At the suggestion of Richard Earnshaw I have changed GO_IF_LEGITIMATE_ADDRESS
[official-gcc.git] / gcc / dwarfout.c
blob8e1f2067f523ce6bb8559d2492d1e6ab69f92e2e
1 /* Output Dwarf format symbol table information from the GNU C compiler.
2 Copyright (C) 1992, 1993, 1995, 1996, 1997 Free Software Foundation, Inc.
3 Contributed by Ron Guilmette (rfg@monkeys.com) of Network Computing Devices.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
22 #include "config.h"
24 #ifdef DWARF_DEBUGGING_INFO
25 #include "system.h"
26 #include "dwarf.h"
27 #include "tree.h"
28 #include "flags.h"
29 #include "rtl.h"
30 #include "hard-reg-set.h"
31 #include "insn-config.h"
32 #include "reload.h"
33 #include "output.h"
34 #include "defaults.h"
36 #if defined(DWARF_TIMESTAMPS)
37 #if !defined(POSIX)
38 extern time_t time PROTO ((time_t *)); /* FIXME: use NEED_DECLARATION_TIME */
39 #endif /* !defined(POSIX) */
40 #endif /* defined(DWARF_TIMESTAMPS) */
42 /* We cannot use <assert.h> in GCC source, since that would include
43 GCC's assert.h, which may not be compatible with the host compiler. */
44 #undef assert
45 #ifdef NDEBUG
46 # define assert(e)
47 #else
48 # define assert(e) do { if (! (e)) abort (); } while (0)
49 #endif
51 extern char *getpwd ();
53 /* IMPORTANT NOTE: Please see the file README.DWARF for important details
54 regarding the GNU implementation of Dwarf. */
56 /* NOTE: In the comments in this file, many references are made to
57 so called "Debugging Information Entries". For the sake of brevity,
58 this term is abbreviated to `DIE' throughout the remainder of this
59 file. */
61 /* Note that the implementation of C++ support herein is (as yet) unfinished.
62 If you want to try to complete it, more power to you. */
64 #if !defined(__GNUC__) || (NDEBUG != 1)
65 #define inline
66 #endif
68 /* How to start an assembler comment. */
69 #ifndef ASM_COMMENT_START
70 #define ASM_COMMENT_START ";#"
71 #endif
73 /* How to print out a register name. */
74 #ifndef PRINT_REG
75 #define PRINT_REG(RTX, CODE, FILE) \
76 fprintf ((FILE), "%s", reg_names[REGNO (RTX)])
77 #endif
79 /* Define a macro which returns non-zero for any tagged type which is
80 used (directly or indirectly) in the specification of either some
81 function's return type or some formal parameter of some function.
82 We use this macro when we are operating in "terse" mode to help us
83 know what tagged types have to be represented in Dwarf (even in
84 terse mode) and which ones don't.
86 A flag bit with this meaning really should be a part of the normal
87 GCC ..._TYPE nodes, but at the moment, there is no such bit defined
88 for these nodes. For now, we have to just fake it. It it safe for
89 us to simply return zero for all complete tagged types (which will
90 get forced out anyway if they were used in the specification of some
91 formal or return type) and non-zero for all incomplete tagged types.
94 #define TYPE_USED_FOR_FUNCTION(tagged_type) (TYPE_SIZE (tagged_type) == 0)
96 /* Define a macro which returns non-zero for a TYPE_DECL which was
97 implicitly generated for a tagged type.
99 Note that unlike the gcc front end (which generates a NULL named
100 TYPE_DECL node for each complete tagged type, each array type, and
101 each function type node created) the g++ front end generates a
102 _named_ TYPE_DECL node for each tagged type node created.
103 These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to
104 generate a DW_TAG_typedef DIE for them. */
105 #define TYPE_DECL_IS_STUB(decl) \
106 (DECL_NAME (decl) == NULL \
107 || (DECL_ARTIFICIAL (decl) \
108 && is_tagged_type (TREE_TYPE (decl)) \
109 && decl == TYPE_STUB_DECL (TREE_TYPE (decl))))
111 extern int flag_traditional;
112 extern char *version_string;
113 extern char *language_string;
115 /* Maximum size (in bytes) of an artificially generated label. */
117 #define MAX_ARTIFICIAL_LABEL_BYTES 30
119 /* Make sure we know the sizes of the various types dwarf can describe.
120 These are only defaults. If the sizes are different for your target,
121 you should override these values by defining the appropriate symbols
122 in your tm.h file. */
124 #ifndef CHAR_TYPE_SIZE
125 #define CHAR_TYPE_SIZE BITS_PER_UNIT
126 #endif
128 #ifndef SHORT_TYPE_SIZE
129 #define SHORT_TYPE_SIZE (BITS_PER_UNIT * 2)
130 #endif
132 #ifndef INT_TYPE_SIZE
133 #define INT_TYPE_SIZE BITS_PER_WORD
134 #endif
136 #ifndef LONG_TYPE_SIZE
137 #define LONG_TYPE_SIZE BITS_PER_WORD
138 #endif
140 #ifndef LONG_LONG_TYPE_SIZE
141 #define LONG_LONG_TYPE_SIZE (BITS_PER_WORD * 2)
142 #endif
144 #ifndef WCHAR_TYPE_SIZE
145 #define WCHAR_TYPE_SIZE INT_TYPE_SIZE
146 #endif
148 #ifndef WCHAR_UNSIGNED
149 #define WCHAR_UNSIGNED 0
150 #endif
152 #ifndef FLOAT_TYPE_SIZE
153 #define FLOAT_TYPE_SIZE BITS_PER_WORD
154 #endif
156 #ifndef DOUBLE_TYPE_SIZE
157 #define DOUBLE_TYPE_SIZE (BITS_PER_WORD * 2)
158 #endif
160 #ifndef LONG_DOUBLE_TYPE_SIZE
161 #define LONG_DOUBLE_TYPE_SIZE (BITS_PER_WORD * 2)
162 #endif
164 /* Structure to keep track of source filenames. */
166 struct filename_entry {
167 unsigned number;
168 char * name;
171 typedef struct filename_entry filename_entry;
173 /* Pointer to an array of elements, each one having the structure above. */
175 static filename_entry *filename_table;
177 /* Total number of entries in the table (i.e. array) pointed to by
178 `filename_table'. This is the *total* and includes both used and
179 unused slots. */
181 static unsigned ft_entries_allocated;
183 /* Number of entries in the filename_table which are actually in use. */
185 static unsigned ft_entries;
187 /* Size (in elements) of increments by which we may expand the filename
188 table. Actually, a single hunk of space of this size should be enough
189 for most typical programs. */
191 #define FT_ENTRIES_INCREMENT 64
193 /* Local pointer to the name of the main input file. Initialized in
194 dwarfout_init. */
196 static char *primary_filename;
198 /* Pointer to the most recent filename for which we produced some line info. */
200 static char *last_filename;
202 /* For Dwarf output, we must assign lexical-blocks id numbers
203 in the order in which their beginnings are encountered.
204 We output Dwarf debugging info that refers to the beginnings
205 and ends of the ranges of code for each lexical block with
206 assembler labels ..Bn and ..Bn.e, where n is the block number.
207 The labels themselves are generated in final.c, which assigns
208 numbers to the blocks in the same way. */
210 static unsigned next_block_number = 2;
212 /* Counter to generate unique names for DIEs. */
214 static unsigned next_unused_dienum = 1;
216 /* Number of the DIE which is currently being generated. */
218 static unsigned current_dienum;
220 /* Number to use for the special "pubname" label on the next DIE which
221 represents a function or data object defined in this compilation
222 unit which has "extern" linkage. */
224 static int next_pubname_number = 0;
226 #define NEXT_DIE_NUM pending_sibling_stack[pending_siblings-1]
228 /* Pointer to a dynamically allocated list of pre-reserved and still
229 pending sibling DIE numbers. Note that this list will grow as needed. */
231 static unsigned *pending_sibling_stack;
233 /* Counter to keep track of the number of pre-reserved and still pending
234 sibling DIE numbers. */
236 static unsigned pending_siblings;
238 /* The currently allocated size of the above list (expressed in number of
239 list elements). */
241 static unsigned pending_siblings_allocated;
243 /* Size (in elements) of increments by which we may expand the pending
244 sibling stack. Actually, a single hunk of space of this size should
245 be enough for most typical programs. */
247 #define PENDING_SIBLINGS_INCREMENT 64
249 /* Non-zero if we are performing our file-scope finalization pass and if
250 we should force out Dwarf descriptions of any and all file-scope
251 tagged types which are still incomplete types. */
253 static int finalizing = 0;
255 /* A pointer to the base of a list of pending types which we haven't
256 generated DIEs for yet, but which we will have to come back to
257 later on. */
259 static tree *pending_types_list;
261 /* Number of elements currently allocated for the pending_types_list. */
263 static unsigned pending_types_allocated;
265 /* Number of elements of pending_types_list currently in use. */
267 static unsigned pending_types;
269 /* Size (in elements) of increments by which we may expand the pending
270 types list. Actually, a single hunk of space of this size should
271 be enough for most typical programs. */
273 #define PENDING_TYPES_INCREMENT 64
275 /* Pointer to an artificial RECORD_TYPE which we create in dwarfout_init.
276 This is used in a hack to help us get the DIEs describing types of
277 formal parameters to come *after* all of the DIEs describing the formal
278 parameters themselves. That's necessary in order to be compatible
279 with what the brain-damaged svr4 SDB debugger requires. */
281 static tree fake_containing_scope;
283 /* The number of the current function definition that we are generating
284 debugging information for. These numbers range from 1 up to the maximum
285 number of function definitions contained within the current compilation
286 unit. These numbers are used to create unique labels for various things
287 contained within various function definitions. */
289 static unsigned current_funcdef_number = 1;
291 /* A pointer to the ..._DECL node which we have most recently been working
292 on. We keep this around just in case something about it looks screwy
293 and we want to tell the user what the source coordinates for the actual
294 declaration are. */
296 static tree dwarf_last_decl;
298 /* A flag indicating that we are emitting the member declarations of a
299 class, so member functions and variables should not be entirely emitted.
300 This is a kludge to avoid passing a second argument to output_*_die. */
302 static int in_class;
304 /* Forward declarations for functions defined in this file. */
306 static char *dwarf_tag_name PROTO((unsigned));
307 static char *dwarf_attr_name PROTO((unsigned));
308 static char *dwarf_stack_op_name PROTO((unsigned));
309 static char *dwarf_typemod_name PROTO((unsigned));
310 static char *dwarf_fmt_byte_name PROTO((unsigned));
311 static char *dwarf_fund_type_name PROTO((unsigned));
312 static tree decl_ultimate_origin PROTO((tree));
313 static tree block_ultimate_origin PROTO((tree));
314 static tree decl_class_context PROTO((tree));
315 static void output_unsigned_leb128 PROTO((unsigned long));
316 static void output_signed_leb128 PROTO((long));
317 static inline int is_body_block PROTO((tree));
318 static int fundamental_type_code PROTO((tree));
319 static tree root_type_1 PROTO((tree, int));
320 static tree root_type PROTO((tree));
321 static void write_modifier_bytes_1 PROTO((tree, int, int, int));
322 static void write_modifier_bytes PROTO((tree, int, int));
323 static inline int type_is_fundamental PROTO((tree));
324 static void equate_decl_number_to_die_number PROTO((tree));
325 static inline void equate_type_number_to_die_number PROTO((tree));
326 static void output_reg_number PROTO((rtx));
327 static void output_mem_loc_descriptor PROTO((rtx));
328 static void output_loc_descriptor PROTO((rtx));
329 static void output_bound_representation PROTO((tree, unsigned, int));
330 static void output_enumeral_list PROTO((tree));
331 static inline unsigned ceiling PROTO((unsigned, unsigned));
332 static inline tree field_type PROTO((tree));
333 static inline unsigned simple_type_align_in_bits PROTO((tree));
334 static inline unsigned simple_type_size_in_bits PROTO((tree));
335 static unsigned field_byte_offset PROTO((tree));
336 static inline void sibling_attribute PROTO((void));
337 static void location_attribute PROTO((rtx));
338 static void data_member_location_attribute PROTO((tree));
339 static void const_value_attribute PROTO((rtx));
340 static void location_or_const_value_attribute PROTO((tree));
341 static inline void name_attribute PROTO((char *));
342 static inline void fund_type_attribute PROTO((unsigned));
343 static void mod_fund_type_attribute PROTO((tree, int, int));
344 static inline void user_def_type_attribute PROTO((tree));
345 static void mod_u_d_type_attribute PROTO((tree, int, int));
346 #ifdef USE_ORDERING_ATTRIBUTE
347 static inline void ordering_attribute PROTO((unsigned));
348 #endif /* defined(USE_ORDERING_ATTRIBUTE) */
349 static void subscript_data_attribute PROTO((tree));
350 static void byte_size_attribute PROTO((tree));
351 static inline void bit_offset_attribute PROTO((tree));
352 static inline void bit_size_attribute PROTO((tree));
353 static inline void element_list_attribute PROTO((tree));
354 static inline void stmt_list_attribute PROTO((char *));
355 static inline void low_pc_attribute PROTO((char *));
356 static inline void high_pc_attribute PROTO((char *));
357 static inline void body_begin_attribute PROTO((char *));
358 static inline void body_end_attribute PROTO((char *));
359 static inline void language_attribute PROTO((unsigned));
360 static inline void member_attribute PROTO((tree));
361 static inline void string_length_attribute PROTO((tree));
362 static inline void comp_dir_attribute PROTO((char *));
363 static inline void sf_names_attribute PROTO((char *));
364 static inline void src_info_attribute PROTO((char *));
365 static inline void mac_info_attribute PROTO((char *));
366 static inline void prototyped_attribute PROTO((tree));
367 static inline void producer_attribute PROTO((char *));
368 static inline void inline_attribute PROTO((tree));
369 static inline void containing_type_attribute PROTO((tree));
370 static inline void abstract_origin_attribute PROTO((tree));
371 #ifdef DWARF_DECL_COORDINATES
372 static inline void src_coords_attribute PROTO((unsigned, unsigned));
373 #endif /* defined(DWARF_DECL_COORDINATES) */
374 static inline void pure_or_virtual_attribute PROTO((tree));
375 static void name_and_src_coords_attributes PROTO((tree));
376 static void type_attribute PROTO((tree, int, int));
377 static char *type_tag PROTO((tree));
378 static inline void dienum_push PROTO((void));
379 static inline void dienum_pop PROTO((void));
380 static inline tree member_declared_type PROTO((tree));
381 static char *function_start_label PROTO((tree));
382 static void output_array_type_die PROTO((void *));
383 static void output_set_type_die PROTO((void *));
384 #if 0
385 static void output_entry_point_die PROTO((void *));
386 #endif
387 static void output_inlined_enumeration_type_die PROTO((void *));
388 static void output_inlined_structure_type_die PROTO((void *));
389 static void output_inlined_union_type_die PROTO((void *));
390 static void output_enumeration_type_die PROTO((void *));
391 static void output_formal_parameter_die PROTO((void *));
392 static void output_global_subroutine_die PROTO((void *));
393 static void output_global_variable_die PROTO((void *));
394 static void output_label_die PROTO((void *));
395 static void output_lexical_block_die PROTO((void *));
396 static void output_inlined_subroutine_die PROTO((void *));
397 static void output_local_variable_die PROTO((void *));
398 static void output_member_die PROTO((void *));
399 #if 0
400 static void output_pointer_type_die PROTO((void *));
401 static void output_reference_type_die PROTO((void *));
402 #endif
403 static void output_ptr_to_mbr_type_die PROTO((void *));
404 static void output_compile_unit_die PROTO((void *));
405 static void output_string_type_die PROTO((void *));
406 static void output_inheritance_die PROTO((void *));
407 static void output_structure_type_die PROTO((void *));
408 static void output_local_subroutine_die PROTO((void *));
409 static void output_subroutine_type_die PROTO((void *));
410 static void output_typedef_die PROTO((void *));
411 static void output_union_type_die PROTO((void *));
412 static void output_unspecified_parameters_die PROTO((void *));
413 static void output_padded_null_die PROTO((void *));
414 static void output_die PROTO((void (*) (), void *));
415 static void end_sibling_chain PROTO((void));
416 static void output_formal_types PROTO((tree));
417 static void pend_type PROTO((tree));
418 static int type_ok_for_scope PROTO((tree, tree));
419 static void output_pending_types_for_scope PROTO((tree));
420 static void output_type PROTO((tree, tree));
421 static void output_tagged_type_instantiation PROTO((tree));
422 static void output_block PROTO((tree, int));
423 static void output_decls_for_scope PROTO((tree, int));
424 static void output_decl PROTO((tree, tree));
425 static void shuffle_filename_entry PROTO((filename_entry *));
426 static void generate_new_sfname_entry PROTO((void));
427 static unsigned lookup_filename PROTO((char *));
428 static void generate_srcinfo_entry PROTO((unsigned, unsigned));
429 static void generate_macinfo_entry PROTO((char *, char *));
431 /* Definitions of defaults for assembler-dependent names of various
432 pseudo-ops and section names.
434 Theses may be overridden in your tm.h file (if necessary) for your
435 particular assembler. The default values provided here correspond to
436 what is expected by "standard" AT&T System V.4 assemblers. */
438 #ifndef FILE_ASM_OP
439 #define FILE_ASM_OP ".file"
440 #endif
441 #ifndef VERSION_ASM_OP
442 #define VERSION_ASM_OP ".version"
443 #endif
444 #ifndef UNALIGNED_SHORT_ASM_OP
445 #define UNALIGNED_SHORT_ASM_OP ".2byte"
446 #endif
447 #ifndef UNALIGNED_INT_ASM_OP
448 #define UNALIGNED_INT_ASM_OP ".4byte"
449 #endif
450 #ifndef ASM_BYTE_OP
451 #define ASM_BYTE_OP ".byte"
452 #endif
453 #ifndef SET_ASM_OP
454 #define SET_ASM_OP ".set"
455 #endif
457 /* Pseudo-ops for pushing the current section onto the section stack (and
458 simultaneously changing to a new section) and for poping back to the
459 section we were in immediately before this one. Note that most svr4
460 assemblers only maintain a one level stack... you can push all the
461 sections you want, but you can only pop out one level. (The sparc
462 svr4 assembler is an exception to this general rule.) That's
463 OK because we only use at most one level of the section stack herein. */
465 #ifndef PUSHSECTION_ASM_OP
466 #define PUSHSECTION_ASM_OP ".section"
467 #endif
468 #ifndef POPSECTION_ASM_OP
469 #define POPSECTION_ASM_OP ".previous"
470 #endif
472 /* The default format used by the ASM_OUTPUT_PUSH_SECTION macro (see below)
473 to print the PUSHSECTION_ASM_OP and the section name. The default here
474 works for almost all svr4 assemblers, except for the sparc, where the
475 section name must be enclosed in double quotes. (See sparcv4.h.) */
477 #ifndef PUSHSECTION_FORMAT
478 #define PUSHSECTION_FORMAT "\t%s\t%s\n"
479 #endif
481 #ifndef DEBUG_SECTION
482 #define DEBUG_SECTION ".debug"
483 #endif
484 #ifndef LINE_SECTION
485 #define LINE_SECTION ".line"
486 #endif
487 #ifndef SFNAMES_SECTION
488 #define SFNAMES_SECTION ".debug_sfnames"
489 #endif
490 #ifndef SRCINFO_SECTION
491 #define SRCINFO_SECTION ".debug_srcinfo"
492 #endif
493 #ifndef MACINFO_SECTION
494 #define MACINFO_SECTION ".debug_macinfo"
495 #endif
496 #ifndef PUBNAMES_SECTION
497 #define PUBNAMES_SECTION ".debug_pubnames"
498 #endif
499 #ifndef ARANGES_SECTION
500 #define ARANGES_SECTION ".debug_aranges"
501 #endif
502 #ifndef TEXT_SECTION
503 #define TEXT_SECTION ".text"
504 #endif
505 #ifndef DATA_SECTION
506 #define DATA_SECTION ".data"
507 #endif
508 #ifndef DATA1_SECTION
509 #define DATA1_SECTION ".data1"
510 #endif
511 #ifndef RODATA_SECTION
512 #define RODATA_SECTION ".rodata"
513 #endif
514 #ifndef RODATA1_SECTION
515 #define RODATA1_SECTION ".rodata1"
516 #endif
517 #ifndef BSS_SECTION
518 #define BSS_SECTION ".bss"
519 #endif
521 /* Definitions of defaults for formats and names of various special
522 (artificial) labels which may be generated within this file (when
523 the -g options is used and DWARF_DEBUGGING_INFO is in effect.
525 If necessary, these may be overridden from within your tm.h file,
526 but typically, you should never need to override these.
528 These labels have been hacked (temporarily) so that they all begin with
529 a `.L' sequence so as to appease the stock sparc/svr4 assembler and the
530 stock m88k/svr4 assembler, both of which need to see .L at the start of
531 a label in order to prevent that label from going into the linker symbol
532 table). When I get time, I'll have to fix this the right way so that we
533 will use ASM_GENERATE_INTERNAL_LABEL and ASM_OUTPUT_INTERNAL_LABEL herein,
534 but that will require a rather massive set of changes. For the moment,
535 the following definitions out to produce the right results for all svr4
536 and svr3 assemblers. -- rfg
539 #ifndef TEXT_BEGIN_LABEL
540 #define TEXT_BEGIN_LABEL "*.L_text_b"
541 #endif
542 #ifndef TEXT_END_LABEL
543 #define TEXT_END_LABEL "*.L_text_e"
544 #endif
546 #ifndef DATA_BEGIN_LABEL
547 #define DATA_BEGIN_LABEL "*.L_data_b"
548 #endif
549 #ifndef DATA_END_LABEL
550 #define DATA_END_LABEL "*.L_data_e"
551 #endif
553 #ifndef DATA1_BEGIN_LABEL
554 #define DATA1_BEGIN_LABEL "*.L_data1_b"
555 #endif
556 #ifndef DATA1_END_LABEL
557 #define DATA1_END_LABEL "*.L_data1_e"
558 #endif
560 #ifndef RODATA_BEGIN_LABEL
561 #define RODATA_BEGIN_LABEL "*.L_rodata_b"
562 #endif
563 #ifndef RODATA_END_LABEL
564 #define RODATA_END_LABEL "*.L_rodata_e"
565 #endif
567 #ifndef RODATA1_BEGIN_LABEL
568 #define RODATA1_BEGIN_LABEL "*.L_rodata1_b"
569 #endif
570 #ifndef RODATA1_END_LABEL
571 #define RODATA1_END_LABEL "*.L_rodata1_e"
572 #endif
574 #ifndef BSS_BEGIN_LABEL
575 #define BSS_BEGIN_LABEL "*.L_bss_b"
576 #endif
577 #ifndef BSS_END_LABEL
578 #define BSS_END_LABEL "*.L_bss_e"
579 #endif
581 #ifndef LINE_BEGIN_LABEL
582 #define LINE_BEGIN_LABEL "*.L_line_b"
583 #endif
584 #ifndef LINE_LAST_ENTRY_LABEL
585 #define LINE_LAST_ENTRY_LABEL "*.L_line_last"
586 #endif
587 #ifndef LINE_END_LABEL
588 #define LINE_END_LABEL "*.L_line_e"
589 #endif
591 #ifndef DEBUG_BEGIN_LABEL
592 #define DEBUG_BEGIN_LABEL "*.L_debug_b"
593 #endif
594 #ifndef SFNAMES_BEGIN_LABEL
595 #define SFNAMES_BEGIN_LABEL "*.L_sfnames_b"
596 #endif
597 #ifndef SRCINFO_BEGIN_LABEL
598 #define SRCINFO_BEGIN_LABEL "*.L_srcinfo_b"
599 #endif
600 #ifndef MACINFO_BEGIN_LABEL
601 #define MACINFO_BEGIN_LABEL "*.L_macinfo_b"
602 #endif
604 #ifndef DIE_BEGIN_LABEL_FMT
605 #define DIE_BEGIN_LABEL_FMT "*.L_D%u"
606 #endif
607 #ifndef DIE_END_LABEL_FMT
608 #define DIE_END_LABEL_FMT "*.L_D%u_e"
609 #endif
610 #ifndef PUB_DIE_LABEL_FMT
611 #define PUB_DIE_LABEL_FMT "*.L_P%u"
612 #endif
613 #ifndef INSN_LABEL_FMT
614 #define INSN_LABEL_FMT "*.L_I%u_%u"
615 #endif
616 #ifndef BLOCK_BEGIN_LABEL_FMT
617 #define BLOCK_BEGIN_LABEL_FMT "*.L_B%u"
618 #endif
619 #ifndef BLOCK_END_LABEL_FMT
620 #define BLOCK_END_LABEL_FMT "*.L_B%u_e"
621 #endif
622 #ifndef SS_BEGIN_LABEL_FMT
623 #define SS_BEGIN_LABEL_FMT "*.L_s%u"
624 #endif
625 #ifndef SS_END_LABEL_FMT
626 #define SS_END_LABEL_FMT "*.L_s%u_e"
627 #endif
628 #ifndef EE_BEGIN_LABEL_FMT
629 #define EE_BEGIN_LABEL_FMT "*.L_e%u"
630 #endif
631 #ifndef EE_END_LABEL_FMT
632 #define EE_END_LABEL_FMT "*.L_e%u_e"
633 #endif
634 #ifndef MT_BEGIN_LABEL_FMT
635 #define MT_BEGIN_LABEL_FMT "*.L_t%u"
636 #endif
637 #ifndef MT_END_LABEL_FMT
638 #define MT_END_LABEL_FMT "*.L_t%u_e"
639 #endif
640 #ifndef LOC_BEGIN_LABEL_FMT
641 #define LOC_BEGIN_LABEL_FMT "*.L_l%u"
642 #endif
643 #ifndef LOC_END_LABEL_FMT
644 #define LOC_END_LABEL_FMT "*.L_l%u_e"
645 #endif
646 #ifndef BOUND_BEGIN_LABEL_FMT
647 #define BOUND_BEGIN_LABEL_FMT "*.L_b%u_%u_%c"
648 #endif
649 #ifndef BOUND_END_LABEL_FMT
650 #define BOUND_END_LABEL_FMT "*.L_b%u_%u_%c_e"
651 #endif
652 #ifndef DERIV_BEGIN_LABEL_FMT
653 #define DERIV_BEGIN_LABEL_FMT "*.L_d%u"
654 #endif
655 #ifndef DERIV_END_LABEL_FMT
656 #define DERIV_END_LABEL_FMT "*.L_d%u_e"
657 #endif
658 #ifndef SL_BEGIN_LABEL_FMT
659 #define SL_BEGIN_LABEL_FMT "*.L_sl%u"
660 #endif
661 #ifndef SL_END_LABEL_FMT
662 #define SL_END_LABEL_FMT "*.L_sl%u_e"
663 #endif
664 #ifndef BODY_BEGIN_LABEL_FMT
665 #define BODY_BEGIN_LABEL_FMT "*.L_b%u"
666 #endif
667 #ifndef BODY_END_LABEL_FMT
668 #define BODY_END_LABEL_FMT "*.L_b%u_e"
669 #endif
670 #ifndef FUNC_END_LABEL_FMT
671 #define FUNC_END_LABEL_FMT "*.L_f%u_e"
672 #endif
673 #ifndef TYPE_NAME_FMT
674 #define TYPE_NAME_FMT "*.L_T%u"
675 #endif
676 #ifndef DECL_NAME_FMT
677 #define DECL_NAME_FMT "*.L_E%u"
678 #endif
679 #ifndef LINE_CODE_LABEL_FMT
680 #define LINE_CODE_LABEL_FMT "*.L_LC%u"
681 #endif
682 #ifndef SFNAMES_ENTRY_LABEL_FMT
683 #define SFNAMES_ENTRY_LABEL_FMT "*.L_F%u"
684 #endif
685 #ifndef LINE_ENTRY_LABEL_FMT
686 #define LINE_ENTRY_LABEL_FMT "*.L_LE%u"
687 #endif
689 /* Definitions of defaults for various types of primitive assembly language
690 output operations.
692 If necessary, these may be overridden from within your tm.h file,
693 but typically, you shouldn't need to override these. */
695 #ifndef ASM_OUTPUT_PUSH_SECTION
696 #define ASM_OUTPUT_PUSH_SECTION(FILE, SECTION) \
697 fprintf ((FILE), PUSHSECTION_FORMAT, PUSHSECTION_ASM_OP, SECTION)
698 #endif
700 #ifndef ASM_OUTPUT_POP_SECTION
701 #define ASM_OUTPUT_POP_SECTION(FILE) \
702 fprintf ((FILE), "\t%s\n", POPSECTION_ASM_OP)
703 #endif
705 #ifndef ASM_OUTPUT_DWARF_DELTA2
706 #define ASM_OUTPUT_DWARF_DELTA2(FILE,LABEL1,LABEL2) \
707 do { fprintf ((FILE), "\t%s\t", UNALIGNED_SHORT_ASM_OP); \
708 assemble_name (FILE, LABEL1); \
709 fprintf (FILE, "-"); \
710 assemble_name (FILE, LABEL2); \
711 fprintf (FILE, "\n"); \
712 } while (0)
713 #endif
715 #ifndef ASM_OUTPUT_DWARF_DELTA4
716 #define ASM_OUTPUT_DWARF_DELTA4(FILE,LABEL1,LABEL2) \
717 do { fprintf ((FILE), "\t%s\t", UNALIGNED_INT_ASM_OP); \
718 assemble_name (FILE, LABEL1); \
719 fprintf (FILE, "-"); \
720 assemble_name (FILE, LABEL2); \
721 fprintf (FILE, "\n"); \
722 } while (0)
723 #endif
725 #ifndef ASM_OUTPUT_DWARF_TAG
726 #define ASM_OUTPUT_DWARF_TAG(FILE,TAG) \
727 do { \
728 fprintf ((FILE), "\t%s\t0x%x", \
729 UNALIGNED_SHORT_ASM_OP, (unsigned) TAG); \
730 if (flag_debug_asm) \
731 fprintf ((FILE), "\t%s %s", \
732 ASM_COMMENT_START, dwarf_tag_name (TAG)); \
733 fputc ('\n', (FILE)); \
734 } while (0)
735 #endif
737 #ifndef ASM_OUTPUT_DWARF_ATTRIBUTE
738 #define ASM_OUTPUT_DWARF_ATTRIBUTE(FILE,ATTR) \
739 do { \
740 fprintf ((FILE), "\t%s\t0x%x", \
741 UNALIGNED_SHORT_ASM_OP, (unsigned) ATTR); \
742 if (flag_debug_asm) \
743 fprintf ((FILE), "\t%s %s", \
744 ASM_COMMENT_START, dwarf_attr_name (ATTR)); \
745 fputc ('\n', (FILE)); \
746 } while (0)
747 #endif
749 #ifndef ASM_OUTPUT_DWARF_STACK_OP
750 #define ASM_OUTPUT_DWARF_STACK_OP(FILE,OP) \
751 do { \
752 fprintf ((FILE), "\t%s\t0x%x", ASM_BYTE_OP, (unsigned) OP); \
753 if (flag_debug_asm) \
754 fprintf ((FILE), "\t%s %s", \
755 ASM_COMMENT_START, dwarf_stack_op_name (OP)); \
756 fputc ('\n', (FILE)); \
757 } while (0)
758 #endif
760 #ifndef ASM_OUTPUT_DWARF_FUND_TYPE
761 #define ASM_OUTPUT_DWARF_FUND_TYPE(FILE,FT) \
762 do { \
763 fprintf ((FILE), "\t%s\t0x%x", \
764 UNALIGNED_SHORT_ASM_OP, (unsigned) FT); \
765 if (flag_debug_asm) \
766 fprintf ((FILE), "\t%s %s", \
767 ASM_COMMENT_START, dwarf_fund_type_name (FT)); \
768 fputc ('\n', (FILE)); \
769 } while (0)
770 #endif
772 #ifndef ASM_OUTPUT_DWARF_FMT_BYTE
773 #define ASM_OUTPUT_DWARF_FMT_BYTE(FILE,FMT) \
774 do { \
775 fprintf ((FILE), "\t%s\t0x%x", ASM_BYTE_OP, (unsigned) FMT); \
776 if (flag_debug_asm) \
777 fprintf ((FILE), "\t%s %s", \
778 ASM_COMMENT_START, dwarf_fmt_byte_name (FMT)); \
779 fputc ('\n', (FILE)); \
780 } while (0)
781 #endif
783 #ifndef ASM_OUTPUT_DWARF_TYPE_MODIFIER
784 #define ASM_OUTPUT_DWARF_TYPE_MODIFIER(FILE,MOD) \
785 do { \
786 fprintf ((FILE), "\t%s\t0x%x", ASM_BYTE_OP, (unsigned) MOD); \
787 if (flag_debug_asm) \
788 fprintf ((FILE), "\t%s %s", \
789 ASM_COMMENT_START, dwarf_typemod_name (MOD)); \
790 fputc ('\n', (FILE)); \
791 } while (0)
792 #endif
794 #ifndef ASM_OUTPUT_DWARF_ADDR
795 #define ASM_OUTPUT_DWARF_ADDR(FILE,LABEL) \
796 do { fprintf ((FILE), "\t%s\t", UNALIGNED_INT_ASM_OP); \
797 assemble_name (FILE, LABEL); \
798 fprintf (FILE, "\n"); \
799 } while (0)
800 #endif
802 #ifndef ASM_OUTPUT_DWARF_ADDR_CONST
803 #define ASM_OUTPUT_DWARF_ADDR_CONST(FILE,RTX) \
804 do { \
805 fprintf ((FILE), "\t%s\t", UNALIGNED_INT_ASM_OP); \
806 output_addr_const ((FILE), (RTX)); \
807 fputc ('\n', (FILE)); \
808 } while (0)
809 #endif
811 #ifndef ASM_OUTPUT_DWARF_REF
812 #define ASM_OUTPUT_DWARF_REF(FILE,LABEL) \
813 do { fprintf ((FILE), "\t%s\t", UNALIGNED_INT_ASM_OP); \
814 assemble_name (FILE, LABEL); \
815 fprintf (FILE, "\n"); \
816 } while (0)
817 #endif
819 #ifndef ASM_OUTPUT_DWARF_DATA1
820 #define ASM_OUTPUT_DWARF_DATA1(FILE,VALUE) \
821 fprintf ((FILE), "\t%s\t0x%x\n", ASM_BYTE_OP, VALUE)
822 #endif
824 #ifndef ASM_OUTPUT_DWARF_DATA2
825 #define ASM_OUTPUT_DWARF_DATA2(FILE,VALUE) \
826 fprintf ((FILE), "\t%s\t0x%x\n", UNALIGNED_SHORT_ASM_OP, (unsigned) VALUE)
827 #endif
829 #ifndef ASM_OUTPUT_DWARF_DATA4
830 #define ASM_OUTPUT_DWARF_DATA4(FILE,VALUE) \
831 fprintf ((FILE), "\t%s\t0x%x\n", UNALIGNED_INT_ASM_OP, (unsigned) VALUE)
832 #endif
834 #ifndef ASM_OUTPUT_DWARF_DATA8
835 #define ASM_OUTPUT_DWARF_DATA8(FILE,HIGH_VALUE,LOW_VALUE) \
836 do { \
837 if (WORDS_BIG_ENDIAN) \
839 fprintf ((FILE), "\t%s\t0x%x\n", UNALIGNED_INT_ASM_OP, HIGH_VALUE); \
840 fprintf ((FILE), "\t%s\t0x%x\n", UNALIGNED_INT_ASM_OP, LOW_VALUE);\
842 else \
844 fprintf ((FILE), "\t%s\t0x%x\n", UNALIGNED_INT_ASM_OP, LOW_VALUE);\
845 fprintf ((FILE), "\t%s\t0x%x\n", UNALIGNED_INT_ASM_OP, HIGH_VALUE); \
847 } while (0)
848 #endif
850 #ifndef ASM_OUTPUT_DWARF_STRING
851 #define ASM_OUTPUT_DWARF_STRING(FILE,P) \
852 ASM_OUTPUT_ASCII ((FILE), P, strlen (P)+1)
853 #endif
855 /************************ general utility functions **************************/
857 inline int
858 is_pseudo_reg (rtl)
859 register rtx rtl;
861 return (((GET_CODE (rtl) == REG) && (REGNO (rtl) >= FIRST_PSEUDO_REGISTER))
862 || ((GET_CODE (rtl) == SUBREG)
863 && (REGNO (XEXP (rtl, 0)) >= FIRST_PSEUDO_REGISTER)));
866 inline tree
867 type_main_variant (type)
868 register tree type;
870 type = TYPE_MAIN_VARIANT (type);
872 /* There really should be only one main variant among any group of variants
873 of a given type (and all of the MAIN_VARIANT values for all members of
874 the group should point to that one type) but sometimes the C front-end
875 messes this up for array types, so we work around that bug here. */
877 if (TREE_CODE (type) == ARRAY_TYPE)
879 while (type != TYPE_MAIN_VARIANT (type))
880 type = TYPE_MAIN_VARIANT (type);
883 return type;
886 /* Return non-zero if the given type node represents a tagged type. */
888 inline int
889 is_tagged_type (type)
890 register tree type;
892 register enum tree_code code = TREE_CODE (type);
894 return (code == RECORD_TYPE || code == UNION_TYPE
895 || code == QUAL_UNION_TYPE || code == ENUMERAL_TYPE);
898 static char *
899 dwarf_tag_name (tag)
900 register unsigned tag;
902 switch (tag)
904 case TAG_padding: return "TAG_padding";
905 case TAG_array_type: return "TAG_array_type";
906 case TAG_class_type: return "TAG_class_type";
907 case TAG_entry_point: return "TAG_entry_point";
908 case TAG_enumeration_type: return "TAG_enumeration_type";
909 case TAG_formal_parameter: return "TAG_formal_parameter";
910 case TAG_global_subroutine: return "TAG_global_subroutine";
911 case TAG_global_variable: return "TAG_global_variable";
912 case TAG_label: return "TAG_label";
913 case TAG_lexical_block: return "TAG_lexical_block";
914 case TAG_local_variable: return "TAG_local_variable";
915 case TAG_member: return "TAG_member";
916 case TAG_pointer_type: return "TAG_pointer_type";
917 case TAG_reference_type: return "TAG_reference_type";
918 case TAG_compile_unit: return "TAG_compile_unit";
919 case TAG_string_type: return "TAG_string_type";
920 case TAG_structure_type: return "TAG_structure_type";
921 case TAG_subroutine: return "TAG_subroutine";
922 case TAG_subroutine_type: return "TAG_subroutine_type";
923 case TAG_typedef: return "TAG_typedef";
924 case TAG_union_type: return "TAG_union_type";
925 case TAG_unspecified_parameters: return "TAG_unspecified_parameters";
926 case TAG_variant: return "TAG_variant";
927 case TAG_common_block: return "TAG_common_block";
928 case TAG_common_inclusion: return "TAG_common_inclusion";
929 case TAG_inheritance: return "TAG_inheritance";
930 case TAG_inlined_subroutine: return "TAG_inlined_subroutine";
931 case TAG_module: return "TAG_module";
932 case TAG_ptr_to_member_type: return "TAG_ptr_to_member_type";
933 case TAG_set_type: return "TAG_set_type";
934 case TAG_subrange_type: return "TAG_subrange_type";
935 case TAG_with_stmt: return "TAG_with_stmt";
937 /* GNU extensions. */
939 case TAG_format_label: return "TAG_format_label";
940 case TAG_namelist: return "TAG_namelist";
941 case TAG_function_template: return "TAG_function_template";
942 case TAG_class_template: return "TAG_class_template";
944 default: return "TAG_<unknown>";
948 static char *
949 dwarf_attr_name (attr)
950 register unsigned attr;
952 switch (attr)
954 case AT_sibling: return "AT_sibling";
955 case AT_location: return "AT_location";
956 case AT_name: return "AT_name";
957 case AT_fund_type: return "AT_fund_type";
958 case AT_mod_fund_type: return "AT_mod_fund_type";
959 case AT_user_def_type: return "AT_user_def_type";
960 case AT_mod_u_d_type: return "AT_mod_u_d_type";
961 case AT_ordering: return "AT_ordering";
962 case AT_subscr_data: return "AT_subscr_data";
963 case AT_byte_size: return "AT_byte_size";
964 case AT_bit_offset: return "AT_bit_offset";
965 case AT_bit_size: return "AT_bit_size";
966 case AT_element_list: return "AT_element_list";
967 case AT_stmt_list: return "AT_stmt_list";
968 case AT_low_pc: return "AT_low_pc";
969 case AT_high_pc: return "AT_high_pc";
970 case AT_language: return "AT_language";
971 case AT_member: return "AT_member";
972 case AT_discr: return "AT_discr";
973 case AT_discr_value: return "AT_discr_value";
974 case AT_string_length: return "AT_string_length";
975 case AT_common_reference: return "AT_common_reference";
976 case AT_comp_dir: return "AT_comp_dir";
977 case AT_const_value_string: return "AT_const_value_string";
978 case AT_const_value_data2: return "AT_const_value_data2";
979 case AT_const_value_data4: return "AT_const_value_data4";
980 case AT_const_value_data8: return "AT_const_value_data8";
981 case AT_const_value_block2: return "AT_const_value_block2";
982 case AT_const_value_block4: return "AT_const_value_block4";
983 case AT_containing_type: return "AT_containing_type";
984 case AT_default_value_addr: return "AT_default_value_addr";
985 case AT_default_value_data2: return "AT_default_value_data2";
986 case AT_default_value_data4: return "AT_default_value_data4";
987 case AT_default_value_data8: return "AT_default_value_data8";
988 case AT_default_value_string: return "AT_default_value_string";
989 case AT_friends: return "AT_friends";
990 case AT_inline: return "AT_inline";
991 case AT_is_optional: return "AT_is_optional";
992 case AT_lower_bound_ref: return "AT_lower_bound_ref";
993 case AT_lower_bound_data2: return "AT_lower_bound_data2";
994 case AT_lower_bound_data4: return "AT_lower_bound_data4";
995 case AT_lower_bound_data8: return "AT_lower_bound_data8";
996 case AT_private: return "AT_private";
997 case AT_producer: return "AT_producer";
998 case AT_program: return "AT_program";
999 case AT_protected: return "AT_protected";
1000 case AT_prototyped: return "AT_prototyped";
1001 case AT_public: return "AT_public";
1002 case AT_pure_virtual: return "AT_pure_virtual";
1003 case AT_return_addr: return "AT_return_addr";
1004 case AT_abstract_origin: return "AT_abstract_origin";
1005 case AT_start_scope: return "AT_start_scope";
1006 case AT_stride_size: return "AT_stride_size";
1007 case AT_upper_bound_ref: return "AT_upper_bound_ref";
1008 case AT_upper_bound_data2: return "AT_upper_bound_data2";
1009 case AT_upper_bound_data4: return "AT_upper_bound_data4";
1010 case AT_upper_bound_data8: return "AT_upper_bound_data8";
1011 case AT_virtual: return "AT_virtual";
1013 /* GNU extensions */
1015 case AT_sf_names: return "AT_sf_names";
1016 case AT_src_info: return "AT_src_info";
1017 case AT_mac_info: return "AT_mac_info";
1018 case AT_src_coords: return "AT_src_coords";
1019 case AT_body_begin: return "AT_body_begin";
1020 case AT_body_end: return "AT_body_end";
1022 default: return "AT_<unknown>";
1026 static char *
1027 dwarf_stack_op_name (op)
1028 register unsigned op;
1030 switch (op)
1032 case OP_REG: return "OP_REG";
1033 case OP_BASEREG: return "OP_BASEREG";
1034 case OP_ADDR: return "OP_ADDR";
1035 case OP_CONST: return "OP_CONST";
1036 case OP_DEREF2: return "OP_DEREF2";
1037 case OP_DEREF4: return "OP_DEREF4";
1038 case OP_ADD: return "OP_ADD";
1039 default: return "OP_<unknown>";
1043 static char *
1044 dwarf_typemod_name (mod)
1045 register unsigned mod;
1047 switch (mod)
1049 case MOD_pointer_to: return "MOD_pointer_to";
1050 case MOD_reference_to: return "MOD_reference_to";
1051 case MOD_const: return "MOD_const";
1052 case MOD_volatile: return "MOD_volatile";
1053 default: return "MOD_<unknown>";
1057 static char *
1058 dwarf_fmt_byte_name (fmt)
1059 register unsigned fmt;
1061 switch (fmt)
1063 case FMT_FT_C_C: return "FMT_FT_C_C";
1064 case FMT_FT_C_X: return "FMT_FT_C_X";
1065 case FMT_FT_X_C: return "FMT_FT_X_C";
1066 case FMT_FT_X_X: return "FMT_FT_X_X";
1067 case FMT_UT_C_C: return "FMT_UT_C_C";
1068 case FMT_UT_C_X: return "FMT_UT_C_X";
1069 case FMT_UT_X_C: return "FMT_UT_X_C";
1070 case FMT_UT_X_X: return "FMT_UT_X_X";
1071 case FMT_ET: return "FMT_ET";
1072 default: return "FMT_<unknown>";
1076 static char *
1077 dwarf_fund_type_name (ft)
1078 register unsigned ft;
1080 switch (ft)
1082 case FT_char: return "FT_char";
1083 case FT_signed_char: return "FT_signed_char";
1084 case FT_unsigned_char: return "FT_unsigned_char";
1085 case FT_short: return "FT_short";
1086 case FT_signed_short: return "FT_signed_short";
1087 case FT_unsigned_short: return "FT_unsigned_short";
1088 case FT_integer: return "FT_integer";
1089 case FT_signed_integer: return "FT_signed_integer";
1090 case FT_unsigned_integer: return "FT_unsigned_integer";
1091 case FT_long: return "FT_long";
1092 case FT_signed_long: return "FT_signed_long";
1093 case FT_unsigned_long: return "FT_unsigned_long";
1094 case FT_pointer: return "FT_pointer";
1095 case FT_float: return "FT_float";
1096 case FT_dbl_prec_float: return "FT_dbl_prec_float";
1097 case FT_ext_prec_float: return "FT_ext_prec_float";
1098 case FT_complex: return "FT_complex";
1099 case FT_dbl_prec_complex: return "FT_dbl_prec_complex";
1100 case FT_void: return "FT_void";
1101 case FT_boolean: return "FT_boolean";
1102 case FT_ext_prec_complex: return "FT_ext_prec_complex";
1103 case FT_label: return "FT_label";
1105 /* GNU extensions. */
1107 case FT_long_long: return "FT_long_long";
1108 case FT_signed_long_long: return "FT_signed_long_long";
1109 case FT_unsigned_long_long: return "FT_unsigned_long_long";
1111 case FT_int8: return "FT_int8";
1112 case FT_signed_int8: return "FT_signed_int8";
1113 case FT_unsigned_int8: return "FT_unsigned_int8";
1114 case FT_int16: return "FT_int16";
1115 case FT_signed_int16: return "FT_signed_int16";
1116 case FT_unsigned_int16: return "FT_unsigned_int16";
1117 case FT_int32: return "FT_int32";
1118 case FT_signed_int32: return "FT_signed_int32";
1119 case FT_unsigned_int32: return "FT_unsigned_int32";
1120 case FT_int64: return "FT_int64";
1121 case FT_signed_int64: return "FT_signed_int64";
1122 case FT_unsigned_int64: return "FT_unsigned_int64";
1124 case FT_real32: return "FT_real32";
1125 case FT_real64: return "FT_real64";
1126 case FT_real96: return "FT_real96";
1127 case FT_real128: return "FT_real128";
1129 default: return "FT_<unknown>";
1133 /* Determine the "ultimate origin" of a decl. The decl may be an
1134 inlined instance of an inlined instance of a decl which is local
1135 to an inline function, so we have to trace all of the way back
1136 through the origin chain to find out what sort of node actually
1137 served as the original seed for the given block. */
1139 static tree
1140 decl_ultimate_origin (decl)
1141 register tree decl;
1143 register tree immediate_origin = DECL_ABSTRACT_ORIGIN (decl);
1145 if (immediate_origin == NULL)
1146 return NULL;
1147 else
1149 register tree ret_val;
1150 register tree lookahead = immediate_origin;
1154 ret_val = lookahead;
1155 lookahead = DECL_ABSTRACT_ORIGIN (ret_val);
1157 while (lookahead != NULL && lookahead != ret_val);
1158 return ret_val;
1162 /* Determine the "ultimate origin" of a block. The block may be an
1163 inlined instance of an inlined instance of a block which is local
1164 to an inline function, so we have to trace all of the way back
1165 through the origin chain to find out what sort of node actually
1166 served as the original seed for the given block. */
1168 static tree
1169 block_ultimate_origin (block)
1170 register tree block;
1172 register tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
1174 if (immediate_origin == NULL)
1175 return NULL;
1176 else
1178 register tree ret_val;
1179 register tree lookahead = immediate_origin;
1183 ret_val = lookahead;
1184 lookahead = (TREE_CODE (ret_val) == BLOCK)
1185 ? BLOCK_ABSTRACT_ORIGIN (ret_val)
1186 : NULL;
1188 while (lookahead != NULL && lookahead != ret_val);
1189 return ret_val;
1193 /* Get the class to which DECL belongs, if any. In g++, the DECL_CONTEXT
1194 of a virtual function may refer to a base class, so we check the 'this'
1195 parameter. */
1197 static tree
1198 decl_class_context (decl)
1199 tree decl;
1201 tree context = NULL_TREE;
1202 if (TREE_CODE (decl) != FUNCTION_DECL || ! DECL_VINDEX (decl))
1203 context = DECL_CONTEXT (decl);
1204 else
1205 context = TYPE_MAIN_VARIANT
1206 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
1208 if (context && TREE_CODE_CLASS (TREE_CODE (context)) != 't')
1209 context = NULL_TREE;
1211 return context;
1214 static void
1215 output_unsigned_leb128 (value)
1216 register unsigned long value;
1218 register unsigned long orig_value = value;
1222 register unsigned byte = (value & 0x7f);
1224 value >>= 7;
1225 if (value != 0) /* more bytes to follow */
1226 byte |= 0x80;
1227 fprintf (asm_out_file, "\t%s\t0x%x", ASM_BYTE_OP, (unsigned) byte);
1228 if (flag_debug_asm && value == 0)
1229 fprintf (asm_out_file, "\t%s ULEB128 number - value = %lu",
1230 ASM_COMMENT_START, orig_value);
1231 fputc ('\n', asm_out_file);
1233 while (value != 0);
1236 static void
1237 output_signed_leb128 (value)
1238 register long value;
1240 register long orig_value = value;
1241 register int negative = (value < 0);
1242 register int more;
1246 register unsigned byte = (value & 0x7f);
1248 value >>= 7;
1249 if (negative)
1250 value |= 0xfe000000; /* manually sign extend */
1251 if (((value == 0) && ((byte & 0x40) == 0))
1252 || ((value == -1) && ((byte & 0x40) == 1)))
1253 more = 0;
1254 else
1256 byte |= 0x80;
1257 more = 1;
1259 fprintf (asm_out_file, "\t%s\t0x%x", ASM_BYTE_OP, (unsigned) byte);
1260 if (flag_debug_asm && more == 0)
1261 fprintf (asm_out_file, "\t%s SLEB128 number - value = %ld",
1262 ASM_COMMENT_START, orig_value);
1263 fputc ('\n', asm_out_file);
1265 while (more);
1268 /**************** utility functions for attribute functions ******************/
1270 /* Given a pointer to a BLOCK node return non-zero if (and only if) the
1271 node in question represents the outermost pair of curly braces (i.e.
1272 the "body block") of a function or method.
1274 For any BLOCK node representing a "body block" of a function or method,
1275 the BLOCK_SUPERCONTEXT of the node will point to another BLOCK node
1276 which represents the outermost (function) scope for the function or
1277 method (i.e. the one which includes the formal parameters). The
1278 BLOCK_SUPERCONTEXT of *that* node in turn will point to the relevant
1279 FUNCTION_DECL node.
1282 static inline int
1283 is_body_block (stmt)
1284 register tree stmt;
1286 if (TREE_CODE (stmt) == BLOCK)
1288 register tree parent = BLOCK_SUPERCONTEXT (stmt);
1290 if (TREE_CODE (parent) == BLOCK)
1292 register tree grandparent = BLOCK_SUPERCONTEXT (parent);
1294 if (TREE_CODE (grandparent) == FUNCTION_DECL)
1295 return 1;
1298 return 0;
1301 /* Given a pointer to a tree node for some type, return a Dwarf fundamental
1302 type code for the given type.
1304 This routine must only be called for GCC type nodes that correspond to
1305 Dwarf fundamental types.
1307 The current Dwarf draft specification calls for Dwarf fundamental types
1308 to accurately reflect the fact that a given type was either a "plain"
1309 integral type or an explicitly "signed" integral type. Unfortunately,
1310 we can't always do this, because GCC may already have thrown away the
1311 information about the precise way in which the type was originally
1312 specified, as in:
1314 typedef signed int my_type;
1316 struct s { my_type f; };
1318 Since we may be stuck here without enought information to do exactly
1319 what is called for in the Dwarf draft specification, we do the best
1320 that we can under the circumstances and always use the "plain" integral
1321 fundamental type codes for int, short, and long types. That's probably
1322 good enough. The additional accuracy called for in the current DWARF
1323 draft specification is probably never even useful in practice. */
1325 static int
1326 fundamental_type_code (type)
1327 register tree type;
1329 if (TREE_CODE (type) == ERROR_MARK)
1330 return 0;
1332 switch (TREE_CODE (type))
1334 case ERROR_MARK:
1335 return FT_void;
1337 case VOID_TYPE:
1338 return FT_void;
1340 case INTEGER_TYPE:
1341 /* Carefully distinguish all the standard types of C,
1342 without messing up if the language is not C.
1343 Note that we check only for the names that contain spaces;
1344 other names might occur by coincidence in other languages. */
1345 if (TYPE_NAME (type) != 0
1346 && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
1347 && DECL_NAME (TYPE_NAME (type)) != 0
1348 && TREE_CODE (DECL_NAME (TYPE_NAME (type))) == IDENTIFIER_NODE)
1350 char *name = IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (type)));
1352 if (!strcmp (name, "unsigned char"))
1353 return FT_unsigned_char;
1354 if (!strcmp (name, "signed char"))
1355 return FT_signed_char;
1356 if (!strcmp (name, "unsigned int"))
1357 return FT_unsigned_integer;
1358 if (!strcmp (name, "short int"))
1359 return FT_short;
1360 if (!strcmp (name, "short unsigned int"))
1361 return FT_unsigned_short;
1362 if (!strcmp (name, "long int"))
1363 return FT_long;
1364 if (!strcmp (name, "long unsigned int"))
1365 return FT_unsigned_long;
1366 if (!strcmp (name, "long long int"))
1367 return FT_long_long; /* Not grok'ed by svr4 SDB */
1368 if (!strcmp (name, "long long unsigned int"))
1369 return FT_unsigned_long_long; /* Not grok'ed by svr4 SDB */
1372 /* Most integer types will be sorted out above, however, for the
1373 sake of special `array index' integer types, the following code
1374 is also provided. */
1376 if (TYPE_PRECISION (type) == INT_TYPE_SIZE)
1377 return (TREE_UNSIGNED (type) ? FT_unsigned_integer : FT_integer);
1379 if (TYPE_PRECISION (type) == LONG_TYPE_SIZE)
1380 return (TREE_UNSIGNED (type) ? FT_unsigned_long : FT_long);
1382 if (TYPE_PRECISION (type) == LONG_LONG_TYPE_SIZE)
1383 return (TREE_UNSIGNED (type) ? FT_unsigned_long_long : FT_long_long);
1385 if (TYPE_PRECISION (type) == SHORT_TYPE_SIZE)
1386 return (TREE_UNSIGNED (type) ? FT_unsigned_short : FT_short);
1388 if (TYPE_PRECISION (type) == CHAR_TYPE_SIZE)
1389 return (TREE_UNSIGNED (type) ? FT_unsigned_char : FT_char);
1391 abort ();
1393 case REAL_TYPE:
1394 /* Carefully distinguish all the standard types of C,
1395 without messing up if the language is not C. */
1396 if (TYPE_NAME (type) != 0
1397 && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
1398 && DECL_NAME (TYPE_NAME (type)) != 0
1399 && TREE_CODE (DECL_NAME (TYPE_NAME (type))) == IDENTIFIER_NODE)
1401 char *name = IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (type)));
1403 /* Note that here we can run afowl of a serious bug in "classic"
1404 svr4 SDB debuggers. They don't seem to understand the
1405 FT_ext_prec_float type (even though they should). */
1407 if (!strcmp (name, "long double"))
1408 return FT_ext_prec_float;
1411 if (TYPE_PRECISION (type) == DOUBLE_TYPE_SIZE)
1412 return FT_dbl_prec_float;
1413 if (TYPE_PRECISION (type) == FLOAT_TYPE_SIZE)
1414 return FT_float;
1416 /* Note that here we can run afowl of a serious bug in "classic"
1417 svr4 SDB debuggers. They don't seem to understand the
1418 FT_ext_prec_float type (even though they should). */
1420 if (TYPE_PRECISION (type) == LONG_DOUBLE_TYPE_SIZE)
1421 return FT_ext_prec_float;
1422 abort ();
1424 case COMPLEX_TYPE:
1425 return FT_complex; /* GNU FORTRAN COMPLEX type. */
1427 case CHAR_TYPE:
1428 return FT_char; /* GNU Pascal CHAR type. Not used in C. */
1430 case BOOLEAN_TYPE:
1431 return FT_boolean; /* GNU FORTRAN BOOLEAN type. */
1433 default:
1434 abort (); /* No other TREE_CODEs are Dwarf fundamental types. */
1436 return 0;
1439 /* Given a pointer to an arbitrary ..._TYPE tree node, return a pointer to
1440 the Dwarf "root" type for the given input type. The Dwarf "root" type
1441 of a given type is generally the same as the given type, except that if
1442 the given type is a pointer or reference type, then the root type of
1443 the given type is the root type of the "basis" type for the pointer or
1444 reference type. (This definition of the "root" type is recursive.)
1445 Also, the root type of a `const' qualified type or a `volatile'
1446 qualified type is the root type of the given type without the
1447 qualifiers. */
1449 static tree
1450 root_type_1 (type, count)
1451 register tree type;
1452 register int count;
1454 /* Give up after searching 1000 levels, in case this is a recursive
1455 pointer type. Such types are possible in Ada, but it is not possible
1456 to represent them in DWARF1 debug info. */
1457 if (count > 1000)
1458 return error_mark_node;
1460 switch (TREE_CODE (type))
1462 case ERROR_MARK:
1463 return error_mark_node;
1465 case POINTER_TYPE:
1466 case REFERENCE_TYPE:
1467 return root_type_1 (TREE_TYPE (type), count+1);
1469 default:
1470 return type;
1474 static tree
1475 root_type (type)
1476 register tree type;
1478 type = root_type_1 (type, 0);
1479 if (type != error_mark_node)
1480 type = type_main_variant (type);
1481 return type;
1484 /* Given a pointer to an arbitrary ..._TYPE tree node, write out a sequence
1485 of zero or more Dwarf "type-modifier" bytes applicable to the type. */
1487 static void
1488 write_modifier_bytes_1 (type, decl_const, decl_volatile, count)
1489 register tree type;
1490 register int decl_const;
1491 register int decl_volatile;
1492 register int count;
1494 if (TREE_CODE (type) == ERROR_MARK)
1495 return;
1497 /* Give up after searching 1000 levels, in case this is a recursive
1498 pointer type. Such types are possible in Ada, but it is not possible
1499 to represent them in DWARF1 debug info. */
1500 if (count > 1000)
1501 return;
1503 if (TYPE_READONLY (type) || decl_const)
1504 ASM_OUTPUT_DWARF_TYPE_MODIFIER (asm_out_file, MOD_const);
1505 if (TYPE_VOLATILE (type) || decl_volatile)
1506 ASM_OUTPUT_DWARF_TYPE_MODIFIER (asm_out_file, MOD_volatile);
1507 switch (TREE_CODE (type))
1509 case POINTER_TYPE:
1510 ASM_OUTPUT_DWARF_TYPE_MODIFIER (asm_out_file, MOD_pointer_to);
1511 write_modifier_bytes_1 (TREE_TYPE (type), 0, 0, count+1);
1512 return;
1514 case REFERENCE_TYPE:
1515 ASM_OUTPUT_DWARF_TYPE_MODIFIER (asm_out_file, MOD_reference_to);
1516 write_modifier_bytes_1 (TREE_TYPE (type), 0, 0, count+1);
1517 return;
1519 case ERROR_MARK:
1520 default:
1521 return;
1525 static void
1526 write_modifier_bytes (type, decl_const, decl_volatile)
1527 register tree type;
1528 register int decl_const;
1529 register int decl_volatile;
1531 write_modifier_bytes_1 (type, decl_const, decl_volatile, 0);
1534 /* Given a pointer to an arbitrary ..._TYPE tree node, return non-zero if the
1535 given input type is a Dwarf "fundamental" type. Otherwise return zero. */
1537 static inline int
1538 type_is_fundamental (type)
1539 register tree type;
1541 switch (TREE_CODE (type))
1543 case ERROR_MARK:
1544 case VOID_TYPE:
1545 case INTEGER_TYPE:
1546 case REAL_TYPE:
1547 case COMPLEX_TYPE:
1548 case BOOLEAN_TYPE:
1549 case CHAR_TYPE:
1550 return 1;
1552 case SET_TYPE:
1553 case ARRAY_TYPE:
1554 case RECORD_TYPE:
1555 case UNION_TYPE:
1556 case QUAL_UNION_TYPE:
1557 case ENUMERAL_TYPE:
1558 case FUNCTION_TYPE:
1559 case METHOD_TYPE:
1560 case POINTER_TYPE:
1561 case REFERENCE_TYPE:
1562 case FILE_TYPE:
1563 case OFFSET_TYPE:
1564 case LANG_TYPE:
1565 return 0;
1567 default:
1568 abort ();
1570 return 0;
1573 /* Given a pointer to some ..._DECL tree node, generate an assembly language
1574 equate directive which will associate a symbolic name with the current DIE.
1576 The name used is an artificial label generated from the DECL_UID number
1577 associated with the given decl node. The name it gets equated to is the
1578 symbolic label that we (previously) output at the start of the DIE that
1579 we are currently generating.
1581 Calling this function while generating some "decl related" form of DIE
1582 makes it possible to later refer to the DIE which represents the given
1583 decl simply by re-generating the symbolic name from the ..._DECL node's
1584 UID number. */
1586 static void
1587 equate_decl_number_to_die_number (decl)
1588 register tree decl;
1590 /* In the case where we are generating a DIE for some ..._DECL node
1591 which represents either some inline function declaration or some
1592 entity declared within an inline function declaration/definition,
1593 setup a symbolic name for the current DIE so that we have a name
1594 for this DIE that we can easily refer to later on within
1595 AT_abstract_origin attributes. */
1597 char decl_label[MAX_ARTIFICIAL_LABEL_BYTES];
1598 char die_label[MAX_ARTIFICIAL_LABEL_BYTES];
1600 sprintf (decl_label, DECL_NAME_FMT, DECL_UID (decl));
1601 sprintf (die_label, DIE_BEGIN_LABEL_FMT, current_dienum);
1602 ASM_OUTPUT_DEF (asm_out_file, decl_label, die_label);
1605 /* Given a pointer to some ..._TYPE tree node, generate an assembly language
1606 equate directive which will associate a symbolic name with the current DIE.
1608 The name used is an artificial label generated from the TYPE_UID number
1609 associated with the given type node. The name it gets equated to is the
1610 symbolic label that we (previously) output at the start of the DIE that
1611 we are currently generating.
1613 Calling this function while generating some "type related" form of DIE
1614 makes it easy to later refer to the DIE which represents the given type
1615 simply by re-generating the alternative name from the ..._TYPE node's
1616 UID number. */
1618 static inline void
1619 equate_type_number_to_die_number (type)
1620 register tree type;
1622 char type_label[MAX_ARTIFICIAL_LABEL_BYTES];
1623 char die_label[MAX_ARTIFICIAL_LABEL_BYTES];
1625 /* We are generating a DIE to represent the main variant of this type
1626 (i.e the type without any const or volatile qualifiers) so in order
1627 to get the equate to come out right, we need to get the main variant
1628 itself here. */
1630 type = type_main_variant (type);
1632 sprintf (type_label, TYPE_NAME_FMT, TYPE_UID (type));
1633 sprintf (die_label, DIE_BEGIN_LABEL_FMT, current_dienum);
1634 ASM_OUTPUT_DEF (asm_out_file, type_label, die_label);
1637 static void
1638 output_reg_number (rtl)
1639 register rtx rtl;
1641 register unsigned regno = REGNO (rtl);
1643 if (regno >= FIRST_PSEUDO_REGISTER)
1645 warning_with_decl (dwarf_last_decl, "internal regno botch: regno = %d\n",
1646 regno);
1647 regno = 0;
1649 fprintf (asm_out_file, "\t%s\t0x%x",
1650 UNALIGNED_INT_ASM_OP, DBX_REGISTER_NUMBER (regno));
1651 if (flag_debug_asm)
1653 fprintf (asm_out_file, "\t%s ", ASM_COMMENT_START);
1654 PRINT_REG (rtl, 0, asm_out_file);
1656 fputc ('\n', asm_out_file);
1659 /* The following routine is a nice and simple transducer. It converts the
1660 RTL for a variable or parameter (resident in memory) into an equivalent
1661 Dwarf representation of a mechanism for getting the address of that same
1662 variable onto the top of a hypothetical "address evaluation" stack.
1664 When creating memory location descriptors, we are effectively trans-
1665 forming the RTL for a memory-resident object into its Dwarf postfix
1666 expression equivalent. This routine just recursively descends an
1667 RTL tree, turning it into Dwarf postfix code as it goes. */
1669 static void
1670 output_mem_loc_descriptor (rtl)
1671 register rtx rtl;
1673 /* Note that for a dynamically sized array, the location we will
1674 generate a description of here will be the lowest numbered location
1675 which is actually within the array. That's *not* necessarily the
1676 same as the zeroth element of the array. */
1678 switch (GET_CODE (rtl))
1680 case SUBREG:
1682 /* The case of a subreg may arise when we have a local (register)
1683 variable or a formal (register) parameter which doesn't quite
1684 fill up an entire register. For now, just assume that it is
1685 legitimate to make the Dwarf info refer to the whole register
1686 which contains the given subreg. */
1688 rtl = XEXP (rtl, 0);
1689 /* Drop thru. */
1691 case REG:
1693 /* Whenever a register number forms a part of the description of
1694 the method for calculating the (dynamic) address of a memory
1695 resident object, DWARF rules require the register number to
1696 be referred to as a "base register". This distinction is not
1697 based in any way upon what category of register the hardware
1698 believes the given register belongs to. This is strictly
1699 DWARF terminology we're dealing with here.
1701 Note that in cases where the location of a memory-resident data
1702 object could be expressed as:
1704 OP_ADD (OP_BASEREG (basereg), OP_CONST (0))
1706 the actual DWARF location descriptor that we generate may just
1707 be OP_BASEREG (basereg). This may look deceptively like the
1708 object in question was allocated to a register (rather than
1709 in memory) so DWARF consumers need to be aware of the subtle
1710 distinction between OP_REG and OP_BASEREG. */
1712 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_BASEREG);
1713 output_reg_number (rtl);
1714 break;
1716 case MEM:
1717 output_mem_loc_descriptor (XEXP (rtl, 0));
1718 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_DEREF4);
1719 break;
1721 case CONST:
1722 case SYMBOL_REF:
1723 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_ADDR);
1724 ASM_OUTPUT_DWARF_ADDR_CONST (asm_out_file, rtl);
1725 break;
1727 case PLUS:
1728 output_mem_loc_descriptor (XEXP (rtl, 0));
1729 output_mem_loc_descriptor (XEXP (rtl, 1));
1730 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_ADD);
1731 break;
1733 case CONST_INT:
1734 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_CONST);
1735 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, INTVAL (rtl));
1736 break;
1738 case MULT:
1739 /* If a pseudo-reg is optimized away, it is possible for it to
1740 be replaced with a MEM containing a multiply. Use a GNU extension
1741 to describe it. */
1742 output_mem_loc_descriptor (XEXP (rtl, 0));
1743 output_mem_loc_descriptor (XEXP (rtl, 1));
1744 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_MULT);
1745 break;
1747 default:
1748 abort ();
1752 /* Output a proper Dwarf location descriptor for a variable or parameter
1753 which is either allocated in a register or in a memory location. For
1754 a register, we just generate an OP_REG and the register number. For a
1755 memory location we provide a Dwarf postfix expression describing how to
1756 generate the (dynamic) address of the object onto the address stack. */
1758 static void
1759 output_loc_descriptor (rtl)
1760 register rtx rtl;
1762 switch (GET_CODE (rtl))
1764 case SUBREG:
1766 /* The case of a subreg may arise when we have a local (register)
1767 variable or a formal (register) parameter which doesn't quite
1768 fill up an entire register. For now, just assume that it is
1769 legitimate to make the Dwarf info refer to the whole register
1770 which contains the given subreg. */
1772 rtl = XEXP (rtl, 0);
1773 /* Drop thru. */
1775 case REG:
1776 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_REG);
1777 output_reg_number (rtl);
1778 break;
1780 case MEM:
1781 output_mem_loc_descriptor (XEXP (rtl, 0));
1782 break;
1784 default:
1785 abort (); /* Should never happen */
1789 /* Given a tree node describing an array bound (either lower or upper)
1790 output a representation for that bound. */
1792 static void
1793 output_bound_representation (bound, dim_num, u_or_l)
1794 register tree bound;
1795 register unsigned dim_num; /* For multi-dimensional arrays. */
1796 register char u_or_l; /* Designates upper or lower bound. */
1798 switch (TREE_CODE (bound))
1801 case ERROR_MARK:
1802 return;
1804 /* All fixed-bounds are represented by INTEGER_CST nodes. */
1806 case INTEGER_CST:
1807 ASM_OUTPUT_DWARF_DATA4 (asm_out_file,
1808 (unsigned) TREE_INT_CST_LOW (bound));
1809 break;
1811 default:
1813 /* Dynamic bounds may be represented by NOP_EXPR nodes containing
1814 SAVE_EXPR nodes, in which case we can do something, or as
1815 an expression, which we cannot represent. */
1817 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
1818 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
1820 sprintf (begin_label, BOUND_BEGIN_LABEL_FMT,
1821 current_dienum, dim_num, u_or_l);
1823 sprintf (end_label, BOUND_END_LABEL_FMT,
1824 current_dienum, dim_num, u_or_l);
1826 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
1827 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
1829 /* If optimization is turned on, the SAVE_EXPRs that describe
1830 how to access the upper bound values are essentially bogus.
1831 They only describe (at best) how to get at these values at
1832 the points in the generated code right after they have just
1833 been computed. Worse yet, in the typical case, the upper
1834 bound values will not even *be* computed in the optimized
1835 code, so these SAVE_EXPRs are entirely bogus.
1837 In order to compensate for this fact, we check here to see
1838 if optimization is enabled, and if so, we effectively create
1839 an empty location description for the (unknown and unknowable)
1840 upper bound.
1842 This should not cause too much trouble for existing (stupid?)
1843 debuggers because they have to deal with empty upper bounds
1844 location descriptions anyway in order to be able to deal with
1845 incomplete array types.
1847 Of course an intelligent debugger (GDB?) should be able to
1848 comprehend that a missing upper bound specification in a
1849 array type used for a storage class `auto' local array variable
1850 indicates that the upper bound is both unknown (at compile-
1851 time) and unknowable (at run-time) due to optimization. */
1853 if (! optimize)
1855 while (TREE_CODE (bound) == NOP_EXPR
1856 || TREE_CODE (bound) == CONVERT_EXPR)
1857 bound = TREE_OPERAND (bound, 0);
1859 if (TREE_CODE (bound) == SAVE_EXPR)
1860 output_loc_descriptor
1861 (eliminate_regs (SAVE_EXPR_RTL (bound), 0, NULL_RTX));
1864 ASM_OUTPUT_LABEL (asm_out_file, end_label);
1866 break;
1871 /* Recursive function to output a sequence of value/name pairs for
1872 enumeration constants in reversed order. This is called from
1873 enumeration_type_die. */
1875 static void
1876 output_enumeral_list (link)
1877 register tree link;
1879 if (link)
1881 output_enumeral_list (TREE_CHAIN (link));
1882 ASM_OUTPUT_DWARF_DATA4 (asm_out_file,
1883 (unsigned) TREE_INT_CST_LOW (TREE_VALUE (link)));
1884 ASM_OUTPUT_DWARF_STRING (asm_out_file,
1885 IDENTIFIER_POINTER (TREE_PURPOSE (link)));
1889 /* Given an unsigned value, round it up to the lowest multiple of `boundary'
1890 which is not less than the value itself. */
1892 static inline unsigned
1893 ceiling (value, boundary)
1894 register unsigned value;
1895 register unsigned boundary;
1897 return (((value + boundary - 1) / boundary) * boundary);
1900 /* Given a pointer to what is assumed to be a FIELD_DECL node, return a
1901 pointer to the declared type for the relevant field variable, or return
1902 `integer_type_node' if the given node turns out to be an ERROR_MARK node. */
1904 static inline tree
1905 field_type (decl)
1906 register tree decl;
1908 register tree type;
1910 if (TREE_CODE (decl) == ERROR_MARK)
1911 return integer_type_node;
1913 type = DECL_BIT_FIELD_TYPE (decl);
1914 if (type == NULL)
1915 type = TREE_TYPE (decl);
1916 return type;
1919 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
1920 node, return the alignment in bits for the type, or else return
1921 BITS_PER_WORD if the node actually turns out to be an ERROR_MARK node. */
1923 static inline unsigned
1924 simple_type_align_in_bits (type)
1925 register tree type;
1927 return (TREE_CODE (type) != ERROR_MARK) ? TYPE_ALIGN (type) : BITS_PER_WORD;
1930 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
1931 node, return the size in bits for the type if it is a constant, or
1932 else return the alignment for the type if the type's size is not
1933 constant, or else return BITS_PER_WORD if the type actually turns out
1934 to be an ERROR_MARK node. */
1936 static inline unsigned
1937 simple_type_size_in_bits (type)
1938 register tree type;
1940 if (TREE_CODE (type) == ERROR_MARK)
1941 return BITS_PER_WORD;
1942 else
1944 register tree type_size_tree = TYPE_SIZE (type);
1946 if (TREE_CODE (type_size_tree) != INTEGER_CST)
1947 return TYPE_ALIGN (type);
1949 return (unsigned) TREE_INT_CST_LOW (type_size_tree);
1953 /* Given a pointer to what is assumed to be a FIELD_DECL node, compute and
1954 return the byte offset of the lowest addressed byte of the "containing
1955 object" for the given FIELD_DECL, or return 0 if we are unable to deter-
1956 mine what that offset is, either because the argument turns out to be a
1957 pointer to an ERROR_MARK node, or because the offset is actually variable.
1958 (We can't handle the latter case just yet.) */
1960 static unsigned
1961 field_byte_offset (decl)
1962 register tree decl;
1964 register unsigned type_align_in_bytes;
1965 register unsigned type_align_in_bits;
1966 register unsigned type_size_in_bits;
1967 register unsigned object_offset_in_align_units;
1968 register unsigned object_offset_in_bits;
1969 register unsigned object_offset_in_bytes;
1970 register tree type;
1971 register tree bitpos_tree;
1972 register tree field_size_tree;
1973 register unsigned bitpos_int;
1974 register unsigned deepest_bitpos;
1975 register unsigned field_size_in_bits;
1977 if (TREE_CODE (decl) == ERROR_MARK)
1978 return 0;
1980 if (TREE_CODE (decl) != FIELD_DECL)
1981 abort ();
1983 type = field_type (decl);
1985 bitpos_tree = DECL_FIELD_BITPOS (decl);
1986 field_size_tree = DECL_SIZE (decl);
1988 /* We cannot yet cope with fields whose positions or sizes are variable,
1989 so for now, when we see such things, we simply return 0. Someday,
1990 we may be able to handle such cases, but it will be damn difficult. */
1992 if (TREE_CODE (bitpos_tree) != INTEGER_CST)
1993 return 0;
1994 bitpos_int = (unsigned) TREE_INT_CST_LOW (bitpos_tree);
1996 if (TREE_CODE (field_size_tree) != INTEGER_CST)
1997 return 0;
1998 field_size_in_bits = (unsigned) TREE_INT_CST_LOW (field_size_tree);
2000 type_size_in_bits = simple_type_size_in_bits (type);
2002 type_align_in_bits = simple_type_align_in_bits (type);
2003 type_align_in_bytes = type_align_in_bits / BITS_PER_UNIT;
2005 /* Note that the GCC front-end doesn't make any attempt to keep track
2006 of the starting bit offset (relative to the start of the containing
2007 structure type) of the hypothetical "containing object" for a bit-
2008 field. Thus, when computing the byte offset value for the start of
2009 the "containing object" of a bit-field, we must deduce this infor-
2010 mation on our own.
2012 This can be rather tricky to do in some cases. For example, handling
2013 the following structure type definition when compiling for an i386/i486
2014 target (which only aligns long long's to 32-bit boundaries) can be very
2015 tricky:
2017 struct S {
2018 int field1;
2019 long long field2:31;
2022 Fortunately, there is a simple rule-of-thumb which can be used in such
2023 cases. When compiling for an i386/i486, GCC will allocate 8 bytes for
2024 the structure shown above. It decides to do this based upon one simple
2025 rule for bit-field allocation. Quite simply, GCC allocates each "con-
2026 taining object" for each bit-field at the first (i.e. lowest addressed)
2027 legitimate alignment boundary (based upon the required minimum alignment
2028 for the declared type of the field) which it can possibly use, subject
2029 to the condition that there is still enough available space remaining
2030 in the containing object (when allocated at the selected point) to
2031 fully accommodate all of the bits of the bit-field itself.
2033 This simple rule makes it obvious why GCC allocates 8 bytes for each
2034 object of the structure type shown above. When looking for a place to
2035 allocate the "containing object" for `field2', the compiler simply tries
2036 to allocate a 64-bit "containing object" at each successive 32-bit
2037 boundary (starting at zero) until it finds a place to allocate that 64-
2038 bit field such that at least 31 contiguous (and previously unallocated)
2039 bits remain within that selected 64 bit field. (As it turns out, for
2040 the example above, the compiler finds that it is OK to allocate the
2041 "containing object" 64-bit field at bit-offset zero within the
2042 structure type.)
2044 Here we attempt to work backwards from the limited set of facts we're
2045 given, and we try to deduce from those facts, where GCC must have
2046 believed that the containing object started (within the structure type).
2048 The value we deduce is then used (by the callers of this routine) to
2049 generate AT_location and AT_bit_offset attributes for fields (both
2050 bit-fields and, in the case of AT_location, regular fields as well).
2053 /* Figure out the bit-distance from the start of the structure to the
2054 "deepest" bit of the bit-field. */
2055 deepest_bitpos = bitpos_int + field_size_in_bits;
2057 /* This is the tricky part. Use some fancy footwork to deduce where the
2058 lowest addressed bit of the containing object must be. */
2059 object_offset_in_bits
2060 = ceiling (deepest_bitpos, type_align_in_bits) - type_size_in_bits;
2062 /* Compute the offset of the containing object in "alignment units". */
2063 object_offset_in_align_units = object_offset_in_bits / type_align_in_bits;
2065 /* Compute the offset of the containing object in bytes. */
2066 object_offset_in_bytes = object_offset_in_align_units * type_align_in_bytes;
2068 /* The above code assumes that the field does not cross an alignment
2069 boundary. This can happen if PCC_BITFIELD_TYPE_MATTERS is not defined,
2070 or if the structure is packed. If this happens, then we get an object
2071 which starts after the bitfield, which means that the bit offset is
2072 negative. Gdb fails when given negative bit offsets. We avoid this
2073 by recomputing using the first bit of the bitfield. This will give
2074 us an object which does not completely contain the bitfield, but it
2075 will be aligned, and it will contain the first bit of the bitfield. */
2076 if (object_offset_in_bits > bitpos_int)
2078 deepest_bitpos = bitpos_int + 1;
2079 object_offset_in_bits
2080 = ceiling (deepest_bitpos, type_align_in_bits) - type_size_in_bits;
2081 object_offset_in_align_units = (object_offset_in_bits
2082 / type_align_in_bits);
2083 object_offset_in_bytes = (object_offset_in_align_units
2084 * type_align_in_bytes);
2087 return object_offset_in_bytes;
2090 /****************************** attributes *********************************/
2092 /* The following routines are responsible for writing out the various types
2093 of Dwarf attributes (and any following data bytes associated with them).
2094 These routines are listed in order based on the numerical codes of their
2095 associated attributes. */
2097 /* Generate an AT_sibling attribute. */
2099 static inline void
2100 sibling_attribute ()
2102 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2104 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_sibling);
2105 sprintf (label, DIE_BEGIN_LABEL_FMT, NEXT_DIE_NUM);
2106 ASM_OUTPUT_DWARF_REF (asm_out_file, label);
2109 /* Output the form of location attributes suitable for whole variables and
2110 whole parameters. Note that the location attributes for struct fields
2111 are generated by the routine `data_member_location_attribute' below. */
2113 static void
2114 location_attribute (rtl)
2115 register rtx rtl;
2117 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2118 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2120 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_location);
2121 sprintf (begin_label, LOC_BEGIN_LABEL_FMT, current_dienum);
2122 sprintf (end_label, LOC_END_LABEL_FMT, current_dienum);
2123 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
2124 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2126 /* Handle a special case. If we are about to output a location descriptor
2127 for a variable or parameter which has been optimized out of existence,
2128 don't do that. Instead we output a zero-length location descriptor
2129 value as part of the location attribute.
2131 A variable which has been optimized out of existence will have a
2132 DECL_RTL value which denotes a pseudo-reg.
2134 Currently, in some rare cases, variables can have DECL_RTL values
2135 which look like (MEM (REG pseudo-reg#)). These cases are due to
2136 bugs elsewhere in the compiler. We treat such cases
2137 as if the variable(s) in question had been optimized out of existence.
2139 Note that in all cases where we wish to express the fact that a
2140 variable has been optimized out of existence, we do not simply
2141 suppress the generation of the entire location attribute because
2142 the absence of a location attribute in certain kinds of DIEs is
2143 used to indicate something else entirely... i.e. that the DIE
2144 represents an object declaration, but not a definition. So saith
2145 the PLSIG.
2148 if (! is_pseudo_reg (rtl)
2149 && (GET_CODE (rtl) != MEM || ! is_pseudo_reg (XEXP (rtl, 0))))
2150 output_loc_descriptor (rtl);
2152 ASM_OUTPUT_LABEL (asm_out_file, end_label);
2155 /* Output the specialized form of location attribute used for data members
2156 of struct and union types.
2158 In the special case of a FIELD_DECL node which represents a bit-field,
2159 the "offset" part of this special location descriptor must indicate the
2160 distance in bytes from the lowest-addressed byte of the containing
2161 struct or union type to the lowest-addressed byte of the "containing
2162 object" for the bit-field. (See the `field_byte_offset' function above.)
2164 For any given bit-field, the "containing object" is a hypothetical
2165 object (of some integral or enum type) within which the given bit-field
2166 lives. The type of this hypothetical "containing object" is always the
2167 same as the declared type of the individual bit-field itself (for GCC
2168 anyway... the DWARF spec doesn't actually mandate this).
2170 Note that it is the size (in bytes) of the hypothetical "containing
2171 object" which will be given in the AT_byte_size attribute for this
2172 bit-field. (See the `byte_size_attribute' function below.) It is
2173 also used when calculating the value of the AT_bit_offset attribute.
2174 (See the `bit_offset_attribute' function below.) */
2176 static void
2177 data_member_location_attribute (t)
2178 register tree t;
2180 register unsigned object_offset_in_bytes;
2181 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2182 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2184 if (TREE_CODE (t) == TREE_VEC)
2185 object_offset_in_bytes = TREE_INT_CST_LOW (BINFO_OFFSET (t));
2186 else
2187 object_offset_in_bytes = field_byte_offset (t);
2189 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_location);
2190 sprintf (begin_label, LOC_BEGIN_LABEL_FMT, current_dienum);
2191 sprintf (end_label, LOC_END_LABEL_FMT, current_dienum);
2192 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
2193 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2194 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_CONST);
2195 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, object_offset_in_bytes);
2196 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_ADD);
2197 ASM_OUTPUT_LABEL (asm_out_file, end_label);
2200 /* Output an AT_const_value attribute for a variable or a parameter which
2201 does not have a "location" either in memory or in a register. These
2202 things can arise in GNU C when a constant is passed as an actual
2203 parameter to an inlined function. They can also arise in C++ where
2204 declared constants do not necessarily get memory "homes". */
2206 static void
2207 const_value_attribute (rtl)
2208 register rtx rtl;
2210 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2211 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2213 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_const_value_block4);
2214 sprintf (begin_label, LOC_BEGIN_LABEL_FMT, current_dienum);
2215 sprintf (end_label, LOC_END_LABEL_FMT, current_dienum);
2216 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, end_label, begin_label);
2217 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2219 switch (GET_CODE (rtl))
2221 case CONST_INT:
2222 /* Note that a CONST_INT rtx could represent either an integer or
2223 a floating-point constant. A CONST_INT is used whenever the
2224 constant will fit into a single word. In all such cases, the
2225 original mode of the constant value is wiped out, and the
2226 CONST_INT rtx is assigned VOIDmode. Since we no longer have
2227 precise mode information for these constants, we always just
2228 output them using 4 bytes. */
2230 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, (unsigned) INTVAL (rtl));
2231 break;
2233 case CONST_DOUBLE:
2234 /* Note that a CONST_DOUBLE rtx could represent either an integer
2235 or a floating-point constant. A CONST_DOUBLE is used whenever
2236 the constant requires more than one word in order to be adequately
2237 represented. In all such cases, the original mode of the constant
2238 value is preserved as the mode of the CONST_DOUBLE rtx, but for
2239 simplicity we always just output CONST_DOUBLEs using 8 bytes. */
2241 ASM_OUTPUT_DWARF_DATA8 (asm_out_file,
2242 (unsigned HOST_WIDE_INT) CONST_DOUBLE_HIGH (rtl),
2243 (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (rtl));
2244 break;
2246 case CONST_STRING:
2247 ASM_OUTPUT_DWARF_STRING (asm_out_file, XSTR (rtl, 0));
2248 break;
2250 case SYMBOL_REF:
2251 case LABEL_REF:
2252 case CONST:
2253 ASM_OUTPUT_DWARF_ADDR_CONST (asm_out_file, rtl);
2254 break;
2256 case PLUS:
2257 /* In cases where an inlined instance of an inline function is passed
2258 the address of an `auto' variable (which is local to the caller)
2259 we can get a situation where the DECL_RTL of the artificial
2260 local variable (for the inlining) which acts as a stand-in for
2261 the corresponding formal parameter (of the inline function)
2262 will look like (plus:SI (reg:SI FRAME_PTR) (const_int ...)).
2263 This is not exactly a compile-time constant expression, but it
2264 isn't the address of the (artificial) local variable either.
2265 Rather, it represents the *value* which the artificial local
2266 variable always has during its lifetime. We currently have no
2267 way to represent such quasi-constant values in Dwarf, so for now
2268 we just punt and generate an AT_const_value attribute with form
2269 FORM_BLOCK4 and a length of zero. */
2270 break;
2272 default:
2273 abort (); /* No other kinds of rtx should be possible here. */
2276 ASM_OUTPUT_LABEL (asm_out_file, end_label);
2279 /* Generate *either* an AT_location attribute or else an AT_const_value
2280 data attribute for a variable or a parameter. We generate the
2281 AT_const_value attribute only in those cases where the given
2282 variable or parameter does not have a true "location" either in
2283 memory or in a register. This can happen (for example) when a
2284 constant is passed as an actual argument in a call to an inline
2285 function. (It's possible that these things can crop up in other
2286 ways also.) Note that one type of constant value which can be
2287 passed into an inlined function is a constant pointer. This can
2288 happen for example if an actual argument in an inlined function
2289 call evaluates to a compile-time constant address. */
2291 static void
2292 location_or_const_value_attribute (decl)
2293 register tree decl;
2295 register rtx rtl;
2297 if (TREE_CODE (decl) == ERROR_MARK)
2298 return;
2300 if ((TREE_CODE (decl) != VAR_DECL) && (TREE_CODE (decl) != PARM_DECL))
2302 /* Should never happen. */
2303 abort ();
2304 return;
2307 /* Here we have to decide where we are going to say the parameter "lives"
2308 (as far as the debugger is concerned). We only have a couple of choices.
2309 GCC provides us with DECL_RTL and with DECL_INCOMING_RTL. DECL_RTL
2310 normally indicates where the parameter lives during most of the activa-
2311 tion of the function. If optimization is enabled however, this could
2312 be either NULL or else a pseudo-reg. Both of those cases indicate that
2313 the parameter doesn't really live anywhere (as far as the code generation
2314 parts of GCC are concerned) during most of the function's activation.
2315 That will happen (for example) if the parameter is never referenced
2316 within the function.
2318 We could just generate a location descriptor here for all non-NULL
2319 non-pseudo values of DECL_RTL and ignore all of the rest, but we can
2320 be a little nicer than that if we also consider DECL_INCOMING_RTL in
2321 cases where DECL_RTL is NULL or is a pseudo-reg.
2323 Note however that we can only get away with using DECL_INCOMING_RTL as
2324 a backup substitute for DECL_RTL in certain limited cases. In cases
2325 where DECL_ARG_TYPE(decl) indicates the same type as TREE_TYPE(decl)
2326 we can be sure that the parameter was passed using the same type as it
2327 is declared to have within the function, and that its DECL_INCOMING_RTL
2328 points us to a place where a value of that type is passed. In cases
2329 where DECL_ARG_TYPE(decl) and TREE_TYPE(decl) are different types
2330 however, we cannot (in general) use DECL_INCOMING_RTL as a backup
2331 substitute for DECL_RTL because in these cases, DECL_INCOMING_RTL
2332 points us to a value of some type which is *different* from the type
2333 of the parameter itself. Thus, if we tried to use DECL_INCOMING_RTL
2334 to generate a location attribute in such cases, the debugger would
2335 end up (for example) trying to fetch a `float' from a place which
2336 actually contains the first part of a `double'. That would lead to
2337 really incorrect and confusing output at debug-time, and we don't
2338 want that now do we?
2340 So in general, we DO NOT use DECL_INCOMING_RTL as a backup for DECL_RTL
2341 in cases where DECL_ARG_TYPE(decl) != TREE_TYPE(decl). There are a
2342 couple of cute exceptions however. On little-endian machines we can
2343 get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE(decl) is
2344 not the same as TREE_TYPE(decl) but only when DECL_ARG_TYPE(decl) is
2345 an integral type which is smaller than TREE_TYPE(decl). These cases
2346 arise when (on a little-endian machine) a non-prototyped function has
2347 a parameter declared to be of type `short' or `char'. In such cases,
2348 TREE_TYPE(decl) will be `short' or `char', DECL_ARG_TYPE(decl) will be
2349 `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
2350 passed `int' value. If the debugger then uses that address to fetch a
2351 `short' or a `char' (on a little-endian machine) the result will be the
2352 correct data, so we allow for such exceptional cases below.
2354 Note that our goal here is to describe the place where the given formal
2355 parameter lives during most of the function's activation (i.e. between
2356 the end of the prologue and the start of the epilogue). We'll do that
2357 as best as we can. Note however that if the given formal parameter is
2358 modified sometime during the execution of the function, then a stack
2359 backtrace (at debug-time) will show the function as having been called
2360 with the *new* value rather than the value which was originally passed
2361 in. This happens rarely enough that it is not a major problem, but it
2362 *is* a problem, and I'd like to fix it. A future version of dwarfout.c
2363 may generate two additional attributes for any given TAG_formal_parameter
2364 DIE which will describe the "passed type" and the "passed location" for
2365 the given formal parameter in addition to the attributes we now generate
2366 to indicate the "declared type" and the "active location" for each
2367 parameter. This additional set of attributes could be used by debuggers
2368 for stack backtraces.
2370 Separately, note that sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL
2371 can be NULL also. This happens (for example) for inlined-instances of
2372 inline function formal parameters which are never referenced. This really
2373 shouldn't be happening. All PARM_DECL nodes should get valid non-NULL
2374 DECL_INCOMING_RTL values, but integrate.c doesn't currently generate
2375 these values for inlined instances of inline function parameters, so
2376 when we see such cases, we are just out-of-luck for the time
2377 being (until integrate.c gets fixed).
2380 /* Use DECL_RTL as the "location" unless we find something better. */
2381 rtl = DECL_RTL (decl);
2383 if (TREE_CODE (decl) == PARM_DECL)
2384 if (rtl == NULL_RTX || is_pseudo_reg (rtl))
2386 /* This decl represents a formal parameter which was optimized out. */
2387 register tree declared_type = type_main_variant (TREE_TYPE (decl));
2388 register tree passed_type = type_main_variant (DECL_ARG_TYPE (decl));
2390 /* Note that DECL_INCOMING_RTL may be NULL in here, but we handle
2391 *all* cases where (rtl == NULL_RTX) just below. */
2393 if (declared_type == passed_type)
2394 rtl = DECL_INCOMING_RTL (decl);
2395 else if (! BYTES_BIG_ENDIAN)
2396 if (TREE_CODE (declared_type) == INTEGER_TYPE)
2397 if (TYPE_SIZE (declared_type) <= TYPE_SIZE (passed_type))
2398 rtl = DECL_INCOMING_RTL (decl);
2401 if (rtl == NULL_RTX)
2402 return;
2404 rtl = eliminate_regs (rtl, 0, NULL_RTX);
2405 #ifdef LEAF_REG_REMAP
2406 if (leaf_function)
2407 leaf_renumber_regs_insn (rtl);
2408 #endif
2410 switch (GET_CODE (rtl))
2412 case ADDRESSOF:
2413 /* The address of a variable that was optimized away; don't emit
2414 anything. */
2415 break;
2417 case CONST_INT:
2418 case CONST_DOUBLE:
2419 case CONST_STRING:
2420 case SYMBOL_REF:
2421 case LABEL_REF:
2422 case CONST:
2423 case PLUS: /* DECL_RTL could be (plus (reg ...) (const_int ...)) */
2424 const_value_attribute (rtl);
2425 break;
2427 case MEM:
2428 case REG:
2429 case SUBREG:
2430 location_attribute (rtl);
2431 break;
2433 case CONCAT:
2434 /* ??? CONCAT is used for complex variables, which may have the real
2435 part stored in one place and the imag part stored somewhere else.
2436 DWARF1 has no way to describe a variable that lives in two different
2437 places, so we just describe where the first part lives, and hope that
2438 the second part is stored after it. */
2439 location_attribute (XEXP (rtl, 0));
2440 break;
2442 default:
2443 abort (); /* Should never happen. */
2447 /* Generate an AT_name attribute given some string value to be included as
2448 the value of the attribute. */
2450 static inline void
2451 name_attribute (name_string)
2452 register char *name_string;
2454 if (name_string && *name_string)
2456 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_name);
2457 ASM_OUTPUT_DWARF_STRING (asm_out_file, name_string);
2461 static inline void
2462 fund_type_attribute (ft_code)
2463 register unsigned ft_code;
2465 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_fund_type);
2466 ASM_OUTPUT_DWARF_FUND_TYPE (asm_out_file, ft_code);
2469 static void
2470 mod_fund_type_attribute (type, decl_const, decl_volatile)
2471 register tree type;
2472 register int decl_const;
2473 register int decl_volatile;
2475 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2476 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2478 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_mod_fund_type);
2479 sprintf (begin_label, MT_BEGIN_LABEL_FMT, current_dienum);
2480 sprintf (end_label, MT_END_LABEL_FMT, current_dienum);
2481 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
2482 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2483 write_modifier_bytes (type, decl_const, decl_volatile);
2484 ASM_OUTPUT_DWARF_FUND_TYPE (asm_out_file,
2485 fundamental_type_code (root_type (type)));
2486 ASM_OUTPUT_LABEL (asm_out_file, end_label);
2489 static inline void
2490 user_def_type_attribute (type)
2491 register tree type;
2493 char ud_type_name[MAX_ARTIFICIAL_LABEL_BYTES];
2495 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_user_def_type);
2496 sprintf (ud_type_name, TYPE_NAME_FMT, TYPE_UID (type));
2497 ASM_OUTPUT_DWARF_REF (asm_out_file, ud_type_name);
2500 static void
2501 mod_u_d_type_attribute (type, decl_const, decl_volatile)
2502 register tree type;
2503 register int decl_const;
2504 register int decl_volatile;
2506 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2507 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2508 char ud_type_name[MAX_ARTIFICIAL_LABEL_BYTES];
2510 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_mod_u_d_type);
2511 sprintf (begin_label, MT_BEGIN_LABEL_FMT, current_dienum);
2512 sprintf (end_label, MT_END_LABEL_FMT, current_dienum);
2513 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
2514 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2515 write_modifier_bytes (type, decl_const, decl_volatile);
2516 sprintf (ud_type_name, TYPE_NAME_FMT, TYPE_UID (root_type (type)));
2517 ASM_OUTPUT_DWARF_REF (asm_out_file, ud_type_name);
2518 ASM_OUTPUT_LABEL (asm_out_file, end_label);
2521 #ifdef USE_ORDERING_ATTRIBUTE
2522 static inline void
2523 ordering_attribute (ordering)
2524 register unsigned ordering;
2526 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_ordering);
2527 ASM_OUTPUT_DWARF_DATA2 (asm_out_file, ordering);
2529 #endif /* defined(USE_ORDERING_ATTRIBUTE) */
2531 /* Note that the block of subscript information for an array type also
2532 includes information about the element type of type given array type. */
2534 static void
2535 subscript_data_attribute (type)
2536 register tree type;
2538 register unsigned dimension_number;
2539 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2540 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2542 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_subscr_data);
2543 sprintf (begin_label, SS_BEGIN_LABEL_FMT, current_dienum);
2544 sprintf (end_label, SS_END_LABEL_FMT, current_dienum);
2545 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
2546 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2548 /* The GNU compilers represent multidimensional array types as sequences
2549 of one dimensional array types whose element types are themselves array
2550 types. Here we squish that down, so that each multidimensional array
2551 type gets only one array_type DIE in the Dwarf debugging info. The
2552 draft Dwarf specification say that we are allowed to do this kind
2553 of compression in C (because there is no difference between an
2554 array or arrays and a multidimensional array in C) but for other
2555 source languages (e.g. Ada) we probably shouldn't do this. */
2557 for (dimension_number = 0;
2558 TREE_CODE (type) == ARRAY_TYPE;
2559 type = TREE_TYPE (type), dimension_number++)
2561 register tree domain = TYPE_DOMAIN (type);
2563 /* Arrays come in three flavors. Unspecified bounds, fixed
2564 bounds, and (in GNU C only) variable bounds. Handle all
2565 three forms here. */
2567 if (domain)
2569 /* We have an array type with specified bounds. */
2571 register tree lower = TYPE_MIN_VALUE (domain);
2572 register tree upper = TYPE_MAX_VALUE (domain);
2574 /* Handle only fundamental types as index types for now. */
2576 if (! type_is_fundamental (domain))
2577 abort ();
2579 /* Output the representation format byte for this dimension. */
2581 ASM_OUTPUT_DWARF_FMT_BYTE (asm_out_file,
2582 FMT_CODE (1, TREE_CODE (lower) == INTEGER_CST,
2583 (upper && TREE_CODE (upper) == INTEGER_CST)));
2585 /* Output the index type for this dimension. */
2587 ASM_OUTPUT_DWARF_FUND_TYPE (asm_out_file,
2588 fundamental_type_code (domain));
2590 /* Output the representation for the lower bound. */
2592 output_bound_representation (lower, dimension_number, 'l');
2594 /* Output the representation for the upper bound. */
2596 output_bound_representation (upper, dimension_number, 'u');
2598 else
2600 /* We have an array type with an unspecified length. For C and
2601 C++ we can assume that this really means that (a) the index
2602 type is an integral type, and (b) the lower bound is zero.
2603 Note that Dwarf defines the representation of an unspecified
2604 (upper) bound as being a zero-length location description. */
2606 /* Output the array-bounds format byte. */
2608 ASM_OUTPUT_DWARF_FMT_BYTE (asm_out_file, FMT_FT_C_X);
2610 /* Output the (assumed) index type. */
2612 ASM_OUTPUT_DWARF_FUND_TYPE (asm_out_file, FT_integer);
2614 /* Output the (assumed) lower bound (constant) value. */
2616 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 0);
2618 /* Output the (empty) location description for the upper bound. */
2620 ASM_OUTPUT_DWARF_DATA2 (asm_out_file, 0);
2624 /* Output the prefix byte that says that the element type is coming up. */
2626 ASM_OUTPUT_DWARF_FMT_BYTE (asm_out_file, FMT_ET);
2628 /* Output a representation of the type of the elements of this array type. */
2630 type_attribute (type, 0, 0);
2632 ASM_OUTPUT_LABEL (asm_out_file, end_label);
2635 static void
2636 byte_size_attribute (tree_node)
2637 register tree tree_node;
2639 register unsigned size;
2641 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_byte_size);
2642 switch (TREE_CODE (tree_node))
2644 case ERROR_MARK:
2645 size = 0;
2646 break;
2648 case ENUMERAL_TYPE:
2649 case RECORD_TYPE:
2650 case UNION_TYPE:
2651 case QUAL_UNION_TYPE:
2652 case ARRAY_TYPE:
2653 size = int_size_in_bytes (tree_node);
2654 break;
2656 case FIELD_DECL:
2657 /* For a data member of a struct or union, the AT_byte_size is
2658 generally given as the number of bytes normally allocated for
2659 an object of the *declared* type of the member itself. This
2660 is true even for bit-fields. */
2661 size = simple_type_size_in_bits (field_type (tree_node))
2662 / BITS_PER_UNIT;
2663 break;
2665 default:
2666 abort ();
2669 /* Note that `size' might be -1 when we get to this point. If it
2670 is, that indicates that the byte size of the entity in question
2671 is variable. We have no good way of expressing this fact in Dwarf
2672 at the present time, so just let the -1 pass on through. */
2674 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, size);
2677 /* For a FIELD_DECL node which represents a bit-field, output an attribute
2678 which specifies the distance in bits from the highest order bit of the
2679 "containing object" for the bit-field to the highest order bit of the
2680 bit-field itself.
2682 For any given bit-field, the "containing object" is a hypothetical
2683 object (of some integral or enum type) within which the given bit-field
2684 lives. The type of this hypothetical "containing object" is always the
2685 same as the declared type of the individual bit-field itself.
2687 The determination of the exact location of the "containing object" for
2688 a bit-field is rather complicated. It's handled by the `field_byte_offset'
2689 function (above).
2691 Note that it is the size (in bytes) of the hypothetical "containing
2692 object" which will be given in the AT_byte_size attribute for this
2693 bit-field. (See `byte_size_attribute' above.) */
2695 static inline void
2696 bit_offset_attribute (decl)
2697 register tree decl;
2699 register unsigned object_offset_in_bytes = field_byte_offset (decl);
2700 register tree type = DECL_BIT_FIELD_TYPE (decl);
2701 register tree bitpos_tree = DECL_FIELD_BITPOS (decl);
2702 register unsigned bitpos_int;
2703 register unsigned highest_order_object_bit_offset;
2704 register unsigned highest_order_field_bit_offset;
2705 register unsigned bit_offset;
2707 /* Must be a bit field. */
2708 if (!type
2709 || TREE_CODE (decl) != FIELD_DECL)
2710 abort ();
2712 /* We can't yet handle bit-fields whose offsets are variable, so if we
2713 encounter such things, just return without generating any attribute
2714 whatsoever. */
2716 if (TREE_CODE (bitpos_tree) != INTEGER_CST)
2717 return;
2718 bitpos_int = (unsigned) TREE_INT_CST_LOW (bitpos_tree);
2720 /* Note that the bit offset is always the distance (in bits) from the
2721 highest-order bit of the "containing object" to the highest-order
2722 bit of the bit-field itself. Since the "high-order end" of any
2723 object or field is different on big-endian and little-endian machines,
2724 the computation below must take account of these differences. */
2726 highest_order_object_bit_offset = object_offset_in_bytes * BITS_PER_UNIT;
2727 highest_order_field_bit_offset = bitpos_int;
2729 if (! BYTES_BIG_ENDIAN)
2731 highest_order_field_bit_offset
2732 += (unsigned) TREE_INT_CST_LOW (DECL_SIZE (decl));
2734 highest_order_object_bit_offset += simple_type_size_in_bits (type);
2737 bit_offset =
2738 (! BYTES_BIG_ENDIAN
2739 ? highest_order_object_bit_offset - highest_order_field_bit_offset
2740 : highest_order_field_bit_offset - highest_order_object_bit_offset);
2742 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_bit_offset);
2743 ASM_OUTPUT_DWARF_DATA2 (asm_out_file, bit_offset);
2746 /* For a FIELD_DECL node which represents a bit field, output an attribute
2747 which specifies the length in bits of the given field. */
2749 static inline void
2750 bit_size_attribute (decl)
2751 register tree decl;
2753 /* Must be a field and a bit field. */
2754 if (TREE_CODE (decl) != FIELD_DECL
2755 || ! DECL_BIT_FIELD_TYPE (decl))
2756 abort ();
2758 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_bit_size);
2759 ASM_OUTPUT_DWARF_DATA4 (asm_out_file,
2760 (unsigned) TREE_INT_CST_LOW (DECL_SIZE (decl)));
2763 /* The following routine outputs the `element_list' attribute for enumeration
2764 type DIEs. The element_lits attribute includes the names and values of
2765 all of the enumeration constants associated with the given enumeration
2766 type. */
2768 static inline void
2769 element_list_attribute (element)
2770 register tree element;
2772 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2773 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2775 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_element_list);
2776 sprintf (begin_label, EE_BEGIN_LABEL_FMT, current_dienum);
2777 sprintf (end_label, EE_END_LABEL_FMT, current_dienum);
2778 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, end_label, begin_label);
2779 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2781 /* Here we output a list of value/name pairs for each enumeration constant
2782 defined for this enumeration type (as required), but we do it in REVERSE
2783 order. The order is the one required by the draft #5 Dwarf specification
2784 published by the UI/PLSIG. */
2786 output_enumeral_list (element); /* Recursively output the whole list. */
2788 ASM_OUTPUT_LABEL (asm_out_file, end_label);
2791 /* Generate an AT_stmt_list attribute. These are normally present only in
2792 DIEs with a TAG_compile_unit tag. */
2794 static inline void
2795 stmt_list_attribute (label)
2796 register char *label;
2798 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_stmt_list);
2799 /* Don't use ASM_OUTPUT_DWARF_DATA4 here. */
2800 ASM_OUTPUT_DWARF_ADDR (asm_out_file, label);
2803 /* Generate an AT_low_pc attribute for a label DIE, a lexical_block DIE or
2804 for a subroutine DIE. */
2806 static inline void
2807 low_pc_attribute (asm_low_label)
2808 register char *asm_low_label;
2810 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_low_pc);
2811 ASM_OUTPUT_DWARF_ADDR (asm_out_file, asm_low_label);
2814 /* Generate an AT_high_pc attribute for a lexical_block DIE or for a
2815 subroutine DIE. */
2817 static inline void
2818 high_pc_attribute (asm_high_label)
2819 register char *asm_high_label;
2821 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_high_pc);
2822 ASM_OUTPUT_DWARF_ADDR (asm_out_file, asm_high_label);
2825 /* Generate an AT_body_begin attribute for a subroutine DIE. */
2827 static inline void
2828 body_begin_attribute (asm_begin_label)
2829 register char *asm_begin_label;
2831 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_body_begin);
2832 ASM_OUTPUT_DWARF_ADDR (asm_out_file, asm_begin_label);
2835 /* Generate an AT_body_end attribute for a subroutine DIE. */
2837 static inline void
2838 body_end_attribute (asm_end_label)
2839 register char *asm_end_label;
2841 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_body_end);
2842 ASM_OUTPUT_DWARF_ADDR (asm_out_file, asm_end_label);
2845 /* Generate an AT_language attribute given a LANG value. These attributes
2846 are used only within TAG_compile_unit DIEs. */
2848 static inline void
2849 language_attribute (language_code)
2850 register unsigned language_code;
2852 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_language);
2853 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, language_code);
2856 static inline void
2857 member_attribute (context)
2858 register tree context;
2860 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2862 /* Generate this attribute only for members in C++. */
2864 if (context != NULL && is_tagged_type (context))
2866 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_member);
2867 sprintf (label, TYPE_NAME_FMT, TYPE_UID (context));
2868 ASM_OUTPUT_DWARF_REF (asm_out_file, label);
2872 static inline void
2873 string_length_attribute (upper_bound)
2874 register tree upper_bound;
2876 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2877 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2879 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_string_length);
2880 sprintf (begin_label, SL_BEGIN_LABEL_FMT, current_dienum);
2881 sprintf (end_label, SL_END_LABEL_FMT, current_dienum);
2882 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
2883 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2884 output_bound_representation (upper_bound, 0, 'u');
2885 ASM_OUTPUT_LABEL (asm_out_file, end_label);
2888 static inline void
2889 comp_dir_attribute (dirname)
2890 register char *dirname;
2892 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_comp_dir);
2893 ASM_OUTPUT_DWARF_STRING (asm_out_file, dirname);
2896 static inline void
2897 sf_names_attribute (sf_names_start_label)
2898 register char *sf_names_start_label;
2900 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_sf_names);
2901 /* Don't use ASM_OUTPUT_DWARF_DATA4 here. */
2902 ASM_OUTPUT_DWARF_ADDR (asm_out_file, sf_names_start_label);
2905 static inline void
2906 src_info_attribute (src_info_start_label)
2907 register char *src_info_start_label;
2909 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_src_info);
2910 /* Don't use ASM_OUTPUT_DWARF_DATA4 here. */
2911 ASM_OUTPUT_DWARF_ADDR (asm_out_file, src_info_start_label);
2914 static inline void
2915 mac_info_attribute (mac_info_start_label)
2916 register char *mac_info_start_label;
2918 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_mac_info);
2919 /* Don't use ASM_OUTPUT_DWARF_DATA4 here. */
2920 ASM_OUTPUT_DWARF_ADDR (asm_out_file, mac_info_start_label);
2923 static inline void
2924 prototyped_attribute (func_type)
2925 register tree func_type;
2927 if ((strcmp (language_string, "GNU C") == 0)
2928 && (TYPE_ARG_TYPES (func_type) != NULL))
2930 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_prototyped);
2931 ASM_OUTPUT_DWARF_STRING (asm_out_file, "");
2935 static inline void
2936 producer_attribute (producer)
2937 register char *producer;
2939 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_producer);
2940 ASM_OUTPUT_DWARF_STRING (asm_out_file, producer);
2943 static inline void
2944 inline_attribute (decl)
2945 register tree decl;
2947 if (DECL_INLINE (decl))
2949 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_inline);
2950 ASM_OUTPUT_DWARF_STRING (asm_out_file, "");
2954 static inline void
2955 containing_type_attribute (containing_type)
2956 register tree containing_type;
2958 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2960 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_containing_type);
2961 sprintf (label, TYPE_NAME_FMT, TYPE_UID (containing_type));
2962 ASM_OUTPUT_DWARF_REF (asm_out_file, label);
2965 static inline void
2966 abstract_origin_attribute (origin)
2967 register tree origin;
2969 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2971 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_abstract_origin);
2972 switch (TREE_CODE_CLASS (TREE_CODE (origin)))
2974 case 'd':
2975 sprintf (label, DECL_NAME_FMT, DECL_UID (origin));
2976 break;
2978 case 't':
2979 sprintf (label, TYPE_NAME_FMT, TYPE_UID (origin));
2980 break;
2982 default:
2983 abort (); /* Should never happen. */
2986 ASM_OUTPUT_DWARF_REF (asm_out_file, label);
2989 #ifdef DWARF_DECL_COORDINATES
2990 static inline void
2991 src_coords_attribute (src_fileno, src_lineno)
2992 register unsigned src_fileno;
2993 register unsigned src_lineno;
2995 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_src_coords);
2996 ASM_OUTPUT_DWARF_DATA2 (asm_out_file, src_fileno);
2997 ASM_OUTPUT_DWARF_DATA2 (asm_out_file, src_lineno);
2999 #endif /* defined(DWARF_DECL_COORDINATES) */
3001 static inline void
3002 pure_or_virtual_attribute (func_decl)
3003 register tree func_decl;
3005 if (DECL_VIRTUAL_P (func_decl))
3007 #if 0 /* DECL_ABSTRACT_VIRTUAL_P is C++-specific. */
3008 if (DECL_ABSTRACT_VIRTUAL_P (func_decl))
3009 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_pure_virtual);
3010 else
3011 #endif
3012 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_virtual);
3013 ASM_OUTPUT_DWARF_STRING (asm_out_file, "");
3017 /************************* end of attributes *****************************/
3019 /********************* utility routines for DIEs *************************/
3021 /* Output an AT_name attribute and an AT_src_coords attribute for the
3022 given decl, but only if it actually has a name. */
3024 static void
3025 name_and_src_coords_attributes (decl)
3026 register tree decl;
3028 register tree decl_name = DECL_NAME (decl);
3030 if (decl_name && IDENTIFIER_POINTER (decl_name))
3032 name_attribute (IDENTIFIER_POINTER (decl_name));
3033 #ifdef DWARF_DECL_COORDINATES
3035 register unsigned file_index;
3037 /* This is annoying, but we have to pop out of the .debug section
3038 for a moment while we call `lookup_filename' because calling it
3039 may cause a temporary switch into the .debug_sfnames section and
3040 most svr4 assemblers are not smart enough be be able to nest
3041 section switches to any depth greater than one. Note that we
3042 also can't skirt this issue by delaying all output to the
3043 .debug_sfnames section unit the end of compilation because that
3044 would cause us to have inter-section forward references and
3045 Fred Fish sez that m68k/svr4 assemblers botch those. */
3047 ASM_OUTPUT_POP_SECTION (asm_out_file);
3048 file_index = lookup_filename (DECL_SOURCE_FILE (decl));
3049 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_SECTION);
3051 src_coords_attribute (file_index, DECL_SOURCE_LINE (decl));
3053 #endif /* defined(DWARF_DECL_COORDINATES) */
3057 /* Many forms of DIEs contain a "type description" part. The following
3058 routine writes out these "type descriptor" parts. */
3060 static void
3061 type_attribute (type, decl_const, decl_volatile)
3062 register tree type;
3063 register int decl_const;
3064 register int decl_volatile;
3066 register enum tree_code code = TREE_CODE (type);
3067 register int root_type_modified;
3069 if (code == ERROR_MARK)
3070 return;
3072 /* Handle a special case. For functions whose return type is void,
3073 we generate *no* type attribute. (Note that no object may have
3074 type `void', so this only applies to function return types. */
3076 if (code == VOID_TYPE)
3077 return;
3079 /* If this is a subtype, find the underlying type. Eventually,
3080 this should write out the appropriate subtype info. */
3081 while ((code == INTEGER_TYPE || code == REAL_TYPE)
3082 && TREE_TYPE (type) != 0)
3083 type = TREE_TYPE (type), code = TREE_CODE (type);
3085 root_type_modified = (code == POINTER_TYPE || code == REFERENCE_TYPE
3086 || decl_const || decl_volatile
3087 || TYPE_READONLY (type) || TYPE_VOLATILE (type));
3089 if (type_is_fundamental (root_type (type)))
3091 if (root_type_modified)
3092 mod_fund_type_attribute (type, decl_const, decl_volatile);
3093 else
3094 fund_type_attribute (fundamental_type_code (type));
3096 else
3098 if (root_type_modified)
3099 mod_u_d_type_attribute (type, decl_const, decl_volatile);
3100 else
3101 /* We have to get the type_main_variant here (and pass that to the
3102 `user_def_type_attribute' routine) because the ..._TYPE node we
3103 have might simply be a *copy* of some original type node (where
3104 the copy was created to help us keep track of typedef names)
3105 and that copy might have a different TYPE_UID from the original
3106 ..._TYPE node. (Note that when `equate_type_number_to_die_number'
3107 is labeling a given type DIE for future reference, it always and
3108 only creates labels for DIEs representing *main variants*, and it
3109 never even knows about non-main-variants.) */
3110 user_def_type_attribute (type_main_variant (type));
3114 /* Given a tree pointer to a struct, class, union, or enum type node, return
3115 a pointer to the (string) tag name for the given type, or zero if the
3116 type was declared without a tag. */
3118 static char *
3119 type_tag (type)
3120 register tree type;
3122 register char *name = 0;
3124 if (TYPE_NAME (type) != 0)
3126 register tree t = 0;
3128 /* Find the IDENTIFIER_NODE for the type name. */
3129 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
3130 t = TYPE_NAME (type);
3132 /* The g++ front end makes the TYPE_NAME of *each* tagged type point to
3133 a TYPE_DECL node, regardless of whether or not a `typedef' was
3134 involved. */
3135 else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
3136 && ! DECL_IGNORED_P (TYPE_NAME (type)))
3137 t = DECL_NAME (TYPE_NAME (type));
3139 /* Now get the name as a string, or invent one. */
3140 if (t != 0)
3141 name = IDENTIFIER_POINTER (t);
3144 return (name == 0 || *name == '\0') ? 0 : name;
3147 static inline void
3148 dienum_push ()
3150 /* Start by checking if the pending_sibling_stack needs to be expanded.
3151 If necessary, expand it. */
3153 if (pending_siblings == pending_siblings_allocated)
3155 pending_siblings_allocated += PENDING_SIBLINGS_INCREMENT;
3156 pending_sibling_stack
3157 = (unsigned *) xrealloc (pending_sibling_stack,
3158 pending_siblings_allocated * sizeof(unsigned));
3161 pending_siblings++;
3162 NEXT_DIE_NUM = next_unused_dienum++;
3165 /* Pop the sibling stack so that the most recently pushed DIEnum becomes the
3166 NEXT_DIE_NUM. */
3168 static inline void
3169 dienum_pop ()
3171 pending_siblings--;
3174 static inline tree
3175 member_declared_type (member)
3176 register tree member;
3178 return (DECL_BIT_FIELD_TYPE (member))
3179 ? DECL_BIT_FIELD_TYPE (member)
3180 : TREE_TYPE (member);
3183 /* Get the function's label, as described by its RTL.
3184 This may be different from the DECL_NAME name used
3185 in the source file. */
3187 static char *
3188 function_start_label (decl)
3189 register tree decl;
3191 rtx x;
3192 char *fnname;
3194 x = DECL_RTL (decl);
3195 if (GET_CODE (x) != MEM)
3196 abort ();
3197 x = XEXP (x, 0);
3198 if (GET_CODE (x) != SYMBOL_REF)
3199 abort ();
3200 fnname = XSTR (x, 0);
3201 return fnname;
3205 /******************************* DIEs ************************************/
3207 /* Output routines for individual types of DIEs. */
3209 /* Note that every type of DIE (except a null DIE) gets a sibling. */
3211 static void
3212 output_array_type_die (arg)
3213 register void *arg;
3215 register tree type = arg;
3217 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_array_type);
3218 sibling_attribute ();
3219 equate_type_number_to_die_number (type);
3220 member_attribute (TYPE_CONTEXT (type));
3222 /* I believe that we can default the array ordering. SDB will probably
3223 do the right things even if AT_ordering is not present. It's not
3224 even an issue until we start to get into multidimensional arrays
3225 anyway. If SDB is ever caught doing the Wrong Thing for multi-
3226 dimensional arrays, then we'll have to put the AT_ordering attribute
3227 back in. (But if and when we find out that we need to put these in,
3228 we will only do so for multidimensional arrays. After all, we don't
3229 want to waste space in the .debug section now do we?) */
3231 #ifdef USE_ORDERING_ATTRIBUTE
3232 ordering_attribute (ORD_row_major);
3233 #endif /* defined(USE_ORDERING_ATTRIBUTE) */
3235 subscript_data_attribute (type);
3238 static void
3239 output_set_type_die (arg)
3240 register void *arg;
3242 register tree type = arg;
3244 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_set_type);
3245 sibling_attribute ();
3246 equate_type_number_to_die_number (type);
3247 member_attribute (TYPE_CONTEXT (type));
3248 type_attribute (TREE_TYPE (type), 0, 0);
3251 #if 0
3252 /* Implement this when there is a GNU FORTRAN or GNU Ada front end. */
3254 static void
3255 output_entry_point_die (arg)
3256 register void *arg;
3258 register tree decl = arg;
3259 register tree origin = decl_ultimate_origin (decl);
3261 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_entry_point);
3262 sibling_attribute ();
3263 dienum_push ();
3264 if (origin != NULL)
3265 abstract_origin_attribute (origin);
3266 else
3268 name_and_src_coords_attributes (decl);
3269 member_attribute (DECL_CONTEXT (decl));
3270 type_attribute (TREE_TYPE (TREE_TYPE (decl)), 0, 0);
3272 if (DECL_ABSTRACT (decl))
3273 equate_decl_number_to_die_number (decl);
3274 else
3275 low_pc_attribute (function_start_label (decl));
3277 #endif
3279 /* Output a DIE to represent an inlined instance of an enumeration type. */
3281 static void
3282 output_inlined_enumeration_type_die (arg)
3283 register void *arg;
3285 register tree type = arg;
3287 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_enumeration_type);
3288 sibling_attribute ();
3289 if (!TREE_ASM_WRITTEN (type))
3290 abort ();
3291 abstract_origin_attribute (type);
3294 /* Output a DIE to represent an inlined instance of a structure type. */
3296 static void
3297 output_inlined_structure_type_die (arg)
3298 register void *arg;
3300 register tree type = arg;
3302 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_structure_type);
3303 sibling_attribute ();
3304 if (!TREE_ASM_WRITTEN (type))
3305 abort ();
3306 abstract_origin_attribute (type);
3309 /* Output a DIE to represent an inlined instance of a union type. */
3311 static void
3312 output_inlined_union_type_die (arg)
3313 register void *arg;
3315 register tree type = arg;
3317 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_union_type);
3318 sibling_attribute ();
3319 if (!TREE_ASM_WRITTEN (type))
3320 abort ();
3321 abstract_origin_attribute (type);
3324 /* Output a DIE to represent an enumeration type. Note that these DIEs
3325 include all of the information about the enumeration values also.
3326 This information is encoded into the element_list attribute. */
3328 static void
3329 output_enumeration_type_die (arg)
3330 register void *arg;
3332 register tree type = arg;
3334 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_enumeration_type);
3335 sibling_attribute ();
3336 equate_type_number_to_die_number (type);
3337 name_attribute (type_tag (type));
3338 member_attribute (TYPE_CONTEXT (type));
3340 /* Handle a GNU C/C++ extension, i.e. incomplete enum types. If the
3341 given enum type is incomplete, do not generate the AT_byte_size
3342 attribute or the AT_element_list attribute. */
3344 if (TYPE_SIZE (type))
3346 byte_size_attribute (type);
3347 element_list_attribute (TYPE_FIELDS (type));
3351 /* Output a DIE to represent either a real live formal parameter decl or
3352 to represent just the type of some formal parameter position in some
3353 function type.
3355 Note that this routine is a bit unusual because its argument may be
3356 a ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
3357 represents an inlining of some PARM_DECL) or else some sort of a
3358 ..._TYPE node. If it's the former then this function is being called
3359 to output a DIE to represent a formal parameter object (or some inlining
3360 thereof). If it's the latter, then this function is only being called
3361 to output a TAG_formal_parameter DIE to stand as a placeholder for some
3362 formal argument type of some subprogram type. */
3364 static void
3365 output_formal_parameter_die (arg)
3366 register void *arg;
3368 register tree node = arg;
3370 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_formal_parameter);
3371 sibling_attribute ();
3373 switch (TREE_CODE_CLASS (TREE_CODE (node)))
3375 case 'd': /* We were called with some kind of a ..._DECL node. */
3377 register tree origin = decl_ultimate_origin (node);
3379 if (origin != NULL)
3380 abstract_origin_attribute (origin);
3381 else
3383 name_and_src_coords_attributes (node);
3384 type_attribute (TREE_TYPE (node),
3385 TREE_READONLY (node), TREE_THIS_VOLATILE (node));
3387 if (DECL_ABSTRACT (node))
3388 equate_decl_number_to_die_number (node);
3389 else
3390 location_or_const_value_attribute (node);
3392 break;
3394 case 't': /* We were called with some kind of a ..._TYPE node. */
3395 type_attribute (node, 0, 0);
3396 break;
3398 default:
3399 abort (); /* Should never happen. */
3403 /* Output a DIE to represent a declared function (either file-scope
3404 or block-local) which has "external linkage" (according to ANSI-C). */
3406 static void
3407 output_global_subroutine_die (arg)
3408 register void *arg;
3410 register tree decl = arg;
3411 register tree origin = decl_ultimate_origin (decl);
3413 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_global_subroutine);
3414 sibling_attribute ();
3415 dienum_push ();
3416 if (origin != NULL)
3417 abstract_origin_attribute (origin);
3418 else
3420 register tree type = TREE_TYPE (decl);
3422 name_and_src_coords_attributes (decl);
3423 inline_attribute (decl);
3424 prototyped_attribute (type);
3425 member_attribute (DECL_CONTEXT (decl));
3426 type_attribute (TREE_TYPE (type), 0, 0);
3427 pure_or_virtual_attribute (decl);
3429 if (DECL_ABSTRACT (decl))
3430 equate_decl_number_to_die_number (decl);
3431 else
3433 if (! DECL_EXTERNAL (decl) && ! in_class
3434 && decl == current_function_decl)
3436 char label[MAX_ARTIFICIAL_LABEL_BYTES];
3438 low_pc_attribute (function_start_label (decl));
3439 sprintf (label, FUNC_END_LABEL_FMT, current_funcdef_number);
3440 high_pc_attribute (label);
3441 if (use_gnu_debug_info_extensions)
3443 sprintf (label, BODY_BEGIN_LABEL_FMT, current_funcdef_number);
3444 body_begin_attribute (label);
3445 sprintf (label, BODY_END_LABEL_FMT, current_funcdef_number);
3446 body_end_attribute (label);
3452 /* Output a DIE to represent a declared data object (either file-scope
3453 or block-local) which has "external linkage" (according to ANSI-C). */
3455 static void
3456 output_global_variable_die (arg)
3457 register void *arg;
3459 register tree decl = arg;
3460 register tree origin = decl_ultimate_origin (decl);
3462 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_global_variable);
3463 sibling_attribute ();
3464 if (origin != NULL)
3465 abstract_origin_attribute (origin);
3466 else
3468 name_and_src_coords_attributes (decl);
3469 member_attribute (DECL_CONTEXT (decl));
3470 type_attribute (TREE_TYPE (decl),
3471 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl));
3473 if (DECL_ABSTRACT (decl))
3474 equate_decl_number_to_die_number (decl);
3475 else
3477 if (! DECL_EXTERNAL (decl) && ! in_class
3478 && current_function_decl == decl_function_context (decl))
3479 location_or_const_value_attribute (decl);
3483 static void
3484 output_label_die (arg)
3485 register void *arg;
3487 register tree decl = arg;
3488 register tree origin = decl_ultimate_origin (decl);
3490 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_label);
3491 sibling_attribute ();
3492 if (origin != NULL)
3493 abstract_origin_attribute (origin);
3494 else
3495 name_and_src_coords_attributes (decl);
3496 if (DECL_ABSTRACT (decl))
3497 equate_decl_number_to_die_number (decl);
3498 else
3500 register rtx insn = DECL_RTL (decl);
3502 if (GET_CODE (insn) == CODE_LABEL)
3504 char label[MAX_ARTIFICIAL_LABEL_BYTES];
3506 /* When optimization is enabled (via -O) some parts of the compiler
3507 (e.g. jump.c and cse.c) may try to delete CODE_LABEL insns which
3508 represent source-level labels which were explicitly declared by
3509 the user. This really shouldn't be happening though, so catch
3510 it if it ever does happen. */
3512 if (INSN_DELETED_P (insn))
3513 abort (); /* Should never happen. */
3515 sprintf (label, INSN_LABEL_FMT, current_funcdef_number,
3516 (unsigned) INSN_UID (insn));
3517 low_pc_attribute (label);
3522 static void
3523 output_lexical_block_die (arg)
3524 register void *arg;
3526 register tree stmt = arg;
3528 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_lexical_block);
3529 sibling_attribute ();
3530 dienum_push ();
3531 if (! BLOCK_ABSTRACT (stmt))
3533 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
3534 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
3536 sprintf (begin_label, BLOCK_BEGIN_LABEL_FMT, next_block_number);
3537 low_pc_attribute (begin_label);
3538 sprintf (end_label, BLOCK_END_LABEL_FMT, next_block_number);
3539 high_pc_attribute (end_label);
3543 static void
3544 output_inlined_subroutine_die (arg)
3545 register void *arg;
3547 register tree stmt = arg;
3549 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_inlined_subroutine);
3550 sibling_attribute ();
3551 dienum_push ();
3552 abstract_origin_attribute (block_ultimate_origin (stmt));
3553 if (! BLOCK_ABSTRACT (stmt))
3555 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
3556 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
3558 sprintf (begin_label, BLOCK_BEGIN_LABEL_FMT, next_block_number);
3559 low_pc_attribute (begin_label);
3560 sprintf (end_label, BLOCK_END_LABEL_FMT, next_block_number);
3561 high_pc_attribute (end_label);
3565 /* Output a DIE to represent a declared data object (either file-scope
3566 or block-local) which has "internal linkage" (according to ANSI-C). */
3568 static void
3569 output_local_variable_die (arg)
3570 register void *arg;
3572 register tree decl = arg;
3573 register tree origin = decl_ultimate_origin (decl);
3575 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_local_variable);
3576 sibling_attribute ();
3577 if (origin != NULL)
3578 abstract_origin_attribute (origin);
3579 else
3581 name_and_src_coords_attributes (decl);
3582 member_attribute (DECL_CONTEXT (decl));
3583 type_attribute (TREE_TYPE (decl),
3584 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl));
3586 if (DECL_ABSTRACT (decl))
3587 equate_decl_number_to_die_number (decl);
3588 else
3589 location_or_const_value_attribute (decl);
3592 static void
3593 output_member_die (arg)
3594 register void *arg;
3596 register tree decl = arg;
3598 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_member);
3599 sibling_attribute ();
3600 name_and_src_coords_attributes (decl);
3601 member_attribute (DECL_CONTEXT (decl));
3602 type_attribute (member_declared_type (decl),
3603 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl));
3604 if (DECL_BIT_FIELD_TYPE (decl)) /* If this is a bit field... */
3606 byte_size_attribute (decl);
3607 bit_size_attribute (decl);
3608 bit_offset_attribute (decl);
3610 data_member_location_attribute (decl);
3613 #if 0
3614 /* Don't generate either pointer_type DIEs or reference_type DIEs. Use
3615 modified types instead.
3617 We keep this code here just in case these types of DIEs may be
3618 needed to represent certain things in other languages (e.g. Pascal)
3619 someday. */
3621 static void
3622 output_pointer_type_die (arg)
3623 register void *arg;
3625 register tree type = arg;
3627 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_pointer_type);
3628 sibling_attribute ();
3629 equate_type_number_to_die_number (type);
3630 member_attribute (TYPE_CONTEXT (type));
3631 type_attribute (TREE_TYPE (type), 0, 0);
3634 static void
3635 output_reference_type_die (arg)
3636 register void *arg;
3638 register tree type = arg;
3640 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_reference_type);
3641 sibling_attribute ();
3642 equate_type_number_to_die_number (type);
3643 member_attribute (TYPE_CONTEXT (type));
3644 type_attribute (TREE_TYPE (type), 0, 0);
3646 #endif
3648 static void
3649 output_ptr_to_mbr_type_die (arg)
3650 register void *arg;
3652 register tree type = arg;
3654 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_ptr_to_member_type);
3655 sibling_attribute ();
3656 equate_type_number_to_die_number (type);
3657 member_attribute (TYPE_CONTEXT (type));
3658 containing_type_attribute (TYPE_OFFSET_BASETYPE (type));
3659 type_attribute (TREE_TYPE (type), 0, 0);
3662 static void
3663 output_compile_unit_die (arg)
3664 register void *arg;
3666 register char *main_input_filename = arg;
3668 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_compile_unit);
3669 sibling_attribute ();
3670 dienum_push ();
3671 name_attribute (main_input_filename);
3674 char producer[250];
3676 sprintf (producer, "%s %s", language_string, version_string);
3677 producer_attribute (producer);
3680 if (strcmp (language_string, "GNU C++") == 0)
3681 language_attribute (LANG_C_PLUS_PLUS);
3682 else if (strcmp (language_string, "GNU Ada") == 0)
3683 language_attribute (LANG_ADA83);
3684 else if (strcmp (language_string, "GNU F77") == 0)
3685 language_attribute (LANG_FORTRAN77);
3686 else if (strcmp (language_string, "GNU Pascal") == 0)
3687 language_attribute (LANG_PASCAL83);
3688 else if (flag_traditional)
3689 language_attribute (LANG_C);
3690 else
3691 language_attribute (LANG_C89);
3692 low_pc_attribute (TEXT_BEGIN_LABEL);
3693 high_pc_attribute (TEXT_END_LABEL);
3694 if (debug_info_level >= DINFO_LEVEL_NORMAL)
3695 stmt_list_attribute (LINE_BEGIN_LABEL);
3696 last_filename = xstrdup (main_input_filename);
3699 char *wd = getpwd ();
3700 if (wd)
3701 comp_dir_attribute (wd);
3704 if (debug_info_level >= DINFO_LEVEL_NORMAL && use_gnu_debug_info_extensions)
3706 sf_names_attribute (SFNAMES_BEGIN_LABEL);
3707 src_info_attribute (SRCINFO_BEGIN_LABEL);
3708 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
3709 mac_info_attribute (MACINFO_BEGIN_LABEL);
3713 static void
3714 output_string_type_die (arg)
3715 register void *arg;
3717 register tree type = arg;
3719 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_string_type);
3720 sibling_attribute ();
3721 equate_type_number_to_die_number (type);
3722 member_attribute (TYPE_CONTEXT (type));
3723 /* this is a fixed length string */
3724 byte_size_attribute (type);
3727 static void
3728 output_inheritance_die (arg)
3729 register void *arg;
3731 register tree binfo = arg;
3733 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_inheritance);
3734 sibling_attribute ();
3735 type_attribute (BINFO_TYPE (binfo), 0, 0);
3736 data_member_location_attribute (binfo);
3737 if (TREE_VIA_VIRTUAL (binfo))
3739 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_virtual);
3740 ASM_OUTPUT_DWARF_STRING (asm_out_file, "");
3742 if (TREE_VIA_PUBLIC (binfo))
3744 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_public);
3745 ASM_OUTPUT_DWARF_STRING (asm_out_file, "");
3747 else if (TREE_VIA_PROTECTED (binfo))
3749 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_protected);
3750 ASM_OUTPUT_DWARF_STRING (asm_out_file, "");
3754 static void
3755 output_structure_type_die (arg)
3756 register void *arg;
3758 register tree type = arg;
3760 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_structure_type);
3761 sibling_attribute ();
3762 equate_type_number_to_die_number (type);
3763 name_attribute (type_tag (type));
3764 member_attribute (TYPE_CONTEXT (type));
3766 /* If this type has been completed, then give it a byte_size attribute
3767 and prepare to give a list of members. Otherwise, don't do either of
3768 these things. In the latter case, we will not be generating a list
3769 of members (since we don't have any idea what they might be for an
3770 incomplete type). */
3772 if (TYPE_SIZE (type))
3774 dienum_push ();
3775 byte_size_attribute (type);
3779 /* Output a DIE to represent a declared function (either file-scope
3780 or block-local) which has "internal linkage" (according to ANSI-C). */
3782 static void
3783 output_local_subroutine_die (arg)
3784 register void *arg;
3786 register tree decl = arg;
3787 register tree origin = decl_ultimate_origin (decl);
3789 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_subroutine);
3790 sibling_attribute ();
3791 dienum_push ();
3792 if (origin != NULL)
3793 abstract_origin_attribute (origin);
3794 else
3796 register tree type = TREE_TYPE (decl);
3798 name_and_src_coords_attributes (decl);
3799 inline_attribute (decl);
3800 prototyped_attribute (type);
3801 member_attribute (DECL_CONTEXT (decl));
3802 type_attribute (TREE_TYPE (type), 0, 0);
3803 pure_or_virtual_attribute (decl);
3805 if (DECL_ABSTRACT (decl))
3806 equate_decl_number_to_die_number (decl);
3807 else
3809 /* Avoid getting screwed up in cases where a function was declared
3810 static but where no definition was ever given for it. */
3812 if (TREE_ASM_WRITTEN (decl))
3814 char label[MAX_ARTIFICIAL_LABEL_BYTES];
3815 low_pc_attribute (function_start_label (decl));
3816 sprintf (label, FUNC_END_LABEL_FMT, current_funcdef_number);
3817 high_pc_attribute (label);
3818 if (use_gnu_debug_info_extensions)
3820 sprintf (label, BODY_BEGIN_LABEL_FMT, current_funcdef_number);
3821 body_begin_attribute (label);
3822 sprintf (label, BODY_END_LABEL_FMT, current_funcdef_number);
3823 body_end_attribute (label);
3829 static void
3830 output_subroutine_type_die (arg)
3831 register void *arg;
3833 register tree type = arg;
3834 register tree return_type = TREE_TYPE (type);
3836 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_subroutine_type);
3837 sibling_attribute ();
3838 dienum_push ();
3839 equate_type_number_to_die_number (type);
3840 prototyped_attribute (type);
3841 member_attribute (TYPE_CONTEXT (type));
3842 type_attribute (return_type, 0, 0);
3845 static void
3846 output_typedef_die (arg)
3847 register void *arg;
3849 register tree decl = arg;
3850 register tree origin = decl_ultimate_origin (decl);
3852 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_typedef);
3853 sibling_attribute ();
3854 if (origin != NULL)
3855 abstract_origin_attribute (origin);
3856 else
3858 name_and_src_coords_attributes (decl);
3859 member_attribute (DECL_CONTEXT (decl));
3860 type_attribute (TREE_TYPE (decl),
3861 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl));
3863 if (DECL_ABSTRACT (decl))
3864 equate_decl_number_to_die_number (decl);
3867 static void
3868 output_union_type_die (arg)
3869 register void *arg;
3871 register tree type = arg;
3873 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_union_type);
3874 sibling_attribute ();
3875 equate_type_number_to_die_number (type);
3876 name_attribute (type_tag (type));
3877 member_attribute (TYPE_CONTEXT (type));
3879 /* If this type has been completed, then give it a byte_size attribute
3880 and prepare to give a list of members. Otherwise, don't do either of
3881 these things. In the latter case, we will not be generating a list
3882 of members (since we don't have any idea what they might be for an
3883 incomplete type). */
3885 if (TYPE_SIZE (type))
3887 dienum_push ();
3888 byte_size_attribute (type);
3892 /* Generate a special type of DIE used as a stand-in for a trailing ellipsis
3893 at the end of an (ANSI prototyped) formal parameters list. */
3895 static void
3896 output_unspecified_parameters_die (arg)
3897 register void *arg;
3899 register tree decl_or_type = arg;
3901 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_unspecified_parameters);
3902 sibling_attribute ();
3904 /* This kludge is here only for the sake of being compatible with what
3905 the USL CI5 C compiler does. The specification of Dwarf Version 1
3906 doesn't say that TAG_unspecified_parameters DIEs should contain any
3907 attributes other than the AT_sibling attribute, but they are certainly
3908 allowed to contain additional attributes, and the CI5 compiler
3909 generates AT_name, AT_fund_type, and AT_location attributes within
3910 TAG_unspecified_parameters DIEs which appear in the child lists for
3911 DIEs representing function definitions, so we do likewise here. */
3913 if (TREE_CODE (decl_or_type) == FUNCTION_DECL && DECL_INITIAL (decl_or_type))
3915 name_attribute ("...");
3916 fund_type_attribute (FT_pointer);
3917 /* location_attribute (?); */
3921 static void
3922 output_padded_null_die (arg)
3923 register void *arg;
3925 ASM_OUTPUT_ALIGN (asm_out_file, 2); /* 2**2 == 4 */
3928 /*************************** end of DIEs *********************************/
3930 /* Generate some type of DIE. This routine generates the generic outer
3931 wrapper stuff which goes around all types of DIE's (regardless of their
3932 TAGs. All forms of DIEs start with a DIE-specific label, followed by a
3933 DIE-length word, followed by the guts of the DIE itself. After the guts
3934 of the DIE, there must always be a terminator label for the DIE. */
3936 static void
3937 output_die (die_specific_output_function, param)
3938 register void (*die_specific_output_function)();
3939 register void *param;
3941 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
3942 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
3944 current_dienum = NEXT_DIE_NUM;
3945 NEXT_DIE_NUM = next_unused_dienum;
3947 sprintf (begin_label, DIE_BEGIN_LABEL_FMT, current_dienum);
3948 sprintf (end_label, DIE_END_LABEL_FMT, current_dienum);
3950 /* Write a label which will act as the name for the start of this DIE. */
3952 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
3954 /* Write the DIE-length word. */
3956 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, end_label, begin_label);
3958 /* Fill in the guts of the DIE. */
3960 next_unused_dienum++;
3961 die_specific_output_function (param);
3963 /* Write a label which will act as the name for the end of this DIE. */
3965 ASM_OUTPUT_LABEL (asm_out_file, end_label);
3968 static void
3969 end_sibling_chain ()
3971 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
3973 current_dienum = NEXT_DIE_NUM;
3974 NEXT_DIE_NUM = next_unused_dienum;
3976 sprintf (begin_label, DIE_BEGIN_LABEL_FMT, current_dienum);
3978 /* Write a label which will act as the name for the start of this DIE. */
3980 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
3982 /* Write the DIE-length word. */
3984 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 4);
3986 dienum_pop ();
3989 /* Generate a list of nameless TAG_formal_parameter DIEs (and perhaps a
3990 TAG_unspecified_parameters DIE) to represent the types of the formal
3991 parameters as specified in some function type specification (except
3992 for those which appear as part of a function *definition*).
3994 Note that we must be careful here to output all of the parameter
3995 DIEs *before* we output any DIEs needed to represent the types of
3996 the formal parameters. This keeps svr4 SDB happy because it
3997 (incorrectly) thinks that the first non-parameter DIE it sees ends
3998 the formal parameter list. */
4000 static void
4001 output_formal_types (function_or_method_type)
4002 register tree function_or_method_type;
4004 register tree link;
4005 register tree formal_type = NULL;
4006 register tree first_parm_type = TYPE_ARG_TYPES (function_or_method_type);
4008 /* Set TREE_ASM_WRITTEN while processing the parameters, lest we
4009 get bogus recursion when outputting tagged types local to a
4010 function declaration. */
4011 int save_asm_written = TREE_ASM_WRITTEN (function_or_method_type);
4012 TREE_ASM_WRITTEN (function_or_method_type) = 1;
4014 /* In the case where we are generating a formal types list for a C++
4015 non-static member function type, skip over the first thing on the
4016 TYPE_ARG_TYPES list because it only represents the type of the
4017 hidden `this pointer'. The debugger should be able to figure
4018 out (without being explicitly told) that this non-static member
4019 function type takes a `this pointer' and should be able to figure
4020 what the type of that hidden parameter is from the AT_member
4021 attribute of the parent TAG_subroutine_type DIE. */
4023 if (TREE_CODE (function_or_method_type) == METHOD_TYPE)
4024 first_parm_type = TREE_CHAIN (first_parm_type);
4026 /* Make our first pass over the list of formal parameter types and output
4027 a TAG_formal_parameter DIE for each one. */
4029 for (link = first_parm_type; link; link = TREE_CHAIN (link))
4031 formal_type = TREE_VALUE (link);
4032 if (formal_type == void_type_node)
4033 break;
4035 /* Output a (nameless) DIE to represent the formal parameter itself. */
4037 output_die (output_formal_parameter_die, formal_type);
4040 /* If this function type has an ellipsis, add a TAG_unspecified_parameters
4041 DIE to the end of the parameter list. */
4043 if (formal_type != void_type_node)
4044 output_die (output_unspecified_parameters_die, function_or_method_type);
4046 /* Make our second (and final) pass over the list of formal parameter types
4047 and output DIEs to represent those types (as necessary). */
4049 for (link = TYPE_ARG_TYPES (function_or_method_type);
4050 link;
4051 link = TREE_CHAIN (link))
4053 formal_type = TREE_VALUE (link);
4054 if (formal_type == void_type_node)
4055 break;
4057 output_type (formal_type, function_or_method_type);
4060 TREE_ASM_WRITTEN (function_or_method_type) = save_asm_written;
4063 /* Remember a type in the pending_types_list. */
4065 static void
4066 pend_type (type)
4067 register tree type;
4069 if (pending_types == pending_types_allocated)
4071 pending_types_allocated += PENDING_TYPES_INCREMENT;
4072 pending_types_list
4073 = (tree *) xrealloc (pending_types_list,
4074 sizeof (tree) * pending_types_allocated);
4076 pending_types_list[pending_types++] = type;
4078 /* Mark the pending type as having been output already (even though
4079 it hasn't been). This prevents the type from being added to the
4080 pending_types_list more than once. */
4082 TREE_ASM_WRITTEN (type) = 1;
4085 /* Return non-zero if it is legitimate to output DIEs to represent a
4086 given type while we are generating the list of child DIEs for some
4087 DIE (e.g. a function or lexical block DIE) associated with a given scope.
4089 See the comments within the function for a description of when it is
4090 considered legitimate to output DIEs for various kinds of types.
4092 Note that TYPE_CONTEXT(type) may be NULL (to indicate global scope)
4093 or it may point to a BLOCK node (for types local to a block), or to a
4094 FUNCTION_DECL node (for types local to the heading of some function
4095 definition), or to a FUNCTION_TYPE node (for types local to the
4096 prototyped parameter list of a function type specification), or to a
4097 RECORD_TYPE, UNION_TYPE, or QUAL_UNION_TYPE node
4098 (in the case of C++ nested types).
4100 The `scope' parameter should likewise be NULL or should point to a
4101 BLOCK node, a FUNCTION_DECL node, a FUNCTION_TYPE node, a RECORD_TYPE
4102 node, a UNION_TYPE node, or a QUAL_UNION_TYPE node.
4104 This function is used only for deciding when to "pend" and when to
4105 "un-pend" types to/from the pending_types_list.
4107 Note that we sometimes make use of this "type pending" feature in a
4108 rather twisted way to temporarily delay the production of DIEs for the
4109 types of formal parameters. (We do this just to make svr4 SDB happy.)
4110 It order to delay the production of DIEs representing types of formal
4111 parameters, callers of this function supply `fake_containing_scope' as
4112 the `scope' parameter to this function. Given that fake_containing_scope
4113 is a tagged type which is *not* the containing scope for *any* other type,
4114 the desired effect is achieved, i.e. output of DIEs representing types
4115 is temporarily suspended, and any type DIEs which would have otherwise
4116 been output are instead placed onto the pending_types_list. Later on,
4117 we force these (temporarily pended) types to be output simply by calling
4118 `output_pending_types_for_scope' with an actual argument equal to the
4119 true scope of the types we temporarily pended. */
4121 static inline int
4122 type_ok_for_scope (type, scope)
4123 register tree type;
4124 register tree scope;
4126 /* Tagged types (i.e. struct, union, and enum types) must always be
4127 output only in the scopes where they actually belong (or else the
4128 scoping of their own tag names and the scoping of their member
4129 names will be incorrect). Non-tagged-types on the other hand can
4130 generally be output anywhere, except that svr4 SDB really doesn't
4131 want to see them nested within struct or union types, so here we
4132 say it is always OK to immediately output any such a (non-tagged)
4133 type, so long as we are not within such a context. Note that the
4134 only kinds of non-tagged types which we will be dealing with here
4135 (for C and C++ anyway) will be array types and function types. */
4137 return is_tagged_type (type)
4138 ? (TYPE_CONTEXT (type) == scope
4139 || (scope == NULL_TREE && is_tagged_type (TYPE_CONTEXT (type))
4140 && TREE_ASM_WRITTEN (TYPE_CONTEXT (type))))
4141 : (scope == NULL_TREE || ! is_tagged_type (scope));
4144 /* Output any pending types (from the pending_types list) which we can output
4145 now (taking into account the scope that we are working on now).
4147 For each type output, remove the given type from the pending_types_list
4148 *before* we try to output it.
4150 Note that we have to process the list in beginning-to-end order,
4151 because the call made here to output_type may cause yet more types
4152 to be added to the end of the list, and we may have to output some
4153 of them too. */
4155 static void
4156 output_pending_types_for_scope (containing_scope)
4157 register tree containing_scope;
4159 register unsigned i;
4161 for (i = 0; i < pending_types; )
4163 register tree type = pending_types_list[i];
4165 if (type_ok_for_scope (type, containing_scope))
4167 register tree *mover;
4168 register tree *limit;
4170 pending_types--;
4171 limit = &pending_types_list[pending_types];
4172 for (mover = &pending_types_list[i]; mover < limit; mover++)
4173 *mover = *(mover+1);
4175 /* Un-mark the type as having been output already (because it
4176 hasn't been, really). Then call output_type to generate a
4177 Dwarf representation of it. */
4179 TREE_ASM_WRITTEN (type) = 0;
4180 output_type (type, containing_scope);
4182 /* Don't increment the loop counter in this case because we
4183 have shifted all of the subsequent pending types down one
4184 element in the pending_types_list array. */
4186 else
4187 i++;
4191 static void
4192 output_type (type, containing_scope)
4193 register tree type;
4194 register tree containing_scope;
4196 if (type == 0 || type == error_mark_node)
4197 return;
4199 /* We are going to output a DIE to represent the unqualified version of
4200 of this type (i.e. without any const or volatile qualifiers) so get
4201 the main variant (i.e. the unqualified version) of this type now. */
4203 type = type_main_variant (type);
4205 if (TREE_ASM_WRITTEN (type))
4207 if (finalizing && AGGREGATE_TYPE_P (type))
4209 register tree member;
4211 /* Some of our nested types might not have been defined when we
4212 were written out before; force them out now. */
4214 for (member = TYPE_FIELDS (type); member;
4215 member = TREE_CHAIN (member))
4216 if (TREE_CODE (member) == TYPE_DECL
4217 && ! TREE_ASM_WRITTEN (TREE_TYPE (member)))
4218 output_type (TREE_TYPE (member), containing_scope);
4220 return;
4223 /* If this is a nested type whose containing class hasn't been
4224 written out yet, writing it out will cover this one, too. */
4226 if (TYPE_CONTEXT (type)
4227 && TREE_CODE_CLASS (TREE_CODE (TYPE_CONTEXT (type))) == 't'
4228 && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type)))
4230 output_type (TYPE_CONTEXT (type), containing_scope);
4231 return;
4234 /* Don't generate any DIEs for this type now unless it is OK to do so
4235 (based upon what `type_ok_for_scope' tells us). */
4237 if (! type_ok_for_scope (type, containing_scope))
4239 pend_type (type);
4240 return;
4243 switch (TREE_CODE (type))
4245 case ERROR_MARK:
4246 break;
4248 case POINTER_TYPE:
4249 case REFERENCE_TYPE:
4250 /* Prevent infinite recursion in cases where this is a recursive
4251 type. Recursive types are possible in Ada. */
4252 TREE_ASM_WRITTEN (type) = 1;
4253 /* For these types, all that is required is that we output a DIE
4254 (or a set of DIEs) to represent the "basis" type. */
4255 output_type (TREE_TYPE (type), containing_scope);
4256 break;
4258 case OFFSET_TYPE:
4259 /* This code is used for C++ pointer-to-data-member types. */
4260 /* Output a description of the relevant class type. */
4261 output_type (TYPE_OFFSET_BASETYPE (type), containing_scope);
4262 /* Output a description of the type of the object pointed to. */
4263 output_type (TREE_TYPE (type), containing_scope);
4264 /* Now output a DIE to represent this pointer-to-data-member type
4265 itself. */
4266 output_die (output_ptr_to_mbr_type_die, type);
4267 break;
4269 case SET_TYPE:
4270 output_type (TYPE_DOMAIN (type), containing_scope);
4271 output_die (output_set_type_die, type);
4272 break;
4274 case FILE_TYPE:
4275 output_type (TREE_TYPE (type), containing_scope);
4276 abort (); /* No way to represent these in Dwarf yet! */
4277 break;
4279 case FUNCTION_TYPE:
4280 /* Force out return type (in case it wasn't forced out already). */
4281 output_type (TREE_TYPE (type), containing_scope);
4282 output_die (output_subroutine_type_die, type);
4283 output_formal_types (type);
4284 end_sibling_chain ();
4285 break;
4287 case METHOD_TYPE:
4288 /* Force out return type (in case it wasn't forced out already). */
4289 output_type (TREE_TYPE (type), containing_scope);
4290 output_die (output_subroutine_type_die, type);
4291 output_formal_types (type);
4292 end_sibling_chain ();
4293 break;
4295 case ARRAY_TYPE:
4296 if (TYPE_STRING_FLAG (type) && TREE_CODE(TREE_TYPE(type)) == CHAR_TYPE)
4298 output_type (TREE_TYPE (type), containing_scope);
4299 output_die (output_string_type_die, type);
4301 else
4303 register tree element_type;
4305 element_type = TREE_TYPE (type);
4306 while (TREE_CODE (element_type) == ARRAY_TYPE)
4307 element_type = TREE_TYPE (element_type);
4309 output_type (element_type, containing_scope);
4310 output_die (output_array_type_die, type);
4312 break;
4314 case ENUMERAL_TYPE:
4315 case RECORD_TYPE:
4316 case UNION_TYPE:
4317 case QUAL_UNION_TYPE:
4319 /* For a non-file-scope tagged type, we can always go ahead and
4320 output a Dwarf description of this type right now, even if
4321 the type in question is still incomplete, because if this
4322 local type *was* ever completed anywhere within its scope,
4323 that complete definition would already have been attached to
4324 this RECORD_TYPE, UNION_TYPE, QUAL_UNION_TYPE or ENUMERAL_TYPE
4325 node by the time we reach this point. That's true because of the
4326 way the front-end does its processing of file-scope declarations (of
4327 functions and class types) within which other types might be
4328 nested. The C and C++ front-ends always gobble up such "local
4329 scope" things en-mass before they try to output *any* debugging
4330 information for any of the stuff contained inside them and thus,
4331 we get the benefit here of what is (in effect) a pre-resolution
4332 of forward references to tagged types in local scopes.
4334 Note however that for file-scope tagged types we cannot assume
4335 that such pre-resolution of forward references has taken place.
4336 A given file-scope tagged type may appear to be incomplete when
4337 we reach this point, but it may yet be given a full definition
4338 (at file-scope) later on during compilation. In order to avoid
4339 generating a premature (and possibly incorrect) set of Dwarf
4340 DIEs for such (as yet incomplete) file-scope tagged types, we
4341 generate nothing at all for as-yet incomplete file-scope tagged
4342 types here unless we are making our special "finalization" pass
4343 for file-scope things at the very end of compilation. At that
4344 time, we will certainly know as much about each file-scope tagged
4345 type as we are ever going to know, so at that point in time, we
4346 can safely generate correct Dwarf descriptions for these file-
4347 scope tagged types. */
4349 if (TYPE_SIZE (type) == 0
4350 && (TYPE_CONTEXT (type) == NULL
4351 || (TREE_CODE_CLASS (TREE_CODE (TYPE_CONTEXT (type))) == 't'
4352 && TREE_CODE (TYPE_CONTEXT (type)) != FUNCTION_TYPE
4353 && TREE_CODE (TYPE_CONTEXT (type)) != METHOD_TYPE))
4354 && !finalizing)
4355 return; /* EARLY EXIT! Avoid setting TREE_ASM_WRITTEN. */
4357 /* Prevent infinite recursion in cases where the type of some
4358 member of this type is expressed in terms of this type itself. */
4360 TREE_ASM_WRITTEN (type) = 1;
4362 /* Output a DIE to represent the tagged type itself. */
4364 switch (TREE_CODE (type))
4366 case ENUMERAL_TYPE:
4367 output_die (output_enumeration_type_die, type);
4368 return; /* a special case -- nothing left to do so just return */
4370 case RECORD_TYPE:
4371 output_die (output_structure_type_die, type);
4372 break;
4374 case UNION_TYPE:
4375 case QUAL_UNION_TYPE:
4376 output_die (output_union_type_die, type);
4377 break;
4379 default:
4380 abort (); /* Should never happen. */
4383 /* If this is not an incomplete type, output descriptions of
4384 each of its members.
4386 Note that as we output the DIEs necessary to represent the
4387 members of this record or union type, we will also be trying
4388 to output DIEs to represent the *types* of those members.
4389 However the `output_type' function (above) will specifically
4390 avoid generating type DIEs for member types *within* the list
4391 of member DIEs for this (containing) type execpt for those
4392 types (of members) which are explicitly marked as also being
4393 members of this (containing) type themselves. The g++ front-
4394 end can force any given type to be treated as a member of some
4395 other (containing) type by setting the TYPE_CONTEXT of the
4396 given (member) type to point to the TREE node representing the
4397 appropriate (containing) type.
4400 if (TYPE_SIZE (type))
4402 /* First output info about the base classes. */
4403 if (TYPE_BINFO (type) && TYPE_BINFO_BASETYPES (type))
4405 register tree bases = TYPE_BINFO_BASETYPES (type);
4406 register int n_bases = TREE_VEC_LENGTH (bases);
4407 register int i;
4409 for (i = 0; i < n_bases; i++)
4410 output_die (output_inheritance_die, TREE_VEC_ELT (bases, i));
4413 ++in_class;
4416 register tree normal_member;
4418 /* Now output info about the data members and type members. */
4420 for (normal_member = TYPE_FIELDS (type);
4421 normal_member;
4422 normal_member = TREE_CHAIN (normal_member))
4423 output_decl (normal_member, type);
4427 register tree func_member;
4429 /* Now output info about the function members (if any). */
4431 for (func_member = TYPE_METHODS (type);
4432 func_member;
4433 func_member = TREE_CHAIN (func_member))
4434 output_decl (func_member, type);
4437 --in_class;
4439 /* RECORD_TYPEs, UNION_TYPEs, and QUAL_UNION_TYPEs are themselves
4440 scopes (at least in C++) so we must now output any nested
4441 pending types which are local just to this type. */
4443 output_pending_types_for_scope (type);
4445 end_sibling_chain (); /* Terminate member chain. */
4448 break;
4450 case VOID_TYPE:
4451 case INTEGER_TYPE:
4452 case REAL_TYPE:
4453 case COMPLEX_TYPE:
4454 case BOOLEAN_TYPE:
4455 case CHAR_TYPE:
4456 break; /* No DIEs needed for fundamental types. */
4458 case LANG_TYPE: /* No Dwarf representation currently defined. */
4459 break;
4461 default:
4462 abort ();
4465 TREE_ASM_WRITTEN (type) = 1;
4468 static void
4469 output_tagged_type_instantiation (type)
4470 register tree type;
4472 if (type == 0 || type == error_mark_node)
4473 return;
4475 /* We are going to output a DIE to represent the unqualified version of
4476 of this type (i.e. without any const or volatile qualifiers) so make
4477 sure that we have the main variant (i.e. the unqualified version) of
4478 this type now. */
4480 if (type != type_main_variant (type))
4481 abort ();
4483 if (!TREE_ASM_WRITTEN (type))
4484 abort ();
4486 switch (TREE_CODE (type))
4488 case ERROR_MARK:
4489 break;
4491 case ENUMERAL_TYPE:
4492 output_die (output_inlined_enumeration_type_die, type);
4493 break;
4495 case RECORD_TYPE:
4496 output_die (output_inlined_structure_type_die, type);
4497 break;
4499 case UNION_TYPE:
4500 case QUAL_UNION_TYPE:
4501 output_die (output_inlined_union_type_die, type);
4502 break;
4504 default:
4505 abort (); /* Should never happen. */
4509 /* Output a TAG_lexical_block DIE followed by DIEs to represent all of
4510 the things which are local to the given block. */
4512 static void
4513 output_block (stmt, depth)
4514 register tree stmt;
4515 int depth;
4517 register int must_output_die = 0;
4518 register tree origin;
4519 register enum tree_code origin_code;
4521 /* Ignore blocks never really used to make RTL. */
4523 if (! stmt || ! TREE_USED (stmt))
4524 return;
4526 /* Determine the "ultimate origin" of this block. This block may be an
4527 inlined instance of an inlined instance of inline function, so we
4528 have to trace all of the way back through the origin chain to find
4529 out what sort of node actually served as the original seed for the
4530 creation of the current block. */
4532 origin = block_ultimate_origin (stmt);
4533 origin_code = (origin != NULL) ? TREE_CODE (origin) : ERROR_MARK;
4535 /* Determine if we need to output any Dwarf DIEs at all to represent this
4536 block. */
4538 if (origin_code == FUNCTION_DECL)
4539 /* The outer scopes for inlinings *must* always be represented. We
4540 generate TAG_inlined_subroutine DIEs for them. (See below.) */
4541 must_output_die = 1;
4542 else
4544 /* In the case where the current block represents an inlining of the
4545 "body block" of an inline function, we must *NOT* output any DIE
4546 for this block because we have already output a DIE to represent
4547 the whole inlined function scope and the "body block" of any
4548 function doesn't really represent a different scope according to
4549 ANSI C rules. So we check here to make sure that this block does
4550 not represent a "body block inlining" before trying to set the
4551 `must_output_die' flag. */
4553 if (! is_body_block (origin ? origin : stmt))
4555 /* Determine if this block directly contains any "significant"
4556 local declarations which we will need to output DIEs for. */
4558 if (debug_info_level > DINFO_LEVEL_TERSE)
4559 /* We are not in terse mode so *any* local declaration counts
4560 as being a "significant" one. */
4561 must_output_die = (BLOCK_VARS (stmt) != NULL);
4562 else
4564 register tree decl;
4566 /* We are in terse mode, so only local (nested) function
4567 definitions count as "significant" local declarations. */
4569 for (decl = BLOCK_VARS (stmt); decl; decl = TREE_CHAIN (decl))
4570 if (TREE_CODE (decl) == FUNCTION_DECL && DECL_INITIAL (decl))
4572 must_output_die = 1;
4573 break;
4579 /* It would be a waste of space to generate a Dwarf TAG_lexical_block
4580 DIE for any block which contains no significant local declarations
4581 at all. Rather, in such cases we just call `output_decls_for_scope'
4582 so that any needed Dwarf info for any sub-blocks will get properly
4583 generated. Note that in terse mode, our definition of what constitutes
4584 a "significant" local declaration gets restricted to include only
4585 inlined function instances and local (nested) function definitions. */
4587 if (origin_code == FUNCTION_DECL && BLOCK_ABSTRACT (stmt))
4588 /* We don't care about an abstract inlined subroutine. */;
4589 else if (must_output_die)
4591 output_die ((origin_code == FUNCTION_DECL)
4592 ? output_inlined_subroutine_die
4593 : output_lexical_block_die,
4594 stmt);
4595 output_decls_for_scope (stmt, depth);
4596 end_sibling_chain ();
4598 else
4599 output_decls_for_scope (stmt, depth);
4602 /* Output all of the decls declared within a given scope (also called
4603 a `binding contour') and (recursively) all of it's sub-blocks. */
4605 static void
4606 output_decls_for_scope (stmt, depth)
4607 register tree stmt;
4608 int depth;
4610 /* Ignore blocks never really used to make RTL. */
4612 if (! stmt || ! TREE_USED (stmt))
4613 return;
4615 if (! BLOCK_ABSTRACT (stmt) && depth > 0)
4616 next_block_number++;
4618 /* Output the DIEs to represent all of the data objects, functions,
4619 typedefs, and tagged types declared directly within this block
4620 but not within any nested sub-blocks. */
4623 register tree decl;
4625 for (decl = BLOCK_VARS (stmt); decl; decl = TREE_CHAIN (decl))
4626 output_decl (decl, stmt);
4629 output_pending_types_for_scope (stmt);
4631 /* Output the DIEs to represent all sub-blocks (and the items declared
4632 therein) of this block. */
4635 register tree subblocks;
4637 for (subblocks = BLOCK_SUBBLOCKS (stmt);
4638 subblocks;
4639 subblocks = BLOCK_CHAIN (subblocks))
4640 output_block (subblocks, depth + 1);
4644 /* Is this a typedef we can avoid emitting? */
4646 inline int
4647 is_redundant_typedef (decl)
4648 register tree decl;
4650 if (TYPE_DECL_IS_STUB (decl))
4651 return 1;
4652 if (DECL_ARTIFICIAL (decl)
4653 && DECL_CONTEXT (decl)
4654 && is_tagged_type (DECL_CONTEXT (decl))
4655 && TREE_CODE (TYPE_NAME (DECL_CONTEXT (decl))) == TYPE_DECL
4656 && DECL_NAME (decl) == DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl))))
4657 /* Also ignore the artificial member typedef for the class name. */
4658 return 1;
4659 return 0;
4662 /* Output Dwarf .debug information for a decl described by DECL. */
4664 static void
4665 output_decl (decl, containing_scope)
4666 register tree decl;
4667 register tree containing_scope;
4669 /* Make a note of the decl node we are going to be working on. We may
4670 need to give the user the source coordinates of where it appeared in
4671 case we notice (later on) that something about it looks screwy. */
4673 dwarf_last_decl = decl;
4675 if (TREE_CODE (decl) == ERROR_MARK)
4676 return;
4678 /* If a structure is declared within an initialization, e.g. as the
4679 operand of a sizeof, then it will not have a name. We don't want
4680 to output a DIE for it, as the tree nodes are in the temporary obstack */
4682 if ((TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE
4683 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE)
4684 && ((DECL_NAME (decl) == 0 && TYPE_NAME (TREE_TYPE (decl)) == 0)
4685 || (TYPE_FIELDS (TREE_TYPE (decl))
4686 && (TREE_CODE (TYPE_FIELDS (TREE_TYPE (decl))) == ERROR_MARK))))
4687 return;
4689 /* If this ..._DECL node is marked to be ignored, then ignore it.
4690 But don't ignore a function definition, since that would screw
4691 up our count of blocks, and that it turn will completely screw up the
4692 the labels we will reference in subsequent AT_low_pc and AT_high_pc
4693 attributes (for subsequent blocks). */
4695 if (DECL_IGNORED_P (decl) && TREE_CODE (decl) != FUNCTION_DECL)
4696 return;
4698 switch (TREE_CODE (decl))
4700 case CONST_DECL:
4701 /* The individual enumerators of an enum type get output when we
4702 output the Dwarf representation of the relevant enum type itself. */
4703 break;
4705 case FUNCTION_DECL:
4706 /* If we are in terse mode, don't output any DIEs to represent
4707 mere function declarations. Also, if we are conforming
4708 to the DWARF version 1 specification, don't output DIEs for
4709 mere function declarations. */
4711 if (DECL_INITIAL (decl) == NULL_TREE)
4712 #if (DWARF_VERSION > 1)
4713 if (debug_info_level <= DINFO_LEVEL_TERSE)
4714 #endif
4715 break;
4717 /* Before we describe the FUNCTION_DECL itself, make sure that we
4718 have described its return type. */
4720 output_type (TREE_TYPE (TREE_TYPE (decl)), containing_scope);
4723 /* And its containing type. */
4724 register tree origin = decl_class_context (decl);
4725 if (origin)
4726 output_type (origin, containing_scope);
4729 /* If the following DIE will represent a function definition for a
4730 function with "extern" linkage, output a special "pubnames" DIE
4731 label just ahead of the actual DIE. A reference to this label
4732 was already generated in the .debug_pubnames section sub-entry
4733 for this function definition. */
4735 if (TREE_PUBLIC (decl))
4737 char label[MAX_ARTIFICIAL_LABEL_BYTES];
4739 sprintf (label, PUB_DIE_LABEL_FMT, next_pubname_number++);
4740 ASM_OUTPUT_LABEL (asm_out_file, label);
4743 /* Now output a DIE to represent the function itself. */
4745 output_die (TREE_PUBLIC (decl) || DECL_EXTERNAL (decl)
4746 ? output_global_subroutine_die
4747 : output_local_subroutine_die,
4748 decl);
4750 /* Now output descriptions of the arguments for this function.
4751 This gets (unnecessarily?) complex because of the fact that
4752 the DECL_ARGUMENT list for a FUNCTION_DECL doesn't indicate
4753 cases where there was a trailing `...' at the end of the formal
4754 parameter list. In order to find out if there was a trailing
4755 ellipsis or not, we must instead look at the type associated
4756 with the FUNCTION_DECL. This will be a node of type FUNCTION_TYPE.
4757 If the chain of type nodes hanging off of this FUNCTION_TYPE node
4758 ends with a void_type_node then there should *not* be an ellipsis
4759 at the end. */
4761 /* In the case where we are describing a mere function declaration, all
4762 we need to do here (and all we *can* do here) is to describe
4763 the *types* of its formal parameters. */
4765 if (decl != current_function_decl || in_class)
4766 output_formal_types (TREE_TYPE (decl));
4767 else
4769 /* Generate DIEs to represent all known formal parameters */
4771 register tree arg_decls = DECL_ARGUMENTS (decl);
4772 register tree parm;
4774 /* WARNING! Kludge zone ahead! Here we have a special
4775 hack for svr4 SDB compatibility. Instead of passing the
4776 current FUNCTION_DECL node as the second parameter (i.e.
4777 the `containing_scope' parameter) to `output_decl' (as
4778 we ought to) we instead pass a pointer to our own private
4779 fake_containing_scope node. That node is a RECORD_TYPE
4780 node which NO OTHER TYPE may ever actually be a member of.
4782 This pointer will ultimately get passed into `output_type'
4783 as its `containing_scope' parameter. `Output_type' will
4784 then perform its part in the hack... i.e. it will pend
4785 the type of the formal parameter onto the pending_types
4786 list. Later on, when we are done generating the whole
4787 sequence of formal parameter DIEs for this function
4788 definition, we will un-pend all previously pended types
4789 of formal parameters for this function definition.
4791 This whole kludge prevents any type DIEs from being
4792 mixed in with the formal parameter DIEs. That's good
4793 because svr4 SDB believes that the list of formal
4794 parameter DIEs for a function ends wherever the first
4795 non-formal-parameter DIE appears. Thus, we have to
4796 keep the formal parameter DIEs segregated. They must
4797 all appear (consecutively) at the start of the list of
4798 children for the DIE representing the function definition.
4799 Then (and only then) may we output any additional DIEs
4800 needed to represent the types of these formal parameters.
4804 When generating DIEs, generate the unspecified_parameters
4805 DIE instead if we come across the arg "__builtin_va_alist"
4808 for (parm = arg_decls; parm; parm = TREE_CHAIN (parm))
4809 if (TREE_CODE (parm) == PARM_DECL)
4811 if (DECL_NAME(parm) &&
4812 !strcmp(IDENTIFIER_POINTER(DECL_NAME(parm)),
4813 "__builtin_va_alist") )
4814 output_die (output_unspecified_parameters_die, decl);
4815 else
4816 output_decl (parm, fake_containing_scope);
4820 Now that we have finished generating all of the DIEs to
4821 represent the formal parameters themselves, force out
4822 any DIEs needed to represent their types. We do this
4823 simply by un-pending all previously pended types which
4824 can legitimately go into the chain of children DIEs for
4825 the current FUNCTION_DECL.
4828 output_pending_types_for_scope (decl);
4831 Decide whether we need a unspecified_parameters DIE at the end.
4832 There are 2 more cases to do this for:
4833 1) the ansi ... declaration - this is detectable when the end
4834 of the arg list is not a void_type_node
4835 2) an unprototyped function declaration (not a definition). This
4836 just means that we have no info about the parameters at all.
4840 register tree fn_arg_types = TYPE_ARG_TYPES (TREE_TYPE (decl));
4842 if (fn_arg_types)
4844 /* this is the prototyped case, check for ... */
4845 if (TREE_VALUE (tree_last (fn_arg_types)) != void_type_node)
4846 output_die (output_unspecified_parameters_die, decl);
4848 else
4850 /* this is unprototyped, check for undefined (just declaration) */
4851 if (!DECL_INITIAL (decl))
4852 output_die (output_unspecified_parameters_die, decl);
4856 /* Output Dwarf info for all of the stuff within the body of the
4857 function (if it has one - it may be just a declaration). */
4860 register tree outer_scope = DECL_INITIAL (decl);
4862 if (outer_scope && TREE_CODE (outer_scope) != ERROR_MARK)
4864 /* Note that here, `outer_scope' is a pointer to the outermost
4865 BLOCK node created to represent a function.
4866 This outermost BLOCK actually represents the outermost
4867 binding contour for the function, i.e. the contour in which
4868 the function's formal parameters and labels get declared.
4870 Curiously, it appears that the front end doesn't actually
4871 put the PARM_DECL nodes for the current function onto the
4872 BLOCK_VARS list for this outer scope. (They are strung
4873 off of the DECL_ARGUMENTS list for the function instead.)
4874 The BLOCK_VARS list for the `outer_scope' does provide us
4875 with a list of the LABEL_DECL nodes for the function however,
4876 and we output DWARF info for those here.
4878 Just within the `outer_scope' there will be a BLOCK node
4879 representing the function's outermost pair of curly braces,
4880 and any blocks used for the base and member initializers of
4881 a C++ constructor function. */
4883 output_decls_for_scope (outer_scope, 0);
4885 /* Finally, force out any pending types which are local to the
4886 outermost block of this function definition. These will
4887 all have a TYPE_CONTEXT which points to the FUNCTION_DECL
4888 node itself. */
4890 output_pending_types_for_scope (decl);
4895 /* Generate a terminator for the list of stuff `owned' by this
4896 function. */
4898 end_sibling_chain ();
4900 break;
4902 case TYPE_DECL:
4903 /* If we are in terse mode, don't generate any DIEs to represent
4904 any actual typedefs. Note that even when we are in terse mode,
4905 we must still output DIEs to represent those tagged types which
4906 are used (directly or indirectly) in the specification of either
4907 a return type or a formal parameter type of some function. */
4909 if (debug_info_level <= DINFO_LEVEL_TERSE)
4910 if (! TYPE_DECL_IS_STUB (decl)
4911 || (! TYPE_USED_FOR_FUNCTION (TREE_TYPE (decl)) && ! in_class))
4912 return;
4914 /* In the special case of a TYPE_DECL node representing
4915 the declaration of some type tag, if the given TYPE_DECL is
4916 marked as having been instantiated from some other (original)
4917 TYPE_DECL node (e.g. one which was generated within the original
4918 definition of an inline function) we have to generate a special
4919 (abbreviated) TAG_structure_type, TAG_union_type, or
4920 TAG_enumeration-type DIE here. */
4922 if (TYPE_DECL_IS_STUB (decl) && DECL_ABSTRACT_ORIGIN (decl))
4924 output_tagged_type_instantiation (TREE_TYPE (decl));
4925 return;
4928 output_type (TREE_TYPE (decl), containing_scope);
4930 if (! is_redundant_typedef (decl))
4931 /* Output a DIE to represent the typedef itself. */
4932 output_die (output_typedef_die, decl);
4933 break;
4935 case LABEL_DECL:
4936 if (debug_info_level >= DINFO_LEVEL_NORMAL)
4937 output_die (output_label_die, decl);
4938 break;
4940 case VAR_DECL:
4941 /* If we are conforming to the DWARF version 1 specification, don't
4942 generated any DIEs to represent mere external object declarations. */
4944 #if (DWARF_VERSION <= 1)
4945 if (DECL_EXTERNAL (decl) && ! TREE_PUBLIC (decl))
4946 break;
4947 #endif
4949 /* If we are in terse mode, don't generate any DIEs to represent
4950 any variable declarations or definitions. */
4952 if (debug_info_level <= DINFO_LEVEL_TERSE)
4953 break;
4955 /* Output any DIEs that are needed to specify the type of this data
4956 object. */
4958 output_type (TREE_TYPE (decl), containing_scope);
4961 /* And its containing type. */
4962 register tree origin = decl_class_context (decl);
4963 if (origin)
4964 output_type (origin, containing_scope);
4967 /* If the following DIE will represent a data object definition for a
4968 data object with "extern" linkage, output a special "pubnames" DIE
4969 label just ahead of the actual DIE. A reference to this label
4970 was already generated in the .debug_pubnames section sub-entry
4971 for this data object definition. */
4973 if (TREE_PUBLIC (decl) && ! DECL_ABSTRACT (decl))
4975 char label[MAX_ARTIFICIAL_LABEL_BYTES];
4977 sprintf (label, PUB_DIE_LABEL_FMT, next_pubname_number++);
4978 ASM_OUTPUT_LABEL (asm_out_file, label);
4981 /* Now output the DIE to represent the data object itself. This gets
4982 complicated because of the possibility that the VAR_DECL really
4983 represents an inlined instance of a formal parameter for an inline
4984 function. */
4987 register void (*func) ();
4988 register tree origin = decl_ultimate_origin (decl);
4990 if (origin != NULL && TREE_CODE (origin) == PARM_DECL)
4991 func = output_formal_parameter_die;
4992 else
4994 if (TREE_PUBLIC (decl) || DECL_EXTERNAL (decl))
4995 func = output_global_variable_die;
4996 else
4997 func = output_local_variable_die;
4999 output_die (func, decl);
5001 break;
5003 case FIELD_DECL:
5004 /* Ignore the nameless fields that are used to skip bits. */
5005 if (DECL_NAME (decl) != 0)
5007 output_type (member_declared_type (decl), containing_scope);
5008 output_die (output_member_die, decl);
5010 break;
5012 case PARM_DECL:
5013 /* Force out the type of this formal, if it was not forced out yet.
5014 Note that here we can run afowl of a bug in "classic" svr4 SDB.
5015 It should be able to grok the presence of type DIEs within a list
5016 of TAG_formal_parameter DIEs, but it doesn't. */
5018 output_type (TREE_TYPE (decl), containing_scope);
5019 output_die (output_formal_parameter_die, decl);
5020 break;
5022 default:
5023 abort ();
5027 void
5028 dwarfout_file_scope_decl (decl, set_finalizing)
5029 register tree decl;
5030 register int set_finalizing;
5032 if (TREE_CODE (decl) == ERROR_MARK)
5033 return;
5035 /* If this ..._DECL node is marked to be ignored, then ignore it. We
5036 gotta hope that the node in question doesn't represent a function
5037 definition. If it does, then totally ignoring it is bound to screw
5038 up our count of blocks, and that it turn will completely screw up the
5039 the labels we will reference in subsequent AT_low_pc and AT_high_pc
5040 attributes (for subsequent blocks). (It's too bad that BLOCK nodes
5041 don't carry their own sequence numbers with them!) */
5043 if (DECL_IGNORED_P (decl))
5045 if (TREE_CODE (decl) == FUNCTION_DECL && DECL_INITIAL (decl) != NULL)
5046 abort ();
5047 return;
5050 switch (TREE_CODE (decl))
5052 case FUNCTION_DECL:
5054 /* Ignore this FUNCTION_DECL if it refers to a builtin declaration of
5055 a builtin function. Explicit programmer-supplied declarations of
5056 these same functions should NOT be ignored however. */
5058 if (DECL_EXTERNAL (decl) && DECL_FUNCTION_CODE (decl))
5059 return;
5061 /* What we would really like to do here is to filter out all mere
5062 file-scope declarations of file-scope functions which are never
5063 referenced later within this translation unit (and keep all of
5064 ones that *are* referenced later on) but we aren't clairvoyant,
5065 so we have no idea which functions will be referenced in the
5066 future (i.e. later on within the current translation unit).
5067 So here we just ignore all file-scope function declarations
5068 which are not also definitions. If and when the debugger needs
5069 to know something about these functions, it wil have to hunt
5070 around and find the DWARF information associated with the
5071 *definition* of the function.
5073 Note that we can't just check `DECL_EXTERNAL' to find out which
5074 FUNCTION_DECL nodes represent definitions and which ones represent
5075 mere declarations. We have to check `DECL_INITIAL' instead. That's
5076 because the C front-end supports some weird semantics for "extern
5077 inline" function definitions. These can get inlined within the
5078 current translation unit (an thus, we need to generate DWARF info
5079 for their abstract instances so that the DWARF info for the
5080 concrete inlined instances can have something to refer to) but
5081 the compiler never generates any out-of-lines instances of such
5082 things (despite the fact that they *are* definitions). The
5083 important point is that the C front-end marks these "extern inline"
5084 functions as DECL_EXTERNAL, but we need to generate DWARF for them
5085 anyway.
5087 Note that the C++ front-end also plays some similar games for inline
5088 function definitions appearing within include files which also
5089 contain `#pragma interface' pragmas. */
5091 if (DECL_INITIAL (decl) == NULL_TREE)
5092 return;
5094 if (TREE_PUBLIC (decl)
5095 && ! DECL_EXTERNAL (decl)
5096 && ! DECL_ABSTRACT (decl))
5098 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5100 /* Output a .debug_pubnames entry for a public function
5101 defined in this compilation unit. */
5103 fputc ('\n', asm_out_file);
5104 ASM_OUTPUT_PUSH_SECTION (asm_out_file, PUBNAMES_SECTION);
5105 sprintf (label, PUB_DIE_LABEL_FMT, next_pubname_number);
5106 ASM_OUTPUT_DWARF_ADDR (asm_out_file, label);
5107 ASM_OUTPUT_DWARF_STRING (asm_out_file,
5108 IDENTIFIER_POINTER (DECL_NAME (decl)));
5109 ASM_OUTPUT_POP_SECTION (asm_out_file);
5112 break;
5114 case VAR_DECL:
5116 /* Ignore this VAR_DECL if it refers to a file-scope extern data
5117 object declaration and if the declaration was never even
5118 referenced from within this entire compilation unit. We
5119 suppress these DIEs in order to save space in the .debug section
5120 (by eliminating entries which are probably useless). Note that
5121 we must not suppress block-local extern declarations (whether
5122 used or not) because that would screw-up the debugger's name
5123 lookup mechanism and cause it to miss things which really ought
5124 to be in scope at a given point. */
5126 if (DECL_EXTERNAL (decl) && !TREE_USED (decl))
5127 return;
5129 if (TREE_PUBLIC (decl)
5130 && ! DECL_EXTERNAL (decl)
5131 && GET_CODE (DECL_RTL (decl)) == MEM
5132 && ! DECL_ABSTRACT (decl))
5134 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5136 if (debug_info_level >= DINFO_LEVEL_NORMAL)
5138 /* Output a .debug_pubnames entry for a public variable
5139 defined in this compilation unit. */
5141 fputc ('\n', asm_out_file);
5142 ASM_OUTPUT_PUSH_SECTION (asm_out_file, PUBNAMES_SECTION);
5143 sprintf (label, PUB_DIE_LABEL_FMT, next_pubname_number);
5144 ASM_OUTPUT_DWARF_ADDR (asm_out_file, label);
5145 ASM_OUTPUT_DWARF_STRING (asm_out_file,
5146 IDENTIFIER_POINTER (DECL_NAME (decl)));
5147 ASM_OUTPUT_POP_SECTION (asm_out_file);
5150 if (DECL_INITIAL (decl) == NULL)
5152 /* Output a .debug_aranges entry for a public variable
5153 which is tentatively defined in this compilation unit. */
5155 fputc ('\n', asm_out_file);
5156 ASM_OUTPUT_PUSH_SECTION (asm_out_file, ARANGES_SECTION);
5157 ASM_OUTPUT_DWARF_ADDR (asm_out_file,
5158 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)));
5159 ASM_OUTPUT_DWARF_DATA4 (asm_out_file,
5160 (unsigned) int_size_in_bytes (TREE_TYPE (decl)));
5161 ASM_OUTPUT_POP_SECTION (asm_out_file);
5165 /* If we are in terse mode, don't generate any DIEs to represent
5166 any variable declarations or definitions. */
5168 if (debug_info_level <= DINFO_LEVEL_TERSE)
5169 return;
5171 break;
5173 case TYPE_DECL:
5174 /* Don't bother trying to generate any DIEs to represent any of the
5175 normal built-in types for the language we are compiling, except
5176 in cases where the types in question are *not* DWARF fundamental
5177 types. We make an exception in the case of non-fundamental types
5178 for the sake of objective C (and perhaps C++) because the GNU
5179 front-ends for these languages may in fact create certain "built-in"
5180 types which are (for example) RECORD_TYPEs. In such cases, we
5181 really need to output these (non-fundamental) types because other
5182 DIEs may contain references to them. */
5184 if (DECL_SOURCE_LINE (decl) == 0
5185 && type_is_fundamental (TREE_TYPE (decl)))
5186 return;
5188 /* If we are in terse mode, don't generate any DIEs to represent
5189 any actual typedefs. Note that even when we are in terse mode,
5190 we must still output DIEs to represent those tagged types which
5191 are used (directly or indirectly) in the specification of either
5192 a return type or a formal parameter type of some function. */
5194 if (debug_info_level <= DINFO_LEVEL_TERSE)
5195 if (! TYPE_DECL_IS_STUB (decl)
5196 || ! TYPE_USED_FOR_FUNCTION (TREE_TYPE (decl)))
5197 return;
5199 break;
5201 default:
5202 return;
5205 fputc ('\n', asm_out_file);
5206 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_SECTION);
5207 finalizing = set_finalizing;
5208 output_decl (decl, NULL_TREE);
5210 /* NOTE: The call above to `output_decl' may have caused one or more
5211 file-scope named types (i.e. tagged types) to be placed onto the
5212 pending_types_list. We have to get those types off of that list
5213 at some point, and this is the perfect time to do it. If we didn't
5214 take them off now, they might still be on the list when cc1 finally
5215 exits. That might be OK if it weren't for the fact that when we put
5216 types onto the pending_types_list, we set the TREE_ASM_WRITTEN flag
5217 for these types, and that causes them never to be output unless
5218 `output_pending_types_for_scope' takes them off of the list and un-sets
5219 their TREE_ASM_WRITTEN flags. */
5221 output_pending_types_for_scope (NULL_TREE);
5223 /* The above call should have totally emptied the pending_types_list. */
5225 if (pending_types != 0)
5226 abort ();
5228 ASM_OUTPUT_POP_SECTION (asm_out_file);
5230 if (TREE_CODE (decl) == FUNCTION_DECL && DECL_INITIAL (decl) != NULL)
5231 current_funcdef_number++;
5234 /* Output a marker (i.e. a label) for the beginning of the generated code
5235 for a lexical block. */
5237 void
5238 dwarfout_begin_block (blocknum)
5239 register unsigned blocknum;
5241 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5243 function_section (current_function_decl);
5244 sprintf (label, BLOCK_BEGIN_LABEL_FMT, blocknum);
5245 ASM_OUTPUT_LABEL (asm_out_file, label);
5248 /* Output a marker (i.e. a label) for the end of the generated code
5249 for a lexical block. */
5251 void
5252 dwarfout_end_block (blocknum)
5253 register unsigned blocknum;
5255 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5257 function_section (current_function_decl);
5258 sprintf (label, BLOCK_END_LABEL_FMT, blocknum);
5259 ASM_OUTPUT_LABEL (asm_out_file, label);
5262 /* Output a marker (i.e. a label) at a point in the assembly code which
5263 corresponds to a given source level label. */
5265 void
5266 dwarfout_label (insn)
5267 register rtx insn;
5269 if (debug_info_level >= DINFO_LEVEL_NORMAL)
5271 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5273 function_section (current_function_decl);
5274 sprintf (label, INSN_LABEL_FMT, current_funcdef_number,
5275 (unsigned) INSN_UID (insn));
5276 ASM_OUTPUT_LABEL (asm_out_file, label);
5280 /* Output a marker (i.e. a label) for the point in the generated code where
5281 the real body of the function begins (after parameters have been moved
5282 to their home locations). */
5284 void
5285 dwarfout_begin_function ()
5287 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5289 if (! use_gnu_debug_info_extensions)
5290 return;
5291 function_section (current_function_decl);
5292 sprintf (label, BODY_BEGIN_LABEL_FMT, current_funcdef_number);
5293 ASM_OUTPUT_LABEL (asm_out_file, label);
5296 /* Output a marker (i.e. a label) for the point in the generated code where
5297 the real body of the function ends (just before the epilogue code). */
5299 void
5300 dwarfout_end_function ()
5302 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5304 if (! use_gnu_debug_info_extensions)
5305 return;
5306 function_section (current_function_decl);
5307 sprintf (label, BODY_END_LABEL_FMT, current_funcdef_number);
5308 ASM_OUTPUT_LABEL (asm_out_file, label);
5311 /* Output a marker (i.e. a label) for the absolute end of the generated code
5312 for a function definition. This gets called *after* the epilogue code
5313 has been generated. */
5315 void
5316 dwarfout_end_epilogue ()
5318 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5320 /* Output a label to mark the endpoint of the code generated for this
5321 function. */
5323 sprintf (label, FUNC_END_LABEL_FMT, current_funcdef_number);
5324 ASM_OUTPUT_LABEL (asm_out_file, label);
5327 static void
5328 shuffle_filename_entry (new_zeroth)
5329 register filename_entry *new_zeroth;
5331 filename_entry temp_entry;
5332 register filename_entry *limit_p;
5333 register filename_entry *move_p;
5335 if (new_zeroth == &filename_table[0])
5336 return;
5338 temp_entry = *new_zeroth;
5340 /* Shift entries up in the table to make room at [0]. */
5342 limit_p = &filename_table[0];
5343 for (move_p = new_zeroth; move_p > limit_p; move_p--)
5344 *move_p = *(move_p-1);
5346 /* Install the found entry at [0]. */
5348 filename_table[0] = temp_entry;
5351 /* Create a new (string) entry for the .debug_sfnames section. */
5353 static void
5354 generate_new_sfname_entry ()
5356 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5358 fputc ('\n', asm_out_file);
5359 ASM_OUTPUT_PUSH_SECTION (asm_out_file, SFNAMES_SECTION);
5360 sprintf (label, SFNAMES_ENTRY_LABEL_FMT, filename_table[0].number);
5361 ASM_OUTPUT_LABEL (asm_out_file, label);
5362 ASM_OUTPUT_DWARF_STRING (asm_out_file,
5363 filename_table[0].name
5364 ? filename_table[0].name
5365 : "");
5366 ASM_OUTPUT_POP_SECTION (asm_out_file);
5369 /* Lookup a filename (in the list of filenames that we know about here in
5370 dwarfout.c) and return its "index". The index of each (known) filename
5371 is just a unique number which is associated with only that one filename.
5372 We need such numbers for the sake of generating labels (in the
5373 .debug_sfnames section) and references to those unique labels (in the
5374 .debug_srcinfo and .debug_macinfo sections).
5376 If the filename given as an argument is not found in our current list,
5377 add it to the list and assign it the next available unique index number.
5379 Whatever we do (i.e. whether we find a pre-existing filename or add a new
5380 one), we shuffle the filename found (or added) up to the zeroth entry of
5381 our list of filenames (which is always searched linearly). We do this so
5382 as to optimize the most common case for these filename lookups within
5383 dwarfout.c. The most common case by far is the case where we call
5384 lookup_filename to lookup the very same filename that we did a lookup
5385 on the last time we called lookup_filename. We make sure that this
5386 common case is fast because such cases will constitute 99.9% of the
5387 lookups we ever do (in practice).
5389 If we add a new filename entry to our table, we go ahead and generate
5390 the corresponding entry in the .debug_sfnames section right away.
5391 Doing so allows us to avoid tickling an assembler bug (present in some
5392 m68k assemblers) which yields assembly-time errors in cases where the
5393 difference of two label addresses is taken and where the two labels
5394 are in a section *other* than the one where the difference is being
5395 calculated, and where at least one of the two symbol references is a
5396 forward reference. (This bug could be tickled by our .debug_srcinfo
5397 entries if we don't output their corresponding .debug_sfnames entries
5398 before them.) */
5400 static unsigned
5401 lookup_filename (file_name)
5402 char *file_name;
5404 register filename_entry *search_p;
5405 register filename_entry *limit_p = &filename_table[ft_entries];
5407 for (search_p = filename_table; search_p < limit_p; search_p++)
5408 if (!strcmp (file_name, search_p->name))
5410 /* When we get here, we have found the filename that we were
5411 looking for in the filename_table. Now we want to make sure
5412 that it gets moved to the zero'th entry in the table (if it
5413 is not already there) so that subsequent attempts to find the
5414 same filename will find it as quickly as possible. */
5416 shuffle_filename_entry (search_p);
5417 return filename_table[0].number;
5420 /* We come here whenever we have a new filename which is not registered
5421 in the current table. Here we add it to the table. */
5423 /* Prepare to add a new table entry by making sure there is enough space
5424 in the table to do so. If not, expand the current table. */
5426 if (ft_entries == ft_entries_allocated)
5428 ft_entries_allocated += FT_ENTRIES_INCREMENT;
5429 filename_table
5430 = (filename_entry *)
5431 xrealloc (filename_table,
5432 ft_entries_allocated * sizeof (filename_entry));
5435 /* Initially, add the new entry at the end of the filename table. */
5437 filename_table[ft_entries].number = ft_entries;
5438 filename_table[ft_entries].name = xstrdup (file_name);
5440 /* Shuffle the new entry into filename_table[0]. */
5442 shuffle_filename_entry (&filename_table[ft_entries]);
5444 if (debug_info_level >= DINFO_LEVEL_NORMAL)
5445 generate_new_sfname_entry ();
5447 ft_entries++;
5448 return filename_table[0].number;
5451 static void
5452 generate_srcinfo_entry (line_entry_num, files_entry_num)
5453 unsigned line_entry_num;
5454 unsigned files_entry_num;
5456 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5458 fputc ('\n', asm_out_file);
5459 ASM_OUTPUT_PUSH_SECTION (asm_out_file, SRCINFO_SECTION);
5460 sprintf (label, LINE_ENTRY_LABEL_FMT, line_entry_num);
5461 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, label, LINE_BEGIN_LABEL);
5462 sprintf (label, SFNAMES_ENTRY_LABEL_FMT, files_entry_num);
5463 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, label, SFNAMES_BEGIN_LABEL);
5464 ASM_OUTPUT_POP_SECTION (asm_out_file);
5467 void
5468 dwarfout_line (filename, line)
5469 register char *filename;
5470 register unsigned line;
5472 if (debug_info_level >= DINFO_LEVEL_NORMAL
5473 /* We can't emit line number info for functions in separate sections,
5474 because the assembler can't subtract labels in different sections. */
5475 && DECL_SECTION_NAME (current_function_decl) == NULL_TREE)
5477 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5478 static unsigned last_line_entry_num = 0;
5479 static unsigned prev_file_entry_num = (unsigned) -1;
5480 register unsigned this_file_entry_num;
5482 function_section (current_function_decl);
5483 sprintf (label, LINE_CODE_LABEL_FMT, ++last_line_entry_num);
5484 ASM_OUTPUT_LABEL (asm_out_file, label);
5486 fputc ('\n', asm_out_file);
5488 if (use_gnu_debug_info_extensions)
5489 this_file_entry_num = lookup_filename (filename);
5490 else
5491 this_file_entry_num = (unsigned) -1;
5493 ASM_OUTPUT_PUSH_SECTION (asm_out_file, LINE_SECTION);
5494 if (this_file_entry_num != prev_file_entry_num)
5496 char line_entry_label[MAX_ARTIFICIAL_LABEL_BYTES];
5498 sprintf (line_entry_label, LINE_ENTRY_LABEL_FMT, last_line_entry_num);
5499 ASM_OUTPUT_LABEL (asm_out_file, line_entry_label);
5503 register char *tail = rindex (filename, '/');
5505 if (tail != NULL)
5506 filename = tail;
5509 fprintf (asm_out_file, "\t%s\t%u\t%s %s:%u\n",
5510 UNALIGNED_INT_ASM_OP, line, ASM_COMMENT_START,
5511 filename, line);
5512 ASM_OUTPUT_DWARF_DATA2 (asm_out_file, 0xffff);
5513 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, label, TEXT_BEGIN_LABEL);
5514 ASM_OUTPUT_POP_SECTION (asm_out_file);
5516 if (this_file_entry_num != prev_file_entry_num)
5517 generate_srcinfo_entry (last_line_entry_num, this_file_entry_num);
5518 prev_file_entry_num = this_file_entry_num;
5522 /* Generate an entry in the .debug_macinfo section. */
5524 static void
5525 generate_macinfo_entry (type_and_offset, string)
5526 register char *type_and_offset;
5527 register char *string;
5529 if (! use_gnu_debug_info_extensions)
5530 return;
5532 fputc ('\n', asm_out_file);
5533 ASM_OUTPUT_PUSH_SECTION (asm_out_file, MACINFO_SECTION);
5534 fprintf (asm_out_file, "\t%s\t%s\n", UNALIGNED_INT_ASM_OP, type_and_offset);
5535 ASM_OUTPUT_DWARF_STRING (asm_out_file, string);
5536 ASM_OUTPUT_POP_SECTION (asm_out_file);
5539 void
5540 dwarfout_start_new_source_file (filename)
5541 register char *filename;
5543 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5544 char type_and_offset[MAX_ARTIFICIAL_LABEL_BYTES*3];
5546 sprintf (label, SFNAMES_ENTRY_LABEL_FMT, lookup_filename (filename));
5547 sprintf (type_and_offset, "0x%08x+%s-%s",
5548 ((unsigned) MACINFO_start << 24),
5549 /* Hack: skip leading '*' . */
5550 (*label == '*') + label,
5551 (*SFNAMES_BEGIN_LABEL == '*') + SFNAMES_BEGIN_LABEL);
5552 generate_macinfo_entry (type_and_offset, "");
5555 void
5556 dwarfout_resume_previous_source_file (lineno)
5557 register unsigned lineno;
5559 char type_and_offset[MAX_ARTIFICIAL_LABEL_BYTES*2];
5561 sprintf (type_and_offset, "0x%08x+%u",
5562 ((unsigned) MACINFO_resume << 24), lineno);
5563 generate_macinfo_entry (type_and_offset, "");
5566 /* Called from check_newline in c-parse.y. The `buffer' parameter
5567 contains the tail part of the directive line, i.e. the part which
5568 is past the initial whitespace, #, whitespace, directive-name,
5569 whitespace part. */
5571 void
5572 dwarfout_define (lineno, buffer)
5573 register unsigned lineno;
5574 register char *buffer;
5576 static int initialized = 0;
5577 char type_and_offset[MAX_ARTIFICIAL_LABEL_BYTES*2];
5579 if (!initialized)
5581 dwarfout_start_new_source_file (primary_filename);
5582 initialized = 1;
5584 sprintf (type_and_offset, "0x%08x+%u",
5585 ((unsigned) MACINFO_define << 24), lineno);
5586 generate_macinfo_entry (type_and_offset, buffer);
5589 /* Called from check_newline in c-parse.y. The `buffer' parameter
5590 contains the tail part of the directive line, i.e. the part which
5591 is past the initial whitespace, #, whitespace, directive-name,
5592 whitespace part. */
5594 void
5595 dwarfout_undef (lineno, buffer)
5596 register unsigned lineno;
5597 register char *buffer;
5599 char type_and_offset[MAX_ARTIFICIAL_LABEL_BYTES*2];
5601 sprintf (type_and_offset, "0x%08x+%u",
5602 ((unsigned) MACINFO_undef << 24), lineno);
5603 generate_macinfo_entry (type_and_offset, buffer);
5606 /* Set up for Dwarf output at the start of compilation. */
5608 void
5609 dwarfout_init (asm_out_file, main_input_filename)
5610 register FILE *asm_out_file;
5611 register char *main_input_filename;
5613 /* Remember the name of the primary input file. */
5615 primary_filename = main_input_filename;
5617 /* Allocate the initial hunk of the pending_sibling_stack. */
5619 pending_sibling_stack
5620 = (unsigned *)
5621 xmalloc (PENDING_SIBLINGS_INCREMENT * sizeof (unsigned));
5622 pending_siblings_allocated = PENDING_SIBLINGS_INCREMENT;
5623 pending_siblings = 1;
5625 /* Allocate the initial hunk of the filename_table. */
5627 filename_table
5628 = (filename_entry *)
5629 xmalloc (FT_ENTRIES_INCREMENT * sizeof (filename_entry));
5630 ft_entries_allocated = FT_ENTRIES_INCREMENT;
5631 ft_entries = 0;
5633 /* Allocate the initial hunk of the pending_types_list. */
5635 pending_types_list
5636 = (tree *) xmalloc (PENDING_TYPES_INCREMENT * sizeof (tree));
5637 pending_types_allocated = PENDING_TYPES_INCREMENT;
5638 pending_types = 0;
5640 /* Create an artificial RECORD_TYPE node which we can use in our hack
5641 to get the DIEs representing types of formal parameters to come out
5642 only *after* the DIEs for the formal parameters themselves. */
5644 fake_containing_scope = make_node (RECORD_TYPE);
5646 /* Output a starting label for the .text section. */
5648 fputc ('\n', asm_out_file);
5649 ASM_OUTPUT_PUSH_SECTION (asm_out_file, TEXT_SECTION);
5650 ASM_OUTPUT_LABEL (asm_out_file, TEXT_BEGIN_LABEL);
5651 ASM_OUTPUT_POP_SECTION (asm_out_file);
5653 /* Output a starting label for the .data section. */
5655 fputc ('\n', asm_out_file);
5656 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DATA_SECTION);
5657 ASM_OUTPUT_LABEL (asm_out_file, DATA_BEGIN_LABEL);
5658 ASM_OUTPUT_POP_SECTION (asm_out_file);
5660 #if 0 /* GNU C doesn't currently use .data1. */
5661 /* Output a starting label for the .data1 section. */
5663 fputc ('\n', asm_out_file);
5664 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DATA1_SECTION);
5665 ASM_OUTPUT_LABEL (asm_out_file, DATA1_BEGIN_LABEL);
5666 ASM_OUTPUT_POP_SECTION (asm_out_file);
5667 #endif
5669 /* Output a starting label for the .rodata section. */
5671 fputc ('\n', asm_out_file);
5672 ASM_OUTPUT_PUSH_SECTION (asm_out_file, RODATA_SECTION);
5673 ASM_OUTPUT_LABEL (asm_out_file, RODATA_BEGIN_LABEL);
5674 ASM_OUTPUT_POP_SECTION (asm_out_file);
5676 #if 0 /* GNU C doesn't currently use .rodata1. */
5677 /* Output a starting label for the .rodata1 section. */
5679 fputc ('\n', asm_out_file);
5680 ASM_OUTPUT_PUSH_SECTION (asm_out_file, RODATA1_SECTION);
5681 ASM_OUTPUT_LABEL (asm_out_file, RODATA1_BEGIN_LABEL);
5682 ASM_OUTPUT_POP_SECTION (asm_out_file);
5683 #endif
5685 /* Output a starting label for the .bss section. */
5687 fputc ('\n', asm_out_file);
5688 ASM_OUTPUT_PUSH_SECTION (asm_out_file, BSS_SECTION);
5689 ASM_OUTPUT_LABEL (asm_out_file, BSS_BEGIN_LABEL);
5690 ASM_OUTPUT_POP_SECTION (asm_out_file);
5692 if (debug_info_level >= DINFO_LEVEL_NORMAL)
5694 if (use_gnu_debug_info_extensions)
5696 /* Output a starting label and an initial (compilation directory)
5697 entry for the .debug_sfnames section. The starting label will be
5698 referenced by the initial entry in the .debug_srcinfo section. */
5700 fputc ('\n', asm_out_file);
5701 ASM_OUTPUT_PUSH_SECTION (asm_out_file, SFNAMES_SECTION);
5702 ASM_OUTPUT_LABEL (asm_out_file, SFNAMES_BEGIN_LABEL);
5704 register char *pwd;
5705 register unsigned len;
5706 register char *dirname;
5708 pwd = getpwd ();
5709 if (!pwd)
5710 pfatal_with_name ("getpwd");
5711 len = strlen (pwd);
5712 dirname = (char *) xmalloc (len + 2);
5714 strcpy (dirname, pwd);
5715 strcpy (dirname + len, "/");
5716 ASM_OUTPUT_DWARF_STRING (asm_out_file, dirname);
5717 free (dirname);
5719 ASM_OUTPUT_POP_SECTION (asm_out_file);
5722 if (debug_info_level >= DINFO_LEVEL_VERBOSE
5723 && use_gnu_debug_info_extensions)
5725 /* Output a starting label for the .debug_macinfo section. This
5726 label will be referenced by the AT_mac_info attribute in the
5727 TAG_compile_unit DIE. */
5729 fputc ('\n', asm_out_file);
5730 ASM_OUTPUT_PUSH_SECTION (asm_out_file, MACINFO_SECTION);
5731 ASM_OUTPUT_LABEL (asm_out_file, MACINFO_BEGIN_LABEL);
5732 ASM_OUTPUT_POP_SECTION (asm_out_file);
5735 /* Generate the initial entry for the .line section. */
5737 fputc ('\n', asm_out_file);
5738 ASM_OUTPUT_PUSH_SECTION (asm_out_file, LINE_SECTION);
5739 ASM_OUTPUT_LABEL (asm_out_file, LINE_BEGIN_LABEL);
5740 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, LINE_END_LABEL, LINE_BEGIN_LABEL);
5741 ASM_OUTPUT_DWARF_ADDR (asm_out_file, TEXT_BEGIN_LABEL);
5742 ASM_OUTPUT_POP_SECTION (asm_out_file);
5744 if (use_gnu_debug_info_extensions)
5746 /* Generate the initial entry for the .debug_srcinfo section. */
5748 fputc ('\n', asm_out_file);
5749 ASM_OUTPUT_PUSH_SECTION (asm_out_file, SRCINFO_SECTION);
5750 ASM_OUTPUT_LABEL (asm_out_file, SRCINFO_BEGIN_LABEL);
5751 ASM_OUTPUT_DWARF_ADDR (asm_out_file, LINE_BEGIN_LABEL);
5752 ASM_OUTPUT_DWARF_ADDR (asm_out_file, SFNAMES_BEGIN_LABEL);
5753 ASM_OUTPUT_DWARF_ADDR (asm_out_file, TEXT_BEGIN_LABEL);
5754 ASM_OUTPUT_DWARF_ADDR (asm_out_file, TEXT_END_LABEL);
5755 #ifdef DWARF_TIMESTAMPS
5756 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, time (NULL));
5757 #else
5758 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, -1);
5759 #endif
5760 ASM_OUTPUT_POP_SECTION (asm_out_file);
5763 /* Generate the initial entry for the .debug_pubnames section. */
5765 fputc ('\n', asm_out_file);
5766 ASM_OUTPUT_PUSH_SECTION (asm_out_file, PUBNAMES_SECTION);
5767 ASM_OUTPUT_DWARF_ADDR (asm_out_file, DEBUG_BEGIN_LABEL);
5768 ASM_OUTPUT_POP_SECTION (asm_out_file);
5770 /* Generate the initial entry for the .debug_aranges section. */
5772 fputc ('\n', asm_out_file);
5773 ASM_OUTPUT_PUSH_SECTION (asm_out_file, ARANGES_SECTION);
5774 ASM_OUTPUT_DWARF_ADDR (asm_out_file, DEBUG_BEGIN_LABEL);
5775 ASM_OUTPUT_POP_SECTION (asm_out_file);
5778 /* Setup first DIE number == 1. */
5779 NEXT_DIE_NUM = next_unused_dienum++;
5781 /* Generate the initial DIE for the .debug section. Note that the
5782 (string) value given in the AT_name attribute of the TAG_compile_unit
5783 DIE will (typically) be a relative pathname and that this pathname
5784 should be taken as being relative to the directory from which the
5785 compiler was invoked when the given (base) source file was compiled. */
5787 fputc ('\n', asm_out_file);
5788 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_SECTION);
5789 ASM_OUTPUT_LABEL (asm_out_file, DEBUG_BEGIN_LABEL);
5790 output_die (output_compile_unit_die, main_input_filename);
5791 ASM_OUTPUT_POP_SECTION (asm_out_file);
5793 fputc ('\n', asm_out_file);
5796 /* Output stuff that dwarf requires at the end of every file. */
5798 void
5799 dwarfout_finish ()
5801 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5803 fputc ('\n', asm_out_file);
5804 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_SECTION);
5806 /* Mark the end of the chain of siblings which represent all file-scope
5807 declarations in this compilation unit. */
5809 /* The (null) DIE which represents the terminator for the (sibling linked)
5810 list of file-scope items is *special*. Normally, we would just call
5811 end_sibling_chain at this point in order to output a word with the
5812 value `4' and that word would act as the terminator for the list of
5813 DIEs describing file-scope items. Unfortunately, if we were to simply
5814 do that, the label that would follow this DIE in the .debug section
5815 (i.e. `..D2') would *not* be properly aligned (as it must be on some
5816 machines) to a 4 byte boundary.
5818 In order to force the label `..D2' to get aligned to a 4 byte boundary,
5819 the trick used is to insert extra (otherwise useless) padding bytes
5820 into the (null) DIE that we know must precede the ..D2 label in the
5821 .debug section. The amount of padding required can be anywhere between
5822 0 and 3 bytes. The length word at the start of this DIE (i.e. the one
5823 with the padding) would normally contain the value 4, but now it will
5824 also have to include the padding bytes, so it will instead have some
5825 value in the range 4..7.
5827 Fortunately, the rules of Dwarf say that any DIE whose length word
5828 contains *any* value less than 8 should be treated as a null DIE, so
5829 this trick works out nicely. Clever, eh? Don't give me any credit
5830 (or blame). I didn't think of this scheme. I just conformed to it.
5833 output_die (output_padded_null_die, (void *) 0);
5834 dienum_pop ();
5836 sprintf (label, DIE_BEGIN_LABEL_FMT, NEXT_DIE_NUM);
5837 ASM_OUTPUT_LABEL (asm_out_file, label); /* should be ..D2 */
5838 ASM_OUTPUT_POP_SECTION (asm_out_file);
5840 /* Output a terminator label for the .text section. */
5842 fputc ('\n', asm_out_file);
5843 ASM_OUTPUT_PUSH_SECTION (asm_out_file, TEXT_SECTION);
5844 ASM_OUTPUT_LABEL (asm_out_file, TEXT_END_LABEL);
5845 ASM_OUTPUT_POP_SECTION (asm_out_file);
5847 /* Output a terminator label for the .data section. */
5849 fputc ('\n', asm_out_file);
5850 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DATA_SECTION);
5851 ASM_OUTPUT_LABEL (asm_out_file, DATA_END_LABEL);
5852 ASM_OUTPUT_POP_SECTION (asm_out_file);
5854 #if 0 /* GNU C doesn't currently use .data1. */
5855 /* Output a terminator label for the .data1 section. */
5857 fputc ('\n', asm_out_file);
5858 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DATA1_SECTION);
5859 ASM_OUTPUT_LABEL (asm_out_file, DATA1_END_LABEL);
5860 ASM_OUTPUT_POP_SECTION (asm_out_file);
5861 #endif
5863 /* Output a terminator label for the .rodata section. */
5865 fputc ('\n', asm_out_file);
5866 ASM_OUTPUT_PUSH_SECTION (asm_out_file, RODATA_SECTION);
5867 ASM_OUTPUT_LABEL (asm_out_file, RODATA_END_LABEL);
5868 ASM_OUTPUT_POP_SECTION (asm_out_file);
5870 #if 0 /* GNU C doesn't currently use .rodata1. */
5871 /* Output a terminator label for the .rodata1 section. */
5873 fputc ('\n', asm_out_file);
5874 ASM_OUTPUT_PUSH_SECTION (asm_out_file, RODATA1_SECTION);
5875 ASM_OUTPUT_LABEL (asm_out_file, RODATA1_END_LABEL);
5876 ASM_OUTPUT_POP_SECTION (asm_out_file);
5877 #endif
5879 /* Output a terminator label for the .bss section. */
5881 fputc ('\n', asm_out_file);
5882 ASM_OUTPUT_PUSH_SECTION (asm_out_file, BSS_SECTION);
5883 ASM_OUTPUT_LABEL (asm_out_file, BSS_END_LABEL);
5884 ASM_OUTPUT_POP_SECTION (asm_out_file);
5886 if (debug_info_level >= DINFO_LEVEL_NORMAL)
5888 /* Output a terminating entry for the .line section. */
5890 fputc ('\n', asm_out_file);
5891 ASM_OUTPUT_PUSH_SECTION (asm_out_file, LINE_SECTION);
5892 ASM_OUTPUT_LABEL (asm_out_file, LINE_LAST_ENTRY_LABEL);
5893 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 0);
5894 ASM_OUTPUT_DWARF_DATA2 (asm_out_file, 0xffff);
5895 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, TEXT_END_LABEL, TEXT_BEGIN_LABEL);
5896 ASM_OUTPUT_LABEL (asm_out_file, LINE_END_LABEL);
5897 ASM_OUTPUT_POP_SECTION (asm_out_file);
5899 if (use_gnu_debug_info_extensions)
5901 /* Output a terminating entry for the .debug_srcinfo section. */
5903 fputc ('\n', asm_out_file);
5904 ASM_OUTPUT_PUSH_SECTION (asm_out_file, SRCINFO_SECTION);
5905 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file,
5906 LINE_LAST_ENTRY_LABEL, LINE_BEGIN_LABEL);
5907 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, -1);
5908 ASM_OUTPUT_POP_SECTION (asm_out_file);
5911 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
5913 /* Output terminating entries for the .debug_macinfo section. */
5915 dwarfout_resume_previous_source_file (0);
5917 fputc ('\n', asm_out_file);
5918 ASM_OUTPUT_PUSH_SECTION (asm_out_file, MACINFO_SECTION);
5919 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 0);
5920 ASM_OUTPUT_DWARF_STRING (asm_out_file, "");
5921 ASM_OUTPUT_POP_SECTION (asm_out_file);
5924 /* Generate the terminating entry for the .debug_pubnames section. */
5926 fputc ('\n', asm_out_file);
5927 ASM_OUTPUT_PUSH_SECTION (asm_out_file, PUBNAMES_SECTION);
5928 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 0);
5929 ASM_OUTPUT_DWARF_STRING (asm_out_file, "");
5930 ASM_OUTPUT_POP_SECTION (asm_out_file);
5932 /* Generate the terminating entries for the .debug_aranges section.
5934 Note that we want to do this only *after* we have output the end
5935 labels (for the various program sections) which we are going to
5936 refer to here. This allows us to work around a bug in the m68k
5937 svr4 assembler. That assembler gives bogus assembly-time errors
5938 if (within any given section) you try to take the difference of
5939 two relocatable symbols, both of which are located within some
5940 other section, and if one (or both?) of the symbols involved is
5941 being forward-referenced. By generating the .debug_aranges
5942 entries at this late point in the assembly output, we skirt the
5943 issue simply by avoiding forward-references.
5946 fputc ('\n', asm_out_file);
5947 ASM_OUTPUT_PUSH_SECTION (asm_out_file, ARANGES_SECTION);
5949 ASM_OUTPUT_DWARF_ADDR (asm_out_file, TEXT_BEGIN_LABEL);
5950 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, TEXT_END_LABEL, TEXT_BEGIN_LABEL);
5952 ASM_OUTPUT_DWARF_ADDR (asm_out_file, DATA_BEGIN_LABEL);
5953 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, DATA_END_LABEL, DATA_BEGIN_LABEL);
5955 #if 0 /* GNU C doesn't currently use .data1. */
5956 ASM_OUTPUT_DWARF_ADDR (asm_out_file, DATA1_BEGIN_LABEL);
5957 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, DATA1_END_LABEL,
5958 DATA1_BEGIN_LABEL);
5959 #endif
5961 ASM_OUTPUT_DWARF_ADDR (asm_out_file, RODATA_BEGIN_LABEL);
5962 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, RODATA_END_LABEL,
5963 RODATA_BEGIN_LABEL);
5965 #if 0 /* GNU C doesn't currently use .rodata1. */
5966 ASM_OUTPUT_DWARF_ADDR (asm_out_file, RODATA1_BEGIN_LABEL);
5967 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, RODATA1_END_LABEL,
5968 RODATA1_BEGIN_LABEL);
5969 #endif
5971 ASM_OUTPUT_DWARF_ADDR (asm_out_file, BSS_BEGIN_LABEL);
5972 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, BSS_END_LABEL, BSS_BEGIN_LABEL);
5974 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 0);
5975 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 0);
5977 ASM_OUTPUT_POP_SECTION (asm_out_file);
5981 #endif /* DWARF_DEBUGGING_INFO */