1 /* RTL dead store elimination.
2 Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
3 Free Software Foundation, Inc.
5 Contributed by Richard Sandiford <rsandifor@codesourcery.com>
6 and Kenneth Zadeck <zadeck@naturalbridge.com>
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 3, or (at your option) any later
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
28 #include "coretypes.h"
35 #include "hard-reg-set.h"
40 #include "tree-pass.h"
41 #include "alloc-pool.h"
43 #include "insn-config.h"
50 #include "tree-flow.h" /* for may_be_aliased */
52 /* This file contains three techniques for performing Dead Store
55 * The first technique performs dse locally on any base address. It
56 is based on the cselib which is a local value numbering technique.
57 This technique is local to a basic block but deals with a fairly
60 * The second technique performs dse globally but is restricted to
61 base addresses that are either constant or are relative to the
64 * The third technique, (which is only done after register allocation)
65 processes the spill spill slots. This differs from the second
66 technique because it takes advantage of the fact that spilling is
67 completely free from the effects of aliasing.
69 Logically, dse is a backwards dataflow problem. A store can be
70 deleted if it if cannot be reached in the backward direction by any
71 use of the value being stored. However, the local technique uses a
72 forwards scan of the basic block because cselib requires that the
73 block be processed in that order.
75 The pass is logically broken into 7 steps:
79 1) The local algorithm, as well as scanning the insns for the two
82 2) Analysis to see if the global algs are necessary. In the case
83 of stores base on a constant address, there must be at least two
84 stores to that address, to make it possible to delete some of the
85 stores. In the case of stores off of the frame or spill related
86 stores, only one store to an address is necessary because those
87 stores die at the end of the function.
89 3) Set up the global dataflow equations based on processing the
90 info parsed in the first step.
92 4) Solve the dataflow equations.
94 5) Delete the insns that the global analysis has indicated are
97 6) Delete insns that store the same value as preceding store
98 where the earlier store couldn't be eliminated.
102 This step uses cselib and canon_rtx to build the largest expression
103 possible for each address. This pass is a forwards pass through
104 each basic block. From the point of view of the global technique,
105 the first pass could examine a block in either direction. The
106 forwards ordering is to accommodate cselib.
108 We make a simplifying assumption: addresses fall into four broad
111 1) base has rtx_varies_p == false, offset is constant.
112 2) base has rtx_varies_p == false, offset variable.
113 3) base has rtx_varies_p == true, offset constant.
114 4) base has rtx_varies_p == true, offset variable.
116 The local passes are able to process all 4 kinds of addresses. The
117 global pass only handles 1).
119 The global problem is formulated as follows:
121 A store, S1, to address A, where A is not relative to the stack
122 frame, can be eliminated if all paths from S1 to the end of the
123 function contain another store to A before a read to A.
125 If the address A is relative to the stack frame, a store S2 to A
126 can be eliminated if there are no paths from S2 that reach the
127 end of the function that read A before another store to A. In
128 this case S2 can be deleted if there are paths from S2 to the
129 end of the function that have no reads or writes to A. This
130 second case allows stores to the stack frame to be deleted that
131 would otherwise die when the function returns. This cannot be
132 done if stores_off_frame_dead_at_return is not true. See the doc
133 for that variable for when this variable is false.
135 The global problem is formulated as a backwards set union
136 dataflow problem where the stores are the gens and reads are the
137 kills. Set union problems are rare and require some special
138 handling given our representation of bitmaps. A straightforward
139 implementation requires a lot of bitmaps filled with 1s.
140 These are expensive and cumbersome in our bitmap formulation so
141 care has been taken to avoid large vectors filled with 1s. See
142 the comments in bb_info and in the dataflow confluence functions
145 There are two places for further enhancements to this algorithm:
147 1) The original dse which was embedded in a pass called flow also
148 did local address forwarding. For example in
153 flow would replace the right hand side of the second insn with a
154 reference to r100. Most of the information is available to add this
155 to this pass. It has not done it because it is a lot of work in
156 the case that either r100 is assigned to between the first and
157 second insn and/or the second insn is a load of part of the value
158 stored by the first insn.
160 insn 5 in gcc.c-torture/compile/990203-1.c simple case.
161 insn 15 in gcc.c-torture/execute/20001017-2.c simple case.
162 insn 25 in gcc.c-torture/execute/20001026-1.c simple case.
163 insn 44 in gcc.c-torture/execute/20010910-1.c simple case.
165 2) The cleaning up of spill code is quite profitable. It currently
166 depends on reading tea leaves and chicken entrails left by reload.
167 This pass depends on reload creating a singleton alias set for each
168 spill slot and telling the next dse pass which of these alias sets
169 are the singletons. Rather than analyze the addresses of the
170 spills, dse's spill processing just does analysis of the loads and
171 stores that use those alias sets. There are three cases where this
174 a) Reload sometimes creates the slot for one mode of access, and
175 then inserts loads and/or stores for a smaller mode. In this
176 case, the current code just punts on the slot. The proper thing
177 to do is to back out and use one bit vector position for each
178 byte of the entity associated with the slot. This depends on
179 KNOWING that reload always generates the accesses for each of the
180 bytes in some canonical (read that easy to understand several
181 passes after reload happens) way.
183 b) Reload sometimes decides that spill slot it allocated was not
184 large enough for the mode and goes back and allocates more slots
185 with the same mode and alias set. The backout in this case is a
186 little more graceful than (a). In this case the slot is unmarked
187 as being a spill slot and if final address comes out to be based
188 off the frame pointer, the global algorithm handles this slot.
190 c) For any pass that may prespill, there is currently no
191 mechanism to tell the dse pass that the slot being used has the
192 special properties that reload uses. It may be that all that is
193 required is to have those passes make the same calls that reload
194 does, assuming that the alias sets can be manipulated in the same
197 /* There are limits to the size of constant offsets we model for the
198 global problem. There are certainly test cases, that exceed this
199 limit, however, it is unlikely that there are important programs
200 that really have constant offsets this size. */
201 #define MAX_OFFSET (64 * 1024)
203 /* Obstack for the DSE dataflow bitmaps. We don't want to put these
204 on the default obstack because these bitmaps can grow quite large
205 (~2GB for the small (!) test case of PR54146) and we'll hold on to
206 all that memory until the end of the compiler run.
207 As a bonus, delete_tree_live_info can destroy all the bitmaps by just
208 releasing the whole obstack. */
209 static bitmap_obstack dse_bitmap_obstack
;
211 /* Obstack for other data. As for above: Kinda nice to be able to
212 throw it all away at the end in one big sweep. */
213 static struct obstack dse_obstack
;
215 /* Scratch bitmap for cselib's cselib_expand_value_rtx. */
216 static bitmap scratch
= NULL
;
220 /* This structure holds information about a candidate store. */
224 /* False means this is a clobber. */
227 /* False if a single HOST_WIDE_INT bitmap is used for positions_needed. */
230 /* The id of the mem group of the base address. If rtx_varies_p is
231 true, this is -1. Otherwise, it is the index into the group
235 /* This is the cselib value. */
236 cselib_val
*cse_base
;
238 /* This canonized mem. */
241 /* Canonized MEM address for use by canon_true_dependence. */
244 /* If this is non-zero, it is the alias set of a spill location. */
245 alias_set_type alias_set
;
247 /* The offset of the first and byte before the last byte associated
248 with the operation. */
249 HOST_WIDE_INT begin
, end
;
253 /* A bitmask as wide as the number of bytes in the word that
254 contains a 1 if the byte may be needed. The store is unused if
255 all of the bits are 0. This is used if IS_LARGE is false. */
256 unsigned HOST_WIDE_INT small_bitmask
;
260 /* A bitmap with one bit per byte. Cleared bit means the position
261 is needed. Used if IS_LARGE is false. */
264 /* Number of set bits (i.e. unneeded bytes) in BITMAP. If it is
265 equal to END - BEGIN, the whole store is unused. */
270 /* The next store info for this insn. */
271 struct store_info
*next
;
273 /* The right hand side of the store. This is used if there is a
274 subsequent reload of the mems address somewhere later in the
278 /* If rhs is or holds a constant, this contains that constant,
282 /* Set if this store stores the same constant value as REDUNDANT_REASON
283 insn stored. These aren't eliminated early, because doing that
284 might prevent the earlier larger store to be eliminated. */
285 struct insn_info
*redundant_reason
;
288 /* Return a bitmask with the first N low bits set. */
290 static unsigned HOST_WIDE_INT
291 lowpart_bitmask (int n
)
293 unsigned HOST_WIDE_INT mask
= ~(unsigned HOST_WIDE_INT
) 0;
294 return mask
>> (HOST_BITS_PER_WIDE_INT
- n
);
297 typedef struct store_info
*store_info_t
;
298 static alloc_pool cse_store_info_pool
;
299 static alloc_pool rtx_store_info_pool
;
301 /* This structure holds information about a load. These are only
302 built for rtx bases. */
305 /* The id of the mem group of the base address. */
308 /* If this is non-zero, it is the alias set of a spill location. */
309 alias_set_type alias_set
;
311 /* The offset of the first and byte after the last byte associated
312 with the operation. If begin == end == 0, the read did not have
313 a constant offset. */
316 /* The mem being read. */
319 /* The next read_info for this insn. */
320 struct read_info
*next
;
322 typedef struct read_info
*read_info_t
;
323 static alloc_pool read_info_pool
;
326 /* One of these records is created for each insn. */
330 /* Set true if the insn contains a store but the insn itself cannot
331 be deleted. This is set if the insn is a parallel and there is
332 more than one non dead output or if the insn is in some way
336 /* This field is only used by the global algorithm. It is set true
337 if the insn contains any read of mem except for a (1). This is
338 also set if the insn is a call or has a clobber mem. If the insn
339 contains a wild read, the use_rec will be null. */
342 /* This is true only for CALL instructions which could potentially read
343 any non-frame memory location. This field is used by the global
345 bool non_frame_wild_read
;
347 /* This field is only used for the processing of const functions.
348 These functions cannot read memory, but they can read the stack
349 because that is where they may get their parms. We need to be
350 this conservative because, like the store motion pass, we don't
351 consider CALL_INSN_FUNCTION_USAGE when processing call insns.
352 Moreover, we need to distinguish two cases:
353 1. Before reload (register elimination), the stores related to
354 outgoing arguments are stack pointer based and thus deemed
355 of non-constant base in this pass. This requires special
356 handling but also means that the frame pointer based stores
357 need not be killed upon encountering a const function call.
358 2. After reload, the stores related to outgoing arguments can be
359 either stack pointer or hard frame pointer based. This means
360 that we have no other choice than also killing all the frame
361 pointer based stores upon encountering a const function call.
362 This field is set after reload for const function calls. Having
363 this set is less severe than a wild read, it just means that all
364 the frame related stores are killed rather than all the stores. */
367 /* This field is only used for the processing of const functions.
368 It is set if the insn may contain a stack pointer based store. */
369 bool stack_pointer_based
;
371 /* This is true if any of the sets within the store contains a
372 cselib base. Such stores can only be deleted by the local
374 bool contains_cselib_groups
;
379 /* The list of mem sets or mem clobbers that are contained in this
380 insn. If the insn is deletable, it contains only one mem set.
381 But it could also contain clobbers. Insns that contain more than
382 one mem set are not deletable, but each of those mems are here in
383 order to provide info to delete other insns. */
384 store_info_t store_rec
;
386 /* The linked list of mem uses in this insn. Only the reads from
387 rtx bases are listed here. The reads to cselib bases are
388 completely processed during the first scan and so are never
390 read_info_t read_rec
;
392 /* The live fixed registers. We assume only fixed registers can
393 cause trouble by being clobbered from an expanded pattern;
394 storing only the live fixed registers (rather than all registers)
395 means less memory needs to be allocated / copied for the individual
397 regset fixed_regs_live
;
399 /* The prev insn in the basic block. */
400 struct insn_info
* prev_insn
;
402 /* The linked list of insns that are in consideration for removal in
403 the forwards pass through the basic block. This pointer may be
404 trash as it is not cleared when a wild read occurs. The only
405 time it is guaranteed to be correct is when the traversal starts
406 at active_local_stores. */
407 struct insn_info
* next_local_store
;
410 typedef struct insn_info
*insn_info_t
;
411 static alloc_pool insn_info_pool
;
413 /* The linked list of stores that are under consideration in this
415 static insn_info_t active_local_stores
;
416 static int active_local_stores_len
;
421 /* Pointer to the insn info for the last insn in the block. These
422 are linked so this is how all of the insns are reached. During
423 scanning this is the current insn being scanned. */
424 insn_info_t last_insn
;
426 /* The info for the global dataflow problem. */
429 /* This is set if the transfer function should and in the wild_read
430 bitmap before applying the kill and gen sets. That vector knocks
431 out most of the bits in the bitmap and thus speeds up the
433 bool apply_wild_read
;
435 /* The following 4 bitvectors hold information about which positions
436 of which stores are live or dead. They are indexed by
439 /* The set of store positions that exist in this block before a wild read. */
442 /* The set of load positions that exist in this block above the
443 same position of a store. */
446 /* The set of stores that reach the top of the block without being
449 Do not represent the in if it is all ones. Note that this is
450 what the bitvector should logically be initialized to for a set
451 intersection problem. However, like the kill set, this is too
452 expensive. So initially, the in set will only be created for the
453 exit block and any block that contains a wild read. */
456 /* The set of stores that reach the bottom of the block from it's
459 Do not represent the in if it is all ones. Note that this is
460 what the bitvector should logically be initialized to for a set
461 intersection problem. However, like the kill and in set, this is
462 too expensive. So what is done is that the confluence operator
463 just initializes the vector from one of the out sets of the
464 successors of the block. */
467 /* The following bitvector is indexed by the reg number. It
468 contains the set of regs that are live at the current instruction
469 being processed. While it contains info for all of the
470 registers, only the hard registers are actually examined. It is used
471 to assure that shift and/or add sequences that are inserted do not
472 accidentally clobber live hard regs. */
476 typedef struct bb_info
*bb_info_t
;
477 static alloc_pool bb_info_pool
;
479 /* Table to hold all bb_infos. */
480 static bb_info_t
*bb_table
;
482 /* There is a group_info for each rtx base that is used to reference
483 memory. There are also not many of the rtx bases because they are
484 very limited in scope. */
488 /* The actual base of the address. */
491 /* The sequential id of the base. This allows us to have a
492 canonical ordering of these that is not based on addresses. */
495 /* True if there are any positions that are to be processed
497 bool process_globally
;
499 /* True if the base of this group is either the frame_pointer or
500 hard_frame_pointer. */
503 /* A mem wrapped around the base pointer for the group in order to do
504 read dependency. It must be given BLKmode in order to encompass all
505 the possible offsets from the base. */
508 /* Canonized version of base_mem's address. */
511 /* These two sets of two bitmaps are used to keep track of how many
512 stores are actually referencing that position from this base. We
513 only do this for rtx bases as this will be used to assign
514 positions in the bitmaps for the global problem. Bit N is set in
515 store1 on the first store for offset N. Bit N is set in store2
516 for the second store to offset N. This is all we need since we
517 only care about offsets that have two or more stores for them.
519 The "_n" suffix is for offsets less than 0 and the "_p" suffix is
520 for 0 and greater offsets.
522 There is one special case here, for stores into the stack frame,
523 we will or store1 into store2 before deciding which stores look
524 at globally. This is because stores to the stack frame that have
525 no other reads before the end of the function can also be
527 bitmap store1_n
, store1_p
, store2_n
, store2_p
;
529 /* These bitmaps keep track of offsets in this group escape this function.
530 An offset escapes if it corresponds to a named variable whose
531 addressable flag is set. */
532 bitmap escaped_n
, escaped_p
;
534 /* The positions in this bitmap have the same assignments as the in,
535 out, gen and kill bitmaps. This bitmap is all zeros except for
536 the positions that are occupied by stores for this group. */
539 /* The offset_map is used to map the offsets from this base into
540 positions in the global bitmaps. It is only created after all of
541 the all of stores have been scanned and we know which ones we
543 int *offset_map_n
, *offset_map_p
;
544 int offset_map_size_n
, offset_map_size_p
;
546 typedef struct group_info
*group_info_t
;
547 typedef const struct group_info
*const_group_info_t
;
548 static alloc_pool rtx_group_info_pool
;
550 /* Tables of group_info structures, hashed by base value. */
551 static htab_t rtx_group_table
;
553 /* Index into the rtx_group_vec. */
554 static int rtx_group_next_id
;
556 DEF_VEC_P(group_info_t
);
557 DEF_VEC_ALLOC_P(group_info_t
,heap
);
559 static VEC(group_info_t
,heap
) *rtx_group_vec
;
562 /* This structure holds the set of changes that are being deferred
563 when removing read operation. See replace_read. */
564 struct deferred_change
567 /* The mem that is being replaced. */
570 /* The reg it is being replaced with. */
573 struct deferred_change
*next
;
576 typedef struct deferred_change
*deferred_change_t
;
577 static alloc_pool deferred_change_pool
;
579 static deferred_change_t deferred_change_list
= NULL
;
581 /* This are used to hold the alias sets of spill variables. Since
582 these are never aliased and there may be a lot of them, it makes
583 sense to treat them specially. This bitvector is only allocated in
584 calls from dse_record_singleton_alias_set which currently is only
585 made during reload1. So when dse is called before reload this
586 mechanism does nothing. */
588 static bitmap clear_alias_sets
= NULL
;
590 /* The set of clear_alias_sets that have been disqualified because
591 there are loads or stores using a different mode than the alias set
592 was registered with. */
593 static bitmap disqualified_clear_alias_sets
= NULL
;
595 /* The group that holds all of the clear_alias_sets. */
596 static group_info_t clear_alias_group
;
598 /* The modes of the clear_alias_sets. */
599 static htab_t clear_alias_mode_table
;
601 /* Hash table element to look up the mode for an alias set. */
602 struct clear_alias_mode_holder
604 alias_set_type alias_set
;
605 enum machine_mode mode
;
608 static alloc_pool clear_alias_mode_pool
;
610 /* This is true except if cfun->stdarg -- i.e. we cannot do
611 this for vararg functions because they play games with the frame. */
612 static bool stores_off_frame_dead_at_return
;
614 /* Counter for stats. */
615 static int globally_deleted
;
616 static int locally_deleted
;
617 static int spill_deleted
;
619 static bitmap all_blocks
;
621 /* Locations that are killed by calls in the global phase. */
622 static bitmap kill_on_calls
;
624 /* The number of bits used in the global bitmaps. */
625 static unsigned int current_position
;
628 static bool gate_dse1 (void);
629 static bool gate_dse2 (void);
632 /*----------------------------------------------------------------------------
636 ----------------------------------------------------------------------------*/
639 /* Find the entry associated with ALIAS_SET. */
641 static struct clear_alias_mode_holder
*
642 clear_alias_set_lookup (alias_set_type alias_set
)
644 struct clear_alias_mode_holder tmp_holder
;
647 tmp_holder
.alias_set
= alias_set
;
648 slot
= htab_find_slot (clear_alias_mode_table
, &tmp_holder
, NO_INSERT
);
651 return (struct clear_alias_mode_holder
*) *slot
;
655 /* Hashtable callbacks for maintaining the "bases" field of
656 store_group_info, given that the addresses are function invariants. */
659 invariant_group_base_eq (const void *p1
, const void *p2
)
661 const_group_info_t gi1
= (const_group_info_t
) p1
;
662 const_group_info_t gi2
= (const_group_info_t
) p2
;
663 return rtx_equal_p (gi1
->rtx_base
, gi2
->rtx_base
);
668 invariant_group_base_hash (const void *p
)
670 const_group_info_t gi
= (const_group_info_t
) p
;
672 return hash_rtx (gi
->rtx_base
, Pmode
, &do_not_record
, NULL
, false);
676 /* Get the GROUP for BASE. Add a new group if it is not there. */
679 get_group_info (rtx base
)
681 struct group_info tmp_gi
;
687 /* Find the store_base_info structure for BASE, creating a new one
689 tmp_gi
.rtx_base
= base
;
690 slot
= htab_find_slot (rtx_group_table
, &tmp_gi
, INSERT
);
691 gi
= (group_info_t
) *slot
;
695 if (!clear_alias_group
)
697 clear_alias_group
= gi
=
698 (group_info_t
) pool_alloc (rtx_group_info_pool
);
699 memset (gi
, 0, sizeof (struct group_info
));
700 gi
->id
= rtx_group_next_id
++;
701 gi
->store1_n
= BITMAP_ALLOC (&dse_bitmap_obstack
);
702 gi
->store1_p
= BITMAP_ALLOC (&dse_bitmap_obstack
);
703 gi
->store2_n
= BITMAP_ALLOC (&dse_bitmap_obstack
);
704 gi
->store2_p
= BITMAP_ALLOC (&dse_bitmap_obstack
);
705 gi
->escaped_p
= BITMAP_ALLOC (&dse_bitmap_obstack
);
706 gi
->escaped_n
= BITMAP_ALLOC (&dse_bitmap_obstack
);
707 gi
->group_kill
= BITMAP_ALLOC (&dse_bitmap_obstack
);
708 gi
->process_globally
= false;
709 gi
->offset_map_size_n
= 0;
710 gi
->offset_map_size_p
= 0;
711 gi
->offset_map_n
= NULL
;
712 gi
->offset_map_p
= NULL
;
713 VEC_safe_push (group_info_t
, heap
, rtx_group_vec
, gi
);
715 return clear_alias_group
;
720 *slot
= gi
= (group_info_t
) pool_alloc (rtx_group_info_pool
);
722 gi
->id
= rtx_group_next_id
++;
723 gi
->base_mem
= gen_rtx_MEM (BLKmode
, base
);
724 gi
->canon_base_addr
= canon_rtx (base
);
725 gi
->store1_n
= BITMAP_ALLOC (&dse_bitmap_obstack
);
726 gi
->store1_p
= BITMAP_ALLOC (&dse_bitmap_obstack
);
727 gi
->store2_n
= BITMAP_ALLOC (&dse_bitmap_obstack
);
728 gi
->store2_p
= BITMAP_ALLOC (&dse_bitmap_obstack
);
729 gi
->escaped_p
= BITMAP_ALLOC (&dse_bitmap_obstack
);
730 gi
->escaped_n
= BITMAP_ALLOC (&dse_bitmap_obstack
);
731 gi
->group_kill
= BITMAP_ALLOC (&dse_bitmap_obstack
);
732 gi
->process_globally
= false;
734 (base
== frame_pointer_rtx
) || (base
== hard_frame_pointer_rtx
);
735 gi
->offset_map_size_n
= 0;
736 gi
->offset_map_size_p
= 0;
737 gi
->offset_map_n
= NULL
;
738 gi
->offset_map_p
= NULL
;
739 VEC_safe_push (group_info_t
, heap
, rtx_group_vec
, gi
);
746 /* Initialization of data structures. */
752 globally_deleted
= 0;
755 bitmap_obstack_initialize (&dse_bitmap_obstack
);
756 gcc_obstack_init (&dse_obstack
);
758 scratch
= BITMAP_ALLOC (®_obstack
);
759 kill_on_calls
= BITMAP_ALLOC (&dse_bitmap_obstack
);
762 = create_alloc_pool ("rtx_store_info_pool",
763 sizeof (struct store_info
), 100);
765 = create_alloc_pool ("read_info_pool",
766 sizeof (struct read_info
), 100);
768 = create_alloc_pool ("insn_info_pool",
769 sizeof (struct insn_info
), 100);
771 = create_alloc_pool ("bb_info_pool",
772 sizeof (struct bb_info
), 100);
774 = create_alloc_pool ("rtx_group_info_pool",
775 sizeof (struct group_info
), 100);
777 = create_alloc_pool ("deferred_change_pool",
778 sizeof (struct deferred_change
), 10);
780 rtx_group_table
= htab_create (11, invariant_group_base_hash
,
781 invariant_group_base_eq
, NULL
);
783 bb_table
= XNEWVEC (bb_info_t
, last_basic_block
);
784 rtx_group_next_id
= 0;
786 stores_off_frame_dead_at_return
= !cfun
->stdarg
;
788 init_alias_analysis ();
790 if (clear_alias_sets
)
791 clear_alias_group
= get_group_info (NULL
);
793 clear_alias_group
= NULL
;
798 /*----------------------------------------------------------------------------
801 Scan all of the insns. Any random ordering of the blocks is fine.
802 Each block is scanned in forward order to accommodate cselib which
803 is used to remove stores with non-constant bases.
804 ----------------------------------------------------------------------------*/
806 /* Delete all of the store_info recs from INSN_INFO. */
809 free_store_info (insn_info_t insn_info
)
811 store_info_t store_info
= insn_info
->store_rec
;
814 store_info_t next
= store_info
->next
;
815 if (store_info
->is_large
)
816 BITMAP_FREE (store_info
->positions_needed
.large
.bmap
);
817 if (store_info
->cse_base
)
818 pool_free (cse_store_info_pool
, store_info
);
820 pool_free (rtx_store_info_pool
, store_info
);
824 insn_info
->cannot_delete
= true;
825 insn_info
->contains_cselib_groups
= false;
826 insn_info
->store_rec
= NULL
;
832 regset fixed_regs_live
;
834 } note_add_store_info
;
836 /* Callback for emit_inc_dec_insn_before via note_stores.
837 Check if a register is clobbered which is live afterwards. */
840 note_add_store (rtx loc
, const_rtx expr ATTRIBUTE_UNUSED
, void *data
)
843 note_add_store_info
*info
= (note_add_store_info
*) data
;
849 /* If this register is referenced by the current or an earlier insn,
850 that's OK. E.g. this applies to the register that is being incremented
851 with this addition. */
852 for (insn
= info
->first
;
853 insn
!= NEXT_INSN (info
->current
);
854 insn
= NEXT_INSN (insn
))
855 if (reg_referenced_p (loc
, PATTERN (insn
)))
858 /* If we come here, we have a clobber of a register that's only OK
859 if that register is not live. If we don't have liveness information
860 available, fail now. */
861 if (!info
->fixed_regs_live
)
863 info
->failure
= true;
866 /* Now check if this is a live fixed register. */
868 n
= hard_regno_nregs
[r
][GET_MODE (loc
)];
870 if (REGNO_REG_SET_P (info
->fixed_regs_live
, r
+n
))
871 info
->failure
= true;
874 /* Callback for for_each_inc_dec that emits an INSN that sets DEST to
875 SRC + SRCOFF before insn ARG. */
878 emit_inc_dec_insn_before (rtx mem ATTRIBUTE_UNUSED
,
879 rtx op ATTRIBUTE_UNUSED
,
880 rtx dest
, rtx src
, rtx srcoff
, void *arg
)
882 insn_info_t insn_info
= (insn_info_t
) arg
;
883 rtx insn
= insn_info
->insn
, new_insn
, cur
;
884 note_add_store_info info
;
886 /* We can reuse all operands without copying, because we are about
887 to delete the insn that contained it. */
891 emit_insn (gen_add3_insn (dest
, src
, srcoff
));
892 new_insn
= get_insns ();
896 new_insn
= gen_move_insn (dest
, src
);
897 info
.first
= new_insn
;
898 info
.fixed_regs_live
= insn_info
->fixed_regs_live
;
899 info
.failure
= false;
900 for (cur
= new_insn
; cur
; cur
= NEXT_INSN (cur
))
903 note_stores (PATTERN (cur
), note_add_store
, &info
);
906 /* If a failure was flagged above, return 1 so that for_each_inc_dec will
907 return it immediately, communicating the failure to its caller. */
911 emit_insn_before (new_insn
, insn
);
916 /* Before we delete INSN_INFO->INSN, make sure that the auto inc/dec, if it
917 is there, is split into a separate insn.
918 Return true on success (or if there was nothing to do), false on failure. */
921 check_for_inc_dec_1 (insn_info_t insn_info
)
923 rtx insn
= insn_info
->insn
;
924 rtx note
= find_reg_note (insn
, REG_INC
, NULL_RTX
);
926 return for_each_inc_dec (&insn
, emit_inc_dec_insn_before
, insn_info
) == 0;
931 /* Entry point for postreload. If you work on reload_cse, or you need this
932 anywhere else, consider if you can provide register liveness information
933 and add a parameter to this function so that it can be passed down in
934 insn_info.fixed_regs_live. */
936 check_for_inc_dec (rtx insn
)
938 struct insn_info insn_info
;
941 insn_info
.insn
= insn
;
942 insn_info
.fixed_regs_live
= NULL
;
943 note
= find_reg_note (insn
, REG_INC
, NULL_RTX
);
945 return for_each_inc_dec (&insn
, emit_inc_dec_insn_before
, &insn_info
) == 0;
949 /* Delete the insn and free all of the fields inside INSN_INFO. */
952 delete_dead_store_insn (insn_info_t insn_info
)
954 read_info_t read_info
;
959 if (!check_for_inc_dec_1 (insn_info
))
963 fprintf (dump_file
, "Locally deleting insn %d ",
964 INSN_UID (insn_info
->insn
));
965 if (insn_info
->store_rec
->alias_set
)
966 fprintf (dump_file
, "alias set %d\n",
967 (int) insn_info
->store_rec
->alias_set
);
969 fprintf (dump_file
, "\n");
972 free_store_info (insn_info
);
973 read_info
= insn_info
->read_rec
;
977 read_info_t next
= read_info
->next
;
978 pool_free (read_info_pool
, read_info
);
981 insn_info
->read_rec
= NULL
;
983 delete_insn (insn_info
->insn
);
985 insn_info
->insn
= NULL
;
987 insn_info
->wild_read
= false;
990 /* Check if EXPR can possibly escape the current function scope. */
992 can_escape (tree expr
)
997 base
= get_base_address (expr
);
999 && !may_be_aliased (base
))
1004 /* Set the store* bitmaps offset_map_size* fields in GROUP based on
1005 OFFSET and WIDTH. */
1008 set_usage_bits (group_info_t group
, HOST_WIDE_INT offset
, HOST_WIDE_INT width
,
1012 bool expr_escapes
= can_escape (expr
);
1013 if (offset
> -MAX_OFFSET
&& offset
+ width
< MAX_OFFSET
)
1014 for (i
=offset
; i
<offset
+width
; i
++)
1022 store1
= group
->store1_n
;
1023 store2
= group
->store2_n
;
1024 escaped
= group
->escaped_n
;
1029 store1
= group
->store1_p
;
1030 store2
= group
->store2_p
;
1031 escaped
= group
->escaped_p
;
1035 if (!bitmap_set_bit (store1
, ai
))
1036 bitmap_set_bit (store2
, ai
);
1041 if (group
->offset_map_size_n
< ai
)
1042 group
->offset_map_size_n
= ai
;
1046 if (group
->offset_map_size_p
< ai
)
1047 group
->offset_map_size_p
= ai
;
1051 bitmap_set_bit (escaped
, ai
);
1056 reset_active_stores (void)
1058 active_local_stores
= NULL
;
1059 active_local_stores_len
= 0;
1062 /* Free all READ_REC of the LAST_INSN of BB_INFO. */
1065 free_read_records (bb_info_t bb_info
)
1067 insn_info_t insn_info
= bb_info
->last_insn
;
1068 read_info_t
*ptr
= &insn_info
->read_rec
;
1071 read_info_t next
= (*ptr
)->next
;
1072 if ((*ptr
)->alias_set
== 0)
1074 pool_free (read_info_pool
, *ptr
);
1078 ptr
= &(*ptr
)->next
;
1082 /* Set the BB_INFO so that the last insn is marked as a wild read. */
1085 add_wild_read (bb_info_t bb_info
)
1087 insn_info_t insn_info
= bb_info
->last_insn
;
1088 insn_info
->wild_read
= true;
1089 free_read_records (bb_info
);
1090 reset_active_stores ();
1093 /* Set the BB_INFO so that the last insn is marked as a wild read of
1094 non-frame locations. */
1097 add_non_frame_wild_read (bb_info_t bb_info
)
1099 insn_info_t insn_info
= bb_info
->last_insn
;
1100 insn_info
->non_frame_wild_read
= true;
1101 free_read_records (bb_info
);
1102 reset_active_stores ();
1105 /* Return true if X is a constant or one of the registers that behave
1106 as a constant over the life of a function. This is equivalent to
1107 !rtx_varies_p for memory addresses. */
1110 const_or_frame_p (rtx x
)
1115 if (GET_CODE (x
) == REG
)
1117 /* Note that we have to test for the actual rtx used for the frame
1118 and arg pointers and not just the register number in case we have
1119 eliminated the frame and/or arg pointer and are using it
1121 if (x
== frame_pointer_rtx
|| x
== hard_frame_pointer_rtx
1122 /* The arg pointer varies if it is not a fixed register. */
1123 || (x
== arg_pointer_rtx
&& fixed_regs
[ARG_POINTER_REGNUM
])
1124 || x
== pic_offset_table_rtx
)
1132 /* Take all reasonable action to put the address of MEM into the form
1133 that we can do analysis on.
1135 The gold standard is to get the address into the form: address +
1136 OFFSET where address is something that rtx_varies_p considers a
1137 constant. When we can get the address in this form, we can do
1138 global analysis on it. Note that for constant bases, address is
1139 not actually returned, only the group_id. The address can be
1142 If that fails, we try cselib to get a value we can at least use
1143 locally. If that fails we return false.
1145 The GROUP_ID is set to -1 for cselib bases and the index of the
1146 group for non_varying bases.
1148 FOR_READ is true if this is a mem read and false if not. */
1151 canon_address (rtx mem
,
1152 alias_set_type
*alias_set_out
,
1154 HOST_WIDE_INT
*offset
,
1157 enum machine_mode address_mode
= get_address_mode (mem
);
1158 rtx mem_address
= XEXP (mem
, 0);
1159 rtx expanded_address
, address
;
1162 /* Make sure that cselib is has initialized all of the operands of
1163 the address before asking it to do the subst. */
1165 if (clear_alias_sets
)
1167 /* If this is a spill, do not do any further processing. */
1168 alias_set_type alias_set
= MEM_ALIAS_SET (mem
);
1170 fprintf (dump_file
, "found alias set %d\n", (int) alias_set
);
1171 if (bitmap_bit_p (clear_alias_sets
, alias_set
))
1173 struct clear_alias_mode_holder
*entry
1174 = clear_alias_set_lookup (alias_set
);
1176 /* If the modes do not match, we cannot process this set. */
1177 if (entry
->mode
!= GET_MODE (mem
))
1181 "disqualifying alias set %d, (%s) != (%s)\n",
1182 (int) alias_set
, GET_MODE_NAME (entry
->mode
),
1183 GET_MODE_NAME (GET_MODE (mem
)));
1185 bitmap_set_bit (disqualified_clear_alias_sets
, alias_set
);
1189 *alias_set_out
= alias_set
;
1190 *group_id
= clear_alias_group
->id
;
1197 cselib_lookup (mem_address
, address_mode
, 1, GET_MODE (mem
));
1201 fprintf (dump_file
, " mem: ");
1202 print_inline_rtx (dump_file
, mem_address
, 0);
1203 fprintf (dump_file
, "\n");
1206 /* First see if just canon_rtx (mem_address) is const or frame,
1207 if not, try cselib_expand_value_rtx and call canon_rtx on that. */
1209 for (expanded
= 0; expanded
< 2; expanded
++)
1213 /* Use cselib to replace all of the reg references with the full
1214 expression. This will take care of the case where we have
1216 r_x = base + offset;
1221 val = *(base + offset); */
1223 expanded_address
= cselib_expand_value_rtx (mem_address
,
1226 /* If this fails, just go with the address from first
1228 if (!expanded_address
)
1232 expanded_address
= mem_address
;
1234 /* Split the address into canonical BASE + OFFSET terms. */
1235 address
= canon_rtx (expanded_address
);
1243 fprintf (dump_file
, "\n after cselib_expand address: ");
1244 print_inline_rtx (dump_file
, expanded_address
, 0);
1245 fprintf (dump_file
, "\n");
1248 fprintf (dump_file
, "\n after canon_rtx address: ");
1249 print_inline_rtx (dump_file
, address
, 0);
1250 fprintf (dump_file
, "\n");
1253 if (GET_CODE (address
) == CONST
)
1254 address
= XEXP (address
, 0);
1256 if (GET_CODE (address
) == PLUS
1257 && CONST_INT_P (XEXP (address
, 1)))
1259 *offset
= INTVAL (XEXP (address
, 1));
1260 address
= XEXP (address
, 0);
1263 if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (mem
))
1264 && const_or_frame_p (address
))
1266 group_info_t group
= get_group_info (address
);
1269 fprintf (dump_file
, " gid=%d offset=%d \n",
1270 group
->id
, (int)*offset
);
1272 *group_id
= group
->id
;
1277 *base
= cselib_lookup (address
, address_mode
, true, GET_MODE (mem
));
1283 fprintf (dump_file
, " no cselib val - should be a wild read.\n");
1287 fprintf (dump_file
, " varying cselib base=%u:%u offset = %d\n",
1288 (*base
)->uid
, (*base
)->hash
, (int)*offset
);
1293 /* Clear the rhs field from the active_local_stores array. */
1296 clear_rhs_from_active_local_stores (void)
1298 insn_info_t ptr
= active_local_stores
;
1302 store_info_t store_info
= ptr
->store_rec
;
1303 /* Skip the clobbers. */
1304 while (!store_info
->is_set
)
1305 store_info
= store_info
->next
;
1307 store_info
->rhs
= NULL
;
1308 store_info
->const_rhs
= NULL
;
1310 ptr
= ptr
->next_local_store
;
1315 /* Mark byte POS bytes from the beginning of store S_INFO as unneeded. */
1318 set_position_unneeded (store_info_t s_info
, int pos
)
1320 if (__builtin_expect (s_info
->is_large
, false))
1322 if (bitmap_set_bit (s_info
->positions_needed
.large
.bmap
, pos
))
1323 s_info
->positions_needed
.large
.count
++;
1326 s_info
->positions_needed
.small_bitmask
1327 &= ~(((unsigned HOST_WIDE_INT
) 1) << pos
);
1330 /* Mark the whole store S_INFO as unneeded. */
1333 set_all_positions_unneeded (store_info_t s_info
)
1335 if (__builtin_expect (s_info
->is_large
, false))
1337 int pos
, end
= s_info
->end
- s_info
->begin
;
1338 for (pos
= 0; pos
< end
; pos
++)
1339 bitmap_set_bit (s_info
->positions_needed
.large
.bmap
, pos
);
1340 s_info
->positions_needed
.large
.count
= end
;
1343 s_info
->positions_needed
.small_bitmask
= (unsigned HOST_WIDE_INT
) 0;
1346 /* Return TRUE if any bytes from S_INFO store are needed. */
1349 any_positions_needed_p (store_info_t s_info
)
1351 if (__builtin_expect (s_info
->is_large
, false))
1352 return (s_info
->positions_needed
.large
.count
1353 < s_info
->end
- s_info
->begin
);
1355 return (s_info
->positions_needed
.small_bitmask
1356 != (unsigned HOST_WIDE_INT
) 0);
1359 /* Return TRUE if all bytes START through START+WIDTH-1 from S_INFO
1360 store are needed. */
1363 all_positions_needed_p (store_info_t s_info
, int start
, int width
)
1365 if (__builtin_expect (s_info
->is_large
, false))
1367 int end
= start
+ width
;
1369 if (bitmap_bit_p (s_info
->positions_needed
.large
.bmap
, start
++))
1375 unsigned HOST_WIDE_INT mask
= lowpart_bitmask (width
) << start
;
1376 return (s_info
->positions_needed
.small_bitmask
& mask
) == mask
;
1381 static rtx
get_stored_val (store_info_t
, enum machine_mode
, HOST_WIDE_INT
,
1382 HOST_WIDE_INT
, basic_block
, bool);
1385 /* BODY is an instruction pattern that belongs to INSN. Return 1 if
1386 there is a candidate store, after adding it to the appropriate
1387 local store group if so. */
1390 record_store (rtx body
, bb_info_t bb_info
)
1392 rtx mem
, rhs
, const_rhs
, mem_addr
;
1393 HOST_WIDE_INT offset
= 0;
1394 HOST_WIDE_INT width
= 0;
1395 alias_set_type spill_alias_set
;
1396 insn_info_t insn_info
= bb_info
->last_insn
;
1397 store_info_t store_info
= NULL
;
1399 cselib_val
*base
= NULL
;
1400 insn_info_t ptr
, last
, redundant_reason
;
1401 bool store_is_unused
;
1403 if (GET_CODE (body
) != SET
&& GET_CODE (body
) != CLOBBER
)
1406 mem
= SET_DEST (body
);
1408 /* If this is not used, then this cannot be used to keep the insn
1409 from being deleted. On the other hand, it does provide something
1410 that can be used to prove that another store is dead. */
1412 = (find_reg_note (insn_info
->insn
, REG_UNUSED
, mem
) != NULL
);
1414 /* Check whether that value is a suitable memory location. */
1417 /* If the set or clobber is unused, then it does not effect our
1418 ability to get rid of the entire insn. */
1419 if (!store_is_unused
)
1420 insn_info
->cannot_delete
= true;
1424 /* At this point we know mem is a mem. */
1425 if (GET_MODE (mem
) == BLKmode
)
1427 if (GET_CODE (XEXP (mem
, 0)) == SCRATCH
)
1430 fprintf (dump_file
, " adding wild read for (clobber (mem:BLK (scratch))\n");
1431 add_wild_read (bb_info
);
1432 insn_info
->cannot_delete
= true;
1435 /* Handle (set (mem:BLK (addr) [... S36 ...]) (const_int 0))
1436 as memset (addr, 0, 36); */
1437 else if (!MEM_SIZE_KNOWN_P (mem
)
1438 || MEM_SIZE (mem
) <= 0
1439 || MEM_SIZE (mem
) > MAX_OFFSET
1440 || GET_CODE (body
) != SET
1441 || !CONST_INT_P (SET_SRC (body
)))
1443 if (!store_is_unused
)
1445 /* If the set or clobber is unused, then it does not effect our
1446 ability to get rid of the entire insn. */
1447 insn_info
->cannot_delete
= true;
1448 clear_rhs_from_active_local_stores ();
1454 /* We can still process a volatile mem, we just cannot delete it. */
1455 if (MEM_VOLATILE_P (mem
))
1456 insn_info
->cannot_delete
= true;
1458 if (!canon_address (mem
, &spill_alias_set
, &group_id
, &offset
, &base
))
1460 clear_rhs_from_active_local_stores ();
1464 if (GET_MODE (mem
) == BLKmode
)
1465 width
= MEM_SIZE (mem
);
1468 width
= GET_MODE_SIZE (GET_MODE (mem
));
1469 gcc_assert ((unsigned) width
<= HOST_BITS_PER_WIDE_INT
);
1472 if (spill_alias_set
)
1474 bitmap store1
= clear_alias_group
->store1_p
;
1475 bitmap store2
= clear_alias_group
->store2_p
;
1477 gcc_assert (GET_MODE (mem
) != BLKmode
);
1479 if (!bitmap_set_bit (store1
, spill_alias_set
))
1480 bitmap_set_bit (store2
, spill_alias_set
);
1482 if (clear_alias_group
->offset_map_size_p
< spill_alias_set
)
1483 clear_alias_group
->offset_map_size_p
= spill_alias_set
;
1485 store_info
= (store_info_t
) pool_alloc (rtx_store_info_pool
);
1488 fprintf (dump_file
, " processing spill store %d(%s)\n",
1489 (int) spill_alias_set
, GET_MODE_NAME (GET_MODE (mem
)));
1491 else if (group_id
>= 0)
1493 /* In the restrictive case where the base is a constant or the
1494 frame pointer we can do global analysis. */
1497 = VEC_index (group_info_t
, rtx_group_vec
, group_id
);
1498 tree expr
= MEM_EXPR (mem
);
1500 store_info
= (store_info_t
) pool_alloc (rtx_store_info_pool
);
1501 set_usage_bits (group
, offset
, width
, expr
);
1504 fprintf (dump_file
, " processing const base store gid=%d[%d..%d)\n",
1505 group_id
, (int)offset
, (int)(offset
+width
));
1509 if (may_be_sp_based_p (XEXP (mem
, 0)))
1510 insn_info
->stack_pointer_based
= true;
1511 insn_info
->contains_cselib_groups
= true;
1513 store_info
= (store_info_t
) pool_alloc (cse_store_info_pool
);
1517 fprintf (dump_file
, " processing cselib store [%d..%d)\n",
1518 (int)offset
, (int)(offset
+width
));
1521 const_rhs
= rhs
= NULL_RTX
;
1522 if (GET_CODE (body
) == SET
1523 /* No place to keep the value after ra. */
1524 && !reload_completed
1525 && (REG_P (SET_SRC (body
))
1526 || GET_CODE (SET_SRC (body
)) == SUBREG
1527 || CONSTANT_P (SET_SRC (body
)))
1528 && !MEM_VOLATILE_P (mem
)
1529 /* Sometimes the store and reload is used for truncation and
1531 && !(FLOAT_MODE_P (GET_MODE (mem
)) && (flag_float_store
)))
1533 rhs
= SET_SRC (body
);
1534 if (CONSTANT_P (rhs
))
1536 else if (body
== PATTERN (insn_info
->insn
))
1538 rtx tem
= find_reg_note (insn_info
->insn
, REG_EQUAL
, NULL_RTX
);
1539 if (tem
&& CONSTANT_P (XEXP (tem
, 0)))
1540 const_rhs
= XEXP (tem
, 0);
1542 if (const_rhs
== NULL_RTX
&& REG_P (rhs
))
1544 rtx tem
= cselib_expand_value_rtx (rhs
, scratch
, 5);
1546 if (tem
&& CONSTANT_P (tem
))
1551 /* Check to see if this stores causes some other stores to be
1553 ptr
= active_local_stores
;
1555 redundant_reason
= NULL
;
1556 mem
= canon_rtx (mem
);
1557 /* For alias_set != 0 canon_true_dependence should be never called. */
1558 if (spill_alias_set
)
1559 mem_addr
= NULL_RTX
;
1563 mem_addr
= base
->val_rtx
;
1567 = VEC_index (group_info_t
, rtx_group_vec
, group_id
);
1568 mem_addr
= group
->canon_base_addr
;
1571 mem_addr
= plus_constant (get_address_mode (mem
), mem_addr
, offset
);
1576 insn_info_t next
= ptr
->next_local_store
;
1577 store_info_t s_info
= ptr
->store_rec
;
1580 /* Skip the clobbers. We delete the active insn if this insn
1581 shadows the set. To have been put on the active list, it
1582 has exactly on set. */
1583 while (!s_info
->is_set
)
1584 s_info
= s_info
->next
;
1586 if (s_info
->alias_set
!= spill_alias_set
)
1588 else if (s_info
->alias_set
)
1590 struct clear_alias_mode_holder
*entry
1591 = clear_alias_set_lookup (s_info
->alias_set
);
1592 /* Generally, spills cannot be processed if and of the
1593 references to the slot have a different mode. But if
1594 we are in the same block and mode is exactly the same
1595 between this store and one before in the same block,
1596 we can still delete it. */
1597 if ((GET_MODE (mem
) == GET_MODE (s_info
->mem
))
1598 && (GET_MODE (mem
) == entry
->mode
))
1601 set_all_positions_unneeded (s_info
);
1604 fprintf (dump_file
, " trying spill store in insn=%d alias_set=%d\n",
1605 INSN_UID (ptr
->insn
), (int) s_info
->alias_set
);
1607 else if ((s_info
->group_id
== group_id
)
1608 && (s_info
->cse_base
== base
))
1612 fprintf (dump_file
, " trying store in insn=%d gid=%d[%d..%d)\n",
1613 INSN_UID (ptr
->insn
), s_info
->group_id
,
1614 (int)s_info
->begin
, (int)s_info
->end
);
1616 /* Even if PTR won't be eliminated as unneeded, if both
1617 PTR and this insn store the same constant value, we might
1618 eliminate this insn instead. */
1619 if (s_info
->const_rhs
1621 && offset
>= s_info
->begin
1622 && offset
+ width
<= s_info
->end
1623 && all_positions_needed_p (s_info
, offset
- s_info
->begin
,
1626 if (GET_MODE (mem
) == BLKmode
)
1628 if (GET_MODE (s_info
->mem
) == BLKmode
1629 && s_info
->const_rhs
== const_rhs
)
1630 redundant_reason
= ptr
;
1632 else if (s_info
->const_rhs
== const0_rtx
1633 && const_rhs
== const0_rtx
)
1634 redundant_reason
= ptr
;
1639 val
= get_stored_val (s_info
, GET_MODE (mem
),
1640 offset
, offset
+ width
,
1641 BLOCK_FOR_INSN (insn_info
->insn
),
1643 if (get_insns () != NULL
)
1646 if (val
&& rtx_equal_p (val
, const_rhs
))
1647 redundant_reason
= ptr
;
1651 for (i
= MAX (offset
, s_info
->begin
);
1652 i
< offset
+ width
&& i
< s_info
->end
;
1654 set_position_unneeded (s_info
, i
- s_info
->begin
);
1656 else if (s_info
->rhs
)
1657 /* Need to see if it is possible for this store to overwrite
1658 the value of store_info. If it is, set the rhs to NULL to
1659 keep it from being used to remove a load. */
1661 if (canon_true_dependence (s_info
->mem
,
1662 GET_MODE (s_info
->mem
),
1667 s_info
->const_rhs
= NULL
;
1671 /* An insn can be deleted if every position of every one of
1672 its s_infos is zero. */
1673 if (any_positions_needed_p (s_info
))
1678 insn_info_t insn_to_delete
= ptr
;
1680 active_local_stores_len
--;
1682 last
->next_local_store
= ptr
->next_local_store
;
1684 active_local_stores
= ptr
->next_local_store
;
1686 if (!insn_to_delete
->cannot_delete
)
1687 delete_dead_store_insn (insn_to_delete
);
1695 /* Finish filling in the store_info. */
1696 store_info
->next
= insn_info
->store_rec
;
1697 insn_info
->store_rec
= store_info
;
1698 store_info
->mem
= mem
;
1699 store_info
->alias_set
= spill_alias_set
;
1700 store_info
->mem_addr
= mem_addr
;
1701 store_info
->cse_base
= base
;
1702 if (width
> HOST_BITS_PER_WIDE_INT
)
1704 store_info
->is_large
= true;
1705 store_info
->positions_needed
.large
.count
= 0;
1706 store_info
->positions_needed
.large
.bmap
= BITMAP_ALLOC (&dse_bitmap_obstack
);
1710 store_info
->is_large
= false;
1711 store_info
->positions_needed
.small_bitmask
= lowpart_bitmask (width
);
1713 store_info
->group_id
= group_id
;
1714 store_info
->begin
= offset
;
1715 store_info
->end
= offset
+ width
;
1716 store_info
->is_set
= GET_CODE (body
) == SET
;
1717 store_info
->rhs
= rhs
;
1718 store_info
->const_rhs
= const_rhs
;
1719 store_info
->redundant_reason
= redundant_reason
;
1721 /* If this is a clobber, we return 0. We will only be able to
1722 delete this insn if there is only one store USED store, but we
1723 can use the clobber to delete other stores earlier. */
1724 return store_info
->is_set
? 1 : 0;
1729 dump_insn_info (const char * start
, insn_info_t insn_info
)
1731 fprintf (dump_file
, "%s insn=%d %s\n", start
,
1732 INSN_UID (insn_info
->insn
),
1733 insn_info
->store_rec
? "has store" : "naked");
1737 /* If the modes are different and the value's source and target do not
1738 line up, we need to extract the value from lower part of the rhs of
1739 the store, shift it, and then put it into a form that can be shoved
1740 into the read_insn. This function generates a right SHIFT of a
1741 value that is at least ACCESS_SIZE bytes wide of READ_MODE. The
1742 shift sequence is returned or NULL if we failed to find a
1746 find_shift_sequence (int access_size
,
1747 store_info_t store_info
,
1748 enum machine_mode read_mode
,
1749 int shift
, bool speed
, bool require_cst
)
1751 enum machine_mode store_mode
= GET_MODE (store_info
->mem
);
1752 enum machine_mode new_mode
;
1753 rtx read_reg
= NULL
;
1755 /* Some machines like the x86 have shift insns for each size of
1756 operand. Other machines like the ppc or the ia-64 may only have
1757 shift insns that shift values within 32 or 64 bit registers.
1758 This loop tries to find the smallest shift insn that will right
1759 justify the value we want to read but is available in one insn on
1762 for (new_mode
= smallest_mode_for_size (access_size
* BITS_PER_UNIT
,
1764 GET_MODE_BITSIZE (new_mode
) <= BITS_PER_WORD
;
1765 new_mode
= GET_MODE_WIDER_MODE (new_mode
))
1767 rtx target
, new_reg
, shift_seq
, insn
, new_lhs
;
1770 /* If a constant was stored into memory, try to simplify it here,
1771 otherwise the cost of the shift might preclude this optimization
1772 e.g. at -Os, even when no actual shift will be needed. */
1773 if (store_info
->const_rhs
)
1775 unsigned int byte
= subreg_lowpart_offset (new_mode
, store_mode
);
1776 rtx ret
= simplify_subreg (new_mode
, store_info
->const_rhs
,
1778 if (ret
&& CONSTANT_P (ret
))
1780 ret
= simplify_const_binary_operation (LSHIFTRT
, new_mode
,
1781 ret
, GEN_INT (shift
));
1782 if (ret
&& CONSTANT_P (ret
))
1784 byte
= subreg_lowpart_offset (read_mode
, new_mode
);
1785 ret
= simplify_subreg (read_mode
, ret
, new_mode
, byte
);
1786 if (ret
&& CONSTANT_P (ret
)
1787 && set_src_cost (ret
, speed
) <= COSTS_N_INSNS (1))
1796 /* Try a wider mode if truncating the store mode to NEW_MODE
1797 requires a real instruction. */
1798 if (GET_MODE_BITSIZE (new_mode
) < GET_MODE_BITSIZE (store_mode
)
1799 && !TRULY_NOOP_TRUNCATION_MODES_P (new_mode
, store_mode
))
1802 /* Also try a wider mode if the necessary punning is either not
1803 desirable or not possible. */
1804 if (!CONSTANT_P (store_info
->rhs
)
1805 && !MODES_TIEABLE_P (new_mode
, store_mode
))
1808 new_reg
= gen_reg_rtx (new_mode
);
1812 /* In theory we could also check for an ashr. Ian Taylor knows
1813 of one dsp where the cost of these two was not the same. But
1814 this really is a rare case anyway. */
1815 target
= expand_binop (new_mode
, lshr_optab
, new_reg
,
1816 GEN_INT (shift
), new_reg
, 1, OPTAB_DIRECT
);
1818 shift_seq
= get_insns ();
1821 if (target
!= new_reg
|| shift_seq
== NULL
)
1825 for (insn
= shift_seq
; insn
!= NULL_RTX
; insn
= NEXT_INSN (insn
))
1827 cost
+= insn_rtx_cost (PATTERN (insn
), speed
);
1829 /* The computation up to here is essentially independent
1830 of the arguments and could be precomputed. It may
1831 not be worth doing so. We could precompute if
1832 worthwhile or at least cache the results. The result
1833 technically depends on both SHIFT and ACCESS_SIZE,
1834 but in practice the answer will depend only on ACCESS_SIZE. */
1836 if (cost
> COSTS_N_INSNS (1))
1839 new_lhs
= extract_low_bits (new_mode
, store_mode
,
1840 copy_rtx (store_info
->rhs
));
1841 if (new_lhs
== NULL_RTX
)
1844 /* We found an acceptable shift. Generate a move to
1845 take the value from the store and put it into the
1846 shift pseudo, then shift it, then generate another
1847 move to put in into the target of the read. */
1848 emit_move_insn (new_reg
, new_lhs
);
1849 emit_insn (shift_seq
);
1850 read_reg
= extract_low_bits (read_mode
, new_mode
, new_reg
);
1858 /* Call back for note_stores to find the hard regs set or clobbered by
1859 insn. Data is a bitmap of the hardregs set so far. */
1862 look_for_hardregs (rtx x
, const_rtx pat ATTRIBUTE_UNUSED
, void *data
)
1864 bitmap regs_set
= (bitmap
) data
;
1867 && HARD_REGISTER_P (x
))
1869 unsigned int regno
= REGNO (x
);
1870 bitmap_set_range (regs_set
, regno
,
1871 hard_regno_nregs
[regno
][GET_MODE (x
)]);
1875 /* Helper function for replace_read and record_store.
1876 Attempt to return a value stored in STORE_INFO, from READ_BEGIN
1877 to one before READ_END bytes read in READ_MODE. Return NULL
1878 if not successful. If REQUIRE_CST is true, return always constant. */
1881 get_stored_val (store_info_t store_info
, enum machine_mode read_mode
,
1882 HOST_WIDE_INT read_begin
, HOST_WIDE_INT read_end
,
1883 basic_block bb
, bool require_cst
)
1885 enum machine_mode store_mode
= GET_MODE (store_info
->mem
);
1887 int access_size
; /* In bytes. */
1890 /* To get here the read is within the boundaries of the write so
1891 shift will never be negative. Start out with the shift being in
1893 if (store_mode
== BLKmode
)
1895 else if (BYTES_BIG_ENDIAN
)
1896 shift
= store_info
->end
- read_end
;
1898 shift
= read_begin
- store_info
->begin
;
1900 access_size
= shift
+ GET_MODE_SIZE (read_mode
);
1902 /* From now on it is bits. */
1903 shift
*= BITS_PER_UNIT
;
1906 read_reg
= find_shift_sequence (access_size
, store_info
, read_mode
, shift
,
1907 optimize_bb_for_speed_p (bb
),
1909 else if (store_mode
== BLKmode
)
1911 /* The store is a memset (addr, const_val, const_size). */
1912 gcc_assert (CONST_INT_P (store_info
->rhs
));
1913 store_mode
= int_mode_for_mode (read_mode
);
1914 if (store_mode
== BLKmode
)
1915 read_reg
= NULL_RTX
;
1916 else if (store_info
->rhs
== const0_rtx
)
1917 read_reg
= extract_low_bits (read_mode
, store_mode
, const0_rtx
);
1918 else if (GET_MODE_BITSIZE (store_mode
) > HOST_BITS_PER_WIDE_INT
1919 || BITS_PER_UNIT
>= HOST_BITS_PER_WIDE_INT
)
1920 read_reg
= NULL_RTX
;
1923 unsigned HOST_WIDE_INT c
1924 = INTVAL (store_info
->rhs
)
1925 & (((HOST_WIDE_INT
) 1 << BITS_PER_UNIT
) - 1);
1926 int shift
= BITS_PER_UNIT
;
1927 while (shift
< HOST_BITS_PER_WIDE_INT
)
1932 read_reg
= gen_int_mode (c
, store_mode
);
1933 read_reg
= extract_low_bits (read_mode
, store_mode
, read_reg
);
1936 else if (store_info
->const_rhs
1938 || GET_MODE_CLASS (read_mode
) != GET_MODE_CLASS (store_mode
)))
1939 read_reg
= extract_low_bits (read_mode
, store_mode
,
1940 copy_rtx (store_info
->const_rhs
));
1942 read_reg
= extract_low_bits (read_mode
, store_mode
,
1943 copy_rtx (store_info
->rhs
));
1944 if (require_cst
&& read_reg
&& !CONSTANT_P (read_reg
))
1945 read_reg
= NULL_RTX
;
1949 /* Take a sequence of:
1972 Depending on the alignment and the mode of the store and
1976 The STORE_INFO and STORE_INSN are for the store and READ_INFO
1977 and READ_INSN are for the read. Return true if the replacement
1981 replace_read (store_info_t store_info
, insn_info_t store_insn
,
1982 read_info_t read_info
, insn_info_t read_insn
, rtx
*loc
,
1985 enum machine_mode store_mode
= GET_MODE (store_info
->mem
);
1986 enum machine_mode read_mode
= GET_MODE (read_info
->mem
);
1987 rtx insns
, this_insn
, read_reg
;
1993 /* Create a sequence of instructions to set up the read register.
1994 This sequence goes immediately before the store and its result
1995 is read by the load.
1997 We need to keep this in perspective. We are replacing a read
1998 with a sequence of insns, but the read will almost certainly be
1999 in cache, so it is not going to be an expensive one. Thus, we
2000 are not willing to do a multi insn shift or worse a subroutine
2001 call to get rid of the read. */
2003 fprintf (dump_file
, "trying to replace %smode load in insn %d"
2004 " from %smode store in insn %d\n",
2005 GET_MODE_NAME (read_mode
), INSN_UID (read_insn
->insn
),
2006 GET_MODE_NAME (store_mode
), INSN_UID (store_insn
->insn
));
2008 bb
= BLOCK_FOR_INSN (read_insn
->insn
);
2009 read_reg
= get_stored_val (store_info
,
2010 read_mode
, read_info
->begin
, read_info
->end
,
2012 if (read_reg
== NULL_RTX
)
2016 fprintf (dump_file
, " -- could not extract bits of stored value\n");
2019 /* Force the value into a new register so that it won't be clobbered
2020 between the store and the load. */
2021 read_reg
= copy_to_mode_reg (read_mode
, read_reg
);
2022 insns
= get_insns ();
2025 if (insns
!= NULL_RTX
)
2027 /* Now we have to scan the set of new instructions to see if the
2028 sequence contains and sets of hardregs that happened to be
2029 live at this point. For instance, this can happen if one of
2030 the insns sets the CC and the CC happened to be live at that
2031 point. This does occasionally happen, see PR 37922. */
2032 bitmap regs_set
= BITMAP_ALLOC (®_obstack
);
2034 for (this_insn
= insns
; this_insn
!= NULL_RTX
; this_insn
= NEXT_INSN (this_insn
))
2035 note_stores (PATTERN (this_insn
), look_for_hardregs
, regs_set
);
2037 bitmap_and_into (regs_set
, regs_live
);
2038 if (!bitmap_empty_p (regs_set
))
2043 "abandoning replacement because sequence clobbers live hardregs:");
2044 df_print_regset (dump_file
, regs_set
);
2047 BITMAP_FREE (regs_set
);
2050 BITMAP_FREE (regs_set
);
2053 if (validate_change (read_insn
->insn
, loc
, read_reg
, 0))
2055 deferred_change_t deferred_change
=
2056 (deferred_change_t
) pool_alloc (deferred_change_pool
);
2058 /* Insert this right before the store insn where it will be safe
2059 from later insns that might change it before the read. */
2060 emit_insn_before (insns
, store_insn
->insn
);
2062 /* And now for the kludge part: cselib croaks if you just
2063 return at this point. There are two reasons for this:
2065 1) Cselib has an idea of how many pseudos there are and
2066 that does not include the new ones we just added.
2068 2) Cselib does not know about the move insn we added
2069 above the store_info, and there is no way to tell it
2070 about it, because it has "moved on".
2072 Problem (1) is fixable with a certain amount of engineering.
2073 Problem (2) is requires starting the bb from scratch. This
2076 So we are just going to have to lie. The move/extraction
2077 insns are not really an issue, cselib did not see them. But
2078 the use of the new pseudo read_insn is a real problem because
2079 cselib has not scanned this insn. The way that we solve this
2080 problem is that we are just going to put the mem back for now
2081 and when we are finished with the block, we undo this. We
2082 keep a table of mems to get rid of. At the end of the basic
2083 block we can put them back. */
2085 *loc
= read_info
->mem
;
2086 deferred_change
->next
= deferred_change_list
;
2087 deferred_change_list
= deferred_change
;
2088 deferred_change
->loc
= loc
;
2089 deferred_change
->reg
= read_reg
;
2091 /* Get rid of the read_info, from the point of view of the
2092 rest of dse, play like this read never happened. */
2093 read_insn
->read_rec
= read_info
->next
;
2094 pool_free (read_info_pool
, read_info
);
2097 fprintf (dump_file
, " -- replaced the loaded MEM with ");
2098 print_simple_rtl (dump_file
, read_reg
);
2099 fprintf (dump_file
, "\n");
2107 fprintf (dump_file
, " -- replacing the loaded MEM with ");
2108 print_simple_rtl (dump_file
, read_reg
);
2109 fprintf (dump_file
, " led to an invalid instruction\n");
2115 /* A for_each_rtx callback in which DATA is the bb_info. Check to see
2116 if LOC is a mem and if it is look at the address and kill any
2117 appropriate stores that may be active. */
2120 check_mem_read_rtx (rtx
*loc
, void *data
)
2122 rtx mem
= *loc
, mem_addr
;
2124 insn_info_t insn_info
;
2125 HOST_WIDE_INT offset
= 0;
2126 HOST_WIDE_INT width
= 0;
2127 alias_set_type spill_alias_set
= 0;
2128 cselib_val
*base
= NULL
;
2130 read_info_t read_info
;
2132 if (!mem
|| !MEM_P (mem
))
2135 bb_info
= (bb_info_t
) data
;
2136 insn_info
= bb_info
->last_insn
;
2138 if ((MEM_ALIAS_SET (mem
) == ALIAS_SET_MEMORY_BARRIER
)
2139 || (MEM_VOLATILE_P (mem
)))
2142 fprintf (dump_file
, " adding wild read, volatile or barrier.\n");
2143 add_wild_read (bb_info
);
2144 insn_info
->cannot_delete
= true;
2148 /* If it is reading readonly mem, then there can be no conflict with
2150 if (MEM_READONLY_P (mem
))
2153 if (!canon_address (mem
, &spill_alias_set
, &group_id
, &offset
, &base
))
2156 fprintf (dump_file
, " adding wild read, canon_address failure.\n");
2157 add_wild_read (bb_info
);
2161 if (GET_MODE (mem
) == BLKmode
)
2164 width
= GET_MODE_SIZE (GET_MODE (mem
));
2166 read_info
= (read_info_t
) pool_alloc (read_info_pool
);
2167 read_info
->group_id
= group_id
;
2168 read_info
->mem
= mem
;
2169 read_info
->alias_set
= spill_alias_set
;
2170 read_info
->begin
= offset
;
2171 read_info
->end
= offset
+ width
;
2172 read_info
->next
= insn_info
->read_rec
;
2173 insn_info
->read_rec
= read_info
;
2174 /* For alias_set != 0 canon_true_dependence should be never called. */
2175 if (spill_alias_set
)
2176 mem_addr
= NULL_RTX
;
2180 mem_addr
= base
->val_rtx
;
2184 = VEC_index (group_info_t
, rtx_group_vec
, group_id
);
2185 mem_addr
= group
->canon_base_addr
;
2188 mem_addr
= plus_constant (get_address_mode (mem
), mem_addr
, offset
);
2191 /* We ignore the clobbers in store_info. The is mildly aggressive,
2192 but there really should not be a clobber followed by a read. */
2194 if (spill_alias_set
)
2196 insn_info_t i_ptr
= active_local_stores
;
2197 insn_info_t last
= NULL
;
2200 fprintf (dump_file
, " processing spill load %d\n",
2201 (int) spill_alias_set
);
2205 store_info_t store_info
= i_ptr
->store_rec
;
2207 /* Skip the clobbers. */
2208 while (!store_info
->is_set
)
2209 store_info
= store_info
->next
;
2211 if (store_info
->alias_set
== spill_alias_set
)
2214 dump_insn_info ("removing from active", i_ptr
);
2216 active_local_stores_len
--;
2218 last
->next_local_store
= i_ptr
->next_local_store
;
2220 active_local_stores
= i_ptr
->next_local_store
;
2224 i_ptr
= i_ptr
->next_local_store
;
2227 else if (group_id
>= 0)
2229 /* This is the restricted case where the base is a constant or
2230 the frame pointer and offset is a constant. */
2231 insn_info_t i_ptr
= active_local_stores
;
2232 insn_info_t last
= NULL
;
2237 fprintf (dump_file
, " processing const load gid=%d[BLK]\n",
2240 fprintf (dump_file
, " processing const load gid=%d[%d..%d)\n",
2241 group_id
, (int)offset
, (int)(offset
+width
));
2246 bool remove
= false;
2247 store_info_t store_info
= i_ptr
->store_rec
;
2249 /* Skip the clobbers. */
2250 while (!store_info
->is_set
)
2251 store_info
= store_info
->next
;
2253 /* There are three cases here. */
2254 if (store_info
->group_id
< 0)
2255 /* We have a cselib store followed by a read from a
2258 = canon_true_dependence (store_info
->mem
,
2259 GET_MODE (store_info
->mem
),
2260 store_info
->mem_addr
,
2263 else if (group_id
== store_info
->group_id
)
2265 /* This is a block mode load. We may get lucky and
2266 canon_true_dependence may save the day. */
2269 = canon_true_dependence (store_info
->mem
,
2270 GET_MODE (store_info
->mem
),
2271 store_info
->mem_addr
,
2274 /* If this read is just reading back something that we just
2275 stored, rewrite the read. */
2279 && offset
>= store_info
->begin
2280 && offset
+ width
<= store_info
->end
2281 && all_positions_needed_p (store_info
,
2282 offset
- store_info
->begin
,
2284 && replace_read (store_info
, i_ptr
, read_info
,
2285 insn_info
, loc
, bb_info
->regs_live
))
2288 /* The bases are the same, just see if the offsets
2290 if ((offset
< store_info
->end
)
2291 && (offset
+ width
> store_info
->begin
))
2297 The else case that is missing here is that the
2298 bases are constant but different. There is nothing
2299 to do here because there is no overlap. */
2304 dump_insn_info ("removing from active", i_ptr
);
2306 active_local_stores_len
--;
2308 last
->next_local_store
= i_ptr
->next_local_store
;
2310 active_local_stores
= i_ptr
->next_local_store
;
2314 i_ptr
= i_ptr
->next_local_store
;
2319 insn_info_t i_ptr
= active_local_stores
;
2320 insn_info_t last
= NULL
;
2323 fprintf (dump_file
, " processing cselib load mem:");
2324 print_inline_rtx (dump_file
, mem
, 0);
2325 fprintf (dump_file
, "\n");
2330 bool remove
= false;
2331 store_info_t store_info
= i_ptr
->store_rec
;
2334 fprintf (dump_file
, " processing cselib load against insn %d\n",
2335 INSN_UID (i_ptr
->insn
));
2337 /* Skip the clobbers. */
2338 while (!store_info
->is_set
)
2339 store_info
= store_info
->next
;
2341 /* If this read is just reading back something that we just
2342 stored, rewrite the read. */
2344 && store_info
->group_id
== -1
2345 && store_info
->cse_base
== base
2347 && offset
>= store_info
->begin
2348 && offset
+ width
<= store_info
->end
2349 && all_positions_needed_p (store_info
,
2350 offset
- store_info
->begin
, width
)
2351 && replace_read (store_info
, i_ptr
, read_info
, insn_info
, loc
,
2352 bb_info
->regs_live
))
2355 if (!store_info
->alias_set
)
2356 remove
= canon_true_dependence (store_info
->mem
,
2357 GET_MODE (store_info
->mem
),
2358 store_info
->mem_addr
,
2364 dump_insn_info ("removing from active", i_ptr
);
2366 active_local_stores_len
--;
2368 last
->next_local_store
= i_ptr
->next_local_store
;
2370 active_local_stores
= i_ptr
->next_local_store
;
2374 i_ptr
= i_ptr
->next_local_store
;
2380 /* A for_each_rtx callback in which DATA points the INSN_INFO for
2381 as check_mem_read_rtx. Nullify the pointer if i_m_r_m_r returns
2382 true for any part of *LOC. */
2385 check_mem_read_use (rtx
*loc
, void *data
)
2387 for_each_rtx (loc
, check_mem_read_rtx
, data
);
2391 /* Get arguments passed to CALL_INSN. Return TRUE if successful.
2392 So far it only handles arguments passed in registers. */
2395 get_call_args (rtx call_insn
, tree fn
, rtx
*args
, int nargs
)
2397 CUMULATIVE_ARGS args_so_far_v
;
2398 cumulative_args_t args_so_far
;
2402 INIT_CUMULATIVE_ARGS (args_so_far_v
, TREE_TYPE (fn
), NULL_RTX
, 0, 3);
2403 args_so_far
= pack_cumulative_args (&args_so_far_v
);
2405 arg
= TYPE_ARG_TYPES (TREE_TYPE (fn
));
2407 arg
!= void_list_node
&& idx
< nargs
;
2408 arg
= TREE_CHAIN (arg
), idx
++)
2410 enum machine_mode mode
= TYPE_MODE (TREE_VALUE (arg
));
2412 reg
= targetm
.calls
.function_arg (args_so_far
, mode
, NULL_TREE
, true);
2413 if (!reg
|| !REG_P (reg
) || GET_MODE (reg
) != mode
2414 || GET_MODE_CLASS (mode
) != MODE_INT
)
2417 for (link
= CALL_INSN_FUNCTION_USAGE (call_insn
);
2419 link
= XEXP (link
, 1))
2420 if (GET_CODE (XEXP (link
, 0)) == USE
)
2422 args
[idx
] = XEXP (XEXP (link
, 0), 0);
2423 if (REG_P (args
[idx
])
2424 && REGNO (args
[idx
]) == REGNO (reg
)
2425 && (GET_MODE (args
[idx
]) == mode
2426 || (GET_MODE_CLASS (GET_MODE (args
[idx
])) == MODE_INT
2427 && (GET_MODE_SIZE (GET_MODE (args
[idx
]))
2429 && (GET_MODE_SIZE (GET_MODE (args
[idx
]))
2430 > GET_MODE_SIZE (mode
)))))
2436 tmp
= cselib_expand_value_rtx (args
[idx
], scratch
, 5);
2437 if (GET_MODE (args
[idx
]) != mode
)
2439 if (!tmp
|| !CONST_INT_P (tmp
))
2441 tmp
= gen_int_mode (INTVAL (tmp
), mode
);
2446 targetm
.calls
.function_arg_advance (args_so_far
, mode
, NULL_TREE
, true);
2448 if (arg
!= void_list_node
|| idx
!= nargs
)
2453 /* Return a bitmap of the fixed registers contained in IN. */
2456 copy_fixed_regs (const_bitmap in
)
2460 ret
= ALLOC_REG_SET (NULL
);
2461 bitmap_and (ret
, in
, fixed_reg_set_regset
);
2465 /* Apply record_store to all candidate stores in INSN. Mark INSN
2466 if some part of it is not a candidate store and assigns to a
2467 non-register target. */
2470 scan_insn (bb_info_t bb_info
, rtx insn
)
2473 insn_info_t insn_info
= (insn_info_t
) pool_alloc (insn_info_pool
);
2475 memset (insn_info
, 0, sizeof (struct insn_info
));
2478 fprintf (dump_file
, "\n**scanning insn=%d\n",
2481 insn_info
->prev_insn
= bb_info
->last_insn
;
2482 insn_info
->insn
= insn
;
2483 bb_info
->last_insn
= insn_info
;
2485 if (DEBUG_INSN_P (insn
))
2487 insn_info
->cannot_delete
= true;
2491 /* Cselib clears the table for this case, so we have to essentially
2493 if (NONJUMP_INSN_P (insn
)
2494 && GET_CODE (PATTERN (insn
)) == ASM_OPERANDS
2495 && MEM_VOLATILE_P (PATTERN (insn
)))
2497 add_wild_read (bb_info
);
2498 insn_info
->cannot_delete
= true;
2502 /* Look at all of the uses in the insn. */
2503 note_uses (&PATTERN (insn
), check_mem_read_use
, bb_info
);
2508 tree memset_call
= NULL_TREE
;
2510 insn_info
->cannot_delete
= true;
2512 /* Const functions cannot do anything bad i.e. read memory,
2513 however, they can read their parameters which may have
2514 been pushed onto the stack.
2515 memset and bzero don't read memory either. */
2516 const_call
= RTL_CONST_CALL_P (insn
);
2519 rtx call
= PATTERN (insn
);
2520 if (GET_CODE (call
) == PARALLEL
)
2521 call
= XVECEXP (call
, 0, 0);
2522 if (GET_CODE (call
) == SET
)
2523 call
= SET_SRC (call
);
2524 if (GET_CODE (call
) == CALL
2525 && MEM_P (XEXP (call
, 0))
2526 && GET_CODE (XEXP (XEXP (call
, 0), 0)) == SYMBOL_REF
)
2528 rtx symbol
= XEXP (XEXP (call
, 0), 0);
2529 if (SYMBOL_REF_DECL (symbol
)
2530 && TREE_CODE (SYMBOL_REF_DECL (symbol
)) == FUNCTION_DECL
)
2532 if ((DECL_BUILT_IN_CLASS (SYMBOL_REF_DECL (symbol
))
2534 && (DECL_FUNCTION_CODE (SYMBOL_REF_DECL (symbol
))
2535 == BUILT_IN_MEMSET
))
2536 || SYMBOL_REF_DECL (symbol
) == block_clear_fn
)
2537 memset_call
= SYMBOL_REF_DECL (symbol
);
2541 if (const_call
|| memset_call
)
2543 insn_info_t i_ptr
= active_local_stores
;
2544 insn_info_t last
= NULL
;
2547 fprintf (dump_file
, "%s call %d\n",
2548 const_call
? "const" : "memset", INSN_UID (insn
));
2550 /* See the head comment of the frame_read field. */
2551 if (reload_completed
)
2552 insn_info
->frame_read
= true;
2554 /* Loop over the active stores and remove those which are
2555 killed by the const function call. */
2558 bool remove_store
= false;
2560 /* The stack pointer based stores are always killed. */
2561 if (i_ptr
->stack_pointer_based
)
2562 remove_store
= true;
2564 /* If the frame is read, the frame related stores are killed. */
2565 else if (insn_info
->frame_read
)
2567 store_info_t store_info
= i_ptr
->store_rec
;
2569 /* Skip the clobbers. */
2570 while (!store_info
->is_set
)
2571 store_info
= store_info
->next
;
2573 if (store_info
->group_id
>= 0
2574 && VEC_index (group_info_t
, rtx_group_vec
,
2575 store_info
->group_id
)->frame_related
)
2576 remove_store
= true;
2582 dump_insn_info ("removing from active", i_ptr
);
2584 active_local_stores_len
--;
2586 last
->next_local_store
= i_ptr
->next_local_store
;
2588 active_local_stores
= i_ptr
->next_local_store
;
2593 i_ptr
= i_ptr
->next_local_store
;
2599 if (get_call_args (insn
, memset_call
, args
, 3)
2600 && CONST_INT_P (args
[1])
2601 && CONST_INT_P (args
[2])
2602 && INTVAL (args
[2]) > 0)
2604 rtx mem
= gen_rtx_MEM (BLKmode
, args
[0]);
2605 set_mem_size (mem
, INTVAL (args
[2]));
2606 body
= gen_rtx_SET (VOIDmode
, mem
, args
[1]);
2607 mems_found
+= record_store (body
, bb_info
);
2609 fprintf (dump_file
, "handling memset as BLKmode store\n");
2610 if (mems_found
== 1)
2612 if (active_local_stores_len
++
2613 >= PARAM_VALUE (PARAM_MAX_DSE_ACTIVE_LOCAL_STORES
))
2615 active_local_stores_len
= 1;
2616 active_local_stores
= NULL
;
2618 insn_info
->fixed_regs_live
2619 = copy_fixed_regs (bb_info
->regs_live
);
2620 insn_info
->next_local_store
= active_local_stores
;
2621 active_local_stores
= insn_info
;
2628 /* Every other call, including pure functions, may read any memory
2629 that is not relative to the frame. */
2630 add_non_frame_wild_read (bb_info
);
2635 /* Assuming that there are sets in these insns, we cannot delete
2637 if ((GET_CODE (PATTERN (insn
)) == CLOBBER
)
2638 || volatile_refs_p (PATTERN (insn
))
2639 || (!cfun
->can_delete_dead_exceptions
&& !insn_nothrow_p (insn
))
2640 || (RTX_FRAME_RELATED_P (insn
))
2641 || find_reg_note (insn
, REG_FRAME_RELATED_EXPR
, NULL_RTX
))
2642 insn_info
->cannot_delete
= true;
2644 body
= PATTERN (insn
);
2645 if (GET_CODE (body
) == PARALLEL
)
2648 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
2649 mems_found
+= record_store (XVECEXP (body
, 0, i
), bb_info
);
2652 mems_found
+= record_store (body
, bb_info
);
2655 fprintf (dump_file
, "mems_found = %d, cannot_delete = %s\n",
2656 mems_found
, insn_info
->cannot_delete
? "true" : "false");
2658 /* If we found some sets of mems, add it into the active_local_stores so
2659 that it can be locally deleted if found dead or used for
2660 replace_read and redundant constant store elimination. Otherwise mark
2661 it as cannot delete. This simplifies the processing later. */
2662 if (mems_found
== 1)
2664 if (active_local_stores_len
++
2665 >= PARAM_VALUE (PARAM_MAX_DSE_ACTIVE_LOCAL_STORES
))
2667 active_local_stores_len
= 1;
2668 active_local_stores
= NULL
;
2670 insn_info
->fixed_regs_live
= copy_fixed_regs (bb_info
->regs_live
);
2671 insn_info
->next_local_store
= active_local_stores
;
2672 active_local_stores
= insn_info
;
2675 insn_info
->cannot_delete
= true;
2679 /* Remove BASE from the set of active_local_stores. This is a
2680 callback from cselib that is used to get rid of the stores in
2681 active_local_stores. */
2684 remove_useless_values (cselib_val
*base
)
2686 insn_info_t insn_info
= active_local_stores
;
2687 insn_info_t last
= NULL
;
2691 store_info_t store_info
= insn_info
->store_rec
;
2694 /* If ANY of the store_infos match the cselib group that is
2695 being deleted, then the insn can not be deleted. */
2698 if ((store_info
->group_id
== -1)
2699 && (store_info
->cse_base
== base
))
2704 store_info
= store_info
->next
;
2709 active_local_stores_len
--;
2711 last
->next_local_store
= insn_info
->next_local_store
;
2713 active_local_stores
= insn_info
->next_local_store
;
2714 free_store_info (insn_info
);
2719 insn_info
= insn_info
->next_local_store
;
2724 /* Do all of step 1. */
2730 bitmap regs_live
= BITMAP_ALLOC (®_obstack
);
2733 all_blocks
= BITMAP_ALLOC (NULL
);
2734 bitmap_set_bit (all_blocks
, ENTRY_BLOCK
);
2735 bitmap_set_bit (all_blocks
, EXIT_BLOCK
);
2740 bb_info_t bb_info
= (bb_info_t
) pool_alloc (bb_info_pool
);
2742 memset (bb_info
, 0, sizeof (struct bb_info
));
2743 bitmap_set_bit (all_blocks
, bb
->index
);
2744 bb_info
->regs_live
= regs_live
;
2746 bitmap_copy (regs_live
, DF_LR_IN (bb
));
2747 df_simulate_initialize_forwards (bb
, regs_live
);
2749 bb_table
[bb
->index
] = bb_info
;
2750 cselib_discard_hook
= remove_useless_values
;
2752 if (bb
->index
>= NUM_FIXED_BLOCKS
)
2757 = create_alloc_pool ("cse_store_info_pool",
2758 sizeof (struct store_info
), 100);
2759 active_local_stores
= NULL
;
2760 active_local_stores_len
= 0;
2761 cselib_clear_table ();
2763 /* Scan the insns. */
2764 FOR_BB_INSNS (bb
, insn
)
2767 scan_insn (bb_info
, insn
);
2768 cselib_process_insn (insn
);
2770 df_simulate_one_insn_forwards (bb
, insn
, regs_live
);
2773 /* This is something of a hack, because the global algorithm
2774 is supposed to take care of the case where stores go dead
2775 at the end of the function. However, the global
2776 algorithm must take a more conservative view of block
2777 mode reads than the local alg does. So to get the case
2778 where you have a store to the frame followed by a non
2779 overlapping block more read, we look at the active local
2780 stores at the end of the function and delete all of the
2781 frame and spill based ones. */
2782 if (stores_off_frame_dead_at_return
2783 && (EDGE_COUNT (bb
->succs
) == 0
2784 || (single_succ_p (bb
)
2785 && single_succ (bb
) == EXIT_BLOCK_PTR
2786 && ! crtl
->calls_eh_return
)))
2788 insn_info_t i_ptr
= active_local_stores
;
2791 store_info_t store_info
= i_ptr
->store_rec
;
2793 /* Skip the clobbers. */
2794 while (!store_info
->is_set
)
2795 store_info
= store_info
->next
;
2796 if (store_info
->alias_set
&& !i_ptr
->cannot_delete
)
2797 delete_dead_store_insn (i_ptr
);
2799 if (store_info
->group_id
>= 0)
2802 = VEC_index (group_info_t
, rtx_group_vec
, store_info
->group_id
);
2803 if (group
->frame_related
&& !i_ptr
->cannot_delete
)
2804 delete_dead_store_insn (i_ptr
);
2807 i_ptr
= i_ptr
->next_local_store
;
2811 /* Get rid of the loads that were discovered in
2812 replace_read. Cselib is finished with this block. */
2813 while (deferred_change_list
)
2815 deferred_change_t next
= deferred_change_list
->next
;
2817 /* There is no reason to validate this change. That was
2819 *deferred_change_list
->loc
= deferred_change_list
->reg
;
2820 pool_free (deferred_change_pool
, deferred_change_list
);
2821 deferred_change_list
= next
;
2824 /* Get rid of all of the cselib based store_infos in this
2825 block and mark the containing insns as not being
2827 ptr
= bb_info
->last_insn
;
2830 if (ptr
->contains_cselib_groups
)
2832 store_info_t s_info
= ptr
->store_rec
;
2833 while (s_info
&& !s_info
->is_set
)
2834 s_info
= s_info
->next
;
2836 && s_info
->redundant_reason
2837 && s_info
->redundant_reason
->insn
2838 && !ptr
->cannot_delete
)
2841 fprintf (dump_file
, "Locally deleting insn %d "
2842 "because insn %d stores the "
2843 "same value and couldn't be "
2845 INSN_UID (ptr
->insn
),
2846 INSN_UID (s_info
->redundant_reason
->insn
));
2847 delete_dead_store_insn (ptr
);
2850 s_info
->redundant_reason
= NULL
;
2851 free_store_info (ptr
);
2855 store_info_t s_info
;
2857 /* Free at least positions_needed bitmaps. */
2858 for (s_info
= ptr
->store_rec
; s_info
; s_info
= s_info
->next
)
2859 if (s_info
->is_large
)
2861 BITMAP_FREE (s_info
->positions_needed
.large
.bmap
);
2862 s_info
->is_large
= false;
2865 ptr
= ptr
->prev_insn
;
2868 free_alloc_pool (cse_store_info_pool
);
2870 bb_info
->regs_live
= NULL
;
2873 BITMAP_FREE (regs_live
);
2875 htab_empty (rtx_group_table
);
2879 /*----------------------------------------------------------------------------
2882 Assign each byte position in the stores that we are going to
2883 analyze globally to a position in the bitmaps. Returns true if
2884 there are any bit positions assigned.
2885 ----------------------------------------------------------------------------*/
2888 dse_step2_init (void)
2893 FOR_EACH_VEC_ELT (group_info_t
, rtx_group_vec
, i
, group
)
2895 /* For all non stack related bases, we only consider a store to
2896 be deletable if there are two or more stores for that
2897 position. This is because it takes one store to make the
2898 other store redundant. However, for the stores that are
2899 stack related, we consider them if there is only one store
2900 for the position. We do this because the stack related
2901 stores can be deleted if their is no read between them and
2902 the end of the function.
2904 To make this work in the current framework, we take the stack
2905 related bases add all of the bits from store1 into store2.
2906 This has the effect of making the eligible even if there is
2909 if (stores_off_frame_dead_at_return
&& group
->frame_related
)
2911 bitmap_ior_into (group
->store2_n
, group
->store1_n
);
2912 bitmap_ior_into (group
->store2_p
, group
->store1_p
);
2914 fprintf (dump_file
, "group %d is frame related ", i
);
2917 group
->offset_map_size_n
++;
2918 group
->offset_map_n
= XOBNEWVEC (&dse_obstack
, int,
2919 group
->offset_map_size_n
);
2920 group
->offset_map_size_p
++;
2921 group
->offset_map_p
= XOBNEWVEC (&dse_obstack
, int,
2922 group
->offset_map_size_p
);
2923 group
->process_globally
= false;
2926 fprintf (dump_file
, "group %d(%d+%d): ", i
,
2927 (int)bitmap_count_bits (group
->store2_n
),
2928 (int)bitmap_count_bits (group
->store2_p
));
2929 bitmap_print (dump_file
, group
->store2_n
, "n ", " ");
2930 bitmap_print (dump_file
, group
->store2_p
, "p ", "\n");
2936 /* Init the offset tables for the normal case. */
2939 dse_step2_nospill (void)
2943 /* Position 0 is unused because 0 is used in the maps to mean
2945 current_position
= 1;
2946 FOR_EACH_VEC_ELT (group_info_t
, rtx_group_vec
, i
, group
)
2951 if (group
== clear_alias_group
)
2954 memset (group
->offset_map_n
, 0, sizeof(int) * group
->offset_map_size_n
);
2955 memset (group
->offset_map_p
, 0, sizeof(int) * group
->offset_map_size_p
);
2956 bitmap_clear (group
->group_kill
);
2958 EXECUTE_IF_SET_IN_BITMAP (group
->store2_n
, 0, j
, bi
)
2960 bitmap_set_bit (group
->group_kill
, current_position
);
2961 if (bitmap_bit_p (group
->escaped_n
, j
))
2962 bitmap_set_bit (kill_on_calls
, current_position
);
2963 group
->offset_map_n
[j
] = current_position
++;
2964 group
->process_globally
= true;
2966 EXECUTE_IF_SET_IN_BITMAP (group
->store2_p
, 0, j
, bi
)
2968 bitmap_set_bit (group
->group_kill
, current_position
);
2969 if (bitmap_bit_p (group
->escaped_p
, j
))
2970 bitmap_set_bit (kill_on_calls
, current_position
);
2971 group
->offset_map_p
[j
] = current_position
++;
2972 group
->process_globally
= true;
2975 return current_position
!= 1;
2979 /* Init the offset tables for the spill case. */
2982 dse_step2_spill (void)
2985 group_info_t group
= clear_alias_group
;
2988 /* Position 0 is unused because 0 is used in the maps to mean
2990 current_position
= 1;
2994 bitmap_print (dump_file
, clear_alias_sets
,
2995 "clear alias sets ", "\n");
2996 bitmap_print (dump_file
, disqualified_clear_alias_sets
,
2997 "disqualified clear alias sets ", "\n");
3000 memset (group
->offset_map_n
, 0, sizeof(int) * group
->offset_map_size_n
);
3001 memset (group
->offset_map_p
, 0, sizeof(int) * group
->offset_map_size_p
);
3002 bitmap_clear (group
->group_kill
);
3004 /* Remove the disqualified positions from the store2_p set. */
3005 bitmap_and_compl_into (group
->store2_p
, disqualified_clear_alias_sets
);
3007 /* We do not need to process the store2_n set because
3008 alias_sets are always positive. */
3009 EXECUTE_IF_SET_IN_BITMAP (group
->store2_p
, 0, j
, bi
)
3011 bitmap_set_bit (group
->group_kill
, current_position
);
3012 group
->offset_map_p
[j
] = current_position
++;
3013 group
->process_globally
= true;
3016 return current_position
!= 1;
3021 /*----------------------------------------------------------------------------
3024 Build the bit vectors for the transfer functions.
3025 ----------------------------------------------------------------------------*/
3028 /* Look up the bitmap index for OFFSET in GROUP_INFO. If it is not
3032 get_bitmap_index (group_info_t group_info
, HOST_WIDE_INT offset
)
3036 HOST_WIDE_INT offset_p
= -offset
;
3037 if (offset_p
>= group_info
->offset_map_size_n
)
3039 return group_info
->offset_map_n
[offset_p
];
3043 if (offset
>= group_info
->offset_map_size_p
)
3045 return group_info
->offset_map_p
[offset
];
3050 /* Process the STORE_INFOs into the bitmaps into GEN and KILL. KILL
3054 scan_stores_nospill (store_info_t store_info
, bitmap gen
, bitmap kill
)
3059 group_info_t group_info
3060 = VEC_index (group_info_t
, rtx_group_vec
, store_info
->group_id
);
3061 if (group_info
->process_globally
)
3062 for (i
= store_info
->begin
; i
< store_info
->end
; i
++)
3064 int index
= get_bitmap_index (group_info
, i
);
3067 bitmap_set_bit (gen
, index
);
3069 bitmap_clear_bit (kill
, index
);
3072 store_info
= store_info
->next
;
3077 /* Process the STORE_INFOs into the bitmaps into GEN and KILL. KILL
3081 scan_stores_spill (store_info_t store_info
, bitmap gen
, bitmap kill
)
3085 if (store_info
->alias_set
)
3087 int index
= get_bitmap_index (clear_alias_group
,
3088 store_info
->alias_set
);
3091 bitmap_set_bit (gen
, index
);
3093 bitmap_clear_bit (kill
, index
);
3096 store_info
= store_info
->next
;
3101 /* Process the READ_INFOs into the bitmaps into GEN and KILL. KILL
3105 scan_reads_nospill (insn_info_t insn_info
, bitmap gen
, bitmap kill
)
3107 read_info_t read_info
= insn_info
->read_rec
;
3111 /* If this insn reads the frame, kill all the frame related stores. */
3112 if (insn_info
->frame_read
)
3114 FOR_EACH_VEC_ELT (group_info_t
, rtx_group_vec
, i
, group
)
3115 if (group
->process_globally
&& group
->frame_related
)
3118 bitmap_ior_into (kill
, group
->group_kill
);
3119 bitmap_and_compl_into (gen
, group
->group_kill
);
3122 if (insn_info
->non_frame_wild_read
)
3124 /* Kill all non-frame related stores. Kill all stores of variables that
3127 bitmap_ior_into (kill
, kill_on_calls
);
3128 bitmap_and_compl_into (gen
, kill_on_calls
);
3129 FOR_EACH_VEC_ELT (group_info_t
, rtx_group_vec
, i
, group
)
3130 if (group
->process_globally
&& !group
->frame_related
)
3133 bitmap_ior_into (kill
, group
->group_kill
);
3134 bitmap_and_compl_into (gen
, group
->group_kill
);
3139 FOR_EACH_VEC_ELT (group_info_t
, rtx_group_vec
, i
, group
)
3141 if (group
->process_globally
)
3143 if (i
== read_info
->group_id
)
3145 if (read_info
->begin
> read_info
->end
)
3147 /* Begin > end for block mode reads. */
3149 bitmap_ior_into (kill
, group
->group_kill
);
3150 bitmap_and_compl_into (gen
, group
->group_kill
);
3154 /* The groups are the same, just process the
3157 for (j
= read_info
->begin
; j
< read_info
->end
; j
++)
3159 int index
= get_bitmap_index (group
, j
);
3163 bitmap_set_bit (kill
, index
);
3164 bitmap_clear_bit (gen
, index
);
3171 /* The groups are different, if the alias sets
3172 conflict, clear the entire group. We only need
3173 to apply this test if the read_info is a cselib
3174 read. Anything with a constant base cannot alias
3175 something else with a different constant
3177 if ((read_info
->group_id
< 0)
3178 && canon_true_dependence (group
->base_mem
,
3179 GET_MODE (group
->base_mem
),
3180 group
->canon_base_addr
,
3181 read_info
->mem
, NULL_RTX
))
3184 bitmap_ior_into (kill
, group
->group_kill
);
3185 bitmap_and_compl_into (gen
, group
->group_kill
);
3191 read_info
= read_info
->next
;
3195 /* Process the READ_INFOs into the bitmaps into GEN and KILL. KILL
3199 scan_reads_spill (read_info_t read_info
, bitmap gen
, bitmap kill
)
3203 if (read_info
->alias_set
)
3205 int index
= get_bitmap_index (clear_alias_group
,
3206 read_info
->alias_set
);
3210 bitmap_set_bit (kill
, index
);
3211 bitmap_clear_bit (gen
, index
);
3215 read_info
= read_info
->next
;
3220 /* Return the insn in BB_INFO before the first wild read or if there
3221 are no wild reads in the block, return the last insn. */
3224 find_insn_before_first_wild_read (bb_info_t bb_info
)
3226 insn_info_t insn_info
= bb_info
->last_insn
;
3227 insn_info_t last_wild_read
= NULL
;
3231 if (insn_info
->wild_read
)
3233 last_wild_read
= insn_info
->prev_insn
;
3234 /* Block starts with wild read. */
3235 if (!last_wild_read
)
3239 insn_info
= insn_info
->prev_insn
;
3243 return last_wild_read
;
3245 return bb_info
->last_insn
;
3249 /* Scan the insns in BB_INFO starting at PTR and going to the top of
3250 the block in order to build the gen and kill sets for the block.
3251 We start at ptr which may be the last insn in the block or may be
3252 the first insn with a wild read. In the latter case we are able to
3253 skip the rest of the block because it just does not matter:
3254 anything that happens is hidden by the wild read. */
3257 dse_step3_scan (bool for_spills
, basic_block bb
)
3259 bb_info_t bb_info
= bb_table
[bb
->index
];
3260 insn_info_t insn_info
;
3263 /* There are no wild reads in the spill case. */
3264 insn_info
= bb_info
->last_insn
;
3266 insn_info
= find_insn_before_first_wild_read (bb_info
);
3268 /* In the spill case or in the no_spill case if there is no wild
3269 read in the block, we will need a kill set. */
3270 if (insn_info
== bb_info
->last_insn
)
3273 bitmap_clear (bb_info
->kill
);
3275 bb_info
->kill
= BITMAP_ALLOC (&dse_bitmap_obstack
);
3279 BITMAP_FREE (bb_info
->kill
);
3283 /* There may have been code deleted by the dce pass run before
3285 if (insn_info
->insn
&& INSN_P (insn_info
->insn
))
3287 /* Process the read(s) last. */
3290 scan_stores_spill (insn_info
->store_rec
, bb_info
->gen
, bb_info
->kill
);
3291 scan_reads_spill (insn_info
->read_rec
, bb_info
->gen
, bb_info
->kill
);
3295 scan_stores_nospill (insn_info
->store_rec
, bb_info
->gen
, bb_info
->kill
);
3296 scan_reads_nospill (insn_info
, bb_info
->gen
, bb_info
->kill
);
3300 insn_info
= insn_info
->prev_insn
;
3305 /* Set the gen set of the exit block, and also any block with no
3306 successors that does not have a wild read. */
3309 dse_step3_exit_block_scan (bb_info_t bb_info
)
3311 /* The gen set is all 0's for the exit block except for the
3312 frame_pointer_group. */
3314 if (stores_off_frame_dead_at_return
)
3319 FOR_EACH_VEC_ELT (group_info_t
, rtx_group_vec
, i
, group
)
3321 if (group
->process_globally
&& group
->frame_related
)
3322 bitmap_ior_into (bb_info
->gen
, group
->group_kill
);
3328 /* Find all of the blocks that are not backwards reachable from the
3329 exit block or any block with no successors (BB). These are the
3330 infinite loops or infinite self loops. These blocks will still
3331 have their bits set in UNREACHABLE_BLOCKS. */
3334 mark_reachable_blocks (sbitmap unreachable_blocks
, basic_block bb
)
3339 if (TEST_BIT (unreachable_blocks
, bb
->index
))
3341 RESET_BIT (unreachable_blocks
, bb
->index
);
3342 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
3344 mark_reachable_blocks (unreachable_blocks
, e
->src
);
3349 /* Build the transfer functions for the function. */
3352 dse_step3 (bool for_spills
)
3355 sbitmap unreachable_blocks
= sbitmap_alloc (last_basic_block
);
3356 sbitmap_iterator sbi
;
3357 bitmap all_ones
= NULL
;
3360 sbitmap_ones (unreachable_blocks
);
3364 bb_info_t bb_info
= bb_table
[bb
->index
];
3366 bitmap_clear (bb_info
->gen
);
3368 bb_info
->gen
= BITMAP_ALLOC (&dse_bitmap_obstack
);
3370 if (bb
->index
== ENTRY_BLOCK
)
3372 else if (bb
->index
== EXIT_BLOCK
)
3373 dse_step3_exit_block_scan (bb_info
);
3375 dse_step3_scan (for_spills
, bb
);
3376 if (EDGE_COUNT (bb
->succs
) == 0)
3377 mark_reachable_blocks (unreachable_blocks
, bb
);
3379 /* If this is the second time dataflow is run, delete the old
3382 BITMAP_FREE (bb_info
->in
);
3384 BITMAP_FREE (bb_info
->out
);
3387 /* For any block in an infinite loop, we must initialize the out set
3388 to all ones. This could be expensive, but almost never occurs in
3389 practice. However, it is common in regression tests. */
3390 EXECUTE_IF_SET_IN_SBITMAP (unreachable_blocks
, 0, i
, sbi
)
3392 if (bitmap_bit_p (all_blocks
, i
))
3394 bb_info_t bb_info
= bb_table
[i
];
3400 all_ones
= BITMAP_ALLOC (&dse_bitmap_obstack
);
3401 FOR_EACH_VEC_ELT (group_info_t
, rtx_group_vec
, j
, group
)
3402 bitmap_ior_into (all_ones
, group
->group_kill
);
3406 bb_info
->out
= BITMAP_ALLOC (&dse_bitmap_obstack
);
3407 bitmap_copy (bb_info
->out
, all_ones
);
3413 BITMAP_FREE (all_ones
);
3414 sbitmap_free (unreachable_blocks
);
3419 /*----------------------------------------------------------------------------
3422 Solve the bitvector equations.
3423 ----------------------------------------------------------------------------*/
3426 /* Confluence function for blocks with no successors. Create an out
3427 set from the gen set of the exit block. This block logically has
3428 the exit block as a successor. */
3433 dse_confluence_0 (basic_block bb
)
3435 bb_info_t bb_info
= bb_table
[bb
->index
];
3437 if (bb
->index
== EXIT_BLOCK
)
3442 bb_info
->out
= BITMAP_ALLOC (&dse_bitmap_obstack
);
3443 bitmap_copy (bb_info
->out
, bb_table
[EXIT_BLOCK
]->gen
);
3447 /* Propagate the information from the in set of the dest of E to the
3448 out set of the src of E. If the various in or out sets are not
3449 there, that means they are all ones. */
3452 dse_confluence_n (edge e
)
3454 bb_info_t src_info
= bb_table
[e
->src
->index
];
3455 bb_info_t dest_info
= bb_table
[e
->dest
->index
];
3460 bitmap_and_into (src_info
->out
, dest_info
->in
);
3463 src_info
->out
= BITMAP_ALLOC (&dse_bitmap_obstack
);
3464 bitmap_copy (src_info
->out
, dest_info
->in
);
3471 /* Propagate the info from the out to the in set of BB_INDEX's basic
3472 block. There are three cases:
3474 1) The block has no kill set. In this case the kill set is all
3475 ones. It does not matter what the out set of the block is, none of
3476 the info can reach the top. The only thing that reaches the top is
3477 the gen set and we just copy the set.
3479 2) There is a kill set but no out set and bb has successors. In
3480 this case we just return. Eventually an out set will be created and
3481 it is better to wait than to create a set of ones.
3483 3) There is both a kill and out set. We apply the obvious transfer
3488 dse_transfer_function (int bb_index
)
3490 bb_info_t bb_info
= bb_table
[bb_index
];
3498 return bitmap_ior_and_compl (bb_info
->in
, bb_info
->gen
,
3499 bb_info
->out
, bb_info
->kill
);
3502 bb_info
->in
= BITMAP_ALLOC (&dse_bitmap_obstack
);
3503 bitmap_ior_and_compl (bb_info
->in
, bb_info
->gen
,
3504 bb_info
->out
, bb_info
->kill
);
3514 /* Case 1 above. If there is already an in set, nothing
3520 bb_info
->in
= BITMAP_ALLOC (&dse_bitmap_obstack
);
3521 bitmap_copy (bb_info
->in
, bb_info
->gen
);
3527 /* Solve the dataflow equations. */
3532 df_simple_dataflow (DF_BACKWARD
, NULL
, dse_confluence_0
,
3533 dse_confluence_n
, dse_transfer_function
,
3534 all_blocks
, df_get_postorder (DF_BACKWARD
),
3535 df_get_n_blocks (DF_BACKWARD
));
3540 fprintf (dump_file
, "\n\n*** Global dataflow info after analysis.\n");
3543 bb_info_t bb_info
= bb_table
[bb
->index
];
3545 df_print_bb_index (bb
, dump_file
);
3547 bitmap_print (dump_file
, bb_info
->in
, " in: ", "\n");
3549 fprintf (dump_file
, " in: *MISSING*\n");
3551 bitmap_print (dump_file
, bb_info
->gen
, " gen: ", "\n");
3553 fprintf (dump_file
, " gen: *MISSING*\n");
3555 bitmap_print (dump_file
, bb_info
->kill
, " kill: ", "\n");
3557 fprintf (dump_file
, " kill: *MISSING*\n");
3559 bitmap_print (dump_file
, bb_info
->out
, " out: ", "\n");
3561 fprintf (dump_file
, " out: *MISSING*\n\n");
3568 /*----------------------------------------------------------------------------
3571 Delete the stores that can only be deleted using the global information.
3572 ----------------------------------------------------------------------------*/
3576 dse_step5_nospill (void)
3581 bb_info_t bb_info
= bb_table
[bb
->index
];
3582 insn_info_t insn_info
= bb_info
->last_insn
;
3583 bitmap v
= bb_info
->out
;
3587 bool deleted
= false;
3588 if (dump_file
&& insn_info
->insn
)
3590 fprintf (dump_file
, "starting to process insn %d\n",
3591 INSN_UID (insn_info
->insn
));
3592 bitmap_print (dump_file
, v
, " v: ", "\n");
3595 /* There may have been code deleted by the dce pass run before
3598 && INSN_P (insn_info
->insn
)
3599 && (!insn_info
->cannot_delete
)
3600 && (!bitmap_empty_p (v
)))
3602 store_info_t store_info
= insn_info
->store_rec
;
3604 /* Try to delete the current insn. */
3607 /* Skip the clobbers. */
3608 while (!store_info
->is_set
)
3609 store_info
= store_info
->next
;
3611 if (store_info
->alias_set
)
3616 group_info_t group_info
3617 = VEC_index (group_info_t
, rtx_group_vec
, store_info
->group_id
);
3619 for (i
= store_info
->begin
; i
< store_info
->end
; i
++)
3621 int index
= get_bitmap_index (group_info
, i
);
3624 fprintf (dump_file
, "i = %d, index = %d\n", (int)i
, index
);
3625 if (index
== 0 || !bitmap_bit_p (v
, index
))
3628 fprintf (dump_file
, "failing at i = %d\n", (int)i
);
3637 && check_for_inc_dec_1 (insn_info
))
3639 delete_insn (insn_info
->insn
);
3640 insn_info
->insn
= NULL
;
3645 /* We do want to process the local info if the insn was
3646 deleted. For instance, if the insn did a wild read, we
3647 no longer need to trash the info. */
3649 && INSN_P (insn_info
->insn
)
3652 scan_stores_nospill (insn_info
->store_rec
, v
, NULL
);
3653 if (insn_info
->wild_read
)
3656 fprintf (dump_file
, "wild read\n");
3659 else if (insn_info
->read_rec
3660 || insn_info
->non_frame_wild_read
)
3662 if (dump_file
&& !insn_info
->non_frame_wild_read
)
3663 fprintf (dump_file
, "regular read\n");
3665 fprintf (dump_file
, "non-frame wild read\n");
3666 scan_reads_nospill (insn_info
, v
, NULL
);
3670 insn_info
= insn_info
->prev_insn
;
3677 dse_step5_spill (void)
3682 bb_info_t bb_info
= bb_table
[bb
->index
];
3683 insn_info_t insn_info
= bb_info
->last_insn
;
3684 bitmap v
= bb_info
->out
;
3688 bool deleted
= false;
3689 /* There may have been code deleted by the dce pass run before
3692 && INSN_P (insn_info
->insn
)
3693 && (!insn_info
->cannot_delete
)
3694 && (!bitmap_empty_p (v
)))
3696 /* Try to delete the current insn. */
3697 store_info_t store_info
= insn_info
->store_rec
;
3702 if (store_info
->alias_set
)
3704 int index
= get_bitmap_index (clear_alias_group
,
3705 store_info
->alias_set
);
3706 if (index
== 0 || !bitmap_bit_p (v
, index
))
3714 store_info
= store_info
->next
;
3716 if (deleted
&& dbg_cnt (dse
)
3717 && check_for_inc_dec_1 (insn_info
))
3720 fprintf (dump_file
, "Spill deleting insn %d\n",
3721 INSN_UID (insn_info
->insn
));
3722 delete_insn (insn_info
->insn
);
3724 insn_info
->insn
= NULL
;
3729 && INSN_P (insn_info
->insn
)
3732 scan_stores_spill (insn_info
->store_rec
, v
, NULL
);
3733 scan_reads_spill (insn_info
->read_rec
, v
, NULL
);
3736 insn_info
= insn_info
->prev_insn
;
3743 /*----------------------------------------------------------------------------
3746 Delete stores made redundant by earlier stores (which store the same
3747 value) that couldn't be eliminated.
3748 ----------------------------------------------------------------------------*/
3757 bb_info_t bb_info
= bb_table
[bb
->index
];
3758 insn_info_t insn_info
= bb_info
->last_insn
;
3762 /* There may have been code deleted by the dce pass run before
3765 && INSN_P (insn_info
->insn
)
3766 && !insn_info
->cannot_delete
)
3768 store_info_t s_info
= insn_info
->store_rec
;
3770 while (s_info
&& !s_info
->is_set
)
3771 s_info
= s_info
->next
;
3773 && s_info
->redundant_reason
3774 && s_info
->redundant_reason
->insn
3775 && INSN_P (s_info
->redundant_reason
->insn
))
3777 rtx rinsn
= s_info
->redundant_reason
->insn
;
3779 fprintf (dump_file
, "Locally deleting insn %d "
3780 "because insn %d stores the "
3781 "same value and couldn't be "
3783 INSN_UID (insn_info
->insn
),
3785 delete_dead_store_insn (insn_info
);
3788 insn_info
= insn_info
->prev_insn
;
3793 /*----------------------------------------------------------------------------
3796 Destroy everything left standing.
3797 ----------------------------------------------------------------------------*/
3802 bitmap_obstack_release (&dse_bitmap_obstack
);
3803 obstack_free (&dse_obstack
, NULL
);
3805 if (clear_alias_sets
)
3807 BITMAP_FREE (clear_alias_sets
);
3808 BITMAP_FREE (disqualified_clear_alias_sets
);
3809 free_alloc_pool (clear_alias_mode_pool
);
3810 htab_delete (clear_alias_mode_table
);
3813 end_alias_analysis ();
3815 htab_delete (rtx_group_table
);
3816 VEC_free (group_info_t
, heap
, rtx_group_vec
);
3817 BITMAP_FREE (all_blocks
);
3818 BITMAP_FREE (scratch
);
3820 free_alloc_pool (rtx_store_info_pool
);
3821 free_alloc_pool (read_info_pool
);
3822 free_alloc_pool (insn_info_pool
);
3823 free_alloc_pool (bb_info_pool
);
3824 free_alloc_pool (rtx_group_info_pool
);
3825 free_alloc_pool (deferred_change_pool
);
3829 /* -------------------------------------------------------------------------
3831 ------------------------------------------------------------------------- */
3833 /* Callback for running pass_rtl_dse. */
3836 rest_of_handle_dse (void)
3838 bool did_global
= false;
3840 df_set_flags (DF_DEFER_INSN_RESCAN
);
3842 /* Need the notes since we must track live hardregs in the forwards
3844 df_note_add_problem ();
3850 if (dse_step2_nospill ())
3852 df_set_flags (DF_LR_RUN_DCE
);
3856 fprintf (dump_file
, "doing global processing\n");
3859 dse_step5_nospill ();
3862 /* For the instance of dse that runs after reload, we make a special
3863 pass to process the spills. These are special in that they are
3864 totally transparent, i.e, there is no aliasing issues that need
3865 to be considered. This means that the wild reads that kill
3866 everything else do not apply here. */
3867 if (clear_alias_sets
&& dse_step2_spill ())
3871 df_set_flags (DF_LR_RUN_DCE
);
3876 fprintf (dump_file
, "doing global spill processing\n");
3886 fprintf (dump_file
, "dse: local deletions = %d, global deletions = %d, spill deletions = %d\n",
3887 locally_deleted
, globally_deleted
, spill_deleted
);
3894 return optimize
> 0 && flag_dse
3901 return optimize
> 0 && flag_dse
3905 struct rtl_opt_pass pass_rtl_dse1
=
3910 gate_dse1
, /* gate */
3911 rest_of_handle_dse
, /* execute */
3914 0, /* static_pass_number */
3915 TV_DSE1
, /* tv_id */
3916 0, /* properties_required */
3917 0, /* properties_provided */
3918 0, /* properties_destroyed */
3919 0, /* todo_flags_start */
3920 TODO_df_finish
| TODO_verify_rtl_sharing
|
3921 TODO_ggc_collect
/* todo_flags_finish */
3925 struct rtl_opt_pass pass_rtl_dse2
=
3930 gate_dse2
, /* gate */
3931 rest_of_handle_dse
, /* execute */
3934 0, /* static_pass_number */
3935 TV_DSE2
, /* tv_id */
3936 0, /* properties_required */
3937 0, /* properties_provided */
3938 0, /* properties_destroyed */
3939 0, /* todo_flags_start */
3940 TODO_df_finish
| TODO_verify_rtl_sharing
|
3941 TODO_ggc_collect
/* todo_flags_finish */