gcc/
[official-gcc.git] / gcc / config / mips / mips.c
blob16ed5f0f31a058b600fba54ddc95369420e24a0e
1 /* Subroutines used for MIPS code generation.
2 Copyright (C) 1989-2015 Free Software Foundation, Inc.
3 Contributed by A. Lichnewsky, lich@inria.inria.fr.
4 Changes by Michael Meissner, meissner@osf.org.
5 64-bit r4000 support by Ian Lance Taylor, ian@cygnus.com, and
6 Brendan Eich, brendan@microunity.com.
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3, or (at your option)
13 any later version.
15 GCC is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "tm.h"
28 #include "rtl.h"
29 #include "regs.h"
30 #include "hard-reg-set.h"
31 #include "insn-config.h"
32 #include "conditions.h"
33 #include "insn-attr.h"
34 #include "recog.h"
35 #include "output.h"
36 #include "hash-set.h"
37 #include "machmode.h"
38 #include "vec.h"
39 #include "double-int.h"
40 #include "input.h"
41 #include "alias.h"
42 #include "symtab.h"
43 #include "wide-int.h"
44 #include "inchash.h"
45 #include "tree.h"
46 #include "fold-const.h"
47 #include "varasm.h"
48 #include "stringpool.h"
49 #include "stor-layout.h"
50 #include "calls.h"
51 #include "function.h"
52 #include "hashtab.h"
53 #include "flags.h"
54 #include "statistics.h"
55 #include "real.h"
56 #include "fixed-value.h"
57 #include "expmed.h"
58 #include "dojump.h"
59 #include "explow.h"
60 #include "emit-rtl.h"
61 #include "stmt.h"
62 #include "expr.h"
63 #include "insn-codes.h"
64 #include "optabs.h"
65 #include "libfuncs.h"
66 #include "reload.h"
67 #include "tm_p.h"
68 #include "ggc.h"
69 #include "gstab.h"
70 #include "hash-table.h"
71 #include "debug.h"
72 #include "target.h"
73 #include "target-def.h"
74 #include "common/common-target.h"
75 #include "langhooks.h"
76 #include "dominance.h"
77 #include "cfg.h"
78 #include "cfgrtl.h"
79 #include "cfganal.h"
80 #include "lcm.h"
81 #include "cfgbuild.h"
82 #include "cfgcleanup.h"
83 #include "predict.h"
84 #include "basic-block.h"
85 #include "sched-int.h"
86 #include "tree-ssa-alias.h"
87 #include "internal-fn.h"
88 #include "gimple-fold.h"
89 #include "tree-eh.h"
90 #include "gimple-expr.h"
91 #include "is-a.h"
92 #include "gimple.h"
93 #include "gimplify.h"
94 #include "bitmap.h"
95 #include "diagnostic.h"
96 #include "target-globals.h"
97 #include "opts.h"
98 #include "tree-pass.h"
99 #include "context.h"
100 #include "hash-map.h"
101 #include "plugin-api.h"
102 #include "ipa-ref.h"
103 #include "cgraph.h"
104 #include "builtins.h"
105 #include "rtl-iter.h"
107 /* True if X is an UNSPEC wrapper around a SYMBOL_REF or LABEL_REF. */
108 #define UNSPEC_ADDRESS_P(X) \
109 (GET_CODE (X) == UNSPEC \
110 && XINT (X, 1) >= UNSPEC_ADDRESS_FIRST \
111 && XINT (X, 1) < UNSPEC_ADDRESS_FIRST + NUM_SYMBOL_TYPES)
113 /* Extract the symbol or label from UNSPEC wrapper X. */
114 #define UNSPEC_ADDRESS(X) \
115 XVECEXP (X, 0, 0)
117 /* Extract the symbol type from UNSPEC wrapper X. */
118 #define UNSPEC_ADDRESS_TYPE(X) \
119 ((enum mips_symbol_type) (XINT (X, 1) - UNSPEC_ADDRESS_FIRST))
121 /* The maximum distance between the top of the stack frame and the
122 value $sp has when we save and restore registers.
124 The value for normal-mode code must be a SMALL_OPERAND and must
125 preserve the maximum stack alignment. We therefore use a value
126 of 0x7ff0 in this case.
128 microMIPS LWM and SWM support 12-bit offsets (from -0x800 to 0x7ff),
129 so we use a maximum of 0x7f0 for TARGET_MICROMIPS.
131 MIPS16e SAVE and RESTORE instructions can adjust the stack pointer by
132 up to 0x7f8 bytes and can usually save or restore all the registers
133 that we need to save or restore. (Note that we can only use these
134 instructions for o32, for which the stack alignment is 8 bytes.)
136 We use a maximum gap of 0x100 or 0x400 for MIPS16 code when SAVE and
137 RESTORE are not available. We can then use unextended instructions
138 to save and restore registers, and to allocate and deallocate the top
139 part of the frame. */
140 #define MIPS_MAX_FIRST_STACK_STEP \
141 (!TARGET_COMPRESSION ? 0x7ff0 \
142 : TARGET_MICROMIPS || GENERATE_MIPS16E_SAVE_RESTORE ? 0x7f8 \
143 : TARGET_64BIT ? 0x100 : 0x400)
145 /* True if INSN is a mips.md pattern or asm statement. */
146 /* ??? This test exists through the compiler, perhaps it should be
147 moved to rtl.h. */
148 #define USEFUL_INSN_P(INSN) \
149 (NONDEBUG_INSN_P (INSN) \
150 && GET_CODE (PATTERN (INSN)) != USE \
151 && GET_CODE (PATTERN (INSN)) != CLOBBER)
153 /* If INSN is a delayed branch sequence, return the first instruction
154 in the sequence, otherwise return INSN itself. */
155 #define SEQ_BEGIN(INSN) \
156 (INSN_P (INSN) && GET_CODE (PATTERN (INSN)) == SEQUENCE \
157 ? as_a <rtx_insn *> (XVECEXP (PATTERN (INSN), 0, 0)) \
158 : (INSN))
160 /* Likewise for the last instruction in a delayed branch sequence. */
161 #define SEQ_END(INSN) \
162 (INSN_P (INSN) && GET_CODE (PATTERN (INSN)) == SEQUENCE \
163 ? as_a <rtx_insn *> (XVECEXP (PATTERN (INSN), \
164 0, \
165 XVECLEN (PATTERN (INSN), 0) - 1)) \
166 : (INSN))
168 /* Execute the following loop body with SUBINSN set to each instruction
169 between SEQ_BEGIN (INSN) and SEQ_END (INSN) inclusive. */
170 #define FOR_EACH_SUBINSN(SUBINSN, INSN) \
171 for ((SUBINSN) = SEQ_BEGIN (INSN); \
172 (SUBINSN) != NEXT_INSN (SEQ_END (INSN)); \
173 (SUBINSN) = NEXT_INSN (SUBINSN))
175 /* True if bit BIT is set in VALUE. */
176 #define BITSET_P(VALUE, BIT) (((VALUE) & (1 << (BIT))) != 0)
178 /* Return the opcode for a ptr_mode load of the form:
180 l[wd] DEST, OFFSET(BASE). */
181 #define MIPS_LOAD_PTR(DEST, OFFSET, BASE) \
182 (((ptr_mode == DImode ? 0x37 : 0x23) << 26) \
183 | ((BASE) << 21) \
184 | ((DEST) << 16) \
185 | (OFFSET))
187 /* Return the opcode to move register SRC into register DEST. */
188 #define MIPS_MOVE(DEST, SRC) \
189 ((TARGET_64BIT ? 0x2d : 0x21) \
190 | ((DEST) << 11) \
191 | ((SRC) << 21))
193 /* Return the opcode for:
195 lui DEST, VALUE. */
196 #define MIPS_LUI(DEST, VALUE) \
197 ((0xf << 26) | ((DEST) << 16) | (VALUE))
199 /* Return the opcode to jump to register DEST. When the JR opcode is not
200 available use JALR $0, DEST. */
201 #define MIPS_JR(DEST) \
202 (((DEST) << 21) | (ISA_HAS_JR ? 0x8 : 0x9))
204 /* Return the opcode for:
206 bal . + (1 + OFFSET) * 4. */
207 #define MIPS_BAL(OFFSET) \
208 ((0x1 << 26) | (0x11 << 16) | (OFFSET))
210 /* Return the usual opcode for a nop. */
211 #define MIPS_NOP 0
213 /* Classifies an address.
215 ADDRESS_REG
216 A natural register + offset address. The register satisfies
217 mips_valid_base_register_p and the offset is a const_arith_operand.
219 ADDRESS_LO_SUM
220 A LO_SUM rtx. The first operand is a valid base register and
221 the second operand is a symbolic address.
223 ADDRESS_CONST_INT
224 A signed 16-bit constant address.
226 ADDRESS_SYMBOLIC:
227 A constant symbolic address. */
228 enum mips_address_type {
229 ADDRESS_REG,
230 ADDRESS_LO_SUM,
231 ADDRESS_CONST_INT,
232 ADDRESS_SYMBOLIC
235 /* Macros to create an enumeration identifier for a function prototype. */
236 #define MIPS_FTYPE_NAME1(A, B) MIPS_##A##_FTYPE_##B
237 #define MIPS_FTYPE_NAME2(A, B, C) MIPS_##A##_FTYPE_##B##_##C
238 #define MIPS_FTYPE_NAME3(A, B, C, D) MIPS_##A##_FTYPE_##B##_##C##_##D
239 #define MIPS_FTYPE_NAME4(A, B, C, D, E) MIPS_##A##_FTYPE_##B##_##C##_##D##_##E
241 /* Classifies the prototype of a built-in function. */
242 enum mips_function_type {
243 #define DEF_MIPS_FTYPE(NARGS, LIST) MIPS_FTYPE_NAME##NARGS LIST,
244 #include "config/mips/mips-ftypes.def"
245 #undef DEF_MIPS_FTYPE
246 MIPS_MAX_FTYPE_MAX
249 /* Specifies how a built-in function should be converted into rtl. */
250 enum mips_builtin_type {
251 /* The function corresponds directly to an .md pattern. The return
252 value is mapped to operand 0 and the arguments are mapped to
253 operands 1 and above. */
254 MIPS_BUILTIN_DIRECT,
256 /* The function corresponds directly to an .md pattern. There is no return
257 value and the arguments are mapped to operands 0 and above. */
258 MIPS_BUILTIN_DIRECT_NO_TARGET,
260 /* The function corresponds to a comparison instruction followed by
261 a mips_cond_move_tf_ps pattern. The first two arguments are the
262 values to compare and the second two arguments are the vector
263 operands for the movt.ps or movf.ps instruction (in assembly order). */
264 MIPS_BUILTIN_MOVF,
265 MIPS_BUILTIN_MOVT,
267 /* The function corresponds to a V2SF comparison instruction. Operand 0
268 of this instruction is the result of the comparison, which has mode
269 CCV2 or CCV4. The function arguments are mapped to operands 1 and
270 above. The function's return value is an SImode boolean that is
271 true under the following conditions:
273 MIPS_BUILTIN_CMP_ANY: one of the registers is true
274 MIPS_BUILTIN_CMP_ALL: all of the registers are true
275 MIPS_BUILTIN_CMP_LOWER: the first register is true
276 MIPS_BUILTIN_CMP_UPPER: the second register is true. */
277 MIPS_BUILTIN_CMP_ANY,
278 MIPS_BUILTIN_CMP_ALL,
279 MIPS_BUILTIN_CMP_UPPER,
280 MIPS_BUILTIN_CMP_LOWER,
282 /* As above, but the instruction only sets a single $fcc register. */
283 MIPS_BUILTIN_CMP_SINGLE,
285 /* For generating bposge32 branch instructions in MIPS32 DSP ASE. */
286 MIPS_BUILTIN_BPOSGE32
289 /* Invoke MACRO (COND) for each C.cond.fmt condition. */
290 #define MIPS_FP_CONDITIONS(MACRO) \
291 MACRO (f), \
292 MACRO (un), \
293 MACRO (eq), \
294 MACRO (ueq), \
295 MACRO (olt), \
296 MACRO (ult), \
297 MACRO (ole), \
298 MACRO (ule), \
299 MACRO (sf), \
300 MACRO (ngle), \
301 MACRO (seq), \
302 MACRO (ngl), \
303 MACRO (lt), \
304 MACRO (nge), \
305 MACRO (le), \
306 MACRO (ngt)
308 /* Enumerates the codes above as MIPS_FP_COND_<X>. */
309 #define DECLARE_MIPS_COND(X) MIPS_FP_COND_ ## X
310 enum mips_fp_condition {
311 MIPS_FP_CONDITIONS (DECLARE_MIPS_COND)
313 #undef DECLARE_MIPS_COND
315 /* Index X provides the string representation of MIPS_FP_COND_<X>. */
316 #define STRINGIFY(X) #X
317 static const char *const mips_fp_conditions[] = {
318 MIPS_FP_CONDITIONS (STRINGIFY)
320 #undef STRINGIFY
322 /* A class used to control a comdat-style stub that we output in each
323 translation unit that needs it. */
324 class mips_one_only_stub {
325 public:
326 virtual ~mips_one_only_stub () {}
328 /* Return the name of the stub. */
329 virtual const char *get_name () = 0;
331 /* Output the body of the function to asm_out_file. */
332 virtual void output_body () = 0;
335 /* Tuning information that is automatically derived from other sources
336 (such as the scheduler). */
337 static struct {
338 /* The architecture and tuning settings that this structure describes. */
339 enum processor arch;
340 enum processor tune;
342 /* True if this structure describes MIPS16 settings. */
343 bool mips16_p;
345 /* True if the structure has been initialized. */
346 bool initialized_p;
348 /* True if "MULT $0, $0" is preferable to "MTLO $0; MTHI $0"
349 when optimizing for speed. */
350 bool fast_mult_zero_zero_p;
351 } mips_tuning_info;
353 /* Information about a function's frame layout. */
354 struct GTY(()) mips_frame_info {
355 /* The size of the frame in bytes. */
356 HOST_WIDE_INT total_size;
358 /* The number of bytes allocated to variables. */
359 HOST_WIDE_INT var_size;
361 /* The number of bytes allocated to outgoing function arguments. */
362 HOST_WIDE_INT args_size;
364 /* The number of bytes allocated to the .cprestore slot, or 0 if there
365 is no such slot. */
366 HOST_WIDE_INT cprestore_size;
368 /* Bit X is set if the function saves or restores GPR X. */
369 unsigned int mask;
371 /* Likewise FPR X. */
372 unsigned int fmask;
374 /* Likewise doubleword accumulator X ($acX). */
375 unsigned int acc_mask;
377 /* The number of GPRs, FPRs, doubleword accumulators and COP0
378 registers saved. */
379 unsigned int num_gp;
380 unsigned int num_fp;
381 unsigned int num_acc;
382 unsigned int num_cop0_regs;
384 /* The offset of the topmost GPR, FPR, accumulator and COP0-register
385 save slots from the top of the frame, or zero if no such slots are
386 needed. */
387 HOST_WIDE_INT gp_save_offset;
388 HOST_WIDE_INT fp_save_offset;
389 HOST_WIDE_INT acc_save_offset;
390 HOST_WIDE_INT cop0_save_offset;
392 /* Likewise, but giving offsets from the bottom of the frame. */
393 HOST_WIDE_INT gp_sp_offset;
394 HOST_WIDE_INT fp_sp_offset;
395 HOST_WIDE_INT acc_sp_offset;
396 HOST_WIDE_INT cop0_sp_offset;
398 /* Similar, but the value passed to _mcount. */
399 HOST_WIDE_INT ra_fp_offset;
401 /* The offset of arg_pointer_rtx from the bottom of the frame. */
402 HOST_WIDE_INT arg_pointer_offset;
404 /* The offset of hard_frame_pointer_rtx from the bottom of the frame. */
405 HOST_WIDE_INT hard_frame_pointer_offset;
408 struct GTY(()) machine_function {
409 /* The next floating-point condition-code register to allocate
410 for ISA_HAS_8CC targets, relative to ST_REG_FIRST. */
411 unsigned int next_fcc;
413 /* The register returned by mips16_gp_pseudo_reg; see there for details. */
414 rtx mips16_gp_pseudo_rtx;
416 /* The number of extra stack bytes taken up by register varargs.
417 This area is allocated by the callee at the very top of the frame. */
418 int varargs_size;
420 /* The current frame information, calculated by mips_compute_frame_info. */
421 struct mips_frame_info frame;
423 /* The register to use as the function's global pointer, or INVALID_REGNUM
424 if the function doesn't need one. */
425 unsigned int global_pointer;
427 /* How many instructions it takes to load a label into $AT, or 0 if
428 this property hasn't yet been calculated. */
429 unsigned int load_label_num_insns;
431 /* True if mips_adjust_insn_length should ignore an instruction's
432 hazard attribute. */
433 bool ignore_hazard_length_p;
435 /* True if the whole function is suitable for .set noreorder and
436 .set nomacro. */
437 bool all_noreorder_p;
439 /* True if the function has "inflexible" and "flexible" references
440 to the global pointer. See mips_cfun_has_inflexible_gp_ref_p
441 and mips_cfun_has_flexible_gp_ref_p for details. */
442 bool has_inflexible_gp_insn_p;
443 bool has_flexible_gp_insn_p;
445 /* True if the function's prologue must load the global pointer
446 value into pic_offset_table_rtx and store the same value in
447 the function's cprestore slot (if any). Even if this value
448 is currently false, we may decide to set it to true later;
449 see mips_must_initialize_gp_p () for details. */
450 bool must_initialize_gp_p;
452 /* True if the current function must restore $gp after any potential
453 clobber. This value is only meaningful during the first post-epilogue
454 split_insns pass; see mips_must_initialize_gp_p () for details. */
455 bool must_restore_gp_when_clobbered_p;
457 /* True if this is an interrupt handler. */
458 bool interrupt_handler_p;
460 /* True if this is an interrupt handler that uses shadow registers. */
461 bool use_shadow_register_set_p;
463 /* True if this is an interrupt handler that should keep interrupts
464 masked. */
465 bool keep_interrupts_masked_p;
467 /* True if this is an interrupt handler that should use DERET
468 instead of ERET. */
469 bool use_debug_exception_return_p;
472 /* Information about a single argument. */
473 struct mips_arg_info {
474 /* True if the argument is passed in a floating-point register, or
475 would have been if we hadn't run out of registers. */
476 bool fpr_p;
478 /* The number of words passed in registers, rounded up. */
479 unsigned int reg_words;
481 /* For EABI, the offset of the first register from GP_ARG_FIRST or
482 FP_ARG_FIRST. For other ABIs, the offset of the first register from
483 the start of the ABI's argument structure (see the CUMULATIVE_ARGS
484 comment for details).
486 The value is MAX_ARGS_IN_REGISTERS if the argument is passed entirely
487 on the stack. */
488 unsigned int reg_offset;
490 /* The number of words that must be passed on the stack, rounded up. */
491 unsigned int stack_words;
493 /* The offset from the start of the stack overflow area of the argument's
494 first stack word. Only meaningful when STACK_WORDS is nonzero. */
495 unsigned int stack_offset;
498 /* Information about an address described by mips_address_type.
500 ADDRESS_CONST_INT
501 No fields are used.
503 ADDRESS_REG
504 REG is the base register and OFFSET is the constant offset.
506 ADDRESS_LO_SUM
507 REG and OFFSET are the operands to the LO_SUM and SYMBOL_TYPE
508 is the type of symbol it references.
510 ADDRESS_SYMBOLIC
511 SYMBOL_TYPE is the type of symbol that the address references. */
512 struct mips_address_info {
513 enum mips_address_type type;
514 rtx reg;
515 rtx offset;
516 enum mips_symbol_type symbol_type;
519 /* One stage in a constant building sequence. These sequences have
520 the form:
522 A = VALUE[0]
523 A = A CODE[1] VALUE[1]
524 A = A CODE[2] VALUE[2]
527 where A is an accumulator, each CODE[i] is a binary rtl operation
528 and each VALUE[i] is a constant integer. CODE[0] is undefined. */
529 struct mips_integer_op {
530 enum rtx_code code;
531 unsigned HOST_WIDE_INT value;
534 /* The largest number of operations needed to load an integer constant.
535 The worst accepted case for 64-bit constants is LUI,ORI,SLL,ORI,SLL,ORI.
536 When the lowest bit is clear, we can try, but reject a sequence with
537 an extra SLL at the end. */
538 #define MIPS_MAX_INTEGER_OPS 7
540 /* Information about a MIPS16e SAVE or RESTORE instruction. */
541 struct mips16e_save_restore_info {
542 /* The number of argument registers saved by a SAVE instruction.
543 0 for RESTORE instructions. */
544 unsigned int nargs;
546 /* Bit X is set if the instruction saves or restores GPR X. */
547 unsigned int mask;
549 /* The total number of bytes to allocate. */
550 HOST_WIDE_INT size;
553 /* Costs of various operations on the different architectures. */
555 struct mips_rtx_cost_data
557 unsigned short fp_add;
558 unsigned short fp_mult_sf;
559 unsigned short fp_mult_df;
560 unsigned short fp_div_sf;
561 unsigned short fp_div_df;
562 unsigned short int_mult_si;
563 unsigned short int_mult_di;
564 unsigned short int_div_si;
565 unsigned short int_div_di;
566 unsigned short branch_cost;
567 unsigned short memory_latency;
570 /* Global variables for machine-dependent things. */
572 /* The -G setting, or the configuration's default small-data limit if
573 no -G option is given. */
574 static unsigned int mips_small_data_threshold;
576 /* The number of file directives written by mips_output_filename. */
577 int num_source_filenames;
579 /* The name that appeared in the last .file directive written by
580 mips_output_filename, or "" if mips_output_filename hasn't
581 written anything yet. */
582 const char *current_function_file = "";
584 /* Arrays that map GCC register numbers to debugger register numbers. */
585 int mips_dbx_regno[FIRST_PSEUDO_REGISTER];
586 int mips_dwarf_regno[FIRST_PSEUDO_REGISTER];
588 /* Information about the current function's epilogue, used only while
589 expanding it. */
590 static struct {
591 /* A list of queued REG_CFA_RESTORE notes. */
592 rtx cfa_restores;
594 /* The CFA is currently defined as CFA_REG + CFA_OFFSET. */
595 rtx cfa_reg;
596 HOST_WIDE_INT cfa_offset;
598 /* The offset of the CFA from the stack pointer while restoring
599 registers. */
600 HOST_WIDE_INT cfa_restore_sp_offset;
601 } mips_epilogue;
603 /* The nesting depth of the PRINT_OPERAND '%(', '%<' and '%[' constructs. */
604 struct mips_asm_switch mips_noreorder = { "reorder", 0 };
605 struct mips_asm_switch mips_nomacro = { "macro", 0 };
606 struct mips_asm_switch mips_noat = { "at", 0 };
608 /* True if we're writing out a branch-likely instruction rather than a
609 normal branch. */
610 static bool mips_branch_likely;
612 /* The current instruction-set architecture. */
613 enum processor mips_arch;
614 const struct mips_cpu_info *mips_arch_info;
616 /* The processor that we should tune the code for. */
617 enum processor mips_tune;
618 const struct mips_cpu_info *mips_tune_info;
620 /* The ISA level associated with mips_arch. */
621 int mips_isa;
623 /* The ISA revision level. This is 0 for MIPS I to V and N for
624 MIPS{32,64}rN. */
625 int mips_isa_rev;
627 /* The architecture selected by -mipsN, or null if -mipsN wasn't used. */
628 static const struct mips_cpu_info *mips_isa_option_info;
630 /* Which cost information to use. */
631 static const struct mips_rtx_cost_data *mips_cost;
633 /* The ambient target flags, excluding MASK_MIPS16. */
634 static int mips_base_target_flags;
636 /* The default compression mode. */
637 unsigned int mips_base_compression_flags;
639 /* The ambient values of other global variables. */
640 static int mips_base_schedule_insns; /* flag_schedule_insns */
641 static int mips_base_reorder_blocks_and_partition; /* flag_reorder... */
642 static int mips_base_move_loop_invariants; /* flag_move_loop_invariants */
643 static int mips_base_align_loops; /* align_loops */
644 static int mips_base_align_jumps; /* align_jumps */
645 static int mips_base_align_functions; /* align_functions */
647 /* Index [M][R] is true if register R is allowed to hold a value of mode M. */
648 bool mips_hard_regno_mode_ok[(int) MAX_MACHINE_MODE][FIRST_PSEUDO_REGISTER];
650 /* Index C is true if character C is a valid PRINT_OPERAND punctation
651 character. */
652 static bool mips_print_operand_punct[256];
654 static GTY (()) int mips_output_filename_first_time = 1;
656 /* mips_split_p[X] is true if symbols of type X can be split by
657 mips_split_symbol. */
658 bool mips_split_p[NUM_SYMBOL_TYPES];
660 /* mips_split_hi_p[X] is true if the high parts of symbols of type X
661 can be split by mips_split_symbol. */
662 bool mips_split_hi_p[NUM_SYMBOL_TYPES];
664 /* mips_use_pcrel_pool_p[X] is true if symbols of type X should be
665 forced into a PC-relative constant pool. */
666 bool mips_use_pcrel_pool_p[NUM_SYMBOL_TYPES];
668 /* mips_lo_relocs[X] is the relocation to use when a symbol of type X
669 appears in a LO_SUM. It can be null if such LO_SUMs aren't valid or
670 if they are matched by a special .md file pattern. */
671 const char *mips_lo_relocs[NUM_SYMBOL_TYPES];
673 /* Likewise for HIGHs. */
674 const char *mips_hi_relocs[NUM_SYMBOL_TYPES];
676 /* Target state for MIPS16. */
677 struct target_globals *mips16_globals;
679 /* Cached value of can_issue_more. This is cached in mips_variable_issue hook
680 and returned from mips_sched_reorder2. */
681 static int cached_can_issue_more;
683 /* The stubs for various MIPS16 support functions, if used. */
684 static mips_one_only_stub *mips16_rdhwr_stub;
685 static mips_one_only_stub *mips16_get_fcsr_stub;
686 static mips_one_only_stub *mips16_set_fcsr_stub;
688 /* Index R is the smallest register class that contains register R. */
689 const enum reg_class mips_regno_to_class[FIRST_PSEUDO_REGISTER] = {
690 LEA_REGS, LEA_REGS, M16_STORE_REGS, V1_REG,
691 M16_STORE_REGS, M16_STORE_REGS, M16_STORE_REGS, M16_STORE_REGS,
692 LEA_REGS, LEA_REGS, LEA_REGS, LEA_REGS,
693 LEA_REGS, LEA_REGS, LEA_REGS, LEA_REGS,
694 M16_REGS, M16_STORE_REGS, LEA_REGS, LEA_REGS,
695 LEA_REGS, LEA_REGS, LEA_REGS, LEA_REGS,
696 T_REG, PIC_FN_ADDR_REG, LEA_REGS, LEA_REGS,
697 LEA_REGS, M16_SP_REGS, LEA_REGS, LEA_REGS,
699 FP_REGS, FP_REGS, FP_REGS, FP_REGS,
700 FP_REGS, FP_REGS, FP_REGS, FP_REGS,
701 FP_REGS, FP_REGS, FP_REGS, FP_REGS,
702 FP_REGS, FP_REGS, FP_REGS, FP_REGS,
703 FP_REGS, FP_REGS, FP_REGS, FP_REGS,
704 FP_REGS, FP_REGS, FP_REGS, FP_REGS,
705 FP_REGS, FP_REGS, FP_REGS, FP_REGS,
706 FP_REGS, FP_REGS, FP_REGS, FP_REGS,
707 MD0_REG, MD1_REG, NO_REGS, ST_REGS,
708 ST_REGS, ST_REGS, ST_REGS, ST_REGS,
709 ST_REGS, ST_REGS, ST_REGS, NO_REGS,
710 NO_REGS, FRAME_REGS, FRAME_REGS, NO_REGS,
711 COP0_REGS, COP0_REGS, COP0_REGS, COP0_REGS,
712 COP0_REGS, COP0_REGS, COP0_REGS, COP0_REGS,
713 COP0_REGS, COP0_REGS, COP0_REGS, COP0_REGS,
714 COP0_REGS, COP0_REGS, COP0_REGS, COP0_REGS,
715 COP0_REGS, COP0_REGS, COP0_REGS, COP0_REGS,
716 COP0_REGS, COP0_REGS, COP0_REGS, COP0_REGS,
717 COP0_REGS, COP0_REGS, COP0_REGS, COP0_REGS,
718 COP0_REGS, COP0_REGS, COP0_REGS, COP0_REGS,
719 COP2_REGS, COP2_REGS, COP2_REGS, COP2_REGS,
720 COP2_REGS, COP2_REGS, COP2_REGS, COP2_REGS,
721 COP2_REGS, COP2_REGS, COP2_REGS, COP2_REGS,
722 COP2_REGS, COP2_REGS, COP2_REGS, COP2_REGS,
723 COP2_REGS, COP2_REGS, COP2_REGS, COP2_REGS,
724 COP2_REGS, COP2_REGS, COP2_REGS, COP2_REGS,
725 COP2_REGS, COP2_REGS, COP2_REGS, COP2_REGS,
726 COP2_REGS, COP2_REGS, COP2_REGS, COP2_REGS,
727 COP3_REGS, COP3_REGS, COP3_REGS, COP3_REGS,
728 COP3_REGS, COP3_REGS, COP3_REGS, COP3_REGS,
729 COP3_REGS, COP3_REGS, COP3_REGS, COP3_REGS,
730 COP3_REGS, COP3_REGS, COP3_REGS, COP3_REGS,
731 COP3_REGS, COP3_REGS, COP3_REGS, COP3_REGS,
732 COP3_REGS, COP3_REGS, COP3_REGS, COP3_REGS,
733 COP3_REGS, COP3_REGS, COP3_REGS, COP3_REGS,
734 COP3_REGS, COP3_REGS, COP3_REGS, COP3_REGS,
735 DSP_ACC_REGS, DSP_ACC_REGS, DSP_ACC_REGS, DSP_ACC_REGS,
736 DSP_ACC_REGS, DSP_ACC_REGS, ALL_REGS, ALL_REGS,
737 ALL_REGS, ALL_REGS, ALL_REGS, ALL_REGS
740 /* The value of TARGET_ATTRIBUTE_TABLE. */
741 static const struct attribute_spec mips_attribute_table[] = {
742 /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler,
743 om_diagnostic } */
744 { "long_call", 0, 0, false, true, true, NULL, false },
745 { "far", 0, 0, false, true, true, NULL, false },
746 { "near", 0, 0, false, true, true, NULL, false },
747 /* We would really like to treat "mips16" and "nomips16" as type
748 attributes, but GCC doesn't provide the hooks we need to support
749 the right conversion rules. As declaration attributes, they affect
750 code generation but don't carry other semantics. */
751 { "mips16", 0, 0, true, false, false, NULL, false },
752 { "nomips16", 0, 0, true, false, false, NULL, false },
753 { "micromips", 0, 0, true, false, false, NULL, false },
754 { "nomicromips", 0, 0, true, false, false, NULL, false },
755 { "nocompression", 0, 0, true, false, false, NULL, false },
756 /* Allow functions to be specified as interrupt handlers */
757 { "interrupt", 0, 0, false, true, true, NULL, false },
758 { "use_shadow_register_set", 0, 0, false, true, true, NULL, false },
759 { "keep_interrupts_masked", 0, 0, false, true, true, NULL, false },
760 { "use_debug_exception_return", 0, 0, false, true, true, NULL, false },
761 { NULL, 0, 0, false, false, false, NULL, false }
764 /* A table describing all the processors GCC knows about; see
765 mips-cpus.def for details. */
766 static const struct mips_cpu_info mips_cpu_info_table[] = {
767 #define MIPS_CPU(NAME, CPU, ISA, FLAGS) \
768 { NAME, CPU, ISA, FLAGS },
769 #include "mips-cpus.def"
770 #undef MIPS_CPU
773 /* Default costs. If these are used for a processor we should look
774 up the actual costs. */
775 #define DEFAULT_COSTS COSTS_N_INSNS (6), /* fp_add */ \
776 COSTS_N_INSNS (7), /* fp_mult_sf */ \
777 COSTS_N_INSNS (8), /* fp_mult_df */ \
778 COSTS_N_INSNS (23), /* fp_div_sf */ \
779 COSTS_N_INSNS (36), /* fp_div_df */ \
780 COSTS_N_INSNS (10), /* int_mult_si */ \
781 COSTS_N_INSNS (10), /* int_mult_di */ \
782 COSTS_N_INSNS (69), /* int_div_si */ \
783 COSTS_N_INSNS (69), /* int_div_di */ \
784 2, /* branch_cost */ \
785 4 /* memory_latency */
787 /* Floating-point costs for processors without an FPU. Just assume that
788 all floating-point libcalls are very expensive. */
789 #define SOFT_FP_COSTS COSTS_N_INSNS (256), /* fp_add */ \
790 COSTS_N_INSNS (256), /* fp_mult_sf */ \
791 COSTS_N_INSNS (256), /* fp_mult_df */ \
792 COSTS_N_INSNS (256), /* fp_div_sf */ \
793 COSTS_N_INSNS (256) /* fp_div_df */
795 /* Costs to use when optimizing for size. */
796 static const struct mips_rtx_cost_data mips_rtx_cost_optimize_size = {
797 COSTS_N_INSNS (1), /* fp_add */
798 COSTS_N_INSNS (1), /* fp_mult_sf */
799 COSTS_N_INSNS (1), /* fp_mult_df */
800 COSTS_N_INSNS (1), /* fp_div_sf */
801 COSTS_N_INSNS (1), /* fp_div_df */
802 COSTS_N_INSNS (1), /* int_mult_si */
803 COSTS_N_INSNS (1), /* int_mult_di */
804 COSTS_N_INSNS (1), /* int_div_si */
805 COSTS_N_INSNS (1), /* int_div_di */
806 2, /* branch_cost */
807 4 /* memory_latency */
810 /* Costs to use when optimizing for speed, indexed by processor. */
811 static const struct mips_rtx_cost_data
812 mips_rtx_cost_data[NUM_PROCESSOR_VALUES] = {
813 { /* R3000 */
814 COSTS_N_INSNS (2), /* fp_add */
815 COSTS_N_INSNS (4), /* fp_mult_sf */
816 COSTS_N_INSNS (5), /* fp_mult_df */
817 COSTS_N_INSNS (12), /* fp_div_sf */
818 COSTS_N_INSNS (19), /* fp_div_df */
819 COSTS_N_INSNS (12), /* int_mult_si */
820 COSTS_N_INSNS (12), /* int_mult_di */
821 COSTS_N_INSNS (35), /* int_div_si */
822 COSTS_N_INSNS (35), /* int_div_di */
823 1, /* branch_cost */
824 4 /* memory_latency */
826 { /* 4KC */
827 SOFT_FP_COSTS,
828 COSTS_N_INSNS (6), /* int_mult_si */
829 COSTS_N_INSNS (6), /* int_mult_di */
830 COSTS_N_INSNS (36), /* int_div_si */
831 COSTS_N_INSNS (36), /* int_div_di */
832 1, /* branch_cost */
833 4 /* memory_latency */
835 { /* 4KP */
836 SOFT_FP_COSTS,
837 COSTS_N_INSNS (36), /* int_mult_si */
838 COSTS_N_INSNS (36), /* int_mult_di */
839 COSTS_N_INSNS (37), /* int_div_si */
840 COSTS_N_INSNS (37), /* int_div_di */
841 1, /* branch_cost */
842 4 /* memory_latency */
844 { /* 5KC */
845 SOFT_FP_COSTS,
846 COSTS_N_INSNS (4), /* int_mult_si */
847 COSTS_N_INSNS (11), /* int_mult_di */
848 COSTS_N_INSNS (36), /* int_div_si */
849 COSTS_N_INSNS (68), /* int_div_di */
850 1, /* branch_cost */
851 4 /* memory_latency */
853 { /* 5KF */
854 COSTS_N_INSNS (4), /* fp_add */
855 COSTS_N_INSNS (4), /* fp_mult_sf */
856 COSTS_N_INSNS (5), /* fp_mult_df */
857 COSTS_N_INSNS (17), /* fp_div_sf */
858 COSTS_N_INSNS (32), /* fp_div_df */
859 COSTS_N_INSNS (4), /* int_mult_si */
860 COSTS_N_INSNS (11), /* int_mult_di */
861 COSTS_N_INSNS (36), /* int_div_si */
862 COSTS_N_INSNS (68), /* int_div_di */
863 1, /* branch_cost */
864 4 /* memory_latency */
866 { /* 20KC */
867 COSTS_N_INSNS (4), /* fp_add */
868 COSTS_N_INSNS (4), /* fp_mult_sf */
869 COSTS_N_INSNS (5), /* fp_mult_df */
870 COSTS_N_INSNS (17), /* fp_div_sf */
871 COSTS_N_INSNS (32), /* fp_div_df */
872 COSTS_N_INSNS (4), /* int_mult_si */
873 COSTS_N_INSNS (7), /* int_mult_di */
874 COSTS_N_INSNS (42), /* int_div_si */
875 COSTS_N_INSNS (72), /* int_div_di */
876 1, /* branch_cost */
877 4 /* memory_latency */
879 { /* 24KC */
880 SOFT_FP_COSTS,
881 COSTS_N_INSNS (5), /* int_mult_si */
882 COSTS_N_INSNS (5), /* int_mult_di */
883 COSTS_N_INSNS (41), /* int_div_si */
884 COSTS_N_INSNS (41), /* int_div_di */
885 1, /* branch_cost */
886 4 /* memory_latency */
888 { /* 24KF2_1 */
889 COSTS_N_INSNS (8), /* fp_add */
890 COSTS_N_INSNS (8), /* fp_mult_sf */
891 COSTS_N_INSNS (10), /* fp_mult_df */
892 COSTS_N_INSNS (34), /* fp_div_sf */
893 COSTS_N_INSNS (64), /* fp_div_df */
894 COSTS_N_INSNS (5), /* int_mult_si */
895 COSTS_N_INSNS (5), /* int_mult_di */
896 COSTS_N_INSNS (41), /* int_div_si */
897 COSTS_N_INSNS (41), /* int_div_di */
898 1, /* branch_cost */
899 4 /* memory_latency */
901 { /* 24KF1_1 */
902 COSTS_N_INSNS (4), /* fp_add */
903 COSTS_N_INSNS (4), /* fp_mult_sf */
904 COSTS_N_INSNS (5), /* fp_mult_df */
905 COSTS_N_INSNS (17), /* fp_div_sf */
906 COSTS_N_INSNS (32), /* fp_div_df */
907 COSTS_N_INSNS (5), /* int_mult_si */
908 COSTS_N_INSNS (5), /* int_mult_di */
909 COSTS_N_INSNS (41), /* int_div_si */
910 COSTS_N_INSNS (41), /* int_div_di */
911 1, /* branch_cost */
912 4 /* memory_latency */
914 { /* 74KC */
915 SOFT_FP_COSTS,
916 COSTS_N_INSNS (5), /* int_mult_si */
917 COSTS_N_INSNS (5), /* int_mult_di */
918 COSTS_N_INSNS (41), /* int_div_si */
919 COSTS_N_INSNS (41), /* int_div_di */
920 1, /* branch_cost */
921 4 /* memory_latency */
923 { /* 74KF2_1 */
924 COSTS_N_INSNS (8), /* fp_add */
925 COSTS_N_INSNS (8), /* fp_mult_sf */
926 COSTS_N_INSNS (10), /* fp_mult_df */
927 COSTS_N_INSNS (34), /* fp_div_sf */
928 COSTS_N_INSNS (64), /* fp_div_df */
929 COSTS_N_INSNS (5), /* int_mult_si */
930 COSTS_N_INSNS (5), /* int_mult_di */
931 COSTS_N_INSNS (41), /* int_div_si */
932 COSTS_N_INSNS (41), /* int_div_di */
933 1, /* branch_cost */
934 4 /* memory_latency */
936 { /* 74KF1_1 */
937 COSTS_N_INSNS (4), /* fp_add */
938 COSTS_N_INSNS (4), /* fp_mult_sf */
939 COSTS_N_INSNS (5), /* fp_mult_df */
940 COSTS_N_INSNS (17), /* fp_div_sf */
941 COSTS_N_INSNS (32), /* fp_div_df */
942 COSTS_N_INSNS (5), /* int_mult_si */
943 COSTS_N_INSNS (5), /* int_mult_di */
944 COSTS_N_INSNS (41), /* int_div_si */
945 COSTS_N_INSNS (41), /* int_div_di */
946 1, /* branch_cost */
947 4 /* memory_latency */
949 { /* 74KF3_2 */
950 COSTS_N_INSNS (6), /* fp_add */
951 COSTS_N_INSNS (6), /* fp_mult_sf */
952 COSTS_N_INSNS (7), /* fp_mult_df */
953 COSTS_N_INSNS (25), /* fp_div_sf */
954 COSTS_N_INSNS (48), /* fp_div_df */
955 COSTS_N_INSNS (5), /* int_mult_si */
956 COSTS_N_INSNS (5), /* int_mult_di */
957 COSTS_N_INSNS (41), /* int_div_si */
958 COSTS_N_INSNS (41), /* int_div_di */
959 1, /* branch_cost */
960 4 /* memory_latency */
962 { /* Loongson-2E */
963 DEFAULT_COSTS
965 { /* Loongson-2F */
966 DEFAULT_COSTS
968 { /* Loongson-3A */
969 DEFAULT_COSTS
971 { /* M4k */
972 DEFAULT_COSTS
974 /* Octeon */
976 SOFT_FP_COSTS,
977 COSTS_N_INSNS (5), /* int_mult_si */
978 COSTS_N_INSNS (5), /* int_mult_di */
979 COSTS_N_INSNS (72), /* int_div_si */
980 COSTS_N_INSNS (72), /* int_div_di */
981 1, /* branch_cost */
982 4 /* memory_latency */
984 /* Octeon II */
986 SOFT_FP_COSTS,
987 COSTS_N_INSNS (6), /* int_mult_si */
988 COSTS_N_INSNS (6), /* int_mult_di */
989 COSTS_N_INSNS (18), /* int_div_si */
990 COSTS_N_INSNS (35), /* int_div_di */
991 4, /* branch_cost */
992 4 /* memory_latency */
994 /* Octeon III */
996 COSTS_N_INSNS (6), /* fp_add */
997 COSTS_N_INSNS (6), /* fp_mult_sf */
998 COSTS_N_INSNS (7), /* fp_mult_df */
999 COSTS_N_INSNS (25), /* fp_div_sf */
1000 COSTS_N_INSNS (48), /* fp_div_df */
1001 COSTS_N_INSNS (6), /* int_mult_si */
1002 COSTS_N_INSNS (6), /* int_mult_di */
1003 COSTS_N_INSNS (18), /* int_div_si */
1004 COSTS_N_INSNS (35), /* int_div_di */
1005 4, /* branch_cost */
1006 4 /* memory_latency */
1008 { /* R3900 */
1009 COSTS_N_INSNS (2), /* fp_add */
1010 COSTS_N_INSNS (4), /* fp_mult_sf */
1011 COSTS_N_INSNS (5), /* fp_mult_df */
1012 COSTS_N_INSNS (12), /* fp_div_sf */
1013 COSTS_N_INSNS (19), /* fp_div_df */
1014 COSTS_N_INSNS (2), /* int_mult_si */
1015 COSTS_N_INSNS (2), /* int_mult_di */
1016 COSTS_N_INSNS (35), /* int_div_si */
1017 COSTS_N_INSNS (35), /* int_div_di */
1018 1, /* branch_cost */
1019 4 /* memory_latency */
1021 { /* R6000 */
1022 COSTS_N_INSNS (3), /* fp_add */
1023 COSTS_N_INSNS (5), /* fp_mult_sf */
1024 COSTS_N_INSNS (6), /* fp_mult_df */
1025 COSTS_N_INSNS (15), /* fp_div_sf */
1026 COSTS_N_INSNS (16), /* fp_div_df */
1027 COSTS_N_INSNS (17), /* int_mult_si */
1028 COSTS_N_INSNS (17), /* int_mult_di */
1029 COSTS_N_INSNS (38), /* int_div_si */
1030 COSTS_N_INSNS (38), /* int_div_di */
1031 2, /* branch_cost */
1032 6 /* memory_latency */
1034 { /* R4000 */
1035 COSTS_N_INSNS (6), /* fp_add */
1036 COSTS_N_INSNS (7), /* fp_mult_sf */
1037 COSTS_N_INSNS (8), /* fp_mult_df */
1038 COSTS_N_INSNS (23), /* fp_div_sf */
1039 COSTS_N_INSNS (36), /* fp_div_df */
1040 COSTS_N_INSNS (10), /* int_mult_si */
1041 COSTS_N_INSNS (10), /* int_mult_di */
1042 COSTS_N_INSNS (69), /* int_div_si */
1043 COSTS_N_INSNS (69), /* int_div_di */
1044 2, /* branch_cost */
1045 6 /* memory_latency */
1047 { /* R4100 */
1048 DEFAULT_COSTS
1050 { /* R4111 */
1051 DEFAULT_COSTS
1053 { /* R4120 */
1054 DEFAULT_COSTS
1056 { /* R4130 */
1057 /* The only costs that appear to be updated here are
1058 integer multiplication. */
1059 SOFT_FP_COSTS,
1060 COSTS_N_INSNS (4), /* int_mult_si */
1061 COSTS_N_INSNS (6), /* int_mult_di */
1062 COSTS_N_INSNS (69), /* int_div_si */
1063 COSTS_N_INSNS (69), /* int_div_di */
1064 1, /* branch_cost */
1065 4 /* memory_latency */
1067 { /* R4300 */
1068 DEFAULT_COSTS
1070 { /* R4600 */
1071 DEFAULT_COSTS
1073 { /* R4650 */
1074 DEFAULT_COSTS
1076 { /* R4700 */
1077 DEFAULT_COSTS
1079 { /* R5000 */
1080 COSTS_N_INSNS (6), /* fp_add */
1081 COSTS_N_INSNS (4), /* fp_mult_sf */
1082 COSTS_N_INSNS (5), /* fp_mult_df */
1083 COSTS_N_INSNS (23), /* fp_div_sf */
1084 COSTS_N_INSNS (36), /* fp_div_df */
1085 COSTS_N_INSNS (5), /* int_mult_si */
1086 COSTS_N_INSNS (5), /* int_mult_di */
1087 COSTS_N_INSNS (36), /* int_div_si */
1088 COSTS_N_INSNS (36), /* int_div_di */
1089 1, /* branch_cost */
1090 4 /* memory_latency */
1092 { /* R5400 */
1093 COSTS_N_INSNS (6), /* fp_add */
1094 COSTS_N_INSNS (5), /* fp_mult_sf */
1095 COSTS_N_INSNS (6), /* fp_mult_df */
1096 COSTS_N_INSNS (30), /* fp_div_sf */
1097 COSTS_N_INSNS (59), /* fp_div_df */
1098 COSTS_N_INSNS (3), /* int_mult_si */
1099 COSTS_N_INSNS (4), /* int_mult_di */
1100 COSTS_N_INSNS (42), /* int_div_si */
1101 COSTS_N_INSNS (74), /* int_div_di */
1102 1, /* branch_cost */
1103 4 /* memory_latency */
1105 { /* R5500 */
1106 COSTS_N_INSNS (6), /* fp_add */
1107 COSTS_N_INSNS (5), /* fp_mult_sf */
1108 COSTS_N_INSNS (6), /* fp_mult_df */
1109 COSTS_N_INSNS (30), /* fp_div_sf */
1110 COSTS_N_INSNS (59), /* fp_div_df */
1111 COSTS_N_INSNS (5), /* int_mult_si */
1112 COSTS_N_INSNS (9), /* int_mult_di */
1113 COSTS_N_INSNS (42), /* int_div_si */
1114 COSTS_N_INSNS (74), /* int_div_di */
1115 1, /* branch_cost */
1116 4 /* memory_latency */
1118 { /* R5900 */
1119 COSTS_N_INSNS (4), /* fp_add */
1120 COSTS_N_INSNS (4), /* fp_mult_sf */
1121 COSTS_N_INSNS (256), /* fp_mult_df */
1122 COSTS_N_INSNS (8), /* fp_div_sf */
1123 COSTS_N_INSNS (256), /* fp_div_df */
1124 COSTS_N_INSNS (4), /* int_mult_si */
1125 COSTS_N_INSNS (256), /* int_mult_di */
1126 COSTS_N_INSNS (37), /* int_div_si */
1127 COSTS_N_INSNS (256), /* int_div_di */
1128 1, /* branch_cost */
1129 4 /* memory_latency */
1131 { /* R7000 */
1132 /* The only costs that are changed here are
1133 integer multiplication. */
1134 COSTS_N_INSNS (6), /* fp_add */
1135 COSTS_N_INSNS (7), /* fp_mult_sf */
1136 COSTS_N_INSNS (8), /* fp_mult_df */
1137 COSTS_N_INSNS (23), /* fp_div_sf */
1138 COSTS_N_INSNS (36), /* fp_div_df */
1139 COSTS_N_INSNS (5), /* int_mult_si */
1140 COSTS_N_INSNS (9), /* int_mult_di */
1141 COSTS_N_INSNS (69), /* int_div_si */
1142 COSTS_N_INSNS (69), /* int_div_di */
1143 1, /* branch_cost */
1144 4 /* memory_latency */
1146 { /* R8000 */
1147 DEFAULT_COSTS
1149 { /* R9000 */
1150 /* The only costs that are changed here are
1151 integer multiplication. */
1152 COSTS_N_INSNS (6), /* fp_add */
1153 COSTS_N_INSNS (7), /* fp_mult_sf */
1154 COSTS_N_INSNS (8), /* fp_mult_df */
1155 COSTS_N_INSNS (23), /* fp_div_sf */
1156 COSTS_N_INSNS (36), /* fp_div_df */
1157 COSTS_N_INSNS (3), /* int_mult_si */
1158 COSTS_N_INSNS (8), /* int_mult_di */
1159 COSTS_N_INSNS (69), /* int_div_si */
1160 COSTS_N_INSNS (69), /* int_div_di */
1161 1, /* branch_cost */
1162 4 /* memory_latency */
1164 { /* R1x000 */
1165 COSTS_N_INSNS (2), /* fp_add */
1166 COSTS_N_INSNS (2), /* fp_mult_sf */
1167 COSTS_N_INSNS (2), /* fp_mult_df */
1168 COSTS_N_INSNS (12), /* fp_div_sf */
1169 COSTS_N_INSNS (19), /* fp_div_df */
1170 COSTS_N_INSNS (5), /* int_mult_si */
1171 COSTS_N_INSNS (9), /* int_mult_di */
1172 COSTS_N_INSNS (34), /* int_div_si */
1173 COSTS_N_INSNS (66), /* int_div_di */
1174 1, /* branch_cost */
1175 4 /* memory_latency */
1177 { /* SB1 */
1178 /* These costs are the same as the SB-1A below. */
1179 COSTS_N_INSNS (4), /* fp_add */
1180 COSTS_N_INSNS (4), /* fp_mult_sf */
1181 COSTS_N_INSNS (4), /* fp_mult_df */
1182 COSTS_N_INSNS (24), /* fp_div_sf */
1183 COSTS_N_INSNS (32), /* fp_div_df */
1184 COSTS_N_INSNS (3), /* int_mult_si */
1185 COSTS_N_INSNS (4), /* int_mult_di */
1186 COSTS_N_INSNS (36), /* int_div_si */
1187 COSTS_N_INSNS (68), /* int_div_di */
1188 1, /* branch_cost */
1189 4 /* memory_latency */
1191 { /* SB1-A */
1192 /* These costs are the same as the SB-1 above. */
1193 COSTS_N_INSNS (4), /* fp_add */
1194 COSTS_N_INSNS (4), /* fp_mult_sf */
1195 COSTS_N_INSNS (4), /* fp_mult_df */
1196 COSTS_N_INSNS (24), /* fp_div_sf */
1197 COSTS_N_INSNS (32), /* fp_div_df */
1198 COSTS_N_INSNS (3), /* int_mult_si */
1199 COSTS_N_INSNS (4), /* int_mult_di */
1200 COSTS_N_INSNS (36), /* int_div_si */
1201 COSTS_N_INSNS (68), /* int_div_di */
1202 1, /* branch_cost */
1203 4 /* memory_latency */
1205 { /* SR71000 */
1206 DEFAULT_COSTS
1208 { /* XLR */
1209 SOFT_FP_COSTS,
1210 COSTS_N_INSNS (8), /* int_mult_si */
1211 COSTS_N_INSNS (8), /* int_mult_di */
1212 COSTS_N_INSNS (72), /* int_div_si */
1213 COSTS_N_INSNS (72), /* int_div_di */
1214 1, /* branch_cost */
1215 4 /* memory_latency */
1217 { /* XLP */
1218 /* These costs are the same as 5KF above. */
1219 COSTS_N_INSNS (4), /* fp_add */
1220 COSTS_N_INSNS (4), /* fp_mult_sf */
1221 COSTS_N_INSNS (5), /* fp_mult_df */
1222 COSTS_N_INSNS (17), /* fp_div_sf */
1223 COSTS_N_INSNS (32), /* fp_div_df */
1224 COSTS_N_INSNS (4), /* int_mult_si */
1225 COSTS_N_INSNS (11), /* int_mult_di */
1226 COSTS_N_INSNS (36), /* int_div_si */
1227 COSTS_N_INSNS (68), /* int_div_di */
1228 1, /* branch_cost */
1229 4 /* memory_latency */
1231 { /* P5600 */
1232 COSTS_N_INSNS (4), /* fp_add */
1233 COSTS_N_INSNS (5), /* fp_mult_sf */
1234 COSTS_N_INSNS (5), /* fp_mult_df */
1235 COSTS_N_INSNS (17), /* fp_div_sf */
1236 COSTS_N_INSNS (17), /* fp_div_df */
1237 COSTS_N_INSNS (5), /* int_mult_si */
1238 COSTS_N_INSNS (5), /* int_mult_di */
1239 COSTS_N_INSNS (8), /* int_div_si */
1240 COSTS_N_INSNS (8), /* int_div_di */
1241 2, /* branch_cost */
1242 4 /* memory_latency */
1244 { /* W32 */
1245 COSTS_N_INSNS (4), /* fp_add */
1246 COSTS_N_INSNS (4), /* fp_mult_sf */
1247 COSTS_N_INSNS (5), /* fp_mult_df */
1248 COSTS_N_INSNS (17), /* fp_div_sf */
1249 COSTS_N_INSNS (32), /* fp_div_df */
1250 COSTS_N_INSNS (5), /* int_mult_si */
1251 COSTS_N_INSNS (5), /* int_mult_di */
1252 COSTS_N_INSNS (41), /* int_div_si */
1253 COSTS_N_INSNS (41), /* int_div_di */
1254 1, /* branch_cost */
1255 4 /* memory_latency */
1257 { /* W64 */
1258 COSTS_N_INSNS (4), /* fp_add */
1259 COSTS_N_INSNS (4), /* fp_mult_sf */
1260 COSTS_N_INSNS (5), /* fp_mult_df */
1261 COSTS_N_INSNS (17), /* fp_div_sf */
1262 COSTS_N_INSNS (32), /* fp_div_df */
1263 COSTS_N_INSNS (5), /* int_mult_si */
1264 COSTS_N_INSNS (5), /* int_mult_di */
1265 COSTS_N_INSNS (41), /* int_div_si */
1266 COSTS_N_INSNS (41), /* int_div_di */
1267 1, /* branch_cost */
1268 4 /* memory_latency */
1272 static rtx mips_find_pic_call_symbol (rtx_insn *, rtx, bool);
1273 static int mips_register_move_cost (machine_mode, reg_class_t,
1274 reg_class_t);
1275 static unsigned int mips_function_arg_boundary (machine_mode, const_tree);
1276 static machine_mode mips_get_reg_raw_mode (int regno);
1278 struct mips16_flip_traits : default_hashmap_traits
1280 static hashval_t hash (const char *s) { return htab_hash_string (s); }
1281 static bool
1282 equal_keys (const char *a, const char *b)
1284 return !strcmp (a, b);
1288 /* This hash table keeps track of implicit "mips16" and "nomips16" attributes
1289 for -mflip_mips16. It maps decl names onto a boolean mode setting. */
1290 static GTY (()) hash_map<const char *, bool, mips16_flip_traits> *
1291 mflip_mips16_htab;
1293 /* True if -mflip-mips16 should next add an attribute for the default MIPS16
1294 mode, false if it should next add an attribute for the opposite mode. */
1295 static GTY(()) bool mips16_flipper;
1297 /* DECL is a function that needs a default "mips16" or "nomips16" attribute
1298 for -mflip-mips16. Return true if it should use "mips16" and false if
1299 it should use "nomips16". */
1301 static bool
1302 mflip_mips16_use_mips16_p (tree decl)
1304 const char *name;
1305 bool base_is_mips16 = (mips_base_compression_flags & MASK_MIPS16) != 0;
1307 /* Use the opposite of the command-line setting for anonymous decls. */
1308 if (!DECL_NAME (decl))
1309 return !base_is_mips16;
1311 if (!mflip_mips16_htab)
1312 mflip_mips16_htab
1313 = hash_map<const char *, bool, mips16_flip_traits>::create_ggc (37);
1315 name = IDENTIFIER_POINTER (DECL_NAME (decl));
1317 bool existed;
1318 bool *slot = &mflip_mips16_htab->get_or_insert (name, &existed);
1319 if (!existed)
1321 mips16_flipper = !mips16_flipper;
1322 *slot = mips16_flipper ? !base_is_mips16 : base_is_mips16;
1324 return *slot;
1327 /* Predicates to test for presence of "near" and "far"/"long_call"
1328 attributes on the given TYPE. */
1330 static bool
1331 mips_near_type_p (const_tree type)
1333 return lookup_attribute ("near", TYPE_ATTRIBUTES (type)) != NULL;
1336 static bool
1337 mips_far_type_p (const_tree type)
1339 return (lookup_attribute ("long_call", TYPE_ATTRIBUTES (type)) != NULL
1340 || lookup_attribute ("far", TYPE_ATTRIBUTES (type)) != NULL);
1344 /* Check if the interrupt attribute is set for a function. */
1346 static bool
1347 mips_interrupt_type_p (tree type)
1349 return lookup_attribute ("interrupt", TYPE_ATTRIBUTES (type)) != NULL;
1352 /* Check if the attribute to use shadow register set is set for a function. */
1354 static bool
1355 mips_use_shadow_register_set_p (tree type)
1357 return lookup_attribute ("use_shadow_register_set",
1358 TYPE_ATTRIBUTES (type)) != NULL;
1361 /* Check if the attribute to keep interrupts masked is set for a function. */
1363 static bool
1364 mips_keep_interrupts_masked_p (tree type)
1366 return lookup_attribute ("keep_interrupts_masked",
1367 TYPE_ATTRIBUTES (type)) != NULL;
1370 /* Check if the attribute to use debug exception return is set for
1371 a function. */
1373 static bool
1374 mips_use_debug_exception_return_p (tree type)
1376 return lookup_attribute ("use_debug_exception_return",
1377 TYPE_ATTRIBUTES (type)) != NULL;
1380 /* Return the set of compression modes that are explicitly required
1381 by the attributes in ATTRIBUTES. */
1383 static unsigned int
1384 mips_get_compress_on_flags (tree attributes)
1386 unsigned int flags = 0;
1388 if (lookup_attribute ("mips16", attributes) != NULL)
1389 flags |= MASK_MIPS16;
1391 if (lookup_attribute ("micromips", attributes) != NULL)
1392 flags |= MASK_MICROMIPS;
1394 return flags;
1397 /* Return the set of compression modes that are explicitly forbidden
1398 by the attributes in ATTRIBUTES. */
1400 static unsigned int
1401 mips_get_compress_off_flags (tree attributes)
1403 unsigned int flags = 0;
1405 if (lookup_attribute ("nocompression", attributes) != NULL)
1406 flags |= MASK_MIPS16 | MASK_MICROMIPS;
1408 if (lookup_attribute ("nomips16", attributes) != NULL)
1409 flags |= MASK_MIPS16;
1411 if (lookup_attribute ("nomicromips", attributes) != NULL)
1412 flags |= MASK_MICROMIPS;
1414 return flags;
1417 /* Return the compression mode that should be used for function DECL.
1418 Return the ambient setting if DECL is null. */
1420 static unsigned int
1421 mips_get_compress_mode (tree decl)
1423 unsigned int flags, force_on;
1425 flags = mips_base_compression_flags;
1426 if (decl)
1428 /* Nested functions must use the same frame pointer as their
1429 parent and must therefore use the same ISA mode. */
1430 tree parent = decl_function_context (decl);
1431 if (parent)
1432 decl = parent;
1433 force_on = mips_get_compress_on_flags (DECL_ATTRIBUTES (decl));
1434 if (force_on)
1435 return force_on;
1436 flags &= ~mips_get_compress_off_flags (DECL_ATTRIBUTES (decl));
1438 return flags;
1441 /* Return the attribute name associated with MASK_MIPS16 and MASK_MICROMIPS
1442 flags FLAGS. */
1444 static const char *
1445 mips_get_compress_on_name (unsigned int flags)
1447 if (flags == MASK_MIPS16)
1448 return "mips16";
1449 return "micromips";
1452 /* Return the attribute name that forbids MASK_MIPS16 and MASK_MICROMIPS
1453 flags FLAGS. */
1455 static const char *
1456 mips_get_compress_off_name (unsigned int flags)
1458 if (flags == MASK_MIPS16)
1459 return "nomips16";
1460 if (flags == MASK_MICROMIPS)
1461 return "nomicromips";
1462 return "nocompression";
1465 /* Implement TARGET_COMP_TYPE_ATTRIBUTES. */
1467 static int
1468 mips_comp_type_attributes (const_tree type1, const_tree type2)
1470 /* Disallow mixed near/far attributes. */
1471 if (mips_far_type_p (type1) && mips_near_type_p (type2))
1472 return 0;
1473 if (mips_near_type_p (type1) && mips_far_type_p (type2))
1474 return 0;
1475 return 1;
1478 /* Implement TARGET_INSERT_ATTRIBUTES. */
1480 static void
1481 mips_insert_attributes (tree decl, tree *attributes)
1483 const char *name;
1484 unsigned int compression_flags, nocompression_flags;
1486 /* Check for "mips16" and "nomips16" attributes. */
1487 compression_flags = mips_get_compress_on_flags (*attributes);
1488 nocompression_flags = mips_get_compress_off_flags (*attributes);
1490 if (TREE_CODE (decl) != FUNCTION_DECL)
1492 if (nocompression_flags)
1493 error ("%qs attribute only applies to functions",
1494 mips_get_compress_off_name (nocompression_flags));
1496 if (compression_flags)
1497 error ("%qs attribute only applies to functions",
1498 mips_get_compress_on_name (nocompression_flags));
1500 else
1502 compression_flags |= mips_get_compress_on_flags (DECL_ATTRIBUTES (decl));
1503 nocompression_flags |=
1504 mips_get_compress_off_flags (DECL_ATTRIBUTES (decl));
1506 if (compression_flags && nocompression_flags)
1507 error ("%qE cannot have both %qs and %qs attributes",
1508 DECL_NAME (decl), mips_get_compress_on_name (compression_flags),
1509 mips_get_compress_off_name (nocompression_flags));
1511 if (compression_flags & MASK_MIPS16
1512 && compression_flags & MASK_MICROMIPS)
1513 error ("%qE cannot have both %qs and %qs attributes",
1514 DECL_NAME (decl), "mips16", "micromips");
1516 if (TARGET_FLIP_MIPS16
1517 && !DECL_ARTIFICIAL (decl)
1518 && compression_flags == 0
1519 && nocompression_flags == 0)
1521 /* Implement -mflip-mips16. If DECL has neither a "nomips16" nor a
1522 "mips16" attribute, arbitrarily pick one. We must pick the same
1523 setting for duplicate declarations of a function. */
1524 name = mflip_mips16_use_mips16_p (decl) ? "mips16" : "nomips16";
1525 *attributes = tree_cons (get_identifier (name), NULL, *attributes);
1526 name = "nomicromips";
1527 *attributes = tree_cons (get_identifier (name), NULL, *attributes);
1532 /* Implement TARGET_MERGE_DECL_ATTRIBUTES. */
1534 static tree
1535 mips_merge_decl_attributes (tree olddecl, tree newdecl)
1537 unsigned int diff;
1539 diff = (mips_get_compress_on_flags (DECL_ATTRIBUTES (olddecl))
1540 ^ mips_get_compress_on_flags (DECL_ATTRIBUTES (newdecl)));
1541 if (diff)
1542 error ("%qE redeclared with conflicting %qs attributes",
1543 DECL_NAME (newdecl), mips_get_compress_on_name (diff));
1545 diff = (mips_get_compress_off_flags (DECL_ATTRIBUTES (olddecl))
1546 ^ mips_get_compress_off_flags (DECL_ATTRIBUTES (newdecl)));
1547 if (diff)
1548 error ("%qE redeclared with conflicting %qs attributes",
1549 DECL_NAME (newdecl), mips_get_compress_off_name (diff));
1551 return merge_attributes (DECL_ATTRIBUTES (olddecl),
1552 DECL_ATTRIBUTES (newdecl));
1555 /* Implement TARGET_CAN_INLINE_P. */
1557 static bool
1558 mips_can_inline_p (tree caller, tree callee)
1560 if (mips_get_compress_mode (callee) != mips_get_compress_mode (caller))
1561 return false;
1562 return default_target_can_inline_p (caller, callee);
1565 /* If X is a PLUS of a CONST_INT, return the two terms in *BASE_PTR
1566 and *OFFSET_PTR. Return X in *BASE_PTR and 0 in *OFFSET_PTR otherwise. */
1568 static void
1569 mips_split_plus (rtx x, rtx *base_ptr, HOST_WIDE_INT *offset_ptr)
1571 if (GET_CODE (x) == PLUS && CONST_INT_P (XEXP (x, 1)))
1573 *base_ptr = XEXP (x, 0);
1574 *offset_ptr = INTVAL (XEXP (x, 1));
1576 else
1578 *base_ptr = x;
1579 *offset_ptr = 0;
1583 static unsigned int mips_build_integer (struct mips_integer_op *,
1584 unsigned HOST_WIDE_INT);
1586 /* A subroutine of mips_build_integer, with the same interface.
1587 Assume that the final action in the sequence should be a left shift. */
1589 static unsigned int
1590 mips_build_shift (struct mips_integer_op *codes, HOST_WIDE_INT value)
1592 unsigned int i, shift;
1594 /* Shift VALUE right until its lowest bit is set. Shift arithmetically
1595 since signed numbers are easier to load than unsigned ones. */
1596 shift = 0;
1597 while ((value & 1) == 0)
1598 value /= 2, shift++;
1600 i = mips_build_integer (codes, value);
1601 codes[i].code = ASHIFT;
1602 codes[i].value = shift;
1603 return i + 1;
1606 /* As for mips_build_shift, but assume that the final action will be
1607 an IOR or PLUS operation. */
1609 static unsigned int
1610 mips_build_lower (struct mips_integer_op *codes, unsigned HOST_WIDE_INT value)
1612 unsigned HOST_WIDE_INT high;
1613 unsigned int i;
1615 high = value & ~(unsigned HOST_WIDE_INT) 0xffff;
1616 if (!LUI_OPERAND (high) && (value & 0x18000) == 0x18000)
1618 /* The constant is too complex to load with a simple LUI/ORI pair,
1619 so we want to give the recursive call as many trailing zeros as
1620 possible. In this case, we know bit 16 is set and that the
1621 low 16 bits form a negative number. If we subtract that number
1622 from VALUE, we will clear at least the lowest 17 bits, maybe more. */
1623 i = mips_build_integer (codes, CONST_HIGH_PART (value));
1624 codes[i].code = PLUS;
1625 codes[i].value = CONST_LOW_PART (value);
1627 else
1629 /* Either this is a simple LUI/ORI pair, or clearing the lowest 16
1630 bits gives a value with at least 17 trailing zeros. */
1631 i = mips_build_integer (codes, high);
1632 codes[i].code = IOR;
1633 codes[i].value = value & 0xffff;
1635 return i + 1;
1638 /* Fill CODES with a sequence of rtl operations to load VALUE.
1639 Return the number of operations needed. */
1641 static unsigned int
1642 mips_build_integer (struct mips_integer_op *codes,
1643 unsigned HOST_WIDE_INT value)
1645 if (SMALL_OPERAND (value)
1646 || SMALL_OPERAND_UNSIGNED (value)
1647 || LUI_OPERAND (value))
1649 /* The value can be loaded with a single instruction. */
1650 codes[0].code = UNKNOWN;
1651 codes[0].value = value;
1652 return 1;
1654 else if ((value & 1) != 0 || LUI_OPERAND (CONST_HIGH_PART (value)))
1656 /* Either the constant is a simple LUI/ORI combination or its
1657 lowest bit is set. We don't want to shift in this case. */
1658 return mips_build_lower (codes, value);
1660 else if ((value & 0xffff) == 0)
1662 /* The constant will need at least three actions. The lowest
1663 16 bits are clear, so the final action will be a shift. */
1664 return mips_build_shift (codes, value);
1666 else
1668 /* The final action could be a shift, add or inclusive OR.
1669 Rather than use a complex condition to select the best
1670 approach, try both mips_build_shift and mips_build_lower
1671 and pick the one that gives the shortest sequence.
1672 Note that this case is only used once per constant. */
1673 struct mips_integer_op alt_codes[MIPS_MAX_INTEGER_OPS];
1674 unsigned int cost, alt_cost;
1676 cost = mips_build_shift (codes, value);
1677 alt_cost = mips_build_lower (alt_codes, value);
1678 if (alt_cost < cost)
1680 memcpy (codes, alt_codes, alt_cost * sizeof (codes[0]));
1681 cost = alt_cost;
1683 return cost;
1687 /* Implement TARGET_LEGITIMATE_CONSTANT_P. */
1689 static bool
1690 mips_legitimate_constant_p (machine_mode mode ATTRIBUTE_UNUSED, rtx x)
1692 return mips_const_insns (x) > 0;
1695 /* Return a SYMBOL_REF for a MIPS16 function called NAME. */
1697 static rtx
1698 mips16_stub_function (const char *name)
1700 rtx x;
1702 x = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (name));
1703 SYMBOL_REF_FLAGS (x) |= (SYMBOL_FLAG_EXTERNAL | SYMBOL_FLAG_FUNCTION);
1704 return x;
1707 /* Return a legitimate call address for STUB, given that STUB is a MIPS16
1708 support function. */
1710 static rtx
1711 mips16_stub_call_address (mips_one_only_stub *stub)
1713 rtx fn = mips16_stub_function (stub->get_name ());
1714 SYMBOL_REF_FLAGS (fn) |= SYMBOL_FLAG_LOCAL;
1715 if (!call_insn_operand (fn, VOIDmode))
1716 fn = force_reg (Pmode, fn);
1717 return fn;
1720 /* A stub for moving the thread pointer into TLS_GET_TP_REGNUM. */
1722 class mips16_rdhwr_one_only_stub : public mips_one_only_stub
1724 virtual const char *get_name ();
1725 virtual void output_body ();
1728 const char *
1729 mips16_rdhwr_one_only_stub::get_name ()
1731 return "__mips16_rdhwr";
1734 void
1735 mips16_rdhwr_one_only_stub::output_body ()
1737 fprintf (asm_out_file,
1738 "\t.set\tpush\n"
1739 "\t.set\tmips32r2\n"
1740 "\t.set\tnoreorder\n"
1741 "\trdhwr\t$3,$29\n"
1742 "\t.set\tpop\n"
1743 "\tj\t$31\n");
1746 /* A stub for moving the FCSR into GET_FCSR_REGNUM. */
1747 class mips16_get_fcsr_one_only_stub : public mips_one_only_stub
1749 virtual const char *get_name ();
1750 virtual void output_body ();
1753 const char *
1754 mips16_get_fcsr_one_only_stub::get_name ()
1756 return "__mips16_get_fcsr";
1759 void
1760 mips16_get_fcsr_one_only_stub::output_body ()
1762 fprintf (asm_out_file,
1763 "\tcfc1\t%s,$31\n"
1764 "\tj\t$31\n", reg_names[GET_FCSR_REGNUM]);
1767 /* A stub for moving SET_FCSR_REGNUM into the FCSR. */
1768 class mips16_set_fcsr_one_only_stub : public mips_one_only_stub
1770 virtual const char *get_name ();
1771 virtual void output_body ();
1774 const char *
1775 mips16_set_fcsr_one_only_stub::get_name ()
1777 return "__mips16_set_fcsr";
1780 void
1781 mips16_set_fcsr_one_only_stub::output_body ()
1783 fprintf (asm_out_file,
1784 "\tctc1\t%s,$31\n"
1785 "\tj\t$31\n", reg_names[SET_FCSR_REGNUM]);
1788 /* Return true if symbols of type TYPE require a GOT access. */
1790 static bool
1791 mips_got_symbol_type_p (enum mips_symbol_type type)
1793 switch (type)
1795 case SYMBOL_GOT_PAGE_OFST:
1796 case SYMBOL_GOT_DISP:
1797 return true;
1799 default:
1800 return false;
1804 /* Return true if X is a thread-local symbol. */
1806 static bool
1807 mips_tls_symbol_p (rtx x)
1809 return GET_CODE (x) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (x) != 0;
1812 /* Return true if SYMBOL_REF X is associated with a global symbol
1813 (in the STB_GLOBAL sense). */
1815 static bool
1816 mips_global_symbol_p (const_rtx x)
1818 const_tree decl = SYMBOL_REF_DECL (x);
1820 if (!decl)
1821 return !SYMBOL_REF_LOCAL_P (x) || SYMBOL_REF_EXTERNAL_P (x);
1823 /* Weakref symbols are not TREE_PUBLIC, but their targets are global
1824 or weak symbols. Relocations in the object file will be against
1825 the target symbol, so it's that symbol's binding that matters here. */
1826 return DECL_P (decl) && (TREE_PUBLIC (decl) || DECL_WEAK (decl));
1829 /* Return true if function X is a libgcc MIPS16 stub function. */
1831 static bool
1832 mips16_stub_function_p (const_rtx x)
1834 return (GET_CODE (x) == SYMBOL_REF
1835 && strncmp (XSTR (x, 0), "__mips16_", 9) == 0);
1838 /* Return true if function X is a locally-defined and locally-binding
1839 MIPS16 function. */
1841 static bool
1842 mips16_local_function_p (const_rtx x)
1844 return (GET_CODE (x) == SYMBOL_REF
1845 && SYMBOL_REF_LOCAL_P (x)
1846 && !SYMBOL_REF_EXTERNAL_P (x)
1847 && (mips_get_compress_mode (SYMBOL_REF_DECL (x)) & MASK_MIPS16));
1850 /* Return true if SYMBOL_REF X binds locally. */
1852 static bool
1853 mips_symbol_binds_local_p (const_rtx x)
1855 return (SYMBOL_REF_DECL (x)
1856 ? targetm.binds_local_p (SYMBOL_REF_DECL (x))
1857 : SYMBOL_REF_LOCAL_P (x));
1860 /* Return true if rtx constants of mode MODE should be put into a small
1861 data section. */
1863 static bool
1864 mips_rtx_constant_in_small_data_p (machine_mode mode)
1866 return (!TARGET_EMBEDDED_DATA
1867 && TARGET_LOCAL_SDATA
1868 && GET_MODE_SIZE (mode) <= mips_small_data_threshold);
1871 /* Return true if X should not be moved directly into register $25.
1872 We need this because many versions of GAS will treat "la $25,foo" as
1873 part of a call sequence and so allow a global "foo" to be lazily bound. */
1875 bool
1876 mips_dangerous_for_la25_p (rtx x)
1878 return (!TARGET_EXPLICIT_RELOCS
1879 && TARGET_USE_GOT
1880 && GET_CODE (x) == SYMBOL_REF
1881 && mips_global_symbol_p (x));
1884 /* Return true if calls to X might need $25 to be valid on entry. */
1886 bool
1887 mips_use_pic_fn_addr_reg_p (const_rtx x)
1889 if (!TARGET_USE_PIC_FN_ADDR_REG)
1890 return false;
1892 /* MIPS16 stub functions are guaranteed not to use $25. */
1893 if (mips16_stub_function_p (x))
1894 return false;
1896 if (GET_CODE (x) == SYMBOL_REF)
1898 /* If PLTs and copy relocations are available, the static linker
1899 will make sure that $25 is valid on entry to the target function. */
1900 if (TARGET_ABICALLS_PIC0)
1901 return false;
1903 /* Locally-defined functions use absolute accesses to set up
1904 the global pointer. */
1905 if (TARGET_ABSOLUTE_ABICALLS
1906 && mips_symbol_binds_local_p (x)
1907 && !SYMBOL_REF_EXTERNAL_P (x))
1908 return false;
1911 return true;
1914 /* Return the method that should be used to access SYMBOL_REF or
1915 LABEL_REF X in context CONTEXT. */
1917 static enum mips_symbol_type
1918 mips_classify_symbol (const_rtx x, enum mips_symbol_context context)
1920 if (TARGET_RTP_PIC)
1921 return SYMBOL_GOT_DISP;
1923 if (GET_CODE (x) == LABEL_REF)
1925 /* Only return SYMBOL_PC_RELATIVE if we are generating MIPS16
1926 code and if we know that the label is in the current function's
1927 text section. LABEL_REFs are used for jump tables as well as
1928 text labels, so we must check whether jump tables live in the
1929 text section. */
1930 if (TARGET_MIPS16_SHORT_JUMP_TABLES
1931 && !LABEL_REF_NONLOCAL_P (x))
1932 return SYMBOL_PC_RELATIVE;
1934 if (TARGET_ABICALLS && !TARGET_ABSOLUTE_ABICALLS)
1935 return SYMBOL_GOT_PAGE_OFST;
1937 return SYMBOL_ABSOLUTE;
1940 gcc_assert (GET_CODE (x) == SYMBOL_REF);
1942 if (SYMBOL_REF_TLS_MODEL (x))
1943 return SYMBOL_TLS;
1945 if (CONSTANT_POOL_ADDRESS_P (x))
1947 if (TARGET_MIPS16_TEXT_LOADS)
1948 return SYMBOL_PC_RELATIVE;
1950 if (TARGET_MIPS16_PCREL_LOADS && context == SYMBOL_CONTEXT_MEM)
1951 return SYMBOL_PC_RELATIVE;
1953 if (mips_rtx_constant_in_small_data_p (get_pool_mode (x)))
1954 return SYMBOL_GP_RELATIVE;
1957 /* Do not use small-data accesses for weak symbols; they may end up
1958 being zero. */
1959 if (TARGET_GPOPT && SYMBOL_REF_SMALL_P (x) && !SYMBOL_REF_WEAK (x))
1960 return SYMBOL_GP_RELATIVE;
1962 /* Don't use GOT accesses for locally-binding symbols when -mno-shared
1963 is in effect. */
1964 if (TARGET_ABICALLS_PIC2
1965 && !(TARGET_ABSOLUTE_ABICALLS && mips_symbol_binds_local_p (x)))
1967 /* There are three cases to consider:
1969 - o32 PIC (either with or without explicit relocs)
1970 - n32/n64 PIC without explicit relocs
1971 - n32/n64 PIC with explicit relocs
1973 In the first case, both local and global accesses will use an
1974 R_MIPS_GOT16 relocation. We must correctly predict which of
1975 the two semantics (local or global) the assembler and linker
1976 will apply. The choice depends on the symbol's binding rather
1977 than its visibility.
1979 In the second case, the assembler will not use R_MIPS_GOT16
1980 relocations, but it chooses between local and global accesses
1981 in the same way as for o32 PIC.
1983 In the third case we have more freedom since both forms of
1984 access will work for any kind of symbol. However, there seems
1985 little point in doing things differently. */
1986 if (mips_global_symbol_p (x))
1987 return SYMBOL_GOT_DISP;
1989 return SYMBOL_GOT_PAGE_OFST;
1992 return SYMBOL_ABSOLUTE;
1995 /* Classify the base of symbolic expression X, given that X appears in
1996 context CONTEXT. */
1998 static enum mips_symbol_type
1999 mips_classify_symbolic_expression (rtx x, enum mips_symbol_context context)
2001 rtx offset;
2003 split_const (x, &x, &offset);
2004 if (UNSPEC_ADDRESS_P (x))
2005 return UNSPEC_ADDRESS_TYPE (x);
2007 return mips_classify_symbol (x, context);
2010 /* Return true if OFFSET is within the range [0, ALIGN), where ALIGN
2011 is the alignment in bytes of SYMBOL_REF X. */
2013 static bool
2014 mips_offset_within_alignment_p (rtx x, HOST_WIDE_INT offset)
2016 HOST_WIDE_INT align;
2018 align = SYMBOL_REF_DECL (x) ? DECL_ALIGN_UNIT (SYMBOL_REF_DECL (x)) : 1;
2019 return IN_RANGE (offset, 0, align - 1);
2022 /* Return true if X is a symbolic constant that can be used in context
2023 CONTEXT. If it is, store the type of the symbol in *SYMBOL_TYPE. */
2025 bool
2026 mips_symbolic_constant_p (rtx x, enum mips_symbol_context context,
2027 enum mips_symbol_type *symbol_type)
2029 rtx offset;
2031 split_const (x, &x, &offset);
2032 if (UNSPEC_ADDRESS_P (x))
2034 *symbol_type = UNSPEC_ADDRESS_TYPE (x);
2035 x = UNSPEC_ADDRESS (x);
2037 else if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
2039 *symbol_type = mips_classify_symbol (x, context);
2040 if (*symbol_type == SYMBOL_TLS)
2041 return false;
2043 else
2044 return false;
2046 if (offset == const0_rtx)
2047 return true;
2049 /* Check whether a nonzero offset is valid for the underlying
2050 relocations. */
2051 switch (*symbol_type)
2053 case SYMBOL_ABSOLUTE:
2054 case SYMBOL_64_HIGH:
2055 case SYMBOL_64_MID:
2056 case SYMBOL_64_LOW:
2057 /* If the target has 64-bit pointers and the object file only
2058 supports 32-bit symbols, the values of those symbols will be
2059 sign-extended. In this case we can't allow an arbitrary offset
2060 in case the 32-bit value X + OFFSET has a different sign from X. */
2061 if (Pmode == DImode && !ABI_HAS_64BIT_SYMBOLS)
2062 return offset_within_block_p (x, INTVAL (offset));
2064 /* In other cases the relocations can handle any offset. */
2065 return true;
2067 case SYMBOL_PC_RELATIVE:
2068 /* Allow constant pool references to be converted to LABEL+CONSTANT.
2069 In this case, we no longer have access to the underlying constant,
2070 but the original symbol-based access was known to be valid. */
2071 if (GET_CODE (x) == LABEL_REF)
2072 return true;
2074 /* Fall through. */
2076 case SYMBOL_GP_RELATIVE:
2077 /* Make sure that the offset refers to something within the
2078 same object block. This should guarantee that the final
2079 PC- or GP-relative offset is within the 16-bit limit. */
2080 return offset_within_block_p (x, INTVAL (offset));
2082 case SYMBOL_GOT_PAGE_OFST:
2083 case SYMBOL_GOTOFF_PAGE:
2084 /* If the symbol is global, the GOT entry will contain the symbol's
2085 address, and we will apply a 16-bit offset after loading it.
2086 If the symbol is local, the linker should provide enough local
2087 GOT entries for a 16-bit offset, but larger offsets may lead
2088 to GOT overflow. */
2089 return SMALL_INT (offset);
2091 case SYMBOL_TPREL:
2092 case SYMBOL_DTPREL:
2093 /* There is no carry between the HI and LO REL relocations, so the
2094 offset is only valid if we know it won't lead to such a carry. */
2095 return mips_offset_within_alignment_p (x, INTVAL (offset));
2097 case SYMBOL_GOT_DISP:
2098 case SYMBOL_GOTOFF_DISP:
2099 case SYMBOL_GOTOFF_CALL:
2100 case SYMBOL_GOTOFF_LOADGP:
2101 case SYMBOL_TLSGD:
2102 case SYMBOL_TLSLDM:
2103 case SYMBOL_GOTTPREL:
2104 case SYMBOL_TLS:
2105 case SYMBOL_HALF:
2106 return false;
2108 gcc_unreachable ();
2111 /* Like mips_symbol_insns, but treat extended MIPS16 instructions as a
2112 single instruction. We rely on the fact that, in the worst case,
2113 all instructions involved in a MIPS16 address calculation are usually
2114 extended ones. */
2116 static int
2117 mips_symbol_insns_1 (enum mips_symbol_type type, machine_mode mode)
2119 if (mips_use_pcrel_pool_p[(int) type])
2121 if (mode == MAX_MACHINE_MODE)
2122 /* LEAs will be converted into constant-pool references by
2123 mips_reorg. */
2124 type = SYMBOL_PC_RELATIVE;
2125 else
2126 /* The constant must be loaded and then dereferenced. */
2127 return 0;
2130 switch (type)
2132 case SYMBOL_ABSOLUTE:
2133 /* When using 64-bit symbols, we need 5 preparatory instructions,
2134 such as:
2136 lui $at,%highest(symbol)
2137 daddiu $at,$at,%higher(symbol)
2138 dsll $at,$at,16
2139 daddiu $at,$at,%hi(symbol)
2140 dsll $at,$at,16
2142 The final address is then $at + %lo(symbol). With 32-bit
2143 symbols we just need a preparatory LUI for normal mode and
2144 a preparatory LI and SLL for MIPS16. */
2145 return ABI_HAS_64BIT_SYMBOLS ? 6 : TARGET_MIPS16 ? 3 : 2;
2147 case SYMBOL_GP_RELATIVE:
2148 /* Treat GP-relative accesses as taking a single instruction on
2149 MIPS16 too; the copy of $gp can often be shared. */
2150 return 1;
2152 case SYMBOL_PC_RELATIVE:
2153 /* PC-relative constants can be only be used with ADDIUPC,
2154 DADDIUPC, LWPC and LDPC. */
2155 if (mode == MAX_MACHINE_MODE
2156 || GET_MODE_SIZE (mode) == 4
2157 || GET_MODE_SIZE (mode) == 8)
2158 return 1;
2160 /* The constant must be loaded using ADDIUPC or DADDIUPC first. */
2161 return 0;
2163 case SYMBOL_GOT_DISP:
2164 /* The constant will have to be loaded from the GOT before it
2165 is used in an address. */
2166 if (mode != MAX_MACHINE_MODE)
2167 return 0;
2169 /* Fall through. */
2171 case SYMBOL_GOT_PAGE_OFST:
2172 /* Unless -funit-at-a-time is in effect, we can't be sure whether the
2173 local/global classification is accurate. The worst cases are:
2175 (1) For local symbols when generating o32 or o64 code. The assembler
2176 will use:
2178 lw $at,%got(symbol)
2181 ...and the final address will be $at + %lo(symbol).
2183 (2) For global symbols when -mxgot. The assembler will use:
2185 lui $at,%got_hi(symbol)
2186 (d)addu $at,$at,$gp
2188 ...and the final address will be $at + %got_lo(symbol). */
2189 return 3;
2191 case SYMBOL_GOTOFF_PAGE:
2192 case SYMBOL_GOTOFF_DISP:
2193 case SYMBOL_GOTOFF_CALL:
2194 case SYMBOL_GOTOFF_LOADGP:
2195 case SYMBOL_64_HIGH:
2196 case SYMBOL_64_MID:
2197 case SYMBOL_64_LOW:
2198 case SYMBOL_TLSGD:
2199 case SYMBOL_TLSLDM:
2200 case SYMBOL_DTPREL:
2201 case SYMBOL_GOTTPREL:
2202 case SYMBOL_TPREL:
2203 case SYMBOL_HALF:
2204 /* A 16-bit constant formed by a single relocation, or a 32-bit
2205 constant formed from a high 16-bit relocation and a low 16-bit
2206 relocation. Use mips_split_p to determine which. 32-bit
2207 constants need an "lui; addiu" sequence for normal mode and
2208 an "li; sll; addiu" sequence for MIPS16 mode. */
2209 return !mips_split_p[type] ? 1 : TARGET_MIPS16 ? 3 : 2;
2211 case SYMBOL_TLS:
2212 /* We don't treat a bare TLS symbol as a constant. */
2213 return 0;
2215 gcc_unreachable ();
2218 /* If MODE is MAX_MACHINE_MODE, return the number of instructions needed
2219 to load symbols of type TYPE into a register. Return 0 if the given
2220 type of symbol cannot be used as an immediate operand.
2222 Otherwise, return the number of instructions needed to load or store
2223 values of mode MODE to or from addresses of type TYPE. Return 0 if
2224 the given type of symbol is not valid in addresses.
2226 In both cases, instruction counts are based off BASE_INSN_LENGTH. */
2228 static int
2229 mips_symbol_insns (enum mips_symbol_type type, machine_mode mode)
2231 return mips_symbol_insns_1 (type, mode) * (TARGET_MIPS16 ? 2 : 1);
2234 /* Implement TARGET_CANNOT_FORCE_CONST_MEM. */
2236 static bool
2237 mips_cannot_force_const_mem (machine_mode mode, rtx x)
2239 enum mips_symbol_type type;
2240 rtx base, offset;
2242 /* There is no assembler syntax for expressing an address-sized
2243 high part. */
2244 if (GET_CODE (x) == HIGH)
2245 return true;
2247 /* As an optimization, reject constants that mips_legitimize_move
2248 can expand inline.
2250 Suppose we have a multi-instruction sequence that loads constant C
2251 into register R. If R does not get allocated a hard register, and
2252 R is used in an operand that allows both registers and memory
2253 references, reload will consider forcing C into memory and using
2254 one of the instruction's memory alternatives. Returning false
2255 here will force it to use an input reload instead. */
2256 if (CONST_INT_P (x) && mips_legitimate_constant_p (mode, x))
2257 return true;
2259 split_const (x, &base, &offset);
2260 if (mips_symbolic_constant_p (base, SYMBOL_CONTEXT_LEA, &type))
2262 /* See whether we explicitly want these symbols in the pool. */
2263 if (mips_use_pcrel_pool_p[(int) type])
2264 return false;
2266 /* The same optimization as for CONST_INT. */
2267 if (SMALL_INT (offset) && mips_symbol_insns (type, MAX_MACHINE_MODE) > 0)
2268 return true;
2270 /* If MIPS16 constant pools live in the text section, they should
2271 not refer to anything that might need run-time relocation. */
2272 if (TARGET_MIPS16_PCREL_LOADS && mips_got_symbol_type_p (type))
2273 return true;
2276 /* TLS symbols must be computed by mips_legitimize_move. */
2277 if (tls_referenced_p (x))
2278 return true;
2280 return false;
2283 /* Implement TARGET_USE_BLOCKS_FOR_CONSTANT_P. We can't use blocks for
2284 constants when we're using a per-function constant pool. */
2286 static bool
2287 mips_use_blocks_for_constant_p (machine_mode mode ATTRIBUTE_UNUSED,
2288 const_rtx x ATTRIBUTE_UNUSED)
2290 return !TARGET_MIPS16_PCREL_LOADS;
2293 /* Return true if register REGNO is a valid base register for mode MODE.
2294 STRICT_P is true if REG_OK_STRICT is in effect. */
2297 mips_regno_mode_ok_for_base_p (int regno, machine_mode mode,
2298 bool strict_p)
2300 if (!HARD_REGISTER_NUM_P (regno))
2302 if (!strict_p)
2303 return true;
2304 regno = reg_renumber[regno];
2307 /* These fake registers will be eliminated to either the stack or
2308 hard frame pointer, both of which are usually valid base registers.
2309 Reload deals with the cases where the eliminated form isn't valid. */
2310 if (regno == ARG_POINTER_REGNUM || regno == FRAME_POINTER_REGNUM)
2311 return true;
2313 /* In MIPS16 mode, the stack pointer can only address word and doubleword
2314 values, nothing smaller. */
2315 if (TARGET_MIPS16 && regno == STACK_POINTER_REGNUM)
2316 return GET_MODE_SIZE (mode) == 4 || GET_MODE_SIZE (mode) == 8;
2318 return TARGET_MIPS16 ? M16_REG_P (regno) : GP_REG_P (regno);
2321 /* Return true if X is a valid base register for mode MODE.
2322 STRICT_P is true if REG_OK_STRICT is in effect. */
2324 static bool
2325 mips_valid_base_register_p (rtx x, machine_mode mode, bool strict_p)
2327 if (!strict_p && GET_CODE (x) == SUBREG)
2328 x = SUBREG_REG (x);
2330 return (REG_P (x)
2331 && mips_regno_mode_ok_for_base_p (REGNO (x), mode, strict_p));
2334 /* Return true if, for every base register BASE_REG, (plus BASE_REG X)
2335 can address a value of mode MODE. */
2337 static bool
2338 mips_valid_offset_p (rtx x, machine_mode mode)
2340 /* Check that X is a signed 16-bit number. */
2341 if (!const_arith_operand (x, Pmode))
2342 return false;
2344 /* We may need to split multiword moves, so make sure that every word
2345 is accessible. */
2346 if (GET_MODE_SIZE (mode) > UNITS_PER_WORD
2347 && !SMALL_OPERAND (INTVAL (x) + GET_MODE_SIZE (mode) - UNITS_PER_WORD))
2348 return false;
2350 return true;
2353 /* Return true if a LO_SUM can address a value of mode MODE when the
2354 LO_SUM symbol has type SYMBOL_TYPE. */
2356 static bool
2357 mips_valid_lo_sum_p (enum mips_symbol_type symbol_type, machine_mode mode)
2359 /* Check that symbols of type SYMBOL_TYPE can be used to access values
2360 of mode MODE. */
2361 if (mips_symbol_insns (symbol_type, mode) == 0)
2362 return false;
2364 /* Check that there is a known low-part relocation. */
2365 if (mips_lo_relocs[symbol_type] == NULL)
2366 return false;
2368 /* We may need to split multiword moves, so make sure that each word
2369 can be accessed without inducing a carry. This is mainly needed
2370 for o64, which has historically only guaranteed 64-bit alignment
2371 for 128-bit types. */
2372 if (GET_MODE_SIZE (mode) > UNITS_PER_WORD
2373 && GET_MODE_BITSIZE (mode) > GET_MODE_ALIGNMENT (mode))
2374 return false;
2376 return true;
2379 /* Return true if X is a valid address for machine mode MODE. If it is,
2380 fill in INFO appropriately. STRICT_P is true if REG_OK_STRICT is in
2381 effect. */
2383 static bool
2384 mips_classify_address (struct mips_address_info *info, rtx x,
2385 machine_mode mode, bool strict_p)
2387 switch (GET_CODE (x))
2389 case REG:
2390 case SUBREG:
2391 info->type = ADDRESS_REG;
2392 info->reg = x;
2393 info->offset = const0_rtx;
2394 return mips_valid_base_register_p (info->reg, mode, strict_p);
2396 case PLUS:
2397 info->type = ADDRESS_REG;
2398 info->reg = XEXP (x, 0);
2399 info->offset = XEXP (x, 1);
2400 return (mips_valid_base_register_p (info->reg, mode, strict_p)
2401 && mips_valid_offset_p (info->offset, mode));
2403 case LO_SUM:
2404 info->type = ADDRESS_LO_SUM;
2405 info->reg = XEXP (x, 0);
2406 info->offset = XEXP (x, 1);
2407 /* We have to trust the creator of the LO_SUM to do something vaguely
2408 sane. Target-independent code that creates a LO_SUM should also
2409 create and verify the matching HIGH. Target-independent code that
2410 adds an offset to a LO_SUM must prove that the offset will not
2411 induce a carry. Failure to do either of these things would be
2412 a bug, and we are not required to check for it here. The MIPS
2413 backend itself should only create LO_SUMs for valid symbolic
2414 constants, with the high part being either a HIGH or a copy
2415 of _gp. */
2416 info->symbol_type
2417 = mips_classify_symbolic_expression (info->offset, SYMBOL_CONTEXT_MEM);
2418 return (mips_valid_base_register_p (info->reg, mode, strict_p)
2419 && mips_valid_lo_sum_p (info->symbol_type, mode));
2421 case CONST_INT:
2422 /* Small-integer addresses don't occur very often, but they
2423 are legitimate if $0 is a valid base register. */
2424 info->type = ADDRESS_CONST_INT;
2425 return !TARGET_MIPS16 && SMALL_INT (x);
2427 case CONST:
2428 case LABEL_REF:
2429 case SYMBOL_REF:
2430 info->type = ADDRESS_SYMBOLIC;
2431 return (mips_symbolic_constant_p (x, SYMBOL_CONTEXT_MEM,
2432 &info->symbol_type)
2433 && mips_symbol_insns (info->symbol_type, mode) > 0
2434 && !mips_split_p[info->symbol_type]);
2436 default:
2437 return false;
2441 /* Implement TARGET_LEGITIMATE_ADDRESS_P. */
2443 static bool
2444 mips_legitimate_address_p (machine_mode mode, rtx x, bool strict_p)
2446 struct mips_address_info addr;
2448 return mips_classify_address (&addr, x, mode, strict_p);
2451 /* Return true if X is a legitimate $sp-based address for mode MDOE. */
2453 bool
2454 mips_stack_address_p (rtx x, machine_mode mode)
2456 struct mips_address_info addr;
2458 return (mips_classify_address (&addr, x, mode, false)
2459 && addr.type == ADDRESS_REG
2460 && addr.reg == stack_pointer_rtx);
2463 /* Return true if ADDR matches the pattern for the LWXS load scaled indexed
2464 address instruction. Note that such addresses are not considered
2465 legitimate in the TARGET_LEGITIMATE_ADDRESS_P sense, because their use
2466 is so restricted. */
2468 static bool
2469 mips_lwxs_address_p (rtx addr)
2471 if (ISA_HAS_LWXS
2472 && GET_CODE (addr) == PLUS
2473 && REG_P (XEXP (addr, 1)))
2475 rtx offset = XEXP (addr, 0);
2476 if (GET_CODE (offset) == MULT
2477 && REG_P (XEXP (offset, 0))
2478 && CONST_INT_P (XEXP (offset, 1))
2479 && INTVAL (XEXP (offset, 1)) == 4)
2480 return true;
2482 return false;
2485 /* Return true if ADDR matches the pattern for the L{B,H,W,D}{,U}X load
2486 indexed address instruction. Note that such addresses are
2487 not considered legitimate in the TARGET_LEGITIMATE_ADDRESS_P
2488 sense, because their use is so restricted. */
2490 static bool
2491 mips_lx_address_p (rtx addr, machine_mode mode)
2493 if (GET_CODE (addr) != PLUS
2494 || !REG_P (XEXP (addr, 0))
2495 || !REG_P (XEXP (addr, 1)))
2496 return false;
2497 if (ISA_HAS_LBX && mode == QImode)
2498 return true;
2499 if (ISA_HAS_LHX && mode == HImode)
2500 return true;
2501 if (ISA_HAS_LWX && mode == SImode)
2502 return true;
2503 if (ISA_HAS_LDX && mode == DImode)
2504 return true;
2505 return false;
2508 /* Return true if a value at OFFSET bytes from base register BASE can be
2509 accessed using an unextended MIPS16 instruction. MODE is the mode of
2510 the value.
2512 Usually the offset in an unextended instruction is a 5-bit field.
2513 The offset is unsigned and shifted left once for LH and SH, twice
2514 for LW and SW, and so on. An exception is LWSP and SWSP, which have
2515 an 8-bit immediate field that's shifted left twice. */
2517 static bool
2518 mips16_unextended_reference_p (machine_mode mode, rtx base,
2519 unsigned HOST_WIDE_INT offset)
2521 if (mode != BLKmode && offset % GET_MODE_SIZE (mode) == 0)
2523 if (GET_MODE_SIZE (mode) == 4 && base == stack_pointer_rtx)
2524 return offset < 256U * GET_MODE_SIZE (mode);
2525 return offset < 32U * GET_MODE_SIZE (mode);
2527 return false;
2530 /* Return the number of instructions needed to load or store a value
2531 of mode MODE at address X, assuming that BASE_INSN_LENGTH is the
2532 length of one instruction. Return 0 if X isn't valid for MODE.
2533 Assume that multiword moves may need to be split into word moves
2534 if MIGHT_SPLIT_P, otherwise assume that a single load or store is
2535 enough. */
2538 mips_address_insns (rtx x, machine_mode mode, bool might_split_p)
2540 struct mips_address_info addr;
2541 int factor;
2543 /* BLKmode is used for single unaligned loads and stores and should
2544 not count as a multiword mode. (GET_MODE_SIZE (BLKmode) is pretty
2545 meaningless, so we have to single it out as a special case one way
2546 or the other.) */
2547 if (mode != BLKmode && might_split_p)
2548 factor = (GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
2549 else
2550 factor = 1;
2552 if (mips_classify_address (&addr, x, mode, false))
2553 switch (addr.type)
2555 case ADDRESS_REG:
2556 if (TARGET_MIPS16
2557 && !mips16_unextended_reference_p (mode, addr.reg,
2558 UINTVAL (addr.offset)))
2559 return factor * 2;
2560 return factor;
2562 case ADDRESS_LO_SUM:
2563 return TARGET_MIPS16 ? factor * 2 : factor;
2565 case ADDRESS_CONST_INT:
2566 return factor;
2568 case ADDRESS_SYMBOLIC:
2569 return factor * mips_symbol_insns (addr.symbol_type, mode);
2571 return 0;
2574 /* Return true if X fits within an unsigned field of BITS bits that is
2575 shifted left SHIFT bits before being used. */
2577 bool
2578 mips_unsigned_immediate_p (unsigned HOST_WIDE_INT x, int bits, int shift = 0)
2580 return (x & ((1 << shift) - 1)) == 0 && x < ((unsigned) 1 << (shift + bits));
2583 /* Return true if X fits within a signed field of BITS bits that is
2584 shifted left SHIFT bits before being used. */
2586 bool
2587 mips_signed_immediate_p (unsigned HOST_WIDE_INT x, int bits, int shift = 0)
2589 x += 1 << (bits + shift - 1);
2590 return mips_unsigned_immediate_p (x, bits, shift);
2593 /* Return true if X is legitimate for accessing values of mode MODE,
2594 if it is based on a MIPS16 register, and if the offset satisfies
2595 OFFSET_PREDICATE. */
2597 bool
2598 m16_based_address_p (rtx x, machine_mode mode,
2599 insn_operand_predicate_fn offset_predicate)
2601 struct mips_address_info addr;
2603 return (mips_classify_address (&addr, x, mode, false)
2604 && addr.type == ADDRESS_REG
2605 && M16_REG_P (REGNO (addr.reg))
2606 && offset_predicate (addr.offset, mode));
2609 /* Return true if X is a legitimate address that conforms to the requirements
2610 for a microMIPS LWSP or SWSP insn. */
2612 bool
2613 lwsp_swsp_address_p (rtx x, machine_mode mode)
2615 struct mips_address_info addr;
2617 return (mips_classify_address (&addr, x, mode, false)
2618 && addr.type == ADDRESS_REG
2619 && REGNO (addr.reg) == STACK_POINTER_REGNUM
2620 && uw5_operand (addr.offset, mode));
2623 /* Return true if X is a legitimate address with a 12-bit offset.
2624 MODE is the mode of the value being accessed. */
2626 bool
2627 umips_12bit_offset_address_p (rtx x, machine_mode mode)
2629 struct mips_address_info addr;
2631 return (mips_classify_address (&addr, x, mode, false)
2632 && addr.type == ADDRESS_REG
2633 && CONST_INT_P (addr.offset)
2634 && UMIPS_12BIT_OFFSET_P (INTVAL (addr.offset)));
2637 /* Return true if X is a legitimate address with a 9-bit offset.
2638 MODE is the mode of the value being accessed. */
2640 bool
2641 mips_9bit_offset_address_p (rtx x, machine_mode mode)
2643 struct mips_address_info addr;
2645 return (mips_classify_address (&addr, x, mode, false)
2646 && addr.type == ADDRESS_REG
2647 && CONST_INT_P (addr.offset)
2648 && MIPS_9BIT_OFFSET_P (INTVAL (addr.offset)));
2651 /* Return the number of instructions needed to load constant X,
2652 assuming that BASE_INSN_LENGTH is the length of one instruction.
2653 Return 0 if X isn't a valid constant. */
2656 mips_const_insns (rtx x)
2658 struct mips_integer_op codes[MIPS_MAX_INTEGER_OPS];
2659 enum mips_symbol_type symbol_type;
2660 rtx offset;
2662 switch (GET_CODE (x))
2664 case HIGH:
2665 if (!mips_symbolic_constant_p (XEXP (x, 0), SYMBOL_CONTEXT_LEA,
2666 &symbol_type)
2667 || !mips_split_p[symbol_type])
2668 return 0;
2670 /* This is simply an LUI for normal mode. It is an extended
2671 LI followed by an extended SLL for MIPS16. */
2672 return TARGET_MIPS16 ? 4 : 1;
2674 case CONST_INT:
2675 if (TARGET_MIPS16)
2676 /* Unsigned 8-bit constants can be loaded using an unextended
2677 LI instruction. Unsigned 16-bit constants can be loaded
2678 using an extended LI. Negative constants must be loaded
2679 using LI and then negated. */
2680 return (IN_RANGE (INTVAL (x), 0, 255) ? 1
2681 : SMALL_OPERAND_UNSIGNED (INTVAL (x)) ? 2
2682 : IN_RANGE (-INTVAL (x), 0, 255) ? 2
2683 : SMALL_OPERAND_UNSIGNED (-INTVAL (x)) ? 3
2684 : 0);
2686 return mips_build_integer (codes, INTVAL (x));
2688 case CONST_DOUBLE:
2689 case CONST_VECTOR:
2690 /* Allow zeros for normal mode, where we can use $0. */
2691 return !TARGET_MIPS16 && x == CONST0_RTX (GET_MODE (x)) ? 1 : 0;
2693 case CONST:
2694 if (CONST_GP_P (x))
2695 return 1;
2697 /* See if we can refer to X directly. */
2698 if (mips_symbolic_constant_p (x, SYMBOL_CONTEXT_LEA, &symbol_type))
2699 return mips_symbol_insns (symbol_type, MAX_MACHINE_MODE);
2701 /* Otherwise try splitting the constant into a base and offset.
2702 If the offset is a 16-bit value, we can load the base address
2703 into a register and then use (D)ADDIU to add in the offset.
2704 If the offset is larger, we can load the base and offset
2705 into separate registers and add them together with (D)ADDU.
2706 However, the latter is only possible before reload; during
2707 and after reload, we must have the option of forcing the
2708 constant into the pool instead. */
2709 split_const (x, &x, &offset);
2710 if (offset != 0)
2712 int n = mips_const_insns (x);
2713 if (n != 0)
2715 if (SMALL_INT (offset))
2716 return n + 1;
2717 else if (!targetm.cannot_force_const_mem (GET_MODE (x), x))
2718 return n + 1 + mips_build_integer (codes, INTVAL (offset));
2721 return 0;
2723 case SYMBOL_REF:
2724 case LABEL_REF:
2725 return mips_symbol_insns (mips_classify_symbol (x, SYMBOL_CONTEXT_LEA),
2726 MAX_MACHINE_MODE);
2728 default:
2729 return 0;
2733 /* X is a doubleword constant that can be handled by splitting it into
2734 two words and loading each word separately. Return the number of
2735 instructions required to do this, assuming that BASE_INSN_LENGTH
2736 is the length of one instruction. */
2739 mips_split_const_insns (rtx x)
2741 unsigned int low, high;
2743 low = mips_const_insns (mips_subword (x, false));
2744 high = mips_const_insns (mips_subword (x, true));
2745 gcc_assert (low > 0 && high > 0);
2746 return low + high;
2749 /* Return the number of instructions needed to implement INSN,
2750 given that it loads from or stores to MEM. Assume that
2751 BASE_INSN_LENGTH is the length of one instruction. */
2754 mips_load_store_insns (rtx mem, rtx_insn *insn)
2756 machine_mode mode;
2757 bool might_split_p;
2758 rtx set;
2760 gcc_assert (MEM_P (mem));
2761 mode = GET_MODE (mem);
2763 /* Try to prove that INSN does not need to be split. */
2764 might_split_p = GET_MODE_SIZE (mode) > UNITS_PER_WORD;
2765 if (might_split_p)
2767 set = single_set (insn);
2768 if (set && !mips_split_move_insn_p (SET_DEST (set), SET_SRC (set), insn))
2769 might_split_p = false;
2772 return mips_address_insns (XEXP (mem, 0), mode, might_split_p);
2775 /* Return the number of instructions needed for an integer division,
2776 assuming that BASE_INSN_LENGTH is the length of one instruction. */
2779 mips_idiv_insns (void)
2781 int count;
2783 count = 1;
2784 if (TARGET_CHECK_ZERO_DIV)
2786 if (GENERATE_DIVIDE_TRAPS)
2787 count++;
2788 else
2789 count += 2;
2792 if (TARGET_FIX_R4000 || TARGET_FIX_R4400)
2793 count++;
2794 return count;
2797 /* Emit a move from SRC to DEST. Assume that the move expanders can
2798 handle all moves if !can_create_pseudo_p (). The distinction is
2799 important because, unlike emit_move_insn, the move expanders know
2800 how to force Pmode objects into the constant pool even when the
2801 constant pool address is not itself legitimate. */
2803 rtx_insn *
2804 mips_emit_move (rtx dest, rtx src)
2806 return (can_create_pseudo_p ()
2807 ? emit_move_insn (dest, src)
2808 : emit_move_insn_1 (dest, src));
2811 /* Emit a move from SRC to DEST, splitting compound moves into individual
2812 instructions. SPLIT_TYPE is the type of split to perform. */
2814 static void
2815 mips_emit_move_or_split (rtx dest, rtx src, enum mips_split_type split_type)
2817 if (mips_split_move_p (dest, src, split_type))
2818 mips_split_move (dest, src, split_type);
2819 else
2820 mips_emit_move (dest, src);
2823 /* Emit an instruction of the form (set TARGET (CODE OP0)). */
2825 static void
2826 mips_emit_unary (enum rtx_code code, rtx target, rtx op0)
2828 emit_insn (gen_rtx_SET (target, gen_rtx_fmt_e (code, GET_MODE (op0), op0)));
2831 /* Compute (CODE OP0) and store the result in a new register of mode MODE.
2832 Return that new register. */
2834 static rtx
2835 mips_force_unary (machine_mode mode, enum rtx_code code, rtx op0)
2837 rtx reg;
2839 reg = gen_reg_rtx (mode);
2840 mips_emit_unary (code, reg, op0);
2841 return reg;
2844 /* Emit an instruction of the form (set TARGET (CODE OP0 OP1)). */
2846 void
2847 mips_emit_binary (enum rtx_code code, rtx target, rtx op0, rtx op1)
2849 emit_insn (gen_rtx_SET (target, gen_rtx_fmt_ee (code, GET_MODE (target),
2850 op0, op1)));
2853 /* Compute (CODE OP0 OP1) and store the result in a new register
2854 of mode MODE. Return that new register. */
2856 static rtx
2857 mips_force_binary (machine_mode mode, enum rtx_code code, rtx op0, rtx op1)
2859 rtx reg;
2861 reg = gen_reg_rtx (mode);
2862 mips_emit_binary (code, reg, op0, op1);
2863 return reg;
2866 /* Copy VALUE to a register and return that register. If new pseudos
2867 are allowed, copy it into a new register, otherwise use DEST. */
2869 static rtx
2870 mips_force_temporary (rtx dest, rtx value)
2872 if (can_create_pseudo_p ())
2873 return force_reg (Pmode, value);
2874 else
2876 mips_emit_move (dest, value);
2877 return dest;
2881 /* Emit a call sequence with call pattern PATTERN and return the call
2882 instruction itself (which is not necessarily the last instruction
2883 emitted). ORIG_ADDR is the original, unlegitimized address,
2884 ADDR is the legitimized form, and LAZY_P is true if the call
2885 address is lazily-bound. */
2887 static rtx_insn *
2888 mips_emit_call_insn (rtx pattern, rtx orig_addr, rtx addr, bool lazy_p)
2890 rtx_insn *insn;
2891 rtx reg;
2893 insn = emit_call_insn (pattern);
2895 if (TARGET_MIPS16 && mips_use_pic_fn_addr_reg_p (orig_addr))
2897 /* MIPS16 JALRs only take MIPS16 registers. If the target
2898 function requires $25 to be valid on entry, we must copy it
2899 there separately. The move instruction can be put in the
2900 call's delay slot. */
2901 reg = gen_rtx_REG (Pmode, PIC_FUNCTION_ADDR_REGNUM);
2902 emit_insn_before (gen_move_insn (reg, addr), insn);
2903 use_reg (&CALL_INSN_FUNCTION_USAGE (insn), reg);
2906 if (lazy_p)
2907 /* Lazy-binding stubs require $gp to be valid on entry. */
2908 use_reg (&CALL_INSN_FUNCTION_USAGE (insn), pic_offset_table_rtx);
2910 if (TARGET_USE_GOT)
2912 /* See the comment above load_call<mode> for details. */
2913 use_reg (&CALL_INSN_FUNCTION_USAGE (insn),
2914 gen_rtx_REG (Pmode, GOT_VERSION_REGNUM));
2915 emit_insn (gen_update_got_version ());
2918 if (TARGET_MIPS16
2919 && TARGET_EXPLICIT_RELOCS
2920 && TARGET_CALL_CLOBBERED_GP)
2922 rtx post_call_tmp_reg = gen_rtx_REG (word_mode, POST_CALL_TMP_REG);
2923 clobber_reg (&CALL_INSN_FUNCTION_USAGE (insn), post_call_tmp_reg);
2926 return insn;
2929 /* Wrap symbol or label BASE in an UNSPEC address of type SYMBOL_TYPE,
2930 then add CONST_INT OFFSET to the result. */
2932 static rtx
2933 mips_unspec_address_offset (rtx base, rtx offset,
2934 enum mips_symbol_type symbol_type)
2936 base = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, base),
2937 UNSPEC_ADDRESS_FIRST + symbol_type);
2938 if (offset != const0_rtx)
2939 base = gen_rtx_PLUS (Pmode, base, offset);
2940 return gen_rtx_CONST (Pmode, base);
2943 /* Return an UNSPEC address with underlying address ADDRESS and symbol
2944 type SYMBOL_TYPE. */
2947 mips_unspec_address (rtx address, enum mips_symbol_type symbol_type)
2949 rtx base, offset;
2951 split_const (address, &base, &offset);
2952 return mips_unspec_address_offset (base, offset, symbol_type);
2955 /* If OP is an UNSPEC address, return the address to which it refers,
2956 otherwise return OP itself. */
2959 mips_strip_unspec_address (rtx op)
2961 rtx base, offset;
2963 split_const (op, &base, &offset);
2964 if (UNSPEC_ADDRESS_P (base))
2965 op = plus_constant (Pmode, UNSPEC_ADDRESS (base), INTVAL (offset));
2966 return op;
2969 /* If mips_unspec_address (ADDR, SYMBOL_TYPE) is a 32-bit value, add the
2970 high part to BASE and return the result. Just return BASE otherwise.
2971 TEMP is as for mips_force_temporary.
2973 The returned expression can be used as the first operand to a LO_SUM. */
2975 static rtx
2976 mips_unspec_offset_high (rtx temp, rtx base, rtx addr,
2977 enum mips_symbol_type symbol_type)
2979 if (mips_split_p[symbol_type])
2981 addr = gen_rtx_HIGH (Pmode, mips_unspec_address (addr, symbol_type));
2982 addr = mips_force_temporary (temp, addr);
2983 base = mips_force_temporary (temp, gen_rtx_PLUS (Pmode, addr, base));
2985 return base;
2988 /* Return an instruction that copies $gp into register REG. We want
2989 GCC to treat the register's value as constant, so that its value
2990 can be rematerialized on demand. */
2992 static rtx
2993 gen_load_const_gp (rtx reg)
2995 return PMODE_INSN (gen_load_const_gp, (reg));
2998 /* Return a pseudo register that contains the value of $gp throughout
2999 the current function. Such registers are needed by MIPS16 functions,
3000 for which $gp itself is not a valid base register or addition operand. */
3002 static rtx
3003 mips16_gp_pseudo_reg (void)
3005 if (cfun->machine->mips16_gp_pseudo_rtx == NULL_RTX)
3007 rtx_insn *scan;
3009 cfun->machine->mips16_gp_pseudo_rtx = gen_reg_rtx (Pmode);
3011 push_topmost_sequence ();
3013 scan = get_insns ();
3014 while (NEXT_INSN (scan) && !INSN_P (NEXT_INSN (scan)))
3015 scan = NEXT_INSN (scan);
3017 rtx set = gen_load_const_gp (cfun->machine->mips16_gp_pseudo_rtx);
3018 rtx_insn *insn = emit_insn_after (set, scan);
3019 INSN_LOCATION (insn) = 0;
3021 pop_topmost_sequence ();
3024 return cfun->machine->mips16_gp_pseudo_rtx;
3027 /* Return a base register that holds pic_offset_table_rtx.
3028 TEMP, if nonnull, is a scratch Pmode base register. */
3031 mips_pic_base_register (rtx temp)
3033 if (!TARGET_MIPS16)
3034 return pic_offset_table_rtx;
3036 if (currently_expanding_to_rtl)
3037 return mips16_gp_pseudo_reg ();
3039 if (can_create_pseudo_p ())
3040 temp = gen_reg_rtx (Pmode);
3042 if (TARGET_USE_GOT)
3043 /* The first post-reload split exposes all references to $gp
3044 (both uses and definitions). All references must remain
3045 explicit after that point.
3047 It is safe to introduce uses of $gp at any time, so for
3048 simplicity, we do that before the split too. */
3049 mips_emit_move (temp, pic_offset_table_rtx);
3050 else
3051 emit_insn (gen_load_const_gp (temp));
3052 return temp;
3055 /* Return the RHS of a load_call<mode> insn. */
3057 static rtx
3058 mips_unspec_call (rtx reg, rtx symbol)
3060 rtvec vec;
3062 vec = gen_rtvec (3, reg, symbol, gen_rtx_REG (SImode, GOT_VERSION_REGNUM));
3063 return gen_rtx_UNSPEC (Pmode, vec, UNSPEC_LOAD_CALL);
3066 /* If SRC is the RHS of a load_call<mode> insn, return the underlying symbol
3067 reference. Return NULL_RTX otherwise. */
3069 static rtx
3070 mips_strip_unspec_call (rtx src)
3072 if (GET_CODE (src) == UNSPEC && XINT (src, 1) == UNSPEC_LOAD_CALL)
3073 return mips_strip_unspec_address (XVECEXP (src, 0, 1));
3074 return NULL_RTX;
3077 /* Create and return a GOT reference of type TYPE for address ADDR.
3078 TEMP, if nonnull, is a scratch Pmode base register. */
3081 mips_got_load (rtx temp, rtx addr, enum mips_symbol_type type)
3083 rtx base, high, lo_sum_symbol;
3085 base = mips_pic_base_register (temp);
3087 /* If we used the temporary register to load $gp, we can't use
3088 it for the high part as well. */
3089 if (temp != NULL && reg_overlap_mentioned_p (base, temp))
3090 temp = NULL;
3092 high = mips_unspec_offset_high (temp, base, addr, type);
3093 lo_sum_symbol = mips_unspec_address (addr, type);
3095 if (type == SYMBOL_GOTOFF_CALL)
3096 return mips_unspec_call (high, lo_sum_symbol);
3097 else
3098 return PMODE_INSN (gen_unspec_got, (high, lo_sum_symbol));
3101 /* If MODE is MAX_MACHINE_MODE, ADDR appears as a move operand, otherwise
3102 it appears in a MEM of that mode. Return true if ADDR is a legitimate
3103 constant in that context and can be split into high and low parts.
3104 If so, and if LOW_OUT is nonnull, emit the high part and store the
3105 low part in *LOW_OUT. Leave *LOW_OUT unchanged otherwise.
3107 TEMP is as for mips_force_temporary and is used to load the high
3108 part into a register.
3110 When MODE is MAX_MACHINE_MODE, the low part is guaranteed to be
3111 a legitimize SET_SRC for an .md pattern, otherwise the low part
3112 is guaranteed to be a legitimate address for mode MODE. */
3114 bool
3115 mips_split_symbol (rtx temp, rtx addr, machine_mode mode, rtx *low_out)
3117 enum mips_symbol_context context;
3118 enum mips_symbol_type symbol_type;
3119 rtx high;
3121 context = (mode == MAX_MACHINE_MODE
3122 ? SYMBOL_CONTEXT_LEA
3123 : SYMBOL_CONTEXT_MEM);
3124 if (GET_CODE (addr) == HIGH && context == SYMBOL_CONTEXT_LEA)
3126 addr = XEXP (addr, 0);
3127 if (mips_symbolic_constant_p (addr, context, &symbol_type)
3128 && mips_symbol_insns (symbol_type, mode) > 0
3129 && mips_split_hi_p[symbol_type])
3131 if (low_out)
3132 switch (symbol_type)
3134 case SYMBOL_GOT_PAGE_OFST:
3135 /* The high part of a page/ofst pair is loaded from the GOT. */
3136 *low_out = mips_got_load (temp, addr, SYMBOL_GOTOFF_PAGE);
3137 break;
3139 default:
3140 gcc_unreachable ();
3142 return true;
3145 else
3147 if (mips_symbolic_constant_p (addr, context, &symbol_type)
3148 && mips_symbol_insns (symbol_type, mode) > 0
3149 && mips_split_p[symbol_type])
3151 if (low_out)
3152 switch (symbol_type)
3154 case SYMBOL_GOT_DISP:
3155 /* SYMBOL_GOT_DISP symbols are loaded from the GOT. */
3156 *low_out = mips_got_load (temp, addr, SYMBOL_GOTOFF_DISP);
3157 break;
3159 case SYMBOL_GP_RELATIVE:
3160 high = mips_pic_base_register (temp);
3161 *low_out = gen_rtx_LO_SUM (Pmode, high, addr);
3162 break;
3164 default:
3165 high = gen_rtx_HIGH (Pmode, copy_rtx (addr));
3166 high = mips_force_temporary (temp, high);
3167 *low_out = gen_rtx_LO_SUM (Pmode, high, addr);
3168 break;
3170 return true;
3173 return false;
3176 /* Return a legitimate address for REG + OFFSET. TEMP is as for
3177 mips_force_temporary; it is only needed when OFFSET is not a
3178 SMALL_OPERAND. */
3180 static rtx
3181 mips_add_offset (rtx temp, rtx reg, HOST_WIDE_INT offset)
3183 if (!SMALL_OPERAND (offset))
3185 rtx high;
3187 if (TARGET_MIPS16)
3189 /* Load the full offset into a register so that we can use
3190 an unextended instruction for the address itself. */
3191 high = GEN_INT (offset);
3192 offset = 0;
3194 else
3196 /* Leave OFFSET as a 16-bit offset and put the excess in HIGH.
3197 The addition inside the macro CONST_HIGH_PART may cause an
3198 overflow, so we need to force a sign-extension check. */
3199 high = gen_int_mode (CONST_HIGH_PART (offset), Pmode);
3200 offset = CONST_LOW_PART (offset);
3202 high = mips_force_temporary (temp, high);
3203 reg = mips_force_temporary (temp, gen_rtx_PLUS (Pmode, high, reg));
3205 return plus_constant (Pmode, reg, offset);
3208 /* The __tls_get_attr symbol. */
3209 static GTY(()) rtx mips_tls_symbol;
3211 /* Return an instruction sequence that calls __tls_get_addr. SYM is
3212 the TLS symbol we are referencing and TYPE is the symbol type to use
3213 (either global dynamic or local dynamic). V0 is an RTX for the
3214 return value location. */
3216 static rtx
3217 mips_call_tls_get_addr (rtx sym, enum mips_symbol_type type, rtx v0)
3219 rtx insn, loc, a0;
3221 a0 = gen_rtx_REG (Pmode, GP_ARG_FIRST);
3223 if (!mips_tls_symbol)
3224 mips_tls_symbol = init_one_libfunc ("__tls_get_addr");
3226 loc = mips_unspec_address (sym, type);
3228 start_sequence ();
3230 emit_insn (gen_rtx_SET (a0, gen_rtx_LO_SUM (Pmode, pic_offset_table_rtx,
3231 loc)));
3232 insn = mips_expand_call (MIPS_CALL_NORMAL, v0, mips_tls_symbol,
3233 const0_rtx, NULL_RTX, false);
3234 RTL_CONST_CALL_P (insn) = 1;
3235 use_reg (&CALL_INSN_FUNCTION_USAGE (insn), a0);
3236 insn = get_insns ();
3238 end_sequence ();
3240 return insn;
3243 /* Return a pseudo register that contains the current thread pointer. */
3246 mips_expand_thread_pointer (rtx tp)
3248 rtx fn;
3250 if (TARGET_MIPS16)
3252 if (!mips16_rdhwr_stub)
3253 mips16_rdhwr_stub = new mips16_rdhwr_one_only_stub ();
3254 fn = mips16_stub_call_address (mips16_rdhwr_stub);
3255 emit_insn (PMODE_INSN (gen_tls_get_tp_mips16, (tp, fn)));
3257 else
3258 emit_insn (PMODE_INSN (gen_tls_get_tp, (tp)));
3259 return tp;
3262 static rtx
3263 mips_get_tp (void)
3265 return mips_expand_thread_pointer (gen_reg_rtx (Pmode));
3268 /* Generate the code to access LOC, a thread-local SYMBOL_REF, and return
3269 its address. The return value will be both a valid address and a valid
3270 SET_SRC (either a REG or a LO_SUM). */
3272 static rtx
3273 mips_legitimize_tls_address (rtx loc)
3275 rtx dest, insn, v0, tp, tmp1, tmp2, eqv, offset;
3276 enum tls_model model;
3278 model = SYMBOL_REF_TLS_MODEL (loc);
3279 /* Only TARGET_ABICALLS code can have more than one module; other
3280 code must be be static and should not use a GOT. All TLS models
3281 reduce to local exec in this situation. */
3282 if (!TARGET_ABICALLS)
3283 model = TLS_MODEL_LOCAL_EXEC;
3285 switch (model)
3287 case TLS_MODEL_GLOBAL_DYNAMIC:
3288 v0 = gen_rtx_REG (Pmode, GP_RETURN);
3289 insn = mips_call_tls_get_addr (loc, SYMBOL_TLSGD, v0);
3290 dest = gen_reg_rtx (Pmode);
3291 emit_libcall_block (insn, dest, v0, loc);
3292 break;
3294 case TLS_MODEL_LOCAL_DYNAMIC:
3295 v0 = gen_rtx_REG (Pmode, GP_RETURN);
3296 insn = mips_call_tls_get_addr (loc, SYMBOL_TLSLDM, v0);
3297 tmp1 = gen_reg_rtx (Pmode);
3299 /* Attach a unique REG_EQUIV, to allow the RTL optimizers to
3300 share the LDM result with other LD model accesses. */
3301 eqv = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, const0_rtx),
3302 UNSPEC_TLS_LDM);
3303 emit_libcall_block (insn, tmp1, v0, eqv);
3305 offset = mips_unspec_address (loc, SYMBOL_DTPREL);
3306 if (mips_split_p[SYMBOL_DTPREL])
3308 tmp2 = mips_unspec_offset_high (NULL, tmp1, loc, SYMBOL_DTPREL);
3309 dest = gen_rtx_LO_SUM (Pmode, tmp2, offset);
3311 else
3312 dest = expand_binop (Pmode, add_optab, tmp1, offset,
3313 0, 0, OPTAB_DIRECT);
3314 break;
3316 case TLS_MODEL_INITIAL_EXEC:
3317 tp = mips_get_tp ();
3318 tmp1 = gen_reg_rtx (Pmode);
3319 tmp2 = mips_unspec_address (loc, SYMBOL_GOTTPREL);
3320 if (Pmode == DImode)
3321 emit_insn (gen_load_gotdi (tmp1, pic_offset_table_rtx, tmp2));
3322 else
3323 emit_insn (gen_load_gotsi (tmp1, pic_offset_table_rtx, tmp2));
3324 dest = gen_reg_rtx (Pmode);
3325 emit_insn (gen_add3_insn (dest, tmp1, tp));
3326 break;
3328 case TLS_MODEL_LOCAL_EXEC:
3329 tmp1 = mips_get_tp ();
3330 offset = mips_unspec_address (loc, SYMBOL_TPREL);
3331 if (mips_split_p[SYMBOL_TPREL])
3333 tmp2 = mips_unspec_offset_high (NULL, tmp1, loc, SYMBOL_TPREL);
3334 dest = gen_rtx_LO_SUM (Pmode, tmp2, offset);
3336 else
3337 dest = expand_binop (Pmode, add_optab, tmp1, offset,
3338 0, 0, OPTAB_DIRECT);
3339 break;
3341 default:
3342 gcc_unreachable ();
3344 return dest;
3347 /* Implement "TARGET = __builtin_mips_get_fcsr ()" for MIPS16,
3348 using a stub. */
3350 void
3351 mips16_expand_get_fcsr (rtx target)
3353 if (!mips16_get_fcsr_stub)
3354 mips16_get_fcsr_stub = new mips16_get_fcsr_one_only_stub ();
3355 rtx fn = mips16_stub_call_address (mips16_get_fcsr_stub);
3356 emit_insn (PMODE_INSN (gen_mips_get_fcsr_mips16, (fn)));
3357 emit_move_insn (target, gen_rtx_REG (SImode, GET_FCSR_REGNUM));
3360 /* Implement __builtin_mips_set_fcsr (TARGET) for MIPS16, using a stub. */
3362 void
3363 mips16_expand_set_fcsr (rtx newval)
3365 if (!mips16_set_fcsr_stub)
3366 mips16_set_fcsr_stub = new mips16_set_fcsr_one_only_stub ();
3367 rtx fn = mips16_stub_call_address (mips16_set_fcsr_stub);
3368 emit_move_insn (gen_rtx_REG (SImode, SET_FCSR_REGNUM), newval);
3369 emit_insn (PMODE_INSN (gen_mips_set_fcsr_mips16, (fn)));
3372 /* If X is not a valid address for mode MODE, force it into a register. */
3374 static rtx
3375 mips_force_address (rtx x, machine_mode mode)
3377 if (!mips_legitimate_address_p (mode, x, false))
3378 x = force_reg (Pmode, x);
3379 return x;
3382 /* This function is used to implement LEGITIMIZE_ADDRESS. If X can
3383 be legitimized in a way that the generic machinery might not expect,
3384 return a new address, otherwise return NULL. MODE is the mode of
3385 the memory being accessed. */
3387 static rtx
3388 mips_legitimize_address (rtx x, rtx oldx ATTRIBUTE_UNUSED,
3389 machine_mode mode)
3391 rtx base, addr;
3392 HOST_WIDE_INT offset;
3394 if (mips_tls_symbol_p (x))
3395 return mips_legitimize_tls_address (x);
3397 /* See if the address can split into a high part and a LO_SUM. */
3398 if (mips_split_symbol (NULL, x, mode, &addr))
3399 return mips_force_address (addr, mode);
3401 /* Handle BASE + OFFSET using mips_add_offset. */
3402 mips_split_plus (x, &base, &offset);
3403 if (offset != 0)
3405 if (!mips_valid_base_register_p (base, mode, false))
3406 base = copy_to_mode_reg (Pmode, base);
3407 addr = mips_add_offset (NULL, base, offset);
3408 return mips_force_address (addr, mode);
3411 return x;
3414 /* Load VALUE into DEST. TEMP is as for mips_force_temporary. */
3416 void
3417 mips_move_integer (rtx temp, rtx dest, unsigned HOST_WIDE_INT value)
3419 struct mips_integer_op codes[MIPS_MAX_INTEGER_OPS];
3420 machine_mode mode;
3421 unsigned int i, num_ops;
3422 rtx x;
3424 mode = GET_MODE (dest);
3425 num_ops = mips_build_integer (codes, value);
3427 /* Apply each binary operation to X. Invariant: X is a legitimate
3428 source operand for a SET pattern. */
3429 x = GEN_INT (codes[0].value);
3430 for (i = 1; i < num_ops; i++)
3432 if (!can_create_pseudo_p ())
3434 emit_insn (gen_rtx_SET (temp, x));
3435 x = temp;
3437 else
3438 x = force_reg (mode, x);
3439 x = gen_rtx_fmt_ee (codes[i].code, mode, x, GEN_INT (codes[i].value));
3442 emit_insn (gen_rtx_SET (dest, x));
3445 /* Subroutine of mips_legitimize_move. Move constant SRC into register
3446 DEST given that SRC satisfies immediate_operand but doesn't satisfy
3447 move_operand. */
3449 static void
3450 mips_legitimize_const_move (machine_mode mode, rtx dest, rtx src)
3452 rtx base, offset;
3454 /* Split moves of big integers into smaller pieces. */
3455 if (splittable_const_int_operand (src, mode))
3457 mips_move_integer (dest, dest, INTVAL (src));
3458 return;
3461 /* Split moves of symbolic constants into high/low pairs. */
3462 if (mips_split_symbol (dest, src, MAX_MACHINE_MODE, &src))
3464 emit_insn (gen_rtx_SET (dest, src));
3465 return;
3468 /* Generate the appropriate access sequences for TLS symbols. */
3469 if (mips_tls_symbol_p (src))
3471 mips_emit_move (dest, mips_legitimize_tls_address (src));
3472 return;
3475 /* If we have (const (plus symbol offset)), and that expression cannot
3476 be forced into memory, load the symbol first and add in the offset.
3477 In non-MIPS16 mode, prefer to do this even if the constant _can_ be
3478 forced into memory, as it usually produces better code. */
3479 split_const (src, &base, &offset);
3480 if (offset != const0_rtx
3481 && (targetm.cannot_force_const_mem (mode, src)
3482 || (!TARGET_MIPS16 && can_create_pseudo_p ())))
3484 base = mips_force_temporary (dest, base);
3485 mips_emit_move (dest, mips_add_offset (NULL, base, INTVAL (offset)));
3486 return;
3489 src = force_const_mem (mode, src);
3491 /* When using explicit relocs, constant pool references are sometimes
3492 not legitimate addresses. */
3493 mips_split_symbol (dest, XEXP (src, 0), mode, &XEXP (src, 0));
3494 mips_emit_move (dest, src);
3497 /* If (set DEST SRC) is not a valid move instruction, emit an equivalent
3498 sequence that is valid. */
3500 bool
3501 mips_legitimize_move (machine_mode mode, rtx dest, rtx src)
3503 if (!register_operand (dest, mode) && !reg_or_0_operand (src, mode))
3505 mips_emit_move (dest, force_reg (mode, src));
3506 return true;
3509 /* We need to deal with constants that would be legitimate
3510 immediate_operands but aren't legitimate move_operands. */
3511 if (CONSTANT_P (src) && !move_operand (src, mode))
3513 mips_legitimize_const_move (mode, dest, src);
3514 set_unique_reg_note (get_last_insn (), REG_EQUAL, copy_rtx (src));
3515 return true;
3517 return false;
3520 /* Return true if value X in context CONTEXT is a small-data address
3521 that can be rewritten as a LO_SUM. */
3523 static bool
3524 mips_rewrite_small_data_p (rtx x, enum mips_symbol_context context)
3526 enum mips_symbol_type symbol_type;
3528 return (mips_lo_relocs[SYMBOL_GP_RELATIVE]
3529 && !mips_split_p[SYMBOL_GP_RELATIVE]
3530 && mips_symbolic_constant_p (x, context, &symbol_type)
3531 && symbol_type == SYMBOL_GP_RELATIVE);
3534 /* Return true if OP refers to small data symbols directly, not through
3535 a LO_SUM. CONTEXT is the context in which X appears. */
3537 static int
3538 mips_small_data_pattern_1 (rtx x, enum mips_symbol_context context)
3540 subrtx_var_iterator::array_type array;
3541 FOR_EACH_SUBRTX_VAR (iter, array, x, ALL)
3543 rtx x = *iter;
3545 /* Ignore things like "g" constraints in asms. We make no particular
3546 guarantee about which symbolic constants are acceptable as asm operands
3547 versus which must be forced into a GPR. */
3548 if (GET_CODE (x) == LO_SUM || GET_CODE (x) == ASM_OPERANDS)
3549 iter.skip_subrtxes ();
3550 else if (MEM_P (x))
3552 if (mips_small_data_pattern_1 (XEXP (x, 0), SYMBOL_CONTEXT_MEM))
3553 return true;
3554 iter.skip_subrtxes ();
3556 else if (mips_rewrite_small_data_p (x, context))
3557 return true;
3559 return false;
3562 /* Return true if OP refers to small data symbols directly, not through
3563 a LO_SUM. */
3565 bool
3566 mips_small_data_pattern_p (rtx op)
3568 return mips_small_data_pattern_1 (op, SYMBOL_CONTEXT_LEA);
3571 /* Rewrite *LOC so that it refers to small data using explicit
3572 relocations. CONTEXT is the context in which *LOC appears. */
3574 static void
3575 mips_rewrite_small_data_1 (rtx *loc, enum mips_symbol_context context)
3577 subrtx_ptr_iterator::array_type array;
3578 FOR_EACH_SUBRTX_PTR (iter, array, loc, ALL)
3580 rtx *loc = *iter;
3581 if (MEM_P (*loc))
3583 mips_rewrite_small_data_1 (&XEXP (*loc, 0), SYMBOL_CONTEXT_MEM);
3584 iter.skip_subrtxes ();
3586 else if (mips_rewrite_small_data_p (*loc, context))
3588 *loc = gen_rtx_LO_SUM (Pmode, pic_offset_table_rtx, *loc);
3589 iter.skip_subrtxes ();
3591 else if (GET_CODE (*loc) == LO_SUM)
3592 iter.skip_subrtxes ();
3596 /* Rewrite instruction pattern PATTERN so that it refers to small data
3597 using explicit relocations. */
3600 mips_rewrite_small_data (rtx pattern)
3602 pattern = copy_insn (pattern);
3603 mips_rewrite_small_data_1 (&pattern, SYMBOL_CONTEXT_LEA);
3604 return pattern;
3607 /* The cost of loading values from the constant pool. It should be
3608 larger than the cost of any constant we want to synthesize inline. */
3609 #define CONSTANT_POOL_COST COSTS_N_INSNS (TARGET_MIPS16 ? 4 : 8)
3611 /* Return the cost of X when used as an operand to the MIPS16 instruction
3612 that implements CODE. Return -1 if there is no such instruction, or if
3613 X is not a valid immediate operand for it. */
3615 static int
3616 mips16_constant_cost (int code, HOST_WIDE_INT x)
3618 switch (code)
3620 case ASHIFT:
3621 case ASHIFTRT:
3622 case LSHIFTRT:
3623 /* Shifts by between 1 and 8 bits (inclusive) are unextended,
3624 other shifts are extended. The shift patterns truncate the shift
3625 count to the right size, so there are no out-of-range values. */
3626 if (IN_RANGE (x, 1, 8))
3627 return 0;
3628 return COSTS_N_INSNS (1);
3630 case PLUS:
3631 if (IN_RANGE (x, -128, 127))
3632 return 0;
3633 if (SMALL_OPERAND (x))
3634 return COSTS_N_INSNS (1);
3635 return -1;
3637 case LEU:
3638 /* Like LE, but reject the always-true case. */
3639 if (x == -1)
3640 return -1;
3641 case LE:
3642 /* We add 1 to the immediate and use SLT. */
3643 x += 1;
3644 case XOR:
3645 /* We can use CMPI for an xor with an unsigned 16-bit X. */
3646 case LT:
3647 case LTU:
3648 if (IN_RANGE (x, 0, 255))
3649 return 0;
3650 if (SMALL_OPERAND_UNSIGNED (x))
3651 return COSTS_N_INSNS (1);
3652 return -1;
3654 case EQ:
3655 case NE:
3656 /* Equality comparisons with 0 are cheap. */
3657 if (x == 0)
3658 return 0;
3659 return -1;
3661 default:
3662 return -1;
3666 /* Return true if there is a non-MIPS16 instruction that implements CODE
3667 and if that instruction accepts X as an immediate operand. */
3669 static int
3670 mips_immediate_operand_p (int code, HOST_WIDE_INT x)
3672 switch (code)
3674 case ASHIFT:
3675 case ASHIFTRT:
3676 case LSHIFTRT:
3677 /* All shift counts are truncated to a valid constant. */
3678 return true;
3680 case ROTATE:
3681 case ROTATERT:
3682 /* Likewise rotates, if the target supports rotates at all. */
3683 return ISA_HAS_ROR;
3685 case AND:
3686 case IOR:
3687 case XOR:
3688 /* These instructions take 16-bit unsigned immediates. */
3689 return SMALL_OPERAND_UNSIGNED (x);
3691 case PLUS:
3692 case LT:
3693 case LTU:
3694 /* These instructions take 16-bit signed immediates. */
3695 return SMALL_OPERAND (x);
3697 case EQ:
3698 case NE:
3699 case GT:
3700 case GTU:
3701 /* The "immediate" forms of these instructions are really
3702 implemented as comparisons with register 0. */
3703 return x == 0;
3705 case GE:
3706 case GEU:
3707 /* Likewise, meaning that the only valid immediate operand is 1. */
3708 return x == 1;
3710 case LE:
3711 /* We add 1 to the immediate and use SLT. */
3712 return SMALL_OPERAND (x + 1);
3714 case LEU:
3715 /* Likewise SLTU, but reject the always-true case. */
3716 return SMALL_OPERAND (x + 1) && x + 1 != 0;
3718 case SIGN_EXTRACT:
3719 case ZERO_EXTRACT:
3720 /* The bit position and size are immediate operands. */
3721 return ISA_HAS_EXT_INS;
3723 default:
3724 /* By default assume that $0 can be used for 0. */
3725 return x == 0;
3729 /* Return the cost of binary operation X, given that the instruction
3730 sequence for a word-sized or smaller operation has cost SINGLE_COST
3731 and that the sequence of a double-word operation has cost DOUBLE_COST.
3732 If SPEED is true, optimize for speed otherwise optimize for size. */
3734 static int
3735 mips_binary_cost (rtx x, int single_cost, int double_cost, bool speed)
3737 int cost;
3739 if (GET_MODE_SIZE (GET_MODE (x)) == UNITS_PER_WORD * 2)
3740 cost = double_cost;
3741 else
3742 cost = single_cost;
3743 return (cost
3744 + set_src_cost (XEXP (x, 0), speed)
3745 + rtx_cost (XEXP (x, 1), GET_CODE (x), 1, speed));
3748 /* Return the cost of floating-point multiplications of mode MODE. */
3750 static int
3751 mips_fp_mult_cost (machine_mode mode)
3753 return mode == DFmode ? mips_cost->fp_mult_df : mips_cost->fp_mult_sf;
3756 /* Return the cost of floating-point divisions of mode MODE. */
3758 static int
3759 mips_fp_div_cost (machine_mode mode)
3761 return mode == DFmode ? mips_cost->fp_div_df : mips_cost->fp_div_sf;
3764 /* Return the cost of sign-extending OP to mode MODE, not including the
3765 cost of OP itself. */
3767 static int
3768 mips_sign_extend_cost (machine_mode mode, rtx op)
3770 if (MEM_P (op))
3771 /* Extended loads are as cheap as unextended ones. */
3772 return 0;
3774 if (TARGET_64BIT && mode == DImode && GET_MODE (op) == SImode)
3775 /* A sign extension from SImode to DImode in 64-bit mode is free. */
3776 return 0;
3778 if (ISA_HAS_SEB_SEH || GENERATE_MIPS16E)
3779 /* We can use SEB or SEH. */
3780 return COSTS_N_INSNS (1);
3782 /* We need to use a shift left and a shift right. */
3783 return COSTS_N_INSNS (TARGET_MIPS16 ? 4 : 2);
3786 /* Return the cost of zero-extending OP to mode MODE, not including the
3787 cost of OP itself. */
3789 static int
3790 mips_zero_extend_cost (machine_mode mode, rtx op)
3792 if (MEM_P (op))
3793 /* Extended loads are as cheap as unextended ones. */
3794 return 0;
3796 if (TARGET_64BIT && mode == DImode && GET_MODE (op) == SImode)
3797 /* We need a shift left by 32 bits and a shift right by 32 bits. */
3798 return COSTS_N_INSNS (TARGET_MIPS16 ? 4 : 2);
3800 if (GENERATE_MIPS16E)
3801 /* We can use ZEB or ZEH. */
3802 return COSTS_N_INSNS (1);
3804 if (TARGET_MIPS16)
3805 /* We need to load 0xff or 0xffff into a register and use AND. */
3806 return COSTS_N_INSNS (GET_MODE (op) == QImode ? 2 : 3);
3808 /* We can use ANDI. */
3809 return COSTS_N_INSNS (1);
3812 /* Return the cost of moving between two registers of mode MODE,
3813 assuming that the move will be in pieces of at most UNITS bytes. */
3815 static int
3816 mips_set_reg_reg_piece_cost (machine_mode mode, unsigned int units)
3818 return COSTS_N_INSNS ((GET_MODE_SIZE (mode) + units - 1) / units);
3821 /* Return the cost of moving between two registers of mode MODE. */
3823 static int
3824 mips_set_reg_reg_cost (machine_mode mode)
3826 switch (GET_MODE_CLASS (mode))
3828 case MODE_CC:
3829 return mips_set_reg_reg_piece_cost (mode, GET_MODE_SIZE (CCmode));
3831 case MODE_FLOAT:
3832 case MODE_COMPLEX_FLOAT:
3833 case MODE_VECTOR_FLOAT:
3834 if (TARGET_HARD_FLOAT)
3835 return mips_set_reg_reg_piece_cost (mode, UNITS_PER_HWFPVALUE);
3836 /* Fall through */
3838 default:
3839 return mips_set_reg_reg_piece_cost (mode, UNITS_PER_WORD);
3843 /* Implement TARGET_RTX_COSTS. */
3845 static bool
3846 mips_rtx_costs (rtx x, int code, int outer_code, int opno ATTRIBUTE_UNUSED,
3847 int *total, bool speed)
3849 machine_mode mode = GET_MODE (x);
3850 bool float_mode_p = FLOAT_MODE_P (mode);
3851 int cost;
3852 rtx addr;
3854 /* The cost of a COMPARE is hard to define for MIPS. COMPAREs don't
3855 appear in the instruction stream, and the cost of a comparison is
3856 really the cost of the branch or scc condition. At the time of
3857 writing, GCC only uses an explicit outer COMPARE code when optabs
3858 is testing whether a constant is expensive enough to force into a
3859 register. We want optabs to pass such constants through the MIPS
3860 expanders instead, so make all constants very cheap here. */
3861 if (outer_code == COMPARE)
3863 gcc_assert (CONSTANT_P (x));
3864 *total = 0;
3865 return true;
3868 switch (code)
3870 case CONST_INT:
3871 /* Treat *clear_upper32-style ANDs as having zero cost in the
3872 second operand. The cost is entirely in the first operand.
3874 ??? This is needed because we would otherwise try to CSE
3875 the constant operand. Although that's the right thing for
3876 instructions that continue to be a register operation throughout
3877 compilation, it is disastrous for instructions that could
3878 later be converted into a memory operation. */
3879 if (TARGET_64BIT
3880 && outer_code == AND
3881 && UINTVAL (x) == 0xffffffff)
3883 *total = 0;
3884 return true;
3887 if (TARGET_MIPS16)
3889 cost = mips16_constant_cost (outer_code, INTVAL (x));
3890 if (cost >= 0)
3892 *total = cost;
3893 return true;
3896 else
3898 /* When not optimizing for size, we care more about the cost
3899 of hot code, and hot code is often in a loop. If a constant
3900 operand needs to be forced into a register, we will often be
3901 able to hoist the constant load out of the loop, so the load
3902 should not contribute to the cost. */
3903 if (speed || mips_immediate_operand_p (outer_code, INTVAL (x)))
3905 *total = 0;
3906 return true;
3909 /* Fall through. */
3911 case CONST:
3912 case SYMBOL_REF:
3913 case LABEL_REF:
3914 case CONST_DOUBLE:
3915 if (force_to_mem_operand (x, VOIDmode))
3917 *total = COSTS_N_INSNS (1);
3918 return true;
3920 cost = mips_const_insns (x);
3921 if (cost > 0)
3923 /* If the constant is likely to be stored in a GPR, SETs of
3924 single-insn constants are as cheap as register sets; we
3925 never want to CSE them.
3927 Don't reduce the cost of storing a floating-point zero in
3928 FPRs. If we have a zero in an FPR for other reasons, we
3929 can get better cfg-cleanup and delayed-branch results by
3930 using it consistently, rather than using $0 sometimes and
3931 an FPR at other times. Also, moves between floating-point
3932 registers are sometimes cheaper than (D)MTC1 $0. */
3933 if (cost == 1
3934 && outer_code == SET
3935 && !(float_mode_p && TARGET_HARD_FLOAT))
3936 cost = 0;
3937 /* When non-MIPS16 code loads a constant N>1 times, we rarely
3938 want to CSE the constant itself. It is usually better to
3939 have N copies of the last operation in the sequence and one
3940 shared copy of the other operations. (Note that this is
3941 not true for MIPS16 code, where the final operation in the
3942 sequence is often an extended instruction.)
3944 Also, if we have a CONST_INT, we don't know whether it is
3945 for a word or doubleword operation, so we cannot rely on
3946 the result of mips_build_integer. */
3947 else if (!TARGET_MIPS16
3948 && (outer_code == SET || mode == VOIDmode))
3949 cost = 1;
3950 *total = COSTS_N_INSNS (cost);
3951 return true;
3953 /* The value will need to be fetched from the constant pool. */
3954 *total = CONSTANT_POOL_COST;
3955 return true;
3957 case MEM:
3958 /* If the address is legitimate, return the number of
3959 instructions it needs. */
3960 addr = XEXP (x, 0);
3961 cost = mips_address_insns (addr, mode, true);
3962 if (cost > 0)
3964 *total = COSTS_N_INSNS (cost + 1);
3965 return true;
3967 /* Check for a scaled indexed address. */
3968 if (mips_lwxs_address_p (addr)
3969 || mips_lx_address_p (addr, mode))
3971 *total = COSTS_N_INSNS (2);
3972 return true;
3974 /* Otherwise use the default handling. */
3975 return false;
3977 case FFS:
3978 *total = COSTS_N_INSNS (6);
3979 return false;
3981 case NOT:
3982 *total = COSTS_N_INSNS (GET_MODE_SIZE (mode) > UNITS_PER_WORD ? 2 : 1);
3983 return false;
3985 case AND:
3986 /* Check for a *clear_upper32 pattern and treat it like a zero
3987 extension. See the pattern's comment for details. */
3988 if (TARGET_64BIT
3989 && mode == DImode
3990 && CONST_INT_P (XEXP (x, 1))
3991 && UINTVAL (XEXP (x, 1)) == 0xffffffff)
3993 *total = (mips_zero_extend_cost (mode, XEXP (x, 0))
3994 + set_src_cost (XEXP (x, 0), speed));
3995 return true;
3997 if (ISA_HAS_CINS && CONST_INT_P (XEXP (x, 1)))
3999 rtx op = XEXP (x, 0);
4000 if (GET_CODE (op) == ASHIFT
4001 && CONST_INT_P (XEXP (op, 1))
4002 && mask_low_and_shift_p (mode, XEXP (x, 1), XEXP (op, 1), 32))
4004 *total = COSTS_N_INSNS (1) + set_src_cost (XEXP (op, 0), speed);
4005 return true;
4008 /* (AND (NOT op0) (NOT op1) is a nor operation that can be done in
4009 a single instruction. */
4010 if (!TARGET_MIPS16
4011 && GET_CODE (XEXP (x, 0)) == NOT
4012 && GET_CODE (XEXP (x, 1)) == NOT)
4014 cost = GET_MODE_SIZE (mode) > UNITS_PER_WORD ? 2 : 1;
4015 *total = (COSTS_N_INSNS (cost)
4016 + set_src_cost (XEXP (XEXP (x, 0), 0), speed)
4017 + set_src_cost (XEXP (XEXP (x, 1), 0), speed));
4018 return true;
4021 /* Fall through. */
4023 case IOR:
4024 case XOR:
4025 /* Double-word operations use two single-word operations. */
4026 *total = mips_binary_cost (x, COSTS_N_INSNS (1), COSTS_N_INSNS (2),
4027 speed);
4028 return true;
4030 case ASHIFT:
4031 case ASHIFTRT:
4032 case LSHIFTRT:
4033 case ROTATE:
4034 case ROTATERT:
4035 if (CONSTANT_P (XEXP (x, 1)))
4036 *total = mips_binary_cost (x, COSTS_N_INSNS (1), COSTS_N_INSNS (4),
4037 speed);
4038 else
4039 *total = mips_binary_cost (x, COSTS_N_INSNS (1), COSTS_N_INSNS (12),
4040 speed);
4041 return true;
4043 case ABS:
4044 if (float_mode_p)
4045 *total = mips_cost->fp_add;
4046 else
4047 *total = COSTS_N_INSNS (4);
4048 return false;
4050 case LO_SUM:
4051 /* Low-part immediates need an extended MIPS16 instruction. */
4052 *total = (COSTS_N_INSNS (TARGET_MIPS16 ? 2 : 1)
4053 + set_src_cost (XEXP (x, 0), speed));
4054 return true;
4056 case LT:
4057 case LTU:
4058 case LE:
4059 case LEU:
4060 case GT:
4061 case GTU:
4062 case GE:
4063 case GEU:
4064 case EQ:
4065 case NE:
4066 case UNORDERED:
4067 case LTGT:
4068 /* Branch comparisons have VOIDmode, so use the first operand's
4069 mode instead. */
4070 mode = GET_MODE (XEXP (x, 0));
4071 if (FLOAT_MODE_P (mode))
4073 *total = mips_cost->fp_add;
4074 return false;
4076 *total = mips_binary_cost (x, COSTS_N_INSNS (1), COSTS_N_INSNS (4),
4077 speed);
4078 return true;
4080 case MINUS:
4081 if (float_mode_p
4082 && (ISA_HAS_NMADD4_NMSUB4 || ISA_HAS_NMADD3_NMSUB3)
4083 && TARGET_FUSED_MADD
4084 && !HONOR_NANS (mode)
4085 && !HONOR_SIGNED_ZEROS (mode))
4087 /* See if we can use NMADD or NMSUB. See mips.md for the
4088 associated patterns. */
4089 rtx op0 = XEXP (x, 0);
4090 rtx op1 = XEXP (x, 1);
4091 if (GET_CODE (op0) == MULT && GET_CODE (XEXP (op0, 0)) == NEG)
4093 *total = (mips_fp_mult_cost (mode)
4094 + set_src_cost (XEXP (XEXP (op0, 0), 0), speed)
4095 + set_src_cost (XEXP (op0, 1), speed)
4096 + set_src_cost (op1, speed));
4097 return true;
4099 if (GET_CODE (op1) == MULT)
4101 *total = (mips_fp_mult_cost (mode)
4102 + set_src_cost (op0, speed)
4103 + set_src_cost (XEXP (op1, 0), speed)
4104 + set_src_cost (XEXP (op1, 1), speed));
4105 return true;
4108 /* Fall through. */
4110 case PLUS:
4111 if (float_mode_p)
4113 /* If this is part of a MADD or MSUB, treat the PLUS as
4114 being free. */
4115 if ((ISA_HAS_FP_MADD4_MSUB4 || ISA_HAS_FP_MADD3_MSUB3)
4116 && TARGET_FUSED_MADD
4117 && GET_CODE (XEXP (x, 0)) == MULT)
4118 *total = 0;
4119 else
4120 *total = mips_cost->fp_add;
4121 return false;
4124 /* If it's an add + mult (which is equivalent to shift left) and
4125 it's immediate operand satisfies const_immlsa_operand predicate. */
4126 if (((ISA_HAS_LSA && mode == SImode)
4127 || (ISA_HAS_DLSA && mode == DImode))
4128 && GET_CODE (XEXP (x, 0)) == MULT)
4130 rtx op2 = XEXP (XEXP (x, 0), 1);
4131 if (const_immlsa_operand (op2, mode))
4133 *total = (COSTS_N_INSNS (1)
4134 + set_src_cost (XEXP (XEXP (x, 0), 0), speed)
4135 + set_src_cost (XEXP (x, 1), speed));
4136 return true;
4140 /* Double-word operations require three single-word operations and
4141 an SLTU. The MIPS16 version then needs to move the result of
4142 the SLTU from $24 to a MIPS16 register. */
4143 *total = mips_binary_cost (x, COSTS_N_INSNS (1),
4144 COSTS_N_INSNS (TARGET_MIPS16 ? 5 : 4),
4145 speed);
4146 return true;
4148 case NEG:
4149 if (float_mode_p
4150 && (ISA_HAS_NMADD4_NMSUB4 || ISA_HAS_NMADD3_NMSUB3)
4151 && TARGET_FUSED_MADD
4152 && !HONOR_NANS (mode)
4153 && HONOR_SIGNED_ZEROS (mode))
4155 /* See if we can use NMADD or NMSUB. See mips.md for the
4156 associated patterns. */
4157 rtx op = XEXP (x, 0);
4158 if ((GET_CODE (op) == PLUS || GET_CODE (op) == MINUS)
4159 && GET_CODE (XEXP (op, 0)) == MULT)
4161 *total = (mips_fp_mult_cost (mode)
4162 + set_src_cost (XEXP (XEXP (op, 0), 0), speed)
4163 + set_src_cost (XEXP (XEXP (op, 0), 1), speed)
4164 + set_src_cost (XEXP (op, 1), speed));
4165 return true;
4169 if (float_mode_p)
4170 *total = mips_cost->fp_add;
4171 else
4172 *total = COSTS_N_INSNS (GET_MODE_SIZE (mode) > UNITS_PER_WORD ? 4 : 1);
4173 return false;
4175 case FMA:
4176 if (ISA_HAS_FP_MADDF_MSUBF)
4177 *total = mips_fp_mult_cost (mode);
4178 return false;
4180 case MULT:
4181 if (float_mode_p)
4182 *total = mips_fp_mult_cost (mode);
4183 else if (mode == DImode && !TARGET_64BIT)
4184 /* Synthesized from 2 mulsi3s, 1 mulsidi3 and two additions,
4185 where the mulsidi3 always includes an MFHI and an MFLO. */
4186 *total = (speed
4187 ? mips_cost->int_mult_si * 3 + 6
4188 : COSTS_N_INSNS (ISA_HAS_MUL3 ? 7 : 9));
4189 else if (!speed)
4190 *total = COSTS_N_INSNS ((ISA_HAS_MUL3 || ISA_HAS_R6MUL) ? 1 : 2) + 1;
4191 else if (mode == DImode)
4192 *total = mips_cost->int_mult_di;
4193 else
4194 *total = mips_cost->int_mult_si;
4195 return false;
4197 case DIV:
4198 /* Check for a reciprocal. */
4199 if (float_mode_p
4200 && ISA_HAS_FP_RECIP_RSQRT (mode)
4201 && flag_unsafe_math_optimizations
4202 && XEXP (x, 0) == CONST1_RTX (mode))
4204 if (outer_code == SQRT || GET_CODE (XEXP (x, 1)) == SQRT)
4205 /* An rsqrt<mode>a or rsqrt<mode>b pattern. Count the
4206 division as being free. */
4207 *total = set_src_cost (XEXP (x, 1), speed);
4208 else
4209 *total = (mips_fp_div_cost (mode)
4210 + set_src_cost (XEXP (x, 1), speed));
4211 return true;
4213 /* Fall through. */
4215 case SQRT:
4216 case MOD:
4217 if (float_mode_p)
4219 *total = mips_fp_div_cost (mode);
4220 return false;
4222 /* Fall through. */
4224 case UDIV:
4225 case UMOD:
4226 if (!speed)
4228 /* It is our responsibility to make division by a power of 2
4229 as cheap as 2 register additions if we want the division
4230 expanders to be used for such operations; see the setting
4231 of sdiv_pow2_cheap in optabs.c. Using (D)DIV for MIPS16
4232 should always produce shorter code than using
4233 expand_sdiv2_pow2. */
4234 if (TARGET_MIPS16
4235 && CONST_INT_P (XEXP (x, 1))
4236 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0)
4238 *total = COSTS_N_INSNS (2) + set_src_cost (XEXP (x, 0), speed);
4239 return true;
4241 *total = COSTS_N_INSNS (mips_idiv_insns ());
4243 else if (mode == DImode)
4244 *total = mips_cost->int_div_di;
4245 else
4246 *total = mips_cost->int_div_si;
4247 return false;
4249 case SIGN_EXTEND:
4250 *total = mips_sign_extend_cost (mode, XEXP (x, 0));
4251 return false;
4253 case ZERO_EXTEND:
4254 if (outer_code == SET
4255 && ISA_HAS_BADDU
4256 && (GET_CODE (XEXP (x, 0)) == TRUNCATE
4257 || GET_CODE (XEXP (x, 0)) == SUBREG)
4258 && GET_MODE (XEXP (x, 0)) == QImode
4259 && GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS)
4261 *total = set_src_cost (XEXP (XEXP (x, 0), 0), speed);
4262 return true;
4264 *total = mips_zero_extend_cost (mode, XEXP (x, 0));
4265 return false;
4266 case TRUNCATE:
4267 /* Costings for highpart multiplies. Matching patterns of the form:
4269 (lshiftrt:DI (mult:DI (sign_extend:DI (...)
4270 (sign_extend:DI (...))
4271 (const_int 32)
4273 if (ISA_HAS_R6MUL
4274 && (GET_CODE (XEXP (x, 0)) == ASHIFTRT
4275 || GET_CODE (XEXP (x, 0)) == LSHIFTRT)
4276 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
4277 && ((INTVAL (XEXP (XEXP (x, 0), 1)) == 32
4278 && GET_MODE (XEXP (x, 0)) == DImode)
4279 || (ISA_HAS_R6DMUL
4280 && INTVAL (XEXP (XEXP (x, 0), 1)) == 64
4281 && GET_MODE (XEXP (x, 0)) == TImode))
4282 && GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT
4283 && ((GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == SIGN_EXTEND
4284 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == SIGN_EXTEND)
4285 || (GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == ZERO_EXTEND
4286 && (GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1))
4287 == ZERO_EXTEND))))
4289 if (!speed)
4290 *total = COSTS_N_INSNS (1) + 1;
4291 else if (mode == DImode)
4292 *total = mips_cost->int_mult_di;
4293 else
4294 *total = mips_cost->int_mult_si;
4296 /* Sign extension is free, zero extension costs for DImode when
4297 on a 64bit core / when DMUL is present. */
4298 for (int i = 0; i < 2; ++i)
4300 rtx op = XEXP (XEXP (XEXP (x, 0), 0), i);
4301 if (ISA_HAS_R6DMUL
4302 && GET_CODE (op) == ZERO_EXTEND
4303 && GET_MODE (op) == DImode)
4304 *total += rtx_cost (op, MULT, i, speed);
4305 else
4306 *total += rtx_cost (XEXP (op, 0), GET_CODE (op), 0, speed);
4309 return true;
4311 return false;
4313 case FLOAT:
4314 case UNSIGNED_FLOAT:
4315 case FIX:
4316 case FLOAT_EXTEND:
4317 case FLOAT_TRUNCATE:
4318 *total = mips_cost->fp_add;
4319 return false;
4321 case SET:
4322 if (register_operand (SET_DEST (x), VOIDmode)
4323 && reg_or_0_operand (SET_SRC (x), VOIDmode))
4325 *total = mips_set_reg_reg_cost (GET_MODE (SET_DEST (x)));
4326 return true;
4328 return false;
4330 default:
4331 return false;
4335 /* Implement TARGET_ADDRESS_COST. */
4337 static int
4338 mips_address_cost (rtx addr, machine_mode mode,
4339 addr_space_t as ATTRIBUTE_UNUSED,
4340 bool speed ATTRIBUTE_UNUSED)
4342 return mips_address_insns (addr, mode, false);
4345 /* Information about a single instruction in a multi-instruction
4346 asm sequence. */
4347 struct mips_multi_member {
4348 /* True if this is a label, false if it is code. */
4349 bool is_label_p;
4351 /* The output_asm_insn format of the instruction. */
4352 const char *format;
4354 /* The operands to the instruction. */
4355 rtx operands[MAX_RECOG_OPERANDS];
4357 typedef struct mips_multi_member mips_multi_member;
4359 /* The instructions that make up the current multi-insn sequence. */
4360 static vec<mips_multi_member> mips_multi_members;
4362 /* How many instructions (as opposed to labels) are in the current
4363 multi-insn sequence. */
4364 static unsigned int mips_multi_num_insns;
4366 /* Start a new multi-insn sequence. */
4368 static void
4369 mips_multi_start (void)
4371 mips_multi_members.truncate (0);
4372 mips_multi_num_insns = 0;
4375 /* Add a new, uninitialized member to the current multi-insn sequence. */
4377 static struct mips_multi_member *
4378 mips_multi_add (void)
4380 mips_multi_member empty;
4381 return mips_multi_members.safe_push (empty);
4384 /* Add a normal insn with the given asm format to the current multi-insn
4385 sequence. The other arguments are a null-terminated list of operands. */
4387 static void
4388 mips_multi_add_insn (const char *format, ...)
4390 struct mips_multi_member *member;
4391 va_list ap;
4392 unsigned int i;
4393 rtx op;
4395 member = mips_multi_add ();
4396 member->is_label_p = false;
4397 member->format = format;
4398 va_start (ap, format);
4399 i = 0;
4400 while ((op = va_arg (ap, rtx)))
4401 member->operands[i++] = op;
4402 va_end (ap);
4403 mips_multi_num_insns++;
4406 /* Add the given label definition to the current multi-insn sequence.
4407 The definition should include the colon. */
4409 static void
4410 mips_multi_add_label (const char *label)
4412 struct mips_multi_member *member;
4414 member = mips_multi_add ();
4415 member->is_label_p = true;
4416 member->format = label;
4419 /* Return the index of the last member of the current multi-insn sequence. */
4421 static unsigned int
4422 mips_multi_last_index (void)
4424 return mips_multi_members.length () - 1;
4427 /* Add a copy of an existing instruction to the current multi-insn
4428 sequence. I is the index of the instruction that should be copied. */
4430 static void
4431 mips_multi_copy_insn (unsigned int i)
4433 struct mips_multi_member *member;
4435 member = mips_multi_add ();
4436 memcpy (member, &mips_multi_members[i], sizeof (*member));
4437 gcc_assert (!member->is_label_p);
4440 /* Change the operand of an existing instruction in the current
4441 multi-insn sequence. I is the index of the instruction,
4442 OP is the index of the operand, and X is the new value. */
4444 static void
4445 mips_multi_set_operand (unsigned int i, unsigned int op, rtx x)
4447 mips_multi_members[i].operands[op] = x;
4450 /* Write out the asm code for the current multi-insn sequence. */
4452 static void
4453 mips_multi_write (void)
4455 struct mips_multi_member *member;
4456 unsigned int i;
4458 FOR_EACH_VEC_ELT (mips_multi_members, i, member)
4459 if (member->is_label_p)
4460 fprintf (asm_out_file, "%s\n", member->format);
4461 else
4462 output_asm_insn (member->format, member->operands);
4465 /* Return one word of double-word value OP, taking into account the fixed
4466 endianness of certain registers. HIGH_P is true to select the high part,
4467 false to select the low part. */
4470 mips_subword (rtx op, bool high_p)
4472 unsigned int byte, offset;
4473 machine_mode mode;
4475 mode = GET_MODE (op);
4476 if (mode == VOIDmode)
4477 mode = TARGET_64BIT ? TImode : DImode;
4479 if (TARGET_BIG_ENDIAN ? !high_p : high_p)
4480 byte = UNITS_PER_WORD;
4481 else
4482 byte = 0;
4484 if (FP_REG_RTX_P (op))
4486 /* Paired FPRs are always ordered little-endian. */
4487 offset = (UNITS_PER_WORD < UNITS_PER_HWFPVALUE ? high_p : byte != 0);
4488 return gen_rtx_REG (word_mode, REGNO (op) + offset);
4491 if (MEM_P (op))
4492 return mips_rewrite_small_data (adjust_address (op, word_mode, byte));
4494 return simplify_gen_subreg (word_mode, op, mode, byte);
4497 /* Return true if SRC should be moved into DEST using "MULT $0, $0".
4498 SPLIT_TYPE is the condition under which moves should be split. */
4500 static bool
4501 mips_mult_move_p (rtx dest, rtx src, enum mips_split_type split_type)
4503 return ((split_type != SPLIT_FOR_SPEED
4504 || mips_tuning_info.fast_mult_zero_zero_p)
4505 && src == const0_rtx
4506 && REG_P (dest)
4507 && GET_MODE_SIZE (GET_MODE (dest)) == 2 * UNITS_PER_WORD
4508 && (ISA_HAS_DSP_MULT
4509 ? ACC_REG_P (REGNO (dest))
4510 : MD_REG_P (REGNO (dest))));
4513 /* Return true if a move from SRC to DEST should be split into two.
4514 SPLIT_TYPE describes the split condition. */
4516 bool
4517 mips_split_move_p (rtx dest, rtx src, enum mips_split_type split_type)
4519 /* Check whether the move can be done using some variant of MULT $0,$0. */
4520 if (mips_mult_move_p (dest, src, split_type))
4521 return false;
4523 /* FPR-to-FPR moves can be done in a single instruction, if they're
4524 allowed at all. */
4525 unsigned int size = GET_MODE_SIZE (GET_MODE (dest));
4526 if (size == 8 && FP_REG_RTX_P (src) && FP_REG_RTX_P (dest))
4527 return false;
4529 /* Check for floating-point loads and stores. */
4530 if (size == 8 && ISA_HAS_LDC1_SDC1)
4532 if (FP_REG_RTX_P (dest) && MEM_P (src))
4533 return false;
4534 if (FP_REG_RTX_P (src) && MEM_P (dest))
4535 return false;
4538 /* Otherwise split all multiword moves. */
4539 return size > UNITS_PER_WORD;
4542 /* Split a move from SRC to DEST, given that mips_split_move_p holds.
4543 SPLIT_TYPE describes the split condition. */
4545 void
4546 mips_split_move (rtx dest, rtx src, enum mips_split_type split_type)
4548 rtx low_dest;
4550 gcc_checking_assert (mips_split_move_p (dest, src, split_type));
4551 if (FP_REG_RTX_P (dest) || FP_REG_RTX_P (src))
4553 if (!TARGET_64BIT && GET_MODE (dest) == DImode)
4554 emit_insn (gen_move_doubleword_fprdi (dest, src));
4555 else if (!TARGET_64BIT && GET_MODE (dest) == DFmode)
4556 emit_insn (gen_move_doubleword_fprdf (dest, src));
4557 else if (!TARGET_64BIT && GET_MODE (dest) == V2SFmode)
4558 emit_insn (gen_move_doubleword_fprv2sf (dest, src));
4559 else if (!TARGET_64BIT && GET_MODE (dest) == V2SImode)
4560 emit_insn (gen_move_doubleword_fprv2si (dest, src));
4561 else if (!TARGET_64BIT && GET_MODE (dest) == V4HImode)
4562 emit_insn (gen_move_doubleword_fprv4hi (dest, src));
4563 else if (!TARGET_64BIT && GET_MODE (dest) == V8QImode)
4564 emit_insn (gen_move_doubleword_fprv8qi (dest, src));
4565 else if (TARGET_64BIT && GET_MODE (dest) == TFmode)
4566 emit_insn (gen_move_doubleword_fprtf (dest, src));
4567 else
4568 gcc_unreachable ();
4570 else if (REG_P (dest) && REGNO (dest) == MD_REG_FIRST)
4572 low_dest = mips_subword (dest, false);
4573 mips_emit_move (low_dest, mips_subword (src, false));
4574 if (TARGET_64BIT)
4575 emit_insn (gen_mthidi_ti (dest, mips_subword (src, true), low_dest));
4576 else
4577 emit_insn (gen_mthisi_di (dest, mips_subword (src, true), low_dest));
4579 else if (REG_P (src) && REGNO (src) == MD_REG_FIRST)
4581 mips_emit_move (mips_subword (dest, false), mips_subword (src, false));
4582 if (TARGET_64BIT)
4583 emit_insn (gen_mfhidi_ti (mips_subword (dest, true), src));
4584 else
4585 emit_insn (gen_mfhisi_di (mips_subword (dest, true), src));
4587 else
4589 /* The operation can be split into two normal moves. Decide in
4590 which order to do them. */
4591 low_dest = mips_subword (dest, false);
4592 if (REG_P (low_dest)
4593 && reg_overlap_mentioned_p (low_dest, src))
4595 mips_emit_move (mips_subword (dest, true), mips_subword (src, true));
4596 mips_emit_move (low_dest, mips_subword (src, false));
4598 else
4600 mips_emit_move (low_dest, mips_subword (src, false));
4601 mips_emit_move (mips_subword (dest, true), mips_subword (src, true));
4606 /* Return the split type for instruction INSN. */
4608 static enum mips_split_type
4609 mips_insn_split_type (rtx insn)
4611 basic_block bb = BLOCK_FOR_INSN (insn);
4612 if (bb)
4614 if (optimize_bb_for_speed_p (bb))
4615 return SPLIT_FOR_SPEED;
4616 else
4617 return SPLIT_FOR_SIZE;
4619 /* Once CFG information has been removed, we should trust the optimization
4620 decisions made by previous passes and only split where necessary. */
4621 return SPLIT_IF_NECESSARY;
4624 /* Return true if a move from SRC to DEST in INSN should be split. */
4626 bool
4627 mips_split_move_insn_p (rtx dest, rtx src, rtx insn)
4629 return mips_split_move_p (dest, src, mips_insn_split_type (insn));
4632 /* Split a move from SRC to DEST in INSN, given that mips_split_move_insn_p
4633 holds. */
4635 void
4636 mips_split_move_insn (rtx dest, rtx src, rtx insn)
4638 mips_split_move (dest, src, mips_insn_split_type (insn));
4641 /* Return the appropriate instructions to move SRC into DEST. Assume
4642 that SRC is operand 1 and DEST is operand 0. */
4644 const char *
4645 mips_output_move (rtx dest, rtx src)
4647 enum rtx_code dest_code, src_code;
4648 machine_mode mode;
4649 enum mips_symbol_type symbol_type;
4650 bool dbl_p;
4652 dest_code = GET_CODE (dest);
4653 src_code = GET_CODE (src);
4654 mode = GET_MODE (dest);
4655 dbl_p = (GET_MODE_SIZE (mode) == 8);
4657 if (mips_split_move_p (dest, src, SPLIT_IF_NECESSARY))
4658 return "#";
4660 if ((src_code == REG && GP_REG_P (REGNO (src)))
4661 || (!TARGET_MIPS16 && src == CONST0_RTX (mode)))
4663 if (dest_code == REG)
4665 if (GP_REG_P (REGNO (dest)))
4666 return "move\t%0,%z1";
4668 if (mips_mult_move_p (dest, src, SPLIT_IF_NECESSARY))
4670 if (ISA_HAS_DSP_MULT)
4671 return "mult\t%q0,%.,%.";
4672 else
4673 return "mult\t%.,%.";
4676 /* Moves to HI are handled by special .md insns. */
4677 if (REGNO (dest) == LO_REGNUM)
4678 return "mtlo\t%z1";
4680 if (DSP_ACC_REG_P (REGNO (dest)))
4682 static char retval[] = "mt__\t%z1,%q0";
4684 retval[2] = reg_names[REGNO (dest)][4];
4685 retval[3] = reg_names[REGNO (dest)][5];
4686 return retval;
4689 if (FP_REG_P (REGNO (dest)))
4690 return dbl_p ? "dmtc1\t%z1,%0" : "mtc1\t%z1,%0";
4692 if (ALL_COP_REG_P (REGNO (dest)))
4694 static char retval[] = "dmtc_\t%z1,%0";
4696 retval[4] = COPNUM_AS_CHAR_FROM_REGNUM (REGNO (dest));
4697 return dbl_p ? retval : retval + 1;
4700 if (dest_code == MEM)
4701 switch (GET_MODE_SIZE (mode))
4703 case 1: return "sb\t%z1,%0";
4704 case 2: return "sh\t%z1,%0";
4705 case 4: return "sw\t%z1,%0";
4706 case 8: return "sd\t%z1,%0";
4709 if (dest_code == REG && GP_REG_P (REGNO (dest)))
4711 if (src_code == REG)
4713 /* Moves from HI are handled by special .md insns. */
4714 if (REGNO (src) == LO_REGNUM)
4716 /* When generating VR4120 or VR4130 code, we use MACC and
4717 DMACC instead of MFLO. This avoids both the normal
4718 MIPS III HI/LO hazards and the errata related to
4719 -mfix-vr4130. */
4720 if (ISA_HAS_MACCHI)
4721 return dbl_p ? "dmacc\t%0,%.,%." : "macc\t%0,%.,%.";
4722 return "mflo\t%0";
4725 if (DSP_ACC_REG_P (REGNO (src)))
4727 static char retval[] = "mf__\t%0,%q1";
4729 retval[2] = reg_names[REGNO (src)][4];
4730 retval[3] = reg_names[REGNO (src)][5];
4731 return retval;
4734 if (FP_REG_P (REGNO (src)))
4735 return dbl_p ? "dmfc1\t%0,%1" : "mfc1\t%0,%1";
4737 if (ALL_COP_REG_P (REGNO (src)))
4739 static char retval[] = "dmfc_\t%0,%1";
4741 retval[4] = COPNUM_AS_CHAR_FROM_REGNUM (REGNO (src));
4742 return dbl_p ? retval : retval + 1;
4746 if (src_code == MEM)
4747 switch (GET_MODE_SIZE (mode))
4749 case 1: return "lbu\t%0,%1";
4750 case 2: return "lhu\t%0,%1";
4751 case 4: return "lw\t%0,%1";
4752 case 8: return "ld\t%0,%1";
4755 if (src_code == CONST_INT)
4757 /* Don't use the X format for the operand itself, because that
4758 will give out-of-range numbers for 64-bit hosts and 32-bit
4759 targets. */
4760 if (!TARGET_MIPS16)
4761 return "li\t%0,%1\t\t\t# %X1";
4763 if (SMALL_OPERAND_UNSIGNED (INTVAL (src)))
4764 return "li\t%0,%1";
4766 if (SMALL_OPERAND_UNSIGNED (-INTVAL (src)))
4767 return "#";
4770 if (src_code == HIGH)
4771 return TARGET_MIPS16 ? "#" : "lui\t%0,%h1";
4773 if (CONST_GP_P (src))
4774 return "move\t%0,%1";
4776 if (mips_symbolic_constant_p (src, SYMBOL_CONTEXT_LEA, &symbol_type)
4777 && mips_lo_relocs[symbol_type] != 0)
4779 /* A signed 16-bit constant formed by applying a relocation
4780 operator to a symbolic address. */
4781 gcc_assert (!mips_split_p[symbol_type]);
4782 return "li\t%0,%R1";
4785 if (symbolic_operand (src, VOIDmode))
4787 gcc_assert (TARGET_MIPS16
4788 ? TARGET_MIPS16_TEXT_LOADS
4789 : !TARGET_EXPLICIT_RELOCS);
4790 return dbl_p ? "dla\t%0,%1" : "la\t%0,%1";
4793 if (src_code == REG && FP_REG_P (REGNO (src)))
4795 if (dest_code == REG && FP_REG_P (REGNO (dest)))
4797 if (GET_MODE (dest) == V2SFmode)
4798 return "mov.ps\t%0,%1";
4799 else
4800 return dbl_p ? "mov.d\t%0,%1" : "mov.s\t%0,%1";
4803 if (dest_code == MEM)
4804 return dbl_p ? "sdc1\t%1,%0" : "swc1\t%1,%0";
4806 if (dest_code == REG && FP_REG_P (REGNO (dest)))
4808 if (src_code == MEM)
4809 return dbl_p ? "ldc1\t%0,%1" : "lwc1\t%0,%1";
4811 if (dest_code == REG && ALL_COP_REG_P (REGNO (dest)) && src_code == MEM)
4813 static char retval[] = "l_c_\t%0,%1";
4815 retval[1] = (dbl_p ? 'd' : 'w');
4816 retval[3] = COPNUM_AS_CHAR_FROM_REGNUM (REGNO (dest));
4817 return retval;
4819 if (dest_code == MEM && src_code == REG && ALL_COP_REG_P (REGNO (src)))
4821 static char retval[] = "s_c_\t%1,%0";
4823 retval[1] = (dbl_p ? 'd' : 'w');
4824 retval[3] = COPNUM_AS_CHAR_FROM_REGNUM (REGNO (src));
4825 return retval;
4827 gcc_unreachable ();
4830 /* Return true if CMP1 is a suitable second operand for integer ordering
4831 test CODE. See also the *sCC patterns in mips.md. */
4833 static bool
4834 mips_int_order_operand_ok_p (enum rtx_code code, rtx cmp1)
4836 switch (code)
4838 case GT:
4839 case GTU:
4840 return reg_or_0_operand (cmp1, VOIDmode);
4842 case GE:
4843 case GEU:
4844 return !TARGET_MIPS16 && cmp1 == const1_rtx;
4846 case LT:
4847 case LTU:
4848 return arith_operand (cmp1, VOIDmode);
4850 case LE:
4851 return sle_operand (cmp1, VOIDmode);
4853 case LEU:
4854 return sleu_operand (cmp1, VOIDmode);
4856 default:
4857 gcc_unreachable ();
4861 /* Return true if *CMP1 (of mode MODE) is a valid second operand for
4862 integer ordering test *CODE, or if an equivalent combination can
4863 be formed by adjusting *CODE and *CMP1. When returning true, update
4864 *CODE and *CMP1 with the chosen code and operand, otherwise leave
4865 them alone. */
4867 static bool
4868 mips_canonicalize_int_order_test (enum rtx_code *code, rtx *cmp1,
4869 machine_mode mode)
4871 HOST_WIDE_INT plus_one;
4873 if (mips_int_order_operand_ok_p (*code, *cmp1))
4874 return true;
4876 if (CONST_INT_P (*cmp1))
4877 switch (*code)
4879 case LE:
4880 plus_one = trunc_int_for_mode (UINTVAL (*cmp1) + 1, mode);
4881 if (INTVAL (*cmp1) < plus_one)
4883 *code = LT;
4884 *cmp1 = force_reg (mode, GEN_INT (plus_one));
4885 return true;
4887 break;
4889 case LEU:
4890 plus_one = trunc_int_for_mode (UINTVAL (*cmp1) + 1, mode);
4891 if (plus_one != 0)
4893 *code = LTU;
4894 *cmp1 = force_reg (mode, GEN_INT (plus_one));
4895 return true;
4897 break;
4899 default:
4900 break;
4902 return false;
4905 /* Compare CMP0 and CMP1 using ordering test CODE and store the result
4906 in TARGET. CMP0 and TARGET are register_operands. If INVERT_PTR
4907 is nonnull, it's OK to set TARGET to the inverse of the result and
4908 flip *INVERT_PTR instead. */
4910 static void
4911 mips_emit_int_order_test (enum rtx_code code, bool *invert_ptr,
4912 rtx target, rtx cmp0, rtx cmp1)
4914 machine_mode mode;
4916 /* First see if there is a MIPS instruction that can do this operation.
4917 If not, try doing the same for the inverse operation. If that also
4918 fails, force CMP1 into a register and try again. */
4919 mode = GET_MODE (cmp0);
4920 if (mips_canonicalize_int_order_test (&code, &cmp1, mode))
4921 mips_emit_binary (code, target, cmp0, cmp1);
4922 else
4924 enum rtx_code inv_code = reverse_condition (code);
4925 if (!mips_canonicalize_int_order_test (&inv_code, &cmp1, mode))
4927 cmp1 = force_reg (mode, cmp1);
4928 mips_emit_int_order_test (code, invert_ptr, target, cmp0, cmp1);
4930 else if (invert_ptr == 0)
4932 rtx inv_target;
4934 inv_target = mips_force_binary (GET_MODE (target),
4935 inv_code, cmp0, cmp1);
4936 mips_emit_binary (XOR, target, inv_target, const1_rtx);
4938 else
4940 *invert_ptr = !*invert_ptr;
4941 mips_emit_binary (inv_code, target, cmp0, cmp1);
4946 /* Return a register that is zero iff CMP0 and CMP1 are equal.
4947 The register will have the same mode as CMP0. */
4949 static rtx
4950 mips_zero_if_equal (rtx cmp0, rtx cmp1)
4952 if (cmp1 == const0_rtx)
4953 return cmp0;
4955 if (uns_arith_operand (cmp1, VOIDmode))
4956 return expand_binop (GET_MODE (cmp0), xor_optab,
4957 cmp0, cmp1, 0, 0, OPTAB_DIRECT);
4959 return expand_binop (GET_MODE (cmp0), sub_optab,
4960 cmp0, cmp1, 0, 0, OPTAB_DIRECT);
4963 /* Convert *CODE into a code that can be used in a floating-point
4964 scc instruction (C.cond.fmt). Return true if the values of
4965 the condition code registers will be inverted, with 0 indicating
4966 that the condition holds. */
4968 static bool
4969 mips_reversed_fp_cond (enum rtx_code *code)
4971 switch (*code)
4973 case NE:
4974 case LTGT:
4975 case ORDERED:
4976 *code = reverse_condition_maybe_unordered (*code);
4977 return true;
4979 default:
4980 return false;
4984 /* Allocate a floating-point condition-code register of mode MODE.
4986 These condition code registers are used for certain kinds
4987 of compound operation, such as compare and branches, vconds,
4988 and built-in functions. At expand time, their use is entirely
4989 controlled by MIPS-specific code and is entirely internal
4990 to these compound operations.
4992 We could (and did in the past) expose condition-code values
4993 as pseudo registers and leave the register allocator to pick
4994 appropriate registers. The problem is that it is not practically
4995 possible for the rtl optimizers to guarantee that no spills will
4996 be needed, even when AVOID_CCMODE_COPIES is defined. We would
4997 therefore need spill and reload sequences to handle the worst case.
4999 Although such sequences do exist, they are very expensive and are
5000 not something we'd want to use. This is especially true of CCV2 and
5001 CCV4, where all the shuffling would greatly outweigh whatever benefit
5002 the vectorization itself provides.
5004 The main benefit of having more than one condition-code register
5005 is to allow the pipelining of operations, especially those involving
5006 comparisons and conditional moves. We don't really expect the
5007 registers to be live for long periods, and certainly never want
5008 them to be live across calls.
5010 Also, there should be no penalty attached to using all the available
5011 registers. They are simply bits in the same underlying FPU control
5012 register.
5014 We therefore expose the hardware registers from the outset and use
5015 a simple round-robin allocation scheme. */
5017 static rtx
5018 mips_allocate_fcc (machine_mode mode)
5020 unsigned int regno, count;
5022 gcc_assert (TARGET_HARD_FLOAT && ISA_HAS_8CC);
5024 if (mode == CCmode)
5025 count = 1;
5026 else if (mode == CCV2mode)
5027 count = 2;
5028 else if (mode == CCV4mode)
5029 count = 4;
5030 else
5031 gcc_unreachable ();
5033 cfun->machine->next_fcc += -cfun->machine->next_fcc & (count - 1);
5034 if (cfun->machine->next_fcc > ST_REG_LAST - ST_REG_FIRST)
5035 cfun->machine->next_fcc = 0;
5036 regno = ST_REG_FIRST + cfun->machine->next_fcc;
5037 cfun->machine->next_fcc += count;
5038 return gen_rtx_REG (mode, regno);
5041 /* Convert a comparison into something that can be used in a branch or
5042 conditional move. On entry, *OP0 and *OP1 are the values being
5043 compared and *CODE is the code used to compare them.
5045 Update *CODE, *OP0 and *OP1 so that they describe the final comparison.
5046 If NEED_EQ_NE_P, then only EQ or NE comparisons against zero are possible,
5047 otherwise any standard branch condition can be used. The standard branch
5048 conditions are:
5050 - EQ or NE between two registers.
5051 - any comparison between a register and zero. */
5053 static void
5054 mips_emit_compare (enum rtx_code *code, rtx *op0, rtx *op1, bool need_eq_ne_p)
5056 rtx cmp_op0 = *op0;
5057 rtx cmp_op1 = *op1;
5059 if (GET_MODE_CLASS (GET_MODE (*op0)) == MODE_INT)
5061 if (!need_eq_ne_p && *op1 == const0_rtx)
5063 else if (*code == EQ || *code == NE)
5065 if (need_eq_ne_p)
5067 *op0 = mips_zero_if_equal (cmp_op0, cmp_op1);
5068 *op1 = const0_rtx;
5070 else
5071 *op1 = force_reg (GET_MODE (cmp_op0), cmp_op1);
5073 else
5075 /* The comparison needs a separate scc instruction. Store the
5076 result of the scc in *OP0 and compare it against zero. */
5077 bool invert = false;
5078 *op0 = gen_reg_rtx (GET_MODE (cmp_op0));
5079 mips_emit_int_order_test (*code, &invert, *op0, cmp_op0, cmp_op1);
5080 *code = (invert ? EQ : NE);
5081 *op1 = const0_rtx;
5084 else if (ALL_FIXED_POINT_MODE_P (GET_MODE (cmp_op0)))
5086 *op0 = gen_rtx_REG (CCDSPmode, CCDSP_CC_REGNUM);
5087 mips_emit_binary (*code, *op0, cmp_op0, cmp_op1);
5088 *code = NE;
5089 *op1 = const0_rtx;
5091 else
5093 enum rtx_code cmp_code;
5095 /* Floating-point tests use a separate C.cond.fmt or CMP.cond.fmt
5096 comparison to set a register. The branch or conditional move will
5097 then compare that register against zero.
5099 Set CMP_CODE to the code of the comparison instruction and
5100 *CODE to the code that the branch or move should use. */
5101 cmp_code = *code;
5102 if (ISA_HAS_CCF)
5104 /* All FP conditions can be implemented directly with CMP.cond.fmt
5105 or by reversing the operands. */
5106 *code = NE;
5107 *op0 = gen_reg_rtx (CCFmode);
5109 else
5111 /* Three FP conditions cannot be implemented by reversing the
5112 operands for C.cond.fmt, instead a reversed condition code is
5113 required and a test for false. */
5114 *code = mips_reversed_fp_cond (&cmp_code) ? EQ : NE;
5115 if (ISA_HAS_8CC)
5116 *op0 = mips_allocate_fcc (CCmode);
5117 else
5118 *op0 = gen_rtx_REG (CCmode, FPSW_REGNUM);
5121 *op1 = const0_rtx;
5122 mips_emit_binary (cmp_code, *op0, cmp_op0, cmp_op1);
5126 /* Try performing the comparison in OPERANDS[1], whose arms are OPERANDS[2]
5127 and OPERAND[3]. Store the result in OPERANDS[0].
5129 On 64-bit targets, the mode of the comparison and target will always be
5130 SImode, thus possibly narrower than that of the comparison's operands. */
5132 void
5133 mips_expand_scc (rtx operands[])
5135 rtx target = operands[0];
5136 enum rtx_code code = GET_CODE (operands[1]);
5137 rtx op0 = operands[2];
5138 rtx op1 = operands[3];
5140 gcc_assert (GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT);
5142 if (code == EQ || code == NE)
5144 if (ISA_HAS_SEQ_SNE
5145 && reg_imm10_operand (op1, GET_MODE (op1)))
5146 mips_emit_binary (code, target, op0, op1);
5147 else
5149 rtx zie = mips_zero_if_equal (op0, op1);
5150 mips_emit_binary (code, target, zie, const0_rtx);
5153 else
5154 mips_emit_int_order_test (code, 0, target, op0, op1);
5157 /* Compare OPERANDS[1] with OPERANDS[2] using comparison code
5158 CODE and jump to OPERANDS[3] if the condition holds. */
5160 void
5161 mips_expand_conditional_branch (rtx *operands)
5163 enum rtx_code code = GET_CODE (operands[0]);
5164 rtx op0 = operands[1];
5165 rtx op1 = operands[2];
5166 rtx condition;
5168 mips_emit_compare (&code, &op0, &op1, TARGET_MIPS16);
5169 condition = gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
5170 emit_jump_insn (gen_condjump (condition, operands[3]));
5173 /* Implement:
5175 (set temp (COND:CCV2 CMP_OP0 CMP_OP1))
5176 (set DEST (unspec [TRUE_SRC FALSE_SRC temp] UNSPEC_MOVE_TF_PS)) */
5178 void
5179 mips_expand_vcondv2sf (rtx dest, rtx true_src, rtx false_src,
5180 enum rtx_code cond, rtx cmp_op0, rtx cmp_op1)
5182 rtx cmp_result;
5183 bool reversed_p;
5185 reversed_p = mips_reversed_fp_cond (&cond);
5186 cmp_result = mips_allocate_fcc (CCV2mode);
5187 emit_insn (gen_scc_ps (cmp_result,
5188 gen_rtx_fmt_ee (cond, VOIDmode, cmp_op0, cmp_op1)));
5189 if (reversed_p)
5190 emit_insn (gen_mips_cond_move_tf_ps (dest, false_src, true_src,
5191 cmp_result));
5192 else
5193 emit_insn (gen_mips_cond_move_tf_ps (dest, true_src, false_src,
5194 cmp_result));
5197 /* Perform the comparison in OPERANDS[1]. Move OPERANDS[2] into OPERANDS[0]
5198 if the condition holds, otherwise move OPERANDS[3] into OPERANDS[0]. */
5200 void
5201 mips_expand_conditional_move (rtx *operands)
5203 rtx cond;
5204 enum rtx_code code = GET_CODE (operands[1]);
5205 rtx op0 = XEXP (operands[1], 0);
5206 rtx op1 = XEXP (operands[1], 1);
5208 mips_emit_compare (&code, &op0, &op1, true);
5209 cond = gen_rtx_fmt_ee (code, GET_MODE (op0), op0, op1);
5211 /* There is no direct support for general conditional GP move involving
5212 two registers using SEL. */
5213 if (ISA_HAS_SEL
5214 && INTEGRAL_MODE_P (GET_MODE (operands[2]))
5215 && register_operand (operands[2], VOIDmode)
5216 && register_operand (operands[3], VOIDmode))
5218 machine_mode mode = GET_MODE (operands[0]);
5219 rtx temp = gen_reg_rtx (mode);
5220 rtx temp2 = gen_reg_rtx (mode);
5222 emit_insn (gen_rtx_SET (temp,
5223 gen_rtx_IF_THEN_ELSE (mode, cond,
5224 operands[2], const0_rtx)));
5226 /* Flip the test for the second operand. */
5227 cond = gen_rtx_fmt_ee ((code == EQ) ? NE : EQ, GET_MODE (op0), op0, op1);
5229 emit_insn (gen_rtx_SET (temp2,
5230 gen_rtx_IF_THEN_ELSE (mode, cond,
5231 operands[3], const0_rtx)));
5233 /* Merge the two results, at least one is guaranteed to be zero. */
5234 emit_insn (gen_rtx_SET (operands[0], gen_rtx_IOR (mode, temp, temp2)));
5236 else
5238 if (FLOAT_MODE_P (GET_MODE (operands[2])) && !ISA_HAS_SEL)
5240 operands[2] = force_reg (GET_MODE (operands[0]), operands[2]);
5241 operands[3] = force_reg (GET_MODE (operands[0]), operands[3]);
5244 emit_insn (gen_rtx_SET (operands[0],
5245 gen_rtx_IF_THEN_ELSE (GET_MODE (operands[0]), cond,
5246 operands[2], operands[3])));
5250 /* Perform the comparison in COMPARISON, then trap if the condition holds. */
5252 void
5253 mips_expand_conditional_trap (rtx comparison)
5255 rtx op0, op1;
5256 machine_mode mode;
5257 enum rtx_code code;
5259 /* MIPS conditional trap instructions don't have GT or LE flavors,
5260 so we must swap the operands and convert to LT and GE respectively. */
5261 code = GET_CODE (comparison);
5262 switch (code)
5264 case GT:
5265 case LE:
5266 case GTU:
5267 case LEU:
5268 code = swap_condition (code);
5269 op0 = XEXP (comparison, 1);
5270 op1 = XEXP (comparison, 0);
5271 break;
5273 default:
5274 op0 = XEXP (comparison, 0);
5275 op1 = XEXP (comparison, 1);
5276 break;
5279 mode = GET_MODE (XEXP (comparison, 0));
5280 op0 = force_reg (mode, op0);
5281 if (!(ISA_HAS_COND_TRAPI
5282 ? arith_operand (op1, mode)
5283 : reg_or_0_operand (op1, mode)))
5284 op1 = force_reg (mode, op1);
5286 emit_insn (gen_rtx_TRAP_IF (VOIDmode,
5287 gen_rtx_fmt_ee (code, mode, op0, op1),
5288 const0_rtx));
5291 /* Initialize *CUM for a call to a function of type FNTYPE. */
5293 void
5294 mips_init_cumulative_args (CUMULATIVE_ARGS *cum, tree fntype)
5296 memset (cum, 0, sizeof (*cum));
5297 cum->prototype = (fntype && prototype_p (fntype));
5298 cum->gp_reg_found = (cum->prototype && stdarg_p (fntype));
5301 /* Fill INFO with information about a single argument. CUM is the
5302 cumulative state for earlier arguments. MODE is the mode of this
5303 argument and TYPE is its type (if known). NAMED is true if this
5304 is a named (fixed) argument rather than a variable one. */
5306 static void
5307 mips_get_arg_info (struct mips_arg_info *info, const CUMULATIVE_ARGS *cum,
5308 machine_mode mode, const_tree type, bool named)
5310 bool doubleword_aligned_p;
5311 unsigned int num_bytes, num_words, max_regs;
5313 /* Work out the size of the argument. */
5314 num_bytes = type ? int_size_in_bytes (type) : GET_MODE_SIZE (mode);
5315 num_words = (num_bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
5317 /* Decide whether it should go in a floating-point register, assuming
5318 one is free. Later code checks for availability.
5320 The checks against UNITS_PER_FPVALUE handle the soft-float and
5321 single-float cases. */
5322 switch (mips_abi)
5324 case ABI_EABI:
5325 /* The EABI conventions have traditionally been defined in terms
5326 of TYPE_MODE, regardless of the actual type. */
5327 info->fpr_p = ((GET_MODE_CLASS (mode) == MODE_FLOAT
5328 || mode == V2SFmode)
5329 && GET_MODE_SIZE (mode) <= UNITS_PER_FPVALUE);
5330 break;
5332 case ABI_32:
5333 case ABI_O64:
5334 /* Only leading floating-point scalars are passed in
5335 floating-point registers. We also handle vector floats the same
5336 say, which is OK because they are not covered by the standard ABI. */
5337 gcc_assert (TARGET_PAIRED_SINGLE_FLOAT || mode != V2SFmode);
5338 info->fpr_p = (!cum->gp_reg_found
5339 && cum->arg_number < 2
5340 && (type == 0
5341 || SCALAR_FLOAT_TYPE_P (type)
5342 || VECTOR_FLOAT_TYPE_P (type))
5343 && (GET_MODE_CLASS (mode) == MODE_FLOAT
5344 || mode == V2SFmode)
5345 && GET_MODE_SIZE (mode) <= UNITS_PER_FPVALUE);
5346 break;
5348 case ABI_N32:
5349 case ABI_64:
5350 /* Scalar, complex and vector floating-point types are passed in
5351 floating-point registers, as long as this is a named rather
5352 than a variable argument. */
5353 gcc_assert (TARGET_PAIRED_SINGLE_FLOAT || mode != V2SFmode);
5354 info->fpr_p = (named
5355 && (type == 0 || FLOAT_TYPE_P (type))
5356 && (GET_MODE_CLASS (mode) == MODE_FLOAT
5357 || GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
5358 || mode == V2SFmode)
5359 && GET_MODE_UNIT_SIZE (mode) <= UNITS_PER_FPVALUE);
5361 /* ??? According to the ABI documentation, the real and imaginary
5362 parts of complex floats should be passed in individual registers.
5363 The real and imaginary parts of stack arguments are supposed
5364 to be contiguous and there should be an extra word of padding
5365 at the end.
5367 This has two problems. First, it makes it impossible to use a
5368 single "void *" va_list type, since register and stack arguments
5369 are passed differently. (At the time of writing, MIPSpro cannot
5370 handle complex float varargs correctly.) Second, it's unclear
5371 what should happen when there is only one register free.
5373 For now, we assume that named complex floats should go into FPRs
5374 if there are two FPRs free, otherwise they should be passed in the
5375 same way as a struct containing two floats. */
5376 if (info->fpr_p
5377 && GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
5378 && GET_MODE_UNIT_SIZE (mode) < UNITS_PER_FPVALUE)
5380 if (cum->num_gprs >= MAX_ARGS_IN_REGISTERS - 1)
5381 info->fpr_p = false;
5382 else
5383 num_words = 2;
5385 break;
5387 default:
5388 gcc_unreachable ();
5391 /* See whether the argument has doubleword alignment. */
5392 doubleword_aligned_p = (mips_function_arg_boundary (mode, type)
5393 > BITS_PER_WORD);
5395 /* Set REG_OFFSET to the register count we're interested in.
5396 The EABI allocates the floating-point registers separately,
5397 but the other ABIs allocate them like integer registers. */
5398 info->reg_offset = (mips_abi == ABI_EABI && info->fpr_p
5399 ? cum->num_fprs
5400 : cum->num_gprs);
5402 /* Advance to an even register if the argument is doubleword-aligned. */
5403 if (doubleword_aligned_p)
5404 info->reg_offset += info->reg_offset & 1;
5406 /* Work out the offset of a stack argument. */
5407 info->stack_offset = cum->stack_words;
5408 if (doubleword_aligned_p)
5409 info->stack_offset += info->stack_offset & 1;
5411 max_regs = MAX_ARGS_IN_REGISTERS - info->reg_offset;
5413 /* Partition the argument between registers and stack. */
5414 info->reg_words = MIN (num_words, max_regs);
5415 info->stack_words = num_words - info->reg_words;
5418 /* INFO describes a register argument that has the normal format for the
5419 argument's mode. Return the register it uses, assuming that FPRs are
5420 available if HARD_FLOAT_P. */
5422 static unsigned int
5423 mips_arg_regno (const struct mips_arg_info *info, bool hard_float_p)
5425 if (!info->fpr_p || !hard_float_p)
5426 return GP_ARG_FIRST + info->reg_offset;
5427 else if (mips_abi == ABI_32 && TARGET_DOUBLE_FLOAT && info->reg_offset > 0)
5428 /* In o32, the second argument is always passed in $f14
5429 for TARGET_DOUBLE_FLOAT, regardless of whether the
5430 first argument was a word or doubleword. */
5431 return FP_ARG_FIRST + 2;
5432 else
5433 return FP_ARG_FIRST + info->reg_offset;
5436 /* Implement TARGET_STRICT_ARGUMENT_NAMING. */
5438 static bool
5439 mips_strict_argument_naming (cumulative_args_t ca ATTRIBUTE_UNUSED)
5441 return !TARGET_OLDABI;
5444 /* Implement TARGET_FUNCTION_ARG. */
5446 static rtx
5447 mips_function_arg (cumulative_args_t cum_v, machine_mode mode,
5448 const_tree type, bool named)
5450 CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
5451 struct mips_arg_info info;
5453 /* We will be called with a mode of VOIDmode after the last argument
5454 has been seen. Whatever we return will be passed to the call expander.
5455 If we need a MIPS16 fp_code, return a REG with the code stored as
5456 the mode. */
5457 if (mode == VOIDmode)
5459 if (TARGET_MIPS16 && cum->fp_code != 0)
5460 return gen_rtx_REG ((machine_mode) cum->fp_code, 0);
5461 else
5462 return NULL;
5465 mips_get_arg_info (&info, cum, mode, type, named);
5467 /* Return straight away if the whole argument is passed on the stack. */
5468 if (info.reg_offset == MAX_ARGS_IN_REGISTERS)
5469 return NULL;
5471 /* The n32 and n64 ABIs say that if any 64-bit chunk of the structure
5472 contains a double in its entirety, then that 64-bit chunk is passed
5473 in a floating-point register. */
5474 if (TARGET_NEWABI
5475 && TARGET_HARD_FLOAT
5476 && named
5477 && type != 0
5478 && TREE_CODE (type) == RECORD_TYPE
5479 && TYPE_SIZE_UNIT (type)
5480 && tree_fits_uhwi_p (TYPE_SIZE_UNIT (type)))
5482 tree field;
5484 /* First check to see if there is any such field. */
5485 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
5486 if (TREE_CODE (field) == FIELD_DECL
5487 && SCALAR_FLOAT_TYPE_P (TREE_TYPE (field))
5488 && TYPE_PRECISION (TREE_TYPE (field)) == BITS_PER_WORD
5489 && tree_fits_shwi_p (bit_position (field))
5490 && int_bit_position (field) % BITS_PER_WORD == 0)
5491 break;
5493 if (field != 0)
5495 /* Now handle the special case by returning a PARALLEL
5496 indicating where each 64-bit chunk goes. INFO.REG_WORDS
5497 chunks are passed in registers. */
5498 unsigned int i;
5499 HOST_WIDE_INT bitpos;
5500 rtx ret;
5502 /* assign_parms checks the mode of ENTRY_PARM, so we must
5503 use the actual mode here. */
5504 ret = gen_rtx_PARALLEL (mode, rtvec_alloc (info.reg_words));
5506 bitpos = 0;
5507 field = TYPE_FIELDS (type);
5508 for (i = 0; i < info.reg_words; i++)
5510 rtx reg;
5512 for (; field; field = DECL_CHAIN (field))
5513 if (TREE_CODE (field) == FIELD_DECL
5514 && int_bit_position (field) >= bitpos)
5515 break;
5517 if (field
5518 && int_bit_position (field) == bitpos
5519 && SCALAR_FLOAT_TYPE_P (TREE_TYPE (field))
5520 && TYPE_PRECISION (TREE_TYPE (field)) == BITS_PER_WORD)
5521 reg = gen_rtx_REG (DFmode, FP_ARG_FIRST + info.reg_offset + i);
5522 else
5523 reg = gen_rtx_REG (DImode, GP_ARG_FIRST + info.reg_offset + i);
5525 XVECEXP (ret, 0, i)
5526 = gen_rtx_EXPR_LIST (VOIDmode, reg,
5527 GEN_INT (bitpos / BITS_PER_UNIT));
5529 bitpos += BITS_PER_WORD;
5531 return ret;
5535 /* Handle the n32/n64 conventions for passing complex floating-point
5536 arguments in FPR pairs. The real part goes in the lower register
5537 and the imaginary part goes in the upper register. */
5538 if (TARGET_NEWABI
5539 && info.fpr_p
5540 && GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
5542 rtx real, imag;
5543 machine_mode inner;
5544 unsigned int regno;
5546 inner = GET_MODE_INNER (mode);
5547 regno = FP_ARG_FIRST + info.reg_offset;
5548 if (info.reg_words * UNITS_PER_WORD == GET_MODE_SIZE (inner))
5550 /* Real part in registers, imaginary part on stack. */
5551 gcc_assert (info.stack_words == info.reg_words);
5552 return gen_rtx_REG (inner, regno);
5554 else
5556 gcc_assert (info.stack_words == 0);
5557 real = gen_rtx_EXPR_LIST (VOIDmode,
5558 gen_rtx_REG (inner, regno),
5559 const0_rtx);
5560 imag = gen_rtx_EXPR_LIST (VOIDmode,
5561 gen_rtx_REG (inner,
5562 regno + info.reg_words / 2),
5563 GEN_INT (GET_MODE_SIZE (inner)));
5564 return gen_rtx_PARALLEL (mode, gen_rtvec (2, real, imag));
5568 return gen_rtx_REG (mode, mips_arg_regno (&info, TARGET_HARD_FLOAT));
5571 /* Implement TARGET_FUNCTION_ARG_ADVANCE. */
5573 static void
5574 mips_function_arg_advance (cumulative_args_t cum_v, machine_mode mode,
5575 const_tree type, bool named)
5577 CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
5578 struct mips_arg_info info;
5580 mips_get_arg_info (&info, cum, mode, type, named);
5582 if (!info.fpr_p)
5583 cum->gp_reg_found = true;
5585 /* See the comment above the CUMULATIVE_ARGS structure in mips.h for
5586 an explanation of what this code does. It assumes that we're using
5587 either the o32 or the o64 ABI, both of which pass at most 2 arguments
5588 in FPRs. */
5589 if (cum->arg_number < 2 && info.fpr_p)
5590 cum->fp_code += (mode == SFmode ? 1 : 2) << (cum->arg_number * 2);
5592 /* Advance the register count. This has the effect of setting
5593 num_gprs to MAX_ARGS_IN_REGISTERS if a doubleword-aligned
5594 argument required us to skip the final GPR and pass the whole
5595 argument on the stack. */
5596 if (mips_abi != ABI_EABI || !info.fpr_p)
5597 cum->num_gprs = info.reg_offset + info.reg_words;
5598 else if (info.reg_words > 0)
5599 cum->num_fprs += MAX_FPRS_PER_FMT;
5601 /* Advance the stack word count. */
5602 if (info.stack_words > 0)
5603 cum->stack_words = info.stack_offset + info.stack_words;
5605 cum->arg_number++;
5608 /* Implement TARGET_ARG_PARTIAL_BYTES. */
5610 static int
5611 mips_arg_partial_bytes (cumulative_args_t cum,
5612 machine_mode mode, tree type, bool named)
5614 struct mips_arg_info info;
5616 mips_get_arg_info (&info, get_cumulative_args (cum), mode, type, named);
5617 return info.stack_words > 0 ? info.reg_words * UNITS_PER_WORD : 0;
5620 /* Implement TARGET_FUNCTION_ARG_BOUNDARY. Every parameter gets at
5621 least PARM_BOUNDARY bits of alignment, but will be given anything up
5622 to STACK_BOUNDARY bits if the type requires it. */
5624 static unsigned int
5625 mips_function_arg_boundary (machine_mode mode, const_tree type)
5627 unsigned int alignment;
5629 alignment = type ? TYPE_ALIGN (type) : GET_MODE_ALIGNMENT (mode);
5630 if (alignment < PARM_BOUNDARY)
5631 alignment = PARM_BOUNDARY;
5632 if (alignment > STACK_BOUNDARY)
5633 alignment = STACK_BOUNDARY;
5634 return alignment;
5637 /* Implement TARGET_GET_RAW_RESULT_MODE and TARGET_GET_RAW_ARG_MODE. */
5639 static machine_mode
5640 mips_get_reg_raw_mode (int regno)
5642 if (TARGET_FLOATXX && FP_REG_P (regno))
5643 return DFmode;
5644 return default_get_reg_raw_mode (regno);
5647 /* Return true if FUNCTION_ARG_PADDING (MODE, TYPE) should return
5648 upward rather than downward. In other words, return true if the
5649 first byte of the stack slot has useful data, false if the last
5650 byte does. */
5652 bool
5653 mips_pad_arg_upward (machine_mode mode, const_tree type)
5655 /* On little-endian targets, the first byte of every stack argument
5656 is passed in the first byte of the stack slot. */
5657 if (!BYTES_BIG_ENDIAN)
5658 return true;
5660 /* Otherwise, integral types are padded downward: the last byte of a
5661 stack argument is passed in the last byte of the stack slot. */
5662 if (type != 0
5663 ? (INTEGRAL_TYPE_P (type)
5664 || POINTER_TYPE_P (type)
5665 || FIXED_POINT_TYPE_P (type))
5666 : (SCALAR_INT_MODE_P (mode)
5667 || ALL_SCALAR_FIXED_POINT_MODE_P (mode)))
5668 return false;
5670 /* Big-endian o64 pads floating-point arguments downward. */
5671 if (mips_abi == ABI_O64)
5672 if (type != 0 ? FLOAT_TYPE_P (type) : GET_MODE_CLASS (mode) == MODE_FLOAT)
5673 return false;
5675 /* Other types are padded upward for o32, o64, n32 and n64. */
5676 if (mips_abi != ABI_EABI)
5677 return true;
5679 /* Arguments smaller than a stack slot are padded downward. */
5680 if (mode != BLKmode)
5681 return GET_MODE_BITSIZE (mode) >= PARM_BOUNDARY;
5682 else
5683 return int_size_in_bytes (type) >= (PARM_BOUNDARY / BITS_PER_UNIT);
5686 /* Likewise BLOCK_REG_PADDING (MODE, TYPE, ...). Return !BYTES_BIG_ENDIAN
5687 if the least significant byte of the register has useful data. Return
5688 the opposite if the most significant byte does. */
5690 bool
5691 mips_pad_reg_upward (machine_mode mode, tree type)
5693 /* No shifting is required for floating-point arguments. */
5694 if (type != 0 ? FLOAT_TYPE_P (type) : GET_MODE_CLASS (mode) == MODE_FLOAT)
5695 return !BYTES_BIG_ENDIAN;
5697 /* Otherwise, apply the same padding to register arguments as we do
5698 to stack arguments. */
5699 return mips_pad_arg_upward (mode, type);
5702 /* Return nonzero when an argument must be passed by reference. */
5704 static bool
5705 mips_pass_by_reference (cumulative_args_t cum ATTRIBUTE_UNUSED,
5706 machine_mode mode, const_tree type,
5707 bool named ATTRIBUTE_UNUSED)
5709 if (mips_abi == ABI_EABI)
5711 int size;
5713 /* ??? How should SCmode be handled? */
5714 if (mode == DImode || mode == DFmode
5715 || mode == DQmode || mode == UDQmode
5716 || mode == DAmode || mode == UDAmode)
5717 return 0;
5719 size = type ? int_size_in_bytes (type) : GET_MODE_SIZE (mode);
5720 return size == -1 || size > UNITS_PER_WORD;
5722 else
5724 /* If we have a variable-sized parameter, we have no choice. */
5725 return targetm.calls.must_pass_in_stack (mode, type);
5729 /* Implement TARGET_CALLEE_COPIES. */
5731 static bool
5732 mips_callee_copies (cumulative_args_t cum ATTRIBUTE_UNUSED,
5733 machine_mode mode ATTRIBUTE_UNUSED,
5734 const_tree type ATTRIBUTE_UNUSED, bool named)
5736 return mips_abi == ABI_EABI && named;
5739 /* See whether VALTYPE is a record whose fields should be returned in
5740 floating-point registers. If so, return the number of fields and
5741 list them in FIELDS (which should have two elements). Return 0
5742 otherwise.
5744 For n32 & n64, a structure with one or two fields is returned in
5745 floating-point registers as long as every field has a floating-point
5746 type. */
5748 static int
5749 mips_fpr_return_fields (const_tree valtype, tree *fields)
5751 tree field;
5752 int i;
5754 if (!TARGET_NEWABI)
5755 return 0;
5757 if (TREE_CODE (valtype) != RECORD_TYPE)
5758 return 0;
5760 i = 0;
5761 for (field = TYPE_FIELDS (valtype); field != 0; field = DECL_CHAIN (field))
5763 if (TREE_CODE (field) != FIELD_DECL)
5764 continue;
5766 if (!SCALAR_FLOAT_TYPE_P (TREE_TYPE (field)))
5767 return 0;
5769 if (i == 2)
5770 return 0;
5772 fields[i++] = field;
5774 return i;
5777 /* Implement TARGET_RETURN_IN_MSB. For n32 & n64, we should return
5778 a value in the most significant part of $2/$3 if:
5780 - the target is big-endian;
5782 - the value has a structure or union type (we generalize this to
5783 cover aggregates from other languages too); and
5785 - the structure is not returned in floating-point registers. */
5787 static bool
5788 mips_return_in_msb (const_tree valtype)
5790 tree fields[2];
5792 return (TARGET_NEWABI
5793 && TARGET_BIG_ENDIAN
5794 && AGGREGATE_TYPE_P (valtype)
5795 && mips_fpr_return_fields (valtype, fields) == 0);
5798 /* Return true if the function return value MODE will get returned in a
5799 floating-point register. */
5801 static bool
5802 mips_return_mode_in_fpr_p (machine_mode mode)
5804 gcc_assert (TARGET_PAIRED_SINGLE_FLOAT || mode != V2SFmode);
5805 return ((GET_MODE_CLASS (mode) == MODE_FLOAT
5806 || mode == V2SFmode
5807 || GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
5808 && GET_MODE_UNIT_SIZE (mode) <= UNITS_PER_HWFPVALUE);
5811 /* Return the representation of an FPR return register when the
5812 value being returned in FP_RETURN has mode VALUE_MODE and the
5813 return type itself has mode TYPE_MODE. On NewABI targets,
5814 the two modes may be different for structures like:
5816 struct __attribute__((packed)) foo { float f; }
5818 where we return the SFmode value of "f" in FP_RETURN, but where
5819 the structure itself has mode BLKmode. */
5821 static rtx
5822 mips_return_fpr_single (machine_mode type_mode,
5823 machine_mode value_mode)
5825 rtx x;
5827 x = gen_rtx_REG (value_mode, FP_RETURN);
5828 if (type_mode != value_mode)
5830 x = gen_rtx_EXPR_LIST (VOIDmode, x, const0_rtx);
5831 x = gen_rtx_PARALLEL (type_mode, gen_rtvec (1, x));
5833 return x;
5836 /* Return a composite value in a pair of floating-point registers.
5837 MODE1 and OFFSET1 are the mode and byte offset for the first value,
5838 likewise MODE2 and OFFSET2 for the second. MODE is the mode of the
5839 complete value.
5841 For n32 & n64, $f0 always holds the first value and $f2 the second.
5842 Otherwise the values are packed together as closely as possible. */
5844 static rtx
5845 mips_return_fpr_pair (machine_mode mode,
5846 machine_mode mode1, HOST_WIDE_INT offset1,
5847 machine_mode mode2, HOST_WIDE_INT offset2)
5849 int inc;
5851 inc = (TARGET_NEWABI || mips_abi == ABI_32 ? 2 : MAX_FPRS_PER_FMT);
5852 return gen_rtx_PARALLEL
5853 (mode,
5854 gen_rtvec (2,
5855 gen_rtx_EXPR_LIST (VOIDmode,
5856 gen_rtx_REG (mode1, FP_RETURN),
5857 GEN_INT (offset1)),
5858 gen_rtx_EXPR_LIST (VOIDmode,
5859 gen_rtx_REG (mode2, FP_RETURN + inc),
5860 GEN_INT (offset2))));
5864 /* Implement TARGET_FUNCTION_VALUE and TARGET_LIBCALL_VALUE.
5865 For normal calls, VALTYPE is the return type and MODE is VOIDmode.
5866 For libcalls, VALTYPE is null and MODE is the mode of the return value. */
5868 static rtx
5869 mips_function_value_1 (const_tree valtype, const_tree fn_decl_or_type,
5870 machine_mode mode)
5872 if (valtype)
5874 tree fields[2];
5875 int unsigned_p;
5876 const_tree func;
5878 if (fn_decl_or_type && DECL_P (fn_decl_or_type))
5879 func = fn_decl_or_type;
5880 else
5881 func = NULL;
5883 mode = TYPE_MODE (valtype);
5884 unsigned_p = TYPE_UNSIGNED (valtype);
5886 /* Since TARGET_PROMOTE_FUNCTION_MODE unconditionally promotes,
5887 return values, promote the mode here too. */
5888 mode = promote_function_mode (valtype, mode, &unsigned_p, func, 1);
5890 /* Handle structures whose fields are returned in $f0/$f2. */
5891 switch (mips_fpr_return_fields (valtype, fields))
5893 case 1:
5894 return mips_return_fpr_single (mode,
5895 TYPE_MODE (TREE_TYPE (fields[0])));
5897 case 2:
5898 return mips_return_fpr_pair (mode,
5899 TYPE_MODE (TREE_TYPE (fields[0])),
5900 int_byte_position (fields[0]),
5901 TYPE_MODE (TREE_TYPE (fields[1])),
5902 int_byte_position (fields[1]));
5905 /* If a value is passed in the most significant part of a register, see
5906 whether we have to round the mode up to a whole number of words. */
5907 if (mips_return_in_msb (valtype))
5909 HOST_WIDE_INT size = int_size_in_bytes (valtype);
5910 if (size % UNITS_PER_WORD != 0)
5912 size += UNITS_PER_WORD - size % UNITS_PER_WORD;
5913 mode = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
5917 /* For EABI, the class of return register depends entirely on MODE.
5918 For example, "struct { some_type x; }" and "union { some_type x; }"
5919 are returned in the same way as a bare "some_type" would be.
5920 Other ABIs only use FPRs for scalar, complex or vector types. */
5921 if (mips_abi != ABI_EABI && !FLOAT_TYPE_P (valtype))
5922 return gen_rtx_REG (mode, GP_RETURN);
5925 if (!TARGET_MIPS16)
5927 /* Handle long doubles for n32 & n64. */
5928 if (mode == TFmode)
5929 return mips_return_fpr_pair (mode,
5930 DImode, 0,
5931 DImode, GET_MODE_SIZE (mode) / 2);
5933 if (mips_return_mode_in_fpr_p (mode))
5935 if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
5936 return mips_return_fpr_pair (mode,
5937 GET_MODE_INNER (mode), 0,
5938 GET_MODE_INNER (mode),
5939 GET_MODE_SIZE (mode) / 2);
5940 else
5941 return gen_rtx_REG (mode, FP_RETURN);
5945 return gen_rtx_REG (mode, GP_RETURN);
5948 /* Implement TARGET_FUNCTION_VALUE. */
5950 static rtx
5951 mips_function_value (const_tree valtype, const_tree fn_decl_or_type,
5952 bool outgoing ATTRIBUTE_UNUSED)
5954 return mips_function_value_1 (valtype, fn_decl_or_type, VOIDmode);
5957 /* Implement TARGET_LIBCALL_VALUE. */
5959 static rtx
5960 mips_libcall_value (machine_mode mode, const_rtx fun ATTRIBUTE_UNUSED)
5962 return mips_function_value_1 (NULL_TREE, NULL_TREE, mode);
5965 /* Implement TARGET_FUNCTION_VALUE_REGNO_P.
5967 On the MIPS, R2 R3 and F0 F2 are the only register thus used. */
5969 static bool
5970 mips_function_value_regno_p (const unsigned int regno)
5972 /* Most types only require one GPR or one FPR for return values but for
5973 hard-float two FPRs can be used for _Complex types (for all ABIs)
5974 and long doubles (for n64). */
5975 if (regno == GP_RETURN
5976 || regno == FP_RETURN
5977 || (FP_RETURN != GP_RETURN
5978 && regno == FP_RETURN + 2))
5979 return true;
5981 /* For o32 FP32, _Complex double will be returned in four 32-bit registers.
5982 This does not apply to o32 FPXX as floating-point function argument and
5983 return registers are described as 64-bit even though floating-point
5984 registers are primarily described as 32-bit internally.
5985 See: mips_get_reg_raw_mode. */
5986 if ((mips_abi == ABI_32 && TARGET_FLOAT32)
5987 && FP_RETURN != GP_RETURN
5988 && (regno == FP_RETURN + 1
5989 || regno == FP_RETURN + 3))
5990 return true;
5992 return false;
5995 /* Implement TARGET_RETURN_IN_MEMORY. Under the o32 and o64 ABIs,
5996 all BLKmode objects are returned in memory. Under the n32, n64
5997 and embedded ABIs, small structures are returned in a register.
5998 Objects with varying size must still be returned in memory, of
5999 course. */
6001 static bool
6002 mips_return_in_memory (const_tree type, const_tree fndecl ATTRIBUTE_UNUSED)
6004 return (TARGET_OLDABI
6005 ? TYPE_MODE (type) == BLKmode
6006 : !IN_RANGE (int_size_in_bytes (type), 0, 2 * UNITS_PER_WORD));
6009 /* Implement TARGET_SETUP_INCOMING_VARARGS. */
6011 static void
6012 mips_setup_incoming_varargs (cumulative_args_t cum, machine_mode mode,
6013 tree type, int *pretend_size ATTRIBUTE_UNUSED,
6014 int no_rtl)
6016 CUMULATIVE_ARGS local_cum;
6017 int gp_saved, fp_saved;
6019 /* The caller has advanced CUM up to, but not beyond, the last named
6020 argument. Advance a local copy of CUM past the last "real" named
6021 argument, to find out how many registers are left over. */
6022 local_cum = *get_cumulative_args (cum);
6023 mips_function_arg_advance (pack_cumulative_args (&local_cum), mode, type,
6024 true);
6026 /* Found out how many registers we need to save. */
6027 gp_saved = MAX_ARGS_IN_REGISTERS - local_cum.num_gprs;
6028 fp_saved = (EABI_FLOAT_VARARGS_P
6029 ? MAX_ARGS_IN_REGISTERS - local_cum.num_fprs
6030 : 0);
6032 if (!no_rtl)
6034 if (gp_saved > 0)
6036 rtx ptr, mem;
6038 ptr = plus_constant (Pmode, virtual_incoming_args_rtx,
6039 REG_PARM_STACK_SPACE (cfun->decl)
6040 - gp_saved * UNITS_PER_WORD);
6041 mem = gen_frame_mem (BLKmode, ptr);
6042 set_mem_alias_set (mem, get_varargs_alias_set ());
6044 move_block_from_reg (local_cum.num_gprs + GP_ARG_FIRST,
6045 mem, gp_saved);
6047 if (fp_saved > 0)
6049 /* We can't use move_block_from_reg, because it will use
6050 the wrong mode. */
6051 machine_mode mode;
6052 int off, i;
6054 /* Set OFF to the offset from virtual_incoming_args_rtx of
6055 the first float register. The FP save area lies below
6056 the integer one, and is aligned to UNITS_PER_FPVALUE bytes. */
6057 off = (-gp_saved * UNITS_PER_WORD) & -UNITS_PER_FPVALUE;
6058 off -= fp_saved * UNITS_PER_FPREG;
6060 mode = TARGET_SINGLE_FLOAT ? SFmode : DFmode;
6062 for (i = local_cum.num_fprs; i < MAX_ARGS_IN_REGISTERS;
6063 i += MAX_FPRS_PER_FMT)
6065 rtx ptr, mem;
6067 ptr = plus_constant (Pmode, virtual_incoming_args_rtx, off);
6068 mem = gen_frame_mem (mode, ptr);
6069 set_mem_alias_set (mem, get_varargs_alias_set ());
6070 mips_emit_move (mem, gen_rtx_REG (mode, FP_ARG_FIRST + i));
6071 off += UNITS_PER_HWFPVALUE;
6075 if (REG_PARM_STACK_SPACE (cfun->decl) == 0)
6076 cfun->machine->varargs_size = (gp_saved * UNITS_PER_WORD
6077 + fp_saved * UNITS_PER_FPREG);
6080 /* Implement TARGET_BUILTIN_VA_LIST. */
6082 static tree
6083 mips_build_builtin_va_list (void)
6085 if (EABI_FLOAT_VARARGS_P)
6087 /* We keep 3 pointers, and two offsets.
6089 Two pointers are to the overflow area, which starts at the CFA.
6090 One of these is constant, for addressing into the GPR save area
6091 below it. The other is advanced up the stack through the
6092 overflow region.
6094 The third pointer is to the bottom of the GPR save area.
6095 Since the FPR save area is just below it, we can address
6096 FPR slots off this pointer.
6098 We also keep two one-byte offsets, which are to be subtracted
6099 from the constant pointers to yield addresses in the GPR and
6100 FPR save areas. These are downcounted as float or non-float
6101 arguments are used, and when they get to zero, the argument
6102 must be obtained from the overflow region. */
6103 tree f_ovfl, f_gtop, f_ftop, f_goff, f_foff, f_res, record;
6104 tree array, index;
6106 record = lang_hooks.types.make_type (RECORD_TYPE);
6108 f_ovfl = build_decl (BUILTINS_LOCATION,
6109 FIELD_DECL, get_identifier ("__overflow_argptr"),
6110 ptr_type_node);
6111 f_gtop = build_decl (BUILTINS_LOCATION,
6112 FIELD_DECL, get_identifier ("__gpr_top"),
6113 ptr_type_node);
6114 f_ftop = build_decl (BUILTINS_LOCATION,
6115 FIELD_DECL, get_identifier ("__fpr_top"),
6116 ptr_type_node);
6117 f_goff = build_decl (BUILTINS_LOCATION,
6118 FIELD_DECL, get_identifier ("__gpr_offset"),
6119 unsigned_char_type_node);
6120 f_foff = build_decl (BUILTINS_LOCATION,
6121 FIELD_DECL, get_identifier ("__fpr_offset"),
6122 unsigned_char_type_node);
6123 /* Explicitly pad to the size of a pointer, so that -Wpadded won't
6124 warn on every user file. */
6125 index = build_int_cst (NULL_TREE, GET_MODE_SIZE (ptr_mode) - 2 - 1);
6126 array = build_array_type (unsigned_char_type_node,
6127 build_index_type (index));
6128 f_res = build_decl (BUILTINS_LOCATION,
6129 FIELD_DECL, get_identifier ("__reserved"), array);
6131 DECL_FIELD_CONTEXT (f_ovfl) = record;
6132 DECL_FIELD_CONTEXT (f_gtop) = record;
6133 DECL_FIELD_CONTEXT (f_ftop) = record;
6134 DECL_FIELD_CONTEXT (f_goff) = record;
6135 DECL_FIELD_CONTEXT (f_foff) = record;
6136 DECL_FIELD_CONTEXT (f_res) = record;
6138 TYPE_FIELDS (record) = f_ovfl;
6139 DECL_CHAIN (f_ovfl) = f_gtop;
6140 DECL_CHAIN (f_gtop) = f_ftop;
6141 DECL_CHAIN (f_ftop) = f_goff;
6142 DECL_CHAIN (f_goff) = f_foff;
6143 DECL_CHAIN (f_foff) = f_res;
6145 layout_type (record);
6146 return record;
6148 else
6149 /* Otherwise, we use 'void *'. */
6150 return ptr_type_node;
6153 /* Implement TARGET_EXPAND_BUILTIN_VA_START. */
6155 static void
6156 mips_va_start (tree valist, rtx nextarg)
6158 if (EABI_FLOAT_VARARGS_P)
6160 const CUMULATIVE_ARGS *cum;
6161 tree f_ovfl, f_gtop, f_ftop, f_goff, f_foff;
6162 tree ovfl, gtop, ftop, goff, foff;
6163 tree t;
6164 int gpr_save_area_size;
6165 int fpr_save_area_size;
6166 int fpr_offset;
6168 cum = &crtl->args.info;
6169 gpr_save_area_size
6170 = (MAX_ARGS_IN_REGISTERS - cum->num_gprs) * UNITS_PER_WORD;
6171 fpr_save_area_size
6172 = (MAX_ARGS_IN_REGISTERS - cum->num_fprs) * UNITS_PER_FPREG;
6174 f_ovfl = TYPE_FIELDS (va_list_type_node);
6175 f_gtop = DECL_CHAIN (f_ovfl);
6176 f_ftop = DECL_CHAIN (f_gtop);
6177 f_goff = DECL_CHAIN (f_ftop);
6178 f_foff = DECL_CHAIN (f_goff);
6180 ovfl = build3 (COMPONENT_REF, TREE_TYPE (f_ovfl), valist, f_ovfl,
6181 NULL_TREE);
6182 gtop = build3 (COMPONENT_REF, TREE_TYPE (f_gtop), valist, f_gtop,
6183 NULL_TREE);
6184 ftop = build3 (COMPONENT_REF, TREE_TYPE (f_ftop), valist, f_ftop,
6185 NULL_TREE);
6186 goff = build3 (COMPONENT_REF, TREE_TYPE (f_goff), valist, f_goff,
6187 NULL_TREE);
6188 foff = build3 (COMPONENT_REF, TREE_TYPE (f_foff), valist, f_foff,
6189 NULL_TREE);
6191 /* Emit code to initialize OVFL, which points to the next varargs
6192 stack argument. CUM->STACK_WORDS gives the number of stack
6193 words used by named arguments. */
6194 t = make_tree (TREE_TYPE (ovfl), virtual_incoming_args_rtx);
6195 if (cum->stack_words > 0)
6196 t = fold_build_pointer_plus_hwi (t, cum->stack_words * UNITS_PER_WORD);
6197 t = build2 (MODIFY_EXPR, TREE_TYPE (ovfl), ovfl, t);
6198 expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
6200 /* Emit code to initialize GTOP, the top of the GPR save area. */
6201 t = make_tree (TREE_TYPE (gtop), virtual_incoming_args_rtx);
6202 t = build2 (MODIFY_EXPR, TREE_TYPE (gtop), gtop, t);
6203 expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
6205 /* Emit code to initialize FTOP, the top of the FPR save area.
6206 This address is gpr_save_area_bytes below GTOP, rounded
6207 down to the next fp-aligned boundary. */
6208 t = make_tree (TREE_TYPE (ftop), virtual_incoming_args_rtx);
6209 fpr_offset = gpr_save_area_size + UNITS_PER_FPVALUE - 1;
6210 fpr_offset &= -UNITS_PER_FPVALUE;
6211 if (fpr_offset)
6212 t = fold_build_pointer_plus_hwi (t, -fpr_offset);
6213 t = build2 (MODIFY_EXPR, TREE_TYPE (ftop), ftop, t);
6214 expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
6216 /* Emit code to initialize GOFF, the offset from GTOP of the
6217 next GPR argument. */
6218 t = build2 (MODIFY_EXPR, TREE_TYPE (goff), goff,
6219 build_int_cst (TREE_TYPE (goff), gpr_save_area_size));
6220 expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
6222 /* Likewise emit code to initialize FOFF, the offset from FTOP
6223 of the next FPR argument. */
6224 t = build2 (MODIFY_EXPR, TREE_TYPE (foff), foff,
6225 build_int_cst (TREE_TYPE (foff), fpr_save_area_size));
6226 expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
6228 else
6230 nextarg = plus_constant (Pmode, nextarg, -cfun->machine->varargs_size);
6231 std_expand_builtin_va_start (valist, nextarg);
6235 /* Like std_gimplify_va_arg_expr, but apply alignment to zero-sized
6236 types as well. */
6238 static tree
6239 mips_std_gimplify_va_arg_expr (tree valist, tree type, gimple_seq *pre_p,
6240 gimple_seq *post_p)
6242 tree addr, t, type_size, rounded_size, valist_tmp;
6243 unsigned HOST_WIDE_INT align, boundary;
6244 bool indirect;
6246 indirect = pass_by_reference (NULL, TYPE_MODE (type), type, false);
6247 if (indirect)
6248 type = build_pointer_type (type);
6250 align = PARM_BOUNDARY / BITS_PER_UNIT;
6251 boundary = targetm.calls.function_arg_boundary (TYPE_MODE (type), type);
6253 /* When we align parameter on stack for caller, if the parameter
6254 alignment is beyond MAX_SUPPORTED_STACK_ALIGNMENT, it will be
6255 aligned at MAX_SUPPORTED_STACK_ALIGNMENT. We will match callee
6256 here with caller. */
6257 if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT)
6258 boundary = MAX_SUPPORTED_STACK_ALIGNMENT;
6260 boundary /= BITS_PER_UNIT;
6262 /* Hoist the valist value into a temporary for the moment. */
6263 valist_tmp = get_initialized_tmp_var (valist, pre_p, NULL);
6265 /* va_list pointer is aligned to PARM_BOUNDARY. If argument actually
6266 requires greater alignment, we must perform dynamic alignment. */
6267 if (boundary > align)
6269 t = build2 (MODIFY_EXPR, TREE_TYPE (valist), valist_tmp,
6270 fold_build_pointer_plus_hwi (valist_tmp, boundary - 1));
6271 gimplify_and_add (t, pre_p);
6273 t = build2 (MODIFY_EXPR, TREE_TYPE (valist), valist_tmp,
6274 fold_build2 (BIT_AND_EXPR, TREE_TYPE (valist),
6275 valist_tmp,
6276 build_int_cst (TREE_TYPE (valist), -boundary)));
6277 gimplify_and_add (t, pre_p);
6279 else
6280 boundary = align;
6282 /* If the actual alignment is less than the alignment of the type,
6283 adjust the type accordingly so that we don't assume strict alignment
6284 when dereferencing the pointer. */
6285 boundary *= BITS_PER_UNIT;
6286 if (boundary < TYPE_ALIGN (type))
6288 type = build_variant_type_copy (type);
6289 TYPE_ALIGN (type) = boundary;
6292 /* Compute the rounded size of the type. */
6293 type_size = size_in_bytes (type);
6294 rounded_size = round_up (type_size, align);
6296 /* Reduce rounded_size so it's sharable with the postqueue. */
6297 gimplify_expr (&rounded_size, pre_p, post_p, is_gimple_val, fb_rvalue);
6299 /* Get AP. */
6300 addr = valist_tmp;
6301 if (PAD_VARARGS_DOWN && !integer_zerop (rounded_size))
6303 /* Small args are padded downward. */
6304 t = fold_build2_loc (input_location, GT_EXPR, sizetype,
6305 rounded_size, size_int (align));
6306 t = fold_build3 (COND_EXPR, sizetype, t, size_zero_node,
6307 size_binop (MINUS_EXPR, rounded_size, type_size));
6308 addr = fold_build_pointer_plus (addr, t);
6311 /* Compute new value for AP. */
6312 t = fold_build_pointer_plus (valist_tmp, rounded_size);
6313 t = build2 (MODIFY_EXPR, TREE_TYPE (valist), valist, t);
6314 gimplify_and_add (t, pre_p);
6316 addr = fold_convert (build_pointer_type (type), addr);
6318 if (indirect)
6319 addr = build_va_arg_indirect_ref (addr);
6321 return build_va_arg_indirect_ref (addr);
6324 /* Implement TARGET_GIMPLIFY_VA_ARG_EXPR. */
6326 static tree
6327 mips_gimplify_va_arg_expr (tree valist, tree type, gimple_seq *pre_p,
6328 gimple_seq *post_p)
6330 tree addr;
6331 bool indirect_p;
6333 indirect_p = pass_by_reference (NULL, TYPE_MODE (type), type, 0);
6334 if (indirect_p)
6335 type = build_pointer_type (type);
6337 if (!EABI_FLOAT_VARARGS_P)
6338 addr = mips_std_gimplify_va_arg_expr (valist, type, pre_p, post_p);
6339 else
6341 tree f_ovfl, f_gtop, f_ftop, f_goff, f_foff;
6342 tree ovfl, top, off, align;
6343 HOST_WIDE_INT size, rsize, osize;
6344 tree t, u;
6346 f_ovfl = TYPE_FIELDS (va_list_type_node);
6347 f_gtop = DECL_CHAIN (f_ovfl);
6348 f_ftop = DECL_CHAIN (f_gtop);
6349 f_goff = DECL_CHAIN (f_ftop);
6350 f_foff = DECL_CHAIN (f_goff);
6352 /* Let:
6354 TOP be the top of the GPR or FPR save area;
6355 OFF be the offset from TOP of the next register;
6356 ADDR_RTX be the address of the argument;
6357 SIZE be the number of bytes in the argument type;
6358 RSIZE be the number of bytes used to store the argument
6359 when it's in the register save area; and
6360 OSIZE be the number of bytes used to store it when it's
6361 in the stack overflow area.
6363 The code we want is:
6365 1: off &= -rsize; // round down
6366 2: if (off != 0)
6367 3: {
6368 4: addr_rtx = top - off + (BYTES_BIG_ENDIAN ? RSIZE - SIZE : 0);
6369 5: off -= rsize;
6370 6: }
6371 7: else
6372 8: {
6373 9: ovfl = ((intptr_t) ovfl + osize - 1) & -osize;
6374 10: addr_rtx = ovfl + (BYTES_BIG_ENDIAN ? OSIZE - SIZE : 0);
6375 11: ovfl += osize;
6376 14: }
6378 [1] and [9] can sometimes be optimized away. */
6380 ovfl = build3 (COMPONENT_REF, TREE_TYPE (f_ovfl), valist, f_ovfl,
6381 NULL_TREE);
6382 size = int_size_in_bytes (type);
6384 if (GET_MODE_CLASS (TYPE_MODE (type)) == MODE_FLOAT
6385 && GET_MODE_SIZE (TYPE_MODE (type)) <= UNITS_PER_FPVALUE)
6387 top = build3 (COMPONENT_REF, TREE_TYPE (f_ftop),
6388 unshare_expr (valist), f_ftop, NULL_TREE);
6389 off = build3 (COMPONENT_REF, TREE_TYPE (f_foff),
6390 unshare_expr (valist), f_foff, NULL_TREE);
6392 /* When va_start saves FPR arguments to the stack, each slot
6393 takes up UNITS_PER_HWFPVALUE bytes, regardless of the
6394 argument's precision. */
6395 rsize = UNITS_PER_HWFPVALUE;
6397 /* Overflow arguments are padded to UNITS_PER_WORD bytes
6398 (= PARM_BOUNDARY bits). This can be different from RSIZE
6399 in two cases:
6401 (1) On 32-bit targets when TYPE is a structure such as:
6403 struct s { float f; };
6405 Such structures are passed in paired FPRs, so RSIZE
6406 will be 8 bytes. However, the structure only takes
6407 up 4 bytes of memory, so OSIZE will only be 4.
6409 (2) In combinations such as -mgp64 -msingle-float
6410 -fshort-double. Doubles passed in registers will then take
6411 up 4 (UNITS_PER_HWFPVALUE) bytes, but those passed on the
6412 stack take up UNITS_PER_WORD bytes. */
6413 osize = MAX (GET_MODE_SIZE (TYPE_MODE (type)), UNITS_PER_WORD);
6415 else
6417 top = build3 (COMPONENT_REF, TREE_TYPE (f_gtop),
6418 unshare_expr (valist), f_gtop, NULL_TREE);
6419 off = build3 (COMPONENT_REF, TREE_TYPE (f_goff),
6420 unshare_expr (valist), f_goff, NULL_TREE);
6421 rsize = (size + UNITS_PER_WORD - 1) & -UNITS_PER_WORD;
6422 if (rsize > UNITS_PER_WORD)
6424 /* [1] Emit code for: off &= -rsize. */
6425 t = build2 (BIT_AND_EXPR, TREE_TYPE (off), unshare_expr (off),
6426 build_int_cst (TREE_TYPE (off), -rsize));
6427 gimplify_assign (unshare_expr (off), t, pre_p);
6429 osize = rsize;
6432 /* [2] Emit code to branch if off == 0. */
6433 t = build2 (NE_EXPR, boolean_type_node, unshare_expr (off),
6434 build_int_cst (TREE_TYPE (off), 0));
6435 addr = build3 (COND_EXPR, ptr_type_node, t, NULL_TREE, NULL_TREE);
6437 /* [5] Emit code for: off -= rsize. We do this as a form of
6438 post-decrement not available to C. */
6439 t = fold_convert (TREE_TYPE (off), build_int_cst (NULL_TREE, rsize));
6440 t = build2 (POSTDECREMENT_EXPR, TREE_TYPE (off), off, t);
6442 /* [4] Emit code for:
6443 addr_rtx = top - off + (BYTES_BIG_ENDIAN ? RSIZE - SIZE : 0). */
6444 t = fold_convert (sizetype, t);
6445 t = fold_build1 (NEGATE_EXPR, sizetype, t);
6446 t = fold_build_pointer_plus (top, t);
6447 if (BYTES_BIG_ENDIAN && rsize > size)
6448 t = fold_build_pointer_plus_hwi (t, rsize - size);
6449 COND_EXPR_THEN (addr) = t;
6451 if (osize > UNITS_PER_WORD)
6453 /* [9] Emit: ovfl = ((intptr_t) ovfl + osize - 1) & -osize. */
6454 t = fold_build_pointer_plus_hwi (unshare_expr (ovfl), osize - 1);
6455 u = build_int_cst (TREE_TYPE (t), -osize);
6456 t = build2 (BIT_AND_EXPR, TREE_TYPE (t), t, u);
6457 align = build2 (MODIFY_EXPR, TREE_TYPE (ovfl),
6458 unshare_expr (ovfl), t);
6460 else
6461 align = NULL;
6463 /* [10, 11] Emit code for:
6464 addr_rtx = ovfl + (BYTES_BIG_ENDIAN ? OSIZE - SIZE : 0)
6465 ovfl += osize. */
6466 u = fold_convert (TREE_TYPE (ovfl), build_int_cst (NULL_TREE, osize));
6467 t = build2 (POSTINCREMENT_EXPR, TREE_TYPE (ovfl), ovfl, u);
6468 if (BYTES_BIG_ENDIAN && osize > size)
6469 t = fold_build_pointer_plus_hwi (t, osize - size);
6471 /* String [9] and [10, 11] together. */
6472 if (align)
6473 t = build2 (COMPOUND_EXPR, TREE_TYPE (t), align, t);
6474 COND_EXPR_ELSE (addr) = t;
6476 addr = fold_convert (build_pointer_type (type), addr);
6477 addr = build_va_arg_indirect_ref (addr);
6480 if (indirect_p)
6481 addr = build_va_arg_indirect_ref (addr);
6483 return addr;
6486 /* Declare a unique, locally-binding function called NAME, then start
6487 its definition. */
6489 static void
6490 mips_start_unique_function (const char *name)
6492 tree decl;
6494 decl = build_decl (BUILTINS_LOCATION, FUNCTION_DECL,
6495 get_identifier (name),
6496 build_function_type_list (void_type_node, NULL_TREE));
6497 DECL_RESULT (decl) = build_decl (BUILTINS_LOCATION, RESULT_DECL,
6498 NULL_TREE, void_type_node);
6499 TREE_PUBLIC (decl) = 1;
6500 TREE_STATIC (decl) = 1;
6502 cgraph_node::create (decl)->set_comdat_group (DECL_ASSEMBLER_NAME (decl));
6504 targetm.asm_out.unique_section (decl, 0);
6505 switch_to_section (get_named_section (decl, NULL, 0));
6507 targetm.asm_out.globalize_label (asm_out_file, name);
6508 fputs ("\t.hidden\t", asm_out_file);
6509 assemble_name (asm_out_file, name);
6510 putc ('\n', asm_out_file);
6513 /* Start a definition of function NAME. MIPS16_P indicates whether the
6514 function contains MIPS16 code. */
6516 static void
6517 mips_start_function_definition (const char *name, bool mips16_p)
6519 if (mips16_p)
6520 fprintf (asm_out_file, "\t.set\tmips16\n");
6521 else
6522 fprintf (asm_out_file, "\t.set\tnomips16\n");
6524 if (TARGET_MICROMIPS)
6525 fprintf (asm_out_file, "\t.set\tmicromips\n");
6526 #ifdef HAVE_GAS_MICROMIPS
6527 else
6528 fprintf (asm_out_file, "\t.set\tnomicromips\n");
6529 #endif
6531 if (!flag_inhibit_size_directive)
6533 fputs ("\t.ent\t", asm_out_file);
6534 assemble_name (asm_out_file, name);
6535 fputs ("\n", asm_out_file);
6538 ASM_OUTPUT_TYPE_DIRECTIVE (asm_out_file, name, "function");
6540 /* Start the definition proper. */
6541 assemble_name (asm_out_file, name);
6542 fputs (":\n", asm_out_file);
6545 /* End a function definition started by mips_start_function_definition. */
6547 static void
6548 mips_end_function_definition (const char *name)
6550 if (!flag_inhibit_size_directive)
6552 fputs ("\t.end\t", asm_out_file);
6553 assemble_name (asm_out_file, name);
6554 fputs ("\n", asm_out_file);
6558 /* If *STUB_PTR points to a stub, output a comdat-style definition for it,
6559 then free *STUB_PTR. */
6561 static void
6562 mips_finish_stub (mips_one_only_stub **stub_ptr)
6564 mips_one_only_stub *stub = *stub_ptr;
6565 if (!stub)
6566 return;
6568 const char *name = stub->get_name ();
6569 mips_start_unique_function (name);
6570 mips_start_function_definition (name, false);
6571 stub->output_body ();
6572 mips_end_function_definition (name);
6573 delete stub;
6574 *stub_ptr = 0;
6577 /* Return true if calls to X can use R_MIPS_CALL* relocations. */
6579 static bool
6580 mips_ok_for_lazy_binding_p (rtx x)
6582 return (TARGET_USE_GOT
6583 && GET_CODE (x) == SYMBOL_REF
6584 && !SYMBOL_REF_BIND_NOW_P (x)
6585 && !mips_symbol_binds_local_p (x));
6588 /* Load function address ADDR into register DEST. TYPE is as for
6589 mips_expand_call. Return true if we used an explicit lazy-binding
6590 sequence. */
6592 static bool
6593 mips_load_call_address (enum mips_call_type type, rtx dest, rtx addr)
6595 /* If we're generating PIC, and this call is to a global function,
6596 try to allow its address to be resolved lazily. This isn't
6597 possible for sibcalls when $gp is call-saved because the value
6598 of $gp on entry to the stub would be our caller's gp, not ours. */
6599 if (TARGET_EXPLICIT_RELOCS
6600 && !(type == MIPS_CALL_SIBCALL && TARGET_CALL_SAVED_GP)
6601 && mips_ok_for_lazy_binding_p (addr))
6603 addr = mips_got_load (dest, addr, SYMBOL_GOTOFF_CALL);
6604 emit_insn (gen_rtx_SET (dest, addr));
6605 return true;
6607 else
6609 mips_emit_move (dest, addr);
6610 return false;
6614 struct local_alias_traits : default_hashmap_traits
6616 static hashval_t hash (rtx);
6617 static bool equal_keys (rtx, rtx);
6620 /* Each locally-defined hard-float MIPS16 function has a local symbol
6621 associated with it. This hash table maps the function symbol (FUNC)
6622 to the local symbol (LOCAL). */
6623 static GTY (()) hash_map<rtx, rtx, local_alias_traits> *mips16_local_aliases;
6625 /* Hash table callbacks for mips16_local_aliases. */
6627 hashval_t
6628 local_alias_traits::hash (rtx func)
6630 return htab_hash_string (XSTR (func, 0));
6633 bool
6634 local_alias_traits::equal_keys (rtx func1, rtx func2)
6636 return rtx_equal_p (func1, func2);
6639 /* FUNC is the symbol for a locally-defined hard-float MIPS16 function.
6640 Return a local alias for it, creating a new one if necessary. */
6642 static rtx
6643 mips16_local_alias (rtx func)
6645 /* Create the hash table if this is the first call. */
6646 if (mips16_local_aliases == NULL)
6647 mips16_local_aliases
6648 = hash_map<rtx, rtx, local_alias_traits>::create_ggc (37);
6650 /* Look up the function symbol, creating a new entry if need be. */
6651 bool existed;
6652 rtx *slot = &mips16_local_aliases->get_or_insert (func, &existed);
6653 gcc_assert (slot != NULL);
6655 if (!existed)
6657 const char *func_name, *local_name;
6658 rtx local;
6660 /* Create a new SYMBOL_REF for the local symbol. The choice of
6661 __fn_local_* is based on the __fn_stub_* names that we've
6662 traditionally used for the non-MIPS16 stub. */
6663 func_name = targetm.strip_name_encoding (XSTR (func, 0));
6664 local_name = ACONCAT (("__fn_local_", func_name, NULL));
6665 local = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (local_name));
6666 SYMBOL_REF_FLAGS (local) = SYMBOL_REF_FLAGS (func) | SYMBOL_FLAG_LOCAL;
6668 /* Create a new structure to represent the mapping. */
6669 *slot = local;
6671 return *slot;
6674 /* A chained list of functions for which mips16_build_call_stub has already
6675 generated a stub. NAME is the name of the function and FP_RET_P is true
6676 if the function returns a value in floating-point registers. */
6677 struct mips16_stub {
6678 struct mips16_stub *next;
6679 char *name;
6680 bool fp_ret_p;
6682 static struct mips16_stub *mips16_stubs;
6684 /* Return the two-character string that identifies floating-point
6685 return mode MODE in the name of a MIPS16 function stub. */
6687 static const char *
6688 mips16_call_stub_mode_suffix (machine_mode mode)
6690 if (mode == SFmode)
6691 return "sf";
6692 else if (mode == DFmode)
6693 return "df";
6694 else if (mode == SCmode)
6695 return "sc";
6696 else if (mode == DCmode)
6697 return "dc";
6698 else if (mode == V2SFmode)
6700 gcc_assert (TARGET_PAIRED_SINGLE_FLOAT);
6701 return "df";
6703 else
6704 gcc_unreachable ();
6707 /* Write instructions to move a 32-bit value between general register
6708 GPREG and floating-point register FPREG. DIRECTION is 't' to move
6709 from GPREG to FPREG and 'f' to move in the opposite direction. */
6711 static void
6712 mips_output_32bit_xfer (char direction, unsigned int gpreg, unsigned int fpreg)
6714 fprintf (asm_out_file, "\tm%cc1\t%s,%s\n", direction,
6715 reg_names[gpreg], reg_names[fpreg]);
6718 /* Likewise for 64-bit values. */
6720 static void
6721 mips_output_64bit_xfer (char direction, unsigned int gpreg, unsigned int fpreg)
6723 if (TARGET_64BIT)
6724 fprintf (asm_out_file, "\tdm%cc1\t%s,%s\n", direction,
6725 reg_names[gpreg], reg_names[fpreg]);
6726 else if (ISA_HAS_MXHC1)
6728 fprintf (asm_out_file, "\tm%cc1\t%s,%s\n", direction,
6729 reg_names[gpreg + TARGET_BIG_ENDIAN], reg_names[fpreg]);
6730 fprintf (asm_out_file, "\tm%chc1\t%s,%s\n", direction,
6731 reg_names[gpreg + TARGET_LITTLE_ENDIAN], reg_names[fpreg]);
6733 else if (TARGET_FLOATXX && direction == 't')
6735 /* Use the argument save area to move via memory. */
6736 fprintf (asm_out_file, "\tsw\t%s,0($sp)\n", reg_names[gpreg]);
6737 fprintf (asm_out_file, "\tsw\t%s,4($sp)\n", reg_names[gpreg + 1]);
6738 fprintf (asm_out_file, "\tldc1\t%s,0($sp)\n", reg_names[fpreg]);
6740 else if (TARGET_FLOATXX && direction == 'f')
6742 /* Use the argument save area to move via memory. */
6743 fprintf (asm_out_file, "\tsdc1\t%s,0($sp)\n", reg_names[fpreg]);
6744 fprintf (asm_out_file, "\tlw\t%s,0($sp)\n", reg_names[gpreg]);
6745 fprintf (asm_out_file, "\tlw\t%s,4($sp)\n", reg_names[gpreg + 1]);
6747 else
6749 /* Move the least-significant word. */
6750 fprintf (asm_out_file, "\tm%cc1\t%s,%s\n", direction,
6751 reg_names[gpreg + TARGET_BIG_ENDIAN], reg_names[fpreg]);
6752 /* ...then the most significant word. */
6753 fprintf (asm_out_file, "\tm%cc1\t%s,%s\n", direction,
6754 reg_names[gpreg + TARGET_LITTLE_ENDIAN], reg_names[fpreg + 1]);
6758 /* Write out code to move floating-point arguments into or out of
6759 general registers. FP_CODE is the code describing which arguments
6760 are present (see the comment above the definition of CUMULATIVE_ARGS
6761 in mips.h). DIRECTION is as for mips_output_32bit_xfer. */
6763 static void
6764 mips_output_args_xfer (int fp_code, char direction)
6766 unsigned int gparg, fparg, f;
6767 CUMULATIVE_ARGS cum;
6769 /* This code only works for o32 and o64. */
6770 gcc_assert (TARGET_OLDABI);
6772 mips_init_cumulative_args (&cum, NULL);
6774 for (f = (unsigned int) fp_code; f != 0; f >>= 2)
6776 machine_mode mode;
6777 struct mips_arg_info info;
6779 if ((f & 3) == 1)
6780 mode = SFmode;
6781 else if ((f & 3) == 2)
6782 mode = DFmode;
6783 else
6784 gcc_unreachable ();
6786 mips_get_arg_info (&info, &cum, mode, NULL, true);
6787 gparg = mips_arg_regno (&info, false);
6788 fparg = mips_arg_regno (&info, true);
6790 if (mode == SFmode)
6791 mips_output_32bit_xfer (direction, gparg, fparg);
6792 else
6793 mips_output_64bit_xfer (direction, gparg, fparg);
6795 mips_function_arg_advance (pack_cumulative_args (&cum), mode, NULL, true);
6799 /* Write a MIPS16 stub for the current function. This stub is used
6800 for functions which take arguments in the floating-point registers.
6801 It is normal-mode code that moves the floating-point arguments
6802 into the general registers and then jumps to the MIPS16 code. */
6804 static void
6805 mips16_build_function_stub (void)
6807 const char *fnname, *alias_name, *separator;
6808 char *secname, *stubname;
6809 tree stubdecl;
6810 unsigned int f;
6811 rtx symbol, alias;
6813 /* Create the name of the stub, and its unique section. */
6814 symbol = XEXP (DECL_RTL (current_function_decl), 0);
6815 alias = mips16_local_alias (symbol);
6817 fnname = targetm.strip_name_encoding (XSTR (symbol, 0));
6818 alias_name = targetm.strip_name_encoding (XSTR (alias, 0));
6819 secname = ACONCAT ((".mips16.fn.", fnname, NULL));
6820 stubname = ACONCAT (("__fn_stub_", fnname, NULL));
6822 /* Build a decl for the stub. */
6823 stubdecl = build_decl (BUILTINS_LOCATION,
6824 FUNCTION_DECL, get_identifier (stubname),
6825 build_function_type_list (void_type_node, NULL_TREE));
6826 set_decl_section_name (stubdecl, secname);
6827 DECL_RESULT (stubdecl) = build_decl (BUILTINS_LOCATION,
6828 RESULT_DECL, NULL_TREE, void_type_node);
6830 /* Output a comment. */
6831 fprintf (asm_out_file, "\t# Stub function for %s (",
6832 current_function_name ());
6833 separator = "";
6834 for (f = (unsigned int) crtl->args.info.fp_code; f != 0; f >>= 2)
6836 fprintf (asm_out_file, "%s%s", separator,
6837 (f & 3) == 1 ? "float" : "double");
6838 separator = ", ";
6840 fprintf (asm_out_file, ")\n");
6842 /* Start the function definition. */
6843 assemble_start_function (stubdecl, stubname);
6844 mips_start_function_definition (stubname, false);
6846 /* If generating pic2 code, either set up the global pointer or
6847 switch to pic0. */
6848 if (TARGET_ABICALLS_PIC2)
6850 if (TARGET_ABSOLUTE_ABICALLS)
6851 fprintf (asm_out_file, "\t.option\tpic0\n");
6852 else
6854 output_asm_insn ("%(.cpload\t%^%)", NULL);
6855 /* Emit an R_MIPS_NONE relocation to tell the linker what the
6856 target function is. Use a local GOT access when loading the
6857 symbol, to cut down on the number of unnecessary GOT entries
6858 for stubs that aren't needed. */
6859 output_asm_insn (".reloc\t0,R_MIPS_NONE,%0", &symbol);
6860 symbol = alias;
6864 /* Load the address of the MIPS16 function into $25. Do this first so
6865 that targets with coprocessor interlocks can use an MFC1 to fill the
6866 delay slot. */
6867 output_asm_insn ("la\t%^,%0", &symbol);
6869 /* Move the arguments from floating-point registers to general registers. */
6870 mips_output_args_xfer (crtl->args.info.fp_code, 'f');
6872 /* Jump to the MIPS16 function. */
6873 output_asm_insn ("jr\t%^", NULL);
6875 if (TARGET_ABICALLS_PIC2 && TARGET_ABSOLUTE_ABICALLS)
6876 fprintf (asm_out_file, "\t.option\tpic2\n");
6878 mips_end_function_definition (stubname);
6880 /* If the linker needs to create a dynamic symbol for the target
6881 function, it will associate the symbol with the stub (which,
6882 unlike the target function, follows the proper calling conventions).
6883 It is therefore useful to have a local alias for the target function,
6884 so that it can still be identified as MIPS16 code. As an optimization,
6885 this symbol can also be used for indirect MIPS16 references from
6886 within this file. */
6887 ASM_OUTPUT_DEF (asm_out_file, alias_name, fnname);
6889 switch_to_section (function_section (current_function_decl));
6892 /* The current function is a MIPS16 function that returns a value in an FPR.
6893 Copy the return value from its soft-float to its hard-float location.
6894 libgcc2 has special non-MIPS16 helper functions for each case. */
6896 static void
6897 mips16_copy_fpr_return_value (void)
6899 rtx fn, insn, retval;
6900 tree return_type;
6901 machine_mode return_mode;
6902 const char *name;
6904 return_type = DECL_RESULT (current_function_decl);
6905 return_mode = DECL_MODE (return_type);
6907 name = ACONCAT (("__mips16_ret_",
6908 mips16_call_stub_mode_suffix (return_mode),
6909 NULL));
6910 fn = mips16_stub_function (name);
6912 /* The function takes arguments in $2 (and possibly $3), so calls
6913 to it cannot be lazily bound. */
6914 SYMBOL_REF_FLAGS (fn) |= SYMBOL_FLAG_BIND_NOW;
6916 /* Model the call as something that takes the GPR return value as
6917 argument and returns an "updated" value. */
6918 retval = gen_rtx_REG (return_mode, GP_RETURN);
6919 insn = mips_expand_call (MIPS_CALL_EPILOGUE, retval, fn,
6920 const0_rtx, NULL_RTX, false);
6921 use_reg (&CALL_INSN_FUNCTION_USAGE (insn), retval);
6924 /* Consider building a stub for a MIPS16 call to function *FN_PTR.
6925 RETVAL is the location of the return value, or null if this is
6926 a "call" rather than a "call_value". ARGS_SIZE is the size of the
6927 arguments and FP_CODE is the code built by mips_function_arg;
6928 see the comment before the fp_code field in CUMULATIVE_ARGS for details.
6930 There are three alternatives:
6932 - If a stub was needed, emit the call and return the call insn itself.
6934 - If we can avoid using a stub by redirecting the call, set *FN_PTR
6935 to the new target and return null.
6937 - If *FN_PTR doesn't need a stub, return null and leave *FN_PTR
6938 unmodified.
6940 A stub is needed for calls to functions that, in normal mode,
6941 receive arguments in FPRs or return values in FPRs. The stub
6942 copies the arguments from their soft-float positions to their
6943 hard-float positions, calls the real function, then copies the
6944 return value from its hard-float position to its soft-float
6945 position.
6947 We can emit a JAL to *FN_PTR even when *FN_PTR might need a stub.
6948 If *FN_PTR turns out to be to a non-MIPS16 function, the linker
6949 automatically redirects the JAL to the stub, otherwise the JAL
6950 continues to call FN directly. */
6952 static rtx_insn *
6953 mips16_build_call_stub (rtx retval, rtx *fn_ptr, rtx args_size, int fp_code)
6955 const char *fnname;
6956 bool fp_ret_p;
6957 struct mips16_stub *l;
6958 rtx_insn *insn;
6959 rtx pattern, fn;
6961 /* We don't need to do anything if we aren't in MIPS16 mode, or if
6962 we were invoked with the -msoft-float option. */
6963 if (!TARGET_MIPS16 || TARGET_SOFT_FLOAT_ABI)
6964 return NULL;
6966 /* Figure out whether the value might come back in a floating-point
6967 register. */
6968 fp_ret_p = retval && mips_return_mode_in_fpr_p (GET_MODE (retval));
6970 /* We don't need to do anything if there were no floating-point
6971 arguments and the value will not be returned in a floating-point
6972 register. */
6973 if (fp_code == 0 && !fp_ret_p)
6974 return NULL;
6976 /* We don't need to do anything if this is a call to a special
6977 MIPS16 support function. */
6978 fn = *fn_ptr;
6979 if (mips16_stub_function_p (fn))
6980 return NULL;
6982 /* If we're calling a locally-defined MIPS16 function, we know that
6983 it will return values in both the "soft-float" and "hard-float"
6984 registers. There is no need to use a stub to move the latter
6985 to the former. */
6986 if (fp_code == 0 && mips16_local_function_p (fn))
6987 return NULL;
6989 /* This code will only work for o32 and o64 abis. The other ABI's
6990 require more sophisticated support. */
6991 gcc_assert (TARGET_OLDABI);
6993 /* If we're calling via a function pointer, use one of the magic
6994 libgcc.a stubs provided for each (FP_CODE, FP_RET_P) combination.
6995 Each stub expects the function address to arrive in register $2. */
6996 if (GET_CODE (fn) != SYMBOL_REF
6997 || !call_insn_operand (fn, VOIDmode))
6999 char buf[30];
7000 rtx stub_fn, addr;
7001 rtx_insn *insn;
7002 bool lazy_p;
7004 /* If this is a locally-defined and locally-binding function,
7005 avoid the stub by calling the local alias directly. */
7006 if (mips16_local_function_p (fn))
7008 *fn_ptr = mips16_local_alias (fn);
7009 return NULL;
7012 /* Create a SYMBOL_REF for the libgcc.a function. */
7013 if (fp_ret_p)
7014 sprintf (buf, "__mips16_call_stub_%s_%d",
7015 mips16_call_stub_mode_suffix (GET_MODE (retval)),
7016 fp_code);
7017 else
7018 sprintf (buf, "__mips16_call_stub_%d", fp_code);
7019 stub_fn = mips16_stub_function (buf);
7021 /* The function uses $2 as an argument, so calls to it
7022 cannot be lazily bound. */
7023 SYMBOL_REF_FLAGS (stub_fn) |= SYMBOL_FLAG_BIND_NOW;
7025 /* Load the target function into $2. */
7026 addr = gen_rtx_REG (Pmode, GP_REG_FIRST + 2);
7027 lazy_p = mips_load_call_address (MIPS_CALL_NORMAL, addr, fn);
7029 /* Emit the call. */
7030 insn = mips_expand_call (MIPS_CALL_NORMAL, retval, stub_fn,
7031 args_size, NULL_RTX, lazy_p);
7033 /* Tell GCC that this call does indeed use the value of $2. */
7034 use_reg (&CALL_INSN_FUNCTION_USAGE (insn), addr);
7036 /* If we are handling a floating-point return value, we need to
7037 save $18 in the function prologue. Putting a note on the
7038 call will mean that df_regs_ever_live_p ($18) will be true if the
7039 call is not eliminated, and we can check that in the prologue
7040 code. */
7041 if (fp_ret_p)
7042 CALL_INSN_FUNCTION_USAGE (insn) =
7043 gen_rtx_EXPR_LIST (VOIDmode,
7044 gen_rtx_CLOBBER (VOIDmode,
7045 gen_rtx_REG (word_mode, 18)),
7046 CALL_INSN_FUNCTION_USAGE (insn));
7048 return insn;
7051 /* We know the function we are going to call. If we have already
7052 built a stub, we don't need to do anything further. */
7053 fnname = targetm.strip_name_encoding (XSTR (fn, 0));
7054 for (l = mips16_stubs; l != NULL; l = l->next)
7055 if (strcmp (l->name, fnname) == 0)
7056 break;
7058 if (l == NULL)
7060 const char *separator;
7061 char *secname, *stubname;
7062 tree stubid, stubdecl;
7063 unsigned int f;
7065 /* If the function does not return in FPRs, the special stub
7066 section is named
7067 .mips16.call.FNNAME
7069 If the function does return in FPRs, the stub section is named
7070 .mips16.call.fp.FNNAME
7072 Build a decl for the stub. */
7073 secname = ACONCAT ((".mips16.call.", fp_ret_p ? "fp." : "",
7074 fnname, NULL));
7075 stubname = ACONCAT (("__call_stub_", fp_ret_p ? "fp_" : "",
7076 fnname, NULL));
7077 stubid = get_identifier (stubname);
7078 stubdecl = build_decl (BUILTINS_LOCATION,
7079 FUNCTION_DECL, stubid,
7080 build_function_type_list (void_type_node,
7081 NULL_TREE));
7082 set_decl_section_name (stubdecl, secname);
7083 DECL_RESULT (stubdecl) = build_decl (BUILTINS_LOCATION,
7084 RESULT_DECL, NULL_TREE,
7085 void_type_node);
7087 /* Output a comment. */
7088 fprintf (asm_out_file, "\t# Stub function to call %s%s (",
7089 (fp_ret_p
7090 ? (GET_MODE (retval) == SFmode ? "float " : "double ")
7091 : ""),
7092 fnname);
7093 separator = "";
7094 for (f = (unsigned int) fp_code; f != 0; f >>= 2)
7096 fprintf (asm_out_file, "%s%s", separator,
7097 (f & 3) == 1 ? "float" : "double");
7098 separator = ", ";
7100 fprintf (asm_out_file, ")\n");
7102 /* Start the function definition. */
7103 assemble_start_function (stubdecl, stubname);
7104 mips_start_function_definition (stubname, false);
7106 if (fp_ret_p)
7108 fprintf (asm_out_file, "\t.cfi_startproc\n");
7110 /* Create a fake CFA 4 bytes below the stack pointer.
7111 This works around unwinders (like libgcc's) that expect
7112 the CFA for non-signal frames to be unique. */
7113 fprintf (asm_out_file, "\t.cfi_def_cfa 29,-4\n");
7115 /* "Save" $sp in itself so we don't use the fake CFA.
7116 This is: DW_CFA_val_expression r29, { DW_OP_reg29 }. */
7117 fprintf (asm_out_file, "\t.cfi_escape 0x16,29,1,0x6d\n");
7119 /* Save the return address in $18. The stub's caller knows
7120 that $18 might be clobbered, even though $18 is usually
7121 a call-saved register.
7123 Do it early on in case the last move to a floating-point
7124 register can be scheduled into the delay slot of the
7125 call we are about to make. */
7126 fprintf (asm_out_file, "\tmove\t%s,%s\n",
7127 reg_names[GP_REG_FIRST + 18],
7128 reg_names[RETURN_ADDR_REGNUM]);
7130 else
7132 /* Load the address of the MIPS16 function into $25. Do this
7133 first so that targets with coprocessor interlocks can use
7134 an MFC1 to fill the delay slot. */
7135 if (TARGET_EXPLICIT_RELOCS)
7137 output_asm_insn ("lui\t%^,%%hi(%0)", &fn);
7138 output_asm_insn ("addiu\t%^,%^,%%lo(%0)", &fn);
7140 else
7141 output_asm_insn ("la\t%^,%0", &fn);
7144 /* Move the arguments from general registers to floating-point
7145 registers. */
7146 mips_output_args_xfer (fp_code, 't');
7148 if (fp_ret_p)
7150 /* Now call the non-MIPS16 function. */
7151 output_asm_insn (MIPS_CALL ("jal", &fn, 0, -1), &fn);
7152 fprintf (asm_out_file, "\t.cfi_register 31,18\n");
7154 /* Move the result from floating-point registers to
7155 general registers. */
7156 switch (GET_MODE (retval))
7158 case SCmode:
7159 mips_output_32bit_xfer ('f', GP_RETURN + TARGET_BIG_ENDIAN,
7160 TARGET_BIG_ENDIAN
7161 ? FP_REG_FIRST + 2
7162 : FP_REG_FIRST);
7163 mips_output_32bit_xfer ('f', GP_RETURN + TARGET_LITTLE_ENDIAN,
7164 TARGET_LITTLE_ENDIAN
7165 ? FP_REG_FIRST + 2
7166 : FP_REG_FIRST);
7167 if (GET_MODE (retval) == SCmode && TARGET_64BIT)
7169 /* On 64-bit targets, complex floats are returned in
7170 a single GPR, such that "sd" on a suitably-aligned
7171 target would store the value correctly. */
7172 fprintf (asm_out_file, "\tdsll\t%s,%s,32\n",
7173 reg_names[GP_RETURN + TARGET_BIG_ENDIAN],
7174 reg_names[GP_RETURN + TARGET_BIG_ENDIAN]);
7175 fprintf (asm_out_file, "\tdsll\t%s,%s,32\n",
7176 reg_names[GP_RETURN + TARGET_LITTLE_ENDIAN],
7177 reg_names[GP_RETURN + TARGET_LITTLE_ENDIAN]);
7178 fprintf (asm_out_file, "\tdsrl\t%s,%s,32\n",
7179 reg_names[GP_RETURN + TARGET_BIG_ENDIAN],
7180 reg_names[GP_RETURN + TARGET_BIG_ENDIAN]);
7181 fprintf (asm_out_file, "\tor\t%s,%s,%s\n",
7182 reg_names[GP_RETURN],
7183 reg_names[GP_RETURN],
7184 reg_names[GP_RETURN + 1]);
7186 break;
7188 case SFmode:
7189 mips_output_32bit_xfer ('f', GP_RETURN, FP_REG_FIRST);
7190 break;
7192 case DCmode:
7193 mips_output_64bit_xfer ('f', GP_RETURN + (8 / UNITS_PER_WORD),
7194 FP_REG_FIRST + 2);
7195 /* Fall though. */
7196 case DFmode:
7197 case V2SFmode:
7198 gcc_assert (TARGET_PAIRED_SINGLE_FLOAT
7199 || GET_MODE (retval) != V2SFmode);
7200 mips_output_64bit_xfer ('f', GP_RETURN, FP_REG_FIRST);
7201 break;
7203 default:
7204 gcc_unreachable ();
7206 fprintf (asm_out_file, "\tjr\t%s\n", reg_names[GP_REG_FIRST + 18]);
7207 fprintf (asm_out_file, "\t.cfi_endproc\n");
7209 else
7211 /* Jump to the previously-loaded address. */
7212 output_asm_insn ("jr\t%^", NULL);
7215 #ifdef ASM_DECLARE_FUNCTION_SIZE
7216 ASM_DECLARE_FUNCTION_SIZE (asm_out_file, stubname, stubdecl);
7217 #endif
7219 mips_end_function_definition (stubname);
7221 /* Record this stub. */
7222 l = XNEW (struct mips16_stub);
7223 l->name = xstrdup (fnname);
7224 l->fp_ret_p = fp_ret_p;
7225 l->next = mips16_stubs;
7226 mips16_stubs = l;
7229 /* If we expect a floating-point return value, but we've built a
7230 stub which does not expect one, then we're in trouble. We can't
7231 use the existing stub, because it won't handle the floating-point
7232 value. We can't build a new stub, because the linker won't know
7233 which stub to use for the various calls in this object file.
7234 Fortunately, this case is illegal, since it means that a function
7235 was declared in two different ways in a single compilation. */
7236 if (fp_ret_p && !l->fp_ret_p)
7237 error ("cannot handle inconsistent calls to %qs", fnname);
7239 if (retval == NULL_RTX)
7240 pattern = gen_call_internal_direct (fn, args_size);
7241 else
7242 pattern = gen_call_value_internal_direct (retval, fn, args_size);
7243 insn = mips_emit_call_insn (pattern, fn, fn, false);
7245 /* If we are calling a stub which handles a floating-point return
7246 value, we need to arrange to save $18 in the prologue. We do this
7247 by marking the function call as using the register. The prologue
7248 will later see that it is used, and emit code to save it. */
7249 if (fp_ret_p)
7250 CALL_INSN_FUNCTION_USAGE (insn) =
7251 gen_rtx_EXPR_LIST (VOIDmode,
7252 gen_rtx_CLOBBER (VOIDmode,
7253 gen_rtx_REG (word_mode, 18)),
7254 CALL_INSN_FUNCTION_USAGE (insn));
7256 return insn;
7259 /* Expand a call of type TYPE. RESULT is where the result will go (null
7260 for "call"s and "sibcall"s), ADDR is the address of the function,
7261 ARGS_SIZE is the size of the arguments and AUX is the value passed
7262 to us by mips_function_arg. LAZY_P is true if this call already
7263 involves a lazily-bound function address (such as when calling
7264 functions through a MIPS16 hard-float stub).
7266 Return the call itself. */
7268 rtx_insn *
7269 mips_expand_call (enum mips_call_type type, rtx result, rtx addr,
7270 rtx args_size, rtx aux, bool lazy_p)
7272 rtx orig_addr, pattern;
7273 rtx_insn *insn;
7274 int fp_code;
7276 fp_code = aux == 0 ? 0 : (int) GET_MODE (aux);
7277 insn = mips16_build_call_stub (result, &addr, args_size, fp_code);
7278 if (insn)
7280 gcc_assert (!lazy_p && type == MIPS_CALL_NORMAL);
7281 return insn;
7284 orig_addr = addr;
7285 if (!call_insn_operand (addr, VOIDmode))
7287 if (type == MIPS_CALL_EPILOGUE)
7288 addr = MIPS_EPILOGUE_TEMP (Pmode);
7289 else
7290 addr = gen_reg_rtx (Pmode);
7291 lazy_p |= mips_load_call_address (type, addr, orig_addr);
7294 if (result == 0)
7296 rtx (*fn) (rtx, rtx);
7298 if (type == MIPS_CALL_SIBCALL)
7299 fn = gen_sibcall_internal;
7300 else
7301 fn = gen_call_internal;
7303 pattern = fn (addr, args_size);
7305 else if (GET_CODE (result) == PARALLEL && XVECLEN (result, 0) == 2)
7307 /* Handle return values created by mips_return_fpr_pair. */
7308 rtx (*fn) (rtx, rtx, rtx, rtx);
7309 rtx reg1, reg2;
7311 if (type == MIPS_CALL_SIBCALL)
7312 fn = gen_sibcall_value_multiple_internal;
7313 else
7314 fn = gen_call_value_multiple_internal;
7316 reg1 = XEXP (XVECEXP (result, 0, 0), 0);
7317 reg2 = XEXP (XVECEXP (result, 0, 1), 0);
7318 pattern = fn (reg1, addr, args_size, reg2);
7320 else
7322 rtx (*fn) (rtx, rtx, rtx);
7324 if (type == MIPS_CALL_SIBCALL)
7325 fn = gen_sibcall_value_internal;
7326 else
7327 fn = gen_call_value_internal;
7329 /* Handle return values created by mips_return_fpr_single. */
7330 if (GET_CODE (result) == PARALLEL && XVECLEN (result, 0) == 1)
7331 result = XEXP (XVECEXP (result, 0, 0), 0);
7332 pattern = fn (result, addr, args_size);
7335 return mips_emit_call_insn (pattern, orig_addr, addr, lazy_p);
7338 /* Split call instruction INSN into a $gp-clobbering call and
7339 (where necessary) an instruction to restore $gp from its save slot.
7340 CALL_PATTERN is the pattern of the new call. */
7342 void
7343 mips_split_call (rtx insn, rtx call_pattern)
7345 emit_call_insn (call_pattern);
7346 if (!find_reg_note (insn, REG_NORETURN, 0))
7347 mips_restore_gp_from_cprestore_slot (gen_rtx_REG (Pmode,
7348 POST_CALL_TMP_REG));
7351 /* Return true if a call to DECL may need to use JALX. */
7353 static bool
7354 mips_call_may_need_jalx_p (tree decl)
7356 /* If the current translation unit would use a different mode for DECL,
7357 assume that the call needs JALX. */
7358 if (mips_get_compress_mode (decl) != TARGET_COMPRESSION)
7359 return true;
7361 /* mips_get_compress_mode is always accurate for locally-binding
7362 functions in the current translation unit. */
7363 if (!DECL_EXTERNAL (decl) && targetm.binds_local_p (decl))
7364 return false;
7366 /* When -minterlink-compressed is in effect, assume that functions
7367 could use a different encoding mode unless an attribute explicitly
7368 tells us otherwise. */
7369 if (TARGET_INTERLINK_COMPRESSED)
7371 if (!TARGET_COMPRESSION
7372 && mips_get_compress_off_flags (DECL_ATTRIBUTES (decl)) ==0)
7373 return true;
7374 if (TARGET_COMPRESSION
7375 && mips_get_compress_on_flags (DECL_ATTRIBUTES (decl)) == 0)
7376 return true;
7379 return false;
7382 /* Implement TARGET_FUNCTION_OK_FOR_SIBCALL. */
7384 static bool
7385 mips_function_ok_for_sibcall (tree decl, tree exp ATTRIBUTE_UNUSED)
7387 if (!TARGET_SIBCALLS)
7388 return false;
7390 /* Interrupt handlers need special epilogue code and therefore can't
7391 use sibcalls. */
7392 if (mips_interrupt_type_p (TREE_TYPE (current_function_decl)))
7393 return false;
7395 /* Direct Js are only possible to functions that use the same ISA encoding.
7396 There is no JX counterpoart of JALX. */
7397 if (decl
7398 && const_call_insn_operand (XEXP (DECL_RTL (decl), 0), VOIDmode)
7399 && mips_call_may_need_jalx_p (decl))
7400 return false;
7402 /* Sibling calls should not prevent lazy binding. Lazy-binding stubs
7403 require $gp to be valid on entry, so sibcalls can only use stubs
7404 if $gp is call-clobbered. */
7405 if (decl
7406 && TARGET_CALL_SAVED_GP
7407 && !TARGET_ABICALLS_PIC0
7408 && !targetm.binds_local_p (decl))
7409 return false;
7411 /* Otherwise OK. */
7412 return true;
7415 /* Implement TARGET_USE_MOVE_BY_PIECES_INFRASTRUCTURE_P. */
7417 bool
7418 mips_use_by_pieces_infrastructure_p (unsigned HOST_WIDE_INT size,
7419 unsigned int align,
7420 enum by_pieces_operation op,
7421 bool speed_p)
7423 if (op == STORE_BY_PIECES)
7424 return mips_store_by_pieces_p (size, align);
7425 if (op == MOVE_BY_PIECES && HAVE_movmemsi)
7427 /* movmemsi is meant to generate code that is at least as good as
7428 move_by_pieces. However, movmemsi effectively uses a by-pieces
7429 implementation both for moves smaller than a word and for
7430 word-aligned moves of no more than MIPS_MAX_MOVE_BYTES_STRAIGHT
7431 bytes. We should allow the tree-level optimisers to do such
7432 moves by pieces, as it often exposes other optimization
7433 opportunities. We might as well continue to use movmemsi at
7434 the rtl level though, as it produces better code when
7435 scheduling is disabled (such as at -O). */
7436 if (currently_expanding_to_rtl)
7437 return false;
7438 if (align < BITS_PER_WORD)
7439 return size < UNITS_PER_WORD;
7440 return size <= MIPS_MAX_MOVE_BYTES_STRAIGHT;
7443 return default_use_by_pieces_infrastructure_p (size, align, op, speed_p);
7446 /* Implement a handler for STORE_BY_PIECES operations
7447 for TARGET_USE_MOVE_BY_PIECES_INFRASTRUCTURE_P. */
7449 bool
7450 mips_store_by_pieces_p (unsigned HOST_WIDE_INT size, unsigned int align)
7452 /* Storing by pieces involves moving constants into registers
7453 of size MIN (ALIGN, BITS_PER_WORD), then storing them.
7454 We need to decide whether it is cheaper to load the address of
7455 constant data into a register and use a block move instead. */
7457 /* If the data is only byte aligned, then:
7459 (a1) A block move of less than 4 bytes would involve three 3 LBs and
7460 3 SBs. We might as well use 3 single-instruction LIs and 3 SBs
7461 instead.
7463 (a2) A block move of 4 bytes from aligned source data can use an
7464 LW/SWL/SWR sequence. This is often better than the 4 LIs and
7465 4 SBs that we would generate when storing by pieces. */
7466 if (align <= BITS_PER_UNIT)
7467 return size < 4;
7469 /* If the data is 2-byte aligned, then:
7471 (b1) A block move of less than 4 bytes would use a combination of LBs,
7472 LHs, SBs and SHs. We get better code by using single-instruction
7473 LIs, SBs and SHs instead.
7475 (b2) A block move of 4 bytes from aligned source data would again use
7476 an LW/SWL/SWR sequence. In most cases, loading the address of
7477 the source data would require at least one extra instruction.
7478 It is often more efficient to use 2 single-instruction LIs and
7479 2 SHs instead.
7481 (b3) A block move of up to 3 additional bytes would be like (b1).
7483 (b4) A block move of 8 bytes from aligned source data can use two
7484 LW/SWL/SWR sequences or a single LD/SDL/SDR sequence. Both
7485 sequences are better than the 4 LIs and 4 SHs that we'd generate
7486 when storing by pieces.
7488 The reasoning for higher alignments is similar:
7490 (c1) A block move of less than 4 bytes would be the same as (b1).
7492 (c2) A block move of 4 bytes would use an LW/SW sequence. Again,
7493 loading the address of the source data would typically require
7494 at least one extra instruction. It is generally better to use
7495 LUI/ORI/SW instead.
7497 (c3) A block move of up to 3 additional bytes would be like (b1).
7499 (c4) A block move of 8 bytes can use two LW/SW sequences or a single
7500 LD/SD sequence, and in these cases we've traditionally preferred
7501 the memory copy over the more bulky constant moves. */
7502 return size < 8;
7505 /* Emit straight-line code to move LENGTH bytes from SRC to DEST.
7506 Assume that the areas do not overlap. */
7508 static void
7509 mips_block_move_straight (rtx dest, rtx src, HOST_WIDE_INT length)
7511 HOST_WIDE_INT offset, delta;
7512 unsigned HOST_WIDE_INT bits;
7513 int i;
7514 machine_mode mode;
7515 rtx *regs;
7517 /* Work out how many bits to move at a time. If both operands have
7518 half-word alignment, it is usually better to move in half words.
7519 For instance, lh/lh/sh/sh is usually better than lwl/lwr/swl/swr
7520 and lw/lw/sw/sw is usually better than ldl/ldr/sdl/sdr.
7521 Otherwise move word-sized chunks. */
7522 if (MEM_ALIGN (src) == BITS_PER_WORD / 2
7523 && MEM_ALIGN (dest) == BITS_PER_WORD / 2)
7524 bits = BITS_PER_WORD / 2;
7525 else
7526 bits = BITS_PER_WORD;
7528 mode = mode_for_size (bits, MODE_INT, 0);
7529 delta = bits / BITS_PER_UNIT;
7531 /* Allocate a buffer for the temporary registers. */
7532 regs = XALLOCAVEC (rtx, length / delta);
7534 /* Load as many BITS-sized chunks as possible. Use a normal load if
7535 the source has enough alignment, otherwise use left/right pairs. */
7536 for (offset = 0, i = 0; offset + delta <= length; offset += delta, i++)
7538 regs[i] = gen_reg_rtx (mode);
7539 if (MEM_ALIGN (src) >= bits)
7540 mips_emit_move (regs[i], adjust_address (src, mode, offset));
7541 else
7543 rtx part = adjust_address (src, BLKmode, offset);
7544 set_mem_size (part, delta);
7545 if (!mips_expand_ext_as_unaligned_load (regs[i], part, bits, 0, 0))
7546 gcc_unreachable ();
7550 /* Copy the chunks to the destination. */
7551 for (offset = 0, i = 0; offset + delta <= length; offset += delta, i++)
7552 if (MEM_ALIGN (dest) >= bits)
7553 mips_emit_move (adjust_address (dest, mode, offset), regs[i]);
7554 else
7556 rtx part = adjust_address (dest, BLKmode, offset);
7557 set_mem_size (part, delta);
7558 if (!mips_expand_ins_as_unaligned_store (part, regs[i], bits, 0))
7559 gcc_unreachable ();
7562 /* Mop up any left-over bytes. */
7563 if (offset < length)
7565 src = adjust_address (src, BLKmode, offset);
7566 dest = adjust_address (dest, BLKmode, offset);
7567 move_by_pieces (dest, src, length - offset,
7568 MIN (MEM_ALIGN (src), MEM_ALIGN (dest)), 0);
7572 /* Helper function for doing a loop-based block operation on memory
7573 reference MEM. Each iteration of the loop will operate on LENGTH
7574 bytes of MEM.
7576 Create a new base register for use within the loop and point it to
7577 the start of MEM. Create a new memory reference that uses this
7578 register. Store them in *LOOP_REG and *LOOP_MEM respectively. */
7580 static void
7581 mips_adjust_block_mem (rtx mem, HOST_WIDE_INT length,
7582 rtx *loop_reg, rtx *loop_mem)
7584 *loop_reg = copy_addr_to_reg (XEXP (mem, 0));
7586 /* Although the new mem does not refer to a known location,
7587 it does keep up to LENGTH bytes of alignment. */
7588 *loop_mem = change_address (mem, BLKmode, *loop_reg);
7589 set_mem_align (*loop_mem, MIN (MEM_ALIGN (mem), length * BITS_PER_UNIT));
7592 /* Move LENGTH bytes from SRC to DEST using a loop that moves BYTES_PER_ITER
7593 bytes at a time. LENGTH must be at least BYTES_PER_ITER. Assume that
7594 the memory regions do not overlap. */
7596 static void
7597 mips_block_move_loop (rtx dest, rtx src, HOST_WIDE_INT length,
7598 HOST_WIDE_INT bytes_per_iter)
7600 rtx_code_label *label;
7601 rtx src_reg, dest_reg, final_src, test;
7602 HOST_WIDE_INT leftover;
7604 leftover = length % bytes_per_iter;
7605 length -= leftover;
7607 /* Create registers and memory references for use within the loop. */
7608 mips_adjust_block_mem (src, bytes_per_iter, &src_reg, &src);
7609 mips_adjust_block_mem (dest, bytes_per_iter, &dest_reg, &dest);
7611 /* Calculate the value that SRC_REG should have after the last iteration
7612 of the loop. */
7613 final_src = expand_simple_binop (Pmode, PLUS, src_reg, GEN_INT (length),
7614 0, 0, OPTAB_WIDEN);
7616 /* Emit the start of the loop. */
7617 label = gen_label_rtx ();
7618 emit_label (label);
7620 /* Emit the loop body. */
7621 mips_block_move_straight (dest, src, bytes_per_iter);
7623 /* Move on to the next block. */
7624 mips_emit_move (src_reg, plus_constant (Pmode, src_reg, bytes_per_iter));
7625 mips_emit_move (dest_reg, plus_constant (Pmode, dest_reg, bytes_per_iter));
7627 /* Emit the loop condition. */
7628 test = gen_rtx_NE (VOIDmode, src_reg, final_src);
7629 if (Pmode == DImode)
7630 emit_jump_insn (gen_cbranchdi4 (test, src_reg, final_src, label));
7631 else
7632 emit_jump_insn (gen_cbranchsi4 (test, src_reg, final_src, label));
7634 /* Mop up any left-over bytes. */
7635 if (leftover)
7636 mips_block_move_straight (dest, src, leftover);
7639 /* Expand a movmemsi instruction, which copies LENGTH bytes from
7640 memory reference SRC to memory reference DEST. */
7642 bool
7643 mips_expand_block_move (rtx dest, rtx src, rtx length)
7645 /* Disable entirely for R6 initially. */
7646 if (!ISA_HAS_LWL_LWR)
7647 return false;
7649 if (CONST_INT_P (length))
7651 if (INTVAL (length) <= MIPS_MAX_MOVE_BYTES_STRAIGHT)
7653 mips_block_move_straight (dest, src, INTVAL (length));
7654 return true;
7656 else if (optimize)
7658 mips_block_move_loop (dest, src, INTVAL (length),
7659 MIPS_MAX_MOVE_BYTES_PER_LOOP_ITER);
7660 return true;
7663 return false;
7666 /* Expand a loop of synci insns for the address range [BEGIN, END). */
7668 void
7669 mips_expand_synci_loop (rtx begin, rtx end)
7671 rtx inc, cmp_result, mask, length;
7672 rtx_code_label *label, *end_label;
7674 /* Create end_label. */
7675 end_label = gen_label_rtx ();
7677 /* Check if begin equals end. */
7678 cmp_result = gen_rtx_EQ (VOIDmode, begin, end);
7679 emit_jump_insn (gen_condjump (cmp_result, end_label));
7681 /* Load INC with the cache line size (rdhwr INC,$1). */
7682 inc = gen_reg_rtx (Pmode);
7683 emit_insn (PMODE_INSN (gen_rdhwr_synci_step, (inc)));
7685 /* Check if inc is 0. */
7686 cmp_result = gen_rtx_EQ (VOIDmode, inc, const0_rtx);
7687 emit_jump_insn (gen_condjump (cmp_result, end_label));
7689 /* Calculate mask. */
7690 mask = mips_force_unary (Pmode, NEG, inc);
7692 /* Mask out begin by mask. */
7693 begin = mips_force_binary (Pmode, AND, begin, mask);
7695 /* Calculate length. */
7696 length = mips_force_binary (Pmode, MINUS, end, begin);
7698 /* Loop back to here. */
7699 label = gen_label_rtx ();
7700 emit_label (label);
7702 emit_insn (gen_synci (begin));
7704 /* Update length. */
7705 mips_emit_binary (MINUS, length, length, inc);
7707 /* Update begin. */
7708 mips_emit_binary (PLUS, begin, begin, inc);
7710 /* Check if length is greater than 0. */
7711 cmp_result = gen_rtx_GT (VOIDmode, length, const0_rtx);
7712 emit_jump_insn (gen_condjump (cmp_result, label));
7714 emit_label (end_label);
7717 /* Expand a QI or HI mode atomic memory operation.
7719 GENERATOR contains a pointer to the gen_* function that generates
7720 the SI mode underlying atomic operation using masks that we
7721 calculate.
7723 RESULT is the return register for the operation. Its value is NULL
7724 if unused.
7726 MEM is the location of the atomic access.
7728 OLDVAL is the first operand for the operation.
7730 NEWVAL is the optional second operand for the operation. Its value
7731 is NULL if unused. */
7733 void
7734 mips_expand_atomic_qihi (union mips_gen_fn_ptrs generator,
7735 rtx result, rtx mem, rtx oldval, rtx newval)
7737 rtx orig_addr, memsi_addr, memsi, shift, shiftsi, unshifted_mask;
7738 rtx unshifted_mask_reg, mask, inverted_mask, si_op;
7739 rtx res = NULL;
7740 machine_mode mode;
7742 mode = GET_MODE (mem);
7744 /* Compute the address of the containing SImode value. */
7745 orig_addr = force_reg (Pmode, XEXP (mem, 0));
7746 memsi_addr = mips_force_binary (Pmode, AND, orig_addr,
7747 force_reg (Pmode, GEN_INT (-4)));
7749 /* Create a memory reference for it. */
7750 memsi = gen_rtx_MEM (SImode, memsi_addr);
7751 set_mem_alias_set (memsi, ALIAS_SET_MEMORY_BARRIER);
7752 MEM_VOLATILE_P (memsi) = MEM_VOLATILE_P (mem);
7754 /* Work out the byte offset of the QImode or HImode value,
7755 counting from the least significant byte. */
7756 shift = mips_force_binary (Pmode, AND, orig_addr, GEN_INT (3));
7757 if (TARGET_BIG_ENDIAN)
7758 mips_emit_binary (XOR, shift, shift, GEN_INT (mode == QImode ? 3 : 2));
7760 /* Multiply by eight to convert the shift value from bytes to bits. */
7761 mips_emit_binary (ASHIFT, shift, shift, GEN_INT (3));
7763 /* Make the final shift an SImode value, so that it can be used in
7764 SImode operations. */
7765 shiftsi = force_reg (SImode, gen_lowpart (SImode, shift));
7767 /* Set MASK to an inclusive mask of the QImode or HImode value. */
7768 unshifted_mask = GEN_INT (GET_MODE_MASK (mode));
7769 unshifted_mask_reg = force_reg (SImode, unshifted_mask);
7770 mask = mips_force_binary (SImode, ASHIFT, unshifted_mask_reg, shiftsi);
7772 /* Compute the equivalent exclusive mask. */
7773 inverted_mask = gen_reg_rtx (SImode);
7774 emit_insn (gen_rtx_SET (inverted_mask, gen_rtx_NOT (SImode, mask)));
7776 /* Shift the old value into place. */
7777 if (oldval != const0_rtx)
7779 oldval = convert_modes (SImode, mode, oldval, true);
7780 oldval = force_reg (SImode, oldval);
7781 oldval = mips_force_binary (SImode, ASHIFT, oldval, shiftsi);
7784 /* Do the same for the new value. */
7785 if (newval && newval != const0_rtx)
7787 newval = convert_modes (SImode, mode, newval, true);
7788 newval = force_reg (SImode, newval);
7789 newval = mips_force_binary (SImode, ASHIFT, newval, shiftsi);
7792 /* Do the SImode atomic access. */
7793 if (result)
7794 res = gen_reg_rtx (SImode);
7795 if (newval)
7796 si_op = generator.fn_6 (res, memsi, mask, inverted_mask, oldval, newval);
7797 else if (result)
7798 si_op = generator.fn_5 (res, memsi, mask, inverted_mask, oldval);
7799 else
7800 si_op = generator.fn_4 (memsi, mask, inverted_mask, oldval);
7802 emit_insn (si_op);
7804 if (result)
7806 /* Shift and convert the result. */
7807 mips_emit_binary (AND, res, res, mask);
7808 mips_emit_binary (LSHIFTRT, res, res, shiftsi);
7809 mips_emit_move (result, gen_lowpart (GET_MODE (result), res));
7813 /* Return true if it is possible to use left/right accesses for a
7814 bitfield of WIDTH bits starting BITPOS bits into BLKmode memory OP.
7815 When returning true, update *LEFT and *RIGHT as follows:
7817 *LEFT is a QImode reference to the first byte if big endian or
7818 the last byte if little endian. This address can be used in the
7819 left-side instructions (LWL, SWL, LDL, SDL).
7821 *RIGHT is a QImode reference to the opposite end of the field and
7822 can be used in the patterning right-side instruction. */
7824 static bool
7825 mips_get_unaligned_mem (rtx op, HOST_WIDE_INT width, HOST_WIDE_INT bitpos,
7826 rtx *left, rtx *right)
7828 rtx first, last;
7830 /* Check that the size is valid. */
7831 if (width != 32 && (!TARGET_64BIT || width != 64))
7832 return false;
7834 /* We can only access byte-aligned values. Since we are always passed
7835 a reference to the first byte of the field, it is not necessary to
7836 do anything with BITPOS after this check. */
7837 if (bitpos % BITS_PER_UNIT != 0)
7838 return false;
7840 /* Reject aligned bitfields: we want to use a normal load or store
7841 instead of a left/right pair. */
7842 if (MEM_ALIGN (op) >= width)
7843 return false;
7845 /* Get references to both ends of the field. */
7846 first = adjust_address (op, QImode, 0);
7847 last = adjust_address (op, QImode, width / BITS_PER_UNIT - 1);
7849 /* Allocate to LEFT and RIGHT according to endianness. LEFT should
7850 correspond to the MSB and RIGHT to the LSB. */
7851 if (TARGET_BIG_ENDIAN)
7852 *left = first, *right = last;
7853 else
7854 *left = last, *right = first;
7856 return true;
7859 /* Try to use left/right loads to expand an "extv" or "extzv" pattern.
7860 DEST, SRC, WIDTH and BITPOS are the operands passed to the expander;
7861 the operation is the equivalent of:
7863 (set DEST (*_extract SRC WIDTH BITPOS))
7865 Return true on success. */
7867 bool
7868 mips_expand_ext_as_unaligned_load (rtx dest, rtx src, HOST_WIDE_INT width,
7869 HOST_WIDE_INT bitpos, bool unsigned_p)
7871 rtx left, right, temp;
7872 rtx dest1 = NULL_RTX;
7874 /* If TARGET_64BIT, the destination of a 32-bit "extz" or "extzv" will
7875 be a DImode, create a new temp and emit a zero extend at the end. */
7876 if (GET_MODE (dest) == DImode
7877 && REG_P (dest)
7878 && GET_MODE_BITSIZE (SImode) == width)
7880 dest1 = dest;
7881 dest = gen_reg_rtx (SImode);
7884 if (!mips_get_unaligned_mem (src, width, bitpos, &left, &right))
7885 return false;
7887 temp = gen_reg_rtx (GET_MODE (dest));
7888 if (GET_MODE (dest) == DImode)
7890 emit_insn (gen_mov_ldl (temp, src, left));
7891 emit_insn (gen_mov_ldr (dest, copy_rtx (src), right, temp));
7893 else
7895 emit_insn (gen_mov_lwl (temp, src, left));
7896 emit_insn (gen_mov_lwr (dest, copy_rtx (src), right, temp));
7899 /* If we were loading 32bits and the original register was DI then
7900 sign/zero extend into the orignal dest. */
7901 if (dest1)
7903 if (unsigned_p)
7904 emit_insn (gen_zero_extendsidi2 (dest1, dest));
7905 else
7906 emit_insn (gen_extendsidi2 (dest1, dest));
7908 return true;
7911 /* Try to use left/right stores to expand an "ins" pattern. DEST, WIDTH,
7912 BITPOS and SRC are the operands passed to the expander; the operation
7913 is the equivalent of:
7915 (set (zero_extract DEST WIDTH BITPOS) SRC)
7917 Return true on success. */
7919 bool
7920 mips_expand_ins_as_unaligned_store (rtx dest, rtx src, HOST_WIDE_INT width,
7921 HOST_WIDE_INT bitpos)
7923 rtx left, right;
7924 machine_mode mode;
7926 if (!mips_get_unaligned_mem (dest, width, bitpos, &left, &right))
7927 return false;
7929 mode = mode_for_size (width, MODE_INT, 0);
7930 src = gen_lowpart (mode, src);
7931 if (mode == DImode)
7933 emit_insn (gen_mov_sdl (dest, src, left));
7934 emit_insn (gen_mov_sdr (copy_rtx (dest), copy_rtx (src), right));
7936 else
7938 emit_insn (gen_mov_swl (dest, src, left));
7939 emit_insn (gen_mov_swr (copy_rtx (dest), copy_rtx (src), right));
7941 return true;
7944 /* Return true if X is a MEM with the same size as MODE. */
7946 bool
7947 mips_mem_fits_mode_p (machine_mode mode, rtx x)
7949 return (MEM_P (x)
7950 && MEM_SIZE_KNOWN_P (x)
7951 && MEM_SIZE (x) == GET_MODE_SIZE (mode));
7954 /* Return true if (zero_extract OP WIDTH BITPOS) can be used as the
7955 source of an "ext" instruction or the destination of an "ins"
7956 instruction. OP must be a register operand and the following
7957 conditions must hold:
7959 0 <= BITPOS < GET_MODE_BITSIZE (GET_MODE (op))
7960 0 < WIDTH <= GET_MODE_BITSIZE (GET_MODE (op))
7961 0 < BITPOS + WIDTH <= GET_MODE_BITSIZE (GET_MODE (op))
7963 Also reject lengths equal to a word as they are better handled
7964 by the move patterns. */
7966 bool
7967 mips_use_ins_ext_p (rtx op, HOST_WIDE_INT width, HOST_WIDE_INT bitpos)
7969 if (!ISA_HAS_EXT_INS
7970 || !register_operand (op, VOIDmode)
7971 || GET_MODE_BITSIZE (GET_MODE (op)) > BITS_PER_WORD)
7972 return false;
7974 if (!IN_RANGE (width, 1, GET_MODE_BITSIZE (GET_MODE (op)) - 1))
7975 return false;
7977 if (bitpos < 0 || bitpos + width > GET_MODE_BITSIZE (GET_MODE (op)))
7978 return false;
7980 return true;
7983 /* Check if MASK and SHIFT are valid in mask-low-and-shift-left
7984 operation if MAXLEN is the maxium length of consecutive bits that
7985 can make up MASK. MODE is the mode of the operation. See
7986 mask_low_and_shift_len for the actual definition. */
7988 bool
7989 mask_low_and_shift_p (machine_mode mode, rtx mask, rtx shift, int maxlen)
7991 return IN_RANGE (mask_low_and_shift_len (mode, mask, shift), 1, maxlen);
7994 /* Return true iff OP1 and OP2 are valid operands together for the
7995 *and<MODE>3 and *and<MODE>3_mips16 patterns. For the cases to consider,
7996 see the table in the comment before the pattern. */
7998 bool
7999 and_operands_ok (machine_mode mode, rtx op1, rtx op2)
8001 return (memory_operand (op1, mode)
8002 ? and_load_operand (op2, mode)
8003 : and_reg_operand (op2, mode));
8006 /* The canonical form of a mask-low-and-shift-left operation is
8007 (and (ashift X SHIFT) MASK) where MASK has the lower SHIFT number of bits
8008 cleared. Thus we need to shift MASK to the right before checking if it
8009 is a valid mask value. MODE is the mode of the operation. If true
8010 return the length of the mask, otherwise return -1. */
8013 mask_low_and_shift_len (machine_mode mode, rtx mask, rtx shift)
8015 HOST_WIDE_INT shval;
8017 shval = INTVAL (shift) & (GET_MODE_BITSIZE (mode) - 1);
8018 return exact_log2 ((UINTVAL (mask) >> shval) + 1);
8021 /* Return true if -msplit-addresses is selected and should be honored.
8023 -msplit-addresses is a half-way house between explicit relocations
8024 and the traditional assembler macros. It can split absolute 32-bit
8025 symbolic constants into a high/lo_sum pair but uses macros for other
8026 sorts of access.
8028 Like explicit relocation support for REL targets, it relies
8029 on GNU extensions in the assembler and the linker.
8031 Although this code should work for -O0, it has traditionally
8032 been treated as an optimization. */
8034 static bool
8035 mips_split_addresses_p (void)
8037 return (TARGET_SPLIT_ADDRESSES
8038 && optimize
8039 && !TARGET_MIPS16
8040 && !flag_pic
8041 && !ABI_HAS_64BIT_SYMBOLS);
8044 /* (Re-)Initialize mips_split_p, mips_lo_relocs and mips_hi_relocs. */
8046 static void
8047 mips_init_relocs (void)
8049 memset (mips_split_p, '\0', sizeof (mips_split_p));
8050 memset (mips_split_hi_p, '\0', sizeof (mips_split_hi_p));
8051 memset (mips_use_pcrel_pool_p, '\0', sizeof (mips_use_pcrel_pool_p));
8052 memset (mips_hi_relocs, '\0', sizeof (mips_hi_relocs));
8053 memset (mips_lo_relocs, '\0', sizeof (mips_lo_relocs));
8055 if (TARGET_MIPS16_PCREL_LOADS)
8056 mips_use_pcrel_pool_p[SYMBOL_ABSOLUTE] = true;
8057 else
8059 if (ABI_HAS_64BIT_SYMBOLS)
8061 if (TARGET_EXPLICIT_RELOCS)
8063 mips_split_p[SYMBOL_64_HIGH] = true;
8064 mips_hi_relocs[SYMBOL_64_HIGH] = "%highest(";
8065 mips_lo_relocs[SYMBOL_64_HIGH] = "%higher(";
8067 mips_split_p[SYMBOL_64_MID] = true;
8068 mips_hi_relocs[SYMBOL_64_MID] = "%higher(";
8069 mips_lo_relocs[SYMBOL_64_MID] = "%hi(";
8071 mips_split_p[SYMBOL_64_LOW] = true;
8072 mips_hi_relocs[SYMBOL_64_LOW] = "%hi(";
8073 mips_lo_relocs[SYMBOL_64_LOW] = "%lo(";
8075 mips_split_p[SYMBOL_ABSOLUTE] = true;
8076 mips_lo_relocs[SYMBOL_ABSOLUTE] = "%lo(";
8079 else
8081 if (TARGET_EXPLICIT_RELOCS
8082 || mips_split_addresses_p ()
8083 || TARGET_MIPS16)
8085 mips_split_p[SYMBOL_ABSOLUTE] = true;
8086 mips_hi_relocs[SYMBOL_ABSOLUTE] = "%hi(";
8087 mips_lo_relocs[SYMBOL_ABSOLUTE] = "%lo(";
8092 if (TARGET_MIPS16)
8094 /* The high part is provided by a pseudo copy of $gp. */
8095 mips_split_p[SYMBOL_GP_RELATIVE] = true;
8096 mips_lo_relocs[SYMBOL_GP_RELATIVE] = "%gprel(";
8098 else if (TARGET_EXPLICIT_RELOCS)
8099 /* Small data constants are kept whole until after reload,
8100 then lowered by mips_rewrite_small_data. */
8101 mips_lo_relocs[SYMBOL_GP_RELATIVE] = "%gp_rel(";
8103 if (TARGET_EXPLICIT_RELOCS)
8105 mips_split_p[SYMBOL_GOT_PAGE_OFST] = true;
8106 if (TARGET_NEWABI)
8108 mips_lo_relocs[SYMBOL_GOTOFF_PAGE] = "%got_page(";
8109 mips_lo_relocs[SYMBOL_GOT_PAGE_OFST] = "%got_ofst(";
8111 else
8113 mips_lo_relocs[SYMBOL_GOTOFF_PAGE] = "%got(";
8114 mips_lo_relocs[SYMBOL_GOT_PAGE_OFST] = "%lo(";
8116 if (TARGET_MIPS16)
8117 /* Expose the use of $28 as soon as possible. */
8118 mips_split_hi_p[SYMBOL_GOT_PAGE_OFST] = true;
8120 if (TARGET_XGOT)
8122 /* The HIGH and LO_SUM are matched by special .md patterns. */
8123 mips_split_p[SYMBOL_GOT_DISP] = true;
8125 mips_split_p[SYMBOL_GOTOFF_DISP] = true;
8126 mips_hi_relocs[SYMBOL_GOTOFF_DISP] = "%got_hi(";
8127 mips_lo_relocs[SYMBOL_GOTOFF_DISP] = "%got_lo(";
8129 mips_split_p[SYMBOL_GOTOFF_CALL] = true;
8130 mips_hi_relocs[SYMBOL_GOTOFF_CALL] = "%call_hi(";
8131 mips_lo_relocs[SYMBOL_GOTOFF_CALL] = "%call_lo(";
8133 else
8135 if (TARGET_NEWABI)
8136 mips_lo_relocs[SYMBOL_GOTOFF_DISP] = "%got_disp(";
8137 else
8138 mips_lo_relocs[SYMBOL_GOTOFF_DISP] = "%got(";
8139 mips_lo_relocs[SYMBOL_GOTOFF_CALL] = "%call16(";
8140 if (TARGET_MIPS16)
8141 /* Expose the use of $28 as soon as possible. */
8142 mips_split_p[SYMBOL_GOT_DISP] = true;
8146 if (TARGET_NEWABI)
8148 mips_split_p[SYMBOL_GOTOFF_LOADGP] = true;
8149 mips_hi_relocs[SYMBOL_GOTOFF_LOADGP] = "%hi(%neg(%gp_rel(";
8150 mips_lo_relocs[SYMBOL_GOTOFF_LOADGP] = "%lo(%neg(%gp_rel(";
8153 mips_lo_relocs[SYMBOL_TLSGD] = "%tlsgd(";
8154 mips_lo_relocs[SYMBOL_TLSLDM] = "%tlsldm(";
8156 if (TARGET_MIPS16_PCREL_LOADS)
8158 mips_use_pcrel_pool_p[SYMBOL_DTPREL] = true;
8159 mips_use_pcrel_pool_p[SYMBOL_TPREL] = true;
8161 else
8163 mips_split_p[SYMBOL_DTPREL] = true;
8164 mips_hi_relocs[SYMBOL_DTPREL] = "%dtprel_hi(";
8165 mips_lo_relocs[SYMBOL_DTPREL] = "%dtprel_lo(";
8167 mips_split_p[SYMBOL_TPREL] = true;
8168 mips_hi_relocs[SYMBOL_TPREL] = "%tprel_hi(";
8169 mips_lo_relocs[SYMBOL_TPREL] = "%tprel_lo(";
8172 mips_lo_relocs[SYMBOL_GOTTPREL] = "%gottprel(";
8173 mips_lo_relocs[SYMBOL_HALF] = "%half(";
8176 /* Print symbolic operand OP, which is part of a HIGH or LO_SUM
8177 in context CONTEXT. RELOCS is the array of relocations to use. */
8179 static void
8180 mips_print_operand_reloc (FILE *file, rtx op, enum mips_symbol_context context,
8181 const char **relocs)
8183 enum mips_symbol_type symbol_type;
8184 const char *p;
8186 symbol_type = mips_classify_symbolic_expression (op, context);
8187 gcc_assert (relocs[symbol_type]);
8189 fputs (relocs[symbol_type], file);
8190 output_addr_const (file, mips_strip_unspec_address (op));
8191 for (p = relocs[symbol_type]; *p != 0; p++)
8192 if (*p == '(')
8193 fputc (')', file);
8196 /* Start a new block with the given asm switch enabled. If we need
8197 to print a directive, emit PREFIX before it and SUFFIX after it. */
8199 static void
8200 mips_push_asm_switch_1 (struct mips_asm_switch *asm_switch,
8201 const char *prefix, const char *suffix)
8203 if (asm_switch->nesting_level == 0)
8204 fprintf (asm_out_file, "%s.set\tno%s%s", prefix, asm_switch->name, suffix);
8205 asm_switch->nesting_level++;
8208 /* Likewise, but end a block. */
8210 static void
8211 mips_pop_asm_switch_1 (struct mips_asm_switch *asm_switch,
8212 const char *prefix, const char *suffix)
8214 gcc_assert (asm_switch->nesting_level);
8215 asm_switch->nesting_level--;
8216 if (asm_switch->nesting_level == 0)
8217 fprintf (asm_out_file, "%s.set\t%s%s", prefix, asm_switch->name, suffix);
8220 /* Wrappers around mips_push_asm_switch_1 and mips_pop_asm_switch_1
8221 that either print a complete line or print nothing. */
8223 void
8224 mips_push_asm_switch (struct mips_asm_switch *asm_switch)
8226 mips_push_asm_switch_1 (asm_switch, "\t", "\n");
8229 void
8230 mips_pop_asm_switch (struct mips_asm_switch *asm_switch)
8232 mips_pop_asm_switch_1 (asm_switch, "\t", "\n");
8235 /* Print the text for PRINT_OPERAND punctation character CH to FILE.
8236 The punctuation characters are:
8238 '(' Start a nested ".set noreorder" block.
8239 ')' End a nested ".set noreorder" block.
8240 '[' Start a nested ".set noat" block.
8241 ']' End a nested ".set noat" block.
8242 '<' Start a nested ".set nomacro" block.
8243 '>' End a nested ".set nomacro" block.
8244 '*' Behave like %(%< if generating a delayed-branch sequence.
8245 '#' Print a nop if in a ".set noreorder" block.
8246 '/' Like '#', but do nothing within a delayed-branch sequence.
8247 '?' Print "l" if mips_branch_likely is true
8248 '~' Print a nop if mips_branch_likely is true
8249 '.' Print the name of the register with a hard-wired zero (zero or $0).
8250 '@' Print the name of the assembler temporary register (at or $1).
8251 '^' Print the name of the pic call-through register (t9 or $25).
8252 '+' Print the name of the gp register (usually gp or $28).
8253 '$' Print the name of the stack pointer register (sp or $29).
8254 ':' Print "c" to use the compact version if the delay slot is a nop.
8255 '!' Print "s" to use the short version if the delay slot contains a
8256 16-bit instruction.
8258 See also mips_init_print_operand_pucnt. */
8260 static void
8261 mips_print_operand_punctuation (FILE *file, int ch)
8263 switch (ch)
8265 case '(':
8266 mips_push_asm_switch_1 (&mips_noreorder, "", "\n\t");
8267 break;
8269 case ')':
8270 mips_pop_asm_switch_1 (&mips_noreorder, "\n\t", "");
8271 break;
8273 case '[':
8274 mips_push_asm_switch_1 (&mips_noat, "", "\n\t");
8275 break;
8277 case ']':
8278 mips_pop_asm_switch_1 (&mips_noat, "\n\t", "");
8279 break;
8281 case '<':
8282 mips_push_asm_switch_1 (&mips_nomacro, "", "\n\t");
8283 break;
8285 case '>':
8286 mips_pop_asm_switch_1 (&mips_nomacro, "\n\t", "");
8287 break;
8289 case '*':
8290 if (final_sequence != 0)
8292 mips_print_operand_punctuation (file, '(');
8293 mips_print_operand_punctuation (file, '<');
8295 break;
8297 case '#':
8298 if (mips_noreorder.nesting_level > 0)
8299 fputs ("\n\tnop", file);
8300 break;
8302 case '/':
8303 /* Print an extra newline so that the delayed insn is separated
8304 from the following ones. This looks neater and is consistent
8305 with non-nop delayed sequences. */
8306 if (mips_noreorder.nesting_level > 0 && final_sequence == 0)
8307 fputs ("\n\tnop\n", file);
8308 break;
8310 case '?':
8311 if (mips_branch_likely)
8312 putc ('l', file);
8313 break;
8315 case '~':
8316 if (mips_branch_likely)
8317 fputs ("\n\tnop", file);
8318 break;
8320 case '.':
8321 fputs (reg_names[GP_REG_FIRST + 0], file);
8322 break;
8324 case '@':
8325 fputs (reg_names[AT_REGNUM], file);
8326 break;
8328 case '^':
8329 fputs (reg_names[PIC_FUNCTION_ADDR_REGNUM], file);
8330 break;
8332 case '+':
8333 fputs (reg_names[PIC_OFFSET_TABLE_REGNUM], file);
8334 break;
8336 case '$':
8337 fputs (reg_names[STACK_POINTER_REGNUM], file);
8338 break;
8340 case ':':
8341 /* When final_sequence is 0, the delay slot will be a nop. We can
8342 use the compact version for microMIPS. */
8343 if (final_sequence == 0)
8344 putc ('c', file);
8345 break;
8347 case '!':
8348 /* If the delay slot instruction is short, then use the
8349 compact version. */
8350 if (final_sequence == 0
8351 || get_attr_length (final_sequence->insn (1)) == 2)
8352 putc ('s', file);
8353 break;
8355 default:
8356 gcc_unreachable ();
8357 break;
8361 /* Initialize mips_print_operand_punct. */
8363 static void
8364 mips_init_print_operand_punct (void)
8366 const char *p;
8368 for (p = "()[]<>*#/?~.@^+$:!"; *p; p++)
8369 mips_print_operand_punct[(unsigned char) *p] = true;
8372 /* PRINT_OPERAND prefix LETTER refers to the integer branch instruction
8373 associated with condition CODE. Print the condition part of the
8374 opcode to FILE. */
8376 static void
8377 mips_print_int_branch_condition (FILE *file, enum rtx_code code, int letter)
8379 switch (code)
8381 case EQ:
8382 case NE:
8383 case GT:
8384 case GE:
8385 case LT:
8386 case LE:
8387 case GTU:
8388 case GEU:
8389 case LTU:
8390 case LEU:
8391 /* Conveniently, the MIPS names for these conditions are the same
8392 as their RTL equivalents. */
8393 fputs (GET_RTX_NAME (code), file);
8394 break;
8396 default:
8397 output_operand_lossage ("'%%%c' is not a valid operand prefix", letter);
8398 break;
8402 /* Likewise floating-point branches. */
8404 static void
8405 mips_print_float_branch_condition (FILE *file, enum rtx_code code, int letter)
8407 switch (code)
8409 case EQ:
8410 if (ISA_HAS_CCF)
8411 fputs ("c1eqz", file);
8412 else
8413 fputs ("c1f", file);
8414 break;
8416 case NE:
8417 if (ISA_HAS_CCF)
8418 fputs ("c1nez", file);
8419 else
8420 fputs ("c1t", file);
8421 break;
8423 default:
8424 output_operand_lossage ("'%%%c' is not a valid operand prefix", letter);
8425 break;
8429 /* Implement TARGET_PRINT_OPERAND_PUNCT_VALID_P. */
8431 static bool
8432 mips_print_operand_punct_valid_p (unsigned char code)
8434 return mips_print_operand_punct[code];
8437 /* Implement TARGET_PRINT_OPERAND. The MIPS-specific operand codes are:
8439 'X' Print CONST_INT OP in hexadecimal format.
8440 'x' Print the low 16 bits of CONST_INT OP in hexadecimal format.
8441 'd' Print CONST_INT OP in decimal.
8442 'm' Print one less than CONST_INT OP in decimal.
8443 'y' Print exact log2 of CONST_INT OP in decimal.
8444 'h' Print the high-part relocation associated with OP, after stripping
8445 any outermost HIGH.
8446 'R' Print the low-part relocation associated with OP.
8447 'C' Print the integer branch condition for comparison OP.
8448 'N' Print the inverse of the integer branch condition for comparison OP.
8449 'F' Print the FPU branch condition for comparison OP.
8450 'W' Print the inverse of the FPU branch condition for comparison OP.
8451 'T' Print 'f' for (eq:CC ...), 't' for (ne:CC ...),
8452 'z' for (eq:?I ...), 'n' for (ne:?I ...).
8453 't' Like 'T', but with the EQ/NE cases reversed
8454 'Y' Print mips_fp_conditions[INTVAL (OP)]
8455 'Z' Print OP and a comma for ISA_HAS_8CC, otherwise print nothing.
8456 'q' Print a DSP accumulator register.
8457 'D' Print the second part of a double-word register or memory operand.
8458 'L' Print the low-order register in a double-word register operand.
8459 'M' Print high-order register in a double-word register operand.
8460 'z' Print $0 if OP is zero, otherwise print OP normally.
8461 'b' Print the address of a memory operand, without offset. */
8463 static void
8464 mips_print_operand (FILE *file, rtx op, int letter)
8466 enum rtx_code code;
8468 if (mips_print_operand_punct_valid_p (letter))
8470 mips_print_operand_punctuation (file, letter);
8471 return;
8474 gcc_assert (op);
8475 code = GET_CODE (op);
8477 switch (letter)
8479 case 'X':
8480 if (CONST_INT_P (op))
8481 fprintf (file, HOST_WIDE_INT_PRINT_HEX, INTVAL (op));
8482 else
8483 output_operand_lossage ("invalid use of '%%%c'", letter);
8484 break;
8486 case 'x':
8487 if (CONST_INT_P (op))
8488 fprintf (file, HOST_WIDE_INT_PRINT_HEX, INTVAL (op) & 0xffff);
8489 else
8490 output_operand_lossage ("invalid use of '%%%c'", letter);
8491 break;
8493 case 'd':
8494 if (CONST_INT_P (op))
8495 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (op));
8496 else
8497 output_operand_lossage ("invalid use of '%%%c'", letter);
8498 break;
8500 case 'm':
8501 if (CONST_INT_P (op))
8502 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (op) - 1);
8503 else
8504 output_operand_lossage ("invalid use of '%%%c'", letter);
8505 break;
8507 case 'y':
8508 if (CONST_INT_P (op))
8510 int val = exact_log2 (INTVAL (op));
8511 if (val != -1)
8512 fprintf (file, "%d", val);
8513 else
8514 output_operand_lossage ("invalid use of '%%%c'", letter);
8516 else
8517 output_operand_lossage ("invalid use of '%%%c'", letter);
8518 break;
8520 case 'h':
8521 if (code == HIGH)
8522 op = XEXP (op, 0);
8523 mips_print_operand_reloc (file, op, SYMBOL_CONTEXT_LEA, mips_hi_relocs);
8524 break;
8526 case 'R':
8527 mips_print_operand_reloc (file, op, SYMBOL_CONTEXT_LEA, mips_lo_relocs);
8528 break;
8530 case 'C':
8531 mips_print_int_branch_condition (file, code, letter);
8532 break;
8534 case 'N':
8535 mips_print_int_branch_condition (file, reverse_condition (code), letter);
8536 break;
8538 case 'F':
8539 mips_print_float_branch_condition (file, code, letter);
8540 break;
8542 case 'W':
8543 mips_print_float_branch_condition (file, reverse_condition (code),
8544 letter);
8545 break;
8547 case 'T':
8548 case 't':
8550 int truth = (code == NE) == (letter == 'T');
8551 fputc ("zfnt"[truth * 2 + ST_REG_P (REGNO (XEXP (op, 0)))], file);
8553 break;
8555 case 'Y':
8556 if (code == CONST_INT && UINTVAL (op) < ARRAY_SIZE (mips_fp_conditions))
8557 fputs (mips_fp_conditions[UINTVAL (op)], file);
8558 else
8559 output_operand_lossage ("'%%%c' is not a valid operand prefix",
8560 letter);
8561 break;
8563 case 'Z':
8564 if (ISA_HAS_8CC || ISA_HAS_CCF)
8566 mips_print_operand (file, op, 0);
8567 fputc (',', file);
8569 break;
8571 case 'q':
8572 if (code == REG && MD_REG_P (REGNO (op)))
8573 fprintf (file, "$ac0");
8574 else if (code == REG && DSP_ACC_REG_P (REGNO (op)))
8575 fprintf (file, "$ac%c", reg_names[REGNO (op)][3]);
8576 else
8577 output_operand_lossage ("invalid use of '%%%c'", letter);
8578 break;
8580 default:
8581 switch (code)
8583 case REG:
8585 unsigned int regno = REGNO (op);
8586 if ((letter == 'M' && TARGET_LITTLE_ENDIAN)
8587 || (letter == 'L' && TARGET_BIG_ENDIAN)
8588 || letter == 'D')
8589 regno++;
8590 else if (letter && letter != 'z' && letter != 'M' && letter != 'L')
8591 output_operand_lossage ("invalid use of '%%%c'", letter);
8592 /* We need to print $0 .. $31 for COP0 registers. */
8593 if (COP0_REG_P (regno))
8594 fprintf (file, "$%s", &reg_names[regno][4]);
8595 else
8596 fprintf (file, "%s", reg_names[regno]);
8598 break;
8600 case MEM:
8601 if (letter == 'D')
8602 output_address (plus_constant (Pmode, XEXP (op, 0), 4));
8603 else if (letter == 'b')
8605 gcc_assert (REG_P (XEXP (op, 0)));
8606 mips_print_operand (file, XEXP (op, 0), 0);
8608 else if (letter && letter != 'z')
8609 output_operand_lossage ("invalid use of '%%%c'", letter);
8610 else
8611 output_address (XEXP (op, 0));
8612 break;
8614 default:
8615 if (letter == 'z' && op == CONST0_RTX (GET_MODE (op)))
8616 fputs (reg_names[GP_REG_FIRST], file);
8617 else if (letter && letter != 'z')
8618 output_operand_lossage ("invalid use of '%%%c'", letter);
8619 else if (CONST_GP_P (op))
8620 fputs (reg_names[GLOBAL_POINTER_REGNUM], file);
8621 else
8622 output_addr_const (file, mips_strip_unspec_address (op));
8623 break;
8628 /* Implement TARGET_PRINT_OPERAND_ADDRESS. */
8630 static void
8631 mips_print_operand_address (FILE *file, rtx x)
8633 struct mips_address_info addr;
8635 if (mips_classify_address (&addr, x, word_mode, true))
8636 switch (addr.type)
8638 case ADDRESS_REG:
8639 mips_print_operand (file, addr.offset, 0);
8640 fprintf (file, "(%s)", reg_names[REGNO (addr.reg)]);
8641 return;
8643 case ADDRESS_LO_SUM:
8644 mips_print_operand_reloc (file, addr.offset, SYMBOL_CONTEXT_MEM,
8645 mips_lo_relocs);
8646 fprintf (file, "(%s)", reg_names[REGNO (addr.reg)]);
8647 return;
8649 case ADDRESS_CONST_INT:
8650 output_addr_const (file, x);
8651 fprintf (file, "(%s)", reg_names[GP_REG_FIRST]);
8652 return;
8654 case ADDRESS_SYMBOLIC:
8655 output_addr_const (file, mips_strip_unspec_address (x));
8656 return;
8658 gcc_unreachable ();
8661 /* Implement TARGET_ENCODE_SECTION_INFO. */
8663 static void
8664 mips_encode_section_info (tree decl, rtx rtl, int first)
8666 default_encode_section_info (decl, rtl, first);
8668 if (TREE_CODE (decl) == FUNCTION_DECL)
8670 rtx symbol = XEXP (rtl, 0);
8671 tree type = TREE_TYPE (decl);
8673 /* Encode whether the symbol is short or long. */
8674 if ((TARGET_LONG_CALLS && !mips_near_type_p (type))
8675 || mips_far_type_p (type))
8676 SYMBOL_REF_FLAGS (symbol) |= SYMBOL_FLAG_LONG_CALL;
8680 /* Implement TARGET_SELECT_RTX_SECTION. */
8682 static section *
8683 mips_select_rtx_section (machine_mode mode, rtx x,
8684 unsigned HOST_WIDE_INT align)
8686 /* ??? Consider using mergeable small data sections. */
8687 if (mips_rtx_constant_in_small_data_p (mode))
8688 return get_named_section (NULL, ".sdata", 0);
8690 return default_elf_select_rtx_section (mode, x, align);
8693 /* Implement TARGET_ASM_FUNCTION_RODATA_SECTION.
8695 The complication here is that, with the combination TARGET_ABICALLS
8696 && !TARGET_ABSOLUTE_ABICALLS && !TARGET_GPWORD, jump tables will use
8697 absolute addresses, and should therefore not be included in the
8698 read-only part of a DSO. Handle such cases by selecting a normal
8699 data section instead of a read-only one. The logic apes that in
8700 default_function_rodata_section. */
8702 static section *
8703 mips_function_rodata_section (tree decl)
8705 if (!TARGET_ABICALLS || TARGET_ABSOLUTE_ABICALLS || TARGET_GPWORD)
8706 return default_function_rodata_section (decl);
8708 if (decl && DECL_SECTION_NAME (decl))
8710 const char *name = DECL_SECTION_NAME (decl);
8711 if (DECL_COMDAT_GROUP (decl) && strncmp (name, ".gnu.linkonce.t.", 16) == 0)
8713 char *rname = ASTRDUP (name);
8714 rname[14] = 'd';
8715 return get_section (rname, SECTION_LINKONCE | SECTION_WRITE, decl);
8717 else if (flag_function_sections
8718 && flag_data_sections
8719 && strncmp (name, ".text.", 6) == 0)
8721 char *rname = ASTRDUP (name);
8722 memcpy (rname + 1, "data", 4);
8723 return get_section (rname, SECTION_WRITE, decl);
8726 return data_section;
8729 /* Implement TARGET_IN_SMALL_DATA_P. */
8731 static bool
8732 mips_in_small_data_p (const_tree decl)
8734 unsigned HOST_WIDE_INT size;
8736 if (TREE_CODE (decl) == STRING_CST || TREE_CODE (decl) == FUNCTION_DECL)
8737 return false;
8739 /* We don't yet generate small-data references for -mabicalls
8740 or VxWorks RTP code. See the related -G handling in
8741 mips_option_override. */
8742 if (TARGET_ABICALLS || TARGET_VXWORKS_RTP)
8743 return false;
8745 if (TREE_CODE (decl) == VAR_DECL && DECL_SECTION_NAME (decl) != 0)
8747 const char *name;
8749 /* Reject anything that isn't in a known small-data section. */
8750 name = DECL_SECTION_NAME (decl);
8751 if (strcmp (name, ".sdata") != 0 && strcmp (name, ".sbss") != 0)
8752 return false;
8754 /* If a symbol is defined externally, the assembler will use the
8755 usual -G rules when deciding how to implement macros. */
8756 if (mips_lo_relocs[SYMBOL_GP_RELATIVE] || !DECL_EXTERNAL (decl))
8757 return true;
8759 else if (TARGET_EMBEDDED_DATA)
8761 /* Don't put constants into the small data section: we want them
8762 to be in ROM rather than RAM. */
8763 if (TREE_CODE (decl) != VAR_DECL)
8764 return false;
8766 if (TREE_READONLY (decl)
8767 && !TREE_SIDE_EFFECTS (decl)
8768 && (!DECL_INITIAL (decl) || TREE_CONSTANT (DECL_INITIAL (decl))))
8769 return false;
8772 /* Enforce -mlocal-sdata. */
8773 if (!TARGET_LOCAL_SDATA && !TREE_PUBLIC (decl))
8774 return false;
8776 /* Enforce -mextern-sdata. */
8777 if (!TARGET_EXTERN_SDATA && DECL_P (decl))
8779 if (DECL_EXTERNAL (decl))
8780 return false;
8781 if (DECL_COMMON (decl) && DECL_INITIAL (decl) == NULL)
8782 return false;
8785 /* We have traditionally not treated zero-sized objects as small data,
8786 so this is now effectively part of the ABI. */
8787 size = int_size_in_bytes (TREE_TYPE (decl));
8788 return size > 0 && size <= mips_small_data_threshold;
8791 /* Implement TARGET_USE_ANCHORS_FOR_SYMBOL_P. We don't want to use
8792 anchors for small data: the GP register acts as an anchor in that
8793 case. We also don't want to use them for PC-relative accesses,
8794 where the PC acts as an anchor. */
8796 static bool
8797 mips_use_anchors_for_symbol_p (const_rtx symbol)
8799 switch (mips_classify_symbol (symbol, SYMBOL_CONTEXT_MEM))
8801 case SYMBOL_PC_RELATIVE:
8802 case SYMBOL_GP_RELATIVE:
8803 return false;
8805 default:
8806 return default_use_anchors_for_symbol_p (symbol);
8810 /* The MIPS debug format wants all automatic variables and arguments
8811 to be in terms of the virtual frame pointer (stack pointer before
8812 any adjustment in the function), while the MIPS 3.0 linker wants
8813 the frame pointer to be the stack pointer after the initial
8814 adjustment. So, we do the adjustment here. The arg pointer (which
8815 is eliminated) points to the virtual frame pointer, while the frame
8816 pointer (which may be eliminated) points to the stack pointer after
8817 the initial adjustments. */
8819 HOST_WIDE_INT
8820 mips_debugger_offset (rtx addr, HOST_WIDE_INT offset)
8822 rtx offset2 = const0_rtx;
8823 rtx reg = eliminate_constant_term (addr, &offset2);
8825 if (offset == 0)
8826 offset = INTVAL (offset2);
8828 if (reg == stack_pointer_rtx
8829 || reg == frame_pointer_rtx
8830 || reg == hard_frame_pointer_rtx)
8832 offset -= cfun->machine->frame.total_size;
8833 if (reg == hard_frame_pointer_rtx)
8834 offset += cfun->machine->frame.hard_frame_pointer_offset;
8837 return offset;
8840 /* Implement ASM_OUTPUT_EXTERNAL. */
8842 void
8843 mips_output_external (FILE *file, tree decl, const char *name)
8845 default_elf_asm_output_external (file, decl, name);
8847 /* We output the name if and only if TREE_SYMBOL_REFERENCED is
8848 set in order to avoid putting out names that are never really
8849 used. */
8850 if (TREE_SYMBOL_REFERENCED (DECL_ASSEMBLER_NAME (decl)))
8852 if (!TARGET_EXPLICIT_RELOCS && mips_in_small_data_p (decl))
8854 /* When using assembler macros, emit .extern directives for
8855 all small-data externs so that the assembler knows how
8856 big they are.
8858 In most cases it would be safe (though pointless) to emit
8859 .externs for other symbols too. One exception is when an
8860 object is within the -G limit but declared by the user to
8861 be in a section other than .sbss or .sdata. */
8862 fputs ("\t.extern\t", file);
8863 assemble_name (file, name);
8864 fprintf (file, ", " HOST_WIDE_INT_PRINT_DEC "\n",
8865 int_size_in_bytes (TREE_TYPE (decl)));
8870 /* Implement TARGET_ASM_OUTPUT_SOURCE_FILENAME. */
8872 static void
8873 mips_output_filename (FILE *stream, const char *name)
8875 /* If we are emitting DWARF-2, let dwarf2out handle the ".file"
8876 directives. */
8877 if (write_symbols == DWARF2_DEBUG)
8878 return;
8879 else if (mips_output_filename_first_time)
8881 mips_output_filename_first_time = 0;
8882 num_source_filenames += 1;
8883 current_function_file = name;
8884 fprintf (stream, "\t.file\t%d ", num_source_filenames);
8885 output_quoted_string (stream, name);
8886 putc ('\n', stream);
8888 /* If we are emitting stabs, let dbxout.c handle this (except for
8889 the mips_output_filename_first_time case). */
8890 else if (write_symbols == DBX_DEBUG)
8891 return;
8892 else if (name != current_function_file
8893 && strcmp (name, current_function_file) != 0)
8895 num_source_filenames += 1;
8896 current_function_file = name;
8897 fprintf (stream, "\t.file\t%d ", num_source_filenames);
8898 output_quoted_string (stream, name);
8899 putc ('\n', stream);
8903 /* Implement TARGET_ASM_OUTPUT_DWARF_DTPREL. */
8905 static void ATTRIBUTE_UNUSED
8906 mips_output_dwarf_dtprel (FILE *file, int size, rtx x)
8908 switch (size)
8910 case 4:
8911 fputs ("\t.dtprelword\t", file);
8912 break;
8914 case 8:
8915 fputs ("\t.dtpreldword\t", file);
8916 break;
8918 default:
8919 gcc_unreachable ();
8921 output_addr_const (file, x);
8922 fputs ("+0x8000", file);
8925 /* Implement TARGET_DWARF_REGISTER_SPAN. */
8927 static rtx
8928 mips_dwarf_register_span (rtx reg)
8930 rtx high, low;
8931 machine_mode mode;
8933 /* TARGET_FLOATXX is implemented as 32-bit floating-point registers but
8934 ensures that double-precision registers are treated as if they were
8935 64-bit physical registers. The code will run correctly with 32-bit or
8936 64-bit registers which means that dwarf information cannot be precise
8937 for all scenarios. We choose to state that the 64-bit values are stored
8938 in a single 64-bit 'piece'. This slightly unusual construct can then be
8939 interpreted as either a pair of registers if the registers are 32-bit or
8940 a single 64-bit register depending on hardware. */
8941 mode = GET_MODE (reg);
8942 if (FP_REG_P (REGNO (reg))
8943 && TARGET_FLOATXX
8944 && GET_MODE_SIZE (mode) > UNITS_PER_FPREG)
8946 return gen_rtx_PARALLEL (VOIDmode, gen_rtvec (1, reg));
8948 /* By default, GCC maps increasing register numbers to increasing
8949 memory locations, but paired FPRs are always little-endian,
8950 regardless of the prevailing endianness. */
8951 else if (FP_REG_P (REGNO (reg))
8952 && TARGET_BIG_ENDIAN
8953 && MAX_FPRS_PER_FMT > 1
8954 && GET_MODE_SIZE (mode) > UNITS_PER_FPREG)
8956 gcc_assert (GET_MODE_SIZE (mode) == UNITS_PER_HWFPVALUE);
8957 high = mips_subword (reg, true);
8958 low = mips_subword (reg, false);
8959 return gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, high, low));
8962 return NULL_RTX;
8965 /* Implement TARGET_DWARF_FRAME_REG_MODE. */
8967 static machine_mode
8968 mips_dwarf_frame_reg_mode (int regno)
8970 machine_mode mode = default_dwarf_frame_reg_mode (regno);
8972 if (FP_REG_P (regno) && mips_abi == ABI_32 && TARGET_FLOAT64)
8973 mode = SImode;
8975 return mode;
8978 /* DSP ALU can bypass data with no delays for the following pairs. */
8979 enum insn_code dspalu_bypass_table[][2] =
8981 {CODE_FOR_mips_addsc, CODE_FOR_mips_addwc},
8982 {CODE_FOR_mips_cmpu_eq_qb, CODE_FOR_mips_pick_qb},
8983 {CODE_FOR_mips_cmpu_lt_qb, CODE_FOR_mips_pick_qb},
8984 {CODE_FOR_mips_cmpu_le_qb, CODE_FOR_mips_pick_qb},
8985 {CODE_FOR_mips_cmp_eq_ph, CODE_FOR_mips_pick_ph},
8986 {CODE_FOR_mips_cmp_lt_ph, CODE_FOR_mips_pick_ph},
8987 {CODE_FOR_mips_cmp_le_ph, CODE_FOR_mips_pick_ph},
8988 {CODE_FOR_mips_wrdsp, CODE_FOR_mips_insv}
8992 mips_dspalu_bypass_p (rtx out_insn, rtx in_insn)
8994 int i;
8995 int num_bypass = ARRAY_SIZE (dspalu_bypass_table);
8996 enum insn_code out_icode = (enum insn_code) INSN_CODE (out_insn);
8997 enum insn_code in_icode = (enum insn_code) INSN_CODE (in_insn);
8999 for (i = 0; i < num_bypass; i++)
9001 if (out_icode == dspalu_bypass_table[i][0]
9002 && in_icode == dspalu_bypass_table[i][1])
9003 return true;
9006 return false;
9008 /* Implement ASM_OUTPUT_ASCII. */
9010 void
9011 mips_output_ascii (FILE *stream, const char *string, size_t len)
9013 size_t i;
9014 int cur_pos;
9016 cur_pos = 17;
9017 fprintf (stream, "\t.ascii\t\"");
9018 for (i = 0; i < len; i++)
9020 int c;
9022 c = (unsigned char) string[i];
9023 if (ISPRINT (c))
9025 if (c == '\\' || c == '\"')
9027 putc ('\\', stream);
9028 cur_pos++;
9030 putc (c, stream);
9031 cur_pos++;
9033 else
9035 fprintf (stream, "\\%03o", c);
9036 cur_pos += 4;
9039 if (cur_pos > 72 && i+1 < len)
9041 cur_pos = 17;
9042 fprintf (stream, "\"\n\t.ascii\t\"");
9045 fprintf (stream, "\"\n");
9048 /* Return the pseudo-op for full SYMBOL_(D)TPREL address *ADDR.
9049 Update *ADDR with the operand that should be printed. */
9051 const char *
9052 mips_output_tls_reloc_directive (rtx *addr)
9054 enum mips_symbol_type type;
9056 type = mips_classify_symbolic_expression (*addr, SYMBOL_CONTEXT_LEA);
9057 *addr = mips_strip_unspec_address (*addr);
9058 switch (type)
9060 case SYMBOL_DTPREL:
9061 return Pmode == SImode ? ".dtprelword\t%0" : ".dtpreldword\t%0";
9063 case SYMBOL_TPREL:
9064 return Pmode == SImode ? ".tprelword\t%0" : ".tpreldword\t%0";
9066 default:
9067 gcc_unreachable ();
9071 /* Emit either a label, .comm, or .lcomm directive. When using assembler
9072 macros, mark the symbol as written so that mips_asm_output_external
9073 won't emit an .extern for it. STREAM is the output file, NAME is the
9074 name of the symbol, INIT_STRING is the string that should be written
9075 before the symbol and FINAL_STRING is the string that should be
9076 written after it. FINAL_STRING is a printf format that consumes the
9077 remaining arguments. */
9079 void
9080 mips_declare_object (FILE *stream, const char *name, const char *init_string,
9081 const char *final_string, ...)
9083 va_list ap;
9085 fputs (init_string, stream);
9086 assemble_name (stream, name);
9087 va_start (ap, final_string);
9088 vfprintf (stream, final_string, ap);
9089 va_end (ap);
9091 if (!TARGET_EXPLICIT_RELOCS)
9093 tree name_tree = get_identifier (name);
9094 TREE_ASM_WRITTEN (name_tree) = 1;
9098 /* Declare a common object of SIZE bytes using asm directive INIT_STRING.
9099 NAME is the name of the object and ALIGN is the required alignment
9100 in bytes. TAKES_ALIGNMENT_P is true if the directive takes a third
9101 alignment argument. */
9103 void
9104 mips_declare_common_object (FILE *stream, const char *name,
9105 const char *init_string,
9106 unsigned HOST_WIDE_INT size,
9107 unsigned int align, bool takes_alignment_p)
9109 if (!takes_alignment_p)
9111 size += (align / BITS_PER_UNIT) - 1;
9112 size -= size % (align / BITS_PER_UNIT);
9113 mips_declare_object (stream, name, init_string,
9114 "," HOST_WIDE_INT_PRINT_UNSIGNED "\n", size);
9116 else
9117 mips_declare_object (stream, name, init_string,
9118 "," HOST_WIDE_INT_PRINT_UNSIGNED ",%u\n",
9119 size, align / BITS_PER_UNIT);
9122 /* Implement ASM_OUTPUT_ALIGNED_DECL_COMMON. This is usually the same as the
9123 elfos.h version, but we also need to handle -muninit-const-in-rodata. */
9125 void
9126 mips_output_aligned_decl_common (FILE *stream, tree decl, const char *name,
9127 unsigned HOST_WIDE_INT size,
9128 unsigned int align)
9130 /* If the target wants uninitialized const declarations in
9131 .rdata then don't put them in .comm. */
9132 if (TARGET_EMBEDDED_DATA
9133 && TARGET_UNINIT_CONST_IN_RODATA
9134 && TREE_CODE (decl) == VAR_DECL
9135 && TREE_READONLY (decl)
9136 && (DECL_INITIAL (decl) == 0 || DECL_INITIAL (decl) == error_mark_node))
9138 if (TREE_PUBLIC (decl) && DECL_NAME (decl))
9139 targetm.asm_out.globalize_label (stream, name);
9141 switch_to_section (readonly_data_section);
9142 ASM_OUTPUT_ALIGN (stream, floor_log2 (align / BITS_PER_UNIT));
9143 mips_declare_object (stream, name, "",
9144 ":\n\t.space\t" HOST_WIDE_INT_PRINT_UNSIGNED "\n",
9145 size);
9147 else
9148 mips_declare_common_object (stream, name, "\n\t.comm\t",
9149 size, align, true);
9152 #ifdef ASM_OUTPUT_SIZE_DIRECTIVE
9153 extern int size_directive_output;
9155 /* Implement ASM_DECLARE_OBJECT_NAME. This is like most of the standard ELF
9156 definitions except that it uses mips_declare_object to emit the label. */
9158 void
9159 mips_declare_object_name (FILE *stream, const char *name,
9160 tree decl ATTRIBUTE_UNUSED)
9162 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
9163 ASM_OUTPUT_TYPE_DIRECTIVE (stream, name, "object");
9164 #endif
9166 size_directive_output = 0;
9167 if (!flag_inhibit_size_directive && DECL_SIZE (decl))
9169 HOST_WIDE_INT size;
9171 size_directive_output = 1;
9172 size = int_size_in_bytes (TREE_TYPE (decl));
9173 ASM_OUTPUT_SIZE_DIRECTIVE (stream, name, size);
9176 mips_declare_object (stream, name, "", ":\n");
9179 /* Implement ASM_FINISH_DECLARE_OBJECT. This is generic ELF stuff. */
9181 void
9182 mips_finish_declare_object (FILE *stream, tree decl, int top_level, int at_end)
9184 const char *name;
9186 name = XSTR (XEXP (DECL_RTL (decl), 0), 0);
9187 if (!flag_inhibit_size_directive
9188 && DECL_SIZE (decl) != 0
9189 && !at_end
9190 && top_level
9191 && DECL_INITIAL (decl) == error_mark_node
9192 && !size_directive_output)
9194 HOST_WIDE_INT size;
9196 size_directive_output = 1;
9197 size = int_size_in_bytes (TREE_TYPE (decl));
9198 ASM_OUTPUT_SIZE_DIRECTIVE (stream, name, size);
9201 #endif
9203 /* Return the FOO in the name of the ".mdebug.FOO" section associated
9204 with the current ABI. */
9206 static const char *
9207 mips_mdebug_abi_name (void)
9209 switch (mips_abi)
9211 case ABI_32:
9212 return "abi32";
9213 case ABI_O64:
9214 return "abiO64";
9215 case ABI_N32:
9216 return "abiN32";
9217 case ABI_64:
9218 return "abi64";
9219 case ABI_EABI:
9220 return TARGET_64BIT ? "eabi64" : "eabi32";
9221 default:
9222 gcc_unreachable ();
9226 /* Implement TARGET_ASM_FILE_START. */
9228 static void
9229 mips_file_start (void)
9231 default_file_start ();
9233 /* Generate a special section to describe the ABI switches used to
9234 produce the resultant binary. */
9236 /* Record the ABI itself. Modern versions of binutils encode
9237 this information in the ELF header flags, but GDB needs the
9238 information in order to correctly debug binaries produced by
9239 older binutils. See the function mips_gdbarch_init in
9240 gdb/mips-tdep.c. */
9241 fprintf (asm_out_file, "\t.section .mdebug.%s\n\t.previous\n",
9242 mips_mdebug_abi_name ());
9244 /* There is no ELF header flag to distinguish long32 forms of the
9245 EABI from long64 forms. Emit a special section to help tools
9246 such as GDB. Do the same for o64, which is sometimes used with
9247 -mlong64. */
9248 if (mips_abi == ABI_EABI || mips_abi == ABI_O64)
9249 fprintf (asm_out_file, "\t.section .gcc_compiled_long%d\n"
9250 "\t.previous\n", TARGET_LONG64 ? 64 : 32);
9252 /* Record the NaN encoding. */
9253 if (HAVE_AS_NAN || mips_nan != MIPS_IEEE_754_DEFAULT)
9254 fprintf (asm_out_file, "\t.nan\t%s\n",
9255 mips_nan == MIPS_IEEE_754_2008 ? "2008" : "legacy");
9257 #ifdef HAVE_AS_DOT_MODULE
9258 /* Record the FP ABI. See below for comments. */
9259 if (TARGET_NO_FLOAT)
9260 #ifdef HAVE_AS_GNU_ATTRIBUTE
9261 fputs ("\t.gnu_attribute 4, 0\n", asm_out_file);
9262 #else
9264 #endif
9265 else if (!TARGET_HARD_FLOAT_ABI)
9266 fputs ("\t.module\tsoftfloat\n", asm_out_file);
9267 else if (!TARGET_DOUBLE_FLOAT)
9268 fputs ("\t.module\tsinglefloat\n", asm_out_file);
9269 else if (TARGET_FLOATXX)
9270 fputs ("\t.module\tfp=xx\n", asm_out_file);
9271 else if (TARGET_FLOAT64)
9272 fputs ("\t.module\tfp=64\n", asm_out_file);
9273 else
9274 fputs ("\t.module\tfp=32\n", asm_out_file);
9276 if (TARGET_ODD_SPREG)
9277 fputs ("\t.module\toddspreg\n", asm_out_file);
9278 else
9279 fputs ("\t.module\tnooddspreg\n", asm_out_file);
9281 #else
9282 #ifdef HAVE_AS_GNU_ATTRIBUTE
9284 int attr;
9286 /* No floating-point operations, -mno-float. */
9287 if (TARGET_NO_FLOAT)
9288 attr = 0;
9289 /* Soft-float code, -msoft-float. */
9290 else if (!TARGET_HARD_FLOAT_ABI)
9291 attr = 3;
9292 /* Single-float code, -msingle-float. */
9293 else if (!TARGET_DOUBLE_FLOAT)
9294 attr = 2;
9295 /* 64-bit FP registers on a 32-bit target, -mips32r2 -mfp64.
9296 Reserved attr=4.
9297 This case used 12 callee-saved double-precision registers
9298 and is deprecated. */
9299 /* 64-bit or 32-bit FP registers on a 32-bit target, -mfpxx. */
9300 else if (TARGET_FLOATXX)
9301 attr = 5;
9302 /* 64-bit FP registers on a 32-bit target, -mfp64 -modd-spreg. */
9303 else if (mips_abi == ABI_32 && TARGET_FLOAT64 && TARGET_ODD_SPREG)
9304 attr = 6;
9305 /* 64-bit FP registers on a 32-bit target, -mfp64 -mno-odd-spreg. */
9306 else if (mips_abi == ABI_32 && TARGET_FLOAT64)
9307 attr = 7;
9308 /* Regular FP code, FP regs same size as GP regs, -mdouble-float. */
9309 else
9310 attr = 1;
9312 fprintf (asm_out_file, "\t.gnu_attribute 4, %d\n", attr);
9314 #endif
9315 #endif
9317 /* If TARGET_ABICALLS, tell GAS to generate -KPIC code. */
9318 if (TARGET_ABICALLS)
9320 fprintf (asm_out_file, "\t.abicalls\n");
9321 if (TARGET_ABICALLS_PIC0)
9322 fprintf (asm_out_file, "\t.option\tpic0\n");
9325 if (flag_verbose_asm)
9326 fprintf (asm_out_file, "\n%s -G value = %d, Arch = %s, ISA = %d\n",
9327 ASM_COMMENT_START,
9328 mips_small_data_threshold, mips_arch_info->name, mips_isa);
9331 /* Implement TARGET_ASM_CODE_END. */
9333 static void
9334 mips_code_end (void)
9336 mips_finish_stub (&mips16_rdhwr_stub);
9337 mips_finish_stub (&mips16_get_fcsr_stub);
9338 mips_finish_stub (&mips16_set_fcsr_stub);
9341 /* Make the last instruction frame-related and note that it performs
9342 the operation described by FRAME_PATTERN. */
9344 static void
9345 mips_set_frame_expr (rtx frame_pattern)
9347 rtx_insn *insn;
9349 insn = get_last_insn ();
9350 RTX_FRAME_RELATED_P (insn) = 1;
9351 REG_NOTES (insn) = alloc_EXPR_LIST (REG_FRAME_RELATED_EXPR,
9352 frame_pattern,
9353 REG_NOTES (insn));
9356 /* Return a frame-related rtx that stores REG at MEM.
9357 REG must be a single register. */
9359 static rtx
9360 mips_frame_set (rtx mem, rtx reg)
9362 rtx set;
9364 set = gen_rtx_SET (mem, reg);
9365 RTX_FRAME_RELATED_P (set) = 1;
9367 return set;
9370 /* Record that the epilogue has restored call-saved register REG. */
9372 static void
9373 mips_add_cfa_restore (rtx reg)
9375 mips_epilogue.cfa_restores = alloc_reg_note (REG_CFA_RESTORE, reg,
9376 mips_epilogue.cfa_restores);
9379 /* If a MIPS16e SAVE or RESTORE instruction saves or restores register
9380 mips16e_s2_s8_regs[X], it must also save the registers in indexes
9381 X + 1 onwards. Likewise mips16e_a0_a3_regs. */
9382 static const unsigned char mips16e_s2_s8_regs[] = {
9383 30, 23, 22, 21, 20, 19, 18
9385 static const unsigned char mips16e_a0_a3_regs[] = {
9386 4, 5, 6, 7
9389 /* A list of the registers that can be saved by the MIPS16e SAVE instruction,
9390 ordered from the uppermost in memory to the lowest in memory. */
9391 static const unsigned char mips16e_save_restore_regs[] = {
9392 31, 30, 23, 22, 21, 20, 19, 18, 17, 16, 7, 6, 5, 4
9395 /* Return the index of the lowest X in the range [0, SIZE) for which
9396 bit REGS[X] is set in MASK. Return SIZE if there is no such X. */
9398 static unsigned int
9399 mips16e_find_first_register (unsigned int mask, const unsigned char *regs,
9400 unsigned int size)
9402 unsigned int i;
9404 for (i = 0; i < size; i++)
9405 if (BITSET_P (mask, regs[i]))
9406 break;
9408 return i;
9411 /* *MASK_PTR is a mask of general-purpose registers and *NUM_REGS_PTR
9412 is the number of set bits. If *MASK_PTR contains REGS[X] for some X
9413 in [0, SIZE), adjust *MASK_PTR and *NUM_REGS_PTR so that the same
9414 is true for all indexes (X, SIZE). */
9416 static void
9417 mips16e_mask_registers (unsigned int *mask_ptr, const unsigned char *regs,
9418 unsigned int size, unsigned int *num_regs_ptr)
9420 unsigned int i;
9422 i = mips16e_find_first_register (*mask_ptr, regs, size);
9423 for (i++; i < size; i++)
9424 if (!BITSET_P (*mask_ptr, regs[i]))
9426 *num_regs_ptr += 1;
9427 *mask_ptr |= 1 << regs[i];
9431 /* Return a simplified form of X using the register values in REG_VALUES.
9432 REG_VALUES[R] is the last value assigned to hard register R, or null
9433 if R has not been modified.
9435 This function is rather limited, but is good enough for our purposes. */
9437 static rtx
9438 mips16e_collect_propagate_value (rtx x, rtx *reg_values)
9440 x = avoid_constant_pool_reference (x);
9442 if (UNARY_P (x))
9444 rtx x0 = mips16e_collect_propagate_value (XEXP (x, 0), reg_values);
9445 return simplify_gen_unary (GET_CODE (x), GET_MODE (x),
9446 x0, GET_MODE (XEXP (x, 0)));
9449 if (ARITHMETIC_P (x))
9451 rtx x0 = mips16e_collect_propagate_value (XEXP (x, 0), reg_values);
9452 rtx x1 = mips16e_collect_propagate_value (XEXP (x, 1), reg_values);
9453 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), x0, x1);
9456 if (REG_P (x)
9457 && reg_values[REGNO (x)]
9458 && !rtx_unstable_p (reg_values[REGNO (x)]))
9459 return reg_values[REGNO (x)];
9461 return x;
9464 /* Return true if (set DEST SRC) stores an argument register into its
9465 caller-allocated save slot, storing the number of that argument
9466 register in *REGNO_PTR if so. REG_VALUES is as for
9467 mips16e_collect_propagate_value. */
9469 static bool
9470 mips16e_collect_argument_save_p (rtx dest, rtx src, rtx *reg_values,
9471 unsigned int *regno_ptr)
9473 unsigned int argno, regno;
9474 HOST_WIDE_INT offset, required_offset;
9475 rtx addr, base;
9477 /* Check that this is a word-mode store. */
9478 if (!MEM_P (dest) || !REG_P (src) || GET_MODE (dest) != word_mode)
9479 return false;
9481 /* Check that the register being saved is an unmodified argument
9482 register. */
9483 regno = REGNO (src);
9484 if (!IN_RANGE (regno, GP_ARG_FIRST, GP_ARG_LAST) || reg_values[regno])
9485 return false;
9486 argno = regno - GP_ARG_FIRST;
9488 /* Check whether the address is an appropriate stack-pointer or
9489 frame-pointer access. */
9490 addr = mips16e_collect_propagate_value (XEXP (dest, 0), reg_values);
9491 mips_split_plus (addr, &base, &offset);
9492 required_offset = cfun->machine->frame.total_size + argno * UNITS_PER_WORD;
9493 if (base == hard_frame_pointer_rtx)
9494 required_offset -= cfun->machine->frame.hard_frame_pointer_offset;
9495 else if (base != stack_pointer_rtx)
9496 return false;
9497 if (offset != required_offset)
9498 return false;
9500 *regno_ptr = regno;
9501 return true;
9504 /* A subroutine of mips_expand_prologue, called only when generating
9505 MIPS16e SAVE instructions. Search the start of the function for any
9506 instructions that save argument registers into their caller-allocated
9507 save slots. Delete such instructions and return a value N such that
9508 saving [GP_ARG_FIRST, GP_ARG_FIRST + N) would make all the deleted
9509 instructions redundant. */
9511 static unsigned int
9512 mips16e_collect_argument_saves (void)
9514 rtx reg_values[FIRST_PSEUDO_REGISTER];
9515 rtx_insn *insn, *next;
9516 rtx set, dest, src;
9517 unsigned int nargs, regno;
9519 push_topmost_sequence ();
9520 nargs = 0;
9521 memset (reg_values, 0, sizeof (reg_values));
9522 for (insn = get_insns (); insn; insn = next)
9524 next = NEXT_INSN (insn);
9525 if (NOTE_P (insn) || DEBUG_INSN_P (insn))
9526 continue;
9528 if (!INSN_P (insn))
9529 break;
9531 set = PATTERN (insn);
9532 if (GET_CODE (set) != SET)
9533 break;
9535 dest = SET_DEST (set);
9536 src = SET_SRC (set);
9537 if (mips16e_collect_argument_save_p (dest, src, reg_values, &regno))
9539 if (!BITSET_P (cfun->machine->frame.mask, regno))
9541 delete_insn (insn);
9542 nargs = MAX (nargs, (regno - GP_ARG_FIRST) + 1);
9545 else if (REG_P (dest) && GET_MODE (dest) == word_mode)
9546 reg_values[REGNO (dest)]
9547 = mips16e_collect_propagate_value (src, reg_values);
9548 else
9549 break;
9551 pop_topmost_sequence ();
9553 return nargs;
9556 /* Return a move between register REGNO and memory location SP + OFFSET.
9557 REG_PARM_P is true if SP + OFFSET belongs to REG_PARM_STACK_SPACE.
9558 Make the move a load if RESTORE_P, otherwise make it a store. */
9560 static rtx
9561 mips16e_save_restore_reg (bool restore_p, bool reg_parm_p,
9562 HOST_WIDE_INT offset, unsigned int regno)
9564 rtx reg, mem;
9566 mem = gen_frame_mem (SImode, plus_constant (Pmode, stack_pointer_rtx,
9567 offset));
9568 reg = gen_rtx_REG (SImode, regno);
9569 if (restore_p)
9571 mips_add_cfa_restore (reg);
9572 return gen_rtx_SET (reg, mem);
9574 if (reg_parm_p)
9575 return gen_rtx_SET (mem, reg);
9576 return mips_frame_set (mem, reg);
9579 /* Return RTL for a MIPS16e SAVE or RESTORE instruction; RESTORE_P says which.
9580 The instruction must:
9582 - Allocate or deallocate SIZE bytes in total; SIZE is known
9583 to be nonzero.
9585 - Save or restore as many registers in *MASK_PTR as possible.
9586 The instruction saves the first registers at the top of the
9587 allocated area, with the other registers below it.
9589 - Save NARGS argument registers above the allocated area.
9591 (NARGS is always zero if RESTORE_P.)
9593 The SAVE and RESTORE instructions cannot save and restore all general
9594 registers, so there may be some registers left over for the caller to
9595 handle. Destructively modify *MASK_PTR so that it contains the registers
9596 that still need to be saved or restored. The caller can save these
9597 registers in the memory immediately below *OFFSET_PTR, which is a
9598 byte offset from the bottom of the allocated stack area. */
9600 static rtx
9601 mips16e_build_save_restore (bool restore_p, unsigned int *mask_ptr,
9602 HOST_WIDE_INT *offset_ptr, unsigned int nargs,
9603 HOST_WIDE_INT size)
9605 rtx pattern, set;
9606 HOST_WIDE_INT offset, top_offset;
9607 unsigned int i, regno;
9608 int n;
9610 gcc_assert (cfun->machine->frame.num_fp == 0);
9612 /* Calculate the number of elements in the PARALLEL. We need one element
9613 for the stack adjustment, one for each argument register save, and one
9614 for each additional register move. */
9615 n = 1 + nargs;
9616 for (i = 0; i < ARRAY_SIZE (mips16e_save_restore_regs); i++)
9617 if (BITSET_P (*mask_ptr, mips16e_save_restore_regs[i]))
9618 n++;
9620 /* Create the final PARALLEL. */
9621 pattern = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (n));
9622 n = 0;
9624 /* Add the stack pointer adjustment. */
9625 set = gen_rtx_SET (stack_pointer_rtx,
9626 plus_constant (Pmode, stack_pointer_rtx,
9627 restore_p ? size : -size));
9628 RTX_FRAME_RELATED_P (set) = 1;
9629 XVECEXP (pattern, 0, n++) = set;
9631 /* Stack offsets in the PARALLEL are relative to the old stack pointer. */
9632 top_offset = restore_p ? size : 0;
9634 /* Save the arguments. */
9635 for (i = 0; i < nargs; i++)
9637 offset = top_offset + i * UNITS_PER_WORD;
9638 set = mips16e_save_restore_reg (restore_p, true, offset,
9639 GP_ARG_FIRST + i);
9640 XVECEXP (pattern, 0, n++) = set;
9643 /* Then fill in the other register moves. */
9644 offset = top_offset;
9645 for (i = 0; i < ARRAY_SIZE (mips16e_save_restore_regs); i++)
9647 regno = mips16e_save_restore_regs[i];
9648 if (BITSET_P (*mask_ptr, regno))
9650 offset -= UNITS_PER_WORD;
9651 set = mips16e_save_restore_reg (restore_p, false, offset, regno);
9652 XVECEXP (pattern, 0, n++) = set;
9653 *mask_ptr &= ~(1 << regno);
9657 /* Tell the caller what offset it should use for the remaining registers. */
9658 *offset_ptr = size + (offset - top_offset);
9660 gcc_assert (n == XVECLEN (pattern, 0));
9662 return pattern;
9665 /* PATTERN is a PARALLEL whose first element adds ADJUST to the stack
9666 pointer. Return true if PATTERN matches the kind of instruction
9667 generated by mips16e_build_save_restore. If INFO is nonnull,
9668 initialize it when returning true. */
9670 bool
9671 mips16e_save_restore_pattern_p (rtx pattern, HOST_WIDE_INT adjust,
9672 struct mips16e_save_restore_info *info)
9674 unsigned int i, nargs, mask, extra;
9675 HOST_WIDE_INT top_offset, save_offset, offset;
9676 rtx set, reg, mem, base;
9677 int n;
9679 if (!GENERATE_MIPS16E_SAVE_RESTORE)
9680 return false;
9682 /* Stack offsets in the PARALLEL are relative to the old stack pointer. */
9683 top_offset = adjust > 0 ? adjust : 0;
9685 /* Interpret all other members of the PARALLEL. */
9686 save_offset = top_offset - UNITS_PER_WORD;
9687 mask = 0;
9688 nargs = 0;
9689 i = 0;
9690 for (n = 1; n < XVECLEN (pattern, 0); n++)
9692 /* Check that we have a SET. */
9693 set = XVECEXP (pattern, 0, n);
9694 if (GET_CODE (set) != SET)
9695 return false;
9697 /* Check that the SET is a load (if restoring) or a store
9698 (if saving). */
9699 mem = adjust > 0 ? SET_SRC (set) : SET_DEST (set);
9700 if (!MEM_P (mem))
9701 return false;
9703 /* Check that the address is the sum of the stack pointer and a
9704 possibly-zero constant offset. */
9705 mips_split_plus (XEXP (mem, 0), &base, &offset);
9706 if (base != stack_pointer_rtx)
9707 return false;
9709 /* Check that SET's other operand is a register. */
9710 reg = adjust > 0 ? SET_DEST (set) : SET_SRC (set);
9711 if (!REG_P (reg))
9712 return false;
9714 /* Check for argument saves. */
9715 if (offset == top_offset + nargs * UNITS_PER_WORD
9716 && REGNO (reg) == GP_ARG_FIRST + nargs)
9717 nargs++;
9718 else if (offset == save_offset)
9720 while (mips16e_save_restore_regs[i++] != REGNO (reg))
9721 if (i == ARRAY_SIZE (mips16e_save_restore_regs))
9722 return false;
9724 mask |= 1 << REGNO (reg);
9725 save_offset -= UNITS_PER_WORD;
9727 else
9728 return false;
9731 /* Check that the restrictions on register ranges are met. */
9732 extra = 0;
9733 mips16e_mask_registers (&mask, mips16e_s2_s8_regs,
9734 ARRAY_SIZE (mips16e_s2_s8_regs), &extra);
9735 mips16e_mask_registers (&mask, mips16e_a0_a3_regs,
9736 ARRAY_SIZE (mips16e_a0_a3_regs), &extra);
9737 if (extra != 0)
9738 return false;
9740 /* Make sure that the topmost argument register is not saved twice.
9741 The checks above ensure that the same is then true for the other
9742 argument registers. */
9743 if (nargs > 0 && BITSET_P (mask, GP_ARG_FIRST + nargs - 1))
9744 return false;
9746 /* Pass back information, if requested. */
9747 if (info)
9749 info->nargs = nargs;
9750 info->mask = mask;
9751 info->size = (adjust > 0 ? adjust : -adjust);
9754 return true;
9757 /* Add a MIPS16e SAVE or RESTORE register-range argument to string S
9758 for the register range [MIN_REG, MAX_REG]. Return a pointer to
9759 the null terminator. */
9761 static char *
9762 mips16e_add_register_range (char *s, unsigned int min_reg,
9763 unsigned int max_reg)
9765 if (min_reg != max_reg)
9766 s += sprintf (s, ",%s-%s", reg_names[min_reg], reg_names[max_reg]);
9767 else
9768 s += sprintf (s, ",%s", reg_names[min_reg]);
9769 return s;
9772 /* Return the assembly instruction for a MIPS16e SAVE or RESTORE instruction.
9773 PATTERN and ADJUST are as for mips16e_save_restore_pattern_p. */
9775 const char *
9776 mips16e_output_save_restore (rtx pattern, HOST_WIDE_INT adjust)
9778 static char buffer[300];
9780 struct mips16e_save_restore_info info;
9781 unsigned int i, end;
9782 char *s;
9784 /* Parse the pattern. */
9785 if (!mips16e_save_restore_pattern_p (pattern, adjust, &info))
9786 gcc_unreachable ();
9788 /* Add the mnemonic. */
9789 s = strcpy (buffer, adjust > 0 ? "restore\t" : "save\t");
9790 s += strlen (s);
9792 /* Save the arguments. */
9793 if (info.nargs > 1)
9794 s += sprintf (s, "%s-%s,", reg_names[GP_ARG_FIRST],
9795 reg_names[GP_ARG_FIRST + info.nargs - 1]);
9796 else if (info.nargs == 1)
9797 s += sprintf (s, "%s,", reg_names[GP_ARG_FIRST]);
9799 /* Emit the amount of stack space to allocate or deallocate. */
9800 s += sprintf (s, "%d", (int) info.size);
9802 /* Save or restore $16. */
9803 if (BITSET_P (info.mask, 16))
9804 s += sprintf (s, ",%s", reg_names[GP_REG_FIRST + 16]);
9806 /* Save or restore $17. */
9807 if (BITSET_P (info.mask, 17))
9808 s += sprintf (s, ",%s", reg_names[GP_REG_FIRST + 17]);
9810 /* Save or restore registers in the range $s2...$s8, which
9811 mips16e_s2_s8_regs lists in decreasing order. Note that this
9812 is a software register range; the hardware registers are not
9813 numbered consecutively. */
9814 end = ARRAY_SIZE (mips16e_s2_s8_regs);
9815 i = mips16e_find_first_register (info.mask, mips16e_s2_s8_regs, end);
9816 if (i < end)
9817 s = mips16e_add_register_range (s, mips16e_s2_s8_regs[end - 1],
9818 mips16e_s2_s8_regs[i]);
9820 /* Save or restore registers in the range $a0...$a3. */
9821 end = ARRAY_SIZE (mips16e_a0_a3_regs);
9822 i = mips16e_find_first_register (info.mask, mips16e_a0_a3_regs, end);
9823 if (i < end)
9824 s = mips16e_add_register_range (s, mips16e_a0_a3_regs[i],
9825 mips16e_a0_a3_regs[end - 1]);
9827 /* Save or restore $31. */
9828 if (BITSET_P (info.mask, RETURN_ADDR_REGNUM))
9829 s += sprintf (s, ",%s", reg_names[RETURN_ADDR_REGNUM]);
9831 return buffer;
9834 /* Return true if the current function returns its value in a floating-point
9835 register in MIPS16 mode. */
9837 static bool
9838 mips16_cfun_returns_in_fpr_p (void)
9840 tree return_type = DECL_RESULT (current_function_decl);
9841 return (TARGET_MIPS16
9842 && TARGET_HARD_FLOAT_ABI
9843 && !aggregate_value_p (return_type, current_function_decl)
9844 && mips_return_mode_in_fpr_p (DECL_MODE (return_type)));
9847 /* Return true if predicate PRED is true for at least one instruction.
9848 Cache the result in *CACHE, and assume that the result is true
9849 if *CACHE is already true. */
9851 static bool
9852 mips_find_gp_ref (bool *cache, bool (*pred) (rtx_insn *))
9854 rtx_insn *insn;
9856 if (!*cache)
9858 push_topmost_sequence ();
9859 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
9860 if (USEFUL_INSN_P (insn) && pred (insn))
9862 *cache = true;
9863 break;
9865 pop_topmost_sequence ();
9867 return *cache;
9870 /* Return true if INSN refers to the global pointer in an "inflexible" way.
9871 See mips_cfun_has_inflexible_gp_ref_p for details. */
9873 static bool
9874 mips_insn_has_inflexible_gp_ref_p (rtx_insn *insn)
9876 /* Uses of pic_offset_table_rtx in CALL_INSN_FUNCTION_USAGE
9877 indicate that the target could be a traditional MIPS
9878 lazily-binding stub. */
9879 return find_reg_fusage (insn, USE, pic_offset_table_rtx);
9882 /* Return true if the current function refers to the global pointer
9883 in a way that forces $28 to be valid. This means that we can't
9884 change the choice of global pointer, even for NewABI code.
9886 One example of this (and one which needs several checks) is that
9887 $28 must be valid when calling traditional MIPS lazy-binding stubs.
9888 (This restriction does not apply to PLTs.) */
9890 static bool
9891 mips_cfun_has_inflexible_gp_ref_p (void)
9893 /* If the function has a nonlocal goto, $28 must hold the correct
9894 global pointer for the target function. That is, the target
9895 of the goto implicitly uses $28. */
9896 if (crtl->has_nonlocal_goto)
9897 return true;
9899 if (TARGET_ABICALLS_PIC2)
9901 /* Symbolic accesses implicitly use the global pointer unless
9902 -mexplicit-relocs is in effect. JAL macros to symbolic addresses
9903 might go to traditional MIPS lazy-binding stubs. */
9904 if (!TARGET_EXPLICIT_RELOCS)
9905 return true;
9907 /* FUNCTION_PROFILER includes a JAL to _mcount, which again
9908 can be lazily-bound. */
9909 if (crtl->profile)
9910 return true;
9912 /* MIPS16 functions that return in FPRs need to call an
9913 external libgcc routine. This call is only made explict
9914 during mips_expand_epilogue, and it too might be lazily bound. */
9915 if (mips16_cfun_returns_in_fpr_p ())
9916 return true;
9919 return mips_find_gp_ref (&cfun->machine->has_inflexible_gp_insn_p,
9920 mips_insn_has_inflexible_gp_ref_p);
9923 /* Return true if INSN refers to the global pointer in a "flexible" way.
9924 See mips_cfun_has_flexible_gp_ref_p for details. */
9926 static bool
9927 mips_insn_has_flexible_gp_ref_p (rtx_insn *insn)
9929 return (get_attr_got (insn) != GOT_UNSET
9930 || mips_small_data_pattern_p (PATTERN (insn))
9931 || reg_overlap_mentioned_p (pic_offset_table_rtx, PATTERN (insn)));
9934 /* Return true if the current function references the global pointer,
9935 but if those references do not inherently require the global pointer
9936 to be $28. Assume !mips_cfun_has_inflexible_gp_ref_p (). */
9938 static bool
9939 mips_cfun_has_flexible_gp_ref_p (void)
9941 /* Reload can sometimes introduce constant pool references
9942 into a function that otherwise didn't need them. For example,
9943 suppose we have an instruction like:
9945 (set (reg:DF R1) (float:DF (reg:SI R2)))
9947 If R2 turns out to be a constant such as 1, the instruction may
9948 have a REG_EQUAL note saying that R1 == 1.0. Reload then has
9949 the option of using this constant if R2 doesn't get allocated
9950 to a register.
9952 In cases like these, reload will have added the constant to the
9953 pool but no instruction will yet refer to it. */
9954 if (TARGET_ABICALLS_PIC2 && !reload_completed && crtl->uses_const_pool)
9955 return true;
9957 return mips_find_gp_ref (&cfun->machine->has_flexible_gp_insn_p,
9958 mips_insn_has_flexible_gp_ref_p);
9961 /* Return the register that should be used as the global pointer
9962 within this function. Return INVALID_REGNUM if the function
9963 doesn't need a global pointer. */
9965 static unsigned int
9966 mips_global_pointer (void)
9968 unsigned int regno;
9970 /* $gp is always available unless we're using a GOT. */
9971 if (!TARGET_USE_GOT)
9972 return GLOBAL_POINTER_REGNUM;
9974 /* If there are inflexible references to $gp, we must use the
9975 standard register. */
9976 if (mips_cfun_has_inflexible_gp_ref_p ())
9977 return GLOBAL_POINTER_REGNUM;
9979 /* If there are no current references to $gp, then the only uses
9980 we can introduce later are those involved in long branches. */
9981 if (TARGET_ABSOLUTE_JUMPS && !mips_cfun_has_flexible_gp_ref_p ())
9982 return INVALID_REGNUM;
9984 /* If the global pointer is call-saved, try to use a call-clobbered
9985 alternative. */
9986 if (TARGET_CALL_SAVED_GP && crtl->is_leaf)
9987 for (regno = GP_REG_FIRST; regno <= GP_REG_LAST; regno++)
9988 if (!df_regs_ever_live_p (regno)
9989 && call_really_used_regs[regno]
9990 && !fixed_regs[regno]
9991 && regno != PIC_FUNCTION_ADDR_REGNUM)
9992 return regno;
9994 return GLOBAL_POINTER_REGNUM;
9997 /* Return true if the current function's prologue must load the global
9998 pointer value into pic_offset_table_rtx and store the same value in
9999 the function's cprestore slot (if any).
10001 One problem we have to deal with is that, when emitting GOT-based
10002 position independent code, long-branch sequences will need to load
10003 the address of the branch target from the GOT. We don't know until
10004 the very end of compilation whether (and where) the function needs
10005 long branches, so we must ensure that _any_ branch can access the
10006 global pointer in some form. However, we do not want to pessimize
10007 the usual case in which all branches are short.
10009 We handle this as follows:
10011 (1) During reload, we set cfun->machine->global_pointer to
10012 INVALID_REGNUM if we _know_ that the current function
10013 doesn't need a global pointer. This is only valid if
10014 long branches don't need the GOT.
10016 Otherwise, we assume that we might need a global pointer
10017 and pick an appropriate register.
10019 (2) If cfun->machine->global_pointer != INVALID_REGNUM,
10020 we ensure that the global pointer is available at every
10021 block boundary bar entry and exit. We do this in one of two ways:
10023 - If the function has a cprestore slot, we ensure that this
10024 slot is valid at every branch. However, as explained in
10025 point (6) below, there is no guarantee that pic_offset_table_rtx
10026 itself is valid if new uses of the global pointer are introduced
10027 after the first post-epilogue split.
10029 We guarantee that the cprestore slot is valid by loading it
10030 into a fake register, CPRESTORE_SLOT_REGNUM. We then make
10031 this register live at every block boundary bar function entry
10032 and exit. It is then invalid to move the load (and thus the
10033 preceding store) across a block boundary.
10035 - If the function has no cprestore slot, we guarantee that
10036 pic_offset_table_rtx itself is valid at every branch.
10038 See mips_eh_uses for the handling of the register liveness.
10040 (3) During prologue and epilogue generation, we emit "ghost"
10041 placeholder instructions to manipulate the global pointer.
10043 (4) During prologue generation, we set cfun->machine->must_initialize_gp_p
10044 and cfun->machine->must_restore_gp_when_clobbered_p if we already know
10045 that the function needs a global pointer. (There is no need to set
10046 them earlier than this, and doing it as late as possible leads to
10047 fewer false positives.)
10049 (5) If cfun->machine->must_initialize_gp_p is true during a
10050 split_insns pass, we split the ghost instructions into real
10051 instructions. These split instructions can then be optimized in
10052 the usual way. Otherwise, we keep the ghost instructions intact,
10053 and optimize for the case where they aren't needed. We still
10054 have the option of splitting them later, if we need to introduce
10055 new uses of the global pointer.
10057 For example, the scheduler ignores a ghost instruction that
10058 stores $28 to the stack, but it handles the split form of
10059 the ghost instruction as an ordinary store.
10061 (6) [OldABI only.] If cfun->machine->must_restore_gp_when_clobbered_p
10062 is true during the first post-epilogue split_insns pass, we split
10063 calls and restore_gp patterns into instructions that explicitly
10064 load pic_offset_table_rtx from the cprestore slot. Otherwise,
10065 we split these patterns into instructions that _don't_ load from
10066 the cprestore slot.
10068 If cfun->machine->must_restore_gp_when_clobbered_p is true at the
10069 time of the split, then any instructions that exist at that time
10070 can make free use of pic_offset_table_rtx. However, if we want
10071 to introduce new uses of the global pointer after the split,
10072 we must explicitly load the value from the cprestore slot, since
10073 pic_offset_table_rtx itself might not be valid at a given point
10074 in the function.
10076 The idea is that we want to be able to delete redundant
10077 loads from the cprestore slot in the usual case where no
10078 long branches are needed.
10080 (7) If cfun->machine->must_initialize_gp_p is still false at the end
10081 of md_reorg, we decide whether the global pointer is needed for
10082 long branches. If so, we set cfun->machine->must_initialize_gp_p
10083 to true and split the ghost instructions into real instructions
10084 at that stage.
10086 Note that the ghost instructions must have a zero length for three reasons:
10088 - Giving the length of the underlying $gp sequence might cause
10089 us to use long branches in cases where they aren't really needed.
10091 - They would perturb things like alignment calculations.
10093 - More importantly, the hazard detection in md_reorg relies on
10094 empty instructions having a zero length.
10096 If we find a long branch and split the ghost instructions at the
10097 end of md_reorg, the split could introduce more long branches.
10098 That isn't a problem though, because we still do the split before
10099 the final shorten_branches pass.
10101 This is extremely ugly, but it seems like the best compromise between
10102 correctness and efficiency. */
10104 bool
10105 mips_must_initialize_gp_p (void)
10107 return cfun->machine->must_initialize_gp_p;
10110 /* Return true if REGNO is a register that is ordinarily call-clobbered
10111 but must nevertheless be preserved by an interrupt handler. */
10113 static bool
10114 mips_interrupt_extra_call_saved_reg_p (unsigned int regno)
10116 if ((ISA_HAS_HILO || TARGET_DSP)
10117 && MD_REG_P (regno))
10118 return true;
10120 if (TARGET_DSP && DSP_ACC_REG_P (regno))
10121 return true;
10123 if (GP_REG_P (regno) && !cfun->machine->use_shadow_register_set_p)
10125 /* $0 is hard-wired. */
10126 if (regno == GP_REG_FIRST)
10127 return false;
10129 /* The interrupt handler can treat kernel registers as
10130 scratch registers. */
10131 if (KERNEL_REG_P (regno))
10132 return false;
10134 /* The function will return the stack pointer to its original value
10135 anyway. */
10136 if (regno == STACK_POINTER_REGNUM)
10137 return false;
10139 /* Otherwise, return true for registers that aren't ordinarily
10140 call-clobbered. */
10141 return call_really_used_regs[regno];
10144 return false;
10147 /* Return true if the current function should treat register REGNO
10148 as call-saved. */
10150 static bool
10151 mips_cfun_call_saved_reg_p (unsigned int regno)
10153 /* If the user makes an ordinarily-call-saved register global,
10154 that register is no longer call-saved. */
10155 if (global_regs[regno])
10156 return false;
10158 /* Interrupt handlers need to save extra registers. */
10159 if (cfun->machine->interrupt_handler_p
10160 && mips_interrupt_extra_call_saved_reg_p (regno))
10161 return true;
10163 /* call_insns preserve $28 unless they explicitly say otherwise,
10164 so call_really_used_regs[] treats $28 as call-saved. However,
10165 we want the ABI property rather than the default call_insn
10166 property here. */
10167 return (regno == GLOBAL_POINTER_REGNUM
10168 ? TARGET_CALL_SAVED_GP
10169 : !call_really_used_regs[regno]);
10172 /* Return true if the function body might clobber register REGNO.
10173 We know that REGNO is call-saved. */
10175 static bool
10176 mips_cfun_might_clobber_call_saved_reg_p (unsigned int regno)
10178 /* Some functions should be treated as clobbering all call-saved
10179 registers. */
10180 if (crtl->saves_all_registers)
10181 return true;
10183 /* DF handles cases where a register is explicitly referenced in
10184 the rtl. Incoming values are passed in call-clobbered registers,
10185 so we can assume that any live call-saved register is set within
10186 the function. */
10187 if (df_regs_ever_live_p (regno))
10188 return true;
10190 /* Check for registers that are clobbered by FUNCTION_PROFILER.
10191 These clobbers are not explicit in the rtl. */
10192 if (crtl->profile && MIPS_SAVE_REG_FOR_PROFILING_P (regno))
10193 return true;
10195 /* If we're using a call-saved global pointer, the function's
10196 prologue will need to set it up. */
10197 if (cfun->machine->global_pointer == regno)
10198 return true;
10200 /* The function's prologue will need to set the frame pointer if
10201 frame_pointer_needed. */
10202 if (regno == HARD_FRAME_POINTER_REGNUM && frame_pointer_needed)
10203 return true;
10205 /* If a MIPS16 function returns a value in FPRs, its epilogue
10206 will need to call an external libgcc routine. This yet-to-be
10207 generated call_insn will clobber $31. */
10208 if (regno == RETURN_ADDR_REGNUM && mips16_cfun_returns_in_fpr_p ())
10209 return true;
10211 /* If REGNO is ordinarily call-clobbered, we must assume that any
10212 called function could modify it. */
10213 if (cfun->machine->interrupt_handler_p
10214 && !crtl->is_leaf
10215 && mips_interrupt_extra_call_saved_reg_p (regno))
10216 return true;
10218 return false;
10221 /* Return true if the current function must save register REGNO. */
10223 static bool
10224 mips_save_reg_p (unsigned int regno)
10226 if (mips_cfun_call_saved_reg_p (regno))
10228 if (mips_cfun_might_clobber_call_saved_reg_p (regno))
10229 return true;
10231 /* Save both registers in an FPR pair if either one is used. This is
10232 needed for the case when MIN_FPRS_PER_FMT == 1, which allows the odd
10233 register to be used without the even register. */
10234 if (FP_REG_P (regno)
10235 && MAX_FPRS_PER_FMT == 2
10236 && mips_cfun_might_clobber_call_saved_reg_p (regno + 1))
10237 return true;
10240 /* We need to save the incoming return address if __builtin_eh_return
10241 is being used to set a different return address. */
10242 if (regno == RETURN_ADDR_REGNUM && crtl->calls_eh_return)
10243 return true;
10245 return false;
10248 /* Populate the current function's mips_frame_info structure.
10250 MIPS stack frames look like:
10252 +-------------------------------+
10254 | incoming stack arguments |
10256 +-------------------------------+
10258 | caller-allocated save area |
10259 A | for register arguments |
10261 +-------------------------------+ <-- incoming stack pointer
10263 | callee-allocated save area |
10264 B | for arguments that are |
10265 | split between registers and |
10266 | the stack |
10268 +-------------------------------+ <-- arg_pointer_rtx
10270 C | callee-allocated save area |
10271 | for register varargs |
10273 +-------------------------------+ <-- frame_pointer_rtx
10274 | | + cop0_sp_offset
10275 | COP0 reg save area | + UNITS_PER_WORD
10277 +-------------------------------+ <-- frame_pointer_rtx + acc_sp_offset
10278 | | + UNITS_PER_WORD
10279 | accumulator save area |
10281 +-------------------------------+ <-- stack_pointer_rtx + fp_sp_offset
10282 | | + UNITS_PER_HWFPVALUE
10283 | FPR save area |
10285 +-------------------------------+ <-- stack_pointer_rtx + gp_sp_offset
10286 | | + UNITS_PER_WORD
10287 | GPR save area |
10289 +-------------------------------+ <-- frame_pointer_rtx with
10290 | | \ -fstack-protector
10291 | local variables | | var_size
10292 | | /
10293 +-------------------------------+
10294 | | \
10295 | $gp save area | | cprestore_size
10296 | | /
10297 P +-------------------------------+ <-- hard_frame_pointer_rtx for
10298 | | \ MIPS16 code
10299 | outgoing stack arguments | |
10300 | | |
10301 +-------------------------------+ | args_size
10302 | | |
10303 | caller-allocated save area | |
10304 | for register arguments | |
10305 | | /
10306 +-------------------------------+ <-- stack_pointer_rtx
10307 frame_pointer_rtx without
10308 -fstack-protector
10309 hard_frame_pointer_rtx for
10310 non-MIPS16 code.
10312 At least two of A, B and C will be empty.
10314 Dynamic stack allocations such as alloca insert data at point P.
10315 They decrease stack_pointer_rtx but leave frame_pointer_rtx and
10316 hard_frame_pointer_rtx unchanged. */
10318 static void
10319 mips_compute_frame_info (void)
10321 struct mips_frame_info *frame;
10322 HOST_WIDE_INT offset, size;
10323 unsigned int regno, i;
10325 /* Set this function's interrupt properties. */
10326 if (mips_interrupt_type_p (TREE_TYPE (current_function_decl)))
10328 if (mips_isa_rev < 2)
10329 error ("the %<interrupt%> attribute requires a MIPS32r2 processor or greater");
10330 else if (TARGET_HARD_FLOAT)
10331 error ("the %<interrupt%> attribute requires %<-msoft-float%>");
10332 else if (TARGET_MIPS16)
10333 error ("interrupt handlers cannot be MIPS16 functions");
10334 else
10336 cfun->machine->interrupt_handler_p = true;
10337 cfun->machine->use_shadow_register_set_p =
10338 mips_use_shadow_register_set_p (TREE_TYPE (current_function_decl));
10339 cfun->machine->keep_interrupts_masked_p =
10340 mips_keep_interrupts_masked_p (TREE_TYPE (current_function_decl));
10341 cfun->machine->use_debug_exception_return_p =
10342 mips_use_debug_exception_return_p (TREE_TYPE
10343 (current_function_decl));
10347 frame = &cfun->machine->frame;
10348 memset (frame, 0, sizeof (*frame));
10349 size = get_frame_size ();
10351 cfun->machine->global_pointer = mips_global_pointer ();
10353 /* The first two blocks contain the outgoing argument area and the $gp save
10354 slot. This area isn't needed in leaf functions, but if the
10355 target-independent frame size is nonzero, we have already committed to
10356 allocating these in STARTING_FRAME_OFFSET for !FRAME_GROWS_DOWNWARD. */
10357 if ((size == 0 || FRAME_GROWS_DOWNWARD) && crtl->is_leaf)
10359 /* The MIPS 3.0 linker does not like functions that dynamically
10360 allocate the stack and have 0 for STACK_DYNAMIC_OFFSET, since it
10361 looks like we are trying to create a second frame pointer to the
10362 function, so allocate some stack space to make it happy. */
10363 if (cfun->calls_alloca)
10364 frame->args_size = REG_PARM_STACK_SPACE (cfun->decl);
10365 else
10366 frame->args_size = 0;
10367 frame->cprestore_size = 0;
10369 else
10371 frame->args_size = crtl->outgoing_args_size;
10372 frame->cprestore_size = MIPS_GP_SAVE_AREA_SIZE;
10374 offset = frame->args_size + frame->cprestore_size;
10376 /* Move above the local variables. */
10377 frame->var_size = MIPS_STACK_ALIGN (size);
10378 offset += frame->var_size;
10380 /* Find out which GPRs we need to save. */
10381 for (regno = GP_REG_FIRST; regno <= GP_REG_LAST; regno++)
10382 if (mips_save_reg_p (regno))
10384 frame->num_gp++;
10385 frame->mask |= 1 << (regno - GP_REG_FIRST);
10388 /* If this function calls eh_return, we must also save and restore the
10389 EH data registers. */
10390 if (crtl->calls_eh_return)
10391 for (i = 0; EH_RETURN_DATA_REGNO (i) != INVALID_REGNUM; i++)
10393 frame->num_gp++;
10394 frame->mask |= 1 << (EH_RETURN_DATA_REGNO (i) - GP_REG_FIRST);
10397 /* The MIPS16e SAVE and RESTORE instructions have two ranges of registers:
10398 $a3-$a0 and $s2-$s8. If we save one register in the range, we must
10399 save all later registers too. */
10400 if (GENERATE_MIPS16E_SAVE_RESTORE)
10402 mips16e_mask_registers (&frame->mask, mips16e_s2_s8_regs,
10403 ARRAY_SIZE (mips16e_s2_s8_regs), &frame->num_gp);
10404 mips16e_mask_registers (&frame->mask, mips16e_a0_a3_regs,
10405 ARRAY_SIZE (mips16e_a0_a3_regs), &frame->num_gp);
10408 /* Move above the GPR save area. */
10409 if (frame->num_gp > 0)
10411 offset += MIPS_STACK_ALIGN (frame->num_gp * UNITS_PER_WORD);
10412 frame->gp_sp_offset = offset - UNITS_PER_WORD;
10415 /* Find out which FPRs we need to save. This loop must iterate over
10416 the same space as its companion in mips_for_each_saved_gpr_and_fpr. */
10417 if (TARGET_HARD_FLOAT)
10418 for (regno = FP_REG_FIRST; regno <= FP_REG_LAST; regno += MAX_FPRS_PER_FMT)
10419 if (mips_save_reg_p (regno))
10421 frame->num_fp += MAX_FPRS_PER_FMT;
10422 frame->fmask |= ~(~0 << MAX_FPRS_PER_FMT) << (regno - FP_REG_FIRST);
10425 /* Move above the FPR save area. */
10426 if (frame->num_fp > 0)
10428 offset += MIPS_STACK_ALIGN (frame->num_fp * UNITS_PER_FPREG);
10429 frame->fp_sp_offset = offset - UNITS_PER_HWFPVALUE;
10432 /* Add in space for the interrupt context information. */
10433 if (cfun->machine->interrupt_handler_p)
10435 /* Check HI/LO. */
10436 if (mips_save_reg_p (LO_REGNUM) || mips_save_reg_p (HI_REGNUM))
10438 frame->num_acc++;
10439 frame->acc_mask |= (1 << 0);
10442 /* Check accumulators 1, 2, 3. */
10443 for (i = DSP_ACC_REG_FIRST; i <= DSP_ACC_REG_LAST; i += 2)
10444 if (mips_save_reg_p (i) || mips_save_reg_p (i + 1))
10446 frame->num_acc++;
10447 frame->acc_mask |= 1 << (((i - DSP_ACC_REG_FIRST) / 2) + 1);
10450 /* All interrupt context functions need space to preserve STATUS. */
10451 frame->num_cop0_regs++;
10453 /* If we don't keep interrupts masked, we need to save EPC. */
10454 if (!cfun->machine->keep_interrupts_masked_p)
10455 frame->num_cop0_regs++;
10458 /* Move above the accumulator save area. */
10459 if (frame->num_acc > 0)
10461 /* Each accumulator needs 2 words. */
10462 offset += frame->num_acc * 2 * UNITS_PER_WORD;
10463 frame->acc_sp_offset = offset - UNITS_PER_WORD;
10466 /* Move above the COP0 register save area. */
10467 if (frame->num_cop0_regs > 0)
10469 offset += frame->num_cop0_regs * UNITS_PER_WORD;
10470 frame->cop0_sp_offset = offset - UNITS_PER_WORD;
10473 /* Move above the callee-allocated varargs save area. */
10474 offset += MIPS_STACK_ALIGN (cfun->machine->varargs_size);
10475 frame->arg_pointer_offset = offset;
10477 /* Move above the callee-allocated area for pretend stack arguments. */
10478 offset += crtl->args.pretend_args_size;
10479 frame->total_size = offset;
10481 /* Work out the offsets of the save areas from the top of the frame. */
10482 if (frame->gp_sp_offset > 0)
10483 frame->gp_save_offset = frame->gp_sp_offset - offset;
10484 if (frame->fp_sp_offset > 0)
10485 frame->fp_save_offset = frame->fp_sp_offset - offset;
10486 if (frame->acc_sp_offset > 0)
10487 frame->acc_save_offset = frame->acc_sp_offset - offset;
10488 if (frame->num_cop0_regs > 0)
10489 frame->cop0_save_offset = frame->cop0_sp_offset - offset;
10491 /* MIPS16 code offsets the frame pointer by the size of the outgoing
10492 arguments. This tends to increase the chances of using unextended
10493 instructions for local variables and incoming arguments. */
10494 if (TARGET_MIPS16)
10495 frame->hard_frame_pointer_offset = frame->args_size;
10498 /* Return the style of GP load sequence that is being used for the
10499 current function. */
10501 enum mips_loadgp_style
10502 mips_current_loadgp_style (void)
10504 if (!TARGET_USE_GOT || cfun->machine->global_pointer == INVALID_REGNUM)
10505 return LOADGP_NONE;
10507 if (TARGET_RTP_PIC)
10508 return LOADGP_RTP;
10510 if (TARGET_ABSOLUTE_ABICALLS)
10511 return LOADGP_ABSOLUTE;
10513 return TARGET_NEWABI ? LOADGP_NEWABI : LOADGP_OLDABI;
10516 /* Implement TARGET_FRAME_POINTER_REQUIRED. */
10518 static bool
10519 mips_frame_pointer_required (void)
10521 /* If the function contains dynamic stack allocations, we need to
10522 use the frame pointer to access the static parts of the frame. */
10523 if (cfun->calls_alloca)
10524 return true;
10526 /* In MIPS16 mode, we need a frame pointer for a large frame; otherwise,
10527 reload may be unable to compute the address of a local variable,
10528 since there is no way to add a large constant to the stack pointer
10529 without using a second temporary register. */
10530 if (TARGET_MIPS16)
10532 mips_compute_frame_info ();
10533 if (!SMALL_OPERAND (cfun->machine->frame.total_size))
10534 return true;
10537 return false;
10540 /* Make sure that we're not trying to eliminate to the wrong hard frame
10541 pointer. */
10543 static bool
10544 mips_can_eliminate (const int from ATTRIBUTE_UNUSED, const int to)
10546 return (to == HARD_FRAME_POINTER_REGNUM || to == STACK_POINTER_REGNUM);
10549 /* Implement INITIAL_ELIMINATION_OFFSET. FROM is either the frame pointer
10550 or argument pointer. TO is either the stack pointer or hard frame
10551 pointer. */
10553 HOST_WIDE_INT
10554 mips_initial_elimination_offset (int from, int to)
10556 HOST_WIDE_INT offset;
10558 mips_compute_frame_info ();
10560 /* Set OFFSET to the offset from the end-of-prologue stack pointer. */
10561 switch (from)
10563 case FRAME_POINTER_REGNUM:
10564 if (FRAME_GROWS_DOWNWARD)
10565 offset = (cfun->machine->frame.args_size
10566 + cfun->machine->frame.cprestore_size
10567 + cfun->machine->frame.var_size);
10568 else
10569 offset = 0;
10570 break;
10572 case ARG_POINTER_REGNUM:
10573 offset = cfun->machine->frame.arg_pointer_offset;
10574 break;
10576 default:
10577 gcc_unreachable ();
10580 if (to == HARD_FRAME_POINTER_REGNUM)
10581 offset -= cfun->machine->frame.hard_frame_pointer_offset;
10583 return offset;
10586 /* Implement TARGET_EXTRA_LIVE_ON_ENTRY. */
10588 static void
10589 mips_extra_live_on_entry (bitmap regs)
10591 if (TARGET_USE_GOT)
10593 /* PIC_FUNCTION_ADDR_REGNUM is live if we need it to set up
10594 the global pointer. */
10595 if (!TARGET_ABSOLUTE_ABICALLS)
10596 bitmap_set_bit (regs, PIC_FUNCTION_ADDR_REGNUM);
10598 /* The prologue may set MIPS16_PIC_TEMP_REGNUM to the value of
10599 the global pointer. */
10600 if (TARGET_MIPS16)
10601 bitmap_set_bit (regs, MIPS16_PIC_TEMP_REGNUM);
10603 /* See the comment above load_call<mode> for details. */
10604 bitmap_set_bit (regs, GOT_VERSION_REGNUM);
10608 /* Implement RETURN_ADDR_RTX. We do not support moving back to a
10609 previous frame. */
10612 mips_return_addr (int count, rtx frame ATTRIBUTE_UNUSED)
10614 if (count != 0)
10615 return const0_rtx;
10617 return get_hard_reg_initial_val (Pmode, RETURN_ADDR_REGNUM);
10620 /* Emit code to change the current function's return address to
10621 ADDRESS. SCRATCH is available as a scratch register, if needed.
10622 ADDRESS and SCRATCH are both word-mode GPRs. */
10624 void
10625 mips_set_return_address (rtx address, rtx scratch)
10627 rtx slot_address;
10629 gcc_assert (BITSET_P (cfun->machine->frame.mask, RETURN_ADDR_REGNUM));
10630 slot_address = mips_add_offset (scratch, stack_pointer_rtx,
10631 cfun->machine->frame.gp_sp_offset);
10632 mips_emit_move (gen_frame_mem (GET_MODE (address), slot_address), address);
10635 /* Return true if the current function has a cprestore slot. */
10637 bool
10638 mips_cfun_has_cprestore_slot_p (void)
10640 return (cfun->machine->global_pointer != INVALID_REGNUM
10641 && cfun->machine->frame.cprestore_size > 0);
10644 /* Fill *BASE and *OFFSET such that *BASE + *OFFSET refers to the
10645 cprestore slot. LOAD_P is true if the caller wants to load from
10646 the cprestore slot; it is false if the caller wants to store to
10647 the slot. */
10649 static void
10650 mips_get_cprestore_base_and_offset (rtx *base, HOST_WIDE_INT *offset,
10651 bool load_p)
10653 const struct mips_frame_info *frame;
10655 frame = &cfun->machine->frame;
10656 /* .cprestore always uses the stack pointer instead of the frame pointer.
10657 We have a free choice for direct stores for non-MIPS16 functions,
10658 and for MIPS16 functions whose cprestore slot is in range of the
10659 stack pointer. Using the stack pointer would sometimes give more
10660 (early) scheduling freedom, but using the frame pointer would
10661 sometimes give more (late) scheduling freedom. It's hard to
10662 predict which applies to a given function, so let's keep things
10663 simple.
10665 Loads must always use the frame pointer in functions that call
10666 alloca, and there's little benefit to using the stack pointer
10667 otherwise. */
10668 if (frame_pointer_needed && !(TARGET_CPRESTORE_DIRECTIVE && !load_p))
10670 *base = hard_frame_pointer_rtx;
10671 *offset = frame->args_size - frame->hard_frame_pointer_offset;
10673 else
10675 *base = stack_pointer_rtx;
10676 *offset = frame->args_size;
10680 /* Return true if X is the load or store address of the cprestore slot;
10681 LOAD_P says which. */
10683 bool
10684 mips_cprestore_address_p (rtx x, bool load_p)
10686 rtx given_base, required_base;
10687 HOST_WIDE_INT given_offset, required_offset;
10689 mips_split_plus (x, &given_base, &given_offset);
10690 mips_get_cprestore_base_and_offset (&required_base, &required_offset, load_p);
10691 return given_base == required_base && given_offset == required_offset;
10694 /* Return a MEM rtx for the cprestore slot. LOAD_P is true if we are
10695 going to load from it, false if we are going to store to it.
10696 Use TEMP as a temporary register if need be. */
10698 static rtx
10699 mips_cprestore_slot (rtx temp, bool load_p)
10701 rtx base;
10702 HOST_WIDE_INT offset;
10704 mips_get_cprestore_base_and_offset (&base, &offset, load_p);
10705 return gen_frame_mem (Pmode, mips_add_offset (temp, base, offset));
10708 /* Emit instructions to save global pointer value GP into cprestore
10709 slot MEM. OFFSET is the offset that MEM applies to the base register.
10711 MEM may not be a legitimate address. If it isn't, TEMP is a
10712 temporary register that can be used, otherwise it is a SCRATCH. */
10714 void
10715 mips_save_gp_to_cprestore_slot (rtx mem, rtx offset, rtx gp, rtx temp)
10717 if (TARGET_CPRESTORE_DIRECTIVE)
10719 gcc_assert (gp == pic_offset_table_rtx);
10720 emit_insn (PMODE_INSN (gen_cprestore, (mem, offset)));
10722 else
10723 mips_emit_move (mips_cprestore_slot (temp, false), gp);
10726 /* Restore $gp from its save slot, using TEMP as a temporary base register
10727 if need be. This function is for o32 and o64 abicalls only.
10729 See mips_must_initialize_gp_p for details about how we manage the
10730 global pointer. */
10732 void
10733 mips_restore_gp_from_cprestore_slot (rtx temp)
10735 gcc_assert (TARGET_ABICALLS && TARGET_OLDABI && epilogue_completed);
10737 if (!cfun->machine->must_restore_gp_when_clobbered_p)
10739 emit_note (NOTE_INSN_DELETED);
10740 return;
10743 if (TARGET_MIPS16)
10745 mips_emit_move (temp, mips_cprestore_slot (temp, true));
10746 mips_emit_move (pic_offset_table_rtx, temp);
10748 else
10749 mips_emit_move (pic_offset_table_rtx, mips_cprestore_slot (temp, true));
10750 if (!TARGET_EXPLICIT_RELOCS)
10751 emit_insn (gen_blockage ());
10754 /* A function to save or store a register. The first argument is the
10755 register and the second is the stack slot. */
10756 typedef void (*mips_save_restore_fn) (rtx, rtx);
10758 /* Use FN to save or restore register REGNO. MODE is the register's
10759 mode and OFFSET is the offset of its save slot from the current
10760 stack pointer. */
10762 static void
10763 mips_save_restore_reg (machine_mode mode, int regno,
10764 HOST_WIDE_INT offset, mips_save_restore_fn fn)
10766 rtx mem;
10768 mem = gen_frame_mem (mode, plus_constant (Pmode, stack_pointer_rtx,
10769 offset));
10770 fn (gen_rtx_REG (mode, regno), mem);
10773 /* Call FN for each accumlator that is saved by the current function.
10774 SP_OFFSET is the offset of the current stack pointer from the start
10775 of the frame. */
10777 static void
10778 mips_for_each_saved_acc (HOST_WIDE_INT sp_offset, mips_save_restore_fn fn)
10780 HOST_WIDE_INT offset;
10781 int regno;
10783 offset = cfun->machine->frame.acc_sp_offset - sp_offset;
10784 if (BITSET_P (cfun->machine->frame.acc_mask, 0))
10786 mips_save_restore_reg (word_mode, LO_REGNUM, offset, fn);
10787 offset -= UNITS_PER_WORD;
10788 mips_save_restore_reg (word_mode, HI_REGNUM, offset, fn);
10789 offset -= UNITS_PER_WORD;
10792 for (regno = DSP_ACC_REG_FIRST; regno <= DSP_ACC_REG_LAST; regno++)
10793 if (BITSET_P (cfun->machine->frame.acc_mask,
10794 ((regno - DSP_ACC_REG_FIRST) / 2) + 1))
10796 mips_save_restore_reg (word_mode, regno, offset, fn);
10797 offset -= UNITS_PER_WORD;
10801 /* Save register REG to MEM. Make the instruction frame-related. */
10803 static void
10804 mips_save_reg (rtx reg, rtx mem)
10806 if (GET_MODE (reg) == DFmode
10807 && (!TARGET_FLOAT64
10808 || mips_abi == ABI_32))
10810 rtx x1, x2;
10812 mips_emit_move_or_split (mem, reg, SPLIT_IF_NECESSARY);
10814 x1 = mips_frame_set (mips_subword (mem, false),
10815 mips_subword (reg, false));
10816 x2 = mips_frame_set (mips_subword (mem, true),
10817 mips_subword (reg, true));
10818 mips_set_frame_expr (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, x1, x2)));
10820 else
10821 mips_emit_save_slot_move (mem, reg, MIPS_PROLOGUE_TEMP (GET_MODE (reg)));
10824 /* Capture the register combinations that are allowed in a SWM or LWM
10825 instruction. The entries are ordered by number of registers set in
10826 the mask. We also ignore the single register encodings because a
10827 normal SW/LW is preferred. */
10829 static const unsigned int umips_swm_mask[17] = {
10830 0xc0ff0000, 0x80ff0000, 0x40ff0000, 0x807f0000,
10831 0x00ff0000, 0x803f0000, 0x007f0000, 0x801f0000,
10832 0x003f0000, 0x800f0000, 0x001f0000, 0x80070000,
10833 0x000f0000, 0x80030000, 0x00070000, 0x80010000,
10834 0x00030000
10837 static const unsigned int umips_swm_encoding[17] = {
10838 25, 24, 9, 23, 8, 22, 7, 21, 6, 20, 5, 19, 4, 18, 3, 17, 2
10841 /* Try to use a microMIPS LWM or SWM instruction to save or restore
10842 as many GPRs in *MASK as possible. *OFFSET is the offset from the
10843 stack pointer of the topmost save slot.
10845 Remove from *MASK all registers that were handled using LWM and SWM.
10846 Update *OFFSET so that it points to the first unused save slot. */
10848 static bool
10849 umips_build_save_restore (mips_save_restore_fn fn,
10850 unsigned *mask, HOST_WIDE_INT *offset)
10852 int nregs;
10853 unsigned int i, j;
10854 rtx pattern, set, reg, mem;
10855 HOST_WIDE_INT this_offset;
10856 rtx this_base;
10858 /* Try matching $16 to $31 (s0 to ra). */
10859 for (i = 0; i < ARRAY_SIZE (umips_swm_mask); i++)
10860 if ((*mask & 0xffff0000) == umips_swm_mask[i])
10861 break;
10863 if (i == ARRAY_SIZE (umips_swm_mask))
10864 return false;
10866 /* Get the offset of the lowest save slot. */
10867 nregs = (umips_swm_encoding[i] & 0xf) + (umips_swm_encoding[i] >> 4);
10868 this_offset = *offset - UNITS_PER_WORD * (nregs - 1);
10870 /* LWM/SWM can only support offsets from -2048 to 2047. */
10871 if (!UMIPS_12BIT_OFFSET_P (this_offset))
10872 return false;
10874 /* Create the final PARALLEL. */
10875 pattern = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (nregs));
10876 this_base = stack_pointer_rtx;
10878 /* For registers $16-$23 and $30. */
10879 for (j = 0; j < (umips_swm_encoding[i] & 0xf); j++)
10881 HOST_WIDE_INT offset = this_offset + j * UNITS_PER_WORD;
10882 mem = gen_frame_mem (SImode, plus_constant (Pmode, this_base, offset));
10883 unsigned int regno = (j != 8) ? 16 + j : 30;
10884 *mask &= ~(1 << regno);
10885 reg = gen_rtx_REG (SImode, regno);
10886 if (fn == mips_save_reg)
10887 set = mips_frame_set (mem, reg);
10888 else
10890 set = gen_rtx_SET (reg, mem);
10891 mips_add_cfa_restore (reg);
10893 XVECEXP (pattern, 0, j) = set;
10896 /* For register $31. */
10897 if (umips_swm_encoding[i] >> 4)
10899 HOST_WIDE_INT offset = this_offset + j * UNITS_PER_WORD;
10900 *mask &= ~(1 << 31);
10901 mem = gen_frame_mem (SImode, plus_constant (Pmode, this_base, offset));
10902 reg = gen_rtx_REG (SImode, 31);
10903 if (fn == mips_save_reg)
10904 set = mips_frame_set (mem, reg);
10905 else
10907 set = gen_rtx_SET (reg, mem);
10908 mips_add_cfa_restore (reg);
10910 XVECEXP (pattern, 0, j) = set;
10913 pattern = emit_insn (pattern);
10914 if (fn == mips_save_reg)
10915 RTX_FRAME_RELATED_P (pattern) = 1;
10917 /* Adjust the last offset. */
10918 *offset -= UNITS_PER_WORD * nregs;
10920 return true;
10923 /* Call FN for each register that is saved by the current function.
10924 SP_OFFSET is the offset of the current stack pointer from the start
10925 of the frame. */
10927 static void
10928 mips_for_each_saved_gpr_and_fpr (HOST_WIDE_INT sp_offset,
10929 mips_save_restore_fn fn)
10931 machine_mode fpr_mode;
10932 int regno;
10933 const struct mips_frame_info *frame = &cfun->machine->frame;
10934 HOST_WIDE_INT offset;
10935 unsigned int mask;
10937 /* Save registers starting from high to low. The debuggers prefer at least
10938 the return register be stored at func+4, and also it allows us not to
10939 need a nop in the epilogue if at least one register is reloaded in
10940 addition to return address. */
10941 offset = frame->gp_sp_offset - sp_offset;
10942 mask = frame->mask;
10944 if (TARGET_MICROMIPS)
10945 umips_build_save_restore (fn, &mask, &offset);
10947 for (regno = GP_REG_LAST; regno >= GP_REG_FIRST; regno--)
10948 if (BITSET_P (mask, regno - GP_REG_FIRST))
10950 /* Record the ra offset for use by mips_function_profiler. */
10951 if (regno == RETURN_ADDR_REGNUM)
10952 cfun->machine->frame.ra_fp_offset = offset + sp_offset;
10953 mips_save_restore_reg (word_mode, regno, offset, fn);
10954 offset -= UNITS_PER_WORD;
10957 /* This loop must iterate over the same space as its companion in
10958 mips_compute_frame_info. */
10959 offset = cfun->machine->frame.fp_sp_offset - sp_offset;
10960 fpr_mode = (TARGET_SINGLE_FLOAT ? SFmode : DFmode);
10961 for (regno = FP_REG_LAST - MAX_FPRS_PER_FMT + 1;
10962 regno >= FP_REG_FIRST;
10963 regno -= MAX_FPRS_PER_FMT)
10964 if (BITSET_P (cfun->machine->frame.fmask, regno - FP_REG_FIRST))
10966 if (!TARGET_FLOAT64 && TARGET_DOUBLE_FLOAT
10967 && (fixed_regs[regno] || fixed_regs[regno + 1]))
10969 if (fixed_regs[regno])
10970 mips_save_restore_reg (SFmode, regno + 1, offset, fn);
10971 else
10972 mips_save_restore_reg (SFmode, regno, offset, fn);
10974 else
10975 mips_save_restore_reg (fpr_mode, regno, offset, fn);
10976 offset -= GET_MODE_SIZE (fpr_mode);
10980 /* Return true if a move between register REGNO and its save slot (MEM)
10981 can be done in a single move. LOAD_P is true if we are loading
10982 from the slot, false if we are storing to it. */
10984 static bool
10985 mips_direct_save_slot_move_p (unsigned int regno, rtx mem, bool load_p)
10987 /* There is a specific MIPS16 instruction for saving $31 to the stack. */
10988 if (TARGET_MIPS16 && !load_p && regno == RETURN_ADDR_REGNUM)
10989 return false;
10991 return mips_secondary_reload_class (REGNO_REG_CLASS (regno),
10992 GET_MODE (mem), mem, load_p) == NO_REGS;
10995 /* Emit a move from SRC to DEST, given that one of them is a register
10996 save slot and that the other is a register. TEMP is a temporary
10997 GPR of the same mode that is available if need be. */
10999 void
11000 mips_emit_save_slot_move (rtx dest, rtx src, rtx temp)
11002 unsigned int regno;
11003 rtx mem;
11005 if (REG_P (src))
11007 regno = REGNO (src);
11008 mem = dest;
11010 else
11012 regno = REGNO (dest);
11013 mem = src;
11016 if (regno == cfun->machine->global_pointer && !mips_must_initialize_gp_p ())
11018 /* We don't yet know whether we'll need this instruction or not.
11019 Postpone the decision by emitting a ghost move. This move
11020 is specifically not frame-related; only the split version is. */
11021 if (TARGET_64BIT)
11022 emit_insn (gen_move_gpdi (dest, src));
11023 else
11024 emit_insn (gen_move_gpsi (dest, src));
11025 return;
11028 if (regno == HI_REGNUM)
11030 if (REG_P (dest))
11032 mips_emit_move (temp, src);
11033 if (TARGET_64BIT)
11034 emit_insn (gen_mthisi_di (gen_rtx_REG (TImode, MD_REG_FIRST),
11035 temp, gen_rtx_REG (DImode, LO_REGNUM)));
11036 else
11037 emit_insn (gen_mthisi_di (gen_rtx_REG (DImode, MD_REG_FIRST),
11038 temp, gen_rtx_REG (SImode, LO_REGNUM)));
11040 else
11042 if (TARGET_64BIT)
11043 emit_insn (gen_mfhidi_ti (temp,
11044 gen_rtx_REG (TImode, MD_REG_FIRST)));
11045 else
11046 emit_insn (gen_mfhisi_di (temp,
11047 gen_rtx_REG (DImode, MD_REG_FIRST)));
11048 mips_emit_move (dest, temp);
11051 else if (mips_direct_save_slot_move_p (regno, mem, mem == src))
11052 mips_emit_move (dest, src);
11053 else
11055 gcc_assert (!reg_overlap_mentioned_p (dest, temp));
11056 mips_emit_move (temp, src);
11057 mips_emit_move (dest, temp);
11059 if (MEM_P (dest))
11060 mips_set_frame_expr (mips_frame_set (dest, src));
11063 /* If we're generating n32 or n64 abicalls, and the current function
11064 does not use $28 as its global pointer, emit a cplocal directive.
11065 Use pic_offset_table_rtx as the argument to the directive. */
11067 static void
11068 mips_output_cplocal (void)
11070 if (!TARGET_EXPLICIT_RELOCS
11071 && mips_must_initialize_gp_p ()
11072 && cfun->machine->global_pointer != GLOBAL_POINTER_REGNUM)
11073 output_asm_insn (".cplocal %+", 0);
11076 /* Implement TARGET_OUTPUT_FUNCTION_PROLOGUE. */
11078 static void
11079 mips_output_function_prologue (FILE *file, HOST_WIDE_INT size ATTRIBUTE_UNUSED)
11081 const char *fnname;
11083 /* In MIPS16 mode, we may need to generate a non-MIPS16 stub to handle
11084 floating-point arguments. */
11085 if (TARGET_MIPS16
11086 && TARGET_HARD_FLOAT_ABI
11087 && crtl->args.info.fp_code != 0)
11088 mips16_build_function_stub ();
11090 /* Get the function name the same way that toplev.c does before calling
11091 assemble_start_function. This is needed so that the name used here
11092 exactly matches the name used in ASM_DECLARE_FUNCTION_NAME. */
11093 fnname = XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0);
11094 mips_start_function_definition (fnname, TARGET_MIPS16);
11096 /* Output MIPS-specific frame information. */
11097 if (!flag_inhibit_size_directive)
11099 const struct mips_frame_info *frame;
11101 frame = &cfun->machine->frame;
11103 /* .frame FRAMEREG, FRAMESIZE, RETREG. */
11104 fprintf (file,
11105 "\t.frame\t%s," HOST_WIDE_INT_PRINT_DEC ",%s\t\t"
11106 "# vars= " HOST_WIDE_INT_PRINT_DEC
11107 ", regs= %d/%d"
11108 ", args= " HOST_WIDE_INT_PRINT_DEC
11109 ", gp= " HOST_WIDE_INT_PRINT_DEC "\n",
11110 reg_names[frame_pointer_needed
11111 ? HARD_FRAME_POINTER_REGNUM
11112 : STACK_POINTER_REGNUM],
11113 (frame_pointer_needed
11114 ? frame->total_size - frame->hard_frame_pointer_offset
11115 : frame->total_size),
11116 reg_names[RETURN_ADDR_REGNUM],
11117 frame->var_size,
11118 frame->num_gp, frame->num_fp,
11119 frame->args_size,
11120 frame->cprestore_size);
11122 /* .mask MASK, OFFSET. */
11123 fprintf (file, "\t.mask\t0x%08x," HOST_WIDE_INT_PRINT_DEC "\n",
11124 frame->mask, frame->gp_save_offset);
11126 /* .fmask MASK, OFFSET. */
11127 fprintf (file, "\t.fmask\t0x%08x," HOST_WIDE_INT_PRINT_DEC "\n",
11128 frame->fmask, frame->fp_save_offset);
11131 /* Handle the initialization of $gp for SVR4 PIC, if applicable.
11132 Also emit the ".set noreorder; .set nomacro" sequence for functions
11133 that need it. */
11134 if (mips_must_initialize_gp_p ()
11135 && mips_current_loadgp_style () == LOADGP_OLDABI)
11137 if (TARGET_MIPS16)
11139 /* This is a fixed-form sequence. The position of the
11140 first two instructions is important because of the
11141 way _gp_disp is defined. */
11142 output_asm_insn ("li\t$2,%%hi(_gp_disp)", 0);
11143 output_asm_insn ("addiu\t$3,$pc,%%lo(_gp_disp)", 0);
11144 output_asm_insn ("sll\t$2,16", 0);
11145 output_asm_insn ("addu\t$2,$3", 0);
11147 else
11149 /* .cpload must be in a .set noreorder but not a
11150 .set nomacro block. */
11151 mips_push_asm_switch (&mips_noreorder);
11152 output_asm_insn (".cpload\t%^", 0);
11153 if (!cfun->machine->all_noreorder_p)
11154 mips_pop_asm_switch (&mips_noreorder);
11155 else
11156 mips_push_asm_switch (&mips_nomacro);
11159 else if (cfun->machine->all_noreorder_p)
11161 mips_push_asm_switch (&mips_noreorder);
11162 mips_push_asm_switch (&mips_nomacro);
11165 /* Tell the assembler which register we're using as the global
11166 pointer. This is needed for thunks, since they can use either
11167 explicit relocs or assembler macros. */
11168 mips_output_cplocal ();
11171 /* Implement TARGET_OUTPUT_FUNCTION_EPILOGUE. */
11173 static void
11174 mips_output_function_epilogue (FILE *file ATTRIBUTE_UNUSED,
11175 HOST_WIDE_INT size ATTRIBUTE_UNUSED)
11177 const char *fnname;
11179 /* Reinstate the normal $gp. */
11180 SET_REGNO (pic_offset_table_rtx, GLOBAL_POINTER_REGNUM);
11181 mips_output_cplocal ();
11183 if (cfun->machine->all_noreorder_p)
11185 mips_pop_asm_switch (&mips_nomacro);
11186 mips_pop_asm_switch (&mips_noreorder);
11189 /* Get the function name the same way that toplev.c does before calling
11190 assemble_start_function. This is needed so that the name used here
11191 exactly matches the name used in ASM_DECLARE_FUNCTION_NAME. */
11192 fnname = XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0);
11193 mips_end_function_definition (fnname);
11196 /* Emit an optimisation barrier for accesses to the current frame. */
11198 static void
11199 mips_frame_barrier (void)
11201 emit_clobber (gen_frame_mem (BLKmode, stack_pointer_rtx));
11205 /* The __gnu_local_gp symbol. */
11207 static GTY(()) rtx mips_gnu_local_gp;
11209 /* If we're generating n32 or n64 abicalls, emit instructions
11210 to set up the global pointer. */
11212 static void
11213 mips_emit_loadgp (void)
11215 rtx addr, offset, incoming_address, base, index, pic_reg;
11217 pic_reg = TARGET_MIPS16 ? MIPS16_PIC_TEMP : pic_offset_table_rtx;
11218 switch (mips_current_loadgp_style ())
11220 case LOADGP_ABSOLUTE:
11221 if (mips_gnu_local_gp == NULL)
11223 mips_gnu_local_gp = gen_rtx_SYMBOL_REF (Pmode, "__gnu_local_gp");
11224 SYMBOL_REF_FLAGS (mips_gnu_local_gp) |= SYMBOL_FLAG_LOCAL;
11226 emit_insn (PMODE_INSN (gen_loadgp_absolute,
11227 (pic_reg, mips_gnu_local_gp)));
11228 break;
11230 case LOADGP_OLDABI:
11231 /* Added by mips_output_function_prologue. */
11232 break;
11234 case LOADGP_NEWABI:
11235 addr = XEXP (DECL_RTL (current_function_decl), 0);
11236 offset = mips_unspec_address (addr, SYMBOL_GOTOFF_LOADGP);
11237 incoming_address = gen_rtx_REG (Pmode, PIC_FUNCTION_ADDR_REGNUM);
11238 emit_insn (PMODE_INSN (gen_loadgp_newabi,
11239 (pic_reg, offset, incoming_address)));
11240 break;
11242 case LOADGP_RTP:
11243 base = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (VXWORKS_GOTT_BASE));
11244 index = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (VXWORKS_GOTT_INDEX));
11245 emit_insn (PMODE_INSN (gen_loadgp_rtp, (pic_reg, base, index)));
11246 break;
11248 default:
11249 return;
11252 if (TARGET_MIPS16)
11253 emit_insn (PMODE_INSN (gen_copygp_mips16,
11254 (pic_offset_table_rtx, pic_reg)));
11256 /* Emit a blockage if there are implicit uses of the GP register.
11257 This includes profiled functions, because FUNCTION_PROFILE uses
11258 a jal macro. */
11259 if (!TARGET_EXPLICIT_RELOCS || crtl->profile)
11260 emit_insn (gen_loadgp_blockage ());
11263 #define PROBE_INTERVAL (1 << STACK_CHECK_PROBE_INTERVAL_EXP)
11265 #if PROBE_INTERVAL > 32768
11266 #error Cannot use indexed addressing mode for stack probing
11267 #endif
11269 /* Emit code to probe a range of stack addresses from FIRST to FIRST+SIZE,
11270 inclusive. These are offsets from the current stack pointer. */
11272 static void
11273 mips_emit_probe_stack_range (HOST_WIDE_INT first, HOST_WIDE_INT size)
11275 if (TARGET_MIPS16)
11276 sorry ("-fstack-check=specific not implemented for MIPS16");
11278 /* See if we have a constant small number of probes to generate. If so,
11279 that's the easy case. */
11280 if (first + size <= 32768)
11282 HOST_WIDE_INT i;
11284 /* Probe at FIRST + N * PROBE_INTERVAL for values of N from 1 until
11285 it exceeds SIZE. If only one probe is needed, this will not
11286 generate any code. Then probe at FIRST + SIZE. */
11287 for (i = PROBE_INTERVAL; i < size; i += PROBE_INTERVAL)
11288 emit_stack_probe (plus_constant (Pmode, stack_pointer_rtx,
11289 -(first + i)));
11291 emit_stack_probe (plus_constant (Pmode, stack_pointer_rtx,
11292 -(first + size)));
11295 /* Otherwise, do the same as above, but in a loop. Note that we must be
11296 extra careful with variables wrapping around because we might be at
11297 the very top (or the very bottom) of the address space and we have
11298 to be able to handle this case properly; in particular, we use an
11299 equality test for the loop condition. */
11300 else
11302 HOST_WIDE_INT rounded_size;
11303 rtx r3 = MIPS_PROLOGUE_TEMP (Pmode);
11304 rtx r12 = MIPS_PROLOGUE_TEMP2 (Pmode);
11306 /* Sanity check for the addressing mode we're going to use. */
11307 gcc_assert (first <= 32768);
11310 /* Step 1: round SIZE to the previous multiple of the interval. */
11312 rounded_size = size & -PROBE_INTERVAL;
11315 /* Step 2: compute initial and final value of the loop counter. */
11317 /* TEST_ADDR = SP + FIRST. */
11318 emit_insn (gen_rtx_SET (r3, plus_constant (Pmode, stack_pointer_rtx,
11319 -first)));
11321 /* LAST_ADDR = SP + FIRST + ROUNDED_SIZE. */
11322 if (rounded_size > 32768)
11324 emit_move_insn (r12, GEN_INT (rounded_size));
11325 emit_insn (gen_rtx_SET (r12, gen_rtx_MINUS (Pmode, r3, r12)));
11327 else
11328 emit_insn (gen_rtx_SET (r12, plus_constant (Pmode, r3,
11329 -rounded_size)));
11332 /* Step 3: the loop
11334 while (TEST_ADDR != LAST_ADDR)
11336 TEST_ADDR = TEST_ADDR + PROBE_INTERVAL
11337 probe at TEST_ADDR
11340 probes at FIRST + N * PROBE_INTERVAL for values of N from 1
11341 until it is equal to ROUNDED_SIZE. */
11343 emit_insn (PMODE_INSN (gen_probe_stack_range, (r3, r3, r12)));
11346 /* Step 4: probe at FIRST + SIZE if we cannot assert at compile-time
11347 that SIZE is equal to ROUNDED_SIZE. */
11349 if (size != rounded_size)
11350 emit_stack_probe (plus_constant (Pmode, r12, rounded_size - size));
11353 /* Make sure nothing is scheduled before we are done. */
11354 emit_insn (gen_blockage ());
11357 /* Probe a range of stack addresses from REG1 to REG2 inclusive. These are
11358 absolute addresses. */
11360 const char *
11361 mips_output_probe_stack_range (rtx reg1, rtx reg2)
11363 static int labelno = 0;
11364 char loop_lab[32], end_lab[32], tmp[64];
11365 rtx xops[2];
11367 ASM_GENERATE_INTERNAL_LABEL (loop_lab, "LPSRL", labelno);
11368 ASM_GENERATE_INTERNAL_LABEL (end_lab, "LPSRE", labelno++);
11370 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, loop_lab);
11372 /* Jump to END_LAB if TEST_ADDR == LAST_ADDR. */
11373 xops[0] = reg1;
11374 xops[1] = reg2;
11375 strcpy (tmp, "%(%<beq\t%0,%1,");
11376 output_asm_insn (strcat (tmp, &end_lab[1]), xops);
11378 /* TEST_ADDR = TEST_ADDR + PROBE_INTERVAL. */
11379 xops[1] = GEN_INT (-PROBE_INTERVAL);
11380 if (TARGET_64BIT && TARGET_LONG64)
11381 output_asm_insn ("daddiu\t%0,%0,%1", xops);
11382 else
11383 output_asm_insn ("addiu\t%0,%0,%1", xops);
11385 /* Probe at TEST_ADDR and branch. */
11386 fprintf (asm_out_file, "\tb\t");
11387 assemble_name_raw (asm_out_file, loop_lab);
11388 fputc ('\n', asm_out_file);
11389 if (TARGET_64BIT)
11390 output_asm_insn ("sd\t$0,0(%0)%)", xops);
11391 else
11392 output_asm_insn ("sw\t$0,0(%0)%)", xops);
11394 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, end_lab);
11396 return "";
11399 /* Return true if X contains a kernel register. */
11401 static bool
11402 mips_refers_to_kernel_reg_p (const_rtx x)
11404 subrtx_iterator::array_type array;
11405 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
11406 if (REG_P (*iter) && KERNEL_REG_P (REGNO (*iter)))
11407 return true;
11408 return false;
11411 /* Expand the "prologue" pattern. */
11413 void
11414 mips_expand_prologue (void)
11416 const struct mips_frame_info *frame;
11417 HOST_WIDE_INT size;
11418 unsigned int nargs;
11420 if (cfun->machine->global_pointer != INVALID_REGNUM)
11422 /* Check whether an insn uses pic_offset_table_rtx, either explicitly
11423 or implicitly. If so, we can commit to using a global pointer
11424 straight away, otherwise we need to defer the decision. */
11425 if (mips_cfun_has_inflexible_gp_ref_p ()
11426 || mips_cfun_has_flexible_gp_ref_p ())
11428 cfun->machine->must_initialize_gp_p = true;
11429 cfun->machine->must_restore_gp_when_clobbered_p = true;
11432 SET_REGNO (pic_offset_table_rtx, cfun->machine->global_pointer);
11435 frame = &cfun->machine->frame;
11436 size = frame->total_size;
11438 if (flag_stack_usage_info)
11439 current_function_static_stack_size = size;
11441 if (flag_stack_check == STATIC_BUILTIN_STACK_CHECK)
11443 if (crtl->is_leaf && !cfun->calls_alloca)
11445 if (size > PROBE_INTERVAL && size > STACK_CHECK_PROTECT)
11446 mips_emit_probe_stack_range (STACK_CHECK_PROTECT,
11447 size - STACK_CHECK_PROTECT);
11449 else if (size > 0)
11450 mips_emit_probe_stack_range (STACK_CHECK_PROTECT, size);
11453 /* Save the registers. Allocate up to MIPS_MAX_FIRST_STACK_STEP
11454 bytes beforehand; this is enough to cover the register save area
11455 without going out of range. */
11456 if (((frame->mask | frame->fmask | frame->acc_mask) != 0)
11457 || frame->num_cop0_regs > 0)
11459 HOST_WIDE_INT step1;
11461 step1 = MIN (size, MIPS_MAX_FIRST_STACK_STEP);
11462 if (GENERATE_MIPS16E_SAVE_RESTORE)
11464 HOST_WIDE_INT offset;
11465 unsigned int mask, regno;
11467 /* Try to merge argument stores into the save instruction. */
11468 nargs = mips16e_collect_argument_saves ();
11470 /* Build the save instruction. */
11471 mask = frame->mask;
11472 rtx insn = mips16e_build_save_restore (false, &mask, &offset,
11473 nargs, step1);
11474 RTX_FRAME_RELATED_P (emit_insn (insn)) = 1;
11475 mips_frame_barrier ();
11476 size -= step1;
11478 /* Check if we need to save other registers. */
11479 for (regno = GP_REG_FIRST; regno < GP_REG_LAST; regno++)
11480 if (BITSET_P (mask, regno - GP_REG_FIRST))
11482 offset -= UNITS_PER_WORD;
11483 mips_save_restore_reg (word_mode, regno,
11484 offset, mips_save_reg);
11487 else
11489 if (cfun->machine->interrupt_handler_p)
11491 HOST_WIDE_INT offset;
11492 rtx mem;
11494 /* If this interrupt is using a shadow register set, we need to
11495 get the stack pointer from the previous register set. */
11496 if (cfun->machine->use_shadow_register_set_p)
11497 emit_insn (gen_mips_rdpgpr (stack_pointer_rtx,
11498 stack_pointer_rtx));
11500 if (!cfun->machine->keep_interrupts_masked_p)
11502 /* Move from COP0 Cause to K0. */
11503 emit_insn (gen_cop0_move (gen_rtx_REG (SImode, K0_REG_NUM),
11504 gen_rtx_REG (SImode,
11505 COP0_CAUSE_REG_NUM)));
11506 /* Move from COP0 EPC to K1. */
11507 emit_insn (gen_cop0_move (gen_rtx_REG (SImode, K1_REG_NUM),
11508 gen_rtx_REG (SImode,
11509 COP0_EPC_REG_NUM)));
11512 /* Allocate the first part of the frame. */
11513 rtx insn = gen_add3_insn (stack_pointer_rtx, stack_pointer_rtx,
11514 GEN_INT (-step1));
11515 RTX_FRAME_RELATED_P (emit_insn (insn)) = 1;
11516 mips_frame_barrier ();
11517 size -= step1;
11519 /* Start at the uppermost location for saving. */
11520 offset = frame->cop0_sp_offset - size;
11521 if (!cfun->machine->keep_interrupts_masked_p)
11523 /* Push EPC into its stack slot. */
11524 mem = gen_frame_mem (word_mode,
11525 plus_constant (Pmode, stack_pointer_rtx,
11526 offset));
11527 mips_emit_move (mem, gen_rtx_REG (word_mode, K1_REG_NUM));
11528 offset -= UNITS_PER_WORD;
11531 /* Move from COP0 Status to K1. */
11532 emit_insn (gen_cop0_move (gen_rtx_REG (SImode, K1_REG_NUM),
11533 gen_rtx_REG (SImode,
11534 COP0_STATUS_REG_NUM)));
11536 /* Right justify the RIPL in k0. */
11537 if (!cfun->machine->keep_interrupts_masked_p)
11538 emit_insn (gen_lshrsi3 (gen_rtx_REG (SImode, K0_REG_NUM),
11539 gen_rtx_REG (SImode, K0_REG_NUM),
11540 GEN_INT (CAUSE_IPL)));
11542 /* Push Status into its stack slot. */
11543 mem = gen_frame_mem (word_mode,
11544 plus_constant (Pmode, stack_pointer_rtx,
11545 offset));
11546 mips_emit_move (mem, gen_rtx_REG (word_mode, K1_REG_NUM));
11547 offset -= UNITS_PER_WORD;
11549 /* Insert the RIPL into our copy of SR (k1) as the new IPL. */
11550 if (!cfun->machine->keep_interrupts_masked_p)
11551 emit_insn (gen_insvsi (gen_rtx_REG (SImode, K1_REG_NUM),
11552 GEN_INT (6),
11553 GEN_INT (SR_IPL),
11554 gen_rtx_REG (SImode, K0_REG_NUM)));
11556 if (!cfun->machine->keep_interrupts_masked_p)
11557 /* Enable interrupts by clearing the KSU ERL and EXL bits.
11558 IE is already the correct value, so we don't have to do
11559 anything explicit. */
11560 emit_insn (gen_insvsi (gen_rtx_REG (SImode, K1_REG_NUM),
11561 GEN_INT (4),
11562 GEN_INT (SR_EXL),
11563 gen_rtx_REG (SImode, GP_REG_FIRST)));
11564 else
11565 /* Disable interrupts by clearing the KSU, ERL, EXL,
11566 and IE bits. */
11567 emit_insn (gen_insvsi (gen_rtx_REG (SImode, K1_REG_NUM),
11568 GEN_INT (5),
11569 GEN_INT (SR_IE),
11570 gen_rtx_REG (SImode, GP_REG_FIRST)));
11572 else
11574 rtx insn = gen_add3_insn (stack_pointer_rtx,
11575 stack_pointer_rtx,
11576 GEN_INT (-step1));
11577 RTX_FRAME_RELATED_P (emit_insn (insn)) = 1;
11578 mips_frame_barrier ();
11579 size -= step1;
11581 mips_for_each_saved_acc (size, mips_save_reg);
11582 mips_for_each_saved_gpr_and_fpr (size, mips_save_reg);
11586 /* Allocate the rest of the frame. */
11587 if (size > 0)
11589 if (SMALL_OPERAND (-size))
11590 RTX_FRAME_RELATED_P (emit_insn (gen_add3_insn (stack_pointer_rtx,
11591 stack_pointer_rtx,
11592 GEN_INT (-size)))) = 1;
11593 else
11595 mips_emit_move (MIPS_PROLOGUE_TEMP (Pmode), GEN_INT (size));
11596 if (TARGET_MIPS16)
11598 /* There are no instructions to add or subtract registers
11599 from the stack pointer, so use the frame pointer as a
11600 temporary. We should always be using a frame pointer
11601 in this case anyway. */
11602 gcc_assert (frame_pointer_needed);
11603 mips_emit_move (hard_frame_pointer_rtx, stack_pointer_rtx);
11604 emit_insn (gen_sub3_insn (hard_frame_pointer_rtx,
11605 hard_frame_pointer_rtx,
11606 MIPS_PROLOGUE_TEMP (Pmode)));
11607 mips_emit_move (stack_pointer_rtx, hard_frame_pointer_rtx);
11609 else
11610 emit_insn (gen_sub3_insn (stack_pointer_rtx,
11611 stack_pointer_rtx,
11612 MIPS_PROLOGUE_TEMP (Pmode)));
11614 /* Describe the combined effect of the previous instructions. */
11615 mips_set_frame_expr
11616 (gen_rtx_SET (stack_pointer_rtx,
11617 plus_constant (Pmode, stack_pointer_rtx, -size)));
11619 mips_frame_barrier ();
11622 /* Set up the frame pointer, if we're using one. */
11623 if (frame_pointer_needed)
11625 HOST_WIDE_INT offset;
11627 offset = frame->hard_frame_pointer_offset;
11628 if (offset == 0)
11630 rtx insn = mips_emit_move (hard_frame_pointer_rtx, stack_pointer_rtx);
11631 RTX_FRAME_RELATED_P (insn) = 1;
11633 else if (SMALL_OPERAND (offset))
11635 rtx insn = gen_add3_insn (hard_frame_pointer_rtx,
11636 stack_pointer_rtx, GEN_INT (offset));
11637 RTX_FRAME_RELATED_P (emit_insn (insn)) = 1;
11639 else
11641 mips_emit_move (MIPS_PROLOGUE_TEMP (Pmode), GEN_INT (offset));
11642 mips_emit_move (hard_frame_pointer_rtx, stack_pointer_rtx);
11643 emit_insn (gen_add3_insn (hard_frame_pointer_rtx,
11644 hard_frame_pointer_rtx,
11645 MIPS_PROLOGUE_TEMP (Pmode)));
11646 mips_set_frame_expr
11647 (gen_rtx_SET (hard_frame_pointer_rtx,
11648 plus_constant (Pmode, stack_pointer_rtx, offset)));
11652 mips_emit_loadgp ();
11654 /* Initialize the $gp save slot. */
11655 if (mips_cfun_has_cprestore_slot_p ())
11657 rtx base, mem, gp, temp;
11658 HOST_WIDE_INT offset;
11660 mips_get_cprestore_base_and_offset (&base, &offset, false);
11661 mem = gen_frame_mem (Pmode, plus_constant (Pmode, base, offset));
11662 gp = TARGET_MIPS16 ? MIPS16_PIC_TEMP : pic_offset_table_rtx;
11663 temp = (SMALL_OPERAND (offset)
11664 ? gen_rtx_SCRATCH (Pmode)
11665 : MIPS_PROLOGUE_TEMP (Pmode));
11666 emit_insn (PMODE_INSN (gen_potential_cprestore,
11667 (mem, GEN_INT (offset), gp, temp)));
11669 mips_get_cprestore_base_and_offset (&base, &offset, true);
11670 mem = gen_frame_mem (Pmode, plus_constant (Pmode, base, offset));
11671 emit_insn (PMODE_INSN (gen_use_cprestore, (mem)));
11674 /* We need to search back to the last use of K0 or K1. */
11675 if (cfun->machine->interrupt_handler_p)
11677 rtx_insn *insn;
11678 for (insn = get_last_insn (); insn != NULL_RTX; insn = PREV_INSN (insn))
11679 if (INSN_P (insn)
11680 && mips_refers_to_kernel_reg_p (PATTERN (insn)))
11681 break;
11682 /* Emit a move from K1 to COP0 Status after insn. */
11683 gcc_assert (insn != NULL_RTX);
11684 emit_insn_after (gen_cop0_move (gen_rtx_REG (SImode, COP0_STATUS_REG_NUM),
11685 gen_rtx_REG (SImode, K1_REG_NUM)),
11686 insn);
11689 /* If we are profiling, make sure no instructions are scheduled before
11690 the call to mcount. */
11691 if (crtl->profile)
11692 emit_insn (gen_blockage ());
11695 /* Attach all pending register saves to the previous instruction.
11696 Return that instruction. */
11698 static rtx_insn *
11699 mips_epilogue_emit_cfa_restores (void)
11701 rtx_insn *insn;
11703 insn = get_last_insn ();
11704 gcc_assert (insn && !REG_NOTES (insn));
11705 if (mips_epilogue.cfa_restores)
11707 RTX_FRAME_RELATED_P (insn) = 1;
11708 REG_NOTES (insn) = mips_epilogue.cfa_restores;
11709 mips_epilogue.cfa_restores = 0;
11711 return insn;
11714 /* Like mips_epilogue_emit_cfa_restores, but also record that the CFA is
11715 now at REG + OFFSET. */
11717 static void
11718 mips_epilogue_set_cfa (rtx reg, HOST_WIDE_INT offset)
11720 rtx_insn *insn;
11722 insn = mips_epilogue_emit_cfa_restores ();
11723 if (reg != mips_epilogue.cfa_reg || offset != mips_epilogue.cfa_offset)
11725 RTX_FRAME_RELATED_P (insn) = 1;
11726 REG_NOTES (insn) = alloc_reg_note (REG_CFA_DEF_CFA,
11727 plus_constant (Pmode, reg, offset),
11728 REG_NOTES (insn));
11729 mips_epilogue.cfa_reg = reg;
11730 mips_epilogue.cfa_offset = offset;
11734 /* Emit instructions to restore register REG from slot MEM. Also update
11735 the cfa_restores list. */
11737 static void
11738 mips_restore_reg (rtx reg, rtx mem)
11740 /* There's no MIPS16 instruction to load $31 directly. Load into
11741 $7 instead and adjust the return insn appropriately. */
11742 if (TARGET_MIPS16 && REGNO (reg) == RETURN_ADDR_REGNUM)
11743 reg = gen_rtx_REG (GET_MODE (reg), GP_REG_FIRST + 7);
11744 else if (GET_MODE (reg) == DFmode
11745 && (!TARGET_FLOAT64
11746 || mips_abi == ABI_32))
11748 mips_add_cfa_restore (mips_subword (reg, true));
11749 mips_add_cfa_restore (mips_subword (reg, false));
11751 else
11752 mips_add_cfa_restore (reg);
11754 mips_emit_save_slot_move (reg, mem, MIPS_EPILOGUE_TEMP (GET_MODE (reg)));
11755 if (REGNO (reg) == REGNO (mips_epilogue.cfa_reg))
11756 /* The CFA is currently defined in terms of the register whose
11757 value we have just restored. Redefine the CFA in terms of
11758 the stack pointer. */
11759 mips_epilogue_set_cfa (stack_pointer_rtx,
11760 mips_epilogue.cfa_restore_sp_offset);
11763 /* Emit code to set the stack pointer to BASE + OFFSET, given that
11764 BASE + OFFSET is NEW_FRAME_SIZE bytes below the top of the frame.
11765 BASE, if not the stack pointer, is available as a temporary. */
11767 static void
11768 mips_deallocate_stack (rtx base, rtx offset, HOST_WIDE_INT new_frame_size)
11770 if (base == stack_pointer_rtx && offset == const0_rtx)
11771 return;
11773 mips_frame_barrier ();
11774 if (offset == const0_rtx)
11776 emit_move_insn (stack_pointer_rtx, base);
11777 mips_epilogue_set_cfa (stack_pointer_rtx, new_frame_size);
11779 else if (TARGET_MIPS16 && base != stack_pointer_rtx)
11781 emit_insn (gen_add3_insn (base, base, offset));
11782 mips_epilogue_set_cfa (base, new_frame_size);
11783 emit_move_insn (stack_pointer_rtx, base);
11785 else
11787 emit_insn (gen_add3_insn (stack_pointer_rtx, base, offset));
11788 mips_epilogue_set_cfa (stack_pointer_rtx, new_frame_size);
11792 /* Emit any instructions needed before a return. */
11794 void
11795 mips_expand_before_return (void)
11797 /* When using a call-clobbered gp, we start out with unified call
11798 insns that include instructions to restore the gp. We then split
11799 these unified calls after reload. These split calls explicitly
11800 clobber gp, so there is no need to define
11801 PIC_OFFSET_TABLE_REG_CALL_CLOBBERED.
11803 For consistency, we should also insert an explicit clobber of $28
11804 before return insns, so that the post-reload optimizers know that
11805 the register is not live on exit. */
11806 if (TARGET_CALL_CLOBBERED_GP)
11807 emit_clobber (pic_offset_table_rtx);
11810 /* Expand an "epilogue" or "sibcall_epilogue" pattern; SIBCALL_P
11811 says which. */
11813 void
11814 mips_expand_epilogue (bool sibcall_p)
11816 const struct mips_frame_info *frame;
11817 HOST_WIDE_INT step1, step2;
11818 rtx base, adjust;
11819 rtx_insn *insn;
11820 bool use_jraddiusp_p = false;
11822 if (!sibcall_p && mips_can_use_return_insn ())
11824 emit_jump_insn (gen_return ());
11825 return;
11828 /* In MIPS16 mode, if the return value should go into a floating-point
11829 register, we need to call a helper routine to copy it over. */
11830 if (mips16_cfun_returns_in_fpr_p ())
11831 mips16_copy_fpr_return_value ();
11833 /* Split the frame into two. STEP1 is the amount of stack we should
11834 deallocate before restoring the registers. STEP2 is the amount we
11835 should deallocate afterwards.
11837 Start off by assuming that no registers need to be restored. */
11838 frame = &cfun->machine->frame;
11839 step1 = frame->total_size;
11840 step2 = 0;
11842 /* Work out which register holds the frame address. */
11843 if (!frame_pointer_needed)
11844 base = stack_pointer_rtx;
11845 else
11847 base = hard_frame_pointer_rtx;
11848 step1 -= frame->hard_frame_pointer_offset;
11850 mips_epilogue.cfa_reg = base;
11851 mips_epilogue.cfa_offset = step1;
11852 mips_epilogue.cfa_restores = NULL_RTX;
11854 /* If we need to restore registers, deallocate as much stack as
11855 possible in the second step without going out of range. */
11856 if ((frame->mask | frame->fmask | frame->acc_mask) != 0
11857 || frame->num_cop0_regs > 0)
11859 step2 = MIN (step1, MIPS_MAX_FIRST_STACK_STEP);
11860 step1 -= step2;
11863 /* Get an rtx for STEP1 that we can add to BASE. */
11864 adjust = GEN_INT (step1);
11865 if (!SMALL_OPERAND (step1))
11867 mips_emit_move (MIPS_EPILOGUE_TEMP (Pmode), adjust);
11868 adjust = MIPS_EPILOGUE_TEMP (Pmode);
11870 mips_deallocate_stack (base, adjust, step2);
11872 /* If we're using addressing macros, $gp is implicitly used by all
11873 SYMBOL_REFs. We must emit a blockage insn before restoring $gp
11874 from the stack. */
11875 if (TARGET_CALL_SAVED_GP && !TARGET_EXPLICIT_RELOCS)
11876 emit_insn (gen_blockage ());
11878 mips_epilogue.cfa_restore_sp_offset = step2;
11879 if (GENERATE_MIPS16E_SAVE_RESTORE && frame->mask != 0)
11881 unsigned int regno, mask;
11882 HOST_WIDE_INT offset;
11883 rtx restore;
11885 /* Generate the restore instruction. */
11886 mask = frame->mask;
11887 restore = mips16e_build_save_restore (true, &mask, &offset, 0, step2);
11889 /* Restore any other registers manually. */
11890 for (regno = GP_REG_FIRST; regno < GP_REG_LAST; regno++)
11891 if (BITSET_P (mask, regno - GP_REG_FIRST))
11893 offset -= UNITS_PER_WORD;
11894 mips_save_restore_reg (word_mode, regno, offset, mips_restore_reg);
11897 /* Restore the remaining registers and deallocate the final bit
11898 of the frame. */
11899 mips_frame_barrier ();
11900 emit_insn (restore);
11901 mips_epilogue_set_cfa (stack_pointer_rtx, 0);
11903 else
11905 /* Restore the registers. */
11906 mips_for_each_saved_acc (frame->total_size - step2, mips_restore_reg);
11907 mips_for_each_saved_gpr_and_fpr (frame->total_size - step2,
11908 mips_restore_reg);
11910 if (cfun->machine->interrupt_handler_p)
11912 HOST_WIDE_INT offset;
11913 rtx mem;
11915 offset = frame->cop0_sp_offset - (frame->total_size - step2);
11916 if (!cfun->machine->keep_interrupts_masked_p)
11918 /* Restore the original EPC. */
11919 mem = gen_frame_mem (word_mode,
11920 plus_constant (Pmode, stack_pointer_rtx,
11921 offset));
11922 mips_emit_move (gen_rtx_REG (word_mode, K0_REG_NUM), mem);
11923 offset -= UNITS_PER_WORD;
11925 /* Move to COP0 EPC. */
11926 emit_insn (gen_cop0_move (gen_rtx_REG (SImode, COP0_EPC_REG_NUM),
11927 gen_rtx_REG (SImode, K0_REG_NUM)));
11930 /* Restore the original Status. */
11931 mem = gen_frame_mem (word_mode,
11932 plus_constant (Pmode, stack_pointer_rtx,
11933 offset));
11934 mips_emit_move (gen_rtx_REG (word_mode, K0_REG_NUM), mem);
11935 offset -= UNITS_PER_WORD;
11937 /* If we don't use shadow register set, we need to update SP. */
11938 if (!cfun->machine->use_shadow_register_set_p)
11939 mips_deallocate_stack (stack_pointer_rtx, GEN_INT (step2), 0);
11940 else
11941 /* The choice of position is somewhat arbitrary in this case. */
11942 mips_epilogue_emit_cfa_restores ();
11944 /* Move to COP0 Status. */
11945 emit_insn (gen_cop0_move (gen_rtx_REG (SImode, COP0_STATUS_REG_NUM),
11946 gen_rtx_REG (SImode, K0_REG_NUM)));
11948 else if (TARGET_MICROMIPS
11949 && !crtl->calls_eh_return
11950 && !sibcall_p
11951 && step2 > 0
11952 && mips_unsigned_immediate_p (step2, 5, 2))
11953 use_jraddiusp_p = true;
11954 else
11955 /* Deallocate the final bit of the frame. */
11956 mips_deallocate_stack (stack_pointer_rtx, GEN_INT (step2), 0);
11959 if (!use_jraddiusp_p)
11960 gcc_assert (!mips_epilogue.cfa_restores);
11962 /* Add in the __builtin_eh_return stack adjustment. We need to
11963 use a temporary in MIPS16 code. */
11964 if (crtl->calls_eh_return)
11966 if (TARGET_MIPS16)
11968 mips_emit_move (MIPS_EPILOGUE_TEMP (Pmode), stack_pointer_rtx);
11969 emit_insn (gen_add3_insn (MIPS_EPILOGUE_TEMP (Pmode),
11970 MIPS_EPILOGUE_TEMP (Pmode),
11971 EH_RETURN_STACKADJ_RTX));
11972 mips_emit_move (stack_pointer_rtx, MIPS_EPILOGUE_TEMP (Pmode));
11974 else
11975 emit_insn (gen_add3_insn (stack_pointer_rtx,
11976 stack_pointer_rtx,
11977 EH_RETURN_STACKADJ_RTX));
11980 if (!sibcall_p)
11982 mips_expand_before_return ();
11983 if (cfun->machine->interrupt_handler_p)
11985 /* Interrupt handlers generate eret or deret. */
11986 if (cfun->machine->use_debug_exception_return_p)
11987 emit_jump_insn (gen_mips_deret ());
11988 else
11989 emit_jump_insn (gen_mips_eret ());
11991 else
11993 rtx pat;
11995 /* When generating MIPS16 code, the normal
11996 mips_for_each_saved_gpr_and_fpr path will restore the return
11997 address into $7 rather than $31. */
11998 if (TARGET_MIPS16
11999 && !GENERATE_MIPS16E_SAVE_RESTORE
12000 && BITSET_P (frame->mask, RETURN_ADDR_REGNUM))
12002 /* simple_returns cannot rely on values that are only available
12003 on paths through the epilogue (because return paths that do
12004 not pass through the epilogue may nevertheless reuse a
12005 simple_return that occurs at the end of the epilogue).
12006 Use a normal return here instead. */
12007 rtx reg = gen_rtx_REG (Pmode, GP_REG_FIRST + 7);
12008 pat = gen_return_internal (reg);
12010 else if (use_jraddiusp_p)
12011 pat = gen_jraddiusp (GEN_INT (step2));
12012 else
12014 rtx reg = gen_rtx_REG (Pmode, RETURN_ADDR_REGNUM);
12015 pat = gen_simple_return_internal (reg);
12017 emit_jump_insn (pat);
12018 if (use_jraddiusp_p)
12019 mips_epilogue_set_cfa (stack_pointer_rtx, step2);
12023 /* Search from the beginning to the first use of K0 or K1. */
12024 if (cfun->machine->interrupt_handler_p
12025 && !cfun->machine->keep_interrupts_masked_p)
12027 for (insn = get_insns (); insn != NULL_RTX; insn = NEXT_INSN (insn))
12028 if (INSN_P (insn)
12029 && mips_refers_to_kernel_reg_p (PATTERN (insn)))
12030 break;
12031 gcc_assert (insn != NULL_RTX);
12032 /* Insert disable interrupts before the first use of K0 or K1. */
12033 emit_insn_before (gen_mips_di (), insn);
12034 emit_insn_before (gen_mips_ehb (), insn);
12038 /* Return nonzero if this function is known to have a null epilogue.
12039 This allows the optimizer to omit jumps to jumps if no stack
12040 was created. */
12042 bool
12043 mips_can_use_return_insn (void)
12045 /* Interrupt handlers need to go through the epilogue. */
12046 if (cfun->machine->interrupt_handler_p)
12047 return false;
12049 if (!reload_completed)
12050 return false;
12052 if (crtl->profile)
12053 return false;
12055 /* In MIPS16 mode, a function that returns a floating-point value
12056 needs to arrange to copy the return value into the floating-point
12057 registers. */
12058 if (mips16_cfun_returns_in_fpr_p ())
12059 return false;
12061 return cfun->machine->frame.total_size == 0;
12064 /* Return true if register REGNO can store a value of mode MODE.
12065 The result of this function is cached in mips_hard_regno_mode_ok. */
12067 static bool
12068 mips_hard_regno_mode_ok_p (unsigned int regno, machine_mode mode)
12070 unsigned int size;
12071 enum mode_class mclass;
12073 if (mode == CCV2mode)
12074 return (ISA_HAS_8CC
12075 && ST_REG_P (regno)
12076 && (regno - ST_REG_FIRST) % 2 == 0);
12078 if (mode == CCV4mode)
12079 return (ISA_HAS_8CC
12080 && ST_REG_P (regno)
12081 && (regno - ST_REG_FIRST) % 4 == 0);
12083 if (mode == CCmode)
12084 return ISA_HAS_8CC ? ST_REG_P (regno) : regno == FPSW_REGNUM;
12086 size = GET_MODE_SIZE (mode);
12087 mclass = GET_MODE_CLASS (mode);
12089 if (GP_REG_P (regno) && mode != CCFmode)
12090 return ((regno - GP_REG_FIRST) & 1) == 0 || size <= UNITS_PER_WORD;
12092 if (FP_REG_P (regno)
12093 && (((regno - FP_REG_FIRST) % MAX_FPRS_PER_FMT) == 0
12094 || (MIN_FPRS_PER_FMT == 1 && size <= UNITS_PER_FPREG)))
12096 /* Deny use of odd-numbered registers for 32-bit data for
12097 the o32 FP64A ABI. */
12098 if (TARGET_O32_FP64A_ABI && size <= 4 && (regno & 1) != 0)
12099 return false;
12101 /* The FPXX ABI requires double-precision values to be placed in
12102 even-numbered registers. Disallow odd-numbered registers with
12103 CCFmode because CCFmode double-precision compares will write a
12104 64-bit value to a register. */
12105 if (mode == CCFmode)
12106 return !(TARGET_FLOATXX && (regno & 1) != 0);
12108 /* Allow 64-bit vector modes for Loongson-2E/2F. */
12109 if (TARGET_LOONGSON_VECTORS
12110 && (mode == V2SImode
12111 || mode == V4HImode
12112 || mode == V8QImode
12113 || mode == DImode))
12114 return true;
12116 if (mclass == MODE_FLOAT
12117 || mclass == MODE_COMPLEX_FLOAT
12118 || mclass == MODE_VECTOR_FLOAT)
12119 return size <= UNITS_PER_FPVALUE;
12121 /* Allow integer modes that fit into a single register. We need
12122 to put integers into FPRs when using instructions like CVT
12123 and TRUNC. There's no point allowing sizes smaller than a word,
12124 because the FPU has no appropriate load/store instructions. */
12125 if (mclass == MODE_INT)
12126 return size >= MIN_UNITS_PER_WORD && size <= UNITS_PER_FPREG;
12129 /* Don't allow vector modes in accumulators. */
12130 if (ACC_REG_P (regno)
12131 && !VECTOR_MODE_P (mode)
12132 && (INTEGRAL_MODE_P (mode) || ALL_FIXED_POINT_MODE_P (mode)))
12134 if (MD_REG_P (regno))
12136 /* After a multiplication or division, clobbering HI makes
12137 the value of LO unpredictable, and vice versa. This means
12138 that, for all interesting cases, HI and LO are effectively
12139 a single register.
12141 We model this by requiring that any value that uses HI
12142 also uses LO. */
12143 if (size <= UNITS_PER_WORD * 2)
12144 return regno == (size <= UNITS_PER_WORD ? LO_REGNUM : MD_REG_FIRST);
12146 else
12148 /* DSP accumulators do not have the same restrictions as
12149 HI and LO, so we can treat them as normal doubleword
12150 registers. */
12151 if (size <= UNITS_PER_WORD)
12152 return true;
12154 if (size <= UNITS_PER_WORD * 2
12155 && ((regno - DSP_ACC_REG_FIRST) & 1) == 0)
12156 return true;
12160 if (ALL_COP_REG_P (regno))
12161 return mclass == MODE_INT && size <= UNITS_PER_WORD;
12163 if (regno == GOT_VERSION_REGNUM)
12164 return mode == SImode;
12166 return false;
12169 /* Implement HARD_REGNO_NREGS. */
12171 unsigned int
12172 mips_hard_regno_nregs (int regno, machine_mode mode)
12174 if (ST_REG_P (regno))
12175 /* The size of FP status registers is always 4, because they only hold
12176 CCmode values, and CCmode is always considered to be 4 bytes wide. */
12177 return (GET_MODE_SIZE (mode) + 3) / 4;
12179 if (FP_REG_P (regno))
12180 return (GET_MODE_SIZE (mode) + UNITS_PER_FPREG - 1) / UNITS_PER_FPREG;
12182 /* All other registers are word-sized. */
12183 return (GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
12186 /* Implement CLASS_MAX_NREGS, taking the maximum of the cases
12187 in mips_hard_regno_nregs. */
12190 mips_class_max_nregs (enum reg_class rclass, machine_mode mode)
12192 int size;
12193 HARD_REG_SET left;
12195 size = 0x8000;
12196 COPY_HARD_REG_SET (left, reg_class_contents[(int) rclass]);
12197 if (hard_reg_set_intersect_p (left, reg_class_contents[(int) ST_REGS]))
12199 if (HARD_REGNO_MODE_OK (ST_REG_FIRST, mode))
12200 size = MIN (size, 4);
12201 AND_COMPL_HARD_REG_SET (left, reg_class_contents[(int) ST_REGS]);
12203 if (hard_reg_set_intersect_p (left, reg_class_contents[(int) FP_REGS]))
12205 if (HARD_REGNO_MODE_OK (FP_REG_FIRST, mode))
12206 size = MIN (size, UNITS_PER_FPREG);
12207 AND_COMPL_HARD_REG_SET (left, reg_class_contents[(int) FP_REGS]);
12209 if (!hard_reg_set_empty_p (left))
12210 size = MIN (size, UNITS_PER_WORD);
12211 return (GET_MODE_SIZE (mode) + size - 1) / size;
12214 /* Implement CANNOT_CHANGE_MODE_CLASS. */
12216 bool
12217 mips_cannot_change_mode_class (machine_mode from,
12218 machine_mode to,
12219 enum reg_class rclass)
12221 /* Allow conversions between different Loongson integer vectors,
12222 and between those vectors and DImode. */
12223 if (GET_MODE_SIZE (from) == 8 && GET_MODE_SIZE (to) == 8
12224 && INTEGRAL_MODE_P (from) && INTEGRAL_MODE_P (to))
12225 return false;
12227 /* Otherwise, there are several problems with changing the modes of
12228 values in floating-point registers:
12230 - When a multi-word value is stored in paired floating-point
12231 registers, the first register always holds the low word. We
12232 therefore can't allow FPRs to change between single-word and
12233 multi-word modes on big-endian targets.
12235 - GCC assumes that each word of a multiword register can be
12236 accessed individually using SUBREGs. This is not true for
12237 floating-point registers if they are bigger than a word.
12239 - Loading a 32-bit value into a 64-bit floating-point register
12240 will not sign-extend the value, despite what LOAD_EXTEND_OP
12241 says. We can't allow FPRs to change from SImode to a wider
12242 mode on 64-bit targets.
12244 - If the FPU has already interpreted a value in one format, we
12245 must not ask it to treat the value as having a different
12246 format.
12248 We therefore disallow all mode changes involving FPRs. */
12250 return reg_classes_intersect_p (FP_REGS, rclass);
12253 /* Implement target hook small_register_classes_for_mode_p. */
12255 static bool
12256 mips_small_register_classes_for_mode_p (machine_mode mode
12257 ATTRIBUTE_UNUSED)
12259 return TARGET_MIPS16;
12262 /* Return true if moves in mode MODE can use the FPU's mov.fmt instruction. */
12264 static bool
12265 mips_mode_ok_for_mov_fmt_p (machine_mode mode)
12267 switch (mode)
12269 case CCFmode:
12270 case SFmode:
12271 return TARGET_HARD_FLOAT;
12273 case DFmode:
12274 return TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT;
12276 case V2SFmode:
12277 return TARGET_HARD_FLOAT && TARGET_PAIRED_SINGLE_FLOAT;
12279 default:
12280 return false;
12284 /* Implement MODES_TIEABLE_P. */
12286 bool
12287 mips_modes_tieable_p (machine_mode mode1, machine_mode mode2)
12289 /* FPRs allow no mode punning, so it's not worth tying modes if we'd
12290 prefer to put one of them in FPRs. */
12291 return (mode1 == mode2
12292 || (!mips_mode_ok_for_mov_fmt_p (mode1)
12293 && !mips_mode_ok_for_mov_fmt_p (mode2)));
12296 /* Implement TARGET_PREFERRED_RELOAD_CLASS. */
12298 static reg_class_t
12299 mips_preferred_reload_class (rtx x, reg_class_t rclass)
12301 if (mips_dangerous_for_la25_p (x) && reg_class_subset_p (LEA_REGS, rclass))
12302 return LEA_REGS;
12304 if (reg_class_subset_p (FP_REGS, rclass)
12305 && mips_mode_ok_for_mov_fmt_p (GET_MODE (x)))
12306 return FP_REGS;
12308 if (reg_class_subset_p (GR_REGS, rclass))
12309 rclass = GR_REGS;
12311 if (TARGET_MIPS16 && reg_class_subset_p (M16_REGS, rclass))
12312 rclass = M16_REGS;
12314 return rclass;
12317 /* RCLASS is a class involved in a REGISTER_MOVE_COST calculation.
12318 Return a "canonical" class to represent it in later calculations. */
12320 static reg_class_t
12321 mips_canonicalize_move_class (reg_class_t rclass)
12323 /* All moves involving accumulator registers have the same cost. */
12324 if (reg_class_subset_p (rclass, ACC_REGS))
12325 rclass = ACC_REGS;
12327 /* Likewise promote subclasses of general registers to the most
12328 interesting containing class. */
12329 if (TARGET_MIPS16 && reg_class_subset_p (rclass, M16_REGS))
12330 rclass = M16_REGS;
12331 else if (reg_class_subset_p (rclass, GENERAL_REGS))
12332 rclass = GENERAL_REGS;
12334 return rclass;
12337 /* Return the cost of moving a value from a register of class FROM to a GPR.
12338 Return 0 for classes that are unions of other classes handled by this
12339 function. */
12341 static int
12342 mips_move_to_gpr_cost (reg_class_t from)
12344 switch (from)
12346 case M16_REGS:
12347 case GENERAL_REGS:
12348 /* A MIPS16 MOVE instruction, or a non-MIPS16 MOVE macro. */
12349 return 2;
12351 case ACC_REGS:
12352 /* MFLO and MFHI. */
12353 return 6;
12355 case FP_REGS:
12356 /* MFC1, etc. */
12357 return 4;
12359 case COP0_REGS:
12360 case COP2_REGS:
12361 case COP3_REGS:
12362 /* This choice of value is historical. */
12363 return 5;
12365 default:
12366 return 0;
12370 /* Return the cost of moving a value from a GPR to a register of class TO.
12371 Return 0 for classes that are unions of other classes handled by this
12372 function. */
12374 static int
12375 mips_move_from_gpr_cost (reg_class_t to)
12377 switch (to)
12379 case M16_REGS:
12380 case GENERAL_REGS:
12381 /* A MIPS16 MOVE instruction, or a non-MIPS16 MOVE macro. */
12382 return 2;
12384 case ACC_REGS:
12385 /* MTLO and MTHI. */
12386 return 6;
12388 case FP_REGS:
12389 /* MTC1, etc. */
12390 return 4;
12392 case COP0_REGS:
12393 case COP2_REGS:
12394 case COP3_REGS:
12395 /* This choice of value is historical. */
12396 return 5;
12398 default:
12399 return 0;
12403 /* Implement TARGET_REGISTER_MOVE_COST. Return 0 for classes that are the
12404 maximum of the move costs for subclasses; regclass will work out
12405 the maximum for us. */
12407 static int
12408 mips_register_move_cost (machine_mode mode,
12409 reg_class_t from, reg_class_t to)
12411 reg_class_t dregs;
12412 int cost1, cost2;
12414 from = mips_canonicalize_move_class (from);
12415 to = mips_canonicalize_move_class (to);
12417 /* Handle moves that can be done without using general-purpose registers. */
12418 if (from == FP_REGS)
12420 if (to == FP_REGS && mips_mode_ok_for_mov_fmt_p (mode))
12421 /* MOV.FMT. */
12422 return 4;
12425 /* Handle cases in which only one class deviates from the ideal. */
12426 dregs = TARGET_MIPS16 ? M16_REGS : GENERAL_REGS;
12427 if (from == dregs)
12428 return mips_move_from_gpr_cost (to);
12429 if (to == dregs)
12430 return mips_move_to_gpr_cost (from);
12432 /* Handles cases that require a GPR temporary. */
12433 cost1 = mips_move_to_gpr_cost (from);
12434 if (cost1 != 0)
12436 cost2 = mips_move_from_gpr_cost (to);
12437 if (cost2 != 0)
12438 return cost1 + cost2;
12441 return 0;
12444 /* Implement TARGET_REGISTER_PRIORITY. */
12446 static int
12447 mips_register_priority (int hard_regno)
12449 /* Treat MIPS16 registers with higher priority than other regs. */
12450 if (TARGET_MIPS16
12451 && TEST_HARD_REG_BIT (reg_class_contents[M16_REGS], hard_regno))
12452 return 1;
12453 return 0;
12456 /* Implement TARGET_MEMORY_MOVE_COST. */
12458 static int
12459 mips_memory_move_cost (machine_mode mode, reg_class_t rclass, bool in)
12461 return (mips_cost->memory_latency
12462 + memory_move_secondary_cost (mode, rclass, in));
12465 /* Implement SECONDARY_MEMORY_NEEDED. */
12467 bool
12468 mips_secondary_memory_needed (enum reg_class class1, enum reg_class class2,
12469 machine_mode mode)
12471 /* Ignore spilled pseudos. */
12472 if (lra_in_progress && (class1 == NO_REGS || class2 == NO_REGS))
12473 return false;
12475 if (((class1 == FP_REGS) != (class2 == FP_REGS))
12476 && ((TARGET_FLOATXX && !ISA_HAS_MXHC1)
12477 || TARGET_O32_FP64A_ABI)
12478 && GET_MODE_SIZE (mode) >= 8)
12479 return true;
12481 return false;
12484 /* Return the register class required for a secondary register when
12485 copying between one of the registers in RCLASS and value X, which
12486 has mode MODE. X is the source of the move if IN_P, otherwise it
12487 is the destination. Return NO_REGS if no secondary register is
12488 needed. */
12490 enum reg_class
12491 mips_secondary_reload_class (enum reg_class rclass,
12492 machine_mode mode, rtx x, bool)
12494 int regno;
12496 /* If X is a constant that cannot be loaded into $25, it must be loaded
12497 into some other GPR. No other register class allows a direct move. */
12498 if (mips_dangerous_for_la25_p (x))
12499 return reg_class_subset_p (rclass, LEA_REGS) ? NO_REGS : LEA_REGS;
12501 regno = true_regnum (x);
12502 if (TARGET_MIPS16)
12504 /* In MIPS16 mode, every move must involve a member of M16_REGS. */
12505 if (!reg_class_subset_p (rclass, M16_REGS) && !M16_REG_P (regno))
12506 return M16_REGS;
12508 return NO_REGS;
12511 /* Copying from accumulator registers to anywhere other than a general
12512 register requires a temporary general register. */
12513 if (reg_class_subset_p (rclass, ACC_REGS))
12514 return GP_REG_P (regno) ? NO_REGS : GR_REGS;
12515 if (ACC_REG_P (regno))
12516 return reg_class_subset_p (rclass, GR_REGS) ? NO_REGS : GR_REGS;
12518 if (reg_class_subset_p (rclass, FP_REGS))
12520 if (regno < 0
12521 || (MEM_P (x)
12522 && (GET_MODE_SIZE (mode) == 4 || GET_MODE_SIZE (mode) == 8)))
12523 /* In this case we can use lwc1, swc1, ldc1 or sdc1. We'll use
12524 pairs of lwc1s and swc1s if ldc1 and sdc1 are not supported. */
12525 return NO_REGS;
12527 if (GP_REG_P (regno) || x == CONST0_RTX (mode))
12528 /* In this case we can use mtc1, mfc1, dmtc1 or dmfc1. */
12529 return NO_REGS;
12531 if (CONSTANT_P (x) && !targetm.cannot_force_const_mem (mode, x))
12532 /* We can force the constant to memory and use lwc1
12533 and ldc1. As above, we will use pairs of lwc1s if
12534 ldc1 is not supported. */
12535 return NO_REGS;
12537 if (FP_REG_P (regno) && mips_mode_ok_for_mov_fmt_p (mode))
12538 /* In this case we can use mov.fmt. */
12539 return NO_REGS;
12541 /* Otherwise, we need to reload through an integer register. */
12542 return GR_REGS;
12544 if (FP_REG_P (regno))
12545 return reg_class_subset_p (rclass, GR_REGS) ? NO_REGS : GR_REGS;
12547 return NO_REGS;
12550 /* Implement TARGET_MODE_REP_EXTENDED. */
12552 static int
12553 mips_mode_rep_extended (machine_mode mode, machine_mode mode_rep)
12555 /* On 64-bit targets, SImode register values are sign-extended to DImode. */
12556 if (TARGET_64BIT && mode == SImode && mode_rep == DImode)
12557 return SIGN_EXTEND;
12559 return UNKNOWN;
12562 /* Implement TARGET_VALID_POINTER_MODE. */
12564 static bool
12565 mips_valid_pointer_mode (machine_mode mode)
12567 return mode == SImode || (TARGET_64BIT && mode == DImode);
12570 /* Implement TARGET_VECTOR_MODE_SUPPORTED_P. */
12572 static bool
12573 mips_vector_mode_supported_p (machine_mode mode)
12575 switch (mode)
12577 case V2SFmode:
12578 return TARGET_PAIRED_SINGLE_FLOAT;
12580 case V2HImode:
12581 case V4QImode:
12582 case V2HQmode:
12583 case V2UHQmode:
12584 case V2HAmode:
12585 case V2UHAmode:
12586 case V4QQmode:
12587 case V4UQQmode:
12588 return TARGET_DSP;
12590 case V2SImode:
12591 case V4HImode:
12592 case V8QImode:
12593 return TARGET_LOONGSON_VECTORS;
12595 default:
12596 return false;
12600 /* Implement TARGET_SCALAR_MODE_SUPPORTED_P. */
12602 static bool
12603 mips_scalar_mode_supported_p (machine_mode mode)
12605 if (ALL_FIXED_POINT_MODE_P (mode)
12606 && GET_MODE_PRECISION (mode) <= 2 * BITS_PER_WORD)
12607 return true;
12609 return default_scalar_mode_supported_p (mode);
12612 /* Implement TARGET_VECTORIZE_PREFERRED_SIMD_MODE. */
12614 static machine_mode
12615 mips_preferred_simd_mode (machine_mode mode ATTRIBUTE_UNUSED)
12617 if (TARGET_PAIRED_SINGLE_FLOAT
12618 && mode == SFmode)
12619 return V2SFmode;
12620 return word_mode;
12623 /* Implement TARGET_INIT_LIBFUNCS. */
12625 static void
12626 mips_init_libfuncs (void)
12628 if (TARGET_FIX_VR4120)
12630 /* Register the special divsi3 and modsi3 functions needed to work
12631 around VR4120 division errata. */
12632 set_optab_libfunc (sdiv_optab, SImode, "__vr4120_divsi3");
12633 set_optab_libfunc (smod_optab, SImode, "__vr4120_modsi3");
12636 if (TARGET_MIPS16 && TARGET_HARD_FLOAT_ABI)
12638 /* Register the MIPS16 -mhard-float stubs. */
12639 set_optab_libfunc (add_optab, SFmode, "__mips16_addsf3");
12640 set_optab_libfunc (sub_optab, SFmode, "__mips16_subsf3");
12641 set_optab_libfunc (smul_optab, SFmode, "__mips16_mulsf3");
12642 set_optab_libfunc (sdiv_optab, SFmode, "__mips16_divsf3");
12644 set_optab_libfunc (eq_optab, SFmode, "__mips16_eqsf2");
12645 set_optab_libfunc (ne_optab, SFmode, "__mips16_nesf2");
12646 set_optab_libfunc (gt_optab, SFmode, "__mips16_gtsf2");
12647 set_optab_libfunc (ge_optab, SFmode, "__mips16_gesf2");
12648 set_optab_libfunc (lt_optab, SFmode, "__mips16_ltsf2");
12649 set_optab_libfunc (le_optab, SFmode, "__mips16_lesf2");
12650 set_optab_libfunc (unord_optab, SFmode, "__mips16_unordsf2");
12652 set_conv_libfunc (sfix_optab, SImode, SFmode, "__mips16_fix_truncsfsi");
12653 set_conv_libfunc (sfloat_optab, SFmode, SImode, "__mips16_floatsisf");
12654 set_conv_libfunc (ufloat_optab, SFmode, SImode, "__mips16_floatunsisf");
12656 if (TARGET_DOUBLE_FLOAT)
12658 set_optab_libfunc (add_optab, DFmode, "__mips16_adddf3");
12659 set_optab_libfunc (sub_optab, DFmode, "__mips16_subdf3");
12660 set_optab_libfunc (smul_optab, DFmode, "__mips16_muldf3");
12661 set_optab_libfunc (sdiv_optab, DFmode, "__mips16_divdf3");
12663 set_optab_libfunc (eq_optab, DFmode, "__mips16_eqdf2");
12664 set_optab_libfunc (ne_optab, DFmode, "__mips16_nedf2");
12665 set_optab_libfunc (gt_optab, DFmode, "__mips16_gtdf2");
12666 set_optab_libfunc (ge_optab, DFmode, "__mips16_gedf2");
12667 set_optab_libfunc (lt_optab, DFmode, "__mips16_ltdf2");
12668 set_optab_libfunc (le_optab, DFmode, "__mips16_ledf2");
12669 set_optab_libfunc (unord_optab, DFmode, "__mips16_unorddf2");
12671 set_conv_libfunc (sext_optab, DFmode, SFmode,
12672 "__mips16_extendsfdf2");
12673 set_conv_libfunc (trunc_optab, SFmode, DFmode,
12674 "__mips16_truncdfsf2");
12675 set_conv_libfunc (sfix_optab, SImode, DFmode,
12676 "__mips16_fix_truncdfsi");
12677 set_conv_libfunc (sfloat_optab, DFmode, SImode,
12678 "__mips16_floatsidf");
12679 set_conv_libfunc (ufloat_optab, DFmode, SImode,
12680 "__mips16_floatunsidf");
12684 /* The MIPS16 ISA does not have an encoding for "sync", so we rely
12685 on an external non-MIPS16 routine to implement __sync_synchronize.
12686 Similarly for the rest of the ll/sc libfuncs. */
12687 if (TARGET_MIPS16)
12689 synchronize_libfunc = init_one_libfunc ("__sync_synchronize");
12690 init_sync_libfuncs (UNITS_PER_WORD);
12694 /* Build up a multi-insn sequence that loads label TARGET into $AT. */
12696 static void
12697 mips_process_load_label (rtx target)
12699 rtx base, gp, intop;
12700 HOST_WIDE_INT offset;
12702 mips_multi_start ();
12703 switch (mips_abi)
12705 case ABI_N32:
12706 mips_multi_add_insn ("lw\t%@,%%got_page(%0)(%+)", target, 0);
12707 mips_multi_add_insn ("addiu\t%@,%@,%%got_ofst(%0)", target, 0);
12708 break;
12710 case ABI_64:
12711 mips_multi_add_insn ("ld\t%@,%%got_page(%0)(%+)", target, 0);
12712 mips_multi_add_insn ("daddiu\t%@,%@,%%got_ofst(%0)", target, 0);
12713 break;
12715 default:
12716 gp = pic_offset_table_rtx;
12717 if (mips_cfun_has_cprestore_slot_p ())
12719 gp = gen_rtx_REG (Pmode, AT_REGNUM);
12720 mips_get_cprestore_base_and_offset (&base, &offset, true);
12721 if (!SMALL_OPERAND (offset))
12723 intop = GEN_INT (CONST_HIGH_PART (offset));
12724 mips_multi_add_insn ("lui\t%0,%1", gp, intop, 0);
12725 mips_multi_add_insn ("addu\t%0,%0,%1", gp, base, 0);
12727 base = gp;
12728 offset = CONST_LOW_PART (offset);
12730 intop = GEN_INT (offset);
12731 if (ISA_HAS_LOAD_DELAY)
12732 mips_multi_add_insn ("lw\t%0,%1(%2)%#", gp, intop, base, 0);
12733 else
12734 mips_multi_add_insn ("lw\t%0,%1(%2)", gp, intop, base, 0);
12736 if (ISA_HAS_LOAD_DELAY)
12737 mips_multi_add_insn ("lw\t%@,%%got(%0)(%1)%#", target, gp, 0);
12738 else
12739 mips_multi_add_insn ("lw\t%@,%%got(%0)(%1)", target, gp, 0);
12740 mips_multi_add_insn ("addiu\t%@,%@,%%lo(%0)", target, 0);
12741 break;
12745 /* Return the number of instructions needed to load a label into $AT. */
12747 static unsigned int
12748 mips_load_label_num_insns (void)
12750 if (cfun->machine->load_label_num_insns == 0)
12752 mips_process_load_label (pc_rtx);
12753 cfun->machine->load_label_num_insns = mips_multi_num_insns;
12755 return cfun->machine->load_label_num_insns;
12758 /* Emit an asm sequence to start a noat block and load the address
12759 of a label into $1. */
12761 void
12762 mips_output_load_label (rtx target)
12764 mips_push_asm_switch (&mips_noat);
12765 if (TARGET_EXPLICIT_RELOCS)
12767 mips_process_load_label (target);
12768 mips_multi_write ();
12770 else
12772 if (Pmode == DImode)
12773 output_asm_insn ("dla\t%@,%0", &target);
12774 else
12775 output_asm_insn ("la\t%@,%0", &target);
12779 /* Return the length of INSN. LENGTH is the initial length computed by
12780 attributes in the machine-description file. */
12783 mips_adjust_insn_length (rtx_insn *insn, int length)
12785 /* mips.md uses MAX_PIC_BRANCH_LENGTH as a placeholder for the length
12786 of a PIC long-branch sequence. Substitute the correct value. */
12787 if (length == MAX_PIC_BRANCH_LENGTH
12788 && JUMP_P (insn)
12789 && INSN_CODE (insn) >= 0
12790 && get_attr_type (insn) == TYPE_BRANCH)
12792 /* Add the branch-over instruction and its delay slot, if this
12793 is a conditional branch. */
12794 length = simplejump_p (insn) ? 0 : 8;
12796 /* Add the size of a load into $AT. */
12797 length += BASE_INSN_LENGTH * mips_load_label_num_insns ();
12799 /* Add the length of an indirect jump, ignoring the delay slot. */
12800 length += TARGET_COMPRESSION ? 2 : 4;
12803 /* A unconditional jump has an unfilled delay slot if it is not part
12804 of a sequence. A conditional jump normally has a delay slot, but
12805 does not on MIPS16. */
12806 if (CALL_P (insn) || (TARGET_MIPS16 ? simplejump_p (insn) : JUMP_P (insn)))
12807 length += TARGET_MIPS16 ? 2 : 4;
12809 /* See how many nops might be needed to avoid hardware hazards. */
12810 if (!cfun->machine->ignore_hazard_length_p
12811 && INSN_P (insn)
12812 && INSN_CODE (insn) >= 0)
12813 switch (get_attr_hazard (insn))
12815 case HAZARD_NONE:
12816 break;
12818 case HAZARD_DELAY:
12819 length += NOP_INSN_LENGTH;
12820 break;
12822 case HAZARD_HILO:
12823 length += NOP_INSN_LENGTH * 2;
12824 break;
12827 return length;
12830 /* Return the assembly code for INSN, which has the operands given by
12831 OPERANDS, and which branches to OPERANDS[0] if some condition is true.
12832 BRANCH_IF_TRUE is the asm template that should be used if OPERANDS[0]
12833 is in range of a direct branch. BRANCH_IF_FALSE is an inverted
12834 version of BRANCH_IF_TRUE. */
12836 const char *
12837 mips_output_conditional_branch (rtx_insn *insn, rtx *operands,
12838 const char *branch_if_true,
12839 const char *branch_if_false)
12841 unsigned int length;
12842 rtx taken;
12844 gcc_assert (LABEL_P (operands[0]));
12846 length = get_attr_length (insn);
12847 if (length <= 8)
12849 /* Just a simple conditional branch. */
12850 mips_branch_likely = (final_sequence && INSN_ANNULLED_BRANCH_P (insn));
12851 return branch_if_true;
12854 /* Generate a reversed branch around a direct jump. This fallback does
12855 not use branch-likely instructions. */
12856 mips_branch_likely = false;
12857 rtx_code_label *not_taken = gen_label_rtx ();
12858 taken = operands[0];
12860 /* Generate the reversed branch to NOT_TAKEN. */
12861 operands[0] = not_taken;
12862 output_asm_insn (branch_if_false, operands);
12864 /* If INSN has a delay slot, we must provide delay slots for both the
12865 branch to NOT_TAKEN and the conditional jump. We must also ensure
12866 that INSN's delay slot is executed in the appropriate cases. */
12867 if (final_sequence)
12869 /* This first delay slot will always be executed, so use INSN's
12870 delay slot if is not annulled. */
12871 if (!INSN_ANNULLED_BRANCH_P (insn))
12873 final_scan_insn (final_sequence->insn (1),
12874 asm_out_file, optimize, 1, NULL);
12875 final_sequence->insn (1)->set_deleted ();
12877 else
12878 output_asm_insn ("nop", 0);
12879 fprintf (asm_out_file, "\n");
12882 /* Output the unconditional branch to TAKEN. */
12883 if (TARGET_ABSOLUTE_JUMPS)
12884 output_asm_insn (MIPS_ABSOLUTE_JUMP ("j\t%0%/"), &taken);
12885 else
12887 mips_output_load_label (taken);
12888 output_asm_insn ("jr\t%@%]%/", 0);
12891 /* Now deal with its delay slot; see above. */
12892 if (final_sequence)
12894 /* This delay slot will only be executed if the branch is taken.
12895 Use INSN's delay slot if is annulled. */
12896 if (INSN_ANNULLED_BRANCH_P (insn))
12898 final_scan_insn (final_sequence->insn (1),
12899 asm_out_file, optimize, 1, NULL);
12900 final_sequence->insn (1)->set_deleted ();
12902 else
12903 output_asm_insn ("nop", 0);
12904 fprintf (asm_out_file, "\n");
12907 /* Output NOT_TAKEN. */
12908 targetm.asm_out.internal_label (asm_out_file, "L",
12909 CODE_LABEL_NUMBER (not_taken));
12910 return "";
12913 /* Return the assembly code for INSN, which branches to OPERANDS[0]
12914 if some ordering condition is true. The condition is given by
12915 OPERANDS[1] if !INVERTED_P, otherwise it is the inverse of
12916 OPERANDS[1]. OPERANDS[2] is the comparison's first operand;
12917 its second is always zero. */
12919 const char *
12920 mips_output_order_conditional_branch (rtx_insn *insn, rtx *operands, bool inverted_p)
12922 const char *branch[2];
12924 /* Make BRANCH[1] branch to OPERANDS[0] when the condition is true.
12925 Make BRANCH[0] branch on the inverse condition. */
12926 switch (GET_CODE (operands[1]))
12928 /* These cases are equivalent to comparisons against zero. */
12929 case LEU:
12930 inverted_p = !inverted_p;
12931 /* Fall through. */
12932 case GTU:
12933 branch[!inverted_p] = MIPS_BRANCH ("bne", "%2,%.,%0");
12934 branch[inverted_p] = MIPS_BRANCH ("beq", "%2,%.,%0");
12935 break;
12937 /* These cases are always true or always false. */
12938 case LTU:
12939 inverted_p = !inverted_p;
12940 /* Fall through. */
12941 case GEU:
12942 branch[!inverted_p] = MIPS_BRANCH ("beq", "%.,%.,%0");
12943 branch[inverted_p] = MIPS_BRANCH ("bne", "%.,%.,%0");
12944 break;
12946 default:
12947 branch[!inverted_p] = MIPS_BRANCH ("b%C1z", "%2,%0");
12948 branch[inverted_p] = MIPS_BRANCH ("b%N1z", "%2,%0");
12949 break;
12951 return mips_output_conditional_branch (insn, operands, branch[1], branch[0]);
12954 /* Start a block of code that needs access to the LL, SC and SYNC
12955 instructions. */
12957 static void
12958 mips_start_ll_sc_sync_block (void)
12960 if (!ISA_HAS_LL_SC)
12962 output_asm_insn (".set\tpush", 0);
12963 if (TARGET_64BIT)
12964 output_asm_insn (".set\tmips3", 0);
12965 else
12966 output_asm_insn (".set\tmips2", 0);
12970 /* End a block started by mips_start_ll_sc_sync_block. */
12972 static void
12973 mips_end_ll_sc_sync_block (void)
12975 if (!ISA_HAS_LL_SC)
12976 output_asm_insn (".set\tpop", 0);
12979 /* Output and/or return the asm template for a sync instruction. */
12981 const char *
12982 mips_output_sync (void)
12984 mips_start_ll_sc_sync_block ();
12985 output_asm_insn ("sync", 0);
12986 mips_end_ll_sc_sync_block ();
12987 return "";
12990 /* Return the asm template associated with sync_insn1 value TYPE.
12991 IS_64BIT_P is true if we want a 64-bit rather than 32-bit operation. */
12993 static const char *
12994 mips_sync_insn1_template (enum attr_sync_insn1 type, bool is_64bit_p)
12996 switch (type)
12998 case SYNC_INSN1_MOVE:
12999 return "move\t%0,%z2";
13000 case SYNC_INSN1_LI:
13001 return "li\t%0,%2";
13002 case SYNC_INSN1_ADDU:
13003 return is_64bit_p ? "daddu\t%0,%1,%z2" : "addu\t%0,%1,%z2";
13004 case SYNC_INSN1_ADDIU:
13005 return is_64bit_p ? "daddiu\t%0,%1,%2" : "addiu\t%0,%1,%2";
13006 case SYNC_INSN1_SUBU:
13007 return is_64bit_p ? "dsubu\t%0,%1,%z2" : "subu\t%0,%1,%z2";
13008 case SYNC_INSN1_AND:
13009 return "and\t%0,%1,%z2";
13010 case SYNC_INSN1_ANDI:
13011 return "andi\t%0,%1,%2";
13012 case SYNC_INSN1_OR:
13013 return "or\t%0,%1,%z2";
13014 case SYNC_INSN1_ORI:
13015 return "ori\t%0,%1,%2";
13016 case SYNC_INSN1_XOR:
13017 return "xor\t%0,%1,%z2";
13018 case SYNC_INSN1_XORI:
13019 return "xori\t%0,%1,%2";
13021 gcc_unreachable ();
13024 /* Return the asm template associated with sync_insn2 value TYPE. */
13026 static const char *
13027 mips_sync_insn2_template (enum attr_sync_insn2 type)
13029 switch (type)
13031 case SYNC_INSN2_NOP:
13032 gcc_unreachable ();
13033 case SYNC_INSN2_AND:
13034 return "and\t%0,%1,%z2";
13035 case SYNC_INSN2_XOR:
13036 return "xor\t%0,%1,%z2";
13037 case SYNC_INSN2_NOT:
13038 return "nor\t%0,%1,%.";
13040 gcc_unreachable ();
13043 /* OPERANDS are the operands to a sync loop instruction and INDEX is
13044 the value of the one of the sync_* attributes. Return the operand
13045 referred to by the attribute, or DEFAULT_VALUE if the insn doesn't
13046 have the associated attribute. */
13048 static rtx
13049 mips_get_sync_operand (rtx *operands, int index, rtx default_value)
13051 if (index > 0)
13052 default_value = operands[index - 1];
13053 return default_value;
13056 /* INSN is a sync loop with operands OPERANDS. Build up a multi-insn
13057 sequence for it. */
13059 static void
13060 mips_process_sync_loop (rtx_insn *insn, rtx *operands)
13062 rtx at, mem, oldval, newval, inclusive_mask, exclusive_mask;
13063 rtx required_oldval, insn1_op2, tmp1, tmp2, tmp3, cmp;
13064 unsigned int tmp3_insn;
13065 enum attr_sync_insn1 insn1;
13066 enum attr_sync_insn2 insn2;
13067 bool is_64bit_p;
13068 int memmodel_attr;
13069 enum memmodel model;
13071 /* Read an operand from the sync_WHAT attribute and store it in
13072 variable WHAT. DEFAULT is the default value if no attribute
13073 is specified. */
13074 #define READ_OPERAND(WHAT, DEFAULT) \
13075 WHAT = mips_get_sync_operand (operands, (int) get_attr_sync_##WHAT (insn), \
13076 DEFAULT)
13078 /* Read the memory. */
13079 READ_OPERAND (mem, 0);
13080 gcc_assert (mem);
13081 is_64bit_p = (GET_MODE_BITSIZE (GET_MODE (mem)) == 64);
13083 /* Read the other attributes. */
13084 at = gen_rtx_REG (GET_MODE (mem), AT_REGNUM);
13085 READ_OPERAND (oldval, at);
13086 READ_OPERAND (cmp, 0);
13087 READ_OPERAND (newval, at);
13088 READ_OPERAND (inclusive_mask, 0);
13089 READ_OPERAND (exclusive_mask, 0);
13090 READ_OPERAND (required_oldval, 0);
13091 READ_OPERAND (insn1_op2, 0);
13092 insn1 = get_attr_sync_insn1 (insn);
13093 insn2 = get_attr_sync_insn2 (insn);
13095 /* Don't bother setting CMP result that is never used. */
13096 if (cmp && find_reg_note (insn, REG_UNUSED, cmp))
13097 cmp = 0;
13099 memmodel_attr = get_attr_sync_memmodel (insn);
13100 switch (memmodel_attr)
13102 case 10:
13103 model = MEMMODEL_ACQ_REL;
13104 break;
13105 case 11:
13106 model = MEMMODEL_ACQUIRE;
13107 break;
13108 default:
13109 model = (enum memmodel) INTVAL (operands[memmodel_attr]);
13112 mips_multi_start ();
13114 /* Output the release side of the memory barrier. */
13115 if (need_atomic_barrier_p (model, true))
13117 if (required_oldval == 0 && TARGET_OCTEON)
13119 /* Octeon doesn't reorder reads, so a full barrier can be
13120 created by using SYNCW to order writes combined with the
13121 write from the following SC. When the SC successfully
13122 completes, we know that all preceding writes are also
13123 committed to the coherent memory system. It is possible
13124 for a single SYNCW to fail, but a pair of them will never
13125 fail, so we use two. */
13126 mips_multi_add_insn ("syncw", NULL);
13127 mips_multi_add_insn ("syncw", NULL);
13129 else
13130 mips_multi_add_insn ("sync", NULL);
13133 /* Output the branch-back label. */
13134 mips_multi_add_label ("1:");
13136 /* OLDVAL = *MEM. */
13137 mips_multi_add_insn (is_64bit_p ? "lld\t%0,%1" : "ll\t%0,%1",
13138 oldval, mem, NULL);
13140 /* if ((OLDVAL & INCLUSIVE_MASK) != REQUIRED_OLDVAL) goto 2. */
13141 if (required_oldval)
13143 if (inclusive_mask == 0)
13144 tmp1 = oldval;
13145 else
13147 gcc_assert (oldval != at);
13148 mips_multi_add_insn ("and\t%0,%1,%2",
13149 at, oldval, inclusive_mask, NULL);
13150 tmp1 = at;
13152 mips_multi_add_insn ("bne\t%0,%z1,2f", tmp1, required_oldval, NULL);
13154 /* CMP = 0 [delay slot]. */
13155 if (cmp)
13156 mips_multi_add_insn ("li\t%0,0", cmp, NULL);
13159 /* $TMP1 = OLDVAL & EXCLUSIVE_MASK. */
13160 if (exclusive_mask == 0)
13161 tmp1 = const0_rtx;
13162 else
13164 gcc_assert (oldval != at);
13165 mips_multi_add_insn ("and\t%0,%1,%z2",
13166 at, oldval, exclusive_mask, NULL);
13167 tmp1 = at;
13170 /* $TMP2 = INSN1 (OLDVAL, INSN1_OP2).
13172 We can ignore moves if $TMP4 != INSN1_OP2, since we'll still emit
13173 at least one instruction in that case. */
13174 if (insn1 == SYNC_INSN1_MOVE
13175 && (tmp1 != const0_rtx || insn2 != SYNC_INSN2_NOP))
13176 tmp2 = insn1_op2;
13177 else
13179 mips_multi_add_insn (mips_sync_insn1_template (insn1, is_64bit_p),
13180 newval, oldval, insn1_op2, NULL);
13181 tmp2 = newval;
13184 /* $TMP3 = INSN2 ($TMP2, INCLUSIVE_MASK). */
13185 if (insn2 == SYNC_INSN2_NOP)
13186 tmp3 = tmp2;
13187 else
13189 mips_multi_add_insn (mips_sync_insn2_template (insn2),
13190 newval, tmp2, inclusive_mask, NULL);
13191 tmp3 = newval;
13193 tmp3_insn = mips_multi_last_index ();
13195 /* $AT = $TMP1 | $TMP3. */
13196 if (tmp1 == const0_rtx || tmp3 == const0_rtx)
13198 mips_multi_set_operand (tmp3_insn, 0, at);
13199 tmp3 = at;
13201 else
13203 gcc_assert (tmp1 != tmp3);
13204 mips_multi_add_insn ("or\t%0,%1,%2", at, tmp1, tmp3, NULL);
13207 /* if (!commit (*MEM = $AT)) goto 1.
13209 This will sometimes be a delayed branch; see the write code below
13210 for details. */
13211 mips_multi_add_insn (is_64bit_p ? "scd\t%0,%1" : "sc\t%0,%1", at, mem, NULL);
13213 /* When using branch likely (-mfix-r10000), the delay slot instruction
13214 will be annulled on false. The normal delay slot instructions
13215 calculate the overall result of the atomic operation and must not
13216 be annulled. To ensure this behaviour unconditionally use a NOP
13217 in the delay slot for the branch likely case. */
13219 mips_multi_add_insn ("beq%?\t%0,%.,1b%~", at, NULL);
13221 /* if (INSN1 != MOVE && INSN1 != LI) NEWVAL = $TMP3 [delay slot]. */
13222 if (insn1 != SYNC_INSN1_MOVE && insn1 != SYNC_INSN1_LI && tmp3 != newval)
13224 mips_multi_copy_insn (tmp3_insn);
13225 mips_multi_set_operand (mips_multi_last_index (), 0, newval);
13227 else if (!(required_oldval && cmp) && !mips_branch_likely)
13228 mips_multi_add_insn ("nop", NULL);
13230 /* CMP = 1 -- either standalone or in a delay slot. */
13231 if (required_oldval && cmp)
13232 mips_multi_add_insn ("li\t%0,1", cmp, NULL);
13234 /* Output the acquire side of the memory barrier. */
13235 if (TARGET_SYNC_AFTER_SC && need_atomic_barrier_p (model, false))
13236 mips_multi_add_insn ("sync", NULL);
13238 /* Output the exit label, if needed. */
13239 if (required_oldval)
13240 mips_multi_add_label ("2:");
13242 #undef READ_OPERAND
13245 /* Output and/or return the asm template for sync loop INSN, which has
13246 the operands given by OPERANDS. */
13248 const char *
13249 mips_output_sync_loop (rtx_insn *insn, rtx *operands)
13251 /* Use branch-likely instructions to work around the LL/SC R10000
13252 errata. */
13253 mips_branch_likely = TARGET_FIX_R10000;
13255 mips_process_sync_loop (insn, operands);
13257 mips_push_asm_switch (&mips_noreorder);
13258 mips_push_asm_switch (&mips_nomacro);
13259 mips_push_asm_switch (&mips_noat);
13260 mips_start_ll_sc_sync_block ();
13262 mips_multi_write ();
13264 mips_end_ll_sc_sync_block ();
13265 mips_pop_asm_switch (&mips_noat);
13266 mips_pop_asm_switch (&mips_nomacro);
13267 mips_pop_asm_switch (&mips_noreorder);
13269 return "";
13272 /* Return the number of individual instructions in sync loop INSN,
13273 which has the operands given by OPERANDS. */
13275 unsigned int
13276 mips_sync_loop_insns (rtx_insn *insn, rtx *operands)
13278 /* Use branch-likely instructions to work around the LL/SC R10000
13279 errata. */
13280 mips_branch_likely = TARGET_FIX_R10000;
13281 mips_process_sync_loop (insn, operands);
13282 return mips_multi_num_insns;
13285 /* Return the assembly code for DIV or DDIV instruction DIVISION, which has
13286 the operands given by OPERANDS. Add in a divide-by-zero check if needed.
13288 When working around R4000 and R4400 errata, we need to make sure that
13289 the division is not immediately followed by a shift[1][2]. We also
13290 need to stop the division from being put into a branch delay slot[3].
13291 The easiest way to avoid both problems is to add a nop after the
13292 division. When a divide-by-zero check is needed, this nop can be
13293 used to fill the branch delay slot.
13295 [1] If a double-word or a variable shift executes immediately
13296 after starting an integer division, the shift may give an
13297 incorrect result. See quotations of errata #16 and #28 from
13298 "MIPS R4000PC/SC Errata, Processor Revision 2.2 and 3.0"
13299 in mips.md for details.
13301 [2] A similar bug to [1] exists for all revisions of the
13302 R4000 and the R4400 when run in an MC configuration.
13303 From "MIPS R4000MC Errata, Processor Revision 2.2 and 3.0":
13305 "19. In this following sequence:
13307 ddiv (or ddivu or div or divu)
13308 dsll32 (or dsrl32, dsra32)
13310 if an MPT stall occurs, while the divide is slipping the cpu
13311 pipeline, then the following double shift would end up with an
13312 incorrect result.
13314 Workaround: The compiler needs to avoid generating any
13315 sequence with divide followed by extended double shift."
13317 This erratum is also present in "MIPS R4400MC Errata, Processor
13318 Revision 1.0" and "MIPS R4400MC Errata, Processor Revision 2.0
13319 & 3.0" as errata #10 and #4, respectively.
13321 [3] From "MIPS R4000PC/SC Errata, Processor Revision 2.2 and 3.0"
13322 (also valid for MIPS R4000MC processors):
13324 "52. R4000SC: This bug does not apply for the R4000PC.
13326 There are two flavors of this bug:
13328 1) If the instruction just after divide takes an RF exception
13329 (tlb-refill, tlb-invalid) and gets an instruction cache
13330 miss (both primary and secondary) and the line which is
13331 currently in secondary cache at this index had the first
13332 data word, where the bits 5..2 are set, then R4000 would
13333 get a wrong result for the div.
13337 div r8, r9
13338 ------------------- # end-of page. -tlb-refill
13342 div r8, r9
13343 ------------------- # end-of page. -tlb-invalid
13346 2) If the divide is in the taken branch delay slot, where the
13347 target takes RF exception and gets an I-cache miss for the
13348 exception vector or where I-cache miss occurs for the
13349 target address, under the above mentioned scenarios, the
13350 div would get wrong results.
13353 j r2 # to next page mapped or unmapped
13354 div r8,r9 # this bug would be there as long
13355 # as there is an ICache miss and
13356 nop # the "data pattern" is present
13359 beq r0, r0, NextPage # to Next page
13360 div r8,r9
13363 This bug is present for div, divu, ddiv, and ddivu
13364 instructions.
13366 Workaround: For item 1), OS could make sure that the next page
13367 after the divide instruction is also mapped. For item 2), the
13368 compiler could make sure that the divide instruction is not in
13369 the branch delay slot."
13371 These processors have PRId values of 0x00004220 and 0x00004300 for
13372 the R4000 and 0x00004400, 0x00004500 and 0x00004600 for the R4400. */
13374 const char *
13375 mips_output_division (const char *division, rtx *operands)
13377 const char *s;
13379 s = division;
13380 if (TARGET_FIX_R4000 || TARGET_FIX_R4400)
13382 output_asm_insn (s, operands);
13383 s = "nop";
13385 if (TARGET_CHECK_ZERO_DIV)
13387 if (TARGET_MIPS16)
13389 output_asm_insn (s, operands);
13390 s = "bnez\t%2,1f\n\tbreak\t7\n1:";
13392 else if (GENERATE_DIVIDE_TRAPS)
13394 /* Avoid long replay penalty on load miss by putting the trap before
13395 the divide. */
13396 if (TUNE_74K)
13397 output_asm_insn ("teq\t%2,%.,7", operands);
13398 else
13400 output_asm_insn (s, operands);
13401 s = "teq\t%2,%.,7";
13404 else
13406 output_asm_insn ("%(bne\t%2,%.,1f", operands);
13407 output_asm_insn (s, operands);
13408 s = "break\t7%)\n1:";
13411 return s;
13414 /* Return true if destination of IN_INSN is used as add source in
13415 OUT_INSN. Both IN_INSN and OUT_INSN are of type fmadd. Example:
13416 madd.s dst, x, y, z
13417 madd.s a, dst, b, c */
13419 bool
13420 mips_fmadd_bypass (rtx_insn *out_insn, rtx_insn *in_insn)
13422 int dst_reg, src_reg;
13424 gcc_assert (get_attr_type (in_insn) == TYPE_FMADD);
13425 gcc_assert (get_attr_type (out_insn) == TYPE_FMADD);
13427 extract_insn (in_insn);
13428 dst_reg = REG_P (recog_data.operand[0]);
13430 extract_insn (out_insn);
13431 src_reg = REG_P (recog_data.operand[1]);
13433 if (dst_reg == src_reg)
13434 return true;
13436 return false;
13439 /* Return true if IN_INSN is a multiply-add or multiply-subtract
13440 instruction and if OUT_INSN assigns to the accumulator operand. */
13442 bool
13443 mips_linked_madd_p (rtx_insn *out_insn, rtx_insn *in_insn)
13445 enum attr_accum_in accum_in;
13446 int accum_in_opnum;
13447 rtx accum_in_op;
13449 if (recog_memoized (in_insn) < 0)
13450 return false;
13452 accum_in = get_attr_accum_in (in_insn);
13453 if (accum_in == ACCUM_IN_NONE)
13454 return false;
13456 accum_in_opnum = accum_in - ACCUM_IN_0;
13458 extract_insn (in_insn);
13459 gcc_assert (accum_in_opnum < recog_data.n_operands);
13460 accum_in_op = recog_data.operand[accum_in_opnum];
13462 return reg_set_p (accum_in_op, out_insn);
13465 /* True if the dependency between OUT_INSN and IN_INSN is on the store
13466 data rather than the address. We need this because the cprestore
13467 pattern is type "store", but is defined using an UNSPEC_VOLATILE,
13468 which causes the default routine to abort. We just return false
13469 for that case. */
13471 bool
13472 mips_store_data_bypass_p (rtx_insn *out_insn, rtx_insn *in_insn)
13474 if (GET_CODE (PATTERN (in_insn)) == UNSPEC_VOLATILE)
13475 return false;
13477 return !store_data_bypass_p (out_insn, in_insn);
13481 /* Variables and flags used in scheduler hooks when tuning for
13482 Loongson 2E/2F. */
13483 static struct
13485 /* Variables to support Loongson 2E/2F round-robin [F]ALU1/2 dispatch
13486 strategy. */
13488 /* If true, then next ALU1/2 instruction will go to ALU1. */
13489 bool alu1_turn_p;
13491 /* If true, then next FALU1/2 unstruction will go to FALU1. */
13492 bool falu1_turn_p;
13494 /* Codes to query if [f]alu{1,2}_core units are subscribed or not. */
13495 int alu1_core_unit_code;
13496 int alu2_core_unit_code;
13497 int falu1_core_unit_code;
13498 int falu2_core_unit_code;
13500 /* True if current cycle has a multi instruction.
13501 This flag is used in mips_ls2_dfa_post_advance_cycle. */
13502 bool cycle_has_multi_p;
13504 /* Instructions to subscribe ls2_[f]alu{1,2}_turn_enabled units.
13505 These are used in mips_ls2_dfa_post_advance_cycle to initialize
13506 DFA state.
13507 E.g., when alu1_turn_enabled_insn is issued it makes next ALU1/2
13508 instruction to go ALU1. */
13509 rtx_insn *alu1_turn_enabled_insn;
13510 rtx_insn *alu2_turn_enabled_insn;
13511 rtx_insn *falu1_turn_enabled_insn;
13512 rtx_insn *falu2_turn_enabled_insn;
13513 } mips_ls2;
13515 /* Implement TARGET_SCHED_ADJUST_COST. We assume that anti and output
13516 dependencies have no cost, except on the 20Kc where output-dependence
13517 is treated like input-dependence. */
13519 static int
13520 mips_adjust_cost (rtx_insn *insn ATTRIBUTE_UNUSED, rtx link,
13521 rtx_insn *dep ATTRIBUTE_UNUSED, int cost)
13523 if (REG_NOTE_KIND (link) == REG_DEP_OUTPUT
13524 && TUNE_20KC)
13525 return cost;
13526 if (REG_NOTE_KIND (link) != 0)
13527 return 0;
13528 return cost;
13531 /* Return the number of instructions that can be issued per cycle. */
13533 static int
13534 mips_issue_rate (void)
13536 switch (mips_tune)
13538 case PROCESSOR_74KC:
13539 case PROCESSOR_74KF2_1:
13540 case PROCESSOR_74KF1_1:
13541 case PROCESSOR_74KF3_2:
13542 /* The 74k is not strictly quad-issue cpu, but can be seen as one
13543 by the scheduler. It can issue 1 ALU, 1 AGEN and 2 FPU insns,
13544 but in reality only a maximum of 3 insns can be issued as
13545 floating-point loads and stores also require a slot in the
13546 AGEN pipe. */
13547 case PROCESSOR_R10000:
13548 /* All R10K Processors are quad-issue (being the first MIPS
13549 processors to support this feature). */
13550 return 4;
13552 case PROCESSOR_20KC:
13553 case PROCESSOR_R4130:
13554 case PROCESSOR_R5400:
13555 case PROCESSOR_R5500:
13556 case PROCESSOR_R5900:
13557 case PROCESSOR_R7000:
13558 case PROCESSOR_R9000:
13559 case PROCESSOR_OCTEON:
13560 case PROCESSOR_OCTEON2:
13561 case PROCESSOR_OCTEON3:
13562 return 2;
13564 case PROCESSOR_SB1:
13565 case PROCESSOR_SB1A:
13566 /* This is actually 4, but we get better performance if we claim 3.
13567 This is partly because of unwanted speculative code motion with the
13568 larger number, and partly because in most common cases we can't
13569 reach the theoretical max of 4. */
13570 return 3;
13572 case PROCESSOR_LOONGSON_2E:
13573 case PROCESSOR_LOONGSON_2F:
13574 case PROCESSOR_LOONGSON_3A:
13575 case PROCESSOR_P5600:
13576 return 4;
13578 case PROCESSOR_XLP:
13579 return (reload_completed ? 4 : 3);
13581 default:
13582 return 1;
13586 /* Implement TARGET_SCHED_INIT_DFA_POST_CYCLE_INSN hook for Loongson2. */
13588 static void
13589 mips_ls2_init_dfa_post_cycle_insn (void)
13591 start_sequence ();
13592 emit_insn (gen_ls2_alu1_turn_enabled_insn ());
13593 mips_ls2.alu1_turn_enabled_insn = get_insns ();
13594 end_sequence ();
13596 start_sequence ();
13597 emit_insn (gen_ls2_alu2_turn_enabled_insn ());
13598 mips_ls2.alu2_turn_enabled_insn = get_insns ();
13599 end_sequence ();
13601 start_sequence ();
13602 emit_insn (gen_ls2_falu1_turn_enabled_insn ());
13603 mips_ls2.falu1_turn_enabled_insn = get_insns ();
13604 end_sequence ();
13606 start_sequence ();
13607 emit_insn (gen_ls2_falu2_turn_enabled_insn ());
13608 mips_ls2.falu2_turn_enabled_insn = get_insns ();
13609 end_sequence ();
13611 mips_ls2.alu1_core_unit_code = get_cpu_unit_code ("ls2_alu1_core");
13612 mips_ls2.alu2_core_unit_code = get_cpu_unit_code ("ls2_alu2_core");
13613 mips_ls2.falu1_core_unit_code = get_cpu_unit_code ("ls2_falu1_core");
13614 mips_ls2.falu2_core_unit_code = get_cpu_unit_code ("ls2_falu2_core");
13617 /* Implement TARGET_SCHED_INIT_DFA_POST_CYCLE_INSN hook.
13618 Init data used in mips_dfa_post_advance_cycle. */
13620 static void
13621 mips_init_dfa_post_cycle_insn (void)
13623 if (TUNE_LOONGSON_2EF)
13624 mips_ls2_init_dfa_post_cycle_insn ();
13627 /* Initialize STATE when scheduling for Loongson 2E/2F.
13628 Support round-robin dispatch scheme by enabling only one of
13629 ALU1/ALU2 and one of FALU1/FALU2 units for ALU1/2 and FALU1/2 instructions
13630 respectively. */
13632 static void
13633 mips_ls2_dfa_post_advance_cycle (state_t state)
13635 if (cpu_unit_reservation_p (state, mips_ls2.alu1_core_unit_code))
13637 /* Though there are no non-pipelined ALU1 insns,
13638 we can get an instruction of type 'multi' before reload. */
13639 gcc_assert (mips_ls2.cycle_has_multi_p);
13640 mips_ls2.alu1_turn_p = false;
13643 mips_ls2.cycle_has_multi_p = false;
13645 if (cpu_unit_reservation_p (state, mips_ls2.alu2_core_unit_code))
13646 /* We have a non-pipelined alu instruction in the core,
13647 adjust round-robin counter. */
13648 mips_ls2.alu1_turn_p = true;
13650 if (mips_ls2.alu1_turn_p)
13652 if (state_transition (state, mips_ls2.alu1_turn_enabled_insn) >= 0)
13653 gcc_unreachable ();
13655 else
13657 if (state_transition (state, mips_ls2.alu2_turn_enabled_insn) >= 0)
13658 gcc_unreachable ();
13661 if (cpu_unit_reservation_p (state, mips_ls2.falu1_core_unit_code))
13663 /* There are no non-pipelined FALU1 insns. */
13664 gcc_unreachable ();
13665 mips_ls2.falu1_turn_p = false;
13668 if (cpu_unit_reservation_p (state, mips_ls2.falu2_core_unit_code))
13669 /* We have a non-pipelined falu instruction in the core,
13670 adjust round-robin counter. */
13671 mips_ls2.falu1_turn_p = true;
13673 if (mips_ls2.falu1_turn_p)
13675 if (state_transition (state, mips_ls2.falu1_turn_enabled_insn) >= 0)
13676 gcc_unreachable ();
13678 else
13680 if (state_transition (state, mips_ls2.falu2_turn_enabled_insn) >= 0)
13681 gcc_unreachable ();
13685 /* Implement TARGET_SCHED_DFA_POST_ADVANCE_CYCLE.
13686 This hook is being called at the start of each cycle. */
13688 static void
13689 mips_dfa_post_advance_cycle (void)
13691 if (TUNE_LOONGSON_2EF)
13692 mips_ls2_dfa_post_advance_cycle (curr_state);
13695 /* Implement TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD. This should
13696 be as wide as the scheduling freedom in the DFA. */
13698 static int
13699 mips_multipass_dfa_lookahead (void)
13701 /* Can schedule up to 4 of the 6 function units in any one cycle. */
13702 if (TUNE_SB1)
13703 return 4;
13705 if (TUNE_LOONGSON_2EF || TUNE_LOONGSON_3A)
13706 return 4;
13708 if (TUNE_OCTEON)
13709 return 2;
13711 if (TUNE_P5600)
13712 return 4;
13714 return 0;
13717 /* Remove the instruction at index LOWER from ready queue READY and
13718 reinsert it in front of the instruction at index HIGHER. LOWER must
13719 be <= HIGHER. */
13721 static void
13722 mips_promote_ready (rtx_insn **ready, int lower, int higher)
13724 rtx_insn *new_head;
13725 int i;
13727 new_head = ready[lower];
13728 for (i = lower; i < higher; i++)
13729 ready[i] = ready[i + 1];
13730 ready[i] = new_head;
13733 /* If the priority of the instruction at POS2 in the ready queue READY
13734 is within LIMIT units of that of the instruction at POS1, swap the
13735 instructions if POS2 is not already less than POS1. */
13737 static void
13738 mips_maybe_swap_ready (rtx_insn **ready, int pos1, int pos2, int limit)
13740 if (pos1 < pos2
13741 && INSN_PRIORITY (ready[pos1]) + limit >= INSN_PRIORITY (ready[pos2]))
13743 rtx_insn *temp;
13745 temp = ready[pos1];
13746 ready[pos1] = ready[pos2];
13747 ready[pos2] = temp;
13751 /* Used by TUNE_MACC_CHAINS to record the last scheduled instruction
13752 that may clobber hi or lo. */
13753 static rtx_insn *mips_macc_chains_last_hilo;
13755 /* A TUNE_MACC_CHAINS helper function. Record that instruction INSN has
13756 been scheduled, updating mips_macc_chains_last_hilo appropriately. */
13758 static void
13759 mips_macc_chains_record (rtx_insn *insn)
13761 if (get_attr_may_clobber_hilo (insn))
13762 mips_macc_chains_last_hilo = insn;
13765 /* A TUNE_MACC_CHAINS helper function. Search ready queue READY, which
13766 has NREADY elements, looking for a multiply-add or multiply-subtract
13767 instruction that is cumulative with mips_macc_chains_last_hilo.
13768 If there is one, promote it ahead of anything else that might
13769 clobber hi or lo. */
13771 static void
13772 mips_macc_chains_reorder (rtx_insn **ready, int nready)
13774 int i, j;
13776 if (mips_macc_chains_last_hilo != 0)
13777 for (i = nready - 1; i >= 0; i--)
13778 if (mips_linked_madd_p (mips_macc_chains_last_hilo, ready[i]))
13780 for (j = nready - 1; j > i; j--)
13781 if (recog_memoized (ready[j]) >= 0
13782 && get_attr_may_clobber_hilo (ready[j]))
13784 mips_promote_ready (ready, i, j);
13785 break;
13787 break;
13791 /* The last instruction to be scheduled. */
13792 static rtx_insn *vr4130_last_insn;
13794 /* A note_stores callback used by vr4130_true_reg_dependence_p. DATA
13795 points to an rtx that is initially an instruction. Nullify the rtx
13796 if the instruction uses the value of register X. */
13798 static void
13799 vr4130_true_reg_dependence_p_1 (rtx x, const_rtx pat ATTRIBUTE_UNUSED,
13800 void *data)
13802 rtx *insn_ptr;
13804 insn_ptr = (rtx *) data;
13805 if (REG_P (x)
13806 && *insn_ptr != 0
13807 && reg_referenced_p (x, PATTERN (*insn_ptr)))
13808 *insn_ptr = 0;
13811 /* Return true if there is true register dependence between vr4130_last_insn
13812 and INSN. */
13814 static bool
13815 vr4130_true_reg_dependence_p (rtx insn)
13817 note_stores (PATTERN (vr4130_last_insn),
13818 vr4130_true_reg_dependence_p_1, &insn);
13819 return insn == 0;
13822 /* A TUNE_MIPS4130 helper function. Given that INSN1 is at the head of
13823 the ready queue and that INSN2 is the instruction after it, return
13824 true if it is worth promoting INSN2 ahead of INSN1. Look for cases
13825 in which INSN1 and INSN2 can probably issue in parallel, but for
13826 which (INSN2, INSN1) should be less sensitive to instruction
13827 alignment than (INSN1, INSN2). See 4130.md for more details. */
13829 static bool
13830 vr4130_swap_insns_p (rtx_insn *insn1, rtx_insn *insn2)
13832 sd_iterator_def sd_it;
13833 dep_t dep;
13835 /* Check for the following case:
13837 1) there is some other instruction X with an anti dependence on INSN1;
13838 2) X has a higher priority than INSN2; and
13839 3) X is an arithmetic instruction (and thus has no unit restrictions).
13841 If INSN1 is the last instruction blocking X, it would better to
13842 choose (INSN1, X) over (INSN2, INSN1). */
13843 FOR_EACH_DEP (insn1, SD_LIST_FORW, sd_it, dep)
13844 if (DEP_TYPE (dep) == REG_DEP_ANTI
13845 && INSN_PRIORITY (DEP_CON (dep)) > INSN_PRIORITY (insn2)
13846 && recog_memoized (DEP_CON (dep)) >= 0
13847 && get_attr_vr4130_class (DEP_CON (dep)) == VR4130_CLASS_ALU)
13848 return false;
13850 if (vr4130_last_insn != 0
13851 && recog_memoized (insn1) >= 0
13852 && recog_memoized (insn2) >= 0)
13854 /* See whether INSN1 and INSN2 use different execution units,
13855 or if they are both ALU-type instructions. If so, they can
13856 probably execute in parallel. */
13857 enum attr_vr4130_class class1 = get_attr_vr4130_class (insn1);
13858 enum attr_vr4130_class class2 = get_attr_vr4130_class (insn2);
13859 if (class1 != class2 || class1 == VR4130_CLASS_ALU)
13861 /* If only one of the instructions has a dependence on
13862 vr4130_last_insn, prefer to schedule the other one first. */
13863 bool dep1_p = vr4130_true_reg_dependence_p (insn1);
13864 bool dep2_p = vr4130_true_reg_dependence_p (insn2);
13865 if (dep1_p != dep2_p)
13866 return dep1_p;
13868 /* Prefer to schedule INSN2 ahead of INSN1 if vr4130_last_insn
13869 is not an ALU-type instruction and if INSN1 uses the same
13870 execution unit. (Note that if this condition holds, we already
13871 know that INSN2 uses a different execution unit.) */
13872 if (class1 != VR4130_CLASS_ALU
13873 && recog_memoized (vr4130_last_insn) >= 0
13874 && class1 == get_attr_vr4130_class (vr4130_last_insn))
13875 return true;
13878 return false;
13881 /* A TUNE_MIPS4130 helper function. (READY, NREADY) describes a ready
13882 queue with at least two instructions. Swap the first two if
13883 vr4130_swap_insns_p says that it could be worthwhile. */
13885 static void
13886 vr4130_reorder (rtx_insn **ready, int nready)
13888 if (vr4130_swap_insns_p (ready[nready - 1], ready[nready - 2]))
13889 mips_promote_ready (ready, nready - 2, nready - 1);
13892 /* Record whether last 74k AGEN instruction was a load or store. */
13893 static enum attr_type mips_last_74k_agen_insn = TYPE_UNKNOWN;
13895 /* Initialize mips_last_74k_agen_insn from INSN. A null argument
13896 resets to TYPE_UNKNOWN state. */
13898 static void
13899 mips_74k_agen_init (rtx_insn *insn)
13901 if (!insn || CALL_P (insn) || JUMP_P (insn))
13902 mips_last_74k_agen_insn = TYPE_UNKNOWN;
13903 else
13905 enum attr_type type = get_attr_type (insn);
13906 if (type == TYPE_LOAD || type == TYPE_STORE)
13907 mips_last_74k_agen_insn = type;
13911 /* A TUNE_74K helper function. The 74K AGEN pipeline likes multiple
13912 loads to be grouped together, and multiple stores to be grouped
13913 together. Swap things around in the ready queue to make this happen. */
13915 static void
13916 mips_74k_agen_reorder (rtx_insn **ready, int nready)
13918 int i;
13919 int store_pos, load_pos;
13921 store_pos = -1;
13922 load_pos = -1;
13924 for (i = nready - 1; i >= 0; i--)
13926 rtx_insn *insn = ready[i];
13927 if (USEFUL_INSN_P (insn))
13928 switch (get_attr_type (insn))
13930 case TYPE_STORE:
13931 if (store_pos == -1)
13932 store_pos = i;
13933 break;
13935 case TYPE_LOAD:
13936 if (load_pos == -1)
13937 load_pos = i;
13938 break;
13940 default:
13941 break;
13945 if (load_pos == -1 || store_pos == -1)
13946 return;
13948 switch (mips_last_74k_agen_insn)
13950 case TYPE_UNKNOWN:
13951 /* Prefer to schedule loads since they have a higher latency. */
13952 case TYPE_LOAD:
13953 /* Swap loads to the front of the queue. */
13954 mips_maybe_swap_ready (ready, load_pos, store_pos, 4);
13955 break;
13956 case TYPE_STORE:
13957 /* Swap stores to the front of the queue. */
13958 mips_maybe_swap_ready (ready, store_pos, load_pos, 4);
13959 break;
13960 default:
13961 break;
13965 /* Implement TARGET_SCHED_INIT. */
13967 static void
13968 mips_sched_init (FILE *file ATTRIBUTE_UNUSED, int verbose ATTRIBUTE_UNUSED,
13969 int max_ready ATTRIBUTE_UNUSED)
13971 mips_macc_chains_last_hilo = 0;
13972 vr4130_last_insn = 0;
13973 mips_74k_agen_init (NULL);
13975 /* When scheduling for Loongson2, branch instructions go to ALU1,
13976 therefore basic block is most likely to start with round-robin counter
13977 pointed to ALU2. */
13978 mips_ls2.alu1_turn_p = false;
13979 mips_ls2.falu1_turn_p = true;
13982 /* Subroutine used by TARGET_SCHED_REORDER and TARGET_SCHED_REORDER2. */
13984 static void
13985 mips_sched_reorder_1 (FILE *file ATTRIBUTE_UNUSED, int verbose ATTRIBUTE_UNUSED,
13986 rtx_insn **ready, int *nreadyp, int cycle ATTRIBUTE_UNUSED)
13988 if (!reload_completed
13989 && TUNE_MACC_CHAINS
13990 && *nreadyp > 0)
13991 mips_macc_chains_reorder (ready, *nreadyp);
13993 if (reload_completed
13994 && TUNE_MIPS4130
13995 && !TARGET_VR4130_ALIGN
13996 && *nreadyp > 1)
13997 vr4130_reorder (ready, *nreadyp);
13999 if (TUNE_74K)
14000 mips_74k_agen_reorder (ready, *nreadyp);
14003 /* Implement TARGET_SCHED_REORDER. */
14005 static int
14006 mips_sched_reorder (FILE *file ATTRIBUTE_UNUSED, int verbose ATTRIBUTE_UNUSED,
14007 rtx_insn **ready, int *nreadyp, int cycle ATTRIBUTE_UNUSED)
14009 mips_sched_reorder_1 (file, verbose, ready, nreadyp, cycle);
14010 return mips_issue_rate ();
14013 /* Implement TARGET_SCHED_REORDER2. */
14015 static int
14016 mips_sched_reorder2 (FILE *file ATTRIBUTE_UNUSED, int verbose ATTRIBUTE_UNUSED,
14017 rtx_insn **ready, int *nreadyp, int cycle ATTRIBUTE_UNUSED)
14019 mips_sched_reorder_1 (file, verbose, ready, nreadyp, cycle);
14020 return cached_can_issue_more;
14023 /* Update round-robin counters for ALU1/2 and FALU1/2. */
14025 static void
14026 mips_ls2_variable_issue (rtx_insn *insn)
14028 if (mips_ls2.alu1_turn_p)
14030 if (cpu_unit_reservation_p (curr_state, mips_ls2.alu1_core_unit_code))
14031 mips_ls2.alu1_turn_p = false;
14033 else
14035 if (cpu_unit_reservation_p (curr_state, mips_ls2.alu2_core_unit_code))
14036 mips_ls2.alu1_turn_p = true;
14039 if (mips_ls2.falu1_turn_p)
14041 if (cpu_unit_reservation_p (curr_state, mips_ls2.falu1_core_unit_code))
14042 mips_ls2.falu1_turn_p = false;
14044 else
14046 if (cpu_unit_reservation_p (curr_state, mips_ls2.falu2_core_unit_code))
14047 mips_ls2.falu1_turn_p = true;
14050 if (recog_memoized (insn) >= 0)
14051 mips_ls2.cycle_has_multi_p |= (get_attr_type (insn) == TYPE_MULTI);
14054 /* Implement TARGET_SCHED_VARIABLE_ISSUE. */
14056 static int
14057 mips_variable_issue (FILE *file ATTRIBUTE_UNUSED, int verbose ATTRIBUTE_UNUSED,
14058 rtx_insn *insn, int more)
14060 /* Ignore USEs and CLOBBERs; don't count them against the issue rate. */
14061 if (USEFUL_INSN_P (insn))
14063 if (get_attr_type (insn) != TYPE_GHOST)
14064 more--;
14065 if (!reload_completed && TUNE_MACC_CHAINS)
14066 mips_macc_chains_record (insn);
14067 vr4130_last_insn = insn;
14068 if (TUNE_74K)
14069 mips_74k_agen_init (insn);
14070 else if (TUNE_LOONGSON_2EF)
14071 mips_ls2_variable_issue (insn);
14074 /* Instructions of type 'multi' should all be split before
14075 the second scheduling pass. */
14076 gcc_assert (!reload_completed
14077 || recog_memoized (insn) < 0
14078 || get_attr_type (insn) != TYPE_MULTI);
14080 cached_can_issue_more = more;
14081 return more;
14084 /* Given that we have an rtx of the form (prefetch ... WRITE LOCALITY),
14085 return the first operand of the associated PREF or PREFX insn. */
14088 mips_prefetch_cookie (rtx write, rtx locality)
14090 /* store_streamed / load_streamed. */
14091 if (INTVAL (locality) <= 0)
14092 return GEN_INT (INTVAL (write) + 4);
14094 /* store / load. */
14095 if (INTVAL (locality) <= 2)
14096 return write;
14098 /* store_retained / load_retained. */
14099 return GEN_INT (INTVAL (write) + 6);
14102 /* Flags that indicate when a built-in function is available.
14104 BUILTIN_AVAIL_NON_MIPS16
14105 The function is available on the current target if !TARGET_MIPS16.
14107 BUILTIN_AVAIL_MIPS16
14108 The function is available on the current target if TARGET_MIPS16. */
14109 #define BUILTIN_AVAIL_NON_MIPS16 1
14110 #define BUILTIN_AVAIL_MIPS16 2
14112 /* Declare an availability predicate for built-in functions that
14113 require non-MIPS16 mode and also require COND to be true.
14114 NAME is the main part of the predicate's name. */
14115 #define AVAIL_NON_MIPS16(NAME, COND) \
14116 static unsigned int \
14117 mips_builtin_avail_##NAME (void) \
14119 return (COND) ? BUILTIN_AVAIL_NON_MIPS16 : 0; \
14122 /* Declare an availability predicate for built-in functions that
14123 support both MIPS16 and non-MIPS16 code and also require COND
14124 to be true. NAME is the main part of the predicate's name. */
14125 #define AVAIL_ALL(NAME, COND) \
14126 static unsigned int \
14127 mips_builtin_avail_##NAME (void) \
14129 return (COND) ? BUILTIN_AVAIL_NON_MIPS16 | BUILTIN_AVAIL_MIPS16 : 0; \
14132 /* This structure describes a single built-in function. */
14133 struct mips_builtin_description {
14134 /* The code of the main .md file instruction. See mips_builtin_type
14135 for more information. */
14136 enum insn_code icode;
14138 /* The floating-point comparison code to use with ICODE, if any. */
14139 enum mips_fp_condition cond;
14141 /* The name of the built-in function. */
14142 const char *name;
14144 /* Specifies how the function should be expanded. */
14145 enum mips_builtin_type builtin_type;
14147 /* The function's prototype. */
14148 enum mips_function_type function_type;
14150 /* Whether the function is available. */
14151 unsigned int (*avail) (void);
14154 AVAIL_ALL (hard_float, TARGET_HARD_FLOAT_ABI)
14155 AVAIL_NON_MIPS16 (paired_single, TARGET_PAIRED_SINGLE_FLOAT)
14156 AVAIL_NON_MIPS16 (sb1_paired_single, TARGET_SB1 && TARGET_PAIRED_SINGLE_FLOAT)
14157 AVAIL_NON_MIPS16 (mips3d, TARGET_MIPS3D)
14158 AVAIL_NON_MIPS16 (dsp, TARGET_DSP)
14159 AVAIL_NON_MIPS16 (dspr2, TARGET_DSPR2)
14160 AVAIL_NON_MIPS16 (dsp_32, !TARGET_64BIT && TARGET_DSP)
14161 AVAIL_NON_MIPS16 (dsp_64, TARGET_64BIT && TARGET_DSP)
14162 AVAIL_NON_MIPS16 (dspr2_32, !TARGET_64BIT && TARGET_DSPR2)
14163 AVAIL_NON_MIPS16 (loongson, TARGET_LOONGSON_VECTORS)
14164 AVAIL_NON_MIPS16 (cache, TARGET_CACHE_BUILTIN)
14166 /* Construct a mips_builtin_description from the given arguments.
14168 INSN is the name of the associated instruction pattern, without the
14169 leading CODE_FOR_mips_.
14171 CODE is the floating-point condition code associated with the
14172 function. It can be 'f' if the field is not applicable.
14174 NAME is the name of the function itself, without the leading
14175 "__builtin_mips_".
14177 BUILTIN_TYPE and FUNCTION_TYPE are mips_builtin_description fields.
14179 AVAIL is the name of the availability predicate, without the leading
14180 mips_builtin_avail_. */
14181 #define MIPS_BUILTIN(INSN, COND, NAME, BUILTIN_TYPE, \
14182 FUNCTION_TYPE, AVAIL) \
14183 { CODE_FOR_mips_ ## INSN, MIPS_FP_COND_ ## COND, \
14184 "__builtin_mips_" NAME, BUILTIN_TYPE, FUNCTION_TYPE, \
14185 mips_builtin_avail_ ## AVAIL }
14187 /* Define __builtin_mips_<INSN>, which is a MIPS_BUILTIN_DIRECT function
14188 mapped to instruction CODE_FOR_mips_<INSN>, FUNCTION_TYPE and AVAIL
14189 are as for MIPS_BUILTIN. */
14190 #define DIRECT_BUILTIN(INSN, FUNCTION_TYPE, AVAIL) \
14191 MIPS_BUILTIN (INSN, f, #INSN, MIPS_BUILTIN_DIRECT, FUNCTION_TYPE, AVAIL)
14193 /* Define __builtin_mips_<INSN>_<COND>_{s,d} functions, both of which
14194 are subject to mips_builtin_avail_<AVAIL>. */
14195 #define CMP_SCALAR_BUILTINS(INSN, COND, AVAIL) \
14196 MIPS_BUILTIN (INSN ## _cond_s, COND, #INSN "_" #COND "_s", \
14197 MIPS_BUILTIN_CMP_SINGLE, MIPS_INT_FTYPE_SF_SF, AVAIL), \
14198 MIPS_BUILTIN (INSN ## _cond_d, COND, #INSN "_" #COND "_d", \
14199 MIPS_BUILTIN_CMP_SINGLE, MIPS_INT_FTYPE_DF_DF, AVAIL)
14201 /* Define __builtin_mips_{any,all,upper,lower}_<INSN>_<COND>_ps.
14202 The lower and upper forms are subject to mips_builtin_avail_<AVAIL>
14203 while the any and all forms are subject to mips_builtin_avail_mips3d. */
14204 #define CMP_PS_BUILTINS(INSN, COND, AVAIL) \
14205 MIPS_BUILTIN (INSN ## _cond_ps, COND, "any_" #INSN "_" #COND "_ps", \
14206 MIPS_BUILTIN_CMP_ANY, MIPS_INT_FTYPE_V2SF_V2SF, \
14207 mips3d), \
14208 MIPS_BUILTIN (INSN ## _cond_ps, COND, "all_" #INSN "_" #COND "_ps", \
14209 MIPS_BUILTIN_CMP_ALL, MIPS_INT_FTYPE_V2SF_V2SF, \
14210 mips3d), \
14211 MIPS_BUILTIN (INSN ## _cond_ps, COND, "lower_" #INSN "_" #COND "_ps", \
14212 MIPS_BUILTIN_CMP_LOWER, MIPS_INT_FTYPE_V2SF_V2SF, \
14213 AVAIL), \
14214 MIPS_BUILTIN (INSN ## _cond_ps, COND, "upper_" #INSN "_" #COND "_ps", \
14215 MIPS_BUILTIN_CMP_UPPER, MIPS_INT_FTYPE_V2SF_V2SF, \
14216 AVAIL)
14218 /* Define __builtin_mips_{any,all}_<INSN>_<COND>_4s. The functions
14219 are subject to mips_builtin_avail_mips3d. */
14220 #define CMP_4S_BUILTINS(INSN, COND) \
14221 MIPS_BUILTIN (INSN ## _cond_4s, COND, "any_" #INSN "_" #COND "_4s", \
14222 MIPS_BUILTIN_CMP_ANY, \
14223 MIPS_INT_FTYPE_V2SF_V2SF_V2SF_V2SF, mips3d), \
14224 MIPS_BUILTIN (INSN ## _cond_4s, COND, "all_" #INSN "_" #COND "_4s", \
14225 MIPS_BUILTIN_CMP_ALL, \
14226 MIPS_INT_FTYPE_V2SF_V2SF_V2SF_V2SF, mips3d)
14228 /* Define __builtin_mips_mov{t,f}_<INSN>_<COND>_ps. The comparison
14229 instruction requires mips_builtin_avail_<AVAIL>. */
14230 #define MOVTF_BUILTINS(INSN, COND, AVAIL) \
14231 MIPS_BUILTIN (INSN ## _cond_ps, COND, "movt_" #INSN "_" #COND "_ps", \
14232 MIPS_BUILTIN_MOVT, MIPS_V2SF_FTYPE_V2SF_V2SF_V2SF_V2SF, \
14233 AVAIL), \
14234 MIPS_BUILTIN (INSN ## _cond_ps, COND, "movf_" #INSN "_" #COND "_ps", \
14235 MIPS_BUILTIN_MOVF, MIPS_V2SF_FTYPE_V2SF_V2SF_V2SF_V2SF, \
14236 AVAIL)
14238 /* Define all the built-in functions related to C.cond.fmt condition COND. */
14239 #define CMP_BUILTINS(COND) \
14240 MOVTF_BUILTINS (c, COND, paired_single), \
14241 MOVTF_BUILTINS (cabs, COND, mips3d), \
14242 CMP_SCALAR_BUILTINS (cabs, COND, mips3d), \
14243 CMP_PS_BUILTINS (c, COND, paired_single), \
14244 CMP_PS_BUILTINS (cabs, COND, mips3d), \
14245 CMP_4S_BUILTINS (c, COND), \
14246 CMP_4S_BUILTINS (cabs, COND)
14248 /* Define __builtin_mips_<INSN>, which is a MIPS_BUILTIN_DIRECT_NO_TARGET
14249 function mapped to instruction CODE_FOR_mips_<INSN>, FUNCTION_TYPE
14250 and AVAIL are as for MIPS_BUILTIN. */
14251 #define DIRECT_NO_TARGET_BUILTIN(INSN, FUNCTION_TYPE, AVAIL) \
14252 MIPS_BUILTIN (INSN, f, #INSN, MIPS_BUILTIN_DIRECT_NO_TARGET, \
14253 FUNCTION_TYPE, AVAIL)
14255 /* Define __builtin_mips_bposge<VALUE>. <VALUE> is 32 for the MIPS32 DSP
14256 branch instruction. AVAIL is as for MIPS_BUILTIN. */
14257 #define BPOSGE_BUILTIN(VALUE, AVAIL) \
14258 MIPS_BUILTIN (bposge, f, "bposge" #VALUE, \
14259 MIPS_BUILTIN_BPOSGE ## VALUE, MIPS_SI_FTYPE_VOID, AVAIL)
14261 /* Define a Loongson MIPS_BUILTIN_DIRECT function __builtin_loongson_<FN_NAME>
14262 for instruction CODE_FOR_loongson_<INSN>. FUNCTION_TYPE is a
14263 builtin_description field. */
14264 #define LOONGSON_BUILTIN_ALIAS(INSN, FN_NAME, FUNCTION_TYPE) \
14265 { CODE_FOR_loongson_ ## INSN, MIPS_FP_COND_f, \
14266 "__builtin_loongson_" #FN_NAME, MIPS_BUILTIN_DIRECT, \
14267 FUNCTION_TYPE, mips_builtin_avail_loongson }
14269 /* Define a Loongson MIPS_BUILTIN_DIRECT function __builtin_loongson_<INSN>
14270 for instruction CODE_FOR_loongson_<INSN>. FUNCTION_TYPE is a
14271 builtin_description field. */
14272 #define LOONGSON_BUILTIN(INSN, FUNCTION_TYPE) \
14273 LOONGSON_BUILTIN_ALIAS (INSN, INSN, FUNCTION_TYPE)
14275 /* Like LOONGSON_BUILTIN, but add _<SUFFIX> to the end of the function name.
14276 We use functions of this form when the same insn can be usefully applied
14277 to more than one datatype. */
14278 #define LOONGSON_BUILTIN_SUFFIX(INSN, SUFFIX, FUNCTION_TYPE) \
14279 LOONGSON_BUILTIN_ALIAS (INSN, INSN ## _ ## SUFFIX, FUNCTION_TYPE)
14281 #define CODE_FOR_mips_sqrt_ps CODE_FOR_sqrtv2sf2
14282 #define CODE_FOR_mips_addq_ph CODE_FOR_addv2hi3
14283 #define CODE_FOR_mips_addu_qb CODE_FOR_addv4qi3
14284 #define CODE_FOR_mips_subq_ph CODE_FOR_subv2hi3
14285 #define CODE_FOR_mips_subu_qb CODE_FOR_subv4qi3
14286 #define CODE_FOR_mips_mul_ph CODE_FOR_mulv2hi3
14287 #define CODE_FOR_mips_mult CODE_FOR_mulsidi3_32bit
14288 #define CODE_FOR_mips_multu CODE_FOR_umulsidi3_32bit
14290 #define CODE_FOR_loongson_packsswh CODE_FOR_vec_pack_ssat_v2si
14291 #define CODE_FOR_loongson_packsshb CODE_FOR_vec_pack_ssat_v4hi
14292 #define CODE_FOR_loongson_packushb CODE_FOR_vec_pack_usat_v4hi
14293 #define CODE_FOR_loongson_paddw CODE_FOR_addv2si3
14294 #define CODE_FOR_loongson_paddh CODE_FOR_addv4hi3
14295 #define CODE_FOR_loongson_paddb CODE_FOR_addv8qi3
14296 #define CODE_FOR_loongson_paddsh CODE_FOR_ssaddv4hi3
14297 #define CODE_FOR_loongson_paddsb CODE_FOR_ssaddv8qi3
14298 #define CODE_FOR_loongson_paddush CODE_FOR_usaddv4hi3
14299 #define CODE_FOR_loongson_paddusb CODE_FOR_usaddv8qi3
14300 #define CODE_FOR_loongson_pmaxsh CODE_FOR_smaxv4hi3
14301 #define CODE_FOR_loongson_pmaxub CODE_FOR_umaxv8qi3
14302 #define CODE_FOR_loongson_pminsh CODE_FOR_sminv4hi3
14303 #define CODE_FOR_loongson_pminub CODE_FOR_uminv8qi3
14304 #define CODE_FOR_loongson_pmulhuh CODE_FOR_umulv4hi3_highpart
14305 #define CODE_FOR_loongson_pmulhh CODE_FOR_smulv4hi3_highpart
14306 #define CODE_FOR_loongson_pmullh CODE_FOR_mulv4hi3
14307 #define CODE_FOR_loongson_psllh CODE_FOR_ashlv4hi3
14308 #define CODE_FOR_loongson_psllw CODE_FOR_ashlv2si3
14309 #define CODE_FOR_loongson_psrlh CODE_FOR_lshrv4hi3
14310 #define CODE_FOR_loongson_psrlw CODE_FOR_lshrv2si3
14311 #define CODE_FOR_loongson_psrah CODE_FOR_ashrv4hi3
14312 #define CODE_FOR_loongson_psraw CODE_FOR_ashrv2si3
14313 #define CODE_FOR_loongson_psubw CODE_FOR_subv2si3
14314 #define CODE_FOR_loongson_psubh CODE_FOR_subv4hi3
14315 #define CODE_FOR_loongson_psubb CODE_FOR_subv8qi3
14316 #define CODE_FOR_loongson_psubsh CODE_FOR_sssubv4hi3
14317 #define CODE_FOR_loongson_psubsb CODE_FOR_sssubv8qi3
14318 #define CODE_FOR_loongson_psubush CODE_FOR_ussubv4hi3
14319 #define CODE_FOR_loongson_psubusb CODE_FOR_ussubv8qi3
14321 static const struct mips_builtin_description mips_builtins[] = {
14322 #define MIPS_GET_FCSR 0
14323 DIRECT_BUILTIN (get_fcsr, MIPS_USI_FTYPE_VOID, hard_float),
14324 #define MIPS_SET_FCSR 1
14325 DIRECT_NO_TARGET_BUILTIN (set_fcsr, MIPS_VOID_FTYPE_USI, hard_float),
14327 DIRECT_BUILTIN (pll_ps, MIPS_V2SF_FTYPE_V2SF_V2SF, paired_single),
14328 DIRECT_BUILTIN (pul_ps, MIPS_V2SF_FTYPE_V2SF_V2SF, paired_single),
14329 DIRECT_BUILTIN (plu_ps, MIPS_V2SF_FTYPE_V2SF_V2SF, paired_single),
14330 DIRECT_BUILTIN (puu_ps, MIPS_V2SF_FTYPE_V2SF_V2SF, paired_single),
14331 DIRECT_BUILTIN (cvt_ps_s, MIPS_V2SF_FTYPE_SF_SF, paired_single),
14332 DIRECT_BUILTIN (cvt_s_pl, MIPS_SF_FTYPE_V2SF, paired_single),
14333 DIRECT_BUILTIN (cvt_s_pu, MIPS_SF_FTYPE_V2SF, paired_single),
14334 DIRECT_BUILTIN (abs_ps, MIPS_V2SF_FTYPE_V2SF, paired_single),
14336 DIRECT_BUILTIN (alnv_ps, MIPS_V2SF_FTYPE_V2SF_V2SF_INT, paired_single),
14337 DIRECT_BUILTIN (addr_ps, MIPS_V2SF_FTYPE_V2SF_V2SF, mips3d),
14338 DIRECT_BUILTIN (mulr_ps, MIPS_V2SF_FTYPE_V2SF_V2SF, mips3d),
14339 DIRECT_BUILTIN (cvt_pw_ps, MIPS_V2SF_FTYPE_V2SF, mips3d),
14340 DIRECT_BUILTIN (cvt_ps_pw, MIPS_V2SF_FTYPE_V2SF, mips3d),
14342 DIRECT_BUILTIN (recip1_s, MIPS_SF_FTYPE_SF, mips3d),
14343 DIRECT_BUILTIN (recip1_d, MIPS_DF_FTYPE_DF, mips3d),
14344 DIRECT_BUILTIN (recip1_ps, MIPS_V2SF_FTYPE_V2SF, mips3d),
14345 DIRECT_BUILTIN (recip2_s, MIPS_SF_FTYPE_SF_SF, mips3d),
14346 DIRECT_BUILTIN (recip2_d, MIPS_DF_FTYPE_DF_DF, mips3d),
14347 DIRECT_BUILTIN (recip2_ps, MIPS_V2SF_FTYPE_V2SF_V2SF, mips3d),
14349 DIRECT_BUILTIN (rsqrt1_s, MIPS_SF_FTYPE_SF, mips3d),
14350 DIRECT_BUILTIN (rsqrt1_d, MIPS_DF_FTYPE_DF, mips3d),
14351 DIRECT_BUILTIN (rsqrt1_ps, MIPS_V2SF_FTYPE_V2SF, mips3d),
14352 DIRECT_BUILTIN (rsqrt2_s, MIPS_SF_FTYPE_SF_SF, mips3d),
14353 DIRECT_BUILTIN (rsqrt2_d, MIPS_DF_FTYPE_DF_DF, mips3d),
14354 DIRECT_BUILTIN (rsqrt2_ps, MIPS_V2SF_FTYPE_V2SF_V2SF, mips3d),
14356 MIPS_FP_CONDITIONS (CMP_BUILTINS),
14358 /* Built-in functions for the SB-1 processor. */
14359 DIRECT_BUILTIN (sqrt_ps, MIPS_V2SF_FTYPE_V2SF, sb1_paired_single),
14361 /* Built-in functions for the DSP ASE (32-bit and 64-bit). */
14362 DIRECT_BUILTIN (addq_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, dsp),
14363 DIRECT_BUILTIN (addq_s_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, dsp),
14364 DIRECT_BUILTIN (addq_s_w, MIPS_SI_FTYPE_SI_SI, dsp),
14365 DIRECT_BUILTIN (addu_qb, MIPS_V4QI_FTYPE_V4QI_V4QI, dsp),
14366 DIRECT_BUILTIN (addu_s_qb, MIPS_V4QI_FTYPE_V4QI_V4QI, dsp),
14367 DIRECT_BUILTIN (subq_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, dsp),
14368 DIRECT_BUILTIN (subq_s_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, dsp),
14369 DIRECT_BUILTIN (subq_s_w, MIPS_SI_FTYPE_SI_SI, dsp),
14370 DIRECT_BUILTIN (subu_qb, MIPS_V4QI_FTYPE_V4QI_V4QI, dsp),
14371 DIRECT_BUILTIN (subu_s_qb, MIPS_V4QI_FTYPE_V4QI_V4QI, dsp),
14372 DIRECT_BUILTIN (addsc, MIPS_SI_FTYPE_SI_SI, dsp),
14373 DIRECT_BUILTIN (addwc, MIPS_SI_FTYPE_SI_SI, dsp),
14374 DIRECT_BUILTIN (modsub, MIPS_SI_FTYPE_SI_SI, dsp),
14375 DIRECT_BUILTIN (raddu_w_qb, MIPS_SI_FTYPE_V4QI, dsp),
14376 DIRECT_BUILTIN (absq_s_ph, MIPS_V2HI_FTYPE_V2HI, dsp),
14377 DIRECT_BUILTIN (absq_s_w, MIPS_SI_FTYPE_SI, dsp),
14378 DIRECT_BUILTIN (precrq_qb_ph, MIPS_V4QI_FTYPE_V2HI_V2HI, dsp),
14379 DIRECT_BUILTIN (precrq_ph_w, MIPS_V2HI_FTYPE_SI_SI, dsp),
14380 DIRECT_BUILTIN (precrq_rs_ph_w, MIPS_V2HI_FTYPE_SI_SI, dsp),
14381 DIRECT_BUILTIN (precrqu_s_qb_ph, MIPS_V4QI_FTYPE_V2HI_V2HI, dsp),
14382 DIRECT_BUILTIN (preceq_w_phl, MIPS_SI_FTYPE_V2HI, dsp),
14383 DIRECT_BUILTIN (preceq_w_phr, MIPS_SI_FTYPE_V2HI, dsp),
14384 DIRECT_BUILTIN (precequ_ph_qbl, MIPS_V2HI_FTYPE_V4QI, dsp),
14385 DIRECT_BUILTIN (precequ_ph_qbr, MIPS_V2HI_FTYPE_V4QI, dsp),
14386 DIRECT_BUILTIN (precequ_ph_qbla, MIPS_V2HI_FTYPE_V4QI, dsp),
14387 DIRECT_BUILTIN (precequ_ph_qbra, MIPS_V2HI_FTYPE_V4QI, dsp),
14388 DIRECT_BUILTIN (preceu_ph_qbl, MIPS_V2HI_FTYPE_V4QI, dsp),
14389 DIRECT_BUILTIN (preceu_ph_qbr, MIPS_V2HI_FTYPE_V4QI, dsp),
14390 DIRECT_BUILTIN (preceu_ph_qbla, MIPS_V2HI_FTYPE_V4QI, dsp),
14391 DIRECT_BUILTIN (preceu_ph_qbra, MIPS_V2HI_FTYPE_V4QI, dsp),
14392 DIRECT_BUILTIN (shll_qb, MIPS_V4QI_FTYPE_V4QI_SI, dsp),
14393 DIRECT_BUILTIN (shll_ph, MIPS_V2HI_FTYPE_V2HI_SI, dsp),
14394 DIRECT_BUILTIN (shll_s_ph, MIPS_V2HI_FTYPE_V2HI_SI, dsp),
14395 DIRECT_BUILTIN (shll_s_w, MIPS_SI_FTYPE_SI_SI, dsp),
14396 DIRECT_BUILTIN (shrl_qb, MIPS_V4QI_FTYPE_V4QI_SI, dsp),
14397 DIRECT_BUILTIN (shra_ph, MIPS_V2HI_FTYPE_V2HI_SI, dsp),
14398 DIRECT_BUILTIN (shra_r_ph, MIPS_V2HI_FTYPE_V2HI_SI, dsp),
14399 DIRECT_BUILTIN (shra_r_w, MIPS_SI_FTYPE_SI_SI, dsp),
14400 DIRECT_BUILTIN (muleu_s_ph_qbl, MIPS_V2HI_FTYPE_V4QI_V2HI, dsp),
14401 DIRECT_BUILTIN (muleu_s_ph_qbr, MIPS_V2HI_FTYPE_V4QI_V2HI, dsp),
14402 DIRECT_BUILTIN (mulq_rs_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, dsp),
14403 DIRECT_BUILTIN (muleq_s_w_phl, MIPS_SI_FTYPE_V2HI_V2HI, dsp),
14404 DIRECT_BUILTIN (muleq_s_w_phr, MIPS_SI_FTYPE_V2HI_V2HI, dsp),
14405 DIRECT_BUILTIN (bitrev, MIPS_SI_FTYPE_SI, dsp),
14406 DIRECT_BUILTIN (insv, MIPS_SI_FTYPE_SI_SI, dsp),
14407 DIRECT_BUILTIN (repl_qb, MIPS_V4QI_FTYPE_SI, dsp),
14408 DIRECT_BUILTIN (repl_ph, MIPS_V2HI_FTYPE_SI, dsp),
14409 DIRECT_NO_TARGET_BUILTIN (cmpu_eq_qb, MIPS_VOID_FTYPE_V4QI_V4QI, dsp),
14410 DIRECT_NO_TARGET_BUILTIN (cmpu_lt_qb, MIPS_VOID_FTYPE_V4QI_V4QI, dsp),
14411 DIRECT_NO_TARGET_BUILTIN (cmpu_le_qb, MIPS_VOID_FTYPE_V4QI_V4QI, dsp),
14412 DIRECT_BUILTIN (cmpgu_eq_qb, MIPS_SI_FTYPE_V4QI_V4QI, dsp),
14413 DIRECT_BUILTIN (cmpgu_lt_qb, MIPS_SI_FTYPE_V4QI_V4QI, dsp),
14414 DIRECT_BUILTIN (cmpgu_le_qb, MIPS_SI_FTYPE_V4QI_V4QI, dsp),
14415 DIRECT_NO_TARGET_BUILTIN (cmp_eq_ph, MIPS_VOID_FTYPE_V2HI_V2HI, dsp),
14416 DIRECT_NO_TARGET_BUILTIN (cmp_lt_ph, MIPS_VOID_FTYPE_V2HI_V2HI, dsp),
14417 DIRECT_NO_TARGET_BUILTIN (cmp_le_ph, MIPS_VOID_FTYPE_V2HI_V2HI, dsp),
14418 DIRECT_BUILTIN (pick_qb, MIPS_V4QI_FTYPE_V4QI_V4QI, dsp),
14419 DIRECT_BUILTIN (pick_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, dsp),
14420 DIRECT_BUILTIN (packrl_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, dsp),
14421 DIRECT_NO_TARGET_BUILTIN (wrdsp, MIPS_VOID_FTYPE_SI_SI, dsp),
14422 DIRECT_BUILTIN (rddsp, MIPS_SI_FTYPE_SI, dsp),
14423 DIRECT_BUILTIN (lbux, MIPS_SI_FTYPE_POINTER_SI, dsp),
14424 DIRECT_BUILTIN (lhx, MIPS_SI_FTYPE_POINTER_SI, dsp),
14425 DIRECT_BUILTIN (lwx, MIPS_SI_FTYPE_POINTER_SI, dsp),
14426 BPOSGE_BUILTIN (32, dsp),
14428 /* The following are for the MIPS DSP ASE REV 2 (32-bit and 64-bit). */
14429 DIRECT_BUILTIN (absq_s_qb, MIPS_V4QI_FTYPE_V4QI, dspr2),
14430 DIRECT_BUILTIN (addu_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, dspr2),
14431 DIRECT_BUILTIN (addu_s_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, dspr2),
14432 DIRECT_BUILTIN (adduh_qb, MIPS_V4QI_FTYPE_V4QI_V4QI, dspr2),
14433 DIRECT_BUILTIN (adduh_r_qb, MIPS_V4QI_FTYPE_V4QI_V4QI, dspr2),
14434 DIRECT_BUILTIN (append, MIPS_SI_FTYPE_SI_SI_SI, dspr2),
14435 DIRECT_BUILTIN (balign, MIPS_SI_FTYPE_SI_SI_SI, dspr2),
14436 DIRECT_BUILTIN (cmpgdu_eq_qb, MIPS_SI_FTYPE_V4QI_V4QI, dspr2),
14437 DIRECT_BUILTIN (cmpgdu_lt_qb, MIPS_SI_FTYPE_V4QI_V4QI, dspr2),
14438 DIRECT_BUILTIN (cmpgdu_le_qb, MIPS_SI_FTYPE_V4QI_V4QI, dspr2),
14439 DIRECT_BUILTIN (mul_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, dspr2),
14440 DIRECT_BUILTIN (mul_s_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, dspr2),
14441 DIRECT_BUILTIN (mulq_rs_w, MIPS_SI_FTYPE_SI_SI, dspr2),
14442 DIRECT_BUILTIN (mulq_s_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, dspr2),
14443 DIRECT_BUILTIN (mulq_s_w, MIPS_SI_FTYPE_SI_SI, dspr2),
14444 DIRECT_BUILTIN (precr_qb_ph, MIPS_V4QI_FTYPE_V2HI_V2HI, dspr2),
14445 DIRECT_BUILTIN (precr_sra_ph_w, MIPS_V2HI_FTYPE_SI_SI_SI, dspr2),
14446 DIRECT_BUILTIN (precr_sra_r_ph_w, MIPS_V2HI_FTYPE_SI_SI_SI, dspr2),
14447 DIRECT_BUILTIN (prepend, MIPS_SI_FTYPE_SI_SI_SI, dspr2),
14448 DIRECT_BUILTIN (shra_qb, MIPS_V4QI_FTYPE_V4QI_SI, dspr2),
14449 DIRECT_BUILTIN (shra_r_qb, MIPS_V4QI_FTYPE_V4QI_SI, dspr2),
14450 DIRECT_BUILTIN (shrl_ph, MIPS_V2HI_FTYPE_V2HI_SI, dspr2),
14451 DIRECT_BUILTIN (subu_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, dspr2),
14452 DIRECT_BUILTIN (subu_s_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, dspr2),
14453 DIRECT_BUILTIN (subuh_qb, MIPS_V4QI_FTYPE_V4QI_V4QI, dspr2),
14454 DIRECT_BUILTIN (subuh_r_qb, MIPS_V4QI_FTYPE_V4QI_V4QI, dspr2),
14455 DIRECT_BUILTIN (addqh_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, dspr2),
14456 DIRECT_BUILTIN (addqh_r_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, dspr2),
14457 DIRECT_BUILTIN (addqh_w, MIPS_SI_FTYPE_SI_SI, dspr2),
14458 DIRECT_BUILTIN (addqh_r_w, MIPS_SI_FTYPE_SI_SI, dspr2),
14459 DIRECT_BUILTIN (subqh_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, dspr2),
14460 DIRECT_BUILTIN (subqh_r_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, dspr2),
14461 DIRECT_BUILTIN (subqh_w, MIPS_SI_FTYPE_SI_SI, dspr2),
14462 DIRECT_BUILTIN (subqh_r_w, MIPS_SI_FTYPE_SI_SI, dspr2),
14464 /* Built-in functions for the DSP ASE (32-bit only). */
14465 DIRECT_BUILTIN (dpau_h_qbl, MIPS_DI_FTYPE_DI_V4QI_V4QI, dsp_32),
14466 DIRECT_BUILTIN (dpau_h_qbr, MIPS_DI_FTYPE_DI_V4QI_V4QI, dsp_32),
14467 DIRECT_BUILTIN (dpsu_h_qbl, MIPS_DI_FTYPE_DI_V4QI_V4QI, dsp_32),
14468 DIRECT_BUILTIN (dpsu_h_qbr, MIPS_DI_FTYPE_DI_V4QI_V4QI, dsp_32),
14469 DIRECT_BUILTIN (dpaq_s_w_ph, MIPS_DI_FTYPE_DI_V2HI_V2HI, dsp_32),
14470 DIRECT_BUILTIN (dpsq_s_w_ph, MIPS_DI_FTYPE_DI_V2HI_V2HI, dsp_32),
14471 DIRECT_BUILTIN (mulsaq_s_w_ph, MIPS_DI_FTYPE_DI_V2HI_V2HI, dsp_32),
14472 DIRECT_BUILTIN (dpaq_sa_l_w, MIPS_DI_FTYPE_DI_SI_SI, dsp_32),
14473 DIRECT_BUILTIN (dpsq_sa_l_w, MIPS_DI_FTYPE_DI_SI_SI, dsp_32),
14474 DIRECT_BUILTIN (maq_s_w_phl, MIPS_DI_FTYPE_DI_V2HI_V2HI, dsp_32),
14475 DIRECT_BUILTIN (maq_s_w_phr, MIPS_DI_FTYPE_DI_V2HI_V2HI, dsp_32),
14476 DIRECT_BUILTIN (maq_sa_w_phl, MIPS_DI_FTYPE_DI_V2HI_V2HI, dsp_32),
14477 DIRECT_BUILTIN (maq_sa_w_phr, MIPS_DI_FTYPE_DI_V2HI_V2HI, dsp_32),
14478 DIRECT_BUILTIN (extr_w, MIPS_SI_FTYPE_DI_SI, dsp_32),
14479 DIRECT_BUILTIN (extr_r_w, MIPS_SI_FTYPE_DI_SI, dsp_32),
14480 DIRECT_BUILTIN (extr_rs_w, MIPS_SI_FTYPE_DI_SI, dsp_32),
14481 DIRECT_BUILTIN (extr_s_h, MIPS_SI_FTYPE_DI_SI, dsp_32),
14482 DIRECT_BUILTIN (extp, MIPS_SI_FTYPE_DI_SI, dsp_32),
14483 DIRECT_BUILTIN (extpdp, MIPS_SI_FTYPE_DI_SI, dsp_32),
14484 DIRECT_BUILTIN (shilo, MIPS_DI_FTYPE_DI_SI, dsp_32),
14485 DIRECT_BUILTIN (mthlip, MIPS_DI_FTYPE_DI_SI, dsp_32),
14486 DIRECT_BUILTIN (madd, MIPS_DI_FTYPE_DI_SI_SI, dsp_32),
14487 DIRECT_BUILTIN (maddu, MIPS_DI_FTYPE_DI_USI_USI, dsp_32),
14488 DIRECT_BUILTIN (msub, MIPS_DI_FTYPE_DI_SI_SI, dsp_32),
14489 DIRECT_BUILTIN (msubu, MIPS_DI_FTYPE_DI_USI_USI, dsp_32),
14490 DIRECT_BUILTIN (mult, MIPS_DI_FTYPE_SI_SI, dsp_32),
14491 DIRECT_BUILTIN (multu, MIPS_DI_FTYPE_USI_USI, dsp_32),
14493 /* Built-in functions for the DSP ASE (64-bit only). */
14494 DIRECT_BUILTIN (ldx, MIPS_DI_FTYPE_POINTER_SI, dsp_64),
14496 /* The following are for the MIPS DSP ASE REV 2 (32-bit only). */
14497 DIRECT_BUILTIN (dpa_w_ph, MIPS_DI_FTYPE_DI_V2HI_V2HI, dspr2_32),
14498 DIRECT_BUILTIN (dps_w_ph, MIPS_DI_FTYPE_DI_V2HI_V2HI, dspr2_32),
14499 DIRECT_BUILTIN (mulsa_w_ph, MIPS_DI_FTYPE_DI_V2HI_V2HI, dspr2_32),
14500 DIRECT_BUILTIN (dpax_w_ph, MIPS_DI_FTYPE_DI_V2HI_V2HI, dspr2_32),
14501 DIRECT_BUILTIN (dpsx_w_ph, MIPS_DI_FTYPE_DI_V2HI_V2HI, dspr2_32),
14502 DIRECT_BUILTIN (dpaqx_s_w_ph, MIPS_DI_FTYPE_DI_V2HI_V2HI, dspr2_32),
14503 DIRECT_BUILTIN (dpaqx_sa_w_ph, MIPS_DI_FTYPE_DI_V2HI_V2HI, dspr2_32),
14504 DIRECT_BUILTIN (dpsqx_s_w_ph, MIPS_DI_FTYPE_DI_V2HI_V2HI, dspr2_32),
14505 DIRECT_BUILTIN (dpsqx_sa_w_ph, MIPS_DI_FTYPE_DI_V2HI_V2HI, dspr2_32),
14507 /* Builtin functions for ST Microelectronics Loongson-2E/2F cores. */
14508 LOONGSON_BUILTIN (packsswh, MIPS_V4HI_FTYPE_V2SI_V2SI),
14509 LOONGSON_BUILTIN (packsshb, MIPS_V8QI_FTYPE_V4HI_V4HI),
14510 LOONGSON_BUILTIN (packushb, MIPS_UV8QI_FTYPE_UV4HI_UV4HI),
14511 LOONGSON_BUILTIN_SUFFIX (paddw, u, MIPS_UV2SI_FTYPE_UV2SI_UV2SI),
14512 LOONGSON_BUILTIN_SUFFIX (paddh, u, MIPS_UV4HI_FTYPE_UV4HI_UV4HI),
14513 LOONGSON_BUILTIN_SUFFIX (paddb, u, MIPS_UV8QI_FTYPE_UV8QI_UV8QI),
14514 LOONGSON_BUILTIN_SUFFIX (paddw, s, MIPS_V2SI_FTYPE_V2SI_V2SI),
14515 LOONGSON_BUILTIN_SUFFIX (paddh, s, MIPS_V4HI_FTYPE_V4HI_V4HI),
14516 LOONGSON_BUILTIN_SUFFIX (paddb, s, MIPS_V8QI_FTYPE_V8QI_V8QI),
14517 LOONGSON_BUILTIN_SUFFIX (paddd, u, MIPS_UDI_FTYPE_UDI_UDI),
14518 LOONGSON_BUILTIN_SUFFIX (paddd, s, MIPS_DI_FTYPE_DI_DI),
14519 LOONGSON_BUILTIN (paddsh, MIPS_V4HI_FTYPE_V4HI_V4HI),
14520 LOONGSON_BUILTIN (paddsb, MIPS_V8QI_FTYPE_V8QI_V8QI),
14521 LOONGSON_BUILTIN (paddush, MIPS_UV4HI_FTYPE_UV4HI_UV4HI),
14522 LOONGSON_BUILTIN (paddusb, MIPS_UV8QI_FTYPE_UV8QI_UV8QI),
14523 LOONGSON_BUILTIN_ALIAS (pandn_d, pandn_ud, MIPS_UDI_FTYPE_UDI_UDI),
14524 LOONGSON_BUILTIN_ALIAS (pandn_w, pandn_uw, MIPS_UV2SI_FTYPE_UV2SI_UV2SI),
14525 LOONGSON_BUILTIN_ALIAS (pandn_h, pandn_uh, MIPS_UV4HI_FTYPE_UV4HI_UV4HI),
14526 LOONGSON_BUILTIN_ALIAS (pandn_b, pandn_ub, MIPS_UV8QI_FTYPE_UV8QI_UV8QI),
14527 LOONGSON_BUILTIN_ALIAS (pandn_d, pandn_sd, MIPS_DI_FTYPE_DI_DI),
14528 LOONGSON_BUILTIN_ALIAS (pandn_w, pandn_sw, MIPS_V2SI_FTYPE_V2SI_V2SI),
14529 LOONGSON_BUILTIN_ALIAS (pandn_h, pandn_sh, MIPS_V4HI_FTYPE_V4HI_V4HI),
14530 LOONGSON_BUILTIN_ALIAS (pandn_b, pandn_sb, MIPS_V8QI_FTYPE_V8QI_V8QI),
14531 LOONGSON_BUILTIN (pavgh, MIPS_UV4HI_FTYPE_UV4HI_UV4HI),
14532 LOONGSON_BUILTIN (pavgb, MIPS_UV8QI_FTYPE_UV8QI_UV8QI),
14533 LOONGSON_BUILTIN_SUFFIX (pcmpeqw, u, MIPS_UV2SI_FTYPE_UV2SI_UV2SI),
14534 LOONGSON_BUILTIN_SUFFIX (pcmpeqh, u, MIPS_UV4HI_FTYPE_UV4HI_UV4HI),
14535 LOONGSON_BUILTIN_SUFFIX (pcmpeqb, u, MIPS_UV8QI_FTYPE_UV8QI_UV8QI),
14536 LOONGSON_BUILTIN_SUFFIX (pcmpeqw, s, MIPS_V2SI_FTYPE_V2SI_V2SI),
14537 LOONGSON_BUILTIN_SUFFIX (pcmpeqh, s, MIPS_V4HI_FTYPE_V4HI_V4HI),
14538 LOONGSON_BUILTIN_SUFFIX (pcmpeqb, s, MIPS_V8QI_FTYPE_V8QI_V8QI),
14539 LOONGSON_BUILTIN_SUFFIX (pcmpgtw, u, MIPS_UV2SI_FTYPE_UV2SI_UV2SI),
14540 LOONGSON_BUILTIN_SUFFIX (pcmpgth, u, MIPS_UV4HI_FTYPE_UV4HI_UV4HI),
14541 LOONGSON_BUILTIN_SUFFIX (pcmpgtb, u, MIPS_UV8QI_FTYPE_UV8QI_UV8QI),
14542 LOONGSON_BUILTIN_SUFFIX (pcmpgtw, s, MIPS_V2SI_FTYPE_V2SI_V2SI),
14543 LOONGSON_BUILTIN_SUFFIX (pcmpgth, s, MIPS_V4HI_FTYPE_V4HI_V4HI),
14544 LOONGSON_BUILTIN_SUFFIX (pcmpgtb, s, MIPS_V8QI_FTYPE_V8QI_V8QI),
14545 LOONGSON_BUILTIN_SUFFIX (pextrh, u, MIPS_UV4HI_FTYPE_UV4HI_USI),
14546 LOONGSON_BUILTIN_SUFFIX (pextrh, s, MIPS_V4HI_FTYPE_V4HI_USI),
14547 LOONGSON_BUILTIN_SUFFIX (pinsrh_0, u, MIPS_UV4HI_FTYPE_UV4HI_UV4HI),
14548 LOONGSON_BUILTIN_SUFFIX (pinsrh_1, u, MIPS_UV4HI_FTYPE_UV4HI_UV4HI),
14549 LOONGSON_BUILTIN_SUFFIX (pinsrh_2, u, MIPS_UV4HI_FTYPE_UV4HI_UV4HI),
14550 LOONGSON_BUILTIN_SUFFIX (pinsrh_3, u, MIPS_UV4HI_FTYPE_UV4HI_UV4HI),
14551 LOONGSON_BUILTIN_SUFFIX (pinsrh_0, s, MIPS_V4HI_FTYPE_V4HI_V4HI),
14552 LOONGSON_BUILTIN_SUFFIX (pinsrh_1, s, MIPS_V4HI_FTYPE_V4HI_V4HI),
14553 LOONGSON_BUILTIN_SUFFIX (pinsrh_2, s, MIPS_V4HI_FTYPE_V4HI_V4HI),
14554 LOONGSON_BUILTIN_SUFFIX (pinsrh_3, s, MIPS_V4HI_FTYPE_V4HI_V4HI),
14555 LOONGSON_BUILTIN (pmaddhw, MIPS_V2SI_FTYPE_V4HI_V4HI),
14556 LOONGSON_BUILTIN (pmaxsh, MIPS_V4HI_FTYPE_V4HI_V4HI),
14557 LOONGSON_BUILTIN (pmaxub, MIPS_UV8QI_FTYPE_UV8QI_UV8QI),
14558 LOONGSON_BUILTIN (pminsh, MIPS_V4HI_FTYPE_V4HI_V4HI),
14559 LOONGSON_BUILTIN (pminub, MIPS_UV8QI_FTYPE_UV8QI_UV8QI),
14560 LOONGSON_BUILTIN_SUFFIX (pmovmskb, u, MIPS_UV8QI_FTYPE_UV8QI),
14561 LOONGSON_BUILTIN_SUFFIX (pmovmskb, s, MIPS_V8QI_FTYPE_V8QI),
14562 LOONGSON_BUILTIN (pmulhuh, MIPS_UV4HI_FTYPE_UV4HI_UV4HI),
14563 LOONGSON_BUILTIN (pmulhh, MIPS_V4HI_FTYPE_V4HI_V4HI),
14564 LOONGSON_BUILTIN (pmullh, MIPS_V4HI_FTYPE_V4HI_V4HI),
14565 LOONGSON_BUILTIN (pmuluw, MIPS_UDI_FTYPE_UV2SI_UV2SI),
14566 LOONGSON_BUILTIN (pasubub, MIPS_UV8QI_FTYPE_UV8QI_UV8QI),
14567 LOONGSON_BUILTIN (biadd, MIPS_UV4HI_FTYPE_UV8QI),
14568 LOONGSON_BUILTIN (psadbh, MIPS_UV4HI_FTYPE_UV8QI_UV8QI),
14569 LOONGSON_BUILTIN_SUFFIX (pshufh, u, MIPS_UV4HI_FTYPE_UV4HI_UQI),
14570 LOONGSON_BUILTIN_SUFFIX (pshufh, s, MIPS_V4HI_FTYPE_V4HI_UQI),
14571 LOONGSON_BUILTIN_SUFFIX (psllh, u, MIPS_UV4HI_FTYPE_UV4HI_UQI),
14572 LOONGSON_BUILTIN_SUFFIX (psllh, s, MIPS_V4HI_FTYPE_V4HI_UQI),
14573 LOONGSON_BUILTIN_SUFFIX (psllw, u, MIPS_UV2SI_FTYPE_UV2SI_UQI),
14574 LOONGSON_BUILTIN_SUFFIX (psllw, s, MIPS_V2SI_FTYPE_V2SI_UQI),
14575 LOONGSON_BUILTIN_SUFFIX (psrah, u, MIPS_UV4HI_FTYPE_UV4HI_UQI),
14576 LOONGSON_BUILTIN_SUFFIX (psrah, s, MIPS_V4HI_FTYPE_V4HI_UQI),
14577 LOONGSON_BUILTIN_SUFFIX (psraw, u, MIPS_UV2SI_FTYPE_UV2SI_UQI),
14578 LOONGSON_BUILTIN_SUFFIX (psraw, s, MIPS_V2SI_FTYPE_V2SI_UQI),
14579 LOONGSON_BUILTIN_SUFFIX (psrlh, u, MIPS_UV4HI_FTYPE_UV4HI_UQI),
14580 LOONGSON_BUILTIN_SUFFIX (psrlh, s, MIPS_V4HI_FTYPE_V4HI_UQI),
14581 LOONGSON_BUILTIN_SUFFIX (psrlw, u, MIPS_UV2SI_FTYPE_UV2SI_UQI),
14582 LOONGSON_BUILTIN_SUFFIX (psrlw, s, MIPS_V2SI_FTYPE_V2SI_UQI),
14583 LOONGSON_BUILTIN_SUFFIX (psubw, u, MIPS_UV2SI_FTYPE_UV2SI_UV2SI),
14584 LOONGSON_BUILTIN_SUFFIX (psubh, u, MIPS_UV4HI_FTYPE_UV4HI_UV4HI),
14585 LOONGSON_BUILTIN_SUFFIX (psubb, u, MIPS_UV8QI_FTYPE_UV8QI_UV8QI),
14586 LOONGSON_BUILTIN_SUFFIX (psubw, s, MIPS_V2SI_FTYPE_V2SI_V2SI),
14587 LOONGSON_BUILTIN_SUFFIX (psubh, s, MIPS_V4HI_FTYPE_V4HI_V4HI),
14588 LOONGSON_BUILTIN_SUFFIX (psubb, s, MIPS_V8QI_FTYPE_V8QI_V8QI),
14589 LOONGSON_BUILTIN_SUFFIX (psubd, u, MIPS_UDI_FTYPE_UDI_UDI),
14590 LOONGSON_BUILTIN_SUFFIX (psubd, s, MIPS_DI_FTYPE_DI_DI),
14591 LOONGSON_BUILTIN (psubsh, MIPS_V4HI_FTYPE_V4HI_V4HI),
14592 LOONGSON_BUILTIN (psubsb, MIPS_V8QI_FTYPE_V8QI_V8QI),
14593 LOONGSON_BUILTIN (psubush, MIPS_UV4HI_FTYPE_UV4HI_UV4HI),
14594 LOONGSON_BUILTIN (psubusb, MIPS_UV8QI_FTYPE_UV8QI_UV8QI),
14595 LOONGSON_BUILTIN_SUFFIX (punpckhbh, u, MIPS_UV8QI_FTYPE_UV8QI_UV8QI),
14596 LOONGSON_BUILTIN_SUFFIX (punpckhhw, u, MIPS_UV4HI_FTYPE_UV4HI_UV4HI),
14597 LOONGSON_BUILTIN_SUFFIX (punpckhwd, u, MIPS_UV2SI_FTYPE_UV2SI_UV2SI),
14598 LOONGSON_BUILTIN_SUFFIX (punpckhbh, s, MIPS_V8QI_FTYPE_V8QI_V8QI),
14599 LOONGSON_BUILTIN_SUFFIX (punpckhhw, s, MIPS_V4HI_FTYPE_V4HI_V4HI),
14600 LOONGSON_BUILTIN_SUFFIX (punpckhwd, s, MIPS_V2SI_FTYPE_V2SI_V2SI),
14601 LOONGSON_BUILTIN_SUFFIX (punpcklbh, u, MIPS_UV8QI_FTYPE_UV8QI_UV8QI),
14602 LOONGSON_BUILTIN_SUFFIX (punpcklhw, u, MIPS_UV4HI_FTYPE_UV4HI_UV4HI),
14603 LOONGSON_BUILTIN_SUFFIX (punpcklwd, u, MIPS_UV2SI_FTYPE_UV2SI_UV2SI),
14604 LOONGSON_BUILTIN_SUFFIX (punpcklbh, s, MIPS_V8QI_FTYPE_V8QI_V8QI),
14605 LOONGSON_BUILTIN_SUFFIX (punpcklhw, s, MIPS_V4HI_FTYPE_V4HI_V4HI),
14606 LOONGSON_BUILTIN_SUFFIX (punpcklwd, s, MIPS_V2SI_FTYPE_V2SI_V2SI),
14608 /* Sundry other built-in functions. */
14609 DIRECT_NO_TARGET_BUILTIN (cache, MIPS_VOID_FTYPE_SI_CVPOINTER, cache)
14612 /* Index I is the function declaration for mips_builtins[I], or null if the
14613 function isn't defined on this target. */
14614 static GTY(()) tree mips_builtin_decls[ARRAY_SIZE (mips_builtins)];
14616 /* MODE is a vector mode whose elements have type TYPE. Return the type
14617 of the vector itself. */
14619 static tree
14620 mips_builtin_vector_type (tree type, machine_mode mode)
14622 static tree types[2 * (int) MAX_MACHINE_MODE];
14623 int mode_index;
14625 mode_index = (int) mode;
14627 if (TREE_CODE (type) == INTEGER_TYPE && TYPE_UNSIGNED (type))
14628 mode_index += MAX_MACHINE_MODE;
14630 if (types[mode_index] == NULL_TREE)
14631 types[mode_index] = build_vector_type_for_mode (type, mode);
14632 return types[mode_index];
14635 /* Return a type for 'const volatile void *'. */
14637 static tree
14638 mips_build_cvpointer_type (void)
14640 static tree cache;
14642 if (cache == NULL_TREE)
14643 cache = build_pointer_type (build_qualified_type
14644 (void_type_node,
14645 TYPE_QUAL_CONST | TYPE_QUAL_VOLATILE));
14646 return cache;
14649 /* Source-level argument types. */
14650 #define MIPS_ATYPE_VOID void_type_node
14651 #define MIPS_ATYPE_INT integer_type_node
14652 #define MIPS_ATYPE_POINTER ptr_type_node
14653 #define MIPS_ATYPE_CVPOINTER mips_build_cvpointer_type ()
14655 /* Standard mode-based argument types. */
14656 #define MIPS_ATYPE_UQI unsigned_intQI_type_node
14657 #define MIPS_ATYPE_SI intSI_type_node
14658 #define MIPS_ATYPE_USI unsigned_intSI_type_node
14659 #define MIPS_ATYPE_DI intDI_type_node
14660 #define MIPS_ATYPE_UDI unsigned_intDI_type_node
14661 #define MIPS_ATYPE_SF float_type_node
14662 #define MIPS_ATYPE_DF double_type_node
14664 /* Vector argument types. */
14665 #define MIPS_ATYPE_V2SF mips_builtin_vector_type (float_type_node, V2SFmode)
14666 #define MIPS_ATYPE_V2HI mips_builtin_vector_type (intHI_type_node, V2HImode)
14667 #define MIPS_ATYPE_V2SI mips_builtin_vector_type (intSI_type_node, V2SImode)
14668 #define MIPS_ATYPE_V4QI mips_builtin_vector_type (intQI_type_node, V4QImode)
14669 #define MIPS_ATYPE_V4HI mips_builtin_vector_type (intHI_type_node, V4HImode)
14670 #define MIPS_ATYPE_V8QI mips_builtin_vector_type (intQI_type_node, V8QImode)
14671 #define MIPS_ATYPE_UV2SI \
14672 mips_builtin_vector_type (unsigned_intSI_type_node, V2SImode)
14673 #define MIPS_ATYPE_UV4HI \
14674 mips_builtin_vector_type (unsigned_intHI_type_node, V4HImode)
14675 #define MIPS_ATYPE_UV8QI \
14676 mips_builtin_vector_type (unsigned_intQI_type_node, V8QImode)
14678 /* MIPS_FTYPE_ATYPESN takes N MIPS_FTYPES-like type codes and lists
14679 their associated MIPS_ATYPEs. */
14680 #define MIPS_FTYPE_ATYPES1(A, B) \
14681 MIPS_ATYPE_##A, MIPS_ATYPE_##B
14683 #define MIPS_FTYPE_ATYPES2(A, B, C) \
14684 MIPS_ATYPE_##A, MIPS_ATYPE_##B, MIPS_ATYPE_##C
14686 #define MIPS_FTYPE_ATYPES3(A, B, C, D) \
14687 MIPS_ATYPE_##A, MIPS_ATYPE_##B, MIPS_ATYPE_##C, MIPS_ATYPE_##D
14689 #define MIPS_FTYPE_ATYPES4(A, B, C, D, E) \
14690 MIPS_ATYPE_##A, MIPS_ATYPE_##B, MIPS_ATYPE_##C, MIPS_ATYPE_##D, \
14691 MIPS_ATYPE_##E
14693 /* Return the function type associated with function prototype TYPE. */
14695 static tree
14696 mips_build_function_type (enum mips_function_type type)
14698 static tree types[(int) MIPS_MAX_FTYPE_MAX];
14700 if (types[(int) type] == NULL_TREE)
14701 switch (type)
14703 #define DEF_MIPS_FTYPE(NUM, ARGS) \
14704 case MIPS_FTYPE_NAME##NUM ARGS: \
14705 types[(int) type] \
14706 = build_function_type_list (MIPS_FTYPE_ATYPES##NUM ARGS, \
14707 NULL_TREE); \
14708 break;
14709 #include "config/mips/mips-ftypes.def"
14710 #undef DEF_MIPS_FTYPE
14711 default:
14712 gcc_unreachable ();
14715 return types[(int) type];
14718 /* Implement TARGET_INIT_BUILTINS. */
14720 static void
14721 mips_init_builtins (void)
14723 const struct mips_builtin_description *d;
14724 unsigned int i;
14726 /* Iterate through all of the bdesc arrays, initializing all of the
14727 builtin functions. */
14728 for (i = 0; i < ARRAY_SIZE (mips_builtins); i++)
14730 d = &mips_builtins[i];
14731 if (d->avail ())
14732 mips_builtin_decls[i]
14733 = add_builtin_function (d->name,
14734 mips_build_function_type (d->function_type),
14735 i, BUILT_IN_MD, NULL, NULL);
14739 /* Implement TARGET_BUILTIN_DECL. */
14741 static tree
14742 mips_builtin_decl (unsigned int code, bool initialize_p ATTRIBUTE_UNUSED)
14744 if (code >= ARRAY_SIZE (mips_builtins))
14745 return error_mark_node;
14746 return mips_builtin_decls[code];
14749 /* Take argument ARGNO from EXP's argument list and convert it into
14750 an expand operand. Store the operand in *OP. */
14752 static void
14753 mips_prepare_builtin_arg (struct expand_operand *op, tree exp,
14754 unsigned int argno)
14756 tree arg;
14757 rtx value;
14759 arg = CALL_EXPR_ARG (exp, argno);
14760 value = expand_normal (arg);
14761 create_input_operand (op, value, TYPE_MODE (TREE_TYPE (arg)));
14764 /* Expand instruction ICODE as part of a built-in function sequence.
14765 Use the first NOPS elements of OPS as the instruction's operands.
14766 HAS_TARGET_P is true if operand 0 is a target; it is false if the
14767 instruction has no target.
14769 Return the target rtx if HAS_TARGET_P, otherwise return const0_rtx. */
14771 static rtx
14772 mips_expand_builtin_insn (enum insn_code icode, unsigned int nops,
14773 struct expand_operand *ops, bool has_target_p)
14775 if (!maybe_expand_insn (icode, nops, ops))
14777 error ("invalid argument to built-in function");
14778 return has_target_p ? gen_reg_rtx (ops[0].mode) : const0_rtx;
14780 return has_target_p ? ops[0].value : const0_rtx;
14783 /* Expand a floating-point comparison for built-in function call EXP.
14784 The first NARGS arguments are the values to be compared. ICODE is
14785 the .md pattern that does the comparison and COND is the condition
14786 that is being tested. Return an rtx for the result. */
14788 static rtx
14789 mips_expand_builtin_compare_1 (enum insn_code icode,
14790 enum mips_fp_condition cond,
14791 tree exp, int nargs)
14793 struct expand_operand ops[MAX_RECOG_OPERANDS];
14794 rtx output;
14795 int opno, argno;
14797 /* The instruction should have a target operand, an operand for each
14798 argument, and an operand for COND. */
14799 gcc_assert (nargs + 2 == insn_data[(int) icode].n_generator_args);
14801 output = mips_allocate_fcc (insn_data[(int) icode].operand[0].mode);
14802 opno = 0;
14803 create_fixed_operand (&ops[opno++], output);
14804 for (argno = 0; argno < nargs; argno++)
14805 mips_prepare_builtin_arg (&ops[opno++], exp, argno);
14806 create_integer_operand (&ops[opno++], (int) cond);
14807 return mips_expand_builtin_insn (icode, opno, ops, true);
14810 /* Expand a MIPS_BUILTIN_DIRECT or MIPS_BUILTIN_DIRECT_NO_TARGET function;
14811 HAS_TARGET_P says which. EXP is the CALL_EXPR that calls the function
14812 and ICODE is the code of the associated .md pattern. TARGET, if nonnull,
14813 suggests a good place to put the result. */
14815 static rtx
14816 mips_expand_builtin_direct (enum insn_code icode, rtx target, tree exp,
14817 bool has_target_p)
14819 struct expand_operand ops[MAX_RECOG_OPERANDS];
14820 int opno, argno;
14822 /* Map any target to operand 0. */
14823 opno = 0;
14824 if (has_target_p)
14825 create_output_operand (&ops[opno++], target, TYPE_MODE (TREE_TYPE (exp)));
14827 /* Map the arguments to the other operands. */
14828 gcc_assert (opno + call_expr_nargs (exp)
14829 == insn_data[icode].n_generator_args);
14830 for (argno = 0; argno < call_expr_nargs (exp); argno++)
14831 mips_prepare_builtin_arg (&ops[opno++], exp, argno);
14833 return mips_expand_builtin_insn (icode, opno, ops, has_target_p);
14836 /* Expand a __builtin_mips_movt_*_ps or __builtin_mips_movf_*_ps
14837 function; TYPE says which. EXP is the CALL_EXPR that calls the
14838 function, ICODE is the instruction that should be used to compare
14839 the first two arguments, and COND is the condition it should test.
14840 TARGET, if nonnull, suggests a good place to put the result. */
14842 static rtx
14843 mips_expand_builtin_movtf (enum mips_builtin_type type,
14844 enum insn_code icode, enum mips_fp_condition cond,
14845 rtx target, tree exp)
14847 struct expand_operand ops[4];
14848 rtx cmp_result;
14850 cmp_result = mips_expand_builtin_compare_1 (icode, cond, exp, 2);
14851 create_output_operand (&ops[0], target, TYPE_MODE (TREE_TYPE (exp)));
14852 if (type == MIPS_BUILTIN_MOVT)
14854 mips_prepare_builtin_arg (&ops[2], exp, 2);
14855 mips_prepare_builtin_arg (&ops[1], exp, 3);
14857 else
14859 mips_prepare_builtin_arg (&ops[1], exp, 2);
14860 mips_prepare_builtin_arg (&ops[2], exp, 3);
14862 create_fixed_operand (&ops[3], cmp_result);
14863 return mips_expand_builtin_insn (CODE_FOR_mips_cond_move_tf_ps,
14864 4, ops, true);
14867 /* Move VALUE_IF_TRUE into TARGET if CONDITION is true; move VALUE_IF_FALSE
14868 into TARGET otherwise. Return TARGET. */
14870 static rtx
14871 mips_builtin_branch_and_move (rtx condition, rtx target,
14872 rtx value_if_true, rtx value_if_false)
14874 rtx_code_label *true_label, *done_label;
14876 true_label = gen_label_rtx ();
14877 done_label = gen_label_rtx ();
14879 /* First assume that CONDITION is false. */
14880 mips_emit_move (target, value_if_false);
14882 /* Branch to TRUE_LABEL if CONDITION is true and DONE_LABEL otherwise. */
14883 emit_jump_insn (gen_condjump (condition, true_label));
14884 emit_jump_insn (gen_jump (done_label));
14885 emit_barrier ();
14887 /* Fix TARGET if CONDITION is true. */
14888 emit_label (true_label);
14889 mips_emit_move (target, value_if_true);
14891 emit_label (done_label);
14892 return target;
14895 /* Expand a comparison built-in function of type BUILTIN_TYPE. EXP is
14896 the CALL_EXPR that calls the function, ICODE is the code of the
14897 comparison instruction, and COND is the condition it should test.
14898 TARGET, if nonnull, suggests a good place to put the boolean result. */
14900 static rtx
14901 mips_expand_builtin_compare (enum mips_builtin_type builtin_type,
14902 enum insn_code icode, enum mips_fp_condition cond,
14903 rtx target, tree exp)
14905 rtx offset, condition, cmp_result;
14907 if (target == 0 || GET_MODE (target) != SImode)
14908 target = gen_reg_rtx (SImode);
14909 cmp_result = mips_expand_builtin_compare_1 (icode, cond, exp,
14910 call_expr_nargs (exp));
14912 /* If the comparison sets more than one register, we define the result
14913 to be 0 if all registers are false and -1 if all registers are true.
14914 The value of the complete result is indeterminate otherwise. */
14915 switch (builtin_type)
14917 case MIPS_BUILTIN_CMP_ALL:
14918 condition = gen_rtx_NE (VOIDmode, cmp_result, constm1_rtx);
14919 return mips_builtin_branch_and_move (condition, target,
14920 const0_rtx, const1_rtx);
14922 case MIPS_BUILTIN_CMP_UPPER:
14923 case MIPS_BUILTIN_CMP_LOWER:
14924 offset = GEN_INT (builtin_type == MIPS_BUILTIN_CMP_UPPER);
14925 condition = gen_single_cc (cmp_result, offset);
14926 return mips_builtin_branch_and_move (condition, target,
14927 const1_rtx, const0_rtx);
14929 default:
14930 condition = gen_rtx_NE (VOIDmode, cmp_result, const0_rtx);
14931 return mips_builtin_branch_and_move (condition, target,
14932 const1_rtx, const0_rtx);
14936 /* Expand a bposge built-in function of type BUILTIN_TYPE. TARGET,
14937 if nonnull, suggests a good place to put the boolean result. */
14939 static rtx
14940 mips_expand_builtin_bposge (enum mips_builtin_type builtin_type, rtx target)
14942 rtx condition, cmp_result;
14943 int cmp_value;
14945 if (target == 0 || GET_MODE (target) != SImode)
14946 target = gen_reg_rtx (SImode);
14948 cmp_result = gen_rtx_REG (CCDSPmode, CCDSP_PO_REGNUM);
14950 if (builtin_type == MIPS_BUILTIN_BPOSGE32)
14951 cmp_value = 32;
14952 else
14953 gcc_assert (0);
14955 condition = gen_rtx_GE (VOIDmode, cmp_result, GEN_INT (cmp_value));
14956 return mips_builtin_branch_and_move (condition, target,
14957 const1_rtx, const0_rtx);
14960 /* Implement TARGET_EXPAND_BUILTIN. */
14962 static rtx
14963 mips_expand_builtin (tree exp, rtx target, rtx subtarget ATTRIBUTE_UNUSED,
14964 machine_mode mode, int ignore)
14966 tree fndecl;
14967 unsigned int fcode, avail;
14968 const struct mips_builtin_description *d;
14970 fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0);
14971 fcode = DECL_FUNCTION_CODE (fndecl);
14972 gcc_assert (fcode < ARRAY_SIZE (mips_builtins));
14973 d = &mips_builtins[fcode];
14974 avail = d->avail ();
14975 gcc_assert (avail != 0);
14976 if (TARGET_MIPS16 && !(avail & BUILTIN_AVAIL_MIPS16))
14978 error ("built-in function %qE not supported for MIPS16",
14979 DECL_NAME (fndecl));
14980 return ignore ? const0_rtx : CONST0_RTX (mode);
14982 switch (d->builtin_type)
14984 case MIPS_BUILTIN_DIRECT:
14985 return mips_expand_builtin_direct (d->icode, target, exp, true);
14987 case MIPS_BUILTIN_DIRECT_NO_TARGET:
14988 return mips_expand_builtin_direct (d->icode, target, exp, false);
14990 case MIPS_BUILTIN_MOVT:
14991 case MIPS_BUILTIN_MOVF:
14992 return mips_expand_builtin_movtf (d->builtin_type, d->icode,
14993 d->cond, target, exp);
14995 case MIPS_BUILTIN_CMP_ANY:
14996 case MIPS_BUILTIN_CMP_ALL:
14997 case MIPS_BUILTIN_CMP_UPPER:
14998 case MIPS_BUILTIN_CMP_LOWER:
14999 case MIPS_BUILTIN_CMP_SINGLE:
15000 return mips_expand_builtin_compare (d->builtin_type, d->icode,
15001 d->cond, target, exp);
15003 case MIPS_BUILTIN_BPOSGE32:
15004 return mips_expand_builtin_bposge (d->builtin_type, target);
15006 gcc_unreachable ();
15009 /* An entry in the MIPS16 constant pool. VALUE is the pool constant,
15010 MODE is its mode, and LABEL is the CODE_LABEL associated with it. */
15011 struct mips16_constant {
15012 struct mips16_constant *next;
15013 rtx value;
15014 rtx_code_label *label;
15015 machine_mode mode;
15018 /* Information about an incomplete MIPS16 constant pool. FIRST is the
15019 first constant, HIGHEST_ADDRESS is the highest address that the first
15020 byte of the pool can have, and INSN_ADDRESS is the current instruction
15021 address. */
15022 struct mips16_constant_pool {
15023 struct mips16_constant *first;
15024 int highest_address;
15025 int insn_address;
15028 /* Add constant VALUE to POOL and return its label. MODE is the
15029 value's mode (used for CONST_INTs, etc.). */
15031 static rtx_code_label *
15032 mips16_add_constant (struct mips16_constant_pool *pool,
15033 rtx value, machine_mode mode)
15035 struct mips16_constant **p, *c;
15036 bool first_of_size_p;
15038 /* See whether the constant is already in the pool. If so, return the
15039 existing label, otherwise leave P pointing to the place where the
15040 constant should be added.
15042 Keep the pool sorted in increasing order of mode size so that we can
15043 reduce the number of alignments needed. */
15044 first_of_size_p = true;
15045 for (p = &pool->first; *p != 0; p = &(*p)->next)
15047 if (mode == (*p)->mode && rtx_equal_p (value, (*p)->value))
15048 return (*p)->label;
15049 if (GET_MODE_SIZE (mode) < GET_MODE_SIZE ((*p)->mode))
15050 break;
15051 if (GET_MODE_SIZE (mode) == GET_MODE_SIZE ((*p)->mode))
15052 first_of_size_p = false;
15055 /* In the worst case, the constant needed by the earliest instruction
15056 will end up at the end of the pool. The entire pool must then be
15057 accessible from that instruction.
15059 When adding the first constant, set the pool's highest address to
15060 the address of the first out-of-range byte. Adjust this address
15061 downwards each time a new constant is added. */
15062 if (pool->first == 0)
15063 /* For LWPC, ADDIUPC and DADDIUPC, the base PC value is the address
15064 of the instruction with the lowest two bits clear. The base PC
15065 value for LDPC has the lowest three bits clear. Assume the worst
15066 case here; namely that the PC-relative instruction occupies the
15067 last 2 bytes in an aligned word. */
15068 pool->highest_address = pool->insn_address - (UNITS_PER_WORD - 2) + 0x8000;
15069 pool->highest_address -= GET_MODE_SIZE (mode);
15070 if (first_of_size_p)
15071 /* Take into account the worst possible padding due to alignment. */
15072 pool->highest_address -= GET_MODE_SIZE (mode) - 1;
15074 /* Create a new entry. */
15075 c = XNEW (struct mips16_constant);
15076 c->value = value;
15077 c->mode = mode;
15078 c->label = gen_label_rtx ();
15079 c->next = *p;
15080 *p = c;
15082 return c->label;
15085 /* Output constant VALUE after instruction INSN and return the last
15086 instruction emitted. MODE is the mode of the constant. */
15088 static rtx_insn *
15089 mips16_emit_constants_1 (machine_mode mode, rtx value, rtx_insn *insn)
15091 if (SCALAR_INT_MODE_P (mode) || ALL_SCALAR_FIXED_POINT_MODE_P (mode))
15093 rtx size = GEN_INT (GET_MODE_SIZE (mode));
15094 return emit_insn_after (gen_consttable_int (value, size), insn);
15097 if (SCALAR_FLOAT_MODE_P (mode))
15098 return emit_insn_after (gen_consttable_float (value), insn);
15100 if (VECTOR_MODE_P (mode))
15102 int i;
15104 for (i = 0; i < CONST_VECTOR_NUNITS (value); i++)
15105 insn = mips16_emit_constants_1 (GET_MODE_INNER (mode),
15106 CONST_VECTOR_ELT (value, i), insn);
15107 return insn;
15110 gcc_unreachable ();
15113 /* Dump out the constants in CONSTANTS after INSN. */
15115 static void
15116 mips16_emit_constants (struct mips16_constant *constants, rtx_insn *insn)
15118 struct mips16_constant *c, *next;
15119 int align;
15121 align = 0;
15122 for (c = constants; c != NULL; c = next)
15124 /* If necessary, increase the alignment of PC. */
15125 if (align < GET_MODE_SIZE (c->mode))
15127 int align_log = floor_log2 (GET_MODE_SIZE (c->mode));
15128 insn = emit_insn_after (gen_align (GEN_INT (align_log)), insn);
15130 align = GET_MODE_SIZE (c->mode);
15132 insn = emit_label_after (c->label, insn);
15133 insn = mips16_emit_constants_1 (c->mode, c->value, insn);
15135 next = c->next;
15136 free (c);
15139 emit_barrier_after (insn);
15142 /* Return the length of instruction INSN. */
15144 static int
15145 mips16_insn_length (rtx_insn *insn)
15147 if (JUMP_TABLE_DATA_P (insn))
15149 rtx body = PATTERN (insn);
15150 if (GET_CODE (body) == ADDR_VEC)
15151 return GET_MODE_SIZE (GET_MODE (body)) * XVECLEN (body, 0);
15152 else if (GET_CODE (body) == ADDR_DIFF_VEC)
15153 return GET_MODE_SIZE (GET_MODE (body)) * XVECLEN (body, 1);
15154 else
15155 gcc_unreachable ();
15157 return get_attr_length (insn);
15160 /* If *X is a symbolic constant that refers to the constant pool, add
15161 the constant to POOL and rewrite *X to use the constant's label. */
15163 static void
15164 mips16_rewrite_pool_constant (struct mips16_constant_pool *pool, rtx *x)
15166 rtx base, offset;
15167 rtx_code_label *label;
15169 split_const (*x, &base, &offset);
15170 if (GET_CODE (base) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (base))
15172 label = mips16_add_constant (pool, copy_rtx (get_pool_constant (base)),
15173 get_pool_mode (base));
15174 base = gen_rtx_LABEL_REF (Pmode, label);
15175 *x = mips_unspec_address_offset (base, offset, SYMBOL_PC_RELATIVE);
15179 /* Rewrite INSN so that constant pool references refer to the constant's
15180 label instead. */
15182 static void
15183 mips16_rewrite_pool_refs (rtx_insn *insn, struct mips16_constant_pool *pool)
15185 subrtx_ptr_iterator::array_type array;
15186 FOR_EACH_SUBRTX_PTR (iter, array, &PATTERN (insn), ALL)
15188 rtx *loc = *iter;
15190 if (force_to_mem_operand (*loc, Pmode))
15192 rtx mem = force_const_mem (GET_MODE (*loc), *loc);
15193 validate_change (insn, loc, mem, false);
15196 if (MEM_P (*loc))
15198 mips16_rewrite_pool_constant (pool, &XEXP (*loc, 0));
15199 iter.skip_subrtxes ();
15201 else
15203 if (TARGET_MIPS16_TEXT_LOADS)
15204 mips16_rewrite_pool_constant (pool, loc);
15205 if (GET_CODE (*loc) == CONST
15206 /* Don't rewrite the __mips16_rdwr symbol. */
15207 || (GET_CODE (*loc) == UNSPEC
15208 && XINT (*loc, 1) == UNSPEC_TLS_GET_TP))
15209 iter.skip_subrtxes ();
15214 /* Return whether CFG is used in mips_reorg. */
15216 static bool
15217 mips_cfg_in_reorg (void)
15219 return (mips_r10k_cache_barrier != R10K_CACHE_BARRIER_NONE
15220 || TARGET_RELAX_PIC_CALLS);
15223 /* Build MIPS16 constant pools. Split the instructions if SPLIT_P,
15224 otherwise assume that they are already split. */
15226 static void
15227 mips16_lay_out_constants (bool split_p)
15229 struct mips16_constant_pool pool;
15230 rtx_insn *insn, *barrier;
15232 if (!TARGET_MIPS16_PCREL_LOADS)
15233 return;
15235 if (split_p)
15237 if (mips_cfg_in_reorg ())
15238 split_all_insns ();
15239 else
15240 split_all_insns_noflow ();
15242 barrier = 0;
15243 memset (&pool, 0, sizeof (pool));
15244 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
15246 /* Rewrite constant pool references in INSN. */
15247 if (USEFUL_INSN_P (insn))
15248 mips16_rewrite_pool_refs (insn, &pool);
15250 pool.insn_address += mips16_insn_length (insn);
15252 if (pool.first != NULL)
15254 /* If there are no natural barriers between the first user of
15255 the pool and the highest acceptable address, we'll need to
15256 create a new instruction to jump around the constant pool.
15257 In the worst case, this instruction will be 4 bytes long.
15259 If it's too late to do this transformation after INSN,
15260 do it immediately before INSN. */
15261 if (barrier == 0 && pool.insn_address + 4 > pool.highest_address)
15263 rtx_code_label *label;
15264 rtx_insn *jump;
15266 label = gen_label_rtx ();
15268 jump = emit_jump_insn_before (gen_jump (label), insn);
15269 JUMP_LABEL (jump) = label;
15270 LABEL_NUSES (label) = 1;
15271 barrier = emit_barrier_after (jump);
15273 emit_label_after (label, barrier);
15274 pool.insn_address += 4;
15277 /* See whether the constant pool is now out of range of the first
15278 user. If so, output the constants after the previous barrier.
15279 Note that any instructions between BARRIER and INSN (inclusive)
15280 will use negative offsets to refer to the pool. */
15281 if (pool.insn_address > pool.highest_address)
15283 mips16_emit_constants (pool.first, barrier);
15284 pool.first = NULL;
15285 barrier = 0;
15287 else if (BARRIER_P (insn))
15288 barrier = insn;
15291 mips16_emit_constants (pool.first, get_last_insn ());
15294 /* Return true if it is worth r10k_simplify_address's while replacing
15295 an address with X. We are looking for constants, and for addresses
15296 at a known offset from the incoming stack pointer. */
15298 static bool
15299 r10k_simplified_address_p (rtx x)
15301 if (GET_CODE (x) == PLUS && CONST_INT_P (XEXP (x, 1)))
15302 x = XEXP (x, 0);
15303 return x == virtual_incoming_args_rtx || CONSTANT_P (x);
15306 /* X is an expression that appears in INSN. Try to use the UD chains
15307 to simplify it, returning the simplified form on success and the
15308 original form otherwise. Replace the incoming value of $sp with
15309 virtual_incoming_args_rtx (which should never occur in X otherwise). */
15311 static rtx
15312 r10k_simplify_address (rtx x, rtx_insn *insn)
15314 rtx newx, op0, op1, set, note;
15315 rtx_insn *def_insn;
15316 df_ref use, def;
15317 struct df_link *defs;
15319 newx = NULL_RTX;
15320 if (UNARY_P (x))
15322 op0 = r10k_simplify_address (XEXP (x, 0), insn);
15323 if (op0 != XEXP (x, 0))
15324 newx = simplify_gen_unary (GET_CODE (x), GET_MODE (x),
15325 op0, GET_MODE (XEXP (x, 0)));
15327 else if (BINARY_P (x))
15329 op0 = r10k_simplify_address (XEXP (x, 0), insn);
15330 op1 = r10k_simplify_address (XEXP (x, 1), insn);
15331 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
15332 newx = simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
15334 else if (GET_CODE (x) == LO_SUM)
15336 /* LO_SUMs can be offset from HIGHs, if we know they won't
15337 overflow. See mips_classify_address for the rationale behind
15338 the lax check. */
15339 op0 = r10k_simplify_address (XEXP (x, 0), insn);
15340 if (GET_CODE (op0) == HIGH)
15341 newx = XEXP (x, 1);
15343 else if (REG_P (x))
15345 /* Uses are recorded by regno_reg_rtx, not X itself. */
15346 use = df_find_use (insn, regno_reg_rtx[REGNO (x)]);
15347 gcc_assert (use);
15348 defs = DF_REF_CHAIN (use);
15350 /* Require a single definition. */
15351 if (defs && defs->next == NULL)
15353 def = defs->ref;
15354 if (DF_REF_IS_ARTIFICIAL (def))
15356 /* Replace the incoming value of $sp with
15357 virtual_incoming_args_rtx. */
15358 if (x == stack_pointer_rtx
15359 && DF_REF_BB (def) == ENTRY_BLOCK_PTR_FOR_FN (cfun))
15360 newx = virtual_incoming_args_rtx;
15362 else if (dominated_by_p (CDI_DOMINATORS, DF_REF_BB (use),
15363 DF_REF_BB (def)))
15365 /* Make sure that DEF_INSN is a single set of REG. */
15366 def_insn = DF_REF_INSN (def);
15367 if (NONJUMP_INSN_P (def_insn))
15369 set = single_set (def_insn);
15370 if (set && rtx_equal_p (SET_DEST (set), x))
15372 /* Prefer to use notes, since the def-use chains
15373 are often shorter. */
15374 note = find_reg_equal_equiv_note (def_insn);
15375 if (note)
15376 newx = XEXP (note, 0);
15377 else
15378 newx = SET_SRC (set);
15379 newx = r10k_simplify_address (newx, def_insn);
15385 if (newx && r10k_simplified_address_p (newx))
15386 return newx;
15387 return x;
15390 /* Return true if ADDRESS is known to be an uncached address
15391 on R10K systems. */
15393 static bool
15394 r10k_uncached_address_p (unsigned HOST_WIDE_INT address)
15396 unsigned HOST_WIDE_INT upper;
15398 /* Check for KSEG1. */
15399 if (address + 0x60000000 < 0x20000000)
15400 return true;
15402 /* Check for uncached XKPHYS addresses. */
15403 if (Pmode == DImode)
15405 upper = (address >> 40) & 0xf9ffff;
15406 if (upper == 0x900000 || upper == 0xb80000)
15407 return true;
15409 return false;
15412 /* Return true if we can prove that an access to address X in instruction
15413 INSN would be safe from R10K speculation. This X is a general
15414 expression; it might not be a legitimate address. */
15416 static bool
15417 r10k_safe_address_p (rtx x, rtx_insn *insn)
15419 rtx base, offset;
15420 HOST_WIDE_INT offset_val;
15422 x = r10k_simplify_address (x, insn);
15424 /* Check for references to the stack frame. It doesn't really matter
15425 how much of the frame has been allocated at INSN; -mr10k-cache-barrier
15426 allows us to assume that accesses to any part of the eventual frame
15427 is safe from speculation at any point in the function. */
15428 mips_split_plus (x, &base, &offset_val);
15429 if (base == virtual_incoming_args_rtx
15430 && offset_val >= -cfun->machine->frame.total_size
15431 && offset_val < cfun->machine->frame.args_size)
15432 return true;
15434 /* Check for uncached addresses. */
15435 if (CONST_INT_P (x))
15436 return r10k_uncached_address_p (INTVAL (x));
15438 /* Check for accesses to a static object. */
15439 split_const (x, &base, &offset);
15440 return offset_within_block_p (base, INTVAL (offset));
15443 /* Return true if a MEM with MEM_EXPR EXPR and MEM_OFFSET OFFSET is
15444 an in-range access to an automatic variable, or to an object with
15445 a link-time-constant address. */
15447 static bool
15448 r10k_safe_mem_expr_p (tree expr, unsigned HOST_WIDE_INT offset)
15450 HOST_WIDE_INT bitoffset, bitsize;
15451 tree inner, var_offset;
15452 machine_mode mode;
15453 int unsigned_p, volatile_p;
15455 inner = get_inner_reference (expr, &bitsize, &bitoffset, &var_offset, &mode,
15456 &unsigned_p, &volatile_p, false);
15457 if (!DECL_P (inner) || !DECL_SIZE_UNIT (inner) || var_offset)
15458 return false;
15460 offset += bitoffset / BITS_PER_UNIT;
15461 return offset < tree_to_uhwi (DECL_SIZE_UNIT (inner));
15464 /* Return true if X contains a MEM that is not safe from R10K speculation.
15465 INSN is the instruction that contains X. */
15467 static bool
15468 r10k_needs_protection_p_1 (rtx x, rtx_insn *insn)
15470 subrtx_var_iterator::array_type array;
15471 FOR_EACH_SUBRTX_VAR (iter, array, x, NONCONST)
15473 rtx mem = *iter;
15474 if (MEM_P (mem))
15476 if ((MEM_EXPR (mem)
15477 && MEM_OFFSET_KNOWN_P (mem)
15478 && r10k_safe_mem_expr_p (MEM_EXPR (mem), MEM_OFFSET (mem)))
15479 || r10k_safe_address_p (XEXP (mem, 0), insn))
15480 iter.skip_subrtxes ();
15481 else
15482 return true;
15485 return false;
15488 /* A note_stores callback for which DATA points to an instruction pointer.
15489 If *DATA is nonnull, make it null if it X contains a MEM that is not
15490 safe from R10K speculation. */
15492 static void
15493 r10k_needs_protection_p_store (rtx x, const_rtx pat ATTRIBUTE_UNUSED,
15494 void *data)
15496 rtx_insn **insn_ptr;
15498 insn_ptr = (rtx_insn **) data;
15499 if (*insn_ptr && r10k_needs_protection_p_1 (x, *insn_ptr))
15500 *insn_ptr = NULL;
15503 /* X is the pattern of a call instruction. Return true if the call is
15504 not to a declared function. */
15506 static bool
15507 r10k_needs_protection_p_call (const_rtx x)
15509 subrtx_iterator::array_type array;
15510 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
15512 const_rtx mem = *iter;
15513 if (MEM_P (mem))
15515 const_rtx addr = XEXP (mem, 0);
15516 if (GET_CODE (addr) == SYMBOL_REF && SYMBOL_REF_DECL (addr))
15517 iter.skip_subrtxes ();
15518 else
15519 return true;
15522 return false;
15525 /* Return true if instruction INSN needs to be protected by an R10K
15526 cache barrier. */
15528 static bool
15529 r10k_needs_protection_p (rtx_insn *insn)
15531 if (CALL_P (insn))
15532 return r10k_needs_protection_p_call (PATTERN (insn));
15534 if (mips_r10k_cache_barrier == R10K_CACHE_BARRIER_STORE)
15536 note_stores (PATTERN (insn), r10k_needs_protection_p_store, &insn);
15537 return insn == NULL_RTX;
15540 return r10k_needs_protection_p_1 (PATTERN (insn), insn);
15543 /* Return true if BB is only reached by blocks in PROTECTED_BBS and if every
15544 edge is unconditional. */
15546 static bool
15547 r10k_protected_bb_p (basic_block bb, sbitmap protected_bbs)
15549 edge_iterator ei;
15550 edge e;
15552 FOR_EACH_EDGE (e, ei, bb->preds)
15553 if (!single_succ_p (e->src)
15554 || !bitmap_bit_p (protected_bbs, e->src->index)
15555 || (e->flags & EDGE_COMPLEX) != 0)
15556 return false;
15557 return true;
15560 /* Implement -mr10k-cache-barrier= for the current function. */
15562 static void
15563 r10k_insert_cache_barriers (void)
15565 int *rev_post_order;
15566 unsigned int i, n;
15567 basic_block bb;
15568 sbitmap protected_bbs;
15569 rtx_insn *insn, *end;
15570 rtx unprotected_region;
15572 if (TARGET_MIPS16)
15574 sorry ("%qs does not support MIPS16 code", "-mr10k-cache-barrier");
15575 return;
15578 /* Calculate dominators. */
15579 calculate_dominance_info (CDI_DOMINATORS);
15581 /* Bit X of PROTECTED_BBS is set if the last operation in basic block
15582 X is protected by a cache barrier. */
15583 protected_bbs = sbitmap_alloc (last_basic_block_for_fn (cfun));
15584 bitmap_clear (protected_bbs);
15586 /* Iterate over the basic blocks in reverse post-order. */
15587 rev_post_order = XNEWVEC (int, last_basic_block_for_fn (cfun));
15588 n = pre_and_rev_post_order_compute (NULL, rev_post_order, false);
15589 for (i = 0; i < n; i++)
15591 bb = BASIC_BLOCK_FOR_FN (cfun, rev_post_order[i]);
15593 /* If this block is only reached by unconditional edges, and if the
15594 source of every edge is protected, the beginning of the block is
15595 also protected. */
15596 if (r10k_protected_bb_p (bb, protected_bbs))
15597 unprotected_region = NULL_RTX;
15598 else
15599 unprotected_region = pc_rtx;
15600 end = NEXT_INSN (BB_END (bb));
15602 /* UNPROTECTED_REGION is:
15604 - null if we are processing a protected region,
15605 - pc_rtx if we are processing an unprotected region but have
15606 not yet found the first instruction in it
15607 - the first instruction in an unprotected region otherwise. */
15608 for (insn = BB_HEAD (bb); insn != end; insn = NEXT_INSN (insn))
15610 if (unprotected_region && USEFUL_INSN_P (insn))
15612 if (recog_memoized (insn) == CODE_FOR_mips_cache)
15613 /* This CACHE instruction protects the following code. */
15614 unprotected_region = NULL_RTX;
15615 else
15617 /* See if INSN is the first instruction in this
15618 unprotected region. */
15619 if (unprotected_region == pc_rtx)
15620 unprotected_region = insn;
15622 /* See if INSN needs to be protected. If so,
15623 we must insert a cache barrier somewhere between
15624 PREV_INSN (UNPROTECTED_REGION) and INSN. It isn't
15625 clear which position is better performance-wise,
15626 but as a tie-breaker, we assume that it is better
15627 to allow delay slots to be back-filled where
15628 possible, and that it is better not to insert
15629 barriers in the middle of already-scheduled code.
15630 We therefore insert the barrier at the beginning
15631 of the region. */
15632 if (r10k_needs_protection_p (insn))
15634 emit_insn_before (gen_r10k_cache_barrier (),
15635 unprotected_region);
15636 unprotected_region = NULL_RTX;
15641 if (CALL_P (insn))
15642 /* The called function is not required to protect the exit path.
15643 The code that follows a call is therefore unprotected. */
15644 unprotected_region = pc_rtx;
15647 /* Record whether the end of this block is protected. */
15648 if (unprotected_region == NULL_RTX)
15649 bitmap_set_bit (protected_bbs, bb->index);
15651 XDELETEVEC (rev_post_order);
15653 sbitmap_free (protected_bbs);
15655 free_dominance_info (CDI_DOMINATORS);
15658 /* If INSN is a call, return the underlying CALL expr. Return NULL_RTX
15659 otherwise. If INSN has two call rtx, then store the second one in
15660 SECOND_CALL. */
15662 static rtx
15663 mips_call_expr_from_insn (rtx_insn *insn, rtx *second_call)
15665 rtx x;
15666 rtx x2;
15668 if (!CALL_P (insn))
15669 return NULL_RTX;
15671 x = PATTERN (insn);
15672 if (GET_CODE (x) == PARALLEL)
15674 /* Calls returning complex values have two CALL rtx. Look for the second
15675 one here, and return it via the SECOND_CALL arg. */
15676 x2 = XVECEXP (x, 0, 1);
15677 if (GET_CODE (x2) == SET)
15678 x2 = XEXP (x2, 1);
15679 if (GET_CODE (x2) == CALL)
15680 *second_call = x2;
15682 x = XVECEXP (x, 0, 0);
15684 if (GET_CODE (x) == SET)
15685 x = XEXP (x, 1);
15686 gcc_assert (GET_CODE (x) == CALL);
15688 return x;
15691 /* REG is set in DEF. See if the definition is one of the ways we load a
15692 register with a symbol address for a mips_use_pic_fn_addr_reg_p call.
15693 If it is, return the symbol reference of the function, otherwise return
15694 NULL_RTX.
15696 If RECURSE_P is true, use mips_find_pic_call_symbol to interpret
15697 the values of source registers, otherwise treat such registers as
15698 having an unknown value. */
15700 static rtx
15701 mips_pic_call_symbol_from_set (df_ref def, rtx reg, bool recurse_p)
15703 rtx_insn *def_insn;
15704 rtx set;
15706 if (DF_REF_IS_ARTIFICIAL (def))
15707 return NULL_RTX;
15709 def_insn = DF_REF_INSN (def);
15710 set = single_set (def_insn);
15711 if (set && rtx_equal_p (SET_DEST (set), reg))
15713 rtx note, src, symbol;
15715 /* First see whether the source is a plain symbol. This is used
15716 when calling symbols that are not lazily bound. */
15717 src = SET_SRC (set);
15718 if (GET_CODE (src) == SYMBOL_REF)
15719 return src;
15721 /* Handle %call16 references. */
15722 symbol = mips_strip_unspec_call (src);
15723 if (symbol)
15725 gcc_assert (GET_CODE (symbol) == SYMBOL_REF);
15726 return symbol;
15729 /* If we have something more complicated, look for a
15730 REG_EQUAL or REG_EQUIV note. */
15731 note = find_reg_equal_equiv_note (def_insn);
15732 if (note && GET_CODE (XEXP (note, 0)) == SYMBOL_REF)
15733 return XEXP (note, 0);
15735 /* Follow at most one simple register copy. Such copies are
15736 interesting in cases like:
15738 for (...)
15740 locally_binding_fn (...);
15743 and:
15745 locally_binding_fn (...);
15747 locally_binding_fn (...);
15749 where the load of locally_binding_fn can legitimately be
15750 hoisted or shared. However, we do not expect to see complex
15751 chains of copies, so a full worklist solution to the problem
15752 would probably be overkill. */
15753 if (recurse_p && REG_P (src))
15754 return mips_find_pic_call_symbol (def_insn, src, false);
15757 return NULL_RTX;
15760 /* Find the definition of the use of REG in INSN. See if the definition
15761 is one of the ways we load a register with a symbol address for a
15762 mips_use_pic_fn_addr_reg_p call. If it is return the symbol reference
15763 of the function, otherwise return NULL_RTX. RECURSE_P is as for
15764 mips_pic_call_symbol_from_set. */
15766 static rtx
15767 mips_find_pic_call_symbol (rtx_insn *insn, rtx reg, bool recurse_p)
15769 df_ref use;
15770 struct df_link *defs;
15771 rtx symbol;
15773 use = df_find_use (insn, regno_reg_rtx[REGNO (reg)]);
15774 if (!use)
15775 return NULL_RTX;
15776 defs = DF_REF_CHAIN (use);
15777 if (!defs)
15778 return NULL_RTX;
15779 symbol = mips_pic_call_symbol_from_set (defs->ref, reg, recurse_p);
15780 if (!symbol)
15781 return NULL_RTX;
15783 /* If we have more than one definition, they need to be identical. */
15784 for (defs = defs->next; defs; defs = defs->next)
15786 rtx other;
15788 other = mips_pic_call_symbol_from_set (defs->ref, reg, recurse_p);
15789 if (!rtx_equal_p (symbol, other))
15790 return NULL_RTX;
15793 return symbol;
15796 /* Replace the args_size operand of the call expression CALL with the
15797 call-attribute UNSPEC and fill in SYMBOL as the function symbol. */
15799 static void
15800 mips_annotate_pic_call_expr (rtx call, rtx symbol)
15802 rtx args_size;
15804 args_size = XEXP (call, 1);
15805 XEXP (call, 1) = gen_rtx_UNSPEC (GET_MODE (args_size),
15806 gen_rtvec (2, args_size, symbol),
15807 UNSPEC_CALL_ATTR);
15810 /* OPERANDS[ARGS_SIZE_OPNO] is the arg_size operand of a CALL expression. See
15811 if instead of the arg_size argument it contains the call attributes. If
15812 yes return true along with setting OPERANDS[ARGS_SIZE_OPNO] to the function
15813 symbol from the call attributes. Also return false if ARGS_SIZE_OPNO is
15814 -1. */
15816 bool
15817 mips_get_pic_call_symbol (rtx *operands, int args_size_opno)
15819 rtx args_size, symbol;
15821 if (!TARGET_RELAX_PIC_CALLS || args_size_opno == -1)
15822 return false;
15824 args_size = operands[args_size_opno];
15825 if (GET_CODE (args_size) != UNSPEC)
15826 return false;
15827 gcc_assert (XINT (args_size, 1) == UNSPEC_CALL_ATTR);
15829 symbol = XVECEXP (args_size, 0, 1);
15830 gcc_assert (GET_CODE (symbol) == SYMBOL_REF);
15832 operands[args_size_opno] = symbol;
15833 return true;
15836 /* Use DF to annotate PIC indirect calls with the function symbol they
15837 dispatch to. */
15839 static void
15840 mips_annotate_pic_calls (void)
15842 basic_block bb;
15843 rtx_insn *insn;
15845 FOR_EACH_BB_FN (bb, cfun)
15846 FOR_BB_INSNS (bb, insn)
15848 rtx call, reg, symbol, second_call;
15850 second_call = 0;
15851 call = mips_call_expr_from_insn (insn, &second_call);
15852 if (!call)
15853 continue;
15854 gcc_assert (MEM_P (XEXP (call, 0)));
15855 reg = XEXP (XEXP (call, 0), 0);
15856 if (!REG_P (reg))
15857 continue;
15859 symbol = mips_find_pic_call_symbol (insn, reg, true);
15860 if (symbol)
15862 mips_annotate_pic_call_expr (call, symbol);
15863 if (second_call)
15864 mips_annotate_pic_call_expr (second_call, symbol);
15869 /* A temporary variable used by note_uses callbacks, etc. */
15870 static rtx_insn *mips_sim_insn;
15872 /* A structure representing the state of the processor pipeline.
15873 Used by the mips_sim_* family of functions. */
15874 struct mips_sim {
15875 /* The maximum number of instructions that can be issued in a cycle.
15876 (Caches mips_issue_rate.) */
15877 unsigned int issue_rate;
15879 /* The current simulation time. */
15880 unsigned int time;
15882 /* How many more instructions can be issued in the current cycle. */
15883 unsigned int insns_left;
15885 /* LAST_SET[X].INSN is the last instruction to set register X.
15886 LAST_SET[X].TIME is the time at which that instruction was issued.
15887 INSN is null if no instruction has yet set register X. */
15888 struct {
15889 rtx_insn *insn;
15890 unsigned int time;
15891 } last_set[FIRST_PSEUDO_REGISTER];
15893 /* The pipeline's current DFA state. */
15894 state_t dfa_state;
15897 /* Reset STATE to the initial simulation state. */
15899 static void
15900 mips_sim_reset (struct mips_sim *state)
15902 curr_state = state->dfa_state;
15904 state->time = 0;
15905 state->insns_left = state->issue_rate;
15906 memset (&state->last_set, 0, sizeof (state->last_set));
15907 state_reset (curr_state);
15909 targetm.sched.init (0, false, 0);
15910 advance_state (curr_state);
15913 /* Initialize STATE before its first use. DFA_STATE points to an
15914 allocated but uninitialized DFA state. */
15916 static void
15917 mips_sim_init (struct mips_sim *state, state_t dfa_state)
15919 if (targetm.sched.init_dfa_pre_cycle_insn)
15920 targetm.sched.init_dfa_pre_cycle_insn ();
15922 if (targetm.sched.init_dfa_post_cycle_insn)
15923 targetm.sched.init_dfa_post_cycle_insn ();
15925 state->issue_rate = mips_issue_rate ();
15926 state->dfa_state = dfa_state;
15927 mips_sim_reset (state);
15930 /* Advance STATE by one clock cycle. */
15932 static void
15933 mips_sim_next_cycle (struct mips_sim *state)
15935 curr_state = state->dfa_state;
15937 state->time++;
15938 state->insns_left = state->issue_rate;
15939 advance_state (curr_state);
15942 /* Advance simulation state STATE until instruction INSN can read
15943 register REG. */
15945 static void
15946 mips_sim_wait_reg (struct mips_sim *state, rtx_insn *insn, rtx reg)
15948 unsigned int regno, end_regno;
15950 end_regno = END_REGNO (reg);
15951 for (regno = REGNO (reg); regno < end_regno; regno++)
15952 if (state->last_set[regno].insn != 0)
15954 unsigned int t;
15956 t = (state->last_set[regno].time
15957 + insn_latency (state->last_set[regno].insn, insn));
15958 while (state->time < t)
15959 mips_sim_next_cycle (state);
15963 /* A note_uses callback. For each register in *X, advance simulation
15964 state DATA until mips_sim_insn can read the register's value. */
15966 static void
15967 mips_sim_wait_regs_1 (rtx *x, void *data)
15969 subrtx_var_iterator::array_type array;
15970 FOR_EACH_SUBRTX_VAR (iter, array, *x, NONCONST)
15971 if (REG_P (*iter))
15972 mips_sim_wait_reg ((struct mips_sim *) data, mips_sim_insn, *iter);
15975 /* Advance simulation state STATE until all of INSN's register
15976 dependencies are satisfied. */
15978 static void
15979 mips_sim_wait_regs (struct mips_sim *state, rtx_insn *insn)
15981 mips_sim_insn = insn;
15982 note_uses (&PATTERN (insn), mips_sim_wait_regs_1, state);
15985 /* Advance simulation state STATE until the units required by
15986 instruction INSN are available. */
15988 static void
15989 mips_sim_wait_units (struct mips_sim *state, rtx_insn *insn)
15991 state_t tmp_state;
15993 tmp_state = alloca (state_size ());
15994 while (state->insns_left == 0
15995 || (memcpy (tmp_state, state->dfa_state, state_size ()),
15996 state_transition (tmp_state, insn) >= 0))
15997 mips_sim_next_cycle (state);
16000 /* Advance simulation state STATE until INSN is ready to issue. */
16002 static void
16003 mips_sim_wait_insn (struct mips_sim *state, rtx_insn *insn)
16005 mips_sim_wait_regs (state, insn);
16006 mips_sim_wait_units (state, insn);
16009 /* mips_sim_insn has just set X. Update the LAST_SET array
16010 in simulation state DATA. */
16012 static void
16013 mips_sim_record_set (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
16015 struct mips_sim *state;
16017 state = (struct mips_sim *) data;
16018 if (REG_P (x))
16020 unsigned int regno, end_regno;
16022 end_regno = END_REGNO (x);
16023 for (regno = REGNO (x); regno < end_regno; regno++)
16025 state->last_set[regno].insn = mips_sim_insn;
16026 state->last_set[regno].time = state->time;
16031 /* Issue instruction INSN in scheduler state STATE. Assume that INSN
16032 can issue immediately (i.e., that mips_sim_wait_insn has already
16033 been called). */
16035 static void
16036 mips_sim_issue_insn (struct mips_sim *state, rtx_insn *insn)
16038 curr_state = state->dfa_state;
16040 state_transition (curr_state, insn);
16041 state->insns_left = targetm.sched.variable_issue (0, false, insn,
16042 state->insns_left);
16044 mips_sim_insn = insn;
16045 note_stores (PATTERN (insn), mips_sim_record_set, state);
16048 /* Simulate issuing a NOP in state STATE. */
16050 static void
16051 mips_sim_issue_nop (struct mips_sim *state)
16053 if (state->insns_left == 0)
16054 mips_sim_next_cycle (state);
16055 state->insns_left--;
16058 /* Update simulation state STATE so that it's ready to accept the instruction
16059 after INSN. INSN should be part of the main rtl chain, not a member of a
16060 SEQUENCE. */
16062 static void
16063 mips_sim_finish_insn (struct mips_sim *state, rtx_insn *insn)
16065 /* If INSN is a jump with an implicit delay slot, simulate a nop. */
16066 if (JUMP_P (insn))
16067 mips_sim_issue_nop (state);
16069 switch (GET_CODE (SEQ_BEGIN (insn)))
16071 case CODE_LABEL:
16072 case CALL_INSN:
16073 /* We can't predict the processor state after a call or label. */
16074 mips_sim_reset (state);
16075 break;
16077 case JUMP_INSN:
16078 /* The delay slots of branch likely instructions are only executed
16079 when the branch is taken. Therefore, if the caller has simulated
16080 the delay slot instruction, STATE does not really reflect the state
16081 of the pipeline for the instruction after the delay slot. Also,
16082 branch likely instructions tend to incur a penalty when not taken,
16083 so there will probably be an extra delay between the branch and
16084 the instruction after the delay slot. */
16085 if (INSN_ANNULLED_BRANCH_P (SEQ_BEGIN (insn)))
16086 mips_sim_reset (state);
16087 break;
16089 default:
16090 break;
16094 /* Use simulator state STATE to calculate the execution time of
16095 instruction sequence SEQ. */
16097 static unsigned int
16098 mips_seq_time (struct mips_sim *state, rtx_insn *seq)
16100 mips_sim_reset (state);
16101 for (rtx_insn *insn = seq; insn; insn = NEXT_INSN (insn))
16103 mips_sim_wait_insn (state, insn);
16104 mips_sim_issue_insn (state, insn);
16106 return state->time;
16109 /* Return the execution-time cost of mips_tuning_info.fast_mult_zero_zero_p
16110 setting SETTING, using STATE to simulate instruction sequences. */
16112 static unsigned int
16113 mips_mult_zero_zero_cost (struct mips_sim *state, bool setting)
16115 mips_tuning_info.fast_mult_zero_zero_p = setting;
16116 start_sequence ();
16118 machine_mode dword_mode = TARGET_64BIT ? TImode : DImode;
16119 rtx hilo = gen_rtx_REG (dword_mode, MD_REG_FIRST);
16120 mips_emit_move_or_split (hilo, const0_rtx, SPLIT_FOR_SPEED);
16122 /* If the target provides mulsidi3_32bit then that's the most likely
16123 consumer of the result. Test for bypasses. */
16124 if (dword_mode == DImode && HAVE_maddsidi4)
16126 rtx gpr = gen_rtx_REG (SImode, GP_REG_FIRST + 4);
16127 emit_insn (gen_maddsidi4 (hilo, gpr, gpr, hilo));
16130 unsigned int time = mips_seq_time (state, get_insns ());
16131 end_sequence ();
16132 return time;
16135 /* Check the relative speeds of "MULT $0,$0" and "MTLO $0; MTHI $0"
16136 and set up mips_tuning_info.fast_mult_zero_zero_p accordingly.
16137 Prefer MULT -- which is shorter -- in the event of a tie. */
16139 static void
16140 mips_set_fast_mult_zero_zero_p (struct mips_sim *state)
16142 if (TARGET_MIPS16 || !ISA_HAS_HILO)
16143 /* No MTLO or MTHI available for MIPS16. Also, when there are no HI or LO
16144 registers then there is no reason to zero them, arbitrarily choose to
16145 say that "MULT $0,$0" would be faster. */
16146 mips_tuning_info.fast_mult_zero_zero_p = true;
16147 else
16149 unsigned int true_time = mips_mult_zero_zero_cost (state, true);
16150 unsigned int false_time = mips_mult_zero_zero_cost (state, false);
16151 mips_tuning_info.fast_mult_zero_zero_p = (true_time <= false_time);
16155 /* Set up costs based on the current architecture and tuning settings. */
16157 static void
16158 mips_set_tuning_info (void)
16160 if (mips_tuning_info.initialized_p
16161 && mips_tuning_info.arch == mips_arch
16162 && mips_tuning_info.tune == mips_tune
16163 && mips_tuning_info.mips16_p == TARGET_MIPS16)
16164 return;
16166 mips_tuning_info.arch = mips_arch;
16167 mips_tuning_info.tune = mips_tune;
16168 mips_tuning_info.mips16_p = TARGET_MIPS16;
16169 mips_tuning_info.initialized_p = true;
16171 dfa_start ();
16173 struct mips_sim state;
16174 mips_sim_init (&state, alloca (state_size ()));
16176 mips_set_fast_mult_zero_zero_p (&state);
16178 dfa_finish ();
16181 /* Implement TARGET_EXPAND_TO_RTL_HOOK. */
16183 static void
16184 mips_expand_to_rtl_hook (void)
16186 /* We need to call this at a point where we can safely create sequences
16187 of instructions, so TARGET_OVERRIDE_OPTIONS is too early. We also
16188 need to call it at a point where the DFA infrastructure is not
16189 already in use, so we can't just call it lazily on demand.
16191 At present, mips_tuning_info is only needed during post-expand
16192 RTL passes such as split_insns, so this hook should be early enough.
16193 We may need to move the call elsewhere if mips_tuning_info starts
16194 to be used for other things (such as rtx_costs, or expanders that
16195 could be called during gimple optimization). */
16196 mips_set_tuning_info ();
16199 /* The VR4130 pipeline issues aligned pairs of instructions together,
16200 but it stalls the second instruction if it depends on the first.
16201 In order to cut down the amount of logic required, this dependence
16202 check is not based on a full instruction decode. Instead, any non-SPECIAL
16203 instruction is assumed to modify the register specified by bits 20-16
16204 (which is usually the "rt" field).
16206 In BEQ, BEQL, BNE and BNEL instructions, the rt field is actually an
16207 input, so we can end up with a false dependence between the branch
16208 and its delay slot. If this situation occurs in instruction INSN,
16209 try to avoid it by swapping rs and rt. */
16211 static void
16212 vr4130_avoid_branch_rt_conflict (rtx_insn *insn)
16214 rtx_insn *first, *second;
16216 first = SEQ_BEGIN (insn);
16217 second = SEQ_END (insn);
16218 if (JUMP_P (first)
16219 && NONJUMP_INSN_P (second)
16220 && GET_CODE (PATTERN (first)) == SET
16221 && GET_CODE (SET_DEST (PATTERN (first))) == PC
16222 && GET_CODE (SET_SRC (PATTERN (first))) == IF_THEN_ELSE)
16224 /* Check for the right kind of condition. */
16225 rtx cond = XEXP (SET_SRC (PATTERN (first)), 0);
16226 if ((GET_CODE (cond) == EQ || GET_CODE (cond) == NE)
16227 && REG_P (XEXP (cond, 0))
16228 && REG_P (XEXP (cond, 1))
16229 && reg_referenced_p (XEXP (cond, 1), PATTERN (second))
16230 && !reg_referenced_p (XEXP (cond, 0), PATTERN (second)))
16232 /* SECOND mentions the rt register but not the rs register. */
16233 rtx tmp = XEXP (cond, 0);
16234 XEXP (cond, 0) = XEXP (cond, 1);
16235 XEXP (cond, 1) = tmp;
16240 /* Implement -mvr4130-align. Go through each basic block and simulate the
16241 processor pipeline. If we find that a pair of instructions could execute
16242 in parallel, and the first of those instructions is not 8-byte aligned,
16243 insert a nop to make it aligned. */
16245 static void
16246 vr4130_align_insns (void)
16248 struct mips_sim state;
16249 rtx_insn *insn, *subinsn, *last, *last2, *next;
16250 bool aligned_p;
16252 dfa_start ();
16254 /* LAST is the last instruction before INSN to have a nonzero length.
16255 LAST2 is the last such instruction before LAST. */
16256 last = 0;
16257 last2 = 0;
16259 /* ALIGNED_P is true if INSN is known to be at an aligned address. */
16260 aligned_p = true;
16262 mips_sim_init (&state, alloca (state_size ()));
16263 for (insn = get_insns (); insn != 0; insn = next)
16265 unsigned int length;
16267 next = NEXT_INSN (insn);
16269 /* See the comment above vr4130_avoid_branch_rt_conflict for details.
16270 This isn't really related to the alignment pass, but we do it on
16271 the fly to avoid a separate instruction walk. */
16272 vr4130_avoid_branch_rt_conflict (insn);
16274 length = get_attr_length (insn);
16275 if (length > 0 && USEFUL_INSN_P (insn))
16276 FOR_EACH_SUBINSN (subinsn, insn)
16278 mips_sim_wait_insn (&state, subinsn);
16280 /* If we want this instruction to issue in parallel with the
16281 previous one, make sure that the previous instruction is
16282 aligned. There are several reasons why this isn't worthwhile
16283 when the second instruction is a call:
16285 - Calls are less likely to be performance critical,
16286 - There's a good chance that the delay slot can execute
16287 in parallel with the call.
16288 - The return address would then be unaligned.
16290 In general, if we're going to insert a nop between instructions
16291 X and Y, it's better to insert it immediately after X. That
16292 way, if the nop makes Y aligned, it will also align any labels
16293 between X and Y. */
16294 if (state.insns_left != state.issue_rate
16295 && !CALL_P (subinsn))
16297 if (subinsn == SEQ_BEGIN (insn) && aligned_p)
16299 /* SUBINSN is the first instruction in INSN and INSN is
16300 aligned. We want to align the previous instruction
16301 instead, so insert a nop between LAST2 and LAST.
16303 Note that LAST could be either a single instruction
16304 or a branch with a delay slot. In the latter case,
16305 LAST, like INSN, is already aligned, but the delay
16306 slot must have some extra delay that stops it from
16307 issuing at the same time as the branch. We therefore
16308 insert a nop before the branch in order to align its
16309 delay slot. */
16310 gcc_assert (last2);
16311 emit_insn_after (gen_nop (), last2);
16312 aligned_p = false;
16314 else if (subinsn != SEQ_BEGIN (insn) && !aligned_p)
16316 /* SUBINSN is the delay slot of INSN, but INSN is
16317 currently unaligned. Insert a nop between
16318 LAST and INSN to align it. */
16319 gcc_assert (last);
16320 emit_insn_after (gen_nop (), last);
16321 aligned_p = true;
16324 mips_sim_issue_insn (&state, subinsn);
16326 mips_sim_finish_insn (&state, insn);
16328 /* Update LAST, LAST2 and ALIGNED_P for the next instruction. */
16329 length = get_attr_length (insn);
16330 if (length > 0)
16332 /* If the instruction is an asm statement or multi-instruction
16333 mips.md patern, the length is only an estimate. Insert an
16334 8 byte alignment after it so that the following instructions
16335 can be handled correctly. */
16336 if (NONJUMP_INSN_P (SEQ_BEGIN (insn))
16337 && (recog_memoized (insn) < 0 || length >= 8))
16339 next = emit_insn_after (gen_align (GEN_INT (3)), insn);
16340 next = NEXT_INSN (next);
16341 mips_sim_next_cycle (&state);
16342 aligned_p = true;
16344 else if (length & 4)
16345 aligned_p = !aligned_p;
16346 last2 = last;
16347 last = insn;
16350 /* See whether INSN is an aligned label. */
16351 if (LABEL_P (insn) && label_to_alignment (insn) >= 3)
16352 aligned_p = true;
16354 dfa_finish ();
16357 /* This structure records that the current function has a LO_SUM
16358 involving SYMBOL_REF or LABEL_REF BASE and that MAX_OFFSET is
16359 the largest offset applied to BASE by all such LO_SUMs. */
16360 struct mips_lo_sum_offset {
16361 rtx base;
16362 HOST_WIDE_INT offset;
16365 /* Return a hash value for SYMBOL_REF or LABEL_REF BASE. */
16367 static hashval_t
16368 mips_hash_base (rtx base)
16370 int do_not_record_p;
16372 return hash_rtx (base, GET_MODE (base), &do_not_record_p, NULL, false);
16375 /* Hashtable helpers. */
16377 struct mips_lo_sum_offset_hasher : typed_free_remove <mips_lo_sum_offset>
16379 typedef mips_lo_sum_offset *value_type;
16380 typedef rtx_def *compare_type;
16381 static inline hashval_t hash (const mips_lo_sum_offset *);
16382 static inline bool equal (const mips_lo_sum_offset *, const rtx_def *);
16385 /* Hash-table callbacks for mips_lo_sum_offsets. */
16387 inline hashval_t
16388 mips_lo_sum_offset_hasher::hash (const mips_lo_sum_offset *entry)
16390 return mips_hash_base (entry->base);
16393 inline bool
16394 mips_lo_sum_offset_hasher::equal (const mips_lo_sum_offset *entry,
16395 const rtx_def *value)
16397 return rtx_equal_p (entry->base, value);
16400 typedef hash_table<mips_lo_sum_offset_hasher> mips_offset_table;
16402 /* Look up symbolic constant X in HTAB, which is a hash table of
16403 mips_lo_sum_offsets. If OPTION is NO_INSERT, return true if X can be
16404 paired with a recorded LO_SUM, otherwise record X in the table. */
16406 static bool
16407 mips_lo_sum_offset_lookup (mips_offset_table *htab, rtx x,
16408 enum insert_option option)
16410 rtx base, offset;
16411 mips_lo_sum_offset **slot;
16412 struct mips_lo_sum_offset *entry;
16414 /* Split X into a base and offset. */
16415 split_const (x, &base, &offset);
16416 if (UNSPEC_ADDRESS_P (base))
16417 base = UNSPEC_ADDRESS (base);
16419 /* Look up the base in the hash table. */
16420 slot = htab->find_slot_with_hash (base, mips_hash_base (base), option);
16421 if (slot == NULL)
16422 return false;
16424 entry = (struct mips_lo_sum_offset *) *slot;
16425 if (option == INSERT)
16427 if (entry == NULL)
16429 entry = XNEW (struct mips_lo_sum_offset);
16430 entry->base = base;
16431 entry->offset = INTVAL (offset);
16432 *slot = entry;
16434 else
16436 if (INTVAL (offset) > entry->offset)
16437 entry->offset = INTVAL (offset);
16440 return INTVAL (offset) <= entry->offset;
16443 /* Search X for LO_SUMs and record them in HTAB. */
16445 static void
16446 mips_record_lo_sums (const_rtx x, mips_offset_table *htab)
16448 subrtx_iterator::array_type array;
16449 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
16450 if (GET_CODE (*iter) == LO_SUM)
16451 mips_lo_sum_offset_lookup (htab, XEXP (*iter, 1), INSERT);
16454 /* Return true if INSN is a SET of an orphaned high-part relocation.
16455 HTAB is a hash table of mips_lo_sum_offsets that describes all the
16456 LO_SUMs in the current function. */
16458 static bool
16459 mips_orphaned_high_part_p (mips_offset_table *htab, rtx_insn *insn)
16461 enum mips_symbol_type type;
16462 rtx x, set;
16464 set = single_set (insn);
16465 if (set)
16467 /* Check for %his. */
16468 x = SET_SRC (set);
16469 if (GET_CODE (x) == HIGH
16470 && absolute_symbolic_operand (XEXP (x, 0), VOIDmode))
16471 return !mips_lo_sum_offset_lookup (htab, XEXP (x, 0), NO_INSERT);
16473 /* Check for local %gots (and %got_pages, which is redundant but OK). */
16474 if (GET_CODE (x) == UNSPEC
16475 && XINT (x, 1) == UNSPEC_LOAD_GOT
16476 && mips_symbolic_constant_p (XVECEXP (x, 0, 1),
16477 SYMBOL_CONTEXT_LEA, &type)
16478 && type == SYMBOL_GOTOFF_PAGE)
16479 return !mips_lo_sum_offset_lookup (htab, XVECEXP (x, 0, 1), NO_INSERT);
16481 return false;
16484 /* Subroutine of mips_reorg_process_insns. If there is a hazard between
16485 INSN and a previous instruction, avoid it by inserting nops after
16486 instruction AFTER.
16488 *DELAYED_REG and *HILO_DELAY describe the hazards that apply at
16489 this point. If *DELAYED_REG is non-null, INSN must wait a cycle
16490 before using the value of that register. *HILO_DELAY counts the
16491 number of instructions since the last hilo hazard (that is,
16492 the number of instructions since the last MFLO or MFHI).
16494 After inserting nops for INSN, update *DELAYED_REG and *HILO_DELAY
16495 for the next instruction.
16497 LO_REG is an rtx for the LO register, used in dependence checking. */
16499 static void
16500 mips_avoid_hazard (rtx_insn *after, rtx_insn *insn, int *hilo_delay,
16501 rtx *delayed_reg, rtx lo_reg)
16503 rtx pattern, set;
16504 int nops, ninsns;
16506 pattern = PATTERN (insn);
16508 /* Do not put the whole function in .set noreorder if it contains
16509 an asm statement. We don't know whether there will be hazards
16510 between the asm statement and the gcc-generated code. */
16511 if (GET_CODE (pattern) == ASM_INPUT || asm_noperands (pattern) >= 0)
16512 cfun->machine->all_noreorder_p = false;
16514 /* Ignore zero-length instructions (barriers and the like). */
16515 ninsns = get_attr_length (insn) / 4;
16516 if (ninsns == 0)
16517 return;
16519 /* Work out how many nops are needed. Note that we only care about
16520 registers that are explicitly mentioned in the instruction's pattern.
16521 It doesn't matter that calls use the argument registers or that they
16522 clobber hi and lo. */
16523 if (*hilo_delay < 2 && reg_set_p (lo_reg, pattern))
16524 nops = 2 - *hilo_delay;
16525 else if (*delayed_reg != 0 && reg_referenced_p (*delayed_reg, pattern))
16526 nops = 1;
16527 else
16528 nops = 0;
16530 /* Insert the nops between this instruction and the previous one.
16531 Each new nop takes us further from the last hilo hazard. */
16532 *hilo_delay += nops;
16533 while (nops-- > 0)
16534 emit_insn_after (gen_hazard_nop (), after);
16536 /* Set up the state for the next instruction. */
16537 *hilo_delay += ninsns;
16538 *delayed_reg = 0;
16539 if (INSN_CODE (insn) >= 0)
16540 switch (get_attr_hazard (insn))
16542 case HAZARD_NONE:
16543 break;
16545 case HAZARD_HILO:
16546 *hilo_delay = 0;
16547 break;
16549 case HAZARD_DELAY:
16550 set = single_set (insn);
16551 gcc_assert (set);
16552 *delayed_reg = SET_DEST (set);
16553 break;
16557 /* Go through the instruction stream and insert nops where necessary.
16558 Also delete any high-part relocations whose partnering low parts
16559 are now all dead. See if the whole function can then be put into
16560 .set noreorder and .set nomacro. */
16562 static void
16563 mips_reorg_process_insns (void)
16565 rtx_insn *insn, *last_insn, *subinsn, *next_insn;
16566 rtx lo_reg, delayed_reg;
16567 int hilo_delay;
16569 /* Force all instructions to be split into their final form. */
16570 split_all_insns_noflow ();
16572 /* Recalculate instruction lengths without taking nops into account. */
16573 cfun->machine->ignore_hazard_length_p = true;
16574 shorten_branches (get_insns ());
16576 cfun->machine->all_noreorder_p = true;
16578 /* We don't track MIPS16 PC-relative offsets closely enough to make
16579 a good job of "set .noreorder" code in MIPS16 mode. */
16580 if (TARGET_MIPS16)
16581 cfun->machine->all_noreorder_p = false;
16583 /* Code that doesn't use explicit relocs can't be ".set nomacro". */
16584 if (!TARGET_EXPLICIT_RELOCS)
16585 cfun->machine->all_noreorder_p = false;
16587 /* Profiled functions can't be all noreorder because the profiler
16588 support uses assembler macros. */
16589 if (crtl->profile)
16590 cfun->machine->all_noreorder_p = false;
16592 /* Code compiled with -mfix-vr4120, -mfix-rm7000 or -mfix-24k can't be
16593 all noreorder because we rely on the assembler to work around some
16594 errata. The R5900 too has several bugs. */
16595 if (TARGET_FIX_VR4120
16596 || TARGET_FIX_RM7000
16597 || TARGET_FIX_24K
16598 || TARGET_MIPS5900)
16599 cfun->machine->all_noreorder_p = false;
16601 /* The same is true for -mfix-vr4130 if we might generate MFLO or
16602 MFHI instructions. Note that we avoid using MFLO and MFHI if
16603 the VR4130 MACC and DMACC instructions are available instead;
16604 see the *mfhilo_{si,di}_macc patterns. */
16605 if (TARGET_FIX_VR4130 && !ISA_HAS_MACCHI)
16606 cfun->machine->all_noreorder_p = false;
16608 mips_offset_table htab (37);
16610 /* Make a first pass over the instructions, recording all the LO_SUMs. */
16611 for (insn = get_insns (); insn != 0; insn = NEXT_INSN (insn))
16612 FOR_EACH_SUBINSN (subinsn, insn)
16613 if (USEFUL_INSN_P (subinsn))
16615 rtx body = PATTERN (insn);
16616 int noperands = asm_noperands (body);
16617 if (noperands >= 0)
16619 rtx *ops = XALLOCAVEC (rtx, noperands);
16620 bool *used = XALLOCAVEC (bool, noperands);
16621 const char *string = decode_asm_operands (body, ops, NULL, NULL,
16622 NULL, NULL);
16623 get_referenced_operands (string, used, noperands);
16624 for (int i = 0; i < noperands; ++i)
16625 if (used[i])
16626 mips_record_lo_sums (ops[i], &htab);
16628 else
16629 mips_record_lo_sums (PATTERN (subinsn), &htab);
16632 last_insn = 0;
16633 hilo_delay = 2;
16634 delayed_reg = 0;
16635 lo_reg = gen_rtx_REG (SImode, LO_REGNUM);
16637 /* Make a second pass over the instructions. Delete orphaned
16638 high-part relocations or turn them into NOPs. Avoid hazards
16639 by inserting NOPs. */
16640 for (insn = get_insns (); insn != 0; insn = next_insn)
16642 next_insn = NEXT_INSN (insn);
16643 if (USEFUL_INSN_P (insn))
16645 if (GET_CODE (PATTERN (insn)) == SEQUENCE)
16647 /* If we find an orphaned high-part relocation in a delay
16648 slot, it's easier to turn that instruction into a NOP than
16649 to delete it. The delay slot will be a NOP either way. */
16650 FOR_EACH_SUBINSN (subinsn, insn)
16651 if (INSN_P (subinsn))
16653 if (mips_orphaned_high_part_p (&htab, subinsn))
16655 PATTERN (subinsn) = gen_nop ();
16656 INSN_CODE (subinsn) = CODE_FOR_nop;
16658 mips_avoid_hazard (last_insn, subinsn, &hilo_delay,
16659 &delayed_reg, lo_reg);
16661 last_insn = insn;
16663 else
16665 /* INSN is a single instruction. Delete it if it's an
16666 orphaned high-part relocation. */
16667 if (mips_orphaned_high_part_p (&htab, insn))
16668 delete_insn (insn);
16669 /* Also delete cache barriers if the last instruction
16670 was an annulled branch. INSN will not be speculatively
16671 executed. */
16672 else if (recog_memoized (insn) == CODE_FOR_r10k_cache_barrier
16673 && last_insn
16674 && JUMP_P (SEQ_BEGIN (last_insn))
16675 && INSN_ANNULLED_BRANCH_P (SEQ_BEGIN (last_insn)))
16676 delete_insn (insn);
16677 else
16679 mips_avoid_hazard (last_insn, insn, &hilo_delay,
16680 &delayed_reg, lo_reg);
16681 last_insn = insn;
16688 /* Return true if the function has a long branch instruction. */
16690 static bool
16691 mips_has_long_branch_p (void)
16693 rtx_insn *insn, *subinsn;
16694 int normal_length;
16696 /* We need up-to-date instruction lengths. */
16697 shorten_branches (get_insns ());
16699 /* Look for a branch that is longer than normal. The normal length for
16700 non-MIPS16 branches is 8, because the length includes the delay slot.
16701 It is 4 for MIPS16, because MIPS16 branches are extended instructions,
16702 but they have no delay slot. */
16703 normal_length = (TARGET_MIPS16 ? 4 : 8);
16704 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
16705 FOR_EACH_SUBINSN (subinsn, insn)
16706 if (JUMP_P (subinsn)
16707 && get_attr_length (subinsn) > normal_length
16708 && (any_condjump_p (subinsn) || any_uncondjump_p (subinsn)))
16709 return true;
16711 return false;
16714 /* If we are using a GOT, but have not decided to use a global pointer yet,
16715 see whether we need one to implement long branches. Convert the ghost
16716 global-pointer instructions into real ones if so. */
16718 static bool
16719 mips_expand_ghost_gp_insns (void)
16721 /* Quick exit if we already know that we will or won't need a
16722 global pointer. */
16723 if (!TARGET_USE_GOT
16724 || cfun->machine->global_pointer == INVALID_REGNUM
16725 || mips_must_initialize_gp_p ())
16726 return false;
16728 /* Run a full check for long branches. */
16729 if (!mips_has_long_branch_p ())
16730 return false;
16732 /* We've now established that we need $gp. */
16733 cfun->machine->must_initialize_gp_p = true;
16734 split_all_insns_noflow ();
16736 return true;
16739 /* Subroutine of mips_reorg to manage passes that require DF. */
16741 static void
16742 mips_df_reorg (void)
16744 /* Create def-use chains. */
16745 df_set_flags (DF_EQ_NOTES);
16746 df_chain_add_problem (DF_UD_CHAIN);
16747 df_analyze ();
16749 if (TARGET_RELAX_PIC_CALLS)
16750 mips_annotate_pic_calls ();
16752 if (mips_r10k_cache_barrier != R10K_CACHE_BARRIER_NONE)
16753 r10k_insert_cache_barriers ();
16755 df_finish_pass (false);
16758 /* Emit code to load LABEL_REF SRC into MIPS16 register DEST. This is
16759 called very late in mips_reorg, but the caller is required to run
16760 mips16_lay_out_constants on the result. */
16762 static void
16763 mips16_load_branch_target (rtx dest, rtx src)
16765 if (TARGET_ABICALLS && !TARGET_ABSOLUTE_ABICALLS)
16767 rtx page, low;
16769 if (mips_cfun_has_cprestore_slot_p ())
16770 mips_emit_move (dest, mips_cprestore_slot (dest, true));
16771 else
16772 mips_emit_move (dest, pic_offset_table_rtx);
16773 page = mips_unspec_address (src, SYMBOL_GOTOFF_PAGE);
16774 low = mips_unspec_address (src, SYMBOL_GOT_PAGE_OFST);
16775 emit_insn (gen_rtx_SET (dest,
16776 PMODE_INSN (gen_unspec_got, (dest, page))));
16777 emit_insn (gen_rtx_SET (dest, gen_rtx_LO_SUM (Pmode, dest, low)));
16779 else
16781 src = mips_unspec_address (src, SYMBOL_ABSOLUTE);
16782 mips_emit_move (dest, src);
16786 /* If we're compiling a MIPS16 function, look for and split any long branches.
16787 This must be called after all other instruction modifications in
16788 mips_reorg. */
16790 static void
16791 mips16_split_long_branches (void)
16793 bool something_changed;
16795 if (!TARGET_MIPS16)
16796 return;
16798 /* Loop until the alignments for all targets are sufficient. */
16801 rtx_insn *insn;
16803 shorten_branches (get_insns ());
16804 something_changed = false;
16805 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
16806 if (JUMP_P (insn)
16807 && get_attr_length (insn) > 4
16808 && (any_condjump_p (insn) || any_uncondjump_p (insn)))
16810 rtx old_label, temp, saved_temp;
16811 rtx_code_label *new_label;
16812 rtx target;
16813 rtx_insn *jump, *jump_sequence;
16815 start_sequence ();
16817 /* Free up a MIPS16 register by saving it in $1. */
16818 saved_temp = gen_rtx_REG (Pmode, AT_REGNUM);
16819 temp = gen_rtx_REG (Pmode, GP_REG_FIRST + 2);
16820 emit_move_insn (saved_temp, temp);
16822 /* Load the branch target into TEMP. */
16823 old_label = JUMP_LABEL (insn);
16824 target = gen_rtx_LABEL_REF (Pmode, old_label);
16825 mips16_load_branch_target (temp, target);
16827 /* Jump to the target and restore the register's
16828 original value. */
16829 jump = emit_jump_insn (PMODE_INSN (gen_indirect_jump_and_restore,
16830 (temp, temp, saved_temp)));
16831 JUMP_LABEL (jump) = old_label;
16832 LABEL_NUSES (old_label)++;
16834 /* Rewrite any symbolic references that are supposed to use
16835 a PC-relative constant pool. */
16836 mips16_lay_out_constants (false);
16838 if (simplejump_p (insn))
16839 /* We're going to replace INSN with a longer form. */
16840 new_label = NULL;
16841 else
16843 /* Create a branch-around label for the original
16844 instruction. */
16845 new_label = gen_label_rtx ();
16846 emit_label (new_label);
16849 jump_sequence = get_insns ();
16850 end_sequence ();
16852 emit_insn_after (jump_sequence, insn);
16853 if (new_label)
16854 invert_jump (insn, new_label, false);
16855 else
16856 delete_insn (insn);
16857 something_changed = true;
16860 while (something_changed);
16863 /* Implement TARGET_MACHINE_DEPENDENT_REORG. */
16865 static void
16866 mips_reorg (void)
16868 /* Restore the BLOCK_FOR_INSN pointers, which are needed by DF. Also during
16869 insn splitting in mips16_lay_out_constants, DF insn info is only kept up
16870 to date if the CFG is available. */
16871 if (mips_cfg_in_reorg ())
16872 compute_bb_for_insn ();
16873 mips16_lay_out_constants (true);
16874 if (mips_cfg_in_reorg ())
16876 mips_df_reorg ();
16877 free_bb_for_insn ();
16881 /* We use a machine specific pass to do a second machine dependent reorg
16882 pass after delay branch scheduling. */
16884 static unsigned int
16885 mips_machine_reorg2 (void)
16887 mips_reorg_process_insns ();
16888 if (!TARGET_MIPS16
16889 && TARGET_EXPLICIT_RELOCS
16890 && TUNE_MIPS4130
16891 && TARGET_VR4130_ALIGN)
16892 vr4130_align_insns ();
16893 if (mips_expand_ghost_gp_insns ())
16894 /* The expansion could invalidate some of the VR4130 alignment
16895 optimizations, but this should be an extremely rare case anyhow. */
16896 mips_reorg_process_insns ();
16897 mips16_split_long_branches ();
16898 return 0;
16901 namespace {
16903 const pass_data pass_data_mips_machine_reorg2 =
16905 RTL_PASS, /* type */
16906 "mach2", /* name */
16907 OPTGROUP_NONE, /* optinfo_flags */
16908 TV_MACH_DEP, /* tv_id */
16909 0, /* properties_required */
16910 0, /* properties_provided */
16911 0, /* properties_destroyed */
16912 0, /* todo_flags_start */
16913 0, /* todo_flags_finish */
16916 class pass_mips_machine_reorg2 : public rtl_opt_pass
16918 public:
16919 pass_mips_machine_reorg2(gcc::context *ctxt)
16920 : rtl_opt_pass(pass_data_mips_machine_reorg2, ctxt)
16923 /* opt_pass methods: */
16924 virtual unsigned int execute (function *) { return mips_machine_reorg2 (); }
16926 }; // class pass_mips_machine_reorg2
16928 } // anon namespace
16930 rtl_opt_pass *
16931 make_pass_mips_machine_reorg2 (gcc::context *ctxt)
16933 return new pass_mips_machine_reorg2 (ctxt);
16937 /* Implement TARGET_ASM_OUTPUT_MI_THUNK. Generate rtl rather than asm text
16938 in order to avoid duplicating too much logic from elsewhere. */
16940 static void
16941 mips_output_mi_thunk (FILE *file, tree thunk_fndecl ATTRIBUTE_UNUSED,
16942 HOST_WIDE_INT delta, HOST_WIDE_INT vcall_offset,
16943 tree function)
16945 rtx this_rtx, temp1, temp2, fnaddr;
16946 rtx_insn *insn;
16947 bool use_sibcall_p;
16949 /* Pretend to be a post-reload pass while generating rtl. */
16950 reload_completed = 1;
16952 /* Mark the end of the (empty) prologue. */
16953 emit_note (NOTE_INSN_PROLOGUE_END);
16955 /* Determine if we can use a sibcall to call FUNCTION directly. */
16956 fnaddr = XEXP (DECL_RTL (function), 0);
16957 use_sibcall_p = (mips_function_ok_for_sibcall (function, NULL)
16958 && const_call_insn_operand (fnaddr, Pmode));
16960 /* Determine if we need to load FNADDR from the GOT. */
16961 if (!use_sibcall_p
16962 && (mips_got_symbol_type_p
16963 (mips_classify_symbol (fnaddr, SYMBOL_CONTEXT_LEA))))
16965 /* Pick a global pointer. Use a call-clobbered register if
16966 TARGET_CALL_SAVED_GP. */
16967 cfun->machine->global_pointer
16968 = TARGET_CALL_SAVED_GP ? 15 : GLOBAL_POINTER_REGNUM;
16969 cfun->machine->must_initialize_gp_p = true;
16970 SET_REGNO (pic_offset_table_rtx, cfun->machine->global_pointer);
16972 /* Set up the global pointer for n32 or n64 abicalls. */
16973 mips_emit_loadgp ();
16976 /* We need two temporary registers in some cases. */
16977 temp1 = gen_rtx_REG (Pmode, 2);
16978 temp2 = gen_rtx_REG (Pmode, 3);
16980 /* Find out which register contains the "this" pointer. */
16981 if (aggregate_value_p (TREE_TYPE (TREE_TYPE (function)), function))
16982 this_rtx = gen_rtx_REG (Pmode, GP_ARG_FIRST + 1);
16983 else
16984 this_rtx = gen_rtx_REG (Pmode, GP_ARG_FIRST);
16986 /* Add DELTA to THIS_RTX. */
16987 if (delta != 0)
16989 rtx offset = GEN_INT (delta);
16990 if (!SMALL_OPERAND (delta))
16992 mips_emit_move (temp1, offset);
16993 offset = temp1;
16995 emit_insn (gen_add3_insn (this_rtx, this_rtx, offset));
16998 /* If needed, add *(*THIS_RTX + VCALL_OFFSET) to THIS_RTX. */
16999 if (vcall_offset != 0)
17001 rtx addr;
17003 /* Set TEMP1 to *THIS_RTX. */
17004 mips_emit_move (temp1, gen_rtx_MEM (Pmode, this_rtx));
17006 /* Set ADDR to a legitimate address for *THIS_RTX + VCALL_OFFSET. */
17007 addr = mips_add_offset (temp2, temp1, vcall_offset);
17009 /* Load the offset and add it to THIS_RTX. */
17010 mips_emit_move (temp1, gen_rtx_MEM (Pmode, addr));
17011 emit_insn (gen_add3_insn (this_rtx, this_rtx, temp1));
17014 /* Jump to the target function. Use a sibcall if direct jumps are
17015 allowed, otherwise load the address into a register first. */
17016 if (use_sibcall_p)
17018 insn = emit_call_insn (gen_sibcall_internal (fnaddr, const0_rtx));
17019 SIBLING_CALL_P (insn) = 1;
17021 else
17023 /* This is messy. GAS treats "la $25,foo" as part of a call
17024 sequence and may allow a global "foo" to be lazily bound.
17025 The general move patterns therefore reject this combination.
17027 In this context, lazy binding would actually be OK
17028 for TARGET_CALL_CLOBBERED_GP, but it's still wrong for
17029 TARGET_CALL_SAVED_GP; see mips_load_call_address.
17030 We must therefore load the address via a temporary
17031 register if mips_dangerous_for_la25_p.
17033 If we jump to the temporary register rather than $25,
17034 the assembler can use the move insn to fill the jump's
17035 delay slot.
17037 We can use the same technique for MIPS16 code, where $25
17038 is not a valid JR register. */
17039 if (TARGET_USE_PIC_FN_ADDR_REG
17040 && !TARGET_MIPS16
17041 && !mips_dangerous_for_la25_p (fnaddr))
17042 temp1 = gen_rtx_REG (Pmode, PIC_FUNCTION_ADDR_REGNUM);
17043 mips_load_call_address (MIPS_CALL_SIBCALL, temp1, fnaddr);
17045 if (TARGET_USE_PIC_FN_ADDR_REG
17046 && REGNO (temp1) != PIC_FUNCTION_ADDR_REGNUM)
17047 mips_emit_move (gen_rtx_REG (Pmode, PIC_FUNCTION_ADDR_REGNUM), temp1);
17048 emit_jump_insn (gen_indirect_jump (temp1));
17051 /* Run just enough of rest_of_compilation. This sequence was
17052 "borrowed" from alpha.c. */
17053 insn = get_insns ();
17054 split_all_insns_noflow ();
17055 mips16_lay_out_constants (true);
17056 shorten_branches (insn);
17057 final_start_function (insn, file, 1);
17058 final (insn, file, 1);
17059 final_end_function ();
17061 /* Clean up the vars set above. Note that final_end_function resets
17062 the global pointer for us. */
17063 reload_completed = 0;
17067 /* The last argument passed to mips_set_compression_mode,
17068 or negative if the function hasn't been called yet. */
17069 static unsigned int old_compression_mode = -1;
17071 /* Set up the target-dependent global state for ISA mode COMPRESSION_MODE,
17072 which is either MASK_MIPS16 or MASK_MICROMIPS. */
17074 static void
17075 mips_set_compression_mode (unsigned int compression_mode)
17078 if (compression_mode == old_compression_mode)
17079 return;
17081 /* Restore base settings of various flags. */
17082 target_flags = mips_base_target_flags;
17083 flag_schedule_insns = mips_base_schedule_insns;
17084 flag_reorder_blocks_and_partition = mips_base_reorder_blocks_and_partition;
17085 flag_move_loop_invariants = mips_base_move_loop_invariants;
17086 align_loops = mips_base_align_loops;
17087 align_jumps = mips_base_align_jumps;
17088 align_functions = mips_base_align_functions;
17089 target_flags &= ~(MASK_MIPS16 | MASK_MICROMIPS);
17090 target_flags |= compression_mode;
17092 if (compression_mode & MASK_MIPS16)
17094 /* Switch to MIPS16 mode. */
17095 target_flags |= MASK_MIPS16;
17097 /* Turn off SYNCI if it was on, MIPS16 doesn't support it. */
17098 target_flags &= ~MASK_SYNCI;
17100 /* Don't run the scheduler before reload, since it tends to
17101 increase register pressure. */
17102 flag_schedule_insns = 0;
17104 /* Don't do hot/cold partitioning. mips16_lay_out_constants expects
17105 the whole function to be in a single section. */
17106 flag_reorder_blocks_and_partition = 0;
17108 /* Don't move loop invariants, because it tends to increase
17109 register pressure. It also introduces an extra move in cases
17110 where the constant is the first operand in a two-operand binary
17111 instruction, or when it forms a register argument to a functon
17112 call. */
17113 flag_move_loop_invariants = 0;
17115 target_flags |= MASK_EXPLICIT_RELOCS;
17117 /* Experiments suggest we get the best overall section-anchor
17118 results from using the range of an unextended LW or SW. Code
17119 that makes heavy use of byte or short accesses can do better
17120 with ranges of 0...31 and 0...63 respectively, but most code is
17121 sensitive to the range of LW and SW instead. */
17122 targetm.min_anchor_offset = 0;
17123 targetm.max_anchor_offset = 127;
17125 targetm.const_anchor = 0;
17127 /* MIPS16 has no BAL instruction. */
17128 target_flags &= ~MASK_RELAX_PIC_CALLS;
17130 /* The R4000 errata don't apply to any known MIPS16 cores.
17131 It's simpler to make the R4000 fixes and MIPS16 mode
17132 mutually exclusive. */
17133 target_flags &= ~MASK_FIX_R4000;
17135 if (flag_pic && !TARGET_OLDABI)
17136 sorry ("MIPS16 PIC for ABIs other than o32 and o64");
17138 if (TARGET_XGOT)
17139 sorry ("MIPS16 -mxgot code");
17141 if (TARGET_HARD_FLOAT_ABI && !TARGET_OLDABI)
17142 sorry ("hard-float MIPS16 code for ABIs other than o32 and o64");
17144 else
17146 /* Switch to microMIPS or the standard encoding. */
17148 if (TARGET_MICROMIPS)
17149 /* Avoid branch likely. */
17150 target_flags &= ~MASK_BRANCHLIKELY;
17152 /* Provide default values for align_* for 64-bit targets. */
17153 if (TARGET_64BIT)
17155 if (align_loops == 0)
17156 align_loops = 8;
17157 if (align_jumps == 0)
17158 align_jumps = 8;
17159 if (align_functions == 0)
17160 align_functions = 8;
17163 targetm.min_anchor_offset = -32768;
17164 targetm.max_anchor_offset = 32767;
17166 targetm.const_anchor = 0x8000;
17169 /* (Re)initialize MIPS target internals for new ISA. */
17170 mips_init_relocs ();
17172 if (compression_mode & MASK_MIPS16)
17174 if (!mips16_globals)
17175 mips16_globals = save_target_globals_default_opts ();
17176 else
17177 restore_target_globals (mips16_globals);
17179 else
17180 restore_target_globals (&default_target_globals);
17182 old_compression_mode = compression_mode;
17185 /* Implement TARGET_SET_CURRENT_FUNCTION. Decide whether the current
17186 function should use the MIPS16 or microMIPS ISA and switch modes
17187 accordingly. */
17189 static void
17190 mips_set_current_function (tree fndecl)
17192 mips_set_compression_mode (mips_get_compress_mode (fndecl));
17195 /* Allocate a chunk of memory for per-function machine-dependent data. */
17197 static struct machine_function *
17198 mips_init_machine_status (void)
17200 return ggc_cleared_alloc<machine_function> ();
17203 /* Return the processor associated with the given ISA level, or null
17204 if the ISA isn't valid. */
17206 static const struct mips_cpu_info *
17207 mips_cpu_info_from_isa (int isa)
17209 unsigned int i;
17211 for (i = 0; i < ARRAY_SIZE (mips_cpu_info_table); i++)
17212 if (mips_cpu_info_table[i].isa == isa)
17213 return mips_cpu_info_table + i;
17215 return NULL;
17218 /* Return a mips_cpu_info entry determined by an option valued
17219 OPT. */
17221 static const struct mips_cpu_info *
17222 mips_cpu_info_from_opt (int opt)
17224 switch (opt)
17226 case MIPS_ARCH_OPTION_FROM_ABI:
17227 /* 'from-abi' selects the most compatible architecture for the
17228 given ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit
17229 ABIs. For the EABIs, we have to decide whether we're using
17230 the 32-bit or 64-bit version. */
17231 return mips_cpu_info_from_isa (ABI_NEEDS_32BIT_REGS ? 1
17232 : ABI_NEEDS_64BIT_REGS ? 3
17233 : (TARGET_64BIT ? 3 : 1));
17235 case MIPS_ARCH_OPTION_NATIVE:
17236 gcc_unreachable ();
17238 default:
17239 return &mips_cpu_info_table[opt];
17243 /* Return a default mips_cpu_info entry, given that no -march= option
17244 was explicitly specified. */
17246 static const struct mips_cpu_info *
17247 mips_default_arch (void)
17249 #if defined (MIPS_CPU_STRING_DEFAULT)
17250 unsigned int i;
17251 for (i = 0; i < ARRAY_SIZE (mips_cpu_info_table); i++)
17252 if (strcmp (mips_cpu_info_table[i].name, MIPS_CPU_STRING_DEFAULT) == 0)
17253 return mips_cpu_info_table + i;
17254 gcc_unreachable ();
17255 #elif defined (MIPS_ISA_DEFAULT)
17256 return mips_cpu_info_from_isa (MIPS_ISA_DEFAULT);
17257 #else
17258 /* 'from-abi' makes a good default: you get whatever the ABI
17259 requires. */
17260 return mips_cpu_info_from_opt (MIPS_ARCH_OPTION_FROM_ABI);
17261 #endif
17264 /* Set up globals to generate code for the ISA or processor
17265 described by INFO. */
17267 static void
17268 mips_set_architecture (const struct mips_cpu_info *info)
17270 if (info != 0)
17272 mips_arch_info = info;
17273 mips_arch = info->cpu;
17274 mips_isa = info->isa;
17275 if (mips_isa < 32)
17276 mips_isa_rev = 0;
17277 else
17278 mips_isa_rev = (mips_isa & 31) + 1;
17282 /* Likewise for tuning. */
17284 static void
17285 mips_set_tune (const struct mips_cpu_info *info)
17287 if (info != 0)
17289 mips_tune_info = info;
17290 mips_tune = info->cpu;
17294 /* Implement TARGET_OPTION_OVERRIDE. */
17296 static void
17297 mips_option_override (void)
17299 int i, start, regno, mode;
17301 if (global_options_set.x_mips_isa_option)
17302 mips_isa_option_info = &mips_cpu_info_table[mips_isa_option];
17304 #ifdef SUBTARGET_OVERRIDE_OPTIONS
17305 SUBTARGET_OVERRIDE_OPTIONS;
17306 #endif
17308 /* MIPS16 and microMIPS cannot coexist. */
17309 if (TARGET_MICROMIPS && TARGET_MIPS16)
17310 error ("unsupported combination: %s", "-mips16 -mmicromips");
17312 /* Save the base compression state and process flags as though we
17313 were generating uncompressed code. */
17314 mips_base_compression_flags = TARGET_COMPRESSION;
17315 target_flags &= ~TARGET_COMPRESSION;
17317 /* -mno-float overrides -mhard-float and -msoft-float. */
17318 if (TARGET_NO_FLOAT)
17320 target_flags |= MASK_SOFT_FLOAT_ABI;
17321 target_flags_explicit |= MASK_SOFT_FLOAT_ABI;
17324 if (TARGET_FLIP_MIPS16)
17325 TARGET_INTERLINK_COMPRESSED = 1;
17327 /* Set the small data limit. */
17328 mips_small_data_threshold = (global_options_set.x_g_switch_value
17329 ? g_switch_value
17330 : MIPS_DEFAULT_GVALUE);
17332 /* The following code determines the architecture and register size.
17333 Similar code was added to GAS 2.14 (see tc-mips.c:md_after_parse_args()).
17334 The GAS and GCC code should be kept in sync as much as possible. */
17336 if (global_options_set.x_mips_arch_option)
17337 mips_set_architecture (mips_cpu_info_from_opt (mips_arch_option));
17339 if (mips_isa_option_info != 0)
17341 if (mips_arch_info == 0)
17342 mips_set_architecture (mips_isa_option_info);
17343 else if (mips_arch_info->isa != mips_isa_option_info->isa)
17344 error ("%<-%s%> conflicts with the other architecture options, "
17345 "which specify a %s processor",
17346 mips_isa_option_info->name,
17347 mips_cpu_info_from_isa (mips_arch_info->isa)->name);
17350 if (mips_arch_info == 0)
17351 mips_set_architecture (mips_default_arch ());
17353 if (ABI_NEEDS_64BIT_REGS && !ISA_HAS_64BIT_REGS)
17354 error ("%<-march=%s%> is not compatible with the selected ABI",
17355 mips_arch_info->name);
17357 /* Optimize for mips_arch, unless -mtune selects a different processor. */
17358 if (global_options_set.x_mips_tune_option)
17359 mips_set_tune (mips_cpu_info_from_opt (mips_tune_option));
17361 if (mips_tune_info == 0)
17362 mips_set_tune (mips_arch_info);
17364 if ((target_flags_explicit & MASK_64BIT) != 0)
17366 /* The user specified the size of the integer registers. Make sure
17367 it agrees with the ABI and ISA. */
17368 if (TARGET_64BIT && !ISA_HAS_64BIT_REGS)
17369 error ("%<-mgp64%> used with a 32-bit processor");
17370 else if (!TARGET_64BIT && ABI_NEEDS_64BIT_REGS)
17371 error ("%<-mgp32%> used with a 64-bit ABI");
17372 else if (TARGET_64BIT && ABI_NEEDS_32BIT_REGS)
17373 error ("%<-mgp64%> used with a 32-bit ABI");
17375 else
17377 /* Infer the integer register size from the ABI and processor.
17378 Restrict ourselves to 32-bit registers if that's all the
17379 processor has, or if the ABI cannot handle 64-bit registers. */
17380 if (ABI_NEEDS_32BIT_REGS || !ISA_HAS_64BIT_REGS)
17381 target_flags &= ~MASK_64BIT;
17382 else
17383 target_flags |= MASK_64BIT;
17386 if ((target_flags_explicit & MASK_FLOAT64) != 0)
17388 if (mips_isa_rev >= 6 && !TARGET_FLOAT64)
17389 error ("the %qs architecture does not support %<-mfp32%>",
17390 mips_arch_info->name);
17391 else if (TARGET_SINGLE_FLOAT && TARGET_FLOAT64)
17392 error ("unsupported combination: %s", "-mfp64 -msingle-float");
17393 else if (TARGET_64BIT && TARGET_DOUBLE_FLOAT && !TARGET_FLOAT64)
17394 error ("unsupported combination: %s", "-mgp64 -mfp32 -mdouble-float");
17395 else if (!TARGET_64BIT && TARGET_FLOAT64)
17397 if (!ISA_HAS_MXHC1)
17398 error ("%<-mgp32%> and %<-mfp64%> can only be combined if"
17399 " the target supports the mfhc1 and mthc1 instructions");
17400 else if (mips_abi != ABI_32)
17401 error ("%<-mgp32%> and %<-mfp64%> can only be combined when using"
17402 " the o32 ABI");
17405 else
17407 /* -msingle-float selects 32-bit float registers. On r6 and later,
17408 -mdouble-float selects 64-bit float registers, since the old paired
17409 register model is not supported. In other cases the float registers
17410 should be the same size as the integer ones. */
17411 if (mips_isa_rev >= 6 && TARGET_DOUBLE_FLOAT && !TARGET_FLOATXX)
17412 target_flags |= MASK_FLOAT64;
17413 else if (TARGET_64BIT && TARGET_DOUBLE_FLOAT)
17414 target_flags |= MASK_FLOAT64;
17415 else
17416 target_flags &= ~MASK_FLOAT64;
17419 if (mips_abi != ABI_32 && TARGET_FLOATXX)
17420 error ("%<-mfpxx%> can only be used with the o32 ABI");
17421 else if (TARGET_FLOAT64 && TARGET_FLOATXX)
17422 error ("unsupported combination: %s", "-mfp64 -mfpxx");
17423 else if (ISA_MIPS1 && !TARGET_FLOAT32)
17424 error ("%<-march=%s%> requires %<-mfp32%>", mips_arch_info->name);
17425 else if (TARGET_FLOATXX && !mips_lra_flag)
17426 error ("%<-mfpxx%> requires %<-mlra%>");
17428 /* End of code shared with GAS. */
17430 /* The R5900 FPU only supports single precision. */
17431 if (TARGET_MIPS5900 && TARGET_HARD_FLOAT_ABI && TARGET_DOUBLE_FLOAT)
17432 error ("unsupported combination: %s",
17433 "-march=r5900 -mhard-float -mdouble-float");
17435 /* If a -mlong* option was given, check that it matches the ABI,
17436 otherwise infer the -mlong* setting from the other options. */
17437 if ((target_flags_explicit & MASK_LONG64) != 0)
17439 if (TARGET_LONG64)
17441 if (mips_abi == ABI_N32)
17442 error ("%qs is incompatible with %qs", "-mabi=n32", "-mlong64");
17443 else if (mips_abi == ABI_32)
17444 error ("%qs is incompatible with %qs", "-mabi=32", "-mlong64");
17445 else if (mips_abi == ABI_O64 && TARGET_ABICALLS)
17446 /* We have traditionally allowed non-abicalls code to use
17447 an LP64 form of o64. However, it would take a bit more
17448 effort to support the combination of 32-bit GOT entries
17449 and 64-bit pointers, so we treat the abicalls case as
17450 an error. */
17451 error ("the combination of %qs and %qs is incompatible with %qs",
17452 "-mabi=o64", "-mabicalls", "-mlong64");
17454 else
17456 if (mips_abi == ABI_64)
17457 error ("%qs is incompatible with %qs", "-mabi=64", "-mlong32");
17460 else
17462 if ((mips_abi == ABI_EABI && TARGET_64BIT) || mips_abi == ABI_64)
17463 target_flags |= MASK_LONG64;
17464 else
17465 target_flags &= ~MASK_LONG64;
17468 if (!TARGET_OLDABI)
17469 flag_pcc_struct_return = 0;
17471 /* Decide which rtx_costs structure to use. */
17472 if (optimize_size)
17473 mips_cost = &mips_rtx_cost_optimize_size;
17474 else
17475 mips_cost = &mips_rtx_cost_data[mips_tune];
17477 /* If the user hasn't specified a branch cost, use the processor's
17478 default. */
17479 if (mips_branch_cost == 0)
17480 mips_branch_cost = mips_cost->branch_cost;
17482 /* If neither -mbranch-likely nor -mno-branch-likely was given
17483 on the command line, set MASK_BRANCHLIKELY based on the target
17484 architecture and tuning flags. Annulled delay slots are a
17485 size win, so we only consider the processor-specific tuning
17486 for !optimize_size. */
17487 if ((target_flags_explicit & MASK_BRANCHLIKELY) == 0)
17489 if (ISA_HAS_BRANCHLIKELY
17490 && (optimize_size
17491 || (mips_tune_info->tune_flags & PTF_AVOID_BRANCHLIKELY) == 0))
17492 target_flags |= MASK_BRANCHLIKELY;
17493 else
17494 target_flags &= ~MASK_BRANCHLIKELY;
17496 else if (TARGET_BRANCHLIKELY && !ISA_HAS_BRANCHLIKELY)
17497 warning (0, "the %qs architecture does not support branch-likely"
17498 " instructions", mips_arch_info->name);
17500 /* If the user hasn't specified -mimadd or -mno-imadd set
17501 MASK_IMADD based on the target architecture and tuning
17502 flags. */
17503 if ((target_flags_explicit & MASK_IMADD) == 0)
17505 if (ISA_HAS_MADD_MSUB &&
17506 (mips_tune_info->tune_flags & PTF_AVOID_IMADD) == 0)
17507 target_flags |= MASK_IMADD;
17508 else
17509 target_flags &= ~MASK_IMADD;
17511 else if (TARGET_IMADD && !ISA_HAS_MADD_MSUB)
17512 warning (0, "the %qs architecture does not support madd or msub"
17513 " instructions", mips_arch_info->name);
17515 /* If neither -modd-spreg nor -mno-odd-spreg was given on the command
17516 line, set MASK_ODD_SPREG based on the ISA and ABI. */
17517 if ((target_flags_explicit & MASK_ODD_SPREG) == 0)
17519 /* Disable TARGET_ODD_SPREG when using the o32 FPXX ABI. */
17520 if (!ISA_HAS_ODD_SPREG || TARGET_FLOATXX)
17521 target_flags &= ~MASK_ODD_SPREG;
17522 else
17523 target_flags |= MASK_ODD_SPREG;
17525 else if (TARGET_ODD_SPREG && !ISA_HAS_ODD_SPREG)
17526 warning (0, "the %qs architecture does not support odd single-precision"
17527 " registers", mips_arch_info->name);
17529 if (!TARGET_ODD_SPREG && TARGET_64BIT)
17531 error ("unsupported combination: %s", "-mgp64 -mno-odd-spreg");
17532 /* Allow compilation to continue further even though invalid output
17533 will be produced. */
17534 target_flags |= MASK_ODD_SPREG;
17537 /* The effect of -mabicalls isn't defined for the EABI. */
17538 if (mips_abi == ABI_EABI && TARGET_ABICALLS)
17540 error ("unsupported combination: %s", "-mabicalls -mabi=eabi");
17541 target_flags &= ~MASK_ABICALLS;
17544 /* PIC requires -mabicalls. */
17545 if (flag_pic)
17547 if (mips_abi == ABI_EABI)
17548 error ("cannot generate position-independent code for %qs",
17549 "-mabi=eabi");
17550 else if (!TARGET_ABICALLS)
17551 error ("position-independent code requires %qs", "-mabicalls");
17554 if (TARGET_ABICALLS_PIC2)
17555 /* We need to set flag_pic for executables as well as DSOs
17556 because we may reference symbols that are not defined in
17557 the final executable. (MIPS does not use things like
17558 copy relocs, for example.)
17560 There is a body of code that uses __PIC__ to distinguish
17561 between -mabicalls and -mno-abicalls code. The non-__PIC__
17562 variant is usually appropriate for TARGET_ABICALLS_PIC0, as
17563 long as any indirect jumps use $25. */
17564 flag_pic = 1;
17566 /* -mvr4130-align is a "speed over size" optimization: it usually produces
17567 faster code, but at the expense of more nops. Enable it at -O3 and
17568 above. */
17569 if (optimize > 2 && (target_flags_explicit & MASK_VR4130_ALIGN) == 0)
17570 target_flags |= MASK_VR4130_ALIGN;
17572 /* Prefer a call to memcpy over inline code when optimizing for size,
17573 though see MOVE_RATIO in mips.h. */
17574 if (optimize_size && (target_flags_explicit & MASK_MEMCPY) == 0)
17575 target_flags |= MASK_MEMCPY;
17577 /* If we have a nonzero small-data limit, check that the -mgpopt
17578 setting is consistent with the other target flags. */
17579 if (mips_small_data_threshold > 0)
17581 if (!TARGET_GPOPT)
17583 if (!TARGET_EXPLICIT_RELOCS)
17584 error ("%<-mno-gpopt%> needs %<-mexplicit-relocs%>");
17586 TARGET_LOCAL_SDATA = false;
17587 TARGET_EXTERN_SDATA = false;
17589 else
17591 if (TARGET_VXWORKS_RTP)
17592 warning (0, "cannot use small-data accesses for %qs", "-mrtp");
17594 if (TARGET_ABICALLS)
17595 warning (0, "cannot use small-data accesses for %qs",
17596 "-mabicalls");
17600 /* Set NaN and ABS defaults. */
17601 if (mips_nan == MIPS_IEEE_754_DEFAULT && !ISA_HAS_IEEE_754_LEGACY)
17602 mips_nan = MIPS_IEEE_754_2008;
17603 if (mips_abs == MIPS_IEEE_754_DEFAULT && !ISA_HAS_IEEE_754_LEGACY)
17604 mips_abs = MIPS_IEEE_754_2008;
17606 /* Check for IEEE 754 legacy/2008 support. */
17607 if ((mips_nan == MIPS_IEEE_754_LEGACY
17608 || mips_abs == MIPS_IEEE_754_LEGACY)
17609 && !ISA_HAS_IEEE_754_LEGACY)
17610 warning (0, "the %qs architecture does not support %<-m%s=legacy%>",
17611 mips_arch_info->name,
17612 mips_nan == MIPS_IEEE_754_LEGACY ? "nan" : "abs");
17614 if ((mips_nan == MIPS_IEEE_754_2008
17615 || mips_abs == MIPS_IEEE_754_2008)
17616 && !ISA_HAS_IEEE_754_2008)
17617 warning (0, "the %qs architecture does not support %<-m%s=2008%>",
17618 mips_arch_info->name,
17619 mips_nan == MIPS_IEEE_754_2008 ? "nan" : "abs");
17621 /* Pre-IEEE 754-2008 MIPS hardware has a quirky almost-IEEE format
17622 for all its floating point. */
17623 if (mips_nan != MIPS_IEEE_754_2008)
17625 REAL_MODE_FORMAT (SFmode) = &mips_single_format;
17626 REAL_MODE_FORMAT (DFmode) = &mips_double_format;
17627 REAL_MODE_FORMAT (TFmode) = &mips_quad_format;
17630 /* Make sure that the user didn't turn off paired single support when
17631 MIPS-3D support is requested. */
17632 if (TARGET_MIPS3D
17633 && (target_flags_explicit & MASK_PAIRED_SINGLE_FLOAT)
17634 && !TARGET_PAIRED_SINGLE_FLOAT)
17635 error ("%<-mips3d%> requires %<-mpaired-single%>");
17637 /* If TARGET_MIPS3D, enable MASK_PAIRED_SINGLE_FLOAT. */
17638 if (TARGET_MIPS3D)
17639 target_flags |= MASK_PAIRED_SINGLE_FLOAT;
17641 /* Make sure that when TARGET_PAIRED_SINGLE_FLOAT is true, TARGET_FLOAT64
17642 and TARGET_HARD_FLOAT_ABI are both true. */
17643 if (TARGET_PAIRED_SINGLE_FLOAT && !(TARGET_FLOAT64 && TARGET_HARD_FLOAT_ABI))
17645 error ("%qs must be used with %qs",
17646 TARGET_MIPS3D ? "-mips3d" : "-mpaired-single",
17647 TARGET_HARD_FLOAT_ABI ? "-mfp64" : "-mhard-float");
17648 target_flags &= ~MASK_PAIRED_SINGLE_FLOAT;
17649 TARGET_MIPS3D = 0;
17652 /* Make sure that -mpaired-single is only used on ISAs that support it.
17653 We must disable it otherwise since it relies on other ISA properties
17654 like ISA_HAS_8CC having their normal values. */
17655 if (TARGET_PAIRED_SINGLE_FLOAT && !ISA_HAS_PAIRED_SINGLE)
17657 error ("the %qs architecture does not support paired-single"
17658 " instructions", mips_arch_info->name);
17659 target_flags &= ~MASK_PAIRED_SINGLE_FLOAT;
17660 TARGET_MIPS3D = 0;
17663 if (mips_r10k_cache_barrier != R10K_CACHE_BARRIER_NONE
17664 && !TARGET_CACHE_BUILTIN)
17666 error ("%qs requires a target that provides the %qs instruction",
17667 "-mr10k-cache-barrier", "cache");
17668 mips_r10k_cache_barrier = R10K_CACHE_BARRIER_NONE;
17671 /* If TARGET_DSPR2, enable TARGET_DSP. */
17672 if (TARGET_DSPR2)
17673 TARGET_DSP = true;
17675 if (TARGET_DSP && mips_isa_rev >= 6)
17677 error ("the %qs architecture does not support DSP instructions",
17678 mips_arch_info->name);
17679 TARGET_DSP = false;
17680 TARGET_DSPR2 = false;
17683 /* .eh_frame addresses should be the same width as a C pointer.
17684 Most MIPS ABIs support only one pointer size, so the assembler
17685 will usually know exactly how big an .eh_frame address is.
17687 Unfortunately, this is not true of the 64-bit EABI. The ABI was
17688 originally defined to use 64-bit pointers (i.e. it is LP64), and
17689 this is still the default mode. However, we also support an n32-like
17690 ILP32 mode, which is selected by -mlong32. The problem is that the
17691 assembler has traditionally not had an -mlong option, so it has
17692 traditionally not known whether we're using the ILP32 or LP64 form.
17694 As it happens, gas versions up to and including 2.19 use _32-bit_
17695 addresses for EABI64 .cfi_* directives. This is wrong for the
17696 default LP64 mode, so we can't use the directives by default.
17697 Moreover, since gas's current behavior is at odds with gcc's
17698 default behavior, it seems unwise to rely on future versions
17699 of gas behaving the same way. We therefore avoid using .cfi
17700 directives for -mlong32 as well. */
17701 if (mips_abi == ABI_EABI && TARGET_64BIT)
17702 flag_dwarf2_cfi_asm = 0;
17704 /* .cfi_* directives generate a read-only section, so fall back on
17705 manual .eh_frame creation if we need the section to be writable. */
17706 if (TARGET_WRITABLE_EH_FRAME)
17707 flag_dwarf2_cfi_asm = 0;
17709 mips_init_print_operand_punct ();
17711 /* Set up array to map GCC register number to debug register number.
17712 Ignore the special purpose register numbers. */
17714 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
17716 mips_dbx_regno[i] = IGNORED_DWARF_REGNUM;
17717 if (GP_REG_P (i) || FP_REG_P (i) || ALL_COP_REG_P (i))
17718 mips_dwarf_regno[i] = i;
17719 else
17720 mips_dwarf_regno[i] = INVALID_REGNUM;
17723 start = GP_DBX_FIRST - GP_REG_FIRST;
17724 for (i = GP_REG_FIRST; i <= GP_REG_LAST; i++)
17725 mips_dbx_regno[i] = i + start;
17727 start = FP_DBX_FIRST - FP_REG_FIRST;
17728 for (i = FP_REG_FIRST; i <= FP_REG_LAST; i++)
17729 mips_dbx_regno[i] = i + start;
17731 /* Accumulator debug registers use big-endian ordering. */
17732 mips_dbx_regno[HI_REGNUM] = MD_DBX_FIRST + 0;
17733 mips_dbx_regno[LO_REGNUM] = MD_DBX_FIRST + 1;
17734 mips_dwarf_regno[HI_REGNUM] = MD_REG_FIRST + 0;
17735 mips_dwarf_regno[LO_REGNUM] = MD_REG_FIRST + 1;
17736 for (i = DSP_ACC_REG_FIRST; i <= DSP_ACC_REG_LAST; i += 2)
17738 mips_dwarf_regno[i + TARGET_LITTLE_ENDIAN] = i;
17739 mips_dwarf_regno[i + TARGET_BIG_ENDIAN] = i + 1;
17742 /* Set up mips_hard_regno_mode_ok. */
17743 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
17744 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
17745 mips_hard_regno_mode_ok[mode][regno]
17746 = mips_hard_regno_mode_ok_p (regno, (machine_mode) mode);
17748 /* Function to allocate machine-dependent function status. */
17749 init_machine_status = &mips_init_machine_status;
17751 /* Default to working around R4000 errata only if the processor
17752 was selected explicitly. */
17753 if ((target_flags_explicit & MASK_FIX_R4000) == 0
17754 && strcmp (mips_arch_info->name, "r4000") == 0)
17755 target_flags |= MASK_FIX_R4000;
17757 /* Default to working around R4400 errata only if the processor
17758 was selected explicitly. */
17759 if ((target_flags_explicit & MASK_FIX_R4400) == 0
17760 && strcmp (mips_arch_info->name, "r4400") == 0)
17761 target_flags |= MASK_FIX_R4400;
17763 /* Default to working around R10000 errata only if the processor
17764 was selected explicitly. */
17765 if ((target_flags_explicit & MASK_FIX_R10000) == 0
17766 && strcmp (mips_arch_info->name, "r10000") == 0)
17767 target_flags |= MASK_FIX_R10000;
17769 /* Make sure that branch-likely instructions available when using
17770 -mfix-r10000. The instructions are not available if either:
17772 1. -mno-branch-likely was passed.
17773 2. The selected ISA does not support branch-likely and
17774 the command line does not include -mbranch-likely. */
17775 if (TARGET_FIX_R10000
17776 && ((target_flags_explicit & MASK_BRANCHLIKELY) == 0
17777 ? !ISA_HAS_BRANCHLIKELY
17778 : !TARGET_BRANCHLIKELY))
17779 sorry ("%qs requires branch-likely instructions", "-mfix-r10000");
17781 if (TARGET_SYNCI && !ISA_HAS_SYNCI)
17783 warning (0, "the %qs architecture does not support the synci "
17784 "instruction", mips_arch_info->name);
17785 target_flags &= ~MASK_SYNCI;
17788 /* Only optimize PIC indirect calls if they are actually required. */
17789 if (!TARGET_USE_GOT || !TARGET_EXPLICIT_RELOCS)
17790 target_flags &= ~MASK_RELAX_PIC_CALLS;
17792 /* Save base state of options. */
17793 mips_base_target_flags = target_flags;
17794 mips_base_schedule_insns = flag_schedule_insns;
17795 mips_base_reorder_blocks_and_partition = flag_reorder_blocks_and_partition;
17796 mips_base_move_loop_invariants = flag_move_loop_invariants;
17797 mips_base_align_loops = align_loops;
17798 mips_base_align_jumps = align_jumps;
17799 mips_base_align_functions = align_functions;
17801 /* Now select the ISA mode.
17803 Do all CPP-sensitive stuff in uncompressed mode; we'll switch modes
17804 later if required. */
17805 mips_set_compression_mode (0);
17807 /* We register a second machine specific reorg pass after delay slot
17808 filling. Registering the pass must be done at start up. It's
17809 convenient to do it here. */
17810 opt_pass *new_pass = make_pass_mips_machine_reorg2 (g);
17811 struct register_pass_info insert_pass_mips_machine_reorg2 =
17813 new_pass, /* pass */
17814 "dbr", /* reference_pass_name */
17815 1, /* ref_pass_instance_number */
17816 PASS_POS_INSERT_AFTER /* po_op */
17818 register_pass (&insert_pass_mips_machine_reorg2);
17820 if (TARGET_HARD_FLOAT_ABI && TARGET_MIPS5900)
17821 REAL_MODE_FORMAT (SFmode) = &spu_single_format;
17824 /* Swap the register information for registers I and I + 1, which
17825 currently have the wrong endianness. Note that the registers'
17826 fixedness and call-clobberedness might have been set on the
17827 command line. */
17829 static void
17830 mips_swap_registers (unsigned int i)
17832 int tmpi;
17833 const char *tmps;
17835 #define SWAP_INT(X, Y) (tmpi = (X), (X) = (Y), (Y) = tmpi)
17836 #define SWAP_STRING(X, Y) (tmps = (X), (X) = (Y), (Y) = tmps)
17838 SWAP_INT (fixed_regs[i], fixed_regs[i + 1]);
17839 SWAP_INT (call_used_regs[i], call_used_regs[i + 1]);
17840 SWAP_INT (call_really_used_regs[i], call_really_used_regs[i + 1]);
17841 SWAP_STRING (reg_names[i], reg_names[i + 1]);
17843 #undef SWAP_STRING
17844 #undef SWAP_INT
17847 /* Implement TARGET_CONDITIONAL_REGISTER_USAGE. */
17849 static void
17850 mips_conditional_register_usage (void)
17853 if (ISA_HAS_DSP)
17855 /* These DSP control register fields are global. */
17856 global_regs[CCDSP_PO_REGNUM] = 1;
17857 global_regs[CCDSP_SC_REGNUM] = 1;
17859 else
17860 AND_COMPL_HARD_REG_SET (accessible_reg_set,
17861 reg_class_contents[(int) DSP_ACC_REGS]);
17863 if (!ISA_HAS_HILO)
17864 AND_COMPL_HARD_REG_SET (accessible_reg_set,
17865 reg_class_contents[(int) MD_REGS]);
17867 if (!TARGET_HARD_FLOAT)
17869 AND_COMPL_HARD_REG_SET (accessible_reg_set,
17870 reg_class_contents[(int) FP_REGS]);
17871 AND_COMPL_HARD_REG_SET (accessible_reg_set,
17872 reg_class_contents[(int) ST_REGS]);
17874 else if (!ISA_HAS_8CC)
17876 /* We only have a single condition-code register. We implement
17877 this by fixing all the condition-code registers and generating
17878 RTL that refers directly to ST_REG_FIRST. */
17879 AND_COMPL_HARD_REG_SET (accessible_reg_set,
17880 reg_class_contents[(int) ST_REGS]);
17881 if (!ISA_HAS_CCF)
17882 SET_HARD_REG_BIT (accessible_reg_set, FPSW_REGNUM);
17883 fixed_regs[FPSW_REGNUM] = call_used_regs[FPSW_REGNUM] = 1;
17885 if (TARGET_MIPS16)
17887 /* In MIPS16 mode, we prohibit the unused $s registers, since they
17888 are call-saved, and saving them via a MIPS16 register would
17889 probably waste more time than just reloading the value.
17891 We permit the $t temporary registers when optimizing for speed
17892 but not when optimizing for space because using them results in
17893 code that is larger (but faster) then not using them. We do
17894 allow $24 (t8) because it is used in CMP and CMPI instructions
17895 and $25 (t9) because it is used as the function call address in
17896 SVR4 PIC code. */
17898 fixed_regs[18] = call_used_regs[18] = 1;
17899 fixed_regs[19] = call_used_regs[19] = 1;
17900 fixed_regs[20] = call_used_regs[20] = 1;
17901 fixed_regs[21] = call_used_regs[21] = 1;
17902 fixed_regs[22] = call_used_regs[22] = 1;
17903 fixed_regs[23] = call_used_regs[23] = 1;
17904 fixed_regs[26] = call_used_regs[26] = 1;
17905 fixed_regs[27] = call_used_regs[27] = 1;
17906 fixed_regs[30] = call_used_regs[30] = 1;
17907 if (optimize_size)
17909 fixed_regs[8] = call_used_regs[8] = 1;
17910 fixed_regs[9] = call_used_regs[9] = 1;
17911 fixed_regs[10] = call_used_regs[10] = 1;
17912 fixed_regs[11] = call_used_regs[11] = 1;
17913 fixed_regs[12] = call_used_regs[12] = 1;
17914 fixed_regs[13] = call_used_regs[13] = 1;
17915 fixed_regs[14] = call_used_regs[14] = 1;
17916 fixed_regs[15] = call_used_regs[15] = 1;
17919 /* Do not allow HI and LO to be treated as register operands.
17920 There are no MTHI or MTLO instructions (or any real need
17921 for them) and one-way registers cannot easily be reloaded. */
17922 AND_COMPL_HARD_REG_SET (operand_reg_set,
17923 reg_class_contents[(int) MD_REGS]);
17925 /* $f20-$f23 are call-clobbered for n64. */
17926 if (mips_abi == ABI_64)
17928 int regno;
17929 for (regno = FP_REG_FIRST + 20; regno < FP_REG_FIRST + 24; regno++)
17930 call_really_used_regs[regno] = call_used_regs[regno] = 1;
17932 /* Odd registers in the range $f21-$f31 (inclusive) are call-clobbered
17933 for n32 and o32 FP64. */
17934 if (mips_abi == ABI_N32
17935 || (mips_abi == ABI_32
17936 && TARGET_FLOAT64))
17938 int regno;
17939 for (regno = FP_REG_FIRST + 21; regno <= FP_REG_FIRST + 31; regno+=2)
17940 call_really_used_regs[regno] = call_used_regs[regno] = 1;
17942 /* Make sure that double-register accumulator values are correctly
17943 ordered for the current endianness. */
17944 if (TARGET_LITTLE_ENDIAN)
17946 unsigned int regno;
17948 mips_swap_registers (MD_REG_FIRST);
17949 for (regno = DSP_ACC_REG_FIRST; regno <= DSP_ACC_REG_LAST; regno += 2)
17950 mips_swap_registers (regno);
17954 /* Implement EH_USES. */
17956 bool
17957 mips_eh_uses (unsigned int regno)
17959 if (reload_completed && !TARGET_ABSOLUTE_JUMPS)
17961 /* We need to force certain registers to be live in order to handle
17962 PIC long branches correctly. See mips_must_initialize_gp_p for
17963 details. */
17964 if (mips_cfun_has_cprestore_slot_p ())
17966 if (regno == CPRESTORE_SLOT_REGNUM)
17967 return true;
17969 else
17971 if (cfun->machine->global_pointer == regno)
17972 return true;
17976 return false;
17979 /* Implement EPILOGUE_USES. */
17981 bool
17982 mips_epilogue_uses (unsigned int regno)
17984 /* Say that the epilogue uses the return address register. Note that
17985 in the case of sibcalls, the values "used by the epilogue" are
17986 considered live at the start of the called function. */
17987 if (regno == RETURN_ADDR_REGNUM)
17988 return true;
17990 /* If using a GOT, say that the epilogue also uses GOT_VERSION_REGNUM.
17991 See the comment above load_call<mode> for details. */
17992 if (TARGET_USE_GOT && (regno) == GOT_VERSION_REGNUM)
17993 return true;
17995 /* An interrupt handler must preserve some registers that are
17996 ordinarily call-clobbered. */
17997 if (cfun->machine->interrupt_handler_p
17998 && mips_interrupt_extra_call_saved_reg_p (regno))
17999 return true;
18001 return false;
18004 /* Return true if INSN needs to be wrapped in ".set noat".
18005 INSN has NOPERANDS operands, stored in OPVEC. */
18007 static bool
18008 mips_need_noat_wrapper_p (rtx_insn *insn, rtx *opvec, int noperands)
18010 if (recog_memoized (insn) >= 0)
18012 subrtx_iterator::array_type array;
18013 for (int i = 0; i < noperands; i++)
18014 FOR_EACH_SUBRTX (iter, array, opvec[i], NONCONST)
18015 if (REG_P (*iter) && REGNO (*iter) == AT_REGNUM)
18016 return true;
18018 return false;
18021 /* Implement FINAL_PRESCAN_INSN. */
18023 void
18024 mips_final_prescan_insn (rtx_insn *insn, rtx *opvec, int noperands)
18026 if (mips_need_noat_wrapper_p (insn, opvec, noperands))
18027 mips_push_asm_switch (&mips_noat);
18030 /* Implement TARGET_ASM_FINAL_POSTSCAN_INSN. */
18032 static void
18033 mips_final_postscan_insn (FILE *file ATTRIBUTE_UNUSED, rtx_insn *insn,
18034 rtx *opvec, int noperands)
18036 if (mips_need_noat_wrapper_p (insn, opvec, noperands))
18037 mips_pop_asm_switch (&mips_noat);
18040 /* Return the function that is used to expand the <u>mulsidi3 pattern.
18041 EXT_CODE is the code of the extension used. Return NULL if widening
18042 multiplication shouldn't be used. */
18044 mulsidi3_gen_fn
18045 mips_mulsidi3_gen_fn (enum rtx_code ext_code)
18047 bool signed_p;
18049 signed_p = ext_code == SIGN_EXTEND;
18050 if (TARGET_64BIT)
18052 /* Don't use widening multiplication with MULT when we have DMUL. Even
18053 with the extension of its input operands DMUL is faster. Note that
18054 the extension is not needed for signed multiplication. In order to
18055 ensure that we always remove the redundant sign-extension in this
18056 case we still expand mulsidi3 for DMUL. */
18057 if (ISA_HAS_R6DMUL)
18058 return signed_p ? gen_mulsidi3_64bit_r6dmul : NULL;
18059 if (ISA_HAS_DMUL3)
18060 return signed_p ? gen_mulsidi3_64bit_dmul : NULL;
18061 if (TARGET_MIPS16)
18062 return (signed_p
18063 ? gen_mulsidi3_64bit_mips16
18064 : gen_umulsidi3_64bit_mips16);
18065 if (TARGET_FIX_R4000)
18066 return NULL;
18067 return signed_p ? gen_mulsidi3_64bit : gen_umulsidi3_64bit;
18069 else
18071 if (ISA_HAS_R6MUL)
18072 return (signed_p ? gen_mulsidi3_32bit_r6 : gen_umulsidi3_32bit_r6);
18073 if (TARGET_MIPS16)
18074 return (signed_p
18075 ? gen_mulsidi3_32bit_mips16
18076 : gen_umulsidi3_32bit_mips16);
18077 if (TARGET_FIX_R4000 && !ISA_HAS_DSP)
18078 return signed_p ? gen_mulsidi3_32bit_r4000 : gen_umulsidi3_32bit_r4000;
18079 return signed_p ? gen_mulsidi3_32bit : gen_umulsidi3_32bit;
18083 /* Return true if PATTERN matches the kind of instruction generated by
18084 umips_build_save_restore. SAVE_P is true for store. */
18086 bool
18087 umips_save_restore_pattern_p (bool save_p, rtx pattern)
18089 int n;
18090 unsigned int i;
18091 HOST_WIDE_INT first_offset = 0;
18092 rtx first_base = 0;
18093 unsigned int regmask = 0;
18095 for (n = 0; n < XVECLEN (pattern, 0); n++)
18097 rtx set, reg, mem, this_base;
18098 HOST_WIDE_INT this_offset;
18100 /* Check that we have a SET. */
18101 set = XVECEXP (pattern, 0, n);
18102 if (GET_CODE (set) != SET)
18103 return false;
18105 /* Check that the SET is a load (if restoring) or a store
18106 (if saving). */
18107 mem = save_p ? SET_DEST (set) : SET_SRC (set);
18108 if (!MEM_P (mem) || MEM_VOLATILE_P (mem))
18109 return false;
18111 /* Check that the address is the sum of base and a possibly-zero
18112 constant offset. Determine if the offset is in range. */
18113 mips_split_plus (XEXP (mem, 0), &this_base, &this_offset);
18114 if (!REG_P (this_base))
18115 return false;
18117 if (n == 0)
18119 if (!UMIPS_12BIT_OFFSET_P (this_offset))
18120 return false;
18121 first_base = this_base;
18122 first_offset = this_offset;
18124 else
18126 /* Check that the save slots are consecutive. */
18127 if (REGNO (this_base) != REGNO (first_base)
18128 || this_offset != first_offset + UNITS_PER_WORD * n)
18129 return false;
18132 /* Check that SET's other operand is a register. */
18133 reg = save_p ? SET_SRC (set) : SET_DEST (set);
18134 if (!REG_P (reg))
18135 return false;
18137 regmask |= 1 << REGNO (reg);
18140 for (i = 0; i < ARRAY_SIZE (umips_swm_mask); i++)
18141 if (regmask == umips_swm_mask[i])
18142 return true;
18144 return false;
18147 /* Return the assembly instruction for microMIPS LWM or SWM.
18148 SAVE_P and PATTERN are as for umips_save_restore_pattern_p. */
18150 const char *
18151 umips_output_save_restore (bool save_p, rtx pattern)
18153 static char buffer[300];
18154 char *s;
18155 int n;
18156 HOST_WIDE_INT offset;
18157 rtx base, mem, set, last_set, last_reg;
18159 /* Parse the pattern. */
18160 gcc_assert (umips_save_restore_pattern_p (save_p, pattern));
18162 s = strcpy (buffer, save_p ? "swm\t" : "lwm\t");
18163 s += strlen (s);
18164 n = XVECLEN (pattern, 0);
18166 set = XVECEXP (pattern, 0, 0);
18167 mem = save_p ? SET_DEST (set) : SET_SRC (set);
18168 mips_split_plus (XEXP (mem, 0), &base, &offset);
18170 last_set = XVECEXP (pattern, 0, n - 1);
18171 last_reg = save_p ? SET_SRC (last_set) : SET_DEST (last_set);
18173 if (REGNO (last_reg) == 31)
18174 n--;
18176 gcc_assert (n <= 9);
18177 if (n == 0)
18179 else if (n == 1)
18180 s += sprintf (s, "%s,", reg_names[16]);
18181 else if (n < 9)
18182 s += sprintf (s, "%s-%s,", reg_names[16], reg_names[15 + n]);
18183 else if (n == 9)
18184 s += sprintf (s, "%s-%s,%s,", reg_names[16], reg_names[23],
18185 reg_names[30]);
18187 if (REGNO (last_reg) == 31)
18188 s += sprintf (s, "%s,", reg_names[31]);
18190 s += sprintf (s, "%d(%s)", (int)offset, reg_names[REGNO (base)]);
18191 return buffer;
18194 /* Return true if MEM1 and MEM2 use the same base register, and the
18195 offset of MEM2 equals the offset of MEM1 plus 4. FIRST_REG is the
18196 register into (from) which the contents of MEM1 will be loaded
18197 (stored), depending on the value of LOAD_P.
18198 SWAP_P is true when the 1st and 2nd instructions are swapped. */
18200 static bool
18201 umips_load_store_pair_p_1 (bool load_p, bool swap_p,
18202 rtx first_reg, rtx mem1, rtx mem2)
18204 rtx base1, base2;
18205 HOST_WIDE_INT offset1, offset2;
18207 if (!MEM_P (mem1) || !MEM_P (mem2))
18208 return false;
18210 mips_split_plus (XEXP (mem1, 0), &base1, &offset1);
18211 mips_split_plus (XEXP (mem2, 0), &base2, &offset2);
18213 if (!REG_P (base1) || !rtx_equal_p (base1, base2))
18214 return false;
18216 /* Avoid invalid load pair instructions. */
18217 if (load_p && REGNO (first_reg) == REGNO (base1))
18218 return false;
18220 /* We must avoid this case for anti-dependence.
18221 Ex: lw $3, 4($3)
18222 lw $2, 0($3)
18223 first_reg is $2, but the base is $3. */
18224 if (load_p
18225 && swap_p
18226 && REGNO (first_reg) + 1 == REGNO (base1))
18227 return false;
18229 if (offset2 != offset1 + 4)
18230 return false;
18232 if (!UMIPS_12BIT_OFFSET_P (offset1))
18233 return false;
18235 return true;
18238 /* OPERANDS describes the operands to a pair of SETs, in the order
18239 dest1, src1, dest2, src2. Return true if the operands can be used
18240 in an LWP or SWP instruction; LOAD_P says which. */
18242 bool
18243 umips_load_store_pair_p (bool load_p, rtx *operands)
18245 rtx reg1, reg2, mem1, mem2;
18247 if (load_p)
18249 reg1 = operands[0];
18250 reg2 = operands[2];
18251 mem1 = operands[1];
18252 mem2 = operands[3];
18254 else
18256 reg1 = operands[1];
18257 reg2 = operands[3];
18258 mem1 = operands[0];
18259 mem2 = operands[2];
18262 if (REGNO (reg2) == REGNO (reg1) + 1)
18263 return umips_load_store_pair_p_1 (load_p, false, reg1, mem1, mem2);
18265 if (REGNO (reg1) == REGNO (reg2) + 1)
18266 return umips_load_store_pair_p_1 (load_p, true, reg2, mem2, mem1);
18268 return false;
18271 /* Return the assembly instruction for a microMIPS LWP or SWP in which
18272 the first register is REG and the first memory slot is MEM.
18273 LOAD_P is true for LWP. */
18275 static void
18276 umips_output_load_store_pair_1 (bool load_p, rtx reg, rtx mem)
18278 rtx ops[] = {reg, mem};
18280 if (load_p)
18281 output_asm_insn ("lwp\t%0,%1", ops);
18282 else
18283 output_asm_insn ("swp\t%0,%1", ops);
18286 /* Output the assembly instruction for a microMIPS LWP or SWP instruction.
18287 LOAD_P and OPERANDS are as for umips_load_store_pair_p. */
18289 void
18290 umips_output_load_store_pair (bool load_p, rtx *operands)
18292 rtx reg1, reg2, mem1, mem2;
18293 if (load_p)
18295 reg1 = operands[0];
18296 reg2 = operands[2];
18297 mem1 = operands[1];
18298 mem2 = operands[3];
18300 else
18302 reg1 = operands[1];
18303 reg2 = operands[3];
18304 mem1 = operands[0];
18305 mem2 = operands[2];
18308 if (REGNO (reg2) == REGNO (reg1) + 1)
18310 umips_output_load_store_pair_1 (load_p, reg1, mem1);
18311 return;
18314 gcc_assert (REGNO (reg1) == REGNO (reg2) + 1);
18315 umips_output_load_store_pair_1 (load_p, reg2, mem2);
18318 /* Return true if REG1 and REG2 match the criteria for a movep insn. */
18320 bool
18321 umips_movep_target_p (rtx reg1, rtx reg2)
18323 int regno1, regno2, pair;
18324 unsigned int i;
18325 static const int match[8] = {
18326 0x00000060, /* 5, 6 */
18327 0x000000a0, /* 5, 7 */
18328 0x000000c0, /* 6, 7 */
18329 0x00200010, /* 4, 21 */
18330 0x00400010, /* 4, 22 */
18331 0x00000030, /* 4, 5 */
18332 0x00000050, /* 4, 6 */
18333 0x00000090 /* 4, 7 */
18336 if (!REG_P (reg1) || !REG_P (reg2))
18337 return false;
18339 regno1 = REGNO (reg1);
18340 regno2 = REGNO (reg2);
18342 if (!GP_REG_P (regno1) || !GP_REG_P (regno2))
18343 return false;
18345 pair = (1 << regno1) | (1 << regno2);
18347 for (i = 0; i < ARRAY_SIZE (match); i++)
18348 if (pair == match[i])
18349 return true;
18351 return false;
18354 /* Return the size in bytes of the trampoline code, padded to
18355 TRAMPOLINE_ALIGNMENT bits. The static chain pointer and target
18356 function address immediately follow. */
18359 mips_trampoline_code_size (void)
18361 if (TARGET_USE_PIC_FN_ADDR_REG)
18362 return 4 * 4;
18363 else if (ptr_mode == DImode)
18364 return 8 * 4;
18365 else if (ISA_HAS_LOAD_DELAY)
18366 return 6 * 4;
18367 else
18368 return 4 * 4;
18371 /* Implement TARGET_TRAMPOLINE_INIT. */
18373 static void
18374 mips_trampoline_init (rtx m_tramp, tree fndecl, rtx chain_value)
18376 rtx addr, end_addr, high, low, opcode, mem;
18377 rtx trampoline[8];
18378 unsigned int i, j;
18379 HOST_WIDE_INT end_addr_offset, static_chain_offset, target_function_offset;
18381 /* Work out the offsets of the pointers from the start of the
18382 trampoline code. */
18383 end_addr_offset = mips_trampoline_code_size ();
18384 static_chain_offset = end_addr_offset;
18385 target_function_offset = static_chain_offset + GET_MODE_SIZE (ptr_mode);
18387 /* Get pointers to the beginning and end of the code block. */
18388 addr = force_reg (Pmode, XEXP (m_tramp, 0));
18389 end_addr = mips_force_binary (Pmode, PLUS, addr, GEN_INT (end_addr_offset));
18391 #define OP(X) gen_int_mode (X, SImode)
18393 /* Build up the code in TRAMPOLINE. */
18394 i = 0;
18395 if (TARGET_USE_PIC_FN_ADDR_REG)
18397 /* $25 contains the address of the trampoline. Emit code of the form:
18399 l[wd] $1, target_function_offset($25)
18400 l[wd] $static_chain, static_chain_offset($25)
18401 jr $1
18402 move $25,$1. */
18403 trampoline[i++] = OP (MIPS_LOAD_PTR (AT_REGNUM,
18404 target_function_offset,
18405 PIC_FUNCTION_ADDR_REGNUM));
18406 trampoline[i++] = OP (MIPS_LOAD_PTR (STATIC_CHAIN_REGNUM,
18407 static_chain_offset,
18408 PIC_FUNCTION_ADDR_REGNUM));
18409 trampoline[i++] = OP (MIPS_JR (AT_REGNUM));
18410 trampoline[i++] = OP (MIPS_MOVE (PIC_FUNCTION_ADDR_REGNUM, AT_REGNUM));
18412 else if (ptr_mode == DImode)
18414 /* It's too cumbersome to create the full 64-bit address, so let's
18415 instead use:
18417 move $1, $31
18418 bal 1f
18420 1: l[wd] $25, target_function_offset - 12($31)
18421 l[wd] $static_chain, static_chain_offset - 12($31)
18422 jr $25
18423 move $31, $1
18425 where 12 is the offset of "1:" from the start of the code block. */
18426 trampoline[i++] = OP (MIPS_MOVE (AT_REGNUM, RETURN_ADDR_REGNUM));
18427 trampoline[i++] = OP (MIPS_BAL (1));
18428 trampoline[i++] = OP (MIPS_NOP);
18429 trampoline[i++] = OP (MIPS_LOAD_PTR (PIC_FUNCTION_ADDR_REGNUM,
18430 target_function_offset - 12,
18431 RETURN_ADDR_REGNUM));
18432 trampoline[i++] = OP (MIPS_LOAD_PTR (STATIC_CHAIN_REGNUM,
18433 static_chain_offset - 12,
18434 RETURN_ADDR_REGNUM));
18435 trampoline[i++] = OP (MIPS_JR (PIC_FUNCTION_ADDR_REGNUM));
18436 trampoline[i++] = OP (MIPS_MOVE (RETURN_ADDR_REGNUM, AT_REGNUM));
18438 else
18440 /* If the target has load delays, emit:
18442 lui $1, %hi(end_addr)
18443 lw $25, %lo(end_addr + ...)($1)
18444 lw $static_chain, %lo(end_addr + ...)($1)
18445 jr $25
18448 Otherwise emit:
18450 lui $1, %hi(end_addr)
18451 lw $25, %lo(end_addr + ...)($1)
18452 jr $25
18453 lw $static_chain, %lo(end_addr + ...)($1). */
18455 /* Split END_ADDR into %hi and %lo values. Trampolines are aligned
18456 to 64 bits, so the %lo value will have the bottom 3 bits clear. */
18457 high = expand_simple_binop (SImode, PLUS, end_addr, GEN_INT (0x8000),
18458 NULL, false, OPTAB_WIDEN);
18459 high = expand_simple_binop (SImode, LSHIFTRT, high, GEN_INT (16),
18460 NULL, false, OPTAB_WIDEN);
18461 low = convert_to_mode (SImode, gen_lowpart (HImode, end_addr), true);
18463 /* Emit the LUI. */
18464 opcode = OP (MIPS_LUI (AT_REGNUM, 0));
18465 trampoline[i++] = expand_simple_binop (SImode, IOR, opcode, high,
18466 NULL, false, OPTAB_WIDEN);
18468 /* Emit the load of the target function. */
18469 opcode = OP (MIPS_LOAD_PTR (PIC_FUNCTION_ADDR_REGNUM,
18470 target_function_offset - end_addr_offset,
18471 AT_REGNUM));
18472 trampoline[i++] = expand_simple_binop (SImode, IOR, opcode, low,
18473 NULL, false, OPTAB_WIDEN);
18475 /* Emit the JR here, if we can. */
18476 if (!ISA_HAS_LOAD_DELAY)
18477 trampoline[i++] = OP (MIPS_JR (PIC_FUNCTION_ADDR_REGNUM));
18479 /* Emit the load of the static chain register. */
18480 opcode = OP (MIPS_LOAD_PTR (STATIC_CHAIN_REGNUM,
18481 static_chain_offset - end_addr_offset,
18482 AT_REGNUM));
18483 trampoline[i++] = expand_simple_binop (SImode, IOR, opcode, low,
18484 NULL, false, OPTAB_WIDEN);
18486 /* Emit the JR, if we couldn't above. */
18487 if (ISA_HAS_LOAD_DELAY)
18489 trampoline[i++] = OP (MIPS_JR (PIC_FUNCTION_ADDR_REGNUM));
18490 trampoline[i++] = OP (MIPS_NOP);
18494 #undef OP
18496 /* Copy the trampoline code. Leave any padding uninitialized. */
18497 for (j = 0; j < i; j++)
18499 mem = adjust_address (m_tramp, SImode, j * GET_MODE_SIZE (SImode));
18500 mips_emit_move (mem, trampoline[j]);
18503 /* Set up the static chain pointer field. */
18504 mem = adjust_address (m_tramp, ptr_mode, static_chain_offset);
18505 mips_emit_move (mem, chain_value);
18507 /* Set up the target function field. */
18508 mem = adjust_address (m_tramp, ptr_mode, target_function_offset);
18509 mips_emit_move (mem, XEXP (DECL_RTL (fndecl), 0));
18511 /* Flush the code part of the trampoline. */
18512 emit_insn (gen_add3_insn (end_addr, addr, GEN_INT (TRAMPOLINE_SIZE)));
18513 emit_insn (gen_clear_cache (addr, end_addr));
18516 /* Implement FUNCTION_PROFILER. */
18518 void mips_function_profiler (FILE *file)
18520 if (TARGET_MIPS16)
18521 sorry ("mips16 function profiling");
18522 if (TARGET_LONG_CALLS)
18524 /* For TARGET_LONG_CALLS use $3 for the address of _mcount. */
18525 if (Pmode == DImode)
18526 fprintf (file, "\tdla\t%s,_mcount\n", reg_names[3]);
18527 else
18528 fprintf (file, "\tla\t%s,_mcount\n", reg_names[3]);
18530 mips_push_asm_switch (&mips_noat);
18531 fprintf (file, "\tmove\t%s,%s\t\t# save current return address\n",
18532 reg_names[AT_REGNUM], reg_names[RETURN_ADDR_REGNUM]);
18533 /* _mcount treats $2 as the static chain register. */
18534 if (cfun->static_chain_decl != NULL)
18535 fprintf (file, "\tmove\t%s,%s\n", reg_names[2],
18536 reg_names[STATIC_CHAIN_REGNUM]);
18537 if (TARGET_MCOUNT_RA_ADDRESS)
18539 /* If TARGET_MCOUNT_RA_ADDRESS load $12 with the address of the
18540 ra save location. */
18541 if (cfun->machine->frame.ra_fp_offset == 0)
18542 /* ra not saved, pass zero. */
18543 fprintf (file, "\tmove\t%s,%s\n", reg_names[12], reg_names[0]);
18544 else
18545 fprintf (file, "\t%s\t%s," HOST_WIDE_INT_PRINT_DEC "(%s)\n",
18546 Pmode == DImode ? "dla" : "la", reg_names[12],
18547 cfun->machine->frame.ra_fp_offset,
18548 reg_names[STACK_POINTER_REGNUM]);
18550 if (!TARGET_NEWABI)
18551 fprintf (file,
18552 "\t%s\t%s,%s,%d\t\t# _mcount pops 2 words from stack\n",
18553 TARGET_64BIT ? "dsubu" : "subu",
18554 reg_names[STACK_POINTER_REGNUM],
18555 reg_names[STACK_POINTER_REGNUM],
18556 Pmode == DImode ? 16 : 8);
18558 if (TARGET_LONG_CALLS)
18559 fprintf (file, "\tjalr\t%s\n", reg_names[3]);
18560 else
18561 fprintf (file, "\tjal\t_mcount\n");
18562 mips_pop_asm_switch (&mips_noat);
18563 /* _mcount treats $2 as the static chain register. */
18564 if (cfun->static_chain_decl != NULL)
18565 fprintf (file, "\tmove\t%s,%s\n", reg_names[STATIC_CHAIN_REGNUM],
18566 reg_names[2]);
18569 /* Implement TARGET_SHIFT_TRUNCATION_MASK. We want to keep the default
18570 behaviour of TARGET_SHIFT_TRUNCATION_MASK for non-vector modes even
18571 when TARGET_LOONGSON_VECTORS is true. */
18573 static unsigned HOST_WIDE_INT
18574 mips_shift_truncation_mask (machine_mode mode)
18576 if (TARGET_LOONGSON_VECTORS && VECTOR_MODE_P (mode))
18577 return 0;
18579 return GET_MODE_BITSIZE (mode) - 1;
18582 /* Implement TARGET_PREPARE_PCH_SAVE. */
18584 static void
18585 mips_prepare_pch_save (void)
18587 /* We are called in a context where the current MIPS16 vs. non-MIPS16
18588 setting should be irrelevant. The question then is: which setting
18589 makes most sense at load time?
18591 The PCH is loaded before the first token is read. We should never
18592 have switched into MIPS16 mode by that point, and thus should not
18593 have populated mips16_globals. Nor can we load the entire contents
18594 of mips16_globals from the PCH file, because mips16_globals contains
18595 a combination of GGC and non-GGC data.
18597 There is therefore no point in trying save the GGC part of
18598 mips16_globals to the PCH file, or to preserve MIPS16ness across
18599 the PCH save and load. The loading compiler would not have access
18600 to the non-GGC parts of mips16_globals (either from the PCH file,
18601 or from a copy that the loading compiler generated itself) and would
18602 have to call target_reinit anyway.
18604 It therefore seems best to switch back to non-MIPS16 mode at
18605 save time, and to ensure that mips16_globals remains null after
18606 a PCH load. */
18607 mips_set_compression_mode (0);
18608 mips16_globals = 0;
18611 /* Generate or test for an insn that supports a constant permutation. */
18613 #define MAX_VECT_LEN 8
18615 struct expand_vec_perm_d
18617 rtx target, op0, op1;
18618 unsigned char perm[MAX_VECT_LEN];
18619 machine_mode vmode;
18620 unsigned char nelt;
18621 bool one_vector_p;
18622 bool testing_p;
18625 /* Construct (set target (vec_select op0 (parallel perm))) and
18626 return true if that's a valid instruction in the active ISA. */
18628 static bool
18629 mips_expand_vselect (rtx target, rtx op0,
18630 const unsigned char *perm, unsigned nelt)
18632 rtx rperm[MAX_VECT_LEN], x;
18633 rtx_insn *insn;
18634 unsigned i;
18636 for (i = 0; i < nelt; ++i)
18637 rperm[i] = GEN_INT (perm[i]);
18639 x = gen_rtx_PARALLEL (VOIDmode, gen_rtvec_v (nelt, rperm));
18640 x = gen_rtx_VEC_SELECT (GET_MODE (target), op0, x);
18641 x = gen_rtx_SET (target, x);
18643 insn = emit_insn (x);
18644 if (recog_memoized (insn) < 0)
18646 remove_insn (insn);
18647 return false;
18649 return true;
18652 /* Similar, but generate a vec_concat from op0 and op1 as well. */
18654 static bool
18655 mips_expand_vselect_vconcat (rtx target, rtx op0, rtx op1,
18656 const unsigned char *perm, unsigned nelt)
18658 machine_mode v2mode;
18659 rtx x;
18661 v2mode = GET_MODE_2XWIDER_MODE (GET_MODE (op0));
18662 x = gen_rtx_VEC_CONCAT (v2mode, op0, op1);
18663 return mips_expand_vselect (target, x, perm, nelt);
18666 /* Recognize patterns for even-odd extraction. */
18668 static bool
18669 mips_expand_vpc_loongson_even_odd (struct expand_vec_perm_d *d)
18671 unsigned i, odd, nelt = d->nelt;
18672 rtx t0, t1, t2, t3;
18674 if (!(TARGET_HARD_FLOAT && TARGET_LOONGSON_VECTORS))
18675 return false;
18676 /* Even-odd for V2SI/V2SFmode is matched by interleave directly. */
18677 if (nelt < 4)
18678 return false;
18680 odd = d->perm[0];
18681 if (odd > 1)
18682 return false;
18683 for (i = 1; i < nelt; ++i)
18684 if (d->perm[i] != i * 2 + odd)
18685 return false;
18687 if (d->testing_p)
18688 return true;
18690 /* We need 2*log2(N)-1 operations to achieve odd/even with interleave. */
18691 t0 = gen_reg_rtx (d->vmode);
18692 t1 = gen_reg_rtx (d->vmode);
18693 switch (d->vmode)
18695 case V4HImode:
18696 emit_insn (gen_loongson_punpckhhw (t0, d->op0, d->op1));
18697 emit_insn (gen_loongson_punpcklhw (t1, d->op0, d->op1));
18698 if (odd)
18699 emit_insn (gen_loongson_punpckhhw (d->target, t1, t0));
18700 else
18701 emit_insn (gen_loongson_punpcklhw (d->target, t1, t0));
18702 break;
18704 case V8QImode:
18705 t2 = gen_reg_rtx (d->vmode);
18706 t3 = gen_reg_rtx (d->vmode);
18707 emit_insn (gen_loongson_punpckhbh (t0, d->op0, d->op1));
18708 emit_insn (gen_loongson_punpcklbh (t1, d->op0, d->op1));
18709 emit_insn (gen_loongson_punpckhbh (t2, t1, t0));
18710 emit_insn (gen_loongson_punpcklbh (t3, t1, t0));
18711 if (odd)
18712 emit_insn (gen_loongson_punpckhbh (d->target, t3, t2));
18713 else
18714 emit_insn (gen_loongson_punpcklbh (d->target, t3, t2));
18715 break;
18717 default:
18718 gcc_unreachable ();
18720 return true;
18723 /* Recognize patterns for the Loongson PSHUFH instruction. */
18725 static bool
18726 mips_expand_vpc_loongson_pshufh (struct expand_vec_perm_d *d)
18728 unsigned i, mask;
18729 rtx rmask;
18731 if (!(TARGET_HARD_FLOAT && TARGET_LOONGSON_VECTORS))
18732 return false;
18733 if (d->vmode != V4HImode)
18734 return false;
18735 if (d->testing_p)
18736 return true;
18738 /* Convert the selector into the packed 8-bit form for pshufh. */
18739 /* Recall that loongson is little-endian only. No big-endian
18740 adjustment required. */
18741 for (i = mask = 0; i < 4; i++)
18742 mask |= (d->perm[i] & 3) << (i * 2);
18743 rmask = force_reg (SImode, GEN_INT (mask));
18745 if (d->one_vector_p)
18746 emit_insn (gen_loongson_pshufh (d->target, d->op0, rmask));
18747 else
18749 rtx t0, t1, x, merge, rmerge[4];
18751 t0 = gen_reg_rtx (V4HImode);
18752 t1 = gen_reg_rtx (V4HImode);
18753 emit_insn (gen_loongson_pshufh (t1, d->op1, rmask));
18754 emit_insn (gen_loongson_pshufh (t0, d->op0, rmask));
18756 for (i = 0; i < 4; ++i)
18757 rmerge[i] = (d->perm[i] & 4 ? constm1_rtx : const0_rtx);
18758 merge = gen_rtx_CONST_VECTOR (V4HImode, gen_rtvec_v (4, rmerge));
18759 merge = force_reg (V4HImode, merge);
18761 x = gen_rtx_AND (V4HImode, merge, t1);
18762 emit_insn (gen_rtx_SET (t1, x));
18764 x = gen_rtx_NOT (V4HImode, merge);
18765 x = gen_rtx_AND (V4HImode, x, t0);
18766 emit_insn (gen_rtx_SET (t0, x));
18768 x = gen_rtx_IOR (V4HImode, t0, t1);
18769 emit_insn (gen_rtx_SET (d->target, x));
18772 return true;
18775 /* Recognize broadcast patterns for the Loongson. */
18777 static bool
18778 mips_expand_vpc_loongson_bcast (struct expand_vec_perm_d *d)
18780 unsigned i, elt;
18781 rtx t0, t1;
18783 if (!(TARGET_HARD_FLOAT && TARGET_LOONGSON_VECTORS))
18784 return false;
18785 /* Note that we've already matched V2SI via punpck and V4HI via pshufh. */
18786 if (d->vmode != V8QImode)
18787 return false;
18788 if (!d->one_vector_p)
18789 return false;
18791 elt = d->perm[0];
18792 for (i = 1; i < 8; ++i)
18793 if (d->perm[i] != elt)
18794 return false;
18796 if (d->testing_p)
18797 return true;
18799 /* With one interleave we put two of the desired element adjacent. */
18800 t0 = gen_reg_rtx (V8QImode);
18801 if (elt < 4)
18802 emit_insn (gen_loongson_punpcklbh (t0, d->op0, d->op0));
18803 else
18804 emit_insn (gen_loongson_punpckhbh (t0, d->op0, d->op0));
18806 /* Shuffle that one HImode element into all locations. */
18807 elt &= 3;
18808 elt *= 0x55;
18809 t1 = gen_reg_rtx (V4HImode);
18810 emit_insn (gen_loongson_pshufh (t1, gen_lowpart (V4HImode, t0),
18811 force_reg (SImode, GEN_INT (elt))));
18813 emit_move_insn (d->target, gen_lowpart (V8QImode, t1));
18814 return true;
18817 static bool
18818 mips_expand_vec_perm_const_1 (struct expand_vec_perm_d *d)
18820 unsigned int i, nelt = d->nelt;
18821 unsigned char perm2[MAX_VECT_LEN];
18823 if (d->one_vector_p)
18825 /* Try interleave with alternating operands. */
18826 memcpy (perm2, d->perm, sizeof(perm2));
18827 for (i = 1; i < nelt; i += 2)
18828 perm2[i] += nelt;
18829 if (mips_expand_vselect_vconcat (d->target, d->op0, d->op1, perm2, nelt))
18830 return true;
18832 else
18834 if (mips_expand_vselect_vconcat (d->target, d->op0, d->op1,
18835 d->perm, nelt))
18836 return true;
18838 /* Try again with swapped operands. */
18839 for (i = 0; i < nelt; ++i)
18840 perm2[i] = (d->perm[i] + nelt) & (2 * nelt - 1);
18841 if (mips_expand_vselect_vconcat (d->target, d->op1, d->op0, perm2, nelt))
18842 return true;
18845 if (mips_expand_vpc_loongson_even_odd (d))
18846 return true;
18847 if (mips_expand_vpc_loongson_pshufh (d))
18848 return true;
18849 if (mips_expand_vpc_loongson_bcast (d))
18850 return true;
18851 return false;
18854 /* Expand a vec_perm_const pattern. */
18856 bool
18857 mips_expand_vec_perm_const (rtx operands[4])
18859 struct expand_vec_perm_d d;
18860 int i, nelt, which;
18861 unsigned char orig_perm[MAX_VECT_LEN];
18862 rtx sel;
18863 bool ok;
18865 d.target = operands[0];
18866 d.op0 = operands[1];
18867 d.op1 = operands[2];
18868 sel = operands[3];
18870 d.vmode = GET_MODE (d.target);
18871 gcc_assert (VECTOR_MODE_P (d.vmode));
18872 d.nelt = nelt = GET_MODE_NUNITS (d.vmode);
18873 d.testing_p = false;
18875 for (i = which = 0; i < nelt; ++i)
18877 rtx e = XVECEXP (sel, 0, i);
18878 int ei = INTVAL (e) & (2 * nelt - 1);
18879 which |= (ei < nelt ? 1 : 2);
18880 orig_perm[i] = ei;
18882 memcpy (d.perm, orig_perm, MAX_VECT_LEN);
18884 switch (which)
18886 default:
18887 gcc_unreachable();
18889 case 3:
18890 d.one_vector_p = false;
18891 if (!rtx_equal_p (d.op0, d.op1))
18892 break;
18893 /* FALLTHRU */
18895 case 2:
18896 for (i = 0; i < nelt; ++i)
18897 d.perm[i] &= nelt - 1;
18898 d.op0 = d.op1;
18899 d.one_vector_p = true;
18900 break;
18902 case 1:
18903 d.op1 = d.op0;
18904 d.one_vector_p = true;
18905 break;
18908 ok = mips_expand_vec_perm_const_1 (&d);
18910 /* If we were given a two-vector permutation which just happened to
18911 have both input vectors equal, we folded this into a one-vector
18912 permutation. There are several loongson patterns that are matched
18913 via direct vec_select+vec_concat expansion, but we do not have
18914 support in mips_expand_vec_perm_const_1 to guess the adjustment
18915 that should be made for a single operand. Just try again with
18916 the original permutation. */
18917 if (!ok && which == 3)
18919 d.op0 = operands[1];
18920 d.op1 = operands[2];
18921 d.one_vector_p = false;
18922 memcpy (d.perm, orig_perm, MAX_VECT_LEN);
18923 ok = mips_expand_vec_perm_const_1 (&d);
18926 return ok;
18929 /* Implement TARGET_VECTORIZE_VEC_PERM_CONST_OK. */
18931 static bool
18932 mips_vectorize_vec_perm_const_ok (machine_mode vmode,
18933 const unsigned char *sel)
18935 struct expand_vec_perm_d d;
18936 unsigned int i, nelt, which;
18937 bool ret;
18939 d.vmode = vmode;
18940 d.nelt = nelt = GET_MODE_NUNITS (d.vmode);
18941 d.testing_p = true;
18942 memcpy (d.perm, sel, nelt);
18944 /* Categorize the set of elements in the selector. */
18945 for (i = which = 0; i < nelt; ++i)
18947 unsigned char e = d.perm[i];
18948 gcc_assert (e < 2 * nelt);
18949 which |= (e < nelt ? 1 : 2);
18952 /* For all elements from second vector, fold the elements to first. */
18953 if (which == 2)
18954 for (i = 0; i < nelt; ++i)
18955 d.perm[i] -= nelt;
18957 /* Check whether the mask can be applied to the vector type. */
18958 d.one_vector_p = (which != 3);
18960 d.target = gen_raw_REG (d.vmode, LAST_VIRTUAL_REGISTER + 1);
18961 d.op1 = d.op0 = gen_raw_REG (d.vmode, LAST_VIRTUAL_REGISTER + 2);
18962 if (!d.one_vector_p)
18963 d.op1 = gen_raw_REG (d.vmode, LAST_VIRTUAL_REGISTER + 3);
18965 start_sequence ();
18966 ret = mips_expand_vec_perm_const_1 (&d);
18967 end_sequence ();
18969 return ret;
18972 /* Expand an integral vector unpack operation. */
18974 void
18975 mips_expand_vec_unpack (rtx operands[2], bool unsigned_p, bool high_p)
18977 machine_mode imode = GET_MODE (operands[1]);
18978 rtx (*unpack) (rtx, rtx, rtx);
18979 rtx (*cmpgt) (rtx, rtx, rtx);
18980 rtx tmp, dest, zero;
18982 switch (imode)
18984 case V8QImode:
18985 if (high_p)
18986 unpack = gen_loongson_punpckhbh;
18987 else
18988 unpack = gen_loongson_punpcklbh;
18989 cmpgt = gen_loongson_pcmpgtb;
18990 break;
18991 case V4HImode:
18992 if (high_p)
18993 unpack = gen_loongson_punpckhhw;
18994 else
18995 unpack = gen_loongson_punpcklhw;
18996 cmpgt = gen_loongson_pcmpgth;
18997 break;
18998 default:
18999 gcc_unreachable ();
19002 zero = force_reg (imode, CONST0_RTX (imode));
19003 if (unsigned_p)
19004 tmp = zero;
19005 else
19007 tmp = gen_reg_rtx (imode);
19008 emit_insn (cmpgt (tmp, zero, operands[1]));
19011 dest = gen_reg_rtx (imode);
19012 emit_insn (unpack (dest, operands[1], tmp));
19014 emit_move_insn (operands[0], gen_lowpart (GET_MODE (operands[0]), dest));
19017 /* A subroutine of mips_expand_vec_init, match constant vector elements. */
19019 static inline bool
19020 mips_constant_elt_p (rtx x)
19022 return CONST_INT_P (x) || GET_CODE (x) == CONST_DOUBLE;
19025 /* A subroutine of mips_expand_vec_init, expand via broadcast. */
19027 static void
19028 mips_expand_vi_broadcast (machine_mode vmode, rtx target, rtx elt)
19030 struct expand_vec_perm_d d;
19031 rtx t1;
19032 bool ok;
19034 if (elt != const0_rtx)
19035 elt = force_reg (GET_MODE_INNER (vmode), elt);
19036 if (REG_P (elt))
19037 elt = gen_lowpart (DImode, elt);
19039 t1 = gen_reg_rtx (vmode);
19040 switch (vmode)
19042 case V8QImode:
19043 emit_insn (gen_loongson_vec_init1_v8qi (t1, elt));
19044 break;
19045 case V4HImode:
19046 emit_insn (gen_loongson_vec_init1_v4hi (t1, elt));
19047 break;
19048 default:
19049 gcc_unreachable ();
19052 memset (&d, 0, sizeof (d));
19053 d.target = target;
19054 d.op0 = t1;
19055 d.op1 = t1;
19056 d.vmode = vmode;
19057 d.nelt = GET_MODE_NUNITS (vmode);
19058 d.one_vector_p = true;
19060 ok = mips_expand_vec_perm_const_1 (&d);
19061 gcc_assert (ok);
19064 /* A subroutine of mips_expand_vec_init, replacing all of the non-constant
19065 elements of VALS with zeros, copy the constant vector to TARGET. */
19067 static void
19068 mips_expand_vi_constant (machine_mode vmode, unsigned nelt,
19069 rtx target, rtx vals)
19071 rtvec vec = shallow_copy_rtvec (XVEC (vals, 0));
19072 unsigned i;
19074 for (i = 0; i < nelt; ++i)
19076 if (!mips_constant_elt_p (RTVEC_ELT (vec, i)))
19077 RTVEC_ELT (vec, i) = const0_rtx;
19080 emit_move_insn (target, gen_rtx_CONST_VECTOR (vmode, vec));
19084 /* A subroutine of mips_expand_vec_init, expand via pinsrh. */
19086 static void
19087 mips_expand_vi_loongson_one_pinsrh (rtx target, rtx vals, unsigned one_var)
19089 mips_expand_vi_constant (V4HImode, 4, target, vals);
19091 emit_insn (gen_vec_setv4hi (target, target, XVECEXP (vals, 0, one_var),
19092 GEN_INT (one_var)));
19095 /* A subroutine of mips_expand_vec_init, expand anything via memory. */
19097 static void
19098 mips_expand_vi_general (machine_mode vmode, machine_mode imode,
19099 unsigned nelt, unsigned nvar, rtx target, rtx vals)
19101 rtx mem = assign_stack_temp (vmode, GET_MODE_SIZE (vmode));
19102 unsigned int i, isize = GET_MODE_SIZE (imode);
19104 if (nvar < nelt)
19105 mips_expand_vi_constant (vmode, nelt, mem, vals);
19107 for (i = 0; i < nelt; ++i)
19109 rtx x = XVECEXP (vals, 0, i);
19110 if (!mips_constant_elt_p (x))
19111 emit_move_insn (adjust_address (mem, imode, i * isize), x);
19114 emit_move_insn (target, mem);
19117 /* Expand a vector initialization. */
19119 void
19120 mips_expand_vector_init (rtx target, rtx vals)
19122 machine_mode vmode = GET_MODE (target);
19123 machine_mode imode = GET_MODE_INNER (vmode);
19124 unsigned i, nelt = GET_MODE_NUNITS (vmode);
19125 unsigned nvar = 0, one_var = -1u;
19126 bool all_same = true;
19127 rtx x;
19129 for (i = 0; i < nelt; ++i)
19131 x = XVECEXP (vals, 0, i);
19132 if (!mips_constant_elt_p (x))
19133 nvar++, one_var = i;
19134 if (i > 0 && !rtx_equal_p (x, XVECEXP (vals, 0, 0)))
19135 all_same = false;
19138 /* Load constants from the pool, or whatever's handy. */
19139 if (nvar == 0)
19141 emit_move_insn (target, gen_rtx_CONST_VECTOR (vmode, XVEC (vals, 0)));
19142 return;
19145 /* For two-part initialization, always use CONCAT. */
19146 if (nelt == 2)
19148 rtx op0 = force_reg (imode, XVECEXP (vals, 0, 0));
19149 rtx op1 = force_reg (imode, XVECEXP (vals, 0, 1));
19150 x = gen_rtx_VEC_CONCAT (vmode, op0, op1);
19151 emit_insn (gen_rtx_SET (target, x));
19152 return;
19155 /* Loongson is the only cpu with vectors with more elements. */
19156 gcc_assert (TARGET_HARD_FLOAT && TARGET_LOONGSON_VECTORS);
19158 /* If all values are identical, broadcast the value. */
19159 if (all_same)
19161 mips_expand_vi_broadcast (vmode, target, XVECEXP (vals, 0, 0));
19162 return;
19165 /* If we've only got one non-variable V4HImode, use PINSRH. */
19166 if (nvar == 1 && vmode == V4HImode)
19168 mips_expand_vi_loongson_one_pinsrh (target, vals, one_var);
19169 return;
19172 mips_expand_vi_general (vmode, imode, nelt, nvar, target, vals);
19175 /* Expand a vector reduction. */
19177 void
19178 mips_expand_vec_reduc (rtx target, rtx in, rtx (*gen)(rtx, rtx, rtx))
19180 machine_mode vmode = GET_MODE (in);
19181 unsigned char perm2[2];
19182 rtx last, next, fold, x;
19183 bool ok;
19185 last = in;
19186 fold = gen_reg_rtx (vmode);
19187 switch (vmode)
19189 case V2SFmode:
19190 /* Use PUL/PLU to produce { L, H } op { H, L }.
19191 By reversing the pair order, rather than a pure interleave high,
19192 we avoid erroneous exceptional conditions that we might otherwise
19193 produce from the computation of H op H. */
19194 perm2[0] = 1;
19195 perm2[1] = 2;
19196 ok = mips_expand_vselect_vconcat (fold, last, last, perm2, 2);
19197 gcc_assert (ok);
19198 break;
19200 case V2SImode:
19201 /* Use interleave to produce { H, L } op { H, H }. */
19202 emit_insn (gen_loongson_punpckhwd (fold, last, last));
19203 break;
19205 case V4HImode:
19206 /* Perform the first reduction with interleave,
19207 and subsequent reductions with shifts. */
19208 emit_insn (gen_loongson_punpckhwd_hi (fold, last, last));
19210 next = gen_reg_rtx (vmode);
19211 emit_insn (gen (next, last, fold));
19212 last = next;
19214 fold = gen_reg_rtx (vmode);
19215 x = force_reg (SImode, GEN_INT (16));
19216 emit_insn (gen_vec_shr_v4hi (fold, last, x));
19217 break;
19219 case V8QImode:
19220 emit_insn (gen_loongson_punpckhwd_qi (fold, last, last));
19222 next = gen_reg_rtx (vmode);
19223 emit_insn (gen (next, last, fold));
19224 last = next;
19226 fold = gen_reg_rtx (vmode);
19227 x = force_reg (SImode, GEN_INT (16));
19228 emit_insn (gen_vec_shr_v8qi (fold, last, x));
19230 next = gen_reg_rtx (vmode);
19231 emit_insn (gen (next, last, fold));
19232 last = next;
19234 fold = gen_reg_rtx (vmode);
19235 x = force_reg (SImode, GEN_INT (8));
19236 emit_insn (gen_vec_shr_v8qi (fold, last, x));
19237 break;
19239 default:
19240 gcc_unreachable ();
19243 emit_insn (gen (target, last, fold));
19246 /* Expand a vector minimum/maximum. */
19248 void
19249 mips_expand_vec_minmax (rtx target, rtx op0, rtx op1,
19250 rtx (*cmp) (rtx, rtx, rtx), bool min_p)
19252 machine_mode vmode = GET_MODE (target);
19253 rtx tc, t0, t1, x;
19255 tc = gen_reg_rtx (vmode);
19256 t0 = gen_reg_rtx (vmode);
19257 t1 = gen_reg_rtx (vmode);
19259 /* op0 > op1 */
19260 emit_insn (cmp (tc, op0, op1));
19262 x = gen_rtx_AND (vmode, tc, (min_p ? op1 : op0));
19263 emit_insn (gen_rtx_SET (t0, x));
19265 x = gen_rtx_NOT (vmode, tc);
19266 x = gen_rtx_AND (vmode, x, (min_p ? op0 : op1));
19267 emit_insn (gen_rtx_SET (t1, x));
19269 x = gen_rtx_IOR (vmode, t0, t1);
19270 emit_insn (gen_rtx_SET (target, x));
19273 /* Implement HARD_REGNO_CALLER_SAVE_MODE. */
19275 machine_mode
19276 mips_hard_regno_caller_save_mode (unsigned int regno,
19277 unsigned int nregs,
19278 machine_mode mode)
19280 /* For performance, avoid saving/restoring upper parts of a register
19281 by returning MODE as save mode when the mode is known. */
19282 if (mode == VOIDmode)
19283 return choose_hard_reg_mode (regno, nregs, false);
19284 else
19285 return mode;
19288 /* Implement TARGET_CASE_VALUES_THRESHOLD. */
19290 unsigned int
19291 mips_case_values_threshold (void)
19293 /* In MIPS16 mode using a larger case threshold generates smaller code. */
19294 if (TARGET_MIPS16 && optimize_size)
19295 return 10;
19296 else
19297 return default_case_values_threshold ();
19300 /* Implement TARGET_ATOMIC_ASSIGN_EXPAND_FENV. */
19302 static void
19303 mips_atomic_assign_expand_fenv (tree *hold, tree *clear, tree *update)
19305 if (!TARGET_HARD_FLOAT_ABI)
19306 return;
19307 tree exceptions_var = create_tmp_var (MIPS_ATYPE_USI);
19308 tree fcsr_orig_var = create_tmp_var (MIPS_ATYPE_USI);
19309 tree fcsr_mod_var = create_tmp_var (MIPS_ATYPE_USI);
19310 tree get_fcsr = mips_builtin_decls[MIPS_GET_FCSR];
19311 tree set_fcsr = mips_builtin_decls[MIPS_SET_FCSR];
19312 tree get_fcsr_hold_call = build_call_expr (get_fcsr, 0);
19313 tree hold_assign_orig = build2 (MODIFY_EXPR, MIPS_ATYPE_USI,
19314 fcsr_orig_var, get_fcsr_hold_call);
19315 tree hold_mod_val = build2 (BIT_AND_EXPR, MIPS_ATYPE_USI, fcsr_orig_var,
19316 build_int_cst (MIPS_ATYPE_USI, 0xfffff003));
19317 tree hold_assign_mod = build2 (MODIFY_EXPR, MIPS_ATYPE_USI,
19318 fcsr_mod_var, hold_mod_val);
19319 tree set_fcsr_hold_call = build_call_expr (set_fcsr, 1, fcsr_mod_var);
19320 tree hold_all = build2 (COMPOUND_EXPR, MIPS_ATYPE_USI,
19321 hold_assign_orig, hold_assign_mod);
19322 *hold = build2 (COMPOUND_EXPR, void_type_node, hold_all,
19323 set_fcsr_hold_call);
19325 *clear = build_call_expr (set_fcsr, 1, fcsr_mod_var);
19327 tree get_fcsr_update_call = build_call_expr (get_fcsr, 0);
19328 *update = build2 (MODIFY_EXPR, MIPS_ATYPE_USI,
19329 exceptions_var, get_fcsr_update_call);
19330 tree set_fcsr_update_call = build_call_expr (set_fcsr, 1, fcsr_orig_var);
19331 *update = build2 (COMPOUND_EXPR, void_type_node, *update,
19332 set_fcsr_update_call);
19333 tree atomic_feraiseexcept
19334 = builtin_decl_implicit (BUILT_IN_ATOMIC_FERAISEEXCEPT);
19335 tree int_exceptions_var = fold_convert (integer_type_node,
19336 exceptions_var);
19337 tree atomic_feraiseexcept_call = build_call_expr (atomic_feraiseexcept,
19338 1, int_exceptions_var);
19339 *update = build2 (COMPOUND_EXPR, void_type_node, *update,
19340 atomic_feraiseexcept_call);
19343 /* Implement TARGET_SPILL_CLASS. */
19345 static reg_class_t
19346 mips_spill_class (reg_class_t rclass ATTRIBUTE_UNUSED,
19347 machine_mode mode ATTRIBUTE_UNUSED)
19349 if (TARGET_MIPS16)
19350 return SPILL_REGS;
19351 return NO_REGS;
19354 /* Implement TARGET_LRA_P. */
19356 static bool
19357 mips_lra_p (void)
19359 return mips_lra_flag;
19362 /* Initialize the GCC target structure. */
19363 #undef TARGET_ASM_ALIGNED_HI_OP
19364 #define TARGET_ASM_ALIGNED_HI_OP "\t.half\t"
19365 #undef TARGET_ASM_ALIGNED_SI_OP
19366 #define TARGET_ASM_ALIGNED_SI_OP "\t.word\t"
19367 #undef TARGET_ASM_ALIGNED_DI_OP
19368 #define TARGET_ASM_ALIGNED_DI_OP "\t.dword\t"
19370 #undef TARGET_OPTION_OVERRIDE
19371 #define TARGET_OPTION_OVERRIDE mips_option_override
19373 #undef TARGET_LEGITIMIZE_ADDRESS
19374 #define TARGET_LEGITIMIZE_ADDRESS mips_legitimize_address
19376 #undef TARGET_ASM_FUNCTION_PROLOGUE
19377 #define TARGET_ASM_FUNCTION_PROLOGUE mips_output_function_prologue
19378 #undef TARGET_ASM_FUNCTION_EPILOGUE
19379 #define TARGET_ASM_FUNCTION_EPILOGUE mips_output_function_epilogue
19380 #undef TARGET_ASM_SELECT_RTX_SECTION
19381 #define TARGET_ASM_SELECT_RTX_SECTION mips_select_rtx_section
19382 #undef TARGET_ASM_FUNCTION_RODATA_SECTION
19383 #define TARGET_ASM_FUNCTION_RODATA_SECTION mips_function_rodata_section
19385 #undef TARGET_SCHED_INIT
19386 #define TARGET_SCHED_INIT mips_sched_init
19387 #undef TARGET_SCHED_REORDER
19388 #define TARGET_SCHED_REORDER mips_sched_reorder
19389 #undef TARGET_SCHED_REORDER2
19390 #define TARGET_SCHED_REORDER2 mips_sched_reorder2
19391 #undef TARGET_SCHED_VARIABLE_ISSUE
19392 #define TARGET_SCHED_VARIABLE_ISSUE mips_variable_issue
19393 #undef TARGET_SCHED_ADJUST_COST
19394 #define TARGET_SCHED_ADJUST_COST mips_adjust_cost
19395 #undef TARGET_SCHED_ISSUE_RATE
19396 #define TARGET_SCHED_ISSUE_RATE mips_issue_rate
19397 #undef TARGET_SCHED_INIT_DFA_POST_CYCLE_INSN
19398 #define TARGET_SCHED_INIT_DFA_POST_CYCLE_INSN mips_init_dfa_post_cycle_insn
19399 #undef TARGET_SCHED_DFA_POST_ADVANCE_CYCLE
19400 #define TARGET_SCHED_DFA_POST_ADVANCE_CYCLE mips_dfa_post_advance_cycle
19401 #undef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD
19402 #define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD \
19403 mips_multipass_dfa_lookahead
19404 #undef TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P
19405 #define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P \
19406 mips_small_register_classes_for_mode_p
19408 #undef TARGET_FUNCTION_OK_FOR_SIBCALL
19409 #define TARGET_FUNCTION_OK_FOR_SIBCALL mips_function_ok_for_sibcall
19411 #undef TARGET_INSERT_ATTRIBUTES
19412 #define TARGET_INSERT_ATTRIBUTES mips_insert_attributes
19413 #undef TARGET_MERGE_DECL_ATTRIBUTES
19414 #define TARGET_MERGE_DECL_ATTRIBUTES mips_merge_decl_attributes
19415 #undef TARGET_CAN_INLINE_P
19416 #define TARGET_CAN_INLINE_P mips_can_inline_p
19417 #undef TARGET_SET_CURRENT_FUNCTION
19418 #define TARGET_SET_CURRENT_FUNCTION mips_set_current_function
19420 #undef TARGET_VALID_POINTER_MODE
19421 #define TARGET_VALID_POINTER_MODE mips_valid_pointer_mode
19422 #undef TARGET_REGISTER_MOVE_COST
19423 #define TARGET_REGISTER_MOVE_COST mips_register_move_cost
19424 #undef TARGET_REGISTER_PRIORITY
19425 #define TARGET_REGISTER_PRIORITY mips_register_priority
19426 #undef TARGET_MEMORY_MOVE_COST
19427 #define TARGET_MEMORY_MOVE_COST mips_memory_move_cost
19428 #undef TARGET_RTX_COSTS
19429 #define TARGET_RTX_COSTS mips_rtx_costs
19430 #undef TARGET_ADDRESS_COST
19431 #define TARGET_ADDRESS_COST mips_address_cost
19433 #undef TARGET_IN_SMALL_DATA_P
19434 #define TARGET_IN_SMALL_DATA_P mips_in_small_data_p
19436 #undef TARGET_MACHINE_DEPENDENT_REORG
19437 #define TARGET_MACHINE_DEPENDENT_REORG mips_reorg
19439 #undef TARGET_PREFERRED_RELOAD_CLASS
19440 #define TARGET_PREFERRED_RELOAD_CLASS mips_preferred_reload_class
19442 #undef TARGET_EXPAND_TO_RTL_HOOK
19443 #define TARGET_EXPAND_TO_RTL_HOOK mips_expand_to_rtl_hook
19444 #undef TARGET_ASM_FILE_START
19445 #define TARGET_ASM_FILE_START mips_file_start
19446 #undef TARGET_ASM_FILE_START_FILE_DIRECTIVE
19447 #define TARGET_ASM_FILE_START_FILE_DIRECTIVE true
19448 #undef TARGET_ASM_CODE_END
19449 #define TARGET_ASM_CODE_END mips_code_end
19451 #undef TARGET_INIT_LIBFUNCS
19452 #define TARGET_INIT_LIBFUNCS mips_init_libfuncs
19454 #undef TARGET_BUILD_BUILTIN_VA_LIST
19455 #define TARGET_BUILD_BUILTIN_VA_LIST mips_build_builtin_va_list
19456 #undef TARGET_EXPAND_BUILTIN_VA_START
19457 #define TARGET_EXPAND_BUILTIN_VA_START mips_va_start
19458 #undef TARGET_GIMPLIFY_VA_ARG_EXPR
19459 #define TARGET_GIMPLIFY_VA_ARG_EXPR mips_gimplify_va_arg_expr
19461 #undef TARGET_PROMOTE_FUNCTION_MODE
19462 #define TARGET_PROMOTE_FUNCTION_MODE default_promote_function_mode_always_promote
19463 #undef TARGET_PROMOTE_PROTOTYPES
19464 #define TARGET_PROMOTE_PROTOTYPES hook_bool_const_tree_true
19466 #undef TARGET_FUNCTION_VALUE
19467 #define TARGET_FUNCTION_VALUE mips_function_value
19468 #undef TARGET_LIBCALL_VALUE
19469 #define TARGET_LIBCALL_VALUE mips_libcall_value
19470 #undef TARGET_FUNCTION_VALUE_REGNO_P
19471 #define TARGET_FUNCTION_VALUE_REGNO_P mips_function_value_regno_p
19472 #undef TARGET_RETURN_IN_MEMORY
19473 #define TARGET_RETURN_IN_MEMORY mips_return_in_memory
19474 #undef TARGET_RETURN_IN_MSB
19475 #define TARGET_RETURN_IN_MSB mips_return_in_msb
19477 #undef TARGET_ASM_OUTPUT_MI_THUNK
19478 #define TARGET_ASM_OUTPUT_MI_THUNK mips_output_mi_thunk
19479 #undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
19480 #define TARGET_ASM_CAN_OUTPUT_MI_THUNK hook_bool_const_tree_hwi_hwi_const_tree_true
19482 #undef TARGET_PRINT_OPERAND
19483 #define TARGET_PRINT_OPERAND mips_print_operand
19484 #undef TARGET_PRINT_OPERAND_ADDRESS
19485 #define TARGET_PRINT_OPERAND_ADDRESS mips_print_operand_address
19486 #undef TARGET_PRINT_OPERAND_PUNCT_VALID_P
19487 #define TARGET_PRINT_OPERAND_PUNCT_VALID_P mips_print_operand_punct_valid_p
19489 #undef TARGET_SETUP_INCOMING_VARARGS
19490 #define TARGET_SETUP_INCOMING_VARARGS mips_setup_incoming_varargs
19491 #undef TARGET_STRICT_ARGUMENT_NAMING
19492 #define TARGET_STRICT_ARGUMENT_NAMING mips_strict_argument_naming
19493 #undef TARGET_MUST_PASS_IN_STACK
19494 #define TARGET_MUST_PASS_IN_STACK must_pass_in_stack_var_size
19495 #undef TARGET_PASS_BY_REFERENCE
19496 #define TARGET_PASS_BY_REFERENCE mips_pass_by_reference
19497 #undef TARGET_CALLEE_COPIES
19498 #define TARGET_CALLEE_COPIES mips_callee_copies
19499 #undef TARGET_ARG_PARTIAL_BYTES
19500 #define TARGET_ARG_PARTIAL_BYTES mips_arg_partial_bytes
19501 #undef TARGET_FUNCTION_ARG
19502 #define TARGET_FUNCTION_ARG mips_function_arg
19503 #undef TARGET_FUNCTION_ARG_ADVANCE
19504 #define TARGET_FUNCTION_ARG_ADVANCE mips_function_arg_advance
19505 #undef TARGET_FUNCTION_ARG_BOUNDARY
19506 #define TARGET_FUNCTION_ARG_BOUNDARY mips_function_arg_boundary
19507 #undef TARGET_GET_RAW_RESULT_MODE
19508 #define TARGET_GET_RAW_RESULT_MODE mips_get_reg_raw_mode
19509 #undef TARGET_GET_RAW_ARG_MODE
19510 #define TARGET_GET_RAW_ARG_MODE mips_get_reg_raw_mode
19512 #undef TARGET_MODE_REP_EXTENDED
19513 #define TARGET_MODE_REP_EXTENDED mips_mode_rep_extended
19515 #undef TARGET_VECTOR_MODE_SUPPORTED_P
19516 #define TARGET_VECTOR_MODE_SUPPORTED_P mips_vector_mode_supported_p
19518 #undef TARGET_SCALAR_MODE_SUPPORTED_P
19519 #define TARGET_SCALAR_MODE_SUPPORTED_P mips_scalar_mode_supported_p
19521 #undef TARGET_VECTORIZE_PREFERRED_SIMD_MODE
19522 #define TARGET_VECTORIZE_PREFERRED_SIMD_MODE mips_preferred_simd_mode
19524 #undef TARGET_INIT_BUILTINS
19525 #define TARGET_INIT_BUILTINS mips_init_builtins
19526 #undef TARGET_BUILTIN_DECL
19527 #define TARGET_BUILTIN_DECL mips_builtin_decl
19528 #undef TARGET_EXPAND_BUILTIN
19529 #define TARGET_EXPAND_BUILTIN mips_expand_builtin
19531 #undef TARGET_HAVE_TLS
19532 #define TARGET_HAVE_TLS HAVE_AS_TLS
19534 #undef TARGET_CANNOT_FORCE_CONST_MEM
19535 #define TARGET_CANNOT_FORCE_CONST_MEM mips_cannot_force_const_mem
19537 #undef TARGET_LEGITIMATE_CONSTANT_P
19538 #define TARGET_LEGITIMATE_CONSTANT_P mips_legitimate_constant_p
19540 #undef TARGET_ENCODE_SECTION_INFO
19541 #define TARGET_ENCODE_SECTION_INFO mips_encode_section_info
19543 #undef TARGET_ATTRIBUTE_TABLE
19544 #define TARGET_ATTRIBUTE_TABLE mips_attribute_table
19545 /* All our function attributes are related to how out-of-line copies should
19546 be compiled or called. They don't in themselves prevent inlining. */
19547 #undef TARGET_FUNCTION_ATTRIBUTE_INLINABLE_P
19548 #define TARGET_FUNCTION_ATTRIBUTE_INLINABLE_P hook_bool_const_tree_true
19550 #undef TARGET_EXTRA_LIVE_ON_ENTRY
19551 #define TARGET_EXTRA_LIVE_ON_ENTRY mips_extra_live_on_entry
19553 #undef TARGET_USE_BLOCKS_FOR_CONSTANT_P
19554 #define TARGET_USE_BLOCKS_FOR_CONSTANT_P mips_use_blocks_for_constant_p
19555 #undef TARGET_USE_ANCHORS_FOR_SYMBOL_P
19556 #define TARGET_USE_ANCHORS_FOR_SYMBOL_P mips_use_anchors_for_symbol_p
19558 #undef TARGET_COMP_TYPE_ATTRIBUTES
19559 #define TARGET_COMP_TYPE_ATTRIBUTES mips_comp_type_attributes
19561 #ifdef HAVE_AS_DTPRELWORD
19562 #undef TARGET_ASM_OUTPUT_DWARF_DTPREL
19563 #define TARGET_ASM_OUTPUT_DWARF_DTPREL mips_output_dwarf_dtprel
19564 #endif
19565 #undef TARGET_DWARF_REGISTER_SPAN
19566 #define TARGET_DWARF_REGISTER_SPAN mips_dwarf_register_span
19567 #undef TARGET_DWARF_FRAME_REG_MODE
19568 #define TARGET_DWARF_FRAME_REG_MODE mips_dwarf_frame_reg_mode
19570 #undef TARGET_ASM_FINAL_POSTSCAN_INSN
19571 #define TARGET_ASM_FINAL_POSTSCAN_INSN mips_final_postscan_insn
19573 #undef TARGET_LEGITIMATE_ADDRESS_P
19574 #define TARGET_LEGITIMATE_ADDRESS_P mips_legitimate_address_p
19576 #undef TARGET_FRAME_POINTER_REQUIRED
19577 #define TARGET_FRAME_POINTER_REQUIRED mips_frame_pointer_required
19579 #undef TARGET_CAN_ELIMINATE
19580 #define TARGET_CAN_ELIMINATE mips_can_eliminate
19582 #undef TARGET_CONDITIONAL_REGISTER_USAGE
19583 #define TARGET_CONDITIONAL_REGISTER_USAGE mips_conditional_register_usage
19585 #undef TARGET_TRAMPOLINE_INIT
19586 #define TARGET_TRAMPOLINE_INIT mips_trampoline_init
19588 #undef TARGET_ASM_OUTPUT_SOURCE_FILENAME
19589 #define TARGET_ASM_OUTPUT_SOURCE_FILENAME mips_output_filename
19591 #undef TARGET_SHIFT_TRUNCATION_MASK
19592 #define TARGET_SHIFT_TRUNCATION_MASK mips_shift_truncation_mask
19594 #undef TARGET_PREPARE_PCH_SAVE
19595 #define TARGET_PREPARE_PCH_SAVE mips_prepare_pch_save
19597 #undef TARGET_VECTORIZE_VEC_PERM_CONST_OK
19598 #define TARGET_VECTORIZE_VEC_PERM_CONST_OK mips_vectorize_vec_perm_const_ok
19600 #undef TARGET_CASE_VALUES_THRESHOLD
19601 #define TARGET_CASE_VALUES_THRESHOLD mips_case_values_threshold
19603 #undef TARGET_ATOMIC_ASSIGN_EXPAND_FENV
19604 #define TARGET_ATOMIC_ASSIGN_EXPAND_FENV mips_atomic_assign_expand_fenv
19606 #undef TARGET_CALL_FUSAGE_CONTAINS_NON_CALLEE_CLOBBERS
19607 #define TARGET_CALL_FUSAGE_CONTAINS_NON_CALLEE_CLOBBERS true
19609 #undef TARGET_USE_BY_PIECES_INFRASTRUCTURE_P
19610 #define TARGET_USE_BY_PIECES_INFRASTRUCTURE_P \
19611 mips_use_by_pieces_infrastructure_p
19613 #undef TARGET_SPILL_CLASS
19614 #define TARGET_SPILL_CLASS mips_spill_class
19615 #undef TARGET_LRA_P
19616 #define TARGET_LRA_P mips_lra_p
19618 struct gcc_target targetm = TARGET_INITIALIZER;
19620 #include "gt-mips.h"