of } must be a tagged type ", Prev
, Id
);
16519 -- Start of processing for Find_Type_Name
16522 -- Find incomplete declaration, if one was given
16524 Prev
:= Current_Entity_In_Scope
(Id
);
16526 -- New type declaration
16532 -- Previous declaration exists
16535 Prev_Par
:= Parent
(Prev
);
16537 -- Error if not incomplete/private case except if previous
16538 -- declaration is implicit, etc. Enter_Name will emit error if
16541 if not Is_Incomplete_Or_Private_Type
(Prev
) then
16545 -- Check invalid completion of private or incomplete type
16547 elsif not Nkind_In
(N
, N_Full_Type_Declaration
,
16548 N_Task_Type_Declaration
,
16549 N_Protected_Type_Declaration
)
16551 (Ada_Version
< Ada_2012
16552 or else not Is_Incomplete_Type
(Prev
)
16553 or else not Nkind_In
(N
, N_Private_Type_Declaration
,
16554 N_Private_Extension_Declaration
))
16556 -- Completion must be a full type declarations (RM 7.3(4))
16558 Error_Msg_Sloc
:= Sloc
(Prev
);
16559 Error_Msg_NE
("invalid completion of }", Id
, Prev
);
16561 -- Set scope of Id to avoid cascaded errors. Entity is never
16562 -- examined again, except when saving globals in generics.
16564 Set_Scope
(Id
, Current_Scope
);
16567 -- If this is a repeated incomplete declaration, no further
16568 -- checks are possible.
16570 if Nkind
(N
) = N_Incomplete_Type_Declaration
then
16574 -- Case of full declaration of incomplete type
16576 elsif Ekind
(Prev
) = E_Incomplete_Type
16577 and then (Ada_Version
< Ada_2012
16578 or else No
(Full_View
(Prev
))
16579 or else not Is_Private_Type
(Full_View
(Prev
)))
16581 -- Indicate that the incomplete declaration has a matching full
16582 -- declaration. The defining occurrence of the incomplete
16583 -- declaration remains the visible one, and the procedure
16584 -- Get_Full_View dereferences it whenever the type is used.
16586 if Present
(Full_View
(Prev
)) then
16587 Error_Msg_NE
("invalid redeclaration of }", Id
, Prev
);
16590 Set_Full_View
(Prev
, Id
);
16591 Append_Entity
(Id
, Current_Scope
);
16592 Set_Is_Public
(Id
, Is_Public
(Prev
));
16593 Set_Is_Internal
(Id
);
16596 -- If the incomplete view is tagged, a class_wide type has been
16597 -- created already. Use it for the private type as well, in order
16598 -- to prevent multiple incompatible class-wide types that may be
16599 -- created for self-referential anonymous access components.
16601 if Is_Tagged_Type
(Prev
)
16602 and then Present
(Class_Wide_Type
(Prev
))
16604 Set_Ekind
(Id
, Ekind
(Prev
)); -- will be reset later
16605 Set_Class_Wide_Type
(Id
, Class_Wide_Type
(Prev
));
16607 -- The type of the classwide type is the current Id. Previously
16608 -- this was not done for private declarations because of order-
16609 -- of elaboration issues in the back-end, but gigi now handles
16612 Set_Etype
(Class_Wide_Type
(Id
), Id
);
16615 -- Case of full declaration of private type
16618 -- If the private type was a completion of an incomplete type then
16619 -- update Prev to reference the private type
16621 if Ada_Version
>= Ada_2012
16622 and then Ekind
(Prev
) = E_Incomplete_Type
16623 and then Present
(Full_View
(Prev
))
16624 and then Is_Private_Type
(Full_View
(Prev
))
16626 Prev
:= Full_View
(Prev
);
16627 Prev_Par
:= Parent
(Prev
);
16630 if Nkind
(N
) = N_Full_Type_Declaration
16632 (Type_Definition
(N
), N_Record_Definition
,
16633 N_Derived_Type_Definition
)
16634 and then Interface_Present
(Type_Definition
(N
))
16637 ("completion of private type cannot be an interface", N
);
16640 if Nkind
(Parent
(Prev
)) /= N_Private_Extension_Declaration
then
16641 if Etype
(Prev
) /= Prev
then
16643 -- Prev is a private subtype or a derived type, and needs
16646 Error_Msg_NE
("invalid redeclaration of }", Id
, Prev
);
16649 elsif Ekind
(Prev
) = E_Private_Type
16650 and then Nkind_In
(N
, N_Task_Type_Declaration
,
16651 N_Protected_Type_Declaration
)
16654 ("completion of nonlimited type cannot be limited", N
);
16656 elsif Ekind
(Prev
) = E_Record_Type_With_Private
16657 and then Nkind_In
(N
, N_Task_Type_Declaration
,
16658 N_Protected_Type_Declaration
)
16660 if not Is_Limited_Record
(Prev
) then
16662 ("completion of nonlimited type cannot be limited", N
);
16664 elsif No
(Interface_List
(N
)) then
16666 ("completion of tagged private type must be tagged",
16671 -- Ada 2005 (AI-251): Private extension declaration of a task
16672 -- type or a protected type. This case arises when covering
16673 -- interface types.
16675 elsif Nkind_In
(N
, N_Task_Type_Declaration
,
16676 N_Protected_Type_Declaration
)
16680 elsif Nkind
(N
) /= N_Full_Type_Declaration
16681 or else Nkind
(Type_Definition
(N
)) /= N_Derived_Type_Definition
16684 ("full view of private extension must be an extension", N
);
16686 elsif not (Abstract_Present
(Parent
(Prev
)))
16687 and then Abstract_Present
(Type_Definition
(N
))
16690 ("full view of non-abstract extension cannot be abstract", N
);
16693 if not In_Private_Part
(Current_Scope
) then
16695 ("declaration of full view must appear in private part", N
);
16698 if Ada_Version
>= Ada_2012
then
16699 Check_Duplicate_Aspects
;
16702 Copy_And_Swap
(Prev
, Id
);
16703 Set_Has_Private_Declaration
(Prev
);
16704 Set_Has_Private_Declaration
(Id
);
16706 -- AI12-0133: Indicate whether we have a partial view with
16707 -- unknown discriminants, in which case initialization of objects
16708 -- of the type do not receive an invariant check.
16710 Set_Partial_View_Has_Unknown_Discr
16711 (Prev
, Has_Unknown_Discriminants
(Id
));
16713 -- Preserve aspect and iterator flags that may have been set on
16714 -- the partial view.
16716 Set_Has_Delayed_Aspects
(Prev
, Has_Delayed_Aspects
(Id
));
16717 Set_Has_Implicit_Dereference
(Prev
, Has_Implicit_Dereference
(Id
));
16719 -- If no error, propagate freeze_node from private to full view.
16720 -- It may have been generated for an early operational item.
16722 if Present
(Freeze_Node
(Id
))
16723 and then Serious_Errors_Detected
= 0
16724 and then No
(Full_View
(Id
))
16726 Set_Freeze_Node
(Prev
, Freeze_Node
(Id
));
16727 Set_Freeze_Node
(Id
, Empty
);
16728 Set_First_Rep_Item
(Prev
, First_Rep_Item
(Id
));
16731 Set_Full_View
(Id
, Prev
);
16735 -- Verify that full declaration conforms to partial one
16737 if Is_Incomplete_Or_Private_Type
(Prev
)
16738 and then Present
(Discriminant_Specifications
(Prev_Par
))
16740 if Present
(Discriminant_Specifications
(N
)) then
16741 if Ekind
(Prev
) = E_Incomplete_Type
then
16742 Check_Discriminant_Conformance
(N
, Prev
, Prev
);
16744 Check_Discriminant_Conformance
(N
, Prev
, Id
);
16749 ("missing discriminants in full type declaration", N
);
16751 -- To avoid cascaded errors on subsequent use, share the
16752 -- discriminants of the partial view.
16754 Set_Discriminant_Specifications
(N
,
16755 Discriminant_Specifications
(Prev_Par
));
16759 -- A prior untagged partial view can have an associated class-wide
16760 -- type due to use of the class attribute, and in this case the full
16761 -- type must also be tagged. This Ada 95 usage is deprecated in favor
16762 -- of incomplete tagged declarations, but we check for it.
16765 and then (Is_Tagged_Type
(Prev
)
16766 or else Present
(Class_Wide_Type
(Prev
)))
16768 -- Ada 2012 (AI05-0162): A private type may be the completion of
16769 -- an incomplete type.
16771 if Ada_Version
>= Ada_2012
16772 and then Is_Incomplete_Type
(Prev
)
16773 and then Nkind_In
(N
, N_Private_Type_Declaration
,
16774 N_Private_Extension_Declaration
)
16776 -- No need to check private extensions since they are tagged
16778 if Nkind
(N
) = N_Private_Type_Declaration
16779 and then not Tagged_Present
(N
)
16784 -- The full declaration is either a tagged type (including
16785 -- a synchronized type that implements interfaces) or a
16786 -- type extension, otherwise this is an error.
16788 elsif Nkind_In
(N
, N_Task_Type_Declaration
,
16789 N_Protected_Type_Declaration
)
16791 if No
(Interface_List
(N
)) and then not Error_Posted
(N
) then
16795 elsif Nkind
(Type_Definition
(N
)) = N_Record_Definition
then
16797 -- Indicate that the previous declaration (tagged incomplete
16798 -- or private declaration) requires the same on the full one.
16800 if not Tagged_Present
(Type_Definition
(N
)) then
16802 Set_Is_Tagged_Type
(Id
);
16805 elsif Nkind
(Type_Definition
(N
)) = N_Derived_Type_Definition
then
16806 if No
(Record_Extension_Part
(Type_Definition
(N
))) then
16808 ("full declaration of } must be a record extension",
16811 -- Set some attributes to produce a usable full view
16813 Set_Is_Tagged_Type
(Id
);
16822 and then Nkind
(Parent
(Prev
)) = N_Incomplete_Type_Declaration
16823 and then Present
(Premature_Use
(Parent
(Prev
)))
16825 Error_Msg_Sloc
:= Sloc
(N
);
16827 ("\full declaration #", Premature_Use
(Parent
(Prev
)));
16832 end Find_Type_Name
;
16834 -------------------------
16835 -- Find_Type_Of_Object --
16836 -------------------------
16838 function Find_Type_Of_Object
16839 (Obj_Def
: Node_Id
;
16840 Related_Nod
: Node_Id
) return Entity_Id
16842 Def_Kind
: constant Node_Kind
:= Nkind
(Obj_Def
);
16843 P
: Node_Id
:= Parent
(Obj_Def
);
16848 -- If the parent is a component_definition node we climb to the
16849 -- component_declaration node
16851 if Nkind
(P
) = N_Component_Definition
then
16855 -- Case of an anonymous array subtype
16857 if Nkind_In
(Def_Kind
, N_Constrained_Array_Definition
,
16858 N_Unconstrained_Array_Definition
)
16861 Array_Type_Declaration
(T
, Obj_Def
);
16863 -- Create an explicit subtype whenever possible
16865 elsif Nkind
(P
) /= N_Component_Declaration
16866 and then Def_Kind
= N_Subtype_Indication
16868 -- Base name of subtype on object name, which will be unique in
16869 -- the current scope.
16871 -- If this is a duplicate declaration, return base type, to avoid
16872 -- generating duplicate anonymous types.
16874 if Error_Posted
(P
) then
16875 Analyze
(Subtype_Mark
(Obj_Def
));
16876 return Entity
(Subtype_Mark
(Obj_Def
));
16881 (Chars
(Defining_Identifier
(Related_Nod
)), 'S', 0, 'T');
16883 T
:= Make_Defining_Identifier
(Sloc
(P
), Nam
);
16885 Insert_Action
(Obj_Def
,
16886 Make_Subtype_Declaration
(Sloc
(P
),
16887 Defining_Identifier
=> T
,
16888 Subtype_Indication
=> Relocate_Node
(Obj_Def
)));
16890 -- This subtype may need freezing, and this will not be done
16891 -- automatically if the object declaration is not in declarative
16892 -- part. Since this is an object declaration, the type cannot always
16893 -- be frozen here. Deferred constants do not freeze their type
16894 -- (which often enough will be private).
16896 if Nkind
(P
) = N_Object_Declaration
16897 and then Constant_Present
(P
)
16898 and then No
(Expression
(P
))
16902 -- Here we freeze the base type of object type to catch premature use
16903 -- of discriminated private type without a full view.
16906 Insert_Actions
(Obj_Def
, Freeze_Entity
(Base_Type
(T
), P
));
16909 -- Ada 2005 AI-406: the object definition in an object declaration
16910 -- can be an access definition.
16912 elsif Def_Kind
= N_Access_Definition
then
16913 T
:= Access_Definition
(Related_Nod
, Obj_Def
);
16915 Set_Is_Local_Anonymous_Access
16917 V
=> (Ada_Version
< Ada_2012
)
16918 or else (Nkind
(P
) /= N_Object_Declaration
)
16919 or else Is_Library_Level_Entity
(Defining_Identifier
(P
)));
16921 -- Otherwise, the object definition is just a subtype_mark
16924 T
:= Process_Subtype
(Obj_Def
, Related_Nod
);
16926 -- If expansion is disabled an object definition that is an aggregate
16927 -- will not get expanded and may lead to scoping problems in the back
16928 -- end, if the object is referenced in an inner scope. In that case
16929 -- create an itype reference for the object definition now. This
16930 -- may be redundant in some cases, but harmless.
16933 and then Nkind
(Related_Nod
) = N_Object_Declaration
16936 Build_Itype_Reference
(T
, Related_Nod
);
16941 end Find_Type_Of_Object
;
16943 --------------------------------
16944 -- Find_Type_Of_Subtype_Indic --
16945 --------------------------------
16947 function Find_Type_Of_Subtype_Indic
(S
: Node_Id
) return Entity_Id
is
16951 -- Case of subtype mark with a constraint
16953 if Nkind
(S
) = N_Subtype_Indication
then
16954 Find_Type
(Subtype_Mark
(S
));
16955 Typ
:= Entity
(Subtype_Mark
(S
));
16958 Is_Valid_Constraint_Kind
(Ekind
(Typ
), Nkind
(Constraint
(S
)))
16961 ("incorrect constraint for this kind of type", Constraint
(S
));
16962 Rewrite
(S
, New_Copy_Tree
(Subtype_Mark
(S
)));
16965 -- Otherwise we have a subtype mark without a constraint
16967 elsif Error_Posted
(S
) then
16968 Rewrite
(S
, New_Occurrence_Of
(Any_Id
, Sloc
(S
)));
16976 -- Check No_Wide_Characters restriction
16978 Check_Wide_Character_Restriction
(Typ
, S
);
16981 end Find_Type_Of_Subtype_Indic
;
16983 -------------------------------------
16984 -- Floating_Point_Type_Declaration --
16985 -------------------------------------
16987 procedure Floating_Point_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
16988 Digs
: constant Node_Id
:= Digits_Expression
(Def
);
16989 Max_Digs_Val
: constant Uint
:= Digits_Value
(Standard_Long_Long_Float
);
16991 Base_Typ
: Entity_Id
;
16992 Implicit_Base
: Entity_Id
;
16995 function Can_Derive_From
(E
: Entity_Id
) return Boolean;
16996 -- Find if given digits value, and possibly a specified range, allows
16997 -- derivation from specified type
16999 function Find_Base_Type
return Entity_Id
;
17000 -- Find a predefined base type that Def can derive from, or generate
17001 -- an error and substitute Long_Long_Float if none exists.
17003 ---------------------
17004 -- Can_Derive_From --
17005 ---------------------
17007 function Can_Derive_From
(E
: Entity_Id
) return Boolean is
17008 Spec
: constant Entity_Id
:= Real_Range_Specification
(Def
);
17011 -- Check specified "digits" constraint
17013 if Digs_Val
> Digits_Value
(E
) then
17017 -- Check for matching range, if specified
17019 if Present
(Spec
) then
17020 if Expr_Value_R
(Type_Low_Bound
(E
)) >
17021 Expr_Value_R
(Low_Bound
(Spec
))
17026 if Expr_Value_R
(Type_High_Bound
(E
)) <
17027 Expr_Value_R
(High_Bound
(Spec
))
17034 end Can_Derive_From
;
17036 --------------------
17037 -- Find_Base_Type --
17038 --------------------
17040 function Find_Base_Type
return Entity_Id
is
17041 Choice
: Elmt_Id
:= First_Elmt
(Predefined_Float_Types
);
17044 -- Iterate over the predefined types in order, returning the first
17045 -- one that Def can derive from.
17047 while Present
(Choice
) loop
17048 if Can_Derive_From
(Node
(Choice
)) then
17049 return Node
(Choice
);
17052 Next_Elmt
(Choice
);
17055 -- If we can't derive from any existing type, use Long_Long_Float
17056 -- and give appropriate message explaining the problem.
17058 if Digs_Val
> Max_Digs_Val
then
17059 -- It might be the case that there is a type with the requested
17060 -- range, just not the combination of digits and range.
17063 ("no predefined type has requested range and precision",
17064 Real_Range_Specification
(Def
));
17068 ("range too large for any predefined type",
17069 Real_Range_Specification
(Def
));
17072 return Standard_Long_Long_Float
;
17073 end Find_Base_Type
;
17075 -- Start of processing for Floating_Point_Type_Declaration
17078 Check_Restriction
(No_Floating_Point
, Def
);
17080 -- Create an implicit base type
17083 Create_Itype
(E_Floating_Point_Type
, Parent
(Def
), T
, 'B');
17085 -- Analyze and verify digits value
17087 Analyze_And_Resolve
(Digs
, Any_Integer
);
17088 Check_Digits_Expression
(Digs
);
17089 Digs_Val
:= Expr_Value
(Digs
);
17091 -- Process possible range spec and find correct type to derive from
17093 Process_Real_Range_Specification
(Def
);
17095 -- Check that requested number of digits is not too high.
17097 if Digs_Val
> Max_Digs_Val
then
17099 -- The check for Max_Base_Digits may be somewhat expensive, as it
17100 -- requires reading System, so only do it when necessary.
17103 Max_Base_Digits
: constant Uint
:=
17106 (Parent
(RTE
(RE_Max_Base_Digits
))));
17109 if Digs_Val
> Max_Base_Digits
then
17110 Error_Msg_Uint_1
:= Max_Base_Digits
;
17111 Error_Msg_N
("digits value out of range, maximum is ^", Digs
);
17113 elsif No
(Real_Range_Specification
(Def
)) then
17114 Error_Msg_Uint_1
:= Max_Digs_Val
;
17115 Error_Msg_N
("types with more than ^ digits need range spec "
17116 & "(RM 3.5.7(6))", Digs
);
17121 -- Find a suitable type to derive from or complain and use a substitute
17123 Base_Typ
:= Find_Base_Type
;
17125 -- If there are bounds given in the declaration use them as the bounds
17126 -- of the type, otherwise use the bounds of the predefined base type
17127 -- that was chosen based on the Digits value.
17129 if Present
(Real_Range_Specification
(Def
)) then
17130 Set_Scalar_Range
(T
, Real_Range_Specification
(Def
));
17131 Set_Is_Constrained
(T
);
17133 -- The bounds of this range must be converted to machine numbers
17134 -- in accordance with RM 4.9(38).
17136 Bound
:= Type_Low_Bound
(T
);
17138 if Nkind
(Bound
) = N_Real_Literal
then
17140 (Bound
, Machine
(Base_Typ
, Realval
(Bound
), Round
, Bound
));
17141 Set_Is_Machine_Number
(Bound
);
17144 Bound
:= Type_High_Bound
(T
);
17146 if Nkind
(Bound
) = N_Real_Literal
then
17148 (Bound
, Machine
(Base_Typ
, Realval
(Bound
), Round
, Bound
));
17149 Set_Is_Machine_Number
(Bound
);
17153 Set_Scalar_Range
(T
, Scalar_Range
(Base_Typ
));
17156 -- Complete definition of implicit base and declared first subtype. The
17157 -- inheritance of the rep item chain ensures that SPARK-related pragmas
17158 -- are not clobbered when the floating point type acts as a full view of
17161 Set_Etype
(Implicit_Base
, Base_Typ
);
17162 Set_Scalar_Range
(Implicit_Base
, Scalar_Range
(Base_Typ
));
17163 Set_Size_Info
(Implicit_Base
, Base_Typ
);
17164 Set_RM_Size
(Implicit_Base
, RM_Size
(Base_Typ
));
17165 Set_First_Rep_Item
(Implicit_Base
, First_Rep_Item
(Base_Typ
));
17166 Set_Digits_Value
(Implicit_Base
, Digits_Value
(Base_Typ
));
17167 Set_Float_Rep
(Implicit_Base
, Float_Rep
(Base_Typ
));
17169 Set_Ekind
(T
, E_Floating_Point_Subtype
);
17170 Set_Etype
(T
, Implicit_Base
);
17171 Set_Size_Info
(T
, Implicit_Base
);
17172 Set_RM_Size
(T
, RM_Size
(Implicit_Base
));
17173 Inherit_Rep_Item_Chain
(T
, Implicit_Base
);
17174 Set_Digits_Value
(T
, Digs_Val
);
17175 end Floating_Point_Type_Declaration
;
17177 ----------------------------
17178 -- Get_Discriminant_Value --
17179 ----------------------------
17181 -- This is the situation:
17183 -- There is a non-derived type
17185 -- type T0 (Dx, Dy, Dz...)
17187 -- There are zero or more levels of derivation, with each derivation
17188 -- either purely inheriting the discriminants, or defining its own.
17190 -- type Ti is new Ti-1
17192 -- type Ti (Dw) is new Ti-1(Dw, 1, X+Y)
17194 -- subtype Ti is ...
17196 -- The subtype issue is avoided by the use of Original_Record_Component,
17197 -- and the fact that derived subtypes also derive the constraints.
17199 -- This chain leads back from
17201 -- Typ_For_Constraint
17203 -- Typ_For_Constraint has discriminants, and the value for each
17204 -- discriminant is given by its corresponding Elmt of Constraints.
17206 -- Discriminant is some discriminant in this hierarchy
17208 -- We need to return its value
17210 -- We do this by recursively searching each level, and looking for
17211 -- Discriminant. Once we get to the bottom, we start backing up
17212 -- returning the value for it which may in turn be a discriminant
17213 -- further up, so on the backup we continue the substitution.
17215 function Get_Discriminant_Value
17216 (Discriminant
: Entity_Id
;
17217 Typ_For_Constraint
: Entity_Id
;
17218 Constraint
: Elist_Id
) return Node_Id
17220 function Root_Corresponding_Discriminant
17221 (Discr
: Entity_Id
) return Entity_Id
;
17222 -- Given a discriminant, traverse the chain of inherited discriminants
17223 -- and return the topmost discriminant.
17225 function Search_Derivation_Levels
17227 Discrim_Values
: Elist_Id
;
17228 Stored_Discrim_Values
: Boolean) return Node_Or_Entity_Id
;
17229 -- This is the routine that performs the recursive search of levels
17230 -- as described above.
17232 -------------------------------------
17233 -- Root_Corresponding_Discriminant --
17234 -------------------------------------
17236 function Root_Corresponding_Discriminant
17237 (Discr
: Entity_Id
) return Entity_Id
17243 while Present
(Corresponding_Discriminant
(D
)) loop
17244 D
:= Corresponding_Discriminant
(D
);
17248 end Root_Corresponding_Discriminant
;
17250 ------------------------------
17251 -- Search_Derivation_Levels --
17252 ------------------------------
17254 function Search_Derivation_Levels
17256 Discrim_Values
: Elist_Id
;
17257 Stored_Discrim_Values
: Boolean) return Node_Or_Entity_Id
17261 Result
: Node_Or_Entity_Id
;
17262 Result_Entity
: Node_Id
;
17265 -- If inappropriate type, return Error, this happens only in
17266 -- cascaded error situations, and we want to avoid a blow up.
17268 if not Is_Composite_Type
(Ti
) or else Is_Array_Type
(Ti
) then
17272 -- Look deeper if possible. Use Stored_Constraints only for
17273 -- untagged types. For tagged types use the given constraint.
17274 -- This asymmetry needs explanation???
17276 if not Stored_Discrim_Values
17277 and then Present
(Stored_Constraint
(Ti
))
17278 and then not Is_Tagged_Type
(Ti
)
17281 Search_Derivation_Levels
(Ti
, Stored_Constraint
(Ti
), True);
17284 Td
: constant Entity_Id
:= Etype
(Ti
);
17288 Result
:= Discriminant
;
17291 if Present
(Stored_Constraint
(Ti
)) then
17293 Search_Derivation_Levels
17294 (Td
, Stored_Constraint
(Ti
), True);
17297 Search_Derivation_Levels
17298 (Td
, Discrim_Values
, Stored_Discrim_Values
);
17304 -- Extra underlying places to search, if not found above. For
17305 -- concurrent types, the relevant discriminant appears in the
17306 -- corresponding record. For a type derived from a private type
17307 -- without discriminant, the full view inherits the discriminants
17308 -- of the full view of the parent.
17310 if Result
= Discriminant
then
17311 if Is_Concurrent_Type
(Ti
)
17312 and then Present
(Corresponding_Record_Type
(Ti
))
17315 Search_Derivation_Levels
(
17316 Corresponding_Record_Type
(Ti
),
17318 Stored_Discrim_Values
);
17320 elsif Is_Private_Type
(Ti
)
17321 and then not Has_Discriminants
(Ti
)
17322 and then Present
(Full_View
(Ti
))
17323 and then Etype
(Full_View
(Ti
)) /= Ti
17326 Search_Derivation_Levels
(
17329 Stored_Discrim_Values
);
17333 -- If Result is not a (reference to a) discriminant, return it,
17334 -- otherwise set Result_Entity to the discriminant.
17336 if Nkind
(Result
) = N_Defining_Identifier
then
17337 pragma Assert
(Result
= Discriminant
);
17338 Result_Entity
:= Result
;
17341 if not Denotes_Discriminant
(Result
) then
17345 Result_Entity
:= Entity
(Result
);
17348 -- See if this level of derivation actually has discriminants because
17349 -- tagged derivations can add them, hence the lower levels need not
17352 if not Has_Discriminants
(Ti
) then
17356 -- Scan Ti's discriminants for Result_Entity, and return its
17357 -- corresponding value, if any.
17359 Result_Entity
:= Original_Record_Component
(Result_Entity
);
17361 Assoc
:= First_Elmt
(Discrim_Values
);
17363 if Stored_Discrim_Values
then
17364 Disc
:= First_Stored_Discriminant
(Ti
);
17366 Disc
:= First_Discriminant
(Ti
);
17369 while Present
(Disc
) loop
17370 pragma Assert
(Present
(Assoc
));
17372 if Original_Record_Component
(Disc
) = Result_Entity
then
17373 return Node
(Assoc
);
17378 if Stored_Discrim_Values
then
17379 Next_Stored_Discriminant
(Disc
);
17381 Next_Discriminant
(Disc
);
17385 -- Could not find it
17388 end Search_Derivation_Levels
;
17392 Result
: Node_Or_Entity_Id
;
17394 -- Start of processing for Get_Discriminant_Value
17397 -- ??? This routine is a gigantic mess and will be deleted. For the
17398 -- time being just test for the trivial case before calling recurse.
17400 if Base_Type
(Scope
(Discriminant
)) = Base_Type
(Typ_For_Constraint
) then
17406 D
:= First_Discriminant
(Typ_For_Constraint
);
17407 E
:= First_Elmt
(Constraint
);
17408 while Present
(D
) loop
17409 if Chars
(D
) = Chars
(Discriminant
) then
17413 Next_Discriminant
(D
);
17419 Result
:= Search_Derivation_Levels
17420 (Typ_For_Constraint
, Constraint
, False);
17422 -- ??? hack to disappear when this routine is gone
17424 if Nkind
(Result
) = N_Defining_Identifier
then
17430 D
:= First_Discriminant
(Typ_For_Constraint
);
17431 E
:= First_Elmt
(Constraint
);
17432 while Present
(D
) loop
17433 if Root_Corresponding_Discriminant
(D
) = Discriminant
then
17437 Next_Discriminant
(D
);
17443 pragma Assert
(Nkind
(Result
) /= N_Defining_Identifier
);
17445 end Get_Discriminant_Value
;
17447 --------------------------
17448 -- Has_Range_Constraint --
17449 --------------------------
17451 function Has_Range_Constraint
(N
: Node_Id
) return Boolean is
17452 C
: constant Node_Id
:= Constraint
(N
);
17455 if Nkind
(C
) = N_Range_Constraint
then
17458 elsif Nkind
(C
) = N_Digits_Constraint
then
17460 Is_Decimal_Fixed_Point_Type
(Entity
(Subtype_Mark
(N
)))
17461 or else Present
(Range_Constraint
(C
));
17463 elsif Nkind
(C
) = N_Delta_Constraint
then
17464 return Present
(Range_Constraint
(C
));
17469 end Has_Range_Constraint
;
17471 ------------------------
17472 -- Inherit_Components --
17473 ------------------------
17475 function Inherit_Components
17477 Parent_Base
: Entity_Id
;
17478 Derived_Base
: Entity_Id
;
17479 Is_Tagged
: Boolean;
17480 Inherit_Discr
: Boolean;
17481 Discs
: Elist_Id
) return Elist_Id
17483 Assoc_List
: constant Elist_Id
:= New_Elmt_List
;
17485 procedure Inherit_Component
17486 (Old_C
: Entity_Id
;
17487 Plain_Discrim
: Boolean := False;
17488 Stored_Discrim
: Boolean := False);
17489 -- Inherits component Old_C from Parent_Base to the Derived_Base. If
17490 -- Plain_Discrim is True, Old_C is a discriminant. If Stored_Discrim is
17491 -- True, Old_C is a stored discriminant. If they are both false then
17492 -- Old_C is a regular component.
17494 -----------------------
17495 -- Inherit_Component --
17496 -----------------------
17498 procedure Inherit_Component
17499 (Old_C
: Entity_Id
;
17500 Plain_Discrim
: Boolean := False;
17501 Stored_Discrim
: Boolean := False)
17503 procedure Set_Anonymous_Type
(Id
: Entity_Id
);
17504 -- Id denotes the entity of an access discriminant or anonymous
17505 -- access component. Set the type of Id to either the same type of
17506 -- Old_C or create a new one depending on whether the parent and
17507 -- the child types are in the same scope.
17509 ------------------------
17510 -- Set_Anonymous_Type --
17511 ------------------------
17513 procedure Set_Anonymous_Type
(Id
: Entity_Id
) is
17514 Old_Typ
: constant Entity_Id
:= Etype
(Old_C
);
17517 if Scope
(Parent_Base
) = Scope
(Derived_Base
) then
17518 Set_Etype
(Id
, Old_Typ
);
17520 -- The parent and the derived type are in two different scopes.
17521 -- Reuse the type of the original discriminant / component by
17522 -- copying it in order to preserve all attributes.
17526 Typ
: constant Entity_Id
:= New_Copy
(Old_Typ
);
17529 Set_Etype
(Id
, Typ
);
17531 -- Since we do not generate component declarations for
17532 -- inherited components, associate the itype with the
17535 Set_Associated_Node_For_Itype
(Typ
, Parent
(Derived_Base
));
17536 Set_Scope
(Typ
, Derived_Base
);
17539 end Set_Anonymous_Type
;
17541 -- Local variables and constants
17543 New_C
: constant Entity_Id
:= New_Copy
(Old_C
);
17545 Corr_Discrim
: Entity_Id
;
17546 Discrim
: Entity_Id
;
17548 -- Start of processing for Inherit_Component
17551 pragma Assert
(not Is_Tagged
or not Stored_Discrim
);
17553 Set_Parent
(New_C
, Parent
(Old_C
));
17555 -- Regular discriminants and components must be inserted in the scope
17556 -- of the Derived_Base. Do it here.
17558 if not Stored_Discrim
then
17559 Enter_Name
(New_C
);
17562 -- For tagged types the Original_Record_Component must point to
17563 -- whatever this field was pointing to in the parent type. This has
17564 -- already been achieved by the call to New_Copy above.
17566 if not Is_Tagged
then
17567 Set_Original_Record_Component
(New_C
, New_C
);
17570 -- Set the proper type of an access discriminant
17572 if Ekind
(New_C
) = E_Discriminant
17573 and then Ekind
(Etype
(New_C
)) = E_Anonymous_Access_Type
17575 Set_Anonymous_Type
(New_C
);
17578 -- If we have inherited a component then see if its Etype contains
17579 -- references to Parent_Base discriminants. In this case, replace
17580 -- these references with the constraints given in Discs. We do not
17581 -- do this for the partial view of private types because this is
17582 -- not needed (only the components of the full view will be used
17583 -- for code generation) and cause problem. We also avoid this
17584 -- transformation in some error situations.
17586 if Ekind
(New_C
) = E_Component
then
17588 -- Set the proper type of an anonymous access component
17590 if Ekind
(Etype
(New_C
)) = E_Anonymous_Access_Type
then
17591 Set_Anonymous_Type
(New_C
);
17593 elsif (Is_Private_Type
(Derived_Base
)
17594 and then not Is_Generic_Type
(Derived_Base
))
17595 or else (Is_Empty_Elmt_List
(Discs
)
17596 and then not Expander_Active
)
17598 Set_Etype
(New_C
, Etype
(Old_C
));
17601 -- The current component introduces a circularity of the
17604 -- limited with Pack_2;
17605 -- package Pack_1 is
17606 -- type T_1 is tagged record
17607 -- Comp : access Pack_2.T_2;
17613 -- package Pack_2 is
17614 -- type T_2 is new Pack_1.T_1 with ...;
17619 Constrain_Component_Type
17620 (Old_C
, Derived_Base
, N
, Parent_Base
, Discs
));
17624 -- In derived tagged types it is illegal to reference a non
17625 -- discriminant component in the parent type. To catch this, mark
17626 -- these components with an Ekind of E_Void. This will be reset in
17627 -- Record_Type_Definition after processing the record extension of
17628 -- the derived type.
17630 -- If the declaration is a private extension, there is no further
17631 -- record extension to process, and the components retain their
17632 -- current kind, because they are visible at this point.
17634 if Is_Tagged
and then Ekind
(New_C
) = E_Component
17635 and then Nkind
(N
) /= N_Private_Extension_Declaration
17637 Set_Ekind
(New_C
, E_Void
);
17640 if Plain_Discrim
then
17641 Set_Corresponding_Discriminant
(New_C
, Old_C
);
17642 Build_Discriminal
(New_C
);
17644 -- If we are explicitly inheriting a stored discriminant it will be
17645 -- completely hidden.
17647 elsif Stored_Discrim
then
17648 Set_Corresponding_Discriminant
(New_C
, Empty
);
17649 Set_Discriminal
(New_C
, Empty
);
17650 Set_Is_Completely_Hidden
(New_C
);
17652 -- Set the Original_Record_Component of each discriminant in the
17653 -- derived base to point to the corresponding stored that we just
17656 Discrim
:= First_Discriminant
(Derived_Base
);
17657 while Present
(Discrim
) loop
17658 Corr_Discrim
:= Corresponding_Discriminant
(Discrim
);
17660 -- Corr_Discrim could be missing in an error situation
17662 if Present
(Corr_Discrim
)
17663 and then Original_Record_Component
(Corr_Discrim
) = Old_C
17665 Set_Original_Record_Component
(Discrim
, New_C
);
17668 Next_Discriminant
(Discrim
);
17671 Append_Entity
(New_C
, Derived_Base
);
17674 if not Is_Tagged
then
17675 Append_Elmt
(Old_C
, Assoc_List
);
17676 Append_Elmt
(New_C
, Assoc_List
);
17678 end Inherit_Component
;
17680 -- Variables local to Inherit_Component
17682 Loc
: constant Source_Ptr
:= Sloc
(N
);
17684 Parent_Discrim
: Entity_Id
;
17685 Stored_Discrim
: Entity_Id
;
17687 Component
: Entity_Id
;
17689 -- Start of processing for Inherit_Components
17692 if not Is_Tagged
then
17693 Append_Elmt
(Parent_Base
, Assoc_List
);
17694 Append_Elmt
(Derived_Base
, Assoc_List
);
17697 -- Inherit parent discriminants if needed
17699 if Inherit_Discr
then
17700 Parent_Discrim
:= First_Discriminant
(Parent_Base
);
17701 while Present
(Parent_Discrim
) loop
17702 Inherit_Component
(Parent_Discrim
, Plain_Discrim
=> True);
17703 Next_Discriminant
(Parent_Discrim
);
17707 -- Create explicit stored discrims for untagged types when necessary
17709 if not Has_Unknown_Discriminants
(Derived_Base
)
17710 and then Has_Discriminants
(Parent_Base
)
17711 and then not Is_Tagged
17714 or else First_Discriminant
(Parent_Base
) /=
17715 First_Stored_Discriminant
(Parent_Base
))
17717 Stored_Discrim
:= First_Stored_Discriminant
(Parent_Base
);
17718 while Present
(Stored_Discrim
) loop
17719 Inherit_Component
(Stored_Discrim
, Stored_Discrim
=> True);
17720 Next_Stored_Discriminant
(Stored_Discrim
);
17724 -- See if we can apply the second transformation for derived types, as
17725 -- explained in point 6. in the comments above Build_Derived_Record_Type
17726 -- This is achieved by appending Derived_Base discriminants into Discs,
17727 -- which has the side effect of returning a non empty Discs list to the
17728 -- caller of Inherit_Components, which is what we want. This must be
17729 -- done for private derived types if there are explicit stored
17730 -- discriminants, to ensure that we can retrieve the values of the
17731 -- constraints provided in the ancestors.
17734 and then Is_Empty_Elmt_List
(Discs
)
17735 and then Present
(First_Discriminant
(Derived_Base
))
17737 (not Is_Private_Type
(Derived_Base
)
17738 or else Is_Completely_Hidden
17739 (First_Stored_Discriminant
(Derived_Base
))
17740 or else Is_Generic_Type
(Derived_Base
))
17742 D
:= First_Discriminant
(Derived_Base
);
17743 while Present
(D
) loop
17744 Append_Elmt
(New_Occurrence_Of
(D
, Loc
), Discs
);
17745 Next_Discriminant
(D
);
17749 -- Finally, inherit non-discriminant components unless they are not
17750 -- visible because defined or inherited from the full view of the
17751 -- parent. Don't inherit the _parent field of the parent type.
17753 Component
:= First_Entity
(Parent_Base
);
17754 while Present
(Component
) loop
17756 -- Ada 2005 (AI-251): Do not inherit components associated with
17757 -- secondary tags of the parent.
17759 if Ekind
(Component
) = E_Component
17760 and then Present
(Related_Type
(Component
))
17764 elsif Ekind
(Component
) /= E_Component
17765 or else Chars
(Component
) = Name_uParent
17769 -- If the derived type is within the parent type's declarative
17770 -- region, then the components can still be inherited even though
17771 -- they aren't visible at this point. This can occur for cases
17772 -- such as within public child units where the components must
17773 -- become visible upon entering the child unit's private part.
17775 elsif not Is_Visible_Component
(Component
)
17776 and then not In_Open_Scopes
(Scope
(Parent_Base
))
17780 elsif Ekind_In
(Derived_Base
, E_Private_Type
,
17781 E_Limited_Private_Type
)
17786 Inherit_Component
(Component
);
17789 Next_Entity
(Component
);
17792 -- For tagged derived types, inherited discriminants cannot be used in
17793 -- component declarations of the record extension part. To achieve this
17794 -- we mark the inherited discriminants as not visible.
17796 if Is_Tagged
and then Inherit_Discr
then
17797 D
:= First_Discriminant
(Derived_Base
);
17798 while Present
(D
) loop
17799 Set_Is_Immediately_Visible
(D
, False);
17800 Next_Discriminant
(D
);
17805 end Inherit_Components
;
17807 -----------------------------
17808 -- Inherit_Predicate_Flags --
17809 -----------------------------
17811 procedure Inherit_Predicate_Flags
(Subt
, Par
: Entity_Id
) is
17813 Set_Has_Predicates
(Subt
, Has_Predicates
(Par
));
17814 Set_Has_Static_Predicate_Aspect
17815 (Subt
, Has_Static_Predicate_Aspect
(Par
));
17816 Set_Has_Dynamic_Predicate_Aspect
17817 (Subt
, Has_Dynamic_Predicate_Aspect
(Par
));
17818 end Inherit_Predicate_Flags
;
17820 ----------------------
17821 -- Is_EVF_Procedure --
17822 ----------------------
17824 function Is_EVF_Procedure
(Subp
: Entity_Id
) return Boolean is
17825 Formal
: Entity_Id
;
17828 -- Examine the formals of an Extensions_Visible False procedure looking
17829 -- for a controlling OUT parameter.
17831 if Ekind
(Subp
) = E_Procedure
17832 and then Extensions_Visible_Status
(Subp
) = Extensions_Visible_False
17834 Formal
:= First_Formal
(Subp
);
17835 while Present
(Formal
) loop
17836 if Ekind
(Formal
) = E_Out_Parameter
17837 and then Is_Controlling_Formal
(Formal
)
17842 Next_Formal
(Formal
);
17847 end Is_EVF_Procedure
;
17849 -----------------------
17850 -- Is_Null_Extension --
17851 -----------------------
17853 function Is_Null_Extension
(T
: Entity_Id
) return Boolean is
17854 Type_Decl
: constant Node_Id
:= Parent
(Base_Type
(T
));
17855 Comp_List
: Node_Id
;
17859 if Nkind
(Type_Decl
) /= N_Full_Type_Declaration
17860 or else not Is_Tagged_Type
(T
)
17861 or else Nkind
(Type_Definition
(Type_Decl
)) /=
17862 N_Derived_Type_Definition
17863 or else No
(Record_Extension_Part
(Type_Definition
(Type_Decl
)))
17869 Component_List
(Record_Extension_Part
(Type_Definition
(Type_Decl
)));
17871 if Present
(Discriminant_Specifications
(Type_Decl
)) then
17874 elsif Present
(Comp_List
)
17875 and then Is_Non_Empty_List
(Component_Items
(Comp_List
))
17877 Comp
:= First
(Component_Items
(Comp_List
));
17879 -- Only user-defined components are relevant. The component list
17880 -- may also contain a parent component and internal components
17881 -- corresponding to secondary tags, but these do not determine
17882 -- whether this is a null extension.
17884 while Present
(Comp
) loop
17885 if Comes_From_Source
(Comp
) then
17897 end Is_Null_Extension
;
17899 ------------------------------
17900 -- Is_Valid_Constraint_Kind --
17901 ------------------------------
17903 function Is_Valid_Constraint_Kind
17904 (T_Kind
: Type_Kind
;
17905 Constraint_Kind
: Node_Kind
) return Boolean
17909 when Enumeration_Kind |
17911 return Constraint_Kind
= N_Range_Constraint
;
17913 when Decimal_Fixed_Point_Kind
=>
17914 return Nkind_In
(Constraint_Kind
, N_Digits_Constraint
,
17915 N_Range_Constraint
);
17917 when Ordinary_Fixed_Point_Kind
=>
17918 return Nkind_In
(Constraint_Kind
, N_Delta_Constraint
,
17919 N_Range_Constraint
);
17922 return Nkind_In
(Constraint_Kind
, N_Digits_Constraint
,
17923 N_Range_Constraint
);
17930 E_Incomplete_Type |
17933 return Constraint_Kind
= N_Index_Or_Discriminant_Constraint
;
17936 return True; -- Error will be detected later
17938 end Is_Valid_Constraint_Kind
;
17940 --------------------------
17941 -- Is_Visible_Component --
17942 --------------------------
17944 function Is_Visible_Component
17946 N
: Node_Id
:= Empty
) return Boolean
17948 Original_Comp
: Entity_Id
:= Empty
;
17949 Original_Type
: Entity_Id
;
17950 Type_Scope
: Entity_Id
;
17952 function Is_Local_Type
(Typ
: Entity_Id
) return Boolean;
17953 -- Check whether parent type of inherited component is declared locally,
17954 -- possibly within a nested package or instance. The current scope is
17955 -- the derived record itself.
17957 -------------------
17958 -- Is_Local_Type --
17959 -------------------
17961 function Is_Local_Type
(Typ
: Entity_Id
) return Boolean is
17965 Scop
:= Scope
(Typ
);
17966 while Present
(Scop
)
17967 and then Scop
/= Standard_Standard
17969 if Scop
= Scope
(Current_Scope
) then
17973 Scop
:= Scope
(Scop
);
17979 -- Start of processing for Is_Visible_Component
17982 if Ekind_In
(C
, E_Component
, E_Discriminant
) then
17983 Original_Comp
:= Original_Record_Component
(C
);
17986 if No
(Original_Comp
) then
17988 -- Premature usage, or previous error
17993 Original_Type
:= Scope
(Original_Comp
);
17994 Type_Scope
:= Scope
(Base_Type
(Scope
(C
)));
17997 -- This test only concerns tagged types
17999 if not Is_Tagged_Type
(Original_Type
) then
18002 -- If it is _Parent or _Tag, there is no visibility issue
18004 elsif not Comes_From_Source
(Original_Comp
) then
18007 -- Discriminants are visible unless the (private) type has unknown
18008 -- discriminants. If the discriminant reference is inserted for a
18009 -- discriminant check on a full view it is also visible.
18011 elsif Ekind
(Original_Comp
) = E_Discriminant
18013 (not Has_Unknown_Discriminants
(Original_Type
)
18014 or else (Present
(N
)
18015 and then Nkind
(N
) = N_Selected_Component
18016 and then Nkind
(Prefix
(N
)) = N_Type_Conversion
18017 and then not Comes_From_Source
(Prefix
(N
))))
18021 -- In the body of an instantiation, no need to check for the visibility
18024 elsif In_Instance_Body
then
18027 -- If the component has been declared in an ancestor which is currently
18028 -- a private type, then it is not visible. The same applies if the
18029 -- component's containing type is not in an open scope and the original
18030 -- component's enclosing type is a visible full view of a private type
18031 -- (which can occur in cases where an attempt is being made to reference
18032 -- a component in a sibling package that is inherited from a visible
18033 -- component of a type in an ancestor package; the component in the
18034 -- sibling package should not be visible even though the component it
18035 -- inherited from is visible). This does not apply however in the case
18036 -- where the scope of the type is a private child unit, or when the
18037 -- parent comes from a local package in which the ancestor is currently
18038 -- visible. The latter suppression of visibility is needed for cases
18039 -- that are tested in B730006.
18041 elsif Is_Private_Type
(Original_Type
)
18043 (not Is_Private_Descendant
(Type_Scope
)
18044 and then not In_Open_Scopes
(Type_Scope
)
18045 and then Has_Private_Declaration
(Original_Type
))
18047 -- If the type derives from an entity in a formal package, there
18048 -- are no additional visible components.
18050 if Nkind
(Original_Node
(Unit_Declaration_Node
(Type_Scope
))) =
18051 N_Formal_Package_Declaration
18055 -- if we are not in the private part of the current package, there
18056 -- are no additional visible components.
18058 elsif Ekind
(Scope
(Current_Scope
)) = E_Package
18059 and then not In_Private_Part
(Scope
(Current_Scope
))
18064 Is_Child_Unit
(Cunit_Entity
(Current_Sem_Unit
))
18065 and then In_Open_Scopes
(Scope
(Original_Type
))
18066 and then Is_Local_Type
(Type_Scope
);
18069 -- There is another weird way in which a component may be invisible when
18070 -- the private and the full view are not derived from the same ancestor.
18071 -- Here is an example :
18073 -- type A1 is tagged record F1 : integer; end record;
18074 -- type A2 is new A1 with record F2 : integer; end record;
18075 -- type T is new A1 with private;
18077 -- type T is new A2 with null record;
18079 -- In this case, the full view of T inherits F1 and F2 but the private
18080 -- view inherits only F1
18084 Ancestor
: Entity_Id
:= Scope
(C
);
18088 if Ancestor
= Original_Type
then
18091 -- The ancestor may have a partial view of the original
18092 -- type, but if the full view is in scope, as in a child
18093 -- body, the component is visible.
18095 elsif In_Private_Part
(Scope
(Original_Type
))
18096 and then Full_View
(Ancestor
) = Original_Type
18100 elsif Ancestor
= Etype
(Ancestor
) then
18102 -- No further ancestors to examine.
18107 Ancestor
:= Etype
(Ancestor
);
18111 end Is_Visible_Component
;
18113 --------------------------
18114 -- Make_Class_Wide_Type --
18115 --------------------------
18117 procedure Make_Class_Wide_Type
(T
: Entity_Id
) is
18118 CW_Type
: Entity_Id
;
18120 Next_E
: Entity_Id
;
18123 if Present
(Class_Wide_Type
(T
)) then
18125 -- The class-wide type is a partially decorated entity created for a
18126 -- unanalyzed tagged type referenced through a limited with clause.
18127 -- When the tagged type is analyzed, its class-wide type needs to be
18128 -- redecorated. Note that we reuse the entity created by Decorate_
18129 -- Tagged_Type in order to preserve all links.
18131 if Materialize_Entity
(Class_Wide_Type
(T
)) then
18132 CW_Type
:= Class_Wide_Type
(T
);
18133 Set_Materialize_Entity
(CW_Type
, False);
18135 -- The class wide type can have been defined by the partial view, in
18136 -- which case everything is already done.
18142 -- Default case, we need to create a new class-wide type
18146 New_External_Entity
(E_Void
, Scope
(T
), Sloc
(T
), T
, 'C', 0, 'T');
18149 -- Inherit root type characteristics
18151 CW_Name
:= Chars
(CW_Type
);
18152 Next_E
:= Next_Entity
(CW_Type
);
18153 Copy_Node
(T
, CW_Type
);
18154 Set_Comes_From_Source
(CW_Type
, False);
18155 Set_Chars
(CW_Type
, CW_Name
);
18156 Set_Parent
(CW_Type
, Parent
(T
));
18157 Set_Next_Entity
(CW_Type
, Next_E
);
18159 -- Ensure we have a new freeze node for the class-wide type. The partial
18160 -- view may have freeze action of its own, requiring a proper freeze
18161 -- node, and the same freeze node cannot be shared between the two
18164 Set_Has_Delayed_Freeze
(CW_Type
);
18165 Set_Freeze_Node
(CW_Type
, Empty
);
18167 -- Customize the class-wide type: It has no prim. op., it cannot be
18168 -- abstract and its Etype points back to the specific root type.
18170 Set_Ekind
(CW_Type
, E_Class_Wide_Type
);
18171 Set_Is_Tagged_Type
(CW_Type
, True);
18172 Set_Direct_Primitive_Operations
(CW_Type
, New_Elmt_List
);
18173 Set_Is_Abstract_Type
(CW_Type
, False);
18174 Set_Is_Constrained
(CW_Type
, False);
18175 Set_Is_First_Subtype
(CW_Type
, Is_First_Subtype
(T
));
18176 Set_Default_SSO
(CW_Type
);
18178 if Ekind
(T
) = E_Class_Wide_Subtype
then
18179 Set_Etype
(CW_Type
, Etype
(Base_Type
(T
)));
18181 Set_Etype
(CW_Type
, T
);
18184 Set_No_Tagged_Streams_Pragma
(CW_Type
, No_Tagged_Streams
);
18186 -- If this is the class_wide type of a constrained subtype, it does
18187 -- not have discriminants.
18189 Set_Has_Discriminants
(CW_Type
,
18190 Has_Discriminants
(T
) and then not Is_Constrained
(T
));
18192 Set_Has_Unknown_Discriminants
(CW_Type
, True);
18193 Set_Class_Wide_Type
(T
, CW_Type
);
18194 Set_Equivalent_Type
(CW_Type
, Empty
);
18196 -- The class-wide type of a class-wide type is itself (RM 3.9(14))
18198 Set_Class_Wide_Type
(CW_Type
, CW_Type
);
18199 end Make_Class_Wide_Type
;
18205 procedure Make_Index
18207 Related_Nod
: Node_Id
;
18208 Related_Id
: Entity_Id
:= Empty
;
18209 Suffix_Index
: Nat
:= 1;
18210 In_Iter_Schm
: Boolean := False)
18214 Def_Id
: Entity_Id
:= Empty
;
18215 Found
: Boolean := False;
18218 -- For a discrete range used in a constrained array definition and
18219 -- defined by a range, an implicit conversion to the predefined type
18220 -- INTEGER is assumed if each bound is either a numeric literal, a named
18221 -- number, or an attribute, and the type of both bounds (prior to the
18222 -- implicit conversion) is the type universal_integer. Otherwise, both
18223 -- bounds must be of the same discrete type, other than universal
18224 -- integer; this type must be determinable independently of the
18225 -- context, but using the fact that the type must be discrete and that
18226 -- both bounds must have the same type.
18228 -- Character literals also have a universal type in the absence of
18229 -- of additional context, and are resolved to Standard_Character.
18231 if Nkind
(N
) = N_Range
then
18233 -- The index is given by a range constraint. The bounds are known
18234 -- to be of a consistent type.
18236 if not Is_Overloaded
(N
) then
18239 -- For universal bounds, choose the specific predefined type
18241 if T
= Universal_Integer
then
18242 T
:= Standard_Integer
;
18244 elsif T
= Any_Character
then
18245 Ambiguous_Character
(Low_Bound
(N
));
18247 T
:= Standard_Character
;
18250 -- The node may be overloaded because some user-defined operators
18251 -- are available, but if a universal interpretation exists it is
18252 -- also the selected one.
18254 elsif Universal_Interpretation
(N
) = Universal_Integer
then
18255 T
:= Standard_Integer
;
18261 Ind
: Interp_Index
;
18265 Get_First_Interp
(N
, Ind
, It
);
18266 while Present
(It
.Typ
) loop
18267 if Is_Discrete_Type
(It
.Typ
) then
18270 and then not Covers
(It
.Typ
, T
)
18271 and then not Covers
(T
, It
.Typ
)
18273 Error_Msg_N
("ambiguous bounds in discrete range", N
);
18281 Get_Next_Interp
(Ind
, It
);
18284 if T
= Any_Type
then
18285 Error_Msg_N
("discrete type required for range", N
);
18286 Set_Etype
(N
, Any_Type
);
18289 elsif T
= Universal_Integer
then
18290 T
:= Standard_Integer
;
18295 if not Is_Discrete_Type
(T
) then
18296 Error_Msg_N
("discrete type required for range", N
);
18297 Set_Etype
(N
, Any_Type
);
18301 if Nkind
(Low_Bound
(N
)) = N_Attribute_Reference
18302 and then Attribute_Name
(Low_Bound
(N
)) = Name_First
18303 and then Is_Entity_Name
(Prefix
(Low_Bound
(N
)))
18304 and then Is_Type
(Entity
(Prefix
(Low_Bound
(N
))))
18305 and then Is_Discrete_Type
(Entity
(Prefix
(Low_Bound
(N
))))
18307 -- The type of the index will be the type of the prefix, as long
18308 -- as the upper bound is 'Last of the same type.
18310 Def_Id
:= Entity
(Prefix
(Low_Bound
(N
)));
18312 if Nkind
(High_Bound
(N
)) /= N_Attribute_Reference
18313 or else Attribute_Name
(High_Bound
(N
)) /= Name_Last
18314 or else not Is_Entity_Name
(Prefix
(High_Bound
(N
)))
18315 or else Entity
(Prefix
(High_Bound
(N
))) /= Def_Id
18322 Process_Range_Expr_In_Decl
(R
, T
, In_Iter_Schm
=> In_Iter_Schm
);
18324 elsif Nkind
(N
) = N_Subtype_Indication
then
18326 -- The index is given by a subtype with a range constraint
18328 T
:= Base_Type
(Entity
(Subtype_Mark
(N
)));
18330 if not Is_Discrete_Type
(T
) then
18331 Error_Msg_N
("discrete type required for range", N
);
18332 Set_Etype
(N
, Any_Type
);
18336 R
:= Range_Expression
(Constraint
(N
));
18339 Process_Range_Expr_In_Decl
18340 (R
, Entity
(Subtype_Mark
(N
)), In_Iter_Schm
=> In_Iter_Schm
);
18342 elsif Nkind
(N
) = N_Attribute_Reference
then
18344 -- Catch beginner's error (use of attribute other than 'Range)
18346 if Attribute_Name
(N
) /= Name_Range
then
18347 Error_Msg_N
("expect attribute ''Range", N
);
18348 Set_Etype
(N
, Any_Type
);
18352 -- If the node denotes the range of a type mark, that is also the
18353 -- resulting type, and we do not need to create an Itype for it.
18355 if Is_Entity_Name
(Prefix
(N
))
18356 and then Comes_From_Source
(N
)
18357 and then Is_Type
(Entity
(Prefix
(N
)))
18358 and then Is_Discrete_Type
(Entity
(Prefix
(N
)))
18360 Def_Id
:= Entity
(Prefix
(N
));
18363 Analyze_And_Resolve
(N
);
18367 -- If none of the above, must be a subtype. We convert this to a
18368 -- range attribute reference because in the case of declared first
18369 -- named subtypes, the types in the range reference can be different
18370 -- from the type of the entity. A range attribute normalizes the
18371 -- reference and obtains the correct types for the bounds.
18373 -- This transformation is in the nature of an expansion, is only
18374 -- done if expansion is active. In particular, it is not done on
18375 -- formal generic types, because we need to retain the name of the
18376 -- original index for instantiation purposes.
18379 if not Is_Entity_Name
(N
) or else not Is_Type
(Entity
(N
)) then
18380 Error_Msg_N
("invalid subtype mark in discrete range ", N
);
18381 Set_Etype
(N
, Any_Integer
);
18385 -- The type mark may be that of an incomplete type. It is only
18386 -- now that we can get the full view, previous analysis does
18387 -- not look specifically for a type mark.
18389 Set_Entity
(N
, Get_Full_View
(Entity
(N
)));
18390 Set_Etype
(N
, Entity
(N
));
18391 Def_Id
:= Entity
(N
);
18393 if not Is_Discrete_Type
(Def_Id
) then
18394 Error_Msg_N
("discrete type required for index", N
);
18395 Set_Etype
(N
, Any_Type
);
18400 if Expander_Active
then
18402 Make_Attribute_Reference
(Sloc
(N
),
18403 Attribute_Name
=> Name_Range
,
18404 Prefix
=> Relocate_Node
(N
)));
18406 -- The original was a subtype mark that does not freeze. This
18407 -- means that the rewritten version must not freeze either.
18409 Set_Must_Not_Freeze
(N
);
18410 Set_Must_Not_Freeze
(Prefix
(N
));
18411 Analyze_And_Resolve
(N
);
18415 -- If expander is inactive, type is legal, nothing else to construct
18422 if not Is_Discrete_Type
(T
) then
18423 Error_Msg_N
("discrete type required for range", N
);
18424 Set_Etype
(N
, Any_Type
);
18427 elsif T
= Any_Type
then
18428 Set_Etype
(N
, Any_Type
);
18432 -- We will now create the appropriate Itype to describe the range, but
18433 -- first a check. If we originally had a subtype, then we just label
18434 -- the range with this subtype. Not only is there no need to construct
18435 -- a new subtype, but it is wrong to do so for two reasons:
18437 -- 1. A legality concern, if we have a subtype, it must not freeze,
18438 -- and the Itype would cause freezing incorrectly
18440 -- 2. An efficiency concern, if we created an Itype, it would not be
18441 -- recognized as the same type for the purposes of eliminating
18442 -- checks in some circumstances.
18444 -- We signal this case by setting the subtype entity in Def_Id
18446 if No
(Def_Id
) then
18448 Create_Itype
(E_Void
, Related_Nod
, Related_Id
, 'D', Suffix_Index
);
18449 Set_Etype
(Def_Id
, Base_Type
(T
));
18451 if Is_Signed_Integer_Type
(T
) then
18452 Set_Ekind
(Def_Id
, E_Signed_Integer_Subtype
);
18454 elsif Is_Modular_Integer_Type
(T
) then
18455 Set_Ekind
(Def_Id
, E_Modular_Integer_Subtype
);
18458 Set_Ekind
(Def_Id
, E_Enumeration_Subtype
);
18459 Set_Is_Character_Type
(Def_Id
, Is_Character_Type
(T
));
18460 Set_First_Literal
(Def_Id
, First_Literal
(T
));
18463 Set_Size_Info
(Def_Id
, (T
));
18464 Set_RM_Size
(Def_Id
, RM_Size
(T
));
18465 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
18467 Set_Scalar_Range
(Def_Id
, R
);
18468 Conditional_Delay
(Def_Id
, T
);
18470 if Nkind
(N
) = N_Subtype_Indication
then
18471 Inherit_Predicate_Flags
(Def_Id
, Entity
(Subtype_Mark
(N
)));
18474 -- In the subtype indication case, if the immediate parent of the
18475 -- new subtype is non-static, then the subtype we create is non-
18476 -- static, even if its bounds are static.
18478 if Nkind
(N
) = N_Subtype_Indication
18479 and then not Is_OK_Static_Subtype
(Entity
(Subtype_Mark
(N
)))
18481 Set_Is_Non_Static_Subtype
(Def_Id
);
18485 -- Final step is to label the index with this constructed type
18487 Set_Etype
(N
, Def_Id
);
18490 ------------------------------
18491 -- Modular_Type_Declaration --
18492 ------------------------------
18494 procedure Modular_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
18495 Mod_Expr
: constant Node_Id
:= Expression
(Def
);
18498 procedure Set_Modular_Size
(Bits
: Int
);
18499 -- Sets RM_Size to Bits, and Esize to normal word size above this
18501 ----------------------
18502 -- Set_Modular_Size --
18503 ----------------------
18505 procedure Set_Modular_Size
(Bits
: Int
) is
18507 Set_RM_Size
(T
, UI_From_Int
(Bits
));
18512 elsif Bits
<= 16 then
18513 Init_Esize
(T
, 16);
18515 elsif Bits
<= 32 then
18516 Init_Esize
(T
, 32);
18519 Init_Esize
(T
, System_Max_Binary_Modulus_Power
);
18522 if not Non_Binary_Modulus
(T
) and then Esize
(T
) = RM_Size
(T
) then
18523 Set_Is_Known_Valid
(T
);
18525 end Set_Modular_Size
;
18527 -- Start of processing for Modular_Type_Declaration
18530 -- If the mod expression is (exactly) 2 * literal, where literal is
18531 -- 64 or less,then almost certainly the * was meant to be **. Warn.
18533 if Warn_On_Suspicious_Modulus_Value
18534 and then Nkind
(Mod_Expr
) = N_Op_Multiply
18535 and then Nkind
(Left_Opnd
(Mod_Expr
)) = N_Integer_Literal
18536 and then Intval
(Left_Opnd
(Mod_Expr
)) = Uint_2
18537 and then Nkind
(Right_Opnd
(Mod_Expr
)) = N_Integer_Literal
18538 and then Intval
(Right_Opnd
(Mod_Expr
)) <= Uint_64
18541 ("suspicious MOD value, was '*'* intended'??M?", Mod_Expr
);
18544 -- Proceed with analysis of mod expression
18546 Analyze_And_Resolve
(Mod_Expr
, Any_Integer
);
18548 Set_Ekind
(T
, E_Modular_Integer_Type
);
18549 Init_Alignment
(T
);
18550 Set_Is_Constrained
(T
);
18552 if not Is_OK_Static_Expression
(Mod_Expr
) then
18553 Flag_Non_Static_Expr
18554 ("non-static expression used for modular type bound!", Mod_Expr
);
18555 M_Val
:= 2 ** System_Max_Binary_Modulus_Power
;
18557 M_Val
:= Expr_Value
(Mod_Expr
);
18561 Error_Msg_N
("modulus value must be positive", Mod_Expr
);
18562 M_Val
:= 2 ** System_Max_Binary_Modulus_Power
;
18565 if M_Val
> 2 ** Standard_Long_Integer_Size
then
18566 Check_Restriction
(No_Long_Long_Integers
, Mod_Expr
);
18569 Set_Modulus
(T
, M_Val
);
18571 -- Create bounds for the modular type based on the modulus given in
18572 -- the type declaration and then analyze and resolve those bounds.
18574 Set_Scalar_Range
(T
,
18575 Make_Range
(Sloc
(Mod_Expr
),
18576 Low_Bound
=> Make_Integer_Literal
(Sloc
(Mod_Expr
), 0),
18577 High_Bound
=> Make_Integer_Literal
(Sloc
(Mod_Expr
), M_Val
- 1)));
18579 -- Properly analyze the literals for the range. We do this manually
18580 -- because we can't go calling Resolve, since we are resolving these
18581 -- bounds with the type, and this type is certainly not complete yet.
18583 Set_Etype
(Low_Bound
(Scalar_Range
(T
)), T
);
18584 Set_Etype
(High_Bound
(Scalar_Range
(T
)), T
);
18585 Set_Is_Static_Expression
(Low_Bound
(Scalar_Range
(T
)));
18586 Set_Is_Static_Expression
(High_Bound
(Scalar_Range
(T
)));
18588 -- Loop through powers of two to find number of bits required
18590 for Bits
in Int
range 0 .. System_Max_Binary_Modulus_Power
loop
18594 if M_Val
= 2 ** Bits
then
18595 Set_Modular_Size
(Bits
);
18600 elsif M_Val
< 2 ** Bits
then
18601 Check_SPARK_05_Restriction
("modulus should be a power of 2", T
);
18602 Set_Non_Binary_Modulus
(T
);
18604 if Bits
> System_Max_Nonbinary_Modulus_Power
then
18605 Error_Msg_Uint_1
:=
18606 UI_From_Int
(System_Max_Nonbinary_Modulus_Power
);
18608 ("nonbinary modulus exceeds limit (2 '*'*^ - 1)", Mod_Expr
);
18609 Set_Modular_Size
(System_Max_Binary_Modulus_Power
);
18613 -- In the nonbinary case, set size as per RM 13.3(55)
18615 Set_Modular_Size
(Bits
);
18622 -- If we fall through, then the size exceed System.Max_Binary_Modulus
18623 -- so we just signal an error and set the maximum size.
18625 Error_Msg_Uint_1
:= UI_From_Int
(System_Max_Binary_Modulus_Power
);
18626 Error_Msg_F
("modulus exceeds limit (2 '*'*^)", Mod_Expr
);
18628 Set_Modular_Size
(System_Max_Binary_Modulus_Power
);
18629 Init_Alignment
(T
);
18631 end Modular_Type_Declaration
;
18633 --------------------------
18634 -- New_Concatenation_Op --
18635 --------------------------
18637 procedure New_Concatenation_Op
(Typ
: Entity_Id
) is
18638 Loc
: constant Source_Ptr
:= Sloc
(Typ
);
18641 function Make_Op_Formal
(Typ
, Op
: Entity_Id
) return Entity_Id
;
18642 -- Create abbreviated declaration for the formal of a predefined
18643 -- Operator 'Op' of type 'Typ'
18645 --------------------
18646 -- Make_Op_Formal --
18647 --------------------
18649 function Make_Op_Formal
(Typ
, Op
: Entity_Id
) return Entity_Id
is
18650 Formal
: Entity_Id
;
18652 Formal
:= New_Internal_Entity
(E_In_Parameter
, Op
, Loc
, 'P');
18653 Set_Etype
(Formal
, Typ
);
18654 Set_Mechanism
(Formal
, Default_Mechanism
);
18656 end Make_Op_Formal
;
18658 -- Start of processing for New_Concatenation_Op
18661 Op
:= Make_Defining_Operator_Symbol
(Loc
, Name_Op_Concat
);
18663 Set_Ekind
(Op
, E_Operator
);
18664 Set_Scope
(Op
, Current_Scope
);
18665 Set_Etype
(Op
, Typ
);
18666 Set_Homonym
(Op
, Get_Name_Entity_Id
(Name_Op_Concat
));
18667 Set_Is_Immediately_Visible
(Op
);
18668 Set_Is_Intrinsic_Subprogram
(Op
);
18669 Set_Has_Completion
(Op
);
18670 Append_Entity
(Op
, Current_Scope
);
18672 Set_Name_Entity_Id
(Name_Op_Concat
, Op
);
18674 Append_Entity
(Make_Op_Formal
(Typ
, Op
), Op
);
18675 Append_Entity
(Make_Op_Formal
(Typ
, Op
), Op
);
18676 end New_Concatenation_Op
;
18678 -------------------------
18679 -- OK_For_Limited_Init --
18680 -------------------------
18682 -- ???Check all calls of this, and compare the conditions under which it's
18685 function OK_For_Limited_Init
18687 Exp
: Node_Id
) return Boolean
18690 return Is_CPP_Constructor_Call
(Exp
)
18691 or else (Ada_Version
>= Ada_2005
18692 and then not Debug_Flag_Dot_L
18693 and then OK_For_Limited_Init_In_05
(Typ
, Exp
));
18694 end OK_For_Limited_Init
;
18696 -------------------------------
18697 -- OK_For_Limited_Init_In_05 --
18698 -------------------------------
18700 function OK_For_Limited_Init_In_05
18702 Exp
: Node_Id
) return Boolean
18705 -- An object of a limited interface type can be initialized with any
18706 -- expression of a nonlimited descendant type.
18708 if Is_Class_Wide_Type
(Typ
)
18709 and then Is_Limited_Interface
(Typ
)
18710 and then not Is_Limited_Type
(Etype
(Exp
))
18715 -- Ada 2005 (AI-287, AI-318): Relax the strictness of the front end in
18716 -- case of limited aggregates (including extension aggregates), and
18717 -- function calls. The function call may have been given in prefixed
18718 -- notation, in which case the original node is an indexed component.
18719 -- If the function is parameterless, the original node was an explicit
18720 -- dereference. The function may also be parameterless, in which case
18721 -- the source node is just an identifier.
18723 case Nkind
(Original_Node
(Exp
)) is
18724 when N_Aggregate | N_Extension_Aggregate | N_Function_Call | N_Op
=>
18727 when N_Identifier
=>
18728 return Present
(Entity
(Original_Node
(Exp
)))
18729 and then Ekind
(Entity
(Original_Node
(Exp
))) = E_Function
;
18731 when N_Qualified_Expression
=>
18733 OK_For_Limited_Init_In_05
18734 (Typ
, Expression
(Original_Node
(Exp
)));
18736 -- Ada 2005 (AI-251): If a class-wide interface object is initialized
18737 -- with a function call, the expander has rewritten the call into an
18738 -- N_Type_Conversion node to force displacement of the pointer to
18739 -- reference the component containing the secondary dispatch table.
18740 -- Otherwise a type conversion is not a legal context.
18741 -- A return statement for a build-in-place function returning a
18742 -- synchronized type also introduces an unchecked conversion.
18744 when N_Type_Conversion |
18745 N_Unchecked_Type_Conversion
=>
18746 return not Comes_From_Source
(Exp
)
18748 OK_For_Limited_Init_In_05
18749 (Typ
, Expression
(Original_Node
(Exp
)));
18751 when N_Indexed_Component |
18752 N_Selected_Component |
18753 N_Explicit_Dereference
=>
18754 return Nkind
(Exp
) = N_Function_Call
;
18756 -- A use of 'Input is a function call, hence allowed. Normally the
18757 -- attribute will be changed to a call, but the attribute by itself
18758 -- can occur with -gnatc.
18760 when N_Attribute_Reference
=>
18761 return Attribute_Name
(Original_Node
(Exp
)) = Name_Input
;
18763 -- For a case expression, all dependent expressions must be legal
18765 when N_Case_Expression
=>
18770 Alt
:= First
(Alternatives
(Original_Node
(Exp
)));
18771 while Present
(Alt
) loop
18772 if not OK_For_Limited_Init_In_05
(Typ
, Expression
(Alt
)) then
18782 -- For an if expression, all dependent expressions must be legal
18784 when N_If_Expression
=>
18786 Then_Expr
: constant Node_Id
:=
18787 Next
(First
(Expressions
(Original_Node
(Exp
))));
18788 Else_Expr
: constant Node_Id
:= Next
(Then_Expr
);
18790 return OK_For_Limited_Init_In_05
(Typ
, Then_Expr
)
18792 OK_For_Limited_Init_In_05
(Typ
, Else_Expr
);
18798 end OK_For_Limited_Init_In_05
;
18800 -------------------------------------------
18801 -- Ordinary_Fixed_Point_Type_Declaration --
18802 -------------------------------------------
18804 procedure Ordinary_Fixed_Point_Type_Declaration
18808 Loc
: constant Source_Ptr
:= Sloc
(Def
);
18809 Delta_Expr
: constant Node_Id
:= Delta_Expression
(Def
);
18810 RRS
: constant Node_Id
:= Real_Range_Specification
(Def
);
18811 Implicit_Base
: Entity_Id
;
18818 Check_Restriction
(No_Fixed_Point
, Def
);
18820 -- Create implicit base type
18823 Create_Itype
(E_Ordinary_Fixed_Point_Type
, Parent
(Def
), T
, 'B');
18824 Set_Etype
(Implicit_Base
, Implicit_Base
);
18826 -- Analyze and process delta expression
18828 Analyze_And_Resolve
(Delta_Expr
, Any_Real
);
18830 Check_Delta_Expression
(Delta_Expr
);
18831 Delta_Val
:= Expr_Value_R
(Delta_Expr
);
18833 Set_Delta_Value
(Implicit_Base
, Delta_Val
);
18835 -- Compute default small from given delta, which is the largest power
18836 -- of two that does not exceed the given delta value.
18846 if Delta_Val
< Ureal_1
then
18847 while Delta_Val
< Tmp
loop
18848 Tmp
:= Tmp
/ Ureal_2
;
18849 Scale
:= Scale
+ 1;
18854 Tmp
:= Tmp
* Ureal_2
;
18855 exit when Tmp
> Delta_Val
;
18856 Scale
:= Scale
- 1;
18860 Small_Val
:= UR_From_Components
(Uint_1
, UI_From_Int
(Scale
), 2);
18863 Set_Small_Value
(Implicit_Base
, Small_Val
);
18865 -- If no range was given, set a dummy range
18867 if RRS
<= Empty_Or_Error
then
18868 Low_Val
:= -Small_Val
;
18869 High_Val
:= Small_Val
;
18871 -- Otherwise analyze and process given range
18875 Low
: constant Node_Id
:= Low_Bound
(RRS
);
18876 High
: constant Node_Id
:= High_Bound
(RRS
);
18879 Analyze_And_Resolve
(Low
, Any_Real
);
18880 Analyze_And_Resolve
(High
, Any_Real
);
18881 Check_Real_Bound
(Low
);
18882 Check_Real_Bound
(High
);
18884 -- Obtain and set the range
18886 Low_Val
:= Expr_Value_R
(Low
);
18887 High_Val
:= Expr_Value_R
(High
);
18889 if Low_Val
> High_Val
then
18890 Error_Msg_NE
("??fixed point type& has null range", Def
, T
);
18895 -- The range for both the implicit base and the declared first subtype
18896 -- cannot be set yet, so we use the special routine Set_Fixed_Range to
18897 -- set a temporary range in place. Note that the bounds of the base
18898 -- type will be widened to be symmetrical and to fill the available
18899 -- bits when the type is frozen.
18901 -- We could do this with all discrete types, and probably should, but
18902 -- we absolutely have to do it for fixed-point, since the end-points
18903 -- of the range and the size are determined by the small value, which
18904 -- could be reset before the freeze point.
18906 Set_Fixed_Range
(Implicit_Base
, Loc
, Low_Val
, High_Val
);
18907 Set_Fixed_Range
(T
, Loc
, Low_Val
, High_Val
);
18909 -- Complete definition of first subtype. The inheritance of the rep item
18910 -- chain ensures that SPARK-related pragmas are not clobbered when the
18911 -- ordinary fixed point type acts as a full view of a private type.
18913 Set_Ekind
(T
, E_Ordinary_Fixed_Point_Subtype
);
18914 Set_Etype
(T
, Implicit_Base
);
18915 Init_Size_Align
(T
);
18916 Inherit_Rep_Item_Chain
(T
, Implicit_Base
);
18917 Set_Small_Value
(T
, Small_Val
);
18918 Set_Delta_Value
(T
, Delta_Val
);
18919 Set_Is_Constrained
(T
);
18920 end Ordinary_Fixed_Point_Type_Declaration
;
18922 ----------------------------------
18923 -- Preanalyze_Assert_Expression --
18924 ----------------------------------
18926 procedure Preanalyze_Assert_Expression
(N
: Node_Id
; T
: Entity_Id
) is
18928 In_Assertion_Expr
:= In_Assertion_Expr
+ 1;
18929 Preanalyze_Spec_Expression
(N
, T
);
18930 In_Assertion_Expr
:= In_Assertion_Expr
- 1;
18931 end Preanalyze_Assert_Expression
;
18933 -----------------------------------
18934 -- Preanalyze_Default_Expression --
18935 -----------------------------------
18937 procedure Preanalyze_Default_Expression
(N
: Node_Id
; T
: Entity_Id
) is
18938 Save_In_Default_Expr
: constant Boolean := In_Default_Expr
;
18940 In_Default_Expr
:= True;
18941 Preanalyze_Spec_Expression
(N
, T
);
18942 In_Default_Expr
:= Save_In_Default_Expr
;
18943 end Preanalyze_Default_Expression
;
18945 --------------------------------
18946 -- Preanalyze_Spec_Expression --
18947 --------------------------------
18949 procedure Preanalyze_Spec_Expression
(N
: Node_Id
; T
: Entity_Id
) is
18950 Save_In_Spec_Expression
: constant Boolean := In_Spec_Expression
;
18952 In_Spec_Expression
:= True;
18953 Preanalyze_And_Resolve
(N
, T
);
18954 In_Spec_Expression
:= Save_In_Spec_Expression
;
18955 end Preanalyze_Spec_Expression
;
18957 ----------------------------------------
18958 -- Prepare_Private_Subtype_Completion --
18959 ----------------------------------------
18961 procedure Prepare_Private_Subtype_Completion
18963 Related_Nod
: Node_Id
)
18965 Id_B
: constant Entity_Id
:= Base_Type
(Id
);
18966 Full_B
: Entity_Id
:= Full_View
(Id_B
);
18970 if Present
(Full_B
) then
18972 -- Get to the underlying full view if necessary
18974 if Is_Private_Type
(Full_B
)
18975 and then Present
(Underlying_Full_View
(Full_B
))
18977 Full_B
:= Underlying_Full_View
(Full_B
);
18980 -- The Base_Type is already completed, we can complete the subtype
18981 -- now. We have to create a new entity with the same name, Thus we
18982 -- can't use Create_Itype.
18984 Full
:= Make_Defining_Identifier
(Sloc
(Id
), Chars
(Id
));
18985 Set_Is_Itype
(Full
);
18986 Set_Associated_Node_For_Itype
(Full
, Related_Nod
);
18987 Complete_Private_Subtype
(Id
, Full
, Full_B
, Related_Nod
);
18990 -- The parent subtype may be private, but the base might not, in some
18991 -- nested instances. In that case, the subtype does not need to be
18992 -- exchanged. It would still be nice to make private subtypes and their
18993 -- bases consistent at all times ???
18995 if Is_Private_Type
(Id_B
) then
18996 Append_Elmt
(Id
, Private_Dependents
(Id_B
));
18998 end Prepare_Private_Subtype_Completion
;
19000 ---------------------------
19001 -- Process_Discriminants --
19002 ---------------------------
19004 procedure Process_Discriminants
19006 Prev
: Entity_Id
:= Empty
)
19008 Elist
: constant Elist_Id
:= New_Elmt_List
;
19011 Discr_Number
: Uint
;
19012 Discr_Type
: Entity_Id
;
19013 Default_Present
: Boolean := False;
19014 Default_Not_Present
: Boolean := False;
19017 -- A composite type other than an array type can have discriminants.
19018 -- On entry, the current scope is the composite type.
19020 -- The discriminants are initially entered into the scope of the type
19021 -- via Enter_Name with the default Ekind of E_Void to prevent premature
19022 -- use, as explained at the end of this procedure.
19024 Discr
:= First
(Discriminant_Specifications
(N
));
19025 while Present
(Discr
) loop
19026 Enter_Name
(Defining_Identifier
(Discr
));
19028 -- For navigation purposes we add a reference to the discriminant
19029 -- in the entity for the type. If the current declaration is a
19030 -- completion, place references on the partial view. Otherwise the
19031 -- type is the current scope.
19033 if Present
(Prev
) then
19035 -- The references go on the partial view, if present. If the
19036 -- partial view has discriminants, the references have been
19037 -- generated already.
19039 if not Has_Discriminants
(Prev
) then
19040 Generate_Reference
(Prev
, Defining_Identifier
(Discr
), 'd');
19044 (Current_Scope
, Defining_Identifier
(Discr
), 'd');
19047 if Nkind
(Discriminant_Type
(Discr
)) = N_Access_Definition
then
19048 Discr_Type
:= Access_Definition
(Discr
, Discriminant_Type
(Discr
));
19050 -- Ada 2005 (AI-254)
19052 if Present
(Access_To_Subprogram_Definition
19053 (Discriminant_Type
(Discr
)))
19054 and then Protected_Present
(Access_To_Subprogram_Definition
19055 (Discriminant_Type
(Discr
)))
19058 Replace_Anonymous_Access_To_Protected_Subprogram
(Discr
);
19062 Find_Type
(Discriminant_Type
(Discr
));
19063 Discr_Type
:= Etype
(Discriminant_Type
(Discr
));
19065 if Error_Posted
(Discriminant_Type
(Discr
)) then
19066 Discr_Type
:= Any_Type
;
19070 -- Handling of discriminants that are access types
19072 if Is_Access_Type
(Discr_Type
) then
19074 -- Ada 2005 (AI-230): Access discriminant allowed in non-
19075 -- limited record types
19077 if Ada_Version
< Ada_2005
then
19078 Check_Access_Discriminant_Requires_Limited
19079 (Discr
, Discriminant_Type
(Discr
));
19082 if Ada_Version
= Ada_83
and then Comes_From_Source
(Discr
) then
19084 ("(Ada 83) access discriminant not allowed", Discr
);
19087 -- If not access type, must be a discrete type
19089 elsif not Is_Discrete_Type
(Discr_Type
) then
19091 ("discriminants must have a discrete or access type",
19092 Discriminant_Type
(Discr
));
19095 Set_Etype
(Defining_Identifier
(Discr
), Discr_Type
);
19097 -- If a discriminant specification includes the assignment compound
19098 -- delimiter followed by an expression, the expression is the default
19099 -- expression of the discriminant; the default expression must be of
19100 -- the type of the discriminant. (RM 3.7.1) Since this expression is
19101 -- a default expression, we do the special preanalysis, since this
19102 -- expression does not freeze (see section "Handling of Default and
19103 -- Per-Object Expressions" in spec of package Sem).
19105 if Present
(Expression
(Discr
)) then
19106 Preanalyze_Spec_Expression
(Expression
(Discr
), Discr_Type
);
19110 if Nkind
(N
) = N_Formal_Type_Declaration
then
19112 ("discriminant defaults not allowed for formal type",
19113 Expression
(Discr
));
19115 -- Flag an error for a tagged type with defaulted discriminants,
19116 -- excluding limited tagged types when compiling for Ada 2012
19117 -- (see AI05-0214).
19119 elsif Is_Tagged_Type
(Current_Scope
)
19120 and then (not Is_Limited_Type
(Current_Scope
)
19121 or else Ada_Version
< Ada_2012
)
19122 and then Comes_From_Source
(N
)
19124 -- Note: see similar test in Check_Or_Process_Discriminants, to
19125 -- handle the (illegal) case of the completion of an untagged
19126 -- view with discriminants with defaults by a tagged full view.
19127 -- We skip the check if Discr does not come from source, to
19128 -- account for the case of an untagged derived type providing
19129 -- defaults for a renamed discriminant from a private untagged
19130 -- ancestor with a tagged full view (ACATS B460006).
19132 if Ada_Version
>= Ada_2012
then
19134 ("discriminants of nonlimited tagged type cannot have"
19136 Expression
(Discr
));
19139 ("discriminants of tagged type cannot have defaults",
19140 Expression
(Discr
));
19144 Default_Present
:= True;
19145 Append_Elmt
(Expression
(Discr
), Elist
);
19147 -- Tag the defining identifiers for the discriminants with
19148 -- their corresponding default expressions from the tree.
19150 Set_Discriminant_Default_Value
19151 (Defining_Identifier
(Discr
), Expression
(Discr
));
19154 -- In gnatc or gnatprove mode, make sure set Do_Range_Check flag
19155 -- gets set unless we can be sure that no range check is required.
19157 if (GNATprove_Mode
or not Expander_Active
)
19160 (Expression
(Discr
), Discr_Type
, Assume_Valid
=> True)
19162 Set_Do_Range_Check
(Expression
(Discr
));
19165 -- No default discriminant value given
19168 Default_Not_Present
:= True;
19171 -- Ada 2005 (AI-231): Create an Itype that is a duplicate of
19172 -- Discr_Type but with the null-exclusion attribute
19174 if Ada_Version
>= Ada_2005
then
19176 -- Ada 2005 (AI-231): Static checks
19178 if Can_Never_Be_Null
(Discr_Type
) then
19179 Null_Exclusion_Static_Checks
(Discr
);
19181 elsif Is_Access_Type
(Discr_Type
)
19182 and then Null_Exclusion_Present
(Discr
)
19184 -- No need to check itypes because in their case this check
19185 -- was done at their point of creation
19187 and then not Is_Itype
(Discr_Type
)
19189 if Can_Never_Be_Null
(Discr_Type
) then
19191 ("`NOT NULL` not allowed (& already excludes null)",
19196 Set_Etype
(Defining_Identifier
(Discr
),
19197 Create_Null_Excluding_Itype
19199 Related_Nod
=> Discr
));
19201 -- Check for improper null exclusion if the type is otherwise
19202 -- legal for a discriminant.
19204 elsif Null_Exclusion_Present
(Discr
)
19205 and then Is_Discrete_Type
(Discr_Type
)
19208 ("null exclusion can only apply to an access type", Discr
);
19211 -- Ada 2005 (AI-402): access discriminants of nonlimited types
19212 -- can't have defaults. Synchronized types, or types that are
19213 -- explicitly limited are fine, but special tests apply to derived
19214 -- types in generics: in a generic body we have to assume the
19215 -- worst, and therefore defaults are not allowed if the parent is
19216 -- a generic formal private type (see ACATS B370001).
19218 if Is_Access_Type
(Discr_Type
) and then Default_Present
then
19219 if Ekind
(Discr_Type
) /= E_Anonymous_Access_Type
19220 or else Is_Limited_Record
(Current_Scope
)
19221 or else Is_Concurrent_Type
(Current_Scope
)
19222 or else Is_Concurrent_Record_Type
(Current_Scope
)
19223 or else Ekind
(Current_Scope
) = E_Limited_Private_Type
19225 if not Is_Derived_Type
(Current_Scope
)
19226 or else not Is_Generic_Type
(Etype
(Current_Scope
))
19227 or else not In_Package_Body
(Scope
(Etype
(Current_Scope
)))
19228 or else Limited_Present
19229 (Type_Definition
(Parent
(Current_Scope
)))
19235 ("access discriminants of nonlimited types cannot "
19236 & "have defaults", Expression
(Discr
));
19239 elsif Present
(Expression
(Discr
)) then
19241 ("(Ada 2005) access discriminants of nonlimited types "
19242 & "cannot have defaults", Expression
(Discr
));
19247 -- A discriminant cannot be effectively volatile. This check is only
19248 -- relevant when SPARK_Mode is on as it is not standard Ada legality
19249 -- rule (SPARK RM 7.1.3(6)).
19252 and then Is_Effectively_Volatile
(Defining_Identifier
(Discr
))
19254 Error_Msg_N
("discriminant cannot be volatile", Discr
);
19260 -- An element list consisting of the default expressions of the
19261 -- discriminants is constructed in the above loop and used to set
19262 -- the Discriminant_Constraint attribute for the type. If an object
19263 -- is declared of this (record or task) type without any explicit
19264 -- discriminant constraint given, this element list will form the
19265 -- actual parameters for the corresponding initialization procedure
19268 Set_Discriminant_Constraint
(Current_Scope
, Elist
);
19269 Set_Stored_Constraint
(Current_Scope
, No_Elist
);
19271 -- Default expressions must be provided either for all or for none
19272 -- of the discriminants of a discriminant part. (RM 3.7.1)
19274 if Default_Present
and then Default_Not_Present
then
19276 ("incomplete specification of defaults for discriminants", N
);
19279 -- The use of the name of a discriminant is not allowed in default
19280 -- expressions of a discriminant part if the specification of the
19281 -- discriminant is itself given in the discriminant part. (RM 3.7.1)
19283 -- To detect this, the discriminant names are entered initially with an
19284 -- Ekind of E_Void (which is the default Ekind given by Enter_Name). Any
19285 -- attempt to use a void entity (for example in an expression that is
19286 -- type-checked) produces the error message: premature usage. Now after
19287 -- completing the semantic analysis of the discriminant part, we can set
19288 -- the Ekind of all the discriminants appropriately.
19290 Discr
:= First
(Discriminant_Specifications
(N
));
19291 Discr_Number
:= Uint_1
;
19292 while Present
(Discr
) loop
19293 Id
:= Defining_Identifier
(Discr
);
19294 Set_Ekind
(Id
, E_Discriminant
);
19295 Init_Component_Location
(Id
);
19297 Set_Discriminant_Number
(Id
, Discr_Number
);
19299 -- Make sure this is always set, even in illegal programs
19301 Set_Corresponding_Discriminant
(Id
, Empty
);
19303 -- Initialize the Original_Record_Component to the entity itself.
19304 -- Inherit_Components will propagate the right value to
19305 -- discriminants in derived record types.
19307 Set_Original_Record_Component
(Id
, Id
);
19309 -- Create the discriminal for the discriminant
19311 Build_Discriminal
(Id
);
19314 Discr_Number
:= Discr_Number
+ 1;
19317 Set_Has_Discriminants
(Current_Scope
);
19318 end Process_Discriminants
;
19320 -----------------------
19321 -- Process_Full_View --
19322 -----------------------
19324 procedure Process_Full_View
(N
: Node_Id
; Full_T
, Priv_T
: Entity_Id
) is
19325 procedure Collect_Implemented_Interfaces
19327 Ifaces
: Elist_Id
);
19328 -- Ada 2005: Gather all the interfaces that Typ directly or
19329 -- inherently implements. Duplicate entries are not added to
19330 -- the list Ifaces.
19332 ------------------------------------
19333 -- Collect_Implemented_Interfaces --
19334 ------------------------------------
19336 procedure Collect_Implemented_Interfaces
19341 Iface_Elmt
: Elmt_Id
;
19344 -- Abstract interfaces are only associated with tagged record types
19346 if not Is_Tagged_Type
(Typ
) or else not Is_Record_Type
(Typ
) then
19350 -- Recursively climb to the ancestors
19352 if Etype
(Typ
) /= Typ
19354 -- Protect the frontend against wrong cyclic declarations like:
19356 -- type B is new A with private;
19357 -- type C is new A with private;
19359 -- type B is new C with null record;
19360 -- type C is new B with null record;
19362 and then Etype
(Typ
) /= Priv_T
19363 and then Etype
(Typ
) /= Full_T
19365 -- Keep separate the management of private type declarations
19367 if Ekind
(Typ
) = E_Record_Type_With_Private
then
19369 -- Handle the following illegal usage:
19370 -- type Private_Type is tagged private;
19372 -- type Private_Type is new Type_Implementing_Iface;
19374 if Present
(Full_View
(Typ
))
19375 and then Etype
(Typ
) /= Full_View
(Typ
)
19377 if Is_Interface
(Etype
(Typ
)) then
19378 Append_Unique_Elmt
(Etype
(Typ
), Ifaces
);
19381 Collect_Implemented_Interfaces
(Etype
(Typ
), Ifaces
);
19384 -- Non-private types
19387 if Is_Interface
(Etype
(Typ
)) then
19388 Append_Unique_Elmt
(Etype
(Typ
), Ifaces
);
19391 Collect_Implemented_Interfaces
(Etype
(Typ
), Ifaces
);
19395 -- Handle entities in the list of abstract interfaces
19397 if Present
(Interfaces
(Typ
)) then
19398 Iface_Elmt
:= First_Elmt
(Interfaces
(Typ
));
19399 while Present
(Iface_Elmt
) loop
19400 Iface
:= Node
(Iface_Elmt
);
19402 pragma Assert
(Is_Interface
(Iface
));
19404 if not Contain_Interface
(Iface
, Ifaces
) then
19405 Append_Elmt
(Iface
, Ifaces
);
19406 Collect_Implemented_Interfaces
(Iface
, Ifaces
);
19409 Next_Elmt
(Iface_Elmt
);
19412 end Collect_Implemented_Interfaces
;
19416 Full_Indic
: Node_Id
;
19417 Full_Parent
: Entity_Id
;
19418 Priv_Parent
: Entity_Id
;
19420 -- Start of processing for Process_Full_View
19423 -- First some sanity checks that must be done after semantic
19424 -- decoration of the full view and thus cannot be placed with other
19425 -- similar checks in Find_Type_Name
19427 if not Is_Limited_Type
(Priv_T
)
19428 and then (Is_Limited_Type
(Full_T
)
19429 or else Is_Limited_Composite
(Full_T
))
19431 if In_Instance
then
19435 ("completion of nonlimited type cannot be limited", Full_T
);
19436 Explain_Limited_Type
(Full_T
, Full_T
);
19439 elsif Is_Abstract_Type
(Full_T
)
19440 and then not Is_Abstract_Type
(Priv_T
)
19443 ("completion of nonabstract type cannot be abstract", Full_T
);
19445 elsif Is_Tagged_Type
(Priv_T
)
19446 and then Is_Limited_Type
(Priv_T
)
19447 and then not Is_Limited_Type
(Full_T
)
19449 -- If pragma CPP_Class was applied to the private declaration
19450 -- propagate the limitedness to the full-view
19452 if Is_CPP_Class
(Priv_T
) then
19453 Set_Is_Limited_Record
(Full_T
);
19455 -- GNAT allow its own definition of Limited_Controlled to disobey
19456 -- this rule in order in ease the implementation. This test is safe
19457 -- because Root_Controlled is defined in a child of System that
19458 -- normal programs are not supposed to use.
19460 elsif Is_RTE
(Etype
(Full_T
), RE_Root_Controlled
) then
19461 Set_Is_Limited_Composite
(Full_T
);
19464 ("completion of limited tagged type must be limited", Full_T
);
19467 elsif Is_Generic_Type
(Priv_T
) then
19468 Error_Msg_N
("generic type cannot have a completion", Full_T
);
19471 -- Check that ancestor interfaces of private and full views are
19472 -- consistent. We omit this check for synchronized types because
19473 -- they are performed on the corresponding record type when frozen.
19475 if Ada_Version
>= Ada_2005
19476 and then Is_Tagged_Type
(Priv_T
)
19477 and then Is_Tagged_Type
(Full_T
)
19478 and then not Is_Concurrent_Type
(Full_T
)
19482 Priv_T_Ifaces
: constant Elist_Id
:= New_Elmt_List
;
19483 Full_T_Ifaces
: constant Elist_Id
:= New_Elmt_List
;
19486 Collect_Implemented_Interfaces
(Priv_T
, Priv_T_Ifaces
);
19487 Collect_Implemented_Interfaces
(Full_T
, Full_T_Ifaces
);
19489 -- Ada 2005 (AI-251): The partial view shall be a descendant of
19490 -- an interface type if and only if the full type is descendant
19491 -- of the interface type (AARM 7.3 (7.3/2)).
19493 Iface
:= Find_Hidden_Interface
(Priv_T_Ifaces
, Full_T_Ifaces
);
19495 if Present
(Iface
) then
19497 ("interface in partial view& not implemented by full type "
19498 & "(RM-2005 7.3 (7.3/2))", Full_T
, Iface
);
19501 Iface
:= Find_Hidden_Interface
(Full_T_Ifaces
, Priv_T_Ifaces
);
19503 if Present
(Iface
) then
19505 ("interface & not implemented by partial view "
19506 & "(RM-2005 7.3 (7.3/2))", Full_T
, Iface
);
19511 if Is_Tagged_Type
(Priv_T
)
19512 and then Nkind
(Parent
(Priv_T
)) = N_Private_Extension_Declaration
19513 and then Is_Derived_Type
(Full_T
)
19515 Priv_Parent
:= Etype
(Priv_T
);
19517 -- The full view of a private extension may have been transformed
19518 -- into an unconstrained derived type declaration and a subtype
19519 -- declaration (see build_derived_record_type for details).
19521 if Nkind
(N
) = N_Subtype_Declaration
then
19522 Full_Indic
:= Subtype_Indication
(N
);
19523 Full_Parent
:= Etype
(Base_Type
(Full_T
));
19525 Full_Indic
:= Subtype_Indication
(Type_Definition
(N
));
19526 Full_Parent
:= Etype
(Full_T
);
19529 -- Check that the parent type of the full type is a descendant of
19530 -- the ancestor subtype given in the private extension. If either
19531 -- entity has an Etype equal to Any_Type then we had some previous
19532 -- error situation [7.3(8)].
19534 if Priv_Parent
= Any_Type
or else Full_Parent
= Any_Type
then
19537 -- Ada 2005 (AI-251): Interfaces in the full type can be given in
19538 -- any order. Therefore we don't have to check that its parent must
19539 -- be a descendant of the parent of the private type declaration.
19541 elsif Is_Interface
(Priv_Parent
)
19542 and then Is_Interface
(Full_Parent
)
19546 -- Ada 2005 (AI-251): If the parent of the private type declaration
19547 -- is an interface there is no need to check that it is an ancestor
19548 -- of the associated full type declaration. The required tests for
19549 -- this case are performed by Build_Derived_Record_Type.
19551 elsif not Is_Interface
(Base_Type
(Priv_Parent
))
19552 and then not Is_Ancestor
(Base_Type
(Priv_Parent
), Full_Parent
)
19555 ("parent of full type must descend from parent"
19556 & " of private extension", Full_Indic
);
19558 -- First check a formal restriction, and then proceed with checking
19559 -- Ada rules. Since the formal restriction is not a serious error, we
19560 -- don't prevent further error detection for this check, hence the
19564 -- In formal mode, when completing a private extension the type
19565 -- named in the private part must be exactly the same as that
19566 -- named in the visible part.
19568 if Priv_Parent
/= Full_Parent
then
19569 Error_Msg_Name_1
:= Chars
(Priv_Parent
);
19570 Check_SPARK_05_Restriction
("% expected", Full_Indic
);
19573 -- Check the rules of 7.3(10): if the private extension inherits
19574 -- known discriminants, then the full type must also inherit those
19575 -- discriminants from the same (ancestor) type, and the parent
19576 -- subtype of the full type must be constrained if and only if
19577 -- the ancestor subtype of the private extension is constrained.
19579 if No
(Discriminant_Specifications
(Parent
(Priv_T
)))
19580 and then not Has_Unknown_Discriminants
(Priv_T
)
19581 and then Has_Discriminants
(Base_Type
(Priv_Parent
))
19584 Priv_Indic
: constant Node_Id
:=
19585 Subtype_Indication
(Parent
(Priv_T
));
19587 Priv_Constr
: constant Boolean :=
19588 Is_Constrained
(Priv_Parent
)
19590 Nkind
(Priv_Indic
) = N_Subtype_Indication
19592 Is_Constrained
(Entity
(Priv_Indic
));
19594 Full_Constr
: constant Boolean :=
19595 Is_Constrained
(Full_Parent
)
19597 Nkind
(Full_Indic
) = N_Subtype_Indication
19599 Is_Constrained
(Entity
(Full_Indic
));
19601 Priv_Discr
: Entity_Id
;
19602 Full_Discr
: Entity_Id
;
19605 Priv_Discr
:= First_Discriminant
(Priv_Parent
);
19606 Full_Discr
:= First_Discriminant
(Full_Parent
);
19607 while Present
(Priv_Discr
) and then Present
(Full_Discr
) loop
19608 if Original_Record_Component
(Priv_Discr
) =
19609 Original_Record_Component
(Full_Discr
)
19611 Corresponding_Discriminant
(Priv_Discr
) =
19612 Corresponding_Discriminant
(Full_Discr
)
19619 Next_Discriminant
(Priv_Discr
);
19620 Next_Discriminant
(Full_Discr
);
19623 if Present
(Priv_Discr
) or else Present
(Full_Discr
) then
19625 ("full view must inherit discriminants of the parent"
19626 & " type used in the private extension", Full_Indic
);
19628 elsif Priv_Constr
and then not Full_Constr
then
19630 ("parent subtype of full type must be constrained",
19633 elsif Full_Constr
and then not Priv_Constr
then
19635 ("parent subtype of full type must be unconstrained",
19640 -- Check the rules of 7.3(12): if a partial view has neither
19641 -- known or unknown discriminants, then the full type
19642 -- declaration shall define a definite subtype.
19644 elsif not Has_Unknown_Discriminants
(Priv_T
)
19645 and then not Has_Discriminants
(Priv_T
)
19646 and then not Is_Constrained
(Full_T
)
19649 ("full view must define a constrained type if partial view"
19650 & " has no discriminants", Full_T
);
19653 -- ??????? Do we implement the following properly ?????
19654 -- If the ancestor subtype of a private extension has constrained
19655 -- discriminants, then the parent subtype of the full view shall
19656 -- impose a statically matching constraint on those discriminants
19661 -- For untagged types, verify that a type without discriminants is
19662 -- not completed with an unconstrained type. A separate error message
19663 -- is produced if the full type has defaulted discriminants.
19665 if Is_Definite_Subtype
(Priv_T
)
19666 and then not Is_Definite_Subtype
(Full_T
)
19668 Error_Msg_Sloc
:= Sloc
(Parent
(Priv_T
));
19670 ("full view of& not compatible with declaration#",
19673 if not Is_Tagged_Type
(Full_T
) then
19675 ("\one is constrained, the other unconstrained", Full_T
);
19680 -- AI-419: verify that the use of "limited" is consistent
19683 Orig_Decl
: constant Node_Id
:= Original_Node
(N
);
19686 if Nkind
(Parent
(Priv_T
)) = N_Private_Extension_Declaration
19687 and then Nkind
(Orig_Decl
) = N_Full_Type_Declaration
19689 (Type_Definition
(Orig_Decl
)) = N_Derived_Type_Definition
19691 if not Limited_Present
(Parent
(Priv_T
))
19692 and then not Synchronized_Present
(Parent
(Priv_T
))
19693 and then Limited_Present
(Type_Definition
(Orig_Decl
))
19696 ("full view of non-limited extension cannot be limited", N
);
19698 -- Conversely, if the partial view carries the limited keyword,
19699 -- the full view must as well, even if it may be redundant.
19701 elsif Limited_Present
(Parent
(Priv_T
))
19702 and then not Limited_Present
(Type_Definition
(Orig_Decl
))
19705 ("full view of limited extension must be explicitly limited",
19711 -- Ada 2005 (AI-443): A synchronized private extension must be
19712 -- completed by a task or protected type.
19714 if Ada_Version
>= Ada_2005
19715 and then Nkind
(Parent
(Priv_T
)) = N_Private_Extension_Declaration
19716 and then Synchronized_Present
(Parent
(Priv_T
))
19717 and then not Is_Concurrent_Type
(Full_T
)
19719 Error_Msg_N
("full view of synchronized extension must " &
19720 "be synchronized type", N
);
19723 -- Ada 2005 AI-363: if the full view has discriminants with
19724 -- defaults, it is illegal to declare constrained access subtypes
19725 -- whose designated type is the current type. This allows objects
19726 -- of the type that are declared in the heap to be unconstrained.
19728 if not Has_Unknown_Discriminants
(Priv_T
)
19729 and then not Has_Discriminants
(Priv_T
)
19730 and then Has_Discriminants
(Full_T
)
19732 Present
(Discriminant_Default_Value
(First_Discriminant
(Full_T
)))
19734 Set_Has_Constrained_Partial_View
(Full_T
);
19735 Set_Has_Constrained_Partial_View
(Priv_T
);
19738 -- Create a full declaration for all its subtypes recorded in
19739 -- Private_Dependents and swap them similarly to the base type. These
19740 -- are subtypes that have been define before the full declaration of
19741 -- the private type. We also swap the entry in Private_Dependents list
19742 -- so we can properly restore the private view on exit from the scope.
19745 Priv_Elmt
: Elmt_Id
;
19746 Priv_Scop
: Entity_Id
;
19751 Priv_Elmt
:= First_Elmt
(Private_Dependents
(Priv_T
));
19752 while Present
(Priv_Elmt
) loop
19753 Priv
:= Node
(Priv_Elmt
);
19754 Priv_Scop
:= Scope
(Priv
);
19756 if Ekind_In
(Priv
, E_Private_Subtype
,
19757 E_Limited_Private_Subtype
,
19758 E_Record_Subtype_With_Private
)
19760 Full
:= Make_Defining_Identifier
(Sloc
(Priv
), Chars
(Priv
));
19761 Set_Is_Itype
(Full
);
19762 Set_Parent
(Full
, Parent
(Priv
));
19763 Set_Associated_Node_For_Itype
(Full
, N
);
19765 -- Now we need to complete the private subtype, but since the
19766 -- base type has already been swapped, we must also swap the
19767 -- subtypes (and thus, reverse the arguments in the call to
19768 -- Complete_Private_Subtype). Also note that we may need to
19769 -- re-establish the scope of the private subtype.
19771 Copy_And_Swap
(Priv
, Full
);
19773 if not In_Open_Scopes
(Priv_Scop
) then
19774 Push_Scope
(Priv_Scop
);
19777 -- Reset Priv_Scop to Empty to indicate no scope was pushed
19779 Priv_Scop
:= Empty
;
19782 Complete_Private_Subtype
(Full
, Priv
, Full_T
, N
);
19784 if Present
(Priv_Scop
) then
19788 Replace_Elmt
(Priv_Elmt
, Full
);
19791 Next_Elmt
(Priv_Elmt
);
19795 -- If the private view was tagged, copy the new primitive operations
19796 -- from the private view to the full view.
19798 if Is_Tagged_Type
(Full_T
) then
19800 Disp_Typ
: Entity_Id
;
19801 Full_List
: Elist_Id
;
19803 Prim_Elmt
: Elmt_Id
;
19804 Priv_List
: Elist_Id
;
19808 L
: Elist_Id
) return Boolean;
19809 -- Determine whether list L contains element E
19817 L
: Elist_Id
) return Boolean
19819 List_Elmt
: Elmt_Id
;
19822 List_Elmt
:= First_Elmt
(L
);
19823 while Present
(List_Elmt
) loop
19824 if Node
(List_Elmt
) = E
then
19828 Next_Elmt
(List_Elmt
);
19834 -- Start of processing
19837 if Is_Tagged_Type
(Priv_T
) then
19838 Priv_List
:= Primitive_Operations
(Priv_T
);
19839 Prim_Elmt
:= First_Elmt
(Priv_List
);
19841 -- In the case of a concurrent type completing a private tagged
19842 -- type, primitives may have been declared in between the two
19843 -- views. These subprograms need to be wrapped the same way
19844 -- entries and protected procedures are handled because they
19845 -- cannot be directly shared by the two views.
19847 if Is_Concurrent_Type
(Full_T
) then
19849 Conc_Typ
: constant Entity_Id
:=
19850 Corresponding_Record_Type
(Full_T
);
19851 Curr_Nod
: Node_Id
:= Parent
(Conc_Typ
);
19852 Wrap_Spec
: Node_Id
;
19855 while Present
(Prim_Elmt
) loop
19856 Prim
:= Node
(Prim_Elmt
);
19858 if Comes_From_Source
(Prim
)
19859 and then not Is_Abstract_Subprogram
(Prim
)
19862 Make_Subprogram_Declaration
(Sloc
(Prim
),
19866 Obj_Typ
=> Conc_Typ
,
19868 Parameter_Specifications
(
19871 Insert_After
(Curr_Nod
, Wrap_Spec
);
19872 Curr_Nod
:= Wrap_Spec
;
19874 Analyze
(Wrap_Spec
);
19877 Next_Elmt
(Prim_Elmt
);
19883 -- For non-concurrent types, transfer explicit primitives, but
19884 -- omit those inherited from the parent of the private view
19885 -- since they will be re-inherited later on.
19888 Full_List
:= Primitive_Operations
(Full_T
);
19890 while Present
(Prim_Elmt
) loop
19891 Prim
:= Node
(Prim_Elmt
);
19893 if Comes_From_Source
(Prim
)
19894 and then not Contains
(Prim
, Full_List
)
19896 Append_Elmt
(Prim
, Full_List
);
19899 Next_Elmt
(Prim_Elmt
);
19903 -- Untagged private view
19906 Full_List
:= Primitive_Operations
(Full_T
);
19908 -- In this case the partial view is untagged, so here we locate
19909 -- all of the earlier primitives that need to be treated as
19910 -- dispatching (those that appear between the two views). Note
19911 -- that these additional operations must all be new operations
19912 -- (any earlier operations that override inherited operations
19913 -- of the full view will already have been inserted in the
19914 -- primitives list, marked by Check_Operation_From_Private_View
19915 -- as dispatching. Note that implicit "/=" operators are
19916 -- excluded from being added to the primitives list since they
19917 -- shouldn't be treated as dispatching (tagged "/=" is handled
19920 Prim
:= Next_Entity
(Full_T
);
19921 while Present
(Prim
) and then Prim
/= Priv_T
loop
19922 if Ekind_In
(Prim
, E_Procedure
, E_Function
) then
19923 Disp_Typ
:= Find_Dispatching_Type
(Prim
);
19925 if Disp_Typ
= Full_T
19926 and then (Chars
(Prim
) /= Name_Op_Ne
19927 or else Comes_From_Source
(Prim
))
19929 Check_Controlling_Formals
(Full_T
, Prim
);
19931 if not Is_Dispatching_Operation
(Prim
) then
19932 Append_Elmt
(Prim
, Full_List
);
19933 Set_Is_Dispatching_Operation
(Prim
, True);
19934 Set_DT_Position_Value
(Prim
, No_Uint
);
19937 elsif Is_Dispatching_Operation
(Prim
)
19938 and then Disp_Typ
/= Full_T
19941 -- Verify that it is not otherwise controlled by a
19942 -- formal or a return value of type T.
19944 Check_Controlling_Formals
(Disp_Typ
, Prim
);
19948 Next_Entity
(Prim
);
19952 -- For the tagged case, the two views can share the same primitive
19953 -- operations list and the same class-wide type. Update attributes
19954 -- of the class-wide type which depend on the full declaration.
19956 if Is_Tagged_Type
(Priv_T
) then
19957 Set_Direct_Primitive_Operations
(Priv_T
, Full_List
);
19958 Set_Class_Wide_Type
19959 (Base_Type
(Full_T
), Class_Wide_Type
(Priv_T
));
19961 Set_Has_Task
(Class_Wide_Type
(Priv_T
), Has_Task
(Full_T
));
19963 (Class_Wide_Type
(Priv_T
), Has_Protected
(Full_T
));
19968 -- Ada 2005 AI 161: Check preelaborable initialization consistency
19970 if Known_To_Have_Preelab_Init
(Priv_T
) then
19972 -- Case where there is a pragma Preelaborable_Initialization. We
19973 -- always allow this in predefined units, which is cheating a bit,
19974 -- but it means we don't have to struggle to meet the requirements in
19975 -- the RM for having Preelaborable Initialization. Otherwise we
19976 -- require that the type meets the RM rules. But we can't check that
19977 -- yet, because of the rule about overriding Initialize, so we simply
19978 -- set a flag that will be checked at freeze time.
19980 if not In_Predefined_Unit
(Full_T
) then
19981 Set_Must_Have_Preelab_Init
(Full_T
);
19985 -- If pragma CPP_Class was applied to the private type declaration,
19986 -- propagate it now to the full type declaration.
19988 if Is_CPP_Class
(Priv_T
) then
19989 Set_Is_CPP_Class
(Full_T
);
19990 Set_Convention
(Full_T
, Convention_CPP
);
19992 -- Check that components of imported CPP types do not have default
19995 Check_CPP_Type_Has_No_Defaults
(Full_T
);
19998 -- If the private view has user specified stream attributes, then so has
20001 -- Why the test, how could these flags be already set in Full_T ???
20003 if Has_Specified_Stream_Read
(Priv_T
) then
20004 Set_Has_Specified_Stream_Read
(Full_T
);
20007 if Has_Specified_Stream_Write
(Priv_T
) then
20008 Set_Has_Specified_Stream_Write
(Full_T
);
20011 if Has_Specified_Stream_Input
(Priv_T
) then
20012 Set_Has_Specified_Stream_Input
(Full_T
);
20015 if Has_Specified_Stream_Output
(Priv_T
) then
20016 Set_Has_Specified_Stream_Output
(Full_T
);
20019 -- Propagate the attributes related to pragma Default_Initial_Condition
20020 -- from the private to the full view. Note that both flags are mutually
20023 if Has_Default_Init_Cond
(Priv_T
)
20024 or else Has_Inherited_Default_Init_Cond
(Priv_T
)
20026 Propagate_Default_Init_Cond_Attributes
20027 (From_Typ
=> Priv_T
,
20029 Private_To_Full_View
=> True);
20031 -- In the case where the full view is derived from another private type,
20032 -- the attributes related to pragma Default_Initial_Condition must be
20033 -- propagated from the full to the private view to maintain consistency
20037 -- type Parent_Typ is private
20038 -- with Default_Initial_Condition ...;
20040 -- type Parent_Typ is ...;
20043 -- with Pack; use Pack;
20044 -- package Pack_2 is
20045 -- type Deriv_Typ is private; -- must inherit
20047 -- type Deriv_Typ is new Parent_Typ; -- must inherit
20050 elsif Has_Default_Init_Cond
(Full_T
)
20051 or else Has_Inherited_Default_Init_Cond
(Full_T
)
20053 Propagate_Default_Init_Cond_Attributes
20054 (From_Typ
=> Full_T
,
20056 Private_To_Full_View
=> True);
20059 if Is_Ghost_Entity
(Priv_T
) then
20061 -- The Ghost policy in effect at the point of declaration and at the
20062 -- point of completion must match (SPARK RM 6.9(14)).
20064 Check_Ghost_Completion
(Priv_T
, Full_T
);
20066 -- In the case where the private view of a tagged type lacks a parent
20067 -- type and is subject to pragma Ghost, ensure that the parent type
20068 -- specified by the full view is also Ghost (SPARK RM 6.9(9)).
20070 if Is_Derived_Type
(Full_T
) then
20071 Check_Ghost_Derivation
(Full_T
);
20074 -- Propagate the attributes related to pragma Ghost from the private
20075 -- to the full view.
20077 Mark_Full_View_As_Ghost
(Priv_T
, Full_T
);
20080 -- Propagate invariants to full type
20082 if Has_Invariants
(Priv_T
) then
20083 Set_Has_Invariants
(Full_T
);
20084 Set_Invariant_Procedure
(Full_T
, Invariant_Procedure
(Priv_T
));
20087 if Has_Inheritable_Invariants
(Priv_T
) then
20088 Set_Has_Inheritable_Invariants
(Full_T
);
20091 -- Check hidden inheritance of class-wide type invariants
20093 if Ada_Version
>= Ada_2012
20094 and then not Has_Inheritable_Invariants
(Full_T
)
20095 and then In_Private_Part
(Current_Scope
)
20096 and then Has_Interfaces
(Full_T
)
20103 Collect_Interfaces
(Full_T
, Ifaces
, Exclude_Parents
=> True);
20105 AI
:= First_Elmt
(Ifaces
);
20106 while Present
(AI
) loop
20107 if Has_Inheritable_Invariants
(Node
(AI
)) then
20109 ("hidden inheritance of class-wide type invariants " &
20119 -- Propagate predicates to full type, and predicate function if already
20120 -- defined. It is not clear that this can actually happen? the partial
20121 -- view cannot be frozen yet, and the predicate function has not been
20122 -- built. Still it is a cheap check and seems safer to make it.
20124 if Has_Predicates
(Priv_T
) then
20125 if Present
(Predicate_Function
(Priv_T
)) then
20126 Set_Predicate_Function
(Full_T
, Predicate_Function
(Priv_T
));
20129 Set_Has_Predicates
(Full_T
);
20131 end Process_Full_View
;
20133 -----------------------------------
20134 -- Process_Incomplete_Dependents --
20135 -----------------------------------
20137 procedure Process_Incomplete_Dependents
20139 Full_T
: Entity_Id
;
20142 Inc_Elmt
: Elmt_Id
;
20143 Priv_Dep
: Entity_Id
;
20144 New_Subt
: Entity_Id
;
20146 Disc_Constraint
: Elist_Id
;
20149 if No
(Private_Dependents
(Inc_T
)) then
20153 -- Itypes that may be generated by the completion of an incomplete
20154 -- subtype are not used by the back-end and not attached to the tree.
20155 -- They are created only for constraint-checking purposes.
20157 Inc_Elmt
:= First_Elmt
(Private_Dependents
(Inc_T
));
20158 while Present
(Inc_Elmt
) loop
20159 Priv_Dep
:= Node
(Inc_Elmt
);
20161 if Ekind
(Priv_Dep
) = E_Subprogram_Type
then
20163 -- An Access_To_Subprogram type may have a return type or a
20164 -- parameter type that is incomplete. Replace with the full view.
20166 if Etype
(Priv_Dep
) = Inc_T
then
20167 Set_Etype
(Priv_Dep
, Full_T
);
20171 Formal
: Entity_Id
;
20174 Formal
:= First_Formal
(Priv_Dep
);
20175 while Present
(Formal
) loop
20176 if Etype
(Formal
) = Inc_T
then
20177 Set_Etype
(Formal
, Full_T
);
20180 Next_Formal
(Formal
);
20184 elsif Is_Overloadable
(Priv_Dep
) then
20186 -- If a subprogram in the incomplete dependents list is primitive
20187 -- for a tagged full type then mark it as a dispatching operation,
20188 -- check whether it overrides an inherited subprogram, and check
20189 -- restrictions on its controlling formals. Note that a protected
20190 -- operation is never dispatching: only its wrapper operation
20191 -- (which has convention Ada) is.
20193 if Is_Tagged_Type
(Full_T
)
20194 and then Is_Primitive
(Priv_Dep
)
20195 and then Convention
(Priv_Dep
) /= Convention_Protected
20197 Check_Operation_From_Incomplete_Type
(Priv_Dep
, Inc_T
);
20198 Set_Is_Dispatching_Operation
(Priv_Dep
);
20199 Check_Controlling_Formals
(Full_T
, Priv_Dep
);
20202 elsif Ekind
(Priv_Dep
) = E_Subprogram_Body
then
20204 -- Can happen during processing of a body before the completion
20205 -- of a TA type. Ignore, because spec is also on dependent list.
20209 -- Ada 2005 (AI-412): Transform a regular incomplete subtype into a
20210 -- corresponding subtype of the full view.
20212 elsif Ekind
(Priv_Dep
) = E_Incomplete_Subtype
then
20213 Set_Subtype_Indication
20214 (Parent
(Priv_Dep
), New_Occurrence_Of
(Full_T
, Sloc
(Priv_Dep
)));
20215 Set_Etype
(Priv_Dep
, Full_T
);
20216 Set_Ekind
(Priv_Dep
, Subtype_Kind
(Ekind
(Full_T
)));
20217 Set_Analyzed
(Parent
(Priv_Dep
), False);
20219 -- Reanalyze the declaration, suppressing the call to
20220 -- Enter_Name to avoid duplicate names.
20222 Analyze_Subtype_Declaration
20223 (N
=> Parent
(Priv_Dep
),
20226 -- Dependent is a subtype
20229 -- We build a new subtype indication using the full view of the
20230 -- incomplete parent. The discriminant constraints have been
20231 -- elaborated already at the point of the subtype declaration.
20233 New_Subt
:= Create_Itype
(E_Void
, N
);
20235 if Has_Discriminants
(Full_T
) then
20236 Disc_Constraint
:= Discriminant_Constraint
(Priv_Dep
);
20238 Disc_Constraint
:= No_Elist
;
20241 Build_Discriminated_Subtype
(Full_T
, New_Subt
, Disc_Constraint
, N
);
20242 Set_Full_View
(Priv_Dep
, New_Subt
);
20245 Next_Elmt
(Inc_Elmt
);
20247 end Process_Incomplete_Dependents
;
20249 --------------------------------
20250 -- Process_Range_Expr_In_Decl --
20251 --------------------------------
20253 procedure Process_Range_Expr_In_Decl
20256 Subtyp
: Entity_Id
:= Empty
;
20257 Check_List
: List_Id
:= Empty_List
;
20258 R_Check_Off
: Boolean := False;
20259 In_Iter_Schm
: Boolean := False)
20262 R_Checks
: Check_Result
;
20263 Insert_Node
: Node_Id
;
20264 Def_Id
: Entity_Id
;
20267 Analyze_And_Resolve
(R
, Base_Type
(T
));
20269 if Nkind
(R
) = N_Range
then
20271 -- In SPARK, all ranges should be static, with the exception of the
20272 -- discrete type definition of a loop parameter specification.
20274 if not In_Iter_Schm
20275 and then not Is_OK_Static_Range
(R
)
20277 Check_SPARK_05_Restriction
("range should be static", R
);
20280 Lo
:= Low_Bound
(R
);
20281 Hi
:= High_Bound
(R
);
20283 -- Validity checks on the range of a quantified expression are
20284 -- delayed until the construct is transformed into a loop.
20286 if Nkind
(Parent
(R
)) = N_Loop_Parameter_Specification
20287 and then Nkind
(Parent
(Parent
(R
))) = N_Quantified_Expression
20291 -- We need to ensure validity of the bounds here, because if we
20292 -- go ahead and do the expansion, then the expanded code will get
20293 -- analyzed with range checks suppressed and we miss the check.
20295 -- WARNING: The capture of the range bounds with xxx_FIRST/_LAST and
20296 -- the temporaries generated by routine Remove_Side_Effects by means
20297 -- of validity checks must use the same names. When a range appears
20298 -- in the parent of a generic, the range is processed with checks
20299 -- disabled as part of the generic context and with checks enabled
20300 -- for code generation purposes. This leads to link issues as the
20301 -- generic contains references to xxx_FIRST/_LAST, but the inlined
20302 -- template sees the temporaries generated by Remove_Side_Effects.
20305 Validity_Check_Range
(R
, Subtyp
);
20308 -- If there were errors in the declaration, try and patch up some
20309 -- common mistakes in the bounds. The cases handled are literals
20310 -- which are Integer where the expected type is Real and vice versa.
20311 -- These corrections allow the compilation process to proceed further
20312 -- along since some basic assumptions of the format of the bounds
20315 if Etype
(R
) = Any_Type
then
20316 if Nkind
(Lo
) = N_Integer_Literal
and then Is_Real_Type
(T
) then
20318 Make_Real_Literal
(Sloc
(Lo
), UR_From_Uint
(Intval
(Lo
))));
20320 elsif Nkind
(Hi
) = N_Integer_Literal
and then Is_Real_Type
(T
) then
20322 Make_Real_Literal
(Sloc
(Hi
), UR_From_Uint
(Intval
(Hi
))));
20324 elsif Nkind
(Lo
) = N_Real_Literal
and then Is_Integer_Type
(T
) then
20326 Make_Integer_Literal
(Sloc
(Lo
), UR_To_Uint
(Realval
(Lo
))));
20328 elsif Nkind
(Hi
) = N_Real_Literal
and then Is_Integer_Type
(T
) then
20330 Make_Integer_Literal
(Sloc
(Hi
), UR_To_Uint
(Realval
(Hi
))));
20337 -- If the bounds of the range have been mistakenly given as string
20338 -- literals (perhaps in place of character literals), then an error
20339 -- has already been reported, but we rewrite the string literal as a
20340 -- bound of the range's type to avoid blowups in later processing
20341 -- that looks at static values.
20343 if Nkind
(Lo
) = N_String_Literal
then
20345 Make_Attribute_Reference
(Sloc
(Lo
),
20346 Prefix
=> New_Occurrence_Of
(T
, Sloc
(Lo
)),
20347 Attribute_Name
=> Name_First
));
20348 Analyze_And_Resolve
(Lo
);
20351 if Nkind
(Hi
) = N_String_Literal
then
20353 Make_Attribute_Reference
(Sloc
(Hi
),
20354 Prefix
=> New_Occurrence_Of
(T
, Sloc
(Hi
)),
20355 Attribute_Name
=> Name_First
));
20356 Analyze_And_Resolve
(Hi
);
20359 -- If bounds aren't scalar at this point then exit, avoiding
20360 -- problems with further processing of the range in this procedure.
20362 if not Is_Scalar_Type
(Etype
(Lo
)) then
20366 -- Resolve (actually Sem_Eval) has checked that the bounds are in
20367 -- then range of the base type. Here we check whether the bounds
20368 -- are in the range of the subtype itself. Note that if the bounds
20369 -- represent the null range the Constraint_Error exception should
20372 -- ??? The following code should be cleaned up as follows
20374 -- 1. The Is_Null_Range (Lo, Hi) test should disappear since it
20375 -- is done in the call to Range_Check (R, T); below
20377 -- 2. The use of R_Check_Off should be investigated and possibly
20378 -- removed, this would clean up things a bit.
20380 if Is_Null_Range
(Lo
, Hi
) then
20384 -- Capture values of bounds and generate temporaries for them
20385 -- if needed, before applying checks, since checks may cause
20386 -- duplication of the expression without forcing evaluation.
20388 -- The forced evaluation removes side effects from expressions,
20389 -- which should occur also in GNATprove mode. Otherwise, we end up
20390 -- with unexpected insertions of actions at places where this is
20391 -- not supposed to occur, e.g. on default parameters of a call.
20393 if Expander_Active
or GNATprove_Mode
then
20395 -- Call Force_Evaluation to create declarations as needed to
20396 -- deal with side effects, and also create typ_FIRST/LAST
20397 -- entities for bounds if we have a subtype name.
20399 -- Note: we do this transformation even if expansion is not
20400 -- active if we are in GNATprove_Mode since the transformation
20401 -- is in general required to ensure that the resulting tree has
20402 -- proper Ada semantics.
20405 (Lo
, Related_Id
=> Subtyp
, Is_Low_Bound
=> True);
20407 (Hi
, Related_Id
=> Subtyp
, Is_High_Bound
=> True);
20410 -- We use a flag here instead of suppressing checks on the type
20411 -- because the type we check against isn't necessarily the place
20412 -- where we put the check.
20414 if not R_Check_Off
then
20415 R_Checks
:= Get_Range_Checks
(R
, T
);
20417 -- Look up tree to find an appropriate insertion point. We
20418 -- can't just use insert_actions because later processing
20419 -- depends on the insertion node. Prior to Ada 2012 the
20420 -- insertion point could only be a declaration or a loop, but
20421 -- quantified expressions can appear within any context in an
20422 -- expression, and the insertion point can be any statement,
20423 -- pragma, or declaration.
20425 Insert_Node
:= Parent
(R
);
20426 while Present
(Insert_Node
) loop
20428 Nkind
(Insert_Node
) in N_Declaration
20431 (Insert_Node
, N_Component_Declaration
,
20432 N_Loop_Parameter_Specification
,
20433 N_Function_Specification
,
20434 N_Procedure_Specification
);
20436 exit when Nkind
(Insert_Node
) in N_Later_Decl_Item
20437 or else Nkind
(Insert_Node
) in
20438 N_Statement_Other_Than_Procedure_Call
20439 or else Nkind_In
(Insert_Node
, N_Procedure_Call_Statement
,
20442 Insert_Node
:= Parent
(Insert_Node
);
20445 -- Why would Type_Decl not be present??? Without this test,
20446 -- short regression tests fail.
20448 if Present
(Insert_Node
) then
20450 -- Case of loop statement. Verify that the range is part
20451 -- of the subtype indication of the iteration scheme.
20453 if Nkind
(Insert_Node
) = N_Loop_Statement
then
20458 Indic
:= Parent
(R
);
20459 while Present
(Indic
)
20460 and then Nkind
(Indic
) /= N_Subtype_Indication
20462 Indic
:= Parent
(Indic
);
20465 if Present
(Indic
) then
20466 Def_Id
:= Etype
(Subtype_Mark
(Indic
));
20468 Insert_Range_Checks
20472 Sloc
(Insert_Node
),
20474 Do_Before
=> True);
20478 -- Insertion before a declaration. If the declaration
20479 -- includes discriminants, the list of applicable checks
20480 -- is given by the caller.
20482 elsif Nkind
(Insert_Node
) in N_Declaration
then
20483 Def_Id
:= Defining_Identifier
(Insert_Node
);
20485 if (Ekind
(Def_Id
) = E_Record_Type
20486 and then Depends_On_Discriminant
(R
))
20488 (Ekind
(Def_Id
) = E_Protected_Type
20489 and then Has_Discriminants
(Def_Id
))
20491 Append_Range_Checks
20493 Check_List
, Def_Id
, Sloc
(Insert_Node
), R
);
20496 Insert_Range_Checks
20498 Insert_Node
, Def_Id
, Sloc
(Insert_Node
), R
);
20502 -- Insertion before a statement. Range appears in the
20503 -- context of a quantified expression. Insertion will
20504 -- take place when expression is expanded.
20513 -- Case of other than an explicit N_Range node
20515 -- The forced evaluation removes side effects from expressions, which
20516 -- should occur also in GNATprove mode. Otherwise, we end up with
20517 -- unexpected insertions of actions at places where this is not
20518 -- supposed to occur, e.g. on default parameters of a call.
20520 elsif Expander_Active
or GNATprove_Mode
then
20521 Get_Index_Bounds
(R
, Lo
, Hi
);
20522 Force_Evaluation
(Lo
);
20523 Force_Evaluation
(Hi
);
20525 end Process_Range_Expr_In_Decl
;
20527 --------------------------------------
20528 -- Process_Real_Range_Specification --
20529 --------------------------------------
20531 procedure Process_Real_Range_Specification
(Def
: Node_Id
) is
20532 Spec
: constant Node_Id
:= Real_Range_Specification
(Def
);
20535 Err
: Boolean := False;
20537 procedure Analyze_Bound
(N
: Node_Id
);
20538 -- Analyze and check one bound
20540 -------------------
20541 -- Analyze_Bound --
20542 -------------------
20544 procedure Analyze_Bound
(N
: Node_Id
) is
20546 Analyze_And_Resolve
(N
, Any_Real
);
20548 if not Is_OK_Static_Expression
(N
) then
20549 Flag_Non_Static_Expr
20550 ("bound in real type definition is not static!", N
);
20555 -- Start of processing for Process_Real_Range_Specification
20558 if Present
(Spec
) then
20559 Lo
:= Low_Bound
(Spec
);
20560 Hi
:= High_Bound
(Spec
);
20561 Analyze_Bound
(Lo
);
20562 Analyze_Bound
(Hi
);
20564 -- If error, clear away junk range specification
20567 Set_Real_Range_Specification
(Def
, Empty
);
20570 end Process_Real_Range_Specification
;
20572 ---------------------
20573 -- Process_Subtype --
20574 ---------------------
20576 function Process_Subtype
20578 Related_Nod
: Node_Id
;
20579 Related_Id
: Entity_Id
:= Empty
;
20580 Suffix
: Character := ' ') return Entity_Id
20583 Def_Id
: Entity_Id
;
20584 Error_Node
: Node_Id
;
20585 Full_View_Id
: Entity_Id
;
20586 Subtype_Mark_Id
: Entity_Id
;
20588 May_Have_Null_Exclusion
: Boolean;
20590 procedure Check_Incomplete
(T
: Entity_Id
);
20591 -- Called to verify that an incomplete type is not used prematurely
20593 ----------------------
20594 -- Check_Incomplete --
20595 ----------------------
20597 procedure Check_Incomplete
(T
: Entity_Id
) is
20599 -- Ada 2005 (AI-412): Incomplete subtypes are legal
20601 if Ekind
(Root_Type
(Entity
(T
))) = E_Incomplete_Type
20603 not (Ada_Version
>= Ada_2005
20605 (Nkind
(Parent
(T
)) = N_Subtype_Declaration
20606 or else (Nkind
(Parent
(T
)) = N_Subtype_Indication
20607 and then Nkind
(Parent
(Parent
(T
))) =
20608 N_Subtype_Declaration
)))
20610 Error_Msg_N
("invalid use of type before its full declaration", T
);
20612 end Check_Incomplete
;
20614 -- Start of processing for Process_Subtype
20617 -- Case of no constraints present
20619 if Nkind
(S
) /= N_Subtype_Indication
then
20621 Check_Incomplete
(S
);
20624 -- Ada 2005 (AI-231): Static check
20626 if Ada_Version
>= Ada_2005
20627 and then Present
(P
)
20628 and then Null_Exclusion_Present
(P
)
20629 and then Nkind
(P
) /= N_Access_To_Object_Definition
20630 and then not Is_Access_Type
(Entity
(S
))
20632 Error_Msg_N
("`NOT NULL` only allowed for an access type", S
);
20635 -- The following is ugly, can't we have a range or even a flag???
20637 May_Have_Null_Exclusion
:=
20638 Nkind_In
(P
, N_Access_Definition
,
20639 N_Access_Function_Definition
,
20640 N_Access_Procedure_Definition
,
20641 N_Access_To_Object_Definition
,
20643 N_Component_Definition
)
20645 Nkind_In
(P
, N_Derived_Type_Definition
,
20646 N_Discriminant_Specification
,
20647 N_Formal_Object_Declaration
,
20648 N_Object_Declaration
,
20649 N_Object_Renaming_Declaration
,
20650 N_Parameter_Specification
,
20651 N_Subtype_Declaration
);
20653 -- Create an Itype that is a duplicate of Entity (S) but with the
20654 -- null-exclusion attribute.
20656 if May_Have_Null_Exclusion
20657 and then Is_Access_Type
(Entity
(S
))
20658 and then Null_Exclusion_Present
(P
)
20660 -- No need to check the case of an access to object definition.
20661 -- It is correct to define double not-null pointers.
20664 -- type Not_Null_Int_Ptr is not null access Integer;
20665 -- type Acc is not null access Not_Null_Int_Ptr;
20667 and then Nkind
(P
) /= N_Access_To_Object_Definition
20669 if Can_Never_Be_Null
(Entity
(S
)) then
20670 case Nkind
(Related_Nod
) is
20671 when N_Full_Type_Declaration
=>
20672 if Nkind
(Type_Definition
(Related_Nod
))
20673 in N_Array_Type_Definition
20677 (Component_Definition
20678 (Type_Definition
(Related_Nod
)));
20681 Subtype_Indication
(Type_Definition
(Related_Nod
));
20684 when N_Subtype_Declaration
=>
20685 Error_Node
:= Subtype_Indication
(Related_Nod
);
20687 when N_Object_Declaration
=>
20688 Error_Node
:= Object_Definition
(Related_Nod
);
20690 when N_Component_Declaration
=>
20692 Subtype_Indication
(Component_Definition
(Related_Nod
));
20694 when N_Allocator
=>
20695 Error_Node
:= Expression
(Related_Nod
);
20698 pragma Assert
(False);
20699 Error_Node
:= Related_Nod
;
20703 ("`NOT NULL` not allowed (& already excludes null)",
20709 Create_Null_Excluding_Itype
20711 Related_Nod
=> P
));
20712 Set_Entity
(S
, Etype
(S
));
20717 -- Case of constraint present, so that we have an N_Subtype_Indication
20718 -- node (this node is created only if constraints are present).
20721 Find_Type
(Subtype_Mark
(S
));
20723 if Nkind
(Parent
(S
)) /= N_Access_To_Object_Definition
20725 (Nkind
(Parent
(S
)) = N_Subtype_Declaration
20726 and then Is_Itype
(Defining_Identifier
(Parent
(S
))))
20728 Check_Incomplete
(Subtype_Mark
(S
));
20732 Subtype_Mark_Id
:= Entity
(Subtype_Mark
(S
));
20734 -- Explicit subtype declaration case
20736 if Nkind
(P
) = N_Subtype_Declaration
then
20737 Def_Id
:= Defining_Identifier
(P
);
20739 -- Explicit derived type definition case
20741 elsif Nkind
(P
) = N_Derived_Type_Definition
then
20742 Def_Id
:= Defining_Identifier
(Parent
(P
));
20744 -- Implicit case, the Def_Id must be created as an implicit type.
20745 -- The one exception arises in the case of concurrent types, array
20746 -- and access types, where other subsidiary implicit types may be
20747 -- created and must appear before the main implicit type. In these
20748 -- cases we leave Def_Id set to Empty as a signal that Create_Itype
20749 -- has not yet been called to create Def_Id.
20752 if Is_Array_Type
(Subtype_Mark_Id
)
20753 or else Is_Concurrent_Type
(Subtype_Mark_Id
)
20754 or else Is_Access_Type
(Subtype_Mark_Id
)
20758 -- For the other cases, we create a new unattached Itype,
20759 -- and set the indication to ensure it gets attached later.
20763 Create_Itype
(E_Void
, Related_Nod
, Related_Id
, Suffix
);
20767 -- If the kind of constraint is invalid for this kind of type,
20768 -- then give an error, and then pretend no constraint was given.
20770 if not Is_Valid_Constraint_Kind
20771 (Ekind
(Subtype_Mark_Id
), Nkind
(Constraint
(S
)))
20774 ("incorrect constraint for this kind of type", Constraint
(S
));
20776 Rewrite
(S
, New_Copy_Tree
(Subtype_Mark
(S
)));
20778 -- Set Ekind of orphan itype, to prevent cascaded errors
20780 if Present
(Def_Id
) then
20781 Set_Ekind
(Def_Id
, Ekind
(Any_Type
));
20784 -- Make recursive call, having got rid of the bogus constraint
20786 return Process_Subtype
(S
, Related_Nod
, Related_Id
, Suffix
);
20789 -- Remaining processing depends on type. Select on Base_Type kind to
20790 -- ensure getting to the concrete type kind in the case of a private
20791 -- subtype (needed when only doing semantic analysis).
20793 case Ekind
(Base_Type
(Subtype_Mark_Id
)) is
20794 when Access_Kind
=>
20796 -- If this is a constraint on a class-wide type, discard it.
20797 -- There is currently no way to express a partial discriminant
20798 -- constraint on a type with unknown discriminants. This is
20799 -- a pathology that the ACATS wisely decides not to test.
20801 if Is_Class_Wide_Type
(Designated_Type
(Subtype_Mark_Id
)) then
20802 if Comes_From_Source
(S
) then
20804 ("constraint on class-wide type ignored??",
20808 if Nkind
(P
) = N_Subtype_Declaration
then
20809 Set_Subtype_Indication
(P
,
20810 New_Occurrence_Of
(Subtype_Mark_Id
, Sloc
(S
)));
20813 return Subtype_Mark_Id
;
20816 Constrain_Access
(Def_Id
, S
, Related_Nod
);
20819 and then Is_Itype
(Designated_Type
(Def_Id
))
20820 and then Nkind
(Related_Nod
) = N_Subtype_Declaration
20821 and then not Is_Incomplete_Type
(Designated_Type
(Def_Id
))
20823 Build_Itype_Reference
20824 (Designated_Type
(Def_Id
), Related_Nod
);
20828 Constrain_Array
(Def_Id
, S
, Related_Nod
, Related_Id
, Suffix
);
20830 when Decimal_Fixed_Point_Kind
=>
20831 Constrain_Decimal
(Def_Id
, S
);
20833 when Enumeration_Kind
=>
20834 Constrain_Enumeration
(Def_Id
, S
);
20835 Inherit_Predicate_Flags
(Def_Id
, Subtype_Mark_Id
);
20837 when Ordinary_Fixed_Point_Kind
=>
20838 Constrain_Ordinary_Fixed
(Def_Id
, S
);
20841 Constrain_Float
(Def_Id
, S
);
20843 when Integer_Kind
=>
20844 Constrain_Integer
(Def_Id
, S
);
20845 Inherit_Predicate_Flags
(Def_Id
, Subtype_Mark_Id
);
20847 when E_Record_Type |
20850 E_Incomplete_Type
=>
20851 Constrain_Discriminated_Type
(Def_Id
, S
, Related_Nod
);
20853 if Ekind
(Def_Id
) = E_Incomplete_Type
then
20854 Set_Private_Dependents
(Def_Id
, New_Elmt_List
);
20857 when Private_Kind
=>
20858 Constrain_Discriminated_Type
(Def_Id
, S
, Related_Nod
);
20859 Set_Private_Dependents
(Def_Id
, New_Elmt_List
);
20861 -- In case of an invalid constraint prevent further processing
20862 -- since the type constructed is missing expected fields.
20864 if Etype
(Def_Id
) = Any_Type
then
20868 -- If the full view is that of a task with discriminants,
20869 -- we must constrain both the concurrent type and its
20870 -- corresponding record type. Otherwise we will just propagate
20871 -- the constraint to the full view, if available.
20873 if Present
(Full_View
(Subtype_Mark_Id
))
20874 and then Has_Discriminants
(Subtype_Mark_Id
)
20875 and then Is_Concurrent_Type
(Full_View
(Subtype_Mark_Id
))
20878 Create_Itype
(E_Void
, Related_Nod
, Related_Id
, Suffix
);
20880 Set_Entity
(Subtype_Mark
(S
), Full_View
(Subtype_Mark_Id
));
20881 Constrain_Concurrent
(Full_View_Id
, S
,
20882 Related_Nod
, Related_Id
, Suffix
);
20883 Set_Entity
(Subtype_Mark
(S
), Subtype_Mark_Id
);
20884 Set_Full_View
(Def_Id
, Full_View_Id
);
20886 -- Introduce an explicit reference to the private subtype,
20887 -- to prevent scope anomalies in gigi if first use appears
20888 -- in a nested context, e.g. a later function body.
20889 -- Should this be generated in other contexts than a full
20890 -- type declaration?
20892 if Is_Itype
(Def_Id
)
20894 Nkind
(Parent
(P
)) = N_Full_Type_Declaration
20896 Build_Itype_Reference
(Def_Id
, Parent
(P
));
20900 Prepare_Private_Subtype_Completion
(Def_Id
, Related_Nod
);
20903 when Concurrent_Kind
=>
20904 Constrain_Concurrent
(Def_Id
, S
,
20905 Related_Nod
, Related_Id
, Suffix
);
20908 Error_Msg_N
("invalid subtype mark in subtype indication", S
);
20911 -- Size and Convention are always inherited from the base type
20913 Set_Size_Info
(Def_Id
, (Subtype_Mark_Id
));
20914 Set_Convention
(Def_Id
, Convention
(Subtype_Mark_Id
));
20918 end Process_Subtype
;
20920 --------------------------------------------
20921 -- Propagate_Default_Init_Cond_Attributes --
20922 --------------------------------------------
20924 procedure Propagate_Default_Init_Cond_Attributes
20925 (From_Typ
: Entity_Id
;
20926 To_Typ
: Entity_Id
;
20927 Parent_To_Derivation
: Boolean := False;
20928 Private_To_Full_View
: Boolean := False)
20930 procedure Remove_Default_Init_Cond_Procedure
(Typ
: Entity_Id
);
20931 -- Remove the default initial procedure (if any) from the rep chain of
20934 ----------------------------------------
20935 -- Remove_Default_Init_Cond_Procedure --
20936 ----------------------------------------
20938 procedure Remove_Default_Init_Cond_Procedure
(Typ
: Entity_Id
) is
20939 Found
: Boolean := False;
20945 Subp
:= Subprograms_For_Type
(Typ
);
20946 while Present
(Subp
) loop
20947 if Is_Default_Init_Cond_Procedure
(Subp
) then
20953 Subp
:= Subprograms_For_Type
(Subp
);
20957 Set_Subprograms_For_Type
(Prev
, Subprograms_For_Type
(Subp
));
20958 Set_Subprograms_For_Type
(Subp
, Empty
);
20960 end Remove_Default_Init_Cond_Procedure
;
20964 Inherit_Procedure
: Boolean := False;
20966 -- Start of processing for Propagate_Default_Init_Cond_Attributes
20969 if Has_Default_Init_Cond
(From_Typ
) then
20971 -- A derived type inherits the attributes from its parent type
20973 if Parent_To_Derivation
then
20974 Set_Has_Inherited_Default_Init_Cond
(To_Typ
);
20976 -- A full view shares the attributes with its private view
20979 Set_Has_Default_Init_Cond
(To_Typ
);
20982 Inherit_Procedure
:= True;
20984 -- Due to the order of expansion, a derived private type is processed
20985 -- by two routines which both attempt to set the attributes related
20986 -- to pragma Default_Initial_Condition - Build_Derived_Type and then
20987 -- Process_Full_View.
20990 -- type Parent_Typ is private
20991 -- with Default_Initial_Condition ...;
20993 -- type Parent_Typ is ...;
20996 -- with Pack; use Pack;
20997 -- package Pack_2 is
20998 -- type Deriv_Typ is private
20999 -- with Default_Initial_Condition ...;
21001 -- type Deriv_Typ is new Parent_Typ;
21004 -- When Build_Derived_Type operates, it sets the attributes on the
21005 -- full view without taking into account that the private view may
21006 -- define its own default initial condition procedure. This becomes
21007 -- apparent in Process_Full_View which must undo some of the work by
21008 -- Build_Derived_Type and propagate the attributes from the private
21009 -- to the full view.
21011 if Private_To_Full_View
then
21012 Set_Has_Inherited_Default_Init_Cond
(To_Typ
, False);
21013 Remove_Default_Init_Cond_Procedure
(To_Typ
);
21016 -- A type must inherit the default initial condition procedure from a
21017 -- parent type when the parent itself is inheriting the procedure or
21018 -- when it is defining one. This circuitry is also used when dealing
21019 -- with the private / full view of a type.
21021 elsif Has_Inherited_Default_Init_Cond
(From_Typ
)
21022 or (Parent_To_Derivation
21023 and Present
(Get_Pragma
21024 (From_Typ
, Pragma_Default_Initial_Condition
)))
21026 Set_Has_Inherited_Default_Init_Cond
(To_Typ
);
21027 Inherit_Procedure
:= True;
21030 if Inherit_Procedure
21031 and then No
(Default_Init_Cond_Procedure
(To_Typ
))
21033 Set_Default_Init_Cond_Procedure
21034 (To_Typ
, Default_Init_Cond_Procedure
(From_Typ
));
21036 end Propagate_Default_Init_Cond_Attributes
;
21038 -----------------------------
21039 -- Record_Type_Declaration --
21040 -----------------------------
21042 procedure Record_Type_Declaration
21047 Def
: constant Node_Id
:= Type_Definition
(N
);
21048 Is_Tagged
: Boolean;
21049 Tag_Comp
: Entity_Id
;
21052 -- These flags must be initialized before calling Process_Discriminants
21053 -- because this routine makes use of them.
21055 Set_Ekind
(T
, E_Record_Type
);
21057 Init_Size_Align
(T
);
21058 Set_Interfaces
(T
, No_Elist
);
21059 Set_Stored_Constraint
(T
, No_Elist
);
21060 Set_Default_SSO
(T
);
21064 if Ada_Version
< Ada_2005
or else not Interface_Present
(Def
) then
21065 if Limited_Present
(Def
) then
21066 Check_SPARK_05_Restriction
("limited is not allowed", N
);
21069 if Abstract_Present
(Def
) then
21070 Check_SPARK_05_Restriction
("abstract is not allowed", N
);
21073 -- The flag Is_Tagged_Type might have already been set by
21074 -- Find_Type_Name if it detected an error for declaration T. This
21075 -- arises in the case of private tagged types where the full view
21076 -- omits the word tagged.
21079 Tagged_Present
(Def
)
21080 or else (Serious_Errors_Detected
> 0 and then Is_Tagged_Type
(T
));
21082 Set_Is_Limited_Record
(T
, Limited_Present
(Def
));
21085 Set_Is_Tagged_Type
(T
, True);
21086 Set_No_Tagged_Streams_Pragma
(T
, No_Tagged_Streams
);
21089 -- Type is abstract if full declaration carries keyword, or if
21090 -- previous partial view did.
21092 Set_Is_Abstract_Type
(T
, Is_Abstract_Type
(T
)
21093 or else Abstract_Present
(Def
));
21096 Check_SPARK_05_Restriction
("interface is not allowed", N
);
21099 Analyze_Interface_Declaration
(T
, Def
);
21101 if Present
(Discriminant_Specifications
(N
)) then
21103 ("interface types cannot have discriminants",
21104 Defining_Identifier
21105 (First
(Discriminant_Specifications
(N
))));
21109 -- First pass: if there are self-referential access components,
21110 -- create the required anonymous access type declarations, and if
21111 -- need be an incomplete type declaration for T itself.
21113 Check_Anonymous_Access_Components
(N
, T
, Prev
, Component_List
(Def
));
21115 if Ada_Version
>= Ada_2005
21116 and then Present
(Interface_List
(Def
))
21118 Check_Interfaces
(N
, Def
);
21121 Ifaces_List
: Elist_Id
;
21124 -- Ada 2005 (AI-251): Collect the list of progenitors that are not
21125 -- already in the parents.
21129 Ifaces_List
=> Ifaces_List
,
21130 Exclude_Parents
=> True);
21132 Set_Interfaces
(T
, Ifaces_List
);
21136 -- Records constitute a scope for the component declarations within.
21137 -- The scope is created prior to the processing of these declarations.
21138 -- Discriminants are processed first, so that they are visible when
21139 -- processing the other components. The Ekind of the record type itself
21140 -- is set to E_Record_Type (subtypes appear as E_Record_Subtype).
21142 -- Enter record scope
21146 -- If an incomplete or private type declaration was already given for
21147 -- the type, then this scope already exists, and the discriminants have
21148 -- been declared within. We must verify that the full declaration
21149 -- matches the incomplete one.
21151 Check_Or_Process_Discriminants
(N
, T
, Prev
);
21153 Set_Is_Constrained
(T
, not Has_Discriminants
(T
));
21154 Set_Has_Delayed_Freeze
(T
, True);
21156 -- For tagged types add a manually analyzed component corresponding
21157 -- to the component _tag, the corresponding piece of tree will be
21158 -- expanded as part of the freezing actions if it is not a CPP_Class.
21162 -- Do not add the tag unless we are in expansion mode
21164 if Expander_Active
then
21165 Tag_Comp
:= Make_Defining_Identifier
(Sloc
(Def
), Name_uTag
);
21166 Enter_Name
(Tag_Comp
);
21168 Set_Ekind
(Tag_Comp
, E_Component
);
21169 Set_Is_Tag
(Tag_Comp
);
21170 Set_Is_Aliased
(Tag_Comp
);
21171 Set_Etype
(Tag_Comp
, RTE
(RE_Tag
));
21172 Set_DT_Entry_Count
(Tag_Comp
, No_Uint
);
21173 Set_Original_Record_Component
(Tag_Comp
, Tag_Comp
);
21174 Init_Component_Location
(Tag_Comp
);
21176 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
21177 -- implemented interfaces.
21179 if Has_Interfaces
(T
) then
21180 Add_Interface_Tag_Components
(N
, T
);
21184 Make_Class_Wide_Type
(T
);
21185 Set_Direct_Primitive_Operations
(T
, New_Elmt_List
);
21188 -- We must suppress range checks when processing record components in
21189 -- the presence of discriminants, since we don't want spurious checks to
21190 -- be generated during their analysis, but Suppress_Range_Checks flags
21191 -- must be reset the after processing the record definition.
21193 -- Note: this is the only use of Kill_Range_Checks, and is a bit odd,
21194 -- couldn't we just use the normal range check suppression method here.
21195 -- That would seem cleaner ???
21197 if Has_Discriminants
(T
) and then not Range_Checks_Suppressed
(T
) then
21198 Set_Kill_Range_Checks
(T
, True);
21199 Record_Type_Definition
(Def
, Prev
);
21200 Set_Kill_Range_Checks
(T
, False);
21202 Record_Type_Definition
(Def
, Prev
);
21205 -- Exit from record scope
21209 -- Ada 2005 (AI-251 and AI-345): Derive the interface subprograms of all
21210 -- the implemented interfaces and associate them an aliased entity.
21213 and then not Is_Empty_List
(Interface_List
(Def
))
21215 Derive_Progenitor_Subprograms
(T
, T
);
21218 Check_Function_Writable_Actuals
(N
);
21219 end Record_Type_Declaration
;
21221 ----------------------------
21222 -- Record_Type_Definition --
21223 ----------------------------
21225 procedure Record_Type_Definition
(Def
: Node_Id
; Prev_T
: Entity_Id
) is
21226 Component
: Entity_Id
;
21227 Ctrl_Components
: Boolean := False;
21228 Final_Storage_Only
: Boolean;
21232 if Ekind
(Prev_T
) = E_Incomplete_Type
then
21233 T
:= Full_View
(Prev_T
);
21238 -- In SPARK, tagged types and type extensions may only be declared in
21239 -- the specification of library unit packages.
21241 if Present
(Def
) and then Is_Tagged_Type
(T
) then
21247 if Nkind
(Parent
(Def
)) = N_Full_Type_Declaration
then
21248 Typ
:= Parent
(Def
);
21251 (Nkind
(Parent
(Def
)) = N_Derived_Type_Definition
);
21252 Typ
:= Parent
(Parent
(Def
));
21255 Ctxt
:= Parent
(Typ
);
21257 if Nkind
(Ctxt
) = N_Package_Body
21258 and then Nkind
(Parent
(Ctxt
)) = N_Compilation_Unit
21260 Check_SPARK_05_Restriction
21261 ("type should be defined in package specification", Typ
);
21263 elsif Nkind
(Ctxt
) /= N_Package_Specification
21264 or else Nkind
(Parent
(Parent
(Ctxt
))) /= N_Compilation_Unit
21266 Check_SPARK_05_Restriction
21267 ("type should be defined in library unit package", Typ
);
21272 Final_Storage_Only
:= not Is_Controlled_Active
(T
);
21274 -- Ada 2005: Check whether an explicit Limited is present in a derived
21275 -- type declaration.
21277 if Nkind
(Parent
(Def
)) = N_Derived_Type_Definition
21278 and then Limited_Present
(Parent
(Def
))
21280 Set_Is_Limited_Record
(T
);
21283 -- If the component list of a record type is defined by the reserved
21284 -- word null and there is no discriminant part, then the record type has
21285 -- no components and all records of the type are null records (RM 3.7)
21286 -- This procedure is also called to process the extension part of a
21287 -- record extension, in which case the current scope may have inherited
21291 or else No
(Component_List
(Def
))
21292 or else Null_Present
(Component_List
(Def
))
21294 if not Is_Tagged_Type
(T
) then
21295 Check_SPARK_05_Restriction
("untagged record cannot be null", Def
);
21299 Analyze_Declarations
(Component_Items
(Component_List
(Def
)));
21301 if Present
(Variant_Part
(Component_List
(Def
))) then
21302 Check_SPARK_05_Restriction
("variant part is not allowed", Def
);
21303 Analyze
(Variant_Part
(Component_List
(Def
)));
21307 -- After completing the semantic analysis of the record definition,
21308 -- record components, both new and inherited, are accessible. Set their
21309 -- kind accordingly. Exclude malformed itypes from illegal declarations,
21310 -- whose Ekind may be void.
21312 Component
:= First_Entity
(Current_Scope
);
21313 while Present
(Component
) loop
21314 if Ekind
(Component
) = E_Void
21315 and then not Is_Itype
(Component
)
21317 Set_Ekind
(Component
, E_Component
);
21318 Init_Component_Location
(Component
);
21321 if Has_Task
(Etype
(Component
)) then
21325 if Has_Protected
(Etype
(Component
)) then
21326 Set_Has_Protected
(T
);
21329 if Ekind
(Component
) /= E_Component
then
21332 -- Do not set Has_Controlled_Component on a class-wide equivalent
21333 -- type. See Make_CW_Equivalent_Type.
21335 elsif not Is_Class_Wide_Equivalent_Type
(T
)
21336 and then (Has_Controlled_Component
(Etype
(Component
))
21337 or else (Chars
(Component
) /= Name_uParent
21338 and then Is_Controlled_Active
21339 (Etype
(Component
))))
21341 Set_Has_Controlled_Component
(T
, True);
21342 Final_Storage_Only
:=
21344 and then Finalize_Storage_Only
(Etype
(Component
));
21345 Ctrl_Components
:= True;
21348 Next_Entity
(Component
);
21351 -- A Type is Finalize_Storage_Only only if all its controlled components
21354 if Ctrl_Components
then
21355 Set_Finalize_Storage_Only
(T
, Final_Storage_Only
);
21358 -- Place reference to end record on the proper entity, which may
21359 -- be a partial view.
21361 if Present
(Def
) then
21362 Process_End_Label
(Def
, 'e', Prev_T
);
21364 end Record_Type_Definition
;
21366 ------------------------
21367 -- Replace_Components --
21368 ------------------------
21370 procedure Replace_Components
(Typ
: Entity_Id
; Decl
: Node_Id
) is
21371 function Process
(N
: Node_Id
) return Traverse_Result
;
21377 function Process
(N
: Node_Id
) return Traverse_Result
is
21381 if Nkind
(N
) = N_Discriminant_Specification
then
21382 Comp
:= First_Discriminant
(Typ
);
21383 while Present
(Comp
) loop
21384 if Chars
(Comp
) = Chars
(Defining_Identifier
(N
)) then
21385 Set_Defining_Identifier
(N
, Comp
);
21389 Next_Discriminant
(Comp
);
21392 elsif Nkind
(N
) = N_Component_Declaration
then
21393 Comp
:= First_Component
(Typ
);
21394 while Present
(Comp
) loop
21395 if Chars
(Comp
) = Chars
(Defining_Identifier
(N
)) then
21396 Set_Defining_Identifier
(N
, Comp
);
21400 Next_Component
(Comp
);
21407 procedure Replace
is new Traverse_Proc
(Process
);
21409 -- Start of processing for Replace_Components
21413 end Replace_Components
;
21415 -------------------------------
21416 -- Set_Completion_Referenced --
21417 -------------------------------
21419 procedure Set_Completion_Referenced
(E
: Entity_Id
) is
21421 -- If in main unit, mark entity that is a completion as referenced,
21422 -- warnings go on the partial view when needed.
21424 if In_Extended_Main_Source_Unit
(E
) then
21425 Set_Referenced
(E
);
21427 end Set_Completion_Referenced
;
21429 ---------------------
21430 -- Set_Default_SSO --
21431 ---------------------
21433 procedure Set_Default_SSO
(T
: Entity_Id
) is
21435 case Opt
.Default_SSO
is
21439 Set_SSO_Set_Low_By_Default
(T
, True);
21441 Set_SSO_Set_High_By_Default
(T
, True);
21443 raise Program_Error
;
21445 end Set_Default_SSO
;
21447 ---------------------
21448 -- Set_Fixed_Range --
21449 ---------------------
21451 -- The range for fixed-point types is complicated by the fact that we
21452 -- do not know the exact end points at the time of the declaration. This
21453 -- is true for three reasons:
21455 -- A size clause may affect the fudging of the end-points.
21456 -- A small clause may affect the values of the end-points.
21457 -- We try to include the end-points if it does not affect the size.
21459 -- This means that the actual end-points must be established at the
21460 -- point when the type is frozen. Meanwhile, we first narrow the range
21461 -- as permitted (so that it will fit if necessary in a small specified
21462 -- size), and then build a range subtree with these narrowed bounds.
21463 -- Set_Fixed_Range constructs the range from real literal values, and
21464 -- sets the range as the Scalar_Range of the given fixed-point type entity.
21466 -- The parent of this range is set to point to the entity so that it is
21467 -- properly hooked into the tree (unlike normal Scalar_Range entries for
21468 -- other scalar types, which are just pointers to the range in the
21469 -- original tree, this would otherwise be an orphan).
21471 -- The tree is left unanalyzed. When the type is frozen, the processing
21472 -- in Freeze.Freeze_Fixed_Point_Type notices that the range is not
21473 -- analyzed, and uses this as an indication that it should complete
21474 -- work on the range (it will know the final small and size values).
21476 procedure Set_Fixed_Range
21482 S
: constant Node_Id
:=
21484 Low_Bound
=> Make_Real_Literal
(Loc
, Lo
),
21485 High_Bound
=> Make_Real_Literal
(Loc
, Hi
));
21487 Set_Scalar_Range
(E
, S
);
21490 -- Before the freeze point, the bounds of a fixed point are universal
21491 -- and carry the corresponding type.
21493 Set_Etype
(Low_Bound
(S
), Universal_Real
);
21494 Set_Etype
(High_Bound
(S
), Universal_Real
);
21495 end Set_Fixed_Range
;
21497 ----------------------------------
21498 -- Set_Scalar_Range_For_Subtype --
21499 ----------------------------------
21501 procedure Set_Scalar_Range_For_Subtype
21502 (Def_Id
: Entity_Id
;
21506 Kind
: constant Entity_Kind
:= Ekind
(Def_Id
);
21509 -- Defend against previous error
21511 if Nkind
(R
) = N_Error
then
21515 Set_Scalar_Range
(Def_Id
, R
);
21517 -- We need to link the range into the tree before resolving it so
21518 -- that types that are referenced, including importantly the subtype
21519 -- itself, are properly frozen (Freeze_Expression requires that the
21520 -- expression be properly linked into the tree). Of course if it is
21521 -- already linked in, then we do not disturb the current link.
21523 if No
(Parent
(R
)) then
21524 Set_Parent
(R
, Def_Id
);
21527 -- Reset the kind of the subtype during analysis of the range, to
21528 -- catch possible premature use in the bounds themselves.
21530 Set_Ekind
(Def_Id
, E_Void
);
21531 Process_Range_Expr_In_Decl
(R
, Subt
, Subtyp
=> Def_Id
);
21532 Set_Ekind
(Def_Id
, Kind
);
21533 end Set_Scalar_Range_For_Subtype
;
21535 --------------------------------------------------------
21536 -- Set_Stored_Constraint_From_Discriminant_Constraint --
21537 --------------------------------------------------------
21539 procedure Set_Stored_Constraint_From_Discriminant_Constraint
21543 -- Make sure set if encountered during Expand_To_Stored_Constraint
21545 Set_Stored_Constraint
(E
, No_Elist
);
21547 -- Give it the right value
21549 if Is_Constrained
(E
) and then Has_Discriminants
(E
) then
21550 Set_Stored_Constraint
(E
,
21551 Expand_To_Stored_Constraint
(E
, Discriminant_Constraint
(E
)));
21553 end Set_Stored_Constraint_From_Discriminant_Constraint
;
21555 -------------------------------------
21556 -- Signed_Integer_Type_Declaration --
21557 -------------------------------------
21559 procedure Signed_Integer_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
21560 Implicit_Base
: Entity_Id
;
21561 Base_Typ
: Entity_Id
;
21564 Errs
: Boolean := False;
21568 function Can_Derive_From
(E
: Entity_Id
) return Boolean;
21569 -- Determine whether given bounds allow derivation from specified type
21571 procedure Check_Bound
(Expr
: Node_Id
);
21572 -- Check bound to make sure it is integral and static. If not, post
21573 -- appropriate error message and set Errs flag
21575 ---------------------
21576 -- Can_Derive_From --
21577 ---------------------
21579 -- Note we check both bounds against both end values, to deal with
21580 -- strange types like ones with a range of 0 .. -12341234.
21582 function Can_Derive_From
(E
: Entity_Id
) return Boolean is
21583 Lo
: constant Uint
:= Expr_Value
(Type_Low_Bound
(E
));
21584 Hi
: constant Uint
:= Expr_Value
(Type_High_Bound
(E
));
21586 return Lo
<= Lo_Val
and then Lo_Val
<= Hi
21588 Lo
<= Hi_Val
and then Hi_Val
<= Hi
;
21589 end Can_Derive_From
;
21595 procedure Check_Bound
(Expr
: Node_Id
) is
21597 -- If a range constraint is used as an integer type definition, each
21598 -- bound of the range must be defined by a static expression of some
21599 -- integer type, but the two bounds need not have the same integer
21600 -- type (Negative bounds are allowed.) (RM 3.5.4)
21602 if not Is_Integer_Type
(Etype
(Expr
)) then
21604 ("integer type definition bounds must be of integer type", Expr
);
21607 elsif not Is_OK_Static_Expression
(Expr
) then
21608 Flag_Non_Static_Expr
21609 ("non-static expression used for integer type bound!", Expr
);
21612 -- The bounds are folded into literals, and we set their type to be
21613 -- universal, to avoid typing difficulties: we cannot set the type
21614 -- of the literal to the new type, because this would be a forward
21615 -- reference for the back end, and if the original type is user-
21616 -- defined this can lead to spurious semantic errors (e.g. 2928-003).
21619 if Is_Entity_Name
(Expr
) then
21620 Fold_Uint
(Expr
, Expr_Value
(Expr
), True);
21623 Set_Etype
(Expr
, Universal_Integer
);
21627 -- Start of processing for Signed_Integer_Type_Declaration
21630 -- Create an anonymous base type
21633 Create_Itype
(E_Signed_Integer_Type
, Parent
(Def
), T
, 'B');
21635 -- Analyze and check the bounds, they can be of any integer type
21637 Lo
:= Low_Bound
(Def
);
21638 Hi
:= High_Bound
(Def
);
21640 -- Arbitrarily use Integer as the type if either bound had an error
21642 if Hi
= Error
or else Lo
= Error
then
21643 Base_Typ
:= Any_Integer
;
21644 Set_Error_Posted
(T
, True);
21646 -- Here both bounds are OK expressions
21649 Analyze_And_Resolve
(Lo
, Any_Integer
);
21650 Analyze_And_Resolve
(Hi
, Any_Integer
);
21656 Hi
:= Type_High_Bound
(Standard_Long_Long_Integer
);
21657 Lo
:= Type_Low_Bound
(Standard_Long_Long_Integer
);
21660 -- Find type to derive from
21662 Lo_Val
:= Expr_Value
(Lo
);
21663 Hi_Val
:= Expr_Value
(Hi
);
21665 if Can_Derive_From
(Standard_Short_Short_Integer
) then
21666 Base_Typ
:= Base_Type
(Standard_Short_Short_Integer
);
21668 elsif Can_Derive_From
(Standard_Short_Integer
) then
21669 Base_Typ
:= Base_Type
(Standard_Short_Integer
);
21671 elsif Can_Derive_From
(Standard_Integer
) then
21672 Base_Typ
:= Base_Type
(Standard_Integer
);
21674 elsif Can_Derive_From
(Standard_Long_Integer
) then
21675 Base_Typ
:= Base_Type
(Standard_Long_Integer
);
21677 elsif Can_Derive_From
(Standard_Long_Long_Integer
) then
21678 Check_Restriction
(No_Long_Long_Integers
, Def
);
21679 Base_Typ
:= Base_Type
(Standard_Long_Long_Integer
);
21682 Base_Typ
:= Base_Type
(Standard_Long_Long_Integer
);
21683 Error_Msg_N
("integer type definition bounds out of range", Def
);
21684 Hi
:= Type_High_Bound
(Standard_Long_Long_Integer
);
21685 Lo
:= Type_Low_Bound
(Standard_Long_Long_Integer
);
21689 -- Complete both implicit base and declared first subtype entities. The
21690 -- inheritance of the rep item chain ensures that SPARK-related pragmas
21691 -- are not clobbered when the signed integer type acts as a full view of
21694 Set_Etype
(Implicit_Base
, Base_Typ
);
21695 Set_Size_Info
(Implicit_Base
, Base_Typ
);
21696 Set_RM_Size
(Implicit_Base
, RM_Size
(Base_Typ
));
21697 Set_First_Rep_Item
(Implicit_Base
, First_Rep_Item
(Base_Typ
));
21698 Set_Scalar_Range
(Implicit_Base
, Scalar_Range
(Base_Typ
));
21700 Set_Ekind
(T
, E_Signed_Integer_Subtype
);
21701 Set_Etype
(T
, Implicit_Base
);
21702 Set_Size_Info
(T
, Implicit_Base
);
21703 Inherit_Rep_Item_Chain
(T
, Implicit_Base
);
21704 Set_Scalar_Range
(T
, Def
);
21705 Set_RM_Size
(T
, UI_From_Int
(Minimum_Size
(T
)));
21706 Set_Is_Constrained
(T
);
21707 end Signed_Integer_Type_Declaration
;