2014-09-05 Richard Biener <rguenther@suse.de>
[official-gcc.git] / gcc / tree-eh.c
blobd8032538c0ab1fae0a8080c588518ca051e035af
1 /* Exception handling semantics and decomposition for trees.
2 Copyright (C) 2003-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "hash-table.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "expr.h"
27 #include "calls.h"
28 #include "flags.h"
29 #include "function.h"
30 #include "except.h"
31 #include "hash-set.h"
32 #include "basic-block.h"
33 #include "tree-ssa-alias.h"
34 #include "internal-fn.h"
35 #include "tree-eh.h"
36 #include "gimple-expr.h"
37 #include "is-a.h"
38 #include "gimple.h"
39 #include "gimple-iterator.h"
40 #include "gimple-ssa.h"
41 #include "cgraph.h"
42 #include "tree-cfg.h"
43 #include "tree-phinodes.h"
44 #include "ssa-iterators.h"
45 #include "stringpool.h"
46 #include "tree-ssanames.h"
47 #include "tree-into-ssa.h"
48 #include "tree-ssa.h"
49 #include "tree-inline.h"
50 #include "tree-pass.h"
51 #include "langhooks.h"
52 #include "diagnostic-core.h"
53 #include "target.h"
54 #include "cfgloop.h"
55 #include "gimple-low.h"
57 /* In some instances a tree and a gimple need to be stored in a same table,
58 i.e. in hash tables. This is a structure to do this. */
59 typedef union {tree *tp; tree t; gimple g;} treemple;
61 /* Misc functions used in this file. */
63 /* Remember and lookup EH landing pad data for arbitrary statements.
64 Really this means any statement that could_throw_p. We could
65 stuff this information into the stmt_ann data structure, but:
67 (1) We absolutely rely on this information being kept until
68 we get to rtl. Once we're done with lowering here, if we lose
69 the information there's no way to recover it!
71 (2) There are many more statements that *cannot* throw as
72 compared to those that can. We should be saving some amount
73 of space by only allocating memory for those that can throw. */
75 /* Add statement T in function IFUN to landing pad NUM. */
77 static void
78 add_stmt_to_eh_lp_fn (struct function *ifun, gimple t, int num)
80 gcc_assert (num != 0);
82 if (!get_eh_throw_stmt_table (ifun))
83 set_eh_throw_stmt_table (ifun, hash_map<gimple, int>::create_ggc (31));
85 gcc_assert (!get_eh_throw_stmt_table (ifun)->put (t, num));
88 /* Add statement T in the current function (cfun) to EH landing pad NUM. */
90 void
91 add_stmt_to_eh_lp (gimple t, int num)
93 add_stmt_to_eh_lp_fn (cfun, t, num);
96 /* Add statement T to the single EH landing pad in REGION. */
98 static void
99 record_stmt_eh_region (eh_region region, gimple t)
101 if (region == NULL)
102 return;
103 if (region->type == ERT_MUST_NOT_THROW)
104 add_stmt_to_eh_lp_fn (cfun, t, -region->index);
105 else
107 eh_landing_pad lp = region->landing_pads;
108 if (lp == NULL)
109 lp = gen_eh_landing_pad (region);
110 else
111 gcc_assert (lp->next_lp == NULL);
112 add_stmt_to_eh_lp_fn (cfun, t, lp->index);
117 /* Remove statement T in function IFUN from its EH landing pad. */
119 bool
120 remove_stmt_from_eh_lp_fn (struct function *ifun, gimple t)
122 if (!get_eh_throw_stmt_table (ifun))
123 return false;
125 if (!get_eh_throw_stmt_table (ifun)->get (t))
126 return false;
128 get_eh_throw_stmt_table (ifun)->remove (t);
129 return true;
133 /* Remove statement T in the current function (cfun) from its
134 EH landing pad. */
136 bool
137 remove_stmt_from_eh_lp (gimple t)
139 return remove_stmt_from_eh_lp_fn (cfun, t);
142 /* Determine if statement T is inside an EH region in function IFUN.
143 Positive numbers indicate a landing pad index; negative numbers
144 indicate a MUST_NOT_THROW region index; zero indicates that the
145 statement is not recorded in the region table. */
148 lookup_stmt_eh_lp_fn (struct function *ifun, gimple t)
150 if (ifun->eh->throw_stmt_table == NULL)
151 return 0;
153 int *lp_nr = ifun->eh->throw_stmt_table->get (t);
154 return lp_nr ? *lp_nr : 0;
157 /* Likewise, but always use the current function. */
160 lookup_stmt_eh_lp (gimple t)
162 /* We can get called from initialized data when -fnon-call-exceptions
163 is on; prevent crash. */
164 if (!cfun)
165 return 0;
166 return lookup_stmt_eh_lp_fn (cfun, t);
169 /* First pass of EH node decomposition. Build up a tree of GIMPLE_TRY_FINALLY
170 nodes and LABEL_DECL nodes. We will use this during the second phase to
171 determine if a goto leaves the body of a TRY_FINALLY_EXPR node. */
173 struct finally_tree_node
175 /* When storing a GIMPLE_TRY, we have to record a gimple. However
176 when deciding whether a GOTO to a certain LABEL_DECL (which is a
177 tree) leaves the TRY block, its necessary to record a tree in
178 this field. Thus a treemple is used. */
179 treemple child;
180 gimple parent;
183 /* Hashtable helpers. */
185 struct finally_tree_hasher : typed_free_remove <finally_tree_node>
187 typedef finally_tree_node value_type;
188 typedef finally_tree_node compare_type;
189 static inline hashval_t hash (const value_type *);
190 static inline bool equal (const value_type *, const compare_type *);
193 inline hashval_t
194 finally_tree_hasher::hash (const value_type *v)
196 return (intptr_t)v->child.t >> 4;
199 inline bool
200 finally_tree_hasher::equal (const value_type *v, const compare_type *c)
202 return v->child.t == c->child.t;
205 /* Note that this table is *not* marked GTY. It is short-lived. */
206 static hash_table<finally_tree_hasher> *finally_tree;
208 static void
209 record_in_finally_tree (treemple child, gimple parent)
211 struct finally_tree_node *n;
212 finally_tree_node **slot;
214 n = XNEW (struct finally_tree_node);
215 n->child = child;
216 n->parent = parent;
218 slot = finally_tree->find_slot (n, INSERT);
219 gcc_assert (!*slot);
220 *slot = n;
223 static void
224 collect_finally_tree (gimple stmt, gimple region);
226 /* Go through the gimple sequence. Works with collect_finally_tree to
227 record all GIMPLE_LABEL and GIMPLE_TRY statements. */
229 static void
230 collect_finally_tree_1 (gimple_seq seq, gimple region)
232 gimple_stmt_iterator gsi;
234 for (gsi = gsi_start (seq); !gsi_end_p (gsi); gsi_next (&gsi))
235 collect_finally_tree (gsi_stmt (gsi), region);
238 static void
239 collect_finally_tree (gimple stmt, gimple region)
241 treemple temp;
243 switch (gimple_code (stmt))
245 case GIMPLE_LABEL:
246 temp.t = gimple_label_label (stmt);
247 record_in_finally_tree (temp, region);
248 break;
250 case GIMPLE_TRY:
251 if (gimple_try_kind (stmt) == GIMPLE_TRY_FINALLY)
253 temp.g = stmt;
254 record_in_finally_tree (temp, region);
255 collect_finally_tree_1 (gimple_try_eval (stmt), stmt);
256 collect_finally_tree_1 (gimple_try_cleanup (stmt), region);
258 else if (gimple_try_kind (stmt) == GIMPLE_TRY_CATCH)
260 collect_finally_tree_1 (gimple_try_eval (stmt), region);
261 collect_finally_tree_1 (gimple_try_cleanup (stmt), region);
263 break;
265 case GIMPLE_CATCH:
266 collect_finally_tree_1 (gimple_catch_handler (stmt), region);
267 break;
269 case GIMPLE_EH_FILTER:
270 collect_finally_tree_1 (gimple_eh_filter_failure (stmt), region);
271 break;
273 case GIMPLE_EH_ELSE:
274 collect_finally_tree_1 (gimple_eh_else_n_body (stmt), region);
275 collect_finally_tree_1 (gimple_eh_else_e_body (stmt), region);
276 break;
278 default:
279 /* A type, a decl, or some kind of statement that we're not
280 interested in. Don't walk them. */
281 break;
286 /* Use the finally tree to determine if a jump from START to TARGET
287 would leave the try_finally node that START lives in. */
289 static bool
290 outside_finally_tree (treemple start, gimple target)
292 struct finally_tree_node n, *p;
296 n.child = start;
297 p = finally_tree->find (&n);
298 if (!p)
299 return true;
300 start.g = p->parent;
302 while (start.g != target);
304 return false;
307 /* Second pass of EH node decomposition. Actually transform the GIMPLE_TRY
308 nodes into a set of gotos, magic labels, and eh regions.
309 The eh region creation is straight-forward, but frobbing all the gotos
310 and such into shape isn't. */
312 /* The sequence into which we record all EH stuff. This will be
313 placed at the end of the function when we're all done. */
314 static gimple_seq eh_seq;
316 /* Record whether an EH region contains something that can throw,
317 indexed by EH region number. */
318 static bitmap eh_region_may_contain_throw_map;
320 /* The GOTO_QUEUE is is an array of GIMPLE_GOTO and GIMPLE_RETURN
321 statements that are seen to escape this GIMPLE_TRY_FINALLY node.
322 The idea is to record a gimple statement for everything except for
323 the conditionals, which get their labels recorded. Since labels are
324 of type 'tree', we need this node to store both gimple and tree
325 objects. REPL_STMT is the sequence used to replace the goto/return
326 statement. CONT_STMT is used to store the statement that allows
327 the return/goto to jump to the original destination. */
329 struct goto_queue_node
331 treemple stmt;
332 location_t location;
333 gimple_seq repl_stmt;
334 gimple cont_stmt;
335 int index;
336 /* This is used when index >= 0 to indicate that stmt is a label (as
337 opposed to a goto stmt). */
338 int is_label;
341 /* State of the world while lowering. */
343 struct leh_state
345 /* What's "current" while constructing the eh region tree. These
346 correspond to variables of the same name in cfun->eh, which we
347 don't have easy access to. */
348 eh_region cur_region;
350 /* What's "current" for the purposes of __builtin_eh_pointer. For
351 a CATCH, this is the associated TRY. For an EH_FILTER, this is
352 the associated ALLOWED_EXCEPTIONS, etc. */
353 eh_region ehp_region;
355 /* Processing of TRY_FINALLY requires a bit more state. This is
356 split out into a separate structure so that we don't have to
357 copy so much when processing other nodes. */
358 struct leh_tf_state *tf;
361 struct leh_tf_state
363 /* Pointer to the GIMPLE_TRY_FINALLY node under discussion. The
364 try_finally_expr is the original GIMPLE_TRY_FINALLY. We need to retain
365 this so that outside_finally_tree can reliably reference the tree used
366 in the collect_finally_tree data structures. */
367 gimple try_finally_expr;
368 gimple top_p;
370 /* While lowering a top_p usually it is expanded into multiple statements,
371 thus we need the following field to store them. */
372 gimple_seq top_p_seq;
374 /* The state outside this try_finally node. */
375 struct leh_state *outer;
377 /* The exception region created for it. */
378 eh_region region;
380 /* The goto queue. */
381 struct goto_queue_node *goto_queue;
382 size_t goto_queue_size;
383 size_t goto_queue_active;
385 /* Pointer map to help in searching goto_queue when it is large. */
386 hash_map<gimple, goto_queue_node *> *goto_queue_map;
388 /* The set of unique labels seen as entries in the goto queue. */
389 vec<tree> dest_array;
391 /* A label to be added at the end of the completed transformed
392 sequence. It will be set if may_fallthru was true *at one time*,
393 though subsequent transformations may have cleared that flag. */
394 tree fallthru_label;
396 /* True if it is possible to fall out the bottom of the try block.
397 Cleared if the fallthru is converted to a goto. */
398 bool may_fallthru;
400 /* True if any entry in goto_queue is a GIMPLE_RETURN. */
401 bool may_return;
403 /* True if the finally block can receive an exception edge.
404 Cleared if the exception case is handled by code duplication. */
405 bool may_throw;
408 static gimple_seq lower_eh_must_not_throw (struct leh_state *, gimple);
410 /* Search for STMT in the goto queue. Return the replacement,
411 or null if the statement isn't in the queue. */
413 #define LARGE_GOTO_QUEUE 20
415 static void lower_eh_constructs_1 (struct leh_state *state, gimple_seq *seq);
417 static gimple_seq
418 find_goto_replacement (struct leh_tf_state *tf, treemple stmt)
420 unsigned int i;
422 if (tf->goto_queue_active < LARGE_GOTO_QUEUE)
424 for (i = 0; i < tf->goto_queue_active; i++)
425 if ( tf->goto_queue[i].stmt.g == stmt.g)
426 return tf->goto_queue[i].repl_stmt;
427 return NULL;
430 /* If we have a large number of entries in the goto_queue, create a
431 pointer map and use that for searching. */
433 if (!tf->goto_queue_map)
435 tf->goto_queue_map = new hash_map<gimple, goto_queue_node *>;
436 for (i = 0; i < tf->goto_queue_active; i++)
438 bool existed = tf->goto_queue_map->put (tf->goto_queue[i].stmt.g,
439 &tf->goto_queue[i]);
440 gcc_assert (!existed);
444 goto_queue_node **slot = tf->goto_queue_map->get (stmt.g);
445 if (slot != NULL)
446 return ((*slot)->repl_stmt);
448 return NULL;
451 /* A subroutine of replace_goto_queue_1. Handles the sub-clauses of a
452 lowered GIMPLE_COND. If, by chance, the replacement is a simple goto,
453 then we can just splat it in, otherwise we add the new stmts immediately
454 after the GIMPLE_COND and redirect. */
456 static void
457 replace_goto_queue_cond_clause (tree *tp, struct leh_tf_state *tf,
458 gimple_stmt_iterator *gsi)
460 tree label;
461 gimple_seq new_seq;
462 treemple temp;
463 location_t loc = gimple_location (gsi_stmt (*gsi));
465 temp.tp = tp;
466 new_seq = find_goto_replacement (tf, temp);
467 if (!new_seq)
468 return;
470 if (gimple_seq_singleton_p (new_seq)
471 && gimple_code (gimple_seq_first_stmt (new_seq)) == GIMPLE_GOTO)
473 *tp = gimple_goto_dest (gimple_seq_first_stmt (new_seq));
474 return;
477 label = create_artificial_label (loc);
478 /* Set the new label for the GIMPLE_COND */
479 *tp = label;
481 gsi_insert_after (gsi, gimple_build_label (label), GSI_CONTINUE_LINKING);
482 gsi_insert_seq_after (gsi, gimple_seq_copy (new_seq), GSI_CONTINUE_LINKING);
485 /* The real work of replace_goto_queue. Returns with TSI updated to
486 point to the next statement. */
488 static void replace_goto_queue_stmt_list (gimple_seq *, struct leh_tf_state *);
490 static void
491 replace_goto_queue_1 (gimple stmt, struct leh_tf_state *tf,
492 gimple_stmt_iterator *gsi)
494 gimple_seq seq;
495 treemple temp;
496 temp.g = NULL;
498 switch (gimple_code (stmt))
500 case GIMPLE_GOTO:
501 case GIMPLE_RETURN:
502 temp.g = stmt;
503 seq = find_goto_replacement (tf, temp);
504 if (seq)
506 gsi_insert_seq_before (gsi, gimple_seq_copy (seq), GSI_SAME_STMT);
507 gsi_remove (gsi, false);
508 return;
510 break;
512 case GIMPLE_COND:
513 replace_goto_queue_cond_clause (gimple_op_ptr (stmt, 2), tf, gsi);
514 replace_goto_queue_cond_clause (gimple_op_ptr (stmt, 3), tf, gsi);
515 break;
517 case GIMPLE_TRY:
518 replace_goto_queue_stmt_list (gimple_try_eval_ptr (stmt), tf);
519 replace_goto_queue_stmt_list (gimple_try_cleanup_ptr (stmt), tf);
520 break;
521 case GIMPLE_CATCH:
522 replace_goto_queue_stmt_list (gimple_catch_handler_ptr (stmt), tf);
523 break;
524 case GIMPLE_EH_FILTER:
525 replace_goto_queue_stmt_list (gimple_eh_filter_failure_ptr (stmt), tf);
526 break;
527 case GIMPLE_EH_ELSE:
528 replace_goto_queue_stmt_list (gimple_eh_else_n_body_ptr (stmt), tf);
529 replace_goto_queue_stmt_list (gimple_eh_else_e_body_ptr (stmt), tf);
530 break;
532 default:
533 /* These won't have gotos in them. */
534 break;
537 gsi_next (gsi);
540 /* A subroutine of replace_goto_queue. Handles GIMPLE_SEQ. */
542 static void
543 replace_goto_queue_stmt_list (gimple_seq *seq, struct leh_tf_state *tf)
545 gimple_stmt_iterator gsi = gsi_start (*seq);
547 while (!gsi_end_p (gsi))
548 replace_goto_queue_1 (gsi_stmt (gsi), tf, &gsi);
551 /* Replace all goto queue members. */
553 static void
554 replace_goto_queue (struct leh_tf_state *tf)
556 if (tf->goto_queue_active == 0)
557 return;
558 replace_goto_queue_stmt_list (&tf->top_p_seq, tf);
559 replace_goto_queue_stmt_list (&eh_seq, tf);
562 /* Add a new record to the goto queue contained in TF. NEW_STMT is the
563 data to be added, IS_LABEL indicates whether NEW_STMT is a label or
564 a gimple return. */
566 static void
567 record_in_goto_queue (struct leh_tf_state *tf,
568 treemple new_stmt,
569 int index,
570 bool is_label,
571 location_t location)
573 size_t active, size;
574 struct goto_queue_node *q;
576 gcc_assert (!tf->goto_queue_map);
578 active = tf->goto_queue_active;
579 size = tf->goto_queue_size;
580 if (active >= size)
582 size = (size ? size * 2 : 32);
583 tf->goto_queue_size = size;
584 tf->goto_queue
585 = XRESIZEVEC (struct goto_queue_node, tf->goto_queue, size);
588 q = &tf->goto_queue[active];
589 tf->goto_queue_active = active + 1;
591 memset (q, 0, sizeof (*q));
592 q->stmt = new_stmt;
593 q->index = index;
594 q->location = location;
595 q->is_label = is_label;
598 /* Record the LABEL label in the goto queue contained in TF.
599 TF is not null. */
601 static void
602 record_in_goto_queue_label (struct leh_tf_state *tf, treemple stmt, tree label,
603 location_t location)
605 int index;
606 treemple temp, new_stmt;
608 if (!label)
609 return;
611 /* Computed and non-local gotos do not get processed. Given
612 their nature we can neither tell whether we've escaped the
613 finally block nor redirect them if we knew. */
614 if (TREE_CODE (label) != LABEL_DECL)
615 return;
617 /* No need to record gotos that don't leave the try block. */
618 temp.t = label;
619 if (!outside_finally_tree (temp, tf->try_finally_expr))
620 return;
622 if (! tf->dest_array.exists ())
624 tf->dest_array.create (10);
625 tf->dest_array.quick_push (label);
626 index = 0;
628 else
630 int n = tf->dest_array.length ();
631 for (index = 0; index < n; ++index)
632 if (tf->dest_array[index] == label)
633 break;
634 if (index == n)
635 tf->dest_array.safe_push (label);
638 /* In the case of a GOTO we want to record the destination label,
639 since with a GIMPLE_COND we have an easy access to the then/else
640 labels. */
641 new_stmt = stmt;
642 record_in_goto_queue (tf, new_stmt, index, true, location);
645 /* For any GIMPLE_GOTO or GIMPLE_RETURN, decide whether it leaves a try_finally
646 node, and if so record that fact in the goto queue associated with that
647 try_finally node. */
649 static void
650 maybe_record_in_goto_queue (struct leh_state *state, gimple stmt)
652 struct leh_tf_state *tf = state->tf;
653 treemple new_stmt;
655 if (!tf)
656 return;
658 switch (gimple_code (stmt))
660 case GIMPLE_COND:
661 new_stmt.tp = gimple_op_ptr (stmt, 2);
662 record_in_goto_queue_label (tf, new_stmt, gimple_cond_true_label (stmt),
663 EXPR_LOCATION (*new_stmt.tp));
664 new_stmt.tp = gimple_op_ptr (stmt, 3);
665 record_in_goto_queue_label (tf, new_stmt, gimple_cond_false_label (stmt),
666 EXPR_LOCATION (*new_stmt.tp));
667 break;
668 case GIMPLE_GOTO:
669 new_stmt.g = stmt;
670 record_in_goto_queue_label (tf, new_stmt, gimple_goto_dest (stmt),
671 gimple_location (stmt));
672 break;
674 case GIMPLE_RETURN:
675 tf->may_return = true;
676 new_stmt.g = stmt;
677 record_in_goto_queue (tf, new_stmt, -1, false, gimple_location (stmt));
678 break;
680 default:
681 gcc_unreachable ();
686 #ifdef ENABLE_CHECKING
687 /* We do not process GIMPLE_SWITCHes for now. As long as the original source
688 was in fact structured, and we've not yet done jump threading, then none
689 of the labels will leave outer GIMPLE_TRY_FINALLY nodes. Verify this. */
691 static void
692 verify_norecord_switch_expr (struct leh_state *state, gimple switch_expr)
694 struct leh_tf_state *tf = state->tf;
695 size_t i, n;
697 if (!tf)
698 return;
700 n = gimple_switch_num_labels (switch_expr);
702 for (i = 0; i < n; ++i)
704 treemple temp;
705 tree lab = CASE_LABEL (gimple_switch_label (switch_expr, i));
706 temp.t = lab;
707 gcc_assert (!outside_finally_tree (temp, tf->try_finally_expr));
710 #else
711 #define verify_norecord_switch_expr(state, switch_expr)
712 #endif
714 /* Redirect a RETURN_EXPR pointed to by Q to FINLAB. If MOD is
715 non-null, insert it before the new branch. */
717 static void
718 do_return_redirection (struct goto_queue_node *q, tree finlab, gimple_seq mod)
720 gimple x;
722 /* In the case of a return, the queue node must be a gimple statement. */
723 gcc_assert (!q->is_label);
725 /* Note that the return value may have already been computed, e.g.,
727 int x;
728 int foo (void)
730 x = 0;
731 try {
732 return x;
733 } finally {
734 x++;
738 should return 0, not 1. We don't have to do anything to make
739 this happens because the return value has been placed in the
740 RESULT_DECL already. */
742 q->cont_stmt = q->stmt.g;
744 if (mod)
745 gimple_seq_add_seq (&q->repl_stmt, mod);
747 x = gimple_build_goto (finlab);
748 gimple_set_location (x, q->location);
749 gimple_seq_add_stmt (&q->repl_stmt, x);
752 /* Similar, but easier, for GIMPLE_GOTO. */
754 static void
755 do_goto_redirection (struct goto_queue_node *q, tree finlab, gimple_seq mod,
756 struct leh_tf_state *tf)
758 gimple x;
760 gcc_assert (q->is_label);
762 q->cont_stmt = gimple_build_goto (tf->dest_array[q->index]);
764 if (mod)
765 gimple_seq_add_seq (&q->repl_stmt, mod);
767 x = gimple_build_goto (finlab);
768 gimple_set_location (x, q->location);
769 gimple_seq_add_stmt (&q->repl_stmt, x);
772 /* Emit a standard landing pad sequence into SEQ for REGION. */
774 static void
775 emit_post_landing_pad (gimple_seq *seq, eh_region region)
777 eh_landing_pad lp = region->landing_pads;
778 gimple x;
780 if (lp == NULL)
781 lp = gen_eh_landing_pad (region);
783 lp->post_landing_pad = create_artificial_label (UNKNOWN_LOCATION);
784 EH_LANDING_PAD_NR (lp->post_landing_pad) = lp->index;
786 x = gimple_build_label (lp->post_landing_pad);
787 gimple_seq_add_stmt (seq, x);
790 /* Emit a RESX statement into SEQ for REGION. */
792 static void
793 emit_resx (gimple_seq *seq, eh_region region)
795 gimple x = gimple_build_resx (region->index);
796 gimple_seq_add_stmt (seq, x);
797 if (region->outer)
798 record_stmt_eh_region (region->outer, x);
801 /* Emit an EH_DISPATCH statement into SEQ for REGION. */
803 static void
804 emit_eh_dispatch (gimple_seq *seq, eh_region region)
806 gimple x = gimple_build_eh_dispatch (region->index);
807 gimple_seq_add_stmt (seq, x);
810 /* Note that the current EH region may contain a throw, or a
811 call to a function which itself may contain a throw. */
813 static void
814 note_eh_region_may_contain_throw (eh_region region)
816 while (bitmap_set_bit (eh_region_may_contain_throw_map, region->index))
818 if (region->type == ERT_MUST_NOT_THROW)
819 break;
820 region = region->outer;
821 if (region == NULL)
822 break;
826 /* Check if REGION has been marked as containing a throw. If REGION is
827 NULL, this predicate is false. */
829 static inline bool
830 eh_region_may_contain_throw (eh_region r)
832 return r && bitmap_bit_p (eh_region_may_contain_throw_map, r->index);
835 /* We want to transform
836 try { body; } catch { stuff; }
838 normal_seqence:
839 body;
840 over:
841 eh_seqence:
842 landing_pad:
843 stuff;
844 goto over;
846 TP is a GIMPLE_TRY node. REGION is the region whose post_landing_pad
847 should be placed before the second operand, or NULL. OVER is
848 an existing label that should be put at the exit, or NULL. */
850 static gimple_seq
851 frob_into_branch_around (gimple tp, eh_region region, tree over)
853 gimple x;
854 gimple_seq cleanup, result;
855 location_t loc = gimple_location (tp);
857 cleanup = gimple_try_cleanup (tp);
858 result = gimple_try_eval (tp);
860 if (region)
861 emit_post_landing_pad (&eh_seq, region);
863 if (gimple_seq_may_fallthru (cleanup))
865 if (!over)
866 over = create_artificial_label (loc);
867 x = gimple_build_goto (over);
868 gimple_set_location (x, loc);
869 gimple_seq_add_stmt (&cleanup, x);
871 gimple_seq_add_seq (&eh_seq, cleanup);
873 if (over)
875 x = gimple_build_label (over);
876 gimple_seq_add_stmt (&result, x);
878 return result;
881 /* A subroutine of lower_try_finally. Duplicate the tree rooted at T.
882 Make sure to record all new labels found. */
884 static gimple_seq
885 lower_try_finally_dup_block (gimple_seq seq, struct leh_state *outer_state,
886 location_t loc)
888 gimple region = NULL;
889 gimple_seq new_seq;
890 gimple_stmt_iterator gsi;
892 new_seq = copy_gimple_seq_and_replace_locals (seq);
894 for (gsi = gsi_start (new_seq); !gsi_end_p (gsi); gsi_next (&gsi))
896 gimple stmt = gsi_stmt (gsi);
897 if (LOCATION_LOCUS (gimple_location (stmt)) == UNKNOWN_LOCATION)
899 tree block = gimple_block (stmt);
900 gimple_set_location (stmt, loc);
901 gimple_set_block (stmt, block);
905 if (outer_state->tf)
906 region = outer_state->tf->try_finally_expr;
907 collect_finally_tree_1 (new_seq, region);
909 return new_seq;
912 /* A subroutine of lower_try_finally. Create a fallthru label for
913 the given try_finally state. The only tricky bit here is that
914 we have to make sure to record the label in our outer context. */
916 static tree
917 lower_try_finally_fallthru_label (struct leh_tf_state *tf)
919 tree label = tf->fallthru_label;
920 treemple temp;
922 if (!label)
924 label = create_artificial_label (gimple_location (tf->try_finally_expr));
925 tf->fallthru_label = label;
926 if (tf->outer->tf)
928 temp.t = label;
929 record_in_finally_tree (temp, tf->outer->tf->try_finally_expr);
932 return label;
935 /* A subroutine of lower_try_finally. If FINALLY consits of a
936 GIMPLE_EH_ELSE node, return it. */
938 static inline gimple
939 get_eh_else (gimple_seq finally)
941 gimple x = gimple_seq_first_stmt (finally);
942 if (gimple_code (x) == GIMPLE_EH_ELSE)
944 gcc_assert (gimple_seq_singleton_p (finally));
945 return x;
947 return NULL;
950 /* A subroutine of lower_try_finally. If the eh_protect_cleanup_actions
951 langhook returns non-null, then the language requires that the exception
952 path out of a try_finally be treated specially. To wit: the code within
953 the finally block may not itself throw an exception. We have two choices
954 here. First we can duplicate the finally block and wrap it in a
955 must_not_throw region. Second, we can generate code like
957 try {
958 finally_block;
959 } catch {
960 if (fintmp == eh_edge)
961 protect_cleanup_actions;
964 where "fintmp" is the temporary used in the switch statement generation
965 alternative considered below. For the nonce, we always choose the first
966 option.
968 THIS_STATE may be null if this is a try-cleanup, not a try-finally. */
970 static void
971 honor_protect_cleanup_actions (struct leh_state *outer_state,
972 struct leh_state *this_state,
973 struct leh_tf_state *tf)
975 tree protect_cleanup_actions;
976 gimple_stmt_iterator gsi;
977 bool finally_may_fallthru;
978 gimple_seq finally;
979 gimple x, eh_else;
981 /* First check for nothing to do. */
982 if (lang_hooks.eh_protect_cleanup_actions == NULL)
983 return;
984 protect_cleanup_actions = lang_hooks.eh_protect_cleanup_actions ();
985 if (protect_cleanup_actions == NULL)
986 return;
988 finally = gimple_try_cleanup (tf->top_p);
989 eh_else = get_eh_else (finally);
991 /* Duplicate the FINALLY block. Only need to do this for try-finally,
992 and not for cleanups. If we've got an EH_ELSE, extract it now. */
993 if (eh_else)
995 finally = gimple_eh_else_e_body (eh_else);
996 gimple_try_set_cleanup (tf->top_p, gimple_eh_else_n_body (eh_else));
998 else if (this_state)
999 finally = lower_try_finally_dup_block (finally, outer_state,
1000 gimple_location (tf->try_finally_expr));
1001 finally_may_fallthru = gimple_seq_may_fallthru (finally);
1003 /* If this cleanup consists of a TRY_CATCH_EXPR with TRY_CATCH_IS_CLEANUP
1004 set, the handler of the TRY_CATCH_EXPR is another cleanup which ought
1005 to be in an enclosing scope, but needs to be implemented at this level
1006 to avoid a nesting violation (see wrap_temporary_cleanups in
1007 cp/decl.c). Since it's logically at an outer level, we should call
1008 terminate before we get to it, so strip it away before adding the
1009 MUST_NOT_THROW filter. */
1010 gsi = gsi_start (finally);
1011 x = gsi_stmt (gsi);
1012 if (gimple_code (x) == GIMPLE_TRY
1013 && gimple_try_kind (x) == GIMPLE_TRY_CATCH
1014 && gimple_try_catch_is_cleanup (x))
1016 gsi_insert_seq_before (&gsi, gimple_try_eval (x), GSI_SAME_STMT);
1017 gsi_remove (&gsi, false);
1020 /* Wrap the block with protect_cleanup_actions as the action. */
1021 x = gimple_build_eh_must_not_throw (protect_cleanup_actions);
1022 x = gimple_build_try (finally, gimple_seq_alloc_with_stmt (x),
1023 GIMPLE_TRY_CATCH);
1024 finally = lower_eh_must_not_throw (outer_state, x);
1026 /* Drop all of this into the exception sequence. */
1027 emit_post_landing_pad (&eh_seq, tf->region);
1028 gimple_seq_add_seq (&eh_seq, finally);
1029 if (finally_may_fallthru)
1030 emit_resx (&eh_seq, tf->region);
1032 /* Having now been handled, EH isn't to be considered with
1033 the rest of the outgoing edges. */
1034 tf->may_throw = false;
1037 /* A subroutine of lower_try_finally. We have determined that there is
1038 no fallthru edge out of the finally block. This means that there is
1039 no outgoing edge corresponding to any incoming edge. Restructure the
1040 try_finally node for this special case. */
1042 static void
1043 lower_try_finally_nofallthru (struct leh_state *state,
1044 struct leh_tf_state *tf)
1046 tree lab;
1047 gimple x, eh_else;
1048 gimple_seq finally;
1049 struct goto_queue_node *q, *qe;
1051 lab = create_artificial_label (gimple_location (tf->try_finally_expr));
1053 /* We expect that tf->top_p is a GIMPLE_TRY. */
1054 finally = gimple_try_cleanup (tf->top_p);
1055 tf->top_p_seq = gimple_try_eval (tf->top_p);
1057 x = gimple_build_label (lab);
1058 gimple_seq_add_stmt (&tf->top_p_seq, x);
1060 q = tf->goto_queue;
1061 qe = q + tf->goto_queue_active;
1062 for (; q < qe; ++q)
1063 if (q->index < 0)
1064 do_return_redirection (q, lab, NULL);
1065 else
1066 do_goto_redirection (q, lab, NULL, tf);
1068 replace_goto_queue (tf);
1070 /* Emit the finally block into the stream. Lower EH_ELSE at this time. */
1071 eh_else = get_eh_else (finally);
1072 if (eh_else)
1074 finally = gimple_eh_else_n_body (eh_else);
1075 lower_eh_constructs_1 (state, &finally);
1076 gimple_seq_add_seq (&tf->top_p_seq, finally);
1078 if (tf->may_throw)
1080 finally = gimple_eh_else_e_body (eh_else);
1081 lower_eh_constructs_1 (state, &finally);
1083 emit_post_landing_pad (&eh_seq, tf->region);
1084 gimple_seq_add_seq (&eh_seq, finally);
1087 else
1089 lower_eh_constructs_1 (state, &finally);
1090 gimple_seq_add_seq (&tf->top_p_seq, finally);
1092 if (tf->may_throw)
1094 emit_post_landing_pad (&eh_seq, tf->region);
1096 x = gimple_build_goto (lab);
1097 gimple_set_location (x, gimple_location (tf->try_finally_expr));
1098 gimple_seq_add_stmt (&eh_seq, x);
1103 /* A subroutine of lower_try_finally. We have determined that there is
1104 exactly one destination of the finally block. Restructure the
1105 try_finally node for this special case. */
1107 static void
1108 lower_try_finally_onedest (struct leh_state *state, struct leh_tf_state *tf)
1110 struct goto_queue_node *q, *qe;
1111 gimple x;
1112 gimple_seq finally;
1113 gimple_stmt_iterator gsi;
1114 tree finally_label;
1115 location_t loc = gimple_location (tf->try_finally_expr);
1117 finally = gimple_try_cleanup (tf->top_p);
1118 tf->top_p_seq = gimple_try_eval (tf->top_p);
1120 /* Since there's only one destination, and the destination edge can only
1121 either be EH or non-EH, that implies that all of our incoming edges
1122 are of the same type. Therefore we can lower EH_ELSE immediately. */
1123 x = get_eh_else (finally);
1124 if (x)
1126 if (tf->may_throw)
1127 finally = gimple_eh_else_e_body (x);
1128 else
1129 finally = gimple_eh_else_n_body (x);
1132 lower_eh_constructs_1 (state, &finally);
1134 for (gsi = gsi_start (finally); !gsi_end_p (gsi); gsi_next (&gsi))
1136 gimple stmt = gsi_stmt (gsi);
1137 if (LOCATION_LOCUS (gimple_location (stmt)) == UNKNOWN_LOCATION)
1139 tree block = gimple_block (stmt);
1140 gimple_set_location (stmt, gimple_location (tf->try_finally_expr));
1141 gimple_set_block (stmt, block);
1145 if (tf->may_throw)
1147 /* Only reachable via the exception edge. Add the given label to
1148 the head of the FINALLY block. Append a RESX at the end. */
1149 emit_post_landing_pad (&eh_seq, tf->region);
1150 gimple_seq_add_seq (&eh_seq, finally);
1151 emit_resx (&eh_seq, tf->region);
1152 return;
1155 if (tf->may_fallthru)
1157 /* Only reachable via the fallthru edge. Do nothing but let
1158 the two blocks run together; we'll fall out the bottom. */
1159 gimple_seq_add_seq (&tf->top_p_seq, finally);
1160 return;
1163 finally_label = create_artificial_label (loc);
1164 x = gimple_build_label (finally_label);
1165 gimple_seq_add_stmt (&tf->top_p_seq, x);
1167 gimple_seq_add_seq (&tf->top_p_seq, finally);
1169 q = tf->goto_queue;
1170 qe = q + tf->goto_queue_active;
1172 if (tf->may_return)
1174 /* Reachable by return expressions only. Redirect them. */
1175 for (; q < qe; ++q)
1176 do_return_redirection (q, finally_label, NULL);
1177 replace_goto_queue (tf);
1179 else
1181 /* Reachable by goto expressions only. Redirect them. */
1182 for (; q < qe; ++q)
1183 do_goto_redirection (q, finally_label, NULL, tf);
1184 replace_goto_queue (tf);
1186 if (tf->dest_array[0] == tf->fallthru_label)
1188 /* Reachable by goto to fallthru label only. Redirect it
1189 to the new label (already created, sadly), and do not
1190 emit the final branch out, or the fallthru label. */
1191 tf->fallthru_label = NULL;
1192 return;
1196 /* Place the original return/goto to the original destination
1197 immediately after the finally block. */
1198 x = tf->goto_queue[0].cont_stmt;
1199 gimple_seq_add_stmt (&tf->top_p_seq, x);
1200 maybe_record_in_goto_queue (state, x);
1203 /* A subroutine of lower_try_finally. There are multiple edges incoming
1204 and outgoing from the finally block. Implement this by duplicating the
1205 finally block for every destination. */
1207 static void
1208 lower_try_finally_copy (struct leh_state *state, struct leh_tf_state *tf)
1210 gimple_seq finally;
1211 gimple_seq new_stmt;
1212 gimple_seq seq;
1213 gimple x, eh_else;
1214 tree tmp;
1215 location_t tf_loc = gimple_location (tf->try_finally_expr);
1217 finally = gimple_try_cleanup (tf->top_p);
1219 /* Notice EH_ELSE, and simplify some of the remaining code
1220 by considering FINALLY to be the normal return path only. */
1221 eh_else = get_eh_else (finally);
1222 if (eh_else)
1223 finally = gimple_eh_else_n_body (eh_else);
1225 tf->top_p_seq = gimple_try_eval (tf->top_p);
1226 new_stmt = NULL;
1228 if (tf->may_fallthru)
1230 seq = lower_try_finally_dup_block (finally, state, tf_loc);
1231 lower_eh_constructs_1 (state, &seq);
1232 gimple_seq_add_seq (&new_stmt, seq);
1234 tmp = lower_try_finally_fallthru_label (tf);
1235 x = gimple_build_goto (tmp);
1236 gimple_set_location (x, tf_loc);
1237 gimple_seq_add_stmt (&new_stmt, x);
1240 if (tf->may_throw)
1242 /* We don't need to copy the EH path of EH_ELSE,
1243 since it is only emitted once. */
1244 if (eh_else)
1245 seq = gimple_eh_else_e_body (eh_else);
1246 else
1247 seq = lower_try_finally_dup_block (finally, state, tf_loc);
1248 lower_eh_constructs_1 (state, &seq);
1250 emit_post_landing_pad (&eh_seq, tf->region);
1251 gimple_seq_add_seq (&eh_seq, seq);
1252 emit_resx (&eh_seq, tf->region);
1255 if (tf->goto_queue)
1257 struct goto_queue_node *q, *qe;
1258 int return_index, index;
1259 struct labels_s
1261 struct goto_queue_node *q;
1262 tree label;
1263 } *labels;
1265 return_index = tf->dest_array.length ();
1266 labels = XCNEWVEC (struct labels_s, return_index + 1);
1268 q = tf->goto_queue;
1269 qe = q + tf->goto_queue_active;
1270 for (; q < qe; q++)
1272 index = q->index < 0 ? return_index : q->index;
1274 if (!labels[index].q)
1275 labels[index].q = q;
1278 for (index = 0; index < return_index + 1; index++)
1280 tree lab;
1282 q = labels[index].q;
1283 if (! q)
1284 continue;
1286 lab = labels[index].label
1287 = create_artificial_label (tf_loc);
1289 if (index == return_index)
1290 do_return_redirection (q, lab, NULL);
1291 else
1292 do_goto_redirection (q, lab, NULL, tf);
1294 x = gimple_build_label (lab);
1295 gimple_seq_add_stmt (&new_stmt, x);
1297 seq = lower_try_finally_dup_block (finally, state, q->location);
1298 lower_eh_constructs_1 (state, &seq);
1299 gimple_seq_add_seq (&new_stmt, seq);
1301 gimple_seq_add_stmt (&new_stmt, q->cont_stmt);
1302 maybe_record_in_goto_queue (state, q->cont_stmt);
1305 for (q = tf->goto_queue; q < qe; q++)
1307 tree lab;
1309 index = q->index < 0 ? return_index : q->index;
1311 if (labels[index].q == q)
1312 continue;
1314 lab = labels[index].label;
1316 if (index == return_index)
1317 do_return_redirection (q, lab, NULL);
1318 else
1319 do_goto_redirection (q, lab, NULL, tf);
1322 replace_goto_queue (tf);
1323 free (labels);
1326 /* Need to link new stmts after running replace_goto_queue due
1327 to not wanting to process the same goto stmts twice. */
1328 gimple_seq_add_seq (&tf->top_p_seq, new_stmt);
1331 /* A subroutine of lower_try_finally. There are multiple edges incoming
1332 and outgoing from the finally block. Implement this by instrumenting
1333 each incoming edge and creating a switch statement at the end of the
1334 finally block that branches to the appropriate destination. */
1336 static void
1337 lower_try_finally_switch (struct leh_state *state, struct leh_tf_state *tf)
1339 struct goto_queue_node *q, *qe;
1340 tree finally_tmp, finally_label;
1341 int return_index, eh_index, fallthru_index;
1342 int nlabels, ndests, j, last_case_index;
1343 tree last_case;
1344 vec<tree> case_label_vec;
1345 gimple_seq switch_body = NULL;
1346 gimple x, eh_else;
1347 tree tmp;
1348 gimple switch_stmt;
1349 gimple_seq finally;
1350 hash_map<tree, gimple> *cont_map = NULL;
1351 /* The location of the TRY_FINALLY stmt. */
1352 location_t tf_loc = gimple_location (tf->try_finally_expr);
1353 /* The location of the finally block. */
1354 location_t finally_loc;
1356 finally = gimple_try_cleanup (tf->top_p);
1357 eh_else = get_eh_else (finally);
1359 /* Mash the TRY block to the head of the chain. */
1360 tf->top_p_seq = gimple_try_eval (tf->top_p);
1362 /* The location of the finally is either the last stmt in the finally
1363 block or the location of the TRY_FINALLY itself. */
1364 x = gimple_seq_last_stmt (finally);
1365 finally_loc = x ? gimple_location (x) : tf_loc;
1367 /* Prepare for switch statement generation. */
1368 nlabels = tf->dest_array.length ();
1369 return_index = nlabels;
1370 eh_index = return_index + tf->may_return;
1371 fallthru_index = eh_index + (tf->may_throw && !eh_else);
1372 ndests = fallthru_index + tf->may_fallthru;
1374 finally_tmp = create_tmp_var (integer_type_node, "finally_tmp");
1375 finally_label = create_artificial_label (finally_loc);
1377 /* We use vec::quick_push on case_label_vec throughout this function,
1378 since we know the size in advance and allocate precisely as muce
1379 space as needed. */
1380 case_label_vec.create (ndests);
1381 last_case = NULL;
1382 last_case_index = 0;
1384 /* Begin inserting code for getting to the finally block. Things
1385 are done in this order to correspond to the sequence the code is
1386 laid out. */
1388 if (tf->may_fallthru)
1390 x = gimple_build_assign (finally_tmp,
1391 build_int_cst (integer_type_node,
1392 fallthru_index));
1393 gimple_seq_add_stmt (&tf->top_p_seq, x);
1395 tmp = build_int_cst (integer_type_node, fallthru_index);
1396 last_case = build_case_label (tmp, NULL,
1397 create_artificial_label (tf_loc));
1398 case_label_vec.quick_push (last_case);
1399 last_case_index++;
1401 x = gimple_build_label (CASE_LABEL (last_case));
1402 gimple_seq_add_stmt (&switch_body, x);
1404 tmp = lower_try_finally_fallthru_label (tf);
1405 x = gimple_build_goto (tmp);
1406 gimple_set_location (x, tf_loc);
1407 gimple_seq_add_stmt (&switch_body, x);
1410 /* For EH_ELSE, emit the exception path (plus resx) now, then
1411 subsequently we only need consider the normal path. */
1412 if (eh_else)
1414 if (tf->may_throw)
1416 finally = gimple_eh_else_e_body (eh_else);
1417 lower_eh_constructs_1 (state, &finally);
1419 emit_post_landing_pad (&eh_seq, tf->region);
1420 gimple_seq_add_seq (&eh_seq, finally);
1421 emit_resx (&eh_seq, tf->region);
1424 finally = gimple_eh_else_n_body (eh_else);
1426 else if (tf->may_throw)
1428 emit_post_landing_pad (&eh_seq, tf->region);
1430 x = gimple_build_assign (finally_tmp,
1431 build_int_cst (integer_type_node, eh_index));
1432 gimple_seq_add_stmt (&eh_seq, x);
1434 x = gimple_build_goto (finally_label);
1435 gimple_set_location (x, tf_loc);
1436 gimple_seq_add_stmt (&eh_seq, x);
1438 tmp = build_int_cst (integer_type_node, eh_index);
1439 last_case = build_case_label (tmp, NULL,
1440 create_artificial_label (tf_loc));
1441 case_label_vec.quick_push (last_case);
1442 last_case_index++;
1444 x = gimple_build_label (CASE_LABEL (last_case));
1445 gimple_seq_add_stmt (&eh_seq, x);
1446 emit_resx (&eh_seq, tf->region);
1449 x = gimple_build_label (finally_label);
1450 gimple_seq_add_stmt (&tf->top_p_seq, x);
1452 lower_eh_constructs_1 (state, &finally);
1453 gimple_seq_add_seq (&tf->top_p_seq, finally);
1455 /* Redirect each incoming goto edge. */
1456 q = tf->goto_queue;
1457 qe = q + tf->goto_queue_active;
1458 j = last_case_index + tf->may_return;
1459 /* Prepare the assignments to finally_tmp that are executed upon the
1460 entrance through a particular edge. */
1461 for (; q < qe; ++q)
1463 gimple_seq mod = NULL;
1464 int switch_id;
1465 unsigned int case_index;
1467 if (q->index < 0)
1469 x = gimple_build_assign (finally_tmp,
1470 build_int_cst (integer_type_node,
1471 return_index));
1472 gimple_seq_add_stmt (&mod, x);
1473 do_return_redirection (q, finally_label, mod);
1474 switch_id = return_index;
1476 else
1478 x = gimple_build_assign (finally_tmp,
1479 build_int_cst (integer_type_node, q->index));
1480 gimple_seq_add_stmt (&mod, x);
1481 do_goto_redirection (q, finally_label, mod, tf);
1482 switch_id = q->index;
1485 case_index = j + q->index;
1486 if (case_label_vec.length () <= case_index || !case_label_vec[case_index])
1488 tree case_lab;
1489 tmp = build_int_cst (integer_type_node, switch_id);
1490 case_lab = build_case_label (tmp, NULL,
1491 create_artificial_label (tf_loc));
1492 /* We store the cont_stmt in the pointer map, so that we can recover
1493 it in the loop below. */
1494 if (!cont_map)
1495 cont_map = new hash_map<tree, gimple>;
1496 cont_map->put (case_lab, q->cont_stmt);
1497 case_label_vec.quick_push (case_lab);
1500 for (j = last_case_index; j < last_case_index + nlabels; j++)
1502 gimple cont_stmt;
1504 last_case = case_label_vec[j];
1506 gcc_assert (last_case);
1507 gcc_assert (cont_map);
1509 cont_stmt = *cont_map->get (last_case);
1511 x = gimple_build_label (CASE_LABEL (last_case));
1512 gimple_seq_add_stmt (&switch_body, x);
1513 gimple_seq_add_stmt (&switch_body, cont_stmt);
1514 maybe_record_in_goto_queue (state, cont_stmt);
1516 if (cont_map)
1517 delete cont_map;
1519 replace_goto_queue (tf);
1521 /* Make sure that the last case is the default label, as one is required.
1522 Then sort the labels, which is also required in GIMPLE. */
1523 CASE_LOW (last_case) = NULL;
1524 tree tem = case_label_vec.pop ();
1525 gcc_assert (tem == last_case);
1526 sort_case_labels (case_label_vec);
1528 /* Build the switch statement, setting last_case to be the default
1529 label. */
1530 switch_stmt = gimple_build_switch (finally_tmp, last_case,
1531 case_label_vec);
1532 gimple_set_location (switch_stmt, finally_loc);
1534 /* Need to link SWITCH_STMT after running replace_goto_queue
1535 due to not wanting to process the same goto stmts twice. */
1536 gimple_seq_add_stmt (&tf->top_p_seq, switch_stmt);
1537 gimple_seq_add_seq (&tf->top_p_seq, switch_body);
1540 /* Decide whether or not we are going to duplicate the finally block.
1541 There are several considerations.
1543 First, if this is Java, then the finally block contains code
1544 written by the user. It has line numbers associated with it,
1545 so duplicating the block means it's difficult to set a breakpoint.
1546 Since controlling code generation via -g is verboten, we simply
1547 never duplicate code without optimization.
1549 Second, we'd like to prevent egregious code growth. One way to
1550 do this is to estimate the size of the finally block, multiply
1551 that by the number of copies we'd need to make, and compare against
1552 the estimate of the size of the switch machinery we'd have to add. */
1554 static bool
1555 decide_copy_try_finally (int ndests, bool may_throw, gimple_seq finally)
1557 int f_estimate, sw_estimate;
1558 gimple eh_else;
1560 /* If there's an EH_ELSE involved, the exception path is separate
1561 and really doesn't come into play for this computation. */
1562 eh_else = get_eh_else (finally);
1563 if (eh_else)
1565 ndests -= may_throw;
1566 finally = gimple_eh_else_n_body (eh_else);
1569 if (!optimize)
1571 gimple_stmt_iterator gsi;
1573 if (ndests == 1)
1574 return true;
1576 for (gsi = gsi_start (finally); !gsi_end_p (gsi); gsi_next (&gsi))
1578 gimple stmt = gsi_stmt (gsi);
1579 if (!is_gimple_debug (stmt) && !gimple_clobber_p (stmt))
1580 return false;
1582 return true;
1585 /* Finally estimate N times, plus N gotos. */
1586 f_estimate = count_insns_seq (finally, &eni_size_weights);
1587 f_estimate = (f_estimate + 1) * ndests;
1589 /* Switch statement (cost 10), N variable assignments, N gotos. */
1590 sw_estimate = 10 + 2 * ndests;
1592 /* Optimize for size clearly wants our best guess. */
1593 if (optimize_function_for_size_p (cfun))
1594 return f_estimate < sw_estimate;
1596 /* ??? These numbers are completely made up so far. */
1597 if (optimize > 1)
1598 return f_estimate < 100 || f_estimate < sw_estimate * 2;
1599 else
1600 return f_estimate < 40 || f_estimate * 2 < sw_estimate * 3;
1603 /* REG is the enclosing region for a possible cleanup region, or the region
1604 itself. Returns TRUE if such a region would be unreachable.
1606 Cleanup regions within a must-not-throw region aren't actually reachable
1607 even if there are throwing stmts within them, because the personality
1608 routine will call terminate before unwinding. */
1610 static bool
1611 cleanup_is_dead_in (eh_region reg)
1613 while (reg && reg->type == ERT_CLEANUP)
1614 reg = reg->outer;
1615 return (reg && reg->type == ERT_MUST_NOT_THROW);
1618 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY_FINALLY nodes
1619 to a sequence of labels and blocks, plus the exception region trees
1620 that record all the magic. This is complicated by the need to
1621 arrange for the FINALLY block to be executed on all exits. */
1623 static gimple_seq
1624 lower_try_finally (struct leh_state *state, gimple tp)
1626 struct leh_tf_state this_tf;
1627 struct leh_state this_state;
1628 int ndests;
1629 gimple_seq old_eh_seq;
1631 /* Process the try block. */
1633 memset (&this_tf, 0, sizeof (this_tf));
1634 this_tf.try_finally_expr = tp;
1635 this_tf.top_p = tp;
1636 this_tf.outer = state;
1637 if (using_eh_for_cleanups_p () && !cleanup_is_dead_in (state->cur_region))
1639 this_tf.region = gen_eh_region_cleanup (state->cur_region);
1640 this_state.cur_region = this_tf.region;
1642 else
1644 this_tf.region = NULL;
1645 this_state.cur_region = state->cur_region;
1648 this_state.ehp_region = state->ehp_region;
1649 this_state.tf = &this_tf;
1651 old_eh_seq = eh_seq;
1652 eh_seq = NULL;
1654 lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp));
1656 /* Determine if the try block is escaped through the bottom. */
1657 this_tf.may_fallthru = gimple_seq_may_fallthru (gimple_try_eval (tp));
1659 /* Determine if any exceptions are possible within the try block. */
1660 if (this_tf.region)
1661 this_tf.may_throw = eh_region_may_contain_throw (this_tf.region);
1662 if (this_tf.may_throw)
1663 honor_protect_cleanup_actions (state, &this_state, &this_tf);
1665 /* Determine how many edges (still) reach the finally block. Or rather,
1666 how many destinations are reached by the finally block. Use this to
1667 determine how we process the finally block itself. */
1669 ndests = this_tf.dest_array.length ();
1670 ndests += this_tf.may_fallthru;
1671 ndests += this_tf.may_return;
1672 ndests += this_tf.may_throw;
1674 /* If the FINALLY block is not reachable, dike it out. */
1675 if (ndests == 0)
1677 gimple_seq_add_seq (&this_tf.top_p_seq, gimple_try_eval (tp));
1678 gimple_try_set_cleanup (tp, NULL);
1680 /* If the finally block doesn't fall through, then any destination
1681 we might try to impose there isn't reached either. There may be
1682 some minor amount of cleanup and redirection still needed. */
1683 else if (!gimple_seq_may_fallthru (gimple_try_cleanup (tp)))
1684 lower_try_finally_nofallthru (state, &this_tf);
1686 /* We can easily special-case redirection to a single destination. */
1687 else if (ndests == 1)
1688 lower_try_finally_onedest (state, &this_tf);
1689 else if (decide_copy_try_finally (ndests, this_tf.may_throw,
1690 gimple_try_cleanup (tp)))
1691 lower_try_finally_copy (state, &this_tf);
1692 else
1693 lower_try_finally_switch (state, &this_tf);
1695 /* If someone requested we add a label at the end of the transformed
1696 block, do so. */
1697 if (this_tf.fallthru_label)
1699 /* This must be reached only if ndests == 0. */
1700 gimple x = gimple_build_label (this_tf.fallthru_label);
1701 gimple_seq_add_stmt (&this_tf.top_p_seq, x);
1704 this_tf.dest_array.release ();
1705 free (this_tf.goto_queue);
1706 if (this_tf.goto_queue_map)
1707 delete this_tf.goto_queue_map;
1709 /* If there was an old (aka outer) eh_seq, append the current eh_seq.
1710 If there was no old eh_seq, then the append is trivially already done. */
1711 if (old_eh_seq)
1713 if (eh_seq == NULL)
1714 eh_seq = old_eh_seq;
1715 else
1717 gimple_seq new_eh_seq = eh_seq;
1718 eh_seq = old_eh_seq;
1719 gimple_seq_add_seq (&eh_seq, new_eh_seq);
1723 return this_tf.top_p_seq;
1726 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY_CATCH with a
1727 list of GIMPLE_CATCH to a sequence of labels and blocks, plus the
1728 exception region trees that records all the magic. */
1730 static gimple_seq
1731 lower_catch (struct leh_state *state, gimple tp)
1733 eh_region try_region = NULL;
1734 struct leh_state this_state = *state;
1735 gimple_stmt_iterator gsi;
1736 tree out_label;
1737 gimple_seq new_seq, cleanup;
1738 gimple x;
1739 location_t try_catch_loc = gimple_location (tp);
1741 if (flag_exceptions)
1743 try_region = gen_eh_region_try (state->cur_region);
1744 this_state.cur_region = try_region;
1747 lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp));
1749 if (!eh_region_may_contain_throw (try_region))
1750 return gimple_try_eval (tp);
1752 new_seq = NULL;
1753 emit_eh_dispatch (&new_seq, try_region);
1754 emit_resx (&new_seq, try_region);
1756 this_state.cur_region = state->cur_region;
1757 this_state.ehp_region = try_region;
1759 out_label = NULL;
1760 cleanup = gimple_try_cleanup (tp);
1761 for (gsi = gsi_start (cleanup);
1762 !gsi_end_p (gsi);
1763 gsi_next (&gsi))
1765 eh_catch c;
1766 gimple gcatch;
1767 gimple_seq handler;
1769 gcatch = gsi_stmt (gsi);
1770 c = gen_eh_region_catch (try_region, gimple_catch_types (gcatch));
1772 handler = gimple_catch_handler (gcatch);
1773 lower_eh_constructs_1 (&this_state, &handler);
1775 c->label = create_artificial_label (UNKNOWN_LOCATION);
1776 x = gimple_build_label (c->label);
1777 gimple_seq_add_stmt (&new_seq, x);
1779 gimple_seq_add_seq (&new_seq, handler);
1781 if (gimple_seq_may_fallthru (new_seq))
1783 if (!out_label)
1784 out_label = create_artificial_label (try_catch_loc);
1786 x = gimple_build_goto (out_label);
1787 gimple_seq_add_stmt (&new_seq, x);
1789 if (!c->type_list)
1790 break;
1793 gimple_try_set_cleanup (tp, new_seq);
1795 return frob_into_branch_around (tp, try_region, out_label);
1798 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY with a
1799 GIMPLE_EH_FILTER to a sequence of labels and blocks, plus the exception
1800 region trees that record all the magic. */
1802 static gimple_seq
1803 lower_eh_filter (struct leh_state *state, gimple tp)
1805 struct leh_state this_state = *state;
1806 eh_region this_region = NULL;
1807 gimple inner, x;
1808 gimple_seq new_seq;
1810 inner = gimple_seq_first_stmt (gimple_try_cleanup (tp));
1812 if (flag_exceptions)
1814 this_region = gen_eh_region_allowed (state->cur_region,
1815 gimple_eh_filter_types (inner));
1816 this_state.cur_region = this_region;
1819 lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp));
1821 if (!eh_region_may_contain_throw (this_region))
1822 return gimple_try_eval (tp);
1824 new_seq = NULL;
1825 this_state.cur_region = state->cur_region;
1826 this_state.ehp_region = this_region;
1828 emit_eh_dispatch (&new_seq, this_region);
1829 emit_resx (&new_seq, this_region);
1831 this_region->u.allowed.label = create_artificial_label (UNKNOWN_LOCATION);
1832 x = gimple_build_label (this_region->u.allowed.label);
1833 gimple_seq_add_stmt (&new_seq, x);
1835 lower_eh_constructs_1 (&this_state, gimple_eh_filter_failure_ptr (inner));
1836 gimple_seq_add_seq (&new_seq, gimple_eh_filter_failure (inner));
1838 gimple_try_set_cleanup (tp, new_seq);
1840 return frob_into_branch_around (tp, this_region, NULL);
1843 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY with
1844 an GIMPLE_EH_MUST_NOT_THROW to a sequence of labels and blocks,
1845 plus the exception region trees that record all the magic. */
1847 static gimple_seq
1848 lower_eh_must_not_throw (struct leh_state *state, gimple tp)
1850 struct leh_state this_state = *state;
1852 if (flag_exceptions)
1854 gimple inner = gimple_seq_first_stmt (gimple_try_cleanup (tp));
1855 eh_region this_region;
1857 this_region = gen_eh_region_must_not_throw (state->cur_region);
1858 this_region->u.must_not_throw.failure_decl
1859 = gimple_eh_must_not_throw_fndecl (inner);
1860 this_region->u.must_not_throw.failure_loc
1861 = LOCATION_LOCUS (gimple_location (tp));
1863 /* In order to get mangling applied to this decl, we must mark it
1864 used now. Otherwise, pass_ipa_free_lang_data won't think it
1865 needs to happen. */
1866 TREE_USED (this_region->u.must_not_throw.failure_decl) = 1;
1868 this_state.cur_region = this_region;
1871 lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp));
1873 return gimple_try_eval (tp);
1876 /* Implement a cleanup expression. This is similar to try-finally,
1877 except that we only execute the cleanup block for exception edges. */
1879 static gimple_seq
1880 lower_cleanup (struct leh_state *state, gimple tp)
1882 struct leh_state this_state = *state;
1883 eh_region this_region = NULL;
1884 struct leh_tf_state fake_tf;
1885 gimple_seq result;
1886 bool cleanup_dead = cleanup_is_dead_in (state->cur_region);
1888 if (flag_exceptions && !cleanup_dead)
1890 this_region = gen_eh_region_cleanup (state->cur_region);
1891 this_state.cur_region = this_region;
1894 lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp));
1896 if (cleanup_dead || !eh_region_may_contain_throw (this_region))
1897 return gimple_try_eval (tp);
1899 /* Build enough of a try-finally state so that we can reuse
1900 honor_protect_cleanup_actions. */
1901 memset (&fake_tf, 0, sizeof (fake_tf));
1902 fake_tf.top_p = fake_tf.try_finally_expr = tp;
1903 fake_tf.outer = state;
1904 fake_tf.region = this_region;
1905 fake_tf.may_fallthru = gimple_seq_may_fallthru (gimple_try_eval (tp));
1906 fake_tf.may_throw = true;
1908 honor_protect_cleanup_actions (state, NULL, &fake_tf);
1910 if (fake_tf.may_throw)
1912 /* In this case honor_protect_cleanup_actions had nothing to do,
1913 and we should process this normally. */
1914 lower_eh_constructs_1 (state, gimple_try_cleanup_ptr (tp));
1915 result = frob_into_branch_around (tp, this_region,
1916 fake_tf.fallthru_label);
1918 else
1920 /* In this case honor_protect_cleanup_actions did nearly all of
1921 the work. All we have left is to append the fallthru_label. */
1923 result = gimple_try_eval (tp);
1924 if (fake_tf.fallthru_label)
1926 gimple x = gimple_build_label (fake_tf.fallthru_label);
1927 gimple_seq_add_stmt (&result, x);
1930 return result;
1933 /* Main loop for lowering eh constructs. Also moves gsi to the next
1934 statement. */
1936 static void
1937 lower_eh_constructs_2 (struct leh_state *state, gimple_stmt_iterator *gsi)
1939 gimple_seq replace;
1940 gimple x;
1941 gimple stmt = gsi_stmt (*gsi);
1943 switch (gimple_code (stmt))
1945 case GIMPLE_CALL:
1947 tree fndecl = gimple_call_fndecl (stmt);
1948 tree rhs, lhs;
1950 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
1951 switch (DECL_FUNCTION_CODE (fndecl))
1953 case BUILT_IN_EH_POINTER:
1954 /* The front end may have generated a call to
1955 __builtin_eh_pointer (0) within a catch region. Replace
1956 this zero argument with the current catch region number. */
1957 if (state->ehp_region)
1959 tree nr = build_int_cst (integer_type_node,
1960 state->ehp_region->index);
1961 gimple_call_set_arg (stmt, 0, nr);
1963 else
1965 /* The user has dome something silly. Remove it. */
1966 rhs = null_pointer_node;
1967 goto do_replace;
1969 break;
1971 case BUILT_IN_EH_FILTER:
1972 /* ??? This should never appear, but since it's a builtin it
1973 is accessible to abuse by users. Just remove it and
1974 replace the use with the arbitrary value zero. */
1975 rhs = build_int_cst (TREE_TYPE (TREE_TYPE (fndecl)), 0);
1976 do_replace:
1977 lhs = gimple_call_lhs (stmt);
1978 x = gimple_build_assign (lhs, rhs);
1979 gsi_insert_before (gsi, x, GSI_SAME_STMT);
1980 /* FALLTHRU */
1982 case BUILT_IN_EH_COPY_VALUES:
1983 /* Likewise this should not appear. Remove it. */
1984 gsi_remove (gsi, true);
1985 return;
1987 default:
1988 break;
1991 /* FALLTHRU */
1993 case GIMPLE_ASSIGN:
1994 /* If the stmt can throw use a new temporary for the assignment
1995 to a LHS. This makes sure the old value of the LHS is
1996 available on the EH edge. Only do so for statements that
1997 potentially fall through (no noreturn calls e.g.), otherwise
1998 this new assignment might create fake fallthru regions. */
1999 if (stmt_could_throw_p (stmt)
2000 && gimple_has_lhs (stmt)
2001 && gimple_stmt_may_fallthru (stmt)
2002 && !tree_could_throw_p (gimple_get_lhs (stmt))
2003 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
2005 tree lhs = gimple_get_lhs (stmt);
2006 tree tmp = create_tmp_var (TREE_TYPE (lhs), NULL);
2007 gimple s = gimple_build_assign (lhs, tmp);
2008 gimple_set_location (s, gimple_location (stmt));
2009 gimple_set_block (s, gimple_block (stmt));
2010 gimple_set_lhs (stmt, tmp);
2011 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
2012 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
2013 DECL_GIMPLE_REG_P (tmp) = 1;
2014 gsi_insert_after (gsi, s, GSI_SAME_STMT);
2016 /* Look for things that can throw exceptions, and record them. */
2017 if (state->cur_region && stmt_could_throw_p (stmt))
2019 record_stmt_eh_region (state->cur_region, stmt);
2020 note_eh_region_may_contain_throw (state->cur_region);
2022 break;
2024 case GIMPLE_COND:
2025 case GIMPLE_GOTO:
2026 case GIMPLE_RETURN:
2027 maybe_record_in_goto_queue (state, stmt);
2028 break;
2030 case GIMPLE_SWITCH:
2031 verify_norecord_switch_expr (state, stmt);
2032 break;
2034 case GIMPLE_TRY:
2035 if (gimple_try_kind (stmt) == GIMPLE_TRY_FINALLY)
2036 replace = lower_try_finally (state, stmt);
2037 else
2039 x = gimple_seq_first_stmt (gimple_try_cleanup (stmt));
2040 if (!x)
2042 replace = gimple_try_eval (stmt);
2043 lower_eh_constructs_1 (state, &replace);
2045 else
2046 switch (gimple_code (x))
2048 case GIMPLE_CATCH:
2049 replace = lower_catch (state, stmt);
2050 break;
2051 case GIMPLE_EH_FILTER:
2052 replace = lower_eh_filter (state, stmt);
2053 break;
2054 case GIMPLE_EH_MUST_NOT_THROW:
2055 replace = lower_eh_must_not_throw (state, stmt);
2056 break;
2057 case GIMPLE_EH_ELSE:
2058 /* This code is only valid with GIMPLE_TRY_FINALLY. */
2059 gcc_unreachable ();
2060 default:
2061 replace = lower_cleanup (state, stmt);
2062 break;
2066 /* Remove the old stmt and insert the transformed sequence
2067 instead. */
2068 gsi_insert_seq_before (gsi, replace, GSI_SAME_STMT);
2069 gsi_remove (gsi, true);
2071 /* Return since we don't want gsi_next () */
2072 return;
2074 case GIMPLE_EH_ELSE:
2075 /* We should be eliminating this in lower_try_finally et al. */
2076 gcc_unreachable ();
2078 default:
2079 /* A type, a decl, or some kind of statement that we're not
2080 interested in. Don't walk them. */
2081 break;
2084 gsi_next (gsi);
2087 /* A helper to unwrap a gimple_seq and feed stmts to lower_eh_constructs_2. */
2089 static void
2090 lower_eh_constructs_1 (struct leh_state *state, gimple_seq *pseq)
2092 gimple_stmt_iterator gsi;
2093 for (gsi = gsi_start (*pseq); !gsi_end_p (gsi);)
2094 lower_eh_constructs_2 (state, &gsi);
2097 namespace {
2099 const pass_data pass_data_lower_eh =
2101 GIMPLE_PASS, /* type */
2102 "eh", /* name */
2103 OPTGROUP_NONE, /* optinfo_flags */
2104 TV_TREE_EH, /* tv_id */
2105 PROP_gimple_lcf, /* properties_required */
2106 PROP_gimple_leh, /* properties_provided */
2107 0, /* properties_destroyed */
2108 0, /* todo_flags_start */
2109 0, /* todo_flags_finish */
2112 class pass_lower_eh : public gimple_opt_pass
2114 public:
2115 pass_lower_eh (gcc::context *ctxt)
2116 : gimple_opt_pass (pass_data_lower_eh, ctxt)
2119 /* opt_pass methods: */
2120 virtual unsigned int execute (function *);
2122 }; // class pass_lower_eh
2124 unsigned int
2125 pass_lower_eh::execute (function *fun)
2127 struct leh_state null_state;
2128 gimple_seq bodyp;
2130 bodyp = gimple_body (current_function_decl);
2131 if (bodyp == NULL)
2132 return 0;
2134 finally_tree = new hash_table<finally_tree_hasher> (31);
2135 eh_region_may_contain_throw_map = BITMAP_ALLOC (NULL);
2136 memset (&null_state, 0, sizeof (null_state));
2138 collect_finally_tree_1 (bodyp, NULL);
2139 lower_eh_constructs_1 (&null_state, &bodyp);
2140 gimple_set_body (current_function_decl, bodyp);
2142 /* We assume there's a return statement, or something, at the end of
2143 the function, and thus ploping the EH sequence afterward won't
2144 change anything. */
2145 gcc_assert (!gimple_seq_may_fallthru (bodyp));
2146 gimple_seq_add_seq (&bodyp, eh_seq);
2148 /* We assume that since BODYP already existed, adding EH_SEQ to it
2149 didn't change its value, and we don't have to re-set the function. */
2150 gcc_assert (bodyp == gimple_body (current_function_decl));
2152 delete finally_tree;
2153 finally_tree = NULL;
2154 BITMAP_FREE (eh_region_may_contain_throw_map);
2155 eh_seq = NULL;
2157 /* If this function needs a language specific EH personality routine
2158 and the frontend didn't already set one do so now. */
2159 if (function_needs_eh_personality (fun) == eh_personality_lang
2160 && !DECL_FUNCTION_PERSONALITY (current_function_decl))
2161 DECL_FUNCTION_PERSONALITY (current_function_decl)
2162 = lang_hooks.eh_personality ();
2164 return 0;
2167 } // anon namespace
2169 gimple_opt_pass *
2170 make_pass_lower_eh (gcc::context *ctxt)
2172 return new pass_lower_eh (ctxt);
2175 /* Create the multiple edges from an EH_DISPATCH statement to all of
2176 the possible handlers for its EH region. Return true if there's
2177 no fallthru edge; false if there is. */
2179 bool
2180 make_eh_dispatch_edges (gimple stmt)
2182 eh_region r;
2183 eh_catch c;
2184 basic_block src, dst;
2186 r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
2187 src = gimple_bb (stmt);
2189 switch (r->type)
2191 case ERT_TRY:
2192 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
2194 dst = label_to_block (c->label);
2195 make_edge (src, dst, 0);
2197 /* A catch-all handler doesn't have a fallthru. */
2198 if (c->type_list == NULL)
2199 return false;
2201 break;
2203 case ERT_ALLOWED_EXCEPTIONS:
2204 dst = label_to_block (r->u.allowed.label);
2205 make_edge (src, dst, 0);
2206 break;
2208 default:
2209 gcc_unreachable ();
2212 return true;
2215 /* Create the single EH edge from STMT to its nearest landing pad,
2216 if there is such a landing pad within the current function. */
2218 void
2219 make_eh_edges (gimple stmt)
2221 basic_block src, dst;
2222 eh_landing_pad lp;
2223 int lp_nr;
2225 lp_nr = lookup_stmt_eh_lp (stmt);
2226 if (lp_nr <= 0)
2227 return;
2229 lp = get_eh_landing_pad_from_number (lp_nr);
2230 gcc_assert (lp != NULL);
2232 src = gimple_bb (stmt);
2233 dst = label_to_block (lp->post_landing_pad);
2234 make_edge (src, dst, EDGE_EH);
2237 /* Do the work in redirecting EDGE_IN to NEW_BB within the EH region tree;
2238 do not actually perform the final edge redirection.
2240 CHANGE_REGION is true when we're being called from cleanup_empty_eh and
2241 we intend to change the destination EH region as well; this means
2242 EH_LANDING_PAD_NR must already be set on the destination block label.
2243 If false, we're being called from generic cfg manipulation code and we
2244 should preserve our place within the region tree. */
2246 static void
2247 redirect_eh_edge_1 (edge edge_in, basic_block new_bb, bool change_region)
2249 eh_landing_pad old_lp, new_lp;
2250 basic_block old_bb;
2251 gimple throw_stmt;
2252 int old_lp_nr, new_lp_nr;
2253 tree old_label, new_label;
2254 edge_iterator ei;
2255 edge e;
2257 old_bb = edge_in->dest;
2258 old_label = gimple_block_label (old_bb);
2259 old_lp_nr = EH_LANDING_PAD_NR (old_label);
2260 gcc_assert (old_lp_nr > 0);
2261 old_lp = get_eh_landing_pad_from_number (old_lp_nr);
2263 throw_stmt = last_stmt (edge_in->src);
2264 gcc_assert (lookup_stmt_eh_lp (throw_stmt) == old_lp_nr);
2266 new_label = gimple_block_label (new_bb);
2268 /* Look for an existing region that might be using NEW_BB already. */
2269 new_lp_nr = EH_LANDING_PAD_NR (new_label);
2270 if (new_lp_nr)
2272 new_lp = get_eh_landing_pad_from_number (new_lp_nr);
2273 gcc_assert (new_lp);
2275 /* Unless CHANGE_REGION is true, the new and old landing pad
2276 had better be associated with the same EH region. */
2277 gcc_assert (change_region || new_lp->region == old_lp->region);
2279 else
2281 new_lp = NULL;
2282 gcc_assert (!change_region);
2285 /* Notice when we redirect the last EH edge away from OLD_BB. */
2286 FOR_EACH_EDGE (e, ei, old_bb->preds)
2287 if (e != edge_in && (e->flags & EDGE_EH))
2288 break;
2290 if (new_lp)
2292 /* NEW_LP already exists. If there are still edges into OLD_LP,
2293 there's nothing to do with the EH tree. If there are no more
2294 edges into OLD_LP, then we want to remove OLD_LP as it is unused.
2295 If CHANGE_REGION is true, then our caller is expecting to remove
2296 the landing pad. */
2297 if (e == NULL && !change_region)
2298 remove_eh_landing_pad (old_lp);
2300 else
2302 /* No correct landing pad exists. If there are no more edges
2303 into OLD_LP, then we can simply re-use the existing landing pad.
2304 Otherwise, we have to create a new landing pad. */
2305 if (e == NULL)
2307 EH_LANDING_PAD_NR (old_lp->post_landing_pad) = 0;
2308 new_lp = old_lp;
2310 else
2311 new_lp = gen_eh_landing_pad (old_lp->region);
2312 new_lp->post_landing_pad = new_label;
2313 EH_LANDING_PAD_NR (new_label) = new_lp->index;
2316 /* Maybe move the throwing statement to the new region. */
2317 if (old_lp != new_lp)
2319 remove_stmt_from_eh_lp (throw_stmt);
2320 add_stmt_to_eh_lp (throw_stmt, new_lp->index);
2324 /* Redirect EH edge E to NEW_BB. */
2326 edge
2327 redirect_eh_edge (edge edge_in, basic_block new_bb)
2329 redirect_eh_edge_1 (edge_in, new_bb, false);
2330 return ssa_redirect_edge (edge_in, new_bb);
2333 /* This is a subroutine of gimple_redirect_edge_and_branch. Update the
2334 labels for redirecting a non-fallthru EH_DISPATCH edge E to NEW_BB.
2335 The actual edge update will happen in the caller. */
2337 void
2338 redirect_eh_dispatch_edge (gimple stmt, edge e, basic_block new_bb)
2340 tree new_lab = gimple_block_label (new_bb);
2341 bool any_changed = false;
2342 basic_block old_bb;
2343 eh_region r;
2344 eh_catch c;
2346 r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
2347 switch (r->type)
2349 case ERT_TRY:
2350 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
2352 old_bb = label_to_block (c->label);
2353 if (old_bb == e->dest)
2355 c->label = new_lab;
2356 any_changed = true;
2359 break;
2361 case ERT_ALLOWED_EXCEPTIONS:
2362 old_bb = label_to_block (r->u.allowed.label);
2363 gcc_assert (old_bb == e->dest);
2364 r->u.allowed.label = new_lab;
2365 any_changed = true;
2366 break;
2368 default:
2369 gcc_unreachable ();
2372 gcc_assert (any_changed);
2375 /* Helper function for operation_could_trap_p and stmt_could_throw_p. */
2377 bool
2378 operation_could_trap_helper_p (enum tree_code op,
2379 bool fp_operation,
2380 bool honor_trapv,
2381 bool honor_nans,
2382 bool honor_snans,
2383 tree divisor,
2384 bool *handled)
2386 *handled = true;
2387 switch (op)
2389 case TRUNC_DIV_EXPR:
2390 case CEIL_DIV_EXPR:
2391 case FLOOR_DIV_EXPR:
2392 case ROUND_DIV_EXPR:
2393 case EXACT_DIV_EXPR:
2394 case CEIL_MOD_EXPR:
2395 case FLOOR_MOD_EXPR:
2396 case ROUND_MOD_EXPR:
2397 case TRUNC_MOD_EXPR:
2398 case RDIV_EXPR:
2399 if (honor_snans || honor_trapv)
2400 return true;
2401 if (fp_operation)
2402 return flag_trapping_math;
2403 if (!TREE_CONSTANT (divisor) || integer_zerop (divisor))
2404 return true;
2405 return false;
2407 case LT_EXPR:
2408 case LE_EXPR:
2409 case GT_EXPR:
2410 case GE_EXPR:
2411 case LTGT_EXPR:
2412 /* Some floating point comparisons may trap. */
2413 return honor_nans;
2415 case EQ_EXPR:
2416 case NE_EXPR:
2417 case UNORDERED_EXPR:
2418 case ORDERED_EXPR:
2419 case UNLT_EXPR:
2420 case UNLE_EXPR:
2421 case UNGT_EXPR:
2422 case UNGE_EXPR:
2423 case UNEQ_EXPR:
2424 return honor_snans;
2426 case CONVERT_EXPR:
2427 case FIX_TRUNC_EXPR:
2428 /* Conversion of floating point might trap. */
2429 return honor_nans;
2431 case NEGATE_EXPR:
2432 case ABS_EXPR:
2433 case CONJ_EXPR:
2434 /* These operations don't trap with floating point. */
2435 if (honor_trapv)
2436 return true;
2437 return false;
2439 case PLUS_EXPR:
2440 case MINUS_EXPR:
2441 case MULT_EXPR:
2442 /* Any floating arithmetic may trap. */
2443 if (fp_operation && flag_trapping_math)
2444 return true;
2445 if (honor_trapv)
2446 return true;
2447 return false;
2449 case COMPLEX_EXPR:
2450 case CONSTRUCTOR:
2451 /* Constructing an object cannot trap. */
2452 return false;
2454 default:
2455 /* Any floating arithmetic may trap. */
2456 if (fp_operation && flag_trapping_math)
2457 return true;
2459 *handled = false;
2460 return false;
2464 /* Return true if operation OP may trap. FP_OPERATION is true if OP is applied
2465 on floating-point values. HONOR_TRAPV is true if OP is applied on integer
2466 type operands that may trap. If OP is a division operator, DIVISOR contains
2467 the value of the divisor. */
2469 bool
2470 operation_could_trap_p (enum tree_code op, bool fp_operation, bool honor_trapv,
2471 tree divisor)
2473 bool honor_nans = (fp_operation && flag_trapping_math
2474 && !flag_finite_math_only);
2475 bool honor_snans = fp_operation && flag_signaling_nans != 0;
2476 bool handled;
2478 if (TREE_CODE_CLASS (op) != tcc_comparison
2479 && TREE_CODE_CLASS (op) != tcc_unary
2480 && TREE_CODE_CLASS (op) != tcc_binary)
2481 return false;
2483 return operation_could_trap_helper_p (op, fp_operation, honor_trapv,
2484 honor_nans, honor_snans, divisor,
2485 &handled);
2489 /* Returns true if it is possible to prove that the index of
2490 an array access REF (an ARRAY_REF expression) falls into the
2491 array bounds. */
2493 static bool
2494 in_array_bounds_p (tree ref)
2496 tree idx = TREE_OPERAND (ref, 1);
2497 tree min, max;
2499 if (TREE_CODE (idx) != INTEGER_CST)
2500 return false;
2502 min = array_ref_low_bound (ref);
2503 max = array_ref_up_bound (ref);
2504 if (!min
2505 || !max
2506 || TREE_CODE (min) != INTEGER_CST
2507 || TREE_CODE (max) != INTEGER_CST)
2508 return false;
2510 if (tree_int_cst_lt (idx, min)
2511 || tree_int_cst_lt (max, idx))
2512 return false;
2514 return true;
2517 /* Returns true if it is possible to prove that the range of
2518 an array access REF (an ARRAY_RANGE_REF expression) falls
2519 into the array bounds. */
2521 static bool
2522 range_in_array_bounds_p (tree ref)
2524 tree domain_type = TYPE_DOMAIN (TREE_TYPE (ref));
2525 tree range_min, range_max, min, max;
2527 range_min = TYPE_MIN_VALUE (domain_type);
2528 range_max = TYPE_MAX_VALUE (domain_type);
2529 if (!range_min
2530 || !range_max
2531 || TREE_CODE (range_min) != INTEGER_CST
2532 || TREE_CODE (range_max) != INTEGER_CST)
2533 return false;
2535 min = array_ref_low_bound (ref);
2536 max = array_ref_up_bound (ref);
2537 if (!min
2538 || !max
2539 || TREE_CODE (min) != INTEGER_CST
2540 || TREE_CODE (max) != INTEGER_CST)
2541 return false;
2543 if (tree_int_cst_lt (range_min, min)
2544 || tree_int_cst_lt (max, range_max))
2545 return false;
2547 return true;
2550 /* Return true if EXPR can trap, as in dereferencing an invalid pointer
2551 location or floating point arithmetic. C.f. the rtl version, may_trap_p.
2552 This routine expects only GIMPLE lhs or rhs input. */
2554 bool
2555 tree_could_trap_p (tree expr)
2557 enum tree_code code;
2558 bool fp_operation = false;
2559 bool honor_trapv = false;
2560 tree t, base, div = NULL_TREE;
2562 if (!expr)
2563 return false;
2565 code = TREE_CODE (expr);
2566 t = TREE_TYPE (expr);
2568 if (t)
2570 if (COMPARISON_CLASS_P (expr))
2571 fp_operation = FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 0)));
2572 else
2573 fp_operation = FLOAT_TYPE_P (t);
2574 honor_trapv = INTEGRAL_TYPE_P (t) && TYPE_OVERFLOW_TRAPS (t);
2577 if (TREE_CODE_CLASS (code) == tcc_binary)
2578 div = TREE_OPERAND (expr, 1);
2579 if (operation_could_trap_p (code, fp_operation, honor_trapv, div))
2580 return true;
2582 restart:
2583 switch (code)
2585 case COMPONENT_REF:
2586 case REALPART_EXPR:
2587 case IMAGPART_EXPR:
2588 case BIT_FIELD_REF:
2589 case VIEW_CONVERT_EXPR:
2590 case WITH_SIZE_EXPR:
2591 expr = TREE_OPERAND (expr, 0);
2592 code = TREE_CODE (expr);
2593 goto restart;
2595 case ARRAY_RANGE_REF:
2596 base = TREE_OPERAND (expr, 0);
2597 if (tree_could_trap_p (base))
2598 return true;
2599 if (TREE_THIS_NOTRAP (expr))
2600 return false;
2601 return !range_in_array_bounds_p (expr);
2603 case ARRAY_REF:
2604 base = TREE_OPERAND (expr, 0);
2605 if (tree_could_trap_p (base))
2606 return true;
2607 if (TREE_THIS_NOTRAP (expr))
2608 return false;
2609 return !in_array_bounds_p (expr);
2611 case TARGET_MEM_REF:
2612 case MEM_REF:
2613 if (TREE_CODE (TREE_OPERAND (expr, 0)) == ADDR_EXPR
2614 && tree_could_trap_p (TREE_OPERAND (TREE_OPERAND (expr, 0), 0)))
2615 return true;
2616 if (TREE_THIS_NOTRAP (expr))
2617 return false;
2618 /* We cannot prove that the access is in-bounds when we have
2619 variable-index TARGET_MEM_REFs. */
2620 if (code == TARGET_MEM_REF
2621 && (TMR_INDEX (expr) || TMR_INDEX2 (expr)))
2622 return true;
2623 if (TREE_CODE (TREE_OPERAND (expr, 0)) == ADDR_EXPR)
2625 tree base = TREE_OPERAND (TREE_OPERAND (expr, 0), 0);
2626 offset_int off = mem_ref_offset (expr);
2627 if (wi::neg_p (off, SIGNED))
2628 return true;
2629 if (TREE_CODE (base) == STRING_CST)
2630 return wi::leu_p (TREE_STRING_LENGTH (base), off);
2631 else if (DECL_SIZE_UNIT (base) == NULL_TREE
2632 || TREE_CODE (DECL_SIZE_UNIT (base)) != INTEGER_CST
2633 || wi::leu_p (wi::to_offset (DECL_SIZE_UNIT (base)), off))
2634 return true;
2635 /* Now we are sure the first byte of the access is inside
2636 the object. */
2637 return false;
2639 return true;
2641 case INDIRECT_REF:
2642 return !TREE_THIS_NOTRAP (expr);
2644 case ASM_EXPR:
2645 return TREE_THIS_VOLATILE (expr);
2647 case CALL_EXPR:
2648 t = get_callee_fndecl (expr);
2649 /* Assume that calls to weak functions may trap. */
2650 if (!t || !DECL_P (t))
2651 return true;
2652 if (DECL_WEAK (t))
2653 return tree_could_trap_p (t);
2654 return false;
2656 case FUNCTION_DECL:
2657 /* Assume that accesses to weak functions may trap, unless we know
2658 they are certainly defined in current TU or in some other
2659 LTO partition. */
2660 if (DECL_WEAK (expr) && !DECL_COMDAT (expr))
2662 struct cgraph_node *node;
2663 if (!DECL_EXTERNAL (expr))
2664 return false;
2665 node = cgraph_node::get (expr)->function_symbol ();
2666 if (node && node->in_other_partition)
2667 return false;
2668 return true;
2670 return false;
2672 case VAR_DECL:
2673 /* Assume that accesses to weak vars may trap, unless we know
2674 they are certainly defined in current TU or in some other
2675 LTO partition. */
2676 if (DECL_WEAK (expr) && !DECL_COMDAT (expr))
2678 varpool_node *node;
2679 if (!DECL_EXTERNAL (expr))
2680 return false;
2681 node = varpool_node::get (expr)->ultimate_alias_target ();
2682 if (node && node->in_other_partition)
2683 return false;
2684 return true;
2686 return false;
2688 default:
2689 return false;
2694 /* Helper for stmt_could_throw_p. Return true if STMT (assumed to be a
2695 an assignment or a conditional) may throw. */
2697 static bool
2698 stmt_could_throw_1_p (gimple stmt)
2700 enum tree_code code = gimple_expr_code (stmt);
2701 bool honor_nans = false;
2702 bool honor_snans = false;
2703 bool fp_operation = false;
2704 bool honor_trapv = false;
2705 tree t;
2706 size_t i;
2707 bool handled, ret;
2709 if (TREE_CODE_CLASS (code) == tcc_comparison
2710 || TREE_CODE_CLASS (code) == tcc_unary
2711 || TREE_CODE_CLASS (code) == tcc_binary)
2713 if (is_gimple_assign (stmt)
2714 && TREE_CODE_CLASS (code) == tcc_comparison)
2715 t = TREE_TYPE (gimple_assign_rhs1 (stmt));
2716 else if (gimple_code (stmt) == GIMPLE_COND)
2717 t = TREE_TYPE (gimple_cond_lhs (stmt));
2718 else
2719 t = gimple_expr_type (stmt);
2720 fp_operation = FLOAT_TYPE_P (t);
2721 if (fp_operation)
2723 honor_nans = flag_trapping_math && !flag_finite_math_only;
2724 honor_snans = flag_signaling_nans != 0;
2726 else if (INTEGRAL_TYPE_P (t) && TYPE_OVERFLOW_TRAPS (t))
2727 honor_trapv = true;
2730 /* Check if the main expression may trap. */
2731 t = is_gimple_assign (stmt) ? gimple_assign_rhs2 (stmt) : NULL;
2732 ret = operation_could_trap_helper_p (code, fp_operation, honor_trapv,
2733 honor_nans, honor_snans, t,
2734 &handled);
2735 if (handled)
2736 return ret;
2738 /* If the expression does not trap, see if any of the individual operands may
2739 trap. */
2740 for (i = 0; i < gimple_num_ops (stmt); i++)
2741 if (tree_could_trap_p (gimple_op (stmt, i)))
2742 return true;
2744 return false;
2748 /* Return true if statement STMT could throw an exception. */
2750 bool
2751 stmt_could_throw_p (gimple stmt)
2753 if (!flag_exceptions)
2754 return false;
2756 /* The only statements that can throw an exception are assignments,
2757 conditionals, calls, resx, and asms. */
2758 switch (gimple_code (stmt))
2760 case GIMPLE_RESX:
2761 return true;
2763 case GIMPLE_CALL:
2764 return !gimple_call_nothrow_p (stmt);
2766 case GIMPLE_ASSIGN:
2767 case GIMPLE_COND:
2768 if (!cfun->can_throw_non_call_exceptions)
2769 return false;
2770 return stmt_could_throw_1_p (stmt);
2772 case GIMPLE_ASM:
2773 if (!cfun->can_throw_non_call_exceptions)
2774 return false;
2775 return gimple_asm_volatile_p (stmt);
2777 default:
2778 return false;
2783 /* Return true if expression T could throw an exception. */
2785 bool
2786 tree_could_throw_p (tree t)
2788 if (!flag_exceptions)
2789 return false;
2790 if (TREE_CODE (t) == MODIFY_EXPR)
2792 if (cfun->can_throw_non_call_exceptions
2793 && tree_could_trap_p (TREE_OPERAND (t, 0)))
2794 return true;
2795 t = TREE_OPERAND (t, 1);
2798 if (TREE_CODE (t) == WITH_SIZE_EXPR)
2799 t = TREE_OPERAND (t, 0);
2800 if (TREE_CODE (t) == CALL_EXPR)
2801 return (call_expr_flags (t) & ECF_NOTHROW) == 0;
2802 if (cfun->can_throw_non_call_exceptions)
2803 return tree_could_trap_p (t);
2804 return false;
2807 /* Return true if STMT can throw an exception that is not caught within
2808 the current function (CFUN). */
2810 bool
2811 stmt_can_throw_external (gimple stmt)
2813 int lp_nr;
2815 if (!stmt_could_throw_p (stmt))
2816 return false;
2818 lp_nr = lookup_stmt_eh_lp (stmt);
2819 return lp_nr == 0;
2822 /* Return true if STMT can throw an exception that is caught within
2823 the current function (CFUN). */
2825 bool
2826 stmt_can_throw_internal (gimple stmt)
2828 int lp_nr;
2830 if (!stmt_could_throw_p (stmt))
2831 return false;
2833 lp_nr = lookup_stmt_eh_lp (stmt);
2834 return lp_nr > 0;
2837 /* Given a statement STMT in IFUN, if STMT can no longer throw, then
2838 remove any entry it might have from the EH table. Return true if
2839 any change was made. */
2841 bool
2842 maybe_clean_eh_stmt_fn (struct function *ifun, gimple stmt)
2844 if (stmt_could_throw_p (stmt))
2845 return false;
2846 return remove_stmt_from_eh_lp_fn (ifun, stmt);
2849 /* Likewise, but always use the current function. */
2851 bool
2852 maybe_clean_eh_stmt (gimple stmt)
2854 return maybe_clean_eh_stmt_fn (cfun, stmt);
2857 /* Given a statement OLD_STMT and a new statement NEW_STMT that has replaced
2858 OLD_STMT in the function, remove OLD_STMT from the EH table and put NEW_STMT
2859 in the table if it should be in there. Return TRUE if a replacement was
2860 done that my require an EH edge purge. */
2862 bool
2863 maybe_clean_or_replace_eh_stmt (gimple old_stmt, gimple new_stmt)
2865 int lp_nr = lookup_stmt_eh_lp (old_stmt);
2867 if (lp_nr != 0)
2869 bool new_stmt_could_throw = stmt_could_throw_p (new_stmt);
2871 if (new_stmt == old_stmt && new_stmt_could_throw)
2872 return false;
2874 remove_stmt_from_eh_lp (old_stmt);
2875 if (new_stmt_could_throw)
2877 add_stmt_to_eh_lp (new_stmt, lp_nr);
2878 return false;
2880 else
2881 return true;
2884 return false;
2887 /* Given a statement OLD_STMT in OLD_FUN and a duplicate statement NEW_STMT
2888 in NEW_FUN, copy the EH table data from OLD_STMT to NEW_STMT. The MAP
2889 operand is the return value of duplicate_eh_regions. */
2891 bool
2892 maybe_duplicate_eh_stmt_fn (struct function *new_fun, gimple new_stmt,
2893 struct function *old_fun, gimple old_stmt,
2894 hash_map<void *, void *> *map,
2895 int default_lp_nr)
2897 int old_lp_nr, new_lp_nr;
2899 if (!stmt_could_throw_p (new_stmt))
2900 return false;
2902 old_lp_nr = lookup_stmt_eh_lp_fn (old_fun, old_stmt);
2903 if (old_lp_nr == 0)
2905 if (default_lp_nr == 0)
2906 return false;
2907 new_lp_nr = default_lp_nr;
2909 else if (old_lp_nr > 0)
2911 eh_landing_pad old_lp, new_lp;
2913 old_lp = (*old_fun->eh->lp_array)[old_lp_nr];
2914 new_lp = static_cast<eh_landing_pad> (*map->get (old_lp));
2915 new_lp_nr = new_lp->index;
2917 else
2919 eh_region old_r, new_r;
2921 old_r = (*old_fun->eh->region_array)[-old_lp_nr];
2922 new_r = static_cast<eh_region> (*map->get (old_r));
2923 new_lp_nr = -new_r->index;
2926 add_stmt_to_eh_lp_fn (new_fun, new_stmt, new_lp_nr);
2927 return true;
2930 /* Similar, but both OLD_STMT and NEW_STMT are within the current function,
2931 and thus no remapping is required. */
2933 bool
2934 maybe_duplicate_eh_stmt (gimple new_stmt, gimple old_stmt)
2936 int lp_nr;
2938 if (!stmt_could_throw_p (new_stmt))
2939 return false;
2941 lp_nr = lookup_stmt_eh_lp (old_stmt);
2942 if (lp_nr == 0)
2943 return false;
2945 add_stmt_to_eh_lp (new_stmt, lp_nr);
2946 return true;
2949 /* Returns TRUE if oneh and twoh are exception handlers (gimple_try_cleanup of
2950 GIMPLE_TRY) that are similar enough to be considered the same. Currently
2951 this only handles handlers consisting of a single call, as that's the
2952 important case for C++: a destructor call for a particular object showing
2953 up in multiple handlers. */
2955 static bool
2956 same_handler_p (gimple_seq oneh, gimple_seq twoh)
2958 gimple_stmt_iterator gsi;
2959 gimple ones, twos;
2960 unsigned int ai;
2962 gsi = gsi_start (oneh);
2963 if (!gsi_one_before_end_p (gsi))
2964 return false;
2965 ones = gsi_stmt (gsi);
2967 gsi = gsi_start (twoh);
2968 if (!gsi_one_before_end_p (gsi))
2969 return false;
2970 twos = gsi_stmt (gsi);
2972 if (!is_gimple_call (ones)
2973 || !is_gimple_call (twos)
2974 || gimple_call_lhs (ones)
2975 || gimple_call_lhs (twos)
2976 || gimple_call_chain (ones)
2977 || gimple_call_chain (twos)
2978 || !gimple_call_same_target_p (ones, twos)
2979 || gimple_call_num_args (ones) != gimple_call_num_args (twos))
2980 return false;
2982 for (ai = 0; ai < gimple_call_num_args (ones); ++ai)
2983 if (!operand_equal_p (gimple_call_arg (ones, ai),
2984 gimple_call_arg (twos, ai), 0))
2985 return false;
2987 return true;
2990 /* Optimize
2991 try { A() } finally { try { ~B() } catch { ~A() } }
2992 try { ... } finally { ~A() }
2993 into
2994 try { A() } catch { ~B() }
2995 try { ~B() ... } finally { ~A() }
2997 This occurs frequently in C++, where A is a local variable and B is a
2998 temporary used in the initializer for A. */
3000 static void
3001 optimize_double_finally (gimple one, gimple two)
3003 gimple oneh;
3004 gimple_stmt_iterator gsi;
3005 gimple_seq cleanup;
3007 cleanup = gimple_try_cleanup (one);
3008 gsi = gsi_start (cleanup);
3009 if (!gsi_one_before_end_p (gsi))
3010 return;
3012 oneh = gsi_stmt (gsi);
3013 if (gimple_code (oneh) != GIMPLE_TRY
3014 || gimple_try_kind (oneh) != GIMPLE_TRY_CATCH)
3015 return;
3017 if (same_handler_p (gimple_try_cleanup (oneh), gimple_try_cleanup (two)))
3019 gimple_seq seq = gimple_try_eval (oneh);
3021 gimple_try_set_cleanup (one, seq);
3022 gimple_try_set_kind (one, GIMPLE_TRY_CATCH);
3023 seq = copy_gimple_seq_and_replace_locals (seq);
3024 gimple_seq_add_seq (&seq, gimple_try_eval (two));
3025 gimple_try_set_eval (two, seq);
3029 /* Perform EH refactoring optimizations that are simpler to do when code
3030 flow has been lowered but EH structures haven't. */
3032 static void
3033 refactor_eh_r (gimple_seq seq)
3035 gimple_stmt_iterator gsi;
3036 gimple one, two;
3038 one = NULL;
3039 two = NULL;
3040 gsi = gsi_start (seq);
3041 while (1)
3043 one = two;
3044 if (gsi_end_p (gsi))
3045 two = NULL;
3046 else
3047 two = gsi_stmt (gsi);
3048 if (one
3049 && two
3050 && gimple_code (one) == GIMPLE_TRY
3051 && gimple_code (two) == GIMPLE_TRY
3052 && gimple_try_kind (one) == GIMPLE_TRY_FINALLY
3053 && gimple_try_kind (two) == GIMPLE_TRY_FINALLY)
3054 optimize_double_finally (one, two);
3055 if (one)
3056 switch (gimple_code (one))
3058 case GIMPLE_TRY:
3059 refactor_eh_r (gimple_try_eval (one));
3060 refactor_eh_r (gimple_try_cleanup (one));
3061 break;
3062 case GIMPLE_CATCH:
3063 refactor_eh_r (gimple_catch_handler (one));
3064 break;
3065 case GIMPLE_EH_FILTER:
3066 refactor_eh_r (gimple_eh_filter_failure (one));
3067 break;
3068 case GIMPLE_EH_ELSE:
3069 refactor_eh_r (gimple_eh_else_n_body (one));
3070 refactor_eh_r (gimple_eh_else_e_body (one));
3071 break;
3072 default:
3073 break;
3075 if (two)
3076 gsi_next (&gsi);
3077 else
3078 break;
3082 namespace {
3084 const pass_data pass_data_refactor_eh =
3086 GIMPLE_PASS, /* type */
3087 "ehopt", /* name */
3088 OPTGROUP_NONE, /* optinfo_flags */
3089 TV_TREE_EH, /* tv_id */
3090 PROP_gimple_lcf, /* properties_required */
3091 0, /* properties_provided */
3092 0, /* properties_destroyed */
3093 0, /* todo_flags_start */
3094 0, /* todo_flags_finish */
3097 class pass_refactor_eh : public gimple_opt_pass
3099 public:
3100 pass_refactor_eh (gcc::context *ctxt)
3101 : gimple_opt_pass (pass_data_refactor_eh, ctxt)
3104 /* opt_pass methods: */
3105 virtual bool gate (function *) { return flag_exceptions != 0; }
3106 virtual unsigned int execute (function *)
3108 refactor_eh_r (gimple_body (current_function_decl));
3109 return 0;
3112 }; // class pass_refactor_eh
3114 } // anon namespace
3116 gimple_opt_pass *
3117 make_pass_refactor_eh (gcc::context *ctxt)
3119 return new pass_refactor_eh (ctxt);
3122 /* At the end of gimple optimization, we can lower RESX. */
3124 static bool
3125 lower_resx (basic_block bb, gimple stmt, hash_map<eh_region, tree> *mnt_map)
3127 int lp_nr;
3128 eh_region src_r, dst_r;
3129 gimple_stmt_iterator gsi;
3130 gimple x;
3131 tree fn, src_nr;
3132 bool ret = false;
3134 lp_nr = lookup_stmt_eh_lp (stmt);
3135 if (lp_nr != 0)
3136 dst_r = get_eh_region_from_lp_number (lp_nr);
3137 else
3138 dst_r = NULL;
3140 src_r = get_eh_region_from_number (gimple_resx_region (stmt));
3141 gsi = gsi_last_bb (bb);
3143 if (src_r == NULL)
3145 /* We can wind up with no source region when pass_cleanup_eh shows
3146 that there are no entries into an eh region and deletes it, but
3147 then the block that contains the resx isn't removed. This can
3148 happen without optimization when the switch statement created by
3149 lower_try_finally_switch isn't simplified to remove the eh case.
3151 Resolve this by expanding the resx node to an abort. */
3153 fn = builtin_decl_implicit (BUILT_IN_TRAP);
3154 x = gimple_build_call (fn, 0);
3155 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3157 while (EDGE_COUNT (bb->succs) > 0)
3158 remove_edge (EDGE_SUCC (bb, 0));
3160 else if (dst_r)
3162 /* When we have a destination region, we resolve this by copying
3163 the excptr and filter values into place, and changing the edge
3164 to immediately after the landing pad. */
3165 edge e;
3167 if (lp_nr < 0)
3169 basic_block new_bb;
3170 tree lab;
3172 /* We are resuming into a MUST_NOT_CALL region. Expand a call to
3173 the failure decl into a new block, if needed. */
3174 gcc_assert (dst_r->type == ERT_MUST_NOT_THROW);
3176 tree *slot = mnt_map->get (dst_r);
3177 if (slot == NULL)
3179 gimple_stmt_iterator gsi2;
3181 new_bb = create_empty_bb (bb);
3182 add_bb_to_loop (new_bb, bb->loop_father);
3183 lab = gimple_block_label (new_bb);
3184 gsi2 = gsi_start_bb (new_bb);
3186 fn = dst_r->u.must_not_throw.failure_decl;
3187 x = gimple_build_call (fn, 0);
3188 gimple_set_location (x, dst_r->u.must_not_throw.failure_loc);
3189 gsi_insert_after (&gsi2, x, GSI_CONTINUE_LINKING);
3191 mnt_map->put (dst_r, lab);
3193 else
3195 lab = *slot;
3196 new_bb = label_to_block (lab);
3199 gcc_assert (EDGE_COUNT (bb->succs) == 0);
3200 e = make_edge (bb, new_bb, EDGE_FALLTHRU);
3201 e->count = bb->count;
3202 e->probability = REG_BR_PROB_BASE;
3204 else
3206 edge_iterator ei;
3207 tree dst_nr = build_int_cst (integer_type_node, dst_r->index);
3209 fn = builtin_decl_implicit (BUILT_IN_EH_COPY_VALUES);
3210 src_nr = build_int_cst (integer_type_node, src_r->index);
3211 x = gimple_build_call (fn, 2, dst_nr, src_nr);
3212 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3214 /* Update the flags for the outgoing edge. */
3215 e = single_succ_edge (bb);
3216 gcc_assert (e->flags & EDGE_EH);
3217 e->flags = (e->flags & ~EDGE_EH) | EDGE_FALLTHRU;
3219 /* If there are no more EH users of the landing pad, delete it. */
3220 FOR_EACH_EDGE (e, ei, e->dest->preds)
3221 if (e->flags & EDGE_EH)
3222 break;
3223 if (e == NULL)
3225 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
3226 remove_eh_landing_pad (lp);
3230 ret = true;
3232 else
3234 tree var;
3236 /* When we don't have a destination region, this exception escapes
3237 up the call chain. We resolve this by generating a call to the
3238 _Unwind_Resume library function. */
3240 /* The ARM EABI redefines _Unwind_Resume as __cxa_end_cleanup
3241 with no arguments for C++ and Java. Check for that. */
3242 if (src_r->use_cxa_end_cleanup)
3244 fn = builtin_decl_implicit (BUILT_IN_CXA_END_CLEANUP);
3245 x = gimple_build_call (fn, 0);
3246 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3248 else
3250 fn = builtin_decl_implicit (BUILT_IN_EH_POINTER);
3251 src_nr = build_int_cst (integer_type_node, src_r->index);
3252 x = gimple_build_call (fn, 1, src_nr);
3253 var = create_tmp_var (ptr_type_node, NULL);
3254 var = make_ssa_name (var, x);
3255 gimple_call_set_lhs (x, var);
3256 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3258 fn = builtin_decl_implicit (BUILT_IN_UNWIND_RESUME);
3259 x = gimple_build_call (fn, 1, var);
3260 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3263 gcc_assert (EDGE_COUNT (bb->succs) == 0);
3266 gsi_remove (&gsi, true);
3268 return ret;
3271 namespace {
3273 const pass_data pass_data_lower_resx =
3275 GIMPLE_PASS, /* type */
3276 "resx", /* name */
3277 OPTGROUP_NONE, /* optinfo_flags */
3278 TV_TREE_EH, /* tv_id */
3279 PROP_gimple_lcf, /* properties_required */
3280 0, /* properties_provided */
3281 0, /* properties_destroyed */
3282 0, /* todo_flags_start */
3283 0, /* todo_flags_finish */
3286 class pass_lower_resx : public gimple_opt_pass
3288 public:
3289 pass_lower_resx (gcc::context *ctxt)
3290 : gimple_opt_pass (pass_data_lower_resx, ctxt)
3293 /* opt_pass methods: */
3294 virtual bool gate (function *) { return flag_exceptions != 0; }
3295 virtual unsigned int execute (function *);
3297 }; // class pass_lower_resx
3299 unsigned
3300 pass_lower_resx::execute (function *fun)
3302 basic_block bb;
3303 bool dominance_invalidated = false;
3304 bool any_rewritten = false;
3306 hash_map<eh_region, tree> mnt_map;
3308 FOR_EACH_BB_FN (bb, fun)
3310 gimple last = last_stmt (bb);
3311 if (last && is_gimple_resx (last))
3313 dominance_invalidated |= lower_resx (bb, last, &mnt_map);
3314 any_rewritten = true;
3318 if (dominance_invalidated)
3320 free_dominance_info (CDI_DOMINATORS);
3321 free_dominance_info (CDI_POST_DOMINATORS);
3324 return any_rewritten ? TODO_update_ssa_only_virtuals : 0;
3327 } // anon namespace
3329 gimple_opt_pass *
3330 make_pass_lower_resx (gcc::context *ctxt)
3332 return new pass_lower_resx (ctxt);
3335 /* Try to optimize var = {v} {CLOBBER} stmts followed just by
3336 external throw. */
3338 static void
3339 optimize_clobbers (basic_block bb)
3341 gimple_stmt_iterator gsi = gsi_last_bb (bb);
3342 bool any_clobbers = false;
3343 bool seen_stack_restore = false;
3344 edge_iterator ei;
3345 edge e;
3347 /* Only optimize anything if the bb contains at least one clobber,
3348 ends with resx (checked by caller), optionally contains some
3349 debug stmts or labels, or at most one __builtin_stack_restore
3350 call, and has an incoming EH edge. */
3351 for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
3353 gimple stmt = gsi_stmt (gsi);
3354 if (is_gimple_debug (stmt))
3355 continue;
3356 if (gimple_clobber_p (stmt))
3358 any_clobbers = true;
3359 continue;
3361 if (!seen_stack_restore
3362 && gimple_call_builtin_p (stmt, BUILT_IN_STACK_RESTORE))
3364 seen_stack_restore = true;
3365 continue;
3367 if (gimple_code (stmt) == GIMPLE_LABEL)
3368 break;
3369 return;
3371 if (!any_clobbers)
3372 return;
3373 FOR_EACH_EDGE (e, ei, bb->preds)
3374 if (e->flags & EDGE_EH)
3375 break;
3376 if (e == NULL)
3377 return;
3378 gsi = gsi_last_bb (bb);
3379 for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
3381 gimple stmt = gsi_stmt (gsi);
3382 if (!gimple_clobber_p (stmt))
3383 continue;
3384 unlink_stmt_vdef (stmt);
3385 gsi_remove (&gsi, true);
3386 release_defs (stmt);
3390 /* Try to sink var = {v} {CLOBBER} stmts followed just by
3391 internal throw to successor BB. */
3393 static int
3394 sink_clobbers (basic_block bb)
3396 edge e;
3397 edge_iterator ei;
3398 gimple_stmt_iterator gsi, dgsi;
3399 basic_block succbb;
3400 bool any_clobbers = false;
3401 unsigned todo = 0;
3403 /* Only optimize if BB has a single EH successor and
3404 all predecessor edges are EH too. */
3405 if (!single_succ_p (bb)
3406 || (single_succ_edge (bb)->flags & EDGE_EH) == 0)
3407 return 0;
3409 FOR_EACH_EDGE (e, ei, bb->preds)
3411 if ((e->flags & EDGE_EH) == 0)
3412 return 0;
3415 /* And BB contains only CLOBBER stmts before the final
3416 RESX. */
3417 gsi = gsi_last_bb (bb);
3418 for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
3420 gimple stmt = gsi_stmt (gsi);
3421 if (is_gimple_debug (stmt))
3422 continue;
3423 if (gimple_code (stmt) == GIMPLE_LABEL)
3424 break;
3425 if (!gimple_clobber_p (stmt))
3426 return 0;
3427 any_clobbers = true;
3429 if (!any_clobbers)
3430 return 0;
3432 edge succe = single_succ_edge (bb);
3433 succbb = succe->dest;
3435 /* See if there is a virtual PHI node to take an updated virtual
3436 operand from. */
3437 gimple vphi = NULL;
3438 tree vuse = NULL_TREE;
3439 for (gsi = gsi_start_phis (succbb); !gsi_end_p (gsi); gsi_next (&gsi))
3441 tree res = gimple_phi_result (gsi_stmt (gsi));
3442 if (virtual_operand_p (res))
3444 vphi = gsi_stmt (gsi);
3445 vuse = res;
3446 break;
3450 dgsi = gsi_after_labels (succbb);
3451 gsi = gsi_last_bb (bb);
3452 for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
3454 gimple stmt = gsi_stmt (gsi);
3455 tree lhs;
3456 if (is_gimple_debug (stmt))
3457 continue;
3458 if (gimple_code (stmt) == GIMPLE_LABEL)
3459 break;
3460 lhs = gimple_assign_lhs (stmt);
3461 /* Unfortunately we don't have dominance info updated at this
3462 point, so checking if
3463 dominated_by_p (CDI_DOMINATORS, succbb,
3464 gimple_bb (SSA_NAME_DEF_STMT (TREE_OPERAND (lhs, 0)))
3465 would be too costly. Thus, avoid sinking any clobbers that
3466 refer to non-(D) SSA_NAMEs. */
3467 if (TREE_CODE (lhs) == MEM_REF
3468 && TREE_CODE (TREE_OPERAND (lhs, 0)) == SSA_NAME
3469 && !SSA_NAME_IS_DEFAULT_DEF (TREE_OPERAND (lhs, 0)))
3471 unlink_stmt_vdef (stmt);
3472 gsi_remove (&gsi, true);
3473 release_defs (stmt);
3474 continue;
3477 /* As we do not change stmt order when sinking across a
3478 forwarder edge we can keep virtual operands in place. */
3479 gsi_remove (&gsi, false);
3480 gsi_insert_before (&dgsi, stmt, GSI_NEW_STMT);
3482 /* But adjust virtual operands if we sunk across a PHI node. */
3483 if (vuse)
3485 gimple use_stmt;
3486 imm_use_iterator iter;
3487 use_operand_p use_p;
3488 FOR_EACH_IMM_USE_STMT (use_stmt, iter, vuse)
3489 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
3490 SET_USE (use_p, gimple_vdef (stmt));
3491 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (vuse))
3493 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_vdef (stmt)) = 1;
3494 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (vuse) = 0;
3496 /* Adjust the incoming virtual operand. */
3497 SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE (vphi, succe), gimple_vuse (stmt));
3498 SET_USE (gimple_vuse_op (stmt), vuse);
3500 /* If there isn't a single predecessor but no virtual PHI node
3501 arrange for virtual operands to be renamed. */
3502 else if (gimple_vuse_op (stmt) != NULL_USE_OPERAND_P
3503 && !single_pred_p (succbb))
3505 /* In this case there will be no use of the VDEF of this stmt.
3506 ??? Unless this is a secondary opportunity and we have not
3507 removed unreachable blocks yet, so we cannot assert this.
3508 Which also means we will end up renaming too many times. */
3509 SET_USE (gimple_vuse_op (stmt), gimple_vop (cfun));
3510 mark_virtual_operands_for_renaming (cfun);
3511 todo |= TODO_update_ssa_only_virtuals;
3515 return todo;
3518 /* At the end of inlining, we can lower EH_DISPATCH. Return true when
3519 we have found some duplicate labels and removed some edges. */
3521 static bool
3522 lower_eh_dispatch (basic_block src, gimple stmt)
3524 gimple_stmt_iterator gsi;
3525 int region_nr;
3526 eh_region r;
3527 tree filter, fn;
3528 gimple x;
3529 bool redirected = false;
3531 region_nr = gimple_eh_dispatch_region (stmt);
3532 r = get_eh_region_from_number (region_nr);
3534 gsi = gsi_last_bb (src);
3536 switch (r->type)
3538 case ERT_TRY:
3540 auto_vec<tree> labels;
3541 tree default_label = NULL;
3542 eh_catch c;
3543 edge_iterator ei;
3544 edge e;
3545 hash_set<tree> seen_values;
3547 /* Collect the labels for a switch. Zero the post_landing_pad
3548 field becase we'll no longer have anything keeping these labels
3549 in existence and the optimizer will be free to merge these
3550 blocks at will. */
3551 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
3553 tree tp_node, flt_node, lab = c->label;
3554 bool have_label = false;
3556 c->label = NULL;
3557 tp_node = c->type_list;
3558 flt_node = c->filter_list;
3560 if (tp_node == NULL)
3562 default_label = lab;
3563 break;
3567 /* Filter out duplicate labels that arise when this handler
3568 is shadowed by an earlier one. When no labels are
3569 attached to the handler anymore, we remove
3570 the corresponding edge and then we delete unreachable
3571 blocks at the end of this pass. */
3572 if (! seen_values.contains (TREE_VALUE (flt_node)))
3574 tree t = build_case_label (TREE_VALUE (flt_node),
3575 NULL, lab);
3576 labels.safe_push (t);
3577 seen_values.add (TREE_VALUE (flt_node));
3578 have_label = true;
3581 tp_node = TREE_CHAIN (tp_node);
3582 flt_node = TREE_CHAIN (flt_node);
3584 while (tp_node);
3585 if (! have_label)
3587 remove_edge (find_edge (src, label_to_block (lab)));
3588 redirected = true;
3592 /* Clean up the edge flags. */
3593 FOR_EACH_EDGE (e, ei, src->succs)
3595 if (e->flags & EDGE_FALLTHRU)
3597 /* If there was no catch-all, use the fallthru edge. */
3598 if (default_label == NULL)
3599 default_label = gimple_block_label (e->dest);
3600 e->flags &= ~EDGE_FALLTHRU;
3603 gcc_assert (default_label != NULL);
3605 /* Don't generate a switch if there's only a default case.
3606 This is common in the form of try { A; } catch (...) { B; }. */
3607 if (!labels.exists ())
3609 e = single_succ_edge (src);
3610 e->flags |= EDGE_FALLTHRU;
3612 else
3614 fn = builtin_decl_implicit (BUILT_IN_EH_FILTER);
3615 x = gimple_build_call (fn, 1, build_int_cst (integer_type_node,
3616 region_nr));
3617 filter = create_tmp_var (TREE_TYPE (TREE_TYPE (fn)), NULL);
3618 filter = make_ssa_name (filter, x);
3619 gimple_call_set_lhs (x, filter);
3620 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3622 /* Turn the default label into a default case. */
3623 default_label = build_case_label (NULL, NULL, default_label);
3624 sort_case_labels (labels);
3626 x = gimple_build_switch (filter, default_label, labels);
3627 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3630 break;
3632 case ERT_ALLOWED_EXCEPTIONS:
3634 edge b_e = BRANCH_EDGE (src);
3635 edge f_e = FALLTHRU_EDGE (src);
3637 fn = builtin_decl_implicit (BUILT_IN_EH_FILTER);
3638 x = gimple_build_call (fn, 1, build_int_cst (integer_type_node,
3639 region_nr));
3640 filter = create_tmp_var (TREE_TYPE (TREE_TYPE (fn)), NULL);
3641 filter = make_ssa_name (filter, x);
3642 gimple_call_set_lhs (x, filter);
3643 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3645 r->u.allowed.label = NULL;
3646 x = gimple_build_cond (EQ_EXPR, filter,
3647 build_int_cst (TREE_TYPE (filter),
3648 r->u.allowed.filter),
3649 NULL_TREE, NULL_TREE);
3650 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3652 b_e->flags = b_e->flags | EDGE_TRUE_VALUE;
3653 f_e->flags = (f_e->flags & ~EDGE_FALLTHRU) | EDGE_FALSE_VALUE;
3655 break;
3657 default:
3658 gcc_unreachable ();
3661 /* Replace the EH_DISPATCH with the SWITCH or COND generated above. */
3662 gsi_remove (&gsi, true);
3663 return redirected;
3666 namespace {
3668 const pass_data pass_data_lower_eh_dispatch =
3670 GIMPLE_PASS, /* type */
3671 "ehdisp", /* name */
3672 OPTGROUP_NONE, /* optinfo_flags */
3673 TV_TREE_EH, /* tv_id */
3674 PROP_gimple_lcf, /* properties_required */
3675 0, /* properties_provided */
3676 0, /* properties_destroyed */
3677 0, /* todo_flags_start */
3678 0, /* todo_flags_finish */
3681 class pass_lower_eh_dispatch : public gimple_opt_pass
3683 public:
3684 pass_lower_eh_dispatch (gcc::context *ctxt)
3685 : gimple_opt_pass (pass_data_lower_eh_dispatch, ctxt)
3688 /* opt_pass methods: */
3689 virtual bool gate (function *fun) { return fun->eh->region_tree != NULL; }
3690 virtual unsigned int execute (function *);
3692 }; // class pass_lower_eh_dispatch
3694 unsigned
3695 pass_lower_eh_dispatch::execute (function *fun)
3697 basic_block bb;
3698 int flags = 0;
3699 bool redirected = false;
3701 assign_filter_values ();
3703 FOR_EACH_BB_FN (bb, fun)
3705 gimple last = last_stmt (bb);
3706 if (last == NULL)
3707 continue;
3708 if (gimple_code (last) == GIMPLE_EH_DISPATCH)
3710 redirected |= lower_eh_dispatch (bb, last);
3711 flags |= TODO_update_ssa_only_virtuals;
3713 else if (gimple_code (last) == GIMPLE_RESX)
3715 if (stmt_can_throw_external (last))
3716 optimize_clobbers (bb);
3717 else
3718 flags |= sink_clobbers (bb);
3722 if (redirected)
3723 delete_unreachable_blocks ();
3724 return flags;
3727 } // anon namespace
3729 gimple_opt_pass *
3730 make_pass_lower_eh_dispatch (gcc::context *ctxt)
3732 return new pass_lower_eh_dispatch (ctxt);
3735 /* Walk statements, see what regions and, optionally, landing pads
3736 are really referenced.
3738 Returns in R_REACHABLEP an sbitmap with bits set for reachable regions,
3739 and in LP_REACHABLE an sbitmap with bits set for reachable landing pads.
3741 Passing NULL for LP_REACHABLE is valid, in this case only reachable
3742 regions are marked.
3744 The caller is responsible for freeing the returned sbitmaps. */
3746 static void
3747 mark_reachable_handlers (sbitmap *r_reachablep, sbitmap *lp_reachablep)
3749 sbitmap r_reachable, lp_reachable;
3750 basic_block bb;
3751 bool mark_landing_pads = (lp_reachablep != NULL);
3752 gcc_checking_assert (r_reachablep != NULL);
3754 r_reachable = sbitmap_alloc (cfun->eh->region_array->length ());
3755 bitmap_clear (r_reachable);
3756 *r_reachablep = r_reachable;
3758 if (mark_landing_pads)
3760 lp_reachable = sbitmap_alloc (cfun->eh->lp_array->length ());
3761 bitmap_clear (lp_reachable);
3762 *lp_reachablep = lp_reachable;
3764 else
3765 lp_reachable = NULL;
3767 FOR_EACH_BB_FN (bb, cfun)
3769 gimple_stmt_iterator gsi;
3771 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3773 gimple stmt = gsi_stmt (gsi);
3775 if (mark_landing_pads)
3777 int lp_nr = lookup_stmt_eh_lp (stmt);
3779 /* Negative LP numbers are MUST_NOT_THROW regions which
3780 are not considered BB enders. */
3781 if (lp_nr < 0)
3782 bitmap_set_bit (r_reachable, -lp_nr);
3784 /* Positive LP numbers are real landing pads, and BB enders. */
3785 else if (lp_nr > 0)
3787 gcc_assert (gsi_one_before_end_p (gsi));
3788 eh_region region = get_eh_region_from_lp_number (lp_nr);
3789 bitmap_set_bit (r_reachable, region->index);
3790 bitmap_set_bit (lp_reachable, lp_nr);
3794 /* Avoid removing regions referenced from RESX/EH_DISPATCH. */
3795 switch (gimple_code (stmt))
3797 case GIMPLE_RESX:
3798 bitmap_set_bit (r_reachable, gimple_resx_region (stmt));
3799 break;
3800 case GIMPLE_EH_DISPATCH:
3801 bitmap_set_bit (r_reachable, gimple_eh_dispatch_region (stmt));
3802 break;
3803 default:
3804 break;
3810 /* Remove unreachable handlers and unreachable landing pads. */
3812 static void
3813 remove_unreachable_handlers (void)
3815 sbitmap r_reachable, lp_reachable;
3816 eh_region region;
3817 eh_landing_pad lp;
3818 unsigned i;
3820 mark_reachable_handlers (&r_reachable, &lp_reachable);
3822 if (dump_file)
3824 fprintf (dump_file, "Before removal of unreachable regions:\n");
3825 dump_eh_tree (dump_file, cfun);
3826 fprintf (dump_file, "Reachable regions: ");
3827 dump_bitmap_file (dump_file, r_reachable);
3828 fprintf (dump_file, "Reachable landing pads: ");
3829 dump_bitmap_file (dump_file, lp_reachable);
3832 if (dump_file)
3834 FOR_EACH_VEC_SAFE_ELT (cfun->eh->region_array, i, region)
3835 if (region && !bitmap_bit_p (r_reachable, region->index))
3836 fprintf (dump_file,
3837 "Removing unreachable region %d\n",
3838 region->index);
3841 remove_unreachable_eh_regions (r_reachable);
3843 FOR_EACH_VEC_SAFE_ELT (cfun->eh->lp_array, i, lp)
3844 if (lp && !bitmap_bit_p (lp_reachable, lp->index))
3846 if (dump_file)
3847 fprintf (dump_file,
3848 "Removing unreachable landing pad %d\n",
3849 lp->index);
3850 remove_eh_landing_pad (lp);
3853 if (dump_file)
3855 fprintf (dump_file, "\n\nAfter removal of unreachable regions:\n");
3856 dump_eh_tree (dump_file, cfun);
3857 fprintf (dump_file, "\n\n");
3860 sbitmap_free (r_reachable);
3861 sbitmap_free (lp_reachable);
3863 #ifdef ENABLE_CHECKING
3864 verify_eh_tree (cfun);
3865 #endif
3868 /* Remove unreachable handlers if any landing pads have been removed after
3869 last ehcleanup pass (due to gimple_purge_dead_eh_edges). */
3871 void
3872 maybe_remove_unreachable_handlers (void)
3874 eh_landing_pad lp;
3875 unsigned i;
3877 if (cfun->eh == NULL)
3878 return;
3880 FOR_EACH_VEC_SAFE_ELT (cfun->eh->lp_array, i, lp)
3881 if (lp && lp->post_landing_pad)
3883 if (label_to_block (lp->post_landing_pad) == NULL)
3885 remove_unreachable_handlers ();
3886 return;
3891 /* Remove regions that do not have landing pads. This assumes
3892 that remove_unreachable_handlers has already been run, and
3893 that we've just manipulated the landing pads since then.
3895 Preserve regions with landing pads and regions that prevent
3896 exceptions from propagating further, even if these regions
3897 are not reachable. */
3899 static void
3900 remove_unreachable_handlers_no_lp (void)
3902 eh_region region;
3903 sbitmap r_reachable;
3904 unsigned i;
3906 mark_reachable_handlers (&r_reachable, /*lp_reachablep=*/NULL);
3908 FOR_EACH_VEC_SAFE_ELT (cfun->eh->region_array, i, region)
3910 if (! region)
3911 continue;
3913 if (region->landing_pads != NULL
3914 || region->type == ERT_MUST_NOT_THROW)
3915 bitmap_set_bit (r_reachable, region->index);
3917 if (dump_file
3918 && !bitmap_bit_p (r_reachable, region->index))
3919 fprintf (dump_file,
3920 "Removing unreachable region %d\n",
3921 region->index);
3924 remove_unreachable_eh_regions (r_reachable);
3926 sbitmap_free (r_reachable);
3929 /* Undo critical edge splitting on an EH landing pad. Earlier, we
3930 optimisticaly split all sorts of edges, including EH edges. The
3931 optimization passes in between may not have needed them; if not,
3932 we should undo the split.
3934 Recognize this case by having one EH edge incoming to the BB and
3935 one normal edge outgoing; BB should be empty apart from the
3936 post_landing_pad label.
3938 Note that this is slightly different from the empty handler case
3939 handled by cleanup_empty_eh, in that the actual handler may yet
3940 have actual code but the landing pad has been separated from the
3941 handler. As such, cleanup_empty_eh relies on this transformation
3942 having been done first. */
3944 static bool
3945 unsplit_eh (eh_landing_pad lp)
3947 basic_block bb = label_to_block (lp->post_landing_pad);
3948 gimple_stmt_iterator gsi;
3949 edge e_in, e_out;
3951 /* Quickly check the edge counts on BB for singularity. */
3952 if (!single_pred_p (bb) || !single_succ_p (bb))
3953 return false;
3954 e_in = single_pred_edge (bb);
3955 e_out = single_succ_edge (bb);
3957 /* Input edge must be EH and output edge must be normal. */
3958 if ((e_in->flags & EDGE_EH) == 0 || (e_out->flags & EDGE_EH) != 0)
3959 return false;
3961 /* The block must be empty except for the labels and debug insns. */
3962 gsi = gsi_after_labels (bb);
3963 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
3964 gsi_next_nondebug (&gsi);
3965 if (!gsi_end_p (gsi))
3966 return false;
3968 /* The destination block must not already have a landing pad
3969 for a different region. */
3970 for (gsi = gsi_start_bb (e_out->dest); !gsi_end_p (gsi); gsi_next (&gsi))
3972 gimple stmt = gsi_stmt (gsi);
3973 tree lab;
3974 int lp_nr;
3976 if (gimple_code (stmt) != GIMPLE_LABEL)
3977 break;
3978 lab = gimple_label_label (stmt);
3979 lp_nr = EH_LANDING_PAD_NR (lab);
3980 if (lp_nr && get_eh_region_from_lp_number (lp_nr) != lp->region)
3981 return false;
3984 /* The new destination block must not already be a destination of
3985 the source block, lest we merge fallthru and eh edges and get
3986 all sorts of confused. */
3987 if (find_edge (e_in->src, e_out->dest))
3988 return false;
3990 /* ??? We can get degenerate phis due to cfg cleanups. I would have
3991 thought this should have been cleaned up by a phicprop pass, but
3992 that doesn't appear to handle virtuals. Propagate by hand. */
3993 if (!gimple_seq_empty_p (phi_nodes (bb)))
3995 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); )
3997 gimple use_stmt, phi = gsi_stmt (gsi);
3998 tree lhs = gimple_phi_result (phi);
3999 tree rhs = gimple_phi_arg_def (phi, 0);
4000 use_operand_p use_p;
4001 imm_use_iterator iter;
4003 FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
4005 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
4006 SET_USE (use_p, rhs);
4009 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
4010 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs) = 1;
4012 remove_phi_node (&gsi, true);
4016 if (dump_file && (dump_flags & TDF_DETAILS))
4017 fprintf (dump_file, "Unsplit EH landing pad %d to block %i.\n",
4018 lp->index, e_out->dest->index);
4020 /* Redirect the edge. Since redirect_eh_edge_1 expects to be moving
4021 a successor edge, humor it. But do the real CFG change with the
4022 predecessor of E_OUT in order to preserve the ordering of arguments
4023 to the PHI nodes in E_OUT->DEST. */
4024 redirect_eh_edge_1 (e_in, e_out->dest, false);
4025 redirect_edge_pred (e_out, e_in->src);
4026 e_out->flags = e_in->flags;
4027 e_out->probability = e_in->probability;
4028 e_out->count = e_in->count;
4029 remove_edge (e_in);
4031 return true;
4034 /* Examine each landing pad block and see if it matches unsplit_eh. */
4036 static bool
4037 unsplit_all_eh (void)
4039 bool changed = false;
4040 eh_landing_pad lp;
4041 int i;
4043 for (i = 1; vec_safe_iterate (cfun->eh->lp_array, i, &lp); ++i)
4044 if (lp)
4045 changed |= unsplit_eh (lp);
4047 return changed;
4050 /* A subroutine of cleanup_empty_eh. Redirect all EH edges incoming
4051 to OLD_BB to NEW_BB; return true on success, false on failure.
4053 OLD_BB_OUT is the edge into NEW_BB from OLD_BB, so if we miss any
4054 PHI variables from OLD_BB we can pick them up from OLD_BB_OUT.
4055 Virtual PHIs may be deleted and marked for renaming. */
4057 static bool
4058 cleanup_empty_eh_merge_phis (basic_block new_bb, basic_block old_bb,
4059 edge old_bb_out, bool change_region)
4061 gimple_stmt_iterator ngsi, ogsi;
4062 edge_iterator ei;
4063 edge e;
4064 bitmap ophi_handled;
4066 /* The destination block must not be a regular successor for any
4067 of the preds of the landing pad. Thus, avoid turning
4068 <..>
4069 | \ EH
4070 | <..>
4072 <..>
4073 into
4074 <..>
4075 | | EH
4076 <..>
4077 which CFG verification would choke on. See PR45172 and PR51089. */
4078 FOR_EACH_EDGE (e, ei, old_bb->preds)
4079 if (find_edge (e->src, new_bb))
4080 return false;
4082 FOR_EACH_EDGE (e, ei, old_bb->preds)
4083 redirect_edge_var_map_clear (e);
4085 ophi_handled = BITMAP_ALLOC (NULL);
4087 /* First, iterate through the PHIs on NEW_BB and set up the edge_var_map
4088 for the edges we're going to move. */
4089 for (ngsi = gsi_start_phis (new_bb); !gsi_end_p (ngsi); gsi_next (&ngsi))
4091 gimple ophi, nphi = gsi_stmt (ngsi);
4092 tree nresult, nop;
4094 nresult = gimple_phi_result (nphi);
4095 nop = gimple_phi_arg_def (nphi, old_bb_out->dest_idx);
4097 /* Find the corresponding PHI in OLD_BB so we can forward-propagate
4098 the source ssa_name. */
4099 ophi = NULL;
4100 for (ogsi = gsi_start_phis (old_bb); !gsi_end_p (ogsi); gsi_next (&ogsi))
4102 ophi = gsi_stmt (ogsi);
4103 if (gimple_phi_result (ophi) == nop)
4104 break;
4105 ophi = NULL;
4108 /* If we did find the corresponding PHI, copy those inputs. */
4109 if (ophi)
4111 /* If NOP is used somewhere else beyond phis in new_bb, give up. */
4112 if (!has_single_use (nop))
4114 imm_use_iterator imm_iter;
4115 use_operand_p use_p;
4117 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, nop)
4119 if (!gimple_debug_bind_p (USE_STMT (use_p))
4120 && (gimple_code (USE_STMT (use_p)) != GIMPLE_PHI
4121 || gimple_bb (USE_STMT (use_p)) != new_bb))
4122 goto fail;
4125 bitmap_set_bit (ophi_handled, SSA_NAME_VERSION (nop));
4126 FOR_EACH_EDGE (e, ei, old_bb->preds)
4128 location_t oloc;
4129 tree oop;
4131 if ((e->flags & EDGE_EH) == 0)
4132 continue;
4133 oop = gimple_phi_arg_def (ophi, e->dest_idx);
4134 oloc = gimple_phi_arg_location (ophi, e->dest_idx);
4135 redirect_edge_var_map_add (e, nresult, oop, oloc);
4138 /* If we didn't find the PHI, if it's a real variable or a VOP, we know
4139 from the fact that OLD_BB is tree_empty_eh_handler_p that the
4140 variable is unchanged from input to the block and we can simply
4141 re-use the input to NEW_BB from the OLD_BB_OUT edge. */
4142 else
4144 location_t nloc
4145 = gimple_phi_arg_location (nphi, old_bb_out->dest_idx);
4146 FOR_EACH_EDGE (e, ei, old_bb->preds)
4147 redirect_edge_var_map_add (e, nresult, nop, nloc);
4151 /* Second, verify that all PHIs from OLD_BB have been handled. If not,
4152 we don't know what values from the other edges into NEW_BB to use. */
4153 for (ogsi = gsi_start_phis (old_bb); !gsi_end_p (ogsi); gsi_next (&ogsi))
4155 gimple ophi = gsi_stmt (ogsi);
4156 tree oresult = gimple_phi_result (ophi);
4157 if (!bitmap_bit_p (ophi_handled, SSA_NAME_VERSION (oresult)))
4158 goto fail;
4161 /* Finally, move the edges and update the PHIs. */
4162 for (ei = ei_start (old_bb->preds); (e = ei_safe_edge (ei)); )
4163 if (e->flags & EDGE_EH)
4165 /* ??? CFG manipluation routines do not try to update loop
4166 form on edge redirection. Do so manually here for now. */
4167 /* If we redirect a loop entry or latch edge that will either create
4168 a multiple entry loop or rotate the loop. If the loops merge
4169 we may have created a loop with multiple latches.
4170 All of this isn't easily fixed thus cancel the affected loop
4171 and mark the other loop as possibly having multiple latches. */
4172 if (e->dest == e->dest->loop_father->header)
4174 mark_loop_for_removal (e->dest->loop_father);
4175 new_bb->loop_father->latch = NULL;
4176 loops_state_set (LOOPS_MAY_HAVE_MULTIPLE_LATCHES);
4178 redirect_eh_edge_1 (e, new_bb, change_region);
4179 redirect_edge_succ (e, new_bb);
4180 flush_pending_stmts (e);
4182 else
4183 ei_next (&ei);
4185 BITMAP_FREE (ophi_handled);
4186 return true;
4188 fail:
4189 FOR_EACH_EDGE (e, ei, old_bb->preds)
4190 redirect_edge_var_map_clear (e);
4191 BITMAP_FREE (ophi_handled);
4192 return false;
4195 /* A subroutine of cleanup_empty_eh. Move a landing pad LP from its
4196 old region to NEW_REGION at BB. */
4198 static void
4199 cleanup_empty_eh_move_lp (basic_block bb, edge e_out,
4200 eh_landing_pad lp, eh_region new_region)
4202 gimple_stmt_iterator gsi;
4203 eh_landing_pad *pp;
4205 for (pp = &lp->region->landing_pads; *pp != lp; pp = &(*pp)->next_lp)
4206 continue;
4207 *pp = lp->next_lp;
4209 lp->region = new_region;
4210 lp->next_lp = new_region->landing_pads;
4211 new_region->landing_pads = lp;
4213 /* Delete the RESX that was matched within the empty handler block. */
4214 gsi = gsi_last_bb (bb);
4215 unlink_stmt_vdef (gsi_stmt (gsi));
4216 gsi_remove (&gsi, true);
4218 /* Clean up E_OUT for the fallthru. */
4219 e_out->flags = (e_out->flags & ~EDGE_EH) | EDGE_FALLTHRU;
4220 e_out->probability = REG_BR_PROB_BASE;
4223 /* A subroutine of cleanup_empty_eh. Handle more complex cases of
4224 unsplitting than unsplit_eh was prepared to handle, e.g. when
4225 multiple incoming edges and phis are involved. */
4227 static bool
4228 cleanup_empty_eh_unsplit (basic_block bb, edge e_out, eh_landing_pad lp)
4230 gimple_stmt_iterator gsi;
4231 tree lab;
4233 /* We really ought not have totally lost everything following
4234 a landing pad label. Given that BB is empty, there had better
4235 be a successor. */
4236 gcc_assert (e_out != NULL);
4238 /* The destination block must not already have a landing pad
4239 for a different region. */
4240 lab = NULL;
4241 for (gsi = gsi_start_bb (e_out->dest); !gsi_end_p (gsi); gsi_next (&gsi))
4243 gimple stmt = gsi_stmt (gsi);
4244 int lp_nr;
4246 if (gimple_code (stmt) != GIMPLE_LABEL)
4247 break;
4248 lab = gimple_label_label (stmt);
4249 lp_nr = EH_LANDING_PAD_NR (lab);
4250 if (lp_nr && get_eh_region_from_lp_number (lp_nr) != lp->region)
4251 return false;
4254 /* Attempt to move the PHIs into the successor block. */
4255 if (cleanup_empty_eh_merge_phis (e_out->dest, bb, e_out, false))
4257 if (dump_file && (dump_flags & TDF_DETAILS))
4258 fprintf (dump_file,
4259 "Unsplit EH landing pad %d to block %i "
4260 "(via cleanup_empty_eh).\n",
4261 lp->index, e_out->dest->index);
4262 return true;
4265 return false;
4268 /* Return true if edge E_FIRST is part of an empty infinite loop
4269 or leads to such a loop through a series of single successor
4270 empty bbs. */
4272 static bool
4273 infinite_empty_loop_p (edge e_first)
4275 bool inf_loop = false;
4276 edge e;
4278 if (e_first->dest == e_first->src)
4279 return true;
4281 e_first->src->aux = (void *) 1;
4282 for (e = e_first; single_succ_p (e->dest); e = single_succ_edge (e->dest))
4284 gimple_stmt_iterator gsi;
4285 if (e->dest->aux)
4287 inf_loop = true;
4288 break;
4290 e->dest->aux = (void *) 1;
4291 gsi = gsi_after_labels (e->dest);
4292 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
4293 gsi_next_nondebug (&gsi);
4294 if (!gsi_end_p (gsi))
4295 break;
4297 e_first->src->aux = NULL;
4298 for (e = e_first; e->dest->aux; e = single_succ_edge (e->dest))
4299 e->dest->aux = NULL;
4301 return inf_loop;
4304 /* Examine the block associated with LP to determine if it's an empty
4305 handler for its EH region. If so, attempt to redirect EH edges to
4306 an outer region. Return true the CFG was updated in any way. This
4307 is similar to jump forwarding, just across EH edges. */
4309 static bool
4310 cleanup_empty_eh (eh_landing_pad lp)
4312 basic_block bb = label_to_block (lp->post_landing_pad);
4313 gimple_stmt_iterator gsi;
4314 gimple resx;
4315 eh_region new_region;
4316 edge_iterator ei;
4317 edge e, e_out;
4318 bool has_non_eh_pred;
4319 bool ret = false;
4320 int new_lp_nr;
4322 /* There can be zero or one edges out of BB. This is the quickest test. */
4323 switch (EDGE_COUNT (bb->succs))
4325 case 0:
4326 e_out = NULL;
4327 break;
4328 case 1:
4329 e_out = single_succ_edge (bb);
4330 break;
4331 default:
4332 return false;
4335 resx = last_stmt (bb);
4336 if (resx && is_gimple_resx (resx))
4338 if (stmt_can_throw_external (resx))
4339 optimize_clobbers (bb);
4340 else if (sink_clobbers (bb))
4341 ret = true;
4344 gsi = gsi_after_labels (bb);
4346 /* Make sure to skip debug statements. */
4347 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
4348 gsi_next_nondebug (&gsi);
4350 /* If the block is totally empty, look for more unsplitting cases. */
4351 if (gsi_end_p (gsi))
4353 /* For the degenerate case of an infinite loop bail out.
4354 If bb has no successors and is totally empty, which can happen e.g.
4355 because of incorrect noreturn attribute, bail out too. */
4356 if (e_out == NULL
4357 || infinite_empty_loop_p (e_out))
4358 return ret;
4360 return ret | cleanup_empty_eh_unsplit (bb, e_out, lp);
4363 /* The block should consist only of a single RESX statement, modulo a
4364 preceding call to __builtin_stack_restore if there is no outgoing
4365 edge, since the call can be eliminated in this case. */
4366 resx = gsi_stmt (gsi);
4367 if (!e_out && gimple_call_builtin_p (resx, BUILT_IN_STACK_RESTORE))
4369 gsi_next (&gsi);
4370 resx = gsi_stmt (gsi);
4372 if (!is_gimple_resx (resx))
4373 return ret;
4374 gcc_assert (gsi_one_before_end_p (gsi));
4376 /* Determine if there are non-EH edges, or resx edges into the handler. */
4377 has_non_eh_pred = false;
4378 FOR_EACH_EDGE (e, ei, bb->preds)
4379 if (!(e->flags & EDGE_EH))
4380 has_non_eh_pred = true;
4382 /* Find the handler that's outer of the empty handler by looking at
4383 where the RESX instruction was vectored. */
4384 new_lp_nr = lookup_stmt_eh_lp (resx);
4385 new_region = get_eh_region_from_lp_number (new_lp_nr);
4387 /* If there's no destination region within the current function,
4388 redirection is trivial via removing the throwing statements from
4389 the EH region, removing the EH edges, and allowing the block
4390 to go unreachable. */
4391 if (new_region == NULL)
4393 gcc_assert (e_out == NULL);
4394 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
4395 if (e->flags & EDGE_EH)
4397 gimple stmt = last_stmt (e->src);
4398 remove_stmt_from_eh_lp (stmt);
4399 remove_edge (e);
4401 else
4402 ei_next (&ei);
4403 goto succeed;
4406 /* If the destination region is a MUST_NOT_THROW, allow the runtime
4407 to handle the abort and allow the blocks to go unreachable. */
4408 if (new_region->type == ERT_MUST_NOT_THROW)
4410 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
4411 if (e->flags & EDGE_EH)
4413 gimple stmt = last_stmt (e->src);
4414 remove_stmt_from_eh_lp (stmt);
4415 add_stmt_to_eh_lp (stmt, new_lp_nr);
4416 remove_edge (e);
4418 else
4419 ei_next (&ei);
4420 goto succeed;
4423 /* Try to redirect the EH edges and merge the PHIs into the destination
4424 landing pad block. If the merge succeeds, we'll already have redirected
4425 all the EH edges. The handler itself will go unreachable if there were
4426 no normal edges. */
4427 if (cleanup_empty_eh_merge_phis (e_out->dest, bb, e_out, true))
4428 goto succeed;
4430 /* Finally, if all input edges are EH edges, then we can (potentially)
4431 reduce the number of transfers from the runtime by moving the landing
4432 pad from the original region to the new region. This is a win when
4433 we remove the last CLEANUP region along a particular exception
4434 propagation path. Since nothing changes except for the region with
4435 which the landing pad is associated, the PHI nodes do not need to be
4436 adjusted at all. */
4437 if (!has_non_eh_pred)
4439 cleanup_empty_eh_move_lp (bb, e_out, lp, new_region);
4440 if (dump_file && (dump_flags & TDF_DETAILS))
4441 fprintf (dump_file, "Empty EH handler %i moved to EH region %i.\n",
4442 lp->index, new_region->index);
4444 /* ??? The CFG didn't change, but we may have rendered the
4445 old EH region unreachable. Trigger a cleanup there. */
4446 return true;
4449 return ret;
4451 succeed:
4452 if (dump_file && (dump_flags & TDF_DETAILS))
4453 fprintf (dump_file, "Empty EH handler %i removed.\n", lp->index);
4454 remove_eh_landing_pad (lp);
4455 return true;
4458 /* Do a post-order traversal of the EH region tree. Examine each
4459 post_landing_pad block and see if we can eliminate it as empty. */
4461 static bool
4462 cleanup_all_empty_eh (void)
4464 bool changed = false;
4465 eh_landing_pad lp;
4466 int i;
4468 for (i = 1; vec_safe_iterate (cfun->eh->lp_array, i, &lp); ++i)
4469 if (lp)
4470 changed |= cleanup_empty_eh (lp);
4472 return changed;
4475 /* Perform cleanups and lowering of exception handling
4476 1) cleanups regions with handlers doing nothing are optimized out
4477 2) MUST_NOT_THROW regions that became dead because of 1) are optimized out
4478 3) Info about regions that are containing instructions, and regions
4479 reachable via local EH edges is collected
4480 4) Eh tree is pruned for regions no longer necessary.
4482 TODO: Push MUST_NOT_THROW regions to the root of the EH tree.
4483 Unify those that have the same failure decl and locus.
4486 static unsigned int
4487 execute_cleanup_eh_1 (void)
4489 /* Do this first: unsplit_all_eh and cleanup_all_empty_eh can die
4490 looking up unreachable landing pads. */
4491 remove_unreachable_handlers ();
4493 /* Watch out for the region tree vanishing due to all unreachable. */
4494 if (cfun->eh->region_tree)
4496 bool changed = false;
4498 if (optimize)
4499 changed |= unsplit_all_eh ();
4500 changed |= cleanup_all_empty_eh ();
4502 if (changed)
4504 free_dominance_info (CDI_DOMINATORS);
4505 free_dominance_info (CDI_POST_DOMINATORS);
4507 /* We delayed all basic block deletion, as we may have performed
4508 cleanups on EH edges while non-EH edges were still present. */
4509 delete_unreachable_blocks ();
4511 /* We manipulated the landing pads. Remove any region that no
4512 longer has a landing pad. */
4513 remove_unreachable_handlers_no_lp ();
4515 return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals;
4519 return 0;
4522 namespace {
4524 const pass_data pass_data_cleanup_eh =
4526 GIMPLE_PASS, /* type */
4527 "ehcleanup", /* name */
4528 OPTGROUP_NONE, /* optinfo_flags */
4529 TV_TREE_EH, /* tv_id */
4530 PROP_gimple_lcf, /* properties_required */
4531 0, /* properties_provided */
4532 0, /* properties_destroyed */
4533 0, /* todo_flags_start */
4534 0, /* todo_flags_finish */
4537 class pass_cleanup_eh : public gimple_opt_pass
4539 public:
4540 pass_cleanup_eh (gcc::context *ctxt)
4541 : gimple_opt_pass (pass_data_cleanup_eh, ctxt)
4544 /* opt_pass methods: */
4545 opt_pass * clone () { return new pass_cleanup_eh (m_ctxt); }
4546 virtual bool gate (function *fun)
4548 return fun->eh != NULL && fun->eh->region_tree != NULL;
4551 virtual unsigned int execute (function *);
4553 }; // class pass_cleanup_eh
4555 unsigned int
4556 pass_cleanup_eh::execute (function *fun)
4558 int ret = execute_cleanup_eh_1 ();
4560 /* If the function no longer needs an EH personality routine
4561 clear it. This exposes cross-language inlining opportunities
4562 and avoids references to a never defined personality routine. */
4563 if (DECL_FUNCTION_PERSONALITY (current_function_decl)
4564 && function_needs_eh_personality (fun) != eh_personality_lang)
4565 DECL_FUNCTION_PERSONALITY (current_function_decl) = NULL_TREE;
4567 return ret;
4570 } // anon namespace
4572 gimple_opt_pass *
4573 make_pass_cleanup_eh (gcc::context *ctxt)
4575 return new pass_cleanup_eh (ctxt);
4578 /* Verify that BB containing STMT as the last statement, has precisely the
4579 edge that make_eh_edges would create. */
4581 DEBUG_FUNCTION bool
4582 verify_eh_edges (gimple stmt)
4584 basic_block bb = gimple_bb (stmt);
4585 eh_landing_pad lp = NULL;
4586 int lp_nr;
4587 edge_iterator ei;
4588 edge e, eh_edge;
4590 lp_nr = lookup_stmt_eh_lp (stmt);
4591 if (lp_nr > 0)
4592 lp = get_eh_landing_pad_from_number (lp_nr);
4594 eh_edge = NULL;
4595 FOR_EACH_EDGE (e, ei, bb->succs)
4597 if (e->flags & EDGE_EH)
4599 if (eh_edge)
4601 error ("BB %i has multiple EH edges", bb->index);
4602 return true;
4604 else
4605 eh_edge = e;
4609 if (lp == NULL)
4611 if (eh_edge)
4613 error ("BB %i can not throw but has an EH edge", bb->index);
4614 return true;
4616 return false;
4619 if (!stmt_could_throw_p (stmt))
4621 error ("BB %i last statement has incorrectly set lp", bb->index);
4622 return true;
4625 if (eh_edge == NULL)
4627 error ("BB %i is missing an EH edge", bb->index);
4628 return true;
4631 if (eh_edge->dest != label_to_block (lp->post_landing_pad))
4633 error ("Incorrect EH edge %i->%i", bb->index, eh_edge->dest->index);
4634 return true;
4637 return false;
4640 /* Similarly, but handle GIMPLE_EH_DISPATCH specifically. */
4642 DEBUG_FUNCTION bool
4643 verify_eh_dispatch_edge (gimple stmt)
4645 eh_region r;
4646 eh_catch c;
4647 basic_block src, dst;
4648 bool want_fallthru = true;
4649 edge_iterator ei;
4650 edge e, fall_edge;
4652 r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
4653 src = gimple_bb (stmt);
4655 FOR_EACH_EDGE (e, ei, src->succs)
4656 gcc_assert (e->aux == NULL);
4658 switch (r->type)
4660 case ERT_TRY:
4661 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
4663 dst = label_to_block (c->label);
4664 e = find_edge (src, dst);
4665 if (e == NULL)
4667 error ("BB %i is missing an edge", src->index);
4668 return true;
4670 e->aux = (void *)e;
4672 /* A catch-all handler doesn't have a fallthru. */
4673 if (c->type_list == NULL)
4675 want_fallthru = false;
4676 break;
4679 break;
4681 case ERT_ALLOWED_EXCEPTIONS:
4682 dst = label_to_block (r->u.allowed.label);
4683 e = find_edge (src, dst);
4684 if (e == NULL)
4686 error ("BB %i is missing an edge", src->index);
4687 return true;
4689 e->aux = (void *)e;
4690 break;
4692 default:
4693 gcc_unreachable ();
4696 fall_edge = NULL;
4697 FOR_EACH_EDGE (e, ei, src->succs)
4699 if (e->flags & EDGE_FALLTHRU)
4701 if (fall_edge != NULL)
4703 error ("BB %i too many fallthru edges", src->index);
4704 return true;
4706 fall_edge = e;
4708 else if (e->aux)
4709 e->aux = NULL;
4710 else
4712 error ("BB %i has incorrect edge", src->index);
4713 return true;
4716 if ((fall_edge != NULL) ^ want_fallthru)
4718 error ("BB %i has incorrect fallthru edge", src->index);
4719 return true;
4722 return false;