* config/rl78/rl78.c (rl78_expand_prologue): Mark large stack
[official-gcc.git] / libgfortran / io / list_read.c
blob45243ed9f3931edd898b46b73ec3d9b84ec16ef9
1 /* Copyright (C) 2002-2015 Free Software Foundation, Inc.
2 Contributed by Andy Vaught
3 Namelist input contributed by Paul Thomas
4 F2003 I/O support contributed by Jerry DeLisle
6 This file is part of the GNU Fortran runtime library (libgfortran).
8 Libgfortran is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 Libgfortran is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 Under Section 7 of GPL version 3, you are granted additional
19 permissions described in the GCC Runtime Library Exception, version
20 3.1, as published by the Free Software Foundation.
22 You should have received a copy of the GNU General Public License and
23 a copy of the GCC Runtime Library Exception along with this program;
24 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
25 <http://www.gnu.org/licenses/>. */
28 #include "io.h"
29 #include "fbuf.h"
30 #include "unix.h"
31 #include <string.h>
32 #include <stdlib.h>
33 #include <ctype.h>
35 typedef unsigned char uchar;
38 /* List directed input. Several parsing subroutines are practically
39 reimplemented from formatted input, the reason being that there are
40 all kinds of small differences between formatted and list directed
41 parsing. */
44 /* Subroutines for reading characters from the input. Because a
45 repeat count is ambiguous with an integer, we have to read the
46 whole digit string before seeing if there is a '*' which signals
47 the repeat count. Since we can have a lot of potential leading
48 zeros, we have to be able to back up by arbitrary amount. Because
49 the input might not be seekable, we have to buffer the data
50 ourselves. */
52 #define CASE_DIGITS case '0': case '1': case '2': case '3': case '4': \
53 case '5': case '6': case '7': case '8': case '9'
55 #define CASE_SEPARATORS case ' ': case ',': case '/': case '\n': case '\t': \
56 case '\r': case ';'
58 /* This macro assumes that we're operating on a variable. */
60 #define is_separator(c) (c == '/' || c == ',' || c == '\n' || c == ' ' \
61 || c == '\t' || c == '\r' || c == ';')
63 /* Maximum repeat count. Less than ten times the maximum signed int32. */
65 #define MAX_REPEAT 200000000
68 #define MSGLEN 100
71 /* Wrappers for calling the current worker functions. */
73 #define next_char(dtp) ((dtp)->u.p.current_unit->next_char_fn_ptr (dtp))
74 #define push_char(dtp, c) ((dtp)->u.p.current_unit->push_char_fn_ptr (dtp, c))
76 /* Worker function to save a default KIND=1 character to a string
77 buffer, enlarging it as necessary. */
79 static void
80 push_char_default (st_parameter_dt *dtp, int c)
84 if (dtp->u.p.saved_string == NULL)
86 // Plain malloc should suffice here, zeroing not needed?
87 dtp->u.p.saved_string = xcalloc (SCRATCH_SIZE, 1);
88 dtp->u.p.saved_length = SCRATCH_SIZE;
89 dtp->u.p.saved_used = 0;
92 if (dtp->u.p.saved_used >= dtp->u.p.saved_length)
94 dtp->u.p.saved_length = 2 * dtp->u.p.saved_length;
95 dtp->u.p.saved_string =
96 xrealloc (dtp->u.p.saved_string, dtp->u.p.saved_length);
98 // Also this should not be necessary.
99 memset (dtp->u.p.saved_string + dtp->u.p.saved_used, 0,
100 dtp->u.p.saved_length - dtp->u.p.saved_used);
104 dtp->u.p.saved_string[dtp->u.p.saved_used++] = (char) c;
108 /* Worker function to save a KIND=4 character to a string buffer,
109 enlarging the buffer as necessary. */
111 static void
112 push_char4 (st_parameter_dt *dtp, int c)
114 gfc_char4_t *new, *p = (gfc_char4_t *) dtp->u.p.saved_string;
116 if (p == NULL)
118 dtp->u.p.saved_string = xcalloc (SCRATCH_SIZE, sizeof (gfc_char4_t));
119 dtp->u.p.saved_length = SCRATCH_SIZE;
120 dtp->u.p.saved_used = 0;
121 p = (gfc_char4_t *) dtp->u.p.saved_string;
124 if (dtp->u.p.saved_used >= dtp->u.p.saved_length)
126 dtp->u.p.saved_length = 2 * dtp->u.p.saved_length;
127 p = xrealloc (p, dtp->u.p.saved_length * sizeof (gfc_char4_t));
129 memset4 (new + dtp->u.p.saved_used, 0,
130 dtp->u.p.saved_length - dtp->u.p.saved_used);
133 p[dtp->u.p.saved_used++] = c;
137 /* Free the input buffer if necessary. */
139 static void
140 free_saved (st_parameter_dt *dtp)
142 if (dtp->u.p.saved_string == NULL)
143 return;
145 free (dtp->u.p.saved_string);
147 dtp->u.p.saved_string = NULL;
148 dtp->u.p.saved_used = 0;
152 /* Free the line buffer if necessary. */
154 static void
155 free_line (st_parameter_dt *dtp)
157 dtp->u.p.line_buffer_pos = 0;
158 dtp->u.p.line_buffer_enabled = 0;
160 if (dtp->u.p.line_buffer == NULL)
161 return;
163 free (dtp->u.p.line_buffer);
164 dtp->u.p.line_buffer = NULL;
168 /* Unget saves the last character so when reading the next character,
169 we need to check to see if there is a character waiting. Similar,
170 if the line buffer is being used to read_logical, check it too. */
172 static int
173 check_buffers (st_parameter_dt *dtp)
175 int c;
177 c = '\0';
178 if (dtp->u.p.last_char != EOF - 1)
180 dtp->u.p.at_eol = 0;
181 c = dtp->u.p.last_char;
182 dtp->u.p.last_char = EOF - 1;
183 goto done;
186 /* Read from line_buffer if enabled. */
188 if (dtp->u.p.line_buffer_enabled)
190 dtp->u.p.at_eol = 0;
192 c = dtp->u.p.line_buffer[dtp->u.p.line_buffer_pos];
193 if (c != '\0' && dtp->u.p.line_buffer_pos < 64)
195 dtp->u.p.line_buffer[dtp->u.p.line_buffer_pos] = '\0';
196 dtp->u.p.line_buffer_pos++;
197 goto done;
200 dtp->u.p.line_buffer_pos = 0;
201 dtp->u.p.line_buffer_enabled = 0;
204 done:
205 dtp->u.p.at_eol = (c == '\n' || c == EOF);
206 return c;
210 /* Worker function for default character encoded file. */
211 static int
212 next_char_default (st_parameter_dt *dtp)
214 int c;
216 /* Always check the unget and line buffer first. */
217 if ((c = check_buffers (dtp)))
218 return c;
220 c = fbuf_getc (dtp->u.p.current_unit);
221 if (c != EOF && is_stream_io (dtp))
222 dtp->u.p.current_unit->strm_pos++;
224 dtp->u.p.at_eol = (c == '\n' || c == EOF);
225 return c;
229 /* Worker function for internal and array I/O units. */
230 static int
231 next_char_internal (st_parameter_dt *dtp)
233 ssize_t length;
234 gfc_offset record;
235 int c;
237 /* Always check the unget and line buffer first. */
238 if ((c = check_buffers (dtp)))
239 return c;
241 /* Handle the end-of-record and end-of-file conditions for
242 internal array unit. */
243 if (is_array_io (dtp))
245 if (dtp->u.p.at_eof)
246 return EOF;
248 /* Check for "end-of-record" condition. */
249 if (dtp->u.p.current_unit->bytes_left == 0)
251 int finished;
253 c = '\n';
254 record = next_array_record (dtp, dtp->u.p.current_unit->ls,
255 &finished);
257 /* Check for "end-of-file" condition. */
258 if (finished)
260 dtp->u.p.at_eof = 1;
261 goto done;
264 record *= dtp->u.p.current_unit->recl;
265 if (sseek (dtp->u.p.current_unit->s, record, SEEK_SET) < 0)
266 return EOF;
268 dtp->u.p.current_unit->bytes_left = dtp->u.p.current_unit->recl;
269 goto done;
273 /* Get the next character and handle end-of-record conditions. */
275 if (dtp->common.unit) /* Check for kind=4 internal unit. */
276 length = sread (dtp->u.p.current_unit->s, &c, 1);
277 else
279 char cc;
280 length = sread (dtp->u.p.current_unit->s, &cc, 1);
281 c = cc;
284 if (unlikely (length < 0))
286 generate_error (&dtp->common, LIBERROR_OS, NULL);
287 return '\0';
290 if (is_array_io (dtp))
292 /* Check whether we hit EOF. */
293 if (unlikely (length == 0))
295 generate_error (&dtp->common, LIBERROR_INTERNAL_UNIT, NULL);
296 return '\0';
298 dtp->u.p.current_unit->bytes_left--;
300 else
302 if (dtp->u.p.at_eof)
303 return EOF;
304 if (length == 0)
306 c = '\n';
307 dtp->u.p.at_eof = 1;
311 done:
312 dtp->u.p.at_eol = (c == '\n' || c == EOF);
313 return c;
317 /* Worker function for UTF encoded files. */
318 static int
319 next_char_utf8 (st_parameter_dt *dtp)
321 static const uchar masks[6] = { 0x7F, 0x1F, 0x0F, 0x07, 0x02, 0x01 };
322 static const uchar patns[6] = { 0x00, 0xC0, 0xE0, 0xF0, 0xF8, 0xFC };
323 int i, nb;
324 gfc_char4_t c;
326 /* Always check the unget and line buffer first. */
327 if (!(c = check_buffers (dtp)))
328 c = fbuf_getc (dtp->u.p.current_unit);
330 if (c < 0x80)
331 goto utf_done;
333 /* The number of leading 1-bits in the first byte indicates how many
334 bytes follow. */
335 for (nb = 2; nb < 7; nb++)
336 if ((c & ~masks[nb-1]) == patns[nb-1])
337 goto found;
338 goto invalid;
340 found:
341 c = (c & masks[nb-1]);
343 /* Decode the bytes read. */
344 for (i = 1; i < nb; i++)
346 gfc_char4_t n = fbuf_getc (dtp->u.p.current_unit);
347 if ((n & 0xC0) != 0x80)
348 goto invalid;
349 c = ((c << 6) + (n & 0x3F));
352 /* Make sure the shortest possible encoding was used. */
353 if (c <= 0x7F && nb > 1) goto invalid;
354 if (c <= 0x7FF && nb > 2) goto invalid;
355 if (c <= 0xFFFF && nb > 3) goto invalid;
356 if (c <= 0x1FFFFF && nb > 4) goto invalid;
357 if (c <= 0x3FFFFFF && nb > 5) goto invalid;
359 /* Make sure the character is valid. */
360 if (c > 0x7FFFFFFF || (c >= 0xD800 && c <= 0xDFFF))
361 goto invalid;
363 utf_done:
364 dtp->u.p.at_eol = (c == '\n' || c == (gfc_char4_t) EOF);
365 return (int) c;
367 invalid:
368 generate_error (&dtp->common, LIBERROR_READ_VALUE, "Invalid UTF-8 encoding");
369 return (gfc_char4_t) '?';
372 /* Push a character back onto the input. */
374 static void
375 unget_char (st_parameter_dt *dtp, int c)
377 dtp->u.p.last_char = c;
381 /* Skip over spaces in the input. Returns the nonspace character that
382 terminated the eating and also places it back on the input. */
384 static int
385 eat_spaces (st_parameter_dt *dtp)
387 int c;
389 /* If internal character array IO, peak ahead and seek past spaces.
390 This is an optimization unique to character arrays with large
391 character lengths (PR38199). This code eliminates numerous calls
392 to next_character. */
393 if (is_array_io (dtp) && (dtp->u.p.last_char == EOF - 1))
395 gfc_offset offset = stell (dtp->u.p.current_unit->s);
396 gfc_offset i;
398 if (dtp->common.unit) /* kind=4 */
400 for (i = 0; i < dtp->u.p.current_unit->bytes_left; i++)
402 if (dtp->internal_unit[(offset + i) * sizeof (gfc_char4_t)]
403 != (gfc_char4_t)' ')
404 break;
407 else
409 for (i = 0; i < dtp->u.p.current_unit->bytes_left; i++)
411 if (dtp->internal_unit[offset + i] != ' ')
412 break;
416 if (i != 0)
418 sseek (dtp->u.p.current_unit->s, offset + i, SEEK_SET);
419 dtp->u.p.current_unit->bytes_left -= i;
423 /* Now skip spaces, EOF and EOL are handled in next_char. */
425 c = next_char (dtp);
426 while (c != EOF && (c == ' ' || c == '\t'));
428 unget_char (dtp, c);
429 return c;
433 /* This function reads characters through to the end of the current
434 line and just ignores them. Returns 0 for success and LIBERROR_END
435 if it hit EOF. */
437 static int
438 eat_line (st_parameter_dt *dtp)
440 int c;
443 c = next_char (dtp);
444 while (c != EOF && c != '\n');
445 if (c == EOF)
446 return LIBERROR_END;
447 return 0;
451 /* Skip over a separator. Technically, we don't always eat the whole
452 separator. This is because if we've processed the last input item,
453 then a separator is unnecessary. Plus the fact that operating
454 systems usually deliver console input on a line basis.
456 The upshot is that if we see a newline as part of reading a
457 separator, we stop reading. If there are more input items, we
458 continue reading the separator with finish_separator() which takes
459 care of the fact that we may or may not have seen a comma as part
460 of the separator.
462 Returns 0 for success, and non-zero error code otherwise. */
464 static int
465 eat_separator (st_parameter_dt *dtp)
467 int c, n;
468 int err = 0;
470 eat_spaces (dtp);
471 dtp->u.p.comma_flag = 0;
473 if ((c = next_char (dtp)) == EOF)
474 return LIBERROR_END;
475 switch (c)
477 case ',':
478 if (dtp->u.p.current_unit->decimal_status == DECIMAL_COMMA)
480 unget_char (dtp, c);
481 break;
483 /* Fall through. */
484 case ';':
485 dtp->u.p.comma_flag = 1;
486 eat_spaces (dtp);
487 break;
489 case '/':
490 dtp->u.p.input_complete = 1;
491 break;
493 case '\r':
494 if ((n = next_char(dtp)) == EOF)
495 return LIBERROR_END;
496 if (n != '\n')
498 unget_char (dtp, n);
499 break;
501 /* Fall through. */
502 case '\n':
503 dtp->u.p.at_eol = 1;
504 if (dtp->u.p.namelist_mode)
508 if ((c = next_char (dtp)) == EOF)
509 return LIBERROR_END;
510 if (c == '!')
512 err = eat_line (dtp);
513 if (err)
514 return err;
515 c = '\n';
518 while (c == '\n' || c == '\r' || c == ' ' || c == '\t');
519 unget_char (dtp, c);
521 break;
523 case '!':
524 if (dtp->u.p.namelist_mode)
525 { /* Eat a namelist comment. */
526 err = eat_line (dtp);
527 if (err)
528 return err;
530 break;
533 /* Fall Through... */
535 default:
536 unget_char (dtp, c);
537 break;
539 return err;
543 /* Finish processing a separator that was interrupted by a newline.
544 If we're here, then another data item is present, so we finish what
545 we started on the previous line. Return 0 on success, error code
546 on failure. */
548 static int
549 finish_separator (st_parameter_dt *dtp)
551 int c;
552 int err = LIBERROR_OK;
554 restart:
555 eat_spaces (dtp);
557 if ((c = next_char (dtp)) == EOF)
558 return LIBERROR_END;
559 switch (c)
561 case ',':
562 if (dtp->u.p.comma_flag)
563 unget_char (dtp, c);
564 else
566 if ((c = eat_spaces (dtp)) == EOF)
567 return LIBERROR_END;
568 if (c == '\n' || c == '\r')
569 goto restart;
572 break;
574 case '/':
575 dtp->u.p.input_complete = 1;
576 if (!dtp->u.p.namelist_mode)
577 return err;
578 break;
580 case '\n':
581 case '\r':
582 goto restart;
584 case '!':
585 if (dtp->u.p.namelist_mode)
587 err = eat_line (dtp);
588 if (err)
589 return err;
590 goto restart;
592 /* Fall through. */
593 default:
594 unget_char (dtp, c);
595 break;
597 return err;
601 /* This function is needed to catch bad conversions so that namelist can
602 attempt to see if dtp->u.p.saved_string contains a new object name rather
603 than a bad value. */
605 static int
606 nml_bad_return (st_parameter_dt *dtp, char c)
608 if (dtp->u.p.namelist_mode)
610 dtp->u.p.nml_read_error = 1;
611 unget_char (dtp, c);
612 return 1;
614 return 0;
617 /* Convert an unsigned string to an integer. The length value is -1
618 if we are working on a repeat count. Returns nonzero if we have a
619 range problem. As a side effect, frees the dtp->u.p.saved_string. */
621 static int
622 convert_integer (st_parameter_dt *dtp, int length, int negative)
624 char c, *buffer, message[MSGLEN];
625 int m;
626 GFC_UINTEGER_LARGEST v, max, max10;
627 GFC_INTEGER_LARGEST value;
629 buffer = dtp->u.p.saved_string;
630 v = 0;
632 if (length == -1)
633 max = MAX_REPEAT;
634 else
636 max = si_max (length);
637 if (negative)
638 max++;
640 max10 = max / 10;
642 for (;;)
644 c = *buffer++;
645 if (c == '\0')
646 break;
647 c -= '0';
649 if (v > max10)
650 goto overflow;
651 v = 10 * v;
653 if (v > max - c)
654 goto overflow;
655 v += c;
658 m = 0;
660 if (length != -1)
662 if (negative)
663 value = -v;
664 else
665 value = v;
666 set_integer (dtp->u.p.value, value, length);
668 else
670 dtp->u.p.repeat_count = v;
672 if (dtp->u.p.repeat_count == 0)
674 snprintf (message, MSGLEN, "Zero repeat count in item %d of list input",
675 dtp->u.p.item_count);
677 generate_error (&dtp->common, LIBERROR_READ_VALUE, message);
678 m = 1;
682 free_saved (dtp);
683 return m;
685 overflow:
686 if (length == -1)
687 snprintf (message, MSGLEN, "Repeat count overflow in item %d of list input",
688 dtp->u.p.item_count);
689 else
690 snprintf (message, MSGLEN, "Integer overflow while reading item %d",
691 dtp->u.p.item_count);
693 free_saved (dtp);
694 generate_error (&dtp->common, LIBERROR_READ_VALUE, message);
696 return 1;
700 /* Parse a repeat count for logical and complex values which cannot
701 begin with a digit. Returns nonzero if we are done, zero if we
702 should continue on. */
704 static int
705 parse_repeat (st_parameter_dt *dtp)
707 char message[MSGLEN];
708 int c, repeat;
710 if ((c = next_char (dtp)) == EOF)
711 goto bad_repeat;
712 switch (c)
714 CASE_DIGITS:
715 repeat = c - '0';
716 break;
718 CASE_SEPARATORS:
719 unget_char (dtp, c);
720 eat_separator (dtp);
721 return 1;
723 default:
724 unget_char (dtp, c);
725 return 0;
728 for (;;)
730 c = next_char (dtp);
731 switch (c)
733 CASE_DIGITS:
734 repeat = 10 * repeat + c - '0';
736 if (repeat > MAX_REPEAT)
738 snprintf (message, MSGLEN,
739 "Repeat count overflow in item %d of list input",
740 dtp->u.p.item_count);
742 generate_error (&dtp->common, LIBERROR_READ_VALUE, message);
743 return 1;
746 break;
748 case '*':
749 if (repeat == 0)
751 snprintf (message, MSGLEN,
752 "Zero repeat count in item %d of list input",
753 dtp->u.p.item_count);
755 generate_error (&dtp->common, LIBERROR_READ_VALUE, message);
756 return 1;
759 goto done;
761 default:
762 goto bad_repeat;
766 done:
767 dtp->u.p.repeat_count = repeat;
768 return 0;
770 bad_repeat:
772 free_saved (dtp);
773 if (c == EOF)
775 free_line (dtp);
776 hit_eof (dtp);
777 return 1;
779 else
780 eat_line (dtp);
781 snprintf (message, MSGLEN, "Bad repeat count in item %d of list input",
782 dtp->u.p.item_count);
783 generate_error (&dtp->common, LIBERROR_READ_VALUE, message);
784 return 1;
788 /* To read a logical we have to look ahead in the input stream to make sure
789 there is not an equal sign indicating a variable name. To do this we use
790 line_buffer to point to a temporary buffer, pushing characters there for
791 possible later reading. */
793 static void
794 l_push_char (st_parameter_dt *dtp, char c)
796 if (dtp->u.p.line_buffer == NULL)
797 dtp->u.p.line_buffer = xcalloc (SCRATCH_SIZE, 1);
799 dtp->u.p.line_buffer[dtp->u.p.line_buffer_pos++] = c;
803 /* Read a logical character on the input. */
805 static void
806 read_logical (st_parameter_dt *dtp, int length)
808 char message[MSGLEN];
809 int c, i, v;
811 if (parse_repeat (dtp))
812 return;
814 c = tolower (next_char (dtp));
815 l_push_char (dtp, c);
816 switch (c)
818 case 't':
819 v = 1;
820 c = next_char (dtp);
821 l_push_char (dtp, c);
823 if (!is_separator(c) && c != EOF)
824 goto possible_name;
826 unget_char (dtp, c);
827 break;
828 case 'f':
829 v = 0;
830 c = next_char (dtp);
831 l_push_char (dtp, c);
833 if (!is_separator(c) && c != EOF)
834 goto possible_name;
836 unget_char (dtp, c);
837 break;
839 case '.':
840 c = tolower (next_char (dtp));
841 switch (c)
843 case 't':
844 v = 1;
845 break;
846 case 'f':
847 v = 0;
848 break;
849 default:
850 goto bad_logical;
853 break;
855 CASE_SEPARATORS:
856 case EOF:
857 unget_char (dtp, c);
858 eat_separator (dtp);
859 return; /* Null value. */
861 default:
862 /* Save the character in case it is the beginning
863 of the next object name. */
864 unget_char (dtp, c);
865 goto bad_logical;
868 dtp->u.p.saved_type = BT_LOGICAL;
869 dtp->u.p.saved_length = length;
871 /* Eat trailing garbage. */
873 c = next_char (dtp);
874 while (c != EOF && !is_separator (c));
876 unget_char (dtp, c);
877 eat_separator (dtp);
878 set_integer ((int *) dtp->u.p.value, v, length);
879 free_line (dtp);
881 return;
883 possible_name:
885 for(i = 0; i < 63; i++)
887 c = next_char (dtp);
888 if (is_separator(c))
890 /* All done if this is not a namelist read. */
891 if (!dtp->u.p.namelist_mode)
892 goto logical_done;
894 unget_char (dtp, c);
895 eat_separator (dtp);
896 c = next_char (dtp);
897 if (c != '=')
899 unget_char (dtp, c);
900 goto logical_done;
904 l_push_char (dtp, c);
905 if (c == '=')
907 dtp->u.p.nml_read_error = 1;
908 dtp->u.p.line_buffer_enabled = 1;
909 dtp->u.p.line_buffer_pos = 0;
910 return;
915 bad_logical:
917 if (nml_bad_return (dtp, c))
919 free_line (dtp);
920 return;
924 free_saved (dtp);
925 if (c == EOF)
927 free_line (dtp);
928 hit_eof (dtp);
929 return;
931 else if (c != '\n')
932 eat_line (dtp);
933 snprintf (message, MSGLEN, "Bad logical value while reading item %d",
934 dtp->u.p.item_count);
935 free_line (dtp);
936 generate_error (&dtp->common, LIBERROR_READ_VALUE, message);
937 return;
939 logical_done:
941 dtp->u.p.saved_type = BT_LOGICAL;
942 dtp->u.p.saved_length = length;
943 set_integer ((int *) dtp->u.p.value, v, length);
944 free_saved (dtp);
945 free_line (dtp);
949 /* Reading integers is tricky because we can actually be reading a
950 repeat count. We have to store the characters in a buffer because
951 we could be reading an integer that is larger than the default int
952 used for repeat counts. */
954 static void
955 read_integer (st_parameter_dt *dtp, int length)
957 char message[MSGLEN];
958 int c, negative;
960 negative = 0;
962 c = next_char (dtp);
963 switch (c)
965 case '-':
966 negative = 1;
967 /* Fall through... */
969 case '+':
970 if ((c = next_char (dtp)) == EOF)
971 goto bad_integer;
972 goto get_integer;
974 CASE_SEPARATORS: /* Single null. */
975 unget_char (dtp, c);
976 eat_separator (dtp);
977 return;
979 CASE_DIGITS:
980 push_char (dtp, c);
981 break;
983 default:
984 goto bad_integer;
987 /* Take care of what may be a repeat count. */
989 for (;;)
991 c = next_char (dtp);
992 switch (c)
994 CASE_DIGITS:
995 push_char (dtp, c);
996 break;
998 case '*':
999 push_char (dtp, '\0');
1000 goto repeat;
1002 CASE_SEPARATORS: /* Not a repeat count. */
1003 case EOF:
1004 goto done;
1006 default:
1007 goto bad_integer;
1011 repeat:
1012 if (convert_integer (dtp, -1, 0))
1013 return;
1015 /* Get the real integer. */
1017 if ((c = next_char (dtp)) == EOF)
1018 goto bad_integer;
1019 switch (c)
1021 CASE_DIGITS:
1022 break;
1024 CASE_SEPARATORS:
1025 unget_char (dtp, c);
1026 eat_separator (dtp);
1027 return;
1029 case '-':
1030 negative = 1;
1031 /* Fall through... */
1033 case '+':
1034 c = next_char (dtp);
1035 break;
1038 get_integer:
1039 if (!isdigit (c))
1040 goto bad_integer;
1041 push_char (dtp, c);
1043 for (;;)
1045 c = next_char (dtp);
1046 switch (c)
1048 CASE_DIGITS:
1049 push_char (dtp, c);
1050 break;
1052 CASE_SEPARATORS:
1053 case EOF:
1054 goto done;
1056 default:
1057 goto bad_integer;
1061 bad_integer:
1063 if (nml_bad_return (dtp, c))
1064 return;
1066 free_saved (dtp);
1067 if (c == EOF)
1069 free_line (dtp);
1070 hit_eof (dtp);
1071 return;
1073 else if (c != '\n')
1074 eat_line (dtp);
1076 snprintf (message, MSGLEN, "Bad integer for item %d in list input",
1077 dtp->u.p.item_count);
1078 free_line (dtp);
1079 generate_error (&dtp->common, LIBERROR_READ_VALUE, message);
1081 return;
1083 done:
1084 unget_char (dtp, c);
1085 eat_separator (dtp);
1087 push_char (dtp, '\0');
1088 if (convert_integer (dtp, length, negative))
1090 free_saved (dtp);
1091 return;
1094 free_saved (dtp);
1095 dtp->u.p.saved_type = BT_INTEGER;
1099 /* Read a character variable. */
1101 static void
1102 read_character (st_parameter_dt *dtp, int length __attribute__ ((unused)))
1104 char quote, message[MSGLEN];
1105 int c;
1107 quote = ' '; /* Space means no quote character. */
1109 if ((c = next_char (dtp)) == EOF)
1110 goto eof;
1111 switch (c)
1113 CASE_DIGITS:
1114 push_char (dtp, c);
1115 break;
1117 CASE_SEPARATORS:
1118 case EOF:
1119 unget_char (dtp, c); /* NULL value. */
1120 eat_separator (dtp);
1121 return;
1123 case '"':
1124 case '\'':
1125 quote = c;
1126 goto get_string;
1128 default:
1129 if (dtp->u.p.namelist_mode)
1131 if (dtp->u.p.current_unit->delim_status == DELIM_NONE)
1133 /* No delimiters so finish reading the string now. */
1134 int i;
1135 push_char (dtp, c);
1136 for (i = dtp->u.p.ionml->string_length; i > 1; i--)
1138 if ((c = next_char (dtp)) == EOF)
1139 goto done_eof;
1140 push_char (dtp, c);
1142 dtp->u.p.saved_type = BT_CHARACTER;
1143 free_line (dtp);
1144 return;
1146 unget_char (dtp, c);
1147 return;
1149 push_char (dtp, c);
1150 goto get_string;
1153 /* Deal with a possible repeat count. */
1155 for (;;)
1157 c = next_char (dtp);
1158 switch (c)
1160 CASE_DIGITS:
1161 push_char (dtp, c);
1162 break;
1164 CASE_SEPARATORS:
1165 case EOF:
1166 unget_char (dtp, c);
1167 goto done; /* String was only digits! */
1169 case '*':
1170 push_char (dtp, '\0');
1171 goto got_repeat;
1173 default:
1174 push_char (dtp, c);
1175 goto get_string; /* Not a repeat count after all. */
1179 got_repeat:
1180 if (convert_integer (dtp, -1, 0))
1181 return;
1183 /* Now get the real string. */
1185 if ((c = next_char (dtp)) == EOF)
1186 goto eof;
1187 switch (c)
1189 CASE_SEPARATORS:
1190 unget_char (dtp, c); /* Repeated NULL values. */
1191 eat_separator (dtp);
1192 return;
1194 case '"':
1195 case '\'':
1196 quote = c;
1197 break;
1199 default:
1200 push_char (dtp, c);
1201 break;
1204 get_string:
1206 for (;;)
1208 if ((c = next_char (dtp)) == EOF)
1209 goto done_eof;
1210 switch (c)
1212 case '"':
1213 case '\'':
1214 if (c != quote)
1216 push_char (dtp, c);
1217 break;
1220 /* See if we have a doubled quote character or the end of
1221 the string. */
1223 if ((c = next_char (dtp)) == EOF)
1224 goto done_eof;
1225 if (c == quote)
1227 push_char (dtp, quote);
1228 break;
1231 unget_char (dtp, c);
1232 goto done;
1234 CASE_SEPARATORS:
1235 if (quote == ' ')
1237 unget_char (dtp, c);
1238 goto done;
1241 if (c != '\n' && c != '\r')
1242 push_char (dtp, c);
1243 break;
1245 default:
1246 push_char (dtp, c);
1247 break;
1251 /* At this point, we have to have a separator, or else the string is
1252 invalid. */
1253 done:
1254 c = next_char (dtp);
1255 done_eof:
1256 if (is_separator (c) || c == '!' || c == EOF)
1258 unget_char (dtp, c);
1259 eat_separator (dtp);
1260 dtp->u.p.saved_type = BT_CHARACTER;
1262 else
1264 free_saved (dtp);
1265 snprintf (message, MSGLEN, "Invalid string input in item %d",
1266 dtp->u.p.item_count);
1267 generate_error (&dtp->common, LIBERROR_READ_VALUE, message);
1269 free_line (dtp);
1270 return;
1272 eof:
1273 free_saved (dtp);
1274 free_line (dtp);
1275 hit_eof (dtp);
1279 /* Parse a component of a complex constant or a real number that we
1280 are sure is already there. This is a straight real number parser. */
1282 static int
1283 parse_real (st_parameter_dt *dtp, void *buffer, int length)
1285 char message[MSGLEN];
1286 int c, m, seen_dp;
1288 if ((c = next_char (dtp)) == EOF)
1289 goto bad;
1291 if (c == '-' || c == '+')
1293 push_char (dtp, c);
1294 if ((c = next_char (dtp)) == EOF)
1295 goto bad;
1298 if (c == ',' && dtp->u.p.current_unit->decimal_status == DECIMAL_COMMA)
1299 c = '.';
1301 if (!isdigit (c) && c != '.')
1303 if (c == 'i' || c == 'I' || c == 'n' || c == 'N')
1304 goto inf_nan;
1305 else
1306 goto bad;
1309 push_char (dtp, c);
1311 seen_dp = (c == '.') ? 1 : 0;
1313 for (;;)
1315 if ((c = next_char (dtp)) == EOF)
1316 goto bad;
1317 if (c == ',' && dtp->u.p.current_unit->decimal_status == DECIMAL_COMMA)
1318 c = '.';
1319 switch (c)
1321 CASE_DIGITS:
1322 push_char (dtp, c);
1323 break;
1325 case '.':
1326 if (seen_dp)
1327 goto bad;
1329 seen_dp = 1;
1330 push_char (dtp, c);
1331 break;
1333 case 'e':
1334 case 'E':
1335 case 'd':
1336 case 'D':
1337 case 'q':
1338 case 'Q':
1339 push_char (dtp, 'e');
1340 goto exp1;
1342 case '-':
1343 case '+':
1344 push_char (dtp, 'e');
1345 push_char (dtp, c);
1346 if ((c = next_char (dtp)) == EOF)
1347 goto bad;
1348 goto exp2;
1350 CASE_SEPARATORS:
1351 case EOF:
1352 goto done;
1354 default:
1355 goto done;
1359 exp1:
1360 if ((c = next_char (dtp)) == EOF)
1361 goto bad;
1362 if (c != '-' && c != '+')
1363 push_char (dtp, '+');
1364 else
1366 push_char (dtp, c);
1367 c = next_char (dtp);
1370 exp2:
1371 if (!isdigit (c))
1372 goto bad;
1374 push_char (dtp, c);
1376 for (;;)
1378 if ((c = next_char (dtp)) == EOF)
1379 goto bad;
1380 switch (c)
1382 CASE_DIGITS:
1383 push_char (dtp, c);
1384 break;
1386 CASE_SEPARATORS:
1387 case EOF:
1388 unget_char (dtp, c);
1389 goto done;
1391 default:
1392 goto done;
1396 done:
1397 unget_char (dtp, c);
1398 push_char (dtp, '\0');
1400 m = convert_real (dtp, buffer, dtp->u.p.saved_string, length);
1401 free_saved (dtp);
1403 return m;
1405 done_infnan:
1406 unget_char (dtp, c);
1407 push_char (dtp, '\0');
1409 m = convert_infnan (dtp, buffer, dtp->u.p.saved_string, length);
1410 free_saved (dtp);
1412 return m;
1414 inf_nan:
1415 /* Match INF and Infinity. */
1416 if ((c == 'i' || c == 'I')
1417 && ((c = next_char (dtp)) == 'n' || c == 'N')
1418 && ((c = next_char (dtp)) == 'f' || c == 'F'))
1420 c = next_char (dtp);
1421 if ((c != 'i' && c != 'I')
1422 || ((c == 'i' || c == 'I')
1423 && ((c = next_char (dtp)) == 'n' || c == 'N')
1424 && ((c = next_char (dtp)) == 'i' || c == 'I')
1425 && ((c = next_char (dtp)) == 't' || c == 'T')
1426 && ((c = next_char (dtp)) == 'y' || c == 'Y')
1427 && (c = next_char (dtp))))
1429 if (is_separator (c) || (c == EOF))
1430 unget_char (dtp, c);
1431 push_char (dtp, 'i');
1432 push_char (dtp, 'n');
1433 push_char (dtp, 'f');
1434 goto done_infnan;
1436 } /* Match NaN. */
1437 else if (((c = next_char (dtp)) == 'a' || c == 'A')
1438 && ((c = next_char (dtp)) == 'n' || c == 'N')
1439 && (c = next_char (dtp)))
1441 if (is_separator (c) || (c == EOF))
1442 unget_char (dtp, c);
1443 push_char (dtp, 'n');
1444 push_char (dtp, 'a');
1445 push_char (dtp, 'n');
1447 /* Match "NAN(alphanum)". */
1448 if (c == '(')
1450 for ( ; c != ')'; c = next_char (dtp))
1451 if (is_separator (c))
1452 goto bad;
1454 c = next_char (dtp);
1455 if (is_separator (c) || (c == EOF))
1456 unget_char (dtp, c);
1458 goto done_infnan;
1461 bad:
1463 if (nml_bad_return (dtp, c))
1464 return 0;
1466 free_saved (dtp);
1467 if (c == EOF)
1469 free_line (dtp);
1470 hit_eof (dtp);
1471 return 1;
1473 else if (c != '\n')
1474 eat_line (dtp);
1476 snprintf (message, MSGLEN, "Bad floating point number for item %d",
1477 dtp->u.p.item_count);
1478 free_line (dtp);
1479 generate_error (&dtp->common, LIBERROR_READ_VALUE, message);
1481 return 1;
1485 /* Reading a complex number is straightforward because we can tell
1486 what it is right away. */
1488 static void
1489 read_complex (st_parameter_dt *dtp, void * dest, int kind, size_t size)
1491 char message[MSGLEN];
1492 int c;
1494 if (parse_repeat (dtp))
1495 return;
1497 c = next_char (dtp);
1498 switch (c)
1500 case '(':
1501 break;
1503 CASE_SEPARATORS:
1504 case EOF:
1505 unget_char (dtp, c);
1506 eat_separator (dtp);
1507 return;
1509 default:
1510 goto bad_complex;
1513 eol_1:
1514 eat_spaces (dtp);
1515 c = next_char (dtp);
1516 if (c == '\n' || c== '\r')
1517 goto eol_1;
1518 else
1519 unget_char (dtp, c);
1521 if (parse_real (dtp, dest, kind))
1522 return;
1524 eol_2:
1525 eat_spaces (dtp);
1526 c = next_char (dtp);
1527 if (c == '\n' || c== '\r')
1528 goto eol_2;
1529 else
1530 unget_char (dtp, c);
1532 if (next_char (dtp)
1533 != (dtp->u.p.current_unit->decimal_status == DECIMAL_POINT ? ',' : ';'))
1534 goto bad_complex;
1536 eol_3:
1537 eat_spaces (dtp);
1538 c = next_char (dtp);
1539 if (c == '\n' || c== '\r')
1540 goto eol_3;
1541 else
1542 unget_char (dtp, c);
1544 if (parse_real (dtp, dest + size / 2, kind))
1545 return;
1547 eol_4:
1548 eat_spaces (dtp);
1549 c = next_char (dtp);
1550 if (c == '\n' || c== '\r')
1551 goto eol_4;
1552 else
1553 unget_char (dtp, c);
1555 if (next_char (dtp) != ')')
1556 goto bad_complex;
1558 c = next_char (dtp);
1559 if (!is_separator (c) && (c != EOF))
1560 goto bad_complex;
1562 unget_char (dtp, c);
1563 eat_separator (dtp);
1565 free_saved (dtp);
1566 dtp->u.p.saved_type = BT_COMPLEX;
1567 return;
1569 bad_complex:
1571 if (nml_bad_return (dtp, c))
1572 return;
1574 free_saved (dtp);
1575 if (c == EOF)
1577 free_line (dtp);
1578 hit_eof (dtp);
1579 return;
1581 else if (c != '\n')
1582 eat_line (dtp);
1584 snprintf (message, MSGLEN, "Bad complex value in item %d of list input",
1585 dtp->u.p.item_count);
1586 free_line (dtp);
1587 generate_error (&dtp->common, LIBERROR_READ_VALUE, message);
1591 /* Parse a real number with a possible repeat count. */
1593 static void
1594 read_real (st_parameter_dt *dtp, void * dest, int length)
1596 char message[MSGLEN];
1597 int c;
1598 int seen_dp;
1599 int is_inf;
1601 seen_dp = 0;
1603 c = next_char (dtp);
1604 if (c == ',' && dtp->u.p.current_unit->decimal_status == DECIMAL_COMMA)
1605 c = '.';
1606 switch (c)
1608 CASE_DIGITS:
1609 push_char (dtp, c);
1610 break;
1612 case '.':
1613 push_char (dtp, c);
1614 seen_dp = 1;
1615 break;
1617 case '+':
1618 case '-':
1619 goto got_sign;
1621 CASE_SEPARATORS:
1622 unget_char (dtp, c); /* Single null. */
1623 eat_separator (dtp);
1624 return;
1626 case 'i':
1627 case 'I':
1628 case 'n':
1629 case 'N':
1630 goto inf_nan;
1632 default:
1633 goto bad_real;
1636 /* Get the digit string that might be a repeat count. */
1638 for (;;)
1640 c = next_char (dtp);
1641 if (c == ',' && dtp->u.p.current_unit->decimal_status == DECIMAL_COMMA)
1642 c = '.';
1643 switch (c)
1645 CASE_DIGITS:
1646 push_char (dtp, c);
1647 break;
1649 case '.':
1650 if (seen_dp)
1651 goto bad_real;
1653 seen_dp = 1;
1654 push_char (dtp, c);
1655 goto real_loop;
1657 case 'E':
1658 case 'e':
1659 case 'D':
1660 case 'd':
1661 case 'Q':
1662 case 'q':
1663 goto exp1;
1665 case '+':
1666 case '-':
1667 push_char (dtp, 'e');
1668 push_char (dtp, c);
1669 c = next_char (dtp);
1670 goto exp2;
1672 case '*':
1673 push_char (dtp, '\0');
1674 goto got_repeat;
1676 CASE_SEPARATORS:
1677 case EOF:
1678 if (c != '\n' && c != ',' && c != '\r' && c != ';')
1679 unget_char (dtp, c);
1680 goto done;
1682 default:
1683 goto bad_real;
1687 got_repeat:
1688 if (convert_integer (dtp, -1, 0))
1689 return;
1691 /* Now get the number itself. */
1693 if ((c = next_char (dtp)) == EOF)
1694 goto bad_real;
1695 if (is_separator (c))
1696 { /* Repeated null value. */
1697 unget_char (dtp, c);
1698 eat_separator (dtp);
1699 return;
1702 if (c != '-' && c != '+')
1703 push_char (dtp, '+');
1704 else
1706 got_sign:
1707 push_char (dtp, c);
1708 if ((c = next_char (dtp)) == EOF)
1709 goto bad_real;
1712 if (c == ',' && dtp->u.p.current_unit->decimal_status == DECIMAL_COMMA)
1713 c = '.';
1715 if (!isdigit (c) && c != '.')
1717 if (c == 'i' || c == 'I' || c == 'n' || c == 'N')
1718 goto inf_nan;
1719 else
1720 goto bad_real;
1723 if (c == '.')
1725 if (seen_dp)
1726 goto bad_real;
1727 else
1728 seen_dp = 1;
1731 push_char (dtp, c);
1733 real_loop:
1734 for (;;)
1736 c = next_char (dtp);
1737 if (c == ',' && dtp->u.p.current_unit->decimal_status == DECIMAL_COMMA)
1738 c = '.';
1739 switch (c)
1741 CASE_DIGITS:
1742 push_char (dtp, c);
1743 break;
1745 CASE_SEPARATORS:
1746 case EOF:
1747 goto done;
1749 case '.':
1750 if (seen_dp)
1751 goto bad_real;
1753 seen_dp = 1;
1754 push_char (dtp, c);
1755 break;
1757 case 'E':
1758 case 'e':
1759 case 'D':
1760 case 'd':
1761 case 'Q':
1762 case 'q':
1763 goto exp1;
1765 case '+':
1766 case '-':
1767 push_char (dtp, 'e');
1768 push_char (dtp, c);
1769 c = next_char (dtp);
1770 goto exp2;
1772 default:
1773 goto bad_real;
1777 exp1:
1778 push_char (dtp, 'e');
1780 if ((c = next_char (dtp)) == EOF)
1781 goto bad_real;
1782 if (c != '+' && c != '-')
1783 push_char (dtp, '+');
1784 else
1786 push_char (dtp, c);
1787 c = next_char (dtp);
1790 exp2:
1791 if (!isdigit (c))
1792 goto bad_real;
1793 push_char (dtp, c);
1795 for (;;)
1797 c = next_char (dtp);
1799 switch (c)
1801 CASE_DIGITS:
1802 push_char (dtp, c);
1803 break;
1805 CASE_SEPARATORS:
1806 case EOF:
1807 goto done;
1809 default:
1810 goto bad_real;
1814 done:
1815 unget_char (dtp, c);
1816 eat_separator (dtp);
1817 push_char (dtp, '\0');
1818 if (convert_real (dtp, dest, dtp->u.p.saved_string, length))
1820 free_saved (dtp);
1821 return;
1824 free_saved (dtp);
1825 dtp->u.p.saved_type = BT_REAL;
1826 return;
1828 inf_nan:
1829 l_push_char (dtp, c);
1830 is_inf = 0;
1832 /* Match INF and Infinity. */
1833 if (c == 'i' || c == 'I')
1835 c = next_char (dtp);
1836 l_push_char (dtp, c);
1837 if (c != 'n' && c != 'N')
1838 goto unwind;
1839 c = next_char (dtp);
1840 l_push_char (dtp, c);
1841 if (c != 'f' && c != 'F')
1842 goto unwind;
1843 c = next_char (dtp);
1844 l_push_char (dtp, c);
1845 if (!is_separator (c) && (c != EOF))
1847 if (c != 'i' && c != 'I')
1848 goto unwind;
1849 c = next_char (dtp);
1850 l_push_char (dtp, c);
1851 if (c != 'n' && c != 'N')
1852 goto unwind;
1853 c = next_char (dtp);
1854 l_push_char (dtp, c);
1855 if (c != 'i' && c != 'I')
1856 goto unwind;
1857 c = next_char (dtp);
1858 l_push_char (dtp, c);
1859 if (c != 't' && c != 'T')
1860 goto unwind;
1861 c = next_char (dtp);
1862 l_push_char (dtp, c);
1863 if (c != 'y' && c != 'Y')
1864 goto unwind;
1865 c = next_char (dtp);
1866 l_push_char (dtp, c);
1868 is_inf = 1;
1869 } /* Match NaN. */
1870 else
1872 c = next_char (dtp);
1873 l_push_char (dtp, c);
1874 if (c != 'a' && c != 'A')
1875 goto unwind;
1876 c = next_char (dtp);
1877 l_push_char (dtp, c);
1878 if (c != 'n' && c != 'N')
1879 goto unwind;
1880 c = next_char (dtp);
1881 l_push_char (dtp, c);
1883 /* Match NAN(alphanum). */
1884 if (c == '(')
1886 for (c = next_char (dtp); c != ')'; c = next_char (dtp))
1887 if (is_separator (c))
1888 goto unwind;
1889 else
1890 l_push_char (dtp, c);
1892 l_push_char (dtp, ')');
1893 c = next_char (dtp);
1894 l_push_char (dtp, c);
1898 if (!is_separator (c) && (c != EOF))
1899 goto unwind;
1901 if (dtp->u.p.namelist_mode)
1903 if (c == ' ' || c =='\n' || c == '\r')
1907 if ((c = next_char (dtp)) == EOF)
1908 goto bad_real;
1910 while (c == ' ' || c =='\n' || c == '\r');
1912 l_push_char (dtp, c);
1914 if (c == '=')
1915 goto unwind;
1919 if (is_inf)
1921 push_char (dtp, 'i');
1922 push_char (dtp, 'n');
1923 push_char (dtp, 'f');
1925 else
1927 push_char (dtp, 'n');
1928 push_char (dtp, 'a');
1929 push_char (dtp, 'n');
1932 free_line (dtp);
1933 unget_char (dtp, c);
1934 eat_separator (dtp);
1935 push_char (dtp, '\0');
1936 if (convert_infnan (dtp, dest, dtp->u.p.saved_string, length))
1937 return;
1939 free_saved (dtp);
1940 dtp->u.p.saved_type = BT_REAL;
1941 return;
1943 unwind:
1944 if (dtp->u.p.namelist_mode)
1946 dtp->u.p.nml_read_error = 1;
1947 dtp->u.p.line_buffer_enabled = 1;
1948 dtp->u.p.line_buffer_pos = 0;
1949 return;
1952 bad_real:
1954 if (nml_bad_return (dtp, c))
1955 return;
1957 free_saved (dtp);
1958 if (c == EOF)
1960 free_line (dtp);
1961 hit_eof (dtp);
1962 return;
1964 else if (c != '\n')
1965 eat_line (dtp);
1967 snprintf (message, MSGLEN, "Bad real number in item %d of list input",
1968 dtp->u.p.item_count);
1969 free_line (dtp);
1970 generate_error (&dtp->common, LIBERROR_READ_VALUE, message);
1974 /* Check the current type against the saved type to make sure they are
1975 compatible. Returns nonzero if incompatible. */
1977 static int
1978 check_type (st_parameter_dt *dtp, bt type, int kind)
1980 char message[MSGLEN];
1982 if (dtp->u.p.saved_type != BT_UNKNOWN && dtp->u.p.saved_type != type)
1984 snprintf (message, MSGLEN, "Read type %s where %s was expected for item %d",
1985 type_name (dtp->u.p.saved_type), type_name (type),
1986 dtp->u.p.item_count);
1987 free_line (dtp);
1988 generate_error (&dtp->common, LIBERROR_READ_VALUE, message);
1989 return 1;
1992 if (dtp->u.p.saved_type == BT_UNKNOWN || dtp->u.p.saved_type == BT_CHARACTER)
1993 return 0;
1995 if ((type != BT_COMPLEX && dtp->u.p.saved_length != kind)
1996 || (type == BT_COMPLEX && dtp->u.p.saved_length != kind*2))
1998 snprintf (message, MSGLEN,
1999 "Read kind %d %s where kind %d is required for item %d",
2000 type == BT_COMPLEX ? dtp->u.p.saved_length / 2
2001 : dtp->u.p.saved_length,
2002 type_name (dtp->u.p.saved_type), kind,
2003 dtp->u.p.item_count);
2004 free_line (dtp);
2005 generate_error (&dtp->common, LIBERROR_READ_VALUE, message);
2006 return 1;
2009 return 0;
2013 /* Initialize the function pointers to select the correct versions of
2014 next_char and push_char depending on what we are doing. */
2016 static void
2017 set_workers (st_parameter_dt *dtp)
2019 if (dtp->u.p.current_unit->flags.encoding == ENCODING_UTF8)
2021 dtp->u.p.current_unit->next_char_fn_ptr = &next_char_utf8;
2022 dtp->u.p.current_unit->push_char_fn_ptr = &push_char4;
2024 else if (is_internal_unit (dtp))
2026 dtp->u.p.current_unit->next_char_fn_ptr = &next_char_internal;
2027 dtp->u.p.current_unit->push_char_fn_ptr = &push_char_default;
2029 else
2031 dtp->u.p.current_unit->next_char_fn_ptr = &next_char_default;
2032 dtp->u.p.current_unit->push_char_fn_ptr = &push_char_default;
2037 /* Top level data transfer subroutine for list reads. Because we have
2038 to deal with repeat counts, the data item is always saved after
2039 reading, usually in the dtp->u.p.value[] array. If a repeat count is
2040 greater than one, we copy the data item multiple times. */
2042 static int
2043 list_formatted_read_scalar (st_parameter_dt *dtp, bt type, void *p,
2044 int kind, size_t size)
2046 gfc_char4_t *q, *r;
2047 int c, i, m;
2048 int err = 0;
2050 dtp->u.p.namelist_mode = 0;
2052 /* Set the next_char and push_char worker functions. */
2053 set_workers (dtp);
2055 if (dtp->u.p.first_item)
2057 dtp->u.p.first_item = 0;
2058 dtp->u.p.input_complete = 0;
2059 dtp->u.p.repeat_count = 1;
2060 dtp->u.p.at_eol = 0;
2062 if ((c = eat_spaces (dtp)) == EOF)
2064 err = LIBERROR_END;
2065 goto cleanup;
2067 if (is_separator (c))
2069 /* Found a null value. */
2070 dtp->u.p.repeat_count = 0;
2071 eat_separator (dtp);
2073 /* Set end-of-line flag. */
2074 if (c == '\n' || c == '\r')
2076 dtp->u.p.at_eol = 1;
2077 if (finish_separator (dtp) == LIBERROR_END)
2079 err = LIBERROR_END;
2080 goto cleanup;
2083 else
2084 goto cleanup;
2087 else
2089 if (dtp->u.p.repeat_count > 0)
2091 if (check_type (dtp, type, kind))
2092 return err;
2093 goto set_value;
2096 if (dtp->u.p.input_complete)
2097 goto cleanup;
2099 if (dtp->u.p.at_eol)
2100 finish_separator (dtp);
2101 else
2103 eat_spaces (dtp);
2104 /* Trailing spaces prior to end of line. */
2105 if (dtp->u.p.at_eol)
2106 finish_separator (dtp);
2109 dtp->u.p.saved_type = BT_UNKNOWN;
2110 dtp->u.p.repeat_count = 1;
2113 switch (type)
2115 case BT_INTEGER:
2116 read_integer (dtp, kind);
2117 break;
2118 case BT_LOGICAL:
2119 read_logical (dtp, kind);
2120 break;
2121 case BT_CHARACTER:
2122 read_character (dtp, kind);
2123 break;
2124 case BT_REAL:
2125 read_real (dtp, p, kind);
2126 /* Copy value back to temporary if needed. */
2127 if (dtp->u.p.repeat_count > 0)
2128 memcpy (dtp->u.p.value, p, size);
2129 break;
2130 case BT_COMPLEX:
2131 read_complex (dtp, p, kind, size);
2132 /* Copy value back to temporary if needed. */
2133 if (dtp->u.p.repeat_count > 0)
2134 memcpy (dtp->u.p.value, p, size);
2135 break;
2136 default:
2137 internal_error (&dtp->common, "Bad type for list read");
2140 if (dtp->u.p.saved_type != BT_CHARACTER && dtp->u.p.saved_type != BT_UNKNOWN)
2141 dtp->u.p.saved_length = size;
2143 if ((dtp->common.flags & IOPARM_LIBRETURN_MASK) != IOPARM_LIBRETURN_OK)
2144 goto cleanup;
2146 set_value:
2147 switch (dtp->u.p.saved_type)
2149 case BT_COMPLEX:
2150 case BT_REAL:
2151 if (dtp->u.p.repeat_count > 0)
2152 memcpy (p, dtp->u.p.value, size);
2153 break;
2155 case BT_INTEGER:
2156 case BT_LOGICAL:
2157 memcpy (p, dtp->u.p.value, size);
2158 break;
2160 case BT_CHARACTER:
2161 if (dtp->u.p.saved_string)
2163 m = ((int) size < dtp->u.p.saved_used)
2164 ? (int) size : dtp->u.p.saved_used;
2166 q = (gfc_char4_t *) p;
2167 r = (gfc_char4_t *) dtp->u.p.saved_string;
2168 if (dtp->u.p.current_unit->flags.encoding == ENCODING_UTF8)
2169 for (i = 0; i < m; i++)
2170 *q++ = *r++;
2171 else
2173 if (kind == 1)
2174 memcpy (p, dtp->u.p.saved_string, m);
2175 else
2176 for (i = 0; i < m; i++)
2177 *q++ = *r++;
2180 else
2181 /* Just delimiters encountered, nothing to copy but SPACE. */
2182 m = 0;
2184 if (m < (int) size)
2186 if (kind == 1)
2187 memset (((char *) p) + m, ' ', size - m);
2188 else
2190 q = (gfc_char4_t *) p;
2191 for (i = m; i < (int) size; i++)
2192 q[i] = (unsigned char) ' ';
2195 break;
2197 case BT_UNKNOWN:
2198 break;
2200 default:
2201 internal_error (&dtp->common, "Bad type for list read");
2204 if (--dtp->u.p.repeat_count <= 0)
2205 free_saved (dtp);
2207 cleanup:
2208 if (err == LIBERROR_END)
2210 free_line (dtp);
2211 hit_eof (dtp);
2213 fbuf_flush_list (dtp->u.p.current_unit, LIST_READING);
2214 return err;
2218 void
2219 list_formatted_read (st_parameter_dt *dtp, bt type, void *p, int kind,
2220 size_t size, size_t nelems)
2222 size_t elem;
2223 char *tmp;
2224 size_t stride = type == BT_CHARACTER ?
2225 size * GFC_SIZE_OF_CHAR_KIND(kind) : size;
2226 int err;
2228 tmp = (char *) p;
2230 /* Big loop over all the elements. */
2231 for (elem = 0; elem < nelems; elem++)
2233 dtp->u.p.item_count++;
2234 err = list_formatted_read_scalar (dtp, type, tmp + stride*elem,
2235 kind, size);
2236 if (err)
2237 break;
2242 /* Finish a list read. */
2244 void
2245 finish_list_read (st_parameter_dt *dtp)
2247 free_saved (dtp);
2249 fbuf_flush (dtp->u.p.current_unit, dtp->u.p.mode);
2251 if (dtp->u.p.at_eol)
2253 dtp->u.p.at_eol = 0;
2254 return;
2257 if (!is_internal_unit (dtp))
2259 int c;
2261 /* Set the next_char and push_char worker functions. */
2262 set_workers (dtp);
2264 c = next_char (dtp);
2265 if (c == EOF)
2267 free_line (dtp);
2268 hit_eof (dtp);
2269 return;
2271 if (c != '\n')
2272 eat_line (dtp);
2275 free_line (dtp);
2279 /* NAMELIST INPUT
2281 void namelist_read (st_parameter_dt *dtp)
2282 calls:
2283 static void nml_match_name (char *name, int len)
2284 static int nml_query (st_parameter_dt *dtp)
2285 static int nml_get_obj_data (st_parameter_dt *dtp,
2286 namelist_info **prev_nl, char *, size_t)
2287 calls:
2288 static void nml_untouch_nodes (st_parameter_dt *dtp)
2289 static namelist_info * find_nml_node (st_parameter_dt *dtp,
2290 char * var_name)
2291 static int nml_parse_qualifier(descriptor_dimension * ad,
2292 array_loop_spec * ls, int rank, char *)
2293 static void nml_touch_nodes (namelist_info * nl)
2294 static int nml_read_obj (namelist_info *nl, index_type offset,
2295 namelist_info **prev_nl, char *, size_t,
2296 index_type clow, index_type chigh)
2297 calls:
2298 -itself- */
2300 /* Inputs a rank-dimensional qualifier, which can contain
2301 singlets, doublets, triplets or ':' with the standard meanings. */
2303 static bool
2304 nml_parse_qualifier (st_parameter_dt *dtp, descriptor_dimension *ad,
2305 array_loop_spec *ls, int rank, bt nml_elem_type,
2306 char *parse_err_msg, size_t parse_err_msg_size,
2307 int *parsed_rank)
2309 int dim;
2310 int indx;
2311 int neg;
2312 int null_flag;
2313 int is_array_section, is_char;
2314 int c;
2316 is_char = 0;
2317 is_array_section = 0;
2318 dtp->u.p.expanded_read = 0;
2320 /* See if this is a character substring qualifier we are looking for. */
2321 if (rank == -1)
2323 rank = 1;
2324 is_char = 1;
2327 /* The next character in the stream should be the '('. */
2329 if ((c = next_char (dtp)) == EOF)
2330 goto err_ret;
2332 /* Process the qualifier, by dimension and triplet. */
2334 for (dim=0; dim < rank; dim++ )
2336 for (indx=0; indx<3; indx++)
2338 free_saved (dtp);
2339 eat_spaces (dtp);
2340 neg = 0;
2342 /* Process a potential sign. */
2343 if ((c = next_char (dtp)) == EOF)
2344 goto err_ret;
2345 switch (c)
2347 case '-':
2348 neg = 1;
2349 break;
2351 case '+':
2352 break;
2354 default:
2355 unget_char (dtp, c);
2356 break;
2359 /* Process characters up to the next ':' , ',' or ')'. */
2360 for (;;)
2362 c = next_char (dtp);
2363 switch (c)
2365 case EOF:
2366 goto err_ret;
2368 case ':':
2369 is_array_section = 1;
2370 break;
2372 case ',': case ')':
2373 if ((c==',' && dim == rank -1)
2374 || (c==')' && dim < rank -1))
2376 if (is_char)
2377 snprintf (parse_err_msg, parse_err_msg_size,
2378 "Bad substring qualifier");
2379 else
2380 snprintf (parse_err_msg, parse_err_msg_size,
2381 "Bad number of index fields");
2382 goto err_ret;
2384 break;
2386 CASE_DIGITS:
2387 push_char (dtp, c);
2388 continue;
2390 case ' ': case '\t': case '\r': case '\n':
2391 eat_spaces (dtp);
2392 break;
2394 default:
2395 if (is_char)
2396 snprintf (parse_err_msg, parse_err_msg_size,
2397 "Bad character in substring qualifier");
2398 else
2399 snprintf (parse_err_msg, parse_err_msg_size,
2400 "Bad character in index");
2401 goto err_ret;
2404 if ((c == ',' || c == ')') && indx == 0
2405 && dtp->u.p.saved_string == 0)
2407 if (is_char)
2408 snprintf (parse_err_msg, parse_err_msg_size,
2409 "Null substring qualifier");
2410 else
2411 snprintf (parse_err_msg, parse_err_msg_size,
2412 "Null index field");
2413 goto err_ret;
2416 if ((c == ':' && indx == 1 && dtp->u.p.saved_string == 0)
2417 || (indx == 2 && dtp->u.p.saved_string == 0))
2419 if (is_char)
2420 snprintf (parse_err_msg, parse_err_msg_size,
2421 "Bad substring qualifier");
2422 else
2423 snprintf (parse_err_msg, parse_err_msg_size,
2424 "Bad index triplet");
2425 goto err_ret;
2428 if (is_char && !is_array_section)
2430 snprintf (parse_err_msg, parse_err_msg_size,
2431 "Missing colon in substring qualifier");
2432 goto err_ret;
2435 /* If '( : ? )' or '( ? : )' break and flag read failure. */
2436 null_flag = 0;
2437 if ((c == ':' && indx == 0 && dtp->u.p.saved_string == 0)
2438 || (indx==1 && dtp->u.p.saved_string == 0))
2440 null_flag = 1;
2441 break;
2444 /* Now read the index. */
2445 if (convert_integer (dtp, sizeof(index_type), neg))
2447 if (is_char)
2448 snprintf (parse_err_msg, parse_err_msg_size,
2449 "Bad integer substring qualifier");
2450 else
2451 snprintf (parse_err_msg, parse_err_msg_size,
2452 "Bad integer in index");
2453 goto err_ret;
2455 break;
2458 /* Feed the index values to the triplet arrays. */
2459 if (!null_flag)
2461 if (indx == 0)
2462 memcpy (&ls[dim].start, dtp->u.p.value, sizeof(index_type));
2463 if (indx == 1)
2464 memcpy (&ls[dim].end, dtp->u.p.value, sizeof(index_type));
2465 if (indx == 2)
2466 memcpy (&ls[dim].step, dtp->u.p.value, sizeof(index_type));
2469 /* Singlet or doublet indices. */
2470 if (c==',' || c==')')
2472 if (indx == 0)
2474 memcpy (&ls[dim].start, dtp->u.p.value, sizeof(index_type));
2476 /* If -std=f95/2003 or an array section is specified,
2477 do not allow excess data to be processed. */
2478 if (is_array_section == 1
2479 || !(compile_options.allow_std & GFC_STD_GNU)
2480 || nml_elem_type == BT_DERIVED)
2481 ls[dim].end = ls[dim].start;
2482 else
2483 dtp->u.p.expanded_read = 1;
2486 /* Check for non-zero rank. */
2487 if (is_array_section == 1 && ls[dim].start != ls[dim].end)
2488 *parsed_rank = 1;
2490 break;
2494 if (is_array_section == 1 && dtp->u.p.expanded_read == 1)
2496 int i;
2497 dtp->u.p.expanded_read = 0;
2498 for (i = 0; i < dim; i++)
2499 ls[i].end = ls[i].start;
2502 /* Check the values of the triplet indices. */
2503 if ((ls[dim].start > GFC_DIMENSION_UBOUND(ad[dim]))
2504 || (ls[dim].start < GFC_DIMENSION_LBOUND(ad[dim]))
2505 || (ls[dim].end > GFC_DIMENSION_UBOUND(ad[dim]))
2506 || (ls[dim].end < GFC_DIMENSION_LBOUND(ad[dim])))
2508 if (is_char)
2509 snprintf (parse_err_msg, parse_err_msg_size,
2510 "Substring out of range");
2511 else
2512 snprintf (parse_err_msg, parse_err_msg_size,
2513 "Index %d out of range", dim + 1);
2514 goto err_ret;
2517 if (((ls[dim].end - ls[dim].start ) * ls[dim].step < 0)
2518 || (ls[dim].step == 0))
2520 snprintf (parse_err_msg, parse_err_msg_size,
2521 "Bad range in index %d", dim + 1);
2522 goto err_ret;
2525 /* Initialise the loop index counter. */
2526 ls[dim].idx = ls[dim].start;
2528 eat_spaces (dtp);
2529 return true;
2531 err_ret:
2533 /* The EOF error message is issued by hit_eof. Return true so that the
2534 caller does not use parse_err_msg and parse_err_msg_size to generate
2535 an unrelated error message. */
2536 if (c == EOF)
2538 hit_eof (dtp);
2539 dtp->u.p.input_complete = 1;
2540 return true;
2542 return false;
2546 static bool
2547 extended_look_ahead (char *p, char *q)
2549 char *r, *s;
2551 /* Scan ahead to find a '%' in the p string. */
2552 for(r = p, s = q; *r && *s; s++)
2553 if ((*s == '%' || *s == '+') && strcmp (r + 1, s + 1) == 0)
2554 return true;
2555 return false;
2559 static bool
2560 strcmp_extended_type (char *p, char *q)
2562 char *r, *s;
2564 for (r = p, s = q; *r && *s; r++, s++)
2566 if (*r != *s)
2568 if (*r == '%' && *s == '+' && extended_look_ahead (r, s))
2569 return true;
2570 break;
2573 return false;
2577 static namelist_info *
2578 find_nml_node (st_parameter_dt *dtp, char * var_name)
2580 namelist_info * t = dtp->u.p.ionml;
2581 while (t != NULL)
2583 if (strcmp (var_name, t->var_name) == 0)
2585 t->touched = 1;
2586 return t;
2588 if (strcmp_extended_type (var_name, t->var_name))
2590 t->touched = 1;
2591 return t;
2593 t = t->next;
2595 return NULL;
2598 /* Visits all the components of a derived type that have
2599 not explicitly been identified in the namelist input.
2600 touched is set and the loop specification initialised
2601 to default values */
2603 static void
2604 nml_touch_nodes (namelist_info * nl)
2606 index_type len = strlen (nl->var_name) + 1;
2607 int dim;
2608 char * ext_name = xmalloc (len + 1);
2609 memcpy (ext_name, nl->var_name, len-1);
2610 memcpy (ext_name + len - 1, "%", 2);
2611 for (nl = nl->next; nl; nl = nl->next)
2613 if (strncmp (nl->var_name, ext_name, len) == 0)
2615 nl->touched = 1;
2616 for (dim=0; dim < nl->var_rank; dim++)
2618 nl->ls[dim].step = 1;
2619 nl->ls[dim].end = GFC_DESCRIPTOR_UBOUND(nl,dim);
2620 nl->ls[dim].start = GFC_DESCRIPTOR_LBOUND(nl,dim);
2621 nl->ls[dim].idx = nl->ls[dim].start;
2624 else
2625 break;
2627 free (ext_name);
2628 return;
2631 /* Resets touched for the entire list of nml_nodes, ready for a
2632 new object. */
2634 static void
2635 nml_untouch_nodes (st_parameter_dt *dtp)
2637 namelist_info * t;
2638 for (t = dtp->u.p.ionml; t; t = t->next)
2639 t->touched = 0;
2640 return;
2643 /* Attempts to input name to namelist name. Returns
2644 dtp->u.p.nml_read_error = 1 on no match. */
2646 static void
2647 nml_match_name (st_parameter_dt *dtp, const char *name, index_type len)
2649 index_type i;
2650 int c;
2652 dtp->u.p.nml_read_error = 0;
2653 for (i = 0; i < len; i++)
2655 c = next_char (dtp);
2656 if (c == EOF || (tolower (c) != tolower (name[i])))
2658 dtp->u.p.nml_read_error = 1;
2659 break;
2664 /* If the namelist read is from stdin, output the current state of the
2665 namelist to stdout. This is used to implement the non-standard query
2666 features, ? and =?. If c == '=' the full namelist is printed. Otherwise
2667 the names alone are printed. */
2669 static void
2670 nml_query (st_parameter_dt *dtp, char c)
2672 gfc_unit * temp_unit;
2673 namelist_info * nl;
2674 index_type len;
2675 char * p;
2676 #ifdef HAVE_CRLF
2677 static const index_type endlen = 2;
2678 static const char endl[] = "\r\n";
2679 static const char nmlend[] = "&end\r\n";
2680 #else
2681 static const index_type endlen = 1;
2682 static const char endl[] = "\n";
2683 static const char nmlend[] = "&end\n";
2684 #endif
2686 if (dtp->u.p.current_unit->unit_number != options.stdin_unit)
2687 return;
2689 /* Store the current unit and transfer to stdout. */
2691 temp_unit = dtp->u.p.current_unit;
2692 dtp->u.p.current_unit = find_unit (options.stdout_unit);
2694 if (dtp->u.p.current_unit)
2696 dtp->u.p.mode = WRITING;
2697 next_record (dtp, 0);
2699 /* Write the namelist in its entirety. */
2701 if (c == '=')
2702 namelist_write (dtp);
2704 /* Or write the list of names. */
2706 else
2708 /* "&namelist_name\n" */
2710 len = dtp->namelist_name_len;
2711 p = write_block (dtp, len - 1 + endlen);
2712 if (!p)
2713 goto query_return;
2714 memcpy (p, "&", 1);
2715 memcpy ((char*)(p + 1), dtp->namelist_name, len);
2716 memcpy ((char*)(p + len + 1), &endl, endlen);
2717 for (nl = dtp->u.p.ionml; nl; nl = nl->next)
2719 /* " var_name\n" */
2721 len = strlen (nl->var_name);
2722 p = write_block (dtp, len + endlen);
2723 if (!p)
2724 goto query_return;
2725 memcpy (p, " ", 1);
2726 memcpy ((char*)(p + 1), nl->var_name, len);
2727 memcpy ((char*)(p + len + 1), &endl, endlen);
2730 /* "&end\n" */
2732 p = write_block (dtp, endlen + 4);
2733 if (!p)
2734 goto query_return;
2735 memcpy (p, &nmlend, endlen + 4);
2738 /* Flush the stream to force immediate output. */
2740 fbuf_flush (dtp->u.p.current_unit, WRITING);
2741 sflush (dtp->u.p.current_unit->s);
2742 unlock_unit (dtp->u.p.current_unit);
2745 query_return:
2747 /* Restore the current unit. */
2749 dtp->u.p.current_unit = temp_unit;
2750 dtp->u.p.mode = READING;
2751 return;
2754 /* Reads and stores the input for the namelist object nl. For an array,
2755 the function loops over the ranges defined by the loop specification.
2756 This default to all the data or to the specification from a qualifier.
2757 nml_read_obj recursively calls itself to read derived types. It visits
2758 all its own components but only reads data for those that were touched
2759 when the name was parsed. If a read error is encountered, an attempt is
2760 made to return to read a new object name because the standard allows too
2761 little data to be available. On the other hand, too much data is an
2762 error. */
2764 static bool
2765 nml_read_obj (st_parameter_dt *dtp, namelist_info * nl, index_type offset,
2766 namelist_info **pprev_nl, char *nml_err_msg,
2767 size_t nml_err_msg_size, index_type clow, index_type chigh)
2769 namelist_info * cmp;
2770 char * obj_name;
2771 int nml_carry;
2772 int len;
2773 int dim;
2774 index_type dlen;
2775 index_type m;
2776 size_t obj_name_len;
2777 void * pdata;
2779 /* If we have encountered a previous read error or this object has not been
2780 touched in name parsing, just return. */
2781 if (dtp->u.p.nml_read_error || !nl->touched)
2782 return true;
2784 dtp->u.p.repeat_count = 0;
2785 eat_spaces (dtp);
2787 len = nl->len;
2788 switch (nl->type)
2790 case BT_INTEGER:
2791 case BT_LOGICAL:
2792 dlen = len;
2793 break;
2795 case BT_REAL:
2796 dlen = size_from_real_kind (len);
2797 break;
2799 case BT_COMPLEX:
2800 dlen = size_from_complex_kind (len);
2801 break;
2803 case BT_CHARACTER:
2804 dlen = chigh ? (chigh - clow + 1) : nl->string_length;
2805 break;
2807 default:
2808 dlen = 0;
2813 /* Update the pointer to the data, using the current index vector */
2815 pdata = (void*)(nl->mem_pos + offset);
2816 for (dim = 0; dim < nl->var_rank; dim++)
2817 pdata = (void*)(pdata + (nl->ls[dim].idx
2818 - GFC_DESCRIPTOR_LBOUND(nl,dim))
2819 * GFC_DESCRIPTOR_STRIDE(nl,dim) * nl->size);
2821 /* If we are finished with the repeat count, try to read next value. */
2823 nml_carry = 0;
2824 if (--dtp->u.p.repeat_count <= 0)
2826 if (dtp->u.p.input_complete)
2827 return true;
2828 if (dtp->u.p.at_eol)
2829 finish_separator (dtp);
2830 if (dtp->u.p.input_complete)
2831 return true;
2833 dtp->u.p.saved_type = BT_UNKNOWN;
2834 free_saved (dtp);
2836 switch (nl->type)
2838 case BT_INTEGER:
2839 read_integer (dtp, len);
2840 break;
2842 case BT_LOGICAL:
2843 read_logical (dtp, len);
2844 break;
2846 case BT_CHARACTER:
2847 read_character (dtp, len);
2848 break;
2850 case BT_REAL:
2851 /* Need to copy data back from the real location to the temp in
2852 order to handle nml reads into arrays. */
2853 read_real (dtp, pdata, len);
2854 memcpy (dtp->u.p.value, pdata, dlen);
2855 break;
2857 case BT_COMPLEX:
2858 /* Same as for REAL, copy back to temp. */
2859 read_complex (dtp, pdata, len, dlen);
2860 memcpy (dtp->u.p.value, pdata, dlen);
2861 break;
2863 case BT_DERIVED:
2864 obj_name_len = strlen (nl->var_name) + 1;
2865 obj_name = xmalloc (obj_name_len+1);
2866 memcpy (obj_name, nl->var_name, obj_name_len-1);
2867 memcpy (obj_name + obj_name_len - 1, "%", 2);
2869 /* If reading a derived type, disable the expanded read warning
2870 since a single object can have multiple reads. */
2871 dtp->u.p.expanded_read = 0;
2873 /* Now loop over the components. */
2875 for (cmp = nl->next;
2876 cmp &&
2877 !strncmp (cmp->var_name, obj_name, obj_name_len);
2878 cmp = cmp->next)
2880 /* Jump over nested derived type by testing if the potential
2881 component name contains '%'. */
2882 if (strchr (cmp->var_name + obj_name_len, '%'))
2883 continue;
2885 if (!nml_read_obj (dtp, cmp, (index_type)(pdata - nl->mem_pos),
2886 pprev_nl, nml_err_msg, nml_err_msg_size,
2887 clow, chigh))
2889 free (obj_name);
2890 return false;
2893 if (dtp->u.p.input_complete)
2895 free (obj_name);
2896 return true;
2900 free (obj_name);
2901 goto incr_idx;
2903 default:
2904 snprintf (nml_err_msg, nml_err_msg_size,
2905 "Bad type for namelist object %s", nl->var_name);
2906 internal_error (&dtp->common, nml_err_msg);
2907 goto nml_err_ret;
2911 /* The standard permits array data to stop short of the number of
2912 elements specified in the loop specification. In this case, we
2913 should be here with dtp->u.p.nml_read_error != 0. Control returns to
2914 nml_get_obj_data and an attempt is made to read object name. */
2916 *pprev_nl = nl;
2917 if (dtp->u.p.nml_read_error)
2919 dtp->u.p.expanded_read = 0;
2920 return true;
2923 if (dtp->u.p.saved_type == BT_UNKNOWN)
2925 dtp->u.p.expanded_read = 0;
2926 goto incr_idx;
2929 switch (dtp->u.p.saved_type)
2932 case BT_COMPLEX:
2933 case BT_REAL:
2934 case BT_INTEGER:
2935 case BT_LOGICAL:
2936 memcpy (pdata, dtp->u.p.value, dlen);
2937 break;
2939 case BT_CHARACTER:
2940 if (dlen < dtp->u.p.saved_used)
2942 if (compile_options.bounds_check)
2944 snprintf (nml_err_msg, nml_err_msg_size,
2945 "Namelist object '%s' truncated on read.",
2946 nl->var_name);
2947 generate_warning (&dtp->common, nml_err_msg);
2949 m = dlen;
2951 else
2952 m = dtp->u.p.saved_used;
2954 if (dtp->u.p.current_unit->flags.encoding == ENCODING_UTF8)
2956 gfc_char4_t *q4, *p4 = pdata;
2957 int i;
2959 q4 = (gfc_char4_t *) dtp->u.p.saved_string;
2960 p4 += clow -1;
2961 for (i = 0; i < m; i++)
2962 *p4++ = *q4++;
2963 if (m < dlen)
2964 for (i = 0; i < dlen - m; i++)
2965 *p4++ = (gfc_char4_t) ' ';
2967 else
2969 pdata = (void*)( pdata + clow - 1 );
2970 memcpy (pdata, dtp->u.p.saved_string, m);
2971 if (m < dlen)
2972 memset ((void*)( pdata + m ), ' ', dlen - m);
2974 break;
2976 default:
2977 break;
2980 /* Warn if a non-standard expanded read occurs. A single read of a
2981 single object is acceptable. If a second read occurs, issue a warning
2982 and set the flag to zero to prevent further warnings. */
2983 if (dtp->u.p.expanded_read == 2)
2985 notify_std (&dtp->common, GFC_STD_GNU, "Non-standard expanded namelist read.");
2986 dtp->u.p.expanded_read = 0;
2989 /* If the expanded read warning flag is set, increment it,
2990 indicating that a single read has occurred. */
2991 if (dtp->u.p.expanded_read >= 1)
2992 dtp->u.p.expanded_read++;
2994 /* Break out of loop if scalar. */
2995 if (!nl->var_rank)
2996 break;
2998 /* Now increment the index vector. */
3000 incr_idx:
3002 nml_carry = 1;
3003 for (dim = 0; dim < nl->var_rank; dim++)
3005 nl->ls[dim].idx += nml_carry * nl->ls[dim].step;
3006 nml_carry = 0;
3007 if (((nl->ls[dim].step > 0) && (nl->ls[dim].idx > nl->ls[dim].end))
3009 ((nl->ls[dim].step < 0) && (nl->ls[dim].idx < nl->ls[dim].end)))
3011 nl->ls[dim].idx = nl->ls[dim].start;
3012 nml_carry = 1;
3015 } while (!nml_carry);
3017 if (dtp->u.p.repeat_count > 1)
3019 snprintf (nml_err_msg, nml_err_msg_size,
3020 "Repeat count too large for namelist object %s", nl->var_name);
3021 goto nml_err_ret;
3023 return true;
3025 nml_err_ret:
3027 return false;
3030 /* Parses the object name, including array and substring qualifiers. It
3031 iterates over derived type components, touching those components and
3032 setting their loop specifications, if there is a qualifier. If the
3033 object is itself a derived type, its components and subcomponents are
3034 touched. nml_read_obj is called at the end and this reads the data in
3035 the manner specified by the object name. */
3037 static bool
3038 nml_get_obj_data (st_parameter_dt *dtp, namelist_info **pprev_nl,
3039 char *nml_err_msg, size_t nml_err_msg_size)
3041 int c;
3042 namelist_info * nl;
3043 namelist_info * first_nl = NULL;
3044 namelist_info * root_nl = NULL;
3045 int dim, parsed_rank;
3046 int component_flag, qualifier_flag;
3047 index_type clow, chigh;
3048 int non_zero_rank_count;
3050 /* Look for end of input or object name. If '?' or '=?' are encountered
3051 in stdin, print the node names or the namelist to stdout. */
3053 eat_separator (dtp);
3054 if (dtp->u.p.input_complete)
3055 return true;
3057 if (dtp->u.p.at_eol)
3058 finish_separator (dtp);
3059 if (dtp->u.p.input_complete)
3060 return true;
3062 if ((c = next_char (dtp)) == EOF)
3063 goto nml_err_ret;
3064 switch (c)
3066 case '=':
3067 if ((c = next_char (dtp)) == EOF)
3068 goto nml_err_ret;
3069 if (c != '?')
3071 snprintf (nml_err_msg, nml_err_msg_size,
3072 "namelist read: misplaced = sign");
3073 goto nml_err_ret;
3075 nml_query (dtp, '=');
3076 return true;
3078 case '?':
3079 nml_query (dtp, '?');
3080 return true;
3082 case '$':
3083 case '&':
3084 nml_match_name (dtp, "end", 3);
3085 if (dtp->u.p.nml_read_error)
3087 snprintf (nml_err_msg, nml_err_msg_size,
3088 "namelist not terminated with / or &end");
3089 goto nml_err_ret;
3091 /* Fall through. */
3092 case '/':
3093 dtp->u.p.input_complete = 1;
3094 return true;
3096 default :
3097 break;
3100 /* Untouch all nodes of the namelist and reset the flags that are set for
3101 derived type components. */
3103 nml_untouch_nodes (dtp);
3104 component_flag = 0;
3105 qualifier_flag = 0;
3106 non_zero_rank_count = 0;
3108 /* Get the object name - should '!' and '\n' be permitted separators? */
3110 get_name:
3112 free_saved (dtp);
3116 if (!is_separator (c))
3117 push_char_default (dtp, tolower(c));
3118 if ((c = next_char (dtp)) == EOF)
3119 goto nml_err_ret;
3121 while (!( c=='=' || c==' ' || c=='\t' || c =='(' || c =='%' ));
3123 unget_char (dtp, c);
3125 /* Check that the name is in the namelist and get pointer to object.
3126 Three error conditions exist: (i) An attempt is being made to
3127 identify a non-existent object, following a failed data read or
3128 (ii) The object name does not exist or (iii) Too many data items
3129 are present for an object. (iii) gives the same error message
3130 as (i) */
3132 push_char_default (dtp, '\0');
3134 if (component_flag)
3136 #define EXT_STACK_SZ 100
3137 char ext_stack[EXT_STACK_SZ];
3138 char *ext_name;
3139 size_t var_len = strlen (root_nl->var_name);
3140 size_t saved_len
3141 = dtp->u.p.saved_string ? strlen (dtp->u.p.saved_string) : 0;
3142 size_t ext_size = var_len + saved_len + 1;
3144 if (ext_size > EXT_STACK_SZ)
3145 ext_name = xmalloc (ext_size);
3146 else
3147 ext_name = ext_stack;
3149 memcpy (ext_name, root_nl->var_name, var_len);
3150 if (dtp->u.p.saved_string)
3151 memcpy (ext_name + var_len, dtp->u.p.saved_string, saved_len);
3152 ext_name[var_len + saved_len] = '\0';
3153 nl = find_nml_node (dtp, ext_name);
3155 if (ext_size > EXT_STACK_SZ)
3156 free (ext_name);
3158 else
3159 nl = find_nml_node (dtp, dtp->u.p.saved_string);
3161 if (nl == NULL)
3163 if (dtp->u.p.nml_read_error && *pprev_nl)
3164 snprintf (nml_err_msg, nml_err_msg_size,
3165 "Bad data for namelist object %s", (*pprev_nl)->var_name);
3167 else
3168 snprintf (nml_err_msg, nml_err_msg_size,
3169 "Cannot match namelist object name %s",
3170 dtp->u.p.saved_string);
3172 goto nml_err_ret;
3175 /* Get the length, data length, base pointer and rank of the variable.
3176 Set the default loop specification first. */
3178 for (dim=0; dim < nl->var_rank; dim++)
3180 nl->ls[dim].step = 1;
3181 nl->ls[dim].end = GFC_DESCRIPTOR_UBOUND(nl,dim);
3182 nl->ls[dim].start = GFC_DESCRIPTOR_LBOUND(nl,dim);
3183 nl->ls[dim].idx = nl->ls[dim].start;
3186 /* Check to see if there is a qualifier: if so, parse it.*/
3188 if (c == '(' && nl->var_rank)
3190 parsed_rank = 0;
3191 if (!nml_parse_qualifier (dtp, nl->dim, nl->ls, nl->var_rank,
3192 nl->type, nml_err_msg, nml_err_msg_size,
3193 &parsed_rank))
3195 char *nml_err_msg_end = strchr (nml_err_msg, '\0');
3196 snprintf (nml_err_msg_end,
3197 nml_err_msg_size - (nml_err_msg_end - nml_err_msg),
3198 " for namelist variable %s", nl->var_name);
3199 goto nml_err_ret;
3201 if (parsed_rank > 0)
3202 non_zero_rank_count++;
3204 qualifier_flag = 1;
3206 if ((c = next_char (dtp)) == EOF)
3207 goto nml_err_ret;
3208 unget_char (dtp, c);
3210 else if (nl->var_rank > 0)
3211 non_zero_rank_count++;
3213 /* Now parse a derived type component. The root namelist_info address
3214 is backed up, as is the previous component level. The component flag
3215 is set and the iteration is made by jumping back to get_name. */
3217 if (c == '%')
3219 if (nl->type != BT_DERIVED)
3221 snprintf (nml_err_msg, nml_err_msg_size,
3222 "Attempt to get derived component for %s", nl->var_name);
3223 goto nml_err_ret;
3226 /* Don't move first_nl further in the list if a qualifier was found. */
3227 if ((*pprev_nl == NULL && !qualifier_flag) || !component_flag)
3228 first_nl = nl;
3230 root_nl = nl;
3232 component_flag = 1;
3233 if ((c = next_char (dtp)) == EOF)
3234 goto nml_err_ret;
3235 goto get_name;
3238 /* Parse a character qualifier, if present. chigh = 0 is a default
3239 that signals that the string length = string_length. */
3241 clow = 1;
3242 chigh = 0;
3244 if (c == '(' && nl->type == BT_CHARACTER)
3246 descriptor_dimension chd[1] = { {1, clow, nl->string_length} };
3247 array_loop_spec ind[1] = { {1, clow, nl->string_length, 1} };
3249 if (!nml_parse_qualifier (dtp, chd, ind, -1, nl->type,
3250 nml_err_msg, nml_err_msg_size, &parsed_rank))
3252 char *nml_err_msg_end = strchr (nml_err_msg, '\0');
3253 snprintf (nml_err_msg_end,
3254 nml_err_msg_size - (nml_err_msg_end - nml_err_msg),
3255 " for namelist variable %s", nl->var_name);
3256 goto nml_err_ret;
3259 clow = ind[0].start;
3260 chigh = ind[0].end;
3262 if (ind[0].step != 1)
3264 snprintf (nml_err_msg, nml_err_msg_size,
3265 "Step not allowed in substring qualifier"
3266 " for namelist object %s", nl->var_name);
3267 goto nml_err_ret;
3270 if ((c = next_char (dtp)) == EOF)
3271 goto nml_err_ret;
3272 unget_char (dtp, c);
3275 /* Make sure no extraneous qualifiers are there. */
3277 if (c == '(')
3279 snprintf (nml_err_msg, nml_err_msg_size,
3280 "Qualifier for a scalar or non-character namelist object %s",
3281 nl->var_name);
3282 goto nml_err_ret;
3285 /* Make sure there is no more than one non-zero rank object. */
3286 if (non_zero_rank_count > 1)
3288 snprintf (nml_err_msg, nml_err_msg_size,
3289 "Multiple sub-objects with non-zero rank in namelist object %s",
3290 nl->var_name);
3291 non_zero_rank_count = 0;
3292 goto nml_err_ret;
3295 /* According to the standard, an equal sign MUST follow an object name. The
3296 following is possibly lax - it allows comments, blank lines and so on to
3297 intervene. eat_spaces (dtp); c = next_char (dtp); would be compliant*/
3299 free_saved (dtp);
3301 eat_separator (dtp);
3302 if (dtp->u.p.input_complete)
3303 return true;
3305 if (dtp->u.p.at_eol)
3306 finish_separator (dtp);
3307 if (dtp->u.p.input_complete)
3308 return true;
3310 if ((c = next_char (dtp)) == EOF)
3311 goto nml_err_ret;
3313 if (c != '=')
3315 snprintf (nml_err_msg, nml_err_msg_size,
3316 "Equal sign must follow namelist object name %s",
3317 nl->var_name);
3318 goto nml_err_ret;
3320 /* If a derived type, touch its components and restore the root
3321 namelist_info if we have parsed a qualified derived type
3322 component. */
3324 if (nl->type == BT_DERIVED)
3325 nml_touch_nodes (nl);
3327 if (first_nl)
3329 if (first_nl->var_rank == 0)
3331 if (component_flag && qualifier_flag)
3332 nl = first_nl;
3334 else
3335 nl = first_nl;
3338 dtp->u.p.nml_read_error = 0;
3339 if (!nml_read_obj (dtp, nl, 0, pprev_nl, nml_err_msg, nml_err_msg_size,
3340 clow, chigh))
3341 goto nml_err_ret;
3343 return true;
3345 nml_err_ret:
3347 /* The EOF error message is issued by hit_eof. Return true so that the
3348 caller does not use nml_err_msg and nml_err_msg_size to generate
3349 an unrelated error message. */
3350 if (c == EOF)
3352 dtp->u.p.input_complete = 1;
3353 unget_char (dtp, c);
3354 hit_eof (dtp);
3355 return true;
3357 return false;
3360 /* Entry point for namelist input. Goes through input until namelist name
3361 is matched. Then cycles through nml_get_obj_data until the input is
3362 completed or there is an error. */
3364 void
3365 namelist_read (st_parameter_dt *dtp)
3367 int c;
3368 char nml_err_msg[200];
3370 /* Initialize the error string buffer just in case we get an unexpected fail
3371 somewhere and end up at nml_err_ret. */
3372 strcpy (nml_err_msg, "Internal namelist read error");
3374 /* Pointer to the previously read object, in case attempt is made to read
3375 new object name. Should this fail, error message can give previous
3376 name. */
3377 namelist_info *prev_nl = NULL;
3379 dtp->u.p.namelist_mode = 1;
3380 dtp->u.p.input_complete = 0;
3381 dtp->u.p.expanded_read = 0;
3383 /* Set the next_char and push_char worker functions. */
3384 set_workers (dtp);
3386 /* Look for &namelist_name . Skip all characters, testing for $nmlname.
3387 Exit on success or EOF. If '?' or '=?' encountered in stdin, print
3388 node names or namelist on stdout. */
3390 find_nml_name:
3391 c = next_char (dtp);
3392 switch (c)
3394 case '$':
3395 case '&':
3396 break;
3398 case '!':
3399 eat_line (dtp);
3400 goto find_nml_name;
3402 case '=':
3403 c = next_char (dtp);
3404 if (c == '?')
3405 nml_query (dtp, '=');
3406 else
3407 unget_char (dtp, c);
3408 goto find_nml_name;
3410 case '?':
3411 nml_query (dtp, '?');
3412 goto find_nml_name;
3414 case EOF:
3415 return;
3417 default:
3418 goto find_nml_name;
3421 /* Match the name of the namelist. */
3423 nml_match_name (dtp, dtp->namelist_name, dtp->namelist_name_len);
3425 if (dtp->u.p.nml_read_error)
3426 goto find_nml_name;
3428 /* A trailing space is required, we give a little latitude here, 10.9.1. */
3429 c = next_char (dtp);
3430 if (!is_separator(c) && c != '!')
3432 unget_char (dtp, c);
3433 goto find_nml_name;
3436 unget_char (dtp, c);
3437 eat_separator (dtp);
3439 /* Ready to read namelist objects. If there is an error in input
3440 from stdin, output the error message and continue. */
3442 while (!dtp->u.p.input_complete)
3444 if (!nml_get_obj_data (dtp, &prev_nl, nml_err_msg, sizeof nml_err_msg))
3446 if (dtp->u.p.current_unit->unit_number != options.stdin_unit)
3447 goto nml_err_ret;
3448 generate_error (&dtp->common, LIBERROR_READ_VALUE, nml_err_msg);
3451 /* Reset the previous namelist pointer if we know we are not going
3452 to be doing multiple reads within a single namelist object. */
3453 if (prev_nl && prev_nl->var_rank == 0)
3454 prev_nl = NULL;
3457 free_saved (dtp);
3458 free_line (dtp);
3459 return;
3462 nml_err_ret:
3464 /* All namelist error calls return from here */
3465 free_saved (dtp);
3466 free_line (dtp);
3467 generate_error (&dtp->common, LIBERROR_READ_VALUE, nml_err_msg);
3468 return;