At the suggestion of Richard Earnshaw I have changed GO_IF_LEGITIMATE_ADDRESS
[official-gcc.git] / gcc / genrecog.c
blob7720c08c7453a6f492f871a1393ffc324da946f7
1 /* Generate code from machine description to recognize rtl as insns.
2 Copyright (C) 1987, 88, 92, 93, 94, 95, 97, 98 Free Software Foundation, Inc.
4 This file is part of GNU CC.
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
22 /* This program is used to produce insn-recog.c, which contains
23 a function called `recog' plus its subroutines.
24 These functions contain a decision tree
25 that recognizes whether an rtx, the argument given to recog,
26 is a valid instruction.
28 recog returns -1 if the rtx is not valid.
29 If the rtx is valid, recog returns a nonnegative number
30 which is the insn code number for the pattern that matched.
31 This is the same as the order in the machine description of the
32 entry that matched. This number can be used as an index into various
33 insn_* tables, such as insn_template, insn_outfun, and insn_n_operands
34 (found in insn-output.c).
36 The third argument to recog is an optional pointer to an int.
37 If present, recog will accept a pattern if it matches except for
38 missing CLOBBER expressions at the end. In that case, the value
39 pointed to by the optional pointer will be set to the number of
40 CLOBBERs that need to be added (it should be initialized to zero by
41 the caller). If it is set nonzero, the caller should allocate a
42 PARALLEL of the appropriate size, copy the initial entries, and call
43 add_clobbers (found in insn-emit.c) to fill in the CLOBBERs.
45 This program also generates the function `split_insns',
46 which returns 0 if the rtl could not be split, or
47 it returns the split rtl in a SEQUENCE. */
49 #include "hconfig.h"
50 #include "system.h"
51 #include "rtl.h"
52 #include "obstack.h"
54 static struct obstack obstack;
55 struct obstack *rtl_obstack = &obstack;
57 #define obstack_chunk_alloc xmalloc
58 #define obstack_chunk_free free
60 /* Define this so we can link with print-rtl.o to get debug_rtx function. */
61 char **insn_name_ptr = 0;
63 /* Data structure for a listhead of decision trees. The alternatives
64 to a node are kept in a doublely-linked list so we can easily add nodes
65 to the proper place when merging. */
67 struct decision_head { struct decision *first, *last; };
69 /* Data structure for decision tree for recognizing
70 legitimate instructions. */
72 struct decision
74 int number; /* Node number, used for labels */
75 char *position; /* String denoting position in pattern */
76 RTX_CODE code; /* Code to test for or UNKNOWN to suppress */
77 char ignore_code; /* If non-zero, need not test code */
78 char ignore_mode; /* If non-zero, need not test mode */
79 int veclen; /* Length of vector, if nonzero */
80 enum machine_mode mode; /* Machine mode of node */
81 char enforce_mode; /* If non-zero, test `mode' */
82 char retest_code, retest_mode; /* See write_tree_1 */
83 int test_elt_zero_int; /* Nonzero if should test XINT (rtl, 0) */
84 int elt_zero_int; /* Required value for XINT (rtl, 0) */
85 int test_elt_one_int; /* Nonzero if should test XINT (rtl, 1) */
86 int elt_one_int; /* Required value for XINT (rtl, 1) */
87 int test_elt_zero_wide; /* Nonzero if should test XWINT (rtl, 0) */
88 HOST_WIDE_INT elt_zero_wide; /* Required value for XWINT (rtl, 0) */
89 char *tests; /* If nonzero predicate to call */
90 int pred; /* `preds' index of predicate or -1 */
91 char *c_test; /* Additional test to perform */
92 struct decision_head success; /* Nodes to test on success */
93 int insn_code_number; /* Insn number matched, if success */
94 int num_clobbers_to_add; /* Number of CLOBBERs to be added to pattern */
95 struct decision *next; /* Node to test on failure */
96 struct decision *prev; /* Node whose failure tests us */
97 struct decision *afterward; /* Node to test on success, but failure of
98 successor nodes */
99 int opno; /* Operand number, if >= 0 */
100 int dupno; /* Number of operand to compare against */
101 int label_needed; /* Nonzero if label needed when writing tree */
102 int subroutine_number; /* Number of subroutine this node starts */
105 #define SUBROUTINE_THRESHOLD 50
107 static int next_subroutine_number;
109 /* We can write two types of subroutines: One for insn recognition and
110 one to split insns. This defines which type is being written. */
112 enum routine_type {RECOG, SPLIT};
114 /* Next available node number for tree nodes. */
116 static int next_number;
118 /* Next number to use as an insn_code. */
120 static int next_insn_code;
122 /* Similar, but counts all expressions in the MD file; used for
123 error messages. */
125 static int next_index;
127 /* Record the highest depth we ever have so we know how many variables to
128 allocate in each subroutine we make. */
130 static int max_depth;
132 /* This table contains a list of the rtl codes that can possibly match a
133 predicate defined in recog.c. The function `not_both_true' uses it to
134 deduce that there are no expressions that can be matches by certain pairs
135 of tree nodes. Also, if a predicate can match only one code, we can
136 hardwire that code into the node testing the predicate. */
138 static struct pred_table
140 char *name;
141 RTX_CODE codes[NUM_RTX_CODE];
142 } preds[]
143 = {{"general_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
144 LABEL_REF, SUBREG, REG, MEM}},
145 #ifdef PREDICATE_CODES
146 PREDICATE_CODES
147 #endif
148 {"address_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
149 LABEL_REF, SUBREG, REG, MEM, PLUS, MINUS, MULT}},
150 {"register_operand", {SUBREG, REG}},
151 {"scratch_operand", {SCRATCH, REG}},
152 {"immediate_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
153 LABEL_REF}},
154 {"const_int_operand", {CONST_INT}},
155 {"const_double_operand", {CONST_INT, CONST_DOUBLE}},
156 {"nonimmediate_operand", {SUBREG, REG, MEM}},
157 {"nonmemory_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
158 LABEL_REF, SUBREG, REG}},
159 {"push_operand", {MEM}},
160 {"memory_operand", {SUBREG, MEM}},
161 {"indirect_operand", {SUBREG, MEM}},
162 {"comparison_operator", {EQ, NE, LE, LT, GE, GT, LEU, LTU, GEU, GTU}},
163 {"mode_independent_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
164 LABEL_REF, SUBREG, REG, MEM}}};
166 #define NUM_KNOWN_PREDS (sizeof preds / sizeof preds[0])
168 static struct decision_head make_insn_sequence PROTO((rtx, enum routine_type));
169 static struct decision *add_to_sequence PROTO((rtx, struct decision_head *,
170 char *));
171 static int not_both_true PROTO((struct decision *, struct decision *,
172 int));
173 static int position_merit PROTO((struct decision *, enum machine_mode,
174 enum rtx_code));
175 static struct decision_head merge_trees PROTO((struct decision_head,
176 struct decision_head));
177 static int break_out_subroutines PROTO((struct decision_head,
178 enum routine_type, int));
179 static void write_subroutine PROTO((struct decision *, enum routine_type));
180 static void write_tree_1 PROTO((struct decision *, char *,
181 struct decision *, enum routine_type));
182 static void print_code PROTO((enum rtx_code));
183 static int same_codes PROTO((struct decision *, enum rtx_code));
184 static void clear_codes PROTO((struct decision *));
185 static int same_modes PROTO((struct decision *, enum machine_mode));
186 static void clear_modes PROTO((struct decision *));
187 static void write_tree PROTO((struct decision *, char *,
188 struct decision *, int,
189 enum routine_type));
190 static void change_state PROTO((char *, char *, int));
191 static char *copystr PROTO((char *));
192 static void mybzero PROTO((char *, unsigned));
193 static void mybcopy PROTO((char *, char *, unsigned));
194 static void fatal PROTO((char *));
195 char *xrealloc PROTO((char *, unsigned));
196 char *xmalloc PROTO((unsigned));
197 void fancy_abort PROTO((void));
199 /* Construct and return a sequence of decisions
200 that will recognize INSN.
202 TYPE says what type of routine we are recognizing (RECOG or SPLIT). */
204 static struct decision_head
205 make_insn_sequence (insn, type)
206 rtx insn;
207 enum routine_type type;
209 rtx x;
210 char *c_test = XSTR (insn, type == RECOG ? 2 : 1);
211 struct decision *last;
212 struct decision_head head;
214 if (XVECLEN (insn, type == RECOG) == 1)
215 x = XVECEXP (insn, type == RECOG, 0);
216 else
218 x = rtx_alloc (PARALLEL);
219 XVEC (x, 0) = XVEC (insn, type == RECOG);
220 PUT_MODE (x, VOIDmode);
223 last = add_to_sequence (x, &head, "");
225 if (c_test[0])
226 last->c_test = c_test;
227 last->insn_code_number = next_insn_code;
228 last->num_clobbers_to_add = 0;
230 /* If this is not a DEFINE_SPLIT and X is a PARALLEL, see if it ends with a
231 group of CLOBBERs of (hard) registers or MATCH_SCRATCHes. If so, set up
232 to recognize the pattern without these CLOBBERs. */
234 if (type == RECOG && GET_CODE (x) == PARALLEL)
236 int i;
238 for (i = XVECLEN (x, 0); i > 0; i--)
239 if (GET_CODE (XVECEXP (x, 0, i - 1)) != CLOBBER
240 || (GET_CODE (XEXP (XVECEXP (x, 0, i - 1), 0)) != REG
241 && GET_CODE (XEXP (XVECEXP (x, 0, i - 1), 0)) != MATCH_SCRATCH))
242 break;
244 if (i != XVECLEN (x, 0))
246 rtx new;
247 struct decision_head clobber_head;
249 if (i == 1)
250 new = XVECEXP (x, 0, 0);
251 else
253 int j;
255 new = rtx_alloc (PARALLEL);
256 XVEC (new, 0) = rtvec_alloc (i);
257 for (j = i - 1; j >= 0; j--)
258 XVECEXP (new, 0, j) = XVECEXP (x, 0, j);
261 last = add_to_sequence (new, &clobber_head, "");
263 if (c_test[0])
264 last->c_test = c_test;
265 last->insn_code_number = next_insn_code;
266 last->num_clobbers_to_add = XVECLEN (x, 0) - i;
268 head = merge_trees (head, clobber_head);
272 next_insn_code++;
274 if (type == SPLIT)
275 /* Define the subroutine we will call below and emit in genemit. */
276 printf ("extern rtx gen_split_%d ();\n", last->insn_code_number);
278 return head;
281 /* Create a chain of nodes to verify that an rtl expression matches
282 PATTERN.
284 LAST is a pointer to the listhead in the previous node in the chain (or
285 in the calling function, for the first node).
287 POSITION is the string representing the current position in the insn.
289 A pointer to the final node in the chain is returned. */
291 static struct decision *
292 add_to_sequence (pattern, last, position)
293 rtx pattern;
294 struct decision_head *last;
295 char *position;
297 register RTX_CODE code;
298 register struct decision *new
299 = (struct decision *) xmalloc (sizeof (struct decision));
300 struct decision *this;
301 char *newpos;
302 register char *fmt;
303 register size_t i;
304 int depth = strlen (position);
305 int len;
307 if (depth > max_depth)
308 max_depth = depth;
310 new->number = next_number++;
311 new->position = copystr (position);
312 new->ignore_code = 0;
313 new->ignore_mode = 0;
314 new->enforce_mode = 1;
315 new->retest_code = new->retest_mode = 0;
316 new->veclen = 0;
317 new->test_elt_zero_int = 0;
318 new->test_elt_one_int = 0;
319 new->test_elt_zero_wide = 0;
320 new->elt_zero_int = 0;
321 new->elt_one_int = 0;
322 new->elt_zero_wide = 0;
323 new->tests = 0;
324 new->pred = -1;
325 new->c_test = 0;
326 new->success.first = new->success.last = 0;
327 new->insn_code_number = -1;
328 new->num_clobbers_to_add = 0;
329 new->next = 0;
330 new->prev = 0;
331 new->afterward = 0;
332 new->opno = -1;
333 new->dupno = -1;
334 new->label_needed = 0;
335 new->subroutine_number = 0;
337 this = new;
339 last->first = last->last = new;
341 newpos = (char *) alloca (depth + 2);
342 strcpy (newpos, position);
343 newpos[depth + 1] = 0;
345 restart:
347 new->mode = GET_MODE (pattern);
348 new->code = code = GET_CODE (pattern);
350 switch (code)
352 case MATCH_OPERAND:
353 case MATCH_SCRATCH:
354 case MATCH_OPERATOR:
355 case MATCH_PARALLEL:
356 case MATCH_INSN2:
357 new->opno = XINT (pattern, 0);
358 new->code = (code == MATCH_PARALLEL ? PARALLEL : UNKNOWN);
359 new->enforce_mode = 0;
361 if (code == MATCH_SCRATCH)
362 new->tests = "scratch_operand";
363 else
364 new->tests = XSTR (pattern, 1);
366 if (*new->tests == 0)
367 new->tests = 0;
369 /* See if we know about this predicate and save its number. If we do,
370 and it only accepts one code, note that fact. The predicate
371 `const_int_operand' only tests for a CONST_INT, so if we do so we
372 can avoid calling it at all.
374 Finally, if we know that the predicate does not allow CONST_INT, we
375 know that the only way the predicate can match is if the modes match
376 (here we use the kludge of relying on the fact that "address_operand"
377 accepts CONST_INT; otherwise, it would have to be a special case),
378 so we can test the mode (but we need not). This fact should
379 considerably simplify the generated code. */
381 if (new->tests)
383 for (i = 0; i < NUM_KNOWN_PREDS; i++)
384 if (! strcmp (preds[i].name, new->tests))
386 int j;
387 int allows_const_int = 0;
389 new->pred = i;
391 if (preds[i].codes[1] == 0 && new->code == UNKNOWN)
393 new->code = preds[i].codes[0];
394 if (! strcmp ("const_int_operand", new->tests))
395 new->tests = 0, new->pred = -1;
398 for (j = 0; j < NUM_RTX_CODE && preds[i].codes[j] != 0; j++)
399 if (preds[i].codes[j] == CONST_INT)
400 allows_const_int = 1;
402 if (! allows_const_int)
403 new->enforce_mode = new->ignore_mode= 1;
405 break;
408 #ifdef PREDICATE_CODES
409 /* If the port has a list of the predicates it uses but omits
410 one, warn. */
411 if (i == NUM_KNOWN_PREDS)
412 fprintf (stderr, "Warning: `%s' not in PREDICATE_CODES\n",
413 new->tests);
414 #endif
417 if (code == MATCH_OPERATOR || code == MATCH_PARALLEL)
419 for (i = 0; i < XVECLEN (pattern, 2); i++)
421 newpos[depth] = i + (code == MATCH_OPERATOR ? '0': 'a');
422 new = add_to_sequence (XVECEXP (pattern, 2, i),
423 &new->success, newpos);
427 return new;
429 case MATCH_OP_DUP:
430 new->opno = XINT (pattern, 0);
431 new->dupno = XINT (pattern, 0);
432 new->code = UNKNOWN;
433 new->tests = 0;
434 for (i = 0; i < XVECLEN (pattern, 1); i++)
436 newpos[depth] = i + '0';
437 new = add_to_sequence (XVECEXP (pattern, 1, i),
438 &new->success, newpos);
440 return new;
442 case MATCH_DUP:
443 case MATCH_PAR_DUP:
444 new->dupno = XINT (pattern, 0);
445 new->code = UNKNOWN;
446 new->enforce_mode = 0;
447 return new;
449 case ADDRESS:
450 pattern = XEXP (pattern, 0);
451 goto restart;
453 case SET:
454 newpos[depth] = '0';
455 new = add_to_sequence (SET_DEST (pattern), &new->success, newpos);
456 this->success.first->enforce_mode = 1;
457 newpos[depth] = '1';
458 new = add_to_sequence (SET_SRC (pattern), &new->success, newpos);
460 /* If set are setting CC0 from anything other than a COMPARE, we
461 must enforce the mode so that we do not produce ambiguous insns. */
462 if (GET_CODE (SET_DEST (pattern)) == CC0
463 && GET_CODE (SET_SRC (pattern)) != COMPARE)
464 this->success.first->enforce_mode = 1;
465 return new;
467 case SIGN_EXTEND:
468 case ZERO_EXTEND:
469 case STRICT_LOW_PART:
470 newpos[depth] = '0';
471 new = add_to_sequence (XEXP (pattern, 0), &new->success, newpos);
472 this->success.first->enforce_mode = 1;
473 return new;
475 case SUBREG:
476 this->test_elt_one_int = 1;
477 this->elt_one_int = XINT (pattern, 1);
478 newpos[depth] = '0';
479 new = add_to_sequence (XEXP (pattern, 0), &new->success, newpos);
480 this->success.first->enforce_mode = 1;
481 return new;
483 case ZERO_EXTRACT:
484 case SIGN_EXTRACT:
485 newpos[depth] = '0';
486 new = add_to_sequence (XEXP (pattern, 0), &new->success, newpos);
487 this->success.first->enforce_mode = 1;
488 newpos[depth] = '1';
489 new = add_to_sequence (XEXP (pattern, 1), &new->success, newpos);
490 newpos[depth] = '2';
491 new = add_to_sequence (XEXP (pattern, 2), &new->success, newpos);
492 return new;
494 case EQ: case NE: case LE: case LT: case GE: case GT:
495 case LEU: case LTU: case GEU: case GTU:
496 /* If the first operand is (cc0), we don't have to do anything
497 special. */
498 if (GET_CODE (XEXP (pattern, 0)) == CC0)
499 break;
501 /* ... fall through ... */
503 case COMPARE:
504 /* Enforce the mode on the first operand to avoid ambiguous insns. */
505 newpos[depth] = '0';
506 new = add_to_sequence (XEXP (pattern, 0), &new->success, newpos);
507 this->success.first->enforce_mode = 1;
508 newpos[depth] = '1';
509 new = add_to_sequence (XEXP (pattern, 1), &new->success, newpos);
510 return new;
512 default:
513 break;
516 fmt = GET_RTX_FORMAT (code);
517 len = GET_RTX_LENGTH (code);
518 for (i = 0; i < len; i++)
520 newpos[depth] = '0' + i;
521 if (fmt[i] == 'e' || fmt[i] == 'u')
522 new = add_to_sequence (XEXP (pattern, i), &new->success, newpos);
523 else if (fmt[i] == 'i' && i == 0)
525 this->test_elt_zero_int = 1;
526 this->elt_zero_int = XINT (pattern, i);
528 else if (fmt[i] == 'i' && i == 1)
530 this->test_elt_one_int = 1;
531 this->elt_one_int = XINT (pattern, i);
533 else if (fmt[i] == 'w' && i == 0)
535 this->test_elt_zero_wide = 1;
536 this->elt_zero_wide = XWINT (pattern, i);
538 else if (fmt[i] == 'E')
540 register int j;
541 /* We do not handle a vector appearing as other than
542 the first item, just because nothing uses them
543 and by handling only the special case
544 we can use one element in newpos for either
545 the item number of a subexpression
546 or the element number in a vector. */
547 if (i != 0)
548 abort ();
549 this->veclen = XVECLEN (pattern, i);
550 for (j = 0; j < XVECLEN (pattern, i); j++)
552 newpos[depth] = 'a' + j;
553 new = add_to_sequence (XVECEXP (pattern, i, j),
554 &new->success, newpos);
557 else if (fmt[i] != '0')
558 abort ();
560 return new;
563 /* Return 1 if we can prove that there is no RTL that can match both
564 D1 and D2. Otherwise, return 0 (it may be that there is an RTL that
565 can match both or just that we couldn't prove there wasn't such an RTL).
567 TOPLEVEL is non-zero if we are to only look at the top level and not
568 recursively descend. */
570 static int
571 not_both_true (d1, d2, toplevel)
572 struct decision *d1, *d2;
573 int toplevel;
575 struct decision *p1, *p2;
577 /* If they are both to test modes and the modes are different, they aren't
578 both true. Similarly for codes, integer elements, and vector lengths. */
580 if ((d1->enforce_mode && d2->enforce_mode
581 && d1->mode != VOIDmode && d2->mode != VOIDmode && d1->mode != d2->mode)
582 || (d1->code != UNKNOWN && d2->code != UNKNOWN && d1->code != d2->code)
583 || (d1->test_elt_zero_int && d2->test_elt_zero_int
584 && d1->elt_zero_int != d2->elt_zero_int)
585 || (d1->test_elt_one_int && d2->test_elt_one_int
586 && d1->elt_one_int != d2->elt_one_int)
587 || (d1->test_elt_zero_wide && d2->test_elt_zero_wide
588 && d1->elt_zero_wide != d2->elt_zero_wide)
589 || (d1->veclen && d2->veclen && d1->veclen != d2->veclen))
590 return 1;
592 /* If either is a wild-card MATCH_OPERAND without a predicate, it can match
593 absolutely anything, so we can't say that no intersection is possible.
594 This case is detected by having a zero TESTS field with a code of
595 UNKNOWN. */
597 if ((d1->tests == 0 && d1->code == UNKNOWN)
598 || (d2->tests == 0 && d2->code == UNKNOWN))
599 return 0;
601 /* If either has a predicate that we know something about, set things up so
602 that D1 is the one that always has a known predicate. Then see if they
603 have any codes in common. */
605 if (d1->pred >= 0 || d2->pred >= 0)
607 int i, j;
609 if (d2->pred >= 0)
610 p1 = d1, d1 = d2, d2 = p1;
612 /* If D2 tests an explicit code, see if it is in the list of valid codes
613 for D1's predicate. */
614 if (d2->code != UNKNOWN)
616 for (i = 0; i < NUM_RTX_CODE && preds[d1->pred].codes[i] != 0; i++)
617 if (preds[d1->pred].codes[i] == d2->code)
618 break;
620 if (preds[d1->pred].codes[i] == 0)
621 return 1;
624 /* Otherwise see if the predicates have any codes in common. */
626 else if (d2->pred >= 0)
628 for (i = 0; i < NUM_RTX_CODE && preds[d1->pred].codes[i] != 0; i++)
630 for (j = 0; j < NUM_RTX_CODE; j++)
631 if (preds[d2->pred].codes[j] == 0
632 || preds[d2->pred].codes[j] == preds[d1->pred].codes[i])
633 break;
635 if (preds[d2->pred].codes[j] != 0)
636 break;
639 if (preds[d1->pred].codes[i] == 0)
640 return 1;
644 /* If we got here, we can't prove that D1 and D2 cannot both be true.
645 If we are only to check the top level, return 0. Otherwise, see if
646 we can prove that all choices in both successors are mutually
647 exclusive. If either does not have any successors, we can't prove
648 they can't both be true. */
650 if (toplevel || d1->success.first == 0 || d2->success.first == 0)
651 return 0;
653 for (p1 = d1->success.first; p1; p1 = p1->next)
654 for (p2 = d2->success.first; p2; p2 = p2->next)
655 if (! not_both_true (p1, p2, 0))
656 return 0;
658 return 1;
661 /* Assuming that we can reorder all the alternatives at a specific point in
662 the tree (see discussion in merge_trees), we would prefer an ordering of
663 nodes where groups of consecutive nodes test the same mode and, within each
664 mode, groups of nodes test the same code. With this order, we can
665 construct nested switch statements, the inner one to test the code and
666 the outer one to test the mode.
668 We would like to list nodes testing for specific codes before those
669 that test predicates to avoid unnecessary function calls. Similarly,
670 tests for specific modes should precede nodes that allow any mode.
672 This function returns the merit (with 0 being the best) of inserting
673 a test involving the specified MODE and CODE after node P. If P is
674 zero, we are to determine the merit of inserting the test at the front
675 of the list. */
677 static int
678 position_merit (p, mode, code)
679 struct decision *p;
680 enum machine_mode mode;
681 enum rtx_code code;
683 enum machine_mode p_mode;
685 /* The only time the front of the list is anything other than the worst
686 position is if we are testing a mode that isn't VOIDmode. */
687 if (p == 0)
688 return mode == VOIDmode ? 3 : 2;
690 p_mode = p->enforce_mode ? p->mode : VOIDmode;
692 /* The best case is if the codes and modes both match. */
693 if (p_mode == mode && p->code== code)
694 return 0;
696 /* If the codes don't match, the next best case is if the modes match.
697 In that case, the best position for this node depends on whether
698 we are testing for a specific code or not. If we are, the best place
699 is after some other test for an explicit code and our mode or after
700 the last test in the previous mode if every test in our mode is for
701 an unknown code.
703 If we are testing for UNKNOWN, then the next best case is at the end of
704 our mode. */
706 if ((code != UNKNOWN
707 && ((p_mode == mode && p->code != UNKNOWN)
708 || (p_mode != mode && p->next
709 && (p->next->enforce_mode ? p->next->mode : VOIDmode) == mode
710 && (p->next->code == UNKNOWN))))
711 || (code == UNKNOWN && p_mode == mode
712 && (p->next == 0
713 || (p->next->enforce_mode ? p->next->mode : VOIDmode) != mode)))
714 return 1;
716 /* The third best case occurs when nothing is testing MODE. If MODE
717 is not VOIDmode, then the third best case is after something of any
718 mode that is not VOIDmode. If we are testing VOIDmode, the third best
719 place is the end of the list. */
721 if (p_mode != mode
722 && ((mode != VOIDmode && p_mode != VOIDmode)
723 || (mode == VOIDmode && p->next == 0)))
724 return 2;
726 /* Otherwise, we have the worst case. */
727 return 3;
730 /* Merge two decision tree listheads OLDH and ADDH,
731 modifying OLDH destructively, and return the merged tree. */
733 static struct decision_head
734 merge_trees (oldh, addh)
735 register struct decision_head oldh, addh;
737 struct decision *add, *next;
739 if (oldh.first == 0)
740 return addh;
742 if (addh.first == 0)
743 return oldh;
745 /* If we are adding things at different positions, something is wrong. */
746 if (strcmp (oldh.first->position, addh.first->position))
747 abort ();
749 for (add = addh.first; add; add = next)
751 enum machine_mode add_mode = add->enforce_mode ? add->mode : VOIDmode;
752 struct decision *best_position = 0;
753 int best_merit = 4;
754 struct decision *old;
756 next = add->next;
758 /* The semantics of pattern matching state that the tests are done in
759 the order given in the MD file so that if an insn matches two
760 patterns, the first one will be used. However, in practice, most,
761 if not all, patterns are unambiguous so that their order is
762 independent. In that case, we can merge identical tests and
763 group all similar modes and codes together.
765 Scan starting from the end of OLDH until we reach a point
766 where we reach the head of the list or where we pass a pattern
767 that could also be true if NEW is true. If we find an identical
768 pattern, we can merge them. Also, record the last node that tests
769 the same code and mode and the last one that tests just the same mode.
771 If we have no match, place NEW after the closest match we found. */
773 for (old = oldh.last; old; old = old->prev)
775 int our_merit;
777 /* If we don't have anything to test except an additional test,
778 do not consider the two nodes equal. If we did, the test below
779 would cause an infinite recursion. */
780 if (old->tests == 0 && old->test_elt_zero_int == 0
781 && old->test_elt_one_int == 0 && old->veclen == 0
782 && old->test_elt_zero_wide == 0
783 && old->dupno == -1 && old->mode == VOIDmode
784 && old->code == UNKNOWN
785 && (old->c_test != 0 || add->c_test != 0))
788 else if ((old->tests == add->tests
789 || (old->pred >= 0 && old->pred == add->pred)
790 || (old->tests && add->tests
791 && !strcmp (old->tests, add->tests)))
792 && old->test_elt_zero_int == add->test_elt_zero_int
793 && old->elt_zero_int == add->elt_zero_int
794 && old->test_elt_one_int == add->test_elt_one_int
795 && old->elt_one_int == add->elt_one_int
796 && old->test_elt_zero_wide == add->test_elt_zero_wide
797 && old->elt_zero_wide == add->elt_zero_wide
798 && old->veclen == add->veclen
799 && old->dupno == add->dupno
800 && old->opno == add->opno
801 && old->code == add->code
802 && old->enforce_mode == add->enforce_mode
803 && old->mode == add->mode)
805 /* If the additional test is not the same, split both nodes
806 into nodes that just contain all things tested before the
807 additional test and nodes that contain the additional test
808 and actions when it is true. This optimization is important
809 because of the case where we have almost identical patterns
810 with different tests on target flags. */
812 if (old->c_test != add->c_test
813 && ! (old->c_test && add->c_test
814 && !strcmp (old->c_test, add->c_test)))
816 if (old->insn_code_number >= 0 || old->opno >= 0)
818 struct decision *split
819 = (struct decision *) xmalloc (sizeof (struct decision));
821 mybcopy ((char *) old, (char *) split,
822 sizeof (struct decision));
824 old->success.first = old->success.last = split;
825 old->c_test = 0;
826 old->opno = -1;
827 old->insn_code_number = -1;
828 old->num_clobbers_to_add = 0;
830 split->number = next_number++;
831 split->next = split->prev = 0;
832 split->mode = VOIDmode;
833 split->code = UNKNOWN;
834 split->veclen = 0;
835 split->test_elt_zero_int = 0;
836 split->test_elt_one_int = 0;
837 split->test_elt_zero_wide = 0;
838 split->tests = 0;
839 split->pred = -1;
840 split->dupno = -1;
843 if (add->insn_code_number >= 0 || add->opno >= 0)
845 struct decision *split
846 = (struct decision *) xmalloc (sizeof (struct decision));
848 mybcopy ((char *) add, (char *) split,
849 sizeof (struct decision));
851 add->success.first = add->success.last = split;
852 add->c_test = 0;
853 add->opno = -1;
854 add->insn_code_number = -1;
855 add->num_clobbers_to_add = 0;
857 split->number = next_number++;
858 split->next = split->prev = 0;
859 split->mode = VOIDmode;
860 split->code = UNKNOWN;
861 split->veclen = 0;
862 split->test_elt_zero_int = 0;
863 split->test_elt_one_int = 0;
864 split->test_elt_zero_wide = 0;
865 split->tests = 0;
866 split->pred = -1;
867 split->dupno = -1;
871 if (old->insn_code_number >= 0 && add->insn_code_number >= 0)
873 /* If one node is for a normal insn and the second is
874 for the base insn with clobbers stripped off, the
875 second node should be ignored. */
877 if (old->num_clobbers_to_add == 0
878 && add->num_clobbers_to_add > 0)
879 /* Nothing to do here. */
881 else if (old->num_clobbers_to_add > 0
882 && add->num_clobbers_to_add == 0)
884 /* In this case, replace OLD with ADD. */
885 old->insn_code_number = add->insn_code_number;
886 old->num_clobbers_to_add = 0;
888 else
889 fatal ("Two actions at one point in tree");
892 if (old->insn_code_number == -1)
893 old->insn_code_number = add->insn_code_number;
894 old->success = merge_trees (old->success, add->success);
895 add = 0;
896 break;
899 /* Unless we have already found the best possible insert point,
900 see if this position is better. If so, record it. */
902 if (best_merit != 0
903 && ((our_merit = position_merit (old, add_mode, add->code))
904 < best_merit))
905 best_merit = our_merit, best_position = old;
907 if (! not_both_true (old, add, 0))
908 break;
911 /* If ADD was duplicate, we are done. */
912 if (add == 0)
913 continue;
915 /* Otherwise, find the best place to insert ADD. Normally this is
916 BEST_POSITION. However, if we went all the way to the top of
917 the list, it might be better to insert at the top. */
919 if (best_position == 0)
920 abort ();
922 if (old == 0
923 && position_merit (NULL_PTR, add_mode, add->code) < best_merit)
925 add->prev = 0;
926 add->next = oldh.first;
927 oldh.first->prev = add;
928 oldh.first = add;
931 else
933 add->prev = best_position;
934 add->next = best_position->next;
935 best_position->next = add;
936 if (best_position == oldh.last)
937 oldh.last = add;
938 else
939 add->next->prev = add;
943 return oldh;
946 /* Count the number of subnodes of HEAD. If the number is high enough,
947 make the first node in HEAD start a separate subroutine in the C code
948 that is generated.
950 TYPE gives the type of routine we are writing.
952 INITIAL is non-zero if this is the highest-level node. We never write
953 it out here. */
955 static int
956 break_out_subroutines (head, type, initial)
957 struct decision_head head;
958 enum routine_type type;
959 int initial;
961 int size = 0;
962 struct decision *sub;
964 for (sub = head.first; sub; sub = sub->next)
965 size += 1 + break_out_subroutines (sub->success, type, 0);
967 if (size > SUBROUTINE_THRESHOLD && ! initial)
969 head.first->subroutine_number = ++next_subroutine_number;
970 write_subroutine (head.first, type);
971 size = 1;
973 return size;
976 /* Write out a subroutine of type TYPE to do comparisons starting at node
977 TREE. */
979 static void
980 write_subroutine (tree, type)
981 struct decision *tree;
982 enum routine_type type;
984 int i;
986 if (type == SPLIT)
987 printf ("rtx\nsplit");
988 else
989 printf ("int\nrecog");
991 if (tree != 0 && tree->subroutine_number > 0)
992 printf ("_%d", tree->subroutine_number);
993 else if (type == SPLIT)
994 printf ("_insns");
996 printf (" (x0, insn");
997 if (type == RECOG)
998 printf (", pnum_clobbers");
1000 printf (")\n");
1001 printf (" register rtx x0;\n rtx insn;\n");
1002 if (type == RECOG)
1003 printf (" int *pnum_clobbers;\n");
1005 printf ("{\n");
1006 printf (" register rtx *ro = &recog_operand[0];\n");
1008 printf (" register rtx ");
1009 for (i = 1; i < max_depth; i++)
1010 printf ("x%d, ", i);
1012 printf ("x%d;\n", max_depth);
1013 printf (" %s tem;\n", type == SPLIT ? "rtx" : "int");
1014 write_tree (tree, "", NULL_PTR, 1, type);
1015 printf (" ret0: return %d;\n}\n\n", type == SPLIT ? 0 : -1);
1018 /* This table is used to indent the recog_* functions when we are inside
1019 conditions or switch statements. We only support small indentations
1020 and always indent at least two spaces. */
1022 static char *indents[]
1023 = {" ", " ", " ", " ", " ", " ", " ", " ",
1024 "\t", "\t ", "\t ", "\t ", "\t ", "\t ", "\t ",
1025 "\t\t", "\t\t ", "\t\t ", "\t\t ", "\t\t ", "\t\t "};
1027 /* Write out C code to perform the decisions in TREE for a subroutine of
1028 type TYPE. If all of the choices fail, branch to node AFTERWARD, if
1029 non-zero, otherwise return. PREVPOS is the position of the node that
1030 branched to this test.
1032 When we merged all alternatives, we tried to set up a convenient order.
1033 Specifically, tests involving the same mode are all grouped together,
1034 followed by a group that does not contain a mode test. Within each group
1035 of the same mode, we also group tests with the same code, followed by a
1036 group that does not test a code.
1038 Occasionally, we cannot arbitrarily reorder the tests so that multiple
1039 sequence of groups as described above are present.
1041 We generate two nested switch statements, the outer statement for
1042 testing modes, and the inner switch for testing RTX codes. It is
1043 not worth optimizing cases when only a small number of modes or
1044 codes is tested, since the compiler can do that when compiling the
1045 resulting function. We do check for when every test is the same mode
1046 or code. */
1048 static void
1049 write_tree_1 (tree, prevpos, afterward, type)
1050 struct decision *tree;
1051 char *prevpos;
1052 struct decision *afterward;
1053 enum routine_type type;
1055 register struct decision *p, *p1;
1056 register int depth = tree ? strlen (tree->position) : 0;
1057 enum machine_mode switch_mode = VOIDmode;
1058 RTX_CODE switch_code = UNKNOWN;
1059 int uncond = 0;
1060 char modemap[NUM_MACHINE_MODES];
1061 char codemap[NUM_RTX_CODE];
1062 int indent = 2;
1063 int i;
1065 /* One tricky area is what is the exact state when we branch to a
1066 node's label. There are two cases where we branch: when looking at
1067 successors to a node, or when a set of tests fails.
1069 In the former case, we are always branching to the first node in a
1070 decision list and we want all required tests to be performed. We
1071 put the labels for such nodes in front of any switch or test statements.
1072 These branches are done without updating the position to that of the
1073 target node.
1075 In the latter case, we are branching to a node that is not the first
1076 node in a decision list. We have already checked that it is possible
1077 for both the node we originally tested at this level and the node we
1078 are branching to to be both match some pattern. That means that they
1079 usually will be testing the same mode and code. So it is normally safe
1080 for such labels to be inside switch statements, since the tests done
1081 by virtue of arriving at that label will usually already have been
1082 done. The exception is a branch from a node that does not test a
1083 mode or code to one that does. In such cases, we set the `retest_mode'
1084 or `retest_code' flags. That will ensure that we start a new switch
1085 at that position and put the label before the switch.
1087 The branches in the latter case must set the position to that of the
1088 target node. */
1091 printf ("\n");
1092 if (tree && tree->subroutine_number == 0)
1094 printf (" L%d:\n", tree->number);
1095 tree->label_needed = 0;
1098 if (tree)
1100 change_state (prevpos, tree->position, 2);
1101 prevpos = tree->position;
1104 for (p = tree; p; p = p->next)
1106 enum machine_mode mode = p->enforce_mode ? p->mode : VOIDmode;
1107 int need_bracket;
1108 int wrote_bracket = 0;
1109 int inner_indent;
1111 if (p->success.first == 0 && p->insn_code_number < 0)
1112 abort ();
1114 /* Find the next alternative to p that might be true when p is true.
1115 Test that one next if p's successors fail. */
1117 for (p1 = p->next; p1 && not_both_true (p, p1, 1); p1 = p1->next)
1119 p->afterward = p1;
1121 if (p1)
1123 if (mode == VOIDmode && p1->enforce_mode && p1->mode != VOIDmode)
1124 p1->retest_mode = 1;
1125 if (p->code == UNKNOWN && p1->code != UNKNOWN)
1126 p1->retest_code = 1;
1127 p1->label_needed = 1;
1130 /* If we have a different code or mode than the last node and
1131 are in a switch on codes, we must either end the switch or
1132 go to another case. We must also end the switch if this
1133 node needs a label and to retest either the mode or code. */
1135 if (switch_code != UNKNOWN
1136 && (switch_code != p->code || switch_mode != mode
1137 || (p->label_needed && (p->retest_mode || p->retest_code))))
1139 enum rtx_code code = p->code;
1141 /* If P is testing a predicate that we know about and we haven't
1142 seen any of the codes that are valid for the predicate, we
1143 can write a series of "case" statement, one for each possible
1144 code. Since we are already in a switch, these redundant tests
1145 are very cheap and will reduce the number of predicate called. */
1147 if (p->pred >= 0)
1149 for (i = 0; i < NUM_RTX_CODE && preds[p->pred].codes[i] != 0; i++)
1150 if (codemap[(int) preds[p->pred].codes[i]])
1151 break;
1153 if (preds[p->pred].codes[i] == 0)
1154 code = MATCH_OPERAND;
1157 if (code == UNKNOWN || codemap[(int) code]
1158 || switch_mode != mode
1159 || (p->label_needed && (p->retest_mode || p->retest_code)))
1161 printf ("%s}\n", indents[indent - 2]);
1162 switch_code = UNKNOWN;
1163 indent -= 4;
1165 else
1167 if (! uncond)
1168 printf ("%sbreak;\n", indents[indent]);
1170 if (code == MATCH_OPERAND)
1172 for (i = 0; i < NUM_RTX_CODE && preds[p->pred].codes[i] != 0; i++)
1174 printf ("%scase ", indents[indent - 2]);
1175 print_code (preds[p->pred].codes[i]);
1176 printf (":\n");
1177 codemap[(int) preds[p->pred].codes[i]] = 1;
1180 else
1182 printf ("%scase ", indents[indent - 2]);
1183 print_code (code);
1184 printf (":\n");
1185 codemap[(int) p->code] = 1;
1188 switch_code = code;
1191 uncond = 0;
1194 /* If we were previously in a switch on modes and now have a different
1195 mode, end at least the case, and maybe end the switch if we are
1196 not testing a mode or testing a mode whose case we already saw. */
1198 if (switch_mode != VOIDmode
1199 && (switch_mode != mode || (p->label_needed && p->retest_mode)))
1201 if (mode == VOIDmode || modemap[(int) mode]
1202 || (p->label_needed && p->retest_mode))
1204 printf ("%s}\n", indents[indent - 2]);
1205 switch_mode = VOIDmode;
1206 indent -= 4;
1208 else
1210 if (! uncond)
1211 printf (" break;\n");
1212 printf (" case %smode:\n", GET_MODE_NAME (mode));
1213 switch_mode = mode;
1214 modemap[(int) mode] = 1;
1217 uncond = 0;
1220 /* If we are about to write dead code, something went wrong. */
1221 if (! p->label_needed && uncond)
1222 abort ();
1224 /* If we need a label and we will want to retest the mode or code at
1225 that label, write the label now. We have already ensured that
1226 things will be valid for the test. */
1228 if (p->label_needed && (p->retest_mode || p->retest_code))
1230 printf ("%sL%d:\n", indents[indent - 2], p->number);
1231 p->label_needed = 0;
1234 uncond = 0;
1236 /* If we are not in any switches, see if we can shortcut things
1237 by checking for identical modes and codes. */
1239 if (switch_mode == VOIDmode && switch_code == UNKNOWN)
1241 /* If p and its alternatives all want the same mode,
1242 reject all others at once, first, then ignore the mode. */
1244 if (mode != VOIDmode && p->next && same_modes (p, mode))
1246 printf (" if (GET_MODE (x%d) != %smode)\n",
1247 depth, GET_MODE_NAME (p->mode));
1248 if (afterward)
1250 printf (" {\n");
1251 change_state (p->position, afterward->position, 6);
1252 printf (" goto L%d;\n }\n", afterward->number);
1254 else
1255 printf (" goto ret0;\n");
1256 clear_modes (p);
1257 mode = VOIDmode;
1260 /* If p and its alternatives all want the same code,
1261 reject all others at once, first, then ignore the code. */
1263 if (p->code != UNKNOWN && p->next && same_codes (p, p->code))
1265 printf (" if (GET_CODE (x%d) != ", depth);
1266 print_code (p->code);
1267 printf (")\n");
1268 if (afterward)
1270 printf (" {\n");
1271 change_state (p->position, afterward->position, indent + 4);
1272 printf (" goto L%d;\n }\n", afterward->number);
1274 else
1275 printf (" goto ret0;\n");
1276 clear_codes (p);
1280 /* If we are not in a mode switch and we are testing for a specific
1281 mode, start a mode switch unless we have just one node or the next
1282 node is not testing a mode (we have already tested for the case of
1283 more than one mode, but all of the same mode). */
1285 if (switch_mode == VOIDmode && mode != VOIDmode && p->next != 0
1286 && p->next->enforce_mode && p->next->mode != VOIDmode)
1288 mybzero (modemap, sizeof modemap);
1289 printf ("%sswitch (GET_MODE (x%d))\n", indents[indent], depth);
1290 printf ("%s{\n", indents[indent + 2]);
1291 indent += 4;
1292 printf ("%sdefault:\n%sbreak;\n", indents[indent - 2],
1293 indents[indent]);
1294 printf ("%scase %smode:\n", indents[indent - 2],
1295 GET_MODE_NAME (mode));
1296 modemap[(int) mode] = 1;
1297 switch_mode = mode;
1300 /* Similarly for testing codes. */
1302 if (switch_code == UNKNOWN && p->code != UNKNOWN && ! p->ignore_code
1303 && p->next != 0 && p->next->code != UNKNOWN)
1305 mybzero (codemap, sizeof codemap);
1306 printf ("%sswitch (GET_CODE (x%d))\n", indents[indent], depth);
1307 printf ("%s{\n", indents[indent + 2]);
1308 indent += 4;
1309 printf ("%sdefault:\n%sbreak;\n", indents[indent - 2],
1310 indents[indent]);
1311 printf ("%scase ", indents[indent - 2]);
1312 print_code (p->code);
1313 printf (":\n");
1314 codemap[(int) p->code] = 1;
1315 switch_code = p->code;
1318 /* Now that most mode and code tests have been done, we can write out
1319 a label for an inner node, if we haven't already. */
1320 if (p->label_needed)
1321 printf ("%sL%d:\n", indents[indent - 2], p->number);
1323 inner_indent = indent;
1325 /* The only way we can have to do a mode or code test here is if
1326 this node needs such a test but is the only node to be tested.
1327 In that case, we won't have started a switch. Note that this is
1328 the only way the switch and test modes can disagree. */
1330 if ((mode != switch_mode && ! p->ignore_mode)
1331 || (p->code != switch_code && p->code != UNKNOWN && ! p->ignore_code)
1332 || p->test_elt_zero_int || p->test_elt_one_int
1333 || p->test_elt_zero_wide || p->veclen
1334 || p->dupno >= 0 || p->tests || p->num_clobbers_to_add)
1336 printf ("%sif (", indents[indent]);
1338 if (mode != switch_mode && ! p->ignore_mode)
1339 printf ("GET_MODE (x%d) == %smode && ",
1340 depth, GET_MODE_NAME (mode));
1341 if (p->code != switch_code && p->code != UNKNOWN && ! p->ignore_code)
1343 printf ("GET_CODE (x%d) == ", depth);
1344 print_code (p->code);
1345 printf (" && ");
1348 if (p->test_elt_zero_int)
1349 printf ("XINT (x%d, 0) == %d && ", depth, p->elt_zero_int);
1350 if (p->test_elt_one_int)
1351 printf ("XINT (x%d, 1) == %d && ", depth, p->elt_one_int);
1352 if (p->test_elt_zero_wide)
1354 /* Set offset to 1 iff the number might get propagated to
1355 unsigned long by ANSI C rules, else 0.
1356 Prospective hosts are required to have at least 32 bit
1357 ints, and integer constants in machine descriptions
1358 must fit in 32 bit, thus it suffices to check only
1359 for 1 << 31 . */
1360 HOST_WIDE_INT offset = p->elt_zero_wide == -2147483647 - 1;
1361 printf ("XWINT (x%d, 0) == ", depth);
1362 printf (HOST_WIDE_INT_PRINT_DEC, p->elt_zero_wide + offset);
1363 printf ("%s && ", offset ? "-1" : "");
1365 if (p->veclen)
1366 printf ("XVECLEN (x%d, 0) == %d && ", depth, p->veclen);
1367 if (p->dupno >= 0)
1368 printf ("rtx_equal_p (x%d, ro[%d]) && ", depth, p->dupno);
1369 if (p->num_clobbers_to_add)
1370 printf ("pnum_clobbers != 0 && ");
1371 if (p->tests)
1372 printf ("%s (x%d, %smode)", p->tests, depth,
1373 GET_MODE_NAME (p->mode));
1374 else
1375 printf ("1");
1377 printf (")\n");
1378 inner_indent += 2;
1380 else
1381 uncond = 1;
1383 need_bracket = ! uncond;
1385 if (p->opno >= 0)
1387 if (need_bracket)
1389 printf ("%s{\n", indents[inner_indent]);
1390 inner_indent += 2;
1391 wrote_bracket = 1;
1392 need_bracket = 0;
1395 printf ("%sro[%d] = x%d;\n", indents[inner_indent], p->opno, depth);
1398 if (p->c_test)
1400 printf ("%sif (%s)\n", indents[inner_indent], p->c_test);
1401 inner_indent += 2;
1402 uncond = 0;
1403 need_bracket = 1;
1406 if (p->insn_code_number >= 0)
1408 if (type == SPLIT)
1409 printf ("%sreturn gen_split_%d (operands);\n",
1410 indents[inner_indent], p->insn_code_number);
1411 else
1413 if (p->num_clobbers_to_add)
1415 if (need_bracket)
1417 printf ("%s{\n", indents[inner_indent]);
1418 inner_indent += 2;
1421 printf ("%s*pnum_clobbers = %d;\n",
1422 indents[inner_indent], p->num_clobbers_to_add);
1423 printf ("%sreturn %d;\n",
1424 indents[inner_indent], p->insn_code_number);
1426 if (need_bracket)
1428 inner_indent -= 2;
1429 printf ("%s}\n", indents[inner_indent]);
1432 else
1433 printf ("%sreturn %d;\n",
1434 indents[inner_indent], p->insn_code_number);
1437 else
1438 printf ("%sgoto L%d;\n", indents[inner_indent],
1439 p->success.first->number);
1441 if (wrote_bracket)
1442 printf ("%s}\n", indents[inner_indent - 2]);
1445 /* We have now tested all alternatives. End any switches we have open
1446 and branch to the alternative node unless we know that we can't fall
1447 through to the branch. */
1449 if (switch_code != UNKNOWN)
1451 printf ("%s}\n", indents[indent - 2]);
1452 indent -= 4;
1453 uncond = 0;
1456 if (switch_mode != VOIDmode)
1458 printf ("%s}\n", indents[indent - 2]);
1459 indent -= 4;
1460 uncond = 0;
1463 if (indent != 2)
1464 abort ();
1466 if (uncond)
1467 return;
1469 if (afterward)
1471 change_state (prevpos, afterward->position, 2);
1472 printf (" goto L%d;\n", afterward->number);
1474 else
1475 printf (" goto ret0;\n");
1478 static void
1479 print_code (code)
1480 enum rtx_code code;
1482 register char *p1;
1483 for (p1 = GET_RTX_NAME (code); *p1; p1++)
1485 if (*p1 >= 'a' && *p1 <= 'z')
1486 putchar (*p1 + 'A' - 'a');
1487 else
1488 putchar (*p1);
1492 static int
1493 same_codes (p, code)
1494 register struct decision *p;
1495 register enum rtx_code code;
1497 for (; p; p = p->next)
1498 if (p->code != code)
1499 return 0;
1501 return 1;
1504 static void
1505 clear_codes (p)
1506 register struct decision *p;
1508 for (; p; p = p->next)
1509 p->ignore_code = 1;
1512 static int
1513 same_modes (p, mode)
1514 register struct decision *p;
1515 register enum machine_mode mode;
1517 for (; p; p = p->next)
1518 if ((p->enforce_mode ? p->mode : VOIDmode) != mode)
1519 return 0;
1521 return 1;
1524 static void
1525 clear_modes (p)
1526 register struct decision *p;
1528 for (; p; p = p->next)
1529 p->enforce_mode = 0;
1532 /* Write out the decision tree starting at TREE for a subroutine of type TYPE.
1534 PREVPOS is the position at the node that branched to this node.
1536 INITIAL is nonzero if this is the first node we are writing in a subroutine.
1538 If all nodes are false, branch to the node AFTERWARD. */
1540 static void
1541 write_tree (tree, prevpos, afterward, initial, type)
1542 struct decision *tree;
1543 char *prevpos;
1544 struct decision *afterward;
1545 int initial;
1546 enum routine_type type;
1548 register struct decision *p;
1549 char *name_prefix = (type == SPLIT ? "split" : "recog");
1550 char *call_suffix = (type == SPLIT ? "" : ", pnum_clobbers");
1552 if (! initial && tree->subroutine_number > 0)
1554 printf (" L%d:\n", tree->number);
1556 if (afterward)
1558 printf (" tem = %s_%d (x0, insn%s);\n",
1559 name_prefix, tree->subroutine_number, call_suffix);
1560 if (type == SPLIT)
1561 printf (" if (tem != 0) return tem;\n");
1562 else
1563 printf (" if (tem >= 0) return tem;\n");
1564 change_state (tree->position, afterward->position, 2);
1565 printf (" goto L%d;\n", afterward->number);
1567 else
1568 printf (" return %s_%d (x0, insn%s);\n",
1569 name_prefix, tree->subroutine_number, call_suffix);
1570 return;
1573 write_tree_1 (tree, prevpos, afterward, type);
1575 for (p = tree; p; p = p->next)
1576 if (p->success.first)
1577 write_tree (p->success.first, p->position,
1578 p->afterward ? p->afterward : afterward, 0, type);
1582 /* Assuming that the state of argument is denoted by OLDPOS, take whatever
1583 actions are necessary to move to NEWPOS.
1585 INDENT says how many blanks to place at the front of lines. */
1587 static void
1588 change_state (oldpos, newpos, indent)
1589 char *oldpos;
1590 char *newpos;
1591 int indent;
1593 int odepth = strlen (oldpos);
1594 int depth = odepth;
1595 int ndepth = strlen (newpos);
1597 /* Pop up as many levels as necessary. */
1599 while (strncmp (oldpos, newpos, depth))
1600 --depth;
1602 /* Go down to desired level. */
1604 while (depth < ndepth)
1606 if (newpos[depth] >= 'a' && newpos[depth] <= 'z')
1607 printf ("%sx%d = XVECEXP (x%d, 0, %d);\n",
1608 indents[indent], depth + 1, depth, newpos[depth] - 'a');
1609 else
1610 printf ("%sx%d = XEXP (x%d, %c);\n",
1611 indents[indent], depth + 1, depth, newpos[depth]);
1612 ++depth;
1616 static char *
1617 copystr (s1)
1618 char *s1;
1620 register char *tem;
1622 if (s1 == 0)
1623 return 0;
1625 tem = (char *) xmalloc (strlen (s1) + 1);
1626 strcpy (tem, s1);
1628 return tem;
1631 static void
1632 mybzero (b, length)
1633 register char *b;
1634 register unsigned length;
1636 while (length-- > 0)
1637 *b++ = 0;
1640 static void
1641 mybcopy (in, out, length)
1642 register char *in, *out;
1643 register unsigned length;
1645 while (length-- > 0)
1646 *out++ = *in++;
1649 char *
1650 xrealloc (ptr, size)
1651 char *ptr;
1652 unsigned size;
1654 char *result = (char *) realloc (ptr, size);
1655 if (!result)
1656 fatal ("virtual memory exhausted");
1657 return result;
1660 char *
1661 xmalloc (size)
1662 unsigned size;
1664 register char *val = (char *) malloc (size);
1666 if (val == 0)
1667 fatal ("virtual memory exhausted");
1668 return val;
1671 static void
1672 fatal (s)
1673 char *s;
1675 fprintf (stderr, "genrecog: ");
1676 fprintf (stderr, s);
1677 fprintf (stderr, "\n");
1678 fprintf (stderr, "after %d definitions\n", next_index);
1679 exit (FATAL_EXIT_CODE);
1682 /* More 'friendly' abort that prints the line and file.
1683 config.h can #define abort fancy_abort if you like that sort of thing. */
1685 void
1686 fancy_abort ()
1688 fatal ("Internal gcc abort.");
1692 main (argc, argv)
1693 int argc;
1694 char **argv;
1696 rtx desc;
1697 struct decision_head recog_tree;
1698 struct decision_head split_tree;
1699 FILE *infile;
1700 register int c;
1702 obstack_init (rtl_obstack);
1703 recog_tree.first = recog_tree.last = split_tree.first = split_tree.last = 0;
1705 if (argc <= 1)
1706 fatal ("No input file name.");
1708 infile = fopen (argv[1], "r");
1709 if (infile == 0)
1711 perror (argv[1]);
1712 exit (FATAL_EXIT_CODE);
1715 init_rtl ();
1716 next_insn_code = 0;
1717 next_index = 0;
1719 printf ("/* Generated automatically by the program `genrecog'\n\
1720 from the machine description file `md'. */\n\n");
1722 printf ("#include \"config.h\"\n");
1723 printf ("#include \"system.h\"\n");
1724 printf ("#include \"rtl.h\"\n");
1725 printf ("#include \"insn-config.h\"\n");
1726 printf ("#include \"recog.h\"\n");
1727 printf ("#include \"real.h\"\n");
1728 printf ("#include \"output.h\"\n");
1729 printf ("#include \"flags.h\"\n");
1730 printf ("\n");
1732 /* Read the machine description. */
1734 while (1)
1736 c = read_skip_spaces (infile);
1737 if (c == EOF)
1738 break;
1739 ungetc (c, infile);
1741 desc = read_rtx (infile);
1742 if (GET_CODE (desc) == DEFINE_INSN)
1743 recog_tree = merge_trees (recog_tree,
1744 make_insn_sequence (desc, RECOG));
1745 else if (GET_CODE (desc) == DEFINE_SPLIT)
1746 split_tree = merge_trees (split_tree,
1747 make_insn_sequence (desc, SPLIT));
1748 if (GET_CODE (desc) == DEFINE_PEEPHOLE
1749 || GET_CODE (desc) == DEFINE_EXPAND)
1750 next_insn_code++;
1751 next_index++;
1754 printf ("\n\
1755 /* `recog' contains a decision tree\n\
1756 that recognizes whether the rtx X0 is a valid instruction.\n\
1758 recog returns -1 if the rtx is not valid.\n\
1759 If the rtx is valid, recog returns a nonnegative number\n\
1760 which is the insn code number for the pattern that matched.\n");
1761 printf (" This is the same as the order in the machine description of\n\
1762 the entry that matched. This number can be used as an index into various\n\
1763 insn_* tables, such as insn_templates, insn_outfun, and insn_n_operands\n\
1764 (found in insn-output.c).\n\n");
1765 printf (" The third argument to recog is an optional pointer to an int.\n\
1766 If present, recog will accept a pattern if it matches except for\n\
1767 missing CLOBBER expressions at the end. In that case, the value\n\
1768 pointed to by the optional pointer will be set to the number of\n\
1769 CLOBBERs that need to be added (it should be initialized to zero by\n\
1770 the caller). If it is set nonzero, the caller should allocate a\n\
1771 PARALLEL of the appropriate size, copy the initial entries, and call\n\
1772 add_clobbers (found in insn-emit.c) to fill in the CLOBBERs.");
1774 if (split_tree.first)
1775 printf ("\n\n The function split_insns returns 0 if the rtl could not\n\
1776 be split or the split rtl in a SEQUENCE if it can be.");
1778 printf ("*/\n\n");
1780 printf ("rtx recog_operand[MAX_RECOG_OPERANDS];\n\n");
1781 printf ("rtx *recog_operand_loc[MAX_RECOG_OPERANDS];\n\n");
1782 printf ("rtx *recog_dup_loc[MAX_DUP_OPERANDS];\n\n");
1783 printf ("char recog_dup_num[MAX_DUP_OPERANDS];\n\n");
1784 printf ("#define operands recog_operand\n\n");
1786 next_subroutine_number = 0;
1787 break_out_subroutines (recog_tree, RECOG, 1);
1788 write_subroutine (recog_tree.first, RECOG);
1790 next_subroutine_number = 0;
1791 break_out_subroutines (split_tree, SPLIT, 1);
1792 write_subroutine (split_tree.first, SPLIT);
1794 fflush (stdout);
1795 exit (ferror (stdout) != 0 ? FATAL_EXIT_CODE : SUCCESS_EXIT_CODE);
1796 /* NOTREACHED */
1797 return 0;