* config/pa/linux-atomic.c (__kernel_cmpxchg): Reorder arguments to
[official-gcc.git] / gcc / fwprop.c
blobb62ad3f2029eaae4970c1a78c446d730c9a85495
1 /* RTL-based forward propagation pass for GNU compiler.
2 Copyright (C) 2005-2015 Free Software Foundation, Inc.
3 Contributed by Paolo Bonzini and Steven Bosscher.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "diagnostic-core.h"
27 #include "sparseset.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "insn-config.h"
31 #include "recog.h"
32 #include "flags.h"
33 #include "obstack.h"
34 #include "predict.h"
35 #include "hard-reg-set.h"
36 #include "function.h"
37 #include "dominance.h"
38 #include "cfg.h"
39 #include "cfgrtl.h"
40 #include "cfgcleanup.h"
41 #include "basic-block.h"
42 #include "df.h"
43 #include "target.h"
44 #include "cfgloop.h"
45 #include "tree-pass.h"
46 #include "domwalk.h"
47 #include "emit-rtl.h"
48 #include "rtl-iter.h"
51 /* This pass does simple forward propagation and simplification when an
52 operand of an insn can only come from a single def. This pass uses
53 df.c, so it is global. However, we only do limited analysis of
54 available expressions.
56 1) The pass tries to propagate the source of the def into the use,
57 and checks if the result is independent of the substituted value.
58 For example, the high word of a (zero_extend:DI (reg:SI M)) is always
59 zero, independent of the source register.
61 In particular, we propagate constants into the use site. Sometimes
62 RTL expansion did not put the constant in the same insn on purpose,
63 to satisfy a predicate, and the result will fail to be recognized;
64 but this happens rarely and in this case we can still create a
65 REG_EQUAL note. For multi-word operations, this
67 (set (subreg:SI (reg:DI 120) 0) (const_int 0))
68 (set (subreg:SI (reg:DI 120) 4) (const_int -1))
69 (set (subreg:SI (reg:DI 122) 0)
70 (ior:SI (subreg:SI (reg:DI 119) 0) (subreg:SI (reg:DI 120) 0)))
71 (set (subreg:SI (reg:DI 122) 4)
72 (ior:SI (subreg:SI (reg:DI 119) 4) (subreg:SI (reg:DI 120) 4)))
74 can be simplified to the much simpler
76 (set (subreg:SI (reg:DI 122) 0) (subreg:SI (reg:DI 119)))
77 (set (subreg:SI (reg:DI 122) 4) (const_int -1))
79 This particular propagation is also effective at putting together
80 complex addressing modes. We are more aggressive inside MEMs, in
81 that all definitions are propagated if the use is in a MEM; if the
82 result is a valid memory address we check address_cost to decide
83 whether the substitution is worthwhile.
85 2) The pass propagates register copies. This is not as effective as
86 the copy propagation done by CSE's canon_reg, which works by walking
87 the instruction chain, it can help the other transformations.
89 We should consider removing this optimization, and instead reorder the
90 RTL passes, because GCSE does this transformation too. With some luck,
91 the CSE pass at the end of rest_of_handle_gcse could also go away.
93 3) The pass looks for paradoxical subregs that are actually unnecessary.
94 Things like this:
96 (set (reg:QI 120) (subreg:QI (reg:SI 118) 0))
97 (set (reg:QI 121) (subreg:QI (reg:SI 119) 0))
98 (set (reg:SI 122) (plus:SI (subreg:SI (reg:QI 120) 0)
99 (subreg:SI (reg:QI 121) 0)))
101 are very common on machines that can only do word-sized operations.
102 For each use of a paradoxical subreg (subreg:WIDER (reg:NARROW N) 0),
103 if it has a single def and it is (subreg:NARROW (reg:WIDE M) 0),
104 we can replace the paradoxical subreg with simply (reg:WIDE M). The
105 above will simplify this to
107 (set (reg:QI 120) (subreg:QI (reg:SI 118) 0))
108 (set (reg:QI 121) (subreg:QI (reg:SI 119) 0))
109 (set (reg:SI 122) (plus:SI (reg:SI 118) (reg:SI 119)))
111 where the first two insns are now dead.
113 We used to use reaching definitions to find which uses have a
114 single reaching definition (sounds obvious...), but this is too
115 complex a problem in nasty testcases like PR33928. Now we use the
116 multiple definitions problem in df-problems.c. The similarity
117 between that problem and SSA form creation is taken further, in
118 that fwprop does a dominator walk to create its chains; however,
119 instead of creating a PHI function where multiple definitions meet
120 I just punt and record only singleton use-def chains, which is
121 all that is needed by fwprop. */
124 static int num_changes;
126 static vec<df_ref> use_def_ref;
127 static vec<df_ref> reg_defs;
128 static vec<df_ref> reg_defs_stack;
130 /* The MD bitmaps are trimmed to include only live registers to cut
131 memory usage on testcases like insn-recog.c. Track live registers
132 in the basic block and do not perform forward propagation if the
133 destination is a dead pseudo occurring in a note. */
134 static bitmap local_md;
135 static bitmap local_lr;
137 /* Return the only def in USE's use-def chain, or NULL if there is
138 more than one def in the chain. */
140 static inline df_ref
141 get_def_for_use (df_ref use)
143 return use_def_ref[DF_REF_ID (use)];
147 /* Update the reg_defs vector with non-partial definitions in DEF_REC.
148 TOP_FLAG says which artificials uses should be used, when DEF_REC
149 is an artificial def vector. LOCAL_MD is modified as after a
150 df_md_simulate_* function; we do more or less the same processing
151 done there, so we do not use those functions. */
153 #define DF_MD_GEN_FLAGS \
154 (DF_REF_PARTIAL | DF_REF_CONDITIONAL | DF_REF_MAY_CLOBBER)
156 static void
157 process_defs (df_ref def, int top_flag)
159 for (; def; def = DF_REF_NEXT_LOC (def))
161 df_ref curr_def = reg_defs[DF_REF_REGNO (def)];
162 unsigned int dregno;
164 if ((DF_REF_FLAGS (def) & DF_REF_AT_TOP) != top_flag)
165 continue;
167 dregno = DF_REF_REGNO (def);
168 if (curr_def)
169 reg_defs_stack.safe_push (curr_def);
170 else
172 /* Do not store anything if "transitioning" from NULL to NULL. But
173 otherwise, push a special entry on the stack to tell the
174 leave_block callback that the entry in reg_defs was NULL. */
175 if (DF_REF_FLAGS (def) & DF_MD_GEN_FLAGS)
177 else
178 reg_defs_stack.safe_push (def);
181 if (DF_REF_FLAGS (def) & DF_MD_GEN_FLAGS)
183 bitmap_set_bit (local_md, dregno);
184 reg_defs[dregno] = NULL;
186 else
188 bitmap_clear_bit (local_md, dregno);
189 reg_defs[dregno] = def;
195 /* Fill the use_def_ref vector with values for the uses in USE_REC,
196 taking reaching definitions info from LOCAL_MD and REG_DEFS.
197 TOP_FLAG says which artificials uses should be used, when USE_REC
198 is an artificial use vector. */
200 static void
201 process_uses (df_ref use, int top_flag)
203 for (; use; use = DF_REF_NEXT_LOC (use))
204 if ((DF_REF_FLAGS (use) & DF_REF_AT_TOP) == top_flag)
206 unsigned int uregno = DF_REF_REGNO (use);
207 if (reg_defs[uregno]
208 && !bitmap_bit_p (local_md, uregno)
209 && bitmap_bit_p (local_lr, uregno))
210 use_def_ref[DF_REF_ID (use)] = reg_defs[uregno];
214 class single_def_use_dom_walker : public dom_walker
216 public:
217 single_def_use_dom_walker (cdi_direction direction)
218 : dom_walker (direction) {}
219 virtual void before_dom_children (basic_block);
220 virtual void after_dom_children (basic_block);
223 void
224 single_def_use_dom_walker::before_dom_children (basic_block bb)
226 int bb_index = bb->index;
227 struct df_md_bb_info *md_bb_info = df_md_get_bb_info (bb_index);
228 struct df_lr_bb_info *lr_bb_info = df_lr_get_bb_info (bb_index);
229 rtx_insn *insn;
231 bitmap_copy (local_md, &md_bb_info->in);
232 bitmap_copy (local_lr, &lr_bb_info->in);
234 /* Push a marker for the leave_block callback. */
235 reg_defs_stack.safe_push (NULL);
237 process_uses (df_get_artificial_uses (bb_index), DF_REF_AT_TOP);
238 process_defs (df_get_artificial_defs (bb_index), DF_REF_AT_TOP);
240 /* We don't call df_simulate_initialize_forwards, as it may overestimate
241 the live registers if there are unused artificial defs. We prefer
242 liveness to be underestimated. */
244 FOR_BB_INSNS (bb, insn)
245 if (INSN_P (insn))
247 unsigned int uid = INSN_UID (insn);
248 process_uses (DF_INSN_UID_USES (uid), 0);
249 process_uses (DF_INSN_UID_EQ_USES (uid), 0);
250 process_defs (DF_INSN_UID_DEFS (uid), 0);
251 df_simulate_one_insn_forwards (bb, insn, local_lr);
254 process_uses (df_get_artificial_uses (bb_index), 0);
255 process_defs (df_get_artificial_defs (bb_index), 0);
258 /* Pop the definitions created in this basic block when leaving its
259 dominated parts. */
261 void
262 single_def_use_dom_walker::after_dom_children (basic_block bb ATTRIBUTE_UNUSED)
264 df_ref saved_def;
265 while ((saved_def = reg_defs_stack.pop ()) != NULL)
267 unsigned int dregno = DF_REF_REGNO (saved_def);
269 /* See also process_defs. */
270 if (saved_def == reg_defs[dregno])
271 reg_defs[dregno] = NULL;
272 else
273 reg_defs[dregno] = saved_def;
278 /* Build a vector holding the reaching definitions of uses reached by a
279 single dominating definition. */
281 static void
282 build_single_def_use_links (void)
284 /* We use the multiple definitions problem to compute our restricted
285 use-def chains. */
286 df_set_flags (DF_EQ_NOTES);
287 df_md_add_problem ();
288 df_note_add_problem ();
289 df_analyze ();
290 df_maybe_reorganize_use_refs (DF_REF_ORDER_BY_INSN_WITH_NOTES);
292 use_def_ref.create (DF_USES_TABLE_SIZE ());
293 use_def_ref.safe_grow_cleared (DF_USES_TABLE_SIZE ());
295 reg_defs.create (max_reg_num ());
296 reg_defs.safe_grow_cleared (max_reg_num ());
298 reg_defs_stack.create (n_basic_blocks_for_fn (cfun) * 10);
299 local_md = BITMAP_ALLOC (NULL);
300 local_lr = BITMAP_ALLOC (NULL);
302 /* Walk the dominator tree looking for single reaching definitions
303 dominating the uses. This is similar to how SSA form is built. */
304 single_def_use_dom_walker (CDI_DOMINATORS)
305 .walk (cfun->cfg->x_entry_block_ptr);
307 BITMAP_FREE (local_lr);
308 BITMAP_FREE (local_md);
309 reg_defs.release ();
310 reg_defs_stack.release ();
314 /* Do not try to replace constant addresses or addresses of local and
315 argument slots. These MEM expressions are made only once and inserted
316 in many instructions, as well as being used to control symbol table
317 output. It is not safe to clobber them.
319 There are some uncommon cases where the address is already in a register
320 for some reason, but we cannot take advantage of that because we have
321 no easy way to unshare the MEM. In addition, looking up all stack
322 addresses is costly. */
324 static bool
325 can_simplify_addr (rtx addr)
327 rtx reg;
329 if (CONSTANT_ADDRESS_P (addr))
330 return false;
332 if (GET_CODE (addr) == PLUS)
333 reg = XEXP (addr, 0);
334 else
335 reg = addr;
337 return (!REG_P (reg)
338 || (REGNO (reg) != FRAME_POINTER_REGNUM
339 && REGNO (reg) != HARD_FRAME_POINTER_REGNUM
340 && REGNO (reg) != ARG_POINTER_REGNUM));
343 /* Returns a canonical version of X for the address, from the point of view,
344 that all multiplications are represented as MULT instead of the multiply
345 by a power of 2 being represented as ASHIFT.
347 Every ASHIFT we find has been made by simplify_gen_binary and was not
348 there before, so it is not shared. So we can do this in place. */
350 static void
351 canonicalize_address (rtx x)
353 for (;;)
354 switch (GET_CODE (x))
356 case ASHIFT:
357 if (CONST_INT_P (XEXP (x, 1))
358 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (GET_MODE (x))
359 && INTVAL (XEXP (x, 1)) >= 0)
361 HOST_WIDE_INT shift = INTVAL (XEXP (x, 1));
362 PUT_CODE (x, MULT);
363 XEXP (x, 1) = gen_int_mode ((HOST_WIDE_INT) 1 << shift,
364 GET_MODE (x));
367 x = XEXP (x, 0);
368 break;
370 case PLUS:
371 if (GET_CODE (XEXP (x, 0)) == PLUS
372 || GET_CODE (XEXP (x, 0)) == ASHIFT
373 || GET_CODE (XEXP (x, 0)) == CONST)
374 canonicalize_address (XEXP (x, 0));
376 x = XEXP (x, 1);
377 break;
379 case CONST:
380 x = XEXP (x, 0);
381 break;
383 default:
384 return;
388 /* OLD is a memory address. Return whether it is good to use NEW instead,
389 for a memory access in the given MODE. */
391 static bool
392 should_replace_address (rtx old_rtx, rtx new_rtx, machine_mode mode,
393 addr_space_t as, bool speed)
395 int gain;
397 if (rtx_equal_p (old_rtx, new_rtx)
398 || !memory_address_addr_space_p (mode, new_rtx, as))
399 return false;
401 /* Copy propagation is always ok. */
402 if (REG_P (old_rtx) && REG_P (new_rtx))
403 return true;
405 /* Prefer the new address if it is less expensive. */
406 gain = (address_cost (old_rtx, mode, as, speed)
407 - address_cost (new_rtx, mode, as, speed));
409 /* If the addresses have equivalent cost, prefer the new address
410 if it has the highest `set_src_cost'. That has the potential of
411 eliminating the most insns without additional costs, and it
412 is the same that cse.c used to do. */
413 if (gain == 0)
414 gain = set_src_cost (new_rtx, speed) - set_src_cost (old_rtx, speed);
416 return (gain > 0);
420 /* Flags for the last parameter of propagate_rtx_1. */
422 enum {
423 /* If PR_CAN_APPEAR is true, propagate_rtx_1 always returns true;
424 if it is false, propagate_rtx_1 returns false if, for at least
425 one occurrence OLD, it failed to collapse the result to a constant.
426 For example, (mult:M (reg:M A) (minus:M (reg:M B) (reg:M A))) may
427 collapse to zero if replacing (reg:M B) with (reg:M A).
429 PR_CAN_APPEAR is disregarded inside MEMs: in that case,
430 propagate_rtx_1 just tries to make cheaper and valid memory
431 addresses. */
432 PR_CAN_APPEAR = 1,
434 /* If PR_HANDLE_MEM is not set, propagate_rtx_1 won't attempt any replacement
435 outside memory addresses. This is needed because propagate_rtx_1 does
436 not do any analysis on memory; thus it is very conservative and in general
437 it will fail if non-read-only MEMs are found in the source expression.
439 PR_HANDLE_MEM is set when the source of the propagation was not
440 another MEM. Then, it is safe not to treat non-read-only MEMs as
441 ``opaque'' objects. */
442 PR_HANDLE_MEM = 2,
444 /* Set when costs should be optimized for speed. */
445 PR_OPTIMIZE_FOR_SPEED = 4
449 /* Replace all occurrences of OLD in *PX with NEW and try to simplify the
450 resulting expression. Replace *PX with a new RTL expression if an
451 occurrence of OLD was found.
453 This is only a wrapper around simplify-rtx.c: do not add any pattern
454 matching code here. (The sole exception is the handling of LO_SUM, but
455 that is because there is no simplify_gen_* function for LO_SUM). */
457 static bool
458 propagate_rtx_1 (rtx *px, rtx old_rtx, rtx new_rtx, int flags)
460 rtx x = *px, tem = NULL_RTX, op0, op1, op2;
461 enum rtx_code code = GET_CODE (x);
462 machine_mode mode = GET_MODE (x);
463 machine_mode op_mode;
464 bool can_appear = (flags & PR_CAN_APPEAR) != 0;
465 bool valid_ops = true;
467 if (!(flags & PR_HANDLE_MEM) && MEM_P (x) && !MEM_READONLY_P (x))
469 /* If unsafe, change MEMs to CLOBBERs or SCRATCHes (to preserve whether
470 they have side effects or not). */
471 *px = (side_effects_p (x)
472 ? gen_rtx_CLOBBER (GET_MODE (x), const0_rtx)
473 : gen_rtx_SCRATCH (GET_MODE (x)));
474 return false;
477 /* If X is OLD_RTX, return NEW_RTX. But not if replacing only within an
478 address, and we are *not* inside one. */
479 if (x == old_rtx)
481 *px = new_rtx;
482 return can_appear;
485 /* If this is an expression, try recursive substitution. */
486 switch (GET_RTX_CLASS (code))
488 case RTX_UNARY:
489 op0 = XEXP (x, 0);
490 op_mode = GET_MODE (op0);
491 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
492 if (op0 == XEXP (x, 0))
493 return true;
494 tem = simplify_gen_unary (code, mode, op0, op_mode);
495 break;
497 case RTX_BIN_ARITH:
498 case RTX_COMM_ARITH:
499 op0 = XEXP (x, 0);
500 op1 = XEXP (x, 1);
501 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
502 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
503 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
504 return true;
505 tem = simplify_gen_binary (code, mode, op0, op1);
506 break;
508 case RTX_COMPARE:
509 case RTX_COMM_COMPARE:
510 op0 = XEXP (x, 0);
511 op1 = XEXP (x, 1);
512 op_mode = GET_MODE (op0) != VOIDmode ? GET_MODE (op0) : GET_MODE (op1);
513 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
514 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
515 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
516 return true;
517 tem = simplify_gen_relational (code, mode, op_mode, op0, op1);
518 break;
520 case RTX_TERNARY:
521 case RTX_BITFIELD_OPS:
522 op0 = XEXP (x, 0);
523 op1 = XEXP (x, 1);
524 op2 = XEXP (x, 2);
525 op_mode = GET_MODE (op0);
526 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
527 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
528 valid_ops &= propagate_rtx_1 (&op2, old_rtx, new_rtx, flags);
529 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1) && op2 == XEXP (x, 2))
530 return true;
531 if (op_mode == VOIDmode)
532 op_mode = GET_MODE (op0);
533 tem = simplify_gen_ternary (code, mode, op_mode, op0, op1, op2);
534 break;
536 case RTX_EXTRA:
537 /* The only case we try to handle is a SUBREG. */
538 if (code == SUBREG)
540 op0 = XEXP (x, 0);
541 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
542 if (op0 == XEXP (x, 0))
543 return true;
544 tem = simplify_gen_subreg (mode, op0, GET_MODE (SUBREG_REG (x)),
545 SUBREG_BYTE (x));
547 break;
549 case RTX_OBJ:
550 if (code == MEM && x != new_rtx)
552 rtx new_op0;
553 op0 = XEXP (x, 0);
555 /* There are some addresses that we cannot work on. */
556 if (!can_simplify_addr (op0))
557 return true;
559 op0 = new_op0 = targetm.delegitimize_address (op0);
560 valid_ops &= propagate_rtx_1 (&new_op0, old_rtx, new_rtx,
561 flags | PR_CAN_APPEAR);
563 /* Dismiss transformation that we do not want to carry on. */
564 if (!valid_ops
565 || new_op0 == op0
566 || !(GET_MODE (new_op0) == GET_MODE (op0)
567 || GET_MODE (new_op0) == VOIDmode))
568 return true;
570 canonicalize_address (new_op0);
572 /* Copy propagations are always ok. Otherwise check the costs. */
573 if (!(REG_P (old_rtx) && REG_P (new_rtx))
574 && !should_replace_address (op0, new_op0, GET_MODE (x),
575 MEM_ADDR_SPACE (x),
576 flags & PR_OPTIMIZE_FOR_SPEED))
577 return true;
579 tem = replace_equiv_address_nv (x, new_op0);
582 else if (code == LO_SUM)
584 op0 = XEXP (x, 0);
585 op1 = XEXP (x, 1);
587 /* The only simplification we do attempts to remove references to op0
588 or make it constant -- in both cases, op0's invalidity will not
589 make the result invalid. */
590 propagate_rtx_1 (&op0, old_rtx, new_rtx, flags | PR_CAN_APPEAR);
591 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
592 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
593 return true;
595 /* (lo_sum (high x) x) -> x */
596 if (GET_CODE (op0) == HIGH && rtx_equal_p (XEXP (op0, 0), op1))
597 tem = op1;
598 else
599 tem = gen_rtx_LO_SUM (mode, op0, op1);
601 /* OP1 is likely not a legitimate address, otherwise there would have
602 been no LO_SUM. We want it to disappear if it is invalid, return
603 false in that case. */
604 return memory_address_p (mode, tem);
607 else if (code == REG)
609 if (rtx_equal_p (x, old_rtx))
611 *px = new_rtx;
612 return can_appear;
615 break;
617 default:
618 break;
621 /* No change, no trouble. */
622 if (tem == NULL_RTX)
623 return true;
625 *px = tem;
627 /* The replacement we made so far is valid, if all of the recursive
628 replacements were valid, or we could simplify everything to
629 a constant. */
630 return valid_ops || can_appear || CONSTANT_P (tem);
634 /* Return true if X constains a non-constant mem. */
636 static bool
637 varying_mem_p (const_rtx x)
639 subrtx_iterator::array_type array;
640 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
641 if (MEM_P (*iter) && !MEM_READONLY_P (*iter))
642 return true;
643 return false;
647 /* Replace all occurrences of OLD in X with NEW and try to simplify the
648 resulting expression (in mode MODE). Return a new expression if it is
649 a constant, otherwise X.
651 Simplifications where occurrences of NEW collapse to a constant are always
652 accepted. All simplifications are accepted if NEW is a pseudo too.
653 Otherwise, we accept simplifications that have a lower or equal cost. */
655 static rtx
656 propagate_rtx (rtx x, machine_mode mode, rtx old_rtx, rtx new_rtx,
657 bool speed)
659 rtx tem;
660 bool collapsed;
661 int flags;
663 if (REG_P (new_rtx) && REGNO (new_rtx) < FIRST_PSEUDO_REGISTER)
664 return NULL_RTX;
666 flags = 0;
667 if (REG_P (new_rtx)
668 || CONSTANT_P (new_rtx)
669 || (GET_CODE (new_rtx) == SUBREG
670 && REG_P (SUBREG_REG (new_rtx))
671 && (GET_MODE_SIZE (mode)
672 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (new_rtx))))))
673 flags |= PR_CAN_APPEAR;
674 if (!varying_mem_p (new_rtx))
675 flags |= PR_HANDLE_MEM;
677 if (speed)
678 flags |= PR_OPTIMIZE_FOR_SPEED;
680 tem = x;
681 collapsed = propagate_rtx_1 (&tem, old_rtx, copy_rtx (new_rtx), flags);
682 if (tem == x || !collapsed)
683 return NULL_RTX;
685 /* gen_lowpart_common will not be able to process VOIDmode entities other
686 than CONST_INTs. */
687 if (GET_MODE (tem) == VOIDmode && !CONST_INT_P (tem))
688 return NULL_RTX;
690 if (GET_MODE (tem) == VOIDmode)
691 tem = rtl_hooks.gen_lowpart_no_emit (mode, tem);
692 else
693 gcc_assert (GET_MODE (tem) == mode);
695 return tem;
701 /* Return true if the register from reference REF is killed
702 between FROM to (but not including) TO. */
704 static bool
705 local_ref_killed_between_p (df_ref ref, rtx_insn *from, rtx_insn *to)
707 rtx_insn *insn;
709 for (insn = from; insn != to; insn = NEXT_INSN (insn))
711 df_ref def;
712 if (!INSN_P (insn))
713 continue;
715 FOR_EACH_INSN_DEF (def, insn)
716 if (DF_REF_REGNO (ref) == DF_REF_REGNO (def))
717 return true;
719 return false;
723 /* Check if the given DEF is available in INSN. This would require full
724 computation of available expressions; we check only restricted conditions:
725 - if DEF is the sole definition of its register, go ahead;
726 - in the same basic block, we check for no definitions killing the
727 definition of DEF_INSN;
728 - if USE's basic block has DEF's basic block as the sole predecessor,
729 we check if the definition is killed after DEF_INSN or before
730 TARGET_INSN insn, in their respective basic blocks. */
731 static bool
732 use_killed_between (df_ref use, rtx_insn *def_insn, rtx_insn *target_insn)
734 basic_block def_bb = BLOCK_FOR_INSN (def_insn);
735 basic_block target_bb = BLOCK_FOR_INSN (target_insn);
736 int regno;
737 df_ref def;
739 /* We used to have a def reaching a use that is _before_ the def,
740 with the def not dominating the use even though the use and def
741 are in the same basic block, when a register may be used
742 uninitialized in a loop. This should not happen anymore since
743 we do not use reaching definitions, but still we test for such
744 cases and assume that DEF is not available. */
745 if (def_bb == target_bb
746 ? DF_INSN_LUID (def_insn) >= DF_INSN_LUID (target_insn)
747 : !dominated_by_p (CDI_DOMINATORS, target_bb, def_bb))
748 return true;
750 /* Check if the reg in USE has only one definition. We already
751 know that this definition reaches use, or we wouldn't be here.
752 However, this is invalid for hard registers because if they are
753 live at the beginning of the function it does not mean that we
754 have an uninitialized access. */
755 regno = DF_REF_REGNO (use);
756 def = DF_REG_DEF_CHAIN (regno);
757 if (def
758 && DF_REF_NEXT_REG (def) == NULL
759 && regno >= FIRST_PSEUDO_REGISTER)
760 return false;
762 /* Check locally if we are in the same basic block. */
763 if (def_bb == target_bb)
764 return local_ref_killed_between_p (use, def_insn, target_insn);
766 /* Finally, if DEF_BB is the sole predecessor of TARGET_BB. */
767 if (single_pred_p (target_bb)
768 && single_pred (target_bb) == def_bb)
770 df_ref x;
772 /* See if USE is killed between DEF_INSN and the last insn in the
773 basic block containing DEF_INSN. */
774 x = df_bb_regno_last_def_find (def_bb, regno);
775 if (x && DF_INSN_LUID (DF_REF_INSN (x)) >= DF_INSN_LUID (def_insn))
776 return true;
778 /* See if USE is killed between TARGET_INSN and the first insn in the
779 basic block containing TARGET_INSN. */
780 x = df_bb_regno_first_def_find (target_bb, regno);
781 if (x && DF_INSN_LUID (DF_REF_INSN (x)) < DF_INSN_LUID (target_insn))
782 return true;
784 return false;
787 /* Otherwise assume the worst case. */
788 return true;
792 /* Check if all uses in DEF_INSN can be used in TARGET_INSN. This
793 would require full computation of available expressions;
794 we check only restricted conditions, see use_killed_between. */
795 static bool
796 all_uses_available_at (rtx_insn *def_insn, rtx_insn *target_insn)
798 df_ref use;
799 struct df_insn_info *insn_info = DF_INSN_INFO_GET (def_insn);
800 rtx def_set = single_set (def_insn);
801 rtx_insn *next;
803 gcc_assert (def_set);
805 /* If target_insn comes right after def_insn, which is very common
806 for addresses, we can use a quicker test. Ignore debug insns
807 other than target insns for this. */
808 next = NEXT_INSN (def_insn);
809 while (next && next != target_insn && DEBUG_INSN_P (next))
810 next = NEXT_INSN (next);
811 if (next == target_insn && REG_P (SET_DEST (def_set)))
813 rtx def_reg = SET_DEST (def_set);
815 /* If the insn uses the reg that it defines, the substitution is
816 invalid. */
817 FOR_EACH_INSN_INFO_USE (use, insn_info)
818 if (rtx_equal_p (DF_REF_REG (use), def_reg))
819 return false;
820 FOR_EACH_INSN_INFO_EQ_USE (use, insn_info)
821 if (rtx_equal_p (DF_REF_REG (use), def_reg))
822 return false;
824 else
826 rtx def_reg = REG_P (SET_DEST (def_set)) ? SET_DEST (def_set) : NULL_RTX;
828 /* Look at all the uses of DEF_INSN, and see if they are not
829 killed between DEF_INSN and TARGET_INSN. */
830 FOR_EACH_INSN_INFO_USE (use, insn_info)
832 if (def_reg && rtx_equal_p (DF_REF_REG (use), def_reg))
833 return false;
834 if (use_killed_between (use, def_insn, target_insn))
835 return false;
837 FOR_EACH_INSN_INFO_EQ_USE (use, insn_info)
839 if (def_reg && rtx_equal_p (DF_REF_REG (use), def_reg))
840 return false;
841 if (use_killed_between (use, def_insn, target_insn))
842 return false;
846 return true;
850 static df_ref *active_defs;
851 #ifdef ENABLE_CHECKING
852 static sparseset active_defs_check;
853 #endif
855 /* Fill the ACTIVE_DEFS array with the use->def link for the registers
856 mentioned in USE_REC. Register the valid entries in ACTIVE_DEFS_CHECK
857 too, for checking purposes. */
859 static void
860 register_active_defs (df_ref use)
862 for (; use; use = DF_REF_NEXT_LOC (use))
864 df_ref def = get_def_for_use (use);
865 int regno = DF_REF_REGNO (use);
867 #ifdef ENABLE_CHECKING
868 sparseset_set_bit (active_defs_check, regno);
869 #endif
870 active_defs[regno] = def;
875 /* Build the use->def links that we use to update the dataflow info
876 for new uses. Note that building the links is very cheap and if
877 it were done earlier, they could be used to rule out invalid
878 propagations (in addition to what is done in all_uses_available_at).
879 I'm not doing this yet, though. */
881 static void
882 update_df_init (rtx_insn *def_insn, rtx_insn *insn)
884 #ifdef ENABLE_CHECKING
885 sparseset_clear (active_defs_check);
886 #endif
887 register_active_defs (DF_INSN_USES (def_insn));
888 register_active_defs (DF_INSN_USES (insn));
889 register_active_defs (DF_INSN_EQ_USES (insn));
893 /* Update the USE_DEF_REF array for the given use, using the active definitions
894 in the ACTIVE_DEFS array to match pseudos to their def. */
896 static inline void
897 update_uses (df_ref use)
899 for (; use; use = DF_REF_NEXT_LOC (use))
901 int regno = DF_REF_REGNO (use);
903 /* Set up the use-def chain. */
904 if (DF_REF_ID (use) >= (int) use_def_ref.length ())
905 use_def_ref.safe_grow_cleared (DF_REF_ID (use) + 1);
907 #ifdef ENABLE_CHECKING
908 gcc_assert (sparseset_bit_p (active_defs_check, regno));
909 #endif
910 use_def_ref[DF_REF_ID (use)] = active_defs[regno];
915 /* Update the USE_DEF_REF array for the uses in INSN. Only update note
916 uses if NOTES_ONLY is true. */
918 static void
919 update_df (rtx_insn *insn, rtx note)
921 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
923 if (note)
925 df_uses_create (&XEXP (note, 0), insn, DF_REF_IN_NOTE);
926 df_notes_rescan (insn);
928 else
930 df_uses_create (&PATTERN (insn), insn, 0);
931 df_insn_rescan (insn);
932 update_uses (DF_INSN_INFO_USES (insn_info));
935 update_uses (DF_INSN_INFO_EQ_USES (insn_info));
939 /* Try substituting NEW into LOC, which originated from forward propagation
940 of USE's value from DEF_INSN. SET_REG_EQUAL says whether we are
941 substituting the whole SET_SRC, so we can set a REG_EQUAL note if the
942 new insn is not recognized. Return whether the substitution was
943 performed. */
945 static bool
946 try_fwprop_subst (df_ref use, rtx *loc, rtx new_rtx, rtx_insn *def_insn,
947 bool set_reg_equal)
949 rtx_insn *insn = DF_REF_INSN (use);
950 rtx set = single_set (insn);
951 rtx note = NULL_RTX;
952 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
953 int old_cost = 0;
954 bool ok;
956 update_df_init (def_insn, insn);
958 /* forward_propagate_subreg may be operating on an instruction with
959 multiple sets. If so, assume the cost of the new instruction is
960 not greater than the old one. */
961 if (set)
962 old_cost = set_src_cost (SET_SRC (set), speed);
963 if (dump_file)
965 fprintf (dump_file, "\nIn insn %d, replacing\n ", INSN_UID (insn));
966 print_inline_rtx (dump_file, *loc, 2);
967 fprintf (dump_file, "\n with ");
968 print_inline_rtx (dump_file, new_rtx, 2);
969 fprintf (dump_file, "\n");
972 validate_unshare_change (insn, loc, new_rtx, true);
973 if (!verify_changes (0))
975 if (dump_file)
976 fprintf (dump_file, "Changes to insn %d not recognized\n",
977 INSN_UID (insn));
978 ok = false;
981 else if (DF_REF_TYPE (use) == DF_REF_REG_USE
982 && set
983 && set_src_cost (SET_SRC (set), speed) > old_cost)
985 if (dump_file)
986 fprintf (dump_file, "Changes to insn %d not profitable\n",
987 INSN_UID (insn));
988 ok = false;
991 else
993 if (dump_file)
994 fprintf (dump_file, "Changed insn %d\n", INSN_UID (insn));
995 ok = true;
998 if (ok)
1000 confirm_change_group ();
1001 num_changes++;
1003 else
1005 cancel_changes (0);
1007 /* Can also record a simplified value in a REG_EQUAL note,
1008 making a new one if one does not already exist. */
1009 if (set_reg_equal)
1011 if (dump_file)
1012 fprintf (dump_file, " Setting REG_EQUAL note\n");
1014 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (new_rtx));
1018 if ((ok || note) && !CONSTANT_P (new_rtx))
1019 update_df (insn, note);
1021 return ok;
1024 /* For the given single_set INSN, containing SRC known to be a
1025 ZERO_EXTEND or SIGN_EXTEND of a register, return true if INSN
1026 is redundant due to the register being set by a LOAD_EXTEND_OP
1027 load from memory. */
1029 static bool
1030 free_load_extend (rtx src, rtx_insn *insn)
1032 rtx reg;
1033 df_ref def, use;
1035 reg = XEXP (src, 0);
1036 #ifdef LOAD_EXTEND_OP
1037 if (LOAD_EXTEND_OP (GET_MODE (reg)) != GET_CODE (src))
1038 #endif
1039 return false;
1041 FOR_EACH_INSN_USE (use, insn)
1042 if (!DF_REF_IS_ARTIFICIAL (use)
1043 && DF_REF_TYPE (use) == DF_REF_REG_USE
1044 && DF_REF_REG (use) == reg)
1045 break;
1046 if (!use)
1047 return false;
1049 def = get_def_for_use (use);
1050 if (!def)
1051 return false;
1053 if (DF_REF_IS_ARTIFICIAL (def))
1054 return false;
1056 if (NONJUMP_INSN_P (DF_REF_INSN (def)))
1058 rtx patt = PATTERN (DF_REF_INSN (def));
1060 if (GET_CODE (patt) == SET
1061 && GET_CODE (SET_SRC (patt)) == MEM
1062 && rtx_equal_p (SET_DEST (patt), reg))
1063 return true;
1065 return false;
1068 /* If USE is a subreg, see if it can be replaced by a pseudo. */
1070 static bool
1071 forward_propagate_subreg (df_ref use, rtx_insn *def_insn, rtx def_set)
1073 rtx use_reg = DF_REF_REG (use);
1074 rtx_insn *use_insn;
1075 rtx src;
1077 /* Only consider subregs... */
1078 machine_mode use_mode = GET_MODE (use_reg);
1079 if (GET_CODE (use_reg) != SUBREG
1080 || !REG_P (SET_DEST (def_set)))
1081 return false;
1083 /* If this is a paradoxical SUBREG... */
1084 if (GET_MODE_SIZE (use_mode)
1085 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (use_reg))))
1087 /* If this is a paradoxical SUBREG, we have no idea what value the
1088 extra bits would have. However, if the operand is equivalent to
1089 a SUBREG whose operand is the same as our mode, and all the modes
1090 are within a word, we can just use the inner operand because
1091 these SUBREGs just say how to treat the register. */
1092 use_insn = DF_REF_INSN (use);
1093 src = SET_SRC (def_set);
1094 if (GET_CODE (src) == SUBREG
1095 && REG_P (SUBREG_REG (src))
1096 && REGNO (SUBREG_REG (src)) >= FIRST_PSEUDO_REGISTER
1097 && GET_MODE (SUBREG_REG (src)) == use_mode
1098 && subreg_lowpart_p (src)
1099 && all_uses_available_at (def_insn, use_insn))
1100 return try_fwprop_subst (use, DF_REF_LOC (use), SUBREG_REG (src),
1101 def_insn, false);
1104 /* If this is a SUBREG of a ZERO_EXTEND or SIGN_EXTEND, and the SUBREG
1105 is the low part of the reg being extended then just use the inner
1106 operand. Don't do this if the ZERO_EXTEND or SIGN_EXTEND insn will
1107 be removed due to it matching a LOAD_EXTEND_OP load from memory,
1108 or due to the operation being a no-op when applied to registers.
1109 For example, if we have:
1111 A: (set (reg:DI X) (sign_extend:DI (reg:SI Y)))
1112 B: (... (subreg:SI (reg:DI X)) ...)
1114 and mode_rep_extended says that Y is already sign-extended,
1115 the backend will typically allow A to be combined with the
1116 definition of Y or, failing that, allow A to be deleted after
1117 reload through register tying. Introducing more uses of Y
1118 prevents both optimisations. */
1119 else if (subreg_lowpart_p (use_reg))
1121 use_insn = DF_REF_INSN (use);
1122 src = SET_SRC (def_set);
1123 if ((GET_CODE (src) == ZERO_EXTEND
1124 || GET_CODE (src) == SIGN_EXTEND)
1125 && REG_P (XEXP (src, 0))
1126 && REGNO (XEXP (src, 0)) >= FIRST_PSEUDO_REGISTER
1127 && GET_MODE (XEXP (src, 0)) == use_mode
1128 && !free_load_extend (src, def_insn)
1129 && (targetm.mode_rep_extended (use_mode, GET_MODE (src))
1130 != (int) GET_CODE (src))
1131 && all_uses_available_at (def_insn, use_insn))
1132 return try_fwprop_subst (use, DF_REF_LOC (use), XEXP (src, 0),
1133 def_insn, false);
1136 return false;
1139 /* Try to replace USE with SRC (defined in DEF_INSN) in __asm. */
1141 static bool
1142 forward_propagate_asm (df_ref use, rtx_insn *def_insn, rtx def_set, rtx reg)
1144 rtx_insn *use_insn = DF_REF_INSN (use);
1145 rtx src, use_pat, asm_operands, new_rtx, *loc;
1146 int speed_p, i;
1147 df_ref uses;
1149 gcc_assert ((DF_REF_FLAGS (use) & DF_REF_IN_NOTE) == 0);
1151 src = SET_SRC (def_set);
1152 use_pat = PATTERN (use_insn);
1154 /* In __asm don't replace if src might need more registers than
1155 reg, as that could increase register pressure on the __asm. */
1156 uses = DF_INSN_USES (def_insn);
1157 if (uses && DF_REF_NEXT_LOC (uses))
1158 return false;
1160 update_df_init (def_insn, use_insn);
1161 speed_p = optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn));
1162 asm_operands = NULL_RTX;
1163 switch (GET_CODE (use_pat))
1165 case ASM_OPERANDS:
1166 asm_operands = use_pat;
1167 break;
1168 case SET:
1169 if (MEM_P (SET_DEST (use_pat)))
1171 loc = &SET_DEST (use_pat);
1172 new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg, src, speed_p);
1173 if (new_rtx)
1174 validate_unshare_change (use_insn, loc, new_rtx, true);
1176 asm_operands = SET_SRC (use_pat);
1177 break;
1178 case PARALLEL:
1179 for (i = 0; i < XVECLEN (use_pat, 0); i++)
1180 if (GET_CODE (XVECEXP (use_pat, 0, i)) == SET)
1182 if (MEM_P (SET_DEST (XVECEXP (use_pat, 0, i))))
1184 loc = &SET_DEST (XVECEXP (use_pat, 0, i));
1185 new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg,
1186 src, speed_p);
1187 if (new_rtx)
1188 validate_unshare_change (use_insn, loc, new_rtx, true);
1190 asm_operands = SET_SRC (XVECEXP (use_pat, 0, i));
1192 else if (GET_CODE (XVECEXP (use_pat, 0, i)) == ASM_OPERANDS)
1193 asm_operands = XVECEXP (use_pat, 0, i);
1194 break;
1195 default:
1196 gcc_unreachable ();
1199 gcc_assert (asm_operands && GET_CODE (asm_operands) == ASM_OPERANDS);
1200 for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (asm_operands); i++)
1202 loc = &ASM_OPERANDS_INPUT (asm_operands, i);
1203 new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg, src, speed_p);
1204 if (new_rtx)
1205 validate_unshare_change (use_insn, loc, new_rtx, true);
1208 if (num_changes_pending () == 0 || !apply_change_group ())
1209 return false;
1211 update_df (use_insn, NULL);
1212 num_changes++;
1213 return true;
1216 /* Try to replace USE with SRC (defined in DEF_INSN) and simplify the
1217 result. */
1219 static bool
1220 forward_propagate_and_simplify (df_ref use, rtx_insn *def_insn, rtx def_set)
1222 rtx_insn *use_insn = DF_REF_INSN (use);
1223 rtx use_set = single_set (use_insn);
1224 rtx src, reg, new_rtx, *loc;
1225 bool set_reg_equal;
1226 machine_mode mode;
1227 int asm_use = -1;
1229 if (INSN_CODE (use_insn) < 0)
1230 asm_use = asm_noperands (PATTERN (use_insn));
1232 if (!use_set && asm_use < 0 && !DEBUG_INSN_P (use_insn))
1233 return false;
1235 /* Do not propagate into PC, CC0, etc. */
1236 if (use_set && GET_MODE (SET_DEST (use_set)) == VOIDmode)
1237 return false;
1239 /* If def and use are subreg, check if they match. */
1240 reg = DF_REF_REG (use);
1241 if (GET_CODE (reg) == SUBREG && GET_CODE (SET_DEST (def_set)) == SUBREG)
1243 if (SUBREG_BYTE (SET_DEST (def_set)) != SUBREG_BYTE (reg))
1244 return false;
1246 /* Check if the def had a subreg, but the use has the whole reg. */
1247 else if (REG_P (reg) && GET_CODE (SET_DEST (def_set)) == SUBREG)
1248 return false;
1249 /* Check if the use has a subreg, but the def had the whole reg. Unlike the
1250 previous case, the optimization is possible and often useful indeed. */
1251 else if (GET_CODE (reg) == SUBREG && REG_P (SET_DEST (def_set)))
1252 reg = SUBREG_REG (reg);
1254 /* Make sure that we can treat REG as having the same mode as the
1255 source of DEF_SET. */
1256 if (GET_MODE (SET_DEST (def_set)) != GET_MODE (reg))
1257 return false;
1259 /* Check if the substitution is valid (last, because it's the most
1260 expensive check!). */
1261 src = SET_SRC (def_set);
1262 if (!CONSTANT_P (src) && !all_uses_available_at (def_insn, use_insn))
1263 return false;
1265 /* Check if the def is loading something from the constant pool; in this
1266 case we would undo optimization such as compress_float_constant.
1267 Still, we can set a REG_EQUAL note. */
1268 if (MEM_P (src) && MEM_READONLY_P (src))
1270 rtx x = avoid_constant_pool_reference (src);
1271 if (x != src && use_set)
1273 rtx note = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
1274 rtx old_rtx = note ? XEXP (note, 0) : SET_SRC (use_set);
1275 rtx new_rtx = simplify_replace_rtx (old_rtx, src, x);
1276 if (old_rtx != new_rtx)
1277 set_unique_reg_note (use_insn, REG_EQUAL, copy_rtx (new_rtx));
1279 return false;
1282 if (asm_use >= 0)
1283 return forward_propagate_asm (use, def_insn, def_set, reg);
1285 /* Else try simplifying. */
1287 if (DF_REF_TYPE (use) == DF_REF_REG_MEM_STORE)
1289 loc = &SET_DEST (use_set);
1290 set_reg_equal = false;
1292 else if (!use_set)
1294 loc = &INSN_VAR_LOCATION_LOC (use_insn);
1295 set_reg_equal = false;
1297 else
1299 rtx note = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
1300 if (DF_REF_FLAGS (use) & DF_REF_IN_NOTE)
1301 loc = &XEXP (note, 0);
1302 else
1303 loc = &SET_SRC (use_set);
1305 /* Do not replace an existing REG_EQUAL note if the insn is not
1306 recognized. Either we're already replacing in the note, or we'll
1307 separately try plugging the definition in the note and simplifying.
1308 And only install a REQ_EQUAL note when the destination is a REG
1309 that isn't mentioned in USE_SET, as the note would be invalid
1310 otherwise. We also don't want to install a note if we are merely
1311 propagating a pseudo since verifying that this pseudo isn't dead
1312 is a pain; moreover such a note won't help anything. */
1313 set_reg_equal = (note == NULL_RTX
1314 && REG_P (SET_DEST (use_set))
1315 && !REG_P (src)
1316 && !(GET_CODE (src) == SUBREG
1317 && REG_P (SUBREG_REG (src)))
1318 && !reg_mentioned_p (SET_DEST (use_set),
1319 SET_SRC (use_set)));
1322 if (GET_MODE (*loc) == VOIDmode)
1323 mode = GET_MODE (SET_DEST (use_set));
1324 else
1325 mode = GET_MODE (*loc);
1327 new_rtx = propagate_rtx (*loc, mode, reg, src,
1328 optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn)));
1330 if (!new_rtx)
1331 return false;
1333 return try_fwprop_subst (use, loc, new_rtx, def_insn, set_reg_equal);
1337 /* Given a use USE of an insn, if it has a single reaching
1338 definition, try to forward propagate it into that insn.
1339 Return true if cfg cleanup will be needed. */
1341 static bool
1342 forward_propagate_into (df_ref use)
1344 df_ref def;
1345 rtx_insn *def_insn, *use_insn;
1346 rtx def_set;
1347 rtx parent;
1349 if (DF_REF_FLAGS (use) & DF_REF_READ_WRITE)
1350 return false;
1351 if (DF_REF_IS_ARTIFICIAL (use))
1352 return false;
1354 /* Only consider uses that have a single definition. */
1355 def = get_def_for_use (use);
1356 if (!def)
1357 return false;
1358 if (DF_REF_FLAGS (def) & DF_REF_READ_WRITE)
1359 return false;
1360 if (DF_REF_IS_ARTIFICIAL (def))
1361 return false;
1363 /* Do not propagate loop invariant definitions inside the loop. */
1364 if (DF_REF_BB (def)->loop_father != DF_REF_BB (use)->loop_father)
1365 return false;
1367 /* Check if the use is still present in the insn! */
1368 use_insn = DF_REF_INSN (use);
1369 if (DF_REF_FLAGS (use) & DF_REF_IN_NOTE)
1370 parent = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
1371 else
1372 parent = PATTERN (use_insn);
1374 if (!reg_mentioned_p (DF_REF_REG (use), parent))
1375 return false;
1377 def_insn = DF_REF_INSN (def);
1378 if (multiple_sets (def_insn))
1379 return false;
1380 def_set = single_set (def_insn);
1381 if (!def_set)
1382 return false;
1384 /* Only try one kind of propagation. If two are possible, we'll
1385 do it on the following iterations. */
1386 if (forward_propagate_and_simplify (use, def_insn, def_set)
1387 || forward_propagate_subreg (use, def_insn, def_set))
1389 if (cfun->can_throw_non_call_exceptions
1390 && find_reg_note (use_insn, REG_EH_REGION, NULL_RTX)
1391 && purge_dead_edges (DF_REF_BB (use)))
1392 return true;
1394 return false;
1398 static void
1399 fwprop_init (void)
1401 num_changes = 0;
1402 calculate_dominance_info (CDI_DOMINATORS);
1404 /* We do not always want to propagate into loops, so we have to find
1405 loops and be careful about them. Avoid CFG modifications so that
1406 we don't have to update dominance information afterwards for
1407 build_single_def_use_links. */
1408 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
1410 build_single_def_use_links ();
1411 df_set_flags (DF_DEFER_INSN_RESCAN);
1413 active_defs = XNEWVEC (df_ref, max_reg_num ());
1414 #ifdef ENABLE_CHECKING
1415 active_defs_check = sparseset_alloc (max_reg_num ());
1416 #endif
1419 static void
1420 fwprop_done (void)
1422 loop_optimizer_finalize ();
1424 use_def_ref.release ();
1425 free (active_defs);
1426 #ifdef ENABLE_CHECKING
1427 sparseset_free (active_defs_check);
1428 #endif
1430 free_dominance_info (CDI_DOMINATORS);
1431 cleanup_cfg (0);
1432 delete_trivially_dead_insns (get_insns (), max_reg_num ());
1434 if (dump_file)
1435 fprintf (dump_file,
1436 "\nNumber of successful forward propagations: %d\n\n",
1437 num_changes);
1441 /* Main entry point. */
1443 static bool
1444 gate_fwprop (void)
1446 return optimize > 0 && flag_forward_propagate;
1449 static unsigned int
1450 fwprop (void)
1452 unsigned i;
1453 bool need_cleanup = false;
1455 fwprop_init ();
1457 /* Go through all the uses. df_uses_create will create new ones at the
1458 end, and we'll go through them as well.
1460 Do not forward propagate addresses into loops until after unrolling.
1461 CSE did so because it was able to fix its own mess, but we are not. */
1463 for (i = 0; i < DF_USES_TABLE_SIZE (); i++)
1465 df_ref use = DF_USES_GET (i);
1466 if (use)
1467 if (DF_REF_TYPE (use) == DF_REF_REG_USE
1468 || DF_REF_BB (use)->loop_father == NULL
1469 /* The outer most loop is not really a loop. */
1470 || loop_outer (DF_REF_BB (use)->loop_father) == NULL)
1471 need_cleanup |= forward_propagate_into (use);
1474 fwprop_done ();
1475 if (need_cleanup)
1476 cleanup_cfg (0);
1477 return 0;
1480 namespace {
1482 const pass_data pass_data_rtl_fwprop =
1484 RTL_PASS, /* type */
1485 "fwprop1", /* name */
1486 OPTGROUP_NONE, /* optinfo_flags */
1487 TV_FWPROP, /* tv_id */
1488 0, /* properties_required */
1489 0, /* properties_provided */
1490 0, /* properties_destroyed */
1491 0, /* todo_flags_start */
1492 TODO_df_finish, /* todo_flags_finish */
1495 class pass_rtl_fwprop : public rtl_opt_pass
1497 public:
1498 pass_rtl_fwprop (gcc::context *ctxt)
1499 : rtl_opt_pass (pass_data_rtl_fwprop, ctxt)
1502 /* opt_pass methods: */
1503 virtual bool gate (function *) { return gate_fwprop (); }
1504 virtual unsigned int execute (function *) { return fwprop (); }
1506 }; // class pass_rtl_fwprop
1508 } // anon namespace
1510 rtl_opt_pass *
1511 make_pass_rtl_fwprop (gcc::context *ctxt)
1513 return new pass_rtl_fwprop (ctxt);
1516 static unsigned int
1517 fwprop_addr (void)
1519 unsigned i;
1520 bool need_cleanup = false;
1522 fwprop_init ();
1524 /* Go through all the uses. df_uses_create will create new ones at the
1525 end, and we'll go through them as well. */
1526 for (i = 0; i < DF_USES_TABLE_SIZE (); i++)
1528 df_ref use = DF_USES_GET (i);
1529 if (use)
1530 if (DF_REF_TYPE (use) != DF_REF_REG_USE
1531 && DF_REF_BB (use)->loop_father != NULL
1532 /* The outer most loop is not really a loop. */
1533 && loop_outer (DF_REF_BB (use)->loop_father) != NULL)
1534 need_cleanup |= forward_propagate_into (use);
1537 fwprop_done ();
1539 if (need_cleanup)
1540 cleanup_cfg (0);
1541 return 0;
1544 namespace {
1546 const pass_data pass_data_rtl_fwprop_addr =
1548 RTL_PASS, /* type */
1549 "fwprop2", /* name */
1550 OPTGROUP_NONE, /* optinfo_flags */
1551 TV_FWPROP, /* tv_id */
1552 0, /* properties_required */
1553 0, /* properties_provided */
1554 0, /* properties_destroyed */
1555 0, /* todo_flags_start */
1556 TODO_df_finish, /* todo_flags_finish */
1559 class pass_rtl_fwprop_addr : public rtl_opt_pass
1561 public:
1562 pass_rtl_fwprop_addr (gcc::context *ctxt)
1563 : rtl_opt_pass (pass_data_rtl_fwprop_addr, ctxt)
1566 /* opt_pass methods: */
1567 virtual bool gate (function *) { return gate_fwprop (); }
1568 virtual unsigned int execute (function *) { return fwprop_addr (); }
1570 }; // class pass_rtl_fwprop_addr
1572 } // anon namespace
1574 rtl_opt_pass *
1575 make_pass_rtl_fwprop_addr (gcc::context *ctxt)
1577 return new pass_rtl_fwprop_addr (ctxt);