* ada/acats/run_all.sh (target_run): Revert 2005-11-17 patch.
[official-gcc.git] / gcc / recog.c
blob16bb280d857cb0cab6b9c69ff08e9d8b3e5b60d3
1 /* Subroutines used by or related to instruction recognition.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "insn-config.h"
30 #include "insn-attr.h"
31 #include "hard-reg-set.h"
32 #include "recog.h"
33 #include "regs.h"
34 #include "expr.h"
35 #include "function.h"
36 #include "flags.h"
37 #include "real.h"
38 #include "toplev.h"
39 #include "basic-block.h"
40 #include "output.h"
41 #include "reload.h"
42 #include "timevar.h"
43 #include "tree-pass.h"
45 #ifndef STACK_PUSH_CODE
46 #ifdef STACK_GROWS_DOWNWARD
47 #define STACK_PUSH_CODE PRE_DEC
48 #else
49 #define STACK_PUSH_CODE PRE_INC
50 #endif
51 #endif
53 #ifndef STACK_POP_CODE
54 #ifdef STACK_GROWS_DOWNWARD
55 #define STACK_POP_CODE POST_INC
56 #else
57 #define STACK_POP_CODE POST_DEC
58 #endif
59 #endif
61 static void validate_replace_rtx_1 (rtx *, rtx, rtx, rtx);
62 static rtx *find_single_use_1 (rtx, rtx *);
63 static void validate_replace_src_1 (rtx *, void *);
64 static rtx split_insn (rtx);
66 /* Nonzero means allow operands to be volatile.
67 This should be 0 if you are generating rtl, such as if you are calling
68 the functions in optabs.c and expmed.c (most of the time).
69 This should be 1 if all valid insns need to be recognized,
70 such as in regclass.c and final.c and reload.c.
72 init_recog and init_recog_no_volatile are responsible for setting this. */
74 int volatile_ok;
76 struct recog_data recog_data;
78 /* Contains a vector of operand_alternative structures for every operand.
79 Set up by preprocess_constraints. */
80 struct operand_alternative recog_op_alt[MAX_RECOG_OPERANDS][MAX_RECOG_ALTERNATIVES];
82 /* On return from `constrain_operands', indicate which alternative
83 was satisfied. */
85 int which_alternative;
87 /* Nonzero after end of reload pass.
88 Set to 1 or 0 by toplev.c.
89 Controls the significance of (SUBREG (MEM)). */
91 int reload_completed;
93 /* Nonzero after thread_prologue_and_epilogue_insns has run. */
94 int epilogue_completed;
96 /* Initialize data used by the function `recog'.
97 This must be called once in the compilation of a function
98 before any insn recognition may be done in the function. */
100 void
101 init_recog_no_volatile (void)
103 volatile_ok = 0;
106 void
107 init_recog (void)
109 volatile_ok = 1;
113 /* Check that X is an insn-body for an `asm' with operands
114 and that the operands mentioned in it are legitimate. */
117 check_asm_operands (rtx x)
119 int noperands;
120 rtx *operands;
121 const char **constraints;
122 int i;
124 /* Post-reload, be more strict with things. */
125 if (reload_completed)
127 /* ??? Doh! We've not got the wrapping insn. Cook one up. */
128 extract_insn (make_insn_raw (x));
129 constrain_operands (1);
130 return which_alternative >= 0;
133 noperands = asm_noperands (x);
134 if (noperands < 0)
135 return 0;
136 if (noperands == 0)
137 return 1;
139 operands = alloca (noperands * sizeof (rtx));
140 constraints = alloca (noperands * sizeof (char *));
142 decode_asm_operands (x, operands, NULL, constraints, NULL);
144 for (i = 0; i < noperands; i++)
146 const char *c = constraints[i];
147 if (c[0] == '%')
148 c++;
149 if (ISDIGIT ((unsigned char) c[0]) && c[1] == '\0')
150 c = constraints[c[0] - '0'];
152 if (! asm_operand_ok (operands[i], c))
153 return 0;
156 return 1;
159 /* Static data for the next two routines. */
161 typedef struct change_t
163 rtx object;
164 int old_code;
165 rtx *loc;
166 rtx old;
167 } change_t;
169 static change_t *changes;
170 static int changes_allocated;
172 static int num_changes = 0;
174 /* Validate a proposed change to OBJECT. LOC is the location in the rtl
175 at which NEW will be placed. If OBJECT is zero, no validation is done,
176 the change is simply made.
178 Two types of objects are supported: If OBJECT is a MEM, memory_address_p
179 will be called with the address and mode as parameters. If OBJECT is
180 an INSN, CALL_INSN, or JUMP_INSN, the insn will be re-recognized with
181 the change in place.
183 IN_GROUP is nonzero if this is part of a group of changes that must be
184 performed as a group. In that case, the changes will be stored. The
185 function `apply_change_group' will validate and apply the changes.
187 If IN_GROUP is zero, this is a single change. Try to recognize the insn
188 or validate the memory reference with the change applied. If the result
189 is not valid for the machine, suppress the change and return zero.
190 Otherwise, perform the change and return 1. */
193 validate_change (rtx object, rtx *loc, rtx new, int in_group)
195 rtx old = *loc;
197 if (old == new || rtx_equal_p (old, new))
198 return 1;
200 gcc_assert (in_group != 0 || num_changes == 0);
202 *loc = new;
204 /* Save the information describing this change. */
205 if (num_changes >= changes_allocated)
207 if (changes_allocated == 0)
208 /* This value allows for repeated substitutions inside complex
209 indexed addresses, or changes in up to 5 insns. */
210 changes_allocated = MAX_RECOG_OPERANDS * 5;
211 else
212 changes_allocated *= 2;
214 changes = xrealloc (changes, sizeof (change_t) * changes_allocated);
217 changes[num_changes].object = object;
218 changes[num_changes].loc = loc;
219 changes[num_changes].old = old;
221 if (object && !MEM_P (object))
223 /* Set INSN_CODE to force rerecognition of insn. Save old code in
224 case invalid. */
225 changes[num_changes].old_code = INSN_CODE (object);
226 INSN_CODE (object) = -1;
229 num_changes++;
231 /* If we are making a group of changes, return 1. Otherwise, validate the
232 change group we made. */
234 if (in_group)
235 return 1;
236 else
237 return apply_change_group ();
241 /* Function to be passed to for_each_rtx to test whether a piece of
242 RTL contains any mem/v. */
243 static int
244 volatile_mem_p (rtx *x, void *data ATTRIBUTE_UNUSED)
246 return (MEM_P (*x) && MEM_VOLATILE_P (*x));
249 /* Same as validate_change, but doesn't support groups, and it accepts
250 volatile mems if they're already present in the original insn. */
253 validate_change_maybe_volatile (rtx object, rtx *loc, rtx new)
255 int result;
257 if (validate_change (object, loc, new, 0))
258 return 1;
260 if (volatile_ok
261 /* If there isn't a volatile MEM, there's nothing we can do. */
262 || !for_each_rtx (&PATTERN (object), volatile_mem_p, 0)
263 /* Make sure we're not adding or removing volatile MEMs. */
264 || for_each_rtx (loc, volatile_mem_p, 0)
265 || for_each_rtx (&new, volatile_mem_p, 0)
266 || !insn_invalid_p (object))
267 return 0;
269 volatile_ok = 1;
271 gcc_assert (!insn_invalid_p (object));
273 result = validate_change (object, loc, new, 0);
275 volatile_ok = 0;
277 return result;
280 /* This subroutine of apply_change_group verifies whether the changes to INSN
281 were valid; i.e. whether INSN can still be recognized. */
284 insn_invalid_p (rtx insn)
286 rtx pat = PATTERN (insn);
287 int num_clobbers = 0;
288 /* If we are before reload and the pattern is a SET, see if we can add
289 clobbers. */
290 int icode = recog (pat, insn,
291 (GET_CODE (pat) == SET
292 && ! reload_completed && ! reload_in_progress)
293 ? &num_clobbers : 0);
294 int is_asm = icode < 0 && asm_noperands (PATTERN (insn)) >= 0;
297 /* If this is an asm and the operand aren't legal, then fail. Likewise if
298 this is not an asm and the insn wasn't recognized. */
299 if ((is_asm && ! check_asm_operands (PATTERN (insn)))
300 || (!is_asm && icode < 0))
301 return 1;
303 /* If we have to add CLOBBERs, fail if we have to add ones that reference
304 hard registers since our callers can't know if they are live or not.
305 Otherwise, add them. */
306 if (num_clobbers > 0)
308 rtx newpat;
310 if (added_clobbers_hard_reg_p (icode))
311 return 1;
313 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (num_clobbers + 1));
314 XVECEXP (newpat, 0, 0) = pat;
315 add_clobbers (newpat, icode);
316 PATTERN (insn) = pat = newpat;
319 /* After reload, verify that all constraints are satisfied. */
320 if (reload_completed)
322 extract_insn (insn);
324 if (! constrain_operands (1))
325 return 1;
328 INSN_CODE (insn) = icode;
329 return 0;
332 /* Return number of changes made and not validated yet. */
334 num_changes_pending (void)
336 return num_changes;
339 /* Tentatively apply the changes numbered NUM and up.
340 Return 1 if all changes are valid, zero otherwise. */
342 static int
343 verify_changes (int num)
345 int i;
346 rtx last_validated = NULL_RTX;
348 /* The changes have been applied and all INSN_CODEs have been reset to force
349 rerecognition.
351 The changes are valid if we aren't given an object, or if we are
352 given a MEM and it still is a valid address, or if this is in insn
353 and it is recognized. In the latter case, if reload has completed,
354 we also require that the operands meet the constraints for
355 the insn. */
357 for (i = num; i < num_changes; i++)
359 rtx object = changes[i].object;
361 /* If there is no object to test or if it is the same as the one we
362 already tested, ignore it. */
363 if (object == 0 || object == last_validated)
364 continue;
366 if (MEM_P (object))
368 if (! memory_address_p (GET_MODE (object), XEXP (object, 0)))
369 break;
371 else if (insn_invalid_p (object))
373 rtx pat = PATTERN (object);
375 /* Perhaps we couldn't recognize the insn because there were
376 extra CLOBBERs at the end. If so, try to re-recognize
377 without the last CLOBBER (later iterations will cause each of
378 them to be eliminated, in turn). But don't do this if we
379 have an ASM_OPERAND. */
380 if (GET_CODE (pat) == PARALLEL
381 && GET_CODE (XVECEXP (pat, 0, XVECLEN (pat, 0) - 1)) == CLOBBER
382 && asm_noperands (PATTERN (object)) < 0)
384 rtx newpat;
386 if (XVECLEN (pat, 0) == 2)
387 newpat = XVECEXP (pat, 0, 0);
388 else
390 int j;
392 newpat
393 = gen_rtx_PARALLEL (VOIDmode,
394 rtvec_alloc (XVECLEN (pat, 0) - 1));
395 for (j = 0; j < XVECLEN (newpat, 0); j++)
396 XVECEXP (newpat, 0, j) = XVECEXP (pat, 0, j);
399 /* Add a new change to this group to replace the pattern
400 with this new pattern. Then consider this change
401 as having succeeded. The change we added will
402 cause the entire call to fail if things remain invalid.
404 Note that this can lose if a later change than the one
405 we are processing specified &XVECEXP (PATTERN (object), 0, X)
406 but this shouldn't occur. */
408 validate_change (object, &PATTERN (object), newpat, 1);
409 continue;
411 else if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
412 /* If this insn is a CLOBBER or USE, it is always valid, but is
413 never recognized. */
414 continue;
415 else
416 break;
418 last_validated = object;
421 return (i == num_changes);
424 /* A group of changes has previously been issued with validate_change and
425 verified with verify_changes. Update the BB_DIRTY flags of the affected
426 blocks, and clear num_changes. */
428 void
429 confirm_change_group (void)
431 int i;
432 basic_block bb;
434 for (i = 0; i < num_changes; i++)
435 if (changes[i].object
436 && INSN_P (changes[i].object)
437 && (bb = BLOCK_FOR_INSN (changes[i].object)))
438 bb->flags |= BB_DIRTY;
440 num_changes = 0;
443 /* Apply a group of changes previously issued with `validate_change'.
444 If all changes are valid, call confirm_change_group and return 1,
445 otherwise, call cancel_changes and return 0. */
448 apply_change_group (void)
450 if (verify_changes (0))
452 confirm_change_group ();
453 return 1;
455 else
457 cancel_changes (0);
458 return 0;
463 /* Return the number of changes so far in the current group. */
466 num_validated_changes (void)
468 return num_changes;
471 /* Retract the changes numbered NUM and up. */
473 void
474 cancel_changes (int num)
476 int i;
478 /* Back out all the changes. Do this in the opposite order in which
479 they were made. */
480 for (i = num_changes - 1; i >= num; i--)
482 *changes[i].loc = changes[i].old;
483 if (changes[i].object && !MEM_P (changes[i].object))
484 INSN_CODE (changes[i].object) = changes[i].old_code;
486 num_changes = num;
489 /* Replace every occurrence of FROM in X with TO. Mark each change with
490 validate_change passing OBJECT. */
492 static void
493 validate_replace_rtx_1 (rtx *loc, rtx from, rtx to, rtx object)
495 int i, j;
496 const char *fmt;
497 rtx x = *loc;
498 enum rtx_code code;
499 enum machine_mode op0_mode = VOIDmode;
500 int prev_changes = num_changes;
501 rtx new;
503 if (!x)
504 return;
506 code = GET_CODE (x);
507 fmt = GET_RTX_FORMAT (code);
508 if (fmt[0] == 'e')
509 op0_mode = GET_MODE (XEXP (x, 0));
511 /* X matches FROM if it is the same rtx or they are both referring to the
512 same register in the same mode. Avoid calling rtx_equal_p unless the
513 operands look similar. */
515 if (x == from
516 || (REG_P (x) && REG_P (from)
517 && GET_MODE (x) == GET_MODE (from)
518 && REGNO (x) == REGNO (from))
519 || (GET_CODE (x) == GET_CODE (from) && GET_MODE (x) == GET_MODE (from)
520 && rtx_equal_p (x, from)))
522 validate_change (object, loc, to, 1);
523 return;
526 /* Call ourself recursively to perform the replacements.
527 We must not replace inside already replaced expression, otherwise we
528 get infinite recursion for replacements like (reg X)->(subreg (reg X))
529 done by regmove, so we must special case shared ASM_OPERANDS. */
531 if (GET_CODE (x) == PARALLEL)
533 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
535 if (j && GET_CODE (XVECEXP (x, 0, j)) == SET
536 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == ASM_OPERANDS)
538 /* Verify that operands are really shared. */
539 gcc_assert (ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP (x, 0, 0)))
540 == ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP
541 (x, 0, j))));
542 validate_replace_rtx_1 (&SET_DEST (XVECEXP (x, 0, j)),
543 from, to, object);
545 else
546 validate_replace_rtx_1 (&XVECEXP (x, 0, j), from, to, object);
549 else
550 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
552 if (fmt[i] == 'e')
553 validate_replace_rtx_1 (&XEXP (x, i), from, to, object);
554 else if (fmt[i] == 'E')
555 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
556 validate_replace_rtx_1 (&XVECEXP (x, i, j), from, to, object);
559 /* If we didn't substitute, there is nothing more to do. */
560 if (num_changes == prev_changes)
561 return;
563 /* Allow substituted expression to have different mode. This is used by
564 regmove to change mode of pseudo register. */
565 if (fmt[0] == 'e' && GET_MODE (XEXP (x, 0)) != VOIDmode)
566 op0_mode = GET_MODE (XEXP (x, 0));
568 /* Do changes needed to keep rtx consistent. Don't do any other
569 simplifications, as it is not our job. */
571 if (SWAPPABLE_OPERANDS_P (x)
572 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
574 validate_change (object, loc,
575 gen_rtx_fmt_ee (COMMUTATIVE_ARITH_P (x) ? code
576 : swap_condition (code),
577 GET_MODE (x), XEXP (x, 1),
578 XEXP (x, 0)), 1);
579 x = *loc;
580 code = GET_CODE (x);
583 switch (code)
585 case PLUS:
586 /* If we have a PLUS whose second operand is now a CONST_INT, use
587 simplify_gen_binary to try to simplify it.
588 ??? We may want later to remove this, once simplification is
589 separated from this function. */
590 if (GET_CODE (XEXP (x, 1)) == CONST_INT && XEXP (x, 1) == to)
591 validate_change (object, loc,
592 simplify_gen_binary
593 (PLUS, GET_MODE (x), XEXP (x, 0), XEXP (x, 1)), 1);
594 break;
595 case MINUS:
596 if (GET_CODE (XEXP (x, 1)) == CONST_INT
597 || GET_CODE (XEXP (x, 1)) == CONST_DOUBLE)
598 validate_change (object, loc,
599 simplify_gen_binary
600 (PLUS, GET_MODE (x), XEXP (x, 0),
601 simplify_gen_unary (NEG,
602 GET_MODE (x), XEXP (x, 1),
603 GET_MODE (x))), 1);
604 break;
605 case ZERO_EXTEND:
606 case SIGN_EXTEND:
607 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
609 new = simplify_gen_unary (code, GET_MODE (x), XEXP (x, 0),
610 op0_mode);
611 /* If any of the above failed, substitute in something that
612 we know won't be recognized. */
613 if (!new)
614 new = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
615 validate_change (object, loc, new, 1);
617 break;
618 case SUBREG:
619 /* All subregs possible to simplify should be simplified. */
620 new = simplify_subreg (GET_MODE (x), SUBREG_REG (x), op0_mode,
621 SUBREG_BYTE (x));
623 /* Subregs of VOIDmode operands are incorrect. */
624 if (!new && GET_MODE (SUBREG_REG (x)) == VOIDmode)
625 new = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
626 if (new)
627 validate_change (object, loc, new, 1);
628 break;
629 case ZERO_EXTRACT:
630 case SIGN_EXTRACT:
631 /* If we are replacing a register with memory, try to change the memory
632 to be the mode required for memory in extract operations (this isn't
633 likely to be an insertion operation; if it was, nothing bad will
634 happen, we might just fail in some cases). */
636 if (MEM_P (XEXP (x, 0))
637 && GET_CODE (XEXP (x, 1)) == CONST_INT
638 && GET_CODE (XEXP (x, 2)) == CONST_INT
639 && !mode_dependent_address_p (XEXP (XEXP (x, 0), 0))
640 && !MEM_VOLATILE_P (XEXP (x, 0)))
642 enum machine_mode wanted_mode = VOIDmode;
643 enum machine_mode is_mode = GET_MODE (XEXP (x, 0));
644 int pos = INTVAL (XEXP (x, 2));
646 if (GET_CODE (x) == ZERO_EXTRACT)
648 enum machine_mode new_mode
649 = mode_for_extraction (EP_extzv, 1);
650 if (new_mode != MAX_MACHINE_MODE)
651 wanted_mode = new_mode;
653 else if (GET_CODE (x) == SIGN_EXTRACT)
655 enum machine_mode new_mode
656 = mode_for_extraction (EP_extv, 1);
657 if (new_mode != MAX_MACHINE_MODE)
658 wanted_mode = new_mode;
661 /* If we have a narrower mode, we can do something. */
662 if (wanted_mode != VOIDmode
663 && GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
665 int offset = pos / BITS_PER_UNIT;
666 rtx newmem;
668 /* If the bytes and bits are counted differently, we
669 must adjust the offset. */
670 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
671 offset =
672 (GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (wanted_mode) -
673 offset);
675 pos %= GET_MODE_BITSIZE (wanted_mode);
677 newmem = adjust_address_nv (XEXP (x, 0), wanted_mode, offset);
679 validate_change (object, &XEXP (x, 2), GEN_INT (pos), 1);
680 validate_change (object, &XEXP (x, 0), newmem, 1);
684 break;
686 default:
687 break;
691 /* Try replacing every occurrence of FROM in subexpression LOC of INSN
692 with TO. After all changes have been made, validate by seeing
693 if INSN is still valid. */
696 validate_replace_rtx_subexp (rtx from, rtx to, rtx insn, rtx *loc)
698 validate_replace_rtx_1 (loc, from, to, insn);
699 return apply_change_group ();
702 /* Try replacing every occurrence of FROM in INSN with TO. After all
703 changes have been made, validate by seeing if INSN is still valid. */
706 validate_replace_rtx (rtx from, rtx to, rtx insn)
708 validate_replace_rtx_1 (&PATTERN (insn), from, to, insn);
709 return apply_change_group ();
712 /* Try replacing every occurrence of FROM in INSN with TO. */
714 void
715 validate_replace_rtx_group (rtx from, rtx to, rtx insn)
717 validate_replace_rtx_1 (&PATTERN (insn), from, to, insn);
720 /* Function called by note_uses to replace used subexpressions. */
721 struct validate_replace_src_data
723 rtx from; /* Old RTX */
724 rtx to; /* New RTX */
725 rtx insn; /* Insn in which substitution is occurring. */
728 static void
729 validate_replace_src_1 (rtx *x, void *data)
731 struct validate_replace_src_data *d
732 = (struct validate_replace_src_data *) data;
734 validate_replace_rtx_1 (x, d->from, d->to, d->insn);
737 /* Try replacing every occurrence of FROM in INSN with TO, avoiding
738 SET_DESTs. */
740 void
741 validate_replace_src_group (rtx from, rtx to, rtx insn)
743 struct validate_replace_src_data d;
745 d.from = from;
746 d.to = to;
747 d.insn = insn;
748 note_uses (&PATTERN (insn), validate_replace_src_1, &d);
751 #ifdef HAVE_cc0
752 /* Return 1 if the insn using CC0 set by INSN does not contain
753 any ordered tests applied to the condition codes.
754 EQ and NE tests do not count. */
757 next_insn_tests_no_inequality (rtx insn)
759 rtx next = next_cc0_user (insn);
761 /* If there is no next insn, we have to take the conservative choice. */
762 if (next == 0)
763 return 0;
765 return (INSN_P (next)
766 && ! inequality_comparisons_p (PATTERN (next)));
768 #endif
770 /* This is used by find_single_use to locate an rtx that contains exactly one
771 use of DEST, which is typically either a REG or CC0. It returns a
772 pointer to the innermost rtx expression containing DEST. Appearances of
773 DEST that are being used to totally replace it are not counted. */
775 static rtx *
776 find_single_use_1 (rtx dest, rtx *loc)
778 rtx x = *loc;
779 enum rtx_code code = GET_CODE (x);
780 rtx *result = 0;
781 rtx *this_result;
782 int i;
783 const char *fmt;
785 switch (code)
787 case CONST_INT:
788 case CONST:
789 case LABEL_REF:
790 case SYMBOL_REF:
791 case CONST_DOUBLE:
792 case CONST_VECTOR:
793 case CLOBBER:
794 return 0;
796 case SET:
797 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
798 of a REG that occupies all of the REG, the insn uses DEST if
799 it is mentioned in the destination or the source. Otherwise, we
800 need just check the source. */
801 if (GET_CODE (SET_DEST (x)) != CC0
802 && GET_CODE (SET_DEST (x)) != PC
803 && !REG_P (SET_DEST (x))
804 && ! (GET_CODE (SET_DEST (x)) == SUBREG
805 && REG_P (SUBREG_REG (SET_DEST (x)))
806 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
807 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
808 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
809 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
810 break;
812 return find_single_use_1 (dest, &SET_SRC (x));
814 case MEM:
815 case SUBREG:
816 return find_single_use_1 (dest, &XEXP (x, 0));
818 default:
819 break;
822 /* If it wasn't one of the common cases above, check each expression and
823 vector of this code. Look for a unique usage of DEST. */
825 fmt = GET_RTX_FORMAT (code);
826 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
828 if (fmt[i] == 'e')
830 if (dest == XEXP (x, i)
831 || (REG_P (dest) && REG_P (XEXP (x, i))
832 && REGNO (dest) == REGNO (XEXP (x, i))))
833 this_result = loc;
834 else
835 this_result = find_single_use_1 (dest, &XEXP (x, i));
837 if (result == 0)
838 result = this_result;
839 else if (this_result)
840 /* Duplicate usage. */
841 return 0;
843 else if (fmt[i] == 'E')
845 int j;
847 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
849 if (XVECEXP (x, i, j) == dest
850 || (REG_P (dest)
851 && REG_P (XVECEXP (x, i, j))
852 && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
853 this_result = loc;
854 else
855 this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
857 if (result == 0)
858 result = this_result;
859 else if (this_result)
860 return 0;
865 return result;
868 /* See if DEST, produced in INSN, is used only a single time in the
869 sequel. If so, return a pointer to the innermost rtx expression in which
870 it is used.
872 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
874 This routine will return usually zero either before flow is called (because
875 there will be no LOG_LINKS notes) or after reload (because the REG_DEAD
876 note can't be trusted).
878 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
879 care about REG_DEAD notes or LOG_LINKS.
881 Otherwise, we find the single use by finding an insn that has a
882 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
883 only referenced once in that insn, we know that it must be the first
884 and last insn referencing DEST. */
886 rtx *
887 find_single_use (rtx dest, rtx insn, rtx *ploc)
889 rtx next;
890 rtx *result;
891 rtx link;
893 #ifdef HAVE_cc0
894 if (dest == cc0_rtx)
896 next = NEXT_INSN (insn);
897 if (next == 0
898 || (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
899 return 0;
901 result = find_single_use_1 (dest, &PATTERN (next));
902 if (result && ploc)
903 *ploc = next;
904 return result;
906 #endif
908 if (reload_completed || reload_in_progress || !REG_P (dest))
909 return 0;
911 for (next = next_nonnote_insn (insn);
912 next != 0 && !LABEL_P (next);
913 next = next_nonnote_insn (next))
914 if (INSN_P (next) && dead_or_set_p (next, dest))
916 for (link = LOG_LINKS (next); link; link = XEXP (link, 1))
917 if (XEXP (link, 0) == insn)
918 break;
920 if (link)
922 result = find_single_use_1 (dest, &PATTERN (next));
923 if (ploc)
924 *ploc = next;
925 return result;
929 return 0;
932 /* Return 1 if OP is a valid general operand for machine mode MODE.
933 This is either a register reference, a memory reference,
934 or a constant. In the case of a memory reference, the address
935 is checked for general validity for the target machine.
937 Register and memory references must have mode MODE in order to be valid,
938 but some constants have no machine mode and are valid for any mode.
940 If MODE is VOIDmode, OP is checked for validity for whatever mode
941 it has.
943 The main use of this function is as a predicate in match_operand
944 expressions in the machine description.
946 For an explanation of this function's behavior for registers of
947 class NO_REGS, see the comment for `register_operand'. */
950 general_operand (rtx op, enum machine_mode mode)
952 enum rtx_code code = GET_CODE (op);
954 if (mode == VOIDmode)
955 mode = GET_MODE (op);
957 /* Don't accept CONST_INT or anything similar
958 if the caller wants something floating. */
959 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
960 && GET_MODE_CLASS (mode) != MODE_INT
961 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
962 return 0;
964 if (GET_CODE (op) == CONST_INT
965 && mode != VOIDmode
966 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
967 return 0;
969 if (CONSTANT_P (op))
970 return ((GET_MODE (op) == VOIDmode || GET_MODE (op) == mode
971 || mode == VOIDmode)
972 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
973 && LEGITIMATE_CONSTANT_P (op));
975 /* Except for certain constants with VOIDmode, already checked for,
976 OP's mode must match MODE if MODE specifies a mode. */
978 if (GET_MODE (op) != mode)
979 return 0;
981 if (code == SUBREG)
983 rtx sub = SUBREG_REG (op);
985 #ifdef INSN_SCHEDULING
986 /* On machines that have insn scheduling, we want all memory
987 reference to be explicit, so outlaw paradoxical SUBREGs.
988 However, we must allow them after reload so that they can
989 get cleaned up by cleanup_subreg_operands. */
990 if (!reload_completed && MEM_P (sub)
991 && GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (sub)))
992 return 0;
993 #endif
994 /* Avoid memories with nonzero SUBREG_BYTE, as offsetting the memory
995 may result in incorrect reference. We should simplify all valid
996 subregs of MEM anyway. But allow this after reload because we
997 might be called from cleanup_subreg_operands.
999 ??? This is a kludge. */
1000 if (!reload_completed && SUBREG_BYTE (op) != 0
1001 && MEM_P (sub))
1002 return 0;
1004 /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
1005 create such rtl, and we must reject it. */
1006 if (GET_MODE_CLASS (GET_MODE (op)) == MODE_FLOAT
1007 && GET_MODE_SIZE (GET_MODE (op)) > GET_MODE_SIZE (GET_MODE (sub)))
1008 return 0;
1010 op = sub;
1011 code = GET_CODE (op);
1014 if (code == REG)
1015 /* A register whose class is NO_REGS is not a general operand. */
1016 return (REGNO (op) >= FIRST_PSEUDO_REGISTER
1017 || REGNO_REG_CLASS (REGNO (op)) != NO_REGS);
1019 if (code == MEM)
1021 rtx y = XEXP (op, 0);
1023 if (! volatile_ok && MEM_VOLATILE_P (op))
1024 return 0;
1026 /* Use the mem's mode, since it will be reloaded thus. */
1027 if (memory_address_p (GET_MODE (op), y))
1028 return 1;
1031 return 0;
1034 /* Return 1 if OP is a valid memory address for a memory reference
1035 of mode MODE.
1037 The main use of this function is as a predicate in match_operand
1038 expressions in the machine description. */
1041 address_operand (rtx op, enum machine_mode mode)
1043 return memory_address_p (mode, op);
1046 /* Return 1 if OP is a register reference of mode MODE.
1047 If MODE is VOIDmode, accept a register in any mode.
1049 The main use of this function is as a predicate in match_operand
1050 expressions in the machine description.
1052 As a special exception, registers whose class is NO_REGS are
1053 not accepted by `register_operand'. The reason for this change
1054 is to allow the representation of special architecture artifacts
1055 (such as a condition code register) without extending the rtl
1056 definitions. Since registers of class NO_REGS cannot be used
1057 as registers in any case where register classes are examined,
1058 it is most consistent to keep this function from accepting them. */
1061 register_operand (rtx op, enum machine_mode mode)
1063 if (GET_MODE (op) != mode && mode != VOIDmode)
1064 return 0;
1066 if (GET_CODE (op) == SUBREG)
1068 rtx sub = SUBREG_REG (op);
1070 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1071 because it is guaranteed to be reloaded into one.
1072 Just make sure the MEM is valid in itself.
1073 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1074 but currently it does result from (SUBREG (REG)...) where the
1075 reg went on the stack.) */
1076 if (! reload_completed && MEM_P (sub))
1077 return general_operand (op, mode);
1079 #ifdef CANNOT_CHANGE_MODE_CLASS
1080 if (REG_P (sub)
1081 && REGNO (sub) < FIRST_PSEUDO_REGISTER
1082 && REG_CANNOT_CHANGE_MODE_P (REGNO (sub), GET_MODE (sub), mode)
1083 && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_INT
1084 && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_FLOAT)
1085 return 0;
1086 #endif
1088 /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
1089 create such rtl, and we must reject it. */
1090 if (GET_MODE_CLASS (GET_MODE (op)) == MODE_FLOAT
1091 && GET_MODE_SIZE (GET_MODE (op)) > GET_MODE_SIZE (GET_MODE (sub)))
1092 return 0;
1094 op = sub;
1097 /* We don't consider registers whose class is NO_REGS
1098 to be a register operand. */
1099 return (REG_P (op)
1100 && (REGNO (op) >= FIRST_PSEUDO_REGISTER
1101 || REGNO_REG_CLASS (REGNO (op)) != NO_REGS));
1104 /* Return 1 for a register in Pmode; ignore the tested mode. */
1107 pmode_register_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
1109 return register_operand (op, Pmode);
1112 /* Return 1 if OP should match a MATCH_SCRATCH, i.e., if it is a SCRATCH
1113 or a hard register. */
1116 scratch_operand (rtx op, enum machine_mode mode)
1118 if (GET_MODE (op) != mode && mode != VOIDmode)
1119 return 0;
1121 return (GET_CODE (op) == SCRATCH
1122 || (REG_P (op)
1123 && REGNO (op) < FIRST_PSEUDO_REGISTER));
1126 /* Return 1 if OP is a valid immediate operand for mode MODE.
1128 The main use of this function is as a predicate in match_operand
1129 expressions in the machine description. */
1132 immediate_operand (rtx op, enum machine_mode mode)
1134 /* Don't accept CONST_INT or anything similar
1135 if the caller wants something floating. */
1136 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1137 && GET_MODE_CLASS (mode) != MODE_INT
1138 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1139 return 0;
1141 if (GET_CODE (op) == CONST_INT
1142 && mode != VOIDmode
1143 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1144 return 0;
1146 return (CONSTANT_P (op)
1147 && (GET_MODE (op) == mode || mode == VOIDmode
1148 || GET_MODE (op) == VOIDmode)
1149 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1150 && LEGITIMATE_CONSTANT_P (op));
1153 /* Returns 1 if OP is an operand that is a CONST_INT. */
1156 const_int_operand (rtx op, enum machine_mode mode)
1158 if (GET_CODE (op) != CONST_INT)
1159 return 0;
1161 if (mode != VOIDmode
1162 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1163 return 0;
1165 return 1;
1168 /* Returns 1 if OP is an operand that is a constant integer or constant
1169 floating-point number. */
1172 const_double_operand (rtx op, enum machine_mode mode)
1174 /* Don't accept CONST_INT or anything similar
1175 if the caller wants something floating. */
1176 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1177 && GET_MODE_CLASS (mode) != MODE_INT
1178 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1179 return 0;
1181 return ((GET_CODE (op) == CONST_DOUBLE || GET_CODE (op) == CONST_INT)
1182 && (mode == VOIDmode || GET_MODE (op) == mode
1183 || GET_MODE (op) == VOIDmode));
1186 /* Return 1 if OP is a general operand that is not an immediate operand. */
1189 nonimmediate_operand (rtx op, enum machine_mode mode)
1191 return (general_operand (op, mode) && ! CONSTANT_P (op));
1194 /* Return 1 if OP is a register reference or immediate value of mode MODE. */
1197 nonmemory_operand (rtx op, enum machine_mode mode)
1199 if (CONSTANT_P (op))
1201 /* Don't accept CONST_INT or anything similar
1202 if the caller wants something floating. */
1203 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1204 && GET_MODE_CLASS (mode) != MODE_INT
1205 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1206 return 0;
1208 if (GET_CODE (op) == CONST_INT
1209 && mode != VOIDmode
1210 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1211 return 0;
1213 return ((GET_MODE (op) == VOIDmode || GET_MODE (op) == mode
1214 || mode == VOIDmode)
1215 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1216 && LEGITIMATE_CONSTANT_P (op));
1219 if (GET_MODE (op) != mode && mode != VOIDmode)
1220 return 0;
1222 if (GET_CODE (op) == SUBREG)
1224 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1225 because it is guaranteed to be reloaded into one.
1226 Just make sure the MEM is valid in itself.
1227 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1228 but currently it does result from (SUBREG (REG)...) where the
1229 reg went on the stack.) */
1230 if (! reload_completed && MEM_P (SUBREG_REG (op)))
1231 return general_operand (op, mode);
1232 op = SUBREG_REG (op);
1235 /* We don't consider registers whose class is NO_REGS
1236 to be a register operand. */
1237 return (REG_P (op)
1238 && (REGNO (op) >= FIRST_PSEUDO_REGISTER
1239 || REGNO_REG_CLASS (REGNO (op)) != NO_REGS));
1242 /* Return 1 if OP is a valid operand that stands for pushing a
1243 value of mode MODE onto the stack.
1245 The main use of this function is as a predicate in match_operand
1246 expressions in the machine description. */
1249 push_operand (rtx op, enum machine_mode mode)
1251 unsigned int rounded_size = GET_MODE_SIZE (mode);
1253 #ifdef PUSH_ROUNDING
1254 rounded_size = PUSH_ROUNDING (rounded_size);
1255 #endif
1257 if (!MEM_P (op))
1258 return 0;
1260 if (mode != VOIDmode && GET_MODE (op) != mode)
1261 return 0;
1263 op = XEXP (op, 0);
1265 if (rounded_size == GET_MODE_SIZE (mode))
1267 if (GET_CODE (op) != STACK_PUSH_CODE)
1268 return 0;
1270 else
1272 if (GET_CODE (op) != PRE_MODIFY
1273 || GET_CODE (XEXP (op, 1)) != PLUS
1274 || XEXP (XEXP (op, 1), 0) != XEXP (op, 0)
1275 || GET_CODE (XEXP (XEXP (op, 1), 1)) != CONST_INT
1276 #ifdef STACK_GROWS_DOWNWARD
1277 || INTVAL (XEXP (XEXP (op, 1), 1)) != - (int) rounded_size
1278 #else
1279 || INTVAL (XEXP (XEXP (op, 1), 1)) != (int) rounded_size
1280 #endif
1282 return 0;
1285 return XEXP (op, 0) == stack_pointer_rtx;
1288 /* Return 1 if OP is a valid operand that stands for popping a
1289 value of mode MODE off the stack.
1291 The main use of this function is as a predicate in match_operand
1292 expressions in the machine description. */
1295 pop_operand (rtx op, enum machine_mode mode)
1297 if (!MEM_P (op))
1298 return 0;
1300 if (mode != VOIDmode && GET_MODE (op) != mode)
1301 return 0;
1303 op = XEXP (op, 0);
1305 if (GET_CODE (op) != STACK_POP_CODE)
1306 return 0;
1308 return XEXP (op, 0) == stack_pointer_rtx;
1311 /* Return 1 if ADDR is a valid memory address for mode MODE. */
1314 memory_address_p (enum machine_mode mode ATTRIBUTE_UNUSED, rtx addr)
1316 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
1317 return 0;
1319 win:
1320 return 1;
1323 /* Return 1 if OP is a valid memory reference with mode MODE,
1324 including a valid address.
1326 The main use of this function is as a predicate in match_operand
1327 expressions in the machine description. */
1330 memory_operand (rtx op, enum machine_mode mode)
1332 rtx inner;
1334 if (! reload_completed)
1335 /* Note that no SUBREG is a memory operand before end of reload pass,
1336 because (SUBREG (MEM...)) forces reloading into a register. */
1337 return MEM_P (op) && general_operand (op, mode);
1339 if (mode != VOIDmode && GET_MODE (op) != mode)
1340 return 0;
1342 inner = op;
1343 if (GET_CODE (inner) == SUBREG)
1344 inner = SUBREG_REG (inner);
1346 return (MEM_P (inner) && general_operand (op, mode));
1349 /* Return 1 if OP is a valid indirect memory reference with mode MODE;
1350 that is, a memory reference whose address is a general_operand. */
1353 indirect_operand (rtx op, enum machine_mode mode)
1355 /* Before reload, a SUBREG isn't in memory (see memory_operand, above). */
1356 if (! reload_completed
1357 && GET_CODE (op) == SUBREG && MEM_P (SUBREG_REG (op)))
1359 int offset = SUBREG_BYTE (op);
1360 rtx inner = SUBREG_REG (op);
1362 if (mode != VOIDmode && GET_MODE (op) != mode)
1363 return 0;
1365 /* The only way that we can have a general_operand as the resulting
1366 address is if OFFSET is zero and the address already is an operand
1367 or if the address is (plus Y (const_int -OFFSET)) and Y is an
1368 operand. */
1370 return ((offset == 0 && general_operand (XEXP (inner, 0), Pmode))
1371 || (GET_CODE (XEXP (inner, 0)) == PLUS
1372 && GET_CODE (XEXP (XEXP (inner, 0), 1)) == CONST_INT
1373 && INTVAL (XEXP (XEXP (inner, 0), 1)) == -offset
1374 && general_operand (XEXP (XEXP (inner, 0), 0), Pmode)));
1377 return (MEM_P (op)
1378 && memory_operand (op, mode)
1379 && general_operand (XEXP (op, 0), Pmode));
1382 /* Return 1 if this is a comparison operator. This allows the use of
1383 MATCH_OPERATOR to recognize all the branch insns. */
1386 comparison_operator (rtx op, enum machine_mode mode)
1388 return ((mode == VOIDmode || GET_MODE (op) == mode)
1389 && COMPARISON_P (op));
1392 /* If BODY is an insn body that uses ASM_OPERANDS,
1393 return the number of operands (both input and output) in the insn.
1394 Otherwise return -1. */
1397 asm_noperands (rtx body)
1399 switch (GET_CODE (body))
1401 case ASM_OPERANDS:
1402 /* No output operands: return number of input operands. */
1403 return ASM_OPERANDS_INPUT_LENGTH (body);
1404 case SET:
1405 if (GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
1406 /* Single output operand: BODY is (set OUTPUT (asm_operands ...)). */
1407 return ASM_OPERANDS_INPUT_LENGTH (SET_SRC (body)) + 1;
1408 else
1409 return -1;
1410 case PARALLEL:
1411 if (GET_CODE (XVECEXP (body, 0, 0)) == SET
1412 && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) == ASM_OPERANDS)
1414 /* Multiple output operands, or 1 output plus some clobbers:
1415 body is [(set OUTPUT (asm_operands ...))... (clobber (reg ...))...]. */
1416 int i;
1417 int n_sets;
1419 /* Count backwards through CLOBBERs to determine number of SETs. */
1420 for (i = XVECLEN (body, 0); i > 0; i--)
1422 if (GET_CODE (XVECEXP (body, 0, i - 1)) == SET)
1423 break;
1424 if (GET_CODE (XVECEXP (body, 0, i - 1)) != CLOBBER)
1425 return -1;
1428 /* N_SETS is now number of output operands. */
1429 n_sets = i;
1431 /* Verify that all the SETs we have
1432 came from a single original asm_operands insn
1433 (so that invalid combinations are blocked). */
1434 for (i = 0; i < n_sets; i++)
1436 rtx elt = XVECEXP (body, 0, i);
1437 if (GET_CODE (elt) != SET)
1438 return -1;
1439 if (GET_CODE (SET_SRC (elt)) != ASM_OPERANDS)
1440 return -1;
1441 /* If these ASM_OPERANDS rtx's came from different original insns
1442 then they aren't allowed together. */
1443 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (elt))
1444 != ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP (body, 0, 0))))
1445 return -1;
1447 return (ASM_OPERANDS_INPUT_LENGTH (SET_SRC (XVECEXP (body, 0, 0)))
1448 + n_sets);
1450 else if (GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS)
1452 /* 0 outputs, but some clobbers:
1453 body is [(asm_operands ...) (clobber (reg ...))...]. */
1454 int i;
1456 /* Make sure all the other parallel things really are clobbers. */
1457 for (i = XVECLEN (body, 0) - 1; i > 0; i--)
1458 if (GET_CODE (XVECEXP (body, 0, i)) != CLOBBER)
1459 return -1;
1461 return ASM_OPERANDS_INPUT_LENGTH (XVECEXP (body, 0, 0));
1463 else
1464 return -1;
1465 default:
1466 return -1;
1470 /* Assuming BODY is an insn body that uses ASM_OPERANDS,
1471 copy its operands (both input and output) into the vector OPERANDS,
1472 the locations of the operands within the insn into the vector OPERAND_LOCS,
1473 and the constraints for the operands into CONSTRAINTS.
1474 Write the modes of the operands into MODES.
1475 Return the assembler-template.
1477 If MODES, OPERAND_LOCS, CONSTRAINTS or OPERANDS is 0,
1478 we don't store that info. */
1480 const char *
1481 decode_asm_operands (rtx body, rtx *operands, rtx **operand_locs,
1482 const char **constraints, enum machine_mode *modes)
1484 int i;
1485 int noperands;
1486 const char *template = 0;
1488 if (GET_CODE (body) == SET && GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
1490 rtx asmop = SET_SRC (body);
1491 /* Single output operand: BODY is (set OUTPUT (asm_operands ....)). */
1493 noperands = ASM_OPERANDS_INPUT_LENGTH (asmop) + 1;
1495 for (i = 1; i < noperands; i++)
1497 if (operand_locs)
1498 operand_locs[i] = &ASM_OPERANDS_INPUT (asmop, i - 1);
1499 if (operands)
1500 operands[i] = ASM_OPERANDS_INPUT (asmop, i - 1);
1501 if (constraints)
1502 constraints[i] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i - 1);
1503 if (modes)
1504 modes[i] = ASM_OPERANDS_INPUT_MODE (asmop, i - 1);
1507 /* The output is in the SET.
1508 Its constraint is in the ASM_OPERANDS itself. */
1509 if (operands)
1510 operands[0] = SET_DEST (body);
1511 if (operand_locs)
1512 operand_locs[0] = &SET_DEST (body);
1513 if (constraints)
1514 constraints[0] = ASM_OPERANDS_OUTPUT_CONSTRAINT (asmop);
1515 if (modes)
1516 modes[0] = GET_MODE (SET_DEST (body));
1517 template = ASM_OPERANDS_TEMPLATE (asmop);
1519 else if (GET_CODE (body) == ASM_OPERANDS)
1521 rtx asmop = body;
1522 /* No output operands: BODY is (asm_operands ....). */
1524 noperands = ASM_OPERANDS_INPUT_LENGTH (asmop);
1526 /* The input operands are found in the 1st element vector. */
1527 /* Constraints for inputs are in the 2nd element vector. */
1528 for (i = 0; i < noperands; i++)
1530 if (operand_locs)
1531 operand_locs[i] = &ASM_OPERANDS_INPUT (asmop, i);
1532 if (operands)
1533 operands[i] = ASM_OPERANDS_INPUT (asmop, i);
1534 if (constraints)
1535 constraints[i] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i);
1536 if (modes)
1537 modes[i] = ASM_OPERANDS_INPUT_MODE (asmop, i);
1539 template = ASM_OPERANDS_TEMPLATE (asmop);
1541 else if (GET_CODE (body) == PARALLEL
1542 && GET_CODE (XVECEXP (body, 0, 0)) == SET
1543 && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) == ASM_OPERANDS)
1545 rtx asmop = SET_SRC (XVECEXP (body, 0, 0));
1546 int nparallel = XVECLEN (body, 0); /* Includes CLOBBERs. */
1547 int nin = ASM_OPERANDS_INPUT_LENGTH (asmop);
1548 int nout = 0; /* Does not include CLOBBERs. */
1550 /* At least one output, plus some CLOBBERs. */
1552 /* The outputs are in the SETs.
1553 Their constraints are in the ASM_OPERANDS itself. */
1554 for (i = 0; i < nparallel; i++)
1556 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
1557 break; /* Past last SET */
1559 if (operands)
1560 operands[i] = SET_DEST (XVECEXP (body, 0, i));
1561 if (operand_locs)
1562 operand_locs[i] = &SET_DEST (XVECEXP (body, 0, i));
1563 if (constraints)
1564 constraints[i] = XSTR (SET_SRC (XVECEXP (body, 0, i)), 1);
1565 if (modes)
1566 modes[i] = GET_MODE (SET_DEST (XVECEXP (body, 0, i)));
1567 nout++;
1570 for (i = 0; i < nin; i++)
1572 if (operand_locs)
1573 operand_locs[i + nout] = &ASM_OPERANDS_INPUT (asmop, i);
1574 if (operands)
1575 operands[i + nout] = ASM_OPERANDS_INPUT (asmop, i);
1576 if (constraints)
1577 constraints[i + nout] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i);
1578 if (modes)
1579 modes[i + nout] = ASM_OPERANDS_INPUT_MODE (asmop, i);
1582 template = ASM_OPERANDS_TEMPLATE (asmop);
1584 else if (GET_CODE (body) == PARALLEL
1585 && GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS)
1587 /* No outputs, but some CLOBBERs. */
1589 rtx asmop = XVECEXP (body, 0, 0);
1590 int nin = ASM_OPERANDS_INPUT_LENGTH (asmop);
1592 for (i = 0; i < nin; i++)
1594 if (operand_locs)
1595 operand_locs[i] = &ASM_OPERANDS_INPUT (asmop, i);
1596 if (operands)
1597 operands[i] = ASM_OPERANDS_INPUT (asmop, i);
1598 if (constraints)
1599 constraints[i] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i);
1600 if (modes)
1601 modes[i] = ASM_OPERANDS_INPUT_MODE (asmop, i);
1604 template = ASM_OPERANDS_TEMPLATE (asmop);
1607 return template;
1610 /* Check if an asm_operand matches its constraints.
1611 Return > 0 if ok, = 0 if bad, < 0 if inconclusive. */
1614 asm_operand_ok (rtx op, const char *constraint)
1616 int result = 0;
1618 /* Use constrain_operands after reload. */
1619 gcc_assert (!reload_completed);
1621 while (*constraint)
1623 char c = *constraint;
1624 int len;
1625 switch (c)
1627 case ',':
1628 constraint++;
1629 continue;
1630 case '=':
1631 case '+':
1632 case '*':
1633 case '%':
1634 case '!':
1635 case '#':
1636 case '&':
1637 case '?':
1638 break;
1640 case '0': case '1': case '2': case '3': case '4':
1641 case '5': case '6': case '7': case '8': case '9':
1642 /* For best results, our caller should have given us the
1643 proper matching constraint, but we can't actually fail
1644 the check if they didn't. Indicate that results are
1645 inconclusive. */
1647 constraint++;
1648 while (ISDIGIT (*constraint));
1649 if (! result)
1650 result = -1;
1651 continue;
1653 case 'p':
1654 if (address_operand (op, VOIDmode))
1655 result = 1;
1656 break;
1658 case 'm':
1659 case 'V': /* non-offsettable */
1660 if (memory_operand (op, VOIDmode))
1661 result = 1;
1662 break;
1664 case 'o': /* offsettable */
1665 if (offsettable_nonstrict_memref_p (op))
1666 result = 1;
1667 break;
1669 case '<':
1670 /* ??? Before flow, auto inc/dec insns are not supposed to exist,
1671 excepting those that expand_call created. Further, on some
1672 machines which do not have generalized auto inc/dec, an inc/dec
1673 is not a memory_operand.
1675 Match any memory and hope things are resolved after reload. */
1677 if (MEM_P (op)
1678 && (1
1679 || GET_CODE (XEXP (op, 0)) == PRE_DEC
1680 || GET_CODE (XEXP (op, 0)) == POST_DEC))
1681 result = 1;
1682 break;
1684 case '>':
1685 if (MEM_P (op)
1686 && (1
1687 || GET_CODE (XEXP (op, 0)) == PRE_INC
1688 || GET_CODE (XEXP (op, 0)) == POST_INC))
1689 result = 1;
1690 break;
1692 case 'E':
1693 case 'F':
1694 if (GET_CODE (op) == CONST_DOUBLE
1695 || (GET_CODE (op) == CONST_VECTOR
1696 && GET_MODE_CLASS (GET_MODE (op)) == MODE_VECTOR_FLOAT))
1697 result = 1;
1698 break;
1700 case 'G':
1701 if (GET_CODE (op) == CONST_DOUBLE
1702 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, 'G', constraint))
1703 result = 1;
1704 break;
1705 case 'H':
1706 if (GET_CODE (op) == CONST_DOUBLE
1707 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, 'H', constraint))
1708 result = 1;
1709 break;
1711 case 's':
1712 if (GET_CODE (op) == CONST_INT
1713 || (GET_CODE (op) == CONST_DOUBLE
1714 && GET_MODE (op) == VOIDmode))
1715 break;
1716 /* Fall through. */
1718 case 'i':
1719 if (CONSTANT_P (op) && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op)))
1720 result = 1;
1721 break;
1723 case 'n':
1724 if (GET_CODE (op) == CONST_INT
1725 || (GET_CODE (op) == CONST_DOUBLE
1726 && GET_MODE (op) == VOIDmode))
1727 result = 1;
1728 break;
1730 case 'I':
1731 if (GET_CODE (op) == CONST_INT
1732 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'I', constraint))
1733 result = 1;
1734 break;
1735 case 'J':
1736 if (GET_CODE (op) == CONST_INT
1737 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'J', constraint))
1738 result = 1;
1739 break;
1740 case 'K':
1741 if (GET_CODE (op) == CONST_INT
1742 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'K', constraint))
1743 result = 1;
1744 break;
1745 case 'L':
1746 if (GET_CODE (op) == CONST_INT
1747 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'L', constraint))
1748 result = 1;
1749 break;
1750 case 'M':
1751 if (GET_CODE (op) == CONST_INT
1752 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'M', constraint))
1753 result = 1;
1754 break;
1755 case 'N':
1756 if (GET_CODE (op) == CONST_INT
1757 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'N', constraint))
1758 result = 1;
1759 break;
1760 case 'O':
1761 if (GET_CODE (op) == CONST_INT
1762 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'O', constraint))
1763 result = 1;
1764 break;
1765 case 'P':
1766 if (GET_CODE (op) == CONST_INT
1767 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'P', constraint))
1768 result = 1;
1769 break;
1771 case 'X':
1772 result = 1;
1773 break;
1775 case 'g':
1776 if (general_operand (op, VOIDmode))
1777 result = 1;
1778 break;
1780 default:
1781 /* For all other letters, we first check for a register class,
1782 otherwise it is an EXTRA_CONSTRAINT. */
1783 if (REG_CLASS_FROM_CONSTRAINT (c, constraint) != NO_REGS)
1785 case 'r':
1786 if (GET_MODE (op) == BLKmode)
1787 break;
1788 if (register_operand (op, VOIDmode))
1789 result = 1;
1791 #ifdef EXTRA_CONSTRAINT_STR
1792 else if (EXTRA_CONSTRAINT_STR (op, c, constraint))
1793 result = 1;
1794 else if (EXTRA_MEMORY_CONSTRAINT (c, constraint)
1795 /* Every memory operand can be reloaded to fit. */
1796 && memory_operand (op, VOIDmode))
1797 result = 1;
1798 else if (EXTRA_ADDRESS_CONSTRAINT (c, constraint)
1799 /* Every address operand can be reloaded to fit. */
1800 && address_operand (op, VOIDmode))
1801 result = 1;
1802 #endif
1803 break;
1805 len = CONSTRAINT_LEN (c, constraint);
1807 constraint++;
1808 while (--len && *constraint);
1809 if (len)
1810 return 0;
1813 return result;
1816 /* Given an rtx *P, if it is a sum containing an integer constant term,
1817 return the location (type rtx *) of the pointer to that constant term.
1818 Otherwise, return a null pointer. */
1820 rtx *
1821 find_constant_term_loc (rtx *p)
1823 rtx *tem;
1824 enum rtx_code code = GET_CODE (*p);
1826 /* If *P IS such a constant term, P is its location. */
1828 if (code == CONST_INT || code == SYMBOL_REF || code == LABEL_REF
1829 || code == CONST)
1830 return p;
1832 /* Otherwise, if not a sum, it has no constant term. */
1834 if (GET_CODE (*p) != PLUS)
1835 return 0;
1837 /* If one of the summands is constant, return its location. */
1839 if (XEXP (*p, 0) && CONSTANT_P (XEXP (*p, 0))
1840 && XEXP (*p, 1) && CONSTANT_P (XEXP (*p, 1)))
1841 return p;
1843 /* Otherwise, check each summand for containing a constant term. */
1845 if (XEXP (*p, 0) != 0)
1847 tem = find_constant_term_loc (&XEXP (*p, 0));
1848 if (tem != 0)
1849 return tem;
1852 if (XEXP (*p, 1) != 0)
1854 tem = find_constant_term_loc (&XEXP (*p, 1));
1855 if (tem != 0)
1856 return tem;
1859 return 0;
1862 /* Return 1 if OP is a memory reference
1863 whose address contains no side effects
1864 and remains valid after the addition
1865 of a positive integer less than the
1866 size of the object being referenced.
1868 We assume that the original address is valid and do not check it.
1870 This uses strict_memory_address_p as a subroutine, so
1871 don't use it before reload. */
1874 offsettable_memref_p (rtx op)
1876 return ((MEM_P (op))
1877 && offsettable_address_p (1, GET_MODE (op), XEXP (op, 0)));
1880 /* Similar, but don't require a strictly valid mem ref:
1881 consider pseudo-regs valid as index or base regs. */
1884 offsettable_nonstrict_memref_p (rtx op)
1886 return ((MEM_P (op))
1887 && offsettable_address_p (0, GET_MODE (op), XEXP (op, 0)));
1890 /* Return 1 if Y is a memory address which contains no side effects
1891 and would remain valid after the addition of a positive integer
1892 less than the size of that mode.
1894 We assume that the original address is valid and do not check it.
1895 We do check that it is valid for narrower modes.
1897 If STRICTP is nonzero, we require a strictly valid address,
1898 for the sake of use in reload.c. */
1901 offsettable_address_p (int strictp, enum machine_mode mode, rtx y)
1903 enum rtx_code ycode = GET_CODE (y);
1904 rtx z;
1905 rtx y1 = y;
1906 rtx *y2;
1907 int (*addressp) (enum machine_mode, rtx) =
1908 (strictp ? strict_memory_address_p : memory_address_p);
1909 unsigned int mode_sz = GET_MODE_SIZE (mode);
1911 if (CONSTANT_ADDRESS_P (y))
1912 return 1;
1914 /* Adjusting an offsettable address involves changing to a narrower mode.
1915 Make sure that's OK. */
1917 if (mode_dependent_address_p (y))
1918 return 0;
1920 /* ??? How much offset does an offsettable BLKmode reference need?
1921 Clearly that depends on the situation in which it's being used.
1922 However, the current situation in which we test 0xffffffff is
1923 less than ideal. Caveat user. */
1924 if (mode_sz == 0)
1925 mode_sz = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
1927 /* If the expression contains a constant term,
1928 see if it remains valid when max possible offset is added. */
1930 if ((ycode == PLUS) && (y2 = find_constant_term_loc (&y1)))
1932 int good;
1934 y1 = *y2;
1935 *y2 = plus_constant (*y2, mode_sz - 1);
1936 /* Use QImode because an odd displacement may be automatically invalid
1937 for any wider mode. But it should be valid for a single byte. */
1938 good = (*addressp) (QImode, y);
1940 /* In any case, restore old contents of memory. */
1941 *y2 = y1;
1942 return good;
1945 if (GET_RTX_CLASS (ycode) == RTX_AUTOINC)
1946 return 0;
1948 /* The offset added here is chosen as the maximum offset that
1949 any instruction could need to add when operating on something
1950 of the specified mode. We assume that if Y and Y+c are
1951 valid addresses then so is Y+d for all 0<d<c. adjust_address will
1952 go inside a LO_SUM here, so we do so as well. */
1953 if (GET_CODE (y) == LO_SUM
1954 && mode != BLKmode
1955 && mode_sz <= GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT)
1956 z = gen_rtx_LO_SUM (GET_MODE (y), XEXP (y, 0),
1957 plus_constant (XEXP (y, 1), mode_sz - 1));
1958 else
1959 z = plus_constant (y, mode_sz - 1);
1961 /* Use QImode because an odd displacement may be automatically invalid
1962 for any wider mode. But it should be valid for a single byte. */
1963 return (*addressp) (QImode, z);
1966 /* Return 1 if ADDR is an address-expression whose effect depends
1967 on the mode of the memory reference it is used in.
1969 Autoincrement addressing is a typical example of mode-dependence
1970 because the amount of the increment depends on the mode. */
1973 mode_dependent_address_p (rtx addr ATTRIBUTE_UNUSED /* Maybe used in GO_IF_MODE_DEPENDENT_ADDRESS. */)
1975 GO_IF_MODE_DEPENDENT_ADDRESS (addr, win);
1976 return 0;
1977 /* Label `win' might (not) be used via GO_IF_MODE_DEPENDENT_ADDRESS. */
1978 win: ATTRIBUTE_UNUSED_LABEL
1979 return 1;
1982 /* Like extract_insn, but save insn extracted and don't extract again, when
1983 called again for the same insn expecting that recog_data still contain the
1984 valid information. This is used primary by gen_attr infrastructure that
1985 often does extract insn again and again. */
1986 void
1987 extract_insn_cached (rtx insn)
1989 if (recog_data.insn == insn && INSN_CODE (insn) >= 0)
1990 return;
1991 extract_insn (insn);
1992 recog_data.insn = insn;
1994 /* Do cached extract_insn, constrain_operands and complain about failures.
1995 Used by insn_attrtab. */
1996 void
1997 extract_constrain_insn_cached (rtx insn)
1999 extract_insn_cached (insn);
2000 if (which_alternative == -1
2001 && !constrain_operands (reload_completed))
2002 fatal_insn_not_found (insn);
2004 /* Do cached constrain_operands and complain about failures. */
2006 constrain_operands_cached (int strict)
2008 if (which_alternative == -1)
2009 return constrain_operands (strict);
2010 else
2011 return 1;
2014 /* Analyze INSN and fill in recog_data. */
2016 void
2017 extract_insn (rtx insn)
2019 int i;
2020 int icode;
2021 int noperands;
2022 rtx body = PATTERN (insn);
2024 recog_data.insn = NULL;
2025 recog_data.n_operands = 0;
2026 recog_data.n_alternatives = 0;
2027 recog_data.n_dups = 0;
2028 which_alternative = -1;
2030 switch (GET_CODE (body))
2032 case USE:
2033 case CLOBBER:
2034 case ASM_INPUT:
2035 case ADDR_VEC:
2036 case ADDR_DIFF_VEC:
2037 return;
2039 case SET:
2040 if (GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
2041 goto asm_insn;
2042 else
2043 goto normal_insn;
2044 case PARALLEL:
2045 if ((GET_CODE (XVECEXP (body, 0, 0)) == SET
2046 && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) == ASM_OPERANDS)
2047 || GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS)
2048 goto asm_insn;
2049 else
2050 goto normal_insn;
2051 case ASM_OPERANDS:
2052 asm_insn:
2053 recog_data.n_operands = noperands = asm_noperands (body);
2054 if (noperands >= 0)
2056 /* This insn is an `asm' with operands. */
2058 /* expand_asm_operands makes sure there aren't too many operands. */
2059 gcc_assert (noperands <= MAX_RECOG_OPERANDS);
2061 /* Now get the operand values and constraints out of the insn. */
2062 decode_asm_operands (body, recog_data.operand,
2063 recog_data.operand_loc,
2064 recog_data.constraints,
2065 recog_data.operand_mode);
2066 if (noperands > 0)
2068 const char *p = recog_data.constraints[0];
2069 recog_data.n_alternatives = 1;
2070 while (*p)
2071 recog_data.n_alternatives += (*p++ == ',');
2073 break;
2075 fatal_insn_not_found (insn);
2077 default:
2078 normal_insn:
2079 /* Ordinary insn: recognize it, get the operands via insn_extract
2080 and get the constraints. */
2082 icode = recog_memoized (insn);
2083 if (icode < 0)
2084 fatal_insn_not_found (insn);
2086 recog_data.n_operands = noperands = insn_data[icode].n_operands;
2087 recog_data.n_alternatives = insn_data[icode].n_alternatives;
2088 recog_data.n_dups = insn_data[icode].n_dups;
2090 insn_extract (insn);
2092 for (i = 0; i < noperands; i++)
2094 recog_data.constraints[i] = insn_data[icode].operand[i].constraint;
2095 recog_data.operand_mode[i] = insn_data[icode].operand[i].mode;
2096 /* VOIDmode match_operands gets mode from their real operand. */
2097 if (recog_data.operand_mode[i] == VOIDmode)
2098 recog_data.operand_mode[i] = GET_MODE (recog_data.operand[i]);
2101 for (i = 0; i < noperands; i++)
2102 recog_data.operand_type[i]
2103 = (recog_data.constraints[i][0] == '=' ? OP_OUT
2104 : recog_data.constraints[i][0] == '+' ? OP_INOUT
2105 : OP_IN);
2107 gcc_assert (recog_data.n_alternatives <= MAX_RECOG_ALTERNATIVES);
2110 /* After calling extract_insn, you can use this function to extract some
2111 information from the constraint strings into a more usable form.
2112 The collected data is stored in recog_op_alt. */
2113 void
2114 preprocess_constraints (void)
2116 int i;
2118 for (i = 0; i < recog_data.n_operands; i++)
2119 memset (recog_op_alt[i], 0, (recog_data.n_alternatives
2120 * sizeof (struct operand_alternative)));
2122 for (i = 0; i < recog_data.n_operands; i++)
2124 int j;
2125 struct operand_alternative *op_alt;
2126 const char *p = recog_data.constraints[i];
2128 op_alt = recog_op_alt[i];
2130 for (j = 0; j < recog_data.n_alternatives; j++)
2132 op_alt[j].cl = NO_REGS;
2133 op_alt[j].constraint = p;
2134 op_alt[j].matches = -1;
2135 op_alt[j].matched = -1;
2137 if (*p == '\0' || *p == ',')
2139 op_alt[j].anything_ok = 1;
2140 continue;
2143 for (;;)
2145 char c = *p;
2146 if (c == '#')
2148 c = *++p;
2149 while (c != ',' && c != '\0');
2150 if (c == ',' || c == '\0')
2152 p++;
2153 break;
2156 switch (c)
2158 case '=': case '+': case '*': case '%':
2159 case 'E': case 'F': case 'G': case 'H':
2160 case 's': case 'i': case 'n':
2161 case 'I': case 'J': case 'K': case 'L':
2162 case 'M': case 'N': case 'O': case 'P':
2163 /* These don't say anything we care about. */
2164 break;
2166 case '?':
2167 op_alt[j].reject += 6;
2168 break;
2169 case '!':
2170 op_alt[j].reject += 600;
2171 break;
2172 case '&':
2173 op_alt[j].earlyclobber = 1;
2174 break;
2176 case '0': case '1': case '2': case '3': case '4':
2177 case '5': case '6': case '7': case '8': case '9':
2179 char *end;
2180 op_alt[j].matches = strtoul (p, &end, 10);
2181 recog_op_alt[op_alt[j].matches][j].matched = i;
2182 p = end;
2184 continue;
2186 case 'm':
2187 op_alt[j].memory_ok = 1;
2188 break;
2189 case '<':
2190 op_alt[j].decmem_ok = 1;
2191 break;
2192 case '>':
2193 op_alt[j].incmem_ok = 1;
2194 break;
2195 case 'V':
2196 op_alt[j].nonoffmem_ok = 1;
2197 break;
2198 case 'o':
2199 op_alt[j].offmem_ok = 1;
2200 break;
2201 case 'X':
2202 op_alt[j].anything_ok = 1;
2203 break;
2205 case 'p':
2206 op_alt[j].is_address = 1;
2207 op_alt[j].cl = reg_class_subunion[(int) op_alt[j].cl]
2208 [(int) MODE_BASE_REG_CLASS (VOIDmode)];
2209 break;
2211 case 'g':
2212 case 'r':
2213 op_alt[j].cl =
2214 reg_class_subunion[(int) op_alt[j].cl][(int) GENERAL_REGS];
2215 break;
2217 default:
2218 if (EXTRA_MEMORY_CONSTRAINT (c, p))
2220 op_alt[j].memory_ok = 1;
2221 break;
2223 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
2225 op_alt[j].is_address = 1;
2226 op_alt[j].cl
2227 = (reg_class_subunion
2228 [(int) op_alt[j].cl]
2229 [(int) MODE_BASE_REG_CLASS (VOIDmode)]);
2230 break;
2233 op_alt[j].cl
2234 = (reg_class_subunion
2235 [(int) op_alt[j].cl]
2236 [(int) REG_CLASS_FROM_CONSTRAINT ((unsigned char) c, p)]);
2237 break;
2239 p += CONSTRAINT_LEN (c, p);
2245 /* Check the operands of an insn against the insn's operand constraints
2246 and return 1 if they are valid.
2247 The information about the insn's operands, constraints, operand modes
2248 etc. is obtained from the global variables set up by extract_insn.
2250 WHICH_ALTERNATIVE is set to a number which indicates which
2251 alternative of constraints was matched: 0 for the first alternative,
2252 1 for the next, etc.
2254 In addition, when two operands are required to match
2255 and it happens that the output operand is (reg) while the
2256 input operand is --(reg) or ++(reg) (a pre-inc or pre-dec),
2257 make the output operand look like the input.
2258 This is because the output operand is the one the template will print.
2260 This is used in final, just before printing the assembler code and by
2261 the routines that determine an insn's attribute.
2263 If STRICT is a positive nonzero value, it means that we have been
2264 called after reload has been completed. In that case, we must
2265 do all checks strictly. If it is zero, it means that we have been called
2266 before reload has completed. In that case, we first try to see if we can
2267 find an alternative that matches strictly. If not, we try again, this
2268 time assuming that reload will fix up the insn. This provides a "best
2269 guess" for the alternative and is used to compute attributes of insns prior
2270 to reload. A negative value of STRICT is used for this internal call. */
2272 struct funny_match
2274 int this, other;
2278 constrain_operands (int strict)
2280 const char *constraints[MAX_RECOG_OPERANDS];
2281 int matching_operands[MAX_RECOG_OPERANDS];
2282 int earlyclobber[MAX_RECOG_OPERANDS];
2283 int c;
2285 struct funny_match funny_match[MAX_RECOG_OPERANDS];
2286 int funny_match_index;
2288 which_alternative = 0;
2289 if (recog_data.n_operands == 0 || recog_data.n_alternatives == 0)
2290 return 1;
2292 for (c = 0; c < recog_data.n_operands; c++)
2294 constraints[c] = recog_data.constraints[c];
2295 matching_operands[c] = -1;
2300 int seen_earlyclobber_at = -1;
2301 int opno;
2302 int lose = 0;
2303 funny_match_index = 0;
2305 for (opno = 0; opno < recog_data.n_operands; opno++)
2307 rtx op = recog_data.operand[opno];
2308 enum machine_mode mode = GET_MODE (op);
2309 const char *p = constraints[opno];
2310 int offset = 0;
2311 int win = 0;
2312 int val;
2313 int len;
2315 earlyclobber[opno] = 0;
2317 /* A unary operator may be accepted by the predicate, but it
2318 is irrelevant for matching constraints. */
2319 if (UNARY_P (op))
2320 op = XEXP (op, 0);
2322 if (GET_CODE (op) == SUBREG)
2324 if (REG_P (SUBREG_REG (op))
2325 && REGNO (SUBREG_REG (op)) < FIRST_PSEUDO_REGISTER)
2326 offset = subreg_regno_offset (REGNO (SUBREG_REG (op)),
2327 GET_MODE (SUBREG_REG (op)),
2328 SUBREG_BYTE (op),
2329 GET_MODE (op));
2330 op = SUBREG_REG (op);
2333 /* An empty constraint or empty alternative
2334 allows anything which matched the pattern. */
2335 if (*p == 0 || *p == ',')
2336 win = 1;
2339 switch (c = *p, len = CONSTRAINT_LEN (c, p), c)
2341 case '\0':
2342 len = 0;
2343 break;
2344 case ',':
2345 c = '\0';
2346 break;
2348 case '?': case '!': case '*': case '%':
2349 case '=': case '+':
2350 break;
2352 case '#':
2353 /* Ignore rest of this alternative as far as
2354 constraint checking is concerned. */
2356 p++;
2357 while (*p && *p != ',');
2358 len = 0;
2359 break;
2361 case '&':
2362 earlyclobber[opno] = 1;
2363 if (seen_earlyclobber_at < 0)
2364 seen_earlyclobber_at = opno;
2365 break;
2367 case '0': case '1': case '2': case '3': case '4':
2368 case '5': case '6': case '7': case '8': case '9':
2370 /* This operand must be the same as a previous one.
2371 This kind of constraint is used for instructions such
2372 as add when they take only two operands.
2374 Note that the lower-numbered operand is passed first.
2376 If we are not testing strictly, assume that this
2377 constraint will be satisfied. */
2379 char *end;
2380 int match;
2382 match = strtoul (p, &end, 10);
2383 p = end;
2385 if (strict < 0)
2386 val = 1;
2387 else
2389 rtx op1 = recog_data.operand[match];
2390 rtx op2 = recog_data.operand[opno];
2392 /* A unary operator may be accepted by the predicate,
2393 but it is irrelevant for matching constraints. */
2394 if (UNARY_P (op1))
2395 op1 = XEXP (op1, 0);
2396 if (UNARY_P (op2))
2397 op2 = XEXP (op2, 0);
2399 val = operands_match_p (op1, op2);
2402 matching_operands[opno] = match;
2403 matching_operands[match] = opno;
2405 if (val != 0)
2406 win = 1;
2408 /* If output is *x and input is *--x, arrange later
2409 to change the output to *--x as well, since the
2410 output op is the one that will be printed. */
2411 if (val == 2 && strict > 0)
2413 funny_match[funny_match_index].this = opno;
2414 funny_match[funny_match_index++].other = match;
2417 len = 0;
2418 break;
2420 case 'p':
2421 /* p is used for address_operands. When we are called by
2422 gen_reload, no one will have checked that the address is
2423 strictly valid, i.e., that all pseudos requiring hard regs
2424 have gotten them. */
2425 if (strict <= 0
2426 || (strict_memory_address_p (recog_data.operand_mode[opno],
2427 op)))
2428 win = 1;
2429 break;
2431 /* No need to check general_operand again;
2432 it was done in insn-recog.c. Well, except that reload
2433 doesn't check the validity of its replacements, but
2434 that should only matter when there's a bug. */
2435 case 'g':
2436 /* Anything goes unless it is a REG and really has a hard reg
2437 but the hard reg is not in the class GENERAL_REGS. */
2438 if (REG_P (op))
2440 if (strict < 0
2441 || GENERAL_REGS == ALL_REGS
2442 || (reload_in_progress
2443 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2444 || reg_fits_class_p (op, GENERAL_REGS, offset, mode))
2445 win = 1;
2447 else if (strict < 0 || general_operand (op, mode))
2448 win = 1;
2449 break;
2451 case 'X':
2452 /* This is used for a MATCH_SCRATCH in the cases when
2453 we don't actually need anything. So anything goes
2454 any time. */
2455 win = 1;
2456 break;
2458 case 'm':
2459 /* Memory operands must be valid, to the extent
2460 required by STRICT. */
2461 if (MEM_P (op))
2463 if (strict > 0
2464 && !strict_memory_address_p (GET_MODE (op),
2465 XEXP (op, 0)))
2466 break;
2467 if (strict == 0
2468 && !memory_address_p (GET_MODE (op), XEXP (op, 0)))
2469 break;
2470 win = 1;
2472 /* Before reload, accept what reload can turn into mem. */
2473 else if (strict < 0 && CONSTANT_P (op))
2474 win = 1;
2475 /* During reload, accept a pseudo */
2476 else if (reload_in_progress && REG_P (op)
2477 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2478 win = 1;
2479 break;
2481 case '<':
2482 if (MEM_P (op)
2483 && (GET_CODE (XEXP (op, 0)) == PRE_DEC
2484 || GET_CODE (XEXP (op, 0)) == POST_DEC))
2485 win = 1;
2486 break;
2488 case '>':
2489 if (MEM_P (op)
2490 && (GET_CODE (XEXP (op, 0)) == PRE_INC
2491 || GET_CODE (XEXP (op, 0)) == POST_INC))
2492 win = 1;
2493 break;
2495 case 'E':
2496 case 'F':
2497 if (GET_CODE (op) == CONST_DOUBLE
2498 || (GET_CODE (op) == CONST_VECTOR
2499 && GET_MODE_CLASS (GET_MODE (op)) == MODE_VECTOR_FLOAT))
2500 win = 1;
2501 break;
2503 case 'G':
2504 case 'H':
2505 if (GET_CODE (op) == CONST_DOUBLE
2506 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, c, p))
2507 win = 1;
2508 break;
2510 case 's':
2511 if (GET_CODE (op) == CONST_INT
2512 || (GET_CODE (op) == CONST_DOUBLE
2513 && GET_MODE (op) == VOIDmode))
2514 break;
2515 case 'i':
2516 if (CONSTANT_P (op))
2517 win = 1;
2518 break;
2520 case 'n':
2521 if (GET_CODE (op) == CONST_INT
2522 || (GET_CODE (op) == CONST_DOUBLE
2523 && GET_MODE (op) == VOIDmode))
2524 win = 1;
2525 break;
2527 case 'I':
2528 case 'J':
2529 case 'K':
2530 case 'L':
2531 case 'M':
2532 case 'N':
2533 case 'O':
2534 case 'P':
2535 if (GET_CODE (op) == CONST_INT
2536 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), c, p))
2537 win = 1;
2538 break;
2540 case 'V':
2541 if (MEM_P (op)
2542 && ((strict > 0 && ! offsettable_memref_p (op))
2543 || (strict < 0
2544 && !(CONSTANT_P (op) || MEM_P (op)))
2545 || (reload_in_progress
2546 && !(REG_P (op)
2547 && REGNO (op) >= FIRST_PSEUDO_REGISTER))))
2548 win = 1;
2549 break;
2551 case 'o':
2552 if ((strict > 0 && offsettable_memref_p (op))
2553 || (strict == 0 && offsettable_nonstrict_memref_p (op))
2554 /* Before reload, accept what reload can handle. */
2555 || (strict < 0
2556 && (CONSTANT_P (op) || MEM_P (op)))
2557 /* During reload, accept a pseudo */
2558 || (reload_in_progress && REG_P (op)
2559 && REGNO (op) >= FIRST_PSEUDO_REGISTER))
2560 win = 1;
2561 break;
2563 default:
2565 enum reg_class cl;
2567 cl = (c == 'r'
2568 ? GENERAL_REGS : REG_CLASS_FROM_CONSTRAINT (c, p));
2569 if (cl != NO_REGS)
2571 if (strict < 0
2572 || (strict == 0
2573 && REG_P (op)
2574 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2575 || (strict == 0 && GET_CODE (op) == SCRATCH)
2576 || (REG_P (op)
2577 && reg_fits_class_p (op, cl, offset, mode)))
2578 win = 1;
2580 #ifdef EXTRA_CONSTRAINT_STR
2581 else if (EXTRA_CONSTRAINT_STR (op, c, p))
2582 win = 1;
2584 else if (EXTRA_MEMORY_CONSTRAINT (c, p)
2585 /* Every memory operand can be reloaded to fit. */
2586 && ((strict < 0 && MEM_P (op))
2587 /* Before reload, accept what reload can turn
2588 into mem. */
2589 || (strict < 0 && CONSTANT_P (op))
2590 /* During reload, accept a pseudo */
2591 || (reload_in_progress && REG_P (op)
2592 && REGNO (op) >= FIRST_PSEUDO_REGISTER)))
2593 win = 1;
2594 else if (EXTRA_ADDRESS_CONSTRAINT (c, p)
2595 /* Every address operand can be reloaded to fit. */
2596 && strict < 0)
2597 win = 1;
2598 #endif
2599 break;
2602 while (p += len, c);
2604 constraints[opno] = p;
2605 /* If this operand did not win somehow,
2606 this alternative loses. */
2607 if (! win)
2608 lose = 1;
2610 /* This alternative won; the operands are ok.
2611 Change whichever operands this alternative says to change. */
2612 if (! lose)
2614 int opno, eopno;
2616 /* See if any earlyclobber operand conflicts with some other
2617 operand. */
2619 if (strict > 0 && seen_earlyclobber_at >= 0)
2620 for (eopno = seen_earlyclobber_at;
2621 eopno < recog_data.n_operands;
2622 eopno++)
2623 /* Ignore earlyclobber operands now in memory,
2624 because we would often report failure when we have
2625 two memory operands, one of which was formerly a REG. */
2626 if (earlyclobber[eopno]
2627 && REG_P (recog_data.operand[eopno]))
2628 for (opno = 0; opno < recog_data.n_operands; opno++)
2629 if ((MEM_P (recog_data.operand[opno])
2630 || recog_data.operand_type[opno] != OP_OUT)
2631 && opno != eopno
2632 /* Ignore things like match_operator operands. */
2633 && *recog_data.constraints[opno] != 0
2634 && ! (matching_operands[opno] == eopno
2635 && operands_match_p (recog_data.operand[opno],
2636 recog_data.operand[eopno]))
2637 && ! safe_from_earlyclobber (recog_data.operand[opno],
2638 recog_data.operand[eopno]))
2639 lose = 1;
2641 if (! lose)
2643 while (--funny_match_index >= 0)
2645 recog_data.operand[funny_match[funny_match_index].other]
2646 = recog_data.operand[funny_match[funny_match_index].this];
2649 return 1;
2653 which_alternative++;
2655 while (which_alternative < recog_data.n_alternatives);
2657 which_alternative = -1;
2658 /* If we are about to reject this, but we are not to test strictly,
2659 try a very loose test. Only return failure if it fails also. */
2660 if (strict == 0)
2661 return constrain_operands (-1);
2662 else
2663 return 0;
2666 /* Return 1 iff OPERAND (assumed to be a REG rtx)
2667 is a hard reg in class CLASS when its regno is offset by OFFSET
2668 and changed to mode MODE.
2669 If REG occupies multiple hard regs, all of them must be in CLASS. */
2672 reg_fits_class_p (rtx operand, enum reg_class cl, int offset,
2673 enum machine_mode mode)
2675 int regno = REGNO (operand);
2676 if (regno < FIRST_PSEUDO_REGISTER
2677 && TEST_HARD_REG_BIT (reg_class_contents[(int) cl],
2678 regno + offset))
2680 int sr;
2681 regno += offset;
2682 for (sr = hard_regno_nregs[regno][mode] - 1;
2683 sr > 0; sr--)
2684 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) cl],
2685 regno + sr))
2686 break;
2687 return sr == 0;
2690 return 0;
2693 /* Split single instruction. Helper function for split_all_insns and
2694 split_all_insns_noflow. Return last insn in the sequence if successful,
2695 or NULL if unsuccessful. */
2697 static rtx
2698 split_insn (rtx insn)
2700 /* Split insns here to get max fine-grain parallelism. */
2701 rtx first = PREV_INSN (insn);
2702 rtx last = try_split (PATTERN (insn), insn, 1);
2704 if (last == insn)
2705 return NULL_RTX;
2707 /* try_split returns the NOTE that INSN became. */
2708 SET_INSN_DELETED (insn);
2710 /* ??? Coddle to md files that generate subregs in post-reload
2711 splitters instead of computing the proper hard register. */
2712 if (reload_completed && first != last)
2714 first = NEXT_INSN (first);
2715 for (;;)
2717 if (INSN_P (first))
2718 cleanup_subreg_operands (first);
2719 if (first == last)
2720 break;
2721 first = NEXT_INSN (first);
2724 return last;
2727 /* Split all insns in the function. If UPD_LIFE, update life info after. */
2729 void
2730 split_all_insns (int upd_life)
2732 sbitmap blocks;
2733 bool changed;
2734 basic_block bb;
2736 blocks = sbitmap_alloc (last_basic_block);
2737 sbitmap_zero (blocks);
2738 changed = false;
2740 FOR_EACH_BB_REVERSE (bb)
2742 rtx insn, next;
2743 bool finish = false;
2745 for (insn = BB_HEAD (bb); !finish ; insn = next)
2747 /* Can't use `next_real_insn' because that might go across
2748 CODE_LABELS and short-out basic blocks. */
2749 next = NEXT_INSN (insn);
2750 finish = (insn == BB_END (bb));
2751 if (INSN_P (insn))
2753 rtx set = single_set (insn);
2755 /* Don't split no-op move insns. These should silently
2756 disappear later in final. Splitting such insns would
2757 break the code that handles REG_NO_CONFLICT blocks. */
2758 if (set && set_noop_p (set))
2760 /* Nops get in the way while scheduling, so delete them
2761 now if register allocation has already been done. It
2762 is too risky to try to do this before register
2763 allocation, and there are unlikely to be very many
2764 nops then anyways. */
2765 if (reload_completed)
2767 /* If the no-op set has a REG_UNUSED note, we need
2768 to update liveness information. */
2769 if (find_reg_note (insn, REG_UNUSED, NULL_RTX))
2771 SET_BIT (blocks, bb->index);
2772 changed = true;
2774 /* ??? Is life info affected by deleting edges? */
2775 delete_insn_and_edges (insn);
2778 else
2780 rtx last = split_insn (insn);
2781 if (last)
2783 /* The split sequence may include barrier, but the
2784 BB boundary we are interested in will be set to
2785 previous one. */
2787 while (BARRIER_P (last))
2788 last = PREV_INSN (last);
2789 SET_BIT (blocks, bb->index);
2790 changed = true;
2797 if (changed)
2799 int old_last_basic_block = last_basic_block;
2801 find_many_sub_basic_blocks (blocks);
2803 if (old_last_basic_block != last_basic_block && upd_life)
2804 blocks = sbitmap_resize (blocks, last_basic_block, 1);
2807 if (changed && upd_life)
2808 update_life_info (blocks, UPDATE_LIFE_GLOBAL_RM_NOTES,
2809 PROP_DEATH_NOTES);
2811 #ifdef ENABLE_CHECKING
2812 verify_flow_info ();
2813 #endif
2815 sbitmap_free (blocks);
2818 /* Same as split_all_insns, but do not expect CFG to be available.
2819 Used by machine dependent reorg passes. */
2821 void
2822 split_all_insns_noflow (void)
2824 rtx next, insn;
2826 for (insn = get_insns (); insn; insn = next)
2828 next = NEXT_INSN (insn);
2829 if (INSN_P (insn))
2831 /* Don't split no-op move insns. These should silently
2832 disappear later in final. Splitting such insns would
2833 break the code that handles REG_NO_CONFLICT blocks. */
2834 rtx set = single_set (insn);
2835 if (set && set_noop_p (set))
2837 /* Nops get in the way while scheduling, so delete them
2838 now if register allocation has already been done. It
2839 is too risky to try to do this before register
2840 allocation, and there are unlikely to be very many
2841 nops then anyways.
2843 ??? Should we use delete_insn when the CFG isn't valid? */
2844 if (reload_completed)
2845 delete_insn_and_edges (insn);
2847 else
2848 split_insn (insn);
2853 #ifdef HAVE_peephole2
2854 struct peep2_insn_data
2856 rtx insn;
2857 regset live_before;
2860 static struct peep2_insn_data peep2_insn_data[MAX_INSNS_PER_PEEP2 + 1];
2861 static int peep2_current;
2862 /* The number of instructions available to match a peep2. */
2863 int peep2_current_count;
2865 /* A non-insn marker indicating the last insn of the block.
2866 The live_before regset for this element is correct, indicating
2867 global_live_at_end for the block. */
2868 #define PEEP2_EOB pc_rtx
2870 /* Return the Nth non-note insn after `current', or return NULL_RTX if it
2871 does not exist. Used by the recognizer to find the next insn to match
2872 in a multi-insn pattern. */
2875 peep2_next_insn (int n)
2877 gcc_assert (n <= peep2_current_count);
2879 n += peep2_current;
2880 if (n >= MAX_INSNS_PER_PEEP2 + 1)
2881 n -= MAX_INSNS_PER_PEEP2 + 1;
2883 return peep2_insn_data[n].insn;
2886 /* Return true if REGNO is dead before the Nth non-note insn
2887 after `current'. */
2890 peep2_regno_dead_p (int ofs, int regno)
2892 gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1);
2894 ofs += peep2_current;
2895 if (ofs >= MAX_INSNS_PER_PEEP2 + 1)
2896 ofs -= MAX_INSNS_PER_PEEP2 + 1;
2898 gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX);
2900 return ! REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno);
2903 /* Similarly for a REG. */
2906 peep2_reg_dead_p (int ofs, rtx reg)
2908 int regno, n;
2910 gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1);
2912 ofs += peep2_current;
2913 if (ofs >= MAX_INSNS_PER_PEEP2 + 1)
2914 ofs -= MAX_INSNS_PER_PEEP2 + 1;
2916 gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX);
2918 regno = REGNO (reg);
2919 n = hard_regno_nregs[regno][GET_MODE (reg)];
2920 while (--n >= 0)
2921 if (REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno + n))
2922 return 0;
2923 return 1;
2926 /* Try to find a hard register of mode MODE, matching the register class in
2927 CLASS_STR, which is available at the beginning of insn CURRENT_INSN and
2928 remains available until the end of LAST_INSN. LAST_INSN may be NULL_RTX,
2929 in which case the only condition is that the register must be available
2930 before CURRENT_INSN.
2931 Registers that already have bits set in REG_SET will not be considered.
2933 If an appropriate register is available, it will be returned and the
2934 corresponding bit(s) in REG_SET will be set; otherwise, NULL_RTX is
2935 returned. */
2938 peep2_find_free_register (int from, int to, const char *class_str,
2939 enum machine_mode mode, HARD_REG_SET *reg_set)
2941 static int search_ofs;
2942 enum reg_class cl;
2943 HARD_REG_SET live;
2944 int i;
2946 gcc_assert (from < MAX_INSNS_PER_PEEP2 + 1);
2947 gcc_assert (to < MAX_INSNS_PER_PEEP2 + 1);
2949 from += peep2_current;
2950 if (from >= MAX_INSNS_PER_PEEP2 + 1)
2951 from -= MAX_INSNS_PER_PEEP2 + 1;
2952 to += peep2_current;
2953 if (to >= MAX_INSNS_PER_PEEP2 + 1)
2954 to -= MAX_INSNS_PER_PEEP2 + 1;
2956 gcc_assert (peep2_insn_data[from].insn != NULL_RTX);
2957 REG_SET_TO_HARD_REG_SET (live, peep2_insn_data[from].live_before);
2959 while (from != to)
2961 HARD_REG_SET this_live;
2963 if (++from >= MAX_INSNS_PER_PEEP2 + 1)
2964 from = 0;
2965 gcc_assert (peep2_insn_data[from].insn != NULL_RTX);
2966 REG_SET_TO_HARD_REG_SET (this_live, peep2_insn_data[from].live_before);
2967 IOR_HARD_REG_SET (live, this_live);
2970 cl = (class_str[0] == 'r' ? GENERAL_REGS
2971 : REG_CLASS_FROM_CONSTRAINT (class_str[0], class_str));
2973 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2975 int raw_regno, regno, success, j;
2977 /* Distribute the free registers as much as possible. */
2978 raw_regno = search_ofs + i;
2979 if (raw_regno >= FIRST_PSEUDO_REGISTER)
2980 raw_regno -= FIRST_PSEUDO_REGISTER;
2981 #ifdef REG_ALLOC_ORDER
2982 regno = reg_alloc_order[raw_regno];
2983 #else
2984 regno = raw_regno;
2985 #endif
2987 /* Don't allocate fixed registers. */
2988 if (fixed_regs[regno])
2989 continue;
2990 /* Make sure the register is of the right class. */
2991 if (! TEST_HARD_REG_BIT (reg_class_contents[cl], regno))
2992 continue;
2993 /* And can support the mode we need. */
2994 if (! HARD_REGNO_MODE_OK (regno, mode))
2995 continue;
2996 /* And that we don't create an extra save/restore. */
2997 if (! call_used_regs[regno] && ! regs_ever_live[regno])
2998 continue;
2999 /* And we don't clobber traceback for noreturn functions. */
3000 if ((regno == FRAME_POINTER_REGNUM || regno == HARD_FRAME_POINTER_REGNUM)
3001 && (! reload_completed || frame_pointer_needed))
3002 continue;
3004 success = 1;
3005 for (j = hard_regno_nregs[regno][mode] - 1; j >= 0; j--)
3007 if (TEST_HARD_REG_BIT (*reg_set, regno + j)
3008 || TEST_HARD_REG_BIT (live, regno + j))
3010 success = 0;
3011 break;
3014 if (success)
3016 for (j = hard_regno_nregs[regno][mode] - 1; j >= 0; j--)
3017 SET_HARD_REG_BIT (*reg_set, regno + j);
3019 /* Start the next search with the next register. */
3020 if (++raw_regno >= FIRST_PSEUDO_REGISTER)
3021 raw_regno = 0;
3022 search_ofs = raw_regno;
3024 return gen_rtx_REG (mode, regno);
3028 search_ofs = 0;
3029 return NULL_RTX;
3032 /* Perform the peephole2 optimization pass. */
3034 void
3035 peephole2_optimize (FILE *dump_file ATTRIBUTE_UNUSED)
3037 rtx insn, prev;
3038 regset live;
3039 int i;
3040 basic_block bb;
3041 #ifdef HAVE_conditional_execution
3042 sbitmap blocks;
3043 bool changed;
3044 #endif
3045 bool do_cleanup_cfg = false;
3046 bool do_global_life_update = false;
3047 bool do_rebuild_jump_labels = false;
3049 /* Initialize the regsets we're going to use. */
3050 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3051 peep2_insn_data[i].live_before = ALLOC_REG_SET (&reg_obstack);
3052 live = ALLOC_REG_SET (&reg_obstack);
3054 #ifdef HAVE_conditional_execution
3055 blocks = sbitmap_alloc (last_basic_block);
3056 sbitmap_zero (blocks);
3057 changed = false;
3058 #else
3059 count_or_remove_death_notes (NULL, 1);
3060 #endif
3062 FOR_EACH_BB_REVERSE (bb)
3064 struct propagate_block_info *pbi;
3065 reg_set_iterator rsi;
3066 unsigned int j;
3068 /* Indicate that all slots except the last holds invalid data. */
3069 for (i = 0; i < MAX_INSNS_PER_PEEP2; ++i)
3070 peep2_insn_data[i].insn = NULL_RTX;
3071 peep2_current_count = 0;
3073 /* Indicate that the last slot contains live_after data. */
3074 peep2_insn_data[MAX_INSNS_PER_PEEP2].insn = PEEP2_EOB;
3075 peep2_current = MAX_INSNS_PER_PEEP2;
3077 /* Start up propagation. */
3078 COPY_REG_SET (live, bb->il.rtl->global_live_at_end);
3079 COPY_REG_SET (peep2_insn_data[MAX_INSNS_PER_PEEP2].live_before, live);
3081 #ifdef HAVE_conditional_execution
3082 pbi = init_propagate_block_info (bb, live, NULL, NULL, 0);
3083 #else
3084 pbi = init_propagate_block_info (bb, live, NULL, NULL, PROP_DEATH_NOTES);
3085 #endif
3087 for (insn = BB_END (bb); ; insn = prev)
3089 prev = PREV_INSN (insn);
3090 if (INSN_P (insn))
3092 rtx try, before_try, x;
3093 int match_len;
3094 rtx note;
3095 bool was_call = false;
3097 /* Record this insn. */
3098 if (--peep2_current < 0)
3099 peep2_current = MAX_INSNS_PER_PEEP2;
3100 if (peep2_current_count < MAX_INSNS_PER_PEEP2
3101 && peep2_insn_data[peep2_current].insn == NULL_RTX)
3102 peep2_current_count++;
3103 peep2_insn_data[peep2_current].insn = insn;
3104 propagate_one_insn (pbi, insn);
3105 COPY_REG_SET (peep2_insn_data[peep2_current].live_before, live);
3107 /* Match the peephole. */
3108 try = peephole2_insns (PATTERN (insn), insn, &match_len);
3109 if (try != NULL)
3111 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3112 in SEQ and copy our CALL_INSN_FUNCTION_USAGE and other
3113 cfg-related call notes. */
3114 for (i = 0; i <= match_len; ++i)
3116 int j;
3117 rtx old_insn, new_insn, note;
3119 j = i + peep2_current;
3120 if (j >= MAX_INSNS_PER_PEEP2 + 1)
3121 j -= MAX_INSNS_PER_PEEP2 + 1;
3122 old_insn = peep2_insn_data[j].insn;
3123 if (!CALL_P (old_insn))
3124 continue;
3125 was_call = true;
3127 new_insn = try;
3128 while (new_insn != NULL_RTX)
3130 if (CALL_P (new_insn))
3131 break;
3132 new_insn = NEXT_INSN (new_insn);
3135 gcc_assert (new_insn != NULL_RTX);
3137 CALL_INSN_FUNCTION_USAGE (new_insn)
3138 = CALL_INSN_FUNCTION_USAGE (old_insn);
3140 for (note = REG_NOTES (old_insn);
3141 note;
3142 note = XEXP (note, 1))
3143 switch (REG_NOTE_KIND (note))
3145 case REG_NORETURN:
3146 case REG_SETJMP:
3147 REG_NOTES (new_insn)
3148 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3149 XEXP (note, 0),
3150 REG_NOTES (new_insn));
3151 default:
3152 /* Discard all other reg notes. */
3153 break;
3156 /* Croak if there is another call in the sequence. */
3157 while (++i <= match_len)
3159 j = i + peep2_current;
3160 if (j >= MAX_INSNS_PER_PEEP2 + 1)
3161 j -= MAX_INSNS_PER_PEEP2 + 1;
3162 old_insn = peep2_insn_data[j].insn;
3163 gcc_assert (!CALL_P (old_insn));
3165 break;
3168 i = match_len + peep2_current;
3169 if (i >= MAX_INSNS_PER_PEEP2 + 1)
3170 i -= MAX_INSNS_PER_PEEP2 + 1;
3172 note = find_reg_note (peep2_insn_data[i].insn,
3173 REG_EH_REGION, NULL_RTX);
3175 /* Replace the old sequence with the new. */
3176 try = emit_insn_after_setloc (try, peep2_insn_data[i].insn,
3177 INSN_LOCATOR (peep2_insn_data[i].insn));
3178 before_try = PREV_INSN (insn);
3179 delete_insn_chain (insn, peep2_insn_data[i].insn);
3181 /* Re-insert the EH_REGION notes. */
3182 if (note || (was_call && nonlocal_goto_handler_labels))
3184 edge eh_edge;
3185 edge_iterator ei;
3187 FOR_EACH_EDGE (eh_edge, ei, bb->succs)
3188 if (eh_edge->flags & (EDGE_EH | EDGE_ABNORMAL_CALL))
3189 break;
3191 for (x = try ; x != before_try ; x = PREV_INSN (x))
3192 if (CALL_P (x)
3193 || (flag_non_call_exceptions
3194 && may_trap_p (PATTERN (x))
3195 && !find_reg_note (x, REG_EH_REGION, NULL)))
3197 if (note)
3198 REG_NOTES (x)
3199 = gen_rtx_EXPR_LIST (REG_EH_REGION,
3200 XEXP (note, 0),
3201 REG_NOTES (x));
3203 if (x != BB_END (bb) && eh_edge)
3205 edge nfte, nehe;
3206 int flags;
3208 nfte = split_block (bb, x);
3209 flags = (eh_edge->flags
3210 & (EDGE_EH | EDGE_ABNORMAL));
3211 if (CALL_P (x))
3212 flags |= EDGE_ABNORMAL_CALL;
3213 nehe = make_edge (nfte->src, eh_edge->dest,
3214 flags);
3216 nehe->probability = eh_edge->probability;
3217 nfte->probability
3218 = REG_BR_PROB_BASE - nehe->probability;
3220 do_cleanup_cfg |= purge_dead_edges (nfte->dest);
3221 #ifdef HAVE_conditional_execution
3222 SET_BIT (blocks, nfte->dest->index);
3223 changed = true;
3224 #endif
3225 bb = nfte->src;
3226 eh_edge = nehe;
3230 /* Converting possibly trapping insn to non-trapping is
3231 possible. Zap dummy outgoing edges. */
3232 do_cleanup_cfg |= purge_dead_edges (bb);
3235 #ifdef HAVE_conditional_execution
3236 /* With conditional execution, we cannot back up the
3237 live information so easily, since the conditional
3238 death data structures are not so self-contained.
3239 So record that we've made a modification to this
3240 block and update life information at the end. */
3241 SET_BIT (blocks, bb->index);
3242 changed = true;
3244 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3245 peep2_insn_data[i].insn = NULL_RTX;
3246 peep2_insn_data[peep2_current].insn = PEEP2_EOB;
3247 peep2_current_count = 0;
3248 #else
3249 /* Back up lifetime information past the end of the
3250 newly created sequence. */
3251 if (++i >= MAX_INSNS_PER_PEEP2 + 1)
3252 i = 0;
3253 COPY_REG_SET (live, peep2_insn_data[i].live_before);
3255 /* Update life information for the new sequence. */
3256 x = try;
3259 if (INSN_P (x))
3261 if (--i < 0)
3262 i = MAX_INSNS_PER_PEEP2;
3263 if (peep2_current_count < MAX_INSNS_PER_PEEP2
3264 && peep2_insn_data[i].insn == NULL_RTX)
3265 peep2_current_count++;
3266 peep2_insn_data[i].insn = x;
3267 propagate_one_insn (pbi, x);
3268 COPY_REG_SET (peep2_insn_data[i].live_before, live);
3270 x = PREV_INSN (x);
3272 while (x != prev);
3274 /* ??? Should verify that LIVE now matches what we
3275 had before the new sequence. */
3277 peep2_current = i;
3278 #endif
3280 /* If we generated a jump instruction, it won't have
3281 JUMP_LABEL set. Recompute after we're done. */
3282 for (x = try; x != before_try; x = PREV_INSN (x))
3283 if (JUMP_P (x))
3285 do_rebuild_jump_labels = true;
3286 break;
3291 if (insn == BB_HEAD (bb))
3292 break;
3295 /* Some peepholes can decide the don't need one or more of their
3296 inputs. If this happens, local life update is not enough. */
3297 EXECUTE_IF_AND_COMPL_IN_BITMAP (bb->il.rtl->global_live_at_start, live,
3298 0, j, rsi)
3300 do_global_life_update = true;
3301 break;
3304 free_propagate_block_info (pbi);
3307 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3308 FREE_REG_SET (peep2_insn_data[i].live_before);
3309 FREE_REG_SET (live);
3311 if (do_rebuild_jump_labels)
3312 rebuild_jump_labels (get_insns ());
3314 /* If we eliminated EH edges, we may be able to merge blocks. Further,
3315 we've changed global life since exception handlers are no longer
3316 reachable. */
3317 if (do_cleanup_cfg)
3319 cleanup_cfg (0);
3320 do_global_life_update = true;
3322 if (do_global_life_update)
3323 update_life_info (0, UPDATE_LIFE_GLOBAL_RM_NOTES, PROP_DEATH_NOTES);
3324 #ifdef HAVE_conditional_execution
3325 else
3327 count_or_remove_death_notes (blocks, 1);
3328 update_life_info (blocks, UPDATE_LIFE_LOCAL, PROP_DEATH_NOTES);
3330 sbitmap_free (blocks);
3331 #endif
3333 #endif /* HAVE_peephole2 */
3335 /* Common predicates for use with define_bypass. */
3337 /* True if the dependency between OUT_INSN and IN_INSN is on the store
3338 data not the address operand(s) of the store. IN_INSN must be
3339 single_set. OUT_INSN must be either a single_set or a PARALLEL with
3340 SETs inside. */
3343 store_data_bypass_p (rtx out_insn, rtx in_insn)
3345 rtx out_set, in_set;
3347 in_set = single_set (in_insn);
3348 gcc_assert (in_set);
3350 if (!MEM_P (SET_DEST (in_set)))
3351 return false;
3353 out_set = single_set (out_insn);
3354 if (out_set)
3356 if (reg_mentioned_p (SET_DEST (out_set), SET_DEST (in_set)))
3357 return false;
3359 else
3361 rtx out_pat;
3362 int i;
3364 out_pat = PATTERN (out_insn);
3365 gcc_assert (GET_CODE (out_pat) == PARALLEL);
3367 for (i = 0; i < XVECLEN (out_pat, 0); i++)
3369 rtx exp = XVECEXP (out_pat, 0, i);
3371 if (GET_CODE (exp) == CLOBBER)
3372 continue;
3374 gcc_assert (GET_CODE (exp) == SET);
3376 if (reg_mentioned_p (SET_DEST (exp), SET_DEST (in_set)))
3377 return false;
3381 return true;
3384 /* True if the dependency between OUT_INSN and IN_INSN is in the IF_THEN_ELSE
3385 condition, and not the THEN or ELSE branch. OUT_INSN may be either a single
3386 or multiple set; IN_INSN should be single_set for truth, but for convenience
3387 of insn categorization may be any JUMP or CALL insn. */
3390 if_test_bypass_p (rtx out_insn, rtx in_insn)
3392 rtx out_set, in_set;
3394 in_set = single_set (in_insn);
3395 if (! in_set)
3397 gcc_assert (JUMP_P (in_insn) || CALL_P (in_insn));
3398 return false;
3401 if (GET_CODE (SET_SRC (in_set)) != IF_THEN_ELSE)
3402 return false;
3403 in_set = SET_SRC (in_set);
3405 out_set = single_set (out_insn);
3406 if (out_set)
3408 if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
3409 || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
3410 return false;
3412 else
3414 rtx out_pat;
3415 int i;
3417 out_pat = PATTERN (out_insn);
3418 gcc_assert (GET_CODE (out_pat) == PARALLEL);
3420 for (i = 0; i < XVECLEN (out_pat, 0); i++)
3422 rtx exp = XVECEXP (out_pat, 0, i);
3424 if (GET_CODE (exp) == CLOBBER)
3425 continue;
3427 gcc_assert (GET_CODE (exp) == SET);
3429 if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
3430 || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
3431 return false;
3435 return true;
3438 static bool
3439 gate_handle_peephole2 (void)
3441 return (optimize > 0 && flag_peephole2);
3444 static void
3445 rest_of_handle_peephole2 (void)
3447 #ifdef HAVE_peephole2
3448 peephole2_optimize (dump_file);
3449 #endif
3452 struct tree_opt_pass pass_peephole2 =
3454 "peephole2", /* name */
3455 gate_handle_peephole2, /* gate */
3456 rest_of_handle_peephole2, /* execute */
3457 NULL, /* sub */
3458 NULL, /* next */
3459 0, /* static_pass_number */
3460 TV_PEEPHOLE2, /* tv_id */
3461 0, /* properties_required */
3462 0, /* properties_provided */
3463 0, /* properties_destroyed */
3464 0, /* todo_flags_start */
3465 TODO_dump_func, /* todo_flags_finish */
3466 'z' /* letter */
3469 static void
3470 rest_of_handle_split_all_insns (void)
3472 split_all_insns (1);
3475 struct tree_opt_pass pass_split_all_insns =
3477 "split1", /* name */
3478 NULL, /* gate */
3479 rest_of_handle_split_all_insns, /* execute */
3480 NULL, /* sub */
3481 NULL, /* next */
3482 0, /* static_pass_number */
3483 0, /* tv_id */
3484 0, /* properties_required */
3485 0, /* properties_provided */
3486 0, /* properties_destroyed */
3487 0, /* todo_flags_start */
3488 TODO_dump_func, /* todo_flags_finish */
3489 0 /* letter */
3492 /* The placement of the splitting that we do for shorten_branches
3493 depends on whether regstack is used by the target or not. */
3494 static bool
3495 gate_do_final_split (void)
3497 #if defined (HAVE_ATTR_length) && !defined (STACK_REGS)
3498 return 1;
3499 #else
3500 return 0;
3501 #endif
3504 struct tree_opt_pass pass_split_for_shorten_branches =
3506 "split3", /* name */
3507 gate_do_final_split, /* gate */
3508 split_all_insns_noflow, /* execute */
3509 NULL, /* sub */
3510 NULL, /* next */
3511 0, /* static_pass_number */
3512 TV_SHORTEN_BRANCH, /* tv_id */
3513 0, /* properties_required */
3514 0, /* properties_provided */
3515 0, /* properties_destroyed */
3516 0, /* todo_flags_start */
3517 TODO_dump_func, /* todo_flags_finish */
3518 0 /* letter */
3522 static bool
3523 gate_handle_split_before_regstack (void)
3525 #if defined (HAVE_ATTR_length) && defined (STACK_REGS)
3526 /* If flow2 creates new instructions which need splitting
3527 and scheduling after reload is not done, they might not be
3528 split until final which doesn't allow splitting
3529 if HAVE_ATTR_length. */
3530 # ifdef INSN_SCHEDULING
3531 return (optimize && !flag_schedule_insns_after_reload);
3532 # else
3533 return (optimize);
3534 # endif
3535 #else
3536 return 0;
3537 #endif
3540 struct tree_opt_pass pass_split_before_regstack =
3542 "split2", /* name */
3543 gate_handle_split_before_regstack, /* gate */
3544 rest_of_handle_split_all_insns, /* execute */
3545 NULL, /* sub */
3546 NULL, /* next */
3547 0, /* static_pass_number */
3548 TV_SHORTEN_BRANCH, /* tv_id */
3549 0, /* properties_required */
3550 0, /* properties_provided */
3551 0, /* properties_destroyed */
3552 0, /* todo_flags_start */
3553 TODO_dump_func, /* todo_flags_finish */
3554 0 /* letter */