2013-11-03 Kugan Vivekanandarajah <kuganv@linaro.org>
[official-gcc.git] / gcc / tree-ssa-ccp.c
blob5b6c0dbea28adfb1cbdf1a7758ffb2fbfec7b960
1 /* Conditional constant propagation pass for the GNU compiler.
2 Copyright (C) 2000-2013 Free Software Foundation, Inc.
3 Adapted from original RTL SSA-CCP by Daniel Berlin <dberlin@dberlin.org>
4 Adapted to GIMPLE trees by Diego Novillo <dnovillo@redhat.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published by the
10 Free Software Foundation; either version 3, or (at your option) any
11 later version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* Conditional constant propagation (CCP) is based on the SSA
23 propagation engine (tree-ssa-propagate.c). Constant assignments of
24 the form VAR = CST are propagated from the assignments into uses of
25 VAR, which in turn may generate new constants. The simulation uses
26 a four level lattice to keep track of constant values associated
27 with SSA names. Given an SSA name V_i, it may take one of the
28 following values:
30 UNINITIALIZED -> the initial state of the value. This value
31 is replaced with a correct initial value
32 the first time the value is used, so the
33 rest of the pass does not need to care about
34 it. Using this value simplifies initialization
35 of the pass, and prevents us from needlessly
36 scanning statements that are never reached.
38 UNDEFINED -> V_i is a local variable whose definition
39 has not been processed yet. Therefore we
40 don't yet know if its value is a constant
41 or not.
43 CONSTANT -> V_i has been found to hold a constant
44 value C.
46 VARYING -> V_i cannot take a constant value, or if it
47 does, it is not possible to determine it
48 at compile time.
50 The core of SSA-CCP is in ccp_visit_stmt and ccp_visit_phi_node:
52 1- In ccp_visit_stmt, we are interested in assignments whose RHS
53 evaluates into a constant and conditional jumps whose predicate
54 evaluates into a boolean true or false. When an assignment of
55 the form V_i = CONST is found, V_i's lattice value is set to
56 CONSTANT and CONST is associated with it. This causes the
57 propagation engine to add all the SSA edges coming out the
58 assignment into the worklists, so that statements that use V_i
59 can be visited.
61 If the statement is a conditional with a constant predicate, we
62 mark the outgoing edges as executable or not executable
63 depending on the predicate's value. This is then used when
64 visiting PHI nodes to know when a PHI argument can be ignored.
67 2- In ccp_visit_phi_node, if all the PHI arguments evaluate to the
68 same constant C, then the LHS of the PHI is set to C. This
69 evaluation is known as the "meet operation". Since one of the
70 goals of this evaluation is to optimistically return constant
71 values as often as possible, it uses two main short cuts:
73 - If an argument is flowing in through a non-executable edge, it
74 is ignored. This is useful in cases like this:
76 if (PRED)
77 a_9 = 3;
78 else
79 a_10 = 100;
80 a_11 = PHI (a_9, a_10)
82 If PRED is known to always evaluate to false, then we can
83 assume that a_11 will always take its value from a_10, meaning
84 that instead of consider it VARYING (a_9 and a_10 have
85 different values), we can consider it CONSTANT 100.
87 - If an argument has an UNDEFINED value, then it does not affect
88 the outcome of the meet operation. If a variable V_i has an
89 UNDEFINED value, it means that either its defining statement
90 hasn't been visited yet or V_i has no defining statement, in
91 which case the original symbol 'V' is being used
92 uninitialized. Since 'V' is a local variable, the compiler
93 may assume any initial value for it.
96 After propagation, every variable V_i that ends up with a lattice
97 value of CONSTANT will have the associated constant value in the
98 array CONST_VAL[i].VALUE. That is fed into substitute_and_fold for
99 final substitution and folding.
101 References:
103 Constant propagation with conditional branches,
104 Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
106 Building an Optimizing Compiler,
107 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
109 Advanced Compiler Design and Implementation,
110 Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6 */
112 #include "config.h"
113 #include "system.h"
114 #include "coretypes.h"
115 #include "tm.h"
116 #include "tree.h"
117 #include "flags.h"
118 #include "tm_p.h"
119 #include "basic-block.h"
120 #include "function.h"
121 #include "gimple-pretty-print.h"
122 #include "gimple.h"
123 #include "gimple-ssa.h"
124 #include "tree-cfg.h"
125 #include "tree-phinodes.h"
126 #include "ssa-iterators.h"
127 #include "tree-ssanames.h"
128 #include "tree-pass.h"
129 #include "tree-ssa-propagate.h"
130 #include "value-prof.h"
131 #include "langhooks.h"
132 #include "target.h"
133 #include "diagnostic-core.h"
134 #include "dbgcnt.h"
135 #include "params.h"
136 #include "hash-table.h"
139 /* Possible lattice values. */
140 typedef enum
142 UNINITIALIZED,
143 UNDEFINED,
144 CONSTANT,
145 VARYING
146 } ccp_lattice_t;
148 struct prop_value_d {
149 /* Lattice value. */
150 ccp_lattice_t lattice_val;
152 /* Propagated value. */
153 tree value;
155 /* Mask that applies to the propagated value during CCP. For
156 X with a CONSTANT lattice value X & ~mask == value & ~mask. */
157 double_int mask;
160 typedef struct prop_value_d prop_value_t;
162 /* Array of propagated constant values. After propagation,
163 CONST_VAL[I].VALUE holds the constant value for SSA_NAME(I). If
164 the constant is held in an SSA name representing a memory store
165 (i.e., a VDEF), CONST_VAL[I].MEM_REF will contain the actual
166 memory reference used to store (i.e., the LHS of the assignment
167 doing the store). */
168 static prop_value_t *const_val;
169 static unsigned n_const_val;
171 static void canonicalize_float_value (prop_value_t *);
172 static bool ccp_fold_stmt (gimple_stmt_iterator *);
174 /* Dump constant propagation value VAL to file OUTF prefixed by PREFIX. */
176 static void
177 dump_lattice_value (FILE *outf, const char *prefix, prop_value_t val)
179 switch (val.lattice_val)
181 case UNINITIALIZED:
182 fprintf (outf, "%sUNINITIALIZED", prefix);
183 break;
184 case UNDEFINED:
185 fprintf (outf, "%sUNDEFINED", prefix);
186 break;
187 case VARYING:
188 fprintf (outf, "%sVARYING", prefix);
189 break;
190 case CONSTANT:
191 if (TREE_CODE (val.value) != INTEGER_CST
192 || val.mask.is_zero ())
194 fprintf (outf, "%sCONSTANT ", prefix);
195 print_generic_expr (outf, val.value, dump_flags);
197 else
199 double_int cval = tree_to_double_int (val.value).and_not (val.mask);
200 fprintf (outf, "%sCONSTANT " HOST_WIDE_INT_PRINT_DOUBLE_HEX,
201 prefix, cval.high, cval.low);
202 fprintf (outf, " (" HOST_WIDE_INT_PRINT_DOUBLE_HEX ")",
203 val.mask.high, val.mask.low);
205 break;
206 default:
207 gcc_unreachable ();
212 /* Print lattice value VAL to stderr. */
214 void debug_lattice_value (prop_value_t val);
216 DEBUG_FUNCTION void
217 debug_lattice_value (prop_value_t val)
219 dump_lattice_value (stderr, "", val);
220 fprintf (stderr, "\n");
224 /* Compute a default value for variable VAR and store it in the
225 CONST_VAL array. The following rules are used to get default
226 values:
228 1- Global and static variables that are declared constant are
229 considered CONSTANT.
231 2- Any other value is considered UNDEFINED. This is useful when
232 considering PHI nodes. PHI arguments that are undefined do not
233 change the constant value of the PHI node, which allows for more
234 constants to be propagated.
236 3- Variables defined by statements other than assignments and PHI
237 nodes are considered VARYING.
239 4- Initial values of variables that are not GIMPLE registers are
240 considered VARYING. */
242 static prop_value_t
243 get_default_value (tree var)
245 prop_value_t val = { UNINITIALIZED, NULL_TREE, { 0, 0 } };
246 gimple stmt;
248 stmt = SSA_NAME_DEF_STMT (var);
250 if (gimple_nop_p (stmt))
252 /* Variables defined by an empty statement are those used
253 before being initialized. If VAR is a local variable, we
254 can assume initially that it is UNDEFINED, otherwise we must
255 consider it VARYING. */
256 if (!virtual_operand_p (var)
257 && TREE_CODE (SSA_NAME_VAR (var)) == VAR_DECL)
258 val.lattice_val = UNDEFINED;
259 else
261 val.lattice_val = VARYING;
262 val.mask = double_int_minus_one;
263 if (flag_tree_bit_ccp)
265 double_int nonzero_bits = get_nonzero_bits (var);
266 double_int mask
267 = double_int::mask (TYPE_PRECISION (TREE_TYPE (var)));
268 if (nonzero_bits != double_int_minus_one && nonzero_bits != mask)
270 val.lattice_val = CONSTANT;
271 val.value = build_zero_cst (TREE_TYPE (var));
272 /* CCP wants the bits above precision set. */
273 val.mask = nonzero_bits | ~mask;
278 else if (is_gimple_assign (stmt))
280 tree cst;
281 if (gimple_assign_single_p (stmt)
282 && DECL_P (gimple_assign_rhs1 (stmt))
283 && (cst = get_symbol_constant_value (gimple_assign_rhs1 (stmt))))
285 val.lattice_val = CONSTANT;
286 val.value = cst;
288 else
290 /* Any other variable defined by an assignment is considered
291 UNDEFINED. */
292 val.lattice_val = UNDEFINED;
295 else if ((is_gimple_call (stmt)
296 && gimple_call_lhs (stmt) != NULL_TREE)
297 || gimple_code (stmt) == GIMPLE_PHI)
299 /* A variable defined by a call or a PHI node is considered
300 UNDEFINED. */
301 val.lattice_val = UNDEFINED;
303 else
305 /* Otherwise, VAR will never take on a constant value. */
306 val.lattice_val = VARYING;
307 val.mask = double_int_minus_one;
310 return val;
314 /* Get the constant value associated with variable VAR. */
316 static inline prop_value_t *
317 get_value (tree var)
319 prop_value_t *val;
321 if (const_val == NULL
322 || SSA_NAME_VERSION (var) >= n_const_val)
323 return NULL;
325 val = &const_val[SSA_NAME_VERSION (var)];
326 if (val->lattice_val == UNINITIALIZED)
327 *val = get_default_value (var);
329 canonicalize_float_value (val);
331 return val;
334 /* Return the constant tree value associated with VAR. */
336 static inline tree
337 get_constant_value (tree var)
339 prop_value_t *val;
340 if (TREE_CODE (var) != SSA_NAME)
342 if (is_gimple_min_invariant (var))
343 return var;
344 return NULL_TREE;
346 val = get_value (var);
347 if (val
348 && val->lattice_val == CONSTANT
349 && (TREE_CODE (val->value) != INTEGER_CST
350 || val->mask.is_zero ()))
351 return val->value;
352 return NULL_TREE;
355 /* Sets the value associated with VAR to VARYING. */
357 static inline void
358 set_value_varying (tree var)
360 prop_value_t *val = &const_val[SSA_NAME_VERSION (var)];
362 val->lattice_val = VARYING;
363 val->value = NULL_TREE;
364 val->mask = double_int_minus_one;
367 /* For float types, modify the value of VAL to make ccp work correctly
368 for non-standard values (-0, NaN):
370 If HONOR_SIGNED_ZEROS is false, and VAL = -0, we canonicalize it to 0.
371 If HONOR_NANS is false, and VAL is NaN, we canonicalize it to UNDEFINED.
372 This is to fix the following problem (see PR 29921): Suppose we have
374 x = 0.0 * y
376 and we set value of y to NaN. This causes value of x to be set to NaN.
377 When we later determine that y is in fact VARYING, fold uses the fact
378 that HONOR_NANS is false, and we try to change the value of x to 0,
379 causing an ICE. With HONOR_NANS being false, the real appearance of
380 NaN would cause undefined behavior, though, so claiming that y (and x)
381 are UNDEFINED initially is correct. */
383 static void
384 canonicalize_float_value (prop_value_t *val)
386 enum machine_mode mode;
387 tree type;
388 REAL_VALUE_TYPE d;
390 if (val->lattice_val != CONSTANT
391 || TREE_CODE (val->value) != REAL_CST)
392 return;
394 d = TREE_REAL_CST (val->value);
395 type = TREE_TYPE (val->value);
396 mode = TYPE_MODE (type);
398 if (!HONOR_SIGNED_ZEROS (mode)
399 && REAL_VALUE_MINUS_ZERO (d))
401 val->value = build_real (type, dconst0);
402 return;
405 if (!HONOR_NANS (mode)
406 && REAL_VALUE_ISNAN (d))
408 val->lattice_val = UNDEFINED;
409 val->value = NULL;
410 return;
414 /* Return whether the lattice transition is valid. */
416 static bool
417 valid_lattice_transition (prop_value_t old_val, prop_value_t new_val)
419 /* Lattice transitions must always be monotonically increasing in
420 value. */
421 if (old_val.lattice_val < new_val.lattice_val)
422 return true;
424 if (old_val.lattice_val != new_val.lattice_val)
425 return false;
427 if (!old_val.value && !new_val.value)
428 return true;
430 /* Now both lattice values are CONSTANT. */
432 /* Allow transitioning from PHI <&x, not executable> == &x
433 to PHI <&x, &y> == common alignment. */
434 if (TREE_CODE (old_val.value) != INTEGER_CST
435 && TREE_CODE (new_val.value) == INTEGER_CST)
436 return true;
438 /* Bit-lattices have to agree in the still valid bits. */
439 if (TREE_CODE (old_val.value) == INTEGER_CST
440 && TREE_CODE (new_val.value) == INTEGER_CST)
441 return tree_to_double_int (old_val.value).and_not (new_val.mask)
442 == tree_to_double_int (new_val.value).and_not (new_val.mask);
444 /* Otherwise constant values have to agree. */
445 return operand_equal_p (old_val.value, new_val.value, 0);
448 /* Set the value for variable VAR to NEW_VAL. Return true if the new
449 value is different from VAR's previous value. */
451 static bool
452 set_lattice_value (tree var, prop_value_t new_val)
454 /* We can deal with old UNINITIALIZED values just fine here. */
455 prop_value_t *old_val = &const_val[SSA_NAME_VERSION (var)];
457 canonicalize_float_value (&new_val);
459 /* We have to be careful to not go up the bitwise lattice
460 represented by the mask.
461 ??? This doesn't seem to be the best place to enforce this. */
462 if (new_val.lattice_val == CONSTANT
463 && old_val->lattice_val == CONSTANT
464 && TREE_CODE (new_val.value) == INTEGER_CST
465 && TREE_CODE (old_val->value) == INTEGER_CST)
467 double_int diff;
468 diff = tree_to_double_int (new_val.value)
469 ^ tree_to_double_int (old_val->value);
470 new_val.mask = new_val.mask | old_val->mask | diff;
473 gcc_assert (valid_lattice_transition (*old_val, new_val));
475 /* If *OLD_VAL and NEW_VAL are the same, return false to inform the
476 caller that this was a non-transition. */
477 if (old_val->lattice_val != new_val.lattice_val
478 || (new_val.lattice_val == CONSTANT
479 && TREE_CODE (new_val.value) == INTEGER_CST
480 && (TREE_CODE (old_val->value) != INTEGER_CST
481 || new_val.mask != old_val->mask)))
483 /* ??? We would like to delay creation of INTEGER_CSTs from
484 partially constants here. */
486 if (dump_file && (dump_flags & TDF_DETAILS))
488 dump_lattice_value (dump_file, "Lattice value changed to ", new_val);
489 fprintf (dump_file, ". Adding SSA edges to worklist.\n");
492 *old_val = new_val;
494 gcc_assert (new_val.lattice_val != UNINITIALIZED);
495 return true;
498 return false;
501 static prop_value_t get_value_for_expr (tree, bool);
502 static prop_value_t bit_value_binop (enum tree_code, tree, tree, tree);
503 static void bit_value_binop_1 (enum tree_code, tree, double_int *, double_int *,
504 tree, double_int, double_int,
505 tree, double_int, double_int);
507 /* Return a double_int that can be used for bitwise simplifications
508 from VAL. */
510 static double_int
511 value_to_double_int (prop_value_t val)
513 if (val.value
514 && TREE_CODE (val.value) == INTEGER_CST)
515 return tree_to_double_int (val.value);
516 else
517 return double_int_zero;
520 /* Return the value for the address expression EXPR based on alignment
521 information. */
523 static prop_value_t
524 get_value_from_alignment (tree expr)
526 tree type = TREE_TYPE (expr);
527 prop_value_t val;
528 unsigned HOST_WIDE_INT bitpos;
529 unsigned int align;
531 gcc_assert (TREE_CODE (expr) == ADDR_EXPR);
533 get_pointer_alignment_1 (expr, &align, &bitpos);
534 val.mask = (POINTER_TYPE_P (type) || TYPE_UNSIGNED (type)
535 ? double_int::mask (TYPE_PRECISION (type))
536 : double_int_minus_one)
537 .and_not (double_int::from_uhwi (align / BITS_PER_UNIT - 1));
538 val.lattice_val = val.mask.is_minus_one () ? VARYING : CONSTANT;
539 if (val.lattice_val == CONSTANT)
540 val.value
541 = double_int_to_tree (type,
542 double_int::from_uhwi (bitpos / BITS_PER_UNIT));
543 else
544 val.value = NULL_TREE;
546 return val;
549 /* Return the value for the tree operand EXPR. If FOR_BITS_P is true
550 return constant bits extracted from alignment information for
551 invariant addresses. */
553 static prop_value_t
554 get_value_for_expr (tree expr, bool for_bits_p)
556 prop_value_t val;
558 if (TREE_CODE (expr) == SSA_NAME)
560 val = *get_value (expr);
561 if (for_bits_p
562 && val.lattice_val == CONSTANT
563 && TREE_CODE (val.value) == ADDR_EXPR)
564 val = get_value_from_alignment (val.value);
566 else if (is_gimple_min_invariant (expr)
567 && (!for_bits_p || TREE_CODE (expr) != ADDR_EXPR))
569 val.lattice_val = CONSTANT;
570 val.value = expr;
571 val.mask = double_int_zero;
572 canonicalize_float_value (&val);
574 else if (TREE_CODE (expr) == ADDR_EXPR)
575 val = get_value_from_alignment (expr);
576 else
578 val.lattice_val = VARYING;
579 val.mask = double_int_minus_one;
580 val.value = NULL_TREE;
582 return val;
585 /* Return the likely CCP lattice value for STMT.
587 If STMT has no operands, then return CONSTANT.
589 Else if undefinedness of operands of STMT cause its value to be
590 undefined, then return UNDEFINED.
592 Else if any operands of STMT are constants, then return CONSTANT.
594 Else return VARYING. */
596 static ccp_lattice_t
597 likely_value (gimple stmt)
599 bool has_constant_operand, has_undefined_operand, all_undefined_operands;
600 tree use;
601 ssa_op_iter iter;
602 unsigned i;
604 enum gimple_code code = gimple_code (stmt);
606 /* This function appears to be called only for assignments, calls,
607 conditionals, and switches, due to the logic in visit_stmt. */
608 gcc_assert (code == GIMPLE_ASSIGN
609 || code == GIMPLE_CALL
610 || code == GIMPLE_COND
611 || code == GIMPLE_SWITCH);
613 /* If the statement has volatile operands, it won't fold to a
614 constant value. */
615 if (gimple_has_volatile_ops (stmt))
616 return VARYING;
618 /* Arrive here for more complex cases. */
619 has_constant_operand = false;
620 has_undefined_operand = false;
621 all_undefined_operands = true;
622 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
624 prop_value_t *val = get_value (use);
626 if (val->lattice_val == UNDEFINED)
627 has_undefined_operand = true;
628 else
629 all_undefined_operands = false;
631 if (val->lattice_val == CONSTANT)
632 has_constant_operand = true;
635 /* There may be constants in regular rhs operands. For calls we
636 have to ignore lhs, fndecl and static chain, otherwise only
637 the lhs. */
638 for (i = (is_gimple_call (stmt) ? 2 : 0) + gimple_has_lhs (stmt);
639 i < gimple_num_ops (stmt); ++i)
641 tree op = gimple_op (stmt, i);
642 if (!op || TREE_CODE (op) == SSA_NAME)
643 continue;
644 if (is_gimple_min_invariant (op))
645 has_constant_operand = true;
648 if (has_constant_operand)
649 all_undefined_operands = false;
651 if (has_undefined_operand
652 && code == GIMPLE_CALL
653 && gimple_call_internal_p (stmt))
654 switch (gimple_call_internal_fn (stmt))
656 /* These 3 builtins use the first argument just as a magic
657 way how to find out a decl uid. */
658 case IFN_GOMP_SIMD_LANE:
659 case IFN_GOMP_SIMD_VF:
660 case IFN_GOMP_SIMD_LAST_LANE:
661 has_undefined_operand = false;
662 break;
663 default:
664 break;
667 /* If the operation combines operands like COMPLEX_EXPR make sure to
668 not mark the result UNDEFINED if only one part of the result is
669 undefined. */
670 if (has_undefined_operand && all_undefined_operands)
671 return UNDEFINED;
672 else if (code == GIMPLE_ASSIGN && has_undefined_operand)
674 switch (gimple_assign_rhs_code (stmt))
676 /* Unary operators are handled with all_undefined_operands. */
677 case PLUS_EXPR:
678 case MINUS_EXPR:
679 case POINTER_PLUS_EXPR:
680 /* Not MIN_EXPR, MAX_EXPR. One VARYING operand may be selected.
681 Not bitwise operators, one VARYING operand may specify the
682 result completely. Not logical operators for the same reason.
683 Not COMPLEX_EXPR as one VARYING operand makes the result partly
684 not UNDEFINED. Not *DIV_EXPR, comparisons and shifts because
685 the undefined operand may be promoted. */
686 return UNDEFINED;
688 case ADDR_EXPR:
689 /* If any part of an address is UNDEFINED, like the index
690 of an ARRAY_EXPR, then treat the result as UNDEFINED. */
691 return UNDEFINED;
693 default:
697 /* If there was an UNDEFINED operand but the result may be not UNDEFINED
698 fall back to CONSTANT. During iteration UNDEFINED may still drop
699 to CONSTANT. */
700 if (has_undefined_operand)
701 return CONSTANT;
703 /* We do not consider virtual operands here -- load from read-only
704 memory may have only VARYING virtual operands, but still be
705 constant. */
706 if (has_constant_operand
707 || gimple_references_memory_p (stmt))
708 return CONSTANT;
710 return VARYING;
713 /* Returns true if STMT cannot be constant. */
715 static bool
716 surely_varying_stmt_p (gimple stmt)
718 /* If the statement has operands that we cannot handle, it cannot be
719 constant. */
720 if (gimple_has_volatile_ops (stmt))
721 return true;
723 /* If it is a call and does not return a value or is not a
724 builtin and not an indirect call, it is varying. */
725 if (is_gimple_call (stmt))
727 tree fndecl;
728 if (!gimple_call_lhs (stmt)
729 || ((fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
730 && !DECL_BUILT_IN (fndecl)))
731 return true;
734 /* Any other store operation is not interesting. */
735 else if (gimple_vdef (stmt))
736 return true;
738 /* Anything other than assignments and conditional jumps are not
739 interesting for CCP. */
740 if (gimple_code (stmt) != GIMPLE_ASSIGN
741 && gimple_code (stmt) != GIMPLE_COND
742 && gimple_code (stmt) != GIMPLE_SWITCH
743 && gimple_code (stmt) != GIMPLE_CALL)
744 return true;
746 return false;
749 /* Initialize local data structures for CCP. */
751 static void
752 ccp_initialize (void)
754 basic_block bb;
756 n_const_val = num_ssa_names;
757 const_val = XCNEWVEC (prop_value_t, n_const_val);
759 /* Initialize simulation flags for PHI nodes and statements. */
760 FOR_EACH_BB (bb)
762 gimple_stmt_iterator i;
764 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
766 gimple stmt = gsi_stmt (i);
767 bool is_varying;
769 /* If the statement is a control insn, then we do not
770 want to avoid simulating the statement once. Failure
771 to do so means that those edges will never get added. */
772 if (stmt_ends_bb_p (stmt))
773 is_varying = false;
774 else
775 is_varying = surely_varying_stmt_p (stmt);
777 if (is_varying)
779 tree def;
780 ssa_op_iter iter;
782 /* If the statement will not produce a constant, mark
783 all its outputs VARYING. */
784 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
785 set_value_varying (def);
787 prop_set_simulate_again (stmt, !is_varying);
791 /* Now process PHI nodes. We never clear the simulate_again flag on
792 phi nodes, since we do not know which edges are executable yet,
793 except for phi nodes for virtual operands when we do not do store ccp. */
794 FOR_EACH_BB (bb)
796 gimple_stmt_iterator i;
798 for (i = gsi_start_phis (bb); !gsi_end_p (i); gsi_next (&i))
800 gimple phi = gsi_stmt (i);
802 if (virtual_operand_p (gimple_phi_result (phi)))
803 prop_set_simulate_again (phi, false);
804 else
805 prop_set_simulate_again (phi, true);
810 /* Debug count support. Reset the values of ssa names
811 VARYING when the total number ssa names analyzed is
812 beyond the debug count specified. */
814 static void
815 do_dbg_cnt (void)
817 unsigned i;
818 for (i = 0; i < num_ssa_names; i++)
820 if (!dbg_cnt (ccp))
822 const_val[i].lattice_val = VARYING;
823 const_val[i].mask = double_int_minus_one;
824 const_val[i].value = NULL_TREE;
830 /* Do final substitution of propagated values, cleanup the flowgraph and
831 free allocated storage.
833 Return TRUE when something was optimized. */
835 static bool
836 ccp_finalize (void)
838 bool something_changed;
839 unsigned i;
841 do_dbg_cnt ();
843 /* Derive alignment and misalignment information from partially
844 constant pointers in the lattice or nonzero bits from partially
845 constant integers. */
846 for (i = 1; i < num_ssa_names; ++i)
848 tree name = ssa_name (i);
849 prop_value_t *val;
850 unsigned int tem, align;
852 if (!name
853 || (!POINTER_TYPE_P (TREE_TYPE (name))
854 && (!INTEGRAL_TYPE_P (TREE_TYPE (name))
855 /* Don't record nonzero bits before IPA to avoid
856 using too much memory. */
857 || first_pass_instance)))
858 continue;
860 val = get_value (name);
861 if (val->lattice_val != CONSTANT
862 || TREE_CODE (val->value) != INTEGER_CST)
863 continue;
865 if (POINTER_TYPE_P (TREE_TYPE (name)))
867 /* Trailing mask bits specify the alignment, trailing value
868 bits the misalignment. */
869 tem = val->mask.low;
870 align = (tem & -tem);
871 if (align > 1)
872 set_ptr_info_alignment (get_ptr_info (name), align,
873 (TREE_INT_CST_LOW (val->value)
874 & (align - 1)));
876 else
878 double_int nonzero_bits = val->mask;
879 nonzero_bits = nonzero_bits | tree_to_double_int (val->value);
880 nonzero_bits &= get_nonzero_bits (name);
881 set_nonzero_bits (name, nonzero_bits);
885 /* Perform substitutions based on the known constant values. */
886 something_changed = substitute_and_fold (get_constant_value,
887 ccp_fold_stmt, true);
889 free (const_val);
890 const_val = NULL;
891 return something_changed;;
895 /* Compute the meet operator between *VAL1 and *VAL2. Store the result
896 in VAL1.
898 any M UNDEFINED = any
899 any M VARYING = VARYING
900 Ci M Cj = Ci if (i == j)
901 Ci M Cj = VARYING if (i != j)
904 static void
905 ccp_lattice_meet (prop_value_t *val1, prop_value_t *val2)
907 if (val1->lattice_val == UNDEFINED)
909 /* UNDEFINED M any = any */
910 *val1 = *val2;
912 else if (val2->lattice_val == UNDEFINED)
914 /* any M UNDEFINED = any
915 Nothing to do. VAL1 already contains the value we want. */
918 else if (val1->lattice_val == VARYING
919 || val2->lattice_val == VARYING)
921 /* any M VARYING = VARYING. */
922 val1->lattice_val = VARYING;
923 val1->mask = double_int_minus_one;
924 val1->value = NULL_TREE;
926 else if (val1->lattice_val == CONSTANT
927 && val2->lattice_val == CONSTANT
928 && TREE_CODE (val1->value) == INTEGER_CST
929 && TREE_CODE (val2->value) == INTEGER_CST)
931 /* Ci M Cj = Ci if (i == j)
932 Ci M Cj = VARYING if (i != j)
934 For INTEGER_CSTs mask unequal bits. If no equal bits remain,
935 drop to varying. */
936 val1->mask = val1->mask | val2->mask
937 | (tree_to_double_int (val1->value)
938 ^ tree_to_double_int (val2->value));
939 if (val1->mask.is_minus_one ())
941 val1->lattice_val = VARYING;
942 val1->value = NULL_TREE;
945 else if (val1->lattice_val == CONSTANT
946 && val2->lattice_val == CONSTANT
947 && simple_cst_equal (val1->value, val2->value) == 1)
949 /* Ci M Cj = Ci if (i == j)
950 Ci M Cj = VARYING if (i != j)
952 VAL1 already contains the value we want for equivalent values. */
954 else if (val1->lattice_val == CONSTANT
955 && val2->lattice_val == CONSTANT
956 && (TREE_CODE (val1->value) == ADDR_EXPR
957 || TREE_CODE (val2->value) == ADDR_EXPR))
959 /* When not equal addresses are involved try meeting for
960 alignment. */
961 prop_value_t tem = *val2;
962 if (TREE_CODE (val1->value) == ADDR_EXPR)
963 *val1 = get_value_for_expr (val1->value, true);
964 if (TREE_CODE (val2->value) == ADDR_EXPR)
965 tem = get_value_for_expr (val2->value, true);
966 ccp_lattice_meet (val1, &tem);
968 else
970 /* Any other combination is VARYING. */
971 val1->lattice_val = VARYING;
972 val1->mask = double_int_minus_one;
973 val1->value = NULL_TREE;
978 /* Loop through the PHI_NODE's parameters for BLOCK and compare their
979 lattice values to determine PHI_NODE's lattice value. The value of a
980 PHI node is determined calling ccp_lattice_meet with all the arguments
981 of the PHI node that are incoming via executable edges. */
983 static enum ssa_prop_result
984 ccp_visit_phi_node (gimple phi)
986 unsigned i;
987 prop_value_t *old_val, new_val;
989 if (dump_file && (dump_flags & TDF_DETAILS))
991 fprintf (dump_file, "\nVisiting PHI node: ");
992 print_gimple_stmt (dump_file, phi, 0, dump_flags);
995 old_val = get_value (gimple_phi_result (phi));
996 switch (old_val->lattice_val)
998 case VARYING:
999 return SSA_PROP_VARYING;
1001 case CONSTANT:
1002 new_val = *old_val;
1003 break;
1005 case UNDEFINED:
1006 new_val.lattice_val = UNDEFINED;
1007 new_val.value = NULL_TREE;
1008 break;
1010 default:
1011 gcc_unreachable ();
1014 for (i = 0; i < gimple_phi_num_args (phi); i++)
1016 /* Compute the meet operator over all the PHI arguments flowing
1017 through executable edges. */
1018 edge e = gimple_phi_arg_edge (phi, i);
1020 if (dump_file && (dump_flags & TDF_DETAILS))
1022 fprintf (dump_file,
1023 "\n Argument #%d (%d -> %d %sexecutable)\n",
1024 i, e->src->index, e->dest->index,
1025 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
1028 /* If the incoming edge is executable, Compute the meet operator for
1029 the existing value of the PHI node and the current PHI argument. */
1030 if (e->flags & EDGE_EXECUTABLE)
1032 tree arg = gimple_phi_arg (phi, i)->def;
1033 prop_value_t arg_val = get_value_for_expr (arg, false);
1035 ccp_lattice_meet (&new_val, &arg_val);
1037 if (dump_file && (dump_flags & TDF_DETAILS))
1039 fprintf (dump_file, "\t");
1040 print_generic_expr (dump_file, arg, dump_flags);
1041 dump_lattice_value (dump_file, "\tValue: ", arg_val);
1042 fprintf (dump_file, "\n");
1045 if (new_val.lattice_val == VARYING)
1046 break;
1050 if (dump_file && (dump_flags & TDF_DETAILS))
1052 dump_lattice_value (dump_file, "\n PHI node value: ", new_val);
1053 fprintf (dump_file, "\n\n");
1056 /* Make the transition to the new value. */
1057 if (set_lattice_value (gimple_phi_result (phi), new_val))
1059 if (new_val.lattice_val == VARYING)
1060 return SSA_PROP_VARYING;
1061 else
1062 return SSA_PROP_INTERESTING;
1064 else
1065 return SSA_PROP_NOT_INTERESTING;
1068 /* Return the constant value for OP or OP otherwise. */
1070 static tree
1071 valueize_op (tree op)
1073 if (TREE_CODE (op) == SSA_NAME)
1075 tree tem = get_constant_value (op);
1076 if (tem)
1077 return tem;
1079 return op;
1082 /* CCP specific front-end to the non-destructive constant folding
1083 routines.
1085 Attempt to simplify the RHS of STMT knowing that one or more
1086 operands are constants.
1088 If simplification is possible, return the simplified RHS,
1089 otherwise return the original RHS or NULL_TREE. */
1091 static tree
1092 ccp_fold (gimple stmt)
1094 location_t loc = gimple_location (stmt);
1095 switch (gimple_code (stmt))
1097 case GIMPLE_COND:
1099 /* Handle comparison operators that can appear in GIMPLE form. */
1100 tree op0 = valueize_op (gimple_cond_lhs (stmt));
1101 tree op1 = valueize_op (gimple_cond_rhs (stmt));
1102 enum tree_code code = gimple_cond_code (stmt);
1103 return fold_binary_loc (loc, code, boolean_type_node, op0, op1);
1106 case GIMPLE_SWITCH:
1108 /* Return the constant switch index. */
1109 return valueize_op (gimple_switch_index (stmt));
1112 case GIMPLE_ASSIGN:
1113 case GIMPLE_CALL:
1114 return gimple_fold_stmt_to_constant_1 (stmt, valueize_op);
1116 default:
1117 gcc_unreachable ();
1121 /* Apply the operation CODE in type TYPE to the value, mask pair
1122 RVAL and RMASK representing a value of type RTYPE and set
1123 the value, mask pair *VAL and *MASK to the result. */
1125 static void
1126 bit_value_unop_1 (enum tree_code code, tree type,
1127 double_int *val, double_int *mask,
1128 tree rtype, double_int rval, double_int rmask)
1130 switch (code)
1132 case BIT_NOT_EXPR:
1133 *mask = rmask;
1134 *val = ~rval;
1135 break;
1137 case NEGATE_EXPR:
1139 double_int temv, temm;
1140 /* Return ~rval + 1. */
1141 bit_value_unop_1 (BIT_NOT_EXPR, type, &temv, &temm, type, rval, rmask);
1142 bit_value_binop_1 (PLUS_EXPR, type, val, mask,
1143 type, temv, temm,
1144 type, double_int_one, double_int_zero);
1145 break;
1148 CASE_CONVERT:
1150 bool uns;
1152 /* First extend mask and value according to the original type. */
1153 uns = TYPE_UNSIGNED (rtype);
1154 *mask = rmask.ext (TYPE_PRECISION (rtype), uns);
1155 *val = rval.ext (TYPE_PRECISION (rtype), uns);
1157 /* Then extend mask and value according to the target type. */
1158 uns = TYPE_UNSIGNED (type);
1159 *mask = (*mask).ext (TYPE_PRECISION (type), uns);
1160 *val = (*val).ext (TYPE_PRECISION (type), uns);
1161 break;
1164 default:
1165 *mask = double_int_minus_one;
1166 break;
1170 /* Apply the operation CODE in type TYPE to the value, mask pairs
1171 R1VAL, R1MASK and R2VAL, R2MASK representing a values of type R1TYPE
1172 and R2TYPE and set the value, mask pair *VAL and *MASK to the result. */
1174 static void
1175 bit_value_binop_1 (enum tree_code code, tree type,
1176 double_int *val, double_int *mask,
1177 tree r1type, double_int r1val, double_int r1mask,
1178 tree r2type, double_int r2val, double_int r2mask)
1180 bool uns = TYPE_UNSIGNED (type);
1181 /* Assume we'll get a constant result. Use an initial varying value,
1182 we fall back to varying in the end if necessary. */
1183 *mask = double_int_minus_one;
1184 switch (code)
1186 case BIT_AND_EXPR:
1187 /* The mask is constant where there is a known not
1188 set bit, (m1 | m2) & ((v1 | m1) & (v2 | m2)) */
1189 *mask = (r1mask | r2mask) & (r1val | r1mask) & (r2val | r2mask);
1190 *val = r1val & r2val;
1191 break;
1193 case BIT_IOR_EXPR:
1194 /* The mask is constant where there is a known
1195 set bit, (m1 | m2) & ~((v1 & ~m1) | (v2 & ~m2)). */
1196 *mask = (r1mask | r2mask)
1197 .and_not (r1val.and_not (r1mask) | r2val.and_not (r2mask));
1198 *val = r1val | r2val;
1199 break;
1201 case BIT_XOR_EXPR:
1202 /* m1 | m2 */
1203 *mask = r1mask | r2mask;
1204 *val = r1val ^ r2val;
1205 break;
1207 case LROTATE_EXPR:
1208 case RROTATE_EXPR:
1209 if (r2mask.is_zero ())
1211 HOST_WIDE_INT shift = r2val.low;
1212 if (code == RROTATE_EXPR)
1213 shift = -shift;
1214 *mask = r1mask.lrotate (shift, TYPE_PRECISION (type));
1215 *val = r1val.lrotate (shift, TYPE_PRECISION (type));
1217 break;
1219 case LSHIFT_EXPR:
1220 case RSHIFT_EXPR:
1221 /* ??? We can handle partially known shift counts if we know
1222 its sign. That way we can tell that (x << (y | 8)) & 255
1223 is zero. */
1224 if (r2mask.is_zero ())
1226 HOST_WIDE_INT shift = r2val.low;
1227 if (code == RSHIFT_EXPR)
1228 shift = -shift;
1229 /* We need to know if we are doing a left or a right shift
1230 to properly shift in zeros for left shift and unsigned
1231 right shifts and the sign bit for signed right shifts.
1232 For signed right shifts we shift in varying in case
1233 the sign bit was varying. */
1234 if (shift > 0)
1236 *mask = r1mask.llshift (shift, TYPE_PRECISION (type));
1237 *val = r1val.llshift (shift, TYPE_PRECISION (type));
1239 else if (shift < 0)
1241 shift = -shift;
1242 *mask = r1mask.rshift (shift, TYPE_PRECISION (type), !uns);
1243 *val = r1val.rshift (shift, TYPE_PRECISION (type), !uns);
1245 else
1247 *mask = r1mask;
1248 *val = r1val;
1251 break;
1253 case PLUS_EXPR:
1254 case POINTER_PLUS_EXPR:
1256 double_int lo, hi;
1257 /* Do the addition with unknown bits set to zero, to give carry-ins of
1258 zero wherever possible. */
1259 lo = r1val.and_not (r1mask) + r2val.and_not (r2mask);
1260 lo = lo.ext (TYPE_PRECISION (type), uns);
1261 /* Do the addition with unknown bits set to one, to give carry-ins of
1262 one wherever possible. */
1263 hi = (r1val | r1mask) + (r2val | r2mask);
1264 hi = hi.ext (TYPE_PRECISION (type), uns);
1265 /* Each bit in the result is known if (a) the corresponding bits in
1266 both inputs are known, and (b) the carry-in to that bit position
1267 is known. We can check condition (b) by seeing if we got the same
1268 result with minimised carries as with maximised carries. */
1269 *mask = r1mask | r2mask | (lo ^ hi);
1270 *mask = (*mask).ext (TYPE_PRECISION (type), uns);
1271 /* It shouldn't matter whether we choose lo or hi here. */
1272 *val = lo;
1273 break;
1276 case MINUS_EXPR:
1278 double_int temv, temm;
1279 bit_value_unop_1 (NEGATE_EXPR, r2type, &temv, &temm,
1280 r2type, r2val, r2mask);
1281 bit_value_binop_1 (PLUS_EXPR, type, val, mask,
1282 r1type, r1val, r1mask,
1283 r2type, temv, temm);
1284 break;
1287 case MULT_EXPR:
1289 /* Just track trailing zeros in both operands and transfer
1290 them to the other. */
1291 int r1tz = (r1val | r1mask).trailing_zeros ();
1292 int r2tz = (r2val | r2mask).trailing_zeros ();
1293 if (r1tz + r2tz >= HOST_BITS_PER_DOUBLE_INT)
1295 *mask = double_int_zero;
1296 *val = double_int_zero;
1298 else if (r1tz + r2tz > 0)
1300 *mask = ~double_int::mask (r1tz + r2tz);
1301 *mask = (*mask).ext (TYPE_PRECISION (type), uns);
1302 *val = double_int_zero;
1304 break;
1307 case EQ_EXPR:
1308 case NE_EXPR:
1310 double_int m = r1mask | r2mask;
1311 if (r1val.and_not (m) != r2val.and_not (m))
1313 *mask = double_int_zero;
1314 *val = ((code == EQ_EXPR) ? double_int_zero : double_int_one);
1316 else
1318 /* We know the result of a comparison is always one or zero. */
1319 *mask = double_int_one;
1320 *val = double_int_zero;
1322 break;
1325 case GE_EXPR:
1326 case GT_EXPR:
1328 double_int tem = r1val;
1329 r1val = r2val;
1330 r2val = tem;
1331 tem = r1mask;
1332 r1mask = r2mask;
1333 r2mask = tem;
1334 code = swap_tree_comparison (code);
1336 /* Fallthru. */
1337 case LT_EXPR:
1338 case LE_EXPR:
1340 int minmax, maxmin;
1341 /* If the most significant bits are not known we know nothing. */
1342 if (r1mask.is_negative () || r2mask.is_negative ())
1343 break;
1345 /* For comparisons the signedness is in the comparison operands. */
1346 uns = TYPE_UNSIGNED (r1type);
1348 /* If we know the most significant bits we know the values
1349 value ranges by means of treating varying bits as zero
1350 or one. Do a cross comparison of the max/min pairs. */
1351 maxmin = (r1val | r1mask).cmp (r2val.and_not (r2mask), uns);
1352 minmax = r1val.and_not (r1mask).cmp (r2val | r2mask, uns);
1353 if (maxmin < 0) /* r1 is less than r2. */
1355 *mask = double_int_zero;
1356 *val = double_int_one;
1358 else if (minmax > 0) /* r1 is not less or equal to r2. */
1360 *mask = double_int_zero;
1361 *val = double_int_zero;
1363 else if (maxmin == minmax) /* r1 and r2 are equal. */
1365 /* This probably should never happen as we'd have
1366 folded the thing during fully constant value folding. */
1367 *mask = double_int_zero;
1368 *val = (code == LE_EXPR ? double_int_one : double_int_zero);
1370 else
1372 /* We know the result of a comparison is always one or zero. */
1373 *mask = double_int_one;
1374 *val = double_int_zero;
1376 break;
1379 default:;
1383 /* Return the propagation value when applying the operation CODE to
1384 the value RHS yielding type TYPE. */
1386 static prop_value_t
1387 bit_value_unop (enum tree_code code, tree type, tree rhs)
1389 prop_value_t rval = get_value_for_expr (rhs, true);
1390 double_int value, mask;
1391 prop_value_t val;
1393 if (rval.lattice_val == UNDEFINED)
1394 return rval;
1396 gcc_assert ((rval.lattice_val == CONSTANT
1397 && TREE_CODE (rval.value) == INTEGER_CST)
1398 || rval.mask.is_minus_one ());
1399 bit_value_unop_1 (code, type, &value, &mask,
1400 TREE_TYPE (rhs), value_to_double_int (rval), rval.mask);
1401 if (!mask.is_minus_one ())
1403 val.lattice_val = CONSTANT;
1404 val.mask = mask;
1405 /* ??? Delay building trees here. */
1406 val.value = double_int_to_tree (type, value);
1408 else
1410 val.lattice_val = VARYING;
1411 val.value = NULL_TREE;
1412 val.mask = double_int_minus_one;
1414 return val;
1417 /* Return the propagation value when applying the operation CODE to
1418 the values RHS1 and RHS2 yielding type TYPE. */
1420 static prop_value_t
1421 bit_value_binop (enum tree_code code, tree type, tree rhs1, tree rhs2)
1423 prop_value_t r1val = get_value_for_expr (rhs1, true);
1424 prop_value_t r2val = get_value_for_expr (rhs2, true);
1425 double_int value, mask;
1426 prop_value_t val;
1428 if (r1val.lattice_val == UNDEFINED
1429 || r2val.lattice_val == UNDEFINED)
1431 val.lattice_val = VARYING;
1432 val.value = NULL_TREE;
1433 val.mask = double_int_minus_one;
1434 return val;
1437 gcc_assert ((r1val.lattice_val == CONSTANT
1438 && TREE_CODE (r1val.value) == INTEGER_CST)
1439 || r1val.mask.is_minus_one ());
1440 gcc_assert ((r2val.lattice_val == CONSTANT
1441 && TREE_CODE (r2val.value) == INTEGER_CST)
1442 || r2val.mask.is_minus_one ());
1443 bit_value_binop_1 (code, type, &value, &mask,
1444 TREE_TYPE (rhs1), value_to_double_int (r1val), r1val.mask,
1445 TREE_TYPE (rhs2), value_to_double_int (r2val), r2val.mask);
1446 if (!mask.is_minus_one ())
1448 val.lattice_val = CONSTANT;
1449 val.mask = mask;
1450 /* ??? Delay building trees here. */
1451 val.value = double_int_to_tree (type, value);
1453 else
1455 val.lattice_val = VARYING;
1456 val.value = NULL_TREE;
1457 val.mask = double_int_minus_one;
1459 return val;
1462 /* Return the propagation value when applying __builtin_assume_aligned to
1463 its arguments. */
1465 static prop_value_t
1466 bit_value_assume_aligned (gimple stmt)
1468 tree ptr = gimple_call_arg (stmt, 0), align, misalign = NULL_TREE;
1469 tree type = TREE_TYPE (ptr);
1470 unsigned HOST_WIDE_INT aligni, misaligni = 0;
1471 prop_value_t ptrval = get_value_for_expr (ptr, true);
1472 prop_value_t alignval;
1473 double_int value, mask;
1474 prop_value_t val;
1475 if (ptrval.lattice_val == UNDEFINED)
1476 return ptrval;
1477 gcc_assert ((ptrval.lattice_val == CONSTANT
1478 && TREE_CODE (ptrval.value) == INTEGER_CST)
1479 || ptrval.mask.is_minus_one ());
1480 align = gimple_call_arg (stmt, 1);
1481 if (!host_integerp (align, 1))
1482 return ptrval;
1483 aligni = tree_low_cst (align, 1);
1484 if (aligni <= 1
1485 || (aligni & (aligni - 1)) != 0)
1486 return ptrval;
1487 if (gimple_call_num_args (stmt) > 2)
1489 misalign = gimple_call_arg (stmt, 2);
1490 if (!host_integerp (misalign, 1))
1491 return ptrval;
1492 misaligni = tree_low_cst (misalign, 1);
1493 if (misaligni >= aligni)
1494 return ptrval;
1496 align = build_int_cst_type (type, -aligni);
1497 alignval = get_value_for_expr (align, true);
1498 bit_value_binop_1 (BIT_AND_EXPR, type, &value, &mask,
1499 type, value_to_double_int (ptrval), ptrval.mask,
1500 type, value_to_double_int (alignval), alignval.mask);
1501 if (!mask.is_minus_one ())
1503 val.lattice_val = CONSTANT;
1504 val.mask = mask;
1505 gcc_assert ((mask.low & (aligni - 1)) == 0);
1506 gcc_assert ((value.low & (aligni - 1)) == 0);
1507 value.low |= misaligni;
1508 /* ??? Delay building trees here. */
1509 val.value = double_int_to_tree (type, value);
1511 else
1513 val.lattice_val = VARYING;
1514 val.value = NULL_TREE;
1515 val.mask = double_int_minus_one;
1517 return val;
1520 /* Evaluate statement STMT.
1521 Valid only for assignments, calls, conditionals, and switches. */
1523 static prop_value_t
1524 evaluate_stmt (gimple stmt)
1526 prop_value_t val;
1527 tree simplified = NULL_TREE;
1528 ccp_lattice_t likelyvalue = likely_value (stmt);
1529 bool is_constant = false;
1530 unsigned int align;
1532 if (dump_file && (dump_flags & TDF_DETAILS))
1534 fprintf (dump_file, "which is likely ");
1535 switch (likelyvalue)
1537 case CONSTANT:
1538 fprintf (dump_file, "CONSTANT");
1539 break;
1540 case UNDEFINED:
1541 fprintf (dump_file, "UNDEFINED");
1542 break;
1543 case VARYING:
1544 fprintf (dump_file, "VARYING");
1545 break;
1546 default:;
1548 fprintf (dump_file, "\n");
1551 /* If the statement is likely to have a CONSTANT result, then try
1552 to fold the statement to determine the constant value. */
1553 /* FIXME. This is the only place that we call ccp_fold.
1554 Since likely_value never returns CONSTANT for calls, we will
1555 not attempt to fold them, including builtins that may profit. */
1556 if (likelyvalue == CONSTANT)
1558 fold_defer_overflow_warnings ();
1559 simplified = ccp_fold (stmt);
1560 is_constant = simplified && is_gimple_min_invariant (simplified);
1561 fold_undefer_overflow_warnings (is_constant, stmt, 0);
1562 if (is_constant)
1564 /* The statement produced a constant value. */
1565 val.lattice_val = CONSTANT;
1566 val.value = simplified;
1567 val.mask = double_int_zero;
1570 /* If the statement is likely to have a VARYING result, then do not
1571 bother folding the statement. */
1572 else if (likelyvalue == VARYING)
1574 enum gimple_code code = gimple_code (stmt);
1575 if (code == GIMPLE_ASSIGN)
1577 enum tree_code subcode = gimple_assign_rhs_code (stmt);
1579 /* Other cases cannot satisfy is_gimple_min_invariant
1580 without folding. */
1581 if (get_gimple_rhs_class (subcode) == GIMPLE_SINGLE_RHS)
1582 simplified = gimple_assign_rhs1 (stmt);
1584 else if (code == GIMPLE_SWITCH)
1585 simplified = gimple_switch_index (stmt);
1586 else
1587 /* These cannot satisfy is_gimple_min_invariant without folding. */
1588 gcc_assert (code == GIMPLE_CALL || code == GIMPLE_COND);
1589 is_constant = simplified && is_gimple_min_invariant (simplified);
1590 if (is_constant)
1592 /* The statement produced a constant value. */
1593 val.lattice_val = CONSTANT;
1594 val.value = simplified;
1595 val.mask = double_int_zero;
1599 /* Resort to simplification for bitwise tracking. */
1600 if (flag_tree_bit_ccp
1601 && (likelyvalue == CONSTANT || is_gimple_call (stmt))
1602 && !is_constant)
1604 enum gimple_code code = gimple_code (stmt);
1605 val.lattice_val = VARYING;
1606 val.value = NULL_TREE;
1607 val.mask = double_int_minus_one;
1608 if (code == GIMPLE_ASSIGN)
1610 enum tree_code subcode = gimple_assign_rhs_code (stmt);
1611 tree rhs1 = gimple_assign_rhs1 (stmt);
1612 switch (get_gimple_rhs_class (subcode))
1614 case GIMPLE_SINGLE_RHS:
1615 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
1616 || POINTER_TYPE_P (TREE_TYPE (rhs1)))
1617 val = get_value_for_expr (rhs1, true);
1618 break;
1620 case GIMPLE_UNARY_RHS:
1621 if ((INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
1622 || POINTER_TYPE_P (TREE_TYPE (rhs1)))
1623 && (INTEGRAL_TYPE_P (gimple_expr_type (stmt))
1624 || POINTER_TYPE_P (gimple_expr_type (stmt))))
1625 val = bit_value_unop (subcode, gimple_expr_type (stmt), rhs1);
1626 break;
1628 case GIMPLE_BINARY_RHS:
1629 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
1630 || POINTER_TYPE_P (TREE_TYPE (rhs1)))
1632 tree lhs = gimple_assign_lhs (stmt);
1633 tree rhs2 = gimple_assign_rhs2 (stmt);
1634 val = bit_value_binop (subcode,
1635 TREE_TYPE (lhs), rhs1, rhs2);
1637 break;
1639 default:;
1642 else if (code == GIMPLE_COND)
1644 enum tree_code code = gimple_cond_code (stmt);
1645 tree rhs1 = gimple_cond_lhs (stmt);
1646 tree rhs2 = gimple_cond_rhs (stmt);
1647 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
1648 || POINTER_TYPE_P (TREE_TYPE (rhs1)))
1649 val = bit_value_binop (code, TREE_TYPE (rhs1), rhs1, rhs2);
1651 else if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
1653 tree fndecl = gimple_call_fndecl (stmt);
1654 switch (DECL_FUNCTION_CODE (fndecl))
1656 case BUILT_IN_MALLOC:
1657 case BUILT_IN_REALLOC:
1658 case BUILT_IN_CALLOC:
1659 case BUILT_IN_STRDUP:
1660 case BUILT_IN_STRNDUP:
1661 val.lattice_val = CONSTANT;
1662 val.value = build_int_cst (TREE_TYPE (gimple_get_lhs (stmt)), 0);
1663 val.mask = double_int::from_shwi
1664 (~(((HOST_WIDE_INT) MALLOC_ABI_ALIGNMENT)
1665 / BITS_PER_UNIT - 1));
1666 break;
1668 case BUILT_IN_ALLOCA:
1669 case BUILT_IN_ALLOCA_WITH_ALIGN:
1670 align = (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA_WITH_ALIGN
1671 ? TREE_INT_CST_LOW (gimple_call_arg (stmt, 1))
1672 : BIGGEST_ALIGNMENT);
1673 val.lattice_val = CONSTANT;
1674 val.value = build_int_cst (TREE_TYPE (gimple_get_lhs (stmt)), 0);
1675 val.mask = double_int::from_shwi (~(((HOST_WIDE_INT) align)
1676 / BITS_PER_UNIT - 1));
1677 break;
1679 /* These builtins return their first argument, unmodified. */
1680 case BUILT_IN_MEMCPY:
1681 case BUILT_IN_MEMMOVE:
1682 case BUILT_IN_MEMSET:
1683 case BUILT_IN_STRCPY:
1684 case BUILT_IN_STRNCPY:
1685 case BUILT_IN_MEMCPY_CHK:
1686 case BUILT_IN_MEMMOVE_CHK:
1687 case BUILT_IN_MEMSET_CHK:
1688 case BUILT_IN_STRCPY_CHK:
1689 case BUILT_IN_STRNCPY_CHK:
1690 val = get_value_for_expr (gimple_call_arg (stmt, 0), true);
1691 break;
1693 case BUILT_IN_ASSUME_ALIGNED:
1694 val = bit_value_assume_aligned (stmt);
1695 break;
1697 default:;
1700 is_constant = (val.lattice_val == CONSTANT);
1703 if (flag_tree_bit_ccp
1704 && ((is_constant && TREE_CODE (val.value) == INTEGER_CST)
1705 || (!is_constant && likelyvalue != UNDEFINED))
1706 && gimple_get_lhs (stmt)
1707 && TREE_CODE (gimple_get_lhs (stmt)) == SSA_NAME)
1709 tree lhs = gimple_get_lhs (stmt);
1710 double_int nonzero_bits = get_nonzero_bits (lhs);
1711 double_int mask = double_int::mask (TYPE_PRECISION (TREE_TYPE (lhs)));
1712 if (nonzero_bits != double_int_minus_one && nonzero_bits != mask)
1714 if (!is_constant)
1716 val.lattice_val = CONSTANT;
1717 val.value = build_zero_cst (TREE_TYPE (lhs));
1718 /* CCP wants the bits above precision set. */
1719 val.mask = nonzero_bits | ~mask;
1720 is_constant = true;
1722 else
1724 double_int valv = tree_to_double_int (val.value);
1725 if (!(valv & ~nonzero_bits & mask).is_zero ())
1726 val.value = double_int_to_tree (TREE_TYPE (lhs),
1727 valv & nonzero_bits);
1728 if (nonzero_bits.is_zero ())
1729 val.mask = double_int_zero;
1730 else
1731 val.mask = val.mask & (nonzero_bits | ~mask);
1736 if (!is_constant)
1738 /* The statement produced a nonconstant value. If the statement
1739 had UNDEFINED operands, then the result of the statement
1740 should be UNDEFINED. Otherwise, the statement is VARYING. */
1741 if (likelyvalue == UNDEFINED)
1743 val.lattice_val = likelyvalue;
1744 val.mask = double_int_zero;
1746 else
1748 val.lattice_val = VARYING;
1749 val.mask = double_int_minus_one;
1752 val.value = NULL_TREE;
1755 return val;
1758 typedef hash_table <pointer_hash <gimple_statement_d> > gimple_htab;
1760 /* Given a BUILT_IN_STACK_SAVE value SAVED_VAL, insert a clobber of VAR before
1761 each matching BUILT_IN_STACK_RESTORE. Mark visited phis in VISITED. */
1763 static void
1764 insert_clobber_before_stack_restore (tree saved_val, tree var,
1765 gimple_htab *visited)
1767 gimple stmt, clobber_stmt;
1768 tree clobber;
1769 imm_use_iterator iter;
1770 gimple_stmt_iterator i;
1771 gimple *slot;
1773 FOR_EACH_IMM_USE_STMT (stmt, iter, saved_val)
1774 if (gimple_call_builtin_p (stmt, BUILT_IN_STACK_RESTORE))
1776 clobber = build_constructor (TREE_TYPE (var),
1777 NULL);
1778 TREE_THIS_VOLATILE (clobber) = 1;
1779 clobber_stmt = gimple_build_assign (var, clobber);
1781 i = gsi_for_stmt (stmt);
1782 gsi_insert_before (&i, clobber_stmt, GSI_SAME_STMT);
1784 else if (gimple_code (stmt) == GIMPLE_PHI)
1786 if (!visited->is_created ())
1787 visited->create (10);
1789 slot = visited->find_slot (stmt, INSERT);
1790 if (*slot != NULL)
1791 continue;
1793 *slot = stmt;
1794 insert_clobber_before_stack_restore (gimple_phi_result (stmt), var,
1795 visited);
1797 else if (gimple_assign_ssa_name_copy_p (stmt))
1798 insert_clobber_before_stack_restore (gimple_assign_lhs (stmt), var,
1799 visited);
1800 else
1801 gcc_assert (is_gimple_debug (stmt));
1804 /* Advance the iterator to the previous non-debug gimple statement in the same
1805 or dominating basic block. */
1807 static inline void
1808 gsi_prev_dom_bb_nondebug (gimple_stmt_iterator *i)
1810 basic_block dom;
1812 gsi_prev_nondebug (i);
1813 while (gsi_end_p (*i))
1815 dom = get_immediate_dominator (CDI_DOMINATORS, i->bb);
1816 if (dom == NULL || dom == ENTRY_BLOCK_PTR)
1817 return;
1819 *i = gsi_last_bb (dom);
1823 /* Find a BUILT_IN_STACK_SAVE dominating gsi_stmt (I), and insert
1824 a clobber of VAR before each matching BUILT_IN_STACK_RESTORE.
1826 It is possible that BUILT_IN_STACK_SAVE cannot be find in a dominator when a
1827 previous pass (such as DOM) duplicated it along multiple paths to a BB. In
1828 that case the function gives up without inserting the clobbers. */
1830 static void
1831 insert_clobbers_for_var (gimple_stmt_iterator i, tree var)
1833 gimple stmt;
1834 tree saved_val;
1835 gimple_htab visited;
1837 for (; !gsi_end_p (i); gsi_prev_dom_bb_nondebug (&i))
1839 stmt = gsi_stmt (i);
1841 if (!gimple_call_builtin_p (stmt, BUILT_IN_STACK_SAVE))
1842 continue;
1844 saved_val = gimple_call_lhs (stmt);
1845 if (saved_val == NULL_TREE)
1846 continue;
1848 insert_clobber_before_stack_restore (saved_val, var, &visited);
1849 break;
1852 if (visited.is_created ())
1853 visited.dispose ();
1856 /* Detects a __builtin_alloca_with_align with constant size argument. Declares
1857 fixed-size array and returns the address, if found, otherwise returns
1858 NULL_TREE. */
1860 static tree
1861 fold_builtin_alloca_with_align (gimple stmt)
1863 unsigned HOST_WIDE_INT size, threshold, n_elem;
1864 tree lhs, arg, block, var, elem_type, array_type;
1866 /* Get lhs. */
1867 lhs = gimple_call_lhs (stmt);
1868 if (lhs == NULL_TREE)
1869 return NULL_TREE;
1871 /* Detect constant argument. */
1872 arg = get_constant_value (gimple_call_arg (stmt, 0));
1873 if (arg == NULL_TREE
1874 || TREE_CODE (arg) != INTEGER_CST
1875 || !host_integerp (arg, 1))
1876 return NULL_TREE;
1878 size = TREE_INT_CST_LOW (arg);
1880 /* Heuristic: don't fold large allocas. */
1881 threshold = (unsigned HOST_WIDE_INT)PARAM_VALUE (PARAM_LARGE_STACK_FRAME);
1882 /* In case the alloca is located at function entry, it has the same lifetime
1883 as a declared array, so we allow a larger size. */
1884 block = gimple_block (stmt);
1885 if (!(cfun->after_inlining
1886 && TREE_CODE (BLOCK_SUPERCONTEXT (block)) == FUNCTION_DECL))
1887 threshold /= 10;
1888 if (size > threshold)
1889 return NULL_TREE;
1891 /* Declare array. */
1892 elem_type = build_nonstandard_integer_type (BITS_PER_UNIT, 1);
1893 n_elem = size * 8 / BITS_PER_UNIT;
1894 array_type = build_array_type_nelts (elem_type, n_elem);
1895 var = create_tmp_var (array_type, NULL);
1896 DECL_ALIGN (var) = TREE_INT_CST_LOW (gimple_call_arg (stmt, 1));
1898 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (lhs);
1899 if (pi != NULL && !pi->pt.anything)
1901 bool singleton_p;
1902 unsigned uid;
1903 singleton_p = pt_solution_singleton_p (&pi->pt, &uid);
1904 gcc_assert (singleton_p);
1905 SET_DECL_PT_UID (var, uid);
1909 /* Fold alloca to the address of the array. */
1910 return fold_convert (TREE_TYPE (lhs), build_fold_addr_expr (var));
1913 /* Fold the stmt at *GSI with CCP specific information that propagating
1914 and regular folding does not catch. */
1916 static bool
1917 ccp_fold_stmt (gimple_stmt_iterator *gsi)
1919 gimple stmt = gsi_stmt (*gsi);
1921 switch (gimple_code (stmt))
1923 case GIMPLE_COND:
1925 prop_value_t val;
1926 /* Statement evaluation will handle type mismatches in constants
1927 more gracefully than the final propagation. This allows us to
1928 fold more conditionals here. */
1929 val = evaluate_stmt (stmt);
1930 if (val.lattice_val != CONSTANT
1931 || !val.mask.is_zero ())
1932 return false;
1934 if (dump_file)
1936 fprintf (dump_file, "Folding predicate ");
1937 print_gimple_expr (dump_file, stmt, 0, 0);
1938 fprintf (dump_file, " to ");
1939 print_generic_expr (dump_file, val.value, 0);
1940 fprintf (dump_file, "\n");
1943 if (integer_zerop (val.value))
1944 gimple_cond_make_false (stmt);
1945 else
1946 gimple_cond_make_true (stmt);
1948 return true;
1951 case GIMPLE_CALL:
1953 tree lhs = gimple_call_lhs (stmt);
1954 int flags = gimple_call_flags (stmt);
1955 tree val;
1956 tree argt;
1957 bool changed = false;
1958 unsigned i;
1960 /* If the call was folded into a constant make sure it goes
1961 away even if we cannot propagate into all uses because of
1962 type issues. */
1963 if (lhs
1964 && TREE_CODE (lhs) == SSA_NAME
1965 && (val = get_constant_value (lhs))
1966 /* Don't optimize away calls that have side-effects. */
1967 && (flags & (ECF_CONST|ECF_PURE)) != 0
1968 && (flags & ECF_LOOPING_CONST_OR_PURE) == 0)
1970 tree new_rhs = unshare_expr (val);
1971 bool res;
1972 if (!useless_type_conversion_p (TREE_TYPE (lhs),
1973 TREE_TYPE (new_rhs)))
1974 new_rhs = fold_convert (TREE_TYPE (lhs), new_rhs);
1975 res = update_call_from_tree (gsi, new_rhs);
1976 gcc_assert (res);
1977 return true;
1980 /* Internal calls provide no argument types, so the extra laxity
1981 for normal calls does not apply. */
1982 if (gimple_call_internal_p (stmt))
1983 return false;
1985 /* The heuristic of fold_builtin_alloca_with_align differs before and
1986 after inlining, so we don't require the arg to be changed into a
1987 constant for folding, but just to be constant. */
1988 if (gimple_call_builtin_p (stmt, BUILT_IN_ALLOCA_WITH_ALIGN))
1990 tree new_rhs = fold_builtin_alloca_with_align (stmt);
1991 if (new_rhs)
1993 bool res = update_call_from_tree (gsi, new_rhs);
1994 tree var = TREE_OPERAND (TREE_OPERAND (new_rhs, 0),0);
1995 gcc_assert (res);
1996 insert_clobbers_for_var (*gsi, var);
1997 return true;
2001 /* Propagate into the call arguments. Compared to replace_uses_in
2002 this can use the argument slot types for type verification
2003 instead of the current argument type. We also can safely
2004 drop qualifiers here as we are dealing with constants anyway. */
2005 argt = TYPE_ARG_TYPES (gimple_call_fntype (stmt));
2006 for (i = 0; i < gimple_call_num_args (stmt) && argt;
2007 ++i, argt = TREE_CHAIN (argt))
2009 tree arg = gimple_call_arg (stmt, i);
2010 if (TREE_CODE (arg) == SSA_NAME
2011 && (val = get_constant_value (arg))
2012 && useless_type_conversion_p
2013 (TYPE_MAIN_VARIANT (TREE_VALUE (argt)),
2014 TYPE_MAIN_VARIANT (TREE_TYPE (val))))
2016 gimple_call_set_arg (stmt, i, unshare_expr (val));
2017 changed = true;
2021 return changed;
2024 case GIMPLE_ASSIGN:
2026 tree lhs = gimple_assign_lhs (stmt);
2027 tree val;
2029 /* If we have a load that turned out to be constant replace it
2030 as we cannot propagate into all uses in all cases. */
2031 if (gimple_assign_single_p (stmt)
2032 && TREE_CODE (lhs) == SSA_NAME
2033 && (val = get_constant_value (lhs)))
2035 tree rhs = unshare_expr (val);
2036 if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
2037 rhs = fold_build1 (VIEW_CONVERT_EXPR, TREE_TYPE (lhs), rhs);
2038 gimple_assign_set_rhs_from_tree (gsi, rhs);
2039 return true;
2042 return false;
2045 default:
2046 return false;
2050 /* Visit the assignment statement STMT. Set the value of its LHS to the
2051 value computed by the RHS and store LHS in *OUTPUT_P. If STMT
2052 creates virtual definitions, set the value of each new name to that
2053 of the RHS (if we can derive a constant out of the RHS).
2054 Value-returning call statements also perform an assignment, and
2055 are handled here. */
2057 static enum ssa_prop_result
2058 visit_assignment (gimple stmt, tree *output_p)
2060 prop_value_t val;
2061 enum ssa_prop_result retval;
2063 tree lhs = gimple_get_lhs (stmt);
2065 gcc_assert (gimple_code (stmt) != GIMPLE_CALL
2066 || gimple_call_lhs (stmt) != NULL_TREE);
2068 if (gimple_assign_single_p (stmt)
2069 && gimple_assign_rhs_code (stmt) == SSA_NAME)
2070 /* For a simple copy operation, we copy the lattice values. */
2071 val = *get_value (gimple_assign_rhs1 (stmt));
2072 else
2073 /* Evaluate the statement, which could be
2074 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
2075 val = evaluate_stmt (stmt);
2077 retval = SSA_PROP_NOT_INTERESTING;
2079 /* Set the lattice value of the statement's output. */
2080 if (TREE_CODE (lhs) == SSA_NAME)
2082 /* If STMT is an assignment to an SSA_NAME, we only have one
2083 value to set. */
2084 if (set_lattice_value (lhs, val))
2086 *output_p = lhs;
2087 if (val.lattice_val == VARYING)
2088 retval = SSA_PROP_VARYING;
2089 else
2090 retval = SSA_PROP_INTERESTING;
2094 return retval;
2098 /* Visit the conditional statement STMT. Return SSA_PROP_INTERESTING
2099 if it can determine which edge will be taken. Otherwise, return
2100 SSA_PROP_VARYING. */
2102 static enum ssa_prop_result
2103 visit_cond_stmt (gimple stmt, edge *taken_edge_p)
2105 prop_value_t val;
2106 basic_block block;
2108 block = gimple_bb (stmt);
2109 val = evaluate_stmt (stmt);
2110 if (val.lattice_val != CONSTANT
2111 || !val.mask.is_zero ())
2112 return SSA_PROP_VARYING;
2114 /* Find which edge out of the conditional block will be taken and add it
2115 to the worklist. If no single edge can be determined statically,
2116 return SSA_PROP_VARYING to feed all the outgoing edges to the
2117 propagation engine. */
2118 *taken_edge_p = find_taken_edge (block, val.value);
2119 if (*taken_edge_p)
2120 return SSA_PROP_INTERESTING;
2121 else
2122 return SSA_PROP_VARYING;
2126 /* Evaluate statement STMT. If the statement produces an output value and
2127 its evaluation changes the lattice value of its output, return
2128 SSA_PROP_INTERESTING and set *OUTPUT_P to the SSA_NAME holding the
2129 output value.
2131 If STMT is a conditional branch and we can determine its truth
2132 value, set *TAKEN_EDGE_P accordingly. If STMT produces a varying
2133 value, return SSA_PROP_VARYING. */
2135 static enum ssa_prop_result
2136 ccp_visit_stmt (gimple stmt, edge *taken_edge_p, tree *output_p)
2138 tree def;
2139 ssa_op_iter iter;
2141 if (dump_file && (dump_flags & TDF_DETAILS))
2143 fprintf (dump_file, "\nVisiting statement:\n");
2144 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
2147 switch (gimple_code (stmt))
2149 case GIMPLE_ASSIGN:
2150 /* If the statement is an assignment that produces a single
2151 output value, evaluate its RHS to see if the lattice value of
2152 its output has changed. */
2153 return visit_assignment (stmt, output_p);
2155 case GIMPLE_CALL:
2156 /* A value-returning call also performs an assignment. */
2157 if (gimple_call_lhs (stmt) != NULL_TREE)
2158 return visit_assignment (stmt, output_p);
2159 break;
2161 case GIMPLE_COND:
2162 case GIMPLE_SWITCH:
2163 /* If STMT is a conditional branch, see if we can determine
2164 which branch will be taken. */
2165 /* FIXME. It appears that we should be able to optimize
2166 computed GOTOs here as well. */
2167 return visit_cond_stmt (stmt, taken_edge_p);
2169 default:
2170 break;
2173 /* Any other kind of statement is not interesting for constant
2174 propagation and, therefore, not worth simulating. */
2175 if (dump_file && (dump_flags & TDF_DETAILS))
2176 fprintf (dump_file, "No interesting values produced. Marked VARYING.\n");
2178 /* Definitions made by statements other than assignments to
2179 SSA_NAMEs represent unknown modifications to their outputs.
2180 Mark them VARYING. */
2181 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
2183 prop_value_t v = { VARYING, NULL_TREE, { -1, (HOST_WIDE_INT) -1 } };
2184 set_lattice_value (def, v);
2187 return SSA_PROP_VARYING;
2191 /* Main entry point for SSA Conditional Constant Propagation. */
2193 static unsigned int
2194 do_ssa_ccp (void)
2196 unsigned int todo = 0;
2197 calculate_dominance_info (CDI_DOMINATORS);
2198 ccp_initialize ();
2199 ssa_propagate (ccp_visit_stmt, ccp_visit_phi_node);
2200 if (ccp_finalize ())
2201 todo = (TODO_cleanup_cfg | TODO_update_ssa);
2202 free_dominance_info (CDI_DOMINATORS);
2203 return todo;
2207 static bool
2208 gate_ccp (void)
2210 return flag_tree_ccp != 0;
2214 namespace {
2216 const pass_data pass_data_ccp =
2218 GIMPLE_PASS, /* type */
2219 "ccp", /* name */
2220 OPTGROUP_NONE, /* optinfo_flags */
2221 true, /* has_gate */
2222 true, /* has_execute */
2223 TV_TREE_CCP, /* tv_id */
2224 ( PROP_cfg | PROP_ssa ), /* properties_required */
2225 0, /* properties_provided */
2226 0, /* properties_destroyed */
2227 0, /* todo_flags_start */
2228 ( TODO_verify_ssa | TODO_update_address_taken
2229 | TODO_verify_stmts ), /* todo_flags_finish */
2232 class pass_ccp : public gimple_opt_pass
2234 public:
2235 pass_ccp (gcc::context *ctxt)
2236 : gimple_opt_pass (pass_data_ccp, ctxt)
2239 /* opt_pass methods: */
2240 opt_pass * clone () { return new pass_ccp (m_ctxt); }
2241 bool gate () { return gate_ccp (); }
2242 unsigned int execute () { return do_ssa_ccp (); }
2244 }; // class pass_ccp
2246 } // anon namespace
2248 gimple_opt_pass *
2249 make_pass_ccp (gcc::context *ctxt)
2251 return new pass_ccp (ctxt);
2256 /* Try to optimize out __builtin_stack_restore. Optimize it out
2257 if there is another __builtin_stack_restore in the same basic
2258 block and no calls or ASM_EXPRs are in between, or if this block's
2259 only outgoing edge is to EXIT_BLOCK and there are no calls or
2260 ASM_EXPRs after this __builtin_stack_restore. */
2262 static tree
2263 optimize_stack_restore (gimple_stmt_iterator i)
2265 tree callee;
2266 gimple stmt;
2268 basic_block bb = gsi_bb (i);
2269 gimple call = gsi_stmt (i);
2271 if (gimple_code (call) != GIMPLE_CALL
2272 || gimple_call_num_args (call) != 1
2273 || TREE_CODE (gimple_call_arg (call, 0)) != SSA_NAME
2274 || !POINTER_TYPE_P (TREE_TYPE (gimple_call_arg (call, 0))))
2275 return NULL_TREE;
2277 for (gsi_next (&i); !gsi_end_p (i); gsi_next (&i))
2279 stmt = gsi_stmt (i);
2280 if (gimple_code (stmt) == GIMPLE_ASM)
2281 return NULL_TREE;
2282 if (gimple_code (stmt) != GIMPLE_CALL)
2283 continue;
2285 callee = gimple_call_fndecl (stmt);
2286 if (!callee
2287 || DECL_BUILT_IN_CLASS (callee) != BUILT_IN_NORMAL
2288 /* All regular builtins are ok, just obviously not alloca. */
2289 || DECL_FUNCTION_CODE (callee) == BUILT_IN_ALLOCA
2290 || DECL_FUNCTION_CODE (callee) == BUILT_IN_ALLOCA_WITH_ALIGN)
2291 return NULL_TREE;
2293 if (DECL_FUNCTION_CODE (callee) == BUILT_IN_STACK_RESTORE)
2294 goto second_stack_restore;
2297 if (!gsi_end_p (i))
2298 return NULL_TREE;
2300 /* Allow one successor of the exit block, or zero successors. */
2301 switch (EDGE_COUNT (bb->succs))
2303 case 0:
2304 break;
2305 case 1:
2306 if (single_succ_edge (bb)->dest != EXIT_BLOCK_PTR)
2307 return NULL_TREE;
2308 break;
2309 default:
2310 return NULL_TREE;
2312 second_stack_restore:
2314 /* If there's exactly one use, then zap the call to __builtin_stack_save.
2315 If there are multiple uses, then the last one should remove the call.
2316 In any case, whether the call to __builtin_stack_save can be removed
2317 or not is irrelevant to removing the call to __builtin_stack_restore. */
2318 if (has_single_use (gimple_call_arg (call, 0)))
2320 gimple stack_save = SSA_NAME_DEF_STMT (gimple_call_arg (call, 0));
2321 if (is_gimple_call (stack_save))
2323 callee = gimple_call_fndecl (stack_save);
2324 if (callee
2325 && DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL
2326 && DECL_FUNCTION_CODE (callee) == BUILT_IN_STACK_SAVE)
2328 gimple_stmt_iterator stack_save_gsi;
2329 tree rhs;
2331 stack_save_gsi = gsi_for_stmt (stack_save);
2332 rhs = build_int_cst (TREE_TYPE (gimple_call_arg (call, 0)), 0);
2333 update_call_from_tree (&stack_save_gsi, rhs);
2338 /* No effect, so the statement will be deleted. */
2339 return integer_zero_node;
2342 /* If va_list type is a simple pointer and nothing special is needed,
2343 optimize __builtin_va_start (&ap, 0) into ap = __builtin_next_arg (0),
2344 __builtin_va_end (&ap) out as NOP and __builtin_va_copy into a simple
2345 pointer assignment. */
2347 static tree
2348 optimize_stdarg_builtin (gimple call)
2350 tree callee, lhs, rhs, cfun_va_list;
2351 bool va_list_simple_ptr;
2352 location_t loc = gimple_location (call);
2354 if (gimple_code (call) != GIMPLE_CALL)
2355 return NULL_TREE;
2357 callee = gimple_call_fndecl (call);
2359 cfun_va_list = targetm.fn_abi_va_list (callee);
2360 va_list_simple_ptr = POINTER_TYPE_P (cfun_va_list)
2361 && (TREE_TYPE (cfun_va_list) == void_type_node
2362 || TREE_TYPE (cfun_va_list) == char_type_node);
2364 switch (DECL_FUNCTION_CODE (callee))
2366 case BUILT_IN_VA_START:
2367 if (!va_list_simple_ptr
2368 || targetm.expand_builtin_va_start != NULL
2369 || !builtin_decl_explicit_p (BUILT_IN_NEXT_ARG))
2370 return NULL_TREE;
2372 if (gimple_call_num_args (call) != 2)
2373 return NULL_TREE;
2375 lhs = gimple_call_arg (call, 0);
2376 if (!POINTER_TYPE_P (TREE_TYPE (lhs))
2377 || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs)))
2378 != TYPE_MAIN_VARIANT (cfun_va_list))
2379 return NULL_TREE;
2381 lhs = build_fold_indirect_ref_loc (loc, lhs);
2382 rhs = build_call_expr_loc (loc, builtin_decl_explicit (BUILT_IN_NEXT_ARG),
2383 1, integer_zero_node);
2384 rhs = fold_convert_loc (loc, TREE_TYPE (lhs), rhs);
2385 return build2 (MODIFY_EXPR, TREE_TYPE (lhs), lhs, rhs);
2387 case BUILT_IN_VA_COPY:
2388 if (!va_list_simple_ptr)
2389 return NULL_TREE;
2391 if (gimple_call_num_args (call) != 2)
2392 return NULL_TREE;
2394 lhs = gimple_call_arg (call, 0);
2395 if (!POINTER_TYPE_P (TREE_TYPE (lhs))
2396 || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs)))
2397 != TYPE_MAIN_VARIANT (cfun_va_list))
2398 return NULL_TREE;
2400 lhs = build_fold_indirect_ref_loc (loc, lhs);
2401 rhs = gimple_call_arg (call, 1);
2402 if (TYPE_MAIN_VARIANT (TREE_TYPE (rhs))
2403 != TYPE_MAIN_VARIANT (cfun_va_list))
2404 return NULL_TREE;
2406 rhs = fold_convert_loc (loc, TREE_TYPE (lhs), rhs);
2407 return build2 (MODIFY_EXPR, TREE_TYPE (lhs), lhs, rhs);
2409 case BUILT_IN_VA_END:
2410 /* No effect, so the statement will be deleted. */
2411 return integer_zero_node;
2413 default:
2414 gcc_unreachable ();
2418 /* Attemp to make the block of __builtin_unreachable I unreachable by changing
2419 the incoming jumps. Return true if at least one jump was changed. */
2421 static bool
2422 optimize_unreachable (gimple_stmt_iterator i)
2424 basic_block bb = gsi_bb (i);
2425 gimple_stmt_iterator gsi;
2426 gimple stmt;
2427 edge_iterator ei;
2428 edge e;
2429 bool ret;
2431 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2433 stmt = gsi_stmt (gsi);
2435 if (is_gimple_debug (stmt))
2436 continue;
2438 if (gimple_code (stmt) == GIMPLE_LABEL)
2440 /* Verify we do not need to preserve the label. */
2441 if (FORCED_LABEL (gimple_label_label (stmt)))
2442 return false;
2444 continue;
2447 /* Only handle the case that __builtin_unreachable is the first statement
2448 in the block. We rely on DCE to remove stmts without side-effects
2449 before __builtin_unreachable. */
2450 if (gsi_stmt (gsi) != gsi_stmt (i))
2451 return false;
2454 ret = false;
2455 FOR_EACH_EDGE (e, ei, bb->preds)
2457 gsi = gsi_last_bb (e->src);
2458 if (gsi_end_p (gsi))
2459 continue;
2461 stmt = gsi_stmt (gsi);
2462 if (gimple_code (stmt) == GIMPLE_COND)
2464 if (e->flags & EDGE_TRUE_VALUE)
2465 gimple_cond_make_false (stmt);
2466 else if (e->flags & EDGE_FALSE_VALUE)
2467 gimple_cond_make_true (stmt);
2468 else
2469 gcc_unreachable ();
2470 update_stmt (stmt);
2472 else
2474 /* Todo: handle other cases, f.i. switch statement. */
2475 continue;
2478 ret = true;
2481 return ret;
2484 /* A simple pass that attempts to fold all builtin functions. This pass
2485 is run after we've propagated as many constants as we can. */
2487 static unsigned int
2488 execute_fold_all_builtins (void)
2490 bool cfg_changed = false;
2491 basic_block bb;
2492 unsigned int todoflags = 0;
2494 FOR_EACH_BB (bb)
2496 gimple_stmt_iterator i;
2497 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
2499 gimple stmt, old_stmt;
2500 tree callee, result;
2501 enum built_in_function fcode;
2503 stmt = gsi_stmt (i);
2505 if (gimple_code (stmt) != GIMPLE_CALL)
2507 /* Remove all *ssaname_N ={v} {CLOBBER}; stmts,
2508 after the last GIMPLE DSE they aren't needed and might
2509 unnecessarily keep the SSA_NAMEs live. */
2510 if (gimple_clobber_p (stmt))
2512 tree lhs = gimple_assign_lhs (stmt);
2513 if (TREE_CODE (lhs) == MEM_REF
2514 && TREE_CODE (TREE_OPERAND (lhs, 0)) == SSA_NAME)
2516 unlink_stmt_vdef (stmt);
2517 gsi_remove (&i, true);
2518 release_defs (stmt);
2519 continue;
2522 gsi_next (&i);
2523 continue;
2525 callee = gimple_call_fndecl (stmt);
2526 if (!callee || DECL_BUILT_IN_CLASS (callee) != BUILT_IN_NORMAL)
2528 gsi_next (&i);
2529 continue;
2531 fcode = DECL_FUNCTION_CODE (callee);
2533 result = gimple_fold_builtin (stmt);
2535 if (result)
2536 gimple_remove_stmt_histograms (cfun, stmt);
2538 if (!result)
2539 switch (DECL_FUNCTION_CODE (callee))
2541 case BUILT_IN_CONSTANT_P:
2542 /* Resolve __builtin_constant_p. If it hasn't been
2543 folded to integer_one_node by now, it's fairly
2544 certain that the value simply isn't constant. */
2545 result = integer_zero_node;
2546 break;
2548 case BUILT_IN_ASSUME_ALIGNED:
2549 /* Remove __builtin_assume_aligned. */
2550 result = gimple_call_arg (stmt, 0);
2551 break;
2553 case BUILT_IN_STACK_RESTORE:
2554 result = optimize_stack_restore (i);
2555 if (result)
2556 break;
2557 gsi_next (&i);
2558 continue;
2560 case BUILT_IN_UNREACHABLE:
2561 if (optimize_unreachable (i))
2562 cfg_changed = true;
2563 break;
2565 case BUILT_IN_VA_START:
2566 case BUILT_IN_VA_END:
2567 case BUILT_IN_VA_COPY:
2568 /* These shouldn't be folded before pass_stdarg. */
2569 result = optimize_stdarg_builtin (stmt);
2570 if (result)
2571 break;
2572 /* FALLTHRU */
2574 default:
2575 gsi_next (&i);
2576 continue;
2579 if (result == NULL_TREE)
2580 break;
2582 if (dump_file && (dump_flags & TDF_DETAILS))
2584 fprintf (dump_file, "Simplified\n ");
2585 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
2588 old_stmt = stmt;
2589 if (!update_call_from_tree (&i, result))
2591 gimplify_and_update_call_from_tree (&i, result);
2592 todoflags |= TODO_update_address_taken;
2595 stmt = gsi_stmt (i);
2596 update_stmt (stmt);
2598 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt)
2599 && gimple_purge_dead_eh_edges (bb))
2600 cfg_changed = true;
2602 if (dump_file && (dump_flags & TDF_DETAILS))
2604 fprintf (dump_file, "to\n ");
2605 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
2606 fprintf (dump_file, "\n");
2609 /* Retry the same statement if it changed into another
2610 builtin, there might be new opportunities now. */
2611 if (gimple_code (stmt) != GIMPLE_CALL)
2613 gsi_next (&i);
2614 continue;
2616 callee = gimple_call_fndecl (stmt);
2617 if (!callee
2618 || DECL_BUILT_IN_CLASS (callee) != BUILT_IN_NORMAL
2619 || DECL_FUNCTION_CODE (callee) == fcode)
2620 gsi_next (&i);
2624 /* Delete unreachable blocks. */
2625 if (cfg_changed)
2626 todoflags |= TODO_cleanup_cfg;
2628 return todoflags;
2632 namespace {
2634 const pass_data pass_data_fold_builtins =
2636 GIMPLE_PASS, /* type */
2637 "fab", /* name */
2638 OPTGROUP_NONE, /* optinfo_flags */
2639 false, /* has_gate */
2640 true, /* has_execute */
2641 TV_NONE, /* tv_id */
2642 ( PROP_cfg | PROP_ssa ), /* properties_required */
2643 0, /* properties_provided */
2644 0, /* properties_destroyed */
2645 0, /* todo_flags_start */
2646 ( TODO_verify_ssa | TODO_update_ssa ), /* todo_flags_finish */
2649 class pass_fold_builtins : public gimple_opt_pass
2651 public:
2652 pass_fold_builtins (gcc::context *ctxt)
2653 : gimple_opt_pass (pass_data_fold_builtins, ctxt)
2656 /* opt_pass methods: */
2657 opt_pass * clone () { return new pass_fold_builtins (m_ctxt); }
2658 unsigned int execute () { return execute_fold_all_builtins (); }
2660 }; // class pass_fold_builtins
2662 } // anon namespace
2664 gimple_opt_pass *
2665 make_pass_fold_builtins (gcc::context *ctxt)
2667 return new pass_fold_builtins (ctxt);