2014-07-31 Robert Dewar <dewar@adacore.com>
[official-gcc.git] / gcc / ada / sem_ch3.adb
blob6d5827e9a21ab15f23446fa2a55baf49fde471c0
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 3 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2014, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Debug; use Debug;
30 with Elists; use Elists;
31 with Einfo; use Einfo;
32 with Errout; use Errout;
33 with Eval_Fat; use Eval_Fat;
34 with Exp_Ch3; use Exp_Ch3;
35 with Exp_Ch9; use Exp_Ch9;
36 with Exp_Disp; use Exp_Disp;
37 with Exp_Dist; use Exp_Dist;
38 with Exp_Tss; use Exp_Tss;
39 with Exp_Util; use Exp_Util;
40 with Fname; use Fname;
41 with Freeze; use Freeze;
42 with Itypes; use Itypes;
43 with Layout; use Layout;
44 with Lib; use Lib;
45 with Lib.Xref; use Lib.Xref;
46 with Namet; use Namet;
47 with Nmake; use Nmake;
48 with Opt; use Opt;
49 with Restrict; use Restrict;
50 with Rident; use Rident;
51 with Rtsfind; use Rtsfind;
52 with Sem; use Sem;
53 with Sem_Aux; use Sem_Aux;
54 with Sem_Case; use Sem_Case;
55 with Sem_Cat; use Sem_Cat;
56 with Sem_Ch6; use Sem_Ch6;
57 with Sem_Ch7; use Sem_Ch7;
58 with Sem_Ch8; use Sem_Ch8;
59 with Sem_Ch10; use Sem_Ch10;
60 with Sem_Ch13; use Sem_Ch13;
61 with Sem_Dim; use Sem_Dim;
62 with Sem_Disp; use Sem_Disp;
63 with Sem_Dist; use Sem_Dist;
64 with Sem_Elim; use Sem_Elim;
65 with Sem_Eval; use Sem_Eval;
66 with Sem_Mech; use Sem_Mech;
67 with Sem_Prag; use Sem_Prag;
68 with Sem_Res; use Sem_Res;
69 with Sem_Smem; use Sem_Smem;
70 with Sem_Type; use Sem_Type;
71 with Sem_Util; use Sem_Util;
72 with Sem_Warn; use Sem_Warn;
73 with Stand; use Stand;
74 with Sinfo; use Sinfo;
75 with Sinput; use Sinput;
76 with Snames; use Snames;
77 with Targparm; use Targparm;
78 with Tbuild; use Tbuild;
79 with Ttypes; use Ttypes;
80 with Uintp; use Uintp;
81 with Urealp; use Urealp;
83 package body Sem_Ch3 is
85 -----------------------
86 -- Local Subprograms --
87 -----------------------
89 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id);
90 -- Ada 2005 (AI-251): Add the tag components corresponding to all the
91 -- abstract interface types implemented by a record type or a derived
92 -- record type.
94 procedure Analyze_Object_Contract (Obj_Id : Entity_Id);
95 -- Analyze all delayed aspects chained on the contract of object Obj_Id as
96 -- if they appeared at the end of the declarative region. The aspects to be
97 -- considered are:
98 -- Async_Readers
99 -- Async_Writers
100 -- Effective_Reads
101 -- Effective_Writes
102 -- Part_Of
104 procedure Build_Derived_Type
105 (N : Node_Id;
106 Parent_Type : Entity_Id;
107 Derived_Type : Entity_Id;
108 Is_Completion : Boolean;
109 Derive_Subps : Boolean := True);
110 -- Create and decorate a Derived_Type given the Parent_Type entity. N is
111 -- the N_Full_Type_Declaration node containing the derived type definition.
112 -- Parent_Type is the entity for the parent type in the derived type
113 -- definition and Derived_Type the actual derived type. Is_Completion must
114 -- be set to False if Derived_Type is the N_Defining_Identifier node in N
115 -- (i.e. Derived_Type = Defining_Identifier (N)). In this case N is not the
116 -- completion of a private type declaration. If Is_Completion is set to
117 -- True, N is the completion of a private type declaration and Derived_Type
118 -- is different from the defining identifier inside N (i.e. Derived_Type /=
119 -- Defining_Identifier (N)). Derive_Subps indicates whether the parent
120 -- subprograms should be derived. The only case where this parameter is
121 -- False is when Build_Derived_Type is recursively called to process an
122 -- implicit derived full type for a type derived from a private type (in
123 -- that case the subprograms must only be derived for the private view of
124 -- the type).
126 -- ??? These flags need a bit of re-examination and re-documentation:
127 -- ??? are they both necessary (both seem related to the recursion)?
129 procedure Build_Derived_Access_Type
130 (N : Node_Id;
131 Parent_Type : Entity_Id;
132 Derived_Type : Entity_Id);
133 -- Subsidiary procedure to Build_Derived_Type. For a derived access type,
134 -- create an implicit base if the parent type is constrained or if the
135 -- subtype indication has a constraint.
137 procedure Build_Derived_Array_Type
138 (N : Node_Id;
139 Parent_Type : Entity_Id;
140 Derived_Type : Entity_Id);
141 -- Subsidiary procedure to Build_Derived_Type. For a derived array type,
142 -- create an implicit base if the parent type is constrained or if the
143 -- subtype indication has a constraint.
145 procedure Build_Derived_Concurrent_Type
146 (N : Node_Id;
147 Parent_Type : Entity_Id;
148 Derived_Type : Entity_Id);
149 -- Subsidiary procedure to Build_Derived_Type. For a derived task or
150 -- protected type, inherit entries and protected subprograms, check
151 -- legality of discriminant constraints if any.
153 procedure Build_Derived_Enumeration_Type
154 (N : Node_Id;
155 Parent_Type : Entity_Id;
156 Derived_Type : Entity_Id);
157 -- Subsidiary procedure to Build_Derived_Type. For a derived enumeration
158 -- type, we must create a new list of literals. Types derived from
159 -- Character and [Wide_]Wide_Character are special-cased.
161 procedure Build_Derived_Numeric_Type
162 (N : Node_Id;
163 Parent_Type : Entity_Id;
164 Derived_Type : Entity_Id);
165 -- Subsidiary procedure to Build_Derived_Type. For numeric types, create
166 -- an anonymous base type, and propagate constraint to subtype if needed.
168 procedure Build_Derived_Private_Type
169 (N : Node_Id;
170 Parent_Type : Entity_Id;
171 Derived_Type : Entity_Id;
172 Is_Completion : Boolean;
173 Derive_Subps : Boolean := True);
174 -- Subsidiary procedure to Build_Derived_Type. This procedure is complex
175 -- because the parent may or may not have a completion, and the derivation
176 -- may itself be a completion.
178 procedure Build_Derived_Record_Type
179 (N : Node_Id;
180 Parent_Type : Entity_Id;
181 Derived_Type : Entity_Id;
182 Derive_Subps : Boolean := True);
183 -- Subsidiary procedure used for tagged and untagged record types
184 -- by Build_Derived_Type and Analyze_Private_Extension_Declaration.
185 -- All parameters are as in Build_Derived_Type except that N, in
186 -- addition to being an N_Full_Type_Declaration node, can also be an
187 -- N_Private_Extension_Declaration node. See the definition of this routine
188 -- for much more info. Derive_Subps indicates whether subprograms should be
189 -- derived from the parent type. The only case where Derive_Subps is False
190 -- is for an implicit derived full type for a type derived from a private
191 -- type (see Build_Derived_Type).
193 procedure Build_Discriminal (Discrim : Entity_Id);
194 -- Create the discriminal corresponding to discriminant Discrim, that is
195 -- the parameter corresponding to Discrim to be used in initialization
196 -- procedures for the type where Discrim is a discriminant. Discriminals
197 -- are not used during semantic analysis, and are not fully defined
198 -- entities until expansion. Thus they are not given a scope until
199 -- initialization procedures are built.
201 function Build_Discriminant_Constraints
202 (T : Entity_Id;
203 Def : Node_Id;
204 Derived_Def : Boolean := False) return Elist_Id;
205 -- Validate discriminant constraints and return the list of the constraints
206 -- in order of discriminant declarations, where T is the discriminated
207 -- unconstrained type. Def is the N_Subtype_Indication node where the
208 -- discriminants constraints for T are specified. Derived_Def is True
209 -- when building the discriminant constraints in a derived type definition
210 -- of the form "type D (...) is new T (xxx)". In this case T is the parent
211 -- type and Def is the constraint "(xxx)" on T and this routine sets the
212 -- Corresponding_Discriminant field of the discriminants in the derived
213 -- type D to point to the corresponding discriminants in the parent type T.
215 procedure Build_Discriminated_Subtype
216 (T : Entity_Id;
217 Def_Id : Entity_Id;
218 Elist : Elist_Id;
219 Related_Nod : Node_Id;
220 For_Access : Boolean := False);
221 -- Subsidiary procedure to Constrain_Discriminated_Type and to
222 -- Process_Incomplete_Dependents. Given
224 -- T (a possibly discriminated base type)
225 -- Def_Id (a very partially built subtype for T),
227 -- the call completes Def_Id to be the appropriate E_*_Subtype.
229 -- The Elist is the list of discriminant constraints if any (it is set
230 -- to No_Elist if T is not a discriminated type, and to an empty list if
231 -- T has discriminants but there are no discriminant constraints). The
232 -- Related_Nod is the same as Decl_Node in Create_Constrained_Components.
233 -- The For_Access says whether or not this subtype is really constraining
234 -- an access type. That is its sole purpose is the designated type of an
235 -- access type -- in which case a Private_Subtype Is_For_Access_Subtype
236 -- is built to avoid freezing T when the access subtype is frozen.
238 function Build_Scalar_Bound
239 (Bound : Node_Id;
240 Par_T : Entity_Id;
241 Der_T : Entity_Id) return Node_Id;
242 -- The bounds of a derived scalar type are conversions of the bounds of
243 -- the parent type. Optimize the representation if the bounds are literals.
244 -- Needs a more complete spec--what are the parameters exactly, and what
245 -- exactly is the returned value, and how is Bound affected???
247 procedure Build_Underlying_Full_View
248 (N : Node_Id;
249 Typ : Entity_Id;
250 Par : Entity_Id);
251 -- If the completion of a private type is itself derived from a private
252 -- type, or if the full view of a private subtype is itself private, the
253 -- back-end has no way to compute the actual size of this type. We build
254 -- an internal subtype declaration of the proper parent type to convey
255 -- this information. This extra mechanism is needed because a full
256 -- view cannot itself have a full view (it would get clobbered during
257 -- view exchanges).
259 procedure Check_Access_Discriminant_Requires_Limited
260 (D : Node_Id;
261 Loc : Node_Id);
262 -- Check the restriction that the type to which an access discriminant
263 -- belongs must be a concurrent type or a descendant of a type with
264 -- the reserved word 'limited' in its declaration.
266 procedure Check_Anonymous_Access_Components
267 (Typ_Decl : Node_Id;
268 Typ : Entity_Id;
269 Prev : Entity_Id;
270 Comp_List : Node_Id);
271 -- Ada 2005 AI-382: an access component in a record definition can refer to
272 -- the enclosing record, in which case it denotes the type itself, and not
273 -- the current instance of the type. We create an anonymous access type for
274 -- the component, and flag it as an access to a component, so accessibility
275 -- checks are properly performed on it. The declaration of the access type
276 -- is placed ahead of that of the record to prevent order-of-elaboration
277 -- circularity issues in Gigi. We create an incomplete type for the record
278 -- declaration, which is the designated type of the anonymous access.
280 procedure Check_Delta_Expression (E : Node_Id);
281 -- Check that the expression represented by E is suitable for use as a
282 -- delta expression, i.e. it is of real type and is static.
284 procedure Check_Digits_Expression (E : Node_Id);
285 -- Check that the expression represented by E is suitable for use as a
286 -- digits expression, i.e. it is of integer type, positive and static.
288 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id);
289 -- Validate the initialization of an object declaration. T is the required
290 -- type, and Exp is the initialization expression.
292 procedure Check_Interfaces (N : Node_Id; Def : Node_Id);
293 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
295 procedure Check_Or_Process_Discriminants
296 (N : Node_Id;
297 T : Entity_Id;
298 Prev : Entity_Id := Empty);
299 -- If N is the full declaration of the completion T of an incomplete or
300 -- private type, check its discriminants (which are already known to be
301 -- conformant with those of the partial view, see Find_Type_Name),
302 -- otherwise process them. Prev is the entity of the partial declaration,
303 -- if any.
305 procedure Check_Real_Bound (Bound : Node_Id);
306 -- Check given bound for being of real type and static. If not, post an
307 -- appropriate message, and rewrite the bound with the real literal zero.
309 procedure Constant_Redeclaration
310 (Id : Entity_Id;
311 N : Node_Id;
312 T : out Entity_Id);
313 -- Various checks on legality of full declaration of deferred constant.
314 -- Id is the entity for the redeclaration, N is the N_Object_Declaration,
315 -- node. The caller has not yet set any attributes of this entity.
317 function Contain_Interface
318 (Iface : Entity_Id;
319 Ifaces : Elist_Id) return Boolean;
320 -- Ada 2005: Determine whether Iface is present in the list Ifaces
322 procedure Convert_Scalar_Bounds
323 (N : Node_Id;
324 Parent_Type : Entity_Id;
325 Derived_Type : Entity_Id;
326 Loc : Source_Ptr);
327 -- For derived scalar types, convert the bounds in the type definition to
328 -- the derived type, and complete their analysis. Given a constraint of the
329 -- form ".. new T range Lo .. Hi", Lo and Hi are analyzed and resolved with
330 -- T'Base, the parent_type. The bounds of the derived type (the anonymous
331 -- base) are copies of Lo and Hi. Finally, the bounds of the derived
332 -- subtype are conversions of those bounds to the derived_type, so that
333 -- their typing is consistent.
335 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id);
336 -- Copies attributes from array base type T2 to array base type T1. Copies
337 -- only attributes that apply to base types, but not subtypes.
339 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id);
340 -- Copies attributes from array subtype T2 to array subtype T1. Copies
341 -- attributes that apply to both subtypes and base types.
343 procedure Create_Constrained_Components
344 (Subt : Entity_Id;
345 Decl_Node : Node_Id;
346 Typ : Entity_Id;
347 Constraints : Elist_Id);
348 -- Build the list of entities for a constrained discriminated record
349 -- subtype. If a component depends on a discriminant, replace its subtype
350 -- using the discriminant values in the discriminant constraint. Subt
351 -- is the defining identifier for the subtype whose list of constrained
352 -- entities we will create. Decl_Node is the type declaration node where
353 -- we will attach all the itypes created. Typ is the base discriminated
354 -- type for the subtype Subt. Constraints is the list of discriminant
355 -- constraints for Typ.
357 function Constrain_Component_Type
358 (Comp : Entity_Id;
359 Constrained_Typ : Entity_Id;
360 Related_Node : Node_Id;
361 Typ : Entity_Id;
362 Constraints : Elist_Id) return Entity_Id;
363 -- Given a discriminated base type Typ, a list of discriminant constraints,
364 -- Constraints, for Typ and a component Comp of Typ, create and return the
365 -- type corresponding to Etype (Comp) where all discriminant references
366 -- are replaced with the corresponding constraint. If Etype (Comp) contains
367 -- no discriminant references then it is returned as-is. Constrained_Typ
368 -- is the final constrained subtype to which the constrained component
369 -- belongs. Related_Node is the node where we attach all created itypes.
371 procedure Constrain_Access
372 (Def_Id : in out Entity_Id;
373 S : Node_Id;
374 Related_Nod : Node_Id);
375 -- Apply a list of constraints to an access type. If Def_Id is empty, it is
376 -- an anonymous type created for a subtype indication. In that case it is
377 -- created in the procedure and attached to Related_Nod.
379 procedure Constrain_Array
380 (Def_Id : in out Entity_Id;
381 SI : Node_Id;
382 Related_Nod : Node_Id;
383 Related_Id : Entity_Id;
384 Suffix : Character);
385 -- Apply a list of index constraints to an unconstrained array type. The
386 -- first parameter is the entity for the resulting subtype. A value of
387 -- Empty for Def_Id indicates that an implicit type must be created, but
388 -- creation is delayed (and must be done by this procedure) because other
389 -- subsidiary implicit types must be created first (which is why Def_Id
390 -- is an in/out parameter). The second parameter is a subtype indication
391 -- node for the constrained array to be created (e.g. something of the
392 -- form string (1 .. 10)). Related_Nod gives the place where this type
393 -- has to be inserted in the tree. The Related_Id and Suffix parameters
394 -- are used to build the associated Implicit type name.
396 procedure Constrain_Concurrent
397 (Def_Id : in out Entity_Id;
398 SI : Node_Id;
399 Related_Nod : Node_Id;
400 Related_Id : Entity_Id;
401 Suffix : Character);
402 -- Apply list of discriminant constraints to an unconstrained concurrent
403 -- type.
405 -- SI is the N_Subtype_Indication node containing the constraint and
406 -- the unconstrained type to constrain.
408 -- Def_Id is the entity for the resulting constrained subtype. A value
409 -- of Empty for Def_Id indicates that an implicit type must be created,
410 -- but creation is delayed (and must be done by this procedure) because
411 -- other subsidiary implicit types must be created first (which is why
412 -- Def_Id is an in/out parameter).
414 -- Related_Nod gives the place where this type has to be inserted
415 -- in the tree.
417 -- The last two arguments are used to create its external name if needed.
419 function Constrain_Corresponding_Record
420 (Prot_Subt : Entity_Id;
421 Corr_Rec : Entity_Id;
422 Related_Nod : Node_Id) return Entity_Id;
423 -- When constraining a protected type or task type with discriminants,
424 -- constrain the corresponding record with the same discriminant values.
426 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id);
427 -- Constrain a decimal fixed point type with a digits constraint and/or a
428 -- range constraint, and build E_Decimal_Fixed_Point_Subtype entity.
430 procedure Constrain_Discriminated_Type
431 (Def_Id : Entity_Id;
432 S : Node_Id;
433 Related_Nod : Node_Id;
434 For_Access : Boolean := False);
435 -- Process discriminant constraints of composite type. Verify that values
436 -- have been provided for all discriminants, that the original type is
437 -- unconstrained, and that the types of the supplied expressions match
438 -- the discriminant types. The first three parameters are like in routine
439 -- Constrain_Concurrent. See Build_Discriminated_Subtype for an explanation
440 -- of For_Access.
442 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id);
443 -- Constrain an enumeration type with a range constraint. This is identical
444 -- to Constrain_Integer, but for the Ekind of the resulting subtype.
446 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id);
447 -- Constrain a floating point type with either a digits constraint
448 -- and/or a range constraint, building a E_Floating_Point_Subtype.
450 procedure Constrain_Index
451 (Index : Node_Id;
452 S : Node_Id;
453 Related_Nod : Node_Id;
454 Related_Id : Entity_Id;
455 Suffix : Character;
456 Suffix_Index : Nat);
457 -- Process an index constraint S in a constrained array declaration. The
458 -- constraint can be a subtype name, or a range with or without an explicit
459 -- subtype mark. The index is the corresponding index of the unconstrained
460 -- array. The Related_Id and Suffix parameters are used to build the
461 -- associated Implicit type name.
463 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id);
464 -- Build subtype of a signed or modular integer type
466 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id);
467 -- Constrain an ordinary fixed point type with a range constraint, and
468 -- build an E_Ordinary_Fixed_Point_Subtype entity.
470 procedure Copy_And_Swap (Priv, Full : Entity_Id);
471 -- Copy the Priv entity into the entity of its full declaration then swap
472 -- the two entities in such a manner that the former private type is now
473 -- seen as a full type.
475 procedure Decimal_Fixed_Point_Type_Declaration
476 (T : Entity_Id;
477 Def : Node_Id);
478 -- Create a new decimal fixed point type, and apply the constraint to
479 -- obtain a subtype of this new type.
481 procedure Complete_Private_Subtype
482 (Priv : Entity_Id;
483 Full : Entity_Id;
484 Full_Base : Entity_Id;
485 Related_Nod : Node_Id);
486 -- Complete the implicit full view of a private subtype by setting the
487 -- appropriate semantic fields. If the full view of the parent is a record
488 -- type, build constrained components of subtype.
490 procedure Derive_Progenitor_Subprograms
491 (Parent_Type : Entity_Id;
492 Tagged_Type : Entity_Id);
493 -- Ada 2005 (AI-251): To complete type derivation, collect the primitive
494 -- operations of progenitors of Tagged_Type, and replace the subsidiary
495 -- subtypes with Tagged_Type, to build the specs of the inherited interface
496 -- primitives. The derived primitives are aliased to those of the
497 -- interface. This routine takes care also of transferring to the full view
498 -- subprograms associated with the partial view of Tagged_Type that cover
499 -- interface primitives.
501 procedure Derived_Standard_Character
502 (N : Node_Id;
503 Parent_Type : Entity_Id;
504 Derived_Type : Entity_Id);
505 -- Subsidiary procedure to Build_Derived_Enumeration_Type which handles
506 -- derivations from types Standard.Character and Standard.Wide_Character.
508 procedure Derived_Type_Declaration
509 (T : Entity_Id;
510 N : Node_Id;
511 Is_Completion : Boolean);
512 -- Process a derived type declaration. Build_Derived_Type is invoked
513 -- to process the actual derived type definition. Parameters N and
514 -- Is_Completion have the same meaning as in Build_Derived_Type.
515 -- T is the N_Defining_Identifier for the entity defined in the
516 -- N_Full_Type_Declaration node N, that is T is the derived type.
518 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id);
519 -- Insert each literal in symbol table, as an overloadable identifier. Each
520 -- enumeration type is mapped into a sequence of integers, and each literal
521 -- is defined as a constant with integer value. If any of the literals are
522 -- character literals, the type is a character type, which means that
523 -- strings are legal aggregates for arrays of components of the type.
525 function Expand_To_Stored_Constraint
526 (Typ : Entity_Id;
527 Constraint : Elist_Id) return Elist_Id;
528 -- Given a constraint (i.e. a list of expressions) on the discriminants of
529 -- Typ, expand it into a constraint on the stored discriminants and return
530 -- the new list of expressions constraining the stored discriminants.
532 function Find_Type_Of_Object
533 (Obj_Def : Node_Id;
534 Related_Nod : Node_Id) return Entity_Id;
535 -- Get type entity for object referenced by Obj_Def, attaching the
536 -- implicit types generated to Related_Nod
538 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id);
539 -- Create a new float and apply the constraint to obtain subtype of it
541 function Has_Range_Constraint (N : Node_Id) return Boolean;
542 -- Given an N_Subtype_Indication node N, return True if a range constraint
543 -- is present, either directly, or as part of a digits or delta constraint.
544 -- In addition, a digits constraint in the decimal case returns True, since
545 -- it establishes a default range if no explicit range is present.
547 function Inherit_Components
548 (N : Node_Id;
549 Parent_Base : Entity_Id;
550 Derived_Base : Entity_Id;
551 Is_Tagged : Boolean;
552 Inherit_Discr : Boolean;
553 Discs : Elist_Id) return Elist_Id;
554 -- Called from Build_Derived_Record_Type to inherit the components of
555 -- Parent_Base (a base type) into the Derived_Base (the derived base type).
556 -- For more information on derived types and component inheritance please
557 -- consult the comment above the body of Build_Derived_Record_Type.
559 -- N is the original derived type declaration
561 -- Is_Tagged is set if we are dealing with tagged types
563 -- If Inherit_Discr is set, Derived_Base inherits its discriminants from
564 -- Parent_Base, otherwise no discriminants are inherited.
566 -- Discs gives the list of constraints that apply to Parent_Base in the
567 -- derived type declaration. If Discs is set to No_Elist, then we have
568 -- the following situation:
570 -- type Parent (D1..Dn : ..) is [tagged] record ...;
571 -- type Derived is new Parent [with ...];
573 -- which gets treated as
575 -- type Derived (D1..Dn : ..) is new Parent (D1,..,Dn) [with ...];
577 -- For untagged types the returned value is an association list. The list
578 -- starts from the association (Parent_Base => Derived_Base), and then it
579 -- contains a sequence of the associations of the form
581 -- (Old_Component => New_Component),
583 -- where Old_Component is the Entity_Id of a component in Parent_Base and
584 -- New_Component is the Entity_Id of the corresponding component in
585 -- Derived_Base. For untagged records, this association list is needed when
586 -- copying the record declaration for the derived base. In the tagged case
587 -- the value returned is irrelevant.
589 function Is_Valid_Constraint_Kind
590 (T_Kind : Type_Kind;
591 Constraint_Kind : Node_Kind) return Boolean;
592 -- Returns True if it is legal to apply the given kind of constraint to the
593 -- given kind of type (index constraint to an array type, for example).
595 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id);
596 -- Create new modular type. Verify that modulus is in bounds
598 procedure New_Concatenation_Op (Typ : Entity_Id);
599 -- Create an abbreviated declaration for an operator in order to
600 -- materialize concatenation on array types.
602 procedure Ordinary_Fixed_Point_Type_Declaration
603 (T : Entity_Id;
604 Def : Node_Id);
605 -- Create a new ordinary fixed point type, and apply the constraint to
606 -- obtain subtype of it.
608 procedure Prepare_Private_Subtype_Completion
609 (Id : Entity_Id;
610 Related_Nod : Node_Id);
611 -- Id is a subtype of some private type. Creates the full declaration
612 -- associated with Id whenever possible, i.e. when the full declaration
613 -- of the base type is already known. Records each subtype into
614 -- Private_Dependents of the base type.
616 procedure Process_Incomplete_Dependents
617 (N : Node_Id;
618 Full_T : Entity_Id;
619 Inc_T : Entity_Id);
620 -- Process all entities that depend on an incomplete type. There include
621 -- subtypes, subprogram types that mention the incomplete type in their
622 -- profiles, and subprogram with access parameters that designate the
623 -- incomplete type.
625 -- Inc_T is the defining identifier of an incomplete type declaration, its
626 -- Ekind is E_Incomplete_Type.
628 -- N is the corresponding N_Full_Type_Declaration for Inc_T.
630 -- Full_T is N's defining identifier.
632 -- Subtypes of incomplete types with discriminants are completed when the
633 -- parent type is. This is simpler than private subtypes, because they can
634 -- only appear in the same scope, and there is no need to exchange views.
635 -- Similarly, access_to_subprogram types may have a parameter or a return
636 -- type that is an incomplete type, and that must be replaced with the
637 -- full type.
639 -- If the full type is tagged, subprogram with access parameters that
640 -- designated the incomplete may be primitive operations of the full type,
641 -- and have to be processed accordingly.
643 procedure Process_Real_Range_Specification (Def : Node_Id);
644 -- Given the type definition for a real type, this procedure processes and
645 -- checks the real range specification of this type definition if one is
646 -- present. If errors are found, error messages are posted, and the
647 -- Real_Range_Specification of Def is reset to Empty.
649 procedure Record_Type_Declaration
650 (T : Entity_Id;
651 N : Node_Id;
652 Prev : Entity_Id);
653 -- Process a record type declaration (for both untagged and tagged
654 -- records). Parameters T and N are exactly like in procedure
655 -- Derived_Type_Declaration, except that no flag Is_Completion is needed
656 -- for this routine. If this is the completion of an incomplete type
657 -- declaration, Prev is the entity of the incomplete declaration, used for
658 -- cross-referencing. Otherwise Prev = T.
660 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id);
661 -- This routine is used to process the actual record type definition (both
662 -- for untagged and tagged records). Def is a record type definition node.
663 -- This procedure analyzes the components in this record type definition.
664 -- Prev_T is the entity for the enclosing record type. It is provided so
665 -- that its Has_Task flag can be set if any of the component have Has_Task
666 -- set. If the declaration is the completion of an incomplete type
667 -- declaration, Prev_T is the original incomplete type, whose full view is
668 -- the record type.
670 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id);
671 -- Subsidiary to Build_Derived_Record_Type. For untagged records, we
672 -- build a copy of the declaration tree of the parent, and we create
673 -- independently the list of components for the derived type. Semantic
674 -- information uses the component entities, but record representation
675 -- clauses are validated on the declaration tree. This procedure replaces
676 -- discriminants and components in the declaration with those that have
677 -- been created by Inherit_Components.
679 procedure Set_Fixed_Range
680 (E : Entity_Id;
681 Loc : Source_Ptr;
682 Lo : Ureal;
683 Hi : Ureal);
684 -- Build a range node with the given bounds and set it as the Scalar_Range
685 -- of the given fixed-point type entity. Loc is the source location used
686 -- for the constructed range. See body for further details.
688 procedure Set_Scalar_Range_For_Subtype
689 (Def_Id : Entity_Id;
690 R : Node_Id;
691 Subt : Entity_Id);
692 -- This routine is used to set the scalar range field for a subtype given
693 -- Def_Id, the entity for the subtype, and R, the range expression for the
694 -- scalar range. Subt provides the parent subtype to be used to analyze,
695 -- resolve, and check the given range.
697 procedure Set_Default_SSO (T : Entity_Id);
698 -- T is the entity for an array or record being declared. This procedure
699 -- sets the flags SSO_Set_Low_By_Default/SSO_Set_High_By_Default according
700 -- to the setting of Opt.Default_SSO.
702 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id);
703 -- Create a new signed integer entity, and apply the constraint to obtain
704 -- the required first named subtype of this type.
706 procedure Set_Stored_Constraint_From_Discriminant_Constraint
707 (E : Entity_Id);
708 -- E is some record type. This routine computes E's Stored_Constraint
709 -- from its Discriminant_Constraint.
711 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id);
712 -- Check that an entity in a list of progenitors is an interface,
713 -- emit error otherwise.
715 -----------------------
716 -- Access_Definition --
717 -----------------------
719 function Access_Definition
720 (Related_Nod : Node_Id;
721 N : Node_Id) return Entity_Id
723 Anon_Type : Entity_Id;
724 Anon_Scope : Entity_Id;
725 Desig_Type : Entity_Id;
726 Enclosing_Prot_Type : Entity_Id := Empty;
728 begin
729 Check_SPARK_Restriction ("access type is not allowed", N);
731 if Is_Entry (Current_Scope)
732 and then Is_Task_Type (Etype (Scope (Current_Scope)))
733 then
734 Error_Msg_N ("task entries cannot have access parameters", N);
735 return Empty;
736 end if;
738 -- Ada 2005: For an object declaration the corresponding anonymous
739 -- type is declared in the current scope.
741 -- If the access definition is the return type of another access to
742 -- function, scope is the current one, because it is the one of the
743 -- current type declaration, except for the pathological case below.
745 if Nkind_In (Related_Nod, N_Object_Declaration,
746 N_Access_Function_Definition)
747 then
748 Anon_Scope := Current_Scope;
750 -- A pathological case: function returning access functions that
751 -- return access functions, etc. Each anonymous access type created
752 -- is in the enclosing scope of the outermost function.
754 declare
755 Par : Node_Id;
757 begin
758 Par := Related_Nod;
759 while Nkind_In (Par, N_Access_Function_Definition,
760 N_Access_Definition)
761 loop
762 Par := Parent (Par);
763 end loop;
765 if Nkind (Par) = N_Function_Specification then
766 Anon_Scope := Scope (Defining_Entity (Par));
767 end if;
768 end;
770 -- For the anonymous function result case, retrieve the scope of the
771 -- function specification's associated entity rather than using the
772 -- current scope. The current scope will be the function itself if the
773 -- formal part is currently being analyzed, but will be the parent scope
774 -- in the case of a parameterless function, and we always want to use
775 -- the function's parent scope. Finally, if the function is a child
776 -- unit, we must traverse the tree to retrieve the proper entity.
778 elsif Nkind (Related_Nod) = N_Function_Specification
779 and then Nkind (Parent (N)) /= N_Parameter_Specification
780 then
781 -- If the current scope is a protected type, the anonymous access
782 -- is associated with one of the protected operations, and must
783 -- be available in the scope that encloses the protected declaration.
784 -- Otherwise the type is in the scope enclosing the subprogram.
786 -- If the function has formals, The return type of a subprogram
787 -- declaration is analyzed in the scope of the subprogram (see
788 -- Process_Formals) and thus the protected type, if present, is
789 -- the scope of the current function scope.
791 if Ekind (Current_Scope) = E_Protected_Type then
792 Enclosing_Prot_Type := Current_Scope;
794 elsif Ekind (Current_Scope) = E_Function
795 and then Ekind (Scope (Current_Scope)) = E_Protected_Type
796 then
797 Enclosing_Prot_Type := Scope (Current_Scope);
798 end if;
800 if Present (Enclosing_Prot_Type) then
801 Anon_Scope := Scope (Enclosing_Prot_Type);
803 else
804 Anon_Scope := Scope (Defining_Entity (Related_Nod));
805 end if;
807 -- For an access type definition, if the current scope is a child
808 -- unit it is the scope of the type.
810 elsif Is_Compilation_Unit (Current_Scope) then
811 Anon_Scope := Current_Scope;
813 -- For access formals, access components, and access discriminants, the
814 -- scope is that of the enclosing declaration,
816 else
817 Anon_Scope := Scope (Current_Scope);
818 end if;
820 Anon_Type :=
821 Create_Itype
822 (E_Anonymous_Access_Type, Related_Nod, Scope_Id => Anon_Scope);
824 if All_Present (N)
825 and then Ada_Version >= Ada_2005
826 then
827 Error_Msg_N ("ALL is not permitted for anonymous access types", N);
828 end if;
830 -- Ada 2005 (AI-254): In case of anonymous access to subprograms call
831 -- the corresponding semantic routine
833 if Present (Access_To_Subprogram_Definition (N)) then
835 -- Compiler runtime units are compiled in Ada 2005 mode when building
836 -- the runtime library but must also be compilable in Ada 95 mode
837 -- (when bootstrapping the compiler).
839 Check_Compiler_Unit ("anonymous access to subprogram", N);
841 Access_Subprogram_Declaration
842 (T_Name => Anon_Type,
843 T_Def => Access_To_Subprogram_Definition (N));
845 if Ekind (Anon_Type) = E_Access_Protected_Subprogram_Type then
846 Set_Ekind
847 (Anon_Type, E_Anonymous_Access_Protected_Subprogram_Type);
848 else
849 Set_Ekind (Anon_Type, E_Anonymous_Access_Subprogram_Type);
850 end if;
852 Set_Can_Use_Internal_Rep
853 (Anon_Type, not Always_Compatible_Rep_On_Target);
855 -- If the anonymous access is associated with a protected operation,
856 -- create a reference to it after the enclosing protected definition
857 -- because the itype will be used in the subsequent bodies.
859 if Ekind (Current_Scope) = E_Protected_Type then
860 Build_Itype_Reference (Anon_Type, Parent (Current_Scope));
861 end if;
863 return Anon_Type;
864 end if;
866 Find_Type (Subtype_Mark (N));
867 Desig_Type := Entity (Subtype_Mark (N));
869 Set_Directly_Designated_Type (Anon_Type, Desig_Type);
870 Set_Etype (Anon_Type, Anon_Type);
872 -- Make sure the anonymous access type has size and alignment fields
873 -- set, as required by gigi. This is necessary in the case of the
874 -- Task_Body_Procedure.
876 if not Has_Private_Component (Desig_Type) then
877 Layout_Type (Anon_Type);
878 end if;
880 -- Ada 2005 (AI-231): Ada 2005 semantics for anonymous access differs
881 -- from Ada 95 semantics. In Ada 2005, anonymous access must specify if
882 -- the null value is allowed. In Ada 95 the null value is never allowed.
884 if Ada_Version >= Ada_2005 then
885 Set_Can_Never_Be_Null (Anon_Type, Null_Exclusion_Present (N));
886 else
887 Set_Can_Never_Be_Null (Anon_Type, True);
888 end if;
890 -- The anonymous access type is as public as the discriminated type or
891 -- subprogram that defines it. It is imported (for back-end purposes)
892 -- if the designated type is.
894 Set_Is_Public (Anon_Type, Is_Public (Scope (Anon_Type)));
896 -- Ada 2005 (AI-231): Propagate the access-constant attribute
898 Set_Is_Access_Constant (Anon_Type, Constant_Present (N));
900 -- The context is either a subprogram declaration, object declaration,
901 -- or an access discriminant, in a private or a full type declaration.
902 -- In the case of a subprogram, if the designated type is incomplete,
903 -- the operation will be a primitive operation of the full type, to be
904 -- updated subsequently. If the type is imported through a limited_with
905 -- clause, the subprogram is not a primitive operation of the type
906 -- (which is declared elsewhere in some other scope).
908 if Ekind (Desig_Type) = E_Incomplete_Type
909 and then not From_Limited_With (Desig_Type)
910 and then Is_Overloadable (Current_Scope)
911 then
912 Append_Elmt (Current_Scope, Private_Dependents (Desig_Type));
913 Set_Has_Delayed_Freeze (Current_Scope);
914 end if;
916 -- Ada 2005: If the designated type is an interface that may contain
917 -- tasks, create a Master entity for the declaration. This must be done
918 -- before expansion of the full declaration, because the declaration may
919 -- include an expression that is an allocator, whose expansion needs the
920 -- proper Master for the created tasks.
922 if Nkind (Related_Nod) = N_Object_Declaration and then Expander_Active
923 then
924 if Is_Interface (Desig_Type) and then Is_Limited_Record (Desig_Type)
925 then
926 Build_Class_Wide_Master (Anon_Type);
928 -- Similarly, if the type is an anonymous access that designates
929 -- tasks, create a master entity for it in the current context.
931 elsif Has_Task (Desig_Type) and then Comes_From_Source (Related_Nod)
932 then
933 Build_Master_Entity (Defining_Identifier (Related_Nod));
934 Build_Master_Renaming (Anon_Type);
935 end if;
936 end if;
938 -- For a private component of a protected type, it is imperative that
939 -- the back-end elaborate the type immediately after the protected
940 -- declaration, because this type will be used in the declarations
941 -- created for the component within each protected body, so we must
942 -- create an itype reference for it now.
944 if Nkind (Parent (Related_Nod)) = N_Protected_Definition then
945 Build_Itype_Reference (Anon_Type, Parent (Parent (Related_Nod)));
947 -- Similarly, if the access definition is the return result of a
948 -- function, create an itype reference for it because it will be used
949 -- within the function body. For a regular function that is not a
950 -- compilation unit, insert reference after the declaration. For a
951 -- protected operation, insert it after the enclosing protected type
952 -- declaration. In either case, do not create a reference for a type
953 -- obtained through a limited_with clause, because this would introduce
954 -- semantic dependencies.
956 -- Similarly, do not create a reference if the designated type is a
957 -- generic formal, because no use of it will reach the backend.
959 elsif Nkind (Related_Nod) = N_Function_Specification
960 and then not From_Limited_With (Desig_Type)
961 and then not Is_Generic_Type (Desig_Type)
962 then
963 if Present (Enclosing_Prot_Type) then
964 Build_Itype_Reference (Anon_Type, Parent (Enclosing_Prot_Type));
966 elsif Is_List_Member (Parent (Related_Nod))
967 and then Nkind (Parent (N)) /= N_Parameter_Specification
968 then
969 Build_Itype_Reference (Anon_Type, Parent (Related_Nod));
970 end if;
972 -- Finally, create an itype reference for an object declaration of an
973 -- anonymous access type. This is strictly necessary only for deferred
974 -- constants, but in any case will avoid out-of-scope problems in the
975 -- back-end.
977 elsif Nkind (Related_Nod) = N_Object_Declaration then
978 Build_Itype_Reference (Anon_Type, Related_Nod);
979 end if;
981 return Anon_Type;
982 end Access_Definition;
984 -----------------------------------
985 -- Access_Subprogram_Declaration --
986 -----------------------------------
988 procedure Access_Subprogram_Declaration
989 (T_Name : Entity_Id;
990 T_Def : Node_Id)
992 procedure Check_For_Premature_Usage (Def : Node_Id);
993 -- Check that type T_Name is not used, directly or recursively, as a
994 -- parameter or a return type in Def. Def is either a subtype, an
995 -- access_definition, or an access_to_subprogram_definition.
997 -------------------------------
998 -- Check_For_Premature_Usage --
999 -------------------------------
1001 procedure Check_For_Premature_Usage (Def : Node_Id) is
1002 Param : Node_Id;
1004 begin
1005 -- Check for a subtype mark
1007 if Nkind (Def) in N_Has_Etype then
1008 if Etype (Def) = T_Name then
1009 Error_Msg_N
1010 ("type& cannot be used before end of its declaration", Def);
1011 end if;
1013 -- If this is not a subtype, then this is an access_definition
1015 elsif Nkind (Def) = N_Access_Definition then
1016 if Present (Access_To_Subprogram_Definition (Def)) then
1017 Check_For_Premature_Usage
1018 (Access_To_Subprogram_Definition (Def));
1019 else
1020 Check_For_Premature_Usage (Subtype_Mark (Def));
1021 end if;
1023 -- The only cases left are N_Access_Function_Definition and
1024 -- N_Access_Procedure_Definition.
1026 else
1027 if Present (Parameter_Specifications (Def)) then
1028 Param := First (Parameter_Specifications (Def));
1029 while Present (Param) loop
1030 Check_For_Premature_Usage (Parameter_Type (Param));
1031 Param := Next (Param);
1032 end loop;
1033 end if;
1035 if Nkind (Def) = N_Access_Function_Definition then
1036 Check_For_Premature_Usage (Result_Definition (Def));
1037 end if;
1038 end if;
1039 end Check_For_Premature_Usage;
1041 -- Local variables
1043 Formals : constant List_Id := Parameter_Specifications (T_Def);
1044 Formal : Entity_Id;
1045 D_Ityp : Node_Id;
1046 Desig_Type : constant Entity_Id :=
1047 Create_Itype (E_Subprogram_Type, Parent (T_Def));
1049 -- Start of processing for Access_Subprogram_Declaration
1051 begin
1052 Check_SPARK_Restriction ("access type is not allowed", T_Def);
1054 -- Associate the Itype node with the inner full-type declaration or
1055 -- subprogram spec or entry body. This is required to handle nested
1056 -- anonymous declarations. For example:
1058 -- procedure P
1059 -- (X : access procedure
1060 -- (Y : access procedure
1061 -- (Z : access T)))
1063 D_Ityp := Associated_Node_For_Itype (Desig_Type);
1064 while not (Nkind_In (D_Ityp, N_Full_Type_Declaration,
1065 N_Private_Type_Declaration,
1066 N_Private_Extension_Declaration,
1067 N_Procedure_Specification,
1068 N_Function_Specification,
1069 N_Entry_Body)
1071 or else
1072 Nkind_In (D_Ityp, N_Object_Declaration,
1073 N_Object_Renaming_Declaration,
1074 N_Formal_Object_Declaration,
1075 N_Formal_Type_Declaration,
1076 N_Task_Type_Declaration,
1077 N_Protected_Type_Declaration))
1078 loop
1079 D_Ityp := Parent (D_Ityp);
1080 pragma Assert (D_Ityp /= Empty);
1081 end loop;
1083 Set_Associated_Node_For_Itype (Desig_Type, D_Ityp);
1085 if Nkind_In (D_Ityp, N_Procedure_Specification,
1086 N_Function_Specification)
1087 then
1088 Set_Scope (Desig_Type, Scope (Defining_Entity (D_Ityp)));
1090 elsif Nkind_In (D_Ityp, N_Full_Type_Declaration,
1091 N_Object_Declaration,
1092 N_Object_Renaming_Declaration,
1093 N_Formal_Type_Declaration)
1094 then
1095 Set_Scope (Desig_Type, Scope (Defining_Identifier (D_Ityp)));
1096 end if;
1098 if Nkind (T_Def) = N_Access_Function_Definition then
1099 if Nkind (Result_Definition (T_Def)) = N_Access_Definition then
1100 declare
1101 Acc : constant Node_Id := Result_Definition (T_Def);
1103 begin
1104 if Present (Access_To_Subprogram_Definition (Acc))
1105 and then
1106 Protected_Present (Access_To_Subprogram_Definition (Acc))
1107 then
1108 Set_Etype
1109 (Desig_Type,
1110 Replace_Anonymous_Access_To_Protected_Subprogram
1111 (T_Def));
1113 else
1114 Set_Etype
1115 (Desig_Type,
1116 Access_Definition (T_Def, Result_Definition (T_Def)));
1117 end if;
1118 end;
1120 else
1121 Analyze (Result_Definition (T_Def));
1123 declare
1124 Typ : constant Entity_Id := Entity (Result_Definition (T_Def));
1126 begin
1127 -- If a null exclusion is imposed on the result type, then
1128 -- create a null-excluding itype (an access subtype) and use
1129 -- it as the function's Etype.
1131 if Is_Access_Type (Typ)
1132 and then Null_Exclusion_In_Return_Present (T_Def)
1133 then
1134 Set_Etype (Desig_Type,
1135 Create_Null_Excluding_Itype
1136 (T => Typ,
1137 Related_Nod => T_Def,
1138 Scope_Id => Current_Scope));
1140 else
1141 if From_Limited_With (Typ) then
1143 -- AI05-151: Incomplete types are allowed in all basic
1144 -- declarations, including access to subprograms.
1146 if Ada_Version >= Ada_2012 then
1147 null;
1149 else
1150 Error_Msg_NE
1151 ("illegal use of incomplete type&",
1152 Result_Definition (T_Def), Typ);
1153 end if;
1155 elsif Ekind (Current_Scope) = E_Package
1156 and then In_Private_Part (Current_Scope)
1157 then
1158 if Ekind (Typ) = E_Incomplete_Type then
1159 Append_Elmt (Desig_Type, Private_Dependents (Typ));
1161 elsif Is_Class_Wide_Type (Typ)
1162 and then Ekind (Etype (Typ)) = E_Incomplete_Type
1163 then
1164 Append_Elmt
1165 (Desig_Type, Private_Dependents (Etype (Typ)));
1166 end if;
1167 end if;
1169 Set_Etype (Desig_Type, Typ);
1170 end if;
1171 end;
1172 end if;
1174 if not (Is_Type (Etype (Desig_Type))) then
1175 Error_Msg_N
1176 ("expect type in function specification",
1177 Result_Definition (T_Def));
1178 end if;
1180 else
1181 Set_Etype (Desig_Type, Standard_Void_Type);
1182 end if;
1184 if Present (Formals) then
1185 Push_Scope (Desig_Type);
1187 -- Some special tests here. These special tests can be removed
1188 -- if and when Itypes always have proper parent pointers to their
1189 -- declarations???
1191 -- Special test 1) Link defining_identifier of formals. Required by
1192 -- First_Formal to provide its functionality.
1194 declare
1195 F : Node_Id;
1197 begin
1198 F := First (Formals);
1200 -- In ASIS mode, the access_to_subprogram may be analyzed twice,
1201 -- when it is part of an unconstrained type and subtype expansion
1202 -- is disabled. To avoid back-end problems with shared profiles,
1203 -- use previous subprogram type as the designated type, and then
1204 -- remove scope added above.
1206 if ASIS_Mode and then Present (Scope (Defining_Identifier (F)))
1207 then
1208 Set_Etype (T_Name, T_Name);
1209 Init_Size_Align (T_Name);
1210 Set_Directly_Designated_Type (T_Name,
1211 Scope (Defining_Identifier (F)));
1212 End_Scope;
1213 return;
1214 end if;
1216 while Present (F) loop
1217 if No (Parent (Defining_Identifier (F))) then
1218 Set_Parent (Defining_Identifier (F), F);
1219 end if;
1221 Next (F);
1222 end loop;
1223 end;
1225 Process_Formals (Formals, Parent (T_Def));
1227 -- Special test 2) End_Scope requires that the parent pointer be set
1228 -- to something reasonable, but Itypes don't have parent pointers. So
1229 -- we set it and then unset it ???
1231 Set_Parent (Desig_Type, T_Name);
1232 End_Scope;
1233 Set_Parent (Desig_Type, Empty);
1234 end if;
1236 -- Check for premature usage of the type being defined
1238 Check_For_Premature_Usage (T_Def);
1240 -- The return type and/or any parameter type may be incomplete. Mark the
1241 -- subprogram_type as depending on the incomplete type, so that it can
1242 -- be updated when the full type declaration is seen. This only applies
1243 -- to incomplete types declared in some enclosing scope, not to limited
1244 -- views from other packages.
1246 -- Prior to Ada 2012, access to functions can only have in_parameters.
1248 if Present (Formals) then
1249 Formal := First_Formal (Desig_Type);
1250 while Present (Formal) loop
1251 if Ekind (Formal) /= E_In_Parameter
1252 and then Nkind (T_Def) = N_Access_Function_Definition
1253 and then Ada_Version < Ada_2012
1254 then
1255 Error_Msg_N ("functions can only have IN parameters", Formal);
1256 end if;
1258 if Ekind (Etype (Formal)) = E_Incomplete_Type
1259 and then In_Open_Scopes (Scope (Etype (Formal)))
1260 then
1261 Append_Elmt (Desig_Type, Private_Dependents (Etype (Formal)));
1262 Set_Has_Delayed_Freeze (Desig_Type);
1263 end if;
1265 Next_Formal (Formal);
1266 end loop;
1267 end if;
1269 -- Check whether an indirect call without actuals may be possible. This
1270 -- is used when resolving calls whose result is then indexed.
1272 May_Need_Actuals (Desig_Type);
1274 -- If the return type is incomplete, this is legal as long as the type
1275 -- is declared in the current scope and will be completed in it (rather
1276 -- than being part of limited view).
1278 if Ekind (Etype (Desig_Type)) = E_Incomplete_Type
1279 and then not Has_Delayed_Freeze (Desig_Type)
1280 and then In_Open_Scopes (Scope (Etype (Desig_Type)))
1281 then
1282 Append_Elmt (Desig_Type, Private_Dependents (Etype (Desig_Type)));
1283 Set_Has_Delayed_Freeze (Desig_Type);
1284 end if;
1286 Check_Delayed_Subprogram (Desig_Type);
1288 if Protected_Present (T_Def) then
1289 Set_Ekind (T_Name, E_Access_Protected_Subprogram_Type);
1290 Set_Convention (Desig_Type, Convention_Protected);
1291 else
1292 Set_Ekind (T_Name, E_Access_Subprogram_Type);
1293 end if;
1295 Set_Can_Use_Internal_Rep (T_Name, not Always_Compatible_Rep_On_Target);
1297 Set_Etype (T_Name, T_Name);
1298 Init_Size_Align (T_Name);
1299 Set_Directly_Designated_Type (T_Name, Desig_Type);
1301 Generate_Reference_To_Formals (T_Name);
1303 -- Ada 2005 (AI-231): Propagate the null-excluding attribute
1305 Set_Can_Never_Be_Null (T_Name, Null_Exclusion_Present (T_Def));
1307 Check_Restriction (No_Access_Subprograms, T_Def);
1308 end Access_Subprogram_Declaration;
1310 ----------------------------
1311 -- Access_Type_Declaration --
1312 ----------------------------
1314 procedure Access_Type_Declaration (T : Entity_Id; Def : Node_Id) is
1315 P : constant Node_Id := Parent (Def);
1316 S : constant Node_Id := Subtype_Indication (Def);
1318 Full_Desig : Entity_Id;
1320 begin
1321 Check_SPARK_Restriction ("access type is not allowed", Def);
1323 -- Check for permissible use of incomplete type
1325 if Nkind (S) /= N_Subtype_Indication then
1326 Analyze (S);
1328 if Ekind (Root_Type (Entity (S))) = E_Incomplete_Type then
1329 Set_Directly_Designated_Type (T, Entity (S));
1330 else
1331 Set_Directly_Designated_Type (T,
1332 Process_Subtype (S, P, T, 'P'));
1333 end if;
1335 -- If the access definition is of the form: ACCESS NOT NULL ..
1336 -- the subtype indication must be of an access type. Create
1337 -- a null-excluding subtype of it.
1339 if Null_Excluding_Subtype (Def) then
1340 if not Is_Access_Type (Entity (S)) then
1341 Error_Msg_N ("null exclusion must apply to access type", Def);
1343 else
1344 declare
1345 Loc : constant Source_Ptr := Sloc (S);
1346 Decl : Node_Id;
1347 Nam : constant Entity_Id := Make_Temporary (Loc, 'S');
1349 begin
1350 Decl :=
1351 Make_Subtype_Declaration (Loc,
1352 Defining_Identifier => Nam,
1353 Subtype_Indication =>
1354 New_Occurrence_Of (Entity (S), Loc));
1355 Set_Null_Exclusion_Present (Decl);
1356 Insert_Before (Parent (Def), Decl);
1357 Analyze (Decl);
1358 Set_Entity (S, Nam);
1359 end;
1360 end if;
1361 end if;
1363 else
1364 Set_Directly_Designated_Type (T,
1365 Process_Subtype (S, P, T, 'P'));
1366 end if;
1368 if All_Present (Def) or Constant_Present (Def) then
1369 Set_Ekind (T, E_General_Access_Type);
1370 else
1371 Set_Ekind (T, E_Access_Type);
1372 end if;
1374 Full_Desig := Designated_Type (T);
1376 if Base_Type (Full_Desig) = T then
1377 Error_Msg_N ("access type cannot designate itself", S);
1379 -- In Ada 2005, the type may have a limited view through some unit in
1380 -- its own context, allowing the following circularity that cannot be
1381 -- detected earlier.
1383 elsif Is_Class_Wide_Type (Full_Desig) and then Etype (Full_Desig) = T
1384 then
1385 Error_Msg_N
1386 ("access type cannot designate its own classwide type", S);
1388 -- Clean up indication of tagged status to prevent cascaded errors
1390 Set_Is_Tagged_Type (T, False);
1391 end if;
1393 Set_Etype (T, T);
1395 -- If the type has appeared already in a with_type clause, it is frozen
1396 -- and the pointer size is already set. Else, initialize.
1398 if not From_Limited_With (T) then
1399 Init_Size_Align (T);
1400 end if;
1402 -- Note that Has_Task is always false, since the access type itself
1403 -- is not a task type. See Einfo for more description on this point.
1404 -- Exactly the same consideration applies to Has_Controlled_Component
1405 -- and to Has_Protected.
1407 Set_Has_Task (T, False);
1408 Set_Has_Controlled_Component (T, False);
1409 Set_Has_Protected (T, False);
1411 -- Initialize field Finalization_Master explicitly to Empty, to avoid
1412 -- problems where an incomplete view of this entity has been previously
1413 -- established by a limited with and an overlaid version of this field
1414 -- (Stored_Constraint) was initialized for the incomplete view.
1416 -- This reset is performed in most cases except where the access type
1417 -- has been created for the purposes of allocating or deallocating a
1418 -- build-in-place object. Such access types have explicitly set pools
1419 -- and finalization masters.
1421 if No (Associated_Storage_Pool (T)) then
1422 Set_Finalization_Master (T, Empty);
1423 end if;
1425 -- Ada 2005 (AI-231): Propagate the null-excluding and access-constant
1426 -- attributes
1428 Set_Can_Never_Be_Null (T, Null_Exclusion_Present (Def));
1429 Set_Is_Access_Constant (T, Constant_Present (Def));
1430 end Access_Type_Declaration;
1432 ----------------------------------
1433 -- Add_Interface_Tag_Components --
1434 ----------------------------------
1436 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id) is
1437 Loc : constant Source_Ptr := Sloc (N);
1438 L : List_Id;
1439 Last_Tag : Node_Id;
1441 procedure Add_Tag (Iface : Entity_Id);
1442 -- Add tag for one of the progenitor interfaces
1444 -------------
1445 -- Add_Tag --
1446 -------------
1448 procedure Add_Tag (Iface : Entity_Id) is
1449 Decl : Node_Id;
1450 Def : Node_Id;
1451 Tag : Entity_Id;
1452 Offset : Entity_Id;
1454 begin
1455 pragma Assert (Is_Tagged_Type (Iface) and then Is_Interface (Iface));
1457 -- This is a reasonable place to propagate predicates
1459 if Has_Predicates (Iface) then
1460 Set_Has_Predicates (Typ);
1461 end if;
1463 Def :=
1464 Make_Component_Definition (Loc,
1465 Aliased_Present => True,
1466 Subtype_Indication =>
1467 New_Occurrence_Of (RTE (RE_Interface_Tag), Loc));
1469 Tag := Make_Temporary (Loc, 'V');
1471 Decl :=
1472 Make_Component_Declaration (Loc,
1473 Defining_Identifier => Tag,
1474 Component_Definition => Def);
1476 Analyze_Component_Declaration (Decl);
1478 Set_Analyzed (Decl);
1479 Set_Ekind (Tag, E_Component);
1480 Set_Is_Tag (Tag);
1481 Set_Is_Aliased (Tag);
1482 Set_Related_Type (Tag, Iface);
1483 Init_Component_Location (Tag);
1485 pragma Assert (Is_Frozen (Iface));
1487 Set_DT_Entry_Count (Tag,
1488 DT_Entry_Count (First_Entity (Iface)));
1490 if No (Last_Tag) then
1491 Prepend (Decl, L);
1492 else
1493 Insert_After (Last_Tag, Decl);
1494 end if;
1496 Last_Tag := Decl;
1498 -- If the ancestor has discriminants we need to give special support
1499 -- to store the offset_to_top value of the secondary dispatch tables.
1500 -- For this purpose we add a supplementary component just after the
1501 -- field that contains the tag associated with each secondary DT.
1503 if Typ /= Etype (Typ) and then Has_Discriminants (Etype (Typ)) then
1504 Def :=
1505 Make_Component_Definition (Loc,
1506 Subtype_Indication =>
1507 New_Occurrence_Of (RTE (RE_Storage_Offset), Loc));
1509 Offset := Make_Temporary (Loc, 'V');
1511 Decl :=
1512 Make_Component_Declaration (Loc,
1513 Defining_Identifier => Offset,
1514 Component_Definition => Def);
1516 Analyze_Component_Declaration (Decl);
1518 Set_Analyzed (Decl);
1519 Set_Ekind (Offset, E_Component);
1520 Set_Is_Aliased (Offset);
1521 Set_Related_Type (Offset, Iface);
1522 Init_Component_Location (Offset);
1523 Insert_After (Last_Tag, Decl);
1524 Last_Tag := Decl;
1525 end if;
1526 end Add_Tag;
1528 -- Local variables
1530 Elmt : Elmt_Id;
1531 Ext : Node_Id;
1532 Comp : Node_Id;
1534 -- Start of processing for Add_Interface_Tag_Components
1536 begin
1537 if not RTE_Available (RE_Interface_Tag) then
1538 Error_Msg
1539 ("(Ada 2005) interface types not supported by this run-time!",
1540 Sloc (N));
1541 return;
1542 end if;
1544 if Ekind (Typ) /= E_Record_Type
1545 or else (Is_Concurrent_Record_Type (Typ)
1546 and then Is_Empty_List (Abstract_Interface_List (Typ)))
1547 or else (not Is_Concurrent_Record_Type (Typ)
1548 and then No (Interfaces (Typ))
1549 and then Is_Empty_Elmt_List (Interfaces (Typ)))
1550 then
1551 return;
1552 end if;
1554 -- Find the current last tag
1556 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1557 Ext := Record_Extension_Part (Type_Definition (N));
1558 else
1559 pragma Assert (Nkind (Type_Definition (N)) = N_Record_Definition);
1560 Ext := Type_Definition (N);
1561 end if;
1563 Last_Tag := Empty;
1565 if not (Present (Component_List (Ext))) then
1566 Set_Null_Present (Ext, False);
1567 L := New_List;
1568 Set_Component_List (Ext,
1569 Make_Component_List (Loc,
1570 Component_Items => L,
1571 Null_Present => False));
1572 else
1573 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1574 L := Component_Items
1575 (Component_List
1576 (Record_Extension_Part
1577 (Type_Definition (N))));
1578 else
1579 L := Component_Items
1580 (Component_List
1581 (Type_Definition (N)));
1582 end if;
1584 -- Find the last tag component
1586 Comp := First (L);
1587 while Present (Comp) loop
1588 if Nkind (Comp) = N_Component_Declaration
1589 and then Is_Tag (Defining_Identifier (Comp))
1590 then
1591 Last_Tag := Comp;
1592 end if;
1594 Next (Comp);
1595 end loop;
1596 end if;
1598 -- At this point L references the list of components and Last_Tag
1599 -- references the current last tag (if any). Now we add the tag
1600 -- corresponding with all the interfaces that are not implemented
1601 -- by the parent.
1603 if Present (Interfaces (Typ)) then
1604 Elmt := First_Elmt (Interfaces (Typ));
1605 while Present (Elmt) loop
1606 Add_Tag (Node (Elmt));
1607 Next_Elmt (Elmt);
1608 end loop;
1609 end if;
1610 end Add_Interface_Tag_Components;
1612 -------------------------------------
1613 -- Add_Internal_Interface_Entities --
1614 -------------------------------------
1616 procedure Add_Internal_Interface_Entities (Tagged_Type : Entity_Id) is
1617 Elmt : Elmt_Id;
1618 Iface : Entity_Id;
1619 Iface_Elmt : Elmt_Id;
1620 Iface_Prim : Entity_Id;
1621 Ifaces_List : Elist_Id;
1622 New_Subp : Entity_Id := Empty;
1623 Prim : Entity_Id;
1624 Restore_Scope : Boolean := False;
1626 begin
1627 pragma Assert (Ada_Version >= Ada_2005
1628 and then Is_Record_Type (Tagged_Type)
1629 and then Is_Tagged_Type (Tagged_Type)
1630 and then Has_Interfaces (Tagged_Type)
1631 and then not Is_Interface (Tagged_Type));
1633 -- Ensure that the internal entities are added to the scope of the type
1635 if Scope (Tagged_Type) /= Current_Scope then
1636 Push_Scope (Scope (Tagged_Type));
1637 Restore_Scope := True;
1638 end if;
1640 Collect_Interfaces (Tagged_Type, Ifaces_List);
1642 Iface_Elmt := First_Elmt (Ifaces_List);
1643 while Present (Iface_Elmt) loop
1644 Iface := Node (Iface_Elmt);
1646 -- Originally we excluded here from this processing interfaces that
1647 -- are parents of Tagged_Type because their primitives are located
1648 -- in the primary dispatch table (and hence no auxiliary internal
1649 -- entities are required to handle secondary dispatch tables in such
1650 -- case). However, these auxiliary entities are also required to
1651 -- handle derivations of interfaces in formals of generics (see
1652 -- Derive_Subprograms).
1654 Elmt := First_Elmt (Primitive_Operations (Iface));
1655 while Present (Elmt) loop
1656 Iface_Prim := Node (Elmt);
1658 if not Is_Predefined_Dispatching_Operation (Iface_Prim) then
1659 Prim :=
1660 Find_Primitive_Covering_Interface
1661 (Tagged_Type => Tagged_Type,
1662 Iface_Prim => Iface_Prim);
1664 if No (Prim) and then Serious_Errors_Detected > 0 then
1665 goto Continue;
1666 end if;
1668 pragma Assert (Present (Prim));
1670 -- Ada 2012 (AI05-0197): If the name of the covering primitive
1671 -- differs from the name of the interface primitive then it is
1672 -- a private primitive inherited from a parent type. In such
1673 -- case, given that Tagged_Type covers the interface, the
1674 -- inherited private primitive becomes visible. For such
1675 -- purpose we add a new entity that renames the inherited
1676 -- private primitive.
1678 if Chars (Prim) /= Chars (Iface_Prim) then
1679 pragma Assert (Has_Suffix (Prim, 'P'));
1680 Derive_Subprogram
1681 (New_Subp => New_Subp,
1682 Parent_Subp => Iface_Prim,
1683 Derived_Type => Tagged_Type,
1684 Parent_Type => Iface);
1685 Set_Alias (New_Subp, Prim);
1686 Set_Is_Abstract_Subprogram
1687 (New_Subp, Is_Abstract_Subprogram (Prim));
1688 end if;
1690 Derive_Subprogram
1691 (New_Subp => New_Subp,
1692 Parent_Subp => Iface_Prim,
1693 Derived_Type => Tagged_Type,
1694 Parent_Type => Iface);
1696 -- Ada 2005 (AI-251): Decorate internal entity Iface_Subp
1697 -- associated with interface types. These entities are
1698 -- only registered in the list of primitives of its
1699 -- corresponding tagged type because they are only used
1700 -- to fill the contents of the secondary dispatch tables.
1701 -- Therefore they are removed from the homonym chains.
1703 Set_Is_Hidden (New_Subp);
1704 Set_Is_Internal (New_Subp);
1705 Set_Alias (New_Subp, Prim);
1706 Set_Is_Abstract_Subprogram
1707 (New_Subp, Is_Abstract_Subprogram (Prim));
1708 Set_Interface_Alias (New_Subp, Iface_Prim);
1710 -- If the returned type is an interface then propagate it to
1711 -- the returned type. Needed by the thunk to generate the code
1712 -- which displaces "this" to reference the corresponding
1713 -- secondary dispatch table in the returned object.
1715 if Is_Interface (Etype (Iface_Prim)) then
1716 Set_Etype (New_Subp, Etype (Iface_Prim));
1717 end if;
1719 -- Internal entities associated with interface types are
1720 -- only registered in the list of primitives of the tagged
1721 -- type. They are only used to fill the contents of the
1722 -- secondary dispatch tables. Therefore they are not needed
1723 -- in the homonym chains.
1725 Remove_Homonym (New_Subp);
1727 -- Hidden entities associated with interfaces must have set
1728 -- the Has_Delay_Freeze attribute to ensure that, in case of
1729 -- locally defined tagged types (or compiling with static
1730 -- dispatch tables generation disabled) the corresponding
1731 -- entry of the secondary dispatch table is filled when
1732 -- such an entity is frozen.
1734 Set_Has_Delayed_Freeze (New_Subp);
1735 end if;
1737 <<Continue>>
1738 Next_Elmt (Elmt);
1739 end loop;
1741 Next_Elmt (Iface_Elmt);
1742 end loop;
1744 if Restore_Scope then
1745 Pop_Scope;
1746 end if;
1747 end Add_Internal_Interface_Entities;
1749 -----------------------------------
1750 -- Analyze_Component_Declaration --
1751 -----------------------------------
1753 procedure Analyze_Component_Declaration (N : Node_Id) is
1754 Id : constant Entity_Id := Defining_Identifier (N);
1755 E : constant Node_Id := Expression (N);
1756 Typ : constant Node_Id :=
1757 Subtype_Indication (Component_Definition (N));
1758 T : Entity_Id;
1759 P : Entity_Id;
1761 function Contains_POC (Constr : Node_Id) return Boolean;
1762 -- Determines whether a constraint uses the discriminant of a record
1763 -- type thus becoming a per-object constraint (POC).
1765 function Is_Known_Limited (Typ : Entity_Id) return Boolean;
1766 -- Typ is the type of the current component, check whether this type is
1767 -- a limited type. Used to validate declaration against that of
1768 -- enclosing record.
1770 ------------------
1771 -- Contains_POC --
1772 ------------------
1774 function Contains_POC (Constr : Node_Id) return Boolean is
1775 begin
1776 -- Prevent cascaded errors
1778 if Error_Posted (Constr) then
1779 return False;
1780 end if;
1782 case Nkind (Constr) is
1783 when N_Attribute_Reference =>
1784 return Attribute_Name (Constr) = Name_Access
1785 and then Prefix (Constr) = Scope (Entity (Prefix (Constr)));
1787 when N_Discriminant_Association =>
1788 return Denotes_Discriminant (Expression (Constr));
1790 when N_Identifier =>
1791 return Denotes_Discriminant (Constr);
1793 when N_Index_Or_Discriminant_Constraint =>
1794 declare
1795 IDC : Node_Id;
1797 begin
1798 IDC := First (Constraints (Constr));
1799 while Present (IDC) loop
1801 -- One per-object constraint is sufficient
1803 if Contains_POC (IDC) then
1804 return True;
1805 end if;
1807 Next (IDC);
1808 end loop;
1810 return False;
1811 end;
1813 when N_Range =>
1814 return Denotes_Discriminant (Low_Bound (Constr))
1815 or else
1816 Denotes_Discriminant (High_Bound (Constr));
1818 when N_Range_Constraint =>
1819 return Denotes_Discriminant (Range_Expression (Constr));
1821 when others =>
1822 return False;
1824 end case;
1825 end Contains_POC;
1827 ----------------------
1828 -- Is_Known_Limited --
1829 ----------------------
1831 function Is_Known_Limited (Typ : Entity_Id) return Boolean is
1832 P : constant Entity_Id := Etype (Typ);
1833 R : constant Entity_Id := Root_Type (Typ);
1835 begin
1836 if Is_Limited_Record (Typ) then
1837 return True;
1839 -- If the root type is limited (and not a limited interface)
1840 -- so is the current type
1842 elsif Is_Limited_Record (R)
1843 and then (not Is_Interface (R) or else not Is_Limited_Interface (R))
1844 then
1845 return True;
1847 -- Else the type may have a limited interface progenitor, but a
1848 -- limited record parent.
1850 elsif R /= P and then Is_Limited_Record (P) then
1851 return True;
1853 else
1854 return False;
1855 end if;
1856 end Is_Known_Limited;
1858 -- Start of processing for Analyze_Component_Declaration
1860 begin
1861 Generate_Definition (Id);
1862 Enter_Name (Id);
1864 if Present (Typ) then
1865 T := Find_Type_Of_Object
1866 (Subtype_Indication (Component_Definition (N)), N);
1868 if not Nkind_In (Typ, N_Identifier, N_Expanded_Name) then
1869 Check_SPARK_Restriction ("subtype mark required", Typ);
1870 end if;
1872 -- Ada 2005 (AI-230): Access Definition case
1874 else
1875 pragma Assert (Present
1876 (Access_Definition (Component_Definition (N))));
1878 T := Access_Definition
1879 (Related_Nod => N,
1880 N => Access_Definition (Component_Definition (N)));
1881 Set_Is_Local_Anonymous_Access (T);
1883 -- Ada 2005 (AI-254)
1885 if Present (Access_To_Subprogram_Definition
1886 (Access_Definition (Component_Definition (N))))
1887 and then Protected_Present (Access_To_Subprogram_Definition
1888 (Access_Definition
1889 (Component_Definition (N))))
1890 then
1891 T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
1892 end if;
1893 end if;
1895 -- If the subtype is a constrained subtype of the enclosing record,
1896 -- (which must have a partial view) the back-end does not properly
1897 -- handle the recursion. Rewrite the component declaration with an
1898 -- explicit subtype indication, which is acceptable to Gigi. We can copy
1899 -- the tree directly because side effects have already been removed from
1900 -- discriminant constraints.
1902 if Ekind (T) = E_Access_Subtype
1903 and then Is_Entity_Name (Subtype_Indication (Component_Definition (N)))
1904 and then Comes_From_Source (T)
1905 and then Nkind (Parent (T)) = N_Subtype_Declaration
1906 and then Etype (Directly_Designated_Type (T)) = Current_Scope
1907 then
1908 Rewrite
1909 (Subtype_Indication (Component_Definition (N)),
1910 New_Copy_Tree (Subtype_Indication (Parent (T))));
1911 T := Find_Type_Of_Object
1912 (Subtype_Indication (Component_Definition (N)), N);
1913 end if;
1915 -- If the component declaration includes a default expression, then we
1916 -- check that the component is not of a limited type (RM 3.7(5)),
1917 -- and do the special preanalysis of the expression (see section on
1918 -- "Handling of Default and Per-Object Expressions" in the spec of
1919 -- package Sem).
1921 if Present (E) then
1922 Check_SPARK_Restriction ("default expression is not allowed", E);
1923 Preanalyze_Spec_Expression (E, T);
1924 Check_Initialization (T, E);
1926 if Ada_Version >= Ada_2005
1927 and then Ekind (T) = E_Anonymous_Access_Type
1928 and then Etype (E) /= Any_Type
1929 then
1930 -- Check RM 3.9.2(9): "if the expected type for an expression is
1931 -- an anonymous access-to-specific tagged type, then the object
1932 -- designated by the expression shall not be dynamically tagged
1933 -- unless it is a controlling operand in a call on a dispatching
1934 -- operation"
1936 if Is_Tagged_Type (Directly_Designated_Type (T))
1937 and then
1938 Ekind (Directly_Designated_Type (T)) /= E_Class_Wide_Type
1939 and then
1940 Ekind (Directly_Designated_Type (Etype (E))) =
1941 E_Class_Wide_Type
1942 then
1943 Error_Msg_N
1944 ("access to specific tagged type required (RM 3.9.2(9))", E);
1945 end if;
1947 -- (Ada 2005: AI-230): Accessibility check for anonymous
1948 -- components
1950 if Type_Access_Level (Etype (E)) >
1951 Deepest_Type_Access_Level (T)
1952 then
1953 Error_Msg_N
1954 ("expression has deeper access level than component " &
1955 "(RM 3.10.2 (12.2))", E);
1956 end if;
1958 -- The initialization expression is a reference to an access
1959 -- discriminant. The type of the discriminant is always deeper
1960 -- than any access type.
1962 if Ekind (Etype (E)) = E_Anonymous_Access_Type
1963 and then Is_Entity_Name (E)
1964 and then Ekind (Entity (E)) = E_In_Parameter
1965 and then Present (Discriminal_Link (Entity (E)))
1966 then
1967 Error_Msg_N
1968 ("discriminant has deeper accessibility level than target",
1970 end if;
1971 end if;
1972 end if;
1974 -- The parent type may be a private view with unknown discriminants,
1975 -- and thus unconstrained. Regular components must be constrained.
1977 if Is_Indefinite_Subtype (T) and then Chars (Id) /= Name_uParent then
1978 if Is_Class_Wide_Type (T) then
1979 Error_Msg_N
1980 ("class-wide subtype with unknown discriminants" &
1981 " in component declaration",
1982 Subtype_Indication (Component_Definition (N)));
1983 else
1984 Error_Msg_N
1985 ("unconstrained subtype in component declaration",
1986 Subtype_Indication (Component_Definition (N)));
1987 end if;
1989 -- Components cannot be abstract, except for the special case of
1990 -- the _Parent field (case of extending an abstract tagged type)
1992 elsif Is_Abstract_Type (T) and then Chars (Id) /= Name_uParent then
1993 Error_Msg_N ("type of a component cannot be abstract", N);
1994 end if;
1996 Set_Etype (Id, T);
1997 Set_Is_Aliased (Id, Aliased_Present (Component_Definition (N)));
1999 -- The component declaration may have a per-object constraint, set
2000 -- the appropriate flag in the defining identifier of the subtype.
2002 if Present (Subtype_Indication (Component_Definition (N))) then
2003 declare
2004 Sindic : constant Node_Id :=
2005 Subtype_Indication (Component_Definition (N));
2006 begin
2007 if Nkind (Sindic) = N_Subtype_Indication
2008 and then Present (Constraint (Sindic))
2009 and then Contains_POC (Constraint (Sindic))
2010 then
2011 Set_Has_Per_Object_Constraint (Id);
2012 end if;
2013 end;
2014 end if;
2016 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
2017 -- out some static checks.
2019 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (T) then
2020 Null_Exclusion_Static_Checks (N);
2021 end if;
2023 -- If this component is private (or depends on a private type), flag the
2024 -- record type to indicate that some operations are not available.
2026 P := Private_Component (T);
2028 if Present (P) then
2030 -- Check for circular definitions
2032 if P = Any_Type then
2033 Set_Etype (Id, Any_Type);
2035 -- There is a gap in the visibility of operations only if the
2036 -- component type is not defined in the scope of the record type.
2038 elsif Scope (P) = Scope (Current_Scope) then
2039 null;
2041 elsif Is_Limited_Type (P) then
2042 Set_Is_Limited_Composite (Current_Scope);
2044 else
2045 Set_Is_Private_Composite (Current_Scope);
2046 end if;
2047 end if;
2049 if P /= Any_Type
2050 and then Is_Limited_Type (T)
2051 and then Chars (Id) /= Name_uParent
2052 and then Is_Tagged_Type (Current_Scope)
2053 then
2054 if Is_Derived_Type (Current_Scope)
2055 and then not Is_Known_Limited (Current_Scope)
2056 then
2057 Error_Msg_N
2058 ("extension of nonlimited type cannot have limited components",
2061 if Is_Interface (Root_Type (Current_Scope)) then
2062 Error_Msg_N
2063 ("\limitedness is not inherited from limited interface", N);
2064 Error_Msg_N ("\add LIMITED to type indication", N);
2065 end if;
2067 Explain_Limited_Type (T, N);
2068 Set_Etype (Id, Any_Type);
2069 Set_Is_Limited_Composite (Current_Scope, False);
2071 elsif not Is_Derived_Type (Current_Scope)
2072 and then not Is_Limited_Record (Current_Scope)
2073 and then not Is_Concurrent_Type (Current_Scope)
2074 then
2075 Error_Msg_N
2076 ("nonlimited tagged type cannot have limited components", N);
2077 Explain_Limited_Type (T, N);
2078 Set_Etype (Id, Any_Type);
2079 Set_Is_Limited_Composite (Current_Scope, False);
2080 end if;
2081 end if;
2083 Set_Original_Record_Component (Id, Id);
2085 if Has_Aspects (N) then
2086 Analyze_Aspect_Specifications (N, Id);
2087 end if;
2089 Analyze_Dimension (N);
2090 end Analyze_Component_Declaration;
2092 --------------------------
2093 -- Analyze_Declarations --
2094 --------------------------
2096 procedure Analyze_Declarations (L : List_Id) is
2097 Decl : Node_Id;
2099 procedure Adjust_Decl;
2100 -- Adjust Decl not to include implicit label declarations, since these
2101 -- have strange Sloc values that result in elaboration check problems.
2102 -- (They have the sloc of the label as found in the source, and that
2103 -- is ahead of the current declarative part).
2105 procedure Handle_Late_Controlled_Primitive (Body_Decl : Node_Id);
2106 -- Determine whether Body_Decl denotes the body of a late controlled
2107 -- primitive (either Initialize, Adjust or Finalize). If this is the
2108 -- case, add a proper spec if the body lacks one. The spec is inserted
2109 -- before Body_Decl and immedately analyzed.
2111 procedure Remove_Visible_Refinements (Spec_Id : Entity_Id);
2112 -- Spec_Id is the entity of a package that may define abstract states.
2113 -- If the states have visible refinement, remove the visibility of each
2114 -- constituent at the end of the package body declarations.
2116 -----------------
2117 -- Adjust_Decl --
2118 -----------------
2120 procedure Adjust_Decl is
2121 begin
2122 while Present (Prev (Decl))
2123 and then Nkind (Decl) = N_Implicit_Label_Declaration
2124 loop
2125 Prev (Decl);
2126 end loop;
2127 end Adjust_Decl;
2129 --------------------------------------
2130 -- Handle_Late_Controlled_Primitive --
2131 --------------------------------------
2133 procedure Handle_Late_Controlled_Primitive (Body_Decl : Node_Id) is
2134 Body_Spec : constant Node_Id := Specification (Body_Decl);
2135 Body_Id : constant Entity_Id := Defining_Entity (Body_Spec);
2136 Loc : constant Source_Ptr := Sloc (Body_Id);
2137 Params : constant List_Id :=
2138 Parameter_Specifications (Body_Spec);
2139 Spec : Node_Id;
2140 Spec_Id : Entity_Id;
2142 Dummy : Entity_Id;
2143 -- A dummy variable used to capture the unused result of subprogram
2144 -- spec analysis.
2146 begin
2147 -- Consider only procedure bodies whose name matches one of the three
2148 -- controlled primitives.
2150 if Nkind (Body_Spec) /= N_Procedure_Specification
2151 or else not Nam_In (Chars (Body_Id), Name_Adjust,
2152 Name_Finalize,
2153 Name_Initialize)
2154 then
2155 return;
2157 -- A controlled primitive must have exactly one formal
2159 elsif List_Length (Params) /= 1 then
2160 return;
2161 end if;
2163 Dummy := Analyze_Subprogram_Specification (Body_Spec);
2165 -- The type of the formal must be derived from [Limited_]Controlled
2167 if not Is_Controlled (Etype (Defining_Entity (First (Params)))) then
2168 return;
2169 end if;
2171 Spec_Id := Find_Corresponding_Spec (Body_Decl, Post_Error => False);
2173 -- The body has a matching spec, therefore it cannot be a late
2174 -- primitive.
2176 if Present (Spec_Id) then
2177 return;
2178 end if;
2180 -- At this point the body is known to be a late controlled primitive.
2181 -- Generate a matching spec and insert it before the body. Note the
2182 -- use of Copy_Separate_Tree - we want an entirely separate semantic
2183 -- tree in this case.
2185 Spec := Copy_Separate_Tree (Body_Spec);
2187 -- Ensure that the subprogram declaration does not inherit the null
2188 -- indicator from the body as we now have a proper spec/body pair.
2190 Set_Null_Present (Spec, False);
2192 Insert_Before_And_Analyze (Body_Decl,
2193 Make_Subprogram_Declaration (Loc,
2194 Specification => Spec));
2195 end Handle_Late_Controlled_Primitive;
2197 --------------------------------
2198 -- Remove_Visible_Refinements --
2199 --------------------------------
2201 procedure Remove_Visible_Refinements (Spec_Id : Entity_Id) is
2202 State_Elmt : Elmt_Id;
2203 begin
2204 if Present (Abstract_States (Spec_Id)) then
2205 State_Elmt := First_Elmt (Abstract_States (Spec_Id));
2206 while Present (State_Elmt) loop
2207 Set_Has_Visible_Refinement (Node (State_Elmt), False);
2208 Next_Elmt (State_Elmt);
2209 end loop;
2210 end if;
2211 end Remove_Visible_Refinements;
2213 -- Local variables
2215 Context : Node_Id;
2216 Freeze_From : Entity_Id := Empty;
2217 Next_Decl : Node_Id;
2218 Spec_Id : Entity_Id;
2220 Body_Seen : Boolean := False;
2221 -- Flag set when the first body [stub] is encountered
2223 In_Package_Body : Boolean := False;
2224 -- Flag set when the current declaration list belongs to a package body
2226 -- Start of processing for Analyze_Declarations
2228 begin
2229 if Restriction_Check_Required (SPARK_05) then
2230 Check_Later_Vs_Basic_Declarations (L, During_Parsing => False);
2231 end if;
2233 Decl := First (L);
2234 while Present (Decl) loop
2236 -- Package spec cannot contain a package declaration in SPARK
2238 if Nkind (Decl) = N_Package_Declaration
2239 and then Nkind (Parent (L)) = N_Package_Specification
2240 then
2241 Check_SPARK_Restriction
2242 ("package specification cannot contain a package declaration",
2243 Decl);
2244 end if;
2246 -- Complete analysis of declaration
2248 Analyze (Decl);
2249 Next_Decl := Next (Decl);
2251 if No (Freeze_From) then
2252 Freeze_From := First_Entity (Current_Scope);
2253 end if;
2255 -- At the end of a declarative part, freeze remaining entities
2256 -- declared in it. The end of the visible declarations of package
2257 -- specification is not the end of a declarative part if private
2258 -- declarations are present. The end of a package declaration is a
2259 -- freezing point only if it a library package. A task definition or
2260 -- protected type definition is not a freeze point either. Finally,
2261 -- we do not freeze entities in generic scopes, because there is no
2262 -- code generated for them and freeze nodes will be generated for
2263 -- the instance.
2265 -- The end of a package instantiation is not a freeze point, but
2266 -- for now we make it one, because the generic body is inserted
2267 -- (currently) immediately after. Generic instantiations will not
2268 -- be a freeze point once delayed freezing of bodies is implemented.
2269 -- (This is needed in any case for early instantiations ???).
2271 if No (Next_Decl) then
2272 if Nkind_In (Parent (L), N_Component_List,
2273 N_Task_Definition,
2274 N_Protected_Definition)
2275 then
2276 null;
2278 elsif Nkind (Parent (L)) /= N_Package_Specification then
2279 if Nkind (Parent (L)) = N_Package_Body then
2280 Freeze_From := First_Entity (Current_Scope);
2281 end if;
2283 -- There may have been several freezing points previously,
2284 -- for example object declarations or subprogram bodies, but
2285 -- at the end of a declarative part we check freezing from
2286 -- the beginning, even though entities may already be frozen,
2287 -- in order to perform visibility checks on delayed aspects.
2289 Adjust_Decl;
2290 Freeze_All (First_Entity (Current_Scope), Decl);
2291 Freeze_From := Last_Entity (Current_Scope);
2293 elsif Scope (Current_Scope) /= Standard_Standard
2294 and then not Is_Child_Unit (Current_Scope)
2295 and then No (Generic_Parent (Parent (L)))
2296 then
2297 null;
2299 elsif L /= Visible_Declarations (Parent (L))
2300 or else No (Private_Declarations (Parent (L)))
2301 or else Is_Empty_List (Private_Declarations (Parent (L)))
2302 then
2303 Adjust_Decl;
2304 Freeze_All (First_Entity (Current_Scope), Decl);
2305 Freeze_From := Last_Entity (Current_Scope);
2306 end if;
2308 -- If next node is a body then freeze all types before the body.
2309 -- An exception occurs for some expander-generated bodies. If these
2310 -- are generated at places where in general language rules would not
2311 -- allow a freeze point, then we assume that the expander has
2312 -- explicitly checked that all required types are properly frozen,
2313 -- and we do not cause general freezing here. This special circuit
2314 -- is used when the encountered body is marked as having already
2315 -- been analyzed.
2317 -- In all other cases (bodies that come from source, and expander
2318 -- generated bodies that have not been analyzed yet), freeze all
2319 -- types now. Note that in the latter case, the expander must take
2320 -- care to attach the bodies at a proper place in the tree so as to
2321 -- not cause unwanted freezing at that point.
2323 elsif not Analyzed (Next_Decl) and then Is_Body (Next_Decl) then
2325 -- When a controlled type is frozen, the expander generates stream
2326 -- and controlled type support routines. If the freeze is caused
2327 -- by the stand alone body of Initialize, Adjust and Finalize, the
2328 -- expander will end up using the wrong version of these routines
2329 -- as the body has not been processed yet. To remedy this, detect
2330 -- a late controlled primitive and create a proper spec for it.
2331 -- This ensures that the primitive will override its inherited
2332 -- counterpart before the freeze takes place.
2334 -- If the declaration we just processed is a body, do not attempt
2335 -- to examine Next_Decl as the late primitive idiom can only apply
2336 -- to the first encountered body.
2338 -- The spec of the late primitive is not generated in ASIS mode to
2339 -- ensure a consistent list of primitives that indicates the true
2340 -- semantic structure of the program (which is not relevant when
2341 -- generating executable code.
2343 -- ??? a cleaner approach may be possible and/or this solution
2344 -- could be extended to general-purpose late primitives, TBD.
2346 if not ASIS_Mode and then not Body_Seen and then not Is_Body (Decl)
2347 then
2348 Body_Seen := True;
2350 if Nkind (Next_Decl) = N_Subprogram_Body then
2351 Handle_Late_Controlled_Primitive (Next_Decl);
2352 end if;
2353 end if;
2355 Adjust_Decl;
2356 Freeze_All (Freeze_From, Decl);
2357 Freeze_From := Last_Entity (Current_Scope);
2358 end if;
2360 Decl := Next_Decl;
2361 end loop;
2363 -- Analyze the contracts of packages and their bodies
2365 if Present (L) then
2366 Context := Parent (L);
2368 if Nkind (Context) = N_Package_Specification then
2370 -- When a package has private declarations, its contract must be
2371 -- analyzed at the end of the said declarations. This way both the
2372 -- analysis and freeze actions are properly synchronized in case
2373 -- of private type use within the contract.
2375 if L = Private_Declarations (Context) then
2376 Analyze_Package_Contract (Defining_Entity (Context));
2378 -- Otherwise the contract is analyzed at the end of the visible
2379 -- declarations.
2381 elsif L = Visible_Declarations (Context)
2382 and then No (Private_Declarations (Context))
2383 then
2384 Analyze_Package_Contract (Defining_Entity (Context));
2385 end if;
2387 elsif Nkind (Context) = N_Package_Body then
2388 In_Package_Body := True;
2389 Spec_Id := Corresponding_Spec (Context);
2391 Analyze_Package_Body_Contract (Defining_Entity (Context));
2392 end if;
2393 end if;
2395 -- Analyze the contracts of subprogram declarations, subprogram bodies
2396 -- and variables now due to the delayed visibility requirements of their
2397 -- aspects.
2399 Decl := First (L);
2400 while Present (Decl) loop
2401 if Nkind (Decl) = N_Object_Declaration then
2402 Analyze_Object_Contract (Defining_Entity (Decl));
2404 elsif Nkind_In (Decl, N_Abstract_Subprogram_Declaration,
2405 N_Subprogram_Declaration)
2406 then
2407 Analyze_Subprogram_Contract (Defining_Entity (Decl));
2409 elsif Nkind (Decl) = N_Subprogram_Body then
2410 Analyze_Subprogram_Body_Contract (Defining_Entity (Decl));
2412 elsif Nkind (Decl) = N_Subprogram_Body_Stub then
2413 Analyze_Subprogram_Body_Stub_Contract (Defining_Entity (Decl));
2414 end if;
2416 Next (Decl);
2417 end loop;
2419 -- State refinements are visible upto the end the of the package body
2420 -- declarations. Hide the refinements from visibility to restore the
2421 -- original state conditions.
2423 if In_Package_Body then
2424 Remove_Visible_Refinements (Spec_Id);
2425 end if;
2426 end Analyze_Declarations;
2428 -----------------------------------
2429 -- Analyze_Full_Type_Declaration --
2430 -----------------------------------
2432 procedure Analyze_Full_Type_Declaration (N : Node_Id) is
2433 Def : constant Node_Id := Type_Definition (N);
2434 Def_Id : constant Entity_Id := Defining_Identifier (N);
2435 T : Entity_Id;
2436 Prev : Entity_Id;
2438 Is_Remote : constant Boolean :=
2439 (Is_Remote_Types (Current_Scope)
2440 or else Is_Remote_Call_Interface (Current_Scope))
2441 and then not (In_Private_Part (Current_Scope)
2442 or else In_Package_Body (Current_Scope));
2444 procedure Check_Ops_From_Incomplete_Type;
2445 -- If there is a tagged incomplete partial view of the type, traverse
2446 -- the primitives of the incomplete view and change the type of any
2447 -- controlling formals and result to indicate the full view. The
2448 -- primitives will be added to the full type's primitive operations
2449 -- list later in Sem_Disp.Check_Operation_From_Incomplete_Type (which
2450 -- is called from Process_Incomplete_Dependents).
2452 ------------------------------------
2453 -- Check_Ops_From_Incomplete_Type --
2454 ------------------------------------
2456 procedure Check_Ops_From_Incomplete_Type is
2457 Elmt : Elmt_Id;
2458 Formal : Entity_Id;
2459 Op : Entity_Id;
2461 begin
2462 if Prev /= T
2463 and then Ekind (Prev) = E_Incomplete_Type
2464 and then Is_Tagged_Type (Prev)
2465 and then Is_Tagged_Type (T)
2466 then
2467 Elmt := First_Elmt (Primitive_Operations (Prev));
2468 while Present (Elmt) loop
2469 Op := Node (Elmt);
2471 Formal := First_Formal (Op);
2472 while Present (Formal) loop
2473 if Etype (Formal) = Prev then
2474 Set_Etype (Formal, T);
2475 end if;
2477 Next_Formal (Formal);
2478 end loop;
2480 if Etype (Op) = Prev then
2481 Set_Etype (Op, T);
2482 end if;
2484 Next_Elmt (Elmt);
2485 end loop;
2486 end if;
2487 end Check_Ops_From_Incomplete_Type;
2489 -- Start of processing for Analyze_Full_Type_Declaration
2491 begin
2492 Prev := Find_Type_Name (N);
2494 -- The full view, if present, now points to the current type
2495 -- If there is an incomplete partial view, set a link to it, to
2496 -- simplify the retrieval of primitive operations of the type.
2498 -- Ada 2005 (AI-50217): If the type was previously decorated when
2499 -- imported through a LIMITED WITH clause, it appears as incomplete
2500 -- but has no full view.
2502 if Ekind (Prev) = E_Incomplete_Type and then Present (Full_View (Prev))
2503 then
2504 T := Full_View (Prev);
2505 Set_Incomplete_View (N, Parent (Prev));
2506 else
2507 T := Prev;
2508 end if;
2510 Set_Is_Pure (T, Is_Pure (Current_Scope));
2512 -- We set the flag Is_First_Subtype here. It is needed to set the
2513 -- corresponding flag for the Implicit class-wide-type created
2514 -- during tagged types processing.
2516 Set_Is_First_Subtype (T, True);
2518 -- Only composite types other than array types are allowed to have
2519 -- discriminants.
2521 case Nkind (Def) is
2523 -- For derived types, the rule will be checked once we've figured
2524 -- out the parent type.
2526 when N_Derived_Type_Definition =>
2527 null;
2529 -- For record types, discriminants are allowed, unless we are in
2530 -- SPARK.
2532 when N_Record_Definition =>
2533 if Present (Discriminant_Specifications (N)) then
2534 Check_SPARK_Restriction
2535 ("discriminant type is not allowed",
2536 Defining_Identifier
2537 (First (Discriminant_Specifications (N))));
2538 end if;
2540 when others =>
2541 if Present (Discriminant_Specifications (N)) then
2542 Error_Msg_N
2543 ("elementary or array type cannot have discriminants",
2544 Defining_Identifier
2545 (First (Discriminant_Specifications (N))));
2546 end if;
2547 end case;
2549 -- Elaborate the type definition according to kind, and generate
2550 -- subsidiary (implicit) subtypes where needed. We skip this if it was
2551 -- already done (this happens during the reanalysis that follows a call
2552 -- to the high level optimizer).
2554 if not Analyzed (T) then
2555 Set_Analyzed (T);
2557 case Nkind (Def) is
2559 when N_Access_To_Subprogram_Definition =>
2560 Access_Subprogram_Declaration (T, Def);
2562 -- If this is a remote access to subprogram, we must create the
2563 -- equivalent fat pointer type, and related subprograms.
2565 if Is_Remote then
2566 Process_Remote_AST_Declaration (N);
2567 end if;
2569 -- Validate categorization rule against access type declaration
2570 -- usually a violation in Pure unit, Shared_Passive unit.
2572 Validate_Access_Type_Declaration (T, N);
2574 when N_Access_To_Object_Definition =>
2575 Access_Type_Declaration (T, Def);
2577 -- Validate categorization rule against access type declaration
2578 -- usually a violation in Pure unit, Shared_Passive unit.
2580 Validate_Access_Type_Declaration (T, N);
2582 -- If we are in a Remote_Call_Interface package and define a
2583 -- RACW, then calling stubs and specific stream attributes
2584 -- must be added.
2586 if Is_Remote
2587 and then Is_Remote_Access_To_Class_Wide_Type (Def_Id)
2588 then
2589 Add_RACW_Features (Def_Id);
2590 end if;
2592 -- Set no strict aliasing flag if config pragma seen
2594 if Opt.No_Strict_Aliasing then
2595 Set_No_Strict_Aliasing (Base_Type (Def_Id));
2596 end if;
2598 when N_Array_Type_Definition =>
2599 Array_Type_Declaration (T, Def);
2601 when N_Derived_Type_Definition =>
2602 Derived_Type_Declaration (T, N, T /= Def_Id);
2604 when N_Enumeration_Type_Definition =>
2605 Enumeration_Type_Declaration (T, Def);
2607 when N_Floating_Point_Definition =>
2608 Floating_Point_Type_Declaration (T, Def);
2610 when N_Decimal_Fixed_Point_Definition =>
2611 Decimal_Fixed_Point_Type_Declaration (T, Def);
2613 when N_Ordinary_Fixed_Point_Definition =>
2614 Ordinary_Fixed_Point_Type_Declaration (T, Def);
2616 when N_Signed_Integer_Type_Definition =>
2617 Signed_Integer_Type_Declaration (T, Def);
2619 when N_Modular_Type_Definition =>
2620 Modular_Type_Declaration (T, Def);
2622 when N_Record_Definition =>
2623 Record_Type_Declaration (T, N, Prev);
2625 -- If declaration has a parse error, nothing to elaborate.
2627 when N_Error =>
2628 null;
2630 when others =>
2631 raise Program_Error;
2633 end case;
2634 end if;
2636 if Etype (T) = Any_Type then
2637 return;
2638 end if;
2640 -- Controlled type is not allowed in SPARK
2642 if Is_Visibly_Controlled (T) then
2643 Check_SPARK_Restriction ("controlled type is not allowed", N);
2644 end if;
2646 -- Some common processing for all types
2648 Set_Depends_On_Private (T, Has_Private_Component (T));
2649 Check_Ops_From_Incomplete_Type;
2651 -- Both the declared entity, and its anonymous base type if one
2652 -- was created, need freeze nodes allocated.
2654 declare
2655 B : constant Entity_Id := Base_Type (T);
2657 begin
2658 -- In the case where the base type differs from the first subtype, we
2659 -- pre-allocate a freeze node, and set the proper link to the first
2660 -- subtype. Freeze_Entity will use this preallocated freeze node when
2661 -- it freezes the entity.
2663 -- This does not apply if the base type is a generic type, whose
2664 -- declaration is independent of the current derived definition.
2666 if B /= T and then not Is_Generic_Type (B) then
2667 Ensure_Freeze_Node (B);
2668 Set_First_Subtype_Link (Freeze_Node (B), T);
2669 end if;
2671 -- A type that is imported through a limited_with clause cannot
2672 -- generate any code, and thus need not be frozen. However, an access
2673 -- type with an imported designated type needs a finalization list,
2674 -- which may be referenced in some other package that has non-limited
2675 -- visibility on the designated type. Thus we must create the
2676 -- finalization list at the point the access type is frozen, to
2677 -- prevent unsatisfied references at link time.
2679 if not From_Limited_With (T) or else Is_Access_Type (T) then
2680 Set_Has_Delayed_Freeze (T);
2681 end if;
2682 end;
2684 -- Case where T is the full declaration of some private type which has
2685 -- been swapped in Defining_Identifier (N).
2687 if T /= Def_Id and then Is_Private_Type (Def_Id) then
2688 Process_Full_View (N, T, Def_Id);
2690 -- Record the reference. The form of this is a little strange, since
2691 -- the full declaration has been swapped in. So the first parameter
2692 -- here represents the entity to which a reference is made which is
2693 -- the "real" entity, i.e. the one swapped in, and the second
2694 -- parameter provides the reference location.
2696 -- Also, we want to kill Has_Pragma_Unreferenced temporarily here
2697 -- since we don't want a complaint about the full type being an
2698 -- unwanted reference to the private type
2700 declare
2701 B : constant Boolean := Has_Pragma_Unreferenced (T);
2702 begin
2703 Set_Has_Pragma_Unreferenced (T, False);
2704 Generate_Reference (T, T, 'c');
2705 Set_Has_Pragma_Unreferenced (T, B);
2706 end;
2708 Set_Completion_Referenced (Def_Id);
2710 -- For completion of incomplete type, process incomplete dependents
2711 -- and always mark the full type as referenced (it is the incomplete
2712 -- type that we get for any real reference).
2714 elsif Ekind (Prev) = E_Incomplete_Type then
2715 Process_Incomplete_Dependents (N, T, Prev);
2716 Generate_Reference (Prev, Def_Id, 'c');
2717 Set_Completion_Referenced (Def_Id);
2719 -- If not private type or incomplete type completion, this is a real
2720 -- definition of a new entity, so record it.
2722 else
2723 Generate_Definition (Def_Id);
2724 end if;
2726 if Chars (Scope (Def_Id)) = Name_System
2727 and then Chars (Def_Id) = Name_Address
2728 and then Is_Predefined_File_Name (Unit_File_Name (Get_Source_Unit (N)))
2729 then
2730 Set_Is_Descendent_Of_Address (Def_Id);
2731 Set_Is_Descendent_Of_Address (Base_Type (Def_Id));
2732 Set_Is_Descendent_Of_Address (Prev);
2733 end if;
2735 Set_Optimize_Alignment_Flags (Def_Id);
2736 Check_Eliminated (Def_Id);
2738 -- If the declaration is a completion and aspects are present, apply
2739 -- them to the entity for the type which is currently the partial
2740 -- view, but which is the one that will be frozen.
2742 if Has_Aspects (N) then
2743 if Prev /= Def_Id then
2744 Analyze_Aspect_Specifications (N, Prev);
2745 else
2746 Analyze_Aspect_Specifications (N, Def_Id);
2747 end if;
2748 end if;
2749 end Analyze_Full_Type_Declaration;
2751 ----------------------------------
2752 -- Analyze_Incomplete_Type_Decl --
2753 ----------------------------------
2755 procedure Analyze_Incomplete_Type_Decl (N : Node_Id) is
2756 F : constant Boolean := Is_Pure (Current_Scope);
2757 T : Entity_Id;
2759 begin
2760 Check_SPARK_Restriction ("incomplete type is not allowed", N);
2762 Generate_Definition (Defining_Identifier (N));
2764 -- Process an incomplete declaration. The identifier must not have been
2765 -- declared already in the scope. However, an incomplete declaration may
2766 -- appear in the private part of a package, for a private type that has
2767 -- already been declared.
2769 -- In this case, the discriminants (if any) must match
2771 T := Find_Type_Name (N);
2773 Set_Ekind (T, E_Incomplete_Type);
2774 Init_Size_Align (T);
2775 Set_Is_First_Subtype (T, True);
2776 Set_Etype (T, T);
2778 -- Ada 2005 (AI-326): Minimum decoration to give support to tagged
2779 -- incomplete types.
2781 if Tagged_Present (N) then
2782 Set_Is_Tagged_Type (T);
2783 Make_Class_Wide_Type (T);
2784 Set_Direct_Primitive_Operations (T, New_Elmt_List);
2785 end if;
2787 Push_Scope (T);
2789 Set_Stored_Constraint (T, No_Elist);
2791 if Present (Discriminant_Specifications (N)) then
2792 Process_Discriminants (N);
2793 end if;
2795 End_Scope;
2797 -- If the type has discriminants, non-trivial subtypes may be
2798 -- declared before the full view of the type. The full views of those
2799 -- subtypes will be built after the full view of the type.
2801 Set_Private_Dependents (T, New_Elmt_List);
2802 Set_Is_Pure (T, F);
2803 end Analyze_Incomplete_Type_Decl;
2805 -----------------------------------
2806 -- Analyze_Interface_Declaration --
2807 -----------------------------------
2809 procedure Analyze_Interface_Declaration (T : Entity_Id; Def : Node_Id) is
2810 CW : constant Entity_Id := Class_Wide_Type (T);
2812 begin
2813 Set_Is_Tagged_Type (T);
2815 Set_Is_Limited_Record (T, Limited_Present (Def)
2816 or else Task_Present (Def)
2817 or else Protected_Present (Def)
2818 or else Synchronized_Present (Def));
2820 -- Type is abstract if full declaration carries keyword, or if previous
2821 -- partial view did.
2823 Set_Is_Abstract_Type (T);
2824 Set_Is_Interface (T);
2826 -- Type is a limited interface if it includes the keyword limited, task,
2827 -- protected, or synchronized.
2829 Set_Is_Limited_Interface
2830 (T, Limited_Present (Def)
2831 or else Protected_Present (Def)
2832 or else Synchronized_Present (Def)
2833 or else Task_Present (Def));
2835 Set_Interfaces (T, New_Elmt_List);
2836 Set_Direct_Primitive_Operations (T, New_Elmt_List);
2838 -- Complete the decoration of the class-wide entity if it was already
2839 -- built (i.e. during the creation of the limited view)
2841 if Present (CW) then
2842 Set_Is_Interface (CW);
2843 Set_Is_Limited_Interface (CW, Is_Limited_Interface (T));
2844 end if;
2846 -- Check runtime support for synchronized interfaces
2848 if VM_Target = No_VM
2849 and then (Is_Task_Interface (T)
2850 or else Is_Protected_Interface (T)
2851 or else Is_Synchronized_Interface (T))
2852 and then not RTE_Available (RE_Select_Specific_Data)
2853 then
2854 Error_Msg_CRT ("synchronized interfaces", T);
2855 end if;
2856 end Analyze_Interface_Declaration;
2858 -----------------------------
2859 -- Analyze_Itype_Reference --
2860 -----------------------------
2862 -- Nothing to do. This node is placed in the tree only for the benefit of
2863 -- back end processing, and has no effect on the semantic processing.
2865 procedure Analyze_Itype_Reference (N : Node_Id) is
2866 begin
2867 pragma Assert (Is_Itype (Itype (N)));
2868 null;
2869 end Analyze_Itype_Reference;
2871 --------------------------------
2872 -- Analyze_Number_Declaration --
2873 --------------------------------
2875 procedure Analyze_Number_Declaration (N : Node_Id) is
2876 Id : constant Entity_Id := Defining_Identifier (N);
2877 E : constant Node_Id := Expression (N);
2878 T : Entity_Id;
2879 Index : Interp_Index;
2880 It : Interp;
2882 begin
2883 Generate_Definition (Id);
2884 Enter_Name (Id);
2886 -- This is an optimization of a common case of an integer literal
2888 if Nkind (E) = N_Integer_Literal then
2889 Set_Is_Static_Expression (E, True);
2890 Set_Etype (E, Universal_Integer);
2892 Set_Etype (Id, Universal_Integer);
2893 Set_Ekind (Id, E_Named_Integer);
2894 Set_Is_Frozen (Id, True);
2895 return;
2896 end if;
2898 Set_Is_Pure (Id, Is_Pure (Current_Scope));
2900 -- Process expression, replacing error by integer zero, to avoid
2901 -- cascaded errors or aborts further along in the processing
2903 -- Replace Error by integer zero, which seems least likely to cause
2904 -- cascaded errors.
2906 if E = Error then
2907 Rewrite (E, Make_Integer_Literal (Sloc (E), Uint_0));
2908 Set_Error_Posted (E);
2909 end if;
2911 Analyze (E);
2913 -- Verify that the expression is static and numeric. If
2914 -- the expression is overloaded, we apply the preference
2915 -- rule that favors root numeric types.
2917 if not Is_Overloaded (E) then
2918 T := Etype (E);
2920 else
2921 T := Any_Type;
2923 Get_First_Interp (E, Index, It);
2924 while Present (It.Typ) loop
2925 if (Is_Integer_Type (It.Typ) or else Is_Real_Type (It.Typ))
2926 and then (Scope (Base_Type (It.Typ))) = Standard_Standard
2927 then
2928 if T = Any_Type then
2929 T := It.Typ;
2931 elsif It.Typ = Universal_Real
2932 or else It.Typ = Universal_Integer
2933 then
2934 -- Choose universal interpretation over any other
2936 T := It.Typ;
2937 exit;
2938 end if;
2939 end if;
2941 Get_Next_Interp (Index, It);
2942 end loop;
2943 end if;
2945 if Is_Integer_Type (T) then
2946 Resolve (E, T);
2947 Set_Etype (Id, Universal_Integer);
2948 Set_Ekind (Id, E_Named_Integer);
2950 elsif Is_Real_Type (T) then
2952 -- Because the real value is converted to universal_real, this is a
2953 -- legal context for a universal fixed expression.
2955 if T = Universal_Fixed then
2956 declare
2957 Loc : constant Source_Ptr := Sloc (N);
2958 Conv : constant Node_Id := Make_Type_Conversion (Loc,
2959 Subtype_Mark =>
2960 New_Occurrence_Of (Universal_Real, Loc),
2961 Expression => Relocate_Node (E));
2963 begin
2964 Rewrite (E, Conv);
2965 Analyze (E);
2966 end;
2968 elsif T = Any_Fixed then
2969 Error_Msg_N ("illegal context for mixed mode operation", E);
2971 -- Expression is of the form : universal_fixed * integer. Try to
2972 -- resolve as universal_real.
2974 T := Universal_Real;
2975 Set_Etype (E, T);
2976 end if;
2978 Resolve (E, T);
2979 Set_Etype (Id, Universal_Real);
2980 Set_Ekind (Id, E_Named_Real);
2982 else
2983 Wrong_Type (E, Any_Numeric);
2984 Resolve (E, T);
2986 Set_Etype (Id, T);
2987 Set_Ekind (Id, E_Constant);
2988 Set_Never_Set_In_Source (Id, True);
2989 Set_Is_True_Constant (Id, True);
2990 return;
2991 end if;
2993 if Nkind_In (E, N_Integer_Literal, N_Real_Literal) then
2994 Set_Etype (E, Etype (Id));
2995 end if;
2997 if not Is_OK_Static_Expression (E) then
2998 Flag_Non_Static_Expr
2999 ("non-static expression used in number declaration!", E);
3000 Rewrite (E, Make_Integer_Literal (Sloc (N), 1));
3001 Set_Etype (E, Any_Type);
3002 end if;
3003 end Analyze_Number_Declaration;
3005 -----------------------------
3006 -- Analyze_Object_Contract --
3007 -----------------------------
3009 procedure Analyze_Object_Contract (Obj_Id : Entity_Id) is
3010 Obj_Typ : constant Entity_Id := Etype (Obj_Id);
3011 AR_Val : Boolean := False;
3012 AW_Val : Boolean := False;
3013 ER_Val : Boolean := False;
3014 EW_Val : Boolean := False;
3015 Prag : Node_Id;
3016 Seen : Boolean := False;
3018 begin
3019 if Ekind (Obj_Id) = E_Constant then
3021 -- A constant cannot be volatile. This check is only relevant when
3022 -- SPARK_Mode is on as it is not standard Ada legality rule. Do not
3023 -- flag internally-generated constants that map generic formals to
3024 -- actuals in instantiations (SPARK RM 7.1.3(6)).
3026 if SPARK_Mode = On
3027 and then Is_SPARK_Volatile (Obj_Id)
3028 and then No (Corresponding_Generic_Association (Parent (Obj_Id)))
3029 then
3030 Error_Msg_N ("constant cannot be volatile", Obj_Id);
3031 end if;
3033 else pragma Assert (Ekind (Obj_Id) = E_Variable);
3035 -- The following checks are only relevant when SPARK_Mode is on as
3036 -- they are not standard Ada legality rules.
3038 if SPARK_Mode = On then
3039 if Is_SPARK_Volatile (Obj_Id) then
3041 -- The declaration of a volatile object must appear at the
3042 -- library level (SPARK RM 7.1.3(7), C.6(6)).
3044 if not Is_Library_Level_Entity (Obj_Id) then
3045 Error_Msg_N
3046 ("volatile variable & must be declared at library level",
3047 Obj_Id);
3049 -- An object of a discriminated type cannot be volatile
3050 -- (SPARK RM C.6(4)).
3052 elsif Has_Discriminants (Obj_Typ) then
3053 Error_Msg_N
3054 ("discriminated object & cannot be volatile", Obj_Id);
3056 -- An object of a tagged type cannot be volatile
3057 -- (SPARK RM C.6(5)).
3059 elsif Is_Tagged_Type (Obj_Typ) then
3060 Error_Msg_N ("tagged object & cannot be volatile", Obj_Id);
3061 end if;
3063 -- The object is not volatile
3065 else
3066 -- A non-volatile object cannot have volatile components
3067 -- (SPARK RM 7.1.3(7)).
3069 if not Is_SPARK_Volatile (Obj_Id)
3070 and then Has_Volatile_Component (Obj_Typ)
3071 then
3072 Error_Msg_N
3073 ("non-volatile object & cannot have volatile components",
3074 Obj_Id);
3075 end if;
3076 end if;
3077 end if;
3079 -- Analyze all external properties
3081 Prag := Get_Pragma (Obj_Id, Pragma_Async_Readers);
3083 if Present (Prag) then
3084 Analyze_External_Property_In_Decl_Part (Prag, AR_Val);
3085 Seen := True;
3086 end if;
3088 Prag := Get_Pragma (Obj_Id, Pragma_Async_Writers);
3090 if Present (Prag) then
3091 Analyze_External_Property_In_Decl_Part (Prag, AW_Val);
3092 Seen := True;
3093 end if;
3095 Prag := Get_Pragma (Obj_Id, Pragma_Effective_Reads);
3097 if Present (Prag) then
3098 Analyze_External_Property_In_Decl_Part (Prag, ER_Val);
3099 Seen := True;
3100 end if;
3102 Prag := Get_Pragma (Obj_Id, Pragma_Effective_Writes);
3104 if Present (Prag) then
3105 Analyze_External_Property_In_Decl_Part (Prag, EW_Val);
3106 Seen := True;
3107 end if;
3109 -- Verify the mutual interaction of the various external properties
3111 if Seen then
3112 Check_External_Properties (Obj_Id, AR_Val, AW_Val, ER_Val, EW_Val);
3113 end if;
3115 -- Check whether the lack of indicator Part_Of agrees with the
3116 -- placement of the variable with respect to the state space.
3118 Prag := Get_Pragma (Obj_Id, Pragma_Part_Of);
3120 if No (Prag) then
3121 Check_Missing_Part_Of (Obj_Id);
3122 end if;
3123 end if;
3124 end Analyze_Object_Contract;
3126 --------------------------------
3127 -- Analyze_Object_Declaration --
3128 --------------------------------
3130 procedure Analyze_Object_Declaration (N : Node_Id) is
3131 Loc : constant Source_Ptr := Sloc (N);
3132 Id : constant Entity_Id := Defining_Identifier (N);
3133 T : Entity_Id;
3134 Act_T : Entity_Id;
3136 E : Node_Id := Expression (N);
3137 -- E is set to Expression (N) throughout this routine. When
3138 -- Expression (N) is modified, E is changed accordingly.
3140 Prev_Entity : Entity_Id := Empty;
3142 function Count_Tasks (T : Entity_Id) return Uint;
3143 -- This function is called when a non-generic library level object of a
3144 -- task type is declared. Its function is to count the static number of
3145 -- tasks declared within the type (it is only called if Has_Tasks is set
3146 -- for T). As a side effect, if an array of tasks with non-static bounds
3147 -- or a variant record type is encountered, Check_Restrictions is called
3148 -- indicating the count is unknown.
3150 -----------------
3151 -- Count_Tasks --
3152 -----------------
3154 function Count_Tasks (T : Entity_Id) return Uint is
3155 C : Entity_Id;
3156 X : Node_Id;
3157 V : Uint;
3159 begin
3160 if Is_Task_Type (T) then
3161 return Uint_1;
3163 elsif Is_Record_Type (T) then
3164 if Has_Discriminants (T) then
3165 Check_Restriction (Max_Tasks, N);
3166 return Uint_0;
3168 else
3169 V := Uint_0;
3170 C := First_Component (T);
3171 while Present (C) loop
3172 V := V + Count_Tasks (Etype (C));
3173 Next_Component (C);
3174 end loop;
3176 return V;
3177 end if;
3179 elsif Is_Array_Type (T) then
3180 X := First_Index (T);
3181 V := Count_Tasks (Component_Type (T));
3182 while Present (X) loop
3183 C := Etype (X);
3185 if not Is_OK_Static_Subtype (C) then
3186 Check_Restriction (Max_Tasks, N);
3187 return Uint_0;
3188 else
3189 V := V * (UI_Max (Uint_0,
3190 Expr_Value (Type_High_Bound (C)) -
3191 Expr_Value (Type_Low_Bound (C)) + Uint_1));
3192 end if;
3194 Next_Index (X);
3195 end loop;
3197 return V;
3199 else
3200 return Uint_0;
3201 end if;
3202 end Count_Tasks;
3204 -- Start of processing for Analyze_Object_Declaration
3206 begin
3207 -- There are three kinds of implicit types generated by an
3208 -- object declaration:
3210 -- 1. Those generated by the original Object Definition
3212 -- 2. Those generated by the Expression
3214 -- 3. Those used to constrain the Object Definition with the
3215 -- expression constraints when the definition is unconstrained.
3217 -- They must be generated in this order to avoid order of elaboration
3218 -- issues. Thus the first step (after entering the name) is to analyze
3219 -- the object definition.
3221 if Constant_Present (N) then
3222 Prev_Entity := Current_Entity_In_Scope (Id);
3224 if Present (Prev_Entity)
3225 and then
3226 -- If the homograph is an implicit subprogram, it is overridden
3227 -- by the current declaration.
3229 ((Is_Overloadable (Prev_Entity)
3230 and then Is_Inherited_Operation (Prev_Entity))
3232 -- The current object is a discriminal generated for an entry
3233 -- family index. Even though the index is a constant, in this
3234 -- particular context there is no true constant redeclaration.
3235 -- Enter_Name will handle the visibility.
3237 or else
3238 (Is_Discriminal (Id)
3239 and then Ekind (Discriminal_Link (Id)) =
3240 E_Entry_Index_Parameter)
3242 -- The current object is the renaming for a generic declared
3243 -- within the instance.
3245 or else
3246 (Ekind (Prev_Entity) = E_Package
3247 and then Nkind (Parent (Prev_Entity)) =
3248 N_Package_Renaming_Declaration
3249 and then not Comes_From_Source (Prev_Entity)
3250 and then Is_Generic_Instance (Renamed_Entity (Prev_Entity))))
3251 then
3252 Prev_Entity := Empty;
3253 end if;
3254 end if;
3256 if Present (Prev_Entity) then
3257 Constant_Redeclaration (Id, N, T);
3259 Generate_Reference (Prev_Entity, Id, 'c');
3260 Set_Completion_Referenced (Id);
3262 if Error_Posted (N) then
3264 -- Type mismatch or illegal redeclaration, Do not analyze
3265 -- expression to avoid cascaded errors.
3267 T := Find_Type_Of_Object (Object_Definition (N), N);
3268 Set_Etype (Id, T);
3269 Set_Ekind (Id, E_Variable);
3270 goto Leave;
3271 end if;
3273 -- In the normal case, enter identifier at the start to catch premature
3274 -- usage in the initialization expression.
3276 else
3277 Generate_Definition (Id);
3278 Enter_Name (Id);
3280 Mark_Coextensions (N, Object_Definition (N));
3282 T := Find_Type_Of_Object (Object_Definition (N), N);
3284 if Nkind (Object_Definition (N)) = N_Access_Definition
3285 and then Present
3286 (Access_To_Subprogram_Definition (Object_Definition (N)))
3287 and then Protected_Present
3288 (Access_To_Subprogram_Definition (Object_Definition (N)))
3289 then
3290 T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
3291 end if;
3293 if Error_Posted (Id) then
3294 Set_Etype (Id, T);
3295 Set_Ekind (Id, E_Variable);
3296 goto Leave;
3297 end if;
3298 end if;
3300 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
3301 -- out some static checks
3303 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (T) then
3305 -- In case of aggregates we must also take care of the correct
3306 -- initialization of nested aggregates bug this is done at the
3307 -- point of the analysis of the aggregate (see sem_aggr.adb).
3309 if Present (Expression (N))
3310 and then Nkind (Expression (N)) = N_Aggregate
3311 then
3312 null;
3314 else
3315 declare
3316 Save_Typ : constant Entity_Id := Etype (Id);
3317 begin
3318 Set_Etype (Id, T); -- Temp. decoration for static checks
3319 Null_Exclusion_Static_Checks (N);
3320 Set_Etype (Id, Save_Typ);
3321 end;
3322 end if;
3323 end if;
3325 -- Object is marked pure if it is in a pure scope
3327 Set_Is_Pure (Id, Is_Pure (Current_Scope));
3329 -- If deferred constant, make sure context is appropriate. We detect
3330 -- a deferred constant as a constant declaration with no expression.
3331 -- A deferred constant can appear in a package body if its completion
3332 -- is by means of an interface pragma.
3334 if Constant_Present (N) and then No (E) then
3336 -- A deferred constant may appear in the declarative part of the
3337 -- following constructs:
3339 -- blocks
3340 -- entry bodies
3341 -- extended return statements
3342 -- package specs
3343 -- package bodies
3344 -- subprogram bodies
3345 -- task bodies
3347 -- When declared inside a package spec, a deferred constant must be
3348 -- completed by a full constant declaration or pragma Import. In all
3349 -- other cases, the only proper completion is pragma Import. Extended
3350 -- return statements are flagged as invalid contexts because they do
3351 -- not have a declarative part and so cannot accommodate the pragma.
3353 if Ekind (Current_Scope) = E_Return_Statement then
3354 Error_Msg_N
3355 ("invalid context for deferred constant declaration (RM 7.4)",
3357 Error_Msg_N
3358 ("\declaration requires an initialization expression",
3360 Set_Constant_Present (N, False);
3362 -- In Ada 83, deferred constant must be of private type
3364 elsif not Is_Private_Type (T) then
3365 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
3366 Error_Msg_N
3367 ("(Ada 83) deferred constant must be private type", N);
3368 end if;
3369 end if;
3371 -- If not a deferred constant, then object declaration freezes its type
3373 else
3374 Check_Fully_Declared (T, N);
3375 Freeze_Before (N, T);
3376 end if;
3378 -- If the object was created by a constrained array definition, then
3379 -- set the link in both the anonymous base type and anonymous subtype
3380 -- that are built to represent the array type to point to the object.
3382 if Nkind (Object_Definition (Declaration_Node (Id))) =
3383 N_Constrained_Array_Definition
3384 then
3385 Set_Related_Array_Object (T, Id);
3386 Set_Related_Array_Object (Base_Type (T), Id);
3387 end if;
3389 -- Special checks for protected objects not at library level
3391 if Is_Protected_Type (T)
3392 and then not Is_Library_Level_Entity (Id)
3393 then
3394 Check_Restriction (No_Local_Protected_Objects, Id);
3396 -- Protected objects with interrupt handlers must be at library level
3398 -- Ada 2005: This test is not needed (and the corresponding clause
3399 -- in the RM is removed) because accessibility checks are sufficient
3400 -- to make handlers not at the library level illegal.
3402 -- AI05-0303: The AI is in fact a binding interpretation, and thus
3403 -- applies to the '95 version of the language as well.
3405 if Has_Interrupt_Handler (T) and then Ada_Version < Ada_95 then
3406 Error_Msg_N
3407 ("interrupt object can only be declared at library level", Id);
3408 end if;
3409 end if;
3411 -- The actual subtype of the object is the nominal subtype, unless
3412 -- the nominal one is unconstrained and obtained from the expression.
3414 Act_T := T;
3416 -- These checks should be performed before the initialization expression
3417 -- is considered, so that the Object_Definition node is still the same
3418 -- as in source code.
3420 -- In SPARK, the nominal subtype shall be given by a subtype mark and
3421 -- shall not be unconstrained. (The only exception to this is the
3422 -- admission of declarations of constants of type String.)
3424 if not
3425 Nkind_In (Object_Definition (N), N_Identifier, N_Expanded_Name)
3426 then
3427 Check_SPARK_Restriction
3428 ("subtype mark required", Object_Definition (N));
3430 elsif Is_Array_Type (T)
3431 and then not Is_Constrained (T)
3432 and then T /= Standard_String
3433 then
3434 Check_SPARK_Restriction
3435 ("subtype mark of constrained type expected",
3436 Object_Definition (N));
3437 end if;
3439 -- There are no aliased objects in SPARK
3441 if Aliased_Present (N) then
3442 Check_SPARK_Restriction ("aliased object is not allowed", N);
3443 end if;
3445 -- Process initialization expression if present and not in error
3447 if Present (E) and then E /= Error then
3449 -- Generate an error in case of CPP class-wide object initialization.
3450 -- Required because otherwise the expansion of the class-wide
3451 -- assignment would try to use 'size to initialize the object
3452 -- (primitive that is not available in CPP tagged types).
3454 if Is_Class_Wide_Type (Act_T)
3455 and then
3456 (Is_CPP_Class (Root_Type (Etype (Act_T)))
3457 or else
3458 (Present (Full_View (Root_Type (Etype (Act_T))))
3459 and then
3460 Is_CPP_Class (Full_View (Root_Type (Etype (Act_T))))))
3461 then
3462 Error_Msg_N
3463 ("predefined assignment not available for 'C'P'P tagged types",
3465 end if;
3467 Mark_Coextensions (N, E);
3468 Analyze (E);
3470 -- In case of errors detected in the analysis of the expression,
3471 -- decorate it with the expected type to avoid cascaded errors
3473 if No (Etype (E)) then
3474 Set_Etype (E, T);
3475 end if;
3477 -- If an initialization expression is present, then we set the
3478 -- Is_True_Constant flag. It will be reset if this is a variable
3479 -- and it is indeed modified.
3481 Set_Is_True_Constant (Id, True);
3483 -- If we are analyzing a constant declaration, set its completion
3484 -- flag after analyzing and resolving the expression.
3486 if Constant_Present (N) then
3487 Set_Has_Completion (Id);
3488 end if;
3490 -- Set type and resolve (type may be overridden later on). Note:
3491 -- Ekind (Id) must still be E_Void at this point so that incorrect
3492 -- early usage within E is properly diagnosed.
3494 Set_Etype (Id, T);
3496 -- If the expression is an aggregate we must look ahead to detect
3497 -- the possible presence of an address clause, and defer resolution
3498 -- and expansion of the aggregate to the freeze point of the entity.
3500 if Comes_From_Source (N)
3501 and then Expander_Active
3502 and then Has_Following_Address_Clause (N)
3503 and then Nkind (E) = N_Aggregate
3504 then
3505 Set_Etype (E, T);
3506 else
3507 Resolve (E, T);
3508 end if;
3510 -- No further action needed if E is a call to an inlined function
3511 -- which returns an unconstrained type and it has been expanded into
3512 -- a procedure call. In that case N has been replaced by an object
3513 -- declaration without initializing expression and it has been
3514 -- analyzed (see Expand_Inlined_Call).
3516 if Debug_Flag_Dot_K
3517 and then Expander_Active
3518 and then Nkind (E) = N_Function_Call
3519 and then Nkind (Name (E)) in N_Has_Entity
3520 and then Is_Inlined (Entity (Name (E)))
3521 and then not Is_Constrained (Etype (E))
3522 and then Analyzed (N)
3523 and then No (Expression (N))
3524 then
3525 return;
3526 end if;
3528 -- If E is null and has been replaced by an N_Raise_Constraint_Error
3529 -- node (which was marked already-analyzed), we need to set the type
3530 -- to something other than Any_Access in order to keep gigi happy.
3532 if Etype (E) = Any_Access then
3533 Set_Etype (E, T);
3534 end if;
3536 -- If the object is an access to variable, the initialization
3537 -- expression cannot be an access to constant.
3539 if Is_Access_Type (T)
3540 and then not Is_Access_Constant (T)
3541 and then Is_Access_Type (Etype (E))
3542 and then Is_Access_Constant (Etype (E))
3543 then
3544 Error_Msg_N
3545 ("access to variable cannot be initialized "
3546 & "with an access-to-constant expression", E);
3547 end if;
3549 if not Assignment_OK (N) then
3550 Check_Initialization (T, E);
3551 end if;
3553 Check_Unset_Reference (E);
3555 -- If this is a variable, then set current value. If this is a
3556 -- declared constant of a scalar type with a static expression,
3557 -- indicate that it is always valid.
3559 if not Constant_Present (N) then
3560 if Compile_Time_Known_Value (E) then
3561 Set_Current_Value (Id, E);
3562 end if;
3564 elsif Is_Scalar_Type (T) and then Is_OK_Static_Expression (E) then
3565 Set_Is_Known_Valid (Id);
3566 end if;
3568 -- Deal with setting of null flags
3570 if Is_Access_Type (T) then
3571 if Known_Non_Null (E) then
3572 Set_Is_Known_Non_Null (Id, True);
3573 elsif Known_Null (E) and then not Can_Never_Be_Null (Id) then
3574 Set_Is_Known_Null (Id, True);
3575 end if;
3576 end if;
3578 -- Check incorrect use of dynamically tagged expressions
3580 if Is_Tagged_Type (T) then
3581 Check_Dynamically_Tagged_Expression
3582 (Expr => E,
3583 Typ => T,
3584 Related_Nod => N);
3585 end if;
3587 Apply_Scalar_Range_Check (E, T);
3588 Apply_Static_Length_Check (E, T);
3590 if Nkind (Original_Node (N)) = N_Object_Declaration
3591 and then Comes_From_Source (Original_Node (N))
3593 -- Only call test if needed
3595 and then Restriction_Check_Required (SPARK_05)
3596 and then not Is_SPARK_Initialization_Expr (Original_Node (E))
3597 then
3598 Check_SPARK_Restriction
3599 ("initialization expression is not appropriate", E);
3600 end if;
3601 end if;
3603 -- If the No_Streams restriction is set, check that the type of the
3604 -- object is not, and does not contain, any subtype derived from
3605 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
3606 -- Has_Stream just for efficiency reasons. There is no point in
3607 -- spending time on a Has_Stream check if the restriction is not set.
3609 if Restriction_Check_Required (No_Streams) then
3610 if Has_Stream (T) then
3611 Check_Restriction (No_Streams, N);
3612 end if;
3613 end if;
3615 -- Deal with predicate check before we start to do major rewriting. It
3616 -- is OK to initialize and then check the initialized value, since the
3617 -- object goes out of scope if we get a predicate failure. Note that we
3618 -- do this in the analyzer and not the expander because the analyzer
3619 -- does some substantial rewriting in some cases.
3621 -- We need a predicate check if the type has predicates, and if either
3622 -- there is an initializing expression, or for default initialization
3623 -- when we have at least one case of an explicit default initial value
3624 -- and then this is not an internal declaration whose initialization
3625 -- comes later (as for an aggregate expansion).
3627 if not Suppress_Assignment_Checks (N)
3628 and then Present (Predicate_Function (T))
3629 and then not No_Initialization (N)
3630 and then
3631 (Present (E)
3632 or else
3633 Is_Partially_Initialized_Type (T, Include_Implicit => False))
3634 then
3635 -- If the type has a static predicate and the expression is known at
3636 -- compile time, see if the expression satisfies the predicate.
3638 if Present (E) then
3639 Check_Expression_Against_Static_Predicate (E, T);
3640 end if;
3642 Insert_After (N,
3643 Make_Predicate_Check (T, New_Occurrence_Of (Id, Loc)));
3644 end if;
3646 -- Case of unconstrained type
3648 if Is_Indefinite_Subtype (T) then
3650 -- In SPARK, a declaration of unconstrained type is allowed
3651 -- only for constants of type string.
3653 if Is_String_Type (T) and then not Constant_Present (N) then
3654 Check_SPARK_Restriction
3655 ("declaration of object of unconstrained type not allowed", N);
3656 end if;
3658 -- Nothing to do in deferred constant case
3660 if Constant_Present (N) and then No (E) then
3661 null;
3663 -- Case of no initialization present
3665 elsif No (E) then
3666 if No_Initialization (N) then
3667 null;
3669 elsif Is_Class_Wide_Type (T) then
3670 Error_Msg_N
3671 ("initialization required in class-wide declaration ", N);
3673 else
3674 Error_Msg_N
3675 ("unconstrained subtype not allowed (need initialization)",
3676 Object_Definition (N));
3678 if Is_Record_Type (T) and then Has_Discriminants (T) then
3679 Error_Msg_N
3680 ("\provide initial value or explicit discriminant values",
3681 Object_Definition (N));
3683 Error_Msg_NE
3684 ("\or give default discriminant values for type&",
3685 Object_Definition (N), T);
3687 elsif Is_Array_Type (T) then
3688 Error_Msg_N
3689 ("\provide initial value or explicit array bounds",
3690 Object_Definition (N));
3691 end if;
3692 end if;
3694 -- Case of initialization present but in error. Set initial
3695 -- expression as absent (but do not make above complaints)
3697 elsif E = Error then
3698 Set_Expression (N, Empty);
3699 E := Empty;
3701 -- Case of initialization present
3703 else
3704 -- Check restrictions in Ada 83
3706 if not Constant_Present (N) then
3708 -- Unconstrained variables not allowed in Ada 83 mode
3710 if Ada_Version = Ada_83
3711 and then Comes_From_Source (Object_Definition (N))
3712 then
3713 Error_Msg_N
3714 ("(Ada 83) unconstrained variable not allowed",
3715 Object_Definition (N));
3716 end if;
3717 end if;
3719 -- Now we constrain the variable from the initializing expression
3721 -- If the expression is an aggregate, it has been expanded into
3722 -- individual assignments. Retrieve the actual type from the
3723 -- expanded construct.
3725 if Is_Array_Type (T)
3726 and then No_Initialization (N)
3727 and then Nkind (Original_Node (E)) = N_Aggregate
3728 then
3729 Act_T := Etype (E);
3731 -- In case of class-wide interface object declarations we delay
3732 -- the generation of the equivalent record type declarations until
3733 -- its expansion because there are cases in they are not required.
3735 elsif Is_Interface (T) then
3736 null;
3738 else
3739 Expand_Subtype_From_Expr (N, T, Object_Definition (N), E);
3740 Act_T := Find_Type_Of_Object (Object_Definition (N), N);
3741 end if;
3743 Set_Is_Constr_Subt_For_U_Nominal (Act_T);
3745 if Aliased_Present (N) then
3746 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
3747 end if;
3749 Freeze_Before (N, Act_T);
3750 Freeze_Before (N, T);
3751 end if;
3753 elsif Is_Array_Type (T)
3754 and then No_Initialization (N)
3755 and then Nkind (Original_Node (E)) = N_Aggregate
3756 then
3757 if not Is_Entity_Name (Object_Definition (N)) then
3758 Act_T := Etype (E);
3759 Check_Compile_Time_Size (Act_T);
3761 if Aliased_Present (N) then
3762 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
3763 end if;
3764 end if;
3766 -- When the given object definition and the aggregate are specified
3767 -- independently, and their lengths might differ do a length check.
3768 -- This cannot happen if the aggregate is of the form (others =>...)
3770 if not Is_Constrained (T) then
3771 null;
3773 elsif Nkind (E) = N_Raise_Constraint_Error then
3775 -- Aggregate is statically illegal. Place back in declaration
3777 Set_Expression (N, E);
3778 Set_No_Initialization (N, False);
3780 elsif T = Etype (E) then
3781 null;
3783 elsif Nkind (E) = N_Aggregate
3784 and then Present (Component_Associations (E))
3785 and then Present (Choices (First (Component_Associations (E))))
3786 and then Nkind (First
3787 (Choices (First (Component_Associations (E))))) = N_Others_Choice
3788 then
3789 null;
3791 else
3792 Apply_Length_Check (E, T);
3793 end if;
3795 -- If the type is limited unconstrained with defaulted discriminants and
3796 -- there is no expression, then the object is constrained by the
3797 -- defaults, so it is worthwhile building the corresponding subtype.
3799 elsif (Is_Limited_Record (T) or else Is_Concurrent_Type (T))
3800 and then not Is_Constrained (T)
3801 and then Has_Discriminants (T)
3802 then
3803 if No (E) then
3804 Act_T := Build_Default_Subtype (T, N);
3805 else
3806 -- Ada 2005: A limited object may be initialized by means of an
3807 -- aggregate. If the type has default discriminants it has an
3808 -- unconstrained nominal type, Its actual subtype will be obtained
3809 -- from the aggregate, and not from the default discriminants.
3811 Act_T := Etype (E);
3812 end if;
3814 Rewrite (Object_Definition (N), New_Occurrence_Of (Act_T, Loc));
3816 elsif Nkind (E) = N_Function_Call
3817 and then Constant_Present (N)
3818 and then Has_Unconstrained_Elements (Etype (E))
3819 then
3820 -- The back-end has problems with constants of a discriminated type
3821 -- with defaults, if the initial value is a function call. We
3822 -- generate an intermediate temporary that will receive a reference
3823 -- to the result of the call. The initialization expression then
3824 -- becomes a dereference of that temporary.
3826 Remove_Side_Effects (E);
3828 -- If this is a constant declaration of an unconstrained type and
3829 -- the initialization is an aggregate, we can use the subtype of the
3830 -- aggregate for the declared entity because it is immutable.
3832 elsif not Is_Constrained (T)
3833 and then Has_Discriminants (T)
3834 and then Constant_Present (N)
3835 and then not Has_Unchecked_Union (T)
3836 and then Nkind (E) = N_Aggregate
3837 then
3838 Act_T := Etype (E);
3839 end if;
3841 -- Check No_Wide_Characters restriction
3843 Check_Wide_Character_Restriction (T, Object_Definition (N));
3845 -- Indicate this is not set in source. Certainly true for constants, and
3846 -- true for variables so far (will be reset for a variable if and when
3847 -- we encounter a modification in the source).
3849 Set_Never_Set_In_Source (Id, True);
3851 -- Now establish the proper kind and type of the object
3853 if Constant_Present (N) then
3854 Set_Ekind (Id, E_Constant);
3855 Set_Is_True_Constant (Id);
3857 else
3858 Set_Ekind (Id, E_Variable);
3860 -- A variable is set as shared passive if it appears in a shared
3861 -- passive package, and is at the outer level. This is not done for
3862 -- entities generated during expansion, because those are always
3863 -- manipulated locally.
3865 if Is_Shared_Passive (Current_Scope)
3866 and then Is_Library_Level_Entity (Id)
3867 and then Comes_From_Source (Id)
3868 then
3869 Set_Is_Shared_Passive (Id);
3870 Check_Shared_Var (Id, T, N);
3871 end if;
3873 -- Set Has_Initial_Value if initializing expression present. Note
3874 -- that if there is no initializing expression, we leave the state
3875 -- of this flag unchanged (usually it will be False, but notably in
3876 -- the case of exception choice variables, it will already be true).
3878 if Present (E) then
3879 Set_Has_Initial_Value (Id, True);
3880 end if;
3882 Set_Contract (Id, Make_Contract (Sloc (Id)));
3883 end if;
3885 -- Initialize alignment and size and capture alignment setting
3887 Init_Alignment (Id);
3888 Init_Esize (Id);
3889 Set_Optimize_Alignment_Flags (Id);
3891 -- Deal with aliased case
3893 if Aliased_Present (N) then
3894 Set_Is_Aliased (Id);
3896 -- If the object is aliased and the type is unconstrained with
3897 -- defaulted discriminants and there is no expression, then the
3898 -- object is constrained by the defaults, so it is worthwhile
3899 -- building the corresponding subtype.
3901 -- Ada 2005 (AI-363): If the aliased object is discriminated and
3902 -- unconstrained, then only establish an actual subtype if the
3903 -- nominal subtype is indefinite. In definite cases the object is
3904 -- unconstrained in Ada 2005.
3906 if No (E)
3907 and then Is_Record_Type (T)
3908 and then not Is_Constrained (T)
3909 and then Has_Discriminants (T)
3910 and then (Ada_Version < Ada_2005 or else Is_Indefinite_Subtype (T))
3911 then
3912 Set_Actual_Subtype (Id, Build_Default_Subtype (T, N));
3913 end if;
3914 end if;
3916 -- Now we can set the type of the object
3918 Set_Etype (Id, Act_T);
3920 -- Object is marked to be treated as volatile if type is volatile and
3921 -- we clear the Current_Value setting that may have been set above.
3923 if Treat_As_Volatile (Etype (Id)) then
3924 Set_Treat_As_Volatile (Id);
3925 Set_Current_Value (Id, Empty);
3926 end if;
3928 -- Deal with controlled types
3930 if Has_Controlled_Component (Etype (Id))
3931 or else Is_Controlled (Etype (Id))
3932 then
3933 if not Is_Library_Level_Entity (Id) then
3934 Check_Restriction (No_Nested_Finalization, N);
3935 else
3936 Validate_Controlled_Object (Id);
3937 end if;
3938 end if;
3940 if Has_Task (Etype (Id)) then
3941 Check_Restriction (No_Tasking, N);
3943 -- Deal with counting max tasks
3945 -- Nothing to do if inside a generic
3947 if Inside_A_Generic then
3948 null;
3950 -- If library level entity, then count tasks
3952 elsif Is_Library_Level_Entity (Id) then
3953 Check_Restriction (Max_Tasks, N, Count_Tasks (Etype (Id)));
3955 -- If not library level entity, then indicate we don't know max
3956 -- tasks and also check task hierarchy restriction and blocking
3957 -- operation (since starting a task is definitely blocking).
3959 else
3960 Check_Restriction (Max_Tasks, N);
3961 Check_Restriction (No_Task_Hierarchy, N);
3962 Check_Potentially_Blocking_Operation (N);
3963 end if;
3965 -- A rather specialized test. If we see two tasks being declared
3966 -- of the same type in the same object declaration, and the task
3967 -- has an entry with an address clause, we know that program error
3968 -- will be raised at run time since we can't have two tasks with
3969 -- entries at the same address.
3971 if Is_Task_Type (Etype (Id)) and then More_Ids (N) then
3972 declare
3973 E : Entity_Id;
3975 begin
3976 E := First_Entity (Etype (Id));
3977 while Present (E) loop
3978 if Ekind (E) = E_Entry
3979 and then Present (Get_Attribute_Definition_Clause
3980 (E, Attribute_Address))
3981 then
3982 Error_Msg_Warn := SPARK_Mode /= On;
3983 Error_Msg_N
3984 ("more than one task with same entry address<<", N);
3985 Error_Msg_N ("\Program_Error [<<", N);
3986 Insert_Action (N,
3987 Make_Raise_Program_Error (Loc,
3988 Reason => PE_Duplicated_Entry_Address));
3989 exit;
3990 end if;
3992 Next_Entity (E);
3993 end loop;
3994 end;
3995 end if;
3996 end if;
3998 -- Some simple constant-propagation: if the expression is a constant
3999 -- string initialized with a literal, share the literal. This avoids
4000 -- a run-time copy.
4002 if Present (E)
4003 and then Is_Entity_Name (E)
4004 and then Ekind (Entity (E)) = E_Constant
4005 and then Base_Type (Etype (E)) = Standard_String
4006 then
4007 declare
4008 Val : constant Node_Id := Constant_Value (Entity (E));
4009 begin
4010 if Present (Val) and then Nkind (Val) = N_String_Literal then
4011 Rewrite (E, New_Copy (Val));
4012 end if;
4013 end;
4014 end if;
4016 -- Another optimization: if the nominal subtype is unconstrained and
4017 -- the expression is a function call that returns an unconstrained
4018 -- type, rewrite the declaration as a renaming of the result of the
4019 -- call. The exceptions below are cases where the copy is expected,
4020 -- either by the back end (Aliased case) or by the semantics, as for
4021 -- initializing controlled types or copying tags for classwide types.
4023 if Present (E)
4024 and then Nkind (E) = N_Explicit_Dereference
4025 and then Nkind (Original_Node (E)) = N_Function_Call
4026 and then not Is_Library_Level_Entity (Id)
4027 and then not Is_Constrained (Underlying_Type (T))
4028 and then not Is_Aliased (Id)
4029 and then not Is_Class_Wide_Type (T)
4030 and then not Is_Controlled (T)
4031 and then not Has_Controlled_Component (Base_Type (T))
4032 and then Expander_Active
4033 then
4034 Rewrite (N,
4035 Make_Object_Renaming_Declaration (Loc,
4036 Defining_Identifier => Id,
4037 Access_Definition => Empty,
4038 Subtype_Mark => New_Occurrence_Of
4039 (Base_Type (Etype (Id)), Loc),
4040 Name => E));
4042 Set_Renamed_Object (Id, E);
4044 -- Force generation of debugging information for the constant and for
4045 -- the renamed function call.
4047 Set_Debug_Info_Needed (Id);
4048 Set_Debug_Info_Needed (Entity (Prefix (E)));
4049 end if;
4051 if Present (Prev_Entity)
4052 and then Is_Frozen (Prev_Entity)
4053 and then not Error_Posted (Id)
4054 then
4055 Error_Msg_N ("full constant declaration appears too late", N);
4056 end if;
4058 Check_Eliminated (Id);
4060 -- Deal with setting In_Private_Part flag if in private part
4062 if Ekind (Scope (Id)) = E_Package and then In_Private_Part (Scope (Id))
4063 then
4064 Set_In_Private_Part (Id);
4065 end if;
4067 -- Check for violation of No_Local_Timing_Events
4069 if Restriction_Check_Required (No_Local_Timing_Events)
4070 and then not Is_Library_Level_Entity (Id)
4071 and then Is_RTE (Etype (Id), RE_Timing_Event)
4072 then
4073 Check_Restriction (No_Local_Timing_Events, N);
4074 end if;
4076 <<Leave>>
4077 -- Initialize the refined state of a variable here because this is a
4078 -- common destination for legal and illegal object declarations.
4080 if Ekind (Id) = E_Variable then
4081 Set_Encapsulating_State (Id, Empty);
4082 end if;
4084 if Has_Aspects (N) then
4085 Analyze_Aspect_Specifications (N, Id);
4086 end if;
4088 Analyze_Dimension (N);
4090 -- Verify whether the object declaration introduces an illegal hidden
4091 -- state within a package subject to a null abstract state.
4093 if Ekind (Id) = E_Variable then
4094 Check_No_Hidden_State (Id);
4095 end if;
4096 end Analyze_Object_Declaration;
4098 ---------------------------
4099 -- Analyze_Others_Choice --
4100 ---------------------------
4102 -- Nothing to do for the others choice node itself, the semantic analysis
4103 -- of the others choice will occur as part of the processing of the parent
4105 procedure Analyze_Others_Choice (N : Node_Id) is
4106 pragma Warnings (Off, N);
4107 begin
4108 null;
4109 end Analyze_Others_Choice;
4111 -------------------------------------------
4112 -- Analyze_Private_Extension_Declaration --
4113 -------------------------------------------
4115 procedure Analyze_Private_Extension_Declaration (N : Node_Id) is
4116 T : constant Entity_Id := Defining_Identifier (N);
4117 Indic : constant Node_Id := Subtype_Indication (N);
4118 Parent_Type : Entity_Id;
4119 Parent_Base : Entity_Id;
4121 begin
4122 -- Ada 2005 (AI-251): Decorate all names in list of ancestor interfaces
4124 if Is_Non_Empty_List (Interface_List (N)) then
4125 declare
4126 Intf : Node_Id;
4127 T : Entity_Id;
4129 begin
4130 Intf := First (Interface_List (N));
4131 while Present (Intf) loop
4132 T := Find_Type_Of_Subtype_Indic (Intf);
4134 Diagnose_Interface (Intf, T);
4135 Next (Intf);
4136 end loop;
4137 end;
4138 end if;
4140 Generate_Definition (T);
4142 -- For other than Ada 2012, just enter the name in the current scope
4144 if Ada_Version < Ada_2012 then
4145 Enter_Name (T);
4147 -- Ada 2012 (AI05-0162): Enter the name in the current scope handling
4148 -- case of private type that completes an incomplete type.
4150 else
4151 declare
4152 Prev : Entity_Id;
4154 begin
4155 Prev := Find_Type_Name (N);
4157 pragma Assert (Prev = T
4158 or else (Ekind (Prev) = E_Incomplete_Type
4159 and then Present (Full_View (Prev))
4160 and then Full_View (Prev) = T));
4161 end;
4162 end if;
4164 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
4165 Parent_Base := Base_Type (Parent_Type);
4167 if Parent_Type = Any_Type
4168 or else Etype (Parent_Type) = Any_Type
4169 then
4170 Set_Ekind (T, Ekind (Parent_Type));
4171 Set_Etype (T, Any_Type);
4172 goto Leave;
4174 elsif not Is_Tagged_Type (Parent_Type) then
4175 Error_Msg_N
4176 ("parent of type extension must be a tagged type ", Indic);
4177 goto Leave;
4179 elsif Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then
4180 Error_Msg_N ("premature derivation of incomplete type", Indic);
4181 goto Leave;
4183 elsif Is_Concurrent_Type (Parent_Type) then
4184 Error_Msg_N
4185 ("parent type of a private extension cannot be "
4186 & "a synchronized tagged type (RM 3.9.1 (3/1))", N);
4188 Set_Etype (T, Any_Type);
4189 Set_Ekind (T, E_Limited_Private_Type);
4190 Set_Private_Dependents (T, New_Elmt_List);
4191 Set_Error_Posted (T);
4192 goto Leave;
4193 end if;
4195 -- Perhaps the parent type should be changed to the class-wide type's
4196 -- specific type in this case to prevent cascading errors ???
4198 if Is_Class_Wide_Type (Parent_Type) then
4199 Error_Msg_N
4200 ("parent of type extension must not be a class-wide type", Indic);
4201 goto Leave;
4202 end if;
4204 if (not Is_Package_Or_Generic_Package (Current_Scope)
4205 and then Nkind (Parent (N)) /= N_Generic_Subprogram_Declaration)
4206 or else In_Private_Part (Current_Scope)
4208 then
4209 Error_Msg_N ("invalid context for private extension", N);
4210 end if;
4212 -- Set common attributes
4214 Set_Is_Pure (T, Is_Pure (Current_Scope));
4215 Set_Scope (T, Current_Scope);
4216 Set_Ekind (T, E_Record_Type_With_Private);
4217 Init_Size_Align (T);
4218 Set_Default_SSO (T);
4220 Set_Etype (T, Parent_Base);
4221 Set_Has_Task (T, Has_Task (Parent_Base));
4222 Set_Has_Protected (T, Has_Task (Parent_Base));
4224 Set_Convention (T, Convention (Parent_Type));
4225 Set_First_Rep_Item (T, First_Rep_Item (Parent_Type));
4226 Set_Is_First_Subtype (T);
4227 Make_Class_Wide_Type (T);
4229 if Unknown_Discriminants_Present (N) then
4230 Set_Discriminant_Constraint (T, No_Elist);
4231 end if;
4233 Build_Derived_Record_Type (N, Parent_Type, T);
4235 -- Propagate inherited invariant information. The new type has
4236 -- invariants, if the parent type has inheritable invariants,
4237 -- and these invariants can in turn be inherited.
4239 if Has_Inheritable_Invariants (Parent_Type) then
4240 Set_Has_Inheritable_Invariants (T);
4241 Set_Has_Invariants (T);
4242 end if;
4244 -- Ada 2005 (AI-443): Synchronized private extension or a rewritten
4245 -- synchronized formal derived type.
4247 if Ada_Version >= Ada_2005 and then Synchronized_Present (N) then
4248 Set_Is_Limited_Record (T);
4250 -- Formal derived type case
4252 if Is_Generic_Type (T) then
4254 -- The parent must be a tagged limited type or a synchronized
4255 -- interface.
4257 if (not Is_Tagged_Type (Parent_Type)
4258 or else not Is_Limited_Type (Parent_Type))
4259 and then
4260 (not Is_Interface (Parent_Type)
4261 or else not Is_Synchronized_Interface (Parent_Type))
4262 then
4263 Error_Msg_NE ("parent type of & must be tagged limited " &
4264 "or synchronized", N, T);
4265 end if;
4267 -- The progenitors (if any) must be limited or synchronized
4268 -- interfaces.
4270 if Present (Interfaces (T)) then
4271 declare
4272 Iface : Entity_Id;
4273 Iface_Elmt : Elmt_Id;
4275 begin
4276 Iface_Elmt := First_Elmt (Interfaces (T));
4277 while Present (Iface_Elmt) loop
4278 Iface := Node (Iface_Elmt);
4280 if not Is_Limited_Interface (Iface)
4281 and then not Is_Synchronized_Interface (Iface)
4282 then
4283 Error_Msg_NE ("progenitor & must be limited " &
4284 "or synchronized", N, Iface);
4285 end if;
4287 Next_Elmt (Iface_Elmt);
4288 end loop;
4289 end;
4290 end if;
4292 -- Regular derived extension, the parent must be a limited or
4293 -- synchronized interface.
4295 else
4296 if not Is_Interface (Parent_Type)
4297 or else (not Is_Limited_Interface (Parent_Type)
4298 and then not Is_Synchronized_Interface (Parent_Type))
4299 then
4300 Error_Msg_NE
4301 ("parent type of & must be limited interface", N, T);
4302 end if;
4303 end if;
4305 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
4306 -- extension with a synchronized parent must be explicitly declared
4307 -- synchronized, because the full view will be a synchronized type.
4308 -- This must be checked before the check for limited types below,
4309 -- to ensure that types declared limited are not allowed to extend
4310 -- synchronized interfaces.
4312 elsif Is_Interface (Parent_Type)
4313 and then Is_Synchronized_Interface (Parent_Type)
4314 and then not Synchronized_Present (N)
4315 then
4316 Error_Msg_NE
4317 ("private extension of& must be explicitly synchronized",
4318 N, Parent_Type);
4320 elsif Limited_Present (N) then
4321 Set_Is_Limited_Record (T);
4323 if not Is_Limited_Type (Parent_Type)
4324 and then
4325 (not Is_Interface (Parent_Type)
4326 or else not Is_Limited_Interface (Parent_Type))
4327 then
4328 Error_Msg_NE ("parent type& of limited extension must be limited",
4329 N, Parent_Type);
4330 end if;
4331 end if;
4333 <<Leave>>
4334 if Has_Aspects (N) then
4335 Analyze_Aspect_Specifications (N, T);
4336 end if;
4337 end Analyze_Private_Extension_Declaration;
4339 ---------------------------------
4340 -- Analyze_Subtype_Declaration --
4341 ---------------------------------
4343 procedure Analyze_Subtype_Declaration
4344 (N : Node_Id;
4345 Skip : Boolean := False)
4347 Id : constant Entity_Id := Defining_Identifier (N);
4348 T : Entity_Id;
4349 R_Checks : Check_Result;
4351 begin
4352 Generate_Definition (Id);
4353 Set_Is_Pure (Id, Is_Pure (Current_Scope));
4354 Init_Size_Align (Id);
4356 -- The following guard condition on Enter_Name is to handle cases where
4357 -- the defining identifier has already been entered into the scope but
4358 -- the declaration as a whole needs to be analyzed.
4360 -- This case in particular happens for derived enumeration types. The
4361 -- derived enumeration type is processed as an inserted enumeration type
4362 -- declaration followed by a rewritten subtype declaration. The defining
4363 -- identifier, however, is entered into the name scope very early in the
4364 -- processing of the original type declaration and therefore needs to be
4365 -- avoided here, when the created subtype declaration is analyzed. (See
4366 -- Build_Derived_Types)
4368 -- This also happens when the full view of a private type is derived
4369 -- type with constraints. In this case the entity has been introduced
4370 -- in the private declaration.
4372 -- Finally this happens in some complex cases when validity checks are
4373 -- enabled, where the same subtype declaration may be analyzed twice.
4374 -- This can happen if the subtype is created by the pre-analysis of
4375 -- an attribute tht gives the range of a loop statement, and the loop
4376 -- itself appears within an if_statement that will be rewritten during
4377 -- expansion.
4379 if Skip
4380 or else (Present (Etype (Id))
4381 and then (Is_Private_Type (Etype (Id))
4382 or else Is_Task_Type (Etype (Id))
4383 or else Is_Rewrite_Substitution (N)))
4384 then
4385 null;
4387 elsif Current_Entity (Id) = Id then
4388 null;
4390 else
4391 Enter_Name (Id);
4392 end if;
4394 T := Process_Subtype (Subtype_Indication (N), N, Id, 'P');
4396 -- Class-wide equivalent types of records with unknown discriminants
4397 -- involve the generation of an itype which serves as the private view
4398 -- of a constrained record subtype. In such cases the base type of the
4399 -- current subtype we are processing is the private itype. Use the full
4400 -- of the private itype when decorating various attributes.
4402 if Is_Itype (T)
4403 and then Is_Private_Type (T)
4404 and then Present (Full_View (T))
4405 then
4406 T := Full_View (T);
4407 end if;
4409 -- Inherit common attributes
4411 Set_Is_Volatile (Id, Is_Volatile (T));
4412 Set_Treat_As_Volatile (Id, Treat_As_Volatile (T));
4413 Set_Is_Generic_Type (Id, Is_Generic_Type (Base_Type (T)));
4414 Set_Convention (Id, Convention (T));
4416 -- If ancestor has predicates then so does the subtype, and in addition
4417 -- we must delay the freeze to properly arrange predicate inheritance.
4419 -- The Ancestor_Type test is really unpleasant, there seem to be cases
4420 -- in which T = ID, so the above tests and assignments do nothing???
4422 if Has_Predicates (T)
4423 or else (Present (Ancestor_Subtype (T))
4424 and then Has_Predicates (Ancestor_Subtype (T)))
4425 then
4426 Set_Has_Predicates (Id);
4427 Set_Has_Delayed_Freeze (Id);
4428 end if;
4430 -- Subtype of Boolean cannot have a constraint in SPARK
4432 if Is_Boolean_Type (T)
4433 and then Nkind (Subtype_Indication (N)) = N_Subtype_Indication
4434 then
4435 Check_SPARK_Restriction
4436 ("subtype of Boolean cannot have constraint", N);
4437 end if;
4439 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
4440 declare
4441 Cstr : constant Node_Id := Constraint (Subtype_Indication (N));
4442 One_Cstr : Node_Id;
4443 Low : Node_Id;
4444 High : Node_Id;
4446 begin
4447 if Nkind (Cstr) = N_Index_Or_Discriminant_Constraint then
4448 One_Cstr := First (Constraints (Cstr));
4449 while Present (One_Cstr) loop
4451 -- Index or discriminant constraint in SPARK must be a
4452 -- subtype mark.
4454 if not
4455 Nkind_In (One_Cstr, N_Identifier, N_Expanded_Name)
4456 then
4457 Check_SPARK_Restriction
4458 ("subtype mark required", One_Cstr);
4460 -- String subtype must have a lower bound of 1 in SPARK.
4461 -- Note that we do not need to test for the non-static case
4462 -- here, since that was already taken care of in
4463 -- Process_Range_Expr_In_Decl.
4465 elsif Base_Type (T) = Standard_String then
4466 Get_Index_Bounds (One_Cstr, Low, High);
4468 if Is_OK_Static_Expression (Low)
4469 and then Expr_Value (Low) /= 1
4470 then
4471 Check_SPARK_Restriction
4472 ("String subtype must have lower bound of 1", N);
4473 end if;
4474 end if;
4476 Next (One_Cstr);
4477 end loop;
4478 end if;
4479 end;
4480 end if;
4482 -- In the case where there is no constraint given in the subtype
4483 -- indication, Process_Subtype just returns the Subtype_Mark, so its
4484 -- semantic attributes must be established here.
4486 if Nkind (Subtype_Indication (N)) /= N_Subtype_Indication then
4487 Set_Etype (Id, Base_Type (T));
4489 -- Subtype of unconstrained array without constraint is not allowed
4490 -- in SPARK.
4492 if Is_Array_Type (T) and then not Is_Constrained (T) then
4493 Check_SPARK_Restriction
4494 ("subtype of unconstrained array must have constraint", N);
4495 end if;
4497 case Ekind (T) is
4498 when Array_Kind =>
4499 Set_Ekind (Id, E_Array_Subtype);
4500 Copy_Array_Subtype_Attributes (Id, T);
4502 when Decimal_Fixed_Point_Kind =>
4503 Set_Ekind (Id, E_Decimal_Fixed_Point_Subtype);
4504 Set_Digits_Value (Id, Digits_Value (T));
4505 Set_Delta_Value (Id, Delta_Value (T));
4506 Set_Scale_Value (Id, Scale_Value (T));
4507 Set_Small_Value (Id, Small_Value (T));
4508 Set_Scalar_Range (Id, Scalar_Range (T));
4509 Set_Machine_Radix_10 (Id, Machine_Radix_10 (T));
4510 Set_Is_Constrained (Id, Is_Constrained (T));
4511 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4512 Set_RM_Size (Id, RM_Size (T));
4514 when Enumeration_Kind =>
4515 Set_Ekind (Id, E_Enumeration_Subtype);
4516 Set_First_Literal (Id, First_Literal (Base_Type (T)));
4517 Set_Scalar_Range (Id, Scalar_Range (T));
4518 Set_Is_Character_Type (Id, Is_Character_Type (T));
4519 Set_Is_Constrained (Id, Is_Constrained (T));
4520 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4521 Set_RM_Size (Id, RM_Size (T));
4523 when Ordinary_Fixed_Point_Kind =>
4524 Set_Ekind (Id, E_Ordinary_Fixed_Point_Subtype);
4525 Set_Scalar_Range (Id, Scalar_Range (T));
4526 Set_Small_Value (Id, Small_Value (T));
4527 Set_Delta_Value (Id, Delta_Value (T));
4528 Set_Is_Constrained (Id, Is_Constrained (T));
4529 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4530 Set_RM_Size (Id, RM_Size (T));
4532 when Float_Kind =>
4533 Set_Ekind (Id, E_Floating_Point_Subtype);
4534 Set_Scalar_Range (Id, Scalar_Range (T));
4535 Set_Digits_Value (Id, Digits_Value (T));
4536 Set_Is_Constrained (Id, Is_Constrained (T));
4538 when Signed_Integer_Kind =>
4539 Set_Ekind (Id, E_Signed_Integer_Subtype);
4540 Set_Scalar_Range (Id, Scalar_Range (T));
4541 Set_Is_Constrained (Id, Is_Constrained (T));
4542 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4543 Set_RM_Size (Id, RM_Size (T));
4545 when Modular_Integer_Kind =>
4546 Set_Ekind (Id, E_Modular_Integer_Subtype);
4547 Set_Scalar_Range (Id, Scalar_Range (T));
4548 Set_Is_Constrained (Id, Is_Constrained (T));
4549 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4550 Set_RM_Size (Id, RM_Size (T));
4552 when Class_Wide_Kind =>
4553 Set_Ekind (Id, E_Class_Wide_Subtype);
4554 Set_First_Entity (Id, First_Entity (T));
4555 Set_Last_Entity (Id, Last_Entity (T));
4556 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
4557 Set_Cloned_Subtype (Id, T);
4558 Set_Is_Tagged_Type (Id, True);
4559 Set_Has_Unknown_Discriminants
4560 (Id, True);
4562 if Ekind (T) = E_Class_Wide_Subtype then
4563 Set_Equivalent_Type (Id, Equivalent_Type (T));
4564 end if;
4566 when E_Record_Type | E_Record_Subtype =>
4567 Set_Ekind (Id, E_Record_Subtype);
4569 if Ekind (T) = E_Record_Subtype
4570 and then Present (Cloned_Subtype (T))
4571 then
4572 Set_Cloned_Subtype (Id, Cloned_Subtype (T));
4573 else
4574 Set_Cloned_Subtype (Id, T);
4575 end if;
4577 Set_First_Entity (Id, First_Entity (T));
4578 Set_Last_Entity (Id, Last_Entity (T));
4579 Set_Has_Discriminants (Id, Has_Discriminants (T));
4580 Set_Is_Constrained (Id, Is_Constrained (T));
4581 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
4582 Set_Has_Implicit_Dereference
4583 (Id, Has_Implicit_Dereference (T));
4584 Set_Has_Unknown_Discriminants
4585 (Id, Has_Unknown_Discriminants (T));
4587 if Has_Discriminants (T) then
4588 Set_Discriminant_Constraint
4589 (Id, Discriminant_Constraint (T));
4590 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4592 elsif Has_Unknown_Discriminants (Id) then
4593 Set_Discriminant_Constraint (Id, No_Elist);
4594 end if;
4596 if Is_Tagged_Type (T) then
4597 Set_Is_Tagged_Type (Id);
4598 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
4599 Set_Direct_Primitive_Operations
4600 (Id, Direct_Primitive_Operations (T));
4601 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
4603 if Is_Interface (T) then
4604 Set_Is_Interface (Id);
4605 Set_Is_Limited_Interface (Id, Is_Limited_Interface (T));
4606 end if;
4607 end if;
4609 when Private_Kind =>
4610 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
4611 Set_Has_Discriminants (Id, Has_Discriminants (T));
4612 Set_Is_Constrained (Id, Is_Constrained (T));
4613 Set_First_Entity (Id, First_Entity (T));
4614 Set_Last_Entity (Id, Last_Entity (T));
4615 Set_Private_Dependents (Id, New_Elmt_List);
4616 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
4617 Set_Has_Implicit_Dereference
4618 (Id, Has_Implicit_Dereference (T));
4619 Set_Has_Unknown_Discriminants
4620 (Id, Has_Unknown_Discriminants (T));
4621 Set_Known_To_Have_Preelab_Init
4622 (Id, Known_To_Have_Preelab_Init (T));
4624 if Is_Tagged_Type (T) then
4625 Set_Is_Tagged_Type (Id);
4626 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
4627 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
4628 Set_Direct_Primitive_Operations (Id,
4629 Direct_Primitive_Operations (T));
4630 end if;
4632 -- In general the attributes of the subtype of a private type
4633 -- are the attributes of the partial view of parent. However,
4634 -- the full view may be a discriminated type, and the subtype
4635 -- must share the discriminant constraint to generate correct
4636 -- calls to initialization procedures.
4638 if Has_Discriminants (T) then
4639 Set_Discriminant_Constraint
4640 (Id, Discriminant_Constraint (T));
4641 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4643 elsif Present (Full_View (T))
4644 and then Has_Discriminants (Full_View (T))
4645 then
4646 Set_Discriminant_Constraint
4647 (Id, Discriminant_Constraint (Full_View (T)));
4648 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4650 -- This would seem semantically correct, but apparently
4651 -- generates spurious errors about missing components ???
4653 -- Set_Has_Discriminants (Id);
4654 end if;
4656 Prepare_Private_Subtype_Completion (Id, N);
4658 -- If this is the subtype of a constrained private type with
4659 -- discriminants that has got a full view and we also have
4660 -- built a completion just above, show that the completion
4661 -- is a clone of the full view to the back-end.
4663 if Has_Discriminants (T)
4664 and then not Has_Unknown_Discriminants (T)
4665 and then not Is_Empty_Elmt_List (Discriminant_Constraint (T))
4666 and then Present (Full_View (T))
4667 and then Present (Full_View (Id))
4668 then
4669 Set_Cloned_Subtype (Full_View (Id), Full_View (T));
4670 end if;
4672 when Access_Kind =>
4673 Set_Ekind (Id, E_Access_Subtype);
4674 Set_Is_Constrained (Id, Is_Constrained (T));
4675 Set_Is_Access_Constant
4676 (Id, Is_Access_Constant (T));
4677 Set_Directly_Designated_Type
4678 (Id, Designated_Type (T));
4679 Set_Can_Never_Be_Null (Id, Can_Never_Be_Null (T));
4681 -- A Pure library_item must not contain the declaration of a
4682 -- named access type, except within a subprogram, generic
4683 -- subprogram, task unit, or protected unit, or if it has
4684 -- a specified Storage_Size of zero (RM05-10.2.1(15.4-15.5)).
4686 if Comes_From_Source (Id)
4687 and then In_Pure_Unit
4688 and then not In_Subprogram_Task_Protected_Unit
4689 and then not No_Pool_Assigned (Id)
4690 then
4691 Error_Msg_N
4692 ("named access types not allowed in pure unit", N);
4693 end if;
4695 when Concurrent_Kind =>
4696 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
4697 Set_Corresponding_Record_Type (Id,
4698 Corresponding_Record_Type (T));
4699 Set_First_Entity (Id, First_Entity (T));
4700 Set_First_Private_Entity (Id, First_Private_Entity (T));
4701 Set_Has_Discriminants (Id, Has_Discriminants (T));
4702 Set_Is_Constrained (Id, Is_Constrained (T));
4703 Set_Is_Tagged_Type (Id, Is_Tagged_Type (T));
4704 Set_Last_Entity (Id, Last_Entity (T));
4706 if Has_Discriminants (T) then
4707 Set_Discriminant_Constraint (Id,
4708 Discriminant_Constraint (T));
4709 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4710 end if;
4712 when E_Incomplete_Type =>
4713 if Ada_Version >= Ada_2005 then
4715 -- In Ada 2005 an incomplete type can be explicitly tagged:
4716 -- propagate indication.
4718 Set_Ekind (Id, E_Incomplete_Subtype);
4719 Set_Is_Tagged_Type (Id, Is_Tagged_Type (T));
4720 Set_Private_Dependents (Id, New_Elmt_List);
4722 -- Ada 2005 (AI-412): Decorate an incomplete subtype of an
4723 -- incomplete type visible through a limited with clause.
4725 if From_Limited_With (T)
4726 and then Present (Non_Limited_View (T))
4727 then
4728 Set_From_Limited_With (Id);
4729 Set_Non_Limited_View (Id, Non_Limited_View (T));
4731 -- Ada 2005 (AI-412): Add the regular incomplete subtype
4732 -- to the private dependents of the original incomplete
4733 -- type for future transformation.
4735 else
4736 Append_Elmt (Id, Private_Dependents (T));
4737 end if;
4739 -- If the subtype name denotes an incomplete type an error
4740 -- was already reported by Process_Subtype.
4742 else
4743 Set_Etype (Id, Any_Type);
4744 end if;
4746 when others =>
4747 raise Program_Error;
4748 end case;
4749 end if;
4751 if Etype (Id) = Any_Type then
4752 goto Leave;
4753 end if;
4755 -- Some common processing on all types
4757 Set_Size_Info (Id, T);
4758 Set_First_Rep_Item (Id, First_Rep_Item (T));
4760 -- If the parent type is a generic actual, so is the subtype. This may
4761 -- happen in a nested instance. Why Comes_From_Source test???
4763 if not Comes_From_Source (N) then
4764 Set_Is_Generic_Actual_Type (Id, Is_Generic_Actual_Type (T));
4765 end if;
4767 T := Etype (Id);
4769 Set_Is_Immediately_Visible (Id, True);
4770 Set_Depends_On_Private (Id, Has_Private_Component (T));
4771 Set_Is_Descendent_Of_Address (Id, Is_Descendent_Of_Address (T));
4773 if Is_Interface (T) then
4774 Set_Is_Interface (Id);
4775 end if;
4777 if Present (Generic_Parent_Type (N))
4778 and then
4779 (Nkind (Parent (Generic_Parent_Type (N))) /=
4780 N_Formal_Type_Declaration
4781 or else Nkind
4782 (Formal_Type_Definition (Parent (Generic_Parent_Type (N)))) /=
4783 N_Formal_Private_Type_Definition)
4784 then
4785 if Is_Tagged_Type (Id) then
4787 -- If this is a generic actual subtype for a synchronized type,
4788 -- the primitive operations are those of the corresponding record
4789 -- for which there is a separate subtype declaration.
4791 if Is_Concurrent_Type (Id) then
4792 null;
4793 elsif Is_Class_Wide_Type (Id) then
4794 Derive_Subprograms (Generic_Parent_Type (N), Id, Etype (T));
4795 else
4796 Derive_Subprograms (Generic_Parent_Type (N), Id, T);
4797 end if;
4799 elsif Scope (Etype (Id)) /= Standard_Standard then
4800 Derive_Subprograms (Generic_Parent_Type (N), Id);
4801 end if;
4802 end if;
4804 if Is_Private_Type (T) and then Present (Full_View (T)) then
4805 Conditional_Delay (Id, Full_View (T));
4807 -- The subtypes of components or subcomponents of protected types
4808 -- do not need freeze nodes, which would otherwise appear in the
4809 -- wrong scope (before the freeze node for the protected type). The
4810 -- proper subtypes are those of the subcomponents of the corresponding
4811 -- record.
4813 elsif Ekind (Scope (Id)) /= E_Protected_Type
4814 and then Present (Scope (Scope (Id))) -- error defense
4815 and then Ekind (Scope (Scope (Id))) /= E_Protected_Type
4816 then
4817 Conditional_Delay (Id, T);
4818 end if;
4820 -- Check that Constraint_Error is raised for a scalar subtype indication
4821 -- when the lower or upper bound of a non-null range lies outside the
4822 -- range of the type mark.
4824 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
4825 if Is_Scalar_Type (Etype (Id))
4826 and then Scalar_Range (Id) /=
4827 Scalar_Range (Etype (Subtype_Mark
4828 (Subtype_Indication (N))))
4829 then
4830 Apply_Range_Check
4831 (Scalar_Range (Id),
4832 Etype (Subtype_Mark (Subtype_Indication (N))));
4834 -- In the array case, check compatibility for each index
4836 elsif Is_Array_Type (Etype (Id)) and then Present (First_Index (Id))
4837 then
4838 -- This really should be a subprogram that finds the indications
4839 -- to check???
4841 declare
4842 Subt_Index : Node_Id := First_Index (Id);
4843 Target_Index : Node_Id :=
4844 First_Index (Etype
4845 (Subtype_Mark (Subtype_Indication (N))));
4846 Has_Dyn_Chk : Boolean := Has_Dynamic_Range_Check (N);
4848 begin
4849 while Present (Subt_Index) loop
4850 if ((Nkind (Subt_Index) = N_Identifier
4851 and then Ekind (Entity (Subt_Index)) in Scalar_Kind)
4852 or else Nkind (Subt_Index) = N_Subtype_Indication)
4853 and then
4854 Nkind (Scalar_Range (Etype (Subt_Index))) = N_Range
4855 then
4856 declare
4857 Target_Typ : constant Entity_Id :=
4858 Etype (Target_Index);
4859 begin
4860 R_Checks :=
4861 Get_Range_Checks
4862 (Scalar_Range (Etype (Subt_Index)),
4863 Target_Typ,
4864 Etype (Subt_Index),
4865 Defining_Identifier (N));
4867 -- Reset Has_Dynamic_Range_Check on the subtype to
4868 -- prevent elision of the index check due to a dynamic
4869 -- check generated for a preceding index (needed since
4870 -- Insert_Range_Checks tries to avoid generating
4871 -- redundant checks on a given declaration).
4873 Set_Has_Dynamic_Range_Check (N, False);
4875 Insert_Range_Checks
4876 (R_Checks,
4878 Target_Typ,
4879 Sloc (Defining_Identifier (N)));
4881 -- Record whether this index involved a dynamic check
4883 Has_Dyn_Chk :=
4884 Has_Dyn_Chk or else Has_Dynamic_Range_Check (N);
4885 end;
4886 end if;
4888 Next_Index (Subt_Index);
4889 Next_Index (Target_Index);
4890 end loop;
4892 -- Finally, mark whether the subtype involves dynamic checks
4894 Set_Has_Dynamic_Range_Check (N, Has_Dyn_Chk);
4895 end;
4896 end if;
4897 end if;
4899 -- Make sure that generic actual types are properly frozen. The subtype
4900 -- is marked as a generic actual type when the enclosing instance is
4901 -- analyzed, so here we identify the subtype from the tree structure.
4903 if Expander_Active
4904 and then Is_Generic_Actual_Type (Id)
4905 and then In_Instance
4906 and then not Comes_From_Source (N)
4907 and then Nkind (Subtype_Indication (N)) /= N_Subtype_Indication
4908 and then Is_Frozen (T)
4909 then
4910 Freeze_Before (N, Id);
4911 end if;
4913 Set_Optimize_Alignment_Flags (Id);
4914 Check_Eliminated (Id);
4916 <<Leave>>
4917 if Has_Aspects (N) then
4918 Analyze_Aspect_Specifications (N, Id);
4919 end if;
4921 Analyze_Dimension (N);
4922 end Analyze_Subtype_Declaration;
4924 --------------------------------
4925 -- Analyze_Subtype_Indication --
4926 --------------------------------
4928 procedure Analyze_Subtype_Indication (N : Node_Id) is
4929 T : constant Entity_Id := Subtype_Mark (N);
4930 R : constant Node_Id := Range_Expression (Constraint (N));
4932 begin
4933 Analyze (T);
4935 if R /= Error then
4936 Analyze (R);
4937 Set_Etype (N, Etype (R));
4938 Resolve (R, Entity (T));
4939 else
4940 Set_Error_Posted (R);
4941 Set_Error_Posted (T);
4942 end if;
4943 end Analyze_Subtype_Indication;
4945 --------------------------
4946 -- Analyze_Variant_Part --
4947 --------------------------
4949 procedure Analyze_Variant_Part (N : Node_Id) is
4950 Discr_Name : Node_Id;
4951 Discr_Type : Entity_Id;
4953 procedure Process_Variant (A : Node_Id);
4954 -- Analyze declarations for a single variant
4956 package Analyze_Variant_Choices is
4957 new Generic_Analyze_Choices (Process_Variant);
4958 use Analyze_Variant_Choices;
4960 ---------------------
4961 -- Process_Variant --
4962 ---------------------
4964 procedure Process_Variant (A : Node_Id) is
4965 CL : constant Node_Id := Component_List (A);
4966 begin
4967 if not Null_Present (CL) then
4968 Analyze_Declarations (Component_Items (CL));
4970 if Present (Variant_Part (CL)) then
4971 Analyze (Variant_Part (CL));
4972 end if;
4973 end if;
4974 end Process_Variant;
4976 -- Start of processing for Analyze_Variant_Part
4978 begin
4979 Discr_Name := Name (N);
4980 Analyze (Discr_Name);
4982 -- If Discr_Name bad, get out (prevent cascaded errors)
4984 if Etype (Discr_Name) = Any_Type then
4985 return;
4986 end if;
4988 -- Check invalid discriminant in variant part
4990 if Ekind (Entity (Discr_Name)) /= E_Discriminant then
4991 Error_Msg_N ("invalid discriminant name in variant part", Discr_Name);
4992 end if;
4994 Discr_Type := Etype (Entity (Discr_Name));
4996 if not Is_Discrete_Type (Discr_Type) then
4997 Error_Msg_N
4998 ("discriminant in a variant part must be of a discrete type",
4999 Name (N));
5000 return;
5001 end if;
5003 -- Now analyze the choices, which also analyzes the declarations that
5004 -- are associated with each choice.
5006 Analyze_Choices (Variants (N), Discr_Type);
5008 -- Note: we used to instantiate and call Check_Choices here to check
5009 -- that the choices covered the discriminant, but it's too early to do
5010 -- that because of statically predicated subtypes, whose analysis may
5011 -- be deferred to their freeze point which may be as late as the freeze
5012 -- point of the containing record. So this call is now to be found in
5013 -- Freeze_Record_Declaration.
5015 end Analyze_Variant_Part;
5017 ----------------------------
5018 -- Array_Type_Declaration --
5019 ----------------------------
5021 procedure Array_Type_Declaration (T : in out Entity_Id; Def : Node_Id) is
5022 Component_Def : constant Node_Id := Component_Definition (Def);
5023 Component_Typ : constant Node_Id := Subtype_Indication (Component_Def);
5024 Element_Type : Entity_Id;
5025 Implicit_Base : Entity_Id;
5026 Index : Node_Id;
5027 Related_Id : Entity_Id := Empty;
5028 Nb_Index : Nat;
5029 P : constant Node_Id := Parent (Def);
5030 Priv : Entity_Id;
5032 begin
5033 if Nkind (Def) = N_Constrained_Array_Definition then
5034 Index := First (Discrete_Subtype_Definitions (Def));
5035 else
5036 Index := First (Subtype_Marks (Def));
5037 end if;
5039 -- Find proper names for the implicit types which may be public. In case
5040 -- of anonymous arrays we use the name of the first object of that type
5041 -- as prefix.
5043 if No (T) then
5044 Related_Id := Defining_Identifier (P);
5045 else
5046 Related_Id := T;
5047 end if;
5049 Nb_Index := 1;
5050 while Present (Index) loop
5051 Analyze (Index);
5053 -- Test for odd case of trying to index a type by the type itself
5055 if Is_Entity_Name (Index) and then Entity (Index) = T then
5056 Error_Msg_N ("type& cannot be indexed by itself", Index);
5057 Set_Entity (Index, Standard_Boolean);
5058 Set_Etype (Index, Standard_Boolean);
5059 end if;
5061 -- Check SPARK restriction requiring a subtype mark
5063 if not Nkind_In (Index, N_Identifier, N_Expanded_Name) then
5064 Check_SPARK_Restriction ("subtype mark required", Index);
5065 end if;
5067 -- Add a subtype declaration for each index of private array type
5068 -- declaration whose etype is also private. For example:
5070 -- package Pkg is
5071 -- type Index is private;
5072 -- private
5073 -- type Table is array (Index) of ...
5074 -- end;
5076 -- This is currently required by the expander for the internally
5077 -- generated equality subprogram of records with variant parts in
5078 -- which the etype of some component is such private type.
5080 if Ekind (Current_Scope) = E_Package
5081 and then In_Private_Part (Current_Scope)
5082 and then Has_Private_Declaration (Etype (Index))
5083 then
5084 declare
5085 Loc : constant Source_Ptr := Sloc (Def);
5086 New_E : Entity_Id;
5087 Decl : Entity_Id;
5089 begin
5090 New_E := Make_Temporary (Loc, 'T');
5091 Set_Is_Internal (New_E);
5093 Decl :=
5094 Make_Subtype_Declaration (Loc,
5095 Defining_Identifier => New_E,
5096 Subtype_Indication =>
5097 New_Occurrence_Of (Etype (Index), Loc));
5099 Insert_Before (Parent (Def), Decl);
5100 Analyze (Decl);
5101 Set_Etype (Index, New_E);
5103 -- If the index is a range the Entity attribute is not
5104 -- available. Example:
5106 -- package Pkg is
5107 -- type T is private;
5108 -- private
5109 -- type T is new Natural;
5110 -- Table : array (T(1) .. T(10)) of Boolean;
5111 -- end Pkg;
5113 if Nkind (Index) /= N_Range then
5114 Set_Entity (Index, New_E);
5115 end if;
5116 end;
5117 end if;
5119 Make_Index (Index, P, Related_Id, Nb_Index);
5121 -- Check error of subtype with predicate for index type
5123 Bad_Predicated_Subtype_Use
5124 ("subtype& has predicate, not allowed as index subtype",
5125 Index, Etype (Index));
5127 -- Move to next index
5129 Next_Index (Index);
5130 Nb_Index := Nb_Index + 1;
5131 end loop;
5133 -- Process subtype indication if one is present
5135 if Present (Component_Typ) then
5136 Element_Type := Process_Subtype (Component_Typ, P, Related_Id, 'C');
5138 Set_Etype (Component_Typ, Element_Type);
5140 if not Nkind_In (Component_Typ, N_Identifier, N_Expanded_Name) then
5141 Check_SPARK_Restriction ("subtype mark required", Component_Typ);
5142 end if;
5144 -- Ada 2005 (AI-230): Access Definition case
5146 else pragma Assert (Present (Access_Definition (Component_Def)));
5148 -- Indicate that the anonymous access type is created by the
5149 -- array type declaration.
5151 Element_Type := Access_Definition
5152 (Related_Nod => P,
5153 N => Access_Definition (Component_Def));
5154 Set_Is_Local_Anonymous_Access (Element_Type);
5156 -- Propagate the parent. This field is needed if we have to generate
5157 -- the master_id associated with an anonymous access to task type
5158 -- component (see Expand_N_Full_Type_Declaration.Build_Master)
5160 Set_Parent (Element_Type, Parent (T));
5162 -- Ada 2005 (AI-230): In case of components that are anonymous access
5163 -- types the level of accessibility depends on the enclosing type
5164 -- declaration
5166 Set_Scope (Element_Type, Current_Scope); -- Ada 2005 (AI-230)
5168 -- Ada 2005 (AI-254)
5170 declare
5171 CD : constant Node_Id :=
5172 Access_To_Subprogram_Definition
5173 (Access_Definition (Component_Def));
5174 begin
5175 if Present (CD) and then Protected_Present (CD) then
5176 Element_Type :=
5177 Replace_Anonymous_Access_To_Protected_Subprogram (Def);
5178 end if;
5179 end;
5180 end if;
5182 -- Constrained array case
5184 if No (T) then
5185 T := Create_Itype (E_Void, P, Related_Id, 'T');
5186 end if;
5188 if Nkind (Def) = N_Constrained_Array_Definition then
5190 -- Establish Implicit_Base as unconstrained base type
5192 Implicit_Base := Create_Itype (E_Array_Type, P, Related_Id, 'B');
5194 Set_Etype (Implicit_Base, Implicit_Base);
5195 Set_Scope (Implicit_Base, Current_Scope);
5196 Set_Has_Delayed_Freeze (Implicit_Base);
5197 Set_Default_SSO (Implicit_Base);
5199 -- The constrained array type is a subtype of the unconstrained one
5201 Set_Ekind (T, E_Array_Subtype);
5202 Init_Size_Align (T);
5203 Set_Etype (T, Implicit_Base);
5204 Set_Scope (T, Current_Scope);
5205 Set_Is_Constrained (T, True);
5206 Set_First_Index (T, First (Discrete_Subtype_Definitions (Def)));
5207 Set_Has_Delayed_Freeze (T);
5209 -- Complete setup of implicit base type
5211 Set_First_Index (Implicit_Base, First_Index (T));
5212 Set_Component_Type (Implicit_Base, Element_Type);
5213 Set_Has_Task (Implicit_Base, Has_Task (Element_Type));
5214 Set_Has_Protected (Implicit_Base, Has_Protected (Element_Type));
5215 Set_Component_Size (Implicit_Base, Uint_0);
5216 Set_Packed_Array_Impl_Type (Implicit_Base, Empty);
5217 Set_Has_Controlled_Component
5218 (Implicit_Base, Has_Controlled_Component
5219 (Element_Type)
5220 or else Is_Controlled
5221 (Element_Type));
5222 Set_Finalize_Storage_Only
5223 (Implicit_Base, Finalize_Storage_Only
5224 (Element_Type));
5226 -- Unconstrained array case
5228 else
5229 Set_Ekind (T, E_Array_Type);
5230 Init_Size_Align (T);
5231 Set_Etype (T, T);
5232 Set_Scope (T, Current_Scope);
5233 Set_Component_Size (T, Uint_0);
5234 Set_Is_Constrained (T, False);
5235 Set_First_Index (T, First (Subtype_Marks (Def)));
5236 Set_Has_Delayed_Freeze (T, True);
5237 Set_Has_Task (T, Has_Task (Element_Type));
5238 Set_Has_Protected (T, Has_Protected (Element_Type));
5239 Set_Has_Controlled_Component (T, Has_Controlled_Component
5240 (Element_Type)
5241 or else
5242 Is_Controlled (Element_Type));
5243 Set_Finalize_Storage_Only (T, Finalize_Storage_Only
5244 (Element_Type));
5245 Set_Default_SSO (T);
5246 end if;
5248 -- Common attributes for both cases
5250 Set_Component_Type (Base_Type (T), Element_Type);
5251 Set_Packed_Array_Impl_Type (T, Empty);
5253 if Aliased_Present (Component_Definition (Def)) then
5254 Check_SPARK_Restriction
5255 ("aliased is not allowed", Component_Definition (Def));
5256 Set_Has_Aliased_Components (Etype (T));
5257 end if;
5259 -- Ada 2005 (AI-231): Propagate the null-excluding attribute to the
5260 -- array type to ensure that objects of this type are initialized.
5262 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (Element_Type) then
5263 Set_Can_Never_Be_Null (T);
5265 if Null_Exclusion_Present (Component_Definition (Def))
5267 -- No need to check itypes because in their case this check was
5268 -- done at their point of creation
5270 and then not Is_Itype (Element_Type)
5271 then
5272 Error_Msg_N
5273 ("`NOT NULL` not allowed (null already excluded)",
5274 Subtype_Indication (Component_Definition (Def)));
5275 end if;
5276 end if;
5278 Priv := Private_Component (Element_Type);
5280 if Present (Priv) then
5282 -- Check for circular definitions
5284 if Priv = Any_Type then
5285 Set_Component_Type (Etype (T), Any_Type);
5287 -- There is a gap in the visibility of operations on the composite
5288 -- type only if the component type is defined in a different scope.
5290 elsif Scope (Priv) = Current_Scope then
5291 null;
5293 elsif Is_Limited_Type (Priv) then
5294 Set_Is_Limited_Composite (Etype (T));
5295 Set_Is_Limited_Composite (T);
5296 else
5297 Set_Is_Private_Composite (Etype (T));
5298 Set_Is_Private_Composite (T);
5299 end if;
5300 end if;
5302 -- A syntax error in the declaration itself may lead to an empty index
5303 -- list, in which case do a minimal patch.
5305 if No (First_Index (T)) then
5306 Error_Msg_N ("missing index definition in array type declaration", T);
5308 declare
5309 Indexes : constant List_Id :=
5310 New_List (New_Occurrence_Of (Any_Id, Sloc (T)));
5311 begin
5312 Set_Discrete_Subtype_Definitions (Def, Indexes);
5313 Set_First_Index (T, First (Indexes));
5314 return;
5315 end;
5316 end if;
5318 -- Create a concatenation operator for the new type. Internal array
5319 -- types created for packed entities do not need such, they are
5320 -- compatible with the user-defined type.
5322 if Number_Dimensions (T) = 1
5323 and then not Is_Packed_Array_Impl_Type (T)
5324 then
5325 New_Concatenation_Op (T);
5326 end if;
5328 -- In the case of an unconstrained array the parser has already verified
5329 -- that all the indexes are unconstrained but we still need to make sure
5330 -- that the element type is constrained.
5332 if Is_Indefinite_Subtype (Element_Type) then
5333 Error_Msg_N
5334 ("unconstrained element type in array declaration",
5335 Subtype_Indication (Component_Def));
5337 elsif Is_Abstract_Type (Element_Type) then
5338 Error_Msg_N
5339 ("the type of a component cannot be abstract",
5340 Subtype_Indication (Component_Def));
5341 end if;
5343 -- There may be an invariant declared for the component type, but
5344 -- the construction of the component invariant checking procedure
5345 -- takes place during expansion.
5346 end Array_Type_Declaration;
5348 ------------------------------------------------------
5349 -- Replace_Anonymous_Access_To_Protected_Subprogram --
5350 ------------------------------------------------------
5352 function Replace_Anonymous_Access_To_Protected_Subprogram
5353 (N : Node_Id) return Entity_Id
5355 Loc : constant Source_Ptr := Sloc (N);
5357 Curr_Scope : constant Scope_Stack_Entry :=
5358 Scope_Stack.Table (Scope_Stack.Last);
5360 Anon : constant Entity_Id := Make_Temporary (Loc, 'S');
5362 Acc : Node_Id;
5363 -- Access definition in declaration
5365 Comp : Node_Id;
5366 -- Object definition or formal definition with an access definition
5368 Decl : Node_Id;
5369 -- Declaration of anonymous access to subprogram type
5371 Spec : Node_Id;
5372 -- Original specification in access to subprogram
5374 P : Node_Id;
5376 begin
5377 Set_Is_Internal (Anon);
5379 case Nkind (N) is
5380 when N_Component_Declaration |
5381 N_Unconstrained_Array_Definition |
5382 N_Constrained_Array_Definition =>
5383 Comp := Component_Definition (N);
5384 Acc := Access_Definition (Comp);
5386 when N_Discriminant_Specification =>
5387 Comp := Discriminant_Type (N);
5388 Acc := Comp;
5390 when N_Parameter_Specification =>
5391 Comp := Parameter_Type (N);
5392 Acc := Comp;
5394 when N_Access_Function_Definition =>
5395 Comp := Result_Definition (N);
5396 Acc := Comp;
5398 when N_Object_Declaration =>
5399 Comp := Object_Definition (N);
5400 Acc := Comp;
5402 when N_Function_Specification =>
5403 Comp := Result_Definition (N);
5404 Acc := Comp;
5406 when others =>
5407 raise Program_Error;
5408 end case;
5410 Spec := Access_To_Subprogram_Definition (Acc);
5412 Decl :=
5413 Make_Full_Type_Declaration (Loc,
5414 Defining_Identifier => Anon,
5415 Type_Definition => Copy_Separate_Tree (Spec));
5417 Mark_Rewrite_Insertion (Decl);
5419 -- In ASIS mode, analyze the profile on the original node, because
5420 -- the separate copy does not provide enough links to recover the
5421 -- original tree. Analysis is limited to type annotations, within
5422 -- a temporary scope that serves as an anonymous subprogram to collect
5423 -- otherwise useless temporaries and itypes.
5425 if ASIS_Mode then
5426 declare
5427 Typ : constant Entity_Id := Make_Temporary (Loc, 'S');
5429 begin
5430 if Nkind (Spec) = N_Access_Function_Definition then
5431 Set_Ekind (Typ, E_Function);
5432 else
5433 Set_Ekind (Typ, E_Procedure);
5434 end if;
5436 Set_Parent (Typ, N);
5437 Set_Scope (Typ, Current_Scope);
5438 Push_Scope (Typ);
5440 Process_Formals (Parameter_Specifications (Spec), Spec);
5442 if Nkind (Spec) = N_Access_Function_Definition then
5443 declare
5444 Def : constant Node_Id := Result_Definition (Spec);
5446 begin
5447 -- The result might itself be an anonymous access type, so
5448 -- have to recurse.
5450 if Nkind (Def) = N_Access_Definition then
5451 if Present (Access_To_Subprogram_Definition (Def)) then
5452 Set_Etype
5453 (Def,
5454 Replace_Anonymous_Access_To_Protected_Subprogram
5455 (Spec));
5456 else
5457 Find_Type (Subtype_Mark (Def));
5458 end if;
5460 else
5461 Find_Type (Def);
5462 end if;
5463 end;
5464 end if;
5466 End_Scope;
5467 end;
5468 end if;
5470 -- Insert the new declaration in the nearest enclosing scope. If the
5471 -- node is a body and N is its return type, the declaration belongs in
5472 -- the enclosing scope.
5474 P := Parent (N);
5476 if Nkind (P) = N_Subprogram_Body
5477 and then Nkind (N) = N_Function_Specification
5478 then
5479 P := Parent (P);
5480 end if;
5482 while Present (P) and then not Has_Declarations (P) loop
5483 P := Parent (P);
5484 end loop;
5486 pragma Assert (Present (P));
5488 if Nkind (P) = N_Package_Specification then
5489 Prepend (Decl, Visible_Declarations (P));
5490 else
5491 Prepend (Decl, Declarations (P));
5492 end if;
5494 -- Replace the anonymous type with an occurrence of the new declaration.
5495 -- In all cases the rewritten node does not have the null-exclusion
5496 -- attribute because (if present) it was already inherited by the
5497 -- anonymous entity (Anon). Thus, in case of components we do not
5498 -- inherit this attribute.
5500 if Nkind (N) = N_Parameter_Specification then
5501 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5502 Set_Etype (Defining_Identifier (N), Anon);
5503 Set_Null_Exclusion_Present (N, False);
5505 elsif Nkind (N) = N_Object_Declaration then
5506 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5507 Set_Etype (Defining_Identifier (N), Anon);
5509 elsif Nkind (N) = N_Access_Function_Definition then
5510 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5512 elsif Nkind (N) = N_Function_Specification then
5513 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5514 Set_Etype (Defining_Unit_Name (N), Anon);
5516 else
5517 Rewrite (Comp,
5518 Make_Component_Definition (Loc,
5519 Subtype_Indication => New_Occurrence_Of (Anon, Loc)));
5520 end if;
5522 Mark_Rewrite_Insertion (Comp);
5524 if Nkind_In (N, N_Object_Declaration, N_Access_Function_Definition) then
5525 Analyze (Decl);
5527 else
5528 -- Temporarily remove the current scope (record or subprogram) from
5529 -- the stack to add the new declarations to the enclosing scope.
5531 Scope_Stack.Decrement_Last;
5532 Analyze (Decl);
5533 Set_Is_Itype (Anon);
5534 Scope_Stack.Append (Curr_Scope);
5535 end if;
5537 Set_Ekind (Anon, E_Anonymous_Access_Protected_Subprogram_Type);
5538 Set_Can_Use_Internal_Rep (Anon, not Always_Compatible_Rep_On_Target);
5539 return Anon;
5540 end Replace_Anonymous_Access_To_Protected_Subprogram;
5542 -------------------------------
5543 -- Build_Derived_Access_Type --
5544 -------------------------------
5546 procedure Build_Derived_Access_Type
5547 (N : Node_Id;
5548 Parent_Type : Entity_Id;
5549 Derived_Type : Entity_Id)
5551 S : constant Node_Id := Subtype_Indication (Type_Definition (N));
5553 Desig_Type : Entity_Id;
5554 Discr : Entity_Id;
5555 Discr_Con_Elist : Elist_Id;
5556 Discr_Con_El : Elmt_Id;
5557 Subt : Entity_Id;
5559 begin
5560 -- Set the designated type so it is available in case this is an access
5561 -- to a self-referential type, e.g. a standard list type with a next
5562 -- pointer. Will be reset after subtype is built.
5564 Set_Directly_Designated_Type
5565 (Derived_Type, Designated_Type (Parent_Type));
5567 Subt := Process_Subtype (S, N);
5569 if Nkind (S) /= N_Subtype_Indication
5570 and then Subt /= Base_Type (Subt)
5571 then
5572 Set_Ekind (Derived_Type, E_Access_Subtype);
5573 end if;
5575 if Ekind (Derived_Type) = E_Access_Subtype then
5576 declare
5577 Pbase : constant Entity_Id := Base_Type (Parent_Type);
5578 Ibase : constant Entity_Id :=
5579 Create_Itype (Ekind (Pbase), N, Derived_Type, 'B');
5580 Svg_Chars : constant Name_Id := Chars (Ibase);
5581 Svg_Next_E : constant Entity_Id := Next_Entity (Ibase);
5583 begin
5584 Copy_Node (Pbase, Ibase);
5586 Set_Chars (Ibase, Svg_Chars);
5587 Set_Next_Entity (Ibase, Svg_Next_E);
5588 Set_Sloc (Ibase, Sloc (Derived_Type));
5589 Set_Scope (Ibase, Scope (Derived_Type));
5590 Set_Freeze_Node (Ibase, Empty);
5591 Set_Is_Frozen (Ibase, False);
5592 Set_Comes_From_Source (Ibase, False);
5593 Set_Is_First_Subtype (Ibase, False);
5595 Set_Etype (Ibase, Pbase);
5596 Set_Etype (Derived_Type, Ibase);
5597 end;
5598 end if;
5600 Set_Directly_Designated_Type
5601 (Derived_Type, Designated_Type (Subt));
5603 Set_Is_Constrained (Derived_Type, Is_Constrained (Subt));
5604 Set_Is_Access_Constant (Derived_Type, Is_Access_Constant (Parent_Type));
5605 Set_Size_Info (Derived_Type, Parent_Type);
5606 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
5607 Set_Depends_On_Private (Derived_Type,
5608 Has_Private_Component (Derived_Type));
5609 Conditional_Delay (Derived_Type, Subt);
5611 -- Ada 2005 (AI-231): Set the null-exclusion attribute, and verify
5612 -- that it is not redundant.
5614 if Null_Exclusion_Present (Type_Definition (N)) then
5615 Set_Can_Never_Be_Null (Derived_Type);
5617 -- What is with the "AND THEN FALSE" here ???
5619 if Can_Never_Be_Null (Parent_Type)
5620 and then False
5621 then
5622 Error_Msg_NE
5623 ("`NOT NULL` not allowed (& already excludes null)",
5624 N, Parent_Type);
5625 end if;
5627 elsif Can_Never_Be_Null (Parent_Type) then
5628 Set_Can_Never_Be_Null (Derived_Type);
5629 end if;
5631 -- Note: we do not copy the Storage_Size_Variable, since we always go to
5632 -- the root type for this information.
5634 -- Apply range checks to discriminants for derived record case
5635 -- ??? THIS CODE SHOULD NOT BE HERE REALLY.
5637 Desig_Type := Designated_Type (Derived_Type);
5638 if Is_Composite_Type (Desig_Type)
5639 and then (not Is_Array_Type (Desig_Type))
5640 and then Has_Discriminants (Desig_Type)
5641 and then Base_Type (Desig_Type) /= Desig_Type
5642 then
5643 Discr_Con_Elist := Discriminant_Constraint (Desig_Type);
5644 Discr_Con_El := First_Elmt (Discr_Con_Elist);
5646 Discr := First_Discriminant (Base_Type (Desig_Type));
5647 while Present (Discr_Con_El) loop
5648 Apply_Range_Check (Node (Discr_Con_El), Etype (Discr));
5649 Next_Elmt (Discr_Con_El);
5650 Next_Discriminant (Discr);
5651 end loop;
5652 end if;
5653 end Build_Derived_Access_Type;
5655 ------------------------------
5656 -- Build_Derived_Array_Type --
5657 ------------------------------
5659 procedure Build_Derived_Array_Type
5660 (N : Node_Id;
5661 Parent_Type : Entity_Id;
5662 Derived_Type : Entity_Id)
5664 Loc : constant Source_Ptr := Sloc (N);
5665 Tdef : constant Node_Id := Type_Definition (N);
5666 Indic : constant Node_Id := Subtype_Indication (Tdef);
5667 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
5668 Implicit_Base : Entity_Id;
5669 New_Indic : Node_Id;
5671 procedure Make_Implicit_Base;
5672 -- If the parent subtype is constrained, the derived type is a subtype
5673 -- of an implicit base type derived from the parent base.
5675 ------------------------
5676 -- Make_Implicit_Base --
5677 ------------------------
5679 procedure Make_Implicit_Base is
5680 begin
5681 Implicit_Base :=
5682 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
5684 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
5685 Set_Etype (Implicit_Base, Parent_Base);
5687 Copy_Array_Subtype_Attributes (Implicit_Base, Parent_Base);
5688 Copy_Array_Base_Type_Attributes (Implicit_Base, Parent_Base);
5690 Set_Has_Delayed_Freeze (Implicit_Base, True);
5691 end Make_Implicit_Base;
5693 -- Start of processing for Build_Derived_Array_Type
5695 begin
5696 if not Is_Constrained (Parent_Type) then
5697 if Nkind (Indic) /= N_Subtype_Indication then
5698 Set_Ekind (Derived_Type, E_Array_Type);
5700 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
5701 Copy_Array_Base_Type_Attributes (Derived_Type, Parent_Type);
5703 Set_Has_Delayed_Freeze (Derived_Type, True);
5705 else
5706 Make_Implicit_Base;
5707 Set_Etype (Derived_Type, Implicit_Base);
5709 New_Indic :=
5710 Make_Subtype_Declaration (Loc,
5711 Defining_Identifier => Derived_Type,
5712 Subtype_Indication =>
5713 Make_Subtype_Indication (Loc,
5714 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
5715 Constraint => Constraint (Indic)));
5717 Rewrite (N, New_Indic);
5718 Analyze (N);
5719 end if;
5721 else
5722 if Nkind (Indic) /= N_Subtype_Indication then
5723 Make_Implicit_Base;
5725 Set_Ekind (Derived_Type, Ekind (Parent_Type));
5726 Set_Etype (Derived_Type, Implicit_Base);
5727 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
5729 else
5730 Error_Msg_N ("illegal constraint on constrained type", Indic);
5731 end if;
5732 end if;
5734 -- If parent type is not a derived type itself, and is declared in
5735 -- closed scope (e.g. a subprogram), then we must explicitly introduce
5736 -- the new type's concatenation operator since Derive_Subprograms
5737 -- will not inherit the parent's operator. If the parent type is
5738 -- unconstrained, the operator is of the unconstrained base type.
5740 if Number_Dimensions (Parent_Type) = 1
5741 and then not Is_Limited_Type (Parent_Type)
5742 and then not Is_Derived_Type (Parent_Type)
5743 and then not Is_Package_Or_Generic_Package
5744 (Scope (Base_Type (Parent_Type)))
5745 then
5746 if not Is_Constrained (Parent_Type)
5747 and then Is_Constrained (Derived_Type)
5748 then
5749 New_Concatenation_Op (Implicit_Base);
5750 else
5751 New_Concatenation_Op (Derived_Type);
5752 end if;
5753 end if;
5754 end Build_Derived_Array_Type;
5756 -----------------------------------
5757 -- Build_Derived_Concurrent_Type --
5758 -----------------------------------
5760 procedure Build_Derived_Concurrent_Type
5761 (N : Node_Id;
5762 Parent_Type : Entity_Id;
5763 Derived_Type : Entity_Id)
5765 Loc : constant Source_Ptr := Sloc (N);
5767 Corr_Record : constant Entity_Id := Make_Temporary (Loc, 'C');
5768 Corr_Decl : Node_Id;
5769 Corr_Decl_Needed : Boolean;
5770 -- If the derived type has fewer discriminants than its parent, the
5771 -- corresponding record is also a derived type, in order to account for
5772 -- the bound discriminants. We create a full type declaration for it in
5773 -- this case.
5775 Constraint_Present : constant Boolean :=
5776 Nkind (Subtype_Indication (Type_Definition (N))) =
5777 N_Subtype_Indication;
5779 D_Constraint : Node_Id;
5780 New_Constraint : Elist_Id;
5781 Old_Disc : Entity_Id;
5782 New_Disc : Entity_Id;
5783 New_N : Node_Id;
5785 begin
5786 Set_Stored_Constraint (Derived_Type, No_Elist);
5787 Corr_Decl_Needed := False;
5788 Old_Disc := Empty;
5790 if Present (Discriminant_Specifications (N))
5791 and then Constraint_Present
5792 then
5793 Old_Disc := First_Discriminant (Parent_Type);
5794 New_Disc := First (Discriminant_Specifications (N));
5795 while Present (New_Disc) and then Present (Old_Disc) loop
5796 Next_Discriminant (Old_Disc);
5797 Next (New_Disc);
5798 end loop;
5799 end if;
5801 if Present (Old_Disc) and then Expander_Active then
5803 -- The new type has fewer discriminants, so we need to create a new
5804 -- corresponding record, which is derived from the corresponding
5805 -- record of the parent, and has a stored constraint that captures
5806 -- the values of the discriminant constraints. The corresponding
5807 -- record is needed only if expander is active and code generation is
5808 -- enabled.
5810 -- The type declaration for the derived corresponding record has the
5811 -- same discriminant part and constraints as the current declaration.
5812 -- Copy the unanalyzed tree to build declaration.
5814 Corr_Decl_Needed := True;
5815 New_N := Copy_Separate_Tree (N);
5817 Corr_Decl :=
5818 Make_Full_Type_Declaration (Loc,
5819 Defining_Identifier => Corr_Record,
5820 Discriminant_Specifications =>
5821 Discriminant_Specifications (New_N),
5822 Type_Definition =>
5823 Make_Derived_Type_Definition (Loc,
5824 Subtype_Indication =>
5825 Make_Subtype_Indication (Loc,
5826 Subtype_Mark =>
5827 New_Occurrence_Of
5828 (Corresponding_Record_Type (Parent_Type), Loc),
5829 Constraint =>
5830 Constraint
5831 (Subtype_Indication (Type_Definition (New_N))))));
5832 end if;
5834 -- Copy Storage_Size and Relative_Deadline variables if task case
5836 if Is_Task_Type (Parent_Type) then
5837 Set_Storage_Size_Variable (Derived_Type,
5838 Storage_Size_Variable (Parent_Type));
5839 Set_Relative_Deadline_Variable (Derived_Type,
5840 Relative_Deadline_Variable (Parent_Type));
5841 end if;
5843 if Present (Discriminant_Specifications (N)) then
5844 Push_Scope (Derived_Type);
5845 Check_Or_Process_Discriminants (N, Derived_Type);
5847 if Constraint_Present then
5848 New_Constraint :=
5849 Expand_To_Stored_Constraint
5850 (Parent_Type,
5851 Build_Discriminant_Constraints
5852 (Parent_Type,
5853 Subtype_Indication (Type_Definition (N)), True));
5854 end if;
5856 End_Scope;
5858 elsif Constraint_Present then
5860 -- Build constrained subtype, copying the constraint, and derive
5861 -- from it to create a derived constrained type.
5863 declare
5864 Loc : constant Source_Ptr := Sloc (N);
5865 Anon : constant Entity_Id :=
5866 Make_Defining_Identifier (Loc,
5867 Chars => New_External_Name (Chars (Derived_Type), 'T'));
5868 Decl : Node_Id;
5870 begin
5871 Decl :=
5872 Make_Subtype_Declaration (Loc,
5873 Defining_Identifier => Anon,
5874 Subtype_Indication =>
5875 New_Copy_Tree (Subtype_Indication (Type_Definition (N))));
5876 Insert_Before (N, Decl);
5877 Analyze (Decl);
5879 Rewrite (Subtype_Indication (Type_Definition (N)),
5880 New_Occurrence_Of (Anon, Loc));
5881 Set_Analyzed (Derived_Type, False);
5882 Analyze (N);
5883 return;
5884 end;
5885 end if;
5887 -- By default, operations and private data are inherited from parent.
5888 -- However, in the presence of bound discriminants, a new corresponding
5889 -- record will be created, see below.
5891 Set_Has_Discriminants
5892 (Derived_Type, Has_Discriminants (Parent_Type));
5893 Set_Corresponding_Record_Type
5894 (Derived_Type, Corresponding_Record_Type (Parent_Type));
5896 -- Is_Constrained is set according the parent subtype, but is set to
5897 -- False if the derived type is declared with new discriminants.
5899 Set_Is_Constrained
5900 (Derived_Type,
5901 (Is_Constrained (Parent_Type) or else Constraint_Present)
5902 and then not Present (Discriminant_Specifications (N)));
5904 if Constraint_Present then
5905 if not Has_Discriminants (Parent_Type) then
5906 Error_Msg_N ("untagged parent must have discriminants", N);
5908 elsif Present (Discriminant_Specifications (N)) then
5910 -- Verify that new discriminants are used to constrain old ones
5912 D_Constraint :=
5913 First
5914 (Constraints
5915 (Constraint (Subtype_Indication (Type_Definition (N)))));
5917 Old_Disc := First_Discriminant (Parent_Type);
5919 while Present (D_Constraint) loop
5920 if Nkind (D_Constraint) /= N_Discriminant_Association then
5922 -- Positional constraint. If it is a reference to a new
5923 -- discriminant, it constrains the corresponding old one.
5925 if Nkind (D_Constraint) = N_Identifier then
5926 New_Disc := First_Discriminant (Derived_Type);
5927 while Present (New_Disc) loop
5928 exit when Chars (New_Disc) = Chars (D_Constraint);
5929 Next_Discriminant (New_Disc);
5930 end loop;
5932 if Present (New_Disc) then
5933 Set_Corresponding_Discriminant (New_Disc, Old_Disc);
5934 end if;
5935 end if;
5937 Next_Discriminant (Old_Disc);
5939 -- if this is a named constraint, search by name for the old
5940 -- discriminants constrained by the new one.
5942 elsif Nkind (Expression (D_Constraint)) = N_Identifier then
5944 -- Find new discriminant with that name
5946 New_Disc := First_Discriminant (Derived_Type);
5947 while Present (New_Disc) loop
5948 exit when
5949 Chars (New_Disc) = Chars (Expression (D_Constraint));
5950 Next_Discriminant (New_Disc);
5951 end loop;
5953 if Present (New_Disc) then
5955 -- Verify that new discriminant renames some discriminant
5956 -- of the parent type, and associate the new discriminant
5957 -- with one or more old ones that it renames.
5959 declare
5960 Selector : Node_Id;
5962 begin
5963 Selector := First (Selector_Names (D_Constraint));
5964 while Present (Selector) loop
5965 Old_Disc := First_Discriminant (Parent_Type);
5966 while Present (Old_Disc) loop
5967 exit when Chars (Old_Disc) = Chars (Selector);
5968 Next_Discriminant (Old_Disc);
5969 end loop;
5971 if Present (Old_Disc) then
5972 Set_Corresponding_Discriminant
5973 (New_Disc, Old_Disc);
5974 end if;
5976 Next (Selector);
5977 end loop;
5978 end;
5979 end if;
5980 end if;
5982 Next (D_Constraint);
5983 end loop;
5985 New_Disc := First_Discriminant (Derived_Type);
5986 while Present (New_Disc) loop
5987 if No (Corresponding_Discriminant (New_Disc)) then
5988 Error_Msg_NE
5989 ("new discriminant& must constrain old one", N, New_Disc);
5991 elsif not
5992 Subtypes_Statically_Compatible
5993 (Etype (New_Disc),
5994 Etype (Corresponding_Discriminant (New_Disc)))
5995 then
5996 Error_Msg_NE
5997 ("& not statically compatible with parent discriminant",
5998 N, New_Disc);
5999 end if;
6001 Next_Discriminant (New_Disc);
6002 end loop;
6003 end if;
6005 elsif Present (Discriminant_Specifications (N)) then
6006 Error_Msg_N
6007 ("missing discriminant constraint in untagged derivation", N);
6008 end if;
6010 -- The entity chain of the derived type includes the new discriminants
6011 -- but shares operations with the parent.
6013 if Present (Discriminant_Specifications (N)) then
6014 Old_Disc := First_Discriminant (Parent_Type);
6015 while Present (Old_Disc) loop
6016 if No (Next_Entity (Old_Disc))
6017 or else Ekind (Next_Entity (Old_Disc)) /= E_Discriminant
6018 then
6019 Set_Next_Entity
6020 (Last_Entity (Derived_Type), Next_Entity (Old_Disc));
6021 exit;
6022 end if;
6024 Next_Discriminant (Old_Disc);
6025 end loop;
6027 else
6028 Set_First_Entity (Derived_Type, First_Entity (Parent_Type));
6029 if Has_Discriminants (Parent_Type) then
6030 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
6031 Set_Discriminant_Constraint (
6032 Derived_Type, Discriminant_Constraint (Parent_Type));
6033 end if;
6034 end if;
6036 Set_Last_Entity (Derived_Type, Last_Entity (Parent_Type));
6038 Set_Has_Completion (Derived_Type);
6040 if Corr_Decl_Needed then
6041 Set_Stored_Constraint (Derived_Type, New_Constraint);
6042 Insert_After (N, Corr_Decl);
6043 Analyze (Corr_Decl);
6044 Set_Corresponding_Record_Type (Derived_Type, Corr_Record);
6045 end if;
6046 end Build_Derived_Concurrent_Type;
6048 ------------------------------------
6049 -- Build_Derived_Enumeration_Type --
6050 ------------------------------------
6052 procedure Build_Derived_Enumeration_Type
6053 (N : Node_Id;
6054 Parent_Type : Entity_Id;
6055 Derived_Type : Entity_Id)
6057 Loc : constant Source_Ptr := Sloc (N);
6058 Def : constant Node_Id := Type_Definition (N);
6059 Indic : constant Node_Id := Subtype_Indication (Def);
6060 Implicit_Base : Entity_Id;
6061 Literal : Entity_Id;
6062 New_Lit : Entity_Id;
6063 Literals_List : List_Id;
6064 Type_Decl : Node_Id;
6065 Hi, Lo : Node_Id;
6066 Rang_Expr : Node_Id;
6068 begin
6069 -- Since types Standard.Character and Standard.[Wide_]Wide_Character do
6070 -- not have explicit literals lists we need to process types derived
6071 -- from them specially. This is handled by Derived_Standard_Character.
6072 -- If the parent type is a generic type, there are no literals either,
6073 -- and we construct the same skeletal representation as for the generic
6074 -- parent type.
6076 if Is_Standard_Character_Type (Parent_Type) then
6077 Derived_Standard_Character (N, Parent_Type, Derived_Type);
6079 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
6080 declare
6081 Lo : Node_Id;
6082 Hi : Node_Id;
6084 begin
6085 if Nkind (Indic) /= N_Subtype_Indication then
6086 Lo :=
6087 Make_Attribute_Reference (Loc,
6088 Attribute_Name => Name_First,
6089 Prefix => New_Occurrence_Of (Derived_Type, Loc));
6090 Set_Etype (Lo, Derived_Type);
6092 Hi :=
6093 Make_Attribute_Reference (Loc,
6094 Attribute_Name => Name_Last,
6095 Prefix => New_Occurrence_Of (Derived_Type, Loc));
6096 Set_Etype (Hi, Derived_Type);
6098 Set_Scalar_Range (Derived_Type,
6099 Make_Range (Loc,
6100 Low_Bound => Lo,
6101 High_Bound => Hi));
6102 else
6104 -- Analyze subtype indication and verify compatibility
6105 -- with parent type.
6107 if Base_Type (Process_Subtype (Indic, N)) /=
6108 Base_Type (Parent_Type)
6109 then
6110 Error_Msg_N
6111 ("illegal constraint for formal discrete type", N);
6112 end if;
6113 end if;
6114 end;
6116 else
6117 -- If a constraint is present, analyze the bounds to catch
6118 -- premature usage of the derived literals.
6120 if Nkind (Indic) = N_Subtype_Indication
6121 and then Nkind (Range_Expression (Constraint (Indic))) = N_Range
6122 then
6123 Analyze (Low_Bound (Range_Expression (Constraint (Indic))));
6124 Analyze (High_Bound (Range_Expression (Constraint (Indic))));
6125 end if;
6127 -- Introduce an implicit base type for the derived type even if there
6128 -- is no constraint attached to it, since this seems closer to the
6129 -- Ada semantics. Build a full type declaration tree for the derived
6130 -- type using the implicit base type as the defining identifier. The
6131 -- build a subtype declaration tree which applies the constraint (if
6132 -- any) have it replace the derived type declaration.
6134 Literal := First_Literal (Parent_Type);
6135 Literals_List := New_List;
6136 while Present (Literal)
6137 and then Ekind (Literal) = E_Enumeration_Literal
6138 loop
6139 -- Literals of the derived type have the same representation as
6140 -- those of the parent type, but this representation can be
6141 -- overridden by an explicit representation clause. Indicate
6142 -- that there is no explicit representation given yet. These
6143 -- derived literals are implicit operations of the new type,
6144 -- and can be overridden by explicit ones.
6146 if Nkind (Literal) = N_Defining_Character_Literal then
6147 New_Lit :=
6148 Make_Defining_Character_Literal (Loc, Chars (Literal));
6149 else
6150 New_Lit := Make_Defining_Identifier (Loc, Chars (Literal));
6151 end if;
6153 Set_Ekind (New_Lit, E_Enumeration_Literal);
6154 Set_Enumeration_Pos (New_Lit, Enumeration_Pos (Literal));
6155 Set_Enumeration_Rep (New_Lit, Enumeration_Rep (Literal));
6156 Set_Enumeration_Rep_Expr (New_Lit, Empty);
6157 Set_Alias (New_Lit, Literal);
6158 Set_Is_Known_Valid (New_Lit, True);
6160 Append (New_Lit, Literals_List);
6161 Next_Literal (Literal);
6162 end loop;
6164 Implicit_Base :=
6165 Make_Defining_Identifier (Sloc (Derived_Type),
6166 Chars => New_External_Name (Chars (Derived_Type), 'B'));
6168 -- Indicate the proper nature of the derived type. This must be done
6169 -- before analysis of the literals, to recognize cases when a literal
6170 -- may be hidden by a previous explicit function definition (cf.
6171 -- c83031a).
6173 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
6174 Set_Etype (Derived_Type, Implicit_Base);
6176 Type_Decl :=
6177 Make_Full_Type_Declaration (Loc,
6178 Defining_Identifier => Implicit_Base,
6179 Discriminant_Specifications => No_List,
6180 Type_Definition =>
6181 Make_Enumeration_Type_Definition (Loc, Literals_List));
6183 Mark_Rewrite_Insertion (Type_Decl);
6184 Insert_Before (N, Type_Decl);
6185 Analyze (Type_Decl);
6187 -- After the implicit base is analyzed its Etype needs to be changed
6188 -- to reflect the fact that it is derived from the parent type which
6189 -- was ignored during analysis. We also set the size at this point.
6191 Set_Etype (Implicit_Base, Parent_Type);
6193 Set_Size_Info (Implicit_Base, Parent_Type);
6194 Set_RM_Size (Implicit_Base, RM_Size (Parent_Type));
6195 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Type));
6197 -- Copy other flags from parent type
6199 Set_Has_Non_Standard_Rep
6200 (Implicit_Base, Has_Non_Standard_Rep
6201 (Parent_Type));
6202 Set_Has_Pragma_Ordered
6203 (Implicit_Base, Has_Pragma_Ordered
6204 (Parent_Type));
6205 Set_Has_Delayed_Freeze (Implicit_Base);
6207 -- Process the subtype indication including a validation check on the
6208 -- constraint, if any. If a constraint is given, its bounds must be
6209 -- implicitly converted to the new type.
6211 if Nkind (Indic) = N_Subtype_Indication then
6212 declare
6213 R : constant Node_Id :=
6214 Range_Expression (Constraint (Indic));
6216 begin
6217 if Nkind (R) = N_Range then
6218 Hi := Build_Scalar_Bound
6219 (High_Bound (R), Parent_Type, Implicit_Base);
6220 Lo := Build_Scalar_Bound
6221 (Low_Bound (R), Parent_Type, Implicit_Base);
6223 else
6224 -- Constraint is a Range attribute. Replace with explicit
6225 -- mention of the bounds of the prefix, which must be a
6226 -- subtype.
6228 Analyze (Prefix (R));
6229 Hi :=
6230 Convert_To (Implicit_Base,
6231 Make_Attribute_Reference (Loc,
6232 Attribute_Name => Name_Last,
6233 Prefix =>
6234 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
6236 Lo :=
6237 Convert_To (Implicit_Base,
6238 Make_Attribute_Reference (Loc,
6239 Attribute_Name => Name_First,
6240 Prefix =>
6241 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
6242 end if;
6243 end;
6245 else
6246 Hi :=
6247 Build_Scalar_Bound
6248 (Type_High_Bound (Parent_Type),
6249 Parent_Type, Implicit_Base);
6250 Lo :=
6251 Build_Scalar_Bound
6252 (Type_Low_Bound (Parent_Type),
6253 Parent_Type, Implicit_Base);
6254 end if;
6256 Rang_Expr :=
6257 Make_Range (Loc,
6258 Low_Bound => Lo,
6259 High_Bound => Hi);
6261 -- If we constructed a default range for the case where no range
6262 -- was given, then the expressions in the range must not freeze
6263 -- since they do not correspond to expressions in the source.
6265 if Nkind (Indic) /= N_Subtype_Indication then
6266 Set_Must_Not_Freeze (Lo);
6267 Set_Must_Not_Freeze (Hi);
6268 Set_Must_Not_Freeze (Rang_Expr);
6269 end if;
6271 Rewrite (N,
6272 Make_Subtype_Declaration (Loc,
6273 Defining_Identifier => Derived_Type,
6274 Subtype_Indication =>
6275 Make_Subtype_Indication (Loc,
6276 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
6277 Constraint =>
6278 Make_Range_Constraint (Loc,
6279 Range_Expression => Rang_Expr))));
6281 Analyze (N);
6283 -- Apply a range check. Since this range expression doesn't have an
6284 -- Etype, we have to specifically pass the Source_Typ parameter. Is
6285 -- this right???
6287 if Nkind (Indic) = N_Subtype_Indication then
6288 Apply_Range_Check (Range_Expression (Constraint (Indic)),
6289 Parent_Type,
6290 Source_Typ => Entity (Subtype_Mark (Indic)));
6291 end if;
6292 end if;
6293 end Build_Derived_Enumeration_Type;
6295 --------------------------------
6296 -- Build_Derived_Numeric_Type --
6297 --------------------------------
6299 procedure Build_Derived_Numeric_Type
6300 (N : Node_Id;
6301 Parent_Type : Entity_Id;
6302 Derived_Type : Entity_Id)
6304 Loc : constant Source_Ptr := Sloc (N);
6305 Tdef : constant Node_Id := Type_Definition (N);
6306 Indic : constant Node_Id := Subtype_Indication (Tdef);
6307 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
6308 No_Constraint : constant Boolean := Nkind (Indic) /=
6309 N_Subtype_Indication;
6310 Implicit_Base : Entity_Id;
6312 Lo : Node_Id;
6313 Hi : Node_Id;
6315 begin
6316 -- Process the subtype indication including a validation check on
6317 -- the constraint if any.
6319 Discard_Node (Process_Subtype (Indic, N));
6321 -- Introduce an implicit base type for the derived type even if there
6322 -- is no constraint attached to it, since this seems closer to the Ada
6323 -- semantics.
6325 Implicit_Base :=
6326 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
6328 Set_Etype (Implicit_Base, Parent_Base);
6329 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
6330 Set_Size_Info (Implicit_Base, Parent_Base);
6331 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Base));
6332 Set_Parent (Implicit_Base, Parent (Derived_Type));
6333 Set_Is_Known_Valid (Implicit_Base, Is_Known_Valid (Parent_Base));
6335 -- Set RM Size for discrete type or decimal fixed-point type
6336 -- Ordinary fixed-point is excluded, why???
6338 if Is_Discrete_Type (Parent_Base)
6339 or else Is_Decimal_Fixed_Point_Type (Parent_Base)
6340 then
6341 Set_RM_Size (Implicit_Base, RM_Size (Parent_Base));
6342 end if;
6344 Set_Has_Delayed_Freeze (Implicit_Base);
6346 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
6347 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
6349 Set_Scalar_Range (Implicit_Base,
6350 Make_Range (Loc,
6351 Low_Bound => Lo,
6352 High_Bound => Hi));
6354 if Has_Infinities (Parent_Base) then
6355 Set_Includes_Infinities (Scalar_Range (Implicit_Base));
6356 end if;
6358 -- The Derived_Type, which is the entity of the declaration, is a
6359 -- subtype of the implicit base. Its Ekind is a subtype, even in the
6360 -- absence of an explicit constraint.
6362 Set_Etype (Derived_Type, Implicit_Base);
6364 -- If we did not have a constraint, then the Ekind is set from the
6365 -- parent type (otherwise Process_Subtype has set the bounds)
6367 if No_Constraint then
6368 Set_Ekind (Derived_Type, Subtype_Kind (Ekind (Parent_Type)));
6369 end if;
6371 -- If we did not have a range constraint, then set the range from the
6372 -- parent type. Otherwise, the Process_Subtype call has set the bounds.
6374 if No_Constraint
6375 or else not Has_Range_Constraint (Indic)
6376 then
6377 Set_Scalar_Range (Derived_Type,
6378 Make_Range (Loc,
6379 Low_Bound => New_Copy_Tree (Type_Low_Bound (Parent_Type)),
6380 High_Bound => New_Copy_Tree (Type_High_Bound (Parent_Type))));
6381 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
6383 if Has_Infinities (Parent_Type) then
6384 Set_Includes_Infinities (Scalar_Range (Derived_Type));
6385 end if;
6387 Set_Is_Known_Valid (Derived_Type, Is_Known_Valid (Parent_Type));
6388 end if;
6390 Set_Is_Descendent_Of_Address (Derived_Type,
6391 Is_Descendent_Of_Address (Parent_Type));
6392 Set_Is_Descendent_Of_Address (Implicit_Base,
6393 Is_Descendent_Of_Address (Parent_Type));
6395 -- Set remaining type-specific fields, depending on numeric type
6397 if Is_Modular_Integer_Type (Parent_Type) then
6398 Set_Modulus (Implicit_Base, Modulus (Parent_Base));
6400 Set_Non_Binary_Modulus
6401 (Implicit_Base, Non_Binary_Modulus (Parent_Base));
6403 Set_Is_Known_Valid
6404 (Implicit_Base, Is_Known_Valid (Parent_Base));
6406 elsif Is_Floating_Point_Type (Parent_Type) then
6408 -- Digits of base type is always copied from the digits value of
6409 -- the parent base type, but the digits of the derived type will
6410 -- already have been set if there was a constraint present.
6412 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
6413 Set_Float_Rep (Implicit_Base, Float_Rep (Parent_Base));
6415 if No_Constraint then
6416 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Type));
6417 end if;
6419 elsif Is_Fixed_Point_Type (Parent_Type) then
6421 -- Small of base type and derived type are always copied from the
6422 -- parent base type, since smalls never change. The delta of the
6423 -- base type is also copied from the parent base type. However the
6424 -- delta of the derived type will have been set already if a
6425 -- constraint was present.
6427 Set_Small_Value (Derived_Type, Small_Value (Parent_Base));
6428 Set_Small_Value (Implicit_Base, Small_Value (Parent_Base));
6429 Set_Delta_Value (Implicit_Base, Delta_Value (Parent_Base));
6431 if No_Constraint then
6432 Set_Delta_Value (Derived_Type, Delta_Value (Parent_Type));
6433 end if;
6435 -- The scale and machine radix in the decimal case are always
6436 -- copied from the parent base type.
6438 if Is_Decimal_Fixed_Point_Type (Parent_Type) then
6439 Set_Scale_Value (Derived_Type, Scale_Value (Parent_Base));
6440 Set_Scale_Value (Implicit_Base, Scale_Value (Parent_Base));
6442 Set_Machine_Radix_10
6443 (Derived_Type, Machine_Radix_10 (Parent_Base));
6444 Set_Machine_Radix_10
6445 (Implicit_Base, Machine_Radix_10 (Parent_Base));
6447 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
6449 if No_Constraint then
6450 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Base));
6452 else
6453 -- the analysis of the subtype_indication sets the
6454 -- digits value of the derived type.
6456 null;
6457 end if;
6458 end if;
6459 end if;
6461 if Is_Integer_Type (Parent_Type) then
6462 Set_Has_Shift_Operator
6463 (Implicit_Base, Has_Shift_Operator (Parent_Type));
6464 end if;
6466 -- The type of the bounds is that of the parent type, and they
6467 -- must be converted to the derived type.
6469 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
6471 -- The implicit_base should be frozen when the derived type is frozen,
6472 -- but note that it is used in the conversions of the bounds. For fixed
6473 -- types we delay the determination of the bounds until the proper
6474 -- freezing point. For other numeric types this is rejected by GCC, for
6475 -- reasons that are currently unclear (???), so we choose to freeze the
6476 -- implicit base now. In the case of integers and floating point types
6477 -- this is harmless because subsequent representation clauses cannot
6478 -- affect anything, but it is still baffling that we cannot use the
6479 -- same mechanism for all derived numeric types.
6481 -- There is a further complication: actually some representation
6482 -- clauses can affect the implicit base type. For example, attribute
6483 -- definition clauses for stream-oriented attributes need to set the
6484 -- corresponding TSS entries on the base type, and this normally
6485 -- cannot be done after the base type is frozen, so the circuitry in
6486 -- Sem_Ch13.New_Stream_Subprogram must account for this possibility
6487 -- and not use Set_TSS in this case.
6489 -- There are also consequences for the case of delayed representation
6490 -- aspects for some cases. For example, a Size aspect is delayed and
6491 -- should not be evaluated to the freeze point. This early freezing
6492 -- means that the size attribute evaluation happens too early???
6494 if Is_Fixed_Point_Type (Parent_Type) then
6495 Conditional_Delay (Implicit_Base, Parent_Type);
6496 else
6497 Freeze_Before (N, Implicit_Base);
6498 end if;
6499 end Build_Derived_Numeric_Type;
6501 --------------------------------
6502 -- Build_Derived_Private_Type --
6503 --------------------------------
6505 procedure Build_Derived_Private_Type
6506 (N : Node_Id;
6507 Parent_Type : Entity_Id;
6508 Derived_Type : Entity_Id;
6509 Is_Completion : Boolean;
6510 Derive_Subps : Boolean := True)
6512 Loc : constant Source_Ptr := Sloc (N);
6513 Der_Base : Entity_Id;
6514 Discr : Entity_Id;
6515 Full_Decl : Node_Id := Empty;
6516 Full_Der : Entity_Id;
6517 Full_P : Entity_Id;
6518 Last_Discr : Entity_Id;
6519 Par_Scope : constant Entity_Id := Scope (Base_Type (Parent_Type));
6520 Swapped : Boolean := False;
6522 procedure Copy_And_Build;
6523 -- Copy derived type declaration, replace parent with its full view,
6524 -- and analyze new declaration.
6526 --------------------
6527 -- Copy_And_Build --
6528 --------------------
6530 procedure Copy_And_Build is
6531 Full_N : Node_Id;
6533 begin
6534 if Ekind (Parent_Type) in Record_Kind
6535 or else
6536 (Ekind (Parent_Type) in Enumeration_Kind
6537 and then not Is_Standard_Character_Type (Parent_Type)
6538 and then not Is_Generic_Type (Root_Type (Parent_Type)))
6539 then
6540 Full_N := New_Copy_Tree (N);
6541 Insert_After (N, Full_N);
6542 Build_Derived_Type (
6543 Full_N, Parent_Type, Full_Der, True, Derive_Subps => False);
6545 else
6546 Build_Derived_Type (
6547 N, Parent_Type, Full_Der, True, Derive_Subps => False);
6548 end if;
6549 end Copy_And_Build;
6551 -- Start of processing for Build_Derived_Private_Type
6553 begin
6554 if Is_Tagged_Type (Parent_Type) then
6555 Full_P := Full_View (Parent_Type);
6557 -- A type extension of a type with unknown discriminants is an
6558 -- indefinite type that the back-end cannot handle directly.
6559 -- We treat it as a private type, and build a completion that is
6560 -- derived from the full view of the parent, and hopefully has
6561 -- known discriminants.
6563 -- If the full view of the parent type has an underlying record view,
6564 -- use it to generate the underlying record view of this derived type
6565 -- (required for chains of derivations with unknown discriminants).
6567 -- Minor optimization: we avoid the generation of useless underlying
6568 -- record view entities if the private type declaration has unknown
6569 -- discriminants but its corresponding full view has no
6570 -- discriminants.
6572 if Has_Unknown_Discriminants (Parent_Type)
6573 and then Present (Full_P)
6574 and then (Has_Discriminants (Full_P)
6575 or else Present (Underlying_Record_View (Full_P)))
6576 and then not In_Open_Scopes (Par_Scope)
6577 and then Expander_Active
6578 then
6579 declare
6580 Full_Der : constant Entity_Id := Make_Temporary (Loc, 'T');
6581 New_Ext : constant Node_Id :=
6582 Copy_Separate_Tree
6583 (Record_Extension_Part (Type_Definition (N)));
6584 Decl : Node_Id;
6586 begin
6587 Build_Derived_Record_Type
6588 (N, Parent_Type, Derived_Type, Derive_Subps);
6590 -- Build anonymous completion, as a derivation from the full
6591 -- view of the parent. This is not a completion in the usual
6592 -- sense, because the current type is not private.
6594 Decl :=
6595 Make_Full_Type_Declaration (Loc,
6596 Defining_Identifier => Full_Der,
6597 Type_Definition =>
6598 Make_Derived_Type_Definition (Loc,
6599 Subtype_Indication =>
6600 New_Copy_Tree
6601 (Subtype_Indication (Type_Definition (N))),
6602 Record_Extension_Part => New_Ext));
6604 -- If the parent type has an underlying record view, use it
6605 -- here to build the new underlying record view.
6607 if Present (Underlying_Record_View (Full_P)) then
6608 pragma Assert
6609 (Nkind (Subtype_Indication (Type_Definition (Decl)))
6610 = N_Identifier);
6611 Set_Entity (Subtype_Indication (Type_Definition (Decl)),
6612 Underlying_Record_View (Full_P));
6613 end if;
6615 Install_Private_Declarations (Par_Scope);
6616 Install_Visible_Declarations (Par_Scope);
6617 Insert_Before (N, Decl);
6619 -- Mark entity as an underlying record view before analysis,
6620 -- to avoid generating the list of its primitive operations
6621 -- (which is not really required for this entity) and thus
6622 -- prevent spurious errors associated with missing overriding
6623 -- of abstract primitives (overridden only for Derived_Type).
6625 Set_Ekind (Full_Der, E_Record_Type);
6626 Set_Is_Underlying_Record_View (Full_Der);
6627 Set_Default_SSO (Full_Der);
6629 Analyze (Decl);
6631 pragma Assert (Has_Discriminants (Full_Der)
6632 and then not Has_Unknown_Discriminants (Full_Der));
6634 Uninstall_Declarations (Par_Scope);
6636 -- Freeze the underlying record view, to prevent generation of
6637 -- useless dispatching information, which is simply shared with
6638 -- the real derived type.
6640 Set_Is_Frozen (Full_Der);
6642 -- Set up links between real entity and underlying record view
6644 Set_Underlying_Record_View (Derived_Type, Base_Type (Full_Der));
6645 Set_Underlying_Record_View (Base_Type (Full_Der), Derived_Type);
6646 end;
6648 -- If discriminants are known, build derived record
6650 else
6651 Build_Derived_Record_Type
6652 (N, Parent_Type, Derived_Type, Derive_Subps);
6653 end if;
6655 return;
6657 elsif Has_Discriminants (Parent_Type) then
6658 if Present (Full_View (Parent_Type)) then
6659 if not Is_Completion then
6661 -- Copy declaration for subsequent analysis, to provide a
6662 -- completion for what is a private declaration. Indicate that
6663 -- the full type is internally generated.
6665 Full_Decl := New_Copy_Tree (N);
6666 Full_Der := New_Copy (Derived_Type);
6667 Set_Comes_From_Source (Full_Decl, False);
6668 Set_Comes_From_Source (Full_Der, False);
6669 Set_Parent (Full_Der, Full_Decl);
6671 Insert_After (N, Full_Decl);
6673 else
6674 -- If this is a completion, the full view being built is itself
6675 -- private. We build a subtype of the parent with the same
6676 -- constraints as this full view, to convey to the back end the
6677 -- constrained components and the size of this subtype. If the
6678 -- parent is constrained, its full view can serve as the
6679 -- underlying full view of the derived type.
6681 if No (Discriminant_Specifications (N)) then
6682 if Nkind (Subtype_Indication (Type_Definition (N))) =
6683 N_Subtype_Indication
6684 then
6685 Build_Underlying_Full_View (N, Derived_Type, Parent_Type);
6687 elsif Is_Constrained (Full_View (Parent_Type)) then
6688 Set_Underlying_Full_View
6689 (Derived_Type, Full_View (Parent_Type));
6690 end if;
6692 else
6693 -- If there are new discriminants, the parent subtype is
6694 -- constrained by them, but it is not clear how to build
6695 -- the Underlying_Full_View in this case???
6697 null;
6698 end if;
6699 end if;
6700 end if;
6702 -- Build partial view of derived type from partial view of parent
6704 Build_Derived_Record_Type
6705 (N, Parent_Type, Derived_Type, Derive_Subps);
6707 if Present (Full_View (Parent_Type)) and then not Is_Completion then
6708 if not In_Open_Scopes (Par_Scope)
6709 or else not In_Same_Source_Unit (N, Parent_Type)
6710 then
6711 -- Swap partial and full views temporarily
6713 Install_Private_Declarations (Par_Scope);
6714 Install_Visible_Declarations (Par_Scope);
6715 Swapped := True;
6716 end if;
6718 -- Build full view of derived type from full view of parent which
6719 -- is now installed. Subprograms have been derived on the partial
6720 -- view, the completion does not derive them anew.
6722 if not Is_Tagged_Type (Parent_Type) then
6724 -- If the parent is itself derived from another private type,
6725 -- installing the private declarations has not affected its
6726 -- privacy status, so use its own full view explicitly.
6728 if Is_Private_Type (Parent_Type) then
6729 Build_Derived_Record_Type
6730 (Full_Decl, Full_View (Parent_Type), Full_Der, False);
6731 else
6732 Build_Derived_Record_Type
6733 (Full_Decl, Parent_Type, Full_Der, False);
6734 end if;
6736 else
6737 -- If full view of parent is tagged, the completion inherits
6738 -- the proper primitive operations.
6740 Set_Defining_Identifier (Full_Decl, Full_Der);
6741 Build_Derived_Record_Type
6742 (Full_Decl, Parent_Type, Full_Der, Derive_Subps);
6743 end if;
6745 -- The full declaration has been introduced into the tree and
6746 -- processed in the step above. It should not be analyzed again
6747 -- (when encountered later in the current list of declarations)
6748 -- to prevent spurious name conflicts. The full entity remains
6749 -- invisible.
6751 Set_Analyzed (Full_Decl);
6753 if Swapped then
6754 Uninstall_Declarations (Par_Scope);
6756 if In_Open_Scopes (Par_Scope) then
6757 Install_Visible_Declarations (Par_Scope);
6758 end if;
6759 end if;
6761 Der_Base := Base_Type (Derived_Type);
6762 Set_Full_View (Derived_Type, Full_Der);
6763 Set_Full_View (Der_Base, Base_Type (Full_Der));
6765 -- Copy the discriminant list from full view to the partial views
6766 -- (base type and its subtype). Gigi requires that the partial and
6767 -- full views have the same discriminants.
6769 -- Note that since the partial view is pointing to discriminants
6770 -- in the full view, their scope will be that of the full view.
6771 -- This might cause some front end problems and need adjustment???
6773 Discr := First_Discriminant (Base_Type (Full_Der));
6774 Set_First_Entity (Der_Base, Discr);
6776 loop
6777 Last_Discr := Discr;
6778 Next_Discriminant (Discr);
6779 exit when No (Discr);
6780 end loop;
6782 Set_Last_Entity (Der_Base, Last_Discr);
6784 Set_First_Entity (Derived_Type, First_Entity (Der_Base));
6785 Set_Last_Entity (Derived_Type, Last_Entity (Der_Base));
6786 Set_Stored_Constraint (Full_Der, Stored_Constraint (Derived_Type));
6788 else
6789 -- If this is a completion, the derived type stays private and
6790 -- there is no need to create a further full view, except in the
6791 -- unusual case when the derivation is nested within a child unit,
6792 -- see below.
6794 null;
6795 end if;
6797 elsif Present (Full_View (Parent_Type))
6798 and then Has_Discriminants (Full_View (Parent_Type))
6799 then
6800 if Has_Unknown_Discriminants (Parent_Type)
6801 and then Nkind (Subtype_Indication (Type_Definition (N))) =
6802 N_Subtype_Indication
6803 then
6804 Error_Msg_N
6805 ("cannot constrain type with unknown discriminants",
6806 Subtype_Indication (Type_Definition (N)));
6807 return;
6808 end if;
6810 -- If full view of parent is a record type, build full view as a
6811 -- derivation from the parent's full view. Partial view remains
6812 -- private. For code generation and linking, the full view must have
6813 -- the same public status as the partial one. This full view is only
6814 -- needed if the parent type is in an enclosing scope, so that the
6815 -- full view may actually become visible, e.g. in a child unit. This
6816 -- is both more efficient, and avoids order of freezing problems with
6817 -- the added entities.
6819 if not Is_Private_Type (Full_View (Parent_Type))
6820 and then (In_Open_Scopes (Scope (Parent_Type)))
6821 then
6822 Full_Der :=
6823 Make_Defining_Identifier (Sloc (Derived_Type),
6824 Chars => Chars (Derived_Type));
6826 Set_Is_Itype (Full_Der);
6827 Set_Has_Private_Declaration (Full_Der);
6828 Set_Has_Private_Declaration (Derived_Type);
6829 Set_Associated_Node_For_Itype (Full_Der, N);
6830 Set_Parent (Full_Der, Parent (Derived_Type));
6831 Set_Full_View (Derived_Type, Full_Der);
6832 Set_Is_Public (Full_Der, Is_Public (Derived_Type));
6833 Full_P := Full_View (Parent_Type);
6834 Exchange_Declarations (Parent_Type);
6835 Copy_And_Build;
6836 Exchange_Declarations (Full_P);
6838 else
6839 Build_Derived_Record_Type
6840 (N, Full_View (Parent_Type), Derived_Type,
6841 Derive_Subps => False);
6843 -- Except in the context of the full view of the parent, there
6844 -- are no non-extension aggregates for the derived type.
6846 Set_Has_Private_Ancestor (Derived_Type);
6847 end if;
6849 -- In any case, the primitive operations are inherited from the
6850 -- parent type, not from the internal full view.
6852 Set_Etype (Base_Type (Derived_Type), Base_Type (Parent_Type));
6854 if Derive_Subps then
6855 Derive_Subprograms (Parent_Type, Derived_Type);
6856 end if;
6858 else
6859 -- Untagged type, No discriminants on either view
6861 if Nkind (Subtype_Indication (Type_Definition (N))) =
6862 N_Subtype_Indication
6863 then
6864 Error_Msg_N
6865 ("illegal constraint on type without discriminants", N);
6866 end if;
6868 if Present (Discriminant_Specifications (N))
6869 and then Present (Full_View (Parent_Type))
6870 and then not Is_Tagged_Type (Full_View (Parent_Type))
6871 then
6872 Error_Msg_N ("cannot add discriminants to untagged type", N);
6873 end if;
6875 Set_Stored_Constraint (Derived_Type, No_Elist);
6876 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
6877 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Type));
6878 Set_Has_Controlled_Component
6879 (Derived_Type, Has_Controlled_Component
6880 (Parent_Type));
6882 -- Direct controlled types do not inherit Finalize_Storage_Only flag
6884 if not Is_Controlled (Parent_Type) then
6885 Set_Finalize_Storage_Only
6886 (Base_Type (Derived_Type), Finalize_Storage_Only (Parent_Type));
6887 end if;
6889 -- Construct the implicit full view by deriving from full view of the
6890 -- parent type. In order to get proper visibility, we install the
6891 -- parent scope and its declarations.
6893 -- ??? If the parent is untagged private and its completion is
6894 -- tagged, this mechanism will not work because we cannot derive from
6895 -- the tagged full view unless we have an extension.
6897 if Present (Full_View (Parent_Type))
6898 and then not Is_Tagged_Type (Full_View (Parent_Type))
6899 and then not Is_Completion
6900 then
6901 Full_Der :=
6902 Make_Defining_Identifier
6903 (Sloc (Derived_Type), Chars (Derived_Type));
6904 Set_Is_Itype (Full_Der);
6905 Set_Has_Private_Declaration (Full_Der);
6906 Set_Has_Private_Declaration (Derived_Type);
6907 Set_Associated_Node_For_Itype (Full_Der, N);
6908 Set_Parent (Full_Der, Parent (Derived_Type));
6909 Set_Full_View (Derived_Type, Full_Der);
6911 if not In_Open_Scopes (Par_Scope) then
6912 Install_Private_Declarations (Par_Scope);
6913 Install_Visible_Declarations (Par_Scope);
6914 Copy_And_Build;
6915 Uninstall_Declarations (Par_Scope);
6917 -- If parent scope is open and in another unit, and parent has a
6918 -- completion, then the derivation is taking place in the visible
6919 -- part of a child unit. In that case retrieve the full view of
6920 -- the parent momentarily.
6922 elsif not In_Same_Source_Unit (N, Parent_Type) then
6923 Full_P := Full_View (Parent_Type);
6924 Exchange_Declarations (Parent_Type);
6925 Copy_And_Build;
6926 Exchange_Declarations (Full_P);
6928 -- Otherwise it is a local derivation
6930 else
6931 Copy_And_Build;
6932 end if;
6934 Set_Scope (Full_Der, Current_Scope);
6935 Set_Is_First_Subtype (Full_Der,
6936 Is_First_Subtype (Derived_Type));
6937 Set_Has_Size_Clause (Full_Der, False);
6938 Set_Has_Alignment_Clause (Full_Der, False);
6939 Set_Next_Entity (Full_Der, Empty);
6940 Set_Has_Delayed_Freeze (Full_Der);
6941 Set_Is_Frozen (Full_Der, False);
6942 Set_Freeze_Node (Full_Der, Empty);
6943 Set_Depends_On_Private (Full_Der,
6944 Has_Private_Component (Full_Der));
6945 Set_Public_Status (Full_Der);
6946 end if;
6947 end if;
6949 Set_Has_Unknown_Discriminants (Derived_Type,
6950 Has_Unknown_Discriminants (Parent_Type));
6952 if Is_Private_Type (Derived_Type) then
6953 Set_Private_Dependents (Derived_Type, New_Elmt_List);
6954 end if;
6956 if Is_Private_Type (Parent_Type)
6957 and then Base_Type (Parent_Type) = Parent_Type
6958 and then In_Open_Scopes (Scope (Parent_Type))
6959 then
6960 Append_Elmt (Derived_Type, Private_Dependents (Parent_Type));
6962 -- Check for unusual case where a type completed by a private
6963 -- derivation occurs within a package nested in a child unit, and
6964 -- the parent is declared in an ancestor.
6966 if Is_Child_Unit (Scope (Current_Scope))
6967 and then Is_Completion
6968 and then In_Private_Part (Current_Scope)
6969 and then Scope (Parent_Type) /= Current_Scope
6971 -- Note that if the parent has a completion in the private part,
6972 -- (which is itself a derivation from some other private type)
6973 -- it is that completion that is visible, there is no full view
6974 -- available, and no special processing is needed.
6976 and then Present (Full_View (Parent_Type))
6977 then
6978 -- In this case, the full view of the parent type will become
6979 -- visible in the body of the enclosing child, and only then will
6980 -- the current type be possibly non-private. We build an
6981 -- underlying full view that will be installed when the enclosing
6982 -- child body is compiled.
6984 Full_Der :=
6985 Make_Defining_Identifier
6986 (Sloc (Derived_Type), Chars (Derived_Type));
6987 Set_Is_Itype (Full_Der);
6988 Build_Itype_Reference (Full_Der, N);
6990 -- The full view will be used to swap entities on entry/exit to
6991 -- the body, and must appear in the entity list for the package.
6993 Append_Entity (Full_Der, Scope (Derived_Type));
6994 Set_Has_Private_Declaration (Full_Der);
6995 Set_Has_Private_Declaration (Derived_Type);
6996 Set_Associated_Node_For_Itype (Full_Der, N);
6997 Set_Parent (Full_Der, Parent (Derived_Type));
6998 Full_P := Full_View (Parent_Type);
6999 Exchange_Declarations (Parent_Type);
7000 Copy_And_Build;
7001 Exchange_Declarations (Full_P);
7002 Set_Underlying_Full_View (Derived_Type, Full_Der);
7003 end if;
7004 end if;
7005 end Build_Derived_Private_Type;
7007 -------------------------------
7008 -- Build_Derived_Record_Type --
7009 -------------------------------
7011 -- 1. INTRODUCTION
7013 -- Ideally we would like to use the same model of type derivation for
7014 -- tagged and untagged record types. Unfortunately this is not quite
7015 -- possible because the semantics of representation clauses is different
7016 -- for tagged and untagged records under inheritance. Consider the
7017 -- following:
7019 -- type R (...) is [tagged] record ... end record;
7020 -- type T (...) is new R (...) [with ...];
7022 -- The representation clauses for T can specify a completely different
7023 -- record layout from R's. Hence the same component can be placed in two
7024 -- very different positions in objects of type T and R. If R and T are
7025 -- tagged types, representation clauses for T can only specify the layout
7026 -- of non inherited components, thus components that are common in R and T
7027 -- have the same position in objects of type R and T.
7029 -- This has two implications. The first is that the entire tree for R's
7030 -- declaration needs to be copied for T in the untagged case, so that T
7031 -- can be viewed as a record type of its own with its own representation
7032 -- clauses. The second implication is the way we handle discriminants.
7033 -- Specifically, in the untagged case we need a way to communicate to Gigi
7034 -- what are the real discriminants in the record, while for the semantics
7035 -- we need to consider those introduced by the user to rename the
7036 -- discriminants in the parent type. This is handled by introducing the
7037 -- notion of stored discriminants. See below for more.
7039 -- Fortunately the way regular components are inherited can be handled in
7040 -- the same way in tagged and untagged types.
7042 -- To complicate things a bit more the private view of a private extension
7043 -- cannot be handled in the same way as the full view (for one thing the
7044 -- semantic rules are somewhat different). We will explain what differs
7045 -- below.
7047 -- 2. DISCRIMINANTS UNDER INHERITANCE
7049 -- The semantic rules governing the discriminants of derived types are
7050 -- quite subtle.
7052 -- type Derived_Type_Name [KNOWN_DISCRIMINANT_PART] is new
7053 -- [abstract] Parent_Type_Name [CONSTRAINT] [RECORD_EXTENSION_PART]
7055 -- If parent type has discriminants, then the discriminants that are
7056 -- declared in the derived type are [3.4 (11)]:
7058 -- o The discriminants specified by a new KNOWN_DISCRIMINANT_PART, if
7059 -- there is one;
7061 -- o Otherwise, each discriminant of the parent type (implicitly declared
7062 -- in the same order with the same specifications). In this case, the
7063 -- discriminants are said to be "inherited", or if unknown in the parent
7064 -- are also unknown in the derived type.
7066 -- Furthermore if a KNOWN_DISCRIMINANT_PART is provided, then [3.7(13-18)]:
7068 -- o The parent subtype shall be constrained;
7070 -- o If the parent type is not a tagged type, then each discriminant of
7071 -- the derived type shall be used in the constraint defining a parent
7072 -- subtype. [Implementation note: This ensures that the new discriminant
7073 -- can share storage with an existing discriminant.]
7075 -- For the derived type each discriminant of the parent type is either
7076 -- inherited, constrained to equal some new discriminant of the derived
7077 -- type, or constrained to the value of an expression.
7079 -- When inherited or constrained to equal some new discriminant, the
7080 -- parent discriminant and the discriminant of the derived type are said
7081 -- to "correspond".
7083 -- If a discriminant of the parent type is constrained to a specific value
7084 -- in the derived type definition, then the discriminant is said to be
7085 -- "specified" by that derived type definition.
7087 -- 3. DISCRIMINANTS IN DERIVED UNTAGGED RECORD TYPES
7089 -- We have spoken about stored discriminants in point 1 (introduction)
7090 -- above. There are two sort of stored discriminants: implicit and
7091 -- explicit. As long as the derived type inherits the same discriminants as
7092 -- the root record type, stored discriminants are the same as regular
7093 -- discriminants, and are said to be implicit. However, if any discriminant
7094 -- in the root type was renamed in the derived type, then the derived
7095 -- type will contain explicit stored discriminants. Explicit stored
7096 -- discriminants are discriminants in addition to the semantically visible
7097 -- discriminants defined for the derived type. Stored discriminants are
7098 -- used by Gigi to figure out what are the physical discriminants in
7099 -- objects of the derived type (see precise definition in einfo.ads).
7100 -- As an example, consider the following:
7102 -- type R (D1, D2, D3 : Int) is record ... end record;
7103 -- type T1 is new R;
7104 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1);
7105 -- type T3 is new T2;
7106 -- type T4 (Y : Int) is new T3 (Y, 99);
7108 -- The following table summarizes the discriminants and stored
7109 -- discriminants in R and T1 through T4.
7111 -- Type Discrim Stored Discrim Comment
7112 -- R (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in R
7113 -- T1 (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in T1
7114 -- T2 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T2
7115 -- T3 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T3
7116 -- T4 (Y) (D1, D2, D3) Girder discrims EXPLICIT in T4
7118 -- Field Corresponding_Discriminant (abbreviated CD below) allows us to
7119 -- find the corresponding discriminant in the parent type, while
7120 -- Original_Record_Component (abbreviated ORC below), the actual physical
7121 -- component that is renamed. Finally the field Is_Completely_Hidden
7122 -- (abbreviated ICH below) is set for all explicit stored discriminants
7123 -- (see einfo.ads for more info). For the above example this gives:
7125 -- Discrim CD ORC ICH
7126 -- ^^^^^^^ ^^ ^^^ ^^^
7127 -- D1 in R empty itself no
7128 -- D2 in R empty itself no
7129 -- D3 in R empty itself no
7131 -- D1 in T1 D1 in R itself no
7132 -- D2 in T1 D2 in R itself no
7133 -- D3 in T1 D3 in R itself no
7135 -- X1 in T2 D3 in T1 D3 in T2 no
7136 -- X2 in T2 D1 in T1 D1 in T2 no
7137 -- D1 in T2 empty itself yes
7138 -- D2 in T2 empty itself yes
7139 -- D3 in T2 empty itself yes
7141 -- X1 in T3 X1 in T2 D3 in T3 no
7142 -- X2 in T3 X2 in T2 D1 in T3 no
7143 -- D1 in T3 empty itself yes
7144 -- D2 in T3 empty itself yes
7145 -- D3 in T3 empty itself yes
7147 -- Y in T4 X1 in T3 D3 in T3 no
7148 -- D1 in T3 empty itself yes
7149 -- D2 in T3 empty itself yes
7150 -- D3 in T3 empty itself yes
7152 -- 4. DISCRIMINANTS IN DERIVED TAGGED RECORD TYPES
7154 -- Type derivation for tagged types is fairly straightforward. If no
7155 -- discriminants are specified by the derived type, these are inherited
7156 -- from the parent. No explicit stored discriminants are ever necessary.
7157 -- The only manipulation that is done to the tree is that of adding a
7158 -- _parent field with parent type and constrained to the same constraint
7159 -- specified for the parent in the derived type definition. For instance:
7161 -- type R (D1, D2, D3 : Int) is tagged record ... end record;
7162 -- type T1 is new R with null record;
7163 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with null record;
7165 -- are changed into:
7167 -- type T1 (D1, D2, D3 : Int) is new R (D1, D2, D3) with record
7168 -- _parent : R (D1, D2, D3);
7169 -- end record;
7171 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with record
7172 -- _parent : T1 (X2, 88, X1);
7173 -- end record;
7175 -- The discriminants actually present in R, T1 and T2 as well as their CD,
7176 -- ORC and ICH fields are:
7178 -- Discrim CD ORC ICH
7179 -- ^^^^^^^ ^^ ^^^ ^^^
7180 -- D1 in R empty itself no
7181 -- D2 in R empty itself no
7182 -- D3 in R empty itself no
7184 -- D1 in T1 D1 in R D1 in R no
7185 -- D2 in T1 D2 in R D2 in R no
7186 -- D3 in T1 D3 in R D3 in R no
7188 -- X1 in T2 D3 in T1 D3 in R no
7189 -- X2 in T2 D1 in T1 D1 in R no
7191 -- 5. FIRST TRANSFORMATION FOR DERIVED RECORDS
7193 -- Regardless of whether we dealing with a tagged or untagged type
7194 -- we will transform all derived type declarations of the form
7196 -- type T is new R (...) [with ...];
7197 -- or
7198 -- subtype S is R (...);
7199 -- type T is new S [with ...];
7200 -- into
7201 -- type BT is new R [with ...];
7202 -- subtype T is BT (...);
7204 -- That is, the base derived type is constrained only if it has no
7205 -- discriminants. The reason for doing this is that GNAT's semantic model
7206 -- assumes that a base type with discriminants is unconstrained.
7208 -- Note that, strictly speaking, the above transformation is not always
7209 -- correct. Consider for instance the following excerpt from ACVC b34011a:
7211 -- procedure B34011A is
7212 -- type REC (D : integer := 0) is record
7213 -- I : Integer;
7214 -- end record;
7216 -- package P is
7217 -- type T6 is new Rec;
7218 -- function F return T6;
7219 -- end P;
7221 -- use P;
7222 -- package Q6 is
7223 -- type U is new T6 (Q6.F.I); -- ERROR: Q6.F.
7224 -- end Q6;
7226 -- The definition of Q6.U is illegal. However transforming Q6.U into
7228 -- type BaseU is new T6;
7229 -- subtype U is BaseU (Q6.F.I)
7231 -- turns U into a legal subtype, which is incorrect. To avoid this problem
7232 -- we always analyze the constraint (in this case (Q6.F.I)) before applying
7233 -- the transformation described above.
7235 -- There is another instance where the above transformation is incorrect.
7236 -- Consider:
7238 -- package Pack is
7239 -- type Base (D : Integer) is tagged null record;
7240 -- procedure P (X : Base);
7242 -- type Der is new Base (2) with null record;
7243 -- procedure P (X : Der);
7244 -- end Pack;
7246 -- Then the above transformation turns this into
7248 -- type Der_Base is new Base with null record;
7249 -- -- procedure P (X : Base) is implicitly inherited here
7250 -- -- as procedure P (X : Der_Base).
7252 -- subtype Der is Der_Base (2);
7253 -- procedure P (X : Der);
7254 -- -- The overriding of P (X : Der_Base) is illegal since we
7255 -- -- have a parameter conformance problem.
7257 -- To get around this problem, after having semantically processed Der_Base
7258 -- and the rewritten subtype declaration for Der, we copy Der_Base field
7259 -- Discriminant_Constraint from Der so that when parameter conformance is
7260 -- checked when P is overridden, no semantic errors are flagged.
7262 -- 6. SECOND TRANSFORMATION FOR DERIVED RECORDS
7264 -- Regardless of whether we are dealing with a tagged or untagged type
7265 -- we will transform all derived type declarations of the form
7267 -- type R (D1, .., Dn : ...) is [tagged] record ...;
7268 -- type T is new R [with ...];
7269 -- into
7270 -- type T (D1, .., Dn : ...) is new R (D1, .., Dn) [with ...];
7272 -- The reason for such transformation is that it allows us to implement a
7273 -- very clean form of component inheritance as explained below.
7275 -- Note that this transformation is not achieved by direct tree rewriting
7276 -- and manipulation, but rather by redoing the semantic actions that the
7277 -- above transformation will entail. This is done directly in routine
7278 -- Inherit_Components.
7280 -- 7. TYPE DERIVATION AND COMPONENT INHERITANCE
7282 -- In both tagged and untagged derived types, regular non discriminant
7283 -- components are inherited in the derived type from the parent type. In
7284 -- the absence of discriminants component, inheritance is straightforward
7285 -- as components can simply be copied from the parent.
7287 -- If the parent has discriminants, inheriting components constrained with
7288 -- these discriminants requires caution. Consider the following example:
7290 -- type R (D1, D2 : Positive) is [tagged] record
7291 -- S : String (D1 .. D2);
7292 -- end record;
7294 -- type T1 is new R [with null record];
7295 -- type T2 (X : positive) is new R (1, X) [with null record];
7297 -- As explained in 6. above, T1 is rewritten as
7298 -- type T1 (D1, D2 : Positive) is new R (D1, D2) [with null record];
7299 -- which makes the treatment for T1 and T2 identical.
7301 -- What we want when inheriting S, is that references to D1 and D2 in R are
7302 -- replaced with references to their correct constraints, i.e. D1 and D2 in
7303 -- T1 and 1 and X in T2. So all R's discriminant references are replaced
7304 -- with either discriminant references in the derived type or expressions.
7305 -- This replacement is achieved as follows: before inheriting R's
7306 -- components, a subtype R (D1, D2) for T1 (resp. R (1, X) for T2) is
7307 -- created in the scope of T1 (resp. scope of T2) so that discriminants D1
7308 -- and D2 of T1 are visible (resp. discriminant X of T2 is visible).
7309 -- For T2, for instance, this has the effect of replacing String (D1 .. D2)
7310 -- by String (1 .. X).
7312 -- 8. TYPE DERIVATION IN PRIVATE TYPE EXTENSIONS
7314 -- We explain here the rules governing private type extensions relevant to
7315 -- type derivation. These rules are explained on the following example:
7317 -- type D [(...)] is new A [(...)] with private; <-- partial view
7318 -- type D [(...)] is new P [(...)] with null record; <-- full view
7320 -- Type A is called the ancestor subtype of the private extension.
7321 -- Type P is the parent type of the full view of the private extension. It
7322 -- must be A or a type derived from A.
7324 -- The rules concerning the discriminants of private type extensions are
7325 -- [7.3(10-13)]:
7327 -- o If a private extension inherits known discriminants from the ancestor
7328 -- subtype, then the full view shall also inherit its discriminants from
7329 -- the ancestor subtype and the parent subtype of the full view shall be
7330 -- constrained if and only if the ancestor subtype is constrained.
7332 -- o If a partial view has unknown discriminants, then the full view may
7333 -- define a definite or an indefinite subtype, with or without
7334 -- discriminants.
7336 -- o If a partial view has neither known nor unknown discriminants, then
7337 -- the full view shall define a definite subtype.
7339 -- o If the ancestor subtype of a private extension has constrained
7340 -- discriminants, then the parent subtype of the full view shall impose a
7341 -- statically matching constraint on those discriminants.
7343 -- This means that only the following forms of private extensions are
7344 -- allowed:
7346 -- type D is new A with private; <-- partial view
7347 -- type D is new P with null record; <-- full view
7349 -- If A has no discriminants than P has no discriminants, otherwise P must
7350 -- inherit A's discriminants.
7352 -- type D is new A (...) with private; <-- partial view
7353 -- type D is new P (:::) with null record; <-- full view
7355 -- P must inherit A's discriminants and (...) and (:::) must statically
7356 -- match.
7358 -- subtype A is R (...);
7359 -- type D is new A with private; <-- partial view
7360 -- type D is new P with null record; <-- full view
7362 -- P must have inherited R's discriminants and must be derived from A or
7363 -- any of its subtypes.
7365 -- type D (..) is new A with private; <-- partial view
7366 -- type D (..) is new P [(:::)] with null record; <-- full view
7368 -- No specific constraints on P's discriminants or constraint (:::).
7369 -- Note that A can be unconstrained, but the parent subtype P must either
7370 -- be constrained or (:::) must be present.
7372 -- type D (..) is new A [(...)] with private; <-- partial view
7373 -- type D (..) is new P [(:::)] with null record; <-- full view
7375 -- P's constraints on A's discriminants must statically match those
7376 -- imposed by (...).
7378 -- 9. IMPLEMENTATION OF TYPE DERIVATION FOR PRIVATE EXTENSIONS
7380 -- The full view of a private extension is handled exactly as described
7381 -- above. The model chose for the private view of a private extension is
7382 -- the same for what concerns discriminants (i.e. they receive the same
7383 -- treatment as in the tagged case). However, the private view of the
7384 -- private extension always inherits the components of the parent base,
7385 -- without replacing any discriminant reference. Strictly speaking this is
7386 -- incorrect. However, Gigi never uses this view to generate code so this
7387 -- is a purely semantic issue. In theory, a set of transformations similar
7388 -- to those given in 5. and 6. above could be applied to private views of
7389 -- private extensions to have the same model of component inheritance as
7390 -- for non private extensions. However, this is not done because it would
7391 -- further complicate private type processing. Semantically speaking, this
7392 -- leaves us in an uncomfortable situation. As an example consider:
7394 -- package Pack is
7395 -- type R (D : integer) is tagged record
7396 -- S : String (1 .. D);
7397 -- end record;
7398 -- procedure P (X : R);
7399 -- type T is new R (1) with private;
7400 -- private
7401 -- type T is new R (1) with null record;
7402 -- end;
7404 -- This is transformed into:
7406 -- package Pack is
7407 -- type R (D : integer) is tagged record
7408 -- S : String (1 .. D);
7409 -- end record;
7410 -- procedure P (X : R);
7411 -- type T is new R (1) with private;
7412 -- private
7413 -- type BaseT is new R with null record;
7414 -- subtype T is BaseT (1);
7415 -- end;
7417 -- (strictly speaking the above is incorrect Ada)
7419 -- From the semantic standpoint the private view of private extension T
7420 -- should be flagged as constrained since one can clearly have
7422 -- Obj : T;
7424 -- in a unit withing Pack. However, when deriving subprograms for the
7425 -- private view of private extension T, T must be seen as unconstrained
7426 -- since T has discriminants (this is a constraint of the current
7427 -- subprogram derivation model). Thus, when processing the private view of
7428 -- a private extension such as T, we first mark T as unconstrained, we
7429 -- process it, we perform program derivation and just before returning from
7430 -- Build_Derived_Record_Type we mark T as constrained.
7432 -- ??? Are there are other uncomfortable cases that we will have to
7433 -- deal with.
7435 -- 10. RECORD_TYPE_WITH_PRIVATE complications
7437 -- Types that are derived from a visible record type and have a private
7438 -- extension present other peculiarities. They behave mostly like private
7439 -- types, but if they have primitive operations defined, these will not
7440 -- have the proper signatures for further inheritance, because other
7441 -- primitive operations will use the implicit base that we define for
7442 -- private derivations below. This affect subprogram inheritance (see
7443 -- Derive_Subprograms for details). We also derive the implicit base from
7444 -- the base type of the full view, so that the implicit base is a record
7445 -- type and not another private type, This avoids infinite loops.
7447 procedure Build_Derived_Record_Type
7448 (N : Node_Id;
7449 Parent_Type : Entity_Id;
7450 Derived_Type : Entity_Id;
7451 Derive_Subps : Boolean := True)
7453 Discriminant_Specs : constant Boolean :=
7454 Present (Discriminant_Specifications (N));
7455 Is_Tagged : constant Boolean := Is_Tagged_Type (Parent_Type);
7456 Loc : constant Source_Ptr := Sloc (N);
7457 Private_Extension : constant Boolean :=
7458 Nkind (N) = N_Private_Extension_Declaration;
7459 Assoc_List : Elist_Id;
7460 Constraint_Present : Boolean;
7461 Constrs : Elist_Id;
7462 Discrim : Entity_Id;
7463 Indic : Node_Id;
7464 Inherit_Discrims : Boolean := False;
7465 Last_Discrim : Entity_Id;
7466 New_Base : Entity_Id;
7467 New_Decl : Node_Id;
7468 New_Discrs : Elist_Id;
7469 New_Indic : Node_Id;
7470 Parent_Base : Entity_Id;
7471 Save_Etype : Entity_Id;
7472 Save_Discr_Constr : Elist_Id;
7473 Save_Next_Entity : Entity_Id;
7474 Type_Def : Node_Id;
7476 Discs : Elist_Id := New_Elmt_List;
7477 -- An empty Discs list means that there were no constraints in the
7478 -- subtype indication or that there was an error processing it.
7480 begin
7481 if Ekind (Parent_Type) = E_Record_Type_With_Private
7482 and then Present (Full_View (Parent_Type))
7483 and then Has_Discriminants (Parent_Type)
7484 then
7485 Parent_Base := Base_Type (Full_View (Parent_Type));
7486 else
7487 Parent_Base := Base_Type (Parent_Type);
7488 end if;
7490 -- AI05-0115 : if this is a derivation from a private type in some
7491 -- other scope that may lead to invisible components for the derived
7492 -- type, mark it accordingly.
7494 if Is_Private_Type (Parent_Type) then
7495 if Scope (Parent_Type) = Scope (Derived_Type) then
7496 null;
7498 elsif In_Open_Scopes (Scope (Parent_Type))
7499 and then In_Private_Part (Scope (Parent_Type))
7500 then
7501 null;
7503 else
7504 Set_Has_Private_Ancestor (Derived_Type);
7505 end if;
7507 else
7508 Set_Has_Private_Ancestor
7509 (Derived_Type, Has_Private_Ancestor (Parent_Type));
7510 end if;
7512 -- Before we start the previously documented transformations, here is
7513 -- little fix for size and alignment of tagged types. Normally when we
7514 -- derive type D from type P, we copy the size and alignment of P as the
7515 -- default for D, and in the absence of explicit representation clauses
7516 -- for D, the size and alignment are indeed the same as the parent.
7518 -- But this is wrong for tagged types, since fields may be added, and
7519 -- the default size may need to be larger, and the default alignment may
7520 -- need to be larger.
7522 -- We therefore reset the size and alignment fields in the tagged case.
7523 -- Note that the size and alignment will in any case be at least as
7524 -- large as the parent type (since the derived type has a copy of the
7525 -- parent type in the _parent field)
7527 -- The type is also marked as being tagged here, which is needed when
7528 -- processing components with a self-referential anonymous access type
7529 -- in the call to Check_Anonymous_Access_Components below. Note that
7530 -- this flag is also set later on for completeness.
7532 if Is_Tagged then
7533 Set_Is_Tagged_Type (Derived_Type);
7534 Init_Size_Align (Derived_Type);
7535 end if;
7537 -- STEP 0a: figure out what kind of derived type declaration we have
7539 if Private_Extension then
7540 Type_Def := N;
7541 Set_Ekind (Derived_Type, E_Record_Type_With_Private);
7542 Set_Default_SSO (Derived_Type);
7544 else
7545 Type_Def := Type_Definition (N);
7547 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
7548 -- Parent_Base can be a private type or private extension. However,
7549 -- for tagged types with an extension the newly added fields are
7550 -- visible and hence the Derived_Type is always an E_Record_Type.
7551 -- (except that the parent may have its own private fields).
7552 -- For untagged types we preserve the Ekind of the Parent_Base.
7554 if Present (Record_Extension_Part (Type_Def)) then
7555 Set_Ekind (Derived_Type, E_Record_Type);
7556 Set_Default_SSO (Derived_Type);
7558 -- Create internal access types for components with anonymous
7559 -- access types.
7561 if Ada_Version >= Ada_2005 then
7562 Check_Anonymous_Access_Components
7563 (N, Derived_Type, Derived_Type,
7564 Component_List (Record_Extension_Part (Type_Def)));
7565 end if;
7567 else
7568 Set_Ekind (Derived_Type, Ekind (Parent_Base));
7569 end if;
7570 end if;
7572 -- Indic can either be an N_Identifier if the subtype indication
7573 -- contains no constraint or an N_Subtype_Indication if the subtype
7574 -- indication has a constraint.
7576 Indic := Subtype_Indication (Type_Def);
7577 Constraint_Present := (Nkind (Indic) = N_Subtype_Indication);
7579 -- Check that the type has visible discriminants. The type may be
7580 -- a private type with unknown discriminants whose full view has
7581 -- discriminants which are invisible.
7583 if Constraint_Present then
7584 if not Has_Discriminants (Parent_Base)
7585 or else
7586 (Has_Unknown_Discriminants (Parent_Base)
7587 and then Is_Private_Type (Parent_Base))
7588 then
7589 Error_Msg_N
7590 ("invalid constraint: type has no discriminant",
7591 Constraint (Indic));
7593 Constraint_Present := False;
7594 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
7596 elsif Is_Constrained (Parent_Type) then
7597 Error_Msg_N
7598 ("invalid constraint: parent type is already constrained",
7599 Constraint (Indic));
7601 Constraint_Present := False;
7602 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
7603 end if;
7604 end if;
7606 -- STEP 0b: If needed, apply transformation given in point 5. above
7608 if not Private_Extension
7609 and then Has_Discriminants (Parent_Type)
7610 and then not Discriminant_Specs
7611 and then (Is_Constrained (Parent_Type) or else Constraint_Present)
7612 then
7613 -- First, we must analyze the constraint (see comment in point 5.)
7614 -- The constraint may come from the subtype indication of the full
7615 -- declaration.
7617 if Constraint_Present then
7618 New_Discrs := Build_Discriminant_Constraints (Parent_Type, Indic);
7620 -- If there is no explicit constraint, there might be one that is
7621 -- inherited from a constrained parent type. In that case verify that
7622 -- it conforms to the constraint in the partial view. In perverse
7623 -- cases the parent subtypes of the partial and full view can have
7624 -- different constraints.
7626 elsif Present (Stored_Constraint (Parent_Type)) then
7627 New_Discrs := Stored_Constraint (Parent_Type);
7629 else
7630 New_Discrs := No_Elist;
7631 end if;
7633 if Has_Discriminants (Derived_Type)
7634 and then Has_Private_Declaration (Derived_Type)
7635 and then Present (Discriminant_Constraint (Derived_Type))
7636 and then Present (New_Discrs)
7637 then
7638 -- Verify that constraints of the full view statically match
7639 -- those given in the partial view.
7641 declare
7642 C1, C2 : Elmt_Id;
7644 begin
7645 C1 := First_Elmt (New_Discrs);
7646 C2 := First_Elmt (Discriminant_Constraint (Derived_Type));
7647 while Present (C1) and then Present (C2) loop
7648 if Fully_Conformant_Expressions (Node (C1), Node (C2))
7649 or else
7650 (Is_OK_Static_Expression (Node (C1))
7651 and then Is_OK_Static_Expression (Node (C2))
7652 and then
7653 Expr_Value (Node (C1)) = Expr_Value (Node (C2)))
7654 then
7655 null;
7657 else
7658 if Constraint_Present then
7659 Error_Msg_N
7660 ("constraint not conformant to previous declaration",
7661 Node (C1));
7662 else
7663 Error_Msg_N
7664 ("constraint of full view is incompatible "
7665 & "with partial view", N);
7666 end if;
7667 end if;
7669 Next_Elmt (C1);
7670 Next_Elmt (C2);
7671 end loop;
7672 end;
7673 end if;
7675 -- Insert and analyze the declaration for the unconstrained base type
7677 New_Base := Create_Itype (Ekind (Derived_Type), N, Derived_Type, 'B');
7679 New_Decl :=
7680 Make_Full_Type_Declaration (Loc,
7681 Defining_Identifier => New_Base,
7682 Type_Definition =>
7683 Make_Derived_Type_Definition (Loc,
7684 Abstract_Present => Abstract_Present (Type_Def),
7685 Limited_Present => Limited_Present (Type_Def),
7686 Subtype_Indication =>
7687 New_Occurrence_Of (Parent_Base, Loc),
7688 Record_Extension_Part =>
7689 Relocate_Node (Record_Extension_Part (Type_Def)),
7690 Interface_List => Interface_List (Type_Def)));
7692 Set_Parent (New_Decl, Parent (N));
7693 Mark_Rewrite_Insertion (New_Decl);
7694 Insert_Before (N, New_Decl);
7696 -- In the extension case, make sure ancestor is frozen appropriately
7697 -- (see also non-discriminated case below).
7699 if Present (Record_Extension_Part (Type_Def))
7700 or else Is_Interface (Parent_Base)
7701 then
7702 Freeze_Before (New_Decl, Parent_Type);
7703 end if;
7705 -- Note that this call passes False for the Derive_Subps parameter
7706 -- because subprogram derivation is deferred until after creating
7707 -- the subtype (see below).
7709 Build_Derived_Type
7710 (New_Decl, Parent_Base, New_Base,
7711 Is_Completion => True, Derive_Subps => False);
7713 -- ??? This needs re-examination to determine whether the
7714 -- above call can simply be replaced by a call to Analyze.
7716 Set_Analyzed (New_Decl);
7718 -- Insert and analyze the declaration for the constrained subtype
7720 if Constraint_Present then
7721 New_Indic :=
7722 Make_Subtype_Indication (Loc,
7723 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
7724 Constraint => Relocate_Node (Constraint (Indic)));
7726 else
7727 declare
7728 Constr_List : constant List_Id := New_List;
7729 C : Elmt_Id;
7730 Expr : Node_Id;
7732 begin
7733 C := First_Elmt (Discriminant_Constraint (Parent_Type));
7734 while Present (C) loop
7735 Expr := Node (C);
7737 -- It is safe here to call New_Copy_Tree since
7738 -- Force_Evaluation was called on each constraint in
7739 -- Build_Discriminant_Constraints.
7741 Append (New_Copy_Tree (Expr), To => Constr_List);
7743 Next_Elmt (C);
7744 end loop;
7746 New_Indic :=
7747 Make_Subtype_Indication (Loc,
7748 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
7749 Constraint =>
7750 Make_Index_Or_Discriminant_Constraint (Loc, Constr_List));
7751 end;
7752 end if;
7754 Rewrite (N,
7755 Make_Subtype_Declaration (Loc,
7756 Defining_Identifier => Derived_Type,
7757 Subtype_Indication => New_Indic));
7759 Analyze (N);
7761 -- Derivation of subprograms must be delayed until the full subtype
7762 -- has been established, to ensure proper overriding of subprograms
7763 -- inherited by full types. If the derivations occurred as part of
7764 -- the call to Build_Derived_Type above, then the check for type
7765 -- conformance would fail because earlier primitive subprograms
7766 -- could still refer to the full type prior the change to the new
7767 -- subtype and hence would not match the new base type created here.
7768 -- Subprograms are not derived, however, when Derive_Subps is False
7769 -- (since otherwise there could be redundant derivations).
7771 if Derive_Subps then
7772 Derive_Subprograms (Parent_Type, Derived_Type);
7773 end if;
7775 -- For tagged types the Discriminant_Constraint of the new base itype
7776 -- is inherited from the first subtype so that no subtype conformance
7777 -- problem arise when the first subtype overrides primitive
7778 -- operations inherited by the implicit base type.
7780 if Is_Tagged then
7781 Set_Discriminant_Constraint
7782 (New_Base, Discriminant_Constraint (Derived_Type));
7783 end if;
7785 return;
7786 end if;
7788 -- If we get here Derived_Type will have no discriminants or it will be
7789 -- a discriminated unconstrained base type.
7791 -- STEP 1a: perform preliminary actions/checks for derived tagged types
7793 if Is_Tagged then
7795 -- The parent type is frozen for non-private extensions (RM 13.14(7))
7796 -- The declaration of a specific descendant of an interface type
7797 -- freezes the interface type (RM 13.14).
7799 if not Private_Extension or else Is_Interface (Parent_Base) then
7800 Freeze_Before (N, Parent_Type);
7801 end if;
7803 -- In Ada 2005 (AI-344), the restriction that a derived tagged type
7804 -- cannot be declared at a deeper level than its parent type is
7805 -- removed. The check on derivation within a generic body is also
7806 -- relaxed, but there's a restriction that a derived tagged type
7807 -- cannot be declared in a generic body if it's derived directly
7808 -- or indirectly from a formal type of that generic.
7810 if Ada_Version >= Ada_2005 then
7811 if Present (Enclosing_Generic_Body (Derived_Type)) then
7812 declare
7813 Ancestor_Type : Entity_Id;
7815 begin
7816 -- Check to see if any ancestor of the derived type is a
7817 -- formal type.
7819 Ancestor_Type := Parent_Type;
7820 while not Is_Generic_Type (Ancestor_Type)
7821 and then Etype (Ancestor_Type) /= Ancestor_Type
7822 loop
7823 Ancestor_Type := Etype (Ancestor_Type);
7824 end loop;
7826 -- If the derived type does have a formal type as an
7827 -- ancestor, then it's an error if the derived type is
7828 -- declared within the body of the generic unit that
7829 -- declares the formal type in its generic formal part. It's
7830 -- sufficient to check whether the ancestor type is declared
7831 -- inside the same generic body as the derived type (such as
7832 -- within a nested generic spec), in which case the
7833 -- derivation is legal. If the formal type is declared
7834 -- outside of that generic body, then it's guaranteed that
7835 -- the derived type is declared within the generic body of
7836 -- the generic unit declaring the formal type.
7838 if Is_Generic_Type (Ancestor_Type)
7839 and then Enclosing_Generic_Body (Ancestor_Type) /=
7840 Enclosing_Generic_Body (Derived_Type)
7841 then
7842 Error_Msg_NE
7843 ("parent type of& must not be descendant of formal type"
7844 & " of an enclosing generic body",
7845 Indic, Derived_Type);
7846 end if;
7847 end;
7848 end if;
7850 elsif Type_Access_Level (Derived_Type) /=
7851 Type_Access_Level (Parent_Type)
7852 and then not Is_Generic_Type (Derived_Type)
7853 then
7854 if Is_Controlled (Parent_Type) then
7855 Error_Msg_N
7856 ("controlled type must be declared at the library level",
7857 Indic);
7858 else
7859 Error_Msg_N
7860 ("type extension at deeper accessibility level than parent",
7861 Indic);
7862 end if;
7864 else
7865 declare
7866 GB : constant Node_Id := Enclosing_Generic_Body (Derived_Type);
7867 begin
7868 if Present (GB)
7869 and then GB /= Enclosing_Generic_Body (Parent_Base)
7870 then
7871 Error_Msg_NE
7872 ("parent type of& must not be outside generic body"
7873 & " (RM 3.9.1(4))",
7874 Indic, Derived_Type);
7875 end if;
7876 end;
7877 end if;
7878 end if;
7880 -- Ada 2005 (AI-251)
7882 if Ada_Version >= Ada_2005 and then Is_Tagged then
7884 -- "The declaration of a specific descendant of an interface type
7885 -- freezes the interface type" (RM 13.14).
7887 declare
7888 Iface : Node_Id;
7889 begin
7890 if Is_Non_Empty_List (Interface_List (Type_Def)) then
7891 Iface := First (Interface_List (Type_Def));
7892 while Present (Iface) loop
7893 Freeze_Before (N, Etype (Iface));
7894 Next (Iface);
7895 end loop;
7896 end if;
7897 end;
7898 end if;
7900 -- STEP 1b : preliminary cleanup of the full view of private types
7902 -- If the type is already marked as having discriminants, then it's the
7903 -- completion of a private type or private extension and we need to
7904 -- retain the discriminants from the partial view if the current
7905 -- declaration has Discriminant_Specifications so that we can verify
7906 -- conformance. However, we must remove any existing components that
7907 -- were inherited from the parent (and attached in Copy_And_Swap)
7908 -- because the full type inherits all appropriate components anyway, and
7909 -- we do not want the partial view's components interfering.
7911 if Has_Discriminants (Derived_Type) and then Discriminant_Specs then
7912 Discrim := First_Discriminant (Derived_Type);
7913 loop
7914 Last_Discrim := Discrim;
7915 Next_Discriminant (Discrim);
7916 exit when No (Discrim);
7917 end loop;
7919 Set_Last_Entity (Derived_Type, Last_Discrim);
7921 -- In all other cases wipe out the list of inherited components (even
7922 -- inherited discriminants), it will be properly rebuilt here.
7924 else
7925 Set_First_Entity (Derived_Type, Empty);
7926 Set_Last_Entity (Derived_Type, Empty);
7927 end if;
7929 -- STEP 1c: Initialize some flags for the Derived_Type
7931 -- The following flags must be initialized here so that
7932 -- Process_Discriminants can check that discriminants of tagged types do
7933 -- not have a default initial value and that access discriminants are
7934 -- only specified for limited records. For completeness, these flags are
7935 -- also initialized along with all the other flags below.
7937 -- AI-419: Limitedness is not inherited from an interface parent, so to
7938 -- be limited in that case the type must be explicitly declared as
7939 -- limited. However, task and protected interfaces are always limited.
7941 if Limited_Present (Type_Def) then
7942 Set_Is_Limited_Record (Derived_Type);
7944 elsif Is_Limited_Record (Parent_Type)
7945 or else (Present (Full_View (Parent_Type))
7946 and then Is_Limited_Record (Full_View (Parent_Type)))
7947 then
7948 if not Is_Interface (Parent_Type)
7949 or else Is_Synchronized_Interface (Parent_Type)
7950 or else Is_Protected_Interface (Parent_Type)
7951 or else Is_Task_Interface (Parent_Type)
7952 then
7953 Set_Is_Limited_Record (Derived_Type);
7954 end if;
7955 end if;
7957 -- STEP 2a: process discriminants of derived type if any
7959 Push_Scope (Derived_Type);
7961 if Discriminant_Specs then
7962 Set_Has_Unknown_Discriminants (Derived_Type, False);
7964 -- The following call initializes fields Has_Discriminants and
7965 -- Discriminant_Constraint, unless we are processing the completion
7966 -- of a private type declaration.
7968 Check_Or_Process_Discriminants (N, Derived_Type);
7970 -- For untagged types, the constraint on the Parent_Type must be
7971 -- present and is used to rename the discriminants.
7973 if not Is_Tagged and then not Has_Discriminants (Parent_Type) then
7974 Error_Msg_N ("untagged parent must have discriminants", Indic);
7976 elsif not Is_Tagged and then not Constraint_Present then
7977 Error_Msg_N
7978 ("discriminant constraint needed for derived untagged records",
7979 Indic);
7981 -- Otherwise the parent subtype must be constrained unless we have a
7982 -- private extension.
7984 elsif not Constraint_Present
7985 and then not Private_Extension
7986 and then not Is_Constrained (Parent_Type)
7987 then
7988 Error_Msg_N
7989 ("unconstrained type not allowed in this context", Indic);
7991 elsif Constraint_Present then
7992 -- The following call sets the field Corresponding_Discriminant
7993 -- for the discriminants in the Derived_Type.
7995 Discs := Build_Discriminant_Constraints (Parent_Type, Indic, True);
7997 -- For untagged types all new discriminants must rename
7998 -- discriminants in the parent. For private extensions new
7999 -- discriminants cannot rename old ones (implied by [7.3(13)]).
8001 Discrim := First_Discriminant (Derived_Type);
8002 while Present (Discrim) loop
8003 if not Is_Tagged
8004 and then No (Corresponding_Discriminant (Discrim))
8005 then
8006 Error_Msg_N
8007 ("new discriminants must constrain old ones", Discrim);
8009 elsif Private_Extension
8010 and then Present (Corresponding_Discriminant (Discrim))
8011 then
8012 Error_Msg_N
8013 ("only static constraints allowed for parent"
8014 & " discriminants in the partial view", Indic);
8015 exit;
8016 end if;
8018 -- If a new discriminant is used in the constraint, then its
8019 -- subtype must be statically compatible with the parent
8020 -- discriminant's subtype (3.7(15)).
8022 -- However, if the record contains an array constrained by
8023 -- the discriminant but with some different bound, the compiler
8024 -- attemps to create a smaller range for the discriminant type.
8025 -- (See exp_ch3.Adjust_Discriminants). In this case, where
8026 -- the discriminant type is a scalar type, the check must use
8027 -- the original discriminant type in the parent declaration.
8029 declare
8030 Corr_Disc : constant Entity_Id :=
8031 Corresponding_Discriminant (Discrim);
8032 Disc_Type : constant Entity_Id := Etype (Discrim);
8033 Corr_Type : Entity_Id;
8035 begin
8036 if Present (Corr_Disc) then
8037 if Is_Scalar_Type (Disc_Type) then
8038 Corr_Type :=
8039 Entity (Discriminant_Type (Parent (Corr_Disc)));
8040 else
8041 Corr_Type := Etype (Corr_Disc);
8042 end if;
8044 if not
8045 Subtypes_Statically_Compatible (Disc_Type, Corr_Type)
8046 then
8047 Error_Msg_N
8048 ("subtype must be compatible "
8049 & "with parent discriminant",
8050 Discrim);
8051 end if;
8052 end if;
8053 end;
8055 Next_Discriminant (Discrim);
8056 end loop;
8058 -- Check whether the constraints of the full view statically
8059 -- match those imposed by the parent subtype [7.3(13)].
8061 if Present (Stored_Constraint (Derived_Type)) then
8062 declare
8063 C1, C2 : Elmt_Id;
8065 begin
8066 C1 := First_Elmt (Discs);
8067 C2 := First_Elmt (Stored_Constraint (Derived_Type));
8068 while Present (C1) and then Present (C2) loop
8069 if not
8070 Fully_Conformant_Expressions (Node (C1), Node (C2))
8071 then
8072 Error_Msg_N
8073 ("not conformant with previous declaration",
8074 Node (C1));
8075 end if;
8077 Next_Elmt (C1);
8078 Next_Elmt (C2);
8079 end loop;
8080 end;
8081 end if;
8082 end if;
8084 -- STEP 2b: No new discriminants, inherit discriminants if any
8086 else
8087 if Private_Extension then
8088 Set_Has_Unknown_Discriminants
8089 (Derived_Type,
8090 Has_Unknown_Discriminants (Parent_Type)
8091 or else Unknown_Discriminants_Present (N));
8093 -- The partial view of the parent may have unknown discriminants,
8094 -- but if the full view has discriminants and the parent type is
8095 -- in scope they must be inherited.
8097 elsif Has_Unknown_Discriminants (Parent_Type)
8098 and then
8099 (not Has_Discriminants (Parent_Type)
8100 or else not In_Open_Scopes (Scope (Parent_Type)))
8101 then
8102 Set_Has_Unknown_Discriminants (Derived_Type);
8103 end if;
8105 if not Has_Unknown_Discriminants (Derived_Type)
8106 and then not Has_Unknown_Discriminants (Parent_Base)
8107 and then Has_Discriminants (Parent_Type)
8108 then
8109 Inherit_Discrims := True;
8110 Set_Has_Discriminants
8111 (Derived_Type, True);
8112 Set_Discriminant_Constraint
8113 (Derived_Type, Discriminant_Constraint (Parent_Base));
8114 end if;
8116 -- The following test is true for private types (remember
8117 -- transformation 5. is not applied to those) and in an error
8118 -- situation.
8120 if Constraint_Present then
8121 Discs := Build_Discriminant_Constraints (Parent_Type, Indic);
8122 end if;
8124 -- For now mark a new derived type as constrained only if it has no
8125 -- discriminants. At the end of Build_Derived_Record_Type we properly
8126 -- set this flag in the case of private extensions. See comments in
8127 -- point 9. just before body of Build_Derived_Record_Type.
8129 Set_Is_Constrained
8130 (Derived_Type,
8131 not (Inherit_Discrims
8132 or else Has_Unknown_Discriminants (Derived_Type)));
8133 end if;
8135 -- STEP 3: initialize fields of derived type
8137 Set_Is_Tagged_Type (Derived_Type, Is_Tagged);
8138 Set_Stored_Constraint (Derived_Type, No_Elist);
8140 -- Ada 2005 (AI-251): Private type-declarations can implement interfaces
8141 -- but cannot be interfaces
8143 if not Private_Extension
8144 and then Ekind (Derived_Type) /= E_Private_Type
8145 and then Ekind (Derived_Type) /= E_Limited_Private_Type
8146 then
8147 if Interface_Present (Type_Def) then
8148 Analyze_Interface_Declaration (Derived_Type, Type_Def);
8149 end if;
8151 Set_Interfaces (Derived_Type, No_Elist);
8152 end if;
8154 -- Fields inherited from the Parent_Type
8156 Set_Has_Specified_Layout
8157 (Derived_Type, Has_Specified_Layout (Parent_Type));
8158 Set_Is_Limited_Composite
8159 (Derived_Type, Is_Limited_Composite (Parent_Type));
8160 Set_Is_Private_Composite
8161 (Derived_Type, Is_Private_Composite (Parent_Type));
8163 -- Fields inherited from the Parent_Base
8165 Set_Has_Controlled_Component
8166 (Derived_Type, Has_Controlled_Component (Parent_Base));
8167 Set_Has_Non_Standard_Rep
8168 (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
8169 Set_Has_Primitive_Operations
8170 (Derived_Type, Has_Primitive_Operations (Parent_Base));
8172 -- Fields inherited from the Parent_Base in the non-private case
8174 if Ekind (Derived_Type) = E_Record_Type then
8175 Set_Has_Complex_Representation
8176 (Derived_Type, Has_Complex_Representation (Parent_Base));
8177 end if;
8179 -- Fields inherited from the Parent_Base for record types
8181 if Is_Record_Type (Derived_Type) then
8183 declare
8184 Parent_Full : Entity_Id;
8186 begin
8187 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
8188 -- Parent_Base can be a private type or private extension. Go
8189 -- to the full view here to get the E_Record_Type specific flags.
8191 if Present (Full_View (Parent_Base)) then
8192 Parent_Full := Full_View (Parent_Base);
8193 else
8194 Parent_Full := Parent_Base;
8195 end if;
8197 Set_OK_To_Reorder_Components
8198 (Derived_Type, OK_To_Reorder_Components (Parent_Full));
8199 end;
8200 end if;
8202 -- Set fields for private derived types
8204 if Is_Private_Type (Derived_Type) then
8205 Set_Depends_On_Private (Derived_Type, True);
8206 Set_Private_Dependents (Derived_Type, New_Elmt_List);
8208 -- Inherit fields from non private record types. If this is the
8209 -- completion of a derivation from a private type, the parent itself
8210 -- is private, and the attributes come from its full view, which must
8211 -- be present.
8213 else
8214 if Is_Private_Type (Parent_Base)
8215 and then not Is_Record_Type (Parent_Base)
8216 then
8217 Set_Component_Alignment
8218 (Derived_Type, Component_Alignment (Full_View (Parent_Base)));
8219 Set_C_Pass_By_Copy
8220 (Derived_Type, C_Pass_By_Copy (Full_View (Parent_Base)));
8221 else
8222 Set_Component_Alignment
8223 (Derived_Type, Component_Alignment (Parent_Base));
8224 Set_C_Pass_By_Copy
8225 (Derived_Type, C_Pass_By_Copy (Parent_Base));
8226 end if;
8227 end if;
8229 -- Set fields for tagged types
8231 if Is_Tagged then
8232 Set_Direct_Primitive_Operations (Derived_Type, New_Elmt_List);
8234 -- All tagged types defined in Ada.Finalization are controlled
8236 if Chars (Scope (Derived_Type)) = Name_Finalization
8237 and then Chars (Scope (Scope (Derived_Type))) = Name_Ada
8238 and then Scope (Scope (Scope (Derived_Type))) = Standard_Standard
8239 then
8240 Set_Is_Controlled (Derived_Type);
8241 else
8242 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Base));
8243 end if;
8245 -- Minor optimization: there is no need to generate the class-wide
8246 -- entity associated with an underlying record view.
8248 if not Is_Underlying_Record_View (Derived_Type) then
8249 Make_Class_Wide_Type (Derived_Type);
8250 end if;
8252 Set_Is_Abstract_Type (Derived_Type, Abstract_Present (Type_Def));
8254 if Has_Discriminants (Derived_Type)
8255 and then Constraint_Present
8256 then
8257 Set_Stored_Constraint
8258 (Derived_Type, Expand_To_Stored_Constraint (Parent_Base, Discs));
8259 end if;
8261 if Ada_Version >= Ada_2005 then
8262 declare
8263 Ifaces_List : Elist_Id;
8265 begin
8266 -- Checks rules 3.9.4 (13/2 and 14/2)
8268 if Comes_From_Source (Derived_Type)
8269 and then not Is_Private_Type (Derived_Type)
8270 and then Is_Interface (Parent_Type)
8271 and then not Is_Interface (Derived_Type)
8272 then
8273 if Is_Task_Interface (Parent_Type) then
8274 Error_Msg_N
8275 ("(Ada 2005) task type required (RM 3.9.4 (13.2))",
8276 Derived_Type);
8278 elsif Is_Protected_Interface (Parent_Type) then
8279 Error_Msg_N
8280 ("(Ada 2005) protected type required (RM 3.9.4 (14.2))",
8281 Derived_Type);
8282 end if;
8283 end if;
8285 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
8287 Check_Interfaces (N, Type_Def);
8289 -- Ada 2005 (AI-251): Collect the list of progenitors that are
8290 -- not already in the parents.
8292 Collect_Interfaces
8293 (T => Derived_Type,
8294 Ifaces_List => Ifaces_List,
8295 Exclude_Parents => True);
8297 Set_Interfaces (Derived_Type, Ifaces_List);
8299 -- If the derived type is the anonymous type created for
8300 -- a declaration whose parent has a constraint, propagate
8301 -- the interface list to the source type. This must be done
8302 -- prior to the completion of the analysis of the source type
8303 -- because the components in the extension may contain current
8304 -- instances whose legality depends on some ancestor.
8306 if Is_Itype (Derived_Type) then
8307 declare
8308 Def : constant Node_Id :=
8309 Associated_Node_For_Itype (Derived_Type);
8310 begin
8311 if Present (Def)
8312 and then Nkind (Def) = N_Full_Type_Declaration
8313 then
8314 Set_Interfaces
8315 (Defining_Identifier (Def), Ifaces_List);
8316 end if;
8317 end;
8318 end if;
8319 end;
8320 end if;
8322 else
8323 Set_Is_Packed (Derived_Type, Is_Packed (Parent_Base));
8324 Set_Has_Non_Standard_Rep
8325 (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
8326 end if;
8328 -- STEP 4: Inherit components from the parent base and constrain them.
8329 -- Apply the second transformation described in point 6. above.
8331 if (not Is_Empty_Elmt_List (Discs) or else Inherit_Discrims)
8332 or else not Has_Discriminants (Parent_Type)
8333 or else not Is_Constrained (Parent_Type)
8334 then
8335 Constrs := Discs;
8336 else
8337 Constrs := Discriminant_Constraint (Parent_Type);
8338 end if;
8340 Assoc_List :=
8341 Inherit_Components
8342 (N, Parent_Base, Derived_Type, Is_Tagged, Inherit_Discrims, Constrs);
8344 -- STEP 5a: Copy the parent record declaration for untagged types
8346 if not Is_Tagged then
8348 -- Discriminant_Constraint (Derived_Type) has been properly
8349 -- constructed. Save it and temporarily set it to Empty because we
8350 -- do not want the call to New_Copy_Tree below to mess this list.
8352 if Has_Discriminants (Derived_Type) then
8353 Save_Discr_Constr := Discriminant_Constraint (Derived_Type);
8354 Set_Discriminant_Constraint (Derived_Type, No_Elist);
8355 else
8356 Save_Discr_Constr := No_Elist;
8357 end if;
8359 -- Save the Etype field of Derived_Type. It is correctly set now,
8360 -- but the call to New_Copy tree may remap it to point to itself,
8361 -- which is not what we want. Ditto for the Next_Entity field.
8363 Save_Etype := Etype (Derived_Type);
8364 Save_Next_Entity := Next_Entity (Derived_Type);
8366 -- Assoc_List maps all stored discriminants in the Parent_Base to
8367 -- stored discriminants in the Derived_Type. It is fundamental that
8368 -- no types or itypes with discriminants other than the stored
8369 -- discriminants appear in the entities declared inside
8370 -- Derived_Type, since the back end cannot deal with it.
8372 New_Decl :=
8373 New_Copy_Tree
8374 (Parent (Parent_Base), Map => Assoc_List, New_Sloc => Loc);
8376 -- Restore the fields saved prior to the New_Copy_Tree call
8377 -- and compute the stored constraint.
8379 Set_Etype (Derived_Type, Save_Etype);
8380 Set_Next_Entity (Derived_Type, Save_Next_Entity);
8382 if Has_Discriminants (Derived_Type) then
8383 Set_Discriminant_Constraint
8384 (Derived_Type, Save_Discr_Constr);
8385 Set_Stored_Constraint
8386 (Derived_Type, Expand_To_Stored_Constraint (Parent_Type, Discs));
8387 Replace_Components (Derived_Type, New_Decl);
8388 Set_Has_Implicit_Dereference
8389 (Derived_Type, Has_Implicit_Dereference (Parent_Type));
8390 end if;
8392 -- Insert the new derived type declaration
8394 Rewrite (N, New_Decl);
8396 -- STEP 5b: Complete the processing for record extensions in generics
8398 -- There is no completion for record extensions declared in the
8399 -- parameter part of a generic, so we need to complete processing for
8400 -- these generic record extensions here. The Record_Type_Definition call
8401 -- will change the Ekind of the components from E_Void to E_Component.
8403 elsif Private_Extension and then Is_Generic_Type (Derived_Type) then
8404 Record_Type_Definition (Empty, Derived_Type);
8406 -- STEP 5c: Process the record extension for non private tagged types
8408 elsif not Private_Extension then
8410 -- Add the _parent field in the derived type
8412 Expand_Record_Extension (Derived_Type, Type_Def);
8414 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
8415 -- implemented interfaces if we are in expansion mode
8417 if Expander_Active
8418 and then Has_Interfaces (Derived_Type)
8419 then
8420 Add_Interface_Tag_Components (N, Derived_Type);
8421 end if;
8423 -- Analyze the record extension
8425 Record_Type_Definition
8426 (Record_Extension_Part (Type_Def), Derived_Type);
8427 end if;
8429 End_Scope;
8431 -- Nothing else to do if there is an error in the derivation.
8432 -- An unusual case: the full view may be derived from a type in an
8433 -- instance, when the partial view was used illegally as an actual
8434 -- in that instance, leading to a circular definition.
8436 if Etype (Derived_Type) = Any_Type
8437 or else Etype (Parent_Type) = Derived_Type
8438 then
8439 return;
8440 end if;
8442 -- Set delayed freeze and then derive subprograms, we need to do
8443 -- this in this order so that derived subprograms inherit the
8444 -- derived freeze if necessary.
8446 Set_Has_Delayed_Freeze (Derived_Type);
8448 if Derive_Subps then
8449 Derive_Subprograms (Parent_Type, Derived_Type);
8450 end if;
8452 -- If we have a private extension which defines a constrained derived
8453 -- type mark as constrained here after we have derived subprograms. See
8454 -- comment on point 9. just above the body of Build_Derived_Record_Type.
8456 if Private_Extension and then Inherit_Discrims then
8457 if Constraint_Present and then not Is_Empty_Elmt_List (Discs) then
8458 Set_Is_Constrained (Derived_Type, True);
8459 Set_Discriminant_Constraint (Derived_Type, Discs);
8461 elsif Is_Constrained (Parent_Type) then
8462 Set_Is_Constrained
8463 (Derived_Type, True);
8464 Set_Discriminant_Constraint
8465 (Derived_Type, Discriminant_Constraint (Parent_Type));
8466 end if;
8467 end if;
8469 -- Update the class-wide type, which shares the now-completed entity
8470 -- list with its specific type. In case of underlying record views,
8471 -- we do not generate the corresponding class wide entity.
8473 if Is_Tagged
8474 and then not Is_Underlying_Record_View (Derived_Type)
8475 then
8476 Set_First_Entity
8477 (Class_Wide_Type (Derived_Type), First_Entity (Derived_Type));
8478 Set_Last_Entity
8479 (Class_Wide_Type (Derived_Type), Last_Entity (Derived_Type));
8480 end if;
8482 Check_Function_Writable_Actuals (N);
8483 end Build_Derived_Record_Type;
8485 ------------------------
8486 -- Build_Derived_Type --
8487 ------------------------
8489 procedure Build_Derived_Type
8490 (N : Node_Id;
8491 Parent_Type : Entity_Id;
8492 Derived_Type : Entity_Id;
8493 Is_Completion : Boolean;
8494 Derive_Subps : Boolean := True)
8496 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
8498 begin
8499 -- Set common attributes
8501 Set_Scope (Derived_Type, Current_Scope);
8503 Set_Etype (Derived_Type, Parent_Base);
8504 Set_Ekind (Derived_Type, Ekind (Parent_Base));
8505 Set_Has_Task (Derived_Type, Has_Task (Parent_Base));
8506 Set_Has_Protected (Derived_Type, Has_Protected (Parent_Base));
8508 Set_Size_Info (Derived_Type, Parent_Type);
8509 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
8510 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Type));
8511 Set_Is_Tagged_Type (Derived_Type, Is_Tagged_Type (Parent_Type));
8513 -- If the parent has primitive routines, set the derived type link
8515 if Has_Primitive_Operations (Parent_Type) then
8516 Set_Derived_Type_Link (Parent_Base, Derived_Type);
8517 end if;
8519 -- If the parent type is a private subtype, the convention on the base
8520 -- type may be set in the private part, and not propagated to the
8521 -- subtype until later, so we obtain the convention from the base type.
8523 Set_Convention (Derived_Type, Convention (Parent_Base));
8525 -- Set SSO default for record or array type
8527 if (Is_Array_Type (Derived_Type)
8528 or else Is_Record_Type (Derived_Type))
8529 and then Is_Base_Type (Derived_Type)
8530 then
8531 Set_Default_SSO (Derived_Type);
8532 end if;
8534 -- Propagate invariant information. The new type has invariants if
8535 -- they are inherited from the parent type, and these invariants can
8536 -- be further inherited, so both flags are set.
8538 -- We similarly inherit predicates
8540 if Has_Predicates (Parent_Type) then
8541 Set_Has_Predicates (Derived_Type);
8542 end if;
8544 -- The derived type inherits the representation clauses of the parent.
8545 -- However, for a private type that is completed by a derivation, there
8546 -- may be operation attributes that have been specified already (stream
8547 -- attributes and External_Tag) and those must be provided. Finally,
8548 -- if the partial view is a private extension, the representation items
8549 -- of the parent have been inherited already, and should not be chained
8550 -- twice to the derived type.
8552 if Is_Tagged_Type (Parent_Type)
8553 and then Present (First_Rep_Item (Derived_Type))
8554 then
8555 -- The existing items are either operational items or items inherited
8556 -- from a private extension declaration.
8558 declare
8559 Rep : Node_Id;
8560 -- Used to iterate over representation items of the derived type
8562 Last_Rep : Node_Id;
8563 -- Last representation item of the (non-empty) representation
8564 -- item list of the derived type.
8566 Found : Boolean := False;
8568 begin
8569 Rep := First_Rep_Item (Derived_Type);
8570 Last_Rep := Rep;
8571 while Present (Rep) loop
8572 if Rep = First_Rep_Item (Parent_Type) then
8573 Found := True;
8574 exit;
8576 else
8577 Rep := Next_Rep_Item (Rep);
8579 if Present (Rep) then
8580 Last_Rep := Rep;
8581 end if;
8582 end if;
8583 end loop;
8585 -- Here if we either encountered the parent type's first rep
8586 -- item on the derived type's rep item list (in which case
8587 -- Found is True, and we have nothing else to do), or if we
8588 -- reached the last rep item of the derived type, which is
8589 -- Last_Rep, in which case we further chain the parent type's
8590 -- rep items to those of the derived type.
8592 if not Found then
8593 Set_Next_Rep_Item (Last_Rep, First_Rep_Item (Parent_Type));
8594 end if;
8595 end;
8597 else
8598 Set_First_Rep_Item (Derived_Type, First_Rep_Item (Parent_Type));
8599 end if;
8601 -- If the parent type has delayed rep aspects, then mark the derived
8602 -- type as possibly inheriting a delayed rep aspect.
8604 if Has_Delayed_Rep_Aspects (Parent_Type) then
8605 Set_May_Inherit_Delayed_Rep_Aspects (Derived_Type);
8606 end if;
8608 -- Type dependent processing
8610 case Ekind (Parent_Type) is
8611 when Numeric_Kind =>
8612 Build_Derived_Numeric_Type (N, Parent_Type, Derived_Type);
8614 when Array_Kind =>
8615 Build_Derived_Array_Type (N, Parent_Type, Derived_Type);
8617 when E_Record_Type
8618 | E_Record_Subtype
8619 | Class_Wide_Kind =>
8620 Build_Derived_Record_Type
8621 (N, Parent_Type, Derived_Type, Derive_Subps);
8622 return;
8624 when Enumeration_Kind =>
8625 Build_Derived_Enumeration_Type (N, Parent_Type, Derived_Type);
8627 when Access_Kind =>
8628 Build_Derived_Access_Type (N, Parent_Type, Derived_Type);
8630 when Incomplete_Or_Private_Kind =>
8631 Build_Derived_Private_Type
8632 (N, Parent_Type, Derived_Type, Is_Completion, Derive_Subps);
8634 -- For discriminated types, the derivation includes deriving
8635 -- primitive operations. For others it is done below.
8637 if Is_Tagged_Type (Parent_Type)
8638 or else Has_Discriminants (Parent_Type)
8639 or else (Present (Full_View (Parent_Type))
8640 and then Has_Discriminants (Full_View (Parent_Type)))
8641 then
8642 return;
8643 end if;
8645 when Concurrent_Kind =>
8646 Build_Derived_Concurrent_Type (N, Parent_Type, Derived_Type);
8648 when others =>
8649 raise Program_Error;
8650 end case;
8652 -- Nothing more to do if some error occurred
8654 if Etype (Derived_Type) = Any_Type then
8655 return;
8656 end if;
8658 -- Set delayed freeze and then derive subprograms, we need to do this
8659 -- in this order so that derived subprograms inherit the derived freeze
8660 -- if necessary.
8662 Set_Has_Delayed_Freeze (Derived_Type);
8664 if Derive_Subps then
8665 Derive_Subprograms (Parent_Type, Derived_Type);
8666 end if;
8668 Set_Has_Primitive_Operations
8669 (Base_Type (Derived_Type), Has_Primitive_Operations (Parent_Type));
8670 end Build_Derived_Type;
8672 -----------------------
8673 -- Build_Discriminal --
8674 -----------------------
8676 procedure Build_Discriminal (Discrim : Entity_Id) is
8677 D_Minal : Entity_Id;
8678 CR_Disc : Entity_Id;
8680 begin
8681 -- A discriminal has the same name as the discriminant
8683 D_Minal := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
8685 Set_Ekind (D_Minal, E_In_Parameter);
8686 Set_Mechanism (D_Minal, Default_Mechanism);
8687 Set_Etype (D_Minal, Etype (Discrim));
8688 Set_Scope (D_Minal, Current_Scope);
8690 Set_Discriminal (Discrim, D_Minal);
8691 Set_Discriminal_Link (D_Minal, Discrim);
8693 -- For task types, build at once the discriminants of the corresponding
8694 -- record, which are needed if discriminants are used in entry defaults
8695 -- and in family bounds.
8697 if Is_Concurrent_Type (Current_Scope)
8698 or else Is_Limited_Type (Current_Scope)
8699 then
8700 CR_Disc := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
8702 Set_Ekind (CR_Disc, E_In_Parameter);
8703 Set_Mechanism (CR_Disc, Default_Mechanism);
8704 Set_Etype (CR_Disc, Etype (Discrim));
8705 Set_Scope (CR_Disc, Current_Scope);
8706 Set_Discriminal_Link (CR_Disc, Discrim);
8707 Set_CR_Discriminant (Discrim, CR_Disc);
8708 end if;
8709 end Build_Discriminal;
8711 ------------------------------------
8712 -- Build_Discriminant_Constraints --
8713 ------------------------------------
8715 function Build_Discriminant_Constraints
8716 (T : Entity_Id;
8717 Def : Node_Id;
8718 Derived_Def : Boolean := False) return Elist_Id
8720 C : constant Node_Id := Constraint (Def);
8721 Nb_Discr : constant Nat := Number_Discriminants (T);
8723 Discr_Expr : array (1 .. Nb_Discr) of Node_Id := (others => Empty);
8724 -- Saves the expression corresponding to a given discriminant in T
8726 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat;
8727 -- Return the Position number within array Discr_Expr of a discriminant
8728 -- D within the discriminant list of the discriminated type T.
8730 procedure Process_Discriminant_Expression
8731 (Expr : Node_Id;
8732 D : Entity_Id);
8733 -- If this is a discriminant constraint on a partial view, do not
8734 -- generate an overflow check on the discriminant expression. The check
8735 -- will be generated when constraining the full view. Otherwise the
8736 -- backend creates duplicate symbols for the temporaries corresponding
8737 -- to the expressions to be checked, causing spurious assembler errors.
8739 ------------------
8740 -- Pos_Of_Discr --
8741 ------------------
8743 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat is
8744 Disc : Entity_Id;
8746 begin
8747 Disc := First_Discriminant (T);
8748 for J in Discr_Expr'Range loop
8749 if Disc = D then
8750 return J;
8751 end if;
8753 Next_Discriminant (Disc);
8754 end loop;
8756 -- Note: Since this function is called on discriminants that are
8757 -- known to belong to the discriminated type, falling through the
8758 -- loop with no match signals an internal compiler error.
8760 raise Program_Error;
8761 end Pos_Of_Discr;
8763 -------------------------------------
8764 -- Process_Discriminant_Expression --
8765 -------------------------------------
8767 procedure Process_Discriminant_Expression
8768 (Expr : Node_Id;
8769 D : Entity_Id)
8771 BDT : constant Entity_Id := Base_Type (Etype (D));
8773 begin
8774 -- If this is a discriminant constraint on a partial view, do
8775 -- not generate an overflow on the discriminant expression. The
8776 -- check will be generated when constraining the full view.
8778 if Is_Private_Type (T)
8779 and then Present (Full_View (T))
8780 then
8781 Analyze_And_Resolve (Expr, BDT, Suppress => Overflow_Check);
8782 else
8783 Analyze_And_Resolve (Expr, BDT);
8784 end if;
8785 end Process_Discriminant_Expression;
8787 -- Declarations local to Build_Discriminant_Constraints
8789 Discr : Entity_Id;
8790 E : Entity_Id;
8791 Elist : constant Elist_Id := New_Elmt_List;
8793 Constr : Node_Id;
8794 Expr : Node_Id;
8795 Id : Node_Id;
8796 Position : Nat;
8797 Found : Boolean;
8799 Discrim_Present : Boolean := False;
8801 -- Start of processing for Build_Discriminant_Constraints
8803 begin
8804 -- The following loop will process positional associations only.
8805 -- For a positional association, the (single) discriminant is
8806 -- implicitly specified by position, in textual order (RM 3.7.2).
8808 Discr := First_Discriminant (T);
8809 Constr := First (Constraints (C));
8810 for D in Discr_Expr'Range loop
8811 exit when Nkind (Constr) = N_Discriminant_Association;
8813 if No (Constr) then
8814 Error_Msg_N ("too few discriminants given in constraint", C);
8815 return New_Elmt_List;
8817 elsif Nkind (Constr) = N_Range
8818 or else (Nkind (Constr) = N_Attribute_Reference
8819 and then
8820 Attribute_Name (Constr) = Name_Range)
8821 then
8822 Error_Msg_N
8823 ("a range is not a valid discriminant constraint", Constr);
8824 Discr_Expr (D) := Error;
8826 else
8827 Process_Discriminant_Expression (Constr, Discr);
8828 Discr_Expr (D) := Constr;
8829 end if;
8831 Next_Discriminant (Discr);
8832 Next (Constr);
8833 end loop;
8835 if No (Discr) and then Present (Constr) then
8836 Error_Msg_N ("too many discriminants given in constraint", Constr);
8837 return New_Elmt_List;
8838 end if;
8840 -- Named associations can be given in any order, but if both positional
8841 -- and named associations are used in the same discriminant constraint,
8842 -- then positional associations must occur first, at their normal
8843 -- position. Hence once a named association is used, the rest of the
8844 -- discriminant constraint must use only named associations.
8846 while Present (Constr) loop
8848 -- Positional association forbidden after a named association
8850 if Nkind (Constr) /= N_Discriminant_Association then
8851 Error_Msg_N ("positional association follows named one", Constr);
8852 return New_Elmt_List;
8854 -- Otherwise it is a named association
8856 else
8857 -- E records the type of the discriminants in the named
8858 -- association. All the discriminants specified in the same name
8859 -- association must have the same type.
8861 E := Empty;
8863 -- Search the list of discriminants in T to see if the simple name
8864 -- given in the constraint matches any of them.
8866 Id := First (Selector_Names (Constr));
8867 while Present (Id) loop
8868 Found := False;
8870 -- If Original_Discriminant is present, we are processing a
8871 -- generic instantiation and this is an instance node. We need
8872 -- to find the name of the corresponding discriminant in the
8873 -- actual record type T and not the name of the discriminant in
8874 -- the generic formal. Example:
8876 -- generic
8877 -- type G (D : int) is private;
8878 -- package P is
8879 -- subtype W is G (D => 1);
8880 -- end package;
8881 -- type Rec (X : int) is record ... end record;
8882 -- package Q is new P (G => Rec);
8884 -- At the point of the instantiation, formal type G is Rec
8885 -- and therefore when reanalyzing "subtype W is G (D => 1);"
8886 -- which really looks like "subtype W is Rec (D => 1);" at
8887 -- the point of instantiation, we want to find the discriminant
8888 -- that corresponds to D in Rec, i.e. X.
8890 if Present (Original_Discriminant (Id))
8891 and then In_Instance
8892 then
8893 Discr := Find_Corresponding_Discriminant (Id, T);
8894 Found := True;
8896 else
8897 Discr := First_Discriminant (T);
8898 while Present (Discr) loop
8899 if Chars (Discr) = Chars (Id) then
8900 Found := True;
8901 exit;
8902 end if;
8904 Next_Discriminant (Discr);
8905 end loop;
8907 if not Found then
8908 Error_Msg_N ("& does not match any discriminant", Id);
8909 return New_Elmt_List;
8911 -- If the parent type is a generic formal, preserve the
8912 -- name of the discriminant for subsequent instances.
8913 -- see comment at the beginning of this if statement.
8915 elsif Is_Generic_Type (Root_Type (T)) then
8916 Set_Original_Discriminant (Id, Discr);
8917 end if;
8918 end if;
8920 Position := Pos_Of_Discr (T, Discr);
8922 if Present (Discr_Expr (Position)) then
8923 Error_Msg_N ("duplicate constraint for discriminant&", Id);
8925 else
8926 -- Each discriminant specified in the same named association
8927 -- must be associated with a separate copy of the
8928 -- corresponding expression.
8930 if Present (Next (Id)) then
8931 Expr := New_Copy_Tree (Expression (Constr));
8932 Set_Parent (Expr, Parent (Expression (Constr)));
8933 else
8934 Expr := Expression (Constr);
8935 end if;
8937 Discr_Expr (Position) := Expr;
8938 Process_Discriminant_Expression (Expr, Discr);
8939 end if;
8941 -- A discriminant association with more than one discriminant
8942 -- name is only allowed if the named discriminants are all of
8943 -- the same type (RM 3.7.1(8)).
8945 if E = Empty then
8946 E := Base_Type (Etype (Discr));
8948 elsif Base_Type (Etype (Discr)) /= E then
8949 Error_Msg_N
8950 ("all discriminants in an association " &
8951 "must have the same type", Id);
8952 end if;
8954 Next (Id);
8955 end loop;
8956 end if;
8958 Next (Constr);
8959 end loop;
8961 -- A discriminant constraint must provide exactly one value for each
8962 -- discriminant of the type (RM 3.7.1(8)).
8964 for J in Discr_Expr'Range loop
8965 if No (Discr_Expr (J)) then
8966 Error_Msg_N ("too few discriminants given in constraint", C);
8967 return New_Elmt_List;
8968 end if;
8969 end loop;
8971 -- Determine if there are discriminant expressions in the constraint
8973 for J in Discr_Expr'Range loop
8974 if Denotes_Discriminant
8975 (Discr_Expr (J), Check_Concurrent => True)
8976 then
8977 Discrim_Present := True;
8978 end if;
8979 end loop;
8981 -- Build an element list consisting of the expressions given in the
8982 -- discriminant constraint and apply the appropriate checks. The list
8983 -- is constructed after resolving any named discriminant associations
8984 -- and therefore the expressions appear in the textual order of the
8985 -- discriminants.
8987 Discr := First_Discriminant (T);
8988 for J in Discr_Expr'Range loop
8989 if Discr_Expr (J) /= Error then
8990 Append_Elmt (Discr_Expr (J), Elist);
8992 -- If any of the discriminant constraints is given by a
8993 -- discriminant and we are in a derived type declaration we
8994 -- have a discriminant renaming. Establish link between new
8995 -- and old discriminant.
8997 if Denotes_Discriminant (Discr_Expr (J)) then
8998 if Derived_Def then
8999 Set_Corresponding_Discriminant
9000 (Entity (Discr_Expr (J)), Discr);
9001 end if;
9003 -- Force the evaluation of non-discriminant expressions.
9004 -- If we have found a discriminant in the constraint 3.4(26)
9005 -- and 3.8(18) demand that no range checks are performed are
9006 -- after evaluation. If the constraint is for a component
9007 -- definition that has a per-object constraint, expressions are
9008 -- evaluated but not checked either. In all other cases perform
9009 -- a range check.
9011 else
9012 if Discrim_Present then
9013 null;
9015 elsif Nkind (Parent (Parent (Def))) = N_Component_Declaration
9016 and then
9017 Has_Per_Object_Constraint
9018 (Defining_Identifier (Parent (Parent (Def))))
9019 then
9020 null;
9022 elsif Is_Access_Type (Etype (Discr)) then
9023 Apply_Constraint_Check (Discr_Expr (J), Etype (Discr));
9025 else
9026 Apply_Range_Check (Discr_Expr (J), Etype (Discr));
9027 end if;
9029 Force_Evaluation (Discr_Expr (J));
9030 end if;
9032 -- Check that the designated type of an access discriminant's
9033 -- expression is not a class-wide type unless the discriminant's
9034 -- designated type is also class-wide.
9036 if Ekind (Etype (Discr)) = E_Anonymous_Access_Type
9037 and then not Is_Class_Wide_Type
9038 (Designated_Type (Etype (Discr)))
9039 and then Etype (Discr_Expr (J)) /= Any_Type
9040 and then Is_Class_Wide_Type
9041 (Designated_Type (Etype (Discr_Expr (J))))
9042 then
9043 Wrong_Type (Discr_Expr (J), Etype (Discr));
9045 elsif Is_Access_Type (Etype (Discr))
9046 and then not Is_Access_Constant (Etype (Discr))
9047 and then Is_Access_Type (Etype (Discr_Expr (J)))
9048 and then Is_Access_Constant (Etype (Discr_Expr (J)))
9049 then
9050 Error_Msg_NE
9051 ("constraint for discriminant& must be access to variable",
9052 Def, Discr);
9053 end if;
9054 end if;
9056 Next_Discriminant (Discr);
9057 end loop;
9059 return Elist;
9060 end Build_Discriminant_Constraints;
9062 ---------------------------------
9063 -- Build_Discriminated_Subtype --
9064 ---------------------------------
9066 procedure Build_Discriminated_Subtype
9067 (T : Entity_Id;
9068 Def_Id : Entity_Id;
9069 Elist : Elist_Id;
9070 Related_Nod : Node_Id;
9071 For_Access : Boolean := False)
9073 Has_Discrs : constant Boolean := Has_Discriminants (T);
9074 Constrained : constant Boolean :=
9075 (Has_Discrs
9076 and then not Is_Empty_Elmt_List (Elist)
9077 and then not Is_Class_Wide_Type (T))
9078 or else Is_Constrained (T);
9080 begin
9081 if Ekind (T) = E_Record_Type then
9082 if For_Access then
9083 Set_Ekind (Def_Id, E_Private_Subtype);
9084 Set_Is_For_Access_Subtype (Def_Id, True);
9085 else
9086 Set_Ekind (Def_Id, E_Record_Subtype);
9087 end if;
9089 -- Inherit preelaboration flag from base, for types for which it
9090 -- may have been set: records, private types, protected types.
9092 Set_Known_To_Have_Preelab_Init
9093 (Def_Id, Known_To_Have_Preelab_Init (T));
9095 elsif Ekind (T) = E_Task_Type then
9096 Set_Ekind (Def_Id, E_Task_Subtype);
9098 elsif Ekind (T) = E_Protected_Type then
9099 Set_Ekind (Def_Id, E_Protected_Subtype);
9100 Set_Known_To_Have_Preelab_Init
9101 (Def_Id, Known_To_Have_Preelab_Init (T));
9103 elsif Is_Private_Type (T) then
9104 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
9105 Set_Known_To_Have_Preelab_Init
9106 (Def_Id, Known_To_Have_Preelab_Init (T));
9108 -- Private subtypes may have private dependents
9110 Set_Private_Dependents (Def_Id, New_Elmt_List);
9112 elsif Is_Class_Wide_Type (T) then
9113 Set_Ekind (Def_Id, E_Class_Wide_Subtype);
9115 else
9116 -- Incomplete type. Attach subtype to list of dependents, to be
9117 -- completed with full view of parent type, unless is it the
9118 -- designated subtype of a record component within an init_proc.
9119 -- This last case arises for a component of an access type whose
9120 -- designated type is incomplete (e.g. a Taft Amendment type).
9121 -- The designated subtype is within an inner scope, and needs no
9122 -- elaboration, because only the access type is needed in the
9123 -- initialization procedure.
9125 Set_Ekind (Def_Id, Ekind (T));
9127 if For_Access and then Within_Init_Proc then
9128 null;
9129 else
9130 Append_Elmt (Def_Id, Private_Dependents (T));
9131 end if;
9132 end if;
9134 Set_Etype (Def_Id, T);
9135 Init_Size_Align (Def_Id);
9136 Set_Has_Discriminants (Def_Id, Has_Discrs);
9137 Set_Is_Constrained (Def_Id, Constrained);
9139 Set_First_Entity (Def_Id, First_Entity (T));
9140 Set_Last_Entity (Def_Id, Last_Entity (T));
9141 Set_Has_Implicit_Dereference
9142 (Def_Id, Has_Implicit_Dereference (T));
9144 -- If the subtype is the completion of a private declaration, there may
9145 -- have been representation clauses for the partial view, and they must
9146 -- be preserved. Build_Derived_Type chains the inherited clauses with
9147 -- the ones appearing on the extension. If this comes from a subtype
9148 -- declaration, all clauses are inherited.
9150 if No (First_Rep_Item (Def_Id)) then
9151 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
9152 end if;
9154 if Is_Tagged_Type (T) then
9155 Set_Is_Tagged_Type (Def_Id);
9156 Make_Class_Wide_Type (Def_Id);
9157 end if;
9159 Set_Stored_Constraint (Def_Id, No_Elist);
9161 if Has_Discrs then
9162 Set_Discriminant_Constraint (Def_Id, Elist);
9163 Set_Stored_Constraint_From_Discriminant_Constraint (Def_Id);
9164 end if;
9166 if Is_Tagged_Type (T) then
9168 -- Ada 2005 (AI-251): In case of concurrent types we inherit the
9169 -- concurrent record type (which has the list of primitive
9170 -- operations).
9172 if Ada_Version >= Ada_2005
9173 and then Is_Concurrent_Type (T)
9174 then
9175 Set_Corresponding_Record_Type (Def_Id,
9176 Corresponding_Record_Type (T));
9177 else
9178 Set_Direct_Primitive_Operations (Def_Id,
9179 Direct_Primitive_Operations (T));
9180 end if;
9182 Set_Is_Abstract_Type (Def_Id, Is_Abstract_Type (T));
9183 end if;
9185 -- Subtypes introduced by component declarations do not need to be
9186 -- marked as delayed, and do not get freeze nodes, because the semantics
9187 -- verifies that the parents of the subtypes are frozen before the
9188 -- enclosing record is frozen.
9190 if not Is_Type (Scope (Def_Id)) then
9191 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
9193 if Is_Private_Type (T)
9194 and then Present (Full_View (T))
9195 then
9196 Conditional_Delay (Def_Id, Full_View (T));
9197 else
9198 Conditional_Delay (Def_Id, T);
9199 end if;
9200 end if;
9202 if Is_Record_Type (T) then
9203 Set_Is_Limited_Record (Def_Id, Is_Limited_Record (T));
9205 if Has_Discrs
9206 and then not Is_Empty_Elmt_List (Elist)
9207 and then not For_Access
9208 then
9209 Create_Constrained_Components (Def_Id, Related_Nod, T, Elist);
9210 elsif not For_Access then
9211 Set_Cloned_Subtype (Def_Id, T);
9212 end if;
9213 end if;
9214 end Build_Discriminated_Subtype;
9216 ---------------------------
9217 -- Build_Itype_Reference --
9218 ---------------------------
9220 procedure Build_Itype_Reference
9221 (Ityp : Entity_Id;
9222 Nod : Node_Id)
9224 IR : constant Node_Id := Make_Itype_Reference (Sloc (Nod));
9225 begin
9227 -- Itype references are only created for use by the back-end
9229 if Inside_A_Generic then
9230 return;
9231 else
9232 Set_Itype (IR, Ityp);
9233 Insert_After (Nod, IR);
9234 end if;
9235 end Build_Itype_Reference;
9237 ------------------------
9238 -- Build_Scalar_Bound --
9239 ------------------------
9241 function Build_Scalar_Bound
9242 (Bound : Node_Id;
9243 Par_T : Entity_Id;
9244 Der_T : Entity_Id) return Node_Id
9246 New_Bound : Entity_Id;
9248 begin
9249 -- Note: not clear why this is needed, how can the original bound
9250 -- be unanalyzed at this point? and if it is, what business do we
9251 -- have messing around with it? and why is the base type of the
9252 -- parent type the right type for the resolution. It probably is
9253 -- not. It is OK for the new bound we are creating, but not for
9254 -- the old one??? Still if it never happens, no problem.
9256 Analyze_And_Resolve (Bound, Base_Type (Par_T));
9258 if Nkind_In (Bound, N_Integer_Literal, N_Real_Literal) then
9259 New_Bound := New_Copy (Bound);
9260 Set_Etype (New_Bound, Der_T);
9261 Set_Analyzed (New_Bound);
9263 elsif Is_Entity_Name (Bound) then
9264 New_Bound := OK_Convert_To (Der_T, New_Copy (Bound));
9266 -- The following is almost certainly wrong. What business do we have
9267 -- relocating a node (Bound) that is presumably still attached to
9268 -- the tree elsewhere???
9270 else
9271 New_Bound := OK_Convert_To (Der_T, Relocate_Node (Bound));
9272 end if;
9274 Set_Etype (New_Bound, Der_T);
9275 return New_Bound;
9276 end Build_Scalar_Bound;
9278 --------------------------------
9279 -- Build_Underlying_Full_View --
9280 --------------------------------
9282 procedure Build_Underlying_Full_View
9283 (N : Node_Id;
9284 Typ : Entity_Id;
9285 Par : Entity_Id)
9287 Loc : constant Source_Ptr := Sloc (N);
9288 Subt : constant Entity_Id :=
9289 Make_Defining_Identifier
9290 (Loc, New_External_Name (Chars (Typ), 'S'));
9292 Constr : Node_Id;
9293 Indic : Node_Id;
9294 C : Node_Id;
9295 Id : Node_Id;
9297 procedure Set_Discriminant_Name (Id : Node_Id);
9298 -- If the derived type has discriminants, they may rename discriminants
9299 -- of the parent. When building the full view of the parent, we need to
9300 -- recover the names of the original discriminants if the constraint is
9301 -- given by named associations.
9303 ---------------------------
9304 -- Set_Discriminant_Name --
9305 ---------------------------
9307 procedure Set_Discriminant_Name (Id : Node_Id) is
9308 Disc : Entity_Id;
9310 begin
9311 Set_Original_Discriminant (Id, Empty);
9313 if Has_Discriminants (Typ) then
9314 Disc := First_Discriminant (Typ);
9315 while Present (Disc) loop
9316 if Chars (Disc) = Chars (Id)
9317 and then Present (Corresponding_Discriminant (Disc))
9318 then
9319 Set_Chars (Id, Chars (Corresponding_Discriminant (Disc)));
9320 end if;
9321 Next_Discriminant (Disc);
9322 end loop;
9323 end if;
9324 end Set_Discriminant_Name;
9326 -- Start of processing for Build_Underlying_Full_View
9328 begin
9329 if Nkind (N) = N_Full_Type_Declaration then
9330 Constr := Constraint (Subtype_Indication (Type_Definition (N)));
9332 elsif Nkind (N) = N_Subtype_Declaration then
9333 Constr := New_Copy_Tree (Constraint (Subtype_Indication (N)));
9335 elsif Nkind (N) = N_Component_Declaration then
9336 Constr :=
9337 New_Copy_Tree
9338 (Constraint (Subtype_Indication (Component_Definition (N))));
9340 else
9341 raise Program_Error;
9342 end if;
9344 C := First (Constraints (Constr));
9345 while Present (C) loop
9346 if Nkind (C) = N_Discriminant_Association then
9347 Id := First (Selector_Names (C));
9348 while Present (Id) loop
9349 Set_Discriminant_Name (Id);
9350 Next (Id);
9351 end loop;
9352 end if;
9354 Next (C);
9355 end loop;
9357 Indic :=
9358 Make_Subtype_Declaration (Loc,
9359 Defining_Identifier => Subt,
9360 Subtype_Indication =>
9361 Make_Subtype_Indication (Loc,
9362 Subtype_Mark => New_Occurrence_Of (Par, Loc),
9363 Constraint => New_Copy_Tree (Constr)));
9365 -- If this is a component subtype for an outer itype, it is not
9366 -- a list member, so simply set the parent link for analysis: if
9367 -- the enclosing type does not need to be in a declarative list,
9368 -- neither do the components.
9370 if Is_List_Member (N)
9371 and then Nkind (N) /= N_Component_Declaration
9372 then
9373 Insert_Before (N, Indic);
9374 else
9375 Set_Parent (Indic, Parent (N));
9376 end if;
9378 Analyze (Indic);
9379 Set_Underlying_Full_View (Typ, Full_View (Subt));
9380 end Build_Underlying_Full_View;
9382 -------------------------------
9383 -- Check_Abstract_Overriding --
9384 -------------------------------
9386 procedure Check_Abstract_Overriding (T : Entity_Id) is
9387 Alias_Subp : Entity_Id;
9388 Elmt : Elmt_Id;
9389 Op_List : Elist_Id;
9390 Subp : Entity_Id;
9391 Type_Def : Node_Id;
9393 procedure Check_Pragma_Implemented (Subp : Entity_Id);
9394 -- Ada 2012 (AI05-0030): Subprogram Subp overrides an interface routine
9395 -- which has pragma Implemented already set. Check whether Subp's entity
9396 -- kind conforms to the implementation kind of the overridden routine.
9398 procedure Check_Pragma_Implemented
9399 (Subp : Entity_Id;
9400 Iface_Subp : Entity_Id);
9401 -- Ada 2012 (AI05-0030): Subprogram Subp overrides interface routine
9402 -- Iface_Subp and both entities have pragma Implemented already set on
9403 -- them. Check whether the two implementation kinds are conforming.
9405 procedure Inherit_Pragma_Implemented
9406 (Subp : Entity_Id;
9407 Iface_Subp : Entity_Id);
9408 -- Ada 2012 (AI05-0030): Interface primitive Subp overrides interface
9409 -- subprogram Iface_Subp which has been marked by pragma Implemented.
9410 -- Propagate the implementation kind of Iface_Subp to Subp.
9412 ------------------------------
9413 -- Check_Pragma_Implemented --
9414 ------------------------------
9416 procedure Check_Pragma_Implemented (Subp : Entity_Id) is
9417 Iface_Alias : constant Entity_Id := Interface_Alias (Subp);
9418 Impl_Kind : constant Name_Id := Implementation_Kind (Iface_Alias);
9419 Subp_Alias : constant Entity_Id := Alias (Subp);
9420 Contr_Typ : Entity_Id;
9421 Impl_Subp : Entity_Id;
9423 begin
9424 -- Subp must have an alias since it is a hidden entity used to link
9425 -- an interface subprogram to its overriding counterpart.
9427 pragma Assert (Present (Subp_Alias));
9429 -- Handle aliases to synchronized wrappers
9431 Impl_Subp := Subp_Alias;
9433 if Is_Primitive_Wrapper (Impl_Subp) then
9434 Impl_Subp := Wrapped_Entity (Impl_Subp);
9435 end if;
9437 -- Extract the type of the controlling formal
9439 Contr_Typ := Etype (First_Formal (Subp_Alias));
9441 if Is_Concurrent_Record_Type (Contr_Typ) then
9442 Contr_Typ := Corresponding_Concurrent_Type (Contr_Typ);
9443 end if;
9445 -- An interface subprogram whose implementation kind is By_Entry must
9446 -- be implemented by an entry.
9448 if Impl_Kind = Name_By_Entry
9449 and then Ekind (Impl_Subp) /= E_Entry
9450 then
9451 Error_Msg_Node_2 := Iface_Alias;
9452 Error_Msg_NE
9453 ("type & must implement abstract subprogram & with an entry",
9454 Subp_Alias, Contr_Typ);
9456 elsif Impl_Kind = Name_By_Protected_Procedure then
9458 -- An interface subprogram whose implementation kind is By_
9459 -- Protected_Procedure cannot be implemented by a primitive
9460 -- procedure of a task type.
9462 if Ekind (Contr_Typ) /= E_Protected_Type then
9463 Error_Msg_Node_2 := Contr_Typ;
9464 Error_Msg_NE
9465 ("interface subprogram & cannot be implemented by a " &
9466 "primitive procedure of task type &", Subp_Alias,
9467 Iface_Alias);
9469 -- An interface subprogram whose implementation kind is By_
9470 -- Protected_Procedure must be implemented by a procedure.
9472 elsif Ekind (Impl_Subp) /= E_Procedure then
9473 Error_Msg_Node_2 := Iface_Alias;
9474 Error_Msg_NE
9475 ("type & must implement abstract subprogram & with a " &
9476 "procedure", Subp_Alias, Contr_Typ);
9478 elsif Present (Get_Rep_Pragma (Impl_Subp, Name_Implemented))
9479 and then Implementation_Kind (Impl_Subp) /= Impl_Kind
9480 then
9481 Error_Msg_Name_1 := Impl_Kind;
9482 Error_Msg_N
9483 ("overriding operation& must have synchronization%",
9484 Subp_Alias);
9485 end if;
9487 -- If primitive has Optional synchronization, overriding operation
9488 -- must match if it has an explicit synchronization..
9490 elsif Present (Get_Rep_Pragma (Impl_Subp, Name_Implemented))
9491 and then Implementation_Kind (Impl_Subp) /= Impl_Kind
9492 then
9493 Error_Msg_Name_1 := Impl_Kind;
9494 Error_Msg_N
9495 ("overriding operation& must have syncrhonization%",
9496 Subp_Alias);
9497 end if;
9498 end Check_Pragma_Implemented;
9500 ------------------------------
9501 -- Check_Pragma_Implemented --
9502 ------------------------------
9504 procedure Check_Pragma_Implemented
9505 (Subp : Entity_Id;
9506 Iface_Subp : Entity_Id)
9508 Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp);
9509 Subp_Kind : constant Name_Id := Implementation_Kind (Subp);
9511 begin
9512 -- Ada 2012 (AI05-0030): The implementation kinds of an overridden
9513 -- and overriding subprogram are different. In general this is an
9514 -- error except when the implementation kind of the overridden
9515 -- subprograms is By_Any or Optional.
9517 if Iface_Kind /= Subp_Kind
9518 and then Iface_Kind /= Name_By_Any
9519 and then Iface_Kind /= Name_Optional
9520 then
9521 if Iface_Kind = Name_By_Entry then
9522 Error_Msg_N
9523 ("incompatible implementation kind, overridden subprogram " &
9524 "is marked By_Entry", Subp);
9525 else
9526 Error_Msg_N
9527 ("incompatible implementation kind, overridden subprogram " &
9528 "is marked By_Protected_Procedure", Subp);
9529 end if;
9530 end if;
9531 end Check_Pragma_Implemented;
9533 --------------------------------
9534 -- Inherit_Pragma_Implemented --
9535 --------------------------------
9537 procedure Inherit_Pragma_Implemented
9538 (Subp : Entity_Id;
9539 Iface_Subp : Entity_Id)
9541 Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp);
9542 Loc : constant Source_Ptr := Sloc (Subp);
9543 Impl_Prag : Node_Id;
9545 begin
9546 -- Since the implementation kind is stored as a representation item
9547 -- rather than a flag, create a pragma node.
9549 Impl_Prag :=
9550 Make_Pragma (Loc,
9551 Chars => Name_Implemented,
9552 Pragma_Argument_Associations => New_List (
9553 Make_Pragma_Argument_Association (Loc,
9554 Expression => New_Occurrence_Of (Subp, Loc)),
9556 Make_Pragma_Argument_Association (Loc,
9557 Expression => Make_Identifier (Loc, Iface_Kind))));
9559 -- The pragma doesn't need to be analyzed because it is internally
9560 -- built. It is safe to directly register it as a rep item since we
9561 -- are only interested in the characters of the implementation kind.
9563 Record_Rep_Item (Subp, Impl_Prag);
9564 end Inherit_Pragma_Implemented;
9566 -- Start of processing for Check_Abstract_Overriding
9568 begin
9569 Op_List := Primitive_Operations (T);
9571 -- Loop to check primitive operations
9573 Elmt := First_Elmt (Op_List);
9574 while Present (Elmt) loop
9575 Subp := Node (Elmt);
9576 Alias_Subp := Alias (Subp);
9578 -- Inherited subprograms are identified by the fact that they do not
9579 -- come from source, and the associated source location is the
9580 -- location of the first subtype of the derived type.
9582 -- Ada 2005 (AI-228): Apply the rules of RM-3.9.3(6/2) for
9583 -- subprograms that "require overriding".
9585 -- Special exception, do not complain about failure to override the
9586 -- stream routines _Input and _Output, as well as the primitive
9587 -- operations used in dispatching selects since we always provide
9588 -- automatic overridings for these subprograms.
9590 -- Also ignore this rule for convention CIL since .NET libraries
9591 -- do bizarre things with interfaces???
9593 -- The partial view of T may have been a private extension, for
9594 -- which inherited functions dispatching on result are abstract.
9595 -- If the full view is a null extension, there is no need for
9596 -- overriding in Ada 2005, but wrappers need to be built for them
9597 -- (see exp_ch3, Build_Controlling_Function_Wrappers).
9599 if Is_Null_Extension (T)
9600 and then Has_Controlling_Result (Subp)
9601 and then Ada_Version >= Ada_2005
9602 and then Present (Alias_Subp)
9603 and then not Comes_From_Source (Subp)
9604 and then not Is_Abstract_Subprogram (Alias_Subp)
9605 and then not Is_Access_Type (Etype (Subp))
9606 then
9607 null;
9609 -- Ada 2005 (AI-251): Internal entities of interfaces need no
9610 -- processing because this check is done with the aliased
9611 -- entity
9613 elsif Present (Interface_Alias (Subp)) then
9614 null;
9616 elsif (Is_Abstract_Subprogram (Subp)
9617 or else Requires_Overriding (Subp)
9618 or else
9619 (Has_Controlling_Result (Subp)
9620 and then Present (Alias_Subp)
9621 and then not Comes_From_Source (Subp)
9622 and then Sloc (Subp) = Sloc (First_Subtype (T))))
9623 and then not Is_TSS (Subp, TSS_Stream_Input)
9624 and then not Is_TSS (Subp, TSS_Stream_Output)
9625 and then not Is_Abstract_Type (T)
9626 and then Convention (T) /= Convention_CIL
9627 and then not Is_Predefined_Interface_Primitive (Subp)
9629 -- Ada 2005 (AI-251): Do not consider hidden entities associated
9630 -- with abstract interface types because the check will be done
9631 -- with the aliased entity (otherwise we generate a duplicated
9632 -- error message).
9634 and then not Present (Interface_Alias (Subp))
9635 then
9636 if Present (Alias_Subp) then
9638 -- Only perform the check for a derived subprogram when the
9639 -- type has an explicit record extension. This avoids incorrect
9640 -- flagging of abstract subprograms for the case of a type
9641 -- without an extension that is derived from a formal type
9642 -- with a tagged actual (can occur within a private part).
9644 -- Ada 2005 (AI-391): In the case of an inherited function with
9645 -- a controlling result of the type, the rule does not apply if
9646 -- the type is a null extension (unless the parent function
9647 -- itself is abstract, in which case the function must still be
9648 -- be overridden). The expander will generate an overriding
9649 -- wrapper function calling the parent subprogram (see
9650 -- Exp_Ch3.Make_Controlling_Wrapper_Functions).
9652 Type_Def := Type_Definition (Parent (T));
9654 if Nkind (Type_Def) = N_Derived_Type_Definition
9655 and then Present (Record_Extension_Part (Type_Def))
9656 and then
9657 (Ada_Version < Ada_2005
9658 or else not Is_Null_Extension (T)
9659 or else Ekind (Subp) = E_Procedure
9660 or else not Has_Controlling_Result (Subp)
9661 or else Is_Abstract_Subprogram (Alias_Subp)
9662 or else Requires_Overriding (Subp)
9663 or else Is_Access_Type (Etype (Subp)))
9664 then
9665 -- Avoid reporting error in case of abstract predefined
9666 -- primitive inherited from interface type because the
9667 -- body of internally generated predefined primitives
9668 -- of tagged types are generated later by Freeze_Type
9670 if Is_Interface (Root_Type (T))
9671 and then Is_Abstract_Subprogram (Subp)
9672 and then Is_Predefined_Dispatching_Operation (Subp)
9673 and then not Comes_From_Source (Ultimate_Alias (Subp))
9674 then
9675 null;
9677 else
9678 Error_Msg_NE
9679 ("type must be declared abstract or & overridden",
9680 T, Subp);
9682 -- Traverse the whole chain of aliased subprograms to
9683 -- complete the error notification. This is especially
9684 -- useful for traceability of the chain of entities when
9685 -- the subprogram corresponds with an interface
9686 -- subprogram (which may be defined in another package).
9688 if Present (Alias_Subp) then
9689 declare
9690 E : Entity_Id;
9692 begin
9693 E := Subp;
9694 while Present (Alias (E)) loop
9696 -- Avoid reporting redundant errors on entities
9697 -- inherited from interfaces
9699 if Sloc (E) /= Sloc (T) then
9700 Error_Msg_Sloc := Sloc (E);
9701 Error_Msg_NE
9702 ("\& has been inherited #", T, Subp);
9703 end if;
9705 E := Alias (E);
9706 end loop;
9708 Error_Msg_Sloc := Sloc (E);
9710 -- AI05-0068: report if there is an overriding
9711 -- non-abstract subprogram that is invisible.
9713 if Is_Hidden (E)
9714 and then not Is_Abstract_Subprogram (E)
9715 then
9716 Error_Msg_NE
9717 ("\& subprogram# is not visible",
9718 T, Subp);
9720 else
9721 Error_Msg_NE
9722 ("\& has been inherited from subprogram #",
9723 T, Subp);
9724 end if;
9725 end;
9726 end if;
9727 end if;
9729 -- Ada 2005 (AI-345): Protected or task type implementing
9730 -- abstract interfaces.
9732 elsif Is_Concurrent_Record_Type (T)
9733 and then Present (Interfaces (T))
9734 then
9735 -- If an inherited subprogram is implemented by a protected
9736 -- procedure or an entry, then the first parameter of the
9737 -- inherited subprogram shall be of mode OUT or IN OUT, or
9738 -- an access-to-variable parameter (RM 9.4(11.9/3))
9740 if Is_Protected_Type (Corresponding_Concurrent_Type (T))
9741 and then Ekind (First_Formal (Subp)) = E_In_Parameter
9742 and then Ekind (Subp) /= E_Function
9743 and then not Is_Predefined_Dispatching_Operation (Subp)
9744 then
9745 Error_Msg_PT (T, Subp);
9747 -- Some other kind of overriding failure
9749 else
9750 Error_Msg_NE
9751 ("interface subprogram & must be overridden",
9752 T, Subp);
9754 -- Examine primitive operations of synchronized type,
9755 -- to find homonyms that have the wrong profile.
9757 declare
9758 Prim : Entity_Id;
9760 begin
9761 Prim :=
9762 First_Entity (Corresponding_Concurrent_Type (T));
9763 while Present (Prim) loop
9764 if Chars (Prim) = Chars (Subp) then
9765 Error_Msg_NE
9766 ("profile is not type conformant with "
9767 & "prefixed view profile of "
9768 & "inherited operation&", Prim, Subp);
9769 end if;
9771 Next_Entity (Prim);
9772 end loop;
9773 end;
9774 end if;
9775 end if;
9777 else
9778 Error_Msg_Node_2 := T;
9779 Error_Msg_N
9780 ("abstract subprogram& not allowed for type&", Subp);
9782 -- Also post unconditional warning on the type (unconditional
9783 -- so that if there are more than one of these cases, we get
9784 -- them all, and not just the first one).
9786 Error_Msg_Node_2 := Subp;
9787 Error_Msg_N ("nonabstract type& has abstract subprogram&!", T);
9788 end if;
9789 end if;
9791 -- Ada 2012 (AI05-0030): Perform checks related to pragma Implemented
9793 -- Subp is an expander-generated procedure which maps an interface
9794 -- alias to a protected wrapper. The interface alias is flagged by
9795 -- pragma Implemented. Ensure that Subp is a procedure when the
9796 -- implementation kind is By_Protected_Procedure or an entry when
9797 -- By_Entry.
9799 if Ada_Version >= Ada_2012
9800 and then Is_Hidden (Subp)
9801 and then Present (Interface_Alias (Subp))
9802 and then Has_Rep_Pragma (Interface_Alias (Subp), Name_Implemented)
9803 then
9804 Check_Pragma_Implemented (Subp);
9805 end if;
9807 -- Subp is an interface primitive which overrides another interface
9808 -- primitive marked with pragma Implemented.
9810 if Ada_Version >= Ada_2012
9811 and then Present (Overridden_Operation (Subp))
9812 and then Has_Rep_Pragma
9813 (Overridden_Operation (Subp), Name_Implemented)
9814 then
9815 -- If the overriding routine is also marked by Implemented, check
9816 -- that the two implementation kinds are conforming.
9818 if Has_Rep_Pragma (Subp, Name_Implemented) then
9819 Check_Pragma_Implemented
9820 (Subp => Subp,
9821 Iface_Subp => Overridden_Operation (Subp));
9823 -- Otherwise the overriding routine inherits the implementation
9824 -- kind from the overridden subprogram.
9826 else
9827 Inherit_Pragma_Implemented
9828 (Subp => Subp,
9829 Iface_Subp => Overridden_Operation (Subp));
9830 end if;
9831 end if;
9833 -- If the operation is a wrapper for a synchronized primitive, it
9834 -- may be called indirectly through a dispatching select. We assume
9835 -- that it will be referenced elsewhere indirectly, and suppress
9836 -- warnings about an unused entity.
9838 if Is_Primitive_Wrapper (Subp)
9839 and then Present (Wrapped_Entity (Subp))
9840 then
9841 Set_Referenced (Wrapped_Entity (Subp));
9842 end if;
9844 Next_Elmt (Elmt);
9845 end loop;
9846 end Check_Abstract_Overriding;
9848 ------------------------------------------------
9849 -- Check_Access_Discriminant_Requires_Limited --
9850 ------------------------------------------------
9852 procedure Check_Access_Discriminant_Requires_Limited
9853 (D : Node_Id;
9854 Loc : Node_Id)
9856 begin
9857 -- A discriminant_specification for an access discriminant shall appear
9858 -- only in the declaration for a task or protected type, or for a type
9859 -- with the reserved word 'limited' in its definition or in one of its
9860 -- ancestors (RM 3.7(10)).
9862 -- AI-0063: The proper condition is that type must be immutably limited,
9863 -- or else be a partial view.
9865 if Nkind (Discriminant_Type (D)) = N_Access_Definition then
9866 if Is_Limited_View (Current_Scope)
9867 or else
9868 (Nkind (Parent (Current_Scope)) = N_Private_Type_Declaration
9869 and then Limited_Present (Parent (Current_Scope)))
9870 then
9871 null;
9873 else
9874 Error_Msg_N
9875 ("access discriminants allowed only for limited types", Loc);
9876 end if;
9877 end if;
9878 end Check_Access_Discriminant_Requires_Limited;
9880 -----------------------------------
9881 -- Check_Aliased_Component_Types --
9882 -----------------------------------
9884 procedure Check_Aliased_Component_Types (T : Entity_Id) is
9885 C : Entity_Id;
9887 begin
9888 -- ??? Also need to check components of record extensions, but not
9889 -- components of protected types (which are always limited).
9891 -- Ada 2005: AI-363 relaxes this rule, to allow heap objects of such
9892 -- types to be unconstrained. This is safe because it is illegal to
9893 -- create access subtypes to such types with explicit discriminant
9894 -- constraints.
9896 if not Is_Limited_Type (T) then
9897 if Ekind (T) = E_Record_Type then
9898 C := First_Component (T);
9899 while Present (C) loop
9900 if Is_Aliased (C)
9901 and then Has_Discriminants (Etype (C))
9902 and then not Is_Constrained (Etype (C))
9903 and then not In_Instance_Body
9904 and then Ada_Version < Ada_2005
9905 then
9906 Error_Msg_N
9907 ("aliased component must be constrained (RM 3.6(11))",
9909 end if;
9911 Next_Component (C);
9912 end loop;
9914 elsif Ekind (T) = E_Array_Type then
9915 if Has_Aliased_Components (T)
9916 and then Has_Discriminants (Component_Type (T))
9917 and then not Is_Constrained (Component_Type (T))
9918 and then not In_Instance_Body
9919 and then Ada_Version < Ada_2005
9920 then
9921 Error_Msg_N
9922 ("aliased component type must be constrained (RM 3.6(11))",
9924 end if;
9925 end if;
9926 end if;
9927 end Check_Aliased_Component_Types;
9929 ----------------------
9930 -- Check_Completion --
9931 ----------------------
9933 procedure Check_Completion (Body_Id : Node_Id := Empty) is
9934 E : Entity_Id;
9936 procedure Post_Error;
9937 -- Post error message for lack of completion for entity E
9939 ----------------
9940 -- Post_Error --
9941 ----------------
9943 procedure Post_Error is
9945 procedure Missing_Body;
9946 -- Output missing body message
9948 ------------------
9949 -- Missing_Body --
9950 ------------------
9952 procedure Missing_Body is
9953 begin
9954 -- Spec is in same unit, so we can post on spec
9956 if In_Same_Source_Unit (Body_Id, E) then
9957 Error_Msg_N ("missing body for &", E);
9959 -- Spec is in a separate unit, so we have to post on the body
9961 else
9962 Error_Msg_NE ("missing body for & declared#!", Body_Id, E);
9963 end if;
9964 end Missing_Body;
9966 -- Start of processing for Post_Error
9968 begin
9969 if not Comes_From_Source (E) then
9971 if Ekind_In (E, E_Task_Type, E_Protected_Type) then
9972 -- It may be an anonymous protected type created for a
9973 -- single variable. Post error on variable, if present.
9975 declare
9976 Var : Entity_Id;
9978 begin
9979 Var := First_Entity (Current_Scope);
9980 while Present (Var) loop
9981 exit when Etype (Var) = E
9982 and then Comes_From_Source (Var);
9984 Next_Entity (Var);
9985 end loop;
9987 if Present (Var) then
9988 E := Var;
9989 end if;
9990 end;
9991 end if;
9992 end if;
9994 -- If a generated entity has no completion, then either previous
9995 -- semantic errors have disabled the expansion phase, or else we had
9996 -- missing subunits, or else we are compiling without expansion,
9997 -- or else something is very wrong.
9999 if not Comes_From_Source (E) then
10000 pragma Assert
10001 (Serious_Errors_Detected > 0
10002 or else Configurable_Run_Time_Violations > 0
10003 or else Subunits_Missing
10004 or else not Expander_Active);
10005 return;
10007 -- Here for source entity
10009 else
10010 -- Here if no body to post the error message, so we post the error
10011 -- on the declaration that has no completion. This is not really
10012 -- the right place to post it, think about this later ???
10014 if No (Body_Id) then
10015 if Is_Type (E) then
10016 Error_Msg_NE
10017 ("missing full declaration for }", Parent (E), E);
10018 else
10019 Error_Msg_NE ("missing body for &", Parent (E), E);
10020 end if;
10022 -- Package body has no completion for a declaration that appears
10023 -- in the corresponding spec. Post error on the body, with a
10024 -- reference to the non-completed declaration.
10026 else
10027 Error_Msg_Sloc := Sloc (E);
10029 if Is_Type (E) then
10030 Error_Msg_NE ("missing full declaration for }!", Body_Id, E);
10032 elsif Is_Overloadable (E)
10033 and then Current_Entity_In_Scope (E) /= E
10034 then
10035 -- It may be that the completion is mistyped and appears as
10036 -- a distinct overloading of the entity.
10038 declare
10039 Candidate : constant Entity_Id :=
10040 Current_Entity_In_Scope (E);
10041 Decl : constant Node_Id :=
10042 Unit_Declaration_Node (Candidate);
10044 begin
10045 if Is_Overloadable (Candidate)
10046 and then Ekind (Candidate) = Ekind (E)
10047 and then Nkind (Decl) = N_Subprogram_Body
10048 and then Acts_As_Spec (Decl)
10049 then
10050 Check_Type_Conformant (Candidate, E);
10052 else
10053 Missing_Body;
10054 end if;
10055 end;
10057 else
10058 Missing_Body;
10059 end if;
10060 end if;
10061 end if;
10062 end Post_Error;
10064 -- Start of processing for Check_Completion
10066 begin
10067 E := First_Entity (Current_Scope);
10068 while Present (E) loop
10069 if Is_Intrinsic_Subprogram (E) then
10070 null;
10072 -- The following situation requires special handling: a child unit
10073 -- that appears in the context clause of the body of its parent:
10075 -- procedure Parent.Child (...);
10077 -- with Parent.Child;
10078 -- package body Parent is
10080 -- Here Parent.Child appears as a local entity, but should not be
10081 -- flagged as requiring completion, because it is a compilation
10082 -- unit.
10084 -- Ignore missing completion for a subprogram that does not come from
10085 -- source (including the _Call primitive operation of RAS types,
10086 -- which has to have the flag Comes_From_Source for other purposes):
10087 -- we assume that the expander will provide the missing completion.
10088 -- In case of previous errors, other expansion actions that provide
10089 -- bodies for null procedures with not be invoked, so inhibit message
10090 -- in those cases.
10092 -- Note that E_Operator is not in the list that follows, because
10093 -- this kind is reserved for predefined operators, that are
10094 -- intrinsic and do not need completion.
10096 elsif Ekind (E) = E_Function
10097 or else Ekind (E) = E_Procedure
10098 or else Ekind (E) = E_Generic_Function
10099 or else Ekind (E) = E_Generic_Procedure
10100 then
10101 if Has_Completion (E) then
10102 null;
10104 elsif Is_Subprogram (E) and then Is_Abstract_Subprogram (E) then
10105 null;
10107 elsif Is_Subprogram (E)
10108 and then (not Comes_From_Source (E)
10109 or else Chars (E) = Name_uCall)
10110 then
10111 null;
10113 elsif
10114 Nkind (Parent (Unit_Declaration_Node (E))) = N_Compilation_Unit
10115 then
10116 null;
10118 elsif Nkind (Parent (E)) = N_Procedure_Specification
10119 and then Null_Present (Parent (E))
10120 and then Serious_Errors_Detected > 0
10121 then
10122 null;
10124 else
10125 Post_Error;
10126 end if;
10128 elsif Is_Entry (E) then
10129 if not Has_Completion (E) and then
10130 (Ekind (Scope (E)) = E_Protected_Object
10131 or else Ekind (Scope (E)) = E_Protected_Type)
10132 then
10133 Post_Error;
10134 end if;
10136 elsif Is_Package_Or_Generic_Package (E) then
10137 if Unit_Requires_Body (E) then
10138 if not Has_Completion (E)
10139 and then Nkind (Parent (Unit_Declaration_Node (E))) /=
10140 N_Compilation_Unit
10141 then
10142 Post_Error;
10143 end if;
10145 elsif not Is_Child_Unit (E) then
10146 May_Need_Implicit_Body (E);
10147 end if;
10149 -- A formal incomplete type (Ada 2012) does not require a completion;
10150 -- other incomplete type declarations do.
10152 elsif Ekind (E) = E_Incomplete_Type
10153 and then No (Underlying_Type (E))
10154 and then not Is_Generic_Type (E)
10155 then
10156 Post_Error;
10158 elsif (Ekind (E) = E_Task_Type or else
10159 Ekind (E) = E_Protected_Type)
10160 and then not Has_Completion (E)
10161 then
10162 Post_Error;
10164 -- A single task declared in the current scope is a constant, verify
10165 -- that the body of its anonymous type is in the same scope. If the
10166 -- task is defined elsewhere, this may be a renaming declaration for
10167 -- which no completion is needed.
10169 elsif Ekind (E) = E_Constant
10170 and then Ekind (Etype (E)) = E_Task_Type
10171 and then not Has_Completion (Etype (E))
10172 and then Scope (Etype (E)) = Current_Scope
10173 then
10174 Post_Error;
10176 elsif Ekind (E) = E_Protected_Object
10177 and then not Has_Completion (Etype (E))
10178 then
10179 Post_Error;
10181 elsif Ekind (E) = E_Record_Type then
10182 if Is_Tagged_Type (E) then
10183 Check_Abstract_Overriding (E);
10184 Check_Conventions (E);
10185 end if;
10187 Check_Aliased_Component_Types (E);
10189 elsif Ekind (E) = E_Array_Type then
10190 Check_Aliased_Component_Types (E);
10192 end if;
10194 Next_Entity (E);
10195 end loop;
10196 end Check_Completion;
10198 ------------------------------------
10199 -- Check_CPP_Type_Has_No_Defaults --
10200 ------------------------------------
10202 procedure Check_CPP_Type_Has_No_Defaults (T : Entity_Id) is
10203 Tdef : constant Node_Id := Type_Definition (Declaration_Node (T));
10204 Clist : Node_Id;
10205 Comp : Node_Id;
10207 begin
10208 -- Obtain the component list
10210 if Nkind (Tdef) = N_Record_Definition then
10211 Clist := Component_List (Tdef);
10212 else pragma Assert (Nkind (Tdef) = N_Derived_Type_Definition);
10213 Clist := Component_List (Record_Extension_Part (Tdef));
10214 end if;
10216 -- Check all components to ensure no default expressions
10218 if Present (Clist) then
10219 Comp := First (Component_Items (Clist));
10220 while Present (Comp) loop
10221 if Present (Expression (Comp)) then
10222 Error_Msg_N
10223 ("component of imported 'C'P'P type cannot have "
10224 & "default expression", Expression (Comp));
10225 end if;
10227 Next (Comp);
10228 end loop;
10229 end if;
10230 end Check_CPP_Type_Has_No_Defaults;
10232 ----------------------------
10233 -- Check_Delta_Expression --
10234 ----------------------------
10236 procedure Check_Delta_Expression (E : Node_Id) is
10237 begin
10238 if not (Is_Real_Type (Etype (E))) then
10239 Wrong_Type (E, Any_Real);
10241 elsif not Is_OK_Static_Expression (E) then
10242 Flag_Non_Static_Expr
10243 ("non-static expression used for delta value!", E);
10245 elsif not UR_Is_Positive (Expr_Value_R (E)) then
10246 Error_Msg_N ("delta expression must be positive", E);
10248 else
10249 return;
10250 end if;
10252 -- If any of above errors occurred, then replace the incorrect
10253 -- expression by the real 0.1, which should prevent further errors.
10255 Rewrite (E,
10256 Make_Real_Literal (Sloc (E), Ureal_Tenth));
10257 Analyze_And_Resolve (E, Standard_Float);
10258 end Check_Delta_Expression;
10260 -----------------------------
10261 -- Check_Digits_Expression --
10262 -----------------------------
10264 procedure Check_Digits_Expression (E : Node_Id) is
10265 begin
10266 if not (Is_Integer_Type (Etype (E))) then
10267 Wrong_Type (E, Any_Integer);
10269 elsif not Is_OK_Static_Expression (E) then
10270 Flag_Non_Static_Expr
10271 ("non-static expression used for digits value!", E);
10273 elsif Expr_Value (E) <= 0 then
10274 Error_Msg_N ("digits value must be greater than zero", E);
10276 else
10277 return;
10278 end if;
10280 -- If any of above errors occurred, then replace the incorrect
10281 -- expression by the integer 1, which should prevent further errors.
10283 Rewrite (E, Make_Integer_Literal (Sloc (E), 1));
10284 Analyze_And_Resolve (E, Standard_Integer);
10286 end Check_Digits_Expression;
10288 --------------------------
10289 -- Check_Initialization --
10290 --------------------------
10292 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id) is
10293 begin
10294 if Is_Limited_Type (T)
10295 and then not In_Instance
10296 and then not In_Inlined_Body
10297 then
10298 if not OK_For_Limited_Init (T, Exp) then
10300 -- In GNAT mode, this is just a warning, to allow it to be evilly
10301 -- turned off. Otherwise it is a real error.
10303 if GNAT_Mode then
10304 Error_Msg_N
10305 ("??cannot initialize entities of limited type!", Exp);
10307 elsif Ada_Version < Ada_2005 then
10309 -- The side effect removal machinery may generate illegal Ada
10310 -- code to avoid the usage of access types and 'reference in
10311 -- SPARK mode. Since this is legal code with respect to theorem
10312 -- proving, do not emit the error.
10314 if GNATprove_Mode
10315 and then Nkind (Exp) = N_Function_Call
10316 and then Nkind (Parent (Exp)) = N_Object_Declaration
10317 and then not Comes_From_Source
10318 (Defining_Identifier (Parent (Exp)))
10319 then
10320 null;
10322 else
10323 Error_Msg_N
10324 ("cannot initialize entities of limited type", Exp);
10325 Explain_Limited_Type (T, Exp);
10326 end if;
10328 else
10329 -- Specialize error message according to kind of illegal
10330 -- initial expression.
10332 if Nkind (Exp) = N_Type_Conversion
10333 and then Nkind (Expression (Exp)) = N_Function_Call
10334 then
10335 Error_Msg_N
10336 ("illegal context for call"
10337 & " to function with limited result", Exp);
10339 else
10340 Error_Msg_N
10341 ("initialization of limited object requires aggregate "
10342 & "or function call", Exp);
10343 end if;
10344 end if;
10345 end if;
10346 end if;
10347 end Check_Initialization;
10349 ----------------------
10350 -- Check_Interfaces --
10351 ----------------------
10353 procedure Check_Interfaces (N : Node_Id; Def : Node_Id) is
10354 Parent_Type : constant Entity_Id := Etype (Defining_Identifier (N));
10356 Iface : Node_Id;
10357 Iface_Def : Node_Id;
10358 Iface_Typ : Entity_Id;
10359 Parent_Node : Node_Id;
10361 Is_Task : Boolean := False;
10362 -- Set True if parent type or any progenitor is a task interface
10364 Is_Protected : Boolean := False;
10365 -- Set True if parent type or any progenitor is a protected interface
10367 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id);
10368 -- Check that a progenitor is compatible with declaration.
10369 -- Error is posted on Error_Node.
10371 ------------------
10372 -- Check_Ifaces --
10373 ------------------
10375 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id) is
10376 Iface_Id : constant Entity_Id :=
10377 Defining_Identifier (Parent (Iface_Def));
10378 Type_Def : Node_Id;
10380 begin
10381 if Nkind (N) = N_Private_Extension_Declaration then
10382 Type_Def := N;
10383 else
10384 Type_Def := Type_Definition (N);
10385 end if;
10387 if Is_Task_Interface (Iface_Id) then
10388 Is_Task := True;
10390 elsif Is_Protected_Interface (Iface_Id) then
10391 Is_Protected := True;
10392 end if;
10394 if Is_Synchronized_Interface (Iface_Id) then
10396 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
10397 -- extension derived from a synchronized interface must explicitly
10398 -- be declared synchronized, because the full view will be a
10399 -- synchronized type.
10401 if Nkind (N) = N_Private_Extension_Declaration then
10402 if not Synchronized_Present (N) then
10403 Error_Msg_NE
10404 ("private extension of& must be explicitly synchronized",
10405 N, Iface_Id);
10406 end if;
10408 -- However, by 3.9.4(16/2), a full type that is a record extension
10409 -- is never allowed to derive from a synchronized interface (note
10410 -- that interfaces must be excluded from this check, because those
10411 -- are represented by derived type definitions in some cases).
10413 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition
10414 and then not Interface_Present (Type_Definition (N))
10415 then
10416 Error_Msg_N ("record extension cannot derive from synchronized"
10417 & " interface", Error_Node);
10418 end if;
10419 end if;
10421 -- Check that the characteristics of the progenitor are compatible
10422 -- with the explicit qualifier in the declaration.
10423 -- The check only applies to qualifiers that come from source.
10424 -- Limited_Present also appears in the declaration of corresponding
10425 -- records, and the check does not apply to them.
10427 if Limited_Present (Type_Def)
10428 and then not
10429 Is_Concurrent_Record_Type (Defining_Identifier (N))
10430 then
10431 if Is_Limited_Interface (Parent_Type)
10432 and then not Is_Limited_Interface (Iface_Id)
10433 then
10434 Error_Msg_NE
10435 ("progenitor& must be limited interface",
10436 Error_Node, Iface_Id);
10438 elsif
10439 (Task_Present (Iface_Def)
10440 or else Protected_Present (Iface_Def)
10441 or else Synchronized_Present (Iface_Def))
10442 and then Nkind (N) /= N_Private_Extension_Declaration
10443 and then not Error_Posted (N)
10444 then
10445 Error_Msg_NE
10446 ("progenitor& must be limited interface",
10447 Error_Node, Iface_Id);
10448 end if;
10450 -- Protected interfaces can only inherit from limited, synchronized
10451 -- or protected interfaces.
10453 elsif Nkind (N) = N_Full_Type_Declaration
10454 and then Protected_Present (Type_Def)
10455 then
10456 if Limited_Present (Iface_Def)
10457 or else Synchronized_Present (Iface_Def)
10458 or else Protected_Present (Iface_Def)
10459 then
10460 null;
10462 elsif Task_Present (Iface_Def) then
10463 Error_Msg_N ("(Ada 2005) protected interface cannot inherit"
10464 & " from task interface", Error_Node);
10466 else
10467 Error_Msg_N ("(Ada 2005) protected interface cannot inherit"
10468 & " from non-limited interface", Error_Node);
10469 end if;
10471 -- Ada 2005 (AI-345): Synchronized interfaces can only inherit from
10472 -- limited and synchronized.
10474 elsif Synchronized_Present (Type_Def) then
10475 if Limited_Present (Iface_Def)
10476 or else Synchronized_Present (Iface_Def)
10477 then
10478 null;
10480 elsif Protected_Present (Iface_Def)
10481 and then Nkind (N) /= N_Private_Extension_Declaration
10482 then
10483 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit"
10484 & " from protected interface", Error_Node);
10486 elsif Task_Present (Iface_Def)
10487 and then Nkind (N) /= N_Private_Extension_Declaration
10488 then
10489 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit"
10490 & " from task interface", Error_Node);
10492 elsif not Is_Limited_Interface (Iface_Id) then
10493 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit"
10494 & " from non-limited interface", Error_Node);
10495 end if;
10497 -- Ada 2005 (AI-345): Task interfaces can only inherit from limited,
10498 -- synchronized or task interfaces.
10500 elsif Nkind (N) = N_Full_Type_Declaration
10501 and then Task_Present (Type_Def)
10502 then
10503 if Limited_Present (Iface_Def)
10504 or else Synchronized_Present (Iface_Def)
10505 or else Task_Present (Iface_Def)
10506 then
10507 null;
10509 elsif Protected_Present (Iface_Def) then
10510 Error_Msg_N ("(Ada 2005) task interface cannot inherit from"
10511 & " protected interface", Error_Node);
10513 else
10514 Error_Msg_N ("(Ada 2005) task interface cannot inherit from"
10515 & " non-limited interface", Error_Node);
10516 end if;
10517 end if;
10518 end Check_Ifaces;
10520 -- Start of processing for Check_Interfaces
10522 begin
10523 if Is_Interface (Parent_Type) then
10524 if Is_Task_Interface (Parent_Type) then
10525 Is_Task := True;
10527 elsif Is_Protected_Interface (Parent_Type) then
10528 Is_Protected := True;
10529 end if;
10530 end if;
10532 if Nkind (N) = N_Private_Extension_Declaration then
10534 -- Check that progenitors are compatible with declaration
10536 Iface := First (Interface_List (Def));
10537 while Present (Iface) loop
10538 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
10540 Parent_Node := Parent (Base_Type (Iface_Typ));
10541 Iface_Def := Type_Definition (Parent_Node);
10543 if not Is_Interface (Iface_Typ) then
10544 Diagnose_Interface (Iface, Iface_Typ);
10546 else
10547 Check_Ifaces (Iface_Def, Iface);
10548 end if;
10550 Next (Iface);
10551 end loop;
10553 if Is_Task and Is_Protected then
10554 Error_Msg_N
10555 ("type cannot derive from task and protected interface", N);
10556 end if;
10558 return;
10559 end if;
10561 -- Full type declaration of derived type.
10562 -- Check compatibility with parent if it is interface type
10564 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition
10565 and then Is_Interface (Parent_Type)
10566 then
10567 Parent_Node := Parent (Parent_Type);
10569 -- More detailed checks for interface varieties
10571 Check_Ifaces
10572 (Iface_Def => Type_Definition (Parent_Node),
10573 Error_Node => Subtype_Indication (Type_Definition (N)));
10574 end if;
10576 Iface := First (Interface_List (Def));
10577 while Present (Iface) loop
10578 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
10580 Parent_Node := Parent (Base_Type (Iface_Typ));
10581 Iface_Def := Type_Definition (Parent_Node);
10583 if not Is_Interface (Iface_Typ) then
10584 Diagnose_Interface (Iface, Iface_Typ);
10586 else
10587 -- "The declaration of a specific descendant of an interface
10588 -- type freezes the interface type" RM 13.14
10590 Freeze_Before (N, Iface_Typ);
10591 Check_Ifaces (Iface_Def, Error_Node => Iface);
10592 end if;
10594 Next (Iface);
10595 end loop;
10597 if Is_Task and Is_Protected then
10598 Error_Msg_N
10599 ("type cannot derive from task and protected interface", N);
10600 end if;
10601 end Check_Interfaces;
10603 ------------------------------------
10604 -- Check_Or_Process_Discriminants --
10605 ------------------------------------
10607 -- If an incomplete or private type declaration was already given for the
10608 -- type, the discriminants may have already been processed if they were
10609 -- present on the incomplete declaration. In this case a full conformance
10610 -- check has been performed in Find_Type_Name, and we then recheck here
10611 -- some properties that can't be checked on the partial view alone.
10612 -- Otherwise we call Process_Discriminants.
10614 procedure Check_Or_Process_Discriminants
10615 (N : Node_Id;
10616 T : Entity_Id;
10617 Prev : Entity_Id := Empty)
10619 begin
10620 if Has_Discriminants (T) then
10622 -- Discriminants are already set on T if they were already present
10623 -- on the partial view. Make them visible to component declarations.
10625 declare
10626 D : Entity_Id;
10627 -- Discriminant on T (full view) referencing expr on partial view
10629 Prev_D : Entity_Id;
10630 -- Entity of corresponding discriminant on partial view
10632 New_D : Node_Id;
10633 -- Discriminant specification for full view, expression is the
10634 -- syntactic copy on full view (which has been checked for
10635 -- conformance with partial view), only used here to post error
10636 -- message.
10638 begin
10639 D := First_Discriminant (T);
10640 New_D := First (Discriminant_Specifications (N));
10641 while Present (D) loop
10642 Prev_D := Current_Entity (D);
10643 Set_Current_Entity (D);
10644 Set_Is_Immediately_Visible (D);
10645 Set_Homonym (D, Prev_D);
10647 -- Handle the case where there is an untagged partial view and
10648 -- the full view is tagged: must disallow discriminants with
10649 -- defaults, unless compiling for Ada 2012, which allows a
10650 -- limited tagged type to have defaulted discriminants (see
10651 -- AI05-0214). However, suppress error here if it was already
10652 -- reported on the default expression of the partial view.
10654 if Is_Tagged_Type (T)
10655 and then Present (Expression (Parent (D)))
10656 and then (not Is_Limited_Type (Current_Scope)
10657 or else Ada_Version < Ada_2012)
10658 and then not Error_Posted (Expression (Parent (D)))
10659 then
10660 if Ada_Version >= Ada_2012 then
10661 Error_Msg_N
10662 ("discriminants of nonlimited tagged type cannot have"
10663 & " defaults",
10664 Expression (New_D));
10665 else
10666 Error_Msg_N
10667 ("discriminants of tagged type cannot have defaults",
10668 Expression (New_D));
10669 end if;
10670 end if;
10672 -- Ada 2005 (AI-230): Access discriminant allowed in
10673 -- non-limited record types.
10675 if Ada_Version < Ada_2005 then
10677 -- This restriction gets applied to the full type here. It
10678 -- has already been applied earlier to the partial view.
10680 Check_Access_Discriminant_Requires_Limited (Parent (D), N);
10681 end if;
10683 Next_Discriminant (D);
10684 Next (New_D);
10685 end loop;
10686 end;
10688 elsif Present (Discriminant_Specifications (N)) then
10689 Process_Discriminants (N, Prev);
10690 end if;
10691 end Check_Or_Process_Discriminants;
10693 ----------------------
10694 -- Check_Real_Bound --
10695 ----------------------
10697 procedure Check_Real_Bound (Bound : Node_Id) is
10698 begin
10699 if not Is_Real_Type (Etype (Bound)) then
10700 Error_Msg_N
10701 ("bound in real type definition must be of real type", Bound);
10703 elsif not Is_OK_Static_Expression (Bound) then
10704 Flag_Non_Static_Expr
10705 ("non-static expression used for real type bound!", Bound);
10707 else
10708 return;
10709 end if;
10711 Rewrite
10712 (Bound, Make_Real_Literal (Sloc (Bound), Ureal_0));
10713 Analyze (Bound);
10714 Resolve (Bound, Standard_Float);
10715 end Check_Real_Bound;
10717 ------------------------------
10718 -- Complete_Private_Subtype --
10719 ------------------------------
10721 procedure Complete_Private_Subtype
10722 (Priv : Entity_Id;
10723 Full : Entity_Id;
10724 Full_Base : Entity_Id;
10725 Related_Nod : Node_Id)
10727 Save_Next_Entity : Entity_Id;
10728 Save_Homonym : Entity_Id;
10730 begin
10731 -- Set semantic attributes for (implicit) private subtype completion.
10732 -- If the full type has no discriminants, then it is a copy of the full
10733 -- view of the base. Otherwise, it is a subtype of the base with a
10734 -- possible discriminant constraint. Save and restore the original
10735 -- Next_Entity field of full to ensure that the calls to Copy_Node
10736 -- do not corrupt the entity chain.
10738 -- Note that the type of the full view is the same entity as the type of
10739 -- the partial view. In this fashion, the subtype has access to the
10740 -- correct view of the parent.
10742 Save_Next_Entity := Next_Entity (Full);
10743 Save_Homonym := Homonym (Priv);
10745 case Ekind (Full_Base) is
10746 when E_Record_Type |
10747 E_Record_Subtype |
10748 Class_Wide_Kind |
10749 Private_Kind |
10750 Task_Kind |
10751 Protected_Kind =>
10752 Copy_Node (Priv, Full);
10754 Set_Has_Discriminants
10755 (Full, Has_Discriminants (Full_Base));
10756 Set_Has_Unknown_Discriminants
10757 (Full, Has_Unknown_Discriminants (Full_Base));
10758 Set_First_Entity (Full, First_Entity (Full_Base));
10759 Set_Last_Entity (Full, Last_Entity (Full_Base));
10761 -- If the underlying base type is constrained, we know that the
10762 -- full view of the subtype is constrained as well (the converse
10763 -- is not necessarily true).
10765 if Is_Constrained (Full_Base) then
10766 Set_Is_Constrained (Full);
10767 end if;
10769 when others =>
10770 Copy_Node (Full_Base, Full);
10772 Set_Chars (Full, Chars (Priv));
10773 Conditional_Delay (Full, Priv);
10774 Set_Sloc (Full, Sloc (Priv));
10775 end case;
10777 Set_Next_Entity (Full, Save_Next_Entity);
10778 Set_Homonym (Full, Save_Homonym);
10779 Set_Associated_Node_For_Itype (Full, Related_Nod);
10781 -- Set common attributes for all subtypes: kind, convention, etc.
10783 Set_Ekind (Full, Subtype_Kind (Ekind (Full_Base)));
10784 Set_Convention (Full, Convention (Full_Base));
10786 -- The Etype of the full view is inconsistent. Gigi needs to see the
10787 -- structural full view, which is what the current scheme gives:
10788 -- the Etype of the full view is the etype of the full base. However,
10789 -- if the full base is a derived type, the full view then looks like
10790 -- a subtype of the parent, not a subtype of the full base. If instead
10791 -- we write:
10793 -- Set_Etype (Full, Full_Base);
10795 -- then we get inconsistencies in the front-end (confusion between
10796 -- views). Several outstanding bugs are related to this ???
10798 Set_Is_First_Subtype (Full, False);
10799 Set_Scope (Full, Scope (Priv));
10800 Set_Size_Info (Full, Full_Base);
10801 Set_RM_Size (Full, RM_Size (Full_Base));
10802 Set_Is_Itype (Full);
10804 -- A subtype of a private-type-without-discriminants, whose full-view
10805 -- has discriminants with default expressions, is not constrained.
10807 if not Has_Discriminants (Priv) then
10808 Set_Is_Constrained (Full, Is_Constrained (Full_Base));
10810 if Has_Discriminants (Full_Base) then
10811 Set_Discriminant_Constraint
10812 (Full, Discriminant_Constraint (Full_Base));
10814 -- The partial view may have been indefinite, the full view
10815 -- might not be.
10817 Set_Has_Unknown_Discriminants
10818 (Full, Has_Unknown_Discriminants (Full_Base));
10819 end if;
10820 end if;
10822 Set_First_Rep_Item (Full, First_Rep_Item (Full_Base));
10823 Set_Depends_On_Private (Full, Has_Private_Component (Full));
10825 -- Freeze the private subtype entity if its parent is delayed, and not
10826 -- already frozen. We skip this processing if the type is an anonymous
10827 -- subtype of a record component, or is the corresponding record of a
10828 -- protected type, since ???
10830 if not Is_Type (Scope (Full)) then
10831 Set_Has_Delayed_Freeze (Full,
10832 Has_Delayed_Freeze (Full_Base)
10833 and then (not Is_Frozen (Full_Base)));
10834 end if;
10836 Set_Freeze_Node (Full, Empty);
10837 Set_Is_Frozen (Full, False);
10838 Set_Full_View (Priv, Full);
10840 if Has_Discriminants (Full) then
10841 Set_Stored_Constraint_From_Discriminant_Constraint (Full);
10842 Set_Stored_Constraint (Priv, Stored_Constraint (Full));
10844 if Has_Unknown_Discriminants (Full) then
10845 Set_Discriminant_Constraint (Full, No_Elist);
10846 end if;
10847 end if;
10849 if Ekind (Full_Base) = E_Record_Type
10850 and then Has_Discriminants (Full_Base)
10851 and then Has_Discriminants (Priv) -- might not, if errors
10852 and then not Has_Unknown_Discriminants (Priv)
10853 and then not Is_Empty_Elmt_List (Discriminant_Constraint (Priv))
10854 then
10855 Create_Constrained_Components
10856 (Full, Related_Nod, Full_Base, Discriminant_Constraint (Priv));
10858 -- If the full base is itself derived from private, build a congruent
10859 -- subtype of its underlying type, for use by the back end. For a
10860 -- constrained record component, the declaration cannot be placed on
10861 -- the component list, but it must nevertheless be built an analyzed, to
10862 -- supply enough information for Gigi to compute the size of component.
10864 elsif Ekind (Full_Base) in Private_Kind
10865 and then Is_Derived_Type (Full_Base)
10866 and then Has_Discriminants (Full_Base)
10867 and then (Ekind (Current_Scope) /= E_Record_Subtype)
10868 then
10869 if not Is_Itype (Priv)
10870 and then
10871 Nkind (Subtype_Indication (Parent (Priv))) = N_Subtype_Indication
10872 then
10873 Build_Underlying_Full_View
10874 (Parent (Priv), Full, Etype (Full_Base));
10876 elsif Nkind (Related_Nod) = N_Component_Declaration then
10877 Build_Underlying_Full_View (Related_Nod, Full, Etype (Full_Base));
10878 end if;
10880 elsif Is_Record_Type (Full_Base) then
10882 -- Show Full is simply a renaming of Full_Base
10884 Set_Cloned_Subtype (Full, Full_Base);
10885 end if;
10887 -- It is unsafe to share the bounds of a scalar type, because the Itype
10888 -- is elaborated on demand, and if a bound is non-static then different
10889 -- orders of elaboration in different units will lead to different
10890 -- external symbols.
10892 if Is_Scalar_Type (Full_Base) then
10893 Set_Scalar_Range (Full,
10894 Make_Range (Sloc (Related_Nod),
10895 Low_Bound =>
10896 Duplicate_Subexpr_No_Checks (Type_Low_Bound (Full_Base)),
10897 High_Bound =>
10898 Duplicate_Subexpr_No_Checks (Type_High_Bound (Full_Base))));
10900 -- This completion inherits the bounds of the full parent, but if
10901 -- the parent is an unconstrained floating point type, so is the
10902 -- completion.
10904 if Is_Floating_Point_Type (Full_Base) then
10905 Set_Includes_Infinities
10906 (Scalar_Range (Full), Has_Infinities (Full_Base));
10907 end if;
10908 end if;
10910 -- ??? It seems that a lot of fields are missing that should be copied
10911 -- from Full_Base to Full. Here are some that are introduced in a
10912 -- non-disruptive way but a cleanup is necessary.
10914 if Is_Tagged_Type (Full_Base) then
10915 Set_Is_Tagged_Type (Full);
10916 Set_Direct_Primitive_Operations (Full,
10917 Direct_Primitive_Operations (Full_Base));
10919 -- Inherit class_wide type of full_base in case the partial view was
10920 -- not tagged. Otherwise it has already been created when the private
10921 -- subtype was analyzed.
10923 if No (Class_Wide_Type (Full)) then
10924 Set_Class_Wide_Type (Full, Class_Wide_Type (Full_Base));
10925 end if;
10927 -- If this is a subtype of a protected or task type, constrain its
10928 -- corresponding record, unless this is a subtype without constraints,
10929 -- i.e. a simple renaming as with an actual subtype in an instance.
10931 elsif Is_Concurrent_Type (Full_Base) then
10932 if Has_Discriminants (Full)
10933 and then Present (Corresponding_Record_Type (Full_Base))
10934 and then
10935 not Is_Empty_Elmt_List (Discriminant_Constraint (Full))
10936 then
10937 Set_Corresponding_Record_Type (Full,
10938 Constrain_Corresponding_Record
10939 (Full, Corresponding_Record_Type (Full_Base), Related_Nod));
10941 else
10942 Set_Corresponding_Record_Type (Full,
10943 Corresponding_Record_Type (Full_Base));
10944 end if;
10945 end if;
10947 -- Link rep item chain, and also setting of Has_Predicates from private
10948 -- subtype to full subtype, since we will need these on the full subtype
10949 -- to create the predicate function. Note that the full subtype may
10950 -- already have rep items, inherited from the full view of the base
10951 -- type, so we must be sure not to overwrite these entries.
10953 declare
10954 Append : Boolean;
10955 Item : Node_Id;
10956 Next_Item : Node_Id;
10958 begin
10959 Item := First_Rep_Item (Full);
10961 -- If no existing rep items on full type, we can just link directly
10962 -- to the list of items on the private type.
10964 if No (Item) then
10965 Set_First_Rep_Item (Full, First_Rep_Item (Priv));
10967 -- Otherwise, search to the end of items currently linked to the full
10968 -- subtype and append the private items to the end. However, if Priv
10969 -- and Full already have the same list of rep items, then the append
10970 -- is not done, as that would create a circularity.
10972 elsif Item /= First_Rep_Item (Priv) then
10973 Append := True;
10975 loop
10976 Next_Item := Next_Rep_Item (Item);
10977 exit when No (Next_Item);
10978 Item := Next_Item;
10980 -- If the private view has aspect specifications, the full view
10981 -- inherits them. Since these aspects may already have been
10982 -- attached to the full view during derivation, do not append
10983 -- them if already present.
10985 if Item = First_Rep_Item (Priv) then
10986 Append := False;
10987 exit;
10988 end if;
10989 end loop;
10991 -- And link the private type items at the end of the chain
10993 if Append then
10994 Set_Next_Rep_Item (Item, First_Rep_Item (Priv));
10995 end if;
10996 end if;
10997 end;
10999 -- Make sure Has_Predicates is set on full type if it is set on the
11000 -- private type. Note that it may already be set on the full type and
11001 -- if so, we don't want to unset it.
11003 if Has_Predicates (Priv) then
11004 Set_Has_Predicates (Full);
11005 end if;
11006 end Complete_Private_Subtype;
11008 ----------------------------
11009 -- Constant_Redeclaration --
11010 ----------------------------
11012 procedure Constant_Redeclaration
11013 (Id : Entity_Id;
11014 N : Node_Id;
11015 T : out Entity_Id)
11017 Prev : constant Entity_Id := Current_Entity_In_Scope (Id);
11018 Obj_Def : constant Node_Id := Object_Definition (N);
11019 New_T : Entity_Id;
11021 procedure Check_Possible_Deferred_Completion
11022 (Prev_Id : Entity_Id;
11023 Prev_Obj_Def : Node_Id;
11024 Curr_Obj_Def : Node_Id);
11025 -- Determine whether the two object definitions describe the partial
11026 -- and the full view of a constrained deferred constant. Generate
11027 -- a subtype for the full view and verify that it statically matches
11028 -- the subtype of the partial view.
11030 procedure Check_Recursive_Declaration (Typ : Entity_Id);
11031 -- If deferred constant is an access type initialized with an allocator,
11032 -- check whether there is an illegal recursion in the definition,
11033 -- through a default value of some record subcomponent. This is normally
11034 -- detected when generating init procs, but requires this additional
11035 -- mechanism when expansion is disabled.
11037 ----------------------------------------
11038 -- Check_Possible_Deferred_Completion --
11039 ----------------------------------------
11041 procedure Check_Possible_Deferred_Completion
11042 (Prev_Id : Entity_Id;
11043 Prev_Obj_Def : Node_Id;
11044 Curr_Obj_Def : Node_Id)
11046 begin
11047 if Nkind (Prev_Obj_Def) = N_Subtype_Indication
11048 and then Present (Constraint (Prev_Obj_Def))
11049 and then Nkind (Curr_Obj_Def) = N_Subtype_Indication
11050 and then Present (Constraint (Curr_Obj_Def))
11051 then
11052 declare
11053 Loc : constant Source_Ptr := Sloc (N);
11054 Def_Id : constant Entity_Id := Make_Temporary (Loc, 'S');
11055 Decl : constant Node_Id :=
11056 Make_Subtype_Declaration (Loc,
11057 Defining_Identifier => Def_Id,
11058 Subtype_Indication =>
11059 Relocate_Node (Curr_Obj_Def));
11061 begin
11062 Insert_Before_And_Analyze (N, Decl);
11063 Set_Etype (Id, Def_Id);
11065 if not Subtypes_Statically_Match (Etype (Prev_Id), Def_Id) then
11066 Error_Msg_Sloc := Sloc (Prev_Id);
11067 Error_Msg_N ("subtype does not statically match deferred " &
11068 "declaration#", N);
11069 end if;
11070 end;
11071 end if;
11072 end Check_Possible_Deferred_Completion;
11074 ---------------------------------
11075 -- Check_Recursive_Declaration --
11076 ---------------------------------
11078 procedure Check_Recursive_Declaration (Typ : Entity_Id) is
11079 Comp : Entity_Id;
11081 begin
11082 if Is_Record_Type (Typ) then
11083 Comp := First_Component (Typ);
11084 while Present (Comp) loop
11085 if Comes_From_Source (Comp) then
11086 if Present (Expression (Parent (Comp)))
11087 and then Is_Entity_Name (Expression (Parent (Comp)))
11088 and then Entity (Expression (Parent (Comp))) = Prev
11089 then
11090 Error_Msg_Sloc := Sloc (Parent (Comp));
11091 Error_Msg_NE
11092 ("illegal circularity with declaration for&#",
11093 N, Comp);
11094 return;
11096 elsif Is_Record_Type (Etype (Comp)) then
11097 Check_Recursive_Declaration (Etype (Comp));
11098 end if;
11099 end if;
11101 Next_Component (Comp);
11102 end loop;
11103 end if;
11104 end Check_Recursive_Declaration;
11106 -- Start of processing for Constant_Redeclaration
11108 begin
11109 if Nkind (Parent (Prev)) = N_Object_Declaration then
11110 if Nkind (Object_Definition
11111 (Parent (Prev))) = N_Subtype_Indication
11112 then
11113 -- Find type of new declaration. The constraints of the two
11114 -- views must match statically, but there is no point in
11115 -- creating an itype for the full view.
11117 if Nkind (Obj_Def) = N_Subtype_Indication then
11118 Find_Type (Subtype_Mark (Obj_Def));
11119 New_T := Entity (Subtype_Mark (Obj_Def));
11121 else
11122 Find_Type (Obj_Def);
11123 New_T := Entity (Obj_Def);
11124 end if;
11126 T := Etype (Prev);
11128 else
11129 -- The full view may impose a constraint, even if the partial
11130 -- view does not, so construct the subtype.
11132 New_T := Find_Type_Of_Object (Obj_Def, N);
11133 T := New_T;
11134 end if;
11136 else
11137 -- Current declaration is illegal, diagnosed below in Enter_Name
11139 T := Empty;
11140 New_T := Any_Type;
11141 end if;
11143 -- If previous full declaration or a renaming declaration exists, or if
11144 -- a homograph is present, let Enter_Name handle it, either with an
11145 -- error or with the removal of an overridden implicit subprogram.
11146 -- The previous one is a full declaration if it has an expression
11147 -- (which in the case of an aggregate is indicated by the Init flag).
11149 if Ekind (Prev) /= E_Constant
11150 or else Nkind (Parent (Prev)) = N_Object_Renaming_Declaration
11151 or else Present (Expression (Parent (Prev)))
11152 or else Has_Init_Expression (Parent (Prev))
11153 or else Present (Full_View (Prev))
11154 then
11155 Enter_Name (Id);
11157 -- Verify that types of both declarations match, or else that both types
11158 -- are anonymous access types whose designated subtypes statically match
11159 -- (as allowed in Ada 2005 by AI-385).
11161 elsif Base_Type (Etype (Prev)) /= Base_Type (New_T)
11162 and then
11163 (Ekind (Etype (Prev)) /= E_Anonymous_Access_Type
11164 or else Ekind (Etype (New_T)) /= E_Anonymous_Access_Type
11165 or else Is_Access_Constant (Etype (New_T)) /=
11166 Is_Access_Constant (Etype (Prev))
11167 or else Can_Never_Be_Null (Etype (New_T)) /=
11168 Can_Never_Be_Null (Etype (Prev))
11169 or else Null_Exclusion_Present (Parent (Prev)) /=
11170 Null_Exclusion_Present (Parent (Id))
11171 or else not Subtypes_Statically_Match
11172 (Designated_Type (Etype (Prev)),
11173 Designated_Type (Etype (New_T))))
11174 then
11175 Error_Msg_Sloc := Sloc (Prev);
11176 Error_Msg_N ("type does not match declaration#", N);
11177 Set_Full_View (Prev, Id);
11178 Set_Etype (Id, Any_Type);
11180 elsif
11181 Null_Exclusion_Present (Parent (Prev))
11182 and then not Null_Exclusion_Present (N)
11183 then
11184 Error_Msg_Sloc := Sloc (Prev);
11185 Error_Msg_N ("null-exclusion does not match declaration#", N);
11186 Set_Full_View (Prev, Id);
11187 Set_Etype (Id, Any_Type);
11189 -- If so, process the full constant declaration
11191 else
11192 -- RM 7.4 (6): If the subtype defined by the subtype_indication in
11193 -- the deferred declaration is constrained, then the subtype defined
11194 -- by the subtype_indication in the full declaration shall match it
11195 -- statically.
11197 Check_Possible_Deferred_Completion
11198 (Prev_Id => Prev,
11199 Prev_Obj_Def => Object_Definition (Parent (Prev)),
11200 Curr_Obj_Def => Obj_Def);
11202 Set_Full_View (Prev, Id);
11203 Set_Is_Public (Id, Is_Public (Prev));
11204 Set_Is_Internal (Id);
11205 Append_Entity (Id, Current_Scope);
11207 -- Check ALIASED present if present before (RM 7.4(7))
11209 if Is_Aliased (Prev)
11210 and then not Aliased_Present (N)
11211 then
11212 Error_Msg_Sloc := Sloc (Prev);
11213 Error_Msg_N ("ALIASED required (see declaration#)", N);
11214 end if;
11216 -- Check that placement is in private part and that the incomplete
11217 -- declaration appeared in the visible part.
11219 if Ekind (Current_Scope) = E_Package
11220 and then not In_Private_Part (Current_Scope)
11221 then
11222 Error_Msg_Sloc := Sloc (Prev);
11223 Error_Msg_N
11224 ("full constant for declaration#"
11225 & " must be in private part", N);
11227 elsif Ekind (Current_Scope) = E_Package
11228 and then
11229 List_Containing (Parent (Prev)) /=
11230 Visible_Declarations (Package_Specification (Current_Scope))
11231 then
11232 Error_Msg_N
11233 ("deferred constant must be declared in visible part",
11234 Parent (Prev));
11235 end if;
11237 if Is_Access_Type (T)
11238 and then Nkind (Expression (N)) = N_Allocator
11239 then
11240 Check_Recursive_Declaration (Designated_Type (T));
11241 end if;
11243 -- A deferred constant is a visible entity. If type has invariants,
11244 -- verify that the initial value satisfies them.
11246 if Has_Invariants (T) and then Present (Invariant_Procedure (T)) then
11247 Insert_After (N,
11248 Make_Invariant_Call (New_Occurrence_Of (Prev, Sloc (N))));
11249 end if;
11250 end if;
11251 end Constant_Redeclaration;
11253 ----------------------
11254 -- Constrain_Access --
11255 ----------------------
11257 procedure Constrain_Access
11258 (Def_Id : in out Entity_Id;
11259 S : Node_Id;
11260 Related_Nod : Node_Id)
11262 T : constant Entity_Id := Entity (Subtype_Mark (S));
11263 Desig_Type : constant Entity_Id := Designated_Type (T);
11264 Desig_Subtype : Entity_Id := Create_Itype (E_Void, Related_Nod);
11265 Constraint_OK : Boolean := True;
11267 begin
11268 if Is_Array_Type (Desig_Type) then
11269 Constrain_Array (Desig_Subtype, S, Related_Nod, Def_Id, 'P');
11271 elsif (Is_Record_Type (Desig_Type)
11272 or else Is_Incomplete_Or_Private_Type (Desig_Type))
11273 and then not Is_Constrained (Desig_Type)
11274 then
11275 -- ??? The following code is a temporary bypass to ignore a
11276 -- discriminant constraint on access type if it is constraining
11277 -- the current record. Avoid creating the implicit subtype of the
11278 -- record we are currently compiling since right now, we cannot
11279 -- handle these. For now, just return the access type itself.
11281 if Desig_Type = Current_Scope
11282 and then No (Def_Id)
11283 then
11284 Set_Ekind (Desig_Subtype, E_Record_Subtype);
11285 Def_Id := Entity (Subtype_Mark (S));
11287 -- This call added to ensure that the constraint is analyzed
11288 -- (needed for a B test). Note that we still return early from
11289 -- this procedure to avoid recursive processing. ???
11291 Constrain_Discriminated_Type
11292 (Desig_Subtype, S, Related_Nod, For_Access => True);
11293 return;
11294 end if;
11296 -- Enforce rule that the constraint is illegal if there is an
11297 -- unconstrained view of the designated type. This means that the
11298 -- partial view (either a private type declaration or a derivation
11299 -- from a private type) has no discriminants. (Defect Report
11300 -- 8652/0008, Technical Corrigendum 1, checked by ACATS B371001).
11302 -- Rule updated for Ada 2005: The private type is said to have
11303 -- a constrained partial view, given that objects of the type
11304 -- can be declared. Furthermore, the rule applies to all access
11305 -- types, unlike the rule concerning default discriminants (see
11306 -- RM 3.7.1(7/3))
11308 if (Ekind (T) = E_General_Access_Type
11309 or else Ada_Version >= Ada_2005)
11310 and then Has_Private_Declaration (Desig_Type)
11311 and then In_Open_Scopes (Scope (Desig_Type))
11312 and then Has_Discriminants (Desig_Type)
11313 then
11314 declare
11315 Pack : constant Node_Id :=
11316 Unit_Declaration_Node (Scope (Desig_Type));
11317 Decls : List_Id;
11318 Decl : Node_Id;
11320 begin
11321 if Nkind (Pack) = N_Package_Declaration then
11322 Decls := Visible_Declarations (Specification (Pack));
11323 Decl := First (Decls);
11324 while Present (Decl) loop
11325 if (Nkind (Decl) = N_Private_Type_Declaration
11326 and then
11327 Chars (Defining_Identifier (Decl)) =
11328 Chars (Desig_Type))
11330 or else
11331 (Nkind (Decl) = N_Full_Type_Declaration
11332 and then
11333 Chars (Defining_Identifier (Decl)) =
11334 Chars (Desig_Type)
11335 and then Is_Derived_Type (Desig_Type)
11336 and then
11337 Has_Private_Declaration (Etype (Desig_Type)))
11338 then
11339 if No (Discriminant_Specifications (Decl)) then
11340 Error_Msg_N
11341 ("cannot constrain access type if designated " &
11342 "type has constrained partial view", S);
11343 end if;
11345 exit;
11346 end if;
11348 Next (Decl);
11349 end loop;
11350 end if;
11351 end;
11352 end if;
11354 Constrain_Discriminated_Type (Desig_Subtype, S, Related_Nod,
11355 For_Access => True);
11357 elsif (Is_Task_Type (Desig_Type)
11358 or else Is_Protected_Type (Desig_Type))
11359 and then not Is_Constrained (Desig_Type)
11360 then
11361 Constrain_Concurrent (Desig_Subtype, S, Related_Nod, Desig_Type, ' ');
11363 else
11364 Error_Msg_N ("invalid constraint on access type", S);
11365 Desig_Subtype := Desig_Type; -- Ignore invalid constraint.
11366 Constraint_OK := False;
11367 end if;
11369 if No (Def_Id) then
11370 Def_Id := Create_Itype (E_Access_Subtype, Related_Nod);
11371 else
11372 Set_Ekind (Def_Id, E_Access_Subtype);
11373 end if;
11375 if Constraint_OK then
11376 Set_Etype (Def_Id, Base_Type (T));
11378 if Is_Private_Type (Desig_Type) then
11379 Prepare_Private_Subtype_Completion (Desig_Subtype, Related_Nod);
11380 end if;
11381 else
11382 Set_Etype (Def_Id, Any_Type);
11383 end if;
11385 Set_Size_Info (Def_Id, T);
11386 Set_Is_Constrained (Def_Id, Constraint_OK);
11387 Set_Directly_Designated_Type (Def_Id, Desig_Subtype);
11388 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
11389 Set_Is_Access_Constant (Def_Id, Is_Access_Constant (T));
11391 Conditional_Delay (Def_Id, T);
11393 -- AI-363 : Subtypes of general access types whose designated types have
11394 -- default discriminants are disallowed. In instances, the rule has to
11395 -- be checked against the actual, of which T is the subtype. In a
11396 -- generic body, the rule is checked assuming that the actual type has
11397 -- defaulted discriminants.
11399 if Ada_Version >= Ada_2005 or else Warn_On_Ada_2005_Compatibility then
11400 if Ekind (Base_Type (T)) = E_General_Access_Type
11401 and then Has_Defaulted_Discriminants (Desig_Type)
11402 then
11403 if Ada_Version < Ada_2005 then
11404 Error_Msg_N
11405 ("access subtype of general access type would not " &
11406 "be allowed in Ada 2005?y?", S);
11407 else
11408 Error_Msg_N
11409 ("access subtype of general access type not allowed", S);
11410 end if;
11412 Error_Msg_N ("\discriminants have defaults", S);
11414 elsif Is_Access_Type (T)
11415 and then Is_Generic_Type (Desig_Type)
11416 and then Has_Discriminants (Desig_Type)
11417 and then In_Package_Body (Current_Scope)
11418 then
11419 if Ada_Version < Ada_2005 then
11420 Error_Msg_N
11421 ("access subtype would not be allowed in generic body " &
11422 "in Ada 2005?y?", S);
11423 else
11424 Error_Msg_N
11425 ("access subtype not allowed in generic body", S);
11426 end if;
11428 Error_Msg_N
11429 ("\designated type is a discriminated formal", S);
11430 end if;
11431 end if;
11432 end Constrain_Access;
11434 ---------------------
11435 -- Constrain_Array --
11436 ---------------------
11438 procedure Constrain_Array
11439 (Def_Id : in out Entity_Id;
11440 SI : Node_Id;
11441 Related_Nod : Node_Id;
11442 Related_Id : Entity_Id;
11443 Suffix : Character)
11445 C : constant Node_Id := Constraint (SI);
11446 Number_Of_Constraints : Nat := 0;
11447 Index : Node_Id;
11448 S, T : Entity_Id;
11449 Constraint_OK : Boolean := True;
11451 begin
11452 T := Entity (Subtype_Mark (SI));
11454 if Is_Access_Type (T) then
11455 T := Designated_Type (T);
11456 end if;
11458 -- If an index constraint follows a subtype mark in a subtype indication
11459 -- then the type or subtype denoted by the subtype mark must not already
11460 -- impose an index constraint. The subtype mark must denote either an
11461 -- unconstrained array type or an access type whose designated type
11462 -- is such an array type... (RM 3.6.1)
11464 if Is_Constrained (T) then
11465 Error_Msg_N ("array type is already constrained", Subtype_Mark (SI));
11466 Constraint_OK := False;
11468 else
11469 S := First (Constraints (C));
11470 while Present (S) loop
11471 Number_Of_Constraints := Number_Of_Constraints + 1;
11472 Next (S);
11473 end loop;
11475 -- In either case, the index constraint must provide a discrete
11476 -- range for each index of the array type and the type of each
11477 -- discrete range must be the same as that of the corresponding
11478 -- index. (RM 3.6.1)
11480 if Number_Of_Constraints /= Number_Dimensions (T) then
11481 Error_Msg_NE ("incorrect number of index constraints for }", C, T);
11482 Constraint_OK := False;
11484 else
11485 S := First (Constraints (C));
11486 Index := First_Index (T);
11487 Analyze (Index);
11489 -- Apply constraints to each index type
11491 for J in 1 .. Number_Of_Constraints loop
11492 Constrain_Index (Index, S, Related_Nod, Related_Id, Suffix, J);
11493 Next (Index);
11494 Next (S);
11495 end loop;
11497 end if;
11498 end if;
11500 if No (Def_Id) then
11501 Def_Id :=
11502 Create_Itype (E_Array_Subtype, Related_Nod, Related_Id, Suffix);
11503 Set_Parent (Def_Id, Related_Nod);
11505 else
11506 Set_Ekind (Def_Id, E_Array_Subtype);
11507 end if;
11509 Set_Size_Info (Def_Id, (T));
11510 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
11511 Set_Etype (Def_Id, Base_Type (T));
11513 if Constraint_OK then
11514 Set_First_Index (Def_Id, First (Constraints (C)));
11515 else
11516 Set_First_Index (Def_Id, First_Index (T));
11517 end if;
11519 Set_Is_Constrained (Def_Id, True);
11520 Set_Is_Aliased (Def_Id, Is_Aliased (T));
11521 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
11523 Set_Is_Private_Composite (Def_Id, Is_Private_Composite (T));
11524 Set_Is_Limited_Composite (Def_Id, Is_Limited_Composite (T));
11526 -- A subtype does not inherit the Packed_Array_Impl_Type of is parent.
11527 -- We need to initialize the attribute because if Def_Id is previously
11528 -- analyzed through a limited_with clause, it will have the attributes
11529 -- of an incomplete type, one of which is an Elist that overlaps the
11530 -- Packed_Array_Impl_Type field.
11532 Set_Packed_Array_Impl_Type (Def_Id, Empty);
11534 -- Build a freeze node if parent still needs one. Also make sure that
11535 -- the Depends_On_Private status is set because the subtype will need
11536 -- reprocessing at the time the base type does, and also we must set a
11537 -- conditional delay.
11539 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
11540 Conditional_Delay (Def_Id, T);
11541 end Constrain_Array;
11543 ------------------------------
11544 -- Constrain_Component_Type --
11545 ------------------------------
11547 function Constrain_Component_Type
11548 (Comp : Entity_Id;
11549 Constrained_Typ : Entity_Id;
11550 Related_Node : Node_Id;
11551 Typ : Entity_Id;
11552 Constraints : Elist_Id) return Entity_Id
11554 Loc : constant Source_Ptr := Sloc (Constrained_Typ);
11555 Compon_Type : constant Entity_Id := Etype (Comp);
11557 function Build_Constrained_Array_Type
11558 (Old_Type : Entity_Id) return Entity_Id;
11559 -- If Old_Type is an array type, one of whose indexes is constrained
11560 -- by a discriminant, build an Itype whose constraint replaces the
11561 -- discriminant with its value in the constraint.
11563 function Build_Constrained_Discriminated_Type
11564 (Old_Type : Entity_Id) return Entity_Id;
11565 -- Ditto for record components
11567 function Build_Constrained_Access_Type
11568 (Old_Type : Entity_Id) return Entity_Id;
11569 -- Ditto for access types. Makes use of previous two functions, to
11570 -- constrain designated type.
11572 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id;
11573 -- T is an array or discriminated type, C is a list of constraints
11574 -- that apply to T. This routine builds the constrained subtype.
11576 function Is_Discriminant (Expr : Node_Id) return Boolean;
11577 -- Returns True if Expr is a discriminant
11579 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id;
11580 -- Find the value of discriminant Discrim in Constraint
11582 -----------------------------------
11583 -- Build_Constrained_Access_Type --
11584 -----------------------------------
11586 function Build_Constrained_Access_Type
11587 (Old_Type : Entity_Id) return Entity_Id
11589 Desig_Type : constant Entity_Id := Designated_Type (Old_Type);
11590 Itype : Entity_Id;
11591 Desig_Subtype : Entity_Id;
11592 Scop : Entity_Id;
11594 begin
11595 -- if the original access type was not embedded in the enclosing
11596 -- type definition, there is no need to produce a new access
11597 -- subtype. In fact every access type with an explicit constraint
11598 -- generates an itype whose scope is the enclosing record.
11600 if not Is_Type (Scope (Old_Type)) then
11601 return Old_Type;
11603 elsif Is_Array_Type (Desig_Type) then
11604 Desig_Subtype := Build_Constrained_Array_Type (Desig_Type);
11606 elsif Has_Discriminants (Desig_Type) then
11608 -- This may be an access type to an enclosing record type for
11609 -- which we are constructing the constrained components. Return
11610 -- the enclosing record subtype. This is not always correct,
11611 -- but avoids infinite recursion. ???
11613 Desig_Subtype := Any_Type;
11615 for J in reverse 0 .. Scope_Stack.Last loop
11616 Scop := Scope_Stack.Table (J).Entity;
11618 if Is_Type (Scop)
11619 and then Base_Type (Scop) = Base_Type (Desig_Type)
11620 then
11621 Desig_Subtype := Scop;
11622 end if;
11624 exit when not Is_Type (Scop);
11625 end loop;
11627 if Desig_Subtype = Any_Type then
11628 Desig_Subtype :=
11629 Build_Constrained_Discriminated_Type (Desig_Type);
11630 end if;
11632 else
11633 return Old_Type;
11634 end if;
11636 if Desig_Subtype /= Desig_Type then
11638 -- The Related_Node better be here or else we won't be able
11639 -- to attach new itypes to a node in the tree.
11641 pragma Assert (Present (Related_Node));
11643 Itype := Create_Itype (E_Access_Subtype, Related_Node);
11645 Set_Etype (Itype, Base_Type (Old_Type));
11646 Set_Size_Info (Itype, (Old_Type));
11647 Set_Directly_Designated_Type (Itype, Desig_Subtype);
11648 Set_Depends_On_Private (Itype, Has_Private_Component
11649 (Old_Type));
11650 Set_Is_Access_Constant (Itype, Is_Access_Constant
11651 (Old_Type));
11653 -- The new itype needs freezing when it depends on a not frozen
11654 -- type and the enclosing subtype needs freezing.
11656 if Has_Delayed_Freeze (Constrained_Typ)
11657 and then not Is_Frozen (Constrained_Typ)
11658 then
11659 Conditional_Delay (Itype, Base_Type (Old_Type));
11660 end if;
11662 return Itype;
11664 else
11665 return Old_Type;
11666 end if;
11667 end Build_Constrained_Access_Type;
11669 ----------------------------------
11670 -- Build_Constrained_Array_Type --
11671 ----------------------------------
11673 function Build_Constrained_Array_Type
11674 (Old_Type : Entity_Id) return Entity_Id
11676 Lo_Expr : Node_Id;
11677 Hi_Expr : Node_Id;
11678 Old_Index : Node_Id;
11679 Range_Node : Node_Id;
11680 Constr_List : List_Id;
11682 Need_To_Create_Itype : Boolean := False;
11684 begin
11685 Old_Index := First_Index (Old_Type);
11686 while Present (Old_Index) loop
11687 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
11689 if Is_Discriminant (Lo_Expr)
11690 or else Is_Discriminant (Hi_Expr)
11691 then
11692 Need_To_Create_Itype := True;
11693 end if;
11695 Next_Index (Old_Index);
11696 end loop;
11698 if Need_To_Create_Itype then
11699 Constr_List := New_List;
11701 Old_Index := First_Index (Old_Type);
11702 while Present (Old_Index) loop
11703 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
11705 if Is_Discriminant (Lo_Expr) then
11706 Lo_Expr := Get_Discr_Value (Lo_Expr);
11707 end if;
11709 if Is_Discriminant (Hi_Expr) then
11710 Hi_Expr := Get_Discr_Value (Hi_Expr);
11711 end if;
11713 Range_Node :=
11714 Make_Range
11715 (Loc, New_Copy_Tree (Lo_Expr), New_Copy_Tree (Hi_Expr));
11717 Append (Range_Node, To => Constr_List);
11719 Next_Index (Old_Index);
11720 end loop;
11722 return Build_Subtype (Old_Type, Constr_List);
11724 else
11725 return Old_Type;
11726 end if;
11727 end Build_Constrained_Array_Type;
11729 ------------------------------------------
11730 -- Build_Constrained_Discriminated_Type --
11731 ------------------------------------------
11733 function Build_Constrained_Discriminated_Type
11734 (Old_Type : Entity_Id) return Entity_Id
11736 Expr : Node_Id;
11737 Constr_List : List_Id;
11738 Old_Constraint : Elmt_Id;
11740 Need_To_Create_Itype : Boolean := False;
11742 begin
11743 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
11744 while Present (Old_Constraint) loop
11745 Expr := Node (Old_Constraint);
11747 if Is_Discriminant (Expr) then
11748 Need_To_Create_Itype := True;
11749 end if;
11751 Next_Elmt (Old_Constraint);
11752 end loop;
11754 if Need_To_Create_Itype then
11755 Constr_List := New_List;
11757 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
11758 while Present (Old_Constraint) loop
11759 Expr := Node (Old_Constraint);
11761 if Is_Discriminant (Expr) then
11762 Expr := Get_Discr_Value (Expr);
11763 end if;
11765 Append (New_Copy_Tree (Expr), To => Constr_List);
11767 Next_Elmt (Old_Constraint);
11768 end loop;
11770 return Build_Subtype (Old_Type, Constr_List);
11772 else
11773 return Old_Type;
11774 end if;
11775 end Build_Constrained_Discriminated_Type;
11777 -------------------
11778 -- Build_Subtype --
11779 -------------------
11781 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id is
11782 Indic : Node_Id;
11783 Subtyp_Decl : Node_Id;
11784 Def_Id : Entity_Id;
11785 Btyp : Entity_Id := Base_Type (T);
11787 begin
11788 -- The Related_Node better be here or else we won't be able to
11789 -- attach new itypes to a node in the tree.
11791 pragma Assert (Present (Related_Node));
11793 -- If the view of the component's type is incomplete or private
11794 -- with unknown discriminants, then the constraint must be applied
11795 -- to the full type.
11797 if Has_Unknown_Discriminants (Btyp)
11798 and then Present (Underlying_Type (Btyp))
11799 then
11800 Btyp := Underlying_Type (Btyp);
11801 end if;
11803 Indic :=
11804 Make_Subtype_Indication (Loc,
11805 Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
11806 Constraint => Make_Index_Or_Discriminant_Constraint (Loc, C));
11808 Def_Id := Create_Itype (Ekind (T), Related_Node);
11810 Subtyp_Decl :=
11811 Make_Subtype_Declaration (Loc,
11812 Defining_Identifier => Def_Id,
11813 Subtype_Indication => Indic);
11815 Set_Parent (Subtyp_Decl, Parent (Related_Node));
11817 -- Itypes must be analyzed with checks off (see package Itypes)
11819 Analyze (Subtyp_Decl, Suppress => All_Checks);
11821 return Def_Id;
11822 end Build_Subtype;
11824 ---------------------
11825 -- Get_Discr_Value --
11826 ---------------------
11828 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id is
11829 D : Entity_Id;
11830 E : Elmt_Id;
11832 begin
11833 -- The discriminant may be declared for the type, in which case we
11834 -- find it by iterating over the list of discriminants. If the
11835 -- discriminant is inherited from a parent type, it appears as the
11836 -- corresponding discriminant of the current type. This will be the
11837 -- case when constraining an inherited component whose constraint is
11838 -- given by a discriminant of the parent.
11840 D := First_Discriminant (Typ);
11841 E := First_Elmt (Constraints);
11843 while Present (D) loop
11844 if D = Entity (Discrim)
11845 or else D = CR_Discriminant (Entity (Discrim))
11846 or else Corresponding_Discriminant (D) = Entity (Discrim)
11847 then
11848 return Node (E);
11849 end if;
11851 Next_Discriminant (D);
11852 Next_Elmt (E);
11853 end loop;
11855 -- The Corresponding_Discriminant mechanism is incomplete, because
11856 -- the correspondence between new and old discriminants is not one
11857 -- to one: one new discriminant can constrain several old ones. In
11858 -- that case, scan sequentially the stored_constraint, the list of
11859 -- discriminants of the parents, and the constraints.
11861 -- Previous code checked for the present of the Stored_Constraint
11862 -- list for the derived type, but did not use it at all. Should it
11863 -- be present when the component is a discriminated task type?
11865 if Is_Derived_Type (Typ)
11866 and then Scope (Entity (Discrim)) = Etype (Typ)
11867 then
11868 D := First_Discriminant (Etype (Typ));
11869 E := First_Elmt (Constraints);
11870 while Present (D) loop
11871 if D = Entity (Discrim) then
11872 return Node (E);
11873 end if;
11875 Next_Discriminant (D);
11876 Next_Elmt (E);
11877 end loop;
11878 end if;
11880 -- Something is wrong if we did not find the value
11882 raise Program_Error;
11883 end Get_Discr_Value;
11885 ---------------------
11886 -- Is_Discriminant --
11887 ---------------------
11889 function Is_Discriminant (Expr : Node_Id) return Boolean is
11890 Discrim_Scope : Entity_Id;
11892 begin
11893 if Denotes_Discriminant (Expr) then
11894 Discrim_Scope := Scope (Entity (Expr));
11896 -- Either we have a reference to one of Typ's discriminants,
11898 pragma Assert (Discrim_Scope = Typ
11900 -- or to the discriminants of the parent type, in the case
11901 -- of a derivation of a tagged type with variants.
11903 or else Discrim_Scope = Etype (Typ)
11904 or else Full_View (Discrim_Scope) = Etype (Typ)
11906 -- or same as above for the case where the discriminants
11907 -- were declared in Typ's private view.
11909 or else (Is_Private_Type (Discrim_Scope)
11910 and then Chars (Discrim_Scope) = Chars (Typ))
11912 -- or else we are deriving from the full view and the
11913 -- discriminant is declared in the private entity.
11915 or else (Is_Private_Type (Typ)
11916 and then Chars (Discrim_Scope) = Chars (Typ))
11918 -- Or we are constrained the corresponding record of a
11919 -- synchronized type that completes a private declaration.
11921 or else (Is_Concurrent_Record_Type (Typ)
11922 and then
11923 Corresponding_Concurrent_Type (Typ) = Discrim_Scope)
11925 -- or we have a class-wide type, in which case make sure the
11926 -- discriminant found belongs to the root type.
11928 or else (Is_Class_Wide_Type (Typ)
11929 and then Etype (Typ) = Discrim_Scope));
11931 return True;
11932 end if;
11934 -- In all other cases we have something wrong
11936 return False;
11937 end Is_Discriminant;
11939 -- Start of processing for Constrain_Component_Type
11941 begin
11942 if Nkind (Parent (Comp)) = N_Component_Declaration
11943 and then Comes_From_Source (Parent (Comp))
11944 and then Comes_From_Source
11945 (Subtype_Indication (Component_Definition (Parent (Comp))))
11946 and then
11947 Is_Entity_Name
11948 (Subtype_Indication (Component_Definition (Parent (Comp))))
11949 then
11950 return Compon_Type;
11952 elsif Is_Array_Type (Compon_Type) then
11953 return Build_Constrained_Array_Type (Compon_Type);
11955 elsif Has_Discriminants (Compon_Type) then
11956 return Build_Constrained_Discriminated_Type (Compon_Type);
11958 elsif Is_Access_Type (Compon_Type) then
11959 return Build_Constrained_Access_Type (Compon_Type);
11961 else
11962 return Compon_Type;
11963 end if;
11964 end Constrain_Component_Type;
11966 --------------------------
11967 -- Constrain_Concurrent --
11968 --------------------------
11970 -- For concurrent types, the associated record value type carries the same
11971 -- discriminants, so when we constrain a concurrent type, we must constrain
11972 -- the corresponding record type as well.
11974 procedure Constrain_Concurrent
11975 (Def_Id : in out Entity_Id;
11976 SI : Node_Id;
11977 Related_Nod : Node_Id;
11978 Related_Id : Entity_Id;
11979 Suffix : Character)
11981 -- Retrieve Base_Type to ensure getting to the concurrent type in the
11982 -- case of a private subtype (needed when only doing semantic analysis).
11984 T_Ent : Entity_Id := Base_Type (Entity (Subtype_Mark (SI)));
11985 T_Val : Entity_Id;
11987 begin
11988 if Is_Access_Type (T_Ent) then
11989 T_Ent := Designated_Type (T_Ent);
11990 end if;
11992 T_Val := Corresponding_Record_Type (T_Ent);
11994 if Present (T_Val) then
11996 if No (Def_Id) then
11997 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
11998 end if;
12000 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
12002 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
12003 Set_Corresponding_Record_Type (Def_Id,
12004 Constrain_Corresponding_Record (Def_Id, T_Val, Related_Nod));
12006 else
12007 -- If there is no associated record, expansion is disabled and this
12008 -- is a generic context. Create a subtype in any case, so that
12009 -- semantic analysis can proceed.
12011 if No (Def_Id) then
12012 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
12013 end if;
12015 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
12016 end if;
12017 end Constrain_Concurrent;
12019 ------------------------------------
12020 -- Constrain_Corresponding_Record --
12021 ------------------------------------
12023 function Constrain_Corresponding_Record
12024 (Prot_Subt : Entity_Id;
12025 Corr_Rec : Entity_Id;
12026 Related_Nod : Node_Id) return Entity_Id
12028 T_Sub : constant Entity_Id :=
12029 Create_Itype (E_Record_Subtype, Related_Nod, Corr_Rec, 'C');
12031 begin
12032 Set_Etype (T_Sub, Corr_Rec);
12033 Set_Has_Discriminants (T_Sub, Has_Discriminants (Prot_Subt));
12034 Set_Is_Constrained (T_Sub, True);
12035 Set_First_Entity (T_Sub, First_Entity (Corr_Rec));
12036 Set_Last_Entity (T_Sub, Last_Entity (Corr_Rec));
12038 if Has_Discriminants (Prot_Subt) then -- False only if errors.
12039 Set_Discriminant_Constraint
12040 (T_Sub, Discriminant_Constraint (Prot_Subt));
12041 Set_Stored_Constraint_From_Discriminant_Constraint (T_Sub);
12042 Create_Constrained_Components
12043 (T_Sub, Related_Nod, Corr_Rec, Discriminant_Constraint (T_Sub));
12044 end if;
12046 Set_Depends_On_Private (T_Sub, Has_Private_Component (T_Sub));
12048 if Ekind (Scope (Prot_Subt)) /= E_Record_Type then
12049 Conditional_Delay (T_Sub, Corr_Rec);
12051 else
12052 -- This is a component subtype: it will be frozen in the context of
12053 -- the enclosing record's init_proc, so that discriminant references
12054 -- are resolved to discriminals. (Note: we used to skip freezing
12055 -- altogether in that case, which caused errors downstream for
12056 -- components of a bit packed array type).
12058 Set_Has_Delayed_Freeze (T_Sub);
12059 end if;
12061 return T_Sub;
12062 end Constrain_Corresponding_Record;
12064 -----------------------
12065 -- Constrain_Decimal --
12066 -----------------------
12068 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id) is
12069 T : constant Entity_Id := Entity (Subtype_Mark (S));
12070 C : constant Node_Id := Constraint (S);
12071 Loc : constant Source_Ptr := Sloc (C);
12072 Range_Expr : Node_Id;
12073 Digits_Expr : Node_Id;
12074 Digits_Val : Uint;
12075 Bound_Val : Ureal;
12077 begin
12078 Set_Ekind (Def_Id, E_Decimal_Fixed_Point_Subtype);
12080 if Nkind (C) = N_Range_Constraint then
12081 Range_Expr := Range_Expression (C);
12082 Digits_Val := Digits_Value (T);
12084 else
12085 pragma Assert (Nkind (C) = N_Digits_Constraint);
12087 Check_SPARK_Restriction ("digits constraint is not allowed", S);
12089 Digits_Expr := Digits_Expression (C);
12090 Analyze_And_Resolve (Digits_Expr, Any_Integer);
12092 Check_Digits_Expression (Digits_Expr);
12093 Digits_Val := Expr_Value (Digits_Expr);
12095 if Digits_Val > Digits_Value (T) then
12096 Error_Msg_N
12097 ("digits expression is incompatible with subtype", C);
12098 Digits_Val := Digits_Value (T);
12099 end if;
12101 if Present (Range_Constraint (C)) then
12102 Range_Expr := Range_Expression (Range_Constraint (C));
12103 else
12104 Range_Expr := Empty;
12105 end if;
12106 end if;
12108 Set_Etype (Def_Id, Base_Type (T));
12109 Set_Size_Info (Def_Id, (T));
12110 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12111 Set_Delta_Value (Def_Id, Delta_Value (T));
12112 Set_Scale_Value (Def_Id, Scale_Value (T));
12113 Set_Small_Value (Def_Id, Small_Value (T));
12114 Set_Machine_Radix_10 (Def_Id, Machine_Radix_10 (T));
12115 Set_Digits_Value (Def_Id, Digits_Val);
12117 -- Manufacture range from given digits value if no range present
12119 if No (Range_Expr) then
12120 Bound_Val := (Ureal_10 ** Digits_Val - Ureal_1) * Small_Value (T);
12121 Range_Expr :=
12122 Make_Range (Loc,
12123 Low_Bound =>
12124 Convert_To (T, Make_Real_Literal (Loc, (-Bound_Val))),
12125 High_Bound =>
12126 Convert_To (T, Make_Real_Literal (Loc, Bound_Val)));
12127 end if;
12129 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expr, T);
12130 Set_Discrete_RM_Size (Def_Id);
12132 -- Unconditionally delay the freeze, since we cannot set size
12133 -- information in all cases correctly until the freeze point.
12135 Set_Has_Delayed_Freeze (Def_Id);
12136 end Constrain_Decimal;
12138 ----------------------------------
12139 -- Constrain_Discriminated_Type --
12140 ----------------------------------
12142 procedure Constrain_Discriminated_Type
12143 (Def_Id : Entity_Id;
12144 S : Node_Id;
12145 Related_Nod : Node_Id;
12146 For_Access : Boolean := False)
12148 E : constant Entity_Id := Entity (Subtype_Mark (S));
12149 T : Entity_Id;
12150 C : Node_Id;
12151 Elist : Elist_Id := New_Elmt_List;
12153 procedure Fixup_Bad_Constraint;
12154 -- This is called after finding a bad constraint, and after having
12155 -- posted an appropriate error message. The mission is to leave the
12156 -- entity T in as reasonable state as possible.
12158 --------------------------
12159 -- Fixup_Bad_Constraint --
12160 --------------------------
12162 procedure Fixup_Bad_Constraint is
12163 begin
12164 -- Set a reasonable Ekind for the entity. For an incomplete type,
12165 -- we can't do much, but for other types, we can set the proper
12166 -- corresponding subtype kind.
12168 if Ekind (T) = E_Incomplete_Type then
12169 Set_Ekind (Def_Id, Ekind (T));
12170 else
12171 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
12172 end if;
12174 -- Set Etype to the known type, to reduce chances of cascaded errors
12176 Set_Etype (Def_Id, E);
12177 Set_Error_Posted (Def_Id);
12178 end Fixup_Bad_Constraint;
12180 -- Start of processing for Constrain_Discriminated_Type
12182 begin
12183 C := Constraint (S);
12185 -- A discriminant constraint is only allowed in a subtype indication,
12186 -- after a subtype mark. This subtype mark must denote either a type
12187 -- with discriminants, or an access type whose designated type is a
12188 -- type with discriminants. A discriminant constraint specifies the
12189 -- values of these discriminants (RM 3.7.2(5)).
12191 T := Base_Type (Entity (Subtype_Mark (S)));
12193 if Is_Access_Type (T) then
12194 T := Designated_Type (T);
12195 end if;
12197 -- Ada 2005 (AI-412): Constrained incomplete subtypes are illegal.
12198 -- Avoid generating an error for access-to-incomplete subtypes.
12200 if Ada_Version >= Ada_2005
12201 and then Ekind (T) = E_Incomplete_Type
12202 and then Nkind (Parent (S)) = N_Subtype_Declaration
12203 and then not Is_Itype (Def_Id)
12204 then
12205 -- A little sanity check, emit an error message if the type
12206 -- has discriminants to begin with. Type T may be a regular
12207 -- incomplete type or imported via a limited with clause.
12209 if Has_Discriminants (T)
12210 or else (From_Limited_With (T)
12211 and then Present (Non_Limited_View (T))
12212 and then Nkind (Parent (Non_Limited_View (T))) =
12213 N_Full_Type_Declaration
12214 and then Present (Discriminant_Specifications
12215 (Parent (Non_Limited_View (T)))))
12216 then
12217 Error_Msg_N
12218 ("(Ada 2005) incomplete subtype may not be constrained", C);
12219 else
12220 Error_Msg_N ("invalid constraint: type has no discriminant", C);
12221 end if;
12223 Fixup_Bad_Constraint;
12224 return;
12226 -- Check that the type has visible discriminants. The type may be
12227 -- a private type with unknown discriminants whose full view has
12228 -- discriminants which are invisible.
12230 elsif not Has_Discriminants (T)
12231 or else
12232 (Has_Unknown_Discriminants (T)
12233 and then Is_Private_Type (T))
12234 then
12235 Error_Msg_N ("invalid constraint: type has no discriminant", C);
12236 Fixup_Bad_Constraint;
12237 return;
12239 elsif Is_Constrained (E)
12240 or else (Ekind (E) = E_Class_Wide_Subtype
12241 and then Present (Discriminant_Constraint (E)))
12242 then
12243 Error_Msg_N ("type is already constrained", Subtype_Mark (S));
12244 Fixup_Bad_Constraint;
12245 return;
12246 end if;
12248 -- T may be an unconstrained subtype (e.g. a generic actual).
12249 -- Constraint applies to the base type.
12251 T := Base_Type (T);
12253 Elist := Build_Discriminant_Constraints (T, S);
12255 -- If the list returned was empty we had an error in building the
12256 -- discriminant constraint. We have also already signalled an error
12257 -- in the incomplete type case
12259 if Is_Empty_Elmt_List (Elist) then
12260 Fixup_Bad_Constraint;
12261 return;
12262 end if;
12264 Build_Discriminated_Subtype (T, Def_Id, Elist, Related_Nod, For_Access);
12265 end Constrain_Discriminated_Type;
12267 ---------------------------
12268 -- Constrain_Enumeration --
12269 ---------------------------
12271 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id) is
12272 T : constant Entity_Id := Entity (Subtype_Mark (S));
12273 C : constant Node_Id := Constraint (S);
12275 begin
12276 Set_Ekind (Def_Id, E_Enumeration_Subtype);
12278 Set_First_Literal (Def_Id, First_Literal (Base_Type (T)));
12280 Set_Etype (Def_Id, Base_Type (T));
12281 Set_Size_Info (Def_Id, (T));
12282 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12283 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
12285 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
12287 Set_Discrete_RM_Size (Def_Id);
12288 end Constrain_Enumeration;
12290 ----------------------
12291 -- Constrain_Float --
12292 ----------------------
12294 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id) is
12295 T : constant Entity_Id := Entity (Subtype_Mark (S));
12296 C : Node_Id;
12297 D : Node_Id;
12298 Rais : Node_Id;
12300 begin
12301 Set_Ekind (Def_Id, E_Floating_Point_Subtype);
12303 Set_Etype (Def_Id, Base_Type (T));
12304 Set_Size_Info (Def_Id, (T));
12305 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12307 -- Process the constraint
12309 C := Constraint (S);
12311 -- Digits constraint present
12313 if Nkind (C) = N_Digits_Constraint then
12315 Check_SPARK_Restriction ("digits constraint is not allowed", S);
12316 Check_Restriction (No_Obsolescent_Features, C);
12318 if Warn_On_Obsolescent_Feature then
12319 Error_Msg_N
12320 ("subtype digits constraint is an " &
12321 "obsolescent feature (RM J.3(8))?j?", C);
12322 end if;
12324 D := Digits_Expression (C);
12325 Analyze_And_Resolve (D, Any_Integer);
12326 Check_Digits_Expression (D);
12327 Set_Digits_Value (Def_Id, Expr_Value (D));
12329 -- Check that digits value is in range. Obviously we can do this
12330 -- at compile time, but it is strictly a runtime check, and of
12331 -- course there is an ACVC test that checks this.
12333 if Digits_Value (Def_Id) > Digits_Value (T) then
12334 Error_Msg_Uint_1 := Digits_Value (T);
12335 Error_Msg_N ("??digits value is too large, maximum is ^", D);
12336 Rais :=
12337 Make_Raise_Constraint_Error (Sloc (D),
12338 Reason => CE_Range_Check_Failed);
12339 Insert_Action (Declaration_Node (Def_Id), Rais);
12340 end if;
12342 C := Range_Constraint (C);
12344 -- No digits constraint present
12346 else
12347 Set_Digits_Value (Def_Id, Digits_Value (T));
12348 end if;
12350 -- Range constraint present
12352 if Nkind (C) = N_Range_Constraint then
12353 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
12355 -- No range constraint present
12357 else
12358 pragma Assert (No (C));
12359 Set_Scalar_Range (Def_Id, Scalar_Range (T));
12360 end if;
12362 Set_Is_Constrained (Def_Id);
12363 end Constrain_Float;
12365 ---------------------
12366 -- Constrain_Index --
12367 ---------------------
12369 procedure Constrain_Index
12370 (Index : Node_Id;
12371 S : Node_Id;
12372 Related_Nod : Node_Id;
12373 Related_Id : Entity_Id;
12374 Suffix : Character;
12375 Suffix_Index : Nat)
12377 Def_Id : Entity_Id;
12378 R : Node_Id := Empty;
12379 T : constant Entity_Id := Etype (Index);
12381 begin
12382 if Nkind (S) = N_Range
12383 or else
12384 (Nkind (S) = N_Attribute_Reference
12385 and then Attribute_Name (S) = Name_Range)
12386 then
12387 -- A Range attribute will be transformed into N_Range by Resolve
12389 Analyze (S);
12390 Set_Etype (S, T);
12391 R := S;
12393 Process_Range_Expr_In_Decl (R, T);
12395 if not Error_Posted (S)
12396 and then
12397 (Nkind (S) /= N_Range
12398 or else not Covers (T, (Etype (Low_Bound (S))))
12399 or else not Covers (T, (Etype (High_Bound (S)))))
12400 then
12401 if Base_Type (T) /= Any_Type
12402 and then Etype (Low_Bound (S)) /= Any_Type
12403 and then Etype (High_Bound (S)) /= Any_Type
12404 then
12405 Error_Msg_N ("range expected", S);
12406 end if;
12407 end if;
12409 elsif Nkind (S) = N_Subtype_Indication then
12411 -- The parser has verified that this is a discrete indication
12413 Resolve_Discrete_Subtype_Indication (S, T);
12414 R := Range_Expression (Constraint (S));
12416 -- Capture values of bounds and generate temporaries for them if
12417 -- needed, since checks may cause duplication of the expressions
12418 -- which must not be reevaluated.
12420 -- The forced evaluation removes side effects from expressions, which
12421 -- should occur also in GNATprove mode. Otherwise, we end up with
12422 -- unexpected insertions of actions at places where this is not
12423 -- supposed to occur, e.g. on default parameters of a call.
12425 if Expander_Active or GNATprove_Mode then
12426 Force_Evaluation (Low_Bound (R));
12427 Force_Evaluation (High_Bound (R));
12428 end if;
12430 elsif Nkind (S) = N_Discriminant_Association then
12432 -- Syntactically valid in subtype indication
12434 Error_Msg_N ("invalid index constraint", S);
12435 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
12436 return;
12438 -- Subtype_Mark case, no anonymous subtypes to construct
12440 else
12441 Analyze (S);
12443 if Is_Entity_Name (S) then
12444 if not Is_Type (Entity (S)) then
12445 Error_Msg_N ("expect subtype mark for index constraint", S);
12447 elsif Base_Type (Entity (S)) /= Base_Type (T) then
12448 Wrong_Type (S, Base_Type (T));
12450 -- Check error of subtype with predicate in index constraint
12452 else
12453 Bad_Predicated_Subtype_Use
12454 ("subtype& has predicate, not allowed in index constraint",
12455 S, Entity (S));
12456 end if;
12458 return;
12460 else
12461 Error_Msg_N ("invalid index constraint", S);
12462 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
12463 return;
12464 end if;
12465 end if;
12467 Def_Id :=
12468 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix, Suffix_Index);
12470 Set_Etype (Def_Id, Base_Type (T));
12472 if Is_Modular_Integer_Type (T) then
12473 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
12475 elsif Is_Integer_Type (T) then
12476 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
12478 else
12479 Set_Ekind (Def_Id, E_Enumeration_Subtype);
12480 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
12481 Set_First_Literal (Def_Id, First_Literal (T));
12482 end if;
12484 Set_Size_Info (Def_Id, (T));
12485 Set_RM_Size (Def_Id, RM_Size (T));
12486 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12488 Set_Scalar_Range (Def_Id, R);
12490 Set_Etype (S, Def_Id);
12491 Set_Discrete_RM_Size (Def_Id);
12492 end Constrain_Index;
12494 -----------------------
12495 -- Constrain_Integer --
12496 -----------------------
12498 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id) is
12499 T : constant Entity_Id := Entity (Subtype_Mark (S));
12500 C : constant Node_Id := Constraint (S);
12502 begin
12503 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
12505 if Is_Modular_Integer_Type (T) then
12506 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
12507 else
12508 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
12509 end if;
12511 Set_Etype (Def_Id, Base_Type (T));
12512 Set_Size_Info (Def_Id, (T));
12513 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12514 Set_Discrete_RM_Size (Def_Id);
12515 end Constrain_Integer;
12517 ------------------------------
12518 -- Constrain_Ordinary_Fixed --
12519 ------------------------------
12521 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id) is
12522 T : constant Entity_Id := Entity (Subtype_Mark (S));
12523 C : Node_Id;
12524 D : Node_Id;
12525 Rais : Node_Id;
12527 begin
12528 Set_Ekind (Def_Id, E_Ordinary_Fixed_Point_Subtype);
12529 Set_Etype (Def_Id, Base_Type (T));
12530 Set_Size_Info (Def_Id, (T));
12531 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12532 Set_Small_Value (Def_Id, Small_Value (T));
12534 -- Process the constraint
12536 C := Constraint (S);
12538 -- Delta constraint present
12540 if Nkind (C) = N_Delta_Constraint then
12542 Check_SPARK_Restriction ("delta constraint is not allowed", S);
12543 Check_Restriction (No_Obsolescent_Features, C);
12545 if Warn_On_Obsolescent_Feature then
12546 Error_Msg_S
12547 ("subtype delta constraint is an " &
12548 "obsolescent feature (RM J.3(7))?j?");
12549 end if;
12551 D := Delta_Expression (C);
12552 Analyze_And_Resolve (D, Any_Real);
12553 Check_Delta_Expression (D);
12554 Set_Delta_Value (Def_Id, Expr_Value_R (D));
12556 -- Check that delta value is in range. Obviously we can do this
12557 -- at compile time, but it is strictly a runtime check, and of
12558 -- course there is an ACVC test that checks this.
12560 if Delta_Value (Def_Id) < Delta_Value (T) then
12561 Error_Msg_N ("??delta value is too small", D);
12562 Rais :=
12563 Make_Raise_Constraint_Error (Sloc (D),
12564 Reason => CE_Range_Check_Failed);
12565 Insert_Action (Declaration_Node (Def_Id), Rais);
12566 end if;
12568 C := Range_Constraint (C);
12570 -- No delta constraint present
12572 else
12573 Set_Delta_Value (Def_Id, Delta_Value (T));
12574 end if;
12576 -- Range constraint present
12578 if Nkind (C) = N_Range_Constraint then
12579 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
12581 -- No range constraint present
12583 else
12584 pragma Assert (No (C));
12585 Set_Scalar_Range (Def_Id, Scalar_Range (T));
12587 end if;
12589 Set_Discrete_RM_Size (Def_Id);
12591 -- Unconditionally delay the freeze, since we cannot set size
12592 -- information in all cases correctly until the freeze point.
12594 Set_Has_Delayed_Freeze (Def_Id);
12595 end Constrain_Ordinary_Fixed;
12597 -----------------------
12598 -- Contain_Interface --
12599 -----------------------
12601 function Contain_Interface
12602 (Iface : Entity_Id;
12603 Ifaces : Elist_Id) return Boolean
12605 Iface_Elmt : Elmt_Id;
12607 begin
12608 if Present (Ifaces) then
12609 Iface_Elmt := First_Elmt (Ifaces);
12610 while Present (Iface_Elmt) loop
12611 if Node (Iface_Elmt) = Iface then
12612 return True;
12613 end if;
12615 Next_Elmt (Iface_Elmt);
12616 end loop;
12617 end if;
12619 return False;
12620 end Contain_Interface;
12622 ---------------------------
12623 -- Convert_Scalar_Bounds --
12624 ---------------------------
12626 procedure Convert_Scalar_Bounds
12627 (N : Node_Id;
12628 Parent_Type : Entity_Id;
12629 Derived_Type : Entity_Id;
12630 Loc : Source_Ptr)
12632 Implicit_Base : constant Entity_Id := Base_Type (Derived_Type);
12634 Lo : Node_Id;
12635 Hi : Node_Id;
12636 Rng : Node_Id;
12638 begin
12639 -- Defend against previous errors
12641 if No (Scalar_Range (Derived_Type)) then
12642 Check_Error_Detected;
12643 return;
12644 end if;
12646 Lo := Build_Scalar_Bound
12647 (Type_Low_Bound (Derived_Type),
12648 Parent_Type, Implicit_Base);
12650 Hi := Build_Scalar_Bound
12651 (Type_High_Bound (Derived_Type),
12652 Parent_Type, Implicit_Base);
12654 Rng :=
12655 Make_Range (Loc,
12656 Low_Bound => Lo,
12657 High_Bound => Hi);
12659 Set_Includes_Infinities (Rng, Has_Infinities (Derived_Type));
12661 Set_Parent (Rng, N);
12662 Set_Scalar_Range (Derived_Type, Rng);
12664 -- Analyze the bounds
12666 Analyze_And_Resolve (Lo, Implicit_Base);
12667 Analyze_And_Resolve (Hi, Implicit_Base);
12669 -- Analyze the range itself, except that we do not analyze it if
12670 -- the bounds are real literals, and we have a fixed-point type.
12671 -- The reason for this is that we delay setting the bounds in this
12672 -- case till we know the final Small and Size values (see circuit
12673 -- in Freeze.Freeze_Fixed_Point_Type for further details).
12675 if Is_Fixed_Point_Type (Parent_Type)
12676 and then Nkind (Lo) = N_Real_Literal
12677 and then Nkind (Hi) = N_Real_Literal
12678 then
12679 return;
12681 -- Here we do the analysis of the range
12683 -- Note: we do this manually, since if we do a normal Analyze and
12684 -- Resolve call, there are problems with the conversions used for
12685 -- the derived type range.
12687 else
12688 Set_Etype (Rng, Implicit_Base);
12689 Set_Analyzed (Rng, True);
12690 end if;
12691 end Convert_Scalar_Bounds;
12693 -------------------
12694 -- Copy_And_Swap --
12695 -------------------
12697 procedure Copy_And_Swap (Priv, Full : Entity_Id) is
12698 begin
12699 -- Initialize new full declaration entity by copying the pertinent
12700 -- fields of the corresponding private declaration entity.
12702 -- We temporarily set Ekind to a value appropriate for a type to
12703 -- avoid assert failures in Einfo from checking for setting type
12704 -- attributes on something that is not a type. Ekind (Priv) is an
12705 -- appropriate choice, since it allowed the attributes to be set
12706 -- in the first place. This Ekind value will be modified later.
12708 Set_Ekind (Full, Ekind (Priv));
12710 -- Also set Etype temporarily to Any_Type, again, in the absence
12711 -- of errors, it will be properly reset, and if there are errors,
12712 -- then we want a value of Any_Type to remain.
12714 Set_Etype (Full, Any_Type);
12716 -- Now start copying attributes
12718 Set_Has_Discriminants (Full, Has_Discriminants (Priv));
12720 if Has_Discriminants (Full) then
12721 Set_Discriminant_Constraint (Full, Discriminant_Constraint (Priv));
12722 Set_Stored_Constraint (Full, Stored_Constraint (Priv));
12723 end if;
12725 Set_First_Rep_Item (Full, First_Rep_Item (Priv));
12726 Set_Homonym (Full, Homonym (Priv));
12727 Set_Is_Immediately_Visible (Full, Is_Immediately_Visible (Priv));
12728 Set_Is_Public (Full, Is_Public (Priv));
12729 Set_Is_Pure (Full, Is_Pure (Priv));
12730 Set_Is_Tagged_Type (Full, Is_Tagged_Type (Priv));
12731 Set_Has_Pragma_Unmodified (Full, Has_Pragma_Unmodified (Priv));
12732 Set_Has_Pragma_Unreferenced (Full, Has_Pragma_Unreferenced (Priv));
12733 Set_Has_Pragma_Unreferenced_Objects
12734 (Full, Has_Pragma_Unreferenced_Objects
12735 (Priv));
12737 Conditional_Delay (Full, Priv);
12739 if Is_Tagged_Type (Full) then
12740 Set_Direct_Primitive_Operations (Full,
12741 Direct_Primitive_Operations (Priv));
12743 if Is_Base_Type (Priv) then
12744 Set_Class_Wide_Type (Full, Class_Wide_Type (Priv));
12745 end if;
12746 end if;
12748 Set_Is_Volatile (Full, Is_Volatile (Priv));
12749 Set_Treat_As_Volatile (Full, Treat_As_Volatile (Priv));
12750 Set_Scope (Full, Scope (Priv));
12751 Set_Next_Entity (Full, Next_Entity (Priv));
12752 Set_First_Entity (Full, First_Entity (Priv));
12753 Set_Last_Entity (Full, Last_Entity (Priv));
12755 -- If access types have been recorded for later handling, keep them in
12756 -- the full view so that they get handled when the full view freeze
12757 -- node is expanded.
12759 if Present (Freeze_Node (Priv))
12760 and then Present (Access_Types_To_Process (Freeze_Node (Priv)))
12761 then
12762 Ensure_Freeze_Node (Full);
12763 Set_Access_Types_To_Process
12764 (Freeze_Node (Full),
12765 Access_Types_To_Process (Freeze_Node (Priv)));
12766 end if;
12768 -- Swap the two entities. Now Private is the full type entity and Full
12769 -- is the private one. They will be swapped back at the end of the
12770 -- private part. This swapping ensures that the entity that is visible
12771 -- in the private part is the full declaration.
12773 Exchange_Entities (Priv, Full);
12774 Append_Entity (Full, Scope (Full));
12775 end Copy_And_Swap;
12777 -------------------------------------
12778 -- Copy_Array_Base_Type_Attributes --
12779 -------------------------------------
12781 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id) is
12782 begin
12783 Set_Component_Alignment (T1, Component_Alignment (T2));
12784 Set_Component_Type (T1, Component_Type (T2));
12785 Set_Component_Size (T1, Component_Size (T2));
12786 Set_Has_Controlled_Component (T1, Has_Controlled_Component (T2));
12787 Set_Has_Non_Standard_Rep (T1, Has_Non_Standard_Rep (T2));
12788 Set_Has_Protected (T1, Has_Protected (T2));
12789 Set_Has_Task (T1, Has_Task (T2));
12790 Set_Is_Packed (T1, Is_Packed (T2));
12791 Set_Has_Aliased_Components (T1, Has_Aliased_Components (T2));
12792 Set_Has_Atomic_Components (T1, Has_Atomic_Components (T2));
12793 Set_Has_Volatile_Components (T1, Has_Volatile_Components (T2));
12794 end Copy_Array_Base_Type_Attributes;
12796 -----------------------------------
12797 -- Copy_Array_Subtype_Attributes --
12798 -----------------------------------
12800 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id) is
12801 begin
12802 Set_Size_Info (T1, T2);
12804 Set_First_Index (T1, First_Index (T2));
12805 Set_Is_Aliased (T1, Is_Aliased (T2));
12806 Set_Is_Volatile (T1, Is_Volatile (T2));
12807 Set_Treat_As_Volatile (T1, Treat_As_Volatile (T2));
12808 Set_Is_Constrained (T1, Is_Constrained (T2));
12809 Set_Depends_On_Private (T1, Has_Private_Component (T2));
12810 Set_First_Rep_Item (T1, First_Rep_Item (T2));
12811 Set_Convention (T1, Convention (T2));
12812 Set_Is_Limited_Composite (T1, Is_Limited_Composite (T2));
12813 Set_Is_Private_Composite (T1, Is_Private_Composite (T2));
12814 Set_Packed_Array_Impl_Type (T1, Packed_Array_Impl_Type (T2));
12815 end Copy_Array_Subtype_Attributes;
12817 -----------------------------------
12818 -- Create_Constrained_Components --
12819 -----------------------------------
12821 procedure Create_Constrained_Components
12822 (Subt : Entity_Id;
12823 Decl_Node : Node_Id;
12824 Typ : Entity_Id;
12825 Constraints : Elist_Id)
12827 Loc : constant Source_Ptr := Sloc (Subt);
12828 Comp_List : constant Elist_Id := New_Elmt_List;
12829 Parent_Type : constant Entity_Id := Etype (Typ);
12830 Assoc_List : constant List_Id := New_List;
12831 Discr_Val : Elmt_Id;
12832 Errors : Boolean;
12833 New_C : Entity_Id;
12834 Old_C : Entity_Id;
12835 Is_Static : Boolean := True;
12837 procedure Collect_Fixed_Components (Typ : Entity_Id);
12838 -- Collect parent type components that do not appear in a variant part
12840 procedure Create_All_Components;
12841 -- Iterate over Comp_List to create the components of the subtype
12843 function Create_Component (Old_Compon : Entity_Id) return Entity_Id;
12844 -- Creates a new component from Old_Compon, copying all the fields from
12845 -- it, including its Etype, inserts the new component in the Subt entity
12846 -- chain and returns the new component.
12848 function Is_Variant_Record (T : Entity_Id) return Boolean;
12849 -- If true, and discriminants are static, collect only components from
12850 -- variants selected by discriminant values.
12852 ------------------------------
12853 -- Collect_Fixed_Components --
12854 ------------------------------
12856 procedure Collect_Fixed_Components (Typ : Entity_Id) is
12857 begin
12858 -- Build association list for discriminants, and find components of the
12859 -- variant part selected by the values of the discriminants.
12861 Old_C := First_Discriminant (Typ);
12862 Discr_Val := First_Elmt (Constraints);
12863 while Present (Old_C) loop
12864 Append_To (Assoc_List,
12865 Make_Component_Association (Loc,
12866 Choices => New_List (New_Occurrence_Of (Old_C, Loc)),
12867 Expression => New_Copy (Node (Discr_Val))));
12869 Next_Elmt (Discr_Val);
12870 Next_Discriminant (Old_C);
12871 end loop;
12873 -- The tag and the possible parent component are unconditionally in
12874 -- the subtype.
12876 if Is_Tagged_Type (Typ)
12877 or else Has_Controlled_Component (Typ)
12878 then
12879 Old_C := First_Component (Typ);
12880 while Present (Old_C) loop
12881 if Nam_In (Chars (Old_C), Name_uTag, Name_uParent) then
12882 Append_Elmt (Old_C, Comp_List);
12883 end if;
12885 Next_Component (Old_C);
12886 end loop;
12887 end if;
12888 end Collect_Fixed_Components;
12890 ---------------------------
12891 -- Create_All_Components --
12892 ---------------------------
12894 procedure Create_All_Components is
12895 Comp : Elmt_Id;
12897 begin
12898 Comp := First_Elmt (Comp_List);
12899 while Present (Comp) loop
12900 Old_C := Node (Comp);
12901 New_C := Create_Component (Old_C);
12903 Set_Etype
12904 (New_C,
12905 Constrain_Component_Type
12906 (Old_C, Subt, Decl_Node, Typ, Constraints));
12907 Set_Is_Public (New_C, Is_Public (Subt));
12909 Next_Elmt (Comp);
12910 end loop;
12911 end Create_All_Components;
12913 ----------------------
12914 -- Create_Component --
12915 ----------------------
12917 function Create_Component (Old_Compon : Entity_Id) return Entity_Id is
12918 New_Compon : constant Entity_Id := New_Copy (Old_Compon);
12920 begin
12921 if Ekind (Old_Compon) = E_Discriminant
12922 and then Is_Completely_Hidden (Old_Compon)
12923 then
12924 -- This is a shadow discriminant created for a discriminant of
12925 -- the parent type, which needs to be present in the subtype.
12926 -- Give the shadow discriminant an internal name that cannot
12927 -- conflict with that of visible components.
12929 Set_Chars (New_Compon, New_Internal_Name ('C'));
12930 end if;
12932 -- Set the parent so we have a proper link for freezing etc. This is
12933 -- not a real parent pointer, since of course our parent does not own
12934 -- up to us and reference us, we are an illegitimate child of the
12935 -- original parent.
12937 Set_Parent (New_Compon, Parent (Old_Compon));
12939 -- If the old component's Esize was already determined and is a
12940 -- static value, then the new component simply inherits it. Otherwise
12941 -- the old component's size may require run-time determination, but
12942 -- the new component's size still might be statically determinable
12943 -- (if, for example it has a static constraint). In that case we want
12944 -- Layout_Type to recompute the component's size, so we reset its
12945 -- size and positional fields.
12947 if Frontend_Layout_On_Target
12948 and then not Known_Static_Esize (Old_Compon)
12949 then
12950 Set_Esize (New_Compon, Uint_0);
12951 Init_Normalized_First_Bit (New_Compon);
12952 Init_Normalized_Position (New_Compon);
12953 Init_Normalized_Position_Max (New_Compon);
12954 end if;
12956 -- We do not want this node marked as Comes_From_Source, since
12957 -- otherwise it would get first class status and a separate cross-
12958 -- reference line would be generated. Illegitimate children do not
12959 -- rate such recognition.
12961 Set_Comes_From_Source (New_Compon, False);
12963 -- But it is a real entity, and a birth certificate must be properly
12964 -- registered by entering it into the entity list.
12966 Enter_Name (New_Compon);
12968 return New_Compon;
12969 end Create_Component;
12971 -----------------------
12972 -- Is_Variant_Record --
12973 -----------------------
12975 function Is_Variant_Record (T : Entity_Id) return Boolean is
12976 begin
12977 return Nkind (Parent (T)) = N_Full_Type_Declaration
12978 and then Nkind (Type_Definition (Parent (T))) = N_Record_Definition
12979 and then Present (Component_List (Type_Definition (Parent (T))))
12980 and then
12981 Present
12982 (Variant_Part (Component_List (Type_Definition (Parent (T)))));
12983 end Is_Variant_Record;
12985 -- Start of processing for Create_Constrained_Components
12987 begin
12988 pragma Assert (Subt /= Base_Type (Subt));
12989 pragma Assert (Typ = Base_Type (Typ));
12991 Set_First_Entity (Subt, Empty);
12992 Set_Last_Entity (Subt, Empty);
12994 -- Check whether constraint is fully static, in which case we can
12995 -- optimize the list of components.
12997 Discr_Val := First_Elmt (Constraints);
12998 while Present (Discr_Val) loop
12999 if not Is_OK_Static_Expression (Node (Discr_Val)) then
13000 Is_Static := False;
13001 exit;
13002 end if;
13004 Next_Elmt (Discr_Val);
13005 end loop;
13007 Set_Has_Static_Discriminants (Subt, Is_Static);
13009 Push_Scope (Subt);
13011 -- Inherit the discriminants of the parent type
13013 Add_Discriminants : declare
13014 Num_Disc : Int;
13015 Num_Gird : Int;
13017 begin
13018 Num_Disc := 0;
13019 Old_C := First_Discriminant (Typ);
13021 while Present (Old_C) loop
13022 Num_Disc := Num_Disc + 1;
13023 New_C := Create_Component (Old_C);
13024 Set_Is_Public (New_C, Is_Public (Subt));
13025 Next_Discriminant (Old_C);
13026 end loop;
13028 -- For an untagged derived subtype, the number of discriminants may
13029 -- be smaller than the number of inherited discriminants, because
13030 -- several of them may be renamed by a single new discriminant or
13031 -- constrained. In this case, add the hidden discriminants back into
13032 -- the subtype, because they need to be present if the optimizer of
13033 -- the GCC 4.x back-end decides to break apart assignments between
13034 -- objects using the parent view into member-wise assignments.
13036 Num_Gird := 0;
13038 if Is_Derived_Type (Typ)
13039 and then not Is_Tagged_Type (Typ)
13040 then
13041 Old_C := First_Stored_Discriminant (Typ);
13043 while Present (Old_C) loop
13044 Num_Gird := Num_Gird + 1;
13045 Next_Stored_Discriminant (Old_C);
13046 end loop;
13047 end if;
13049 if Num_Gird > Num_Disc then
13051 -- Find out multiple uses of new discriminants, and add hidden
13052 -- components for the extra renamed discriminants. We recognize
13053 -- multiple uses through the Corresponding_Discriminant of a
13054 -- new discriminant: if it constrains several old discriminants,
13055 -- this field points to the last one in the parent type. The
13056 -- stored discriminants of the derived type have the same name
13057 -- as those of the parent.
13059 declare
13060 Constr : Elmt_Id;
13061 New_Discr : Entity_Id;
13062 Old_Discr : Entity_Id;
13064 begin
13065 Constr := First_Elmt (Stored_Constraint (Typ));
13066 Old_Discr := First_Stored_Discriminant (Typ);
13067 while Present (Constr) loop
13068 if Is_Entity_Name (Node (Constr))
13069 and then Ekind (Entity (Node (Constr))) = E_Discriminant
13070 then
13071 New_Discr := Entity (Node (Constr));
13073 if Chars (Corresponding_Discriminant (New_Discr)) /=
13074 Chars (Old_Discr)
13075 then
13076 -- The new discriminant has been used to rename a
13077 -- subsequent old discriminant. Introduce a shadow
13078 -- component for the current old discriminant.
13080 New_C := Create_Component (Old_Discr);
13081 Set_Original_Record_Component (New_C, Old_Discr);
13082 end if;
13084 else
13085 -- The constraint has eliminated the old discriminant.
13086 -- Introduce a shadow component.
13088 New_C := Create_Component (Old_Discr);
13089 Set_Original_Record_Component (New_C, Old_Discr);
13090 end if;
13092 Next_Elmt (Constr);
13093 Next_Stored_Discriminant (Old_Discr);
13094 end loop;
13095 end;
13096 end if;
13097 end Add_Discriminants;
13099 if Is_Static
13100 and then Is_Variant_Record (Typ)
13101 then
13102 Collect_Fixed_Components (Typ);
13104 Gather_Components (
13105 Typ,
13106 Component_List (Type_Definition (Parent (Typ))),
13107 Governed_By => Assoc_List,
13108 Into => Comp_List,
13109 Report_Errors => Errors);
13110 pragma Assert (not Errors);
13112 Create_All_Components;
13114 -- If the subtype declaration is created for a tagged type derivation
13115 -- with constraints, we retrieve the record definition of the parent
13116 -- type to select the components of the proper variant.
13118 elsif Is_Static
13119 and then Is_Tagged_Type (Typ)
13120 and then Nkind (Parent (Typ)) = N_Full_Type_Declaration
13121 and then
13122 Nkind (Type_Definition (Parent (Typ))) = N_Derived_Type_Definition
13123 and then Is_Variant_Record (Parent_Type)
13124 then
13125 Collect_Fixed_Components (Typ);
13127 Gather_Components (
13128 Typ,
13129 Component_List (Type_Definition (Parent (Parent_Type))),
13130 Governed_By => Assoc_List,
13131 Into => Comp_List,
13132 Report_Errors => Errors);
13133 pragma Assert (not Errors);
13135 -- If the tagged derivation has a type extension, collect all the
13136 -- new components therein.
13138 if Present
13139 (Record_Extension_Part (Type_Definition (Parent (Typ))))
13140 then
13141 Old_C := First_Component (Typ);
13142 while Present (Old_C) loop
13143 if Original_Record_Component (Old_C) = Old_C
13144 and then Chars (Old_C) /= Name_uTag
13145 and then Chars (Old_C) /= Name_uParent
13146 then
13147 Append_Elmt (Old_C, Comp_List);
13148 end if;
13150 Next_Component (Old_C);
13151 end loop;
13152 end if;
13154 Create_All_Components;
13156 else
13157 -- If discriminants are not static, or if this is a multi-level type
13158 -- extension, we have to include all components of the parent type.
13160 Old_C := First_Component (Typ);
13161 while Present (Old_C) loop
13162 New_C := Create_Component (Old_C);
13164 Set_Etype
13165 (New_C,
13166 Constrain_Component_Type
13167 (Old_C, Subt, Decl_Node, Typ, Constraints));
13168 Set_Is_Public (New_C, Is_Public (Subt));
13170 Next_Component (Old_C);
13171 end loop;
13172 end if;
13174 End_Scope;
13175 end Create_Constrained_Components;
13177 ------------------------------------------
13178 -- Decimal_Fixed_Point_Type_Declaration --
13179 ------------------------------------------
13181 procedure Decimal_Fixed_Point_Type_Declaration
13182 (T : Entity_Id;
13183 Def : Node_Id)
13185 Loc : constant Source_Ptr := Sloc (Def);
13186 Digs_Expr : constant Node_Id := Digits_Expression (Def);
13187 Delta_Expr : constant Node_Id := Delta_Expression (Def);
13188 Implicit_Base : Entity_Id;
13189 Digs_Val : Uint;
13190 Delta_Val : Ureal;
13191 Scale_Val : Uint;
13192 Bound_Val : Ureal;
13194 begin
13195 Check_SPARK_Restriction
13196 ("decimal fixed point type is not allowed", Def);
13197 Check_Restriction (No_Fixed_Point, Def);
13199 -- Create implicit base type
13201 Implicit_Base :=
13202 Create_Itype (E_Decimal_Fixed_Point_Type, Parent (Def), T, 'B');
13203 Set_Etype (Implicit_Base, Implicit_Base);
13205 -- Analyze and process delta expression
13207 Analyze_And_Resolve (Delta_Expr, Universal_Real);
13209 Check_Delta_Expression (Delta_Expr);
13210 Delta_Val := Expr_Value_R (Delta_Expr);
13212 -- Check delta is power of 10, and determine scale value from it
13214 declare
13215 Val : Ureal;
13217 begin
13218 Scale_Val := Uint_0;
13219 Val := Delta_Val;
13221 if Val < Ureal_1 then
13222 while Val < Ureal_1 loop
13223 Val := Val * Ureal_10;
13224 Scale_Val := Scale_Val + 1;
13225 end loop;
13227 if Scale_Val > 18 then
13228 Error_Msg_N ("scale exceeds maximum value of 18", Def);
13229 Scale_Val := UI_From_Int (+18);
13230 end if;
13232 else
13233 while Val > Ureal_1 loop
13234 Val := Val / Ureal_10;
13235 Scale_Val := Scale_Val - 1;
13236 end loop;
13238 if Scale_Val < -18 then
13239 Error_Msg_N ("scale is less than minimum value of -18", Def);
13240 Scale_Val := UI_From_Int (-18);
13241 end if;
13242 end if;
13244 if Val /= Ureal_1 then
13245 Error_Msg_N ("delta expression must be a power of 10", Def);
13246 Delta_Val := Ureal_10 ** (-Scale_Val);
13247 end if;
13248 end;
13250 -- Set delta, scale and small (small = delta for decimal type)
13252 Set_Delta_Value (Implicit_Base, Delta_Val);
13253 Set_Scale_Value (Implicit_Base, Scale_Val);
13254 Set_Small_Value (Implicit_Base, Delta_Val);
13256 -- Analyze and process digits expression
13258 Analyze_And_Resolve (Digs_Expr, Any_Integer);
13259 Check_Digits_Expression (Digs_Expr);
13260 Digs_Val := Expr_Value (Digs_Expr);
13262 if Digs_Val > 18 then
13263 Digs_Val := UI_From_Int (+18);
13264 Error_Msg_N ("digits value out of range, maximum is 18", Digs_Expr);
13265 end if;
13267 Set_Digits_Value (Implicit_Base, Digs_Val);
13268 Bound_Val := UR_From_Uint (10 ** Digs_Val - 1) * Delta_Val;
13270 -- Set range of base type from digits value for now. This will be
13271 -- expanded to represent the true underlying base range by Freeze.
13273 Set_Fixed_Range (Implicit_Base, Loc, -Bound_Val, Bound_Val);
13275 -- Note: We leave size as zero for now, size will be set at freeze
13276 -- time. We have to do this for ordinary fixed-point, because the size
13277 -- depends on the specified small, and we might as well do the same for
13278 -- decimal fixed-point.
13280 pragma Assert (Esize (Implicit_Base) = Uint_0);
13282 -- If there are bounds given in the declaration use them as the
13283 -- bounds of the first named subtype.
13285 if Present (Real_Range_Specification (Def)) then
13286 declare
13287 RRS : constant Node_Id := Real_Range_Specification (Def);
13288 Low : constant Node_Id := Low_Bound (RRS);
13289 High : constant Node_Id := High_Bound (RRS);
13290 Low_Val : Ureal;
13291 High_Val : Ureal;
13293 begin
13294 Analyze_And_Resolve (Low, Any_Real);
13295 Analyze_And_Resolve (High, Any_Real);
13296 Check_Real_Bound (Low);
13297 Check_Real_Bound (High);
13298 Low_Val := Expr_Value_R (Low);
13299 High_Val := Expr_Value_R (High);
13301 if Low_Val < (-Bound_Val) then
13302 Error_Msg_N
13303 ("range low bound too small for digits value", Low);
13304 Low_Val := -Bound_Val;
13305 end if;
13307 if High_Val > Bound_Val then
13308 Error_Msg_N
13309 ("range high bound too large for digits value", High);
13310 High_Val := Bound_Val;
13311 end if;
13313 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
13314 end;
13316 -- If no explicit range, use range that corresponds to given
13317 -- digits value. This will end up as the final range for the
13318 -- first subtype.
13320 else
13321 Set_Fixed_Range (T, Loc, -Bound_Val, Bound_Val);
13322 end if;
13324 -- Complete entity for first subtype
13326 Set_Ekind (T, E_Decimal_Fixed_Point_Subtype);
13327 Set_Etype (T, Implicit_Base);
13328 Set_Size_Info (T, Implicit_Base);
13329 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
13330 Set_Digits_Value (T, Digs_Val);
13331 Set_Delta_Value (T, Delta_Val);
13332 Set_Small_Value (T, Delta_Val);
13333 Set_Scale_Value (T, Scale_Val);
13334 Set_Is_Constrained (T);
13335 end Decimal_Fixed_Point_Type_Declaration;
13337 -----------------------------------
13338 -- Derive_Progenitor_Subprograms --
13339 -----------------------------------
13341 procedure Derive_Progenitor_Subprograms
13342 (Parent_Type : Entity_Id;
13343 Tagged_Type : Entity_Id)
13345 E : Entity_Id;
13346 Elmt : Elmt_Id;
13347 Iface : Entity_Id;
13348 Iface_Elmt : Elmt_Id;
13349 Iface_Subp : Entity_Id;
13350 New_Subp : Entity_Id := Empty;
13351 Prim_Elmt : Elmt_Id;
13352 Subp : Entity_Id;
13353 Typ : Entity_Id;
13355 begin
13356 pragma Assert (Ada_Version >= Ada_2005
13357 and then Is_Record_Type (Tagged_Type)
13358 and then Is_Tagged_Type (Tagged_Type)
13359 and then Has_Interfaces (Tagged_Type));
13361 -- Step 1: Transfer to the full-view primitives associated with the
13362 -- partial-view that cover interface primitives. Conceptually this
13363 -- work should be done later by Process_Full_View; done here to
13364 -- simplify its implementation at later stages. It can be safely
13365 -- done here because interfaces must be visible in the partial and
13366 -- private view (RM 7.3(7.3/2)).
13368 -- Small optimization: This work is only required if the parent may
13369 -- have entities whose Alias attribute reference an interface primitive.
13370 -- Such a situation may occur if the parent is an abstract type and the
13371 -- primitive has not been yet overridden or if the parent is a generic
13372 -- formal type covering interfaces.
13374 -- If the tagged type is not abstract, it cannot have abstract
13375 -- primitives (the only entities in the list of primitives of
13376 -- non-abstract tagged types that can reference abstract primitives
13377 -- through its Alias attribute are the internal entities that have
13378 -- attribute Interface_Alias, and these entities are generated later
13379 -- by Add_Internal_Interface_Entities).
13381 if In_Private_Part (Current_Scope)
13382 and then (Is_Abstract_Type (Parent_Type)
13383 or else
13384 Is_Generic_Type (Parent_Type))
13385 then
13386 Elmt := First_Elmt (Primitive_Operations (Tagged_Type));
13387 while Present (Elmt) loop
13388 Subp := Node (Elmt);
13390 -- At this stage it is not possible to have entities in the list
13391 -- of primitives that have attribute Interface_Alias.
13393 pragma Assert (No (Interface_Alias (Subp)));
13395 Typ := Find_Dispatching_Type (Ultimate_Alias (Subp));
13397 if Is_Interface (Typ) then
13398 E := Find_Primitive_Covering_Interface
13399 (Tagged_Type => Tagged_Type,
13400 Iface_Prim => Subp);
13402 if Present (E)
13403 and then Find_Dispatching_Type (Ultimate_Alias (E)) /= Typ
13404 then
13405 Replace_Elmt (Elmt, E);
13406 Remove_Homonym (Subp);
13407 end if;
13408 end if;
13410 Next_Elmt (Elmt);
13411 end loop;
13412 end if;
13414 -- Step 2: Add primitives of progenitors that are not implemented by
13415 -- parents of Tagged_Type.
13417 if Present (Interfaces (Base_Type (Tagged_Type))) then
13418 Iface_Elmt := First_Elmt (Interfaces (Base_Type (Tagged_Type)));
13419 while Present (Iface_Elmt) loop
13420 Iface := Node (Iface_Elmt);
13422 Prim_Elmt := First_Elmt (Primitive_Operations (Iface));
13423 while Present (Prim_Elmt) loop
13424 Iface_Subp := Node (Prim_Elmt);
13426 -- Exclude derivation of predefined primitives except those
13427 -- that come from source, or are inherited from one that comes
13428 -- from source. Required to catch declarations of equality
13429 -- operators of interfaces. For example:
13431 -- type Iface is interface;
13432 -- function "=" (Left, Right : Iface) return Boolean;
13434 if not Is_Predefined_Dispatching_Operation (Iface_Subp)
13435 or else Comes_From_Source (Ultimate_Alias (Iface_Subp))
13436 then
13437 E := Find_Primitive_Covering_Interface
13438 (Tagged_Type => Tagged_Type,
13439 Iface_Prim => Iface_Subp);
13441 -- If not found we derive a new primitive leaving its alias
13442 -- attribute referencing the interface primitive.
13444 if No (E) then
13445 Derive_Subprogram
13446 (New_Subp, Iface_Subp, Tagged_Type, Iface);
13448 -- Ada 2012 (AI05-0197): If the covering primitive's name
13449 -- differs from the name of the interface primitive then it
13450 -- is a private primitive inherited from a parent type. In
13451 -- such case, given that Tagged_Type covers the interface,
13452 -- the inherited private primitive becomes visible. For such
13453 -- purpose we add a new entity that renames the inherited
13454 -- private primitive.
13456 elsif Chars (E) /= Chars (Iface_Subp) then
13457 pragma Assert (Has_Suffix (E, 'P'));
13458 Derive_Subprogram
13459 (New_Subp, Iface_Subp, Tagged_Type, Iface);
13460 Set_Alias (New_Subp, E);
13461 Set_Is_Abstract_Subprogram (New_Subp,
13462 Is_Abstract_Subprogram (E));
13464 -- Propagate to the full view interface entities associated
13465 -- with the partial view.
13467 elsif In_Private_Part (Current_Scope)
13468 and then Present (Alias (E))
13469 and then Alias (E) = Iface_Subp
13470 and then
13471 List_Containing (Parent (E)) /=
13472 Private_Declarations
13473 (Specification
13474 (Unit_Declaration_Node (Current_Scope)))
13475 then
13476 Append_Elmt (E, Primitive_Operations (Tagged_Type));
13477 end if;
13478 end if;
13480 Next_Elmt (Prim_Elmt);
13481 end loop;
13483 Next_Elmt (Iface_Elmt);
13484 end loop;
13485 end if;
13486 end Derive_Progenitor_Subprograms;
13488 -----------------------
13489 -- Derive_Subprogram --
13490 -----------------------
13492 procedure Derive_Subprogram
13493 (New_Subp : in out Entity_Id;
13494 Parent_Subp : Entity_Id;
13495 Derived_Type : Entity_Id;
13496 Parent_Type : Entity_Id;
13497 Actual_Subp : Entity_Id := Empty)
13499 Formal : Entity_Id;
13500 -- Formal parameter of parent primitive operation
13502 Formal_Of_Actual : Entity_Id;
13503 -- Formal parameter of actual operation, when the derivation is to
13504 -- create a renaming for a primitive operation of an actual in an
13505 -- instantiation.
13507 New_Formal : Entity_Id;
13508 -- Formal of inherited operation
13510 Visible_Subp : Entity_Id := Parent_Subp;
13512 function Is_Private_Overriding return Boolean;
13513 -- If Subp is a private overriding of a visible operation, the inherited
13514 -- operation derives from the overridden op (even though its body is the
13515 -- overriding one) and the inherited operation is visible now. See
13516 -- sem_disp to see the full details of the handling of the overridden
13517 -- subprogram, which is removed from the list of primitive operations of
13518 -- the type. The overridden subprogram is saved locally in Visible_Subp,
13519 -- and used to diagnose abstract operations that need overriding in the
13520 -- derived type.
13522 procedure Replace_Type (Id, New_Id : Entity_Id);
13523 -- When the type is an anonymous access type, create a new access type
13524 -- designating the derived type.
13526 procedure Set_Derived_Name;
13527 -- This procedure sets the appropriate Chars name for New_Subp. This
13528 -- is normally just a copy of the parent name. An exception arises for
13529 -- type support subprograms, where the name is changed to reflect the
13530 -- name of the derived type, e.g. if type foo is derived from type bar,
13531 -- then a procedure barDA is derived with a name fooDA.
13533 ---------------------------
13534 -- Is_Private_Overriding --
13535 ---------------------------
13537 function Is_Private_Overriding return Boolean is
13538 Prev : Entity_Id;
13540 begin
13541 -- If the parent is not a dispatching operation there is no
13542 -- need to investigate overridings
13544 if not Is_Dispatching_Operation (Parent_Subp) then
13545 return False;
13546 end if;
13548 -- The visible operation that is overridden is a homonym of the
13549 -- parent subprogram. We scan the homonym chain to find the one
13550 -- whose alias is the subprogram we are deriving.
13552 Prev := Current_Entity (Parent_Subp);
13553 while Present (Prev) loop
13554 if Ekind (Prev) = Ekind (Parent_Subp)
13555 and then Alias (Prev) = Parent_Subp
13556 and then Scope (Parent_Subp) = Scope (Prev)
13557 and then not Is_Hidden (Prev)
13558 then
13559 Visible_Subp := Prev;
13560 return True;
13561 end if;
13563 Prev := Homonym (Prev);
13564 end loop;
13566 return False;
13567 end Is_Private_Overriding;
13569 ------------------
13570 -- Replace_Type --
13571 ------------------
13573 procedure Replace_Type (Id, New_Id : Entity_Id) is
13574 Id_Type : constant Entity_Id := Etype (Id);
13575 Acc_Type : Entity_Id;
13576 Par : constant Node_Id := Parent (Derived_Type);
13578 begin
13579 -- When the type is an anonymous access type, create a new access
13580 -- type designating the derived type. This itype must be elaborated
13581 -- at the point of the derivation, not on subsequent calls that may
13582 -- be out of the proper scope for Gigi, so we insert a reference to
13583 -- it after the derivation.
13585 if Ekind (Id_Type) = E_Anonymous_Access_Type then
13586 declare
13587 Desig_Typ : Entity_Id := Designated_Type (Id_Type);
13589 begin
13590 if Ekind (Desig_Typ) = E_Record_Type_With_Private
13591 and then Present (Full_View (Desig_Typ))
13592 and then not Is_Private_Type (Parent_Type)
13593 then
13594 Desig_Typ := Full_View (Desig_Typ);
13595 end if;
13597 if Base_Type (Desig_Typ) = Base_Type (Parent_Type)
13599 -- Ada 2005 (AI-251): Handle also derivations of abstract
13600 -- interface primitives.
13602 or else (Is_Interface (Desig_Typ)
13603 and then not Is_Class_Wide_Type (Desig_Typ))
13604 then
13605 Acc_Type := New_Copy (Id_Type);
13606 Set_Etype (Acc_Type, Acc_Type);
13607 Set_Scope (Acc_Type, New_Subp);
13609 -- Set size of anonymous access type. If we have an access
13610 -- to an unconstrained array, this is a fat pointer, so it
13611 -- is sizes at twice addtress size.
13613 if Is_Array_Type (Desig_Typ)
13614 and then not Is_Constrained (Desig_Typ)
13615 then
13616 Init_Size (Acc_Type, 2 * System_Address_Size);
13618 -- Other cases use a thin pointer
13620 else
13621 Init_Size (Acc_Type, System_Address_Size);
13622 end if;
13624 -- Set remaining characterstics of anonymous access type
13626 Init_Alignment (Acc_Type);
13627 Set_Directly_Designated_Type (Acc_Type, Derived_Type);
13629 Set_Etype (New_Id, Acc_Type);
13630 Set_Scope (New_Id, New_Subp);
13632 -- Create a reference to it
13634 Build_Itype_Reference (Acc_Type, Parent (Derived_Type));
13636 else
13637 Set_Etype (New_Id, Id_Type);
13638 end if;
13639 end;
13641 -- In Ada2012, a formal may have an incomplete type but the type
13642 -- derivation that inherits the primitive follows the full view.
13644 elsif Base_Type (Id_Type) = Base_Type (Parent_Type)
13645 or else
13646 (Ekind (Id_Type) = E_Record_Type_With_Private
13647 and then Present (Full_View (Id_Type))
13648 and then
13649 Base_Type (Full_View (Id_Type)) = Base_Type (Parent_Type))
13650 or else
13651 (Ada_Version >= Ada_2012
13652 and then Ekind (Id_Type) = E_Incomplete_Type
13653 and then Full_View (Id_Type) = Parent_Type)
13654 then
13655 -- Constraint checks on formals are generated during expansion,
13656 -- based on the signature of the original subprogram. The bounds
13657 -- of the derived type are not relevant, and thus we can use
13658 -- the base type for the formals. However, the return type may be
13659 -- used in a context that requires that the proper static bounds
13660 -- be used (a case statement, for example) and for those cases
13661 -- we must use the derived type (first subtype), not its base.
13663 -- If the derived_type_definition has no constraints, we know that
13664 -- the derived type has the same constraints as the first subtype
13665 -- of the parent, and we can also use it rather than its base,
13666 -- which can lead to more efficient code.
13668 if Etype (Id) = Parent_Type then
13669 if Is_Scalar_Type (Parent_Type)
13670 and then
13671 Subtypes_Statically_Compatible (Parent_Type, Derived_Type)
13672 then
13673 Set_Etype (New_Id, Derived_Type);
13675 elsif Nkind (Par) = N_Full_Type_Declaration
13676 and then
13677 Nkind (Type_Definition (Par)) = N_Derived_Type_Definition
13678 and then
13679 Is_Entity_Name
13680 (Subtype_Indication (Type_Definition (Par)))
13681 then
13682 Set_Etype (New_Id, Derived_Type);
13684 else
13685 Set_Etype (New_Id, Base_Type (Derived_Type));
13686 end if;
13688 else
13689 Set_Etype (New_Id, Base_Type (Derived_Type));
13690 end if;
13692 else
13693 Set_Etype (New_Id, Etype (Id));
13694 end if;
13695 end Replace_Type;
13697 ----------------------
13698 -- Set_Derived_Name --
13699 ----------------------
13701 procedure Set_Derived_Name is
13702 Nm : constant TSS_Name_Type := Get_TSS_Name (Parent_Subp);
13703 begin
13704 if Nm = TSS_Null then
13705 Set_Chars (New_Subp, Chars (Parent_Subp));
13706 else
13707 Set_Chars (New_Subp, Make_TSS_Name (Base_Type (Derived_Type), Nm));
13708 end if;
13709 end Set_Derived_Name;
13711 -- Start of processing for Derive_Subprogram
13713 begin
13714 New_Subp :=
13715 New_Entity (Nkind (Parent_Subp), Sloc (Derived_Type));
13716 Set_Ekind (New_Subp, Ekind (Parent_Subp));
13717 Set_Contract (New_Subp, Make_Contract (Sloc (New_Subp)));
13719 -- Check whether the inherited subprogram is a private operation that
13720 -- should be inherited but not yet made visible. Such subprograms can
13721 -- become visible at a later point (e.g., the private part of a public
13722 -- child unit) via Declare_Inherited_Private_Subprograms. If the
13723 -- following predicate is true, then this is not such a private
13724 -- operation and the subprogram simply inherits the name of the parent
13725 -- subprogram. Note the special check for the names of controlled
13726 -- operations, which are currently exempted from being inherited with
13727 -- a hidden name because they must be findable for generation of
13728 -- implicit run-time calls.
13730 if not Is_Hidden (Parent_Subp)
13731 or else Is_Internal (Parent_Subp)
13732 or else Is_Private_Overriding
13733 or else Is_Internal_Name (Chars (Parent_Subp))
13734 or else Nam_In (Chars (Parent_Subp), Name_Initialize,
13735 Name_Adjust,
13736 Name_Finalize)
13737 then
13738 Set_Derived_Name;
13740 -- An inherited dispatching equality will be overridden by an internally
13741 -- generated one, or by an explicit one, so preserve its name and thus
13742 -- its entry in the dispatch table. Otherwise, if Parent_Subp is a
13743 -- private operation it may become invisible if the full view has
13744 -- progenitors, and the dispatch table will be malformed.
13745 -- We check that the type is limited to handle the anomalous declaration
13746 -- of Limited_Controlled, which is derived from a non-limited type, and
13747 -- which is handled specially elsewhere as well.
13749 elsif Chars (Parent_Subp) = Name_Op_Eq
13750 and then Is_Dispatching_Operation (Parent_Subp)
13751 and then Etype (Parent_Subp) = Standard_Boolean
13752 and then not Is_Limited_Type (Etype (First_Formal (Parent_Subp)))
13753 and then
13754 Etype (First_Formal (Parent_Subp)) =
13755 Etype (Next_Formal (First_Formal (Parent_Subp)))
13756 then
13757 Set_Derived_Name;
13759 -- If parent is hidden, this can be a regular derivation if the
13760 -- parent is immediately visible in a non-instantiating context,
13761 -- or if we are in the private part of an instance. This test
13762 -- should still be refined ???
13764 -- The test for In_Instance_Not_Visible avoids inheriting the derived
13765 -- operation as a non-visible operation in cases where the parent
13766 -- subprogram might not be visible now, but was visible within the
13767 -- original generic, so it would be wrong to make the inherited
13768 -- subprogram non-visible now. (Not clear if this test is fully
13769 -- correct; are there any cases where we should declare the inherited
13770 -- operation as not visible to avoid it being overridden, e.g., when
13771 -- the parent type is a generic actual with private primitives ???)
13773 -- (they should be treated the same as other private inherited
13774 -- subprograms, but it's not clear how to do this cleanly). ???
13776 elsif (In_Open_Scopes (Scope (Base_Type (Parent_Type)))
13777 and then Is_Immediately_Visible (Parent_Subp)
13778 and then not In_Instance)
13779 or else In_Instance_Not_Visible
13780 then
13781 Set_Derived_Name;
13783 -- Ada 2005 (AI-251): Regular derivation if the parent subprogram
13784 -- overrides an interface primitive because interface primitives
13785 -- must be visible in the partial view of the parent (RM 7.3 (7.3/2))
13787 elsif Ada_Version >= Ada_2005
13788 and then Is_Dispatching_Operation (Parent_Subp)
13789 and then Covers_Some_Interface (Parent_Subp)
13790 then
13791 Set_Derived_Name;
13793 -- Otherwise, the type is inheriting a private operation, so enter
13794 -- it with a special name so it can't be overridden.
13796 else
13797 Set_Chars (New_Subp, New_External_Name (Chars (Parent_Subp), 'P'));
13798 end if;
13800 Set_Parent (New_Subp, Parent (Derived_Type));
13802 if Present (Actual_Subp) then
13803 Replace_Type (Actual_Subp, New_Subp);
13804 else
13805 Replace_Type (Parent_Subp, New_Subp);
13806 end if;
13808 Conditional_Delay (New_Subp, Parent_Subp);
13810 -- If we are creating a renaming for a primitive operation of an
13811 -- actual of a generic derived type, we must examine the signature
13812 -- of the actual primitive, not that of the generic formal, which for
13813 -- example may be an interface. However the name and initial value
13814 -- of the inherited operation are those of the formal primitive.
13816 Formal := First_Formal (Parent_Subp);
13818 if Present (Actual_Subp) then
13819 Formal_Of_Actual := First_Formal (Actual_Subp);
13820 else
13821 Formal_Of_Actual := Empty;
13822 end if;
13824 while Present (Formal) loop
13825 New_Formal := New_Copy (Formal);
13827 -- Normally we do not go copying parents, but in the case of
13828 -- formals, we need to link up to the declaration (which is the
13829 -- parameter specification), and it is fine to link up to the
13830 -- original formal's parameter specification in this case.
13832 Set_Parent (New_Formal, Parent (Formal));
13833 Append_Entity (New_Formal, New_Subp);
13835 if Present (Formal_Of_Actual) then
13836 Replace_Type (Formal_Of_Actual, New_Formal);
13837 Next_Formal (Formal_Of_Actual);
13838 else
13839 Replace_Type (Formal, New_Formal);
13840 end if;
13842 Next_Formal (Formal);
13843 end loop;
13845 -- If this derivation corresponds to a tagged generic actual, then
13846 -- primitive operations rename those of the actual. Otherwise the
13847 -- primitive operations rename those of the parent type, If the parent
13848 -- renames an intrinsic operator, so does the new subprogram. We except
13849 -- concatenation, which is always properly typed, and does not get
13850 -- expanded as other intrinsic operations.
13852 if No (Actual_Subp) then
13853 if Is_Intrinsic_Subprogram (Parent_Subp) then
13854 Set_Is_Intrinsic_Subprogram (New_Subp);
13856 if Present (Alias (Parent_Subp))
13857 and then Chars (Parent_Subp) /= Name_Op_Concat
13858 then
13859 Set_Alias (New_Subp, Alias (Parent_Subp));
13860 else
13861 Set_Alias (New_Subp, Parent_Subp);
13862 end if;
13864 else
13865 Set_Alias (New_Subp, Parent_Subp);
13866 end if;
13868 else
13869 Set_Alias (New_Subp, Actual_Subp);
13870 end if;
13872 -- Derived subprograms of a tagged type must inherit the convention
13873 -- of the parent subprogram (a requirement of AI-117). Derived
13874 -- subprograms of untagged types simply get convention Ada by default.
13876 -- If the derived type is a tagged generic formal type with unknown
13877 -- discriminants, its convention is intrinsic (RM 6.3.1 (8)).
13879 -- However, if the type is derived from a generic formal, the further
13880 -- inherited subprogram has the convention of the non-generic ancestor.
13881 -- Otherwise there would be no way to override the operation.
13882 -- (This is subject to forthcoming ARG discussions).
13884 if Is_Tagged_Type (Derived_Type) then
13885 if Is_Generic_Type (Derived_Type)
13886 and then Has_Unknown_Discriminants (Derived_Type)
13887 then
13888 Set_Convention (New_Subp, Convention_Intrinsic);
13890 else
13891 if Is_Generic_Type (Parent_Type)
13892 and then Has_Unknown_Discriminants (Parent_Type)
13893 then
13894 Set_Convention (New_Subp, Convention (Alias (Parent_Subp)));
13895 else
13896 Set_Convention (New_Subp, Convention (Parent_Subp));
13897 end if;
13898 end if;
13899 end if;
13901 -- Predefined controlled operations retain their name even if the parent
13902 -- is hidden (see above), but they are not primitive operations if the
13903 -- ancestor is not visible, for example if the parent is a private
13904 -- extension completed with a controlled extension. Note that a full
13905 -- type that is controlled can break privacy: the flag Is_Controlled is
13906 -- set on both views of the type.
13908 if Is_Controlled (Parent_Type)
13909 and then Nam_In (Chars (Parent_Subp), Name_Initialize,
13910 Name_Adjust,
13911 Name_Finalize)
13912 and then Is_Hidden (Parent_Subp)
13913 and then not Is_Visibly_Controlled (Parent_Type)
13914 then
13915 Set_Is_Hidden (New_Subp);
13916 end if;
13918 Set_Is_Imported (New_Subp, Is_Imported (Parent_Subp));
13919 Set_Is_Exported (New_Subp, Is_Exported (Parent_Subp));
13921 if Ekind (Parent_Subp) = E_Procedure then
13922 Set_Is_Valued_Procedure
13923 (New_Subp, Is_Valued_Procedure (Parent_Subp));
13924 else
13925 Set_Has_Controlling_Result
13926 (New_Subp, Has_Controlling_Result (Parent_Subp));
13927 end if;
13929 -- No_Return must be inherited properly. If this is overridden in the
13930 -- case of a dispatching operation, then a check is made in Sem_Disp
13931 -- that the overriding operation is also No_Return (no such check is
13932 -- required for the case of non-dispatching operation.
13934 Set_No_Return (New_Subp, No_Return (Parent_Subp));
13936 -- A derived function with a controlling result is abstract. If the
13937 -- Derived_Type is a nonabstract formal generic derived type, then
13938 -- inherited operations are not abstract: the required check is done at
13939 -- instantiation time. If the derivation is for a generic actual, the
13940 -- function is not abstract unless the actual is.
13942 if Is_Generic_Type (Derived_Type)
13943 and then not Is_Abstract_Type (Derived_Type)
13944 then
13945 null;
13947 -- Ada 2005 (AI-228): Calculate the "require overriding" and "abstract"
13948 -- properties of the subprogram, as defined in RM-3.9.3(4/2-6/2).
13950 elsif Ada_Version >= Ada_2005
13951 and then (Is_Abstract_Subprogram (Alias (New_Subp))
13952 or else (Is_Tagged_Type (Derived_Type)
13953 and then Etype (New_Subp) = Derived_Type
13954 and then not Is_Null_Extension (Derived_Type))
13955 or else (Is_Tagged_Type (Derived_Type)
13956 and then Ekind (Etype (New_Subp)) =
13957 E_Anonymous_Access_Type
13958 and then Designated_Type (Etype (New_Subp)) =
13959 Derived_Type
13960 and then not Is_Null_Extension (Derived_Type)))
13961 and then No (Actual_Subp)
13962 then
13963 if not Is_Tagged_Type (Derived_Type)
13964 or else Is_Abstract_Type (Derived_Type)
13965 or else Is_Abstract_Subprogram (Alias (New_Subp))
13966 then
13967 Set_Is_Abstract_Subprogram (New_Subp);
13968 else
13969 Set_Requires_Overriding (New_Subp);
13970 end if;
13972 elsif Ada_Version < Ada_2005
13973 and then (Is_Abstract_Subprogram (Alias (New_Subp))
13974 or else (Is_Tagged_Type (Derived_Type)
13975 and then Etype (New_Subp) = Derived_Type
13976 and then No (Actual_Subp)))
13977 then
13978 Set_Is_Abstract_Subprogram (New_Subp);
13980 -- AI05-0097 : an inherited operation that dispatches on result is
13981 -- abstract if the derived type is abstract, even if the parent type
13982 -- is concrete and the derived type is a null extension.
13984 elsif Has_Controlling_Result (Alias (New_Subp))
13985 and then Is_Abstract_Type (Etype (New_Subp))
13986 then
13987 Set_Is_Abstract_Subprogram (New_Subp);
13989 -- Finally, if the parent type is abstract we must verify that all
13990 -- inherited operations are either non-abstract or overridden, or that
13991 -- the derived type itself is abstract (this check is performed at the
13992 -- end of a package declaration, in Check_Abstract_Overriding). A
13993 -- private overriding in the parent type will not be visible in the
13994 -- derivation if we are not in an inner package or in a child unit of
13995 -- the parent type, in which case the abstractness of the inherited
13996 -- operation is carried to the new subprogram.
13998 elsif Is_Abstract_Type (Parent_Type)
13999 and then not In_Open_Scopes (Scope (Parent_Type))
14000 and then Is_Private_Overriding
14001 and then Is_Abstract_Subprogram (Visible_Subp)
14002 then
14003 if No (Actual_Subp) then
14004 Set_Alias (New_Subp, Visible_Subp);
14005 Set_Is_Abstract_Subprogram (New_Subp, True);
14007 else
14008 -- If this is a derivation for an instance of a formal derived
14009 -- type, abstractness comes from the primitive operation of the
14010 -- actual, not from the operation inherited from the ancestor.
14012 Set_Is_Abstract_Subprogram
14013 (New_Subp, Is_Abstract_Subprogram (Actual_Subp));
14014 end if;
14015 end if;
14017 New_Overloaded_Entity (New_Subp, Derived_Type);
14019 -- Check for case of a derived subprogram for the instantiation of a
14020 -- formal derived tagged type, if so mark the subprogram as dispatching
14021 -- and inherit the dispatching attributes of the actual subprogram. The
14022 -- derived subprogram is effectively renaming of the actual subprogram,
14023 -- so it needs to have the same attributes as the actual.
14025 if Present (Actual_Subp)
14026 and then Is_Dispatching_Operation (Actual_Subp)
14027 then
14028 Set_Is_Dispatching_Operation (New_Subp);
14030 if Present (DTC_Entity (Actual_Subp)) then
14031 Set_DTC_Entity (New_Subp, DTC_Entity (Actual_Subp));
14032 Set_DT_Position (New_Subp, DT_Position (Actual_Subp));
14033 end if;
14034 end if;
14036 -- Indicate that a derived subprogram does not require a body and that
14037 -- it does not require processing of default expressions.
14039 Set_Has_Completion (New_Subp);
14040 Set_Default_Expressions_Processed (New_Subp);
14042 if Ekind (New_Subp) = E_Function then
14043 Set_Mechanism (New_Subp, Mechanism (Parent_Subp));
14044 end if;
14045 end Derive_Subprogram;
14047 ------------------------
14048 -- Derive_Subprograms --
14049 ------------------------
14051 procedure Derive_Subprograms
14052 (Parent_Type : Entity_Id;
14053 Derived_Type : Entity_Id;
14054 Generic_Actual : Entity_Id := Empty)
14056 Op_List : constant Elist_Id :=
14057 Collect_Primitive_Operations (Parent_Type);
14059 function Check_Derived_Type return Boolean;
14060 -- Check that all the entities derived from Parent_Type are found in
14061 -- the list of primitives of Derived_Type exactly in the same order.
14063 procedure Derive_Interface_Subprogram
14064 (New_Subp : in out Entity_Id;
14065 Subp : Entity_Id;
14066 Actual_Subp : Entity_Id);
14067 -- Derive New_Subp from the ultimate alias of the parent subprogram Subp
14068 -- (which is an interface primitive). If Generic_Actual is present then
14069 -- Actual_Subp is the actual subprogram corresponding with the generic
14070 -- subprogram Subp.
14072 function Check_Derived_Type return Boolean is
14073 E : Entity_Id;
14074 Elmt : Elmt_Id;
14075 List : Elist_Id;
14076 New_Subp : Entity_Id;
14077 Op_Elmt : Elmt_Id;
14078 Subp : Entity_Id;
14080 begin
14081 -- Traverse list of entities in the current scope searching for
14082 -- an incomplete type whose full-view is derived type
14084 E := First_Entity (Scope (Derived_Type));
14085 while Present (E) and then E /= Derived_Type loop
14086 if Ekind (E) = E_Incomplete_Type
14087 and then Present (Full_View (E))
14088 and then Full_View (E) = Derived_Type
14089 then
14090 -- Disable this test if Derived_Type completes an incomplete
14091 -- type because in such case more primitives can be added
14092 -- later to the list of primitives of Derived_Type by routine
14093 -- Process_Incomplete_Dependents
14095 return True;
14096 end if;
14098 E := Next_Entity (E);
14099 end loop;
14101 List := Collect_Primitive_Operations (Derived_Type);
14102 Elmt := First_Elmt (List);
14104 Op_Elmt := First_Elmt (Op_List);
14105 while Present (Op_Elmt) loop
14106 Subp := Node (Op_Elmt);
14107 New_Subp := Node (Elmt);
14109 -- At this early stage Derived_Type has no entities with attribute
14110 -- Interface_Alias. In addition, such primitives are always
14111 -- located at the end of the list of primitives of Parent_Type.
14112 -- Therefore, if found we can safely stop processing pending
14113 -- entities.
14115 exit when Present (Interface_Alias (Subp));
14117 -- Handle hidden entities
14119 if not Is_Predefined_Dispatching_Operation (Subp)
14120 and then Is_Hidden (Subp)
14121 then
14122 if Present (New_Subp)
14123 and then Primitive_Names_Match (Subp, New_Subp)
14124 then
14125 Next_Elmt (Elmt);
14126 end if;
14128 else
14129 if not Present (New_Subp)
14130 or else Ekind (Subp) /= Ekind (New_Subp)
14131 or else not Primitive_Names_Match (Subp, New_Subp)
14132 then
14133 return False;
14134 end if;
14136 Next_Elmt (Elmt);
14137 end if;
14139 Next_Elmt (Op_Elmt);
14140 end loop;
14142 return True;
14143 end Check_Derived_Type;
14145 ---------------------------------
14146 -- Derive_Interface_Subprogram --
14147 ---------------------------------
14149 procedure Derive_Interface_Subprogram
14150 (New_Subp : in out Entity_Id;
14151 Subp : Entity_Id;
14152 Actual_Subp : Entity_Id)
14154 Iface_Subp : constant Entity_Id := Ultimate_Alias (Subp);
14155 Iface_Type : constant Entity_Id := Find_Dispatching_Type (Iface_Subp);
14157 begin
14158 pragma Assert (Is_Interface (Iface_Type));
14160 Derive_Subprogram
14161 (New_Subp => New_Subp,
14162 Parent_Subp => Iface_Subp,
14163 Derived_Type => Derived_Type,
14164 Parent_Type => Iface_Type,
14165 Actual_Subp => Actual_Subp);
14167 -- Given that this new interface entity corresponds with a primitive
14168 -- of the parent that was not overridden we must leave it associated
14169 -- with its parent primitive to ensure that it will share the same
14170 -- dispatch table slot when overridden.
14172 if No (Actual_Subp) then
14173 Set_Alias (New_Subp, Subp);
14175 -- For instantiations this is not needed since the previous call to
14176 -- Derive_Subprogram leaves the entity well decorated.
14178 else
14179 pragma Assert (Alias (New_Subp) = Actual_Subp);
14180 null;
14181 end if;
14182 end Derive_Interface_Subprogram;
14184 -- Local variables
14186 Alias_Subp : Entity_Id;
14187 Act_List : Elist_Id;
14188 Act_Elmt : Elmt_Id;
14189 Act_Subp : Entity_Id := Empty;
14190 Elmt : Elmt_Id;
14191 Need_Search : Boolean := False;
14192 New_Subp : Entity_Id := Empty;
14193 Parent_Base : Entity_Id;
14194 Subp : Entity_Id;
14196 -- Start of processing for Derive_Subprograms
14198 begin
14199 if Ekind (Parent_Type) = E_Record_Type_With_Private
14200 and then Has_Discriminants (Parent_Type)
14201 and then Present (Full_View (Parent_Type))
14202 then
14203 Parent_Base := Full_View (Parent_Type);
14204 else
14205 Parent_Base := Parent_Type;
14206 end if;
14208 if Present (Generic_Actual) then
14209 Act_List := Collect_Primitive_Operations (Generic_Actual);
14210 Act_Elmt := First_Elmt (Act_List);
14211 else
14212 Act_List := No_Elist;
14213 Act_Elmt := No_Elmt;
14214 end if;
14216 -- Derive primitives inherited from the parent. Note that if the generic
14217 -- actual is present, this is not really a type derivation, it is a
14218 -- completion within an instance.
14220 -- Case 1: Derived_Type does not implement interfaces
14222 if not Is_Tagged_Type (Derived_Type)
14223 or else (not Has_Interfaces (Derived_Type)
14224 and then not (Present (Generic_Actual)
14225 and then Has_Interfaces (Generic_Actual)))
14226 then
14227 Elmt := First_Elmt (Op_List);
14228 while Present (Elmt) loop
14229 Subp := Node (Elmt);
14231 -- Literals are derived earlier in the process of building the
14232 -- derived type, and are skipped here.
14234 if Ekind (Subp) = E_Enumeration_Literal then
14235 null;
14237 -- The actual is a direct descendant and the common primitive
14238 -- operations appear in the same order.
14240 -- If the generic parent type is present, the derived type is an
14241 -- instance of a formal derived type, and within the instance its
14242 -- operations are those of the actual. We derive from the formal
14243 -- type but make the inherited operations aliases of the
14244 -- corresponding operations of the actual.
14246 else
14247 pragma Assert (No (Node (Act_Elmt))
14248 or else (Primitive_Names_Match (Subp, Node (Act_Elmt))
14249 and then
14250 Type_Conformant
14251 (Subp, Node (Act_Elmt),
14252 Skip_Controlling_Formals => True)));
14254 Derive_Subprogram
14255 (New_Subp, Subp, Derived_Type, Parent_Base, Node (Act_Elmt));
14257 if Present (Act_Elmt) then
14258 Next_Elmt (Act_Elmt);
14259 end if;
14260 end if;
14262 Next_Elmt (Elmt);
14263 end loop;
14265 -- Case 2: Derived_Type implements interfaces
14267 else
14268 -- If the parent type has no predefined primitives we remove
14269 -- predefined primitives from the list of primitives of generic
14270 -- actual to simplify the complexity of this algorithm.
14272 if Present (Generic_Actual) then
14273 declare
14274 Has_Predefined_Primitives : Boolean := False;
14276 begin
14277 -- Check if the parent type has predefined primitives
14279 Elmt := First_Elmt (Op_List);
14280 while Present (Elmt) loop
14281 Subp := Node (Elmt);
14283 if Is_Predefined_Dispatching_Operation (Subp)
14284 and then not Comes_From_Source (Ultimate_Alias (Subp))
14285 then
14286 Has_Predefined_Primitives := True;
14287 exit;
14288 end if;
14290 Next_Elmt (Elmt);
14291 end loop;
14293 -- Remove predefined primitives of Generic_Actual. We must use
14294 -- an auxiliary list because in case of tagged types the value
14295 -- returned by Collect_Primitive_Operations is the value stored
14296 -- in its Primitive_Operations attribute (and we don't want to
14297 -- modify its current contents).
14299 if not Has_Predefined_Primitives then
14300 declare
14301 Aux_List : constant Elist_Id := New_Elmt_List;
14303 begin
14304 Elmt := First_Elmt (Act_List);
14305 while Present (Elmt) loop
14306 Subp := Node (Elmt);
14308 if not Is_Predefined_Dispatching_Operation (Subp)
14309 or else Comes_From_Source (Subp)
14310 then
14311 Append_Elmt (Subp, Aux_List);
14312 end if;
14314 Next_Elmt (Elmt);
14315 end loop;
14317 Act_List := Aux_List;
14318 end;
14319 end if;
14321 Act_Elmt := First_Elmt (Act_List);
14322 Act_Subp := Node (Act_Elmt);
14323 end;
14324 end if;
14326 -- Stage 1: If the generic actual is not present we derive the
14327 -- primitives inherited from the parent type. If the generic parent
14328 -- type is present, the derived type is an instance of a formal
14329 -- derived type, and within the instance its operations are those of
14330 -- the actual. We derive from the formal type but make the inherited
14331 -- operations aliases of the corresponding operations of the actual.
14333 Elmt := First_Elmt (Op_List);
14334 while Present (Elmt) loop
14335 Subp := Node (Elmt);
14336 Alias_Subp := Ultimate_Alias (Subp);
14338 -- Do not derive internal entities of the parent that link
14339 -- interface primitives with their covering primitive. These
14340 -- entities will be added to this type when frozen.
14342 if Present (Interface_Alias (Subp)) then
14343 goto Continue;
14344 end if;
14346 -- If the generic actual is present find the corresponding
14347 -- operation in the generic actual. If the parent type is a
14348 -- direct ancestor of the derived type then, even if it is an
14349 -- interface, the operations are inherited from the primary
14350 -- dispatch table and are in the proper order. If we detect here
14351 -- that primitives are not in the same order we traverse the list
14352 -- of primitive operations of the actual to find the one that
14353 -- implements the interface primitive.
14355 if Need_Search
14356 or else
14357 (Present (Generic_Actual)
14358 and then Present (Act_Subp)
14359 and then not
14360 (Primitive_Names_Match (Subp, Act_Subp)
14361 and then
14362 Type_Conformant (Subp, Act_Subp,
14363 Skip_Controlling_Formals => True)))
14364 then
14365 pragma Assert (not Is_Ancestor (Parent_Base, Generic_Actual,
14366 Use_Full_View => True));
14368 -- Remember that we need searching for all pending primitives
14370 Need_Search := True;
14372 -- Handle entities associated with interface primitives
14374 if Present (Alias_Subp)
14375 and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
14376 and then not Is_Predefined_Dispatching_Operation (Subp)
14377 then
14378 -- Search for the primitive in the homonym chain
14380 Act_Subp :=
14381 Find_Primitive_Covering_Interface
14382 (Tagged_Type => Generic_Actual,
14383 Iface_Prim => Alias_Subp);
14385 -- Previous search may not locate primitives covering
14386 -- interfaces defined in generics units or instantiations.
14387 -- (it fails if the covering primitive has formals whose
14388 -- type is also defined in generics or instantiations).
14389 -- In such case we search in the list of primitives of the
14390 -- generic actual for the internal entity that links the
14391 -- interface primitive and the covering primitive.
14393 if No (Act_Subp)
14394 and then Is_Generic_Type (Parent_Type)
14395 then
14396 -- This code has been designed to handle only generic
14397 -- formals that implement interfaces that are defined
14398 -- in a generic unit or instantiation. If this code is
14399 -- needed for other cases we must review it because
14400 -- (given that it relies on Original_Location to locate
14401 -- the primitive of Generic_Actual that covers the
14402 -- interface) it could leave linked through attribute
14403 -- Alias entities of unrelated instantiations).
14405 pragma Assert
14406 (Is_Generic_Unit
14407 (Scope (Find_Dispatching_Type (Alias_Subp)))
14408 or else
14409 Instantiation_Depth
14410 (Sloc (Find_Dispatching_Type (Alias_Subp))) > 0);
14412 declare
14413 Iface_Prim_Loc : constant Source_Ptr :=
14414 Original_Location (Sloc (Alias_Subp));
14416 Elmt : Elmt_Id;
14417 Prim : Entity_Id;
14419 begin
14420 Elmt :=
14421 First_Elmt (Primitive_Operations (Generic_Actual));
14423 Search : while Present (Elmt) loop
14424 Prim := Node (Elmt);
14426 if Present (Interface_Alias (Prim))
14427 and then Original_Location
14428 (Sloc (Interface_Alias (Prim))) =
14429 Iface_Prim_Loc
14430 then
14431 Act_Subp := Alias (Prim);
14432 exit Search;
14433 end if;
14435 Next_Elmt (Elmt);
14436 end loop Search;
14437 end;
14438 end if;
14440 pragma Assert (Present (Act_Subp)
14441 or else Is_Abstract_Type (Generic_Actual)
14442 or else Serious_Errors_Detected > 0);
14444 -- Handle predefined primitives plus the rest of user-defined
14445 -- primitives
14447 else
14448 Act_Elmt := First_Elmt (Act_List);
14449 while Present (Act_Elmt) loop
14450 Act_Subp := Node (Act_Elmt);
14452 exit when Primitive_Names_Match (Subp, Act_Subp)
14453 and then Type_Conformant
14454 (Subp, Act_Subp,
14455 Skip_Controlling_Formals => True)
14456 and then No (Interface_Alias (Act_Subp));
14458 Next_Elmt (Act_Elmt);
14459 end loop;
14461 if No (Act_Elmt) then
14462 Act_Subp := Empty;
14463 end if;
14464 end if;
14465 end if;
14467 -- Case 1: If the parent is a limited interface then it has the
14468 -- predefined primitives of synchronized interfaces. However, the
14469 -- actual type may be a non-limited type and hence it does not
14470 -- have such primitives.
14472 if Present (Generic_Actual)
14473 and then not Present (Act_Subp)
14474 and then Is_Limited_Interface (Parent_Base)
14475 and then Is_Predefined_Interface_Primitive (Subp)
14476 then
14477 null;
14479 -- Case 2: Inherit entities associated with interfaces that were
14480 -- not covered by the parent type. We exclude here null interface
14481 -- primitives because they do not need special management.
14483 -- We also exclude interface operations that are renamings. If the
14484 -- subprogram is an explicit renaming of an interface primitive,
14485 -- it is a regular primitive operation, and the presence of its
14486 -- alias is not relevant: it has to be derived like any other
14487 -- primitive.
14489 elsif Present (Alias (Subp))
14490 and then Nkind (Unit_Declaration_Node (Subp)) /=
14491 N_Subprogram_Renaming_Declaration
14492 and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
14493 and then not
14494 (Nkind (Parent (Alias_Subp)) = N_Procedure_Specification
14495 and then Null_Present (Parent (Alias_Subp)))
14496 then
14497 -- If this is an abstract private type then we transfer the
14498 -- derivation of the interface primitive from the partial view
14499 -- to the full view. This is safe because all the interfaces
14500 -- must be visible in the partial view. Done to avoid adding
14501 -- a new interface derivation to the private part of the
14502 -- enclosing package; otherwise this new derivation would be
14503 -- decorated as hidden when the analysis of the enclosing
14504 -- package completes.
14506 if Is_Abstract_Type (Derived_Type)
14507 and then In_Private_Part (Current_Scope)
14508 and then Has_Private_Declaration (Derived_Type)
14509 then
14510 declare
14511 Partial_View : Entity_Id;
14512 Elmt : Elmt_Id;
14513 Ent : Entity_Id;
14515 begin
14516 Partial_View := First_Entity (Current_Scope);
14517 loop
14518 exit when No (Partial_View)
14519 or else (Has_Private_Declaration (Partial_View)
14520 and then
14521 Full_View (Partial_View) = Derived_Type);
14523 Next_Entity (Partial_View);
14524 end loop;
14526 -- If the partial view was not found then the source code
14527 -- has errors and the derivation is not needed.
14529 if Present (Partial_View) then
14530 Elmt :=
14531 First_Elmt (Primitive_Operations (Partial_View));
14532 while Present (Elmt) loop
14533 Ent := Node (Elmt);
14535 if Present (Alias (Ent))
14536 and then Ultimate_Alias (Ent) = Alias (Subp)
14537 then
14538 Append_Elmt
14539 (Ent, Primitive_Operations (Derived_Type));
14540 exit;
14541 end if;
14543 Next_Elmt (Elmt);
14544 end loop;
14546 -- If the interface primitive was not found in the
14547 -- partial view then this interface primitive was
14548 -- overridden. We add a derivation to activate in
14549 -- Derive_Progenitor_Subprograms the machinery to
14550 -- search for it.
14552 if No (Elmt) then
14553 Derive_Interface_Subprogram
14554 (New_Subp => New_Subp,
14555 Subp => Subp,
14556 Actual_Subp => Act_Subp);
14557 end if;
14558 end if;
14559 end;
14560 else
14561 Derive_Interface_Subprogram
14562 (New_Subp => New_Subp,
14563 Subp => Subp,
14564 Actual_Subp => Act_Subp);
14565 end if;
14567 -- Case 3: Common derivation
14569 else
14570 Derive_Subprogram
14571 (New_Subp => New_Subp,
14572 Parent_Subp => Subp,
14573 Derived_Type => Derived_Type,
14574 Parent_Type => Parent_Base,
14575 Actual_Subp => Act_Subp);
14576 end if;
14578 -- No need to update Act_Elm if we must search for the
14579 -- corresponding operation in the generic actual
14581 if not Need_Search
14582 and then Present (Act_Elmt)
14583 then
14584 Next_Elmt (Act_Elmt);
14585 Act_Subp := Node (Act_Elmt);
14586 end if;
14588 <<Continue>>
14589 Next_Elmt (Elmt);
14590 end loop;
14592 -- Inherit additional operations from progenitors. If the derived
14593 -- type is a generic actual, there are not new primitive operations
14594 -- for the type because it has those of the actual, and therefore
14595 -- nothing needs to be done. The renamings generated above are not
14596 -- primitive operations, and their purpose is simply to make the
14597 -- proper operations visible within an instantiation.
14599 if No (Generic_Actual) then
14600 Derive_Progenitor_Subprograms (Parent_Base, Derived_Type);
14601 end if;
14602 end if;
14604 -- Final check: Direct descendants must have their primitives in the
14605 -- same order. We exclude from this test untagged types and instances
14606 -- of formal derived types. We skip this test if we have already
14607 -- reported serious errors in the sources.
14609 pragma Assert (not Is_Tagged_Type (Derived_Type)
14610 or else Present (Generic_Actual)
14611 or else Serious_Errors_Detected > 0
14612 or else Check_Derived_Type);
14613 end Derive_Subprograms;
14615 --------------------------------
14616 -- Derived_Standard_Character --
14617 --------------------------------
14619 procedure Derived_Standard_Character
14620 (N : Node_Id;
14621 Parent_Type : Entity_Id;
14622 Derived_Type : Entity_Id)
14624 Loc : constant Source_Ptr := Sloc (N);
14625 Def : constant Node_Id := Type_Definition (N);
14626 Indic : constant Node_Id := Subtype_Indication (Def);
14627 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
14628 Implicit_Base : constant Entity_Id :=
14629 Create_Itype
14630 (E_Enumeration_Type, N, Derived_Type, 'B');
14632 Lo : Node_Id;
14633 Hi : Node_Id;
14635 begin
14636 Discard_Node (Process_Subtype (Indic, N));
14638 Set_Etype (Implicit_Base, Parent_Base);
14639 Set_Size_Info (Implicit_Base, Root_Type (Parent_Type));
14640 Set_RM_Size (Implicit_Base, RM_Size (Root_Type (Parent_Type)));
14642 Set_Is_Character_Type (Implicit_Base, True);
14643 Set_Has_Delayed_Freeze (Implicit_Base);
14645 -- The bounds of the implicit base are the bounds of the parent base.
14646 -- Note that their type is the parent base.
14648 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
14649 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
14651 Set_Scalar_Range (Implicit_Base,
14652 Make_Range (Loc,
14653 Low_Bound => Lo,
14654 High_Bound => Hi));
14656 Conditional_Delay (Derived_Type, Parent_Type);
14658 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
14659 Set_Etype (Derived_Type, Implicit_Base);
14660 Set_Size_Info (Derived_Type, Parent_Type);
14662 if Unknown_RM_Size (Derived_Type) then
14663 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
14664 end if;
14666 Set_Is_Character_Type (Derived_Type, True);
14668 if Nkind (Indic) /= N_Subtype_Indication then
14670 -- If no explicit constraint, the bounds are those
14671 -- of the parent type.
14673 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Type));
14674 Hi := New_Copy_Tree (Type_High_Bound (Parent_Type));
14675 Set_Scalar_Range (Derived_Type, Make_Range (Loc, Lo, Hi));
14676 end if;
14678 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
14680 -- Because the implicit base is used in the conversion of the bounds, we
14681 -- have to freeze it now. This is similar to what is done for numeric
14682 -- types, and it equally suspicious, but otherwise a non-static bound
14683 -- will have a reference to an unfrozen type, which is rejected by Gigi
14684 -- (???). This requires specific care for definition of stream
14685 -- attributes. For details, see comments at the end of
14686 -- Build_Derived_Numeric_Type.
14688 Freeze_Before (N, Implicit_Base);
14689 end Derived_Standard_Character;
14691 ------------------------------
14692 -- Derived_Type_Declaration --
14693 ------------------------------
14695 procedure Derived_Type_Declaration
14696 (T : Entity_Id;
14697 N : Node_Id;
14698 Is_Completion : Boolean)
14700 Parent_Type : Entity_Id;
14702 function Comes_From_Generic (Typ : Entity_Id) return Boolean;
14703 -- Check whether the parent type is a generic formal, or derives
14704 -- directly or indirectly from one.
14706 ------------------------
14707 -- Comes_From_Generic --
14708 ------------------------
14710 function Comes_From_Generic (Typ : Entity_Id) return Boolean is
14711 begin
14712 if Is_Generic_Type (Typ) then
14713 return True;
14715 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
14716 return True;
14718 elsif Is_Private_Type (Typ)
14719 and then Present (Full_View (Typ))
14720 and then Is_Generic_Type (Root_Type (Full_View (Typ)))
14721 then
14722 return True;
14724 elsif Is_Generic_Actual_Type (Typ) then
14725 return True;
14727 else
14728 return False;
14729 end if;
14730 end Comes_From_Generic;
14732 -- Local variables
14734 Def : constant Node_Id := Type_Definition (N);
14735 Iface_Def : Node_Id;
14736 Indic : constant Node_Id := Subtype_Indication (Def);
14737 Extension : constant Node_Id := Record_Extension_Part (Def);
14738 Parent_Node : Node_Id;
14739 Taggd : Boolean;
14741 -- Start of processing for Derived_Type_Declaration
14743 begin
14744 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
14746 -- Ada 2005 (AI-251): In case of interface derivation check that the
14747 -- parent is also an interface.
14749 if Interface_Present (Def) then
14750 Check_SPARK_Restriction ("interface is not allowed", Def);
14752 if not Is_Interface (Parent_Type) then
14753 Diagnose_Interface (Indic, Parent_Type);
14755 else
14756 Parent_Node := Parent (Base_Type (Parent_Type));
14757 Iface_Def := Type_Definition (Parent_Node);
14759 -- Ada 2005 (AI-251): Limited interfaces can only inherit from
14760 -- other limited interfaces.
14762 if Limited_Present (Def) then
14763 if Limited_Present (Iface_Def) then
14764 null;
14766 elsif Protected_Present (Iface_Def) then
14767 Error_Msg_NE
14768 ("descendant of& must be declared"
14769 & " as a protected interface",
14770 N, Parent_Type);
14772 elsif Synchronized_Present (Iface_Def) then
14773 Error_Msg_NE
14774 ("descendant of& must be declared"
14775 & " as a synchronized interface",
14776 N, Parent_Type);
14778 elsif Task_Present (Iface_Def) then
14779 Error_Msg_NE
14780 ("descendant of& must be declared as a task interface",
14781 N, Parent_Type);
14783 else
14784 Error_Msg_N
14785 ("(Ada 2005) limited interface cannot "
14786 & "inherit from non-limited interface", Indic);
14787 end if;
14789 -- Ada 2005 (AI-345): Non-limited interfaces can only inherit
14790 -- from non-limited or limited interfaces.
14792 elsif not Protected_Present (Def)
14793 and then not Synchronized_Present (Def)
14794 and then not Task_Present (Def)
14795 then
14796 if Limited_Present (Iface_Def) then
14797 null;
14799 elsif Protected_Present (Iface_Def) then
14800 Error_Msg_NE
14801 ("descendant of& must be declared"
14802 & " as a protected interface",
14803 N, Parent_Type);
14805 elsif Synchronized_Present (Iface_Def) then
14806 Error_Msg_NE
14807 ("descendant of& must be declared"
14808 & " as a synchronized interface",
14809 N, Parent_Type);
14811 elsif Task_Present (Iface_Def) then
14812 Error_Msg_NE
14813 ("descendant of& must be declared as a task interface",
14814 N, Parent_Type);
14815 else
14816 null;
14817 end if;
14818 end if;
14819 end if;
14820 end if;
14822 if Is_Tagged_Type (Parent_Type)
14823 and then Is_Concurrent_Type (Parent_Type)
14824 and then not Is_Interface (Parent_Type)
14825 then
14826 Error_Msg_N
14827 ("parent type of a record extension cannot be "
14828 & "a synchronized tagged type (RM 3.9.1 (3/1))", N);
14829 Set_Etype (T, Any_Type);
14830 return;
14831 end if;
14833 -- Ada 2005 (AI-251): Decorate all the names in the list of ancestor
14834 -- interfaces
14836 if Is_Tagged_Type (Parent_Type)
14837 and then Is_Non_Empty_List (Interface_List (Def))
14838 then
14839 declare
14840 Intf : Node_Id;
14841 T : Entity_Id;
14843 begin
14844 Intf := First (Interface_List (Def));
14845 while Present (Intf) loop
14846 T := Find_Type_Of_Subtype_Indic (Intf);
14848 if not Is_Interface (T) then
14849 Diagnose_Interface (Intf, T);
14851 -- Check the rules of 3.9.4(12/2) and 7.5(2/2) that disallow
14852 -- a limited type from having a nonlimited progenitor.
14854 elsif (Limited_Present (Def)
14855 or else (not Is_Interface (Parent_Type)
14856 and then Is_Limited_Type (Parent_Type)))
14857 and then not Is_Limited_Interface (T)
14858 then
14859 Error_Msg_NE
14860 ("progenitor interface& of limited type must be limited",
14861 N, T);
14862 end if;
14864 Next (Intf);
14865 end loop;
14866 end;
14867 end if;
14869 if Parent_Type = Any_Type
14870 or else Etype (Parent_Type) = Any_Type
14871 or else (Is_Class_Wide_Type (Parent_Type)
14872 and then Etype (Parent_Type) = T)
14873 then
14874 -- If Parent_Type is undefined or illegal, make new type into a
14875 -- subtype of Any_Type, and set a few attributes to prevent cascaded
14876 -- errors. If this is a self-definition, emit error now.
14878 if T = Parent_Type
14879 or else T = Etype (Parent_Type)
14880 then
14881 Error_Msg_N ("type cannot be used in its own definition", Indic);
14882 end if;
14884 Set_Ekind (T, Ekind (Parent_Type));
14885 Set_Etype (T, Any_Type);
14886 Set_Scalar_Range (T, Scalar_Range (Any_Type));
14888 if Is_Tagged_Type (T)
14889 and then Is_Record_Type (T)
14890 then
14891 Set_Direct_Primitive_Operations (T, New_Elmt_List);
14892 end if;
14894 return;
14895 end if;
14897 -- Ada 2005 (AI-251): The case in which the parent of the full-view is
14898 -- an interface is special because the list of interfaces in the full
14899 -- view can be given in any order. For example:
14901 -- type A is interface;
14902 -- type B is interface and A;
14903 -- type D is new B with private;
14904 -- private
14905 -- type D is new A and B with null record; -- 1 --
14907 -- In this case we perform the following transformation of -1-:
14909 -- type D is new B and A with null record;
14911 -- If the parent of the full-view covers the parent of the partial-view
14912 -- we have two possible cases:
14914 -- 1) They have the same parent
14915 -- 2) The parent of the full-view implements some further interfaces
14917 -- In both cases we do not need to perform the transformation. In the
14918 -- first case the source program is correct and the transformation is
14919 -- not needed; in the second case the source program does not fulfill
14920 -- the no-hidden interfaces rule (AI-396) and the error will be reported
14921 -- later.
14923 -- This transformation not only simplifies the rest of the analysis of
14924 -- this type declaration but also simplifies the correct generation of
14925 -- the object layout to the expander.
14927 if In_Private_Part (Current_Scope)
14928 and then Is_Interface (Parent_Type)
14929 then
14930 declare
14931 Iface : Node_Id;
14932 Partial_View : Entity_Id;
14933 Partial_View_Parent : Entity_Id;
14934 New_Iface : Node_Id;
14936 begin
14937 -- Look for the associated private type declaration
14939 Partial_View := First_Entity (Current_Scope);
14940 loop
14941 exit when No (Partial_View)
14942 or else (Has_Private_Declaration (Partial_View)
14943 and then Full_View (Partial_View) = T);
14945 Next_Entity (Partial_View);
14946 end loop;
14948 -- If the partial view was not found then the source code has
14949 -- errors and the transformation is not needed.
14951 if Present (Partial_View) then
14952 Partial_View_Parent := Etype (Partial_View);
14954 -- If the parent of the full-view covers the parent of the
14955 -- partial-view we have nothing else to do.
14957 if Interface_Present_In_Ancestor
14958 (Parent_Type, Partial_View_Parent)
14959 then
14960 null;
14962 -- Traverse the list of interfaces of the full-view to look
14963 -- for the parent of the partial-view and perform the tree
14964 -- transformation.
14966 else
14967 Iface := First (Interface_List (Def));
14968 while Present (Iface) loop
14969 if Etype (Iface) = Etype (Partial_View) then
14970 Rewrite (Subtype_Indication (Def),
14971 New_Copy (Subtype_Indication
14972 (Parent (Partial_View))));
14974 New_Iface :=
14975 Make_Identifier (Sloc (N), Chars (Parent_Type));
14976 Append (New_Iface, Interface_List (Def));
14978 -- Analyze the transformed code
14980 Derived_Type_Declaration (T, N, Is_Completion);
14981 return;
14982 end if;
14984 Next (Iface);
14985 end loop;
14986 end if;
14987 end if;
14988 end;
14989 end if;
14991 -- Only composite types other than array types are allowed to have
14992 -- discriminants. In SPARK, no types are allowed to have discriminants.
14994 if Present (Discriminant_Specifications (N)) then
14995 if (Is_Elementary_Type (Parent_Type)
14996 or else Is_Array_Type (Parent_Type))
14997 and then not Error_Posted (N)
14998 then
14999 Error_Msg_N
15000 ("elementary or array type cannot have discriminants",
15001 Defining_Identifier (First (Discriminant_Specifications (N))));
15002 Set_Has_Discriminants (T, False);
15003 else
15004 Check_SPARK_Restriction ("discriminant type is not allowed", N);
15005 end if;
15006 end if;
15008 -- In Ada 83, a derived type defined in a package specification cannot
15009 -- be used for further derivation until the end of its visible part.
15010 -- Note that derivation in the private part of the package is allowed.
15012 if Ada_Version = Ada_83
15013 and then Is_Derived_Type (Parent_Type)
15014 and then In_Visible_Part (Scope (Parent_Type))
15015 then
15016 if Ada_Version = Ada_83 and then Comes_From_Source (Indic) then
15017 Error_Msg_N
15018 ("(Ada 83): premature use of type for derivation", Indic);
15019 end if;
15020 end if;
15022 -- Check for early use of incomplete or private type
15024 if Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then
15025 Error_Msg_N ("premature derivation of incomplete type", Indic);
15026 return;
15028 elsif (Is_Incomplete_Or_Private_Type (Parent_Type)
15029 and then not Comes_From_Generic (Parent_Type))
15030 or else Has_Private_Component (Parent_Type)
15031 then
15032 -- The ancestor type of a formal type can be incomplete, in which
15033 -- case only the operations of the partial view are available in the
15034 -- generic. Subsequent checks may be required when the full view is
15035 -- analyzed to verify that a derivation from a tagged type has an
15036 -- extension.
15038 if Nkind (Original_Node (N)) = N_Formal_Type_Declaration then
15039 null;
15041 elsif No (Underlying_Type (Parent_Type))
15042 or else Has_Private_Component (Parent_Type)
15043 then
15044 Error_Msg_N
15045 ("premature derivation of derived or private type", Indic);
15047 -- Flag the type itself as being in error, this prevents some
15048 -- nasty problems with subsequent uses of the malformed type.
15050 Set_Error_Posted (T);
15052 -- Check that within the immediate scope of an untagged partial
15053 -- view it's illegal to derive from the partial view if the
15054 -- full view is tagged. (7.3(7))
15056 -- We verify that the Parent_Type is a partial view by checking
15057 -- that it is not a Full_Type_Declaration (i.e. a private type or
15058 -- private extension declaration), to distinguish a partial view
15059 -- from a derivation from a private type which also appears as
15060 -- E_Private_Type. If the parent base type is not declared in an
15061 -- enclosing scope there is no need to check.
15063 elsif Present (Full_View (Parent_Type))
15064 and then Nkind (Parent (Parent_Type)) /= N_Full_Type_Declaration
15065 and then not Is_Tagged_Type (Parent_Type)
15066 and then Is_Tagged_Type (Full_View (Parent_Type))
15067 and then In_Open_Scopes (Scope (Base_Type (Parent_Type)))
15068 then
15069 Error_Msg_N
15070 ("premature derivation from type with tagged full view",
15071 Indic);
15072 end if;
15073 end if;
15075 -- Check that form of derivation is appropriate
15077 Taggd := Is_Tagged_Type (Parent_Type);
15079 -- Perhaps the parent type should be changed to the class-wide type's
15080 -- specific type in this case to prevent cascading errors ???
15082 if Present (Extension) and then Is_Class_Wide_Type (Parent_Type) then
15083 Error_Msg_N ("parent type must not be a class-wide type", Indic);
15084 return;
15085 end if;
15087 if Present (Extension) and then not Taggd then
15088 Error_Msg_N
15089 ("type derived from untagged type cannot have extension", Indic);
15091 elsif No (Extension) and then Taggd then
15093 -- If this declaration is within a private part (or body) of a
15094 -- generic instantiation then the derivation is allowed (the parent
15095 -- type can only appear tagged in this case if it's a generic actual
15096 -- type, since it would otherwise have been rejected in the analysis
15097 -- of the generic template).
15099 if not Is_Generic_Actual_Type (Parent_Type)
15100 or else In_Visible_Part (Scope (Parent_Type))
15101 then
15102 if Is_Class_Wide_Type (Parent_Type) then
15103 Error_Msg_N
15104 ("parent type must not be a class-wide type", Indic);
15106 -- Use specific type to prevent cascaded errors.
15108 Parent_Type := Etype (Parent_Type);
15110 else
15111 Error_Msg_N
15112 ("type derived from tagged type must have extension", Indic);
15113 end if;
15114 end if;
15115 end if;
15117 -- AI-443: Synchronized formal derived types require a private
15118 -- extension. There is no point in checking the ancestor type or
15119 -- the progenitors since the construct is wrong to begin with.
15121 if Ada_Version >= Ada_2005
15122 and then Is_Generic_Type (T)
15123 and then Present (Original_Node (N))
15124 then
15125 declare
15126 Decl : constant Node_Id := Original_Node (N);
15128 begin
15129 if Nkind (Decl) = N_Formal_Type_Declaration
15130 and then Nkind (Formal_Type_Definition (Decl)) =
15131 N_Formal_Derived_Type_Definition
15132 and then Synchronized_Present (Formal_Type_Definition (Decl))
15133 and then No (Extension)
15135 -- Avoid emitting a duplicate error message
15137 and then not Error_Posted (Indic)
15138 then
15139 Error_Msg_N
15140 ("synchronized derived type must have extension", N);
15141 end if;
15142 end;
15143 end if;
15145 if Null_Exclusion_Present (Def)
15146 and then not Is_Access_Type (Parent_Type)
15147 then
15148 Error_Msg_N ("null exclusion can only apply to an access type", N);
15149 end if;
15151 -- Avoid deriving parent primitives of underlying record views
15153 Build_Derived_Type (N, Parent_Type, T, Is_Completion,
15154 Derive_Subps => not Is_Underlying_Record_View (T));
15156 -- AI-419: The parent type of an explicitly limited derived type must
15157 -- be a limited type or a limited interface.
15159 if Limited_Present (Def) then
15160 Set_Is_Limited_Record (T);
15162 if Is_Interface (T) then
15163 Set_Is_Limited_Interface (T);
15164 end if;
15166 if not Is_Limited_Type (Parent_Type)
15167 and then
15168 (not Is_Interface (Parent_Type)
15169 or else not Is_Limited_Interface (Parent_Type))
15170 then
15171 -- AI05-0096: a derivation in the private part of an instance is
15172 -- legal if the generic formal is untagged limited, and the actual
15173 -- is non-limited.
15175 if Is_Generic_Actual_Type (Parent_Type)
15176 and then In_Private_Part (Current_Scope)
15177 and then
15178 not Is_Tagged_Type
15179 (Generic_Parent_Type (Parent (Parent_Type)))
15180 then
15181 null;
15183 else
15184 Error_Msg_NE
15185 ("parent type& of limited type must be limited",
15186 N, Parent_Type);
15187 end if;
15188 end if;
15189 end if;
15191 -- In SPARK, there are no derived type definitions other than type
15192 -- extensions of tagged record types.
15194 if No (Extension) then
15195 Check_SPARK_Restriction
15196 ("derived type is not allowed", Original_Node (N));
15197 end if;
15198 end Derived_Type_Declaration;
15200 ------------------------
15201 -- Diagnose_Interface --
15202 ------------------------
15204 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id) is
15205 begin
15206 if not Is_Interface (E)
15207 and then E /= Any_Type
15208 then
15209 Error_Msg_NE ("(Ada 2005) & must be an interface", N, E);
15210 end if;
15211 end Diagnose_Interface;
15213 ----------------------------------
15214 -- Enumeration_Type_Declaration --
15215 ----------------------------------
15217 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id) is
15218 Ev : Uint;
15219 L : Node_Id;
15220 R_Node : Node_Id;
15221 B_Node : Node_Id;
15223 begin
15224 -- Create identifier node representing lower bound
15226 B_Node := New_Node (N_Identifier, Sloc (Def));
15227 L := First (Literals (Def));
15228 Set_Chars (B_Node, Chars (L));
15229 Set_Entity (B_Node, L);
15230 Set_Etype (B_Node, T);
15231 Set_Is_Static_Expression (B_Node, True);
15233 R_Node := New_Node (N_Range, Sloc (Def));
15234 Set_Low_Bound (R_Node, B_Node);
15236 Set_Ekind (T, E_Enumeration_Type);
15237 Set_First_Literal (T, L);
15238 Set_Etype (T, T);
15239 Set_Is_Constrained (T);
15241 Ev := Uint_0;
15243 -- Loop through literals of enumeration type setting pos and rep values
15244 -- except that if the Ekind is already set, then it means the literal
15245 -- was already constructed (case of a derived type declaration and we
15246 -- should not disturb the Pos and Rep values.
15248 while Present (L) loop
15249 if Ekind (L) /= E_Enumeration_Literal then
15250 Set_Ekind (L, E_Enumeration_Literal);
15251 Set_Enumeration_Pos (L, Ev);
15252 Set_Enumeration_Rep (L, Ev);
15253 Set_Is_Known_Valid (L, True);
15254 end if;
15256 Set_Etype (L, T);
15257 New_Overloaded_Entity (L);
15258 Generate_Definition (L);
15259 Set_Convention (L, Convention_Intrinsic);
15261 -- Case of character literal
15263 if Nkind (L) = N_Defining_Character_Literal then
15264 Set_Is_Character_Type (T, True);
15266 -- Check violation of No_Wide_Characters
15268 if Restriction_Check_Required (No_Wide_Characters) then
15269 Get_Name_String (Chars (L));
15271 if Name_Len >= 3 and then Name_Buffer (1 .. 2) = "QW" then
15272 Check_Restriction (No_Wide_Characters, L);
15273 end if;
15274 end if;
15275 end if;
15277 Ev := Ev + 1;
15278 Next (L);
15279 end loop;
15281 -- Now create a node representing upper bound
15283 B_Node := New_Node (N_Identifier, Sloc (Def));
15284 Set_Chars (B_Node, Chars (Last (Literals (Def))));
15285 Set_Entity (B_Node, Last (Literals (Def)));
15286 Set_Etype (B_Node, T);
15287 Set_Is_Static_Expression (B_Node, True);
15289 Set_High_Bound (R_Node, B_Node);
15291 -- Initialize various fields of the type. Some of this information
15292 -- may be overwritten later through rep.clauses.
15294 Set_Scalar_Range (T, R_Node);
15295 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
15296 Set_Enum_Esize (T);
15297 Set_Enum_Pos_To_Rep (T, Empty);
15299 -- Set Discard_Names if configuration pragma set, or if there is
15300 -- a parameterless pragma in the current declarative region
15302 if Global_Discard_Names or else Discard_Names (Scope (T)) then
15303 Set_Discard_Names (T);
15304 end if;
15306 -- Process end label if there is one
15308 if Present (Def) then
15309 Process_End_Label (Def, 'e', T);
15310 end if;
15311 end Enumeration_Type_Declaration;
15313 ---------------------------------
15314 -- Expand_To_Stored_Constraint --
15315 ---------------------------------
15317 function Expand_To_Stored_Constraint
15318 (Typ : Entity_Id;
15319 Constraint : Elist_Id) return Elist_Id
15321 Explicitly_Discriminated_Type : Entity_Id;
15322 Expansion : Elist_Id;
15323 Discriminant : Entity_Id;
15325 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id;
15326 -- Find the nearest type that actually specifies discriminants
15328 ---------------------------------
15329 -- Type_With_Explicit_Discrims --
15330 ---------------------------------
15332 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id is
15333 Typ : constant E := Base_Type (Id);
15335 begin
15336 if Ekind (Typ) in Incomplete_Or_Private_Kind then
15337 if Present (Full_View (Typ)) then
15338 return Type_With_Explicit_Discrims (Full_View (Typ));
15339 end if;
15341 else
15342 if Has_Discriminants (Typ) then
15343 return Typ;
15344 end if;
15345 end if;
15347 if Etype (Typ) = Typ then
15348 return Empty;
15349 elsif Has_Discriminants (Typ) then
15350 return Typ;
15351 else
15352 return Type_With_Explicit_Discrims (Etype (Typ));
15353 end if;
15355 end Type_With_Explicit_Discrims;
15357 -- Start of processing for Expand_To_Stored_Constraint
15359 begin
15360 if No (Constraint)
15361 or else Is_Empty_Elmt_List (Constraint)
15362 then
15363 return No_Elist;
15364 end if;
15366 Explicitly_Discriminated_Type := Type_With_Explicit_Discrims (Typ);
15368 if No (Explicitly_Discriminated_Type) then
15369 return No_Elist;
15370 end if;
15372 Expansion := New_Elmt_List;
15374 Discriminant :=
15375 First_Stored_Discriminant (Explicitly_Discriminated_Type);
15376 while Present (Discriminant) loop
15377 Append_Elmt (
15378 Get_Discriminant_Value (
15379 Discriminant, Explicitly_Discriminated_Type, Constraint),
15380 Expansion);
15381 Next_Stored_Discriminant (Discriminant);
15382 end loop;
15384 return Expansion;
15385 end Expand_To_Stored_Constraint;
15387 ---------------------------
15388 -- Find_Hidden_Interface --
15389 ---------------------------
15391 function Find_Hidden_Interface
15392 (Src : Elist_Id;
15393 Dest : Elist_Id) return Entity_Id
15395 Iface : Entity_Id;
15396 Iface_Elmt : Elmt_Id;
15398 begin
15399 if Present (Src) and then Present (Dest) then
15400 Iface_Elmt := First_Elmt (Src);
15401 while Present (Iface_Elmt) loop
15402 Iface := Node (Iface_Elmt);
15404 if Is_Interface (Iface)
15405 and then not Contain_Interface (Iface, Dest)
15406 then
15407 return Iface;
15408 end if;
15410 Next_Elmt (Iface_Elmt);
15411 end loop;
15412 end if;
15414 return Empty;
15415 end Find_Hidden_Interface;
15417 --------------------
15418 -- Find_Type_Name --
15419 --------------------
15421 function Find_Type_Name (N : Node_Id) return Entity_Id is
15422 Id : constant Entity_Id := Defining_Identifier (N);
15423 Prev : Entity_Id;
15424 New_Id : Entity_Id;
15425 Prev_Par : Node_Id;
15427 procedure Check_Duplicate_Aspects;
15428 -- Check that aspects specified in a completion have not been specified
15429 -- already in the partial view. Type_Invariant and others can be
15430 -- specified on either view but never on both.
15432 procedure Tag_Mismatch;
15433 -- Diagnose a tagged partial view whose full view is untagged.
15434 -- We post the message on the full view, with a reference to
15435 -- the previous partial view. The partial view can be private
15436 -- or incomplete, and these are handled in a different manner,
15437 -- so we determine the position of the error message from the
15438 -- respective slocs of both.
15440 -----------------------------
15441 -- Check_Duplicate_Aspects --
15442 -----------------------------
15443 procedure Check_Duplicate_Aspects is
15444 Prev_Aspects : constant List_Id := Aspect_Specifications (Prev_Par);
15445 Full_Aspects : constant List_Id := Aspect_Specifications (N);
15446 F_Spec, P_Spec : Node_Id;
15448 begin
15449 if Present (Prev_Aspects) and then Present (Full_Aspects) then
15450 F_Spec := First (Full_Aspects);
15451 while Present (F_Spec) loop
15452 P_Spec := First (Prev_Aspects);
15453 while Present (P_Spec) loop
15455 Chars (Identifier (P_Spec)) = Chars (Identifier (F_Spec))
15456 then
15457 Error_Msg_N
15458 ("aspect already specified in private declaration",
15459 F_Spec);
15460 Remove (F_Spec);
15461 return;
15462 end if;
15464 Next (P_Spec);
15465 end loop;
15467 Next (F_Spec);
15468 end loop;
15469 end if;
15470 end Check_Duplicate_Aspects;
15472 ------------------
15473 -- Tag_Mismatch --
15474 ------------------
15476 procedure Tag_Mismatch is
15477 begin
15478 if Sloc (Prev) < Sloc (Id) then
15479 if Ada_Version >= Ada_2012
15480 and then Nkind (N) = N_Private_Type_Declaration
15481 then
15482 Error_Msg_NE
15483 ("declaration of private } must be a tagged type ", Id, Prev);
15484 else
15485 Error_Msg_NE
15486 ("full declaration of } must be a tagged type ", Id, Prev);
15487 end if;
15489 else
15490 if Ada_Version >= Ada_2012
15491 and then Nkind (N) = N_Private_Type_Declaration
15492 then
15493 Error_Msg_NE
15494 ("declaration of private } must be a tagged type ", Prev, Id);
15495 else
15496 Error_Msg_NE
15497 ("full declaration of } must be a tagged type ", Prev, Id);
15498 end if;
15499 end if;
15500 end Tag_Mismatch;
15502 -- Start of processing for Find_Type_Name
15504 begin
15505 -- Find incomplete declaration, if one was given
15507 Prev := Current_Entity_In_Scope (Id);
15509 -- New type declaration
15511 if No (Prev) then
15512 Enter_Name (Id);
15513 return Id;
15515 -- Previous declaration exists
15517 else
15518 Prev_Par := Parent (Prev);
15520 -- Error if not incomplete/private case except if previous
15521 -- declaration is implicit, etc. Enter_Name will emit error if
15522 -- appropriate.
15524 if not Is_Incomplete_Or_Private_Type (Prev) then
15525 Enter_Name (Id);
15526 New_Id := Id;
15528 -- Check invalid completion of private or incomplete type
15530 elsif not Nkind_In (N, N_Full_Type_Declaration,
15531 N_Task_Type_Declaration,
15532 N_Protected_Type_Declaration)
15533 and then
15534 (Ada_Version < Ada_2012
15535 or else not Is_Incomplete_Type (Prev)
15536 or else not Nkind_In (N, N_Private_Type_Declaration,
15537 N_Private_Extension_Declaration))
15538 then
15539 -- Completion must be a full type declarations (RM 7.3(4))
15541 Error_Msg_Sloc := Sloc (Prev);
15542 Error_Msg_NE ("invalid completion of }", Id, Prev);
15544 -- Set scope of Id to avoid cascaded errors. Entity is never
15545 -- examined again, except when saving globals in generics.
15547 Set_Scope (Id, Current_Scope);
15548 New_Id := Id;
15550 -- If this is a repeated incomplete declaration, no further
15551 -- checks are possible.
15553 if Nkind (N) = N_Incomplete_Type_Declaration then
15554 return Prev;
15555 end if;
15557 -- Case of full declaration of incomplete type
15559 elsif Ekind (Prev) = E_Incomplete_Type
15560 and then (Ada_Version < Ada_2012
15561 or else No (Full_View (Prev))
15562 or else not Is_Private_Type (Full_View (Prev)))
15563 then
15564 -- Indicate that the incomplete declaration has a matching full
15565 -- declaration. The defining occurrence of the incomplete
15566 -- declaration remains the visible one, and the procedure
15567 -- Get_Full_View dereferences it whenever the type is used.
15569 if Present (Full_View (Prev)) then
15570 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
15571 end if;
15573 Set_Full_View (Prev, Id);
15574 Append_Entity (Id, Current_Scope);
15575 Set_Is_Public (Id, Is_Public (Prev));
15576 Set_Is_Internal (Id);
15577 New_Id := Prev;
15579 -- If the incomplete view is tagged, a class_wide type has been
15580 -- created already. Use it for the private type as well, in order
15581 -- to prevent multiple incompatible class-wide types that may be
15582 -- created for self-referential anonymous access components.
15584 if Is_Tagged_Type (Prev)
15585 and then Present (Class_Wide_Type (Prev))
15586 then
15587 Set_Ekind (Id, Ekind (Prev)); -- will be reset later
15588 Set_Class_Wide_Type (Id, Class_Wide_Type (Prev));
15590 -- If the incomplete type is completed by a private declaration
15591 -- the class-wide type remains associated with the incomplete
15592 -- type, to prevent order-of-elaboration issues in gigi, else
15593 -- we associate the class-wide type with the known full view.
15595 if Nkind (N) /= N_Private_Type_Declaration then
15596 Set_Etype (Class_Wide_Type (Id), Id);
15597 end if;
15598 end if;
15600 -- Case of full declaration of private type
15602 else
15603 -- If the private type was a completion of an incomplete type then
15604 -- update Prev to reference the private type
15606 if Ada_Version >= Ada_2012
15607 and then Ekind (Prev) = E_Incomplete_Type
15608 and then Present (Full_View (Prev))
15609 and then Is_Private_Type (Full_View (Prev))
15610 then
15611 Prev := Full_View (Prev);
15612 Prev_Par := Parent (Prev);
15613 end if;
15615 if Nkind (N) = N_Full_Type_Declaration
15616 and then Nkind_In
15617 (Type_Definition (N), N_Record_Definition,
15618 N_Derived_Type_Definition)
15619 and then Interface_Present (Type_Definition (N))
15620 then
15621 Error_Msg_N
15622 ("completion of private type cannot be an interface", N);
15623 end if;
15625 if Nkind (Parent (Prev)) /= N_Private_Extension_Declaration then
15626 if Etype (Prev) /= Prev then
15628 -- Prev is a private subtype or a derived type, and needs
15629 -- no completion.
15631 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
15632 New_Id := Id;
15634 elsif Ekind (Prev) = E_Private_Type
15635 and then Nkind_In (N, N_Task_Type_Declaration,
15636 N_Protected_Type_Declaration)
15637 then
15638 Error_Msg_N
15639 ("completion of nonlimited type cannot be limited", N);
15641 elsif Ekind (Prev) = E_Record_Type_With_Private
15642 and then Nkind_In (N, N_Task_Type_Declaration,
15643 N_Protected_Type_Declaration)
15644 then
15645 if not Is_Limited_Record (Prev) then
15646 Error_Msg_N
15647 ("completion of nonlimited type cannot be limited", N);
15649 elsif No (Interface_List (N)) then
15650 Error_Msg_N
15651 ("completion of tagged private type must be tagged",
15653 end if;
15654 end if;
15656 -- Ada 2005 (AI-251): Private extension declaration of a task
15657 -- type or a protected type. This case arises when covering
15658 -- interface types.
15660 elsif Nkind_In (N, N_Task_Type_Declaration,
15661 N_Protected_Type_Declaration)
15662 then
15663 null;
15665 elsif Nkind (N) /= N_Full_Type_Declaration
15666 or else Nkind (Type_Definition (N)) /= N_Derived_Type_Definition
15667 then
15668 Error_Msg_N
15669 ("full view of private extension must be an extension", N);
15671 elsif not (Abstract_Present (Parent (Prev)))
15672 and then Abstract_Present (Type_Definition (N))
15673 then
15674 Error_Msg_N
15675 ("full view of non-abstract extension cannot be abstract", N);
15676 end if;
15678 if not In_Private_Part (Current_Scope) then
15679 Error_Msg_N
15680 ("declaration of full view must appear in private part", N);
15681 end if;
15683 if Ada_Version >= Ada_2012 then
15684 Check_Duplicate_Aspects;
15685 end if;
15687 Copy_And_Swap (Prev, Id);
15688 Set_Has_Private_Declaration (Prev);
15689 Set_Has_Private_Declaration (Id);
15691 -- Preserve aspect and iterator flags that may have been set on
15692 -- the partial view.
15694 Set_Has_Delayed_Aspects (Prev, Has_Delayed_Aspects (Id));
15695 Set_Has_Implicit_Dereference (Prev, Has_Implicit_Dereference (Id));
15697 -- If no error, propagate freeze_node from private to full view.
15698 -- It may have been generated for an early operational item.
15700 if Present (Freeze_Node (Id))
15701 and then Serious_Errors_Detected = 0
15702 and then No (Full_View (Id))
15703 then
15704 Set_Freeze_Node (Prev, Freeze_Node (Id));
15705 Set_Freeze_Node (Id, Empty);
15706 Set_First_Rep_Item (Prev, First_Rep_Item (Id));
15707 end if;
15709 Set_Full_View (Id, Prev);
15710 New_Id := Prev;
15711 end if;
15713 -- Verify that full declaration conforms to partial one
15715 if Is_Incomplete_Or_Private_Type (Prev)
15716 and then Present (Discriminant_Specifications (Prev_Par))
15717 then
15718 if Present (Discriminant_Specifications (N)) then
15719 if Ekind (Prev) = E_Incomplete_Type then
15720 Check_Discriminant_Conformance (N, Prev, Prev);
15721 else
15722 Check_Discriminant_Conformance (N, Prev, Id);
15723 end if;
15725 else
15726 Error_Msg_N
15727 ("missing discriminants in full type declaration", N);
15729 -- To avoid cascaded errors on subsequent use, share the
15730 -- discriminants of the partial view.
15732 Set_Discriminant_Specifications (N,
15733 Discriminant_Specifications (Prev_Par));
15734 end if;
15735 end if;
15737 -- A prior untagged partial view can have an associated class-wide
15738 -- type due to use of the class attribute, and in this case the full
15739 -- type must also be tagged. This Ada 95 usage is deprecated in favor
15740 -- of incomplete tagged declarations, but we check for it.
15742 if Is_Type (Prev)
15743 and then (Is_Tagged_Type (Prev)
15744 or else Present (Class_Wide_Type (Prev)))
15745 then
15746 -- Ada 2012 (AI05-0162): A private type may be the completion of
15747 -- an incomplete type.
15749 if Ada_Version >= Ada_2012
15750 and then Is_Incomplete_Type (Prev)
15751 and then Nkind_In (N, N_Private_Type_Declaration,
15752 N_Private_Extension_Declaration)
15753 then
15754 -- No need to check private extensions since they are tagged
15756 if Nkind (N) = N_Private_Type_Declaration
15757 and then not Tagged_Present (N)
15758 then
15759 Tag_Mismatch;
15760 end if;
15762 -- The full declaration is either a tagged type (including
15763 -- a synchronized type that implements interfaces) or a
15764 -- type extension, otherwise this is an error.
15766 elsif Nkind_In (N, N_Task_Type_Declaration,
15767 N_Protected_Type_Declaration)
15768 then
15769 if No (Interface_List (N))
15770 and then not Error_Posted (N)
15771 then
15772 Tag_Mismatch;
15773 end if;
15775 elsif Nkind (Type_Definition (N)) = N_Record_Definition then
15777 -- Indicate that the previous declaration (tagged incomplete
15778 -- or private declaration) requires the same on the full one.
15780 if not Tagged_Present (Type_Definition (N)) then
15781 Tag_Mismatch;
15782 Set_Is_Tagged_Type (Id);
15783 end if;
15785 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
15786 if No (Record_Extension_Part (Type_Definition (N))) then
15787 Error_Msg_NE
15788 ("full declaration of } must be a record extension",
15789 Prev, Id);
15791 -- Set some attributes to produce a usable full view
15793 Set_Is_Tagged_Type (Id);
15794 end if;
15796 else
15797 Tag_Mismatch;
15798 end if;
15799 end if;
15801 if Present (Prev)
15802 and then Nkind (Parent (Prev)) = N_Incomplete_Type_Declaration
15803 and then Present (Premature_Use (Parent (Prev)))
15804 then
15805 Error_Msg_Sloc := Sloc (N);
15806 Error_Msg_N
15807 ("\full declaration #", Premature_Use (Parent (Prev)));
15808 end if;
15810 return New_Id;
15811 end if;
15812 end Find_Type_Name;
15814 -------------------------
15815 -- Find_Type_Of_Object --
15816 -------------------------
15818 function Find_Type_Of_Object
15819 (Obj_Def : Node_Id;
15820 Related_Nod : Node_Id) return Entity_Id
15822 Def_Kind : constant Node_Kind := Nkind (Obj_Def);
15823 P : Node_Id := Parent (Obj_Def);
15824 T : Entity_Id;
15825 Nam : Name_Id;
15827 begin
15828 -- If the parent is a component_definition node we climb to the
15829 -- component_declaration node
15831 if Nkind (P) = N_Component_Definition then
15832 P := Parent (P);
15833 end if;
15835 -- Case of an anonymous array subtype
15837 if Nkind_In (Def_Kind, N_Constrained_Array_Definition,
15838 N_Unconstrained_Array_Definition)
15839 then
15840 T := Empty;
15841 Array_Type_Declaration (T, Obj_Def);
15843 -- Create an explicit subtype whenever possible
15845 elsif Nkind (P) /= N_Component_Declaration
15846 and then Def_Kind = N_Subtype_Indication
15847 then
15848 -- Base name of subtype on object name, which will be unique in
15849 -- the current scope.
15851 -- If this is a duplicate declaration, return base type, to avoid
15852 -- generating duplicate anonymous types.
15854 if Error_Posted (P) then
15855 Analyze (Subtype_Mark (Obj_Def));
15856 return Entity (Subtype_Mark (Obj_Def));
15857 end if;
15859 Nam :=
15860 New_External_Name
15861 (Chars (Defining_Identifier (Related_Nod)), 'S', 0, 'T');
15863 T := Make_Defining_Identifier (Sloc (P), Nam);
15865 Insert_Action (Obj_Def,
15866 Make_Subtype_Declaration (Sloc (P),
15867 Defining_Identifier => T,
15868 Subtype_Indication => Relocate_Node (Obj_Def)));
15870 -- This subtype may need freezing, and this will not be done
15871 -- automatically if the object declaration is not in declarative
15872 -- part. Since this is an object declaration, the type cannot always
15873 -- be frozen here. Deferred constants do not freeze their type
15874 -- (which often enough will be private).
15876 if Nkind (P) = N_Object_Declaration
15877 and then Constant_Present (P)
15878 and then No (Expression (P))
15879 then
15880 null;
15882 -- Here we freeze the base type of object type to catch premature use
15883 -- of discriminated private type without a full view.
15885 else
15886 Insert_Actions (Obj_Def, Freeze_Entity (Base_Type (T), P));
15887 end if;
15889 -- Ada 2005 AI-406: the object definition in an object declaration
15890 -- can be an access definition.
15892 elsif Def_Kind = N_Access_Definition then
15893 T := Access_Definition (Related_Nod, Obj_Def);
15895 Set_Is_Local_Anonymous_Access
15897 V => (Ada_Version < Ada_2012)
15898 or else (Nkind (P) /= N_Object_Declaration)
15899 or else Is_Library_Level_Entity (Defining_Identifier (P)));
15901 -- Otherwise, the object definition is just a subtype_mark
15903 else
15904 T := Process_Subtype (Obj_Def, Related_Nod);
15906 -- If expansion is disabled an object definition that is an aggregate
15907 -- will not get expanded and may lead to scoping problems in the back
15908 -- end, if the object is referenced in an inner scope. In that case
15909 -- create an itype reference for the object definition now. This
15910 -- may be redundant in some cases, but harmless.
15912 if Is_Itype (T)
15913 and then Nkind (Related_Nod) = N_Object_Declaration
15914 and then ASIS_Mode
15915 then
15916 Build_Itype_Reference (T, Related_Nod);
15917 end if;
15918 end if;
15920 return T;
15921 end Find_Type_Of_Object;
15923 --------------------------------
15924 -- Find_Type_Of_Subtype_Indic --
15925 --------------------------------
15927 function Find_Type_Of_Subtype_Indic (S : Node_Id) return Entity_Id is
15928 Typ : Entity_Id;
15930 begin
15931 -- Case of subtype mark with a constraint
15933 if Nkind (S) = N_Subtype_Indication then
15934 Find_Type (Subtype_Mark (S));
15935 Typ := Entity (Subtype_Mark (S));
15937 if not
15938 Is_Valid_Constraint_Kind (Ekind (Typ), Nkind (Constraint (S)))
15939 then
15940 Error_Msg_N
15941 ("incorrect constraint for this kind of type", Constraint (S));
15942 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
15943 end if;
15945 -- Otherwise we have a subtype mark without a constraint
15947 elsif Error_Posted (S) then
15948 Rewrite (S, New_Occurrence_Of (Any_Id, Sloc (S)));
15949 return Any_Type;
15951 else
15952 Find_Type (S);
15953 Typ := Entity (S);
15954 end if;
15956 -- Check No_Wide_Characters restriction
15958 Check_Wide_Character_Restriction (Typ, S);
15960 return Typ;
15961 end Find_Type_Of_Subtype_Indic;
15963 -------------------------------------
15964 -- Floating_Point_Type_Declaration --
15965 -------------------------------------
15967 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id) is
15968 Digs : constant Node_Id := Digits_Expression (Def);
15969 Max_Digs_Val : constant Uint := Digits_Value (Standard_Long_Long_Float);
15970 Digs_Val : Uint;
15971 Base_Typ : Entity_Id;
15972 Implicit_Base : Entity_Id;
15973 Bound : Node_Id;
15975 function Can_Derive_From (E : Entity_Id) return Boolean;
15976 -- Find if given digits value, and possibly a specified range, allows
15977 -- derivation from specified type
15979 function Find_Base_Type return Entity_Id;
15980 -- Find a predefined base type that Def can derive from, or generate
15981 -- an error and substitute Long_Long_Float if none exists.
15983 ---------------------
15984 -- Can_Derive_From --
15985 ---------------------
15987 function Can_Derive_From (E : Entity_Id) return Boolean is
15988 Spec : constant Entity_Id := Real_Range_Specification (Def);
15990 begin
15991 -- Check specified "digits" constraint
15993 if Digs_Val > Digits_Value (E) then
15994 return False;
15995 end if;
15997 -- Avoid types not matching pragma Float_Representation, if present
15999 if (Opt.Float_Format = 'I' and then Float_Rep (E) /= IEEE_Binary)
16000 or else
16001 (Opt.Float_Format = 'V' and then Float_Rep (E) /= VAX_Native)
16002 then
16003 return False;
16004 end if;
16006 -- Check for matching range, if specified
16008 if Present (Spec) then
16009 if Expr_Value_R (Type_Low_Bound (E)) >
16010 Expr_Value_R (Low_Bound (Spec))
16011 then
16012 return False;
16013 end if;
16015 if Expr_Value_R (Type_High_Bound (E)) <
16016 Expr_Value_R (High_Bound (Spec))
16017 then
16018 return False;
16019 end if;
16020 end if;
16022 return True;
16023 end Can_Derive_From;
16025 --------------------
16026 -- Find_Base_Type --
16027 --------------------
16029 function Find_Base_Type return Entity_Id is
16030 Choice : Elmt_Id := First_Elmt (Predefined_Float_Types);
16032 begin
16033 -- Iterate over the predefined types in order, returning the first
16034 -- one that Def can derive from.
16036 while Present (Choice) loop
16037 if Can_Derive_From (Node (Choice)) then
16038 return Node (Choice);
16039 end if;
16041 Next_Elmt (Choice);
16042 end loop;
16044 -- If we can't derive from any existing type, use Long_Long_Float
16045 -- and give appropriate message explaining the problem.
16047 if Digs_Val > Max_Digs_Val then
16048 -- It might be the case that there is a type with the requested
16049 -- range, just not the combination of digits and range.
16051 Error_Msg_N
16052 ("no predefined type has requested range and precision",
16053 Real_Range_Specification (Def));
16055 else
16056 Error_Msg_N
16057 ("range too large for any predefined type",
16058 Real_Range_Specification (Def));
16059 end if;
16061 return Standard_Long_Long_Float;
16062 end Find_Base_Type;
16064 -- Start of processing for Floating_Point_Type_Declaration
16066 begin
16067 Check_Restriction (No_Floating_Point, Def);
16069 -- Create an implicit base type
16071 Implicit_Base :=
16072 Create_Itype (E_Floating_Point_Type, Parent (Def), T, 'B');
16074 -- Analyze and verify digits value
16076 Analyze_And_Resolve (Digs, Any_Integer);
16077 Check_Digits_Expression (Digs);
16078 Digs_Val := Expr_Value (Digs);
16080 -- Process possible range spec and find correct type to derive from
16082 Process_Real_Range_Specification (Def);
16084 -- Check that requested number of digits is not too high.
16086 if Digs_Val > Max_Digs_Val then
16087 -- The check for Max_Base_Digits may be somewhat expensive, as it
16088 -- requires reading System, so only do it when necessary.
16090 declare
16091 Max_Base_Digits : constant Uint :=
16092 Expr_Value
16093 (Expression
16094 (Parent (RTE (RE_Max_Base_Digits))));
16096 begin
16097 if Digs_Val > Max_Base_Digits then
16098 Error_Msg_Uint_1 := Max_Base_Digits;
16099 Error_Msg_N ("digits value out of range, maximum is ^", Digs);
16101 elsif No (Real_Range_Specification (Def)) then
16102 Error_Msg_Uint_1 := Max_Digs_Val;
16103 Error_Msg_N ("types with more than ^ digits need range spec "
16104 & "(RM 3.5.7(6))", Digs);
16105 end if;
16106 end;
16107 end if;
16109 -- Find a suitable type to derive from or complain and use a substitute
16111 Base_Typ := Find_Base_Type;
16113 -- If there are bounds given in the declaration use them as the bounds
16114 -- of the type, otherwise use the bounds of the predefined base type
16115 -- that was chosen based on the Digits value.
16117 if Present (Real_Range_Specification (Def)) then
16118 Set_Scalar_Range (T, Real_Range_Specification (Def));
16119 Set_Is_Constrained (T);
16121 -- The bounds of this range must be converted to machine numbers
16122 -- in accordance with RM 4.9(38).
16124 Bound := Type_Low_Bound (T);
16126 if Nkind (Bound) = N_Real_Literal then
16127 Set_Realval
16128 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
16129 Set_Is_Machine_Number (Bound);
16130 end if;
16132 Bound := Type_High_Bound (T);
16134 if Nkind (Bound) = N_Real_Literal then
16135 Set_Realval
16136 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
16137 Set_Is_Machine_Number (Bound);
16138 end if;
16140 else
16141 Set_Scalar_Range (T, Scalar_Range (Base_Typ));
16142 end if;
16144 -- Complete definition of implicit base and declared first subtype
16146 Set_Etype (Implicit_Base, Base_Typ);
16148 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
16149 Set_Size_Info (Implicit_Base, (Base_Typ));
16150 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
16151 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
16152 Set_Digits_Value (Implicit_Base, Digits_Value (Base_Typ));
16153 Set_Float_Rep (Implicit_Base, Float_Rep (Base_Typ));
16155 Set_Ekind (T, E_Floating_Point_Subtype);
16156 Set_Etype (T, Implicit_Base);
16158 Set_Size_Info (T, (Implicit_Base));
16159 Set_RM_Size (T, RM_Size (Implicit_Base));
16160 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
16161 Set_Digits_Value (T, Digs_Val);
16162 end Floating_Point_Type_Declaration;
16164 ----------------------------
16165 -- Get_Discriminant_Value --
16166 ----------------------------
16168 -- This is the situation:
16170 -- There is a non-derived type
16172 -- type T0 (Dx, Dy, Dz...)
16174 -- There are zero or more levels of derivation, with each derivation
16175 -- either purely inheriting the discriminants, or defining its own.
16177 -- type Ti is new Ti-1
16178 -- or
16179 -- type Ti (Dw) is new Ti-1(Dw, 1, X+Y)
16180 -- or
16181 -- subtype Ti is ...
16183 -- The subtype issue is avoided by the use of Original_Record_Component,
16184 -- and the fact that derived subtypes also derive the constraints.
16186 -- This chain leads back from
16188 -- Typ_For_Constraint
16190 -- Typ_For_Constraint has discriminants, and the value for each
16191 -- discriminant is given by its corresponding Elmt of Constraints.
16193 -- Discriminant is some discriminant in this hierarchy
16195 -- We need to return its value
16197 -- We do this by recursively searching each level, and looking for
16198 -- Discriminant. Once we get to the bottom, we start backing up
16199 -- returning the value for it which may in turn be a discriminant
16200 -- further up, so on the backup we continue the substitution.
16202 function Get_Discriminant_Value
16203 (Discriminant : Entity_Id;
16204 Typ_For_Constraint : Entity_Id;
16205 Constraint : Elist_Id) return Node_Id
16207 function Root_Corresponding_Discriminant
16208 (Discr : Entity_Id) return Entity_Id;
16209 -- Given a discriminant, traverse the chain of inherited discriminants
16210 -- and return the topmost discriminant.
16212 function Search_Derivation_Levels
16213 (Ti : Entity_Id;
16214 Discrim_Values : Elist_Id;
16215 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id;
16216 -- This is the routine that performs the recursive search of levels
16217 -- as described above.
16219 -------------------------------------
16220 -- Root_Corresponding_Discriminant --
16221 -------------------------------------
16223 function Root_Corresponding_Discriminant
16224 (Discr : Entity_Id) return Entity_Id
16226 D : Entity_Id;
16228 begin
16229 D := Discr;
16230 while Present (Corresponding_Discriminant (D)) loop
16231 D := Corresponding_Discriminant (D);
16232 end loop;
16234 return D;
16235 end Root_Corresponding_Discriminant;
16237 ------------------------------
16238 -- Search_Derivation_Levels --
16239 ------------------------------
16241 function Search_Derivation_Levels
16242 (Ti : Entity_Id;
16243 Discrim_Values : Elist_Id;
16244 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id
16246 Assoc : Elmt_Id;
16247 Disc : Entity_Id;
16248 Result : Node_Or_Entity_Id;
16249 Result_Entity : Node_Id;
16251 begin
16252 -- If inappropriate type, return Error, this happens only in
16253 -- cascaded error situations, and we want to avoid a blow up.
16255 if not Is_Composite_Type (Ti) or else Is_Array_Type (Ti) then
16256 return Error;
16257 end if;
16259 -- Look deeper if possible. Use Stored_Constraints only for
16260 -- untagged types. For tagged types use the given constraint.
16261 -- This asymmetry needs explanation???
16263 if not Stored_Discrim_Values
16264 and then Present (Stored_Constraint (Ti))
16265 and then not Is_Tagged_Type (Ti)
16266 then
16267 Result :=
16268 Search_Derivation_Levels (Ti, Stored_Constraint (Ti), True);
16269 else
16270 declare
16271 Td : constant Entity_Id := Etype (Ti);
16273 begin
16274 if Td = Ti then
16275 Result := Discriminant;
16277 else
16278 if Present (Stored_Constraint (Ti)) then
16279 Result :=
16280 Search_Derivation_Levels
16281 (Td, Stored_Constraint (Ti), True);
16282 else
16283 Result :=
16284 Search_Derivation_Levels
16285 (Td, Discrim_Values, Stored_Discrim_Values);
16286 end if;
16287 end if;
16288 end;
16289 end if;
16291 -- Extra underlying places to search, if not found above. For
16292 -- concurrent types, the relevant discriminant appears in the
16293 -- corresponding record. For a type derived from a private type
16294 -- without discriminant, the full view inherits the discriminants
16295 -- of the full view of the parent.
16297 if Result = Discriminant then
16298 if Is_Concurrent_Type (Ti)
16299 and then Present (Corresponding_Record_Type (Ti))
16300 then
16301 Result :=
16302 Search_Derivation_Levels (
16303 Corresponding_Record_Type (Ti),
16304 Discrim_Values,
16305 Stored_Discrim_Values);
16307 elsif Is_Private_Type (Ti)
16308 and then not Has_Discriminants (Ti)
16309 and then Present (Full_View (Ti))
16310 and then Etype (Full_View (Ti)) /= Ti
16311 then
16312 Result :=
16313 Search_Derivation_Levels (
16314 Full_View (Ti),
16315 Discrim_Values,
16316 Stored_Discrim_Values);
16317 end if;
16318 end if;
16320 -- If Result is not a (reference to a) discriminant, return it,
16321 -- otherwise set Result_Entity to the discriminant.
16323 if Nkind (Result) = N_Defining_Identifier then
16324 pragma Assert (Result = Discriminant);
16325 Result_Entity := Result;
16327 else
16328 if not Denotes_Discriminant (Result) then
16329 return Result;
16330 end if;
16332 Result_Entity := Entity (Result);
16333 end if;
16335 -- See if this level of derivation actually has discriminants
16336 -- because tagged derivations can add them, hence the lower
16337 -- levels need not have any.
16339 if not Has_Discriminants (Ti) then
16340 return Result;
16341 end if;
16343 -- Scan Ti's discriminants for Result_Entity,
16344 -- and return its corresponding value, if any.
16346 Result_Entity := Original_Record_Component (Result_Entity);
16348 Assoc := First_Elmt (Discrim_Values);
16350 if Stored_Discrim_Values then
16351 Disc := First_Stored_Discriminant (Ti);
16352 else
16353 Disc := First_Discriminant (Ti);
16354 end if;
16356 while Present (Disc) loop
16357 pragma Assert (Present (Assoc));
16359 if Original_Record_Component (Disc) = Result_Entity then
16360 return Node (Assoc);
16361 end if;
16363 Next_Elmt (Assoc);
16365 if Stored_Discrim_Values then
16366 Next_Stored_Discriminant (Disc);
16367 else
16368 Next_Discriminant (Disc);
16369 end if;
16370 end loop;
16372 -- Could not find it
16374 return Result;
16375 end Search_Derivation_Levels;
16377 -- Local Variables
16379 Result : Node_Or_Entity_Id;
16381 -- Start of processing for Get_Discriminant_Value
16383 begin
16384 -- ??? This routine is a gigantic mess and will be deleted. For the
16385 -- time being just test for the trivial case before calling recurse.
16387 if Base_Type (Scope (Discriminant)) = Base_Type (Typ_For_Constraint) then
16388 declare
16389 D : Entity_Id;
16390 E : Elmt_Id;
16392 begin
16393 D := First_Discriminant (Typ_For_Constraint);
16394 E := First_Elmt (Constraint);
16395 while Present (D) loop
16396 if Chars (D) = Chars (Discriminant) then
16397 return Node (E);
16398 end if;
16400 Next_Discriminant (D);
16401 Next_Elmt (E);
16402 end loop;
16403 end;
16404 end if;
16406 Result := Search_Derivation_Levels
16407 (Typ_For_Constraint, Constraint, False);
16409 -- ??? hack to disappear when this routine is gone
16411 if Nkind (Result) = N_Defining_Identifier then
16412 declare
16413 D : Entity_Id;
16414 E : Elmt_Id;
16416 begin
16417 D := First_Discriminant (Typ_For_Constraint);
16418 E := First_Elmt (Constraint);
16419 while Present (D) loop
16420 if Root_Corresponding_Discriminant (D) = Discriminant then
16421 return Node (E);
16422 end if;
16424 Next_Discriminant (D);
16425 Next_Elmt (E);
16426 end loop;
16427 end;
16428 end if;
16430 pragma Assert (Nkind (Result) /= N_Defining_Identifier);
16431 return Result;
16432 end Get_Discriminant_Value;
16434 --------------------------
16435 -- Has_Range_Constraint --
16436 --------------------------
16438 function Has_Range_Constraint (N : Node_Id) return Boolean is
16439 C : constant Node_Id := Constraint (N);
16441 begin
16442 if Nkind (C) = N_Range_Constraint then
16443 return True;
16445 elsif Nkind (C) = N_Digits_Constraint then
16446 return
16447 Is_Decimal_Fixed_Point_Type (Entity (Subtype_Mark (N)))
16448 or else
16449 Present (Range_Constraint (C));
16451 elsif Nkind (C) = N_Delta_Constraint then
16452 return Present (Range_Constraint (C));
16454 else
16455 return False;
16456 end if;
16457 end Has_Range_Constraint;
16459 ------------------------
16460 -- Inherit_Components --
16461 ------------------------
16463 function Inherit_Components
16464 (N : Node_Id;
16465 Parent_Base : Entity_Id;
16466 Derived_Base : Entity_Id;
16467 Is_Tagged : Boolean;
16468 Inherit_Discr : Boolean;
16469 Discs : Elist_Id) return Elist_Id
16471 Assoc_List : constant Elist_Id := New_Elmt_List;
16473 procedure Inherit_Component
16474 (Old_C : Entity_Id;
16475 Plain_Discrim : Boolean := False;
16476 Stored_Discrim : Boolean := False);
16477 -- Inherits component Old_C from Parent_Base to the Derived_Base. If
16478 -- Plain_Discrim is True, Old_C is a discriminant. If Stored_Discrim is
16479 -- True, Old_C is a stored discriminant. If they are both false then
16480 -- Old_C is a regular component.
16482 -----------------------
16483 -- Inherit_Component --
16484 -----------------------
16486 procedure Inherit_Component
16487 (Old_C : Entity_Id;
16488 Plain_Discrim : Boolean := False;
16489 Stored_Discrim : Boolean := False)
16491 procedure Set_Anonymous_Type (Id : Entity_Id);
16492 -- Id denotes the entity of an access discriminant or anonymous
16493 -- access component. Set the type of Id to either the same type of
16494 -- Old_C or create a new one depending on whether the parent and
16495 -- the child types are in the same scope.
16497 ------------------------
16498 -- Set_Anonymous_Type --
16499 ------------------------
16501 procedure Set_Anonymous_Type (Id : Entity_Id) is
16502 Old_Typ : constant Entity_Id := Etype (Old_C);
16504 begin
16505 if Scope (Parent_Base) = Scope (Derived_Base) then
16506 Set_Etype (Id, Old_Typ);
16508 -- The parent and the derived type are in two different scopes.
16509 -- Reuse the type of the original discriminant / component by
16510 -- copying it in order to preserve all attributes.
16512 else
16513 declare
16514 Typ : constant Entity_Id := New_Copy (Old_Typ);
16516 begin
16517 Set_Etype (Id, Typ);
16519 -- Since we do not generate component declarations for
16520 -- inherited components, associate the itype with the
16521 -- derived type.
16523 Set_Associated_Node_For_Itype (Typ, Parent (Derived_Base));
16524 Set_Scope (Typ, Derived_Base);
16525 end;
16526 end if;
16527 end Set_Anonymous_Type;
16529 -- Local variables and constants
16531 New_C : constant Entity_Id := New_Copy (Old_C);
16533 Corr_Discrim : Entity_Id;
16534 Discrim : Entity_Id;
16536 -- Start of processing for Inherit_Component
16538 begin
16539 pragma Assert (not Is_Tagged or else not Stored_Discrim);
16541 Set_Parent (New_C, Parent (Old_C));
16543 -- Regular discriminants and components must be inserted in the scope
16544 -- of the Derived_Base. Do it here.
16546 if not Stored_Discrim then
16547 Enter_Name (New_C);
16548 end if;
16550 -- For tagged types the Original_Record_Component must point to
16551 -- whatever this field was pointing to in the parent type. This has
16552 -- already been achieved by the call to New_Copy above.
16554 if not Is_Tagged then
16555 Set_Original_Record_Component (New_C, New_C);
16556 end if;
16558 -- Set the proper type of an access discriminant
16560 if Ekind (New_C) = E_Discriminant
16561 and then Ekind (Etype (New_C)) = E_Anonymous_Access_Type
16562 then
16563 Set_Anonymous_Type (New_C);
16564 end if;
16566 -- If we have inherited a component then see if its Etype contains
16567 -- references to Parent_Base discriminants. In this case, replace
16568 -- these references with the constraints given in Discs. We do not
16569 -- do this for the partial view of private types because this is
16570 -- not needed (only the components of the full view will be used
16571 -- for code generation) and cause problem. We also avoid this
16572 -- transformation in some error situations.
16574 if Ekind (New_C) = E_Component then
16576 -- Set the proper type of an anonymous access component
16578 if Ekind (Etype (New_C)) = E_Anonymous_Access_Type then
16579 Set_Anonymous_Type (New_C);
16581 elsif (Is_Private_Type (Derived_Base)
16582 and then not Is_Generic_Type (Derived_Base))
16583 or else (Is_Empty_Elmt_List (Discs)
16584 and then not Expander_Active)
16585 then
16586 Set_Etype (New_C, Etype (Old_C));
16588 else
16589 -- The current component introduces a circularity of the
16590 -- following kind:
16592 -- limited with Pack_2;
16593 -- package Pack_1 is
16594 -- type T_1 is tagged record
16595 -- Comp : access Pack_2.T_2;
16596 -- ...
16597 -- end record;
16598 -- end Pack_1;
16600 -- with Pack_1;
16601 -- package Pack_2 is
16602 -- type T_2 is new Pack_1.T_1 with ...;
16603 -- end Pack_2;
16605 Set_Etype
16606 (New_C,
16607 Constrain_Component_Type
16608 (Old_C, Derived_Base, N, Parent_Base, Discs));
16609 end if;
16610 end if;
16612 -- In derived tagged types it is illegal to reference a non
16613 -- discriminant component in the parent type. To catch this, mark
16614 -- these components with an Ekind of E_Void. This will be reset in
16615 -- Record_Type_Definition after processing the record extension of
16616 -- the derived type.
16618 -- If the declaration is a private extension, there is no further
16619 -- record extension to process, and the components retain their
16620 -- current kind, because they are visible at this point.
16622 if Is_Tagged and then Ekind (New_C) = E_Component
16623 and then Nkind (N) /= N_Private_Extension_Declaration
16624 then
16625 Set_Ekind (New_C, E_Void);
16626 end if;
16628 if Plain_Discrim then
16629 Set_Corresponding_Discriminant (New_C, Old_C);
16630 Build_Discriminal (New_C);
16632 -- If we are explicitly inheriting a stored discriminant it will be
16633 -- completely hidden.
16635 elsif Stored_Discrim then
16636 Set_Corresponding_Discriminant (New_C, Empty);
16637 Set_Discriminal (New_C, Empty);
16638 Set_Is_Completely_Hidden (New_C);
16640 -- Set the Original_Record_Component of each discriminant in the
16641 -- derived base to point to the corresponding stored that we just
16642 -- created.
16644 Discrim := First_Discriminant (Derived_Base);
16645 while Present (Discrim) loop
16646 Corr_Discrim := Corresponding_Discriminant (Discrim);
16648 -- Corr_Discrim could be missing in an error situation
16650 if Present (Corr_Discrim)
16651 and then Original_Record_Component (Corr_Discrim) = Old_C
16652 then
16653 Set_Original_Record_Component (Discrim, New_C);
16654 end if;
16656 Next_Discriminant (Discrim);
16657 end loop;
16659 Append_Entity (New_C, Derived_Base);
16660 end if;
16662 if not Is_Tagged then
16663 Append_Elmt (Old_C, Assoc_List);
16664 Append_Elmt (New_C, Assoc_List);
16665 end if;
16666 end Inherit_Component;
16668 -- Variables local to Inherit_Component
16670 Loc : constant Source_Ptr := Sloc (N);
16672 Parent_Discrim : Entity_Id;
16673 Stored_Discrim : Entity_Id;
16674 D : Entity_Id;
16675 Component : Entity_Id;
16677 -- Start of processing for Inherit_Components
16679 begin
16680 if not Is_Tagged then
16681 Append_Elmt (Parent_Base, Assoc_List);
16682 Append_Elmt (Derived_Base, Assoc_List);
16683 end if;
16685 -- Inherit parent discriminants if needed
16687 if Inherit_Discr then
16688 Parent_Discrim := First_Discriminant (Parent_Base);
16689 while Present (Parent_Discrim) loop
16690 Inherit_Component (Parent_Discrim, Plain_Discrim => True);
16691 Next_Discriminant (Parent_Discrim);
16692 end loop;
16693 end if;
16695 -- Create explicit stored discrims for untagged types when necessary
16697 if not Has_Unknown_Discriminants (Derived_Base)
16698 and then Has_Discriminants (Parent_Base)
16699 and then not Is_Tagged
16700 and then
16701 (not Inherit_Discr
16702 or else First_Discriminant (Parent_Base) /=
16703 First_Stored_Discriminant (Parent_Base))
16704 then
16705 Stored_Discrim := First_Stored_Discriminant (Parent_Base);
16706 while Present (Stored_Discrim) loop
16707 Inherit_Component (Stored_Discrim, Stored_Discrim => True);
16708 Next_Stored_Discriminant (Stored_Discrim);
16709 end loop;
16710 end if;
16712 -- See if we can apply the second transformation for derived types, as
16713 -- explained in point 6. in the comments above Build_Derived_Record_Type
16714 -- This is achieved by appending Derived_Base discriminants into Discs,
16715 -- which has the side effect of returning a non empty Discs list to the
16716 -- caller of Inherit_Components, which is what we want. This must be
16717 -- done for private derived types if there are explicit stored
16718 -- discriminants, to ensure that we can retrieve the values of the
16719 -- constraints provided in the ancestors.
16721 if Inherit_Discr
16722 and then Is_Empty_Elmt_List (Discs)
16723 and then Present (First_Discriminant (Derived_Base))
16724 and then
16725 (not Is_Private_Type (Derived_Base)
16726 or else Is_Completely_Hidden
16727 (First_Stored_Discriminant (Derived_Base))
16728 or else Is_Generic_Type (Derived_Base))
16729 then
16730 D := First_Discriminant (Derived_Base);
16731 while Present (D) loop
16732 Append_Elmt (New_Occurrence_Of (D, Loc), Discs);
16733 Next_Discriminant (D);
16734 end loop;
16735 end if;
16737 -- Finally, inherit non-discriminant components unless they are not
16738 -- visible because defined or inherited from the full view of the
16739 -- parent. Don't inherit the _parent field of the parent type.
16741 Component := First_Entity (Parent_Base);
16742 while Present (Component) loop
16744 -- Ada 2005 (AI-251): Do not inherit components associated with
16745 -- secondary tags of the parent.
16747 if Ekind (Component) = E_Component
16748 and then Present (Related_Type (Component))
16749 then
16750 null;
16752 elsif Ekind (Component) /= E_Component
16753 or else Chars (Component) = Name_uParent
16754 then
16755 null;
16757 -- If the derived type is within the parent type's declarative
16758 -- region, then the components can still be inherited even though
16759 -- they aren't visible at this point. This can occur for cases
16760 -- such as within public child units where the components must
16761 -- become visible upon entering the child unit's private part.
16763 elsif not Is_Visible_Component (Component)
16764 and then not In_Open_Scopes (Scope (Parent_Base))
16765 then
16766 null;
16768 elsif Ekind_In (Derived_Base, E_Private_Type,
16769 E_Limited_Private_Type)
16770 then
16771 null;
16773 else
16774 Inherit_Component (Component);
16775 end if;
16777 Next_Entity (Component);
16778 end loop;
16780 -- For tagged derived types, inherited discriminants cannot be used in
16781 -- component declarations of the record extension part. To achieve this
16782 -- we mark the inherited discriminants as not visible.
16784 if Is_Tagged and then Inherit_Discr then
16785 D := First_Discriminant (Derived_Base);
16786 while Present (D) loop
16787 Set_Is_Immediately_Visible (D, False);
16788 Next_Discriminant (D);
16789 end loop;
16790 end if;
16792 return Assoc_List;
16793 end Inherit_Components;
16795 -----------------------
16796 -- Is_Null_Extension --
16797 -----------------------
16799 function Is_Null_Extension (T : Entity_Id) return Boolean is
16800 Type_Decl : constant Node_Id := Parent (Base_Type (T));
16801 Comp_List : Node_Id;
16802 Comp : Node_Id;
16804 begin
16805 if Nkind (Type_Decl) /= N_Full_Type_Declaration
16806 or else not Is_Tagged_Type (T)
16807 or else Nkind (Type_Definition (Type_Decl)) /=
16808 N_Derived_Type_Definition
16809 or else No (Record_Extension_Part (Type_Definition (Type_Decl)))
16810 then
16811 return False;
16812 end if;
16814 Comp_List :=
16815 Component_List (Record_Extension_Part (Type_Definition (Type_Decl)));
16817 if Present (Discriminant_Specifications (Type_Decl)) then
16818 return False;
16820 elsif Present (Comp_List)
16821 and then Is_Non_Empty_List (Component_Items (Comp_List))
16822 then
16823 Comp := First (Component_Items (Comp_List));
16825 -- Only user-defined components are relevant. The component list
16826 -- may also contain a parent component and internal components
16827 -- corresponding to secondary tags, but these do not determine
16828 -- whether this is a null extension.
16830 while Present (Comp) loop
16831 if Comes_From_Source (Comp) then
16832 return False;
16833 end if;
16835 Next (Comp);
16836 end loop;
16838 return True;
16839 else
16840 return True;
16841 end if;
16842 end Is_Null_Extension;
16844 ------------------------------
16845 -- Is_Valid_Constraint_Kind --
16846 ------------------------------
16848 function Is_Valid_Constraint_Kind
16849 (T_Kind : Type_Kind;
16850 Constraint_Kind : Node_Kind) return Boolean
16852 begin
16853 case T_Kind is
16854 when Enumeration_Kind |
16855 Integer_Kind =>
16856 return Constraint_Kind = N_Range_Constraint;
16858 when Decimal_Fixed_Point_Kind =>
16859 return Nkind_In (Constraint_Kind, N_Digits_Constraint,
16860 N_Range_Constraint);
16862 when Ordinary_Fixed_Point_Kind =>
16863 return Nkind_In (Constraint_Kind, N_Delta_Constraint,
16864 N_Range_Constraint);
16866 when Float_Kind =>
16867 return Nkind_In (Constraint_Kind, N_Digits_Constraint,
16868 N_Range_Constraint);
16870 when Access_Kind |
16871 Array_Kind |
16872 E_Record_Type |
16873 E_Record_Subtype |
16874 Class_Wide_Kind |
16875 E_Incomplete_Type |
16876 Private_Kind |
16877 Concurrent_Kind =>
16878 return Constraint_Kind = N_Index_Or_Discriminant_Constraint;
16880 when others =>
16881 return True; -- Error will be detected later
16882 end case;
16883 end Is_Valid_Constraint_Kind;
16885 --------------------------
16886 -- Is_Visible_Component --
16887 --------------------------
16889 function Is_Visible_Component
16890 (C : Entity_Id;
16891 N : Node_Id := Empty) return Boolean
16893 Original_Comp : Entity_Id := Empty;
16894 Original_Scope : Entity_Id;
16895 Type_Scope : Entity_Id;
16897 function Is_Local_Type (Typ : Entity_Id) return Boolean;
16898 -- Check whether parent type of inherited component is declared locally,
16899 -- possibly within a nested package or instance. The current scope is
16900 -- the derived record itself.
16902 -------------------
16903 -- Is_Local_Type --
16904 -------------------
16906 function Is_Local_Type (Typ : Entity_Id) return Boolean is
16907 Scop : Entity_Id;
16909 begin
16910 Scop := Scope (Typ);
16911 while Present (Scop)
16912 and then Scop /= Standard_Standard
16913 loop
16914 if Scop = Scope (Current_Scope) then
16915 return True;
16916 end if;
16918 Scop := Scope (Scop);
16919 end loop;
16921 return False;
16922 end Is_Local_Type;
16924 -- Start of processing for Is_Visible_Component
16926 begin
16927 if Ekind_In (C, E_Component, E_Discriminant) then
16928 Original_Comp := Original_Record_Component (C);
16929 end if;
16931 if No (Original_Comp) then
16933 -- Premature usage, or previous error
16935 return False;
16937 else
16938 Original_Scope := Scope (Original_Comp);
16939 Type_Scope := Scope (Base_Type (Scope (C)));
16940 end if;
16942 -- For an untagged type derived from a private type, the only visible
16943 -- components are new discriminants. In an instance all components are
16944 -- visible (see Analyze_Selected_Component).
16946 if not Is_Tagged_Type (Original_Scope) then
16947 return not Has_Private_Ancestor (Original_Scope)
16948 or else In_Open_Scopes (Scope (Original_Scope))
16949 or else In_Instance
16950 or else (Ekind (Original_Comp) = E_Discriminant
16951 and then Original_Scope = Type_Scope);
16953 -- If it is _Parent or _Tag, there is no visibility issue
16955 elsif not Comes_From_Source (Original_Comp) then
16956 return True;
16958 -- Discriminants are visible unless the (private) type has unknown
16959 -- discriminants. If the discriminant reference is inserted for a
16960 -- discriminant check on a full view it is also visible.
16962 elsif Ekind (Original_Comp) = E_Discriminant
16963 and then
16964 (not Has_Unknown_Discriminants (Original_Scope)
16965 or else (Present (N)
16966 and then Nkind (N) = N_Selected_Component
16967 and then Nkind (Prefix (N)) = N_Type_Conversion
16968 and then not Comes_From_Source (Prefix (N))))
16969 then
16970 return True;
16972 -- In the body of an instantiation, no need to check for the visibility
16973 -- of a component.
16975 elsif In_Instance_Body then
16976 return True;
16978 -- If the component has been declared in an ancestor which is currently
16979 -- a private type, then it is not visible. The same applies if the
16980 -- component's containing type is not in an open scope and the original
16981 -- component's enclosing type is a visible full view of a private type
16982 -- (which can occur in cases where an attempt is being made to reference
16983 -- a component in a sibling package that is inherited from a visible
16984 -- component of a type in an ancestor package; the component in the
16985 -- sibling package should not be visible even though the component it
16986 -- inherited from is visible). This does not apply however in the case
16987 -- where the scope of the type is a private child unit, or when the
16988 -- parent comes from a local package in which the ancestor is currently
16989 -- visible. The latter suppression of visibility is needed for cases
16990 -- that are tested in B730006.
16992 elsif Is_Private_Type (Original_Scope)
16993 or else
16994 (not Is_Private_Descendant (Type_Scope)
16995 and then not In_Open_Scopes (Type_Scope)
16996 and then Has_Private_Declaration (Original_Scope))
16997 then
16998 -- If the type derives from an entity in a formal package, there
16999 -- are no additional visible components.
17001 if Nkind (Original_Node (Unit_Declaration_Node (Type_Scope))) =
17002 N_Formal_Package_Declaration
17003 then
17004 return False;
17006 -- if we are not in the private part of the current package, there
17007 -- are no additional visible components.
17009 elsif Ekind (Scope (Current_Scope)) = E_Package
17010 and then not In_Private_Part (Scope (Current_Scope))
17011 then
17012 return False;
17013 else
17014 return
17015 Is_Child_Unit (Cunit_Entity (Current_Sem_Unit))
17016 and then In_Open_Scopes (Scope (Original_Scope))
17017 and then Is_Local_Type (Type_Scope);
17018 end if;
17020 -- There is another weird way in which a component may be invisible when
17021 -- the private and the full view are not derived from the same ancestor.
17022 -- Here is an example :
17024 -- type A1 is tagged record F1 : integer; end record;
17025 -- type A2 is new A1 with record F2 : integer; end record;
17026 -- type T is new A1 with private;
17027 -- private
17028 -- type T is new A2 with null record;
17030 -- In this case, the full view of T inherits F1 and F2 but the private
17031 -- view inherits only F1
17033 else
17034 declare
17035 Ancestor : Entity_Id := Scope (C);
17037 begin
17038 loop
17039 if Ancestor = Original_Scope then
17040 return True;
17041 elsif Ancestor = Etype (Ancestor) then
17042 return False;
17043 end if;
17045 Ancestor := Etype (Ancestor);
17046 end loop;
17047 end;
17048 end if;
17049 end Is_Visible_Component;
17051 --------------------------
17052 -- Make_Class_Wide_Type --
17053 --------------------------
17055 procedure Make_Class_Wide_Type (T : Entity_Id) is
17056 CW_Type : Entity_Id;
17057 CW_Name : Name_Id;
17058 Next_E : Entity_Id;
17060 begin
17061 if Present (Class_Wide_Type (T)) then
17063 -- The class-wide type is a partially decorated entity created for a
17064 -- unanalyzed tagged type referenced through a limited with clause.
17065 -- When the tagged type is analyzed, its class-wide type needs to be
17066 -- redecorated. Note that we reuse the entity created by Decorate_
17067 -- Tagged_Type in order to preserve all links.
17069 if Materialize_Entity (Class_Wide_Type (T)) then
17070 CW_Type := Class_Wide_Type (T);
17071 Set_Materialize_Entity (CW_Type, False);
17073 -- The class wide type can have been defined by the partial view, in
17074 -- which case everything is already done.
17076 else
17077 return;
17078 end if;
17080 -- Default case, we need to create a new class-wide type
17082 else
17083 CW_Type :=
17084 New_External_Entity (E_Void, Scope (T), Sloc (T), T, 'C', 0, 'T');
17085 end if;
17087 -- Inherit root type characteristics
17089 CW_Name := Chars (CW_Type);
17090 Next_E := Next_Entity (CW_Type);
17091 Copy_Node (T, CW_Type);
17092 Set_Comes_From_Source (CW_Type, False);
17093 Set_Chars (CW_Type, CW_Name);
17094 Set_Parent (CW_Type, Parent (T));
17095 Set_Next_Entity (CW_Type, Next_E);
17097 -- Ensure we have a new freeze node for the class-wide type. The partial
17098 -- view may have freeze action of its own, requiring a proper freeze
17099 -- node, and the same freeze node cannot be shared between the two
17100 -- types.
17102 Set_Has_Delayed_Freeze (CW_Type);
17103 Set_Freeze_Node (CW_Type, Empty);
17105 -- Customize the class-wide type: It has no prim. op., it cannot be
17106 -- abstract and its Etype points back to the specific root type.
17108 Set_Ekind (CW_Type, E_Class_Wide_Type);
17109 Set_Is_Tagged_Type (CW_Type, True);
17110 Set_Direct_Primitive_Operations (CW_Type, New_Elmt_List);
17111 Set_Is_Abstract_Type (CW_Type, False);
17112 Set_Is_Constrained (CW_Type, False);
17113 Set_Is_First_Subtype (CW_Type, Is_First_Subtype (T));
17114 Set_Default_SSO (CW_Type);
17116 if Ekind (T) = E_Class_Wide_Subtype then
17117 Set_Etype (CW_Type, Etype (Base_Type (T)));
17118 else
17119 Set_Etype (CW_Type, T);
17120 end if;
17122 -- If this is the class_wide type of a constrained subtype, it does
17123 -- not have discriminants.
17125 Set_Has_Discriminants (CW_Type,
17126 Has_Discriminants (T) and then not Is_Constrained (T));
17128 Set_Has_Unknown_Discriminants (CW_Type, True);
17129 Set_Class_Wide_Type (T, CW_Type);
17130 Set_Equivalent_Type (CW_Type, Empty);
17132 -- The class-wide type of a class-wide type is itself (RM 3.9(14))
17134 Set_Class_Wide_Type (CW_Type, CW_Type);
17135 end Make_Class_Wide_Type;
17137 ----------------
17138 -- Make_Index --
17139 ----------------
17141 procedure Make_Index
17142 (N : Node_Id;
17143 Related_Nod : Node_Id;
17144 Related_Id : Entity_Id := Empty;
17145 Suffix_Index : Nat := 1;
17146 In_Iter_Schm : Boolean := False)
17148 R : Node_Id;
17149 T : Entity_Id;
17150 Def_Id : Entity_Id := Empty;
17151 Found : Boolean := False;
17153 begin
17154 -- For a discrete range used in a constrained array definition and
17155 -- defined by a range, an implicit conversion to the predefined type
17156 -- INTEGER is assumed if each bound is either a numeric literal, a named
17157 -- number, or an attribute, and the type of both bounds (prior to the
17158 -- implicit conversion) is the type universal_integer. Otherwise, both
17159 -- bounds must be of the same discrete type, other than universal
17160 -- integer; this type must be determinable independently of the
17161 -- context, but using the fact that the type must be discrete and that
17162 -- both bounds must have the same type.
17164 -- Character literals also have a universal type in the absence of
17165 -- of additional context, and are resolved to Standard_Character.
17167 if Nkind (N) = N_Range then
17169 -- The index is given by a range constraint. The bounds are known
17170 -- to be of a consistent type.
17172 if not Is_Overloaded (N) then
17173 T := Etype (N);
17175 -- For universal bounds, choose the specific predefined type
17177 if T = Universal_Integer then
17178 T := Standard_Integer;
17180 elsif T = Any_Character then
17181 Ambiguous_Character (Low_Bound (N));
17183 T := Standard_Character;
17184 end if;
17186 -- The node may be overloaded because some user-defined operators
17187 -- are available, but if a universal interpretation exists it is
17188 -- also the selected one.
17190 elsif Universal_Interpretation (N) = Universal_Integer then
17191 T := Standard_Integer;
17193 else
17194 T := Any_Type;
17196 declare
17197 Ind : Interp_Index;
17198 It : Interp;
17200 begin
17201 Get_First_Interp (N, Ind, It);
17202 while Present (It.Typ) loop
17203 if Is_Discrete_Type (It.Typ) then
17205 if Found
17206 and then not Covers (It.Typ, T)
17207 and then not Covers (T, It.Typ)
17208 then
17209 Error_Msg_N ("ambiguous bounds in discrete range", N);
17210 exit;
17211 else
17212 T := It.Typ;
17213 Found := True;
17214 end if;
17215 end if;
17217 Get_Next_Interp (Ind, It);
17218 end loop;
17220 if T = Any_Type then
17221 Error_Msg_N ("discrete type required for range", N);
17222 Set_Etype (N, Any_Type);
17223 return;
17225 elsif T = Universal_Integer then
17226 T := Standard_Integer;
17227 end if;
17228 end;
17229 end if;
17231 if not Is_Discrete_Type (T) then
17232 Error_Msg_N ("discrete type required for range", N);
17233 Set_Etype (N, Any_Type);
17234 return;
17235 end if;
17237 if Nkind (Low_Bound (N)) = N_Attribute_Reference
17238 and then Attribute_Name (Low_Bound (N)) = Name_First
17239 and then Is_Entity_Name (Prefix (Low_Bound (N)))
17240 and then Is_Type (Entity (Prefix (Low_Bound (N))))
17241 and then Is_Discrete_Type (Entity (Prefix (Low_Bound (N))))
17242 then
17243 -- The type of the index will be the type of the prefix, as long
17244 -- as the upper bound is 'Last of the same type.
17246 Def_Id := Entity (Prefix (Low_Bound (N)));
17248 if Nkind (High_Bound (N)) /= N_Attribute_Reference
17249 or else Attribute_Name (High_Bound (N)) /= Name_Last
17250 or else not Is_Entity_Name (Prefix (High_Bound (N)))
17251 or else Entity (Prefix (High_Bound (N))) /= Def_Id
17252 then
17253 Def_Id := Empty;
17254 end if;
17255 end if;
17257 R := N;
17258 Process_Range_Expr_In_Decl (R, T, In_Iter_Schm => In_Iter_Schm);
17260 elsif Nkind (N) = N_Subtype_Indication then
17262 -- The index is given by a subtype with a range constraint
17264 T := Base_Type (Entity (Subtype_Mark (N)));
17266 if not Is_Discrete_Type (T) then
17267 Error_Msg_N ("discrete type required for range", N);
17268 Set_Etype (N, Any_Type);
17269 return;
17270 end if;
17272 R := Range_Expression (Constraint (N));
17274 Resolve (R, T);
17275 Process_Range_Expr_In_Decl
17276 (R, Entity (Subtype_Mark (N)), In_Iter_Schm => In_Iter_Schm);
17278 elsif Nkind (N) = N_Attribute_Reference then
17280 -- The parser guarantees that the attribute is a RANGE attribute
17282 -- If the node denotes the range of a type mark, that is also the
17283 -- resulting type, and we do no need to create an Itype for it.
17285 if Is_Entity_Name (Prefix (N))
17286 and then Comes_From_Source (N)
17287 and then Is_Type (Entity (Prefix (N)))
17288 and then Is_Discrete_Type (Entity (Prefix (N)))
17289 then
17290 Def_Id := Entity (Prefix (N));
17291 end if;
17293 Analyze_And_Resolve (N);
17294 T := Etype (N);
17295 R := N;
17297 -- If none of the above, must be a subtype. We convert this to a
17298 -- range attribute reference because in the case of declared first
17299 -- named subtypes, the types in the range reference can be different
17300 -- from the type of the entity. A range attribute normalizes the
17301 -- reference and obtains the correct types for the bounds.
17303 -- This transformation is in the nature of an expansion, is only
17304 -- done if expansion is active. In particular, it is not done on
17305 -- formal generic types, because we need to retain the name of the
17306 -- original index for instantiation purposes.
17308 else
17309 if not Is_Entity_Name (N) or else not Is_Type (Entity (N)) then
17310 Error_Msg_N ("invalid subtype mark in discrete range ", N);
17311 Set_Etype (N, Any_Integer);
17312 return;
17314 else
17315 -- The type mark may be that of an incomplete type. It is only
17316 -- now that we can get the full view, previous analysis does
17317 -- not look specifically for a type mark.
17319 Set_Entity (N, Get_Full_View (Entity (N)));
17320 Set_Etype (N, Entity (N));
17321 Def_Id := Entity (N);
17323 if not Is_Discrete_Type (Def_Id) then
17324 Error_Msg_N ("discrete type required for index", N);
17325 Set_Etype (N, Any_Type);
17326 return;
17327 end if;
17328 end if;
17330 if Expander_Active then
17331 Rewrite (N,
17332 Make_Attribute_Reference (Sloc (N),
17333 Attribute_Name => Name_Range,
17334 Prefix => Relocate_Node (N)));
17336 -- The original was a subtype mark that does not freeze. This
17337 -- means that the rewritten version must not freeze either.
17339 Set_Must_Not_Freeze (N);
17340 Set_Must_Not_Freeze (Prefix (N));
17341 Analyze_And_Resolve (N);
17342 T := Etype (N);
17343 R := N;
17345 -- If expander is inactive, type is legal, nothing else to construct
17347 else
17348 return;
17349 end if;
17350 end if;
17352 if not Is_Discrete_Type (T) then
17353 Error_Msg_N ("discrete type required for range", N);
17354 Set_Etype (N, Any_Type);
17355 return;
17357 elsif T = Any_Type then
17358 Set_Etype (N, Any_Type);
17359 return;
17360 end if;
17362 -- We will now create the appropriate Itype to describe the range, but
17363 -- first a check. If we originally had a subtype, then we just label
17364 -- the range with this subtype. Not only is there no need to construct
17365 -- a new subtype, but it is wrong to do so for two reasons:
17367 -- 1. A legality concern, if we have a subtype, it must not freeze,
17368 -- and the Itype would cause freezing incorrectly
17370 -- 2. An efficiency concern, if we created an Itype, it would not be
17371 -- recognized as the same type for the purposes of eliminating
17372 -- checks in some circumstances.
17374 -- We signal this case by setting the subtype entity in Def_Id
17376 if No (Def_Id) then
17377 Def_Id :=
17378 Create_Itype (E_Void, Related_Nod, Related_Id, 'D', Suffix_Index);
17379 Set_Etype (Def_Id, Base_Type (T));
17381 if Is_Signed_Integer_Type (T) then
17382 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
17384 elsif Is_Modular_Integer_Type (T) then
17385 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
17387 else
17388 Set_Ekind (Def_Id, E_Enumeration_Subtype);
17389 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
17390 Set_First_Literal (Def_Id, First_Literal (T));
17391 end if;
17393 Set_Size_Info (Def_Id, (T));
17394 Set_RM_Size (Def_Id, RM_Size (T));
17395 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
17397 Set_Scalar_Range (Def_Id, R);
17398 Conditional_Delay (Def_Id, T);
17400 -- In the subtype indication case, if the immediate parent of the
17401 -- new subtype is non-static, then the subtype we create is non-
17402 -- static, even if its bounds are static.
17404 if Nkind (N) = N_Subtype_Indication
17405 and then not Is_OK_Static_Subtype (Entity (Subtype_Mark (N)))
17406 then
17407 Set_Is_Non_Static_Subtype (Def_Id);
17408 end if;
17409 end if;
17411 -- Final step is to label the index with this constructed type
17413 Set_Etype (N, Def_Id);
17414 end Make_Index;
17416 ------------------------------
17417 -- Modular_Type_Declaration --
17418 ------------------------------
17420 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id) is
17421 Mod_Expr : constant Node_Id := Expression (Def);
17422 M_Val : Uint;
17424 procedure Set_Modular_Size (Bits : Int);
17425 -- Sets RM_Size to Bits, and Esize to normal word size above this
17427 ----------------------
17428 -- Set_Modular_Size --
17429 ----------------------
17431 procedure Set_Modular_Size (Bits : Int) is
17432 begin
17433 Set_RM_Size (T, UI_From_Int (Bits));
17435 if Bits <= 8 then
17436 Init_Esize (T, 8);
17438 elsif Bits <= 16 then
17439 Init_Esize (T, 16);
17441 elsif Bits <= 32 then
17442 Init_Esize (T, 32);
17444 else
17445 Init_Esize (T, System_Max_Binary_Modulus_Power);
17446 end if;
17448 if not Non_Binary_Modulus (T)
17449 and then Esize (T) = RM_Size (T)
17450 then
17451 Set_Is_Known_Valid (T);
17452 end if;
17453 end Set_Modular_Size;
17455 -- Start of processing for Modular_Type_Declaration
17457 begin
17458 -- If the mod expression is (exactly) 2 * literal, where literal is
17459 -- 64 or less,then almost certainly the * was meant to be **. Warn.
17461 if Warn_On_Suspicious_Modulus_Value
17462 and then Nkind (Mod_Expr) = N_Op_Multiply
17463 and then Nkind (Left_Opnd (Mod_Expr)) = N_Integer_Literal
17464 and then Intval (Left_Opnd (Mod_Expr)) = Uint_2
17465 and then Nkind (Right_Opnd (Mod_Expr)) = N_Integer_Literal
17466 and then Intval (Right_Opnd (Mod_Expr)) <= Uint_64
17467 then
17468 Error_Msg_N
17469 ("suspicious MOD value, was '*'* intended'??M?", Mod_Expr);
17470 end if;
17472 -- Proceed with analysis of mod expression
17474 Analyze_And_Resolve (Mod_Expr, Any_Integer);
17475 Set_Etype (T, T);
17476 Set_Ekind (T, E_Modular_Integer_Type);
17477 Init_Alignment (T);
17478 Set_Is_Constrained (T);
17480 if not Is_OK_Static_Expression (Mod_Expr) then
17481 Flag_Non_Static_Expr
17482 ("non-static expression used for modular type bound!", Mod_Expr);
17483 M_Val := 2 ** System_Max_Binary_Modulus_Power;
17484 else
17485 M_Val := Expr_Value (Mod_Expr);
17486 end if;
17488 if M_Val < 1 then
17489 Error_Msg_N ("modulus value must be positive", Mod_Expr);
17490 M_Val := 2 ** System_Max_Binary_Modulus_Power;
17491 end if;
17493 if M_Val > 2 ** Standard_Long_Integer_Size then
17494 Check_Restriction (No_Long_Long_Integers, Mod_Expr);
17495 end if;
17497 Set_Modulus (T, M_Val);
17499 -- Create bounds for the modular type based on the modulus given in
17500 -- the type declaration and then analyze and resolve those bounds.
17502 Set_Scalar_Range (T,
17503 Make_Range (Sloc (Mod_Expr),
17504 Low_Bound => Make_Integer_Literal (Sloc (Mod_Expr), 0),
17505 High_Bound => Make_Integer_Literal (Sloc (Mod_Expr), M_Val - 1)));
17507 -- Properly analyze the literals for the range. We do this manually
17508 -- because we can't go calling Resolve, since we are resolving these
17509 -- bounds with the type, and this type is certainly not complete yet.
17511 Set_Etype (Low_Bound (Scalar_Range (T)), T);
17512 Set_Etype (High_Bound (Scalar_Range (T)), T);
17513 Set_Is_Static_Expression (Low_Bound (Scalar_Range (T)));
17514 Set_Is_Static_Expression (High_Bound (Scalar_Range (T)));
17516 -- Loop through powers of two to find number of bits required
17518 for Bits in Int range 0 .. System_Max_Binary_Modulus_Power loop
17520 -- Binary case
17522 if M_Val = 2 ** Bits then
17523 Set_Modular_Size (Bits);
17524 return;
17526 -- Non-binary case
17528 elsif M_Val < 2 ** Bits then
17529 Check_SPARK_Restriction ("modulus should be a power of 2", T);
17530 Set_Non_Binary_Modulus (T);
17532 if Bits > System_Max_Nonbinary_Modulus_Power then
17533 Error_Msg_Uint_1 :=
17534 UI_From_Int (System_Max_Nonbinary_Modulus_Power);
17535 Error_Msg_F
17536 ("nonbinary modulus exceeds limit (2 '*'*^ - 1)", Mod_Expr);
17537 Set_Modular_Size (System_Max_Binary_Modulus_Power);
17538 return;
17540 else
17541 -- In the non-binary case, set size as per RM 13.3(55)
17543 Set_Modular_Size (Bits);
17544 return;
17545 end if;
17546 end if;
17548 end loop;
17550 -- If we fall through, then the size exceed System.Max_Binary_Modulus
17551 -- so we just signal an error and set the maximum size.
17553 Error_Msg_Uint_1 := UI_From_Int (System_Max_Binary_Modulus_Power);
17554 Error_Msg_F ("modulus exceeds limit (2 '*'*^)", Mod_Expr);
17556 Set_Modular_Size (System_Max_Binary_Modulus_Power);
17557 Init_Alignment (T);
17559 end Modular_Type_Declaration;
17561 --------------------------
17562 -- New_Concatenation_Op --
17563 --------------------------
17565 procedure New_Concatenation_Op (Typ : Entity_Id) is
17566 Loc : constant Source_Ptr := Sloc (Typ);
17567 Op : Entity_Id;
17569 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id;
17570 -- Create abbreviated declaration for the formal of a predefined
17571 -- Operator 'Op' of type 'Typ'
17573 --------------------
17574 -- Make_Op_Formal --
17575 --------------------
17577 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id is
17578 Formal : Entity_Id;
17579 begin
17580 Formal := New_Internal_Entity (E_In_Parameter, Op, Loc, 'P');
17581 Set_Etype (Formal, Typ);
17582 Set_Mechanism (Formal, Default_Mechanism);
17583 return Formal;
17584 end Make_Op_Formal;
17586 -- Start of processing for New_Concatenation_Op
17588 begin
17589 Op := Make_Defining_Operator_Symbol (Loc, Name_Op_Concat);
17591 Set_Ekind (Op, E_Operator);
17592 Set_Scope (Op, Current_Scope);
17593 Set_Etype (Op, Typ);
17594 Set_Homonym (Op, Get_Name_Entity_Id (Name_Op_Concat));
17595 Set_Is_Immediately_Visible (Op);
17596 Set_Is_Intrinsic_Subprogram (Op);
17597 Set_Has_Completion (Op);
17598 Append_Entity (Op, Current_Scope);
17600 Set_Name_Entity_Id (Name_Op_Concat, Op);
17602 Append_Entity (Make_Op_Formal (Typ, Op), Op);
17603 Append_Entity (Make_Op_Formal (Typ, Op), Op);
17604 end New_Concatenation_Op;
17606 -------------------------
17607 -- OK_For_Limited_Init --
17608 -------------------------
17610 -- ???Check all calls of this, and compare the conditions under which it's
17611 -- called.
17613 function OK_For_Limited_Init
17614 (Typ : Entity_Id;
17615 Exp : Node_Id) return Boolean
17617 begin
17618 return Is_CPP_Constructor_Call (Exp)
17619 or else (Ada_Version >= Ada_2005
17620 and then not Debug_Flag_Dot_L
17621 and then OK_For_Limited_Init_In_05 (Typ, Exp));
17622 end OK_For_Limited_Init;
17624 -------------------------------
17625 -- OK_For_Limited_Init_In_05 --
17626 -------------------------------
17628 function OK_For_Limited_Init_In_05
17629 (Typ : Entity_Id;
17630 Exp : Node_Id) return Boolean
17632 begin
17633 -- An object of a limited interface type can be initialized with any
17634 -- expression of a nonlimited descendant type.
17636 if Is_Class_Wide_Type (Typ)
17637 and then Is_Limited_Interface (Typ)
17638 and then not Is_Limited_Type (Etype (Exp))
17639 then
17640 return True;
17641 end if;
17643 -- Ada 2005 (AI-287, AI-318): Relax the strictness of the front end in
17644 -- case of limited aggregates (including extension aggregates), and
17645 -- function calls. The function call may have been given in prefixed
17646 -- notation, in which case the original node is an indexed component.
17647 -- If the function is parameterless, the original node was an explicit
17648 -- dereference. The function may also be parameterless, in which case
17649 -- the source node is just an identifier.
17651 case Nkind (Original_Node (Exp)) is
17652 when N_Aggregate | N_Extension_Aggregate | N_Function_Call | N_Op =>
17653 return True;
17655 when N_Identifier =>
17656 return Present (Entity (Original_Node (Exp)))
17657 and then Ekind (Entity (Original_Node (Exp))) = E_Function;
17659 when N_Qualified_Expression =>
17660 return
17661 OK_For_Limited_Init_In_05
17662 (Typ, Expression (Original_Node (Exp)));
17664 -- Ada 2005 (AI-251): If a class-wide interface object is initialized
17665 -- with a function call, the expander has rewritten the call into an
17666 -- N_Type_Conversion node to force displacement of the pointer to
17667 -- reference the component containing the secondary dispatch table.
17668 -- Otherwise a type conversion is not a legal context.
17669 -- A return statement for a build-in-place function returning a
17670 -- synchronized type also introduces an unchecked conversion.
17672 when N_Type_Conversion |
17673 N_Unchecked_Type_Conversion =>
17674 return not Comes_From_Source (Exp)
17675 and then
17676 OK_For_Limited_Init_In_05
17677 (Typ, Expression (Original_Node (Exp)));
17679 when N_Indexed_Component |
17680 N_Selected_Component |
17681 N_Explicit_Dereference =>
17682 return Nkind (Exp) = N_Function_Call;
17684 -- A use of 'Input is a function call, hence allowed. Normally the
17685 -- attribute will be changed to a call, but the attribute by itself
17686 -- can occur with -gnatc.
17688 when N_Attribute_Reference =>
17689 return Attribute_Name (Original_Node (Exp)) = Name_Input;
17691 -- For a case expression, all dependent expressions must be legal
17693 when N_Case_Expression =>
17694 declare
17695 Alt : Node_Id;
17697 begin
17698 Alt := First (Alternatives (Original_Node (Exp)));
17699 while Present (Alt) loop
17700 if not OK_For_Limited_Init_In_05 (Typ, Expression (Alt)) then
17701 return False;
17702 end if;
17704 Next (Alt);
17705 end loop;
17707 return True;
17708 end;
17710 -- For an if expression, all dependent expressions must be legal
17712 when N_If_Expression =>
17713 declare
17714 Then_Expr : constant Node_Id :=
17715 Next (First (Expressions (Original_Node (Exp))));
17716 Else_Expr : constant Node_Id := Next (Then_Expr);
17717 begin
17718 return OK_For_Limited_Init_In_05 (Typ, Then_Expr)
17719 and then
17720 OK_For_Limited_Init_In_05 (Typ, Else_Expr);
17721 end;
17723 when others =>
17724 return False;
17725 end case;
17726 end OK_For_Limited_Init_In_05;
17728 -------------------------------------------
17729 -- Ordinary_Fixed_Point_Type_Declaration --
17730 -------------------------------------------
17732 procedure Ordinary_Fixed_Point_Type_Declaration
17733 (T : Entity_Id;
17734 Def : Node_Id)
17736 Loc : constant Source_Ptr := Sloc (Def);
17737 Delta_Expr : constant Node_Id := Delta_Expression (Def);
17738 RRS : constant Node_Id := Real_Range_Specification (Def);
17739 Implicit_Base : Entity_Id;
17740 Delta_Val : Ureal;
17741 Small_Val : Ureal;
17742 Low_Val : Ureal;
17743 High_Val : Ureal;
17745 begin
17746 Check_Restriction (No_Fixed_Point, Def);
17748 -- Create implicit base type
17750 Implicit_Base :=
17751 Create_Itype (E_Ordinary_Fixed_Point_Type, Parent (Def), T, 'B');
17752 Set_Etype (Implicit_Base, Implicit_Base);
17754 -- Analyze and process delta expression
17756 Analyze_And_Resolve (Delta_Expr, Any_Real);
17758 Check_Delta_Expression (Delta_Expr);
17759 Delta_Val := Expr_Value_R (Delta_Expr);
17761 Set_Delta_Value (Implicit_Base, Delta_Val);
17763 -- Compute default small from given delta, which is the largest power
17764 -- of two that does not exceed the given delta value.
17766 declare
17767 Tmp : Ureal;
17768 Scale : Int;
17770 begin
17771 Tmp := Ureal_1;
17772 Scale := 0;
17774 if Delta_Val < Ureal_1 then
17775 while Delta_Val < Tmp loop
17776 Tmp := Tmp / Ureal_2;
17777 Scale := Scale + 1;
17778 end loop;
17780 else
17781 loop
17782 Tmp := Tmp * Ureal_2;
17783 exit when Tmp > Delta_Val;
17784 Scale := Scale - 1;
17785 end loop;
17786 end if;
17788 Small_Val := UR_From_Components (Uint_1, UI_From_Int (Scale), 2);
17789 end;
17791 Set_Small_Value (Implicit_Base, Small_Val);
17793 -- If no range was given, set a dummy range
17795 if RRS <= Empty_Or_Error then
17796 Low_Val := -Small_Val;
17797 High_Val := Small_Val;
17799 -- Otherwise analyze and process given range
17801 else
17802 declare
17803 Low : constant Node_Id := Low_Bound (RRS);
17804 High : constant Node_Id := High_Bound (RRS);
17806 begin
17807 Analyze_And_Resolve (Low, Any_Real);
17808 Analyze_And_Resolve (High, Any_Real);
17809 Check_Real_Bound (Low);
17810 Check_Real_Bound (High);
17812 -- Obtain and set the range
17814 Low_Val := Expr_Value_R (Low);
17815 High_Val := Expr_Value_R (High);
17817 if Low_Val > High_Val then
17818 Error_Msg_NE ("??fixed point type& has null range", Def, T);
17819 end if;
17820 end;
17821 end if;
17823 -- The range for both the implicit base and the declared first subtype
17824 -- cannot be set yet, so we use the special routine Set_Fixed_Range to
17825 -- set a temporary range in place. Note that the bounds of the base
17826 -- type will be widened to be symmetrical and to fill the available
17827 -- bits when the type is frozen.
17829 -- We could do this with all discrete types, and probably should, but
17830 -- we absolutely have to do it for fixed-point, since the end-points
17831 -- of the range and the size are determined by the small value, which
17832 -- could be reset before the freeze point.
17834 Set_Fixed_Range (Implicit_Base, Loc, Low_Val, High_Val);
17835 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
17837 -- Complete definition of first subtype
17839 Set_Ekind (T, E_Ordinary_Fixed_Point_Subtype);
17840 Set_Etype (T, Implicit_Base);
17841 Init_Size_Align (T);
17842 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
17843 Set_Small_Value (T, Small_Val);
17844 Set_Delta_Value (T, Delta_Val);
17845 Set_Is_Constrained (T);
17847 end Ordinary_Fixed_Point_Type_Declaration;
17849 ----------------------------------------
17850 -- Prepare_Private_Subtype_Completion --
17851 ----------------------------------------
17853 procedure Prepare_Private_Subtype_Completion
17854 (Id : Entity_Id;
17855 Related_Nod : Node_Id)
17857 Id_B : constant Entity_Id := Base_Type (Id);
17858 Full_B : constant Entity_Id := Full_View (Id_B);
17859 Full : Entity_Id;
17861 begin
17862 if Present (Full_B) then
17864 -- The Base_Type is already completed, we can complete the subtype
17865 -- now. We have to create a new entity with the same name, Thus we
17866 -- can't use Create_Itype.
17868 Full := Make_Defining_Identifier (Sloc (Id), Chars (Id));
17869 Set_Is_Itype (Full);
17870 Set_Associated_Node_For_Itype (Full, Related_Nod);
17871 Complete_Private_Subtype (Id, Full, Full_B, Related_Nod);
17872 end if;
17874 -- The parent subtype may be private, but the base might not, in some
17875 -- nested instances. In that case, the subtype does not need to be
17876 -- exchanged. It would still be nice to make private subtypes and their
17877 -- bases consistent at all times ???
17879 if Is_Private_Type (Id_B) then
17880 Append_Elmt (Id, Private_Dependents (Id_B));
17881 end if;
17882 end Prepare_Private_Subtype_Completion;
17884 ---------------------------
17885 -- Process_Discriminants --
17886 ---------------------------
17888 procedure Process_Discriminants
17889 (N : Node_Id;
17890 Prev : Entity_Id := Empty)
17892 Elist : constant Elist_Id := New_Elmt_List;
17893 Id : Node_Id;
17894 Discr : Node_Id;
17895 Discr_Number : Uint;
17896 Discr_Type : Entity_Id;
17897 Default_Present : Boolean := False;
17898 Default_Not_Present : Boolean := False;
17900 begin
17901 -- A composite type other than an array type can have discriminants.
17902 -- On entry, the current scope is the composite type.
17904 -- The discriminants are initially entered into the scope of the type
17905 -- via Enter_Name with the default Ekind of E_Void to prevent premature
17906 -- use, as explained at the end of this procedure.
17908 Discr := First (Discriminant_Specifications (N));
17909 while Present (Discr) loop
17910 Enter_Name (Defining_Identifier (Discr));
17912 -- For navigation purposes we add a reference to the discriminant
17913 -- in the entity for the type. If the current declaration is a
17914 -- completion, place references on the partial view. Otherwise the
17915 -- type is the current scope.
17917 if Present (Prev) then
17919 -- The references go on the partial view, if present. If the
17920 -- partial view has discriminants, the references have been
17921 -- generated already.
17923 if not Has_Discriminants (Prev) then
17924 Generate_Reference (Prev, Defining_Identifier (Discr), 'd');
17925 end if;
17926 else
17927 Generate_Reference
17928 (Current_Scope, Defining_Identifier (Discr), 'd');
17929 end if;
17931 if Nkind (Discriminant_Type (Discr)) = N_Access_Definition then
17932 Discr_Type := Access_Definition (Discr, Discriminant_Type (Discr));
17934 -- Ada 2005 (AI-254)
17936 if Present (Access_To_Subprogram_Definition
17937 (Discriminant_Type (Discr)))
17938 and then Protected_Present (Access_To_Subprogram_Definition
17939 (Discriminant_Type (Discr)))
17940 then
17941 Discr_Type :=
17942 Replace_Anonymous_Access_To_Protected_Subprogram (Discr);
17943 end if;
17945 else
17946 Find_Type (Discriminant_Type (Discr));
17947 Discr_Type := Etype (Discriminant_Type (Discr));
17949 if Error_Posted (Discriminant_Type (Discr)) then
17950 Discr_Type := Any_Type;
17951 end if;
17952 end if;
17954 if Is_Access_Type (Discr_Type) then
17956 -- Ada 2005 (AI-230): Access discriminant allowed in non-limited
17957 -- record types
17959 if Ada_Version < Ada_2005 then
17960 Check_Access_Discriminant_Requires_Limited
17961 (Discr, Discriminant_Type (Discr));
17962 end if;
17964 if Ada_Version = Ada_83 and then Comes_From_Source (Discr) then
17965 Error_Msg_N
17966 ("(Ada 83) access discriminant not allowed", Discr);
17967 end if;
17969 elsif not Is_Discrete_Type (Discr_Type) then
17970 Error_Msg_N ("discriminants must have a discrete or access type",
17971 Discriminant_Type (Discr));
17972 end if;
17974 Set_Etype (Defining_Identifier (Discr), Discr_Type);
17976 -- If a discriminant specification includes the assignment compound
17977 -- delimiter followed by an expression, the expression is the default
17978 -- expression of the discriminant; the default expression must be of
17979 -- the type of the discriminant. (RM 3.7.1) Since this expression is
17980 -- a default expression, we do the special preanalysis, since this
17981 -- expression does not freeze (see "Handling of Default and Per-
17982 -- Object Expressions" in spec of package Sem).
17984 if Present (Expression (Discr)) then
17985 Preanalyze_Spec_Expression (Expression (Discr), Discr_Type);
17987 if Nkind (N) = N_Formal_Type_Declaration then
17988 Error_Msg_N
17989 ("discriminant defaults not allowed for formal type",
17990 Expression (Discr));
17992 -- Flag an error for a tagged type with defaulted discriminants,
17993 -- excluding limited tagged types when compiling for Ada 2012
17994 -- (see AI05-0214).
17996 elsif Is_Tagged_Type (Current_Scope)
17997 and then (not Is_Limited_Type (Current_Scope)
17998 or else Ada_Version < Ada_2012)
17999 and then Comes_From_Source (N)
18000 then
18001 -- Note: see similar test in Check_Or_Process_Discriminants, to
18002 -- handle the (illegal) case of the completion of an untagged
18003 -- view with discriminants with defaults by a tagged full view.
18004 -- We skip the check if Discr does not come from source, to
18005 -- account for the case of an untagged derived type providing
18006 -- defaults for a renamed discriminant from a private untagged
18007 -- ancestor with a tagged full view (ACATS B460006).
18009 if Ada_Version >= Ada_2012 then
18010 Error_Msg_N
18011 ("discriminants of nonlimited tagged type cannot have"
18012 & " defaults",
18013 Expression (Discr));
18014 else
18015 Error_Msg_N
18016 ("discriminants of tagged type cannot have defaults",
18017 Expression (Discr));
18018 end if;
18020 else
18021 Default_Present := True;
18022 Append_Elmt (Expression (Discr), Elist);
18024 -- Tag the defining identifiers for the discriminants with
18025 -- their corresponding default expressions from the tree.
18027 Set_Discriminant_Default_Value
18028 (Defining_Identifier (Discr), Expression (Discr));
18029 end if;
18031 else
18032 Default_Not_Present := True;
18033 end if;
18035 -- Ada 2005 (AI-231): Create an Itype that is a duplicate of
18036 -- Discr_Type but with the null-exclusion attribute
18038 if Ada_Version >= Ada_2005 then
18040 -- Ada 2005 (AI-231): Static checks
18042 if Can_Never_Be_Null (Discr_Type) then
18043 Null_Exclusion_Static_Checks (Discr);
18045 elsif Is_Access_Type (Discr_Type)
18046 and then Null_Exclusion_Present (Discr)
18048 -- No need to check itypes because in their case this check
18049 -- was done at their point of creation
18051 and then not Is_Itype (Discr_Type)
18052 then
18053 if Can_Never_Be_Null (Discr_Type) then
18054 Error_Msg_NE
18055 ("`NOT NULL` not allowed (& already excludes null)",
18056 Discr,
18057 Discr_Type);
18058 end if;
18060 Set_Etype (Defining_Identifier (Discr),
18061 Create_Null_Excluding_Itype
18062 (T => Discr_Type,
18063 Related_Nod => Discr));
18065 -- Check for improper null exclusion if the type is otherwise
18066 -- legal for a discriminant.
18068 elsif Null_Exclusion_Present (Discr)
18069 and then Is_Discrete_Type (Discr_Type)
18070 then
18071 Error_Msg_N
18072 ("null exclusion can only apply to an access type", Discr);
18073 end if;
18075 -- Ada 2005 (AI-402): access discriminants of nonlimited types
18076 -- can't have defaults. Synchronized types, or types that are
18077 -- explicitly limited are fine, but special tests apply to derived
18078 -- types in generics: in a generic body we have to assume the
18079 -- worst, and therefore defaults are not allowed if the parent is
18080 -- a generic formal private type (see ACATS B370001).
18082 if Is_Access_Type (Discr_Type) and then Default_Present then
18083 if Ekind (Discr_Type) /= E_Anonymous_Access_Type
18084 or else Is_Limited_Record (Current_Scope)
18085 or else Is_Concurrent_Type (Current_Scope)
18086 or else Is_Concurrent_Record_Type (Current_Scope)
18087 or else Ekind (Current_Scope) = E_Limited_Private_Type
18088 then
18089 if not Is_Derived_Type (Current_Scope)
18090 or else not Is_Generic_Type (Etype (Current_Scope))
18091 or else not In_Package_Body (Scope (Etype (Current_Scope)))
18092 or else Limited_Present
18093 (Type_Definition (Parent (Current_Scope)))
18094 then
18095 null;
18097 else
18098 Error_Msg_N ("access discriminants of nonlimited types",
18099 Expression (Discr));
18100 Error_Msg_N ("\cannot have defaults", Expression (Discr));
18101 end if;
18103 elsif Present (Expression (Discr)) then
18104 Error_Msg_N
18105 ("(Ada 2005) access discriminants of nonlimited types",
18106 Expression (Discr));
18107 Error_Msg_N ("\cannot have defaults", Expression (Discr));
18108 end if;
18109 end if;
18110 end if;
18112 -- A discriminant cannot be volatile. This check is only relevant
18113 -- when SPARK_Mode is on as it is not standard Ada legality rule
18114 -- (SPARK RM 7.1.3(6)).
18116 if SPARK_Mode = On
18117 and then Is_SPARK_Volatile (Defining_Identifier (Discr))
18118 then
18119 Error_Msg_N ("discriminant cannot be volatile", Discr);
18120 end if;
18122 Next (Discr);
18123 end loop;
18125 -- An element list consisting of the default expressions of the
18126 -- discriminants is constructed in the above loop and used to set
18127 -- the Discriminant_Constraint attribute for the type. If an object
18128 -- is declared of this (record or task) type without any explicit
18129 -- discriminant constraint given, this element list will form the
18130 -- actual parameters for the corresponding initialization procedure
18131 -- for the type.
18133 Set_Discriminant_Constraint (Current_Scope, Elist);
18134 Set_Stored_Constraint (Current_Scope, No_Elist);
18136 -- Default expressions must be provided either for all or for none
18137 -- of the discriminants of a discriminant part. (RM 3.7.1)
18139 if Default_Present and then Default_Not_Present then
18140 Error_Msg_N
18141 ("incomplete specification of defaults for discriminants", N);
18142 end if;
18144 -- The use of the name of a discriminant is not allowed in default
18145 -- expressions of a discriminant part if the specification of the
18146 -- discriminant is itself given in the discriminant part. (RM 3.7.1)
18148 -- To detect this, the discriminant names are entered initially with an
18149 -- Ekind of E_Void (which is the default Ekind given by Enter_Name). Any
18150 -- attempt to use a void entity (for example in an expression that is
18151 -- type-checked) produces the error message: premature usage. Now after
18152 -- completing the semantic analysis of the discriminant part, we can set
18153 -- the Ekind of all the discriminants appropriately.
18155 Discr := First (Discriminant_Specifications (N));
18156 Discr_Number := Uint_1;
18157 while Present (Discr) loop
18158 Id := Defining_Identifier (Discr);
18159 Set_Ekind (Id, E_Discriminant);
18160 Init_Component_Location (Id);
18161 Init_Esize (Id);
18162 Set_Discriminant_Number (Id, Discr_Number);
18164 -- Make sure this is always set, even in illegal programs
18166 Set_Corresponding_Discriminant (Id, Empty);
18168 -- Initialize the Original_Record_Component to the entity itself.
18169 -- Inherit_Components will propagate the right value to
18170 -- discriminants in derived record types.
18172 Set_Original_Record_Component (Id, Id);
18174 -- Create the discriminal for the discriminant
18176 Build_Discriminal (Id);
18178 Next (Discr);
18179 Discr_Number := Discr_Number + 1;
18180 end loop;
18182 Set_Has_Discriminants (Current_Scope);
18183 end Process_Discriminants;
18185 -----------------------
18186 -- Process_Full_View --
18187 -----------------------
18189 procedure Process_Full_View (N : Node_Id; Full_T, Priv_T : Entity_Id) is
18190 Priv_Parent : Entity_Id;
18191 Full_Parent : Entity_Id;
18192 Full_Indic : Node_Id;
18194 procedure Collect_Implemented_Interfaces
18195 (Typ : Entity_Id;
18196 Ifaces : Elist_Id);
18197 -- Ada 2005: Gather all the interfaces that Typ directly or
18198 -- inherently implements. Duplicate entries are not added to
18199 -- the list Ifaces.
18201 ------------------------------------
18202 -- Collect_Implemented_Interfaces --
18203 ------------------------------------
18205 procedure Collect_Implemented_Interfaces
18206 (Typ : Entity_Id;
18207 Ifaces : Elist_Id)
18209 Iface : Entity_Id;
18210 Iface_Elmt : Elmt_Id;
18212 begin
18213 -- Abstract interfaces are only associated with tagged record types
18215 if not Is_Tagged_Type (Typ)
18216 or else not Is_Record_Type (Typ)
18217 then
18218 return;
18219 end if;
18221 -- Recursively climb to the ancestors
18223 if Etype (Typ) /= Typ
18225 -- Protect the frontend against wrong cyclic declarations like:
18227 -- type B is new A with private;
18228 -- type C is new A with private;
18229 -- private
18230 -- type B is new C with null record;
18231 -- type C is new B with null record;
18233 and then Etype (Typ) /= Priv_T
18234 and then Etype (Typ) /= Full_T
18235 then
18236 -- Keep separate the management of private type declarations
18238 if Ekind (Typ) = E_Record_Type_With_Private then
18240 -- Handle the following illegal usage:
18241 -- type Private_Type is tagged private;
18242 -- private
18243 -- type Private_Type is new Type_Implementing_Iface;
18245 if Present (Full_View (Typ))
18246 and then Etype (Typ) /= Full_View (Typ)
18247 then
18248 if Is_Interface (Etype (Typ)) then
18249 Append_Unique_Elmt (Etype (Typ), Ifaces);
18250 end if;
18252 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
18253 end if;
18255 -- Non-private types
18257 else
18258 if Is_Interface (Etype (Typ)) then
18259 Append_Unique_Elmt (Etype (Typ), Ifaces);
18260 end if;
18262 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
18263 end if;
18264 end if;
18266 -- Handle entities in the list of abstract interfaces
18268 if Present (Interfaces (Typ)) then
18269 Iface_Elmt := First_Elmt (Interfaces (Typ));
18270 while Present (Iface_Elmt) loop
18271 Iface := Node (Iface_Elmt);
18273 pragma Assert (Is_Interface (Iface));
18275 if not Contain_Interface (Iface, Ifaces) then
18276 Append_Elmt (Iface, Ifaces);
18277 Collect_Implemented_Interfaces (Iface, Ifaces);
18278 end if;
18280 Next_Elmt (Iface_Elmt);
18281 end loop;
18282 end if;
18283 end Collect_Implemented_Interfaces;
18285 -- Start of processing for Process_Full_View
18287 begin
18288 -- First some sanity checks that must be done after semantic
18289 -- decoration of the full view and thus cannot be placed with other
18290 -- similar checks in Find_Type_Name
18292 if not Is_Limited_Type (Priv_T)
18293 and then (Is_Limited_Type (Full_T)
18294 or else Is_Limited_Composite (Full_T))
18295 then
18296 if In_Instance then
18297 null;
18298 else
18299 Error_Msg_N
18300 ("completion of nonlimited type cannot be limited", Full_T);
18301 Explain_Limited_Type (Full_T, Full_T);
18302 end if;
18304 elsif Is_Abstract_Type (Full_T)
18305 and then not Is_Abstract_Type (Priv_T)
18306 then
18307 Error_Msg_N
18308 ("completion of nonabstract type cannot be abstract", Full_T);
18310 elsif Is_Tagged_Type (Priv_T)
18311 and then Is_Limited_Type (Priv_T)
18312 and then not Is_Limited_Type (Full_T)
18313 then
18314 -- If pragma CPP_Class was applied to the private declaration
18315 -- propagate the limitedness to the full-view
18317 if Is_CPP_Class (Priv_T) then
18318 Set_Is_Limited_Record (Full_T);
18320 -- GNAT allow its own definition of Limited_Controlled to disobey
18321 -- this rule in order in ease the implementation. This test is safe
18322 -- because Root_Controlled is defined in a child of System that
18323 -- normal programs are not supposed to use.
18325 elsif Is_RTE (Etype (Full_T), RE_Root_Controlled) then
18326 Set_Is_Limited_Composite (Full_T);
18327 else
18328 Error_Msg_N
18329 ("completion of limited tagged type must be limited", Full_T);
18330 end if;
18332 elsif Is_Generic_Type (Priv_T) then
18333 Error_Msg_N ("generic type cannot have a completion", Full_T);
18334 end if;
18336 -- Check that ancestor interfaces of private and full views are
18337 -- consistent. We omit this check for synchronized types because
18338 -- they are performed on the corresponding record type when frozen.
18340 if Ada_Version >= Ada_2005
18341 and then Is_Tagged_Type (Priv_T)
18342 and then Is_Tagged_Type (Full_T)
18343 and then not Is_Concurrent_Type (Full_T)
18344 then
18345 declare
18346 Iface : Entity_Id;
18347 Priv_T_Ifaces : constant Elist_Id := New_Elmt_List;
18348 Full_T_Ifaces : constant Elist_Id := New_Elmt_List;
18350 begin
18351 Collect_Implemented_Interfaces (Priv_T, Priv_T_Ifaces);
18352 Collect_Implemented_Interfaces (Full_T, Full_T_Ifaces);
18354 -- Ada 2005 (AI-251): The partial view shall be a descendant of
18355 -- an interface type if and only if the full type is descendant
18356 -- of the interface type (AARM 7.3 (7.3/2)).
18358 Iface := Find_Hidden_Interface (Priv_T_Ifaces, Full_T_Ifaces);
18360 if Present (Iface) then
18361 Error_Msg_NE
18362 ("interface in partial view& not implemented by full type "
18363 & "(RM-2005 7.3 (7.3/2))", Full_T, Iface);
18364 end if;
18366 Iface := Find_Hidden_Interface (Full_T_Ifaces, Priv_T_Ifaces);
18368 if Present (Iface) then
18369 Error_Msg_NE
18370 ("interface & not implemented by partial view "
18371 & "(RM-2005 7.3 (7.3/2))", Full_T, Iface);
18372 end if;
18373 end;
18374 end if;
18376 if Is_Tagged_Type (Priv_T)
18377 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
18378 and then Is_Derived_Type (Full_T)
18379 then
18380 Priv_Parent := Etype (Priv_T);
18382 -- The full view of a private extension may have been transformed
18383 -- into an unconstrained derived type declaration and a subtype
18384 -- declaration (see build_derived_record_type for details).
18386 if Nkind (N) = N_Subtype_Declaration then
18387 Full_Indic := Subtype_Indication (N);
18388 Full_Parent := Etype (Base_Type (Full_T));
18389 else
18390 Full_Indic := Subtype_Indication (Type_Definition (N));
18391 Full_Parent := Etype (Full_T);
18392 end if;
18394 -- Check that the parent type of the full type is a descendant of
18395 -- the ancestor subtype given in the private extension. If either
18396 -- entity has an Etype equal to Any_Type then we had some previous
18397 -- error situation [7.3(8)].
18399 if Priv_Parent = Any_Type or else Full_Parent = Any_Type then
18400 return;
18402 -- Ada 2005 (AI-251): Interfaces in the full type can be given in
18403 -- any order. Therefore we don't have to check that its parent must
18404 -- be a descendant of the parent of the private type declaration.
18406 elsif Is_Interface (Priv_Parent)
18407 and then Is_Interface (Full_Parent)
18408 then
18409 null;
18411 -- Ada 2005 (AI-251): If the parent of the private type declaration
18412 -- is an interface there is no need to check that it is an ancestor
18413 -- of the associated full type declaration. The required tests for
18414 -- this case are performed by Build_Derived_Record_Type.
18416 elsif not Is_Interface (Base_Type (Priv_Parent))
18417 and then not Is_Ancestor (Base_Type (Priv_Parent), Full_Parent)
18418 then
18419 Error_Msg_N
18420 ("parent of full type must descend from parent"
18421 & " of private extension", Full_Indic);
18423 -- First check a formal restriction, and then proceed with checking
18424 -- Ada rules. Since the formal restriction is not a serious error, we
18425 -- don't prevent further error detection for this check, hence the
18426 -- ELSE.
18428 else
18430 -- In formal mode, when completing a private extension the type
18431 -- named in the private part must be exactly the same as that
18432 -- named in the visible part.
18434 if Priv_Parent /= Full_Parent then
18435 Error_Msg_Name_1 := Chars (Priv_Parent);
18436 Check_SPARK_Restriction ("% expected", Full_Indic);
18437 end if;
18439 -- Check the rules of 7.3(10): if the private extension inherits
18440 -- known discriminants, then the full type must also inherit those
18441 -- discriminants from the same (ancestor) type, and the parent
18442 -- subtype of the full type must be constrained if and only if
18443 -- the ancestor subtype of the private extension is constrained.
18445 if No (Discriminant_Specifications (Parent (Priv_T)))
18446 and then not Has_Unknown_Discriminants (Priv_T)
18447 and then Has_Discriminants (Base_Type (Priv_Parent))
18448 then
18449 declare
18450 Priv_Indic : constant Node_Id :=
18451 Subtype_Indication (Parent (Priv_T));
18453 Priv_Constr : constant Boolean :=
18454 Is_Constrained (Priv_Parent)
18455 or else
18456 Nkind (Priv_Indic) = N_Subtype_Indication
18457 or else
18458 Is_Constrained (Entity (Priv_Indic));
18460 Full_Constr : constant Boolean :=
18461 Is_Constrained (Full_Parent)
18462 or else
18463 Nkind (Full_Indic) = N_Subtype_Indication
18464 or else
18465 Is_Constrained (Entity (Full_Indic));
18467 Priv_Discr : Entity_Id;
18468 Full_Discr : Entity_Id;
18470 begin
18471 Priv_Discr := First_Discriminant (Priv_Parent);
18472 Full_Discr := First_Discriminant (Full_Parent);
18473 while Present (Priv_Discr) and then Present (Full_Discr) loop
18474 if Original_Record_Component (Priv_Discr) =
18475 Original_Record_Component (Full_Discr)
18476 or else
18477 Corresponding_Discriminant (Priv_Discr) =
18478 Corresponding_Discriminant (Full_Discr)
18479 then
18480 null;
18481 else
18482 exit;
18483 end if;
18485 Next_Discriminant (Priv_Discr);
18486 Next_Discriminant (Full_Discr);
18487 end loop;
18489 if Present (Priv_Discr) or else Present (Full_Discr) then
18490 Error_Msg_N
18491 ("full view must inherit discriminants of the parent"
18492 & " type used in the private extension", Full_Indic);
18494 elsif Priv_Constr and then not Full_Constr then
18495 Error_Msg_N
18496 ("parent subtype of full type must be constrained",
18497 Full_Indic);
18499 elsif Full_Constr and then not Priv_Constr then
18500 Error_Msg_N
18501 ("parent subtype of full type must be unconstrained",
18502 Full_Indic);
18503 end if;
18504 end;
18506 -- Check the rules of 7.3(12): if a partial view has neither
18507 -- known or unknown discriminants, then the full type
18508 -- declaration shall define a definite subtype.
18510 elsif not Has_Unknown_Discriminants (Priv_T)
18511 and then not Has_Discriminants (Priv_T)
18512 and then not Is_Constrained (Full_T)
18513 then
18514 Error_Msg_N
18515 ("full view must define a constrained type if partial view"
18516 & " has no discriminants", Full_T);
18517 end if;
18519 -- ??????? Do we implement the following properly ?????
18520 -- If the ancestor subtype of a private extension has constrained
18521 -- discriminants, then the parent subtype of the full view shall
18522 -- impose a statically matching constraint on those discriminants
18523 -- [7.3(13)].
18524 end if;
18526 else
18527 -- For untagged types, verify that a type without discriminants is
18528 -- not completed with an unconstrained type. A separate error message
18529 -- is produced if the full type has defaulted discriminants.
18531 if not Is_Indefinite_Subtype (Priv_T)
18532 and then Is_Indefinite_Subtype (Full_T)
18533 then
18534 Error_Msg_Sloc := Sloc (Parent (Priv_T));
18535 Error_Msg_NE
18536 ("full view of& not compatible with declaration#",
18537 Full_T, Priv_T);
18539 if not Is_Tagged_Type (Full_T) then
18540 Error_Msg_N
18541 ("\one is constrained, the other unconstrained", Full_T);
18542 end if;
18543 end if;
18544 end if;
18546 -- AI-419: verify that the use of "limited" is consistent
18548 declare
18549 Orig_Decl : constant Node_Id := Original_Node (N);
18551 begin
18552 if Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
18553 and then not Limited_Present (Parent (Priv_T))
18554 and then not Synchronized_Present (Parent (Priv_T))
18555 and then Nkind (Orig_Decl) = N_Full_Type_Declaration
18556 and then Nkind
18557 (Type_Definition (Orig_Decl)) = N_Derived_Type_Definition
18558 and then Limited_Present (Type_Definition (Orig_Decl))
18559 then
18560 Error_Msg_N
18561 ("full view of non-limited extension cannot be limited", N);
18562 end if;
18563 end;
18565 -- Ada 2005 (AI-443): A synchronized private extension must be
18566 -- completed by a task or protected type.
18568 if Ada_Version >= Ada_2005
18569 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
18570 and then Synchronized_Present (Parent (Priv_T))
18571 and then not Is_Concurrent_Type (Full_T)
18572 then
18573 Error_Msg_N ("full view of synchronized extension must " &
18574 "be synchronized type", N);
18575 end if;
18577 -- Ada 2005 AI-363: if the full view has discriminants with
18578 -- defaults, it is illegal to declare constrained access subtypes
18579 -- whose designated type is the current type. This allows objects
18580 -- of the type that are declared in the heap to be unconstrained.
18582 if not Has_Unknown_Discriminants (Priv_T)
18583 and then not Has_Discriminants (Priv_T)
18584 and then Has_Discriminants (Full_T)
18585 and then
18586 Present (Discriminant_Default_Value (First_Discriminant (Full_T)))
18587 then
18588 Set_Has_Constrained_Partial_View (Full_T);
18589 Set_Has_Constrained_Partial_View (Priv_T);
18590 end if;
18592 -- Create a full declaration for all its subtypes recorded in
18593 -- Private_Dependents and swap them similarly to the base type. These
18594 -- are subtypes that have been define before the full declaration of
18595 -- the private type. We also swap the entry in Private_Dependents list
18596 -- so we can properly restore the private view on exit from the scope.
18598 declare
18599 Priv_Elmt : Elmt_Id;
18600 Priv_Scop : Entity_Id;
18601 Priv : Entity_Id;
18602 Full : Entity_Id;
18604 begin
18605 Priv_Elmt := First_Elmt (Private_Dependents (Priv_T));
18606 while Present (Priv_Elmt) loop
18607 Priv := Node (Priv_Elmt);
18608 Priv_Scop := Scope (Priv);
18610 if Ekind_In (Priv, E_Private_Subtype,
18611 E_Limited_Private_Subtype,
18612 E_Record_Subtype_With_Private)
18613 then
18614 Full := Make_Defining_Identifier (Sloc (Priv), Chars (Priv));
18615 Set_Is_Itype (Full);
18616 Set_Parent (Full, Parent (Priv));
18617 Set_Associated_Node_For_Itype (Full, N);
18619 -- Now we need to complete the private subtype, but since the
18620 -- base type has already been swapped, we must also swap the
18621 -- subtypes (and thus, reverse the arguments in the call to
18622 -- Complete_Private_Subtype). Also note that we may need to
18623 -- re-establish the scope of the private subtype.
18625 Copy_And_Swap (Priv, Full);
18627 if not In_Open_Scopes (Priv_Scop) then
18628 Push_Scope (Priv_Scop);
18630 else
18631 -- Reset Priv_Scop to Empty to indicate no scope was pushed
18633 Priv_Scop := Empty;
18634 end if;
18636 Complete_Private_Subtype (Full, Priv, Full_T, N);
18638 if Present (Priv_Scop) then
18639 Pop_Scope;
18640 end if;
18642 Replace_Elmt (Priv_Elmt, Full);
18643 end if;
18645 Next_Elmt (Priv_Elmt);
18646 end loop;
18647 end;
18649 -- If the private view was tagged, copy the new primitive operations
18650 -- from the private view to the full view.
18652 if Is_Tagged_Type (Full_T) then
18653 declare
18654 Disp_Typ : Entity_Id;
18655 Full_List : Elist_Id;
18656 Prim : Entity_Id;
18657 Prim_Elmt : Elmt_Id;
18658 Priv_List : Elist_Id;
18660 function Contains
18661 (E : Entity_Id;
18662 L : Elist_Id) return Boolean;
18663 -- Determine whether list L contains element E
18665 --------------
18666 -- Contains --
18667 --------------
18669 function Contains
18670 (E : Entity_Id;
18671 L : Elist_Id) return Boolean
18673 List_Elmt : Elmt_Id;
18675 begin
18676 List_Elmt := First_Elmt (L);
18677 while Present (List_Elmt) loop
18678 if Node (List_Elmt) = E then
18679 return True;
18680 end if;
18682 Next_Elmt (List_Elmt);
18683 end loop;
18685 return False;
18686 end Contains;
18688 -- Start of processing
18690 begin
18691 if Is_Tagged_Type (Priv_T) then
18692 Priv_List := Primitive_Operations (Priv_T);
18693 Prim_Elmt := First_Elmt (Priv_List);
18695 -- In the case of a concurrent type completing a private tagged
18696 -- type, primitives may have been declared in between the two
18697 -- views. These subprograms need to be wrapped the same way
18698 -- entries and protected procedures are handled because they
18699 -- cannot be directly shared by the two views.
18701 if Is_Concurrent_Type (Full_T) then
18702 declare
18703 Conc_Typ : constant Entity_Id :=
18704 Corresponding_Record_Type (Full_T);
18705 Curr_Nod : Node_Id := Parent (Conc_Typ);
18706 Wrap_Spec : Node_Id;
18708 begin
18709 while Present (Prim_Elmt) loop
18710 Prim := Node (Prim_Elmt);
18712 if Comes_From_Source (Prim)
18713 and then not Is_Abstract_Subprogram (Prim)
18714 then
18715 Wrap_Spec :=
18716 Make_Subprogram_Declaration (Sloc (Prim),
18717 Specification =>
18718 Build_Wrapper_Spec
18719 (Subp_Id => Prim,
18720 Obj_Typ => Conc_Typ,
18721 Formals =>
18722 Parameter_Specifications (
18723 Parent (Prim))));
18725 Insert_After (Curr_Nod, Wrap_Spec);
18726 Curr_Nod := Wrap_Spec;
18728 Analyze (Wrap_Spec);
18729 end if;
18731 Next_Elmt (Prim_Elmt);
18732 end loop;
18734 return;
18735 end;
18737 -- For non-concurrent types, transfer explicit primitives, but
18738 -- omit those inherited from the parent of the private view
18739 -- since they will be re-inherited later on.
18741 else
18742 Full_List := Primitive_Operations (Full_T);
18744 while Present (Prim_Elmt) loop
18745 Prim := Node (Prim_Elmt);
18747 if Comes_From_Source (Prim)
18748 and then not Contains (Prim, Full_List)
18749 then
18750 Append_Elmt (Prim, Full_List);
18751 end if;
18753 Next_Elmt (Prim_Elmt);
18754 end loop;
18755 end if;
18757 -- Untagged private view
18759 else
18760 Full_List := Primitive_Operations (Full_T);
18762 -- In this case the partial view is untagged, so here we locate
18763 -- all of the earlier primitives that need to be treated as
18764 -- dispatching (those that appear between the two views). Note
18765 -- that these additional operations must all be new operations
18766 -- (any earlier operations that override inherited operations
18767 -- of the full view will already have been inserted in the
18768 -- primitives list, marked by Check_Operation_From_Private_View
18769 -- as dispatching. Note that implicit "/=" operators are
18770 -- excluded from being added to the primitives list since they
18771 -- shouldn't be treated as dispatching (tagged "/=" is handled
18772 -- specially).
18774 Prim := Next_Entity (Full_T);
18775 while Present (Prim) and then Prim /= Priv_T loop
18776 if Ekind_In (Prim, E_Procedure, E_Function) then
18777 Disp_Typ := Find_Dispatching_Type (Prim);
18779 if Disp_Typ = Full_T
18780 and then (Chars (Prim) /= Name_Op_Ne
18781 or else Comes_From_Source (Prim))
18782 then
18783 Check_Controlling_Formals (Full_T, Prim);
18785 if not Is_Dispatching_Operation (Prim) then
18786 Append_Elmt (Prim, Full_List);
18787 Set_Is_Dispatching_Operation (Prim, True);
18788 Set_DT_Position (Prim, No_Uint);
18789 end if;
18791 elsif Is_Dispatching_Operation (Prim)
18792 and then Disp_Typ /= Full_T
18793 then
18795 -- Verify that it is not otherwise controlled by a
18796 -- formal or a return value of type T.
18798 Check_Controlling_Formals (Disp_Typ, Prim);
18799 end if;
18800 end if;
18802 Next_Entity (Prim);
18803 end loop;
18804 end if;
18806 -- For the tagged case, the two views can share the same primitive
18807 -- operations list and the same class-wide type. Update attributes
18808 -- of the class-wide type which depend on the full declaration.
18810 if Is_Tagged_Type (Priv_T) then
18811 Set_Direct_Primitive_Operations (Priv_T, Full_List);
18812 Set_Class_Wide_Type
18813 (Base_Type (Full_T), Class_Wide_Type (Priv_T));
18815 Set_Has_Task (Class_Wide_Type (Priv_T), Has_Task (Full_T));
18816 Set_Has_Protected
18817 (Class_Wide_Type (Priv_T), Has_Protected (Full_T));
18818 end if;
18819 end;
18820 end if;
18822 -- Ada 2005 AI 161: Check preelaborable initialization consistency
18824 if Known_To_Have_Preelab_Init (Priv_T) then
18826 -- Case where there is a pragma Preelaborable_Initialization. We
18827 -- always allow this in predefined units, which is cheating a bit,
18828 -- but it means we don't have to struggle to meet the requirements in
18829 -- the RM for having Preelaborable Initialization. Otherwise we
18830 -- require that the type meets the RM rules. But we can't check that
18831 -- yet, because of the rule about overriding Initialize, so we simply
18832 -- set a flag that will be checked at freeze time.
18834 if not In_Predefined_Unit (Full_T) then
18835 Set_Must_Have_Preelab_Init (Full_T);
18836 end if;
18837 end if;
18839 -- If pragma CPP_Class was applied to the private type declaration,
18840 -- propagate it now to the full type declaration.
18842 if Is_CPP_Class (Priv_T) then
18843 Set_Is_CPP_Class (Full_T);
18844 Set_Convention (Full_T, Convention_CPP);
18846 -- Check that components of imported CPP types do not have default
18847 -- expressions.
18849 Check_CPP_Type_Has_No_Defaults (Full_T);
18850 end if;
18852 -- If the private view has user specified stream attributes, then so has
18853 -- the full view.
18855 -- Why the test, how could these flags be already set in Full_T ???
18857 if Has_Specified_Stream_Read (Priv_T) then
18858 Set_Has_Specified_Stream_Read (Full_T);
18859 end if;
18861 if Has_Specified_Stream_Write (Priv_T) then
18862 Set_Has_Specified_Stream_Write (Full_T);
18863 end if;
18865 if Has_Specified_Stream_Input (Priv_T) then
18866 Set_Has_Specified_Stream_Input (Full_T);
18867 end if;
18869 if Has_Specified_Stream_Output (Priv_T) then
18870 Set_Has_Specified_Stream_Output (Full_T);
18871 end if;
18873 -- Propagate invariants to full type
18875 if Has_Invariants (Priv_T) then
18876 Set_Has_Invariants (Full_T);
18877 Set_Invariant_Procedure (Full_T, Invariant_Procedure (Priv_T));
18878 end if;
18880 if Has_Inheritable_Invariants (Priv_T) then
18881 Set_Has_Inheritable_Invariants (Full_T);
18882 end if;
18884 -- Propagate predicates to full type, and predicate function if already
18885 -- defined. It is not clear that this can actually happen? the partial
18886 -- view cannot be frozen yet, and the predicate function has not been
18887 -- built. Still it is a cheap check and seems safer to make it.
18889 if Has_Predicates (Priv_T) then
18890 if Present (Predicate_Function (Priv_T)) then
18891 Set_Predicate_Function (Full_T, Predicate_Function (Priv_T));
18892 end if;
18894 Set_Has_Predicates (Full_T);
18895 end if;
18896 end Process_Full_View;
18898 -----------------------------------
18899 -- Process_Incomplete_Dependents --
18900 -----------------------------------
18902 procedure Process_Incomplete_Dependents
18903 (N : Node_Id;
18904 Full_T : Entity_Id;
18905 Inc_T : Entity_Id)
18907 Inc_Elmt : Elmt_Id;
18908 Priv_Dep : Entity_Id;
18909 New_Subt : Entity_Id;
18911 Disc_Constraint : Elist_Id;
18913 begin
18914 if No (Private_Dependents (Inc_T)) then
18915 return;
18916 end if;
18918 -- Itypes that may be generated by the completion of an incomplete
18919 -- subtype are not used by the back-end and not attached to the tree.
18920 -- They are created only for constraint-checking purposes.
18922 Inc_Elmt := First_Elmt (Private_Dependents (Inc_T));
18923 while Present (Inc_Elmt) loop
18924 Priv_Dep := Node (Inc_Elmt);
18926 if Ekind (Priv_Dep) = E_Subprogram_Type then
18928 -- An Access_To_Subprogram type may have a return type or a
18929 -- parameter type that is incomplete. Replace with the full view.
18931 if Etype (Priv_Dep) = Inc_T then
18932 Set_Etype (Priv_Dep, Full_T);
18933 end if;
18935 declare
18936 Formal : Entity_Id;
18938 begin
18939 Formal := First_Formal (Priv_Dep);
18940 while Present (Formal) loop
18941 if Etype (Formal) = Inc_T then
18942 Set_Etype (Formal, Full_T);
18943 end if;
18945 Next_Formal (Formal);
18946 end loop;
18947 end;
18949 elsif Is_Overloadable (Priv_Dep) then
18951 -- If a subprogram in the incomplete dependents list is primitive
18952 -- for a tagged full type then mark it as a dispatching operation,
18953 -- check whether it overrides an inherited subprogram, and check
18954 -- restrictions on its controlling formals. Note that a protected
18955 -- operation is never dispatching: only its wrapper operation
18956 -- (which has convention Ada) is.
18958 if Is_Tagged_Type (Full_T)
18959 and then Is_Primitive (Priv_Dep)
18960 and then Convention (Priv_Dep) /= Convention_Protected
18961 then
18962 Check_Operation_From_Incomplete_Type (Priv_Dep, Inc_T);
18963 Set_Is_Dispatching_Operation (Priv_Dep);
18964 Check_Controlling_Formals (Full_T, Priv_Dep);
18965 end if;
18967 elsif Ekind (Priv_Dep) = E_Subprogram_Body then
18969 -- Can happen during processing of a body before the completion
18970 -- of a TA type. Ignore, because spec is also on dependent list.
18972 return;
18974 -- Ada 2005 (AI-412): Transform a regular incomplete subtype into a
18975 -- corresponding subtype of the full view.
18977 elsif Ekind (Priv_Dep) = E_Incomplete_Subtype then
18978 Set_Subtype_Indication
18979 (Parent (Priv_Dep), New_Occurrence_Of (Full_T, Sloc (Priv_Dep)));
18980 Set_Etype (Priv_Dep, Full_T);
18981 Set_Ekind (Priv_Dep, Subtype_Kind (Ekind (Full_T)));
18982 Set_Analyzed (Parent (Priv_Dep), False);
18984 -- Reanalyze the declaration, suppressing the call to
18985 -- Enter_Name to avoid duplicate names.
18987 Analyze_Subtype_Declaration
18988 (N => Parent (Priv_Dep),
18989 Skip => True);
18991 -- Dependent is a subtype
18993 else
18994 -- We build a new subtype indication using the full view of the
18995 -- incomplete parent. The discriminant constraints have been
18996 -- elaborated already at the point of the subtype declaration.
18998 New_Subt := Create_Itype (E_Void, N);
19000 if Has_Discriminants (Full_T) then
19001 Disc_Constraint := Discriminant_Constraint (Priv_Dep);
19002 else
19003 Disc_Constraint := No_Elist;
19004 end if;
19006 Build_Discriminated_Subtype (Full_T, New_Subt, Disc_Constraint, N);
19007 Set_Full_View (Priv_Dep, New_Subt);
19008 end if;
19010 Next_Elmt (Inc_Elmt);
19011 end loop;
19012 end Process_Incomplete_Dependents;
19014 --------------------------------
19015 -- Process_Range_Expr_In_Decl --
19016 --------------------------------
19018 procedure Process_Range_Expr_In_Decl
19019 (R : Node_Id;
19020 T : Entity_Id;
19021 Subtyp : Entity_Id := Empty;
19022 Check_List : List_Id := Empty_List;
19023 R_Check_Off : Boolean := False;
19024 In_Iter_Schm : Boolean := False)
19026 Lo, Hi : Node_Id;
19027 R_Checks : Check_Result;
19028 Insert_Node : Node_Id;
19029 Def_Id : Entity_Id;
19031 begin
19032 Analyze_And_Resolve (R, Base_Type (T));
19034 if Nkind (R) = N_Range then
19036 -- In SPARK, all ranges should be static, with the exception of the
19037 -- discrete type definition of a loop parameter specification.
19039 if not In_Iter_Schm
19040 and then not Is_OK_Static_Range (R)
19041 then
19042 Check_SPARK_Restriction ("range should be static", R);
19043 end if;
19045 Lo := Low_Bound (R);
19046 Hi := High_Bound (R);
19048 -- We need to ensure validity of the bounds here, because if we
19049 -- go ahead and do the expansion, then the expanded code will get
19050 -- analyzed with range checks suppressed and we miss the check.
19051 -- Validity checks on the range of a quantified expression are
19052 -- delayed until the construct is transformed into a loop.
19054 if Nkind (Parent (R)) /= N_Loop_Parameter_Specification
19055 or else Nkind (Parent (Parent (R))) /= N_Quantified_Expression
19056 then
19057 Validity_Check_Range (R);
19058 end if;
19060 -- If there were errors in the declaration, try and patch up some
19061 -- common mistakes in the bounds. The cases handled are literals
19062 -- which are Integer where the expected type is Real and vice versa.
19063 -- These corrections allow the compilation process to proceed further
19064 -- along since some basic assumptions of the format of the bounds
19065 -- are guaranteed.
19067 if Etype (R) = Any_Type then
19068 if Nkind (Lo) = N_Integer_Literal and then Is_Real_Type (T) then
19069 Rewrite (Lo,
19070 Make_Real_Literal (Sloc (Lo), UR_From_Uint (Intval (Lo))));
19072 elsif Nkind (Hi) = N_Integer_Literal and then Is_Real_Type (T) then
19073 Rewrite (Hi,
19074 Make_Real_Literal (Sloc (Hi), UR_From_Uint (Intval (Hi))));
19076 elsif Nkind (Lo) = N_Real_Literal and then Is_Integer_Type (T) then
19077 Rewrite (Lo,
19078 Make_Integer_Literal (Sloc (Lo), UR_To_Uint (Realval (Lo))));
19080 elsif Nkind (Hi) = N_Real_Literal and then Is_Integer_Type (T) then
19081 Rewrite (Hi,
19082 Make_Integer_Literal (Sloc (Hi), UR_To_Uint (Realval (Hi))));
19083 end if;
19085 Set_Etype (Lo, T);
19086 Set_Etype (Hi, T);
19087 end if;
19089 -- If the bounds of the range have been mistakenly given as string
19090 -- literals (perhaps in place of character literals), then an error
19091 -- has already been reported, but we rewrite the string literal as a
19092 -- bound of the range's type to avoid blowups in later processing
19093 -- that looks at static values.
19095 if Nkind (Lo) = N_String_Literal then
19096 Rewrite (Lo,
19097 Make_Attribute_Reference (Sloc (Lo),
19098 Attribute_Name => Name_First,
19099 Prefix => New_Occurrence_Of (T, Sloc (Lo))));
19100 Analyze_And_Resolve (Lo);
19101 end if;
19103 if Nkind (Hi) = N_String_Literal then
19104 Rewrite (Hi,
19105 Make_Attribute_Reference (Sloc (Hi),
19106 Attribute_Name => Name_First,
19107 Prefix => New_Occurrence_Of (T, Sloc (Hi))));
19108 Analyze_And_Resolve (Hi);
19109 end if;
19111 -- If bounds aren't scalar at this point then exit, avoiding
19112 -- problems with further processing of the range in this procedure.
19114 if not Is_Scalar_Type (Etype (Lo)) then
19115 return;
19116 end if;
19118 -- Resolve (actually Sem_Eval) has checked that the bounds are in
19119 -- then range of the base type. Here we check whether the bounds
19120 -- are in the range of the subtype itself. Note that if the bounds
19121 -- represent the null range the Constraint_Error exception should
19122 -- not be raised.
19124 -- ??? The following code should be cleaned up as follows
19126 -- 1. The Is_Null_Range (Lo, Hi) test should disappear since it
19127 -- is done in the call to Range_Check (R, T); below
19129 -- 2. The use of R_Check_Off should be investigated and possibly
19130 -- removed, this would clean up things a bit.
19132 if Is_Null_Range (Lo, Hi) then
19133 null;
19135 else
19136 -- Capture values of bounds and generate temporaries for them
19137 -- if needed, before applying checks, since checks may cause
19138 -- duplication of the expression without forcing evaluation.
19140 -- The forced evaluation removes side effects from expressions,
19141 -- which should occur also in GNATprove mode. Otherwise, we end up
19142 -- with unexpected insertions of actions at places where this is
19143 -- not supposed to occur, e.g. on default parameters of a call.
19145 if Expander_Active or GNATprove_Mode then
19147 -- If no subtype name, then just call Force_Evaluation to
19148 -- create declarations as needed to deal with side effects.
19149 -- Also ignore calls from within a record type, where we
19150 -- have possible scoping issues.
19152 if No (Subtyp) or else Is_Record_Type (Current_Scope) then
19153 Force_Evaluation (Lo);
19154 Force_Evaluation (Hi);
19156 -- If a subtype is given, then we capture the bounds if they
19157 -- are not known at compile time, using constant identifiers
19158 -- xxxL and xxxH where xxx is the name of the subtype. No need
19159 -- to do that if they are already references to constants.
19161 -- Historical note: We used to just do Force_Evaluation calls
19162 -- in all cases, but it is better to capture the bounds with
19163 -- proper non-serialized names, since these will be accesse
19164 -- from other units, and hence may be public, and also we can
19165 -- then expand 'First and 'Last references to be references to
19166 -- these special names.
19168 else
19169 if not Compile_Time_Known_Value (Lo)
19170 and then not (Is_Entity_Name (Lo)
19171 and then Is_Constant_Object (Entity (Lo)))
19172 then
19173 declare
19174 Loc : constant Source_Ptr := Sloc (Lo);
19175 Lov : constant Entity_Id :=
19176 Make_Defining_Identifier (Loc,
19177 Chars =>
19178 New_External_Name (Chars (Subtyp), "_FIRST"));
19179 begin
19180 Insert_Action (R,
19181 Make_Object_Declaration (Loc,
19182 Defining_Identifier => Lov,
19183 Object_Definition =>
19184 New_Occurrence_Of (Base_Type (T), Loc),
19185 Constant_Present => True,
19186 Expression => Relocate_Node (Lo)));
19187 Rewrite (Lo, New_Occurrence_Of (Lov, Loc));
19188 end;
19189 end if;
19191 if not Compile_Time_Known_Value (Hi)
19192 and then not (Is_Entity_Name (Hi)
19193 and then Is_Constant_Object (Entity (Hi)))
19194 then
19195 declare
19196 Loc : constant Source_Ptr := Sloc (Hi);
19197 Hiv : constant Entity_Id :=
19198 Make_Defining_Identifier (Loc,
19199 Chars =>
19200 New_External_Name (Chars (Subtyp), "_LAST"));
19201 begin
19202 Insert_Action (R,
19203 Make_Object_Declaration (Loc,
19204 Defining_Identifier => Hiv,
19205 Object_Definition =>
19206 New_Occurrence_Of (Base_Type (T), Loc),
19207 Constant_Present => True,
19208 Expression => Relocate_Node (Hi)));
19209 Rewrite (Hi, New_Occurrence_Of (Hiv, Loc));
19210 end;
19211 end if;
19212 end if;
19213 end if;
19215 -- We use a flag here instead of suppressing checks on the
19216 -- type because the type we check against isn't necessarily
19217 -- the place where we put the check.
19219 if not R_Check_Off then
19220 R_Checks := Get_Range_Checks (R, T);
19222 -- Look up tree to find an appropriate insertion point. We
19223 -- can't just use insert_actions because later processing
19224 -- depends on the insertion node. Prior to Ada 2012 the
19225 -- insertion point could only be a declaration or a loop, but
19226 -- quantified expressions can appear within any context in an
19227 -- expression, and the insertion point can be any statement,
19228 -- pragma, or declaration.
19230 Insert_Node := Parent (R);
19231 while Present (Insert_Node) loop
19232 exit when
19233 Nkind (Insert_Node) in N_Declaration
19234 and then
19235 not Nkind_In
19236 (Insert_Node, N_Component_Declaration,
19237 N_Loop_Parameter_Specification,
19238 N_Function_Specification,
19239 N_Procedure_Specification);
19241 exit when Nkind (Insert_Node) in N_Later_Decl_Item
19242 or else Nkind (Insert_Node) in
19243 N_Statement_Other_Than_Procedure_Call
19244 or else Nkind_In (Insert_Node, N_Procedure_Call_Statement,
19245 N_Pragma);
19247 Insert_Node := Parent (Insert_Node);
19248 end loop;
19250 -- Why would Type_Decl not be present??? Without this test,
19251 -- short regression tests fail.
19253 if Present (Insert_Node) then
19255 -- Case of loop statement. Verify that the range is part
19256 -- of the subtype indication of the iteration scheme.
19258 if Nkind (Insert_Node) = N_Loop_Statement then
19259 declare
19260 Indic : Node_Id;
19262 begin
19263 Indic := Parent (R);
19264 while Present (Indic)
19265 and then Nkind (Indic) /= N_Subtype_Indication
19266 loop
19267 Indic := Parent (Indic);
19268 end loop;
19270 if Present (Indic) then
19271 Def_Id := Etype (Subtype_Mark (Indic));
19273 Insert_Range_Checks
19274 (R_Checks,
19275 Insert_Node,
19276 Def_Id,
19277 Sloc (Insert_Node),
19279 Do_Before => True);
19280 end if;
19281 end;
19283 -- Insertion before a declaration. If the declaration
19284 -- includes discriminants, the list of applicable checks
19285 -- is given by the caller.
19287 elsif Nkind (Insert_Node) in N_Declaration then
19288 Def_Id := Defining_Identifier (Insert_Node);
19290 if (Ekind (Def_Id) = E_Record_Type
19291 and then Depends_On_Discriminant (R))
19292 or else
19293 (Ekind (Def_Id) = E_Protected_Type
19294 and then Has_Discriminants (Def_Id))
19295 then
19296 Append_Range_Checks
19297 (R_Checks,
19298 Check_List, Def_Id, Sloc (Insert_Node), R);
19300 else
19301 Insert_Range_Checks
19302 (R_Checks,
19303 Insert_Node, Def_Id, Sloc (Insert_Node), R);
19305 end if;
19307 -- Insertion before a statement. Range appears in the
19308 -- context of a quantified expression. Insertion will
19309 -- take place when expression is expanded.
19311 else
19312 null;
19313 end if;
19314 end if;
19315 end if;
19316 end if;
19318 -- Case of other than an explicit N_Range node
19320 -- The forced evaluation removes side effects from expressions, which
19321 -- should occur also in GNATprove mode. Otherwise, we end up with
19322 -- unexpected insertions of actions at places where this is not
19323 -- supposed to occur, e.g. on default parameters of a call.
19325 elsif Expander_Active or GNATprove_Mode then
19326 Get_Index_Bounds (R, Lo, Hi);
19327 Force_Evaluation (Lo);
19328 Force_Evaluation (Hi);
19329 end if;
19330 end Process_Range_Expr_In_Decl;
19332 --------------------------------------
19333 -- Process_Real_Range_Specification --
19334 --------------------------------------
19336 procedure Process_Real_Range_Specification (Def : Node_Id) is
19337 Spec : constant Node_Id := Real_Range_Specification (Def);
19338 Lo : Node_Id;
19339 Hi : Node_Id;
19340 Err : Boolean := False;
19342 procedure Analyze_Bound (N : Node_Id);
19343 -- Analyze and check one bound
19345 -------------------
19346 -- Analyze_Bound --
19347 -------------------
19349 procedure Analyze_Bound (N : Node_Id) is
19350 begin
19351 Analyze_And_Resolve (N, Any_Real);
19353 if not Is_OK_Static_Expression (N) then
19354 Flag_Non_Static_Expr
19355 ("bound in real type definition is not static!", N);
19356 Err := True;
19357 end if;
19358 end Analyze_Bound;
19360 -- Start of processing for Process_Real_Range_Specification
19362 begin
19363 if Present (Spec) then
19364 Lo := Low_Bound (Spec);
19365 Hi := High_Bound (Spec);
19366 Analyze_Bound (Lo);
19367 Analyze_Bound (Hi);
19369 -- If error, clear away junk range specification
19371 if Err then
19372 Set_Real_Range_Specification (Def, Empty);
19373 end if;
19374 end if;
19375 end Process_Real_Range_Specification;
19377 ---------------------
19378 -- Process_Subtype --
19379 ---------------------
19381 function Process_Subtype
19382 (S : Node_Id;
19383 Related_Nod : Node_Id;
19384 Related_Id : Entity_Id := Empty;
19385 Suffix : Character := ' ') return Entity_Id
19387 P : Node_Id;
19388 Def_Id : Entity_Id;
19389 Error_Node : Node_Id;
19390 Full_View_Id : Entity_Id;
19391 Subtype_Mark_Id : Entity_Id;
19393 May_Have_Null_Exclusion : Boolean;
19395 procedure Check_Incomplete (T : Entity_Id);
19396 -- Called to verify that an incomplete type is not used prematurely
19398 ----------------------
19399 -- Check_Incomplete --
19400 ----------------------
19402 procedure Check_Incomplete (T : Entity_Id) is
19403 begin
19404 -- Ada 2005 (AI-412): Incomplete subtypes are legal
19406 if Ekind (Root_Type (Entity (T))) = E_Incomplete_Type
19407 and then
19408 not (Ada_Version >= Ada_2005
19409 and then
19410 (Nkind (Parent (T)) = N_Subtype_Declaration
19411 or else
19412 (Nkind (Parent (T)) = N_Subtype_Indication
19413 and then Nkind (Parent (Parent (T))) =
19414 N_Subtype_Declaration)))
19415 then
19416 Error_Msg_N ("invalid use of type before its full declaration", T);
19417 end if;
19418 end Check_Incomplete;
19420 -- Start of processing for Process_Subtype
19422 begin
19423 -- Case of no constraints present
19425 if Nkind (S) /= N_Subtype_Indication then
19426 Find_Type (S);
19427 Check_Incomplete (S);
19428 P := Parent (S);
19430 -- Ada 2005 (AI-231): Static check
19432 if Ada_Version >= Ada_2005
19433 and then Present (P)
19434 and then Null_Exclusion_Present (P)
19435 and then Nkind (P) /= N_Access_To_Object_Definition
19436 and then not Is_Access_Type (Entity (S))
19437 then
19438 Error_Msg_N ("`NOT NULL` only allowed for an access type", S);
19439 end if;
19441 -- The following is ugly, can't we have a range or even a flag???
19443 May_Have_Null_Exclusion :=
19444 Nkind_In (P, N_Access_Definition,
19445 N_Access_Function_Definition,
19446 N_Access_Procedure_Definition,
19447 N_Access_To_Object_Definition,
19448 N_Allocator,
19449 N_Component_Definition)
19450 or else
19451 Nkind_In (P, N_Derived_Type_Definition,
19452 N_Discriminant_Specification,
19453 N_Formal_Object_Declaration,
19454 N_Object_Declaration,
19455 N_Object_Renaming_Declaration,
19456 N_Parameter_Specification,
19457 N_Subtype_Declaration);
19459 -- Create an Itype that is a duplicate of Entity (S) but with the
19460 -- null-exclusion attribute.
19462 if May_Have_Null_Exclusion
19463 and then Is_Access_Type (Entity (S))
19464 and then Null_Exclusion_Present (P)
19466 -- No need to check the case of an access to object definition.
19467 -- It is correct to define double not-null pointers.
19469 -- Example:
19470 -- type Not_Null_Int_Ptr is not null access Integer;
19471 -- type Acc is not null access Not_Null_Int_Ptr;
19473 and then Nkind (P) /= N_Access_To_Object_Definition
19474 then
19475 if Can_Never_Be_Null (Entity (S)) then
19476 case Nkind (Related_Nod) is
19477 when N_Full_Type_Declaration =>
19478 if Nkind (Type_Definition (Related_Nod))
19479 in N_Array_Type_Definition
19480 then
19481 Error_Node :=
19482 Subtype_Indication
19483 (Component_Definition
19484 (Type_Definition (Related_Nod)));
19485 else
19486 Error_Node :=
19487 Subtype_Indication (Type_Definition (Related_Nod));
19488 end if;
19490 when N_Subtype_Declaration =>
19491 Error_Node := Subtype_Indication (Related_Nod);
19493 when N_Object_Declaration =>
19494 Error_Node := Object_Definition (Related_Nod);
19496 when N_Component_Declaration =>
19497 Error_Node :=
19498 Subtype_Indication (Component_Definition (Related_Nod));
19500 when N_Allocator =>
19501 Error_Node := Expression (Related_Nod);
19503 when others =>
19504 pragma Assert (False);
19505 Error_Node := Related_Nod;
19506 end case;
19508 Error_Msg_NE
19509 ("`NOT NULL` not allowed (& already excludes null)",
19510 Error_Node,
19511 Entity (S));
19512 end if;
19514 Set_Etype (S,
19515 Create_Null_Excluding_Itype
19516 (T => Entity (S),
19517 Related_Nod => P));
19518 Set_Entity (S, Etype (S));
19519 end if;
19521 return Entity (S);
19523 -- Case of constraint present, so that we have an N_Subtype_Indication
19524 -- node (this node is created only if constraints are present).
19526 else
19527 Find_Type (Subtype_Mark (S));
19529 if Nkind (Parent (S)) /= N_Access_To_Object_Definition
19530 and then not
19531 (Nkind (Parent (S)) = N_Subtype_Declaration
19532 and then Is_Itype (Defining_Identifier (Parent (S))))
19533 then
19534 Check_Incomplete (Subtype_Mark (S));
19535 end if;
19537 P := Parent (S);
19538 Subtype_Mark_Id := Entity (Subtype_Mark (S));
19540 -- Explicit subtype declaration case
19542 if Nkind (P) = N_Subtype_Declaration then
19543 Def_Id := Defining_Identifier (P);
19545 -- Explicit derived type definition case
19547 elsif Nkind (P) = N_Derived_Type_Definition then
19548 Def_Id := Defining_Identifier (Parent (P));
19550 -- Implicit case, the Def_Id must be created as an implicit type.
19551 -- The one exception arises in the case of concurrent types, array
19552 -- and access types, where other subsidiary implicit types may be
19553 -- created and must appear before the main implicit type. In these
19554 -- cases we leave Def_Id set to Empty as a signal that Create_Itype
19555 -- has not yet been called to create Def_Id.
19557 else
19558 if Is_Array_Type (Subtype_Mark_Id)
19559 or else Is_Concurrent_Type (Subtype_Mark_Id)
19560 or else Is_Access_Type (Subtype_Mark_Id)
19561 then
19562 Def_Id := Empty;
19564 -- For the other cases, we create a new unattached Itype,
19565 -- and set the indication to ensure it gets attached later.
19567 else
19568 Def_Id :=
19569 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
19570 end if;
19571 end if;
19573 -- If the kind of constraint is invalid for this kind of type,
19574 -- then give an error, and then pretend no constraint was given.
19576 if not Is_Valid_Constraint_Kind
19577 (Ekind (Subtype_Mark_Id), Nkind (Constraint (S)))
19578 then
19579 Error_Msg_N
19580 ("incorrect constraint for this kind of type", Constraint (S));
19582 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
19584 -- Set Ekind of orphan itype, to prevent cascaded errors
19586 if Present (Def_Id) then
19587 Set_Ekind (Def_Id, Ekind (Any_Type));
19588 end if;
19590 -- Make recursive call, having got rid of the bogus constraint
19592 return Process_Subtype (S, Related_Nod, Related_Id, Suffix);
19593 end if;
19595 -- Remaining processing depends on type. Select on Base_Type kind to
19596 -- ensure getting to the concrete type kind in the case of a private
19597 -- subtype (needed when only doing semantic analysis).
19599 case Ekind (Base_Type (Subtype_Mark_Id)) is
19600 when Access_Kind =>
19602 -- If this is a constraint on a class-wide type, discard it.
19603 -- There is currently no way to express a partial discriminant
19604 -- constraint on a type with unknown discriminants. This is
19605 -- a pathology that the ACATS wisely decides not to test.
19607 if Is_Class_Wide_Type (Designated_Type (Subtype_Mark_Id)) then
19608 if Comes_From_Source (S) then
19609 Error_Msg_N
19610 ("constraint on class-wide type ignored??",
19611 Constraint (S));
19612 end if;
19614 if Nkind (P) = N_Subtype_Declaration then
19615 Set_Subtype_Indication (P,
19616 New_Occurrence_Of (Subtype_Mark_Id, Sloc (S)));
19617 end if;
19619 return Subtype_Mark_Id;
19620 end if;
19622 Constrain_Access (Def_Id, S, Related_Nod);
19624 if Expander_Active
19625 and then Is_Itype (Designated_Type (Def_Id))
19626 and then Nkind (Related_Nod) = N_Subtype_Declaration
19627 and then not Is_Incomplete_Type (Designated_Type (Def_Id))
19628 then
19629 Build_Itype_Reference
19630 (Designated_Type (Def_Id), Related_Nod);
19631 end if;
19633 when Array_Kind =>
19634 Constrain_Array (Def_Id, S, Related_Nod, Related_Id, Suffix);
19636 when Decimal_Fixed_Point_Kind =>
19637 Constrain_Decimal (Def_Id, S);
19639 when Enumeration_Kind =>
19640 Constrain_Enumeration (Def_Id, S);
19642 when Ordinary_Fixed_Point_Kind =>
19643 Constrain_Ordinary_Fixed (Def_Id, S);
19645 when Float_Kind =>
19646 Constrain_Float (Def_Id, S);
19648 when Integer_Kind =>
19649 Constrain_Integer (Def_Id, S);
19651 when E_Record_Type |
19652 E_Record_Subtype |
19653 Class_Wide_Kind |
19654 E_Incomplete_Type =>
19655 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
19657 if Ekind (Def_Id) = E_Incomplete_Type then
19658 Set_Private_Dependents (Def_Id, New_Elmt_List);
19659 end if;
19661 when Private_Kind =>
19662 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
19663 Set_Private_Dependents (Def_Id, New_Elmt_List);
19665 -- In case of an invalid constraint prevent further processing
19666 -- since the type constructed is missing expected fields.
19668 if Etype (Def_Id) = Any_Type then
19669 return Def_Id;
19670 end if;
19672 -- If the full view is that of a task with discriminants,
19673 -- we must constrain both the concurrent type and its
19674 -- corresponding record type. Otherwise we will just propagate
19675 -- the constraint to the full view, if available.
19677 if Present (Full_View (Subtype_Mark_Id))
19678 and then Has_Discriminants (Subtype_Mark_Id)
19679 and then Is_Concurrent_Type (Full_View (Subtype_Mark_Id))
19680 then
19681 Full_View_Id :=
19682 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
19684 Set_Entity (Subtype_Mark (S), Full_View (Subtype_Mark_Id));
19685 Constrain_Concurrent (Full_View_Id, S,
19686 Related_Nod, Related_Id, Suffix);
19687 Set_Entity (Subtype_Mark (S), Subtype_Mark_Id);
19688 Set_Full_View (Def_Id, Full_View_Id);
19690 -- Introduce an explicit reference to the private subtype,
19691 -- to prevent scope anomalies in gigi if first use appears
19692 -- in a nested context, e.g. a later function body.
19693 -- Should this be generated in other contexts than a full
19694 -- type declaration?
19696 if Is_Itype (Def_Id)
19697 and then
19698 Nkind (Parent (P)) = N_Full_Type_Declaration
19699 then
19700 Build_Itype_Reference (Def_Id, Parent (P));
19701 end if;
19703 else
19704 Prepare_Private_Subtype_Completion (Def_Id, Related_Nod);
19705 end if;
19707 when Concurrent_Kind =>
19708 Constrain_Concurrent (Def_Id, S,
19709 Related_Nod, Related_Id, Suffix);
19711 when others =>
19712 Error_Msg_N ("invalid subtype mark in subtype indication", S);
19713 end case;
19715 -- Size and Convention are always inherited from the base type
19717 Set_Size_Info (Def_Id, (Subtype_Mark_Id));
19718 Set_Convention (Def_Id, Convention (Subtype_Mark_Id));
19720 return Def_Id;
19721 end if;
19722 end Process_Subtype;
19724 ---------------------------------------
19725 -- Check_Anonymous_Access_Components --
19726 ---------------------------------------
19728 procedure Check_Anonymous_Access_Components
19729 (Typ_Decl : Node_Id;
19730 Typ : Entity_Id;
19731 Prev : Entity_Id;
19732 Comp_List : Node_Id)
19734 Loc : constant Source_Ptr := Sloc (Typ_Decl);
19735 Anon_Access : Entity_Id;
19736 Acc_Def : Node_Id;
19737 Comp : Node_Id;
19738 Comp_Def : Node_Id;
19739 Decl : Node_Id;
19740 Type_Def : Node_Id;
19742 procedure Build_Incomplete_Type_Declaration;
19743 -- If the record type contains components that include an access to the
19744 -- current record, then create an incomplete type declaration for the
19745 -- record, to be used as the designated type of the anonymous access.
19746 -- This is done only once, and only if there is no previous partial
19747 -- view of the type.
19749 function Designates_T (Subt : Node_Id) return Boolean;
19750 -- Check whether a node designates the enclosing record type, or 'Class
19751 -- of that type
19753 function Mentions_T (Acc_Def : Node_Id) return Boolean;
19754 -- Check whether an access definition includes a reference to
19755 -- the enclosing record type. The reference can be a subtype mark
19756 -- in the access definition itself, a 'Class attribute reference, or
19757 -- recursively a reference appearing in a parameter specification
19758 -- or result definition of an access_to_subprogram definition.
19760 --------------------------------------
19761 -- Build_Incomplete_Type_Declaration --
19762 --------------------------------------
19764 procedure Build_Incomplete_Type_Declaration is
19765 Decl : Node_Id;
19766 Inc_T : Entity_Id;
19767 H : Entity_Id;
19769 -- Is_Tagged indicates whether the type is tagged. It is tagged if
19770 -- it's "is new ... with record" or else "is tagged record ...".
19772 Is_Tagged : constant Boolean :=
19773 (Nkind (Type_Definition (Typ_Decl)) = N_Derived_Type_Definition
19774 and then
19775 Present
19776 (Record_Extension_Part (Type_Definition (Typ_Decl))))
19777 or else
19778 (Nkind (Type_Definition (Typ_Decl)) = N_Record_Definition
19779 and then Tagged_Present (Type_Definition (Typ_Decl)));
19781 begin
19782 -- If there is a previous partial view, no need to create a new one
19783 -- If the partial view, given by Prev, is incomplete, If Prev is
19784 -- a private declaration, full declaration is flagged accordingly.
19786 if Prev /= Typ then
19787 if Is_Tagged then
19788 Make_Class_Wide_Type (Prev);
19789 Set_Class_Wide_Type (Typ, Class_Wide_Type (Prev));
19790 Set_Etype (Class_Wide_Type (Typ), Typ);
19791 end if;
19793 return;
19795 elsif Has_Private_Declaration (Typ) then
19797 -- If we refer to T'Class inside T, and T is the completion of a
19798 -- private type, then we need to make sure the class-wide type
19799 -- exists.
19801 if Is_Tagged then
19802 Make_Class_Wide_Type (Typ);
19803 end if;
19805 return;
19807 -- If there was a previous anonymous access type, the incomplete
19808 -- type declaration will have been created already.
19810 elsif Present (Current_Entity (Typ))
19811 and then Ekind (Current_Entity (Typ)) = E_Incomplete_Type
19812 and then Full_View (Current_Entity (Typ)) = Typ
19813 then
19814 if Is_Tagged
19815 and then Comes_From_Source (Current_Entity (Typ))
19816 and then not Is_Tagged_Type (Current_Entity (Typ))
19817 then
19818 Make_Class_Wide_Type (Typ);
19819 Error_Msg_N
19820 ("incomplete view of tagged type should be declared tagged??",
19821 Parent (Current_Entity (Typ)));
19822 end if;
19823 return;
19825 else
19826 Inc_T := Make_Defining_Identifier (Loc, Chars (Typ));
19827 Decl := Make_Incomplete_Type_Declaration (Loc, Inc_T);
19829 -- Type has already been inserted into the current scope. Remove
19830 -- it, and add incomplete declaration for type, so that subsequent
19831 -- anonymous access types can use it. The entity is unchained from
19832 -- the homonym list and from immediate visibility. After analysis,
19833 -- the entity in the incomplete declaration becomes immediately
19834 -- visible in the record declaration that follows.
19836 H := Current_Entity (Typ);
19838 if H = Typ then
19839 Set_Name_Entity_Id (Chars (Typ), Homonym (Typ));
19840 else
19841 while Present (H)
19842 and then Homonym (H) /= Typ
19843 loop
19844 H := Homonym (Typ);
19845 end loop;
19847 Set_Homonym (H, Homonym (Typ));
19848 end if;
19850 Insert_Before (Typ_Decl, Decl);
19851 Analyze (Decl);
19852 Set_Full_View (Inc_T, Typ);
19854 if Is_Tagged then
19856 -- Create a common class-wide type for both views, and set the
19857 -- Etype of the class-wide type to the full view.
19859 Make_Class_Wide_Type (Inc_T);
19860 Set_Class_Wide_Type (Typ, Class_Wide_Type (Inc_T));
19861 Set_Etype (Class_Wide_Type (Typ), Typ);
19862 end if;
19863 end if;
19864 end Build_Incomplete_Type_Declaration;
19866 ------------------
19867 -- Designates_T --
19868 ------------------
19870 function Designates_T (Subt : Node_Id) return Boolean is
19871 Type_Id : constant Name_Id := Chars (Typ);
19873 function Names_T (Nam : Node_Id) return Boolean;
19874 -- The record type has not been introduced in the current scope
19875 -- yet, so we must examine the name of the type itself, either
19876 -- an identifier T, or an expanded name of the form P.T, where
19877 -- P denotes the current scope.
19879 -------------
19880 -- Names_T --
19881 -------------
19883 function Names_T (Nam : Node_Id) return Boolean is
19884 begin
19885 if Nkind (Nam) = N_Identifier then
19886 return Chars (Nam) = Type_Id;
19888 elsif Nkind (Nam) = N_Selected_Component then
19889 if Chars (Selector_Name (Nam)) = Type_Id then
19890 if Nkind (Prefix (Nam)) = N_Identifier then
19891 return Chars (Prefix (Nam)) = Chars (Current_Scope);
19893 elsif Nkind (Prefix (Nam)) = N_Selected_Component then
19894 return Chars (Selector_Name (Prefix (Nam))) =
19895 Chars (Current_Scope);
19896 else
19897 return False;
19898 end if;
19900 else
19901 return False;
19902 end if;
19904 else
19905 return False;
19906 end if;
19907 end Names_T;
19909 -- Start of processing for Designates_T
19911 begin
19912 if Nkind (Subt) = N_Identifier then
19913 return Chars (Subt) = Type_Id;
19915 -- Reference can be through an expanded name which has not been
19916 -- analyzed yet, and which designates enclosing scopes.
19918 elsif Nkind (Subt) = N_Selected_Component then
19919 if Names_T (Subt) then
19920 return True;
19922 -- Otherwise it must denote an entity that is already visible.
19923 -- The access definition may name a subtype of the enclosing
19924 -- type, if there is a previous incomplete declaration for it.
19926 else
19927 Find_Selected_Component (Subt);
19928 return
19929 Is_Entity_Name (Subt)
19930 and then Scope (Entity (Subt)) = Current_Scope
19931 and then
19932 (Chars (Base_Type (Entity (Subt))) = Type_Id
19933 or else
19934 (Is_Class_Wide_Type (Entity (Subt))
19935 and then
19936 Chars (Etype (Base_Type (Entity (Subt)))) =
19937 Type_Id));
19938 end if;
19940 -- A reference to the current type may appear as the prefix of
19941 -- a 'Class attribute.
19943 elsif Nkind (Subt) = N_Attribute_Reference
19944 and then Attribute_Name (Subt) = Name_Class
19945 then
19946 return Names_T (Prefix (Subt));
19948 else
19949 return False;
19950 end if;
19951 end Designates_T;
19953 ----------------
19954 -- Mentions_T --
19955 ----------------
19957 function Mentions_T (Acc_Def : Node_Id) return Boolean is
19958 Param_Spec : Node_Id;
19960 Acc_Subprg : constant Node_Id :=
19961 Access_To_Subprogram_Definition (Acc_Def);
19963 begin
19964 if No (Acc_Subprg) then
19965 return Designates_T (Subtype_Mark (Acc_Def));
19966 end if;
19968 -- Component is an access_to_subprogram: examine its formals,
19969 -- and result definition in the case of an access_to_function.
19971 Param_Spec := First (Parameter_Specifications (Acc_Subprg));
19972 while Present (Param_Spec) loop
19973 if Nkind (Parameter_Type (Param_Spec)) = N_Access_Definition
19974 and then Mentions_T (Parameter_Type (Param_Spec))
19975 then
19976 return True;
19978 elsif Designates_T (Parameter_Type (Param_Spec)) then
19979 return True;
19980 end if;
19982 Next (Param_Spec);
19983 end loop;
19985 if Nkind (Acc_Subprg) = N_Access_Function_Definition then
19986 if Nkind (Result_Definition (Acc_Subprg)) =
19987 N_Access_Definition
19988 then
19989 return Mentions_T (Result_Definition (Acc_Subprg));
19990 else
19991 return Designates_T (Result_Definition (Acc_Subprg));
19992 end if;
19993 end if;
19995 return False;
19996 end Mentions_T;
19998 -- Start of processing for Check_Anonymous_Access_Components
20000 begin
20001 if No (Comp_List) then
20002 return;
20003 end if;
20005 Comp := First (Component_Items (Comp_List));
20006 while Present (Comp) loop
20007 if Nkind (Comp) = N_Component_Declaration
20008 and then Present
20009 (Access_Definition (Component_Definition (Comp)))
20010 and then
20011 Mentions_T (Access_Definition (Component_Definition (Comp)))
20012 then
20013 Comp_Def := Component_Definition (Comp);
20014 Acc_Def :=
20015 Access_To_Subprogram_Definition
20016 (Access_Definition (Comp_Def));
20018 Build_Incomplete_Type_Declaration;
20019 Anon_Access := Make_Temporary (Loc, 'S');
20021 -- Create a declaration for the anonymous access type: either
20022 -- an access_to_object or an access_to_subprogram.
20024 if Present (Acc_Def) then
20025 if Nkind (Acc_Def) = N_Access_Function_Definition then
20026 Type_Def :=
20027 Make_Access_Function_Definition (Loc,
20028 Parameter_Specifications =>
20029 Parameter_Specifications (Acc_Def),
20030 Result_Definition => Result_Definition (Acc_Def));
20031 else
20032 Type_Def :=
20033 Make_Access_Procedure_Definition (Loc,
20034 Parameter_Specifications =>
20035 Parameter_Specifications (Acc_Def));
20036 end if;
20038 else
20039 Type_Def :=
20040 Make_Access_To_Object_Definition (Loc,
20041 Subtype_Indication =>
20042 Relocate_Node
20043 (Subtype_Mark
20044 (Access_Definition (Comp_Def))));
20046 Set_Constant_Present
20047 (Type_Def, Constant_Present (Access_Definition (Comp_Def)));
20048 Set_All_Present
20049 (Type_Def, All_Present (Access_Definition (Comp_Def)));
20050 end if;
20052 Set_Null_Exclusion_Present
20053 (Type_Def,
20054 Null_Exclusion_Present (Access_Definition (Comp_Def)));
20056 Decl :=
20057 Make_Full_Type_Declaration (Loc,
20058 Defining_Identifier => Anon_Access,
20059 Type_Definition => Type_Def);
20061 Insert_Before (Typ_Decl, Decl);
20062 Analyze (Decl);
20064 -- If an access to subprogram, create the extra formals
20066 if Present (Acc_Def) then
20067 Create_Extra_Formals (Designated_Type (Anon_Access));
20069 -- If an access to object, preserve entity of designated type,
20070 -- for ASIS use, before rewriting the component definition.
20072 else
20073 declare
20074 Desig : Entity_Id;
20076 begin
20077 Desig := Entity (Subtype_Indication (Type_Def));
20079 -- If the access definition is to the current record,
20080 -- the visible entity at this point is an incomplete
20081 -- type. Retrieve the full view to simplify ASIS queries
20083 if Ekind (Desig) = E_Incomplete_Type then
20084 Desig := Full_View (Desig);
20085 end if;
20087 Set_Entity
20088 (Subtype_Mark (Access_Definition (Comp_Def)), Desig);
20089 end;
20090 end if;
20092 Rewrite (Comp_Def,
20093 Make_Component_Definition (Loc,
20094 Subtype_Indication =>
20095 New_Occurrence_Of (Anon_Access, Loc)));
20097 if Ekind (Designated_Type (Anon_Access)) = E_Subprogram_Type then
20098 Set_Ekind (Anon_Access, E_Anonymous_Access_Subprogram_Type);
20099 else
20100 Set_Ekind (Anon_Access, E_Anonymous_Access_Type);
20101 end if;
20103 Set_Is_Local_Anonymous_Access (Anon_Access);
20104 end if;
20106 Next (Comp);
20107 end loop;
20109 if Present (Variant_Part (Comp_List)) then
20110 declare
20111 V : Node_Id;
20112 begin
20113 V := First_Non_Pragma (Variants (Variant_Part (Comp_List)));
20114 while Present (V) loop
20115 Check_Anonymous_Access_Components
20116 (Typ_Decl, Typ, Prev, Component_List (V));
20117 Next_Non_Pragma (V);
20118 end loop;
20119 end;
20120 end if;
20121 end Check_Anonymous_Access_Components;
20123 ----------------------------------
20124 -- Preanalyze_Assert_Expression --
20125 ----------------------------------
20127 procedure Preanalyze_Assert_Expression (N : Node_Id; T : Entity_Id) is
20128 begin
20129 In_Assertion_Expr := In_Assertion_Expr + 1;
20130 Preanalyze_Spec_Expression (N, T);
20131 In_Assertion_Expr := In_Assertion_Expr - 1;
20132 end Preanalyze_Assert_Expression;
20134 --------------------------------
20135 -- Preanalyze_Spec_Expression --
20136 --------------------------------
20138 procedure Preanalyze_Spec_Expression (N : Node_Id; T : Entity_Id) is
20139 Save_In_Spec_Expression : constant Boolean := In_Spec_Expression;
20140 begin
20141 In_Spec_Expression := True;
20142 Preanalyze_And_Resolve (N, T);
20143 In_Spec_Expression := Save_In_Spec_Expression;
20144 end Preanalyze_Spec_Expression;
20146 -----------------------------
20147 -- Record_Type_Declaration --
20148 -----------------------------
20150 procedure Record_Type_Declaration
20151 (T : Entity_Id;
20152 N : Node_Id;
20153 Prev : Entity_Id)
20155 Def : constant Node_Id := Type_Definition (N);
20156 Is_Tagged : Boolean;
20157 Tag_Comp : Entity_Id;
20159 begin
20160 -- These flags must be initialized before calling Process_Discriminants
20161 -- because this routine makes use of them.
20163 Set_Ekind (T, E_Record_Type);
20164 Set_Etype (T, T);
20165 Init_Size_Align (T);
20166 Set_Interfaces (T, No_Elist);
20167 Set_Stored_Constraint (T, No_Elist);
20168 Set_Default_SSO (T);
20170 -- Normal case
20172 if Ada_Version < Ada_2005
20173 or else not Interface_Present (Def)
20174 then
20175 if Limited_Present (Def) then
20176 Check_SPARK_Restriction ("limited is not allowed", N);
20177 end if;
20179 if Abstract_Present (Def) then
20180 Check_SPARK_Restriction ("abstract is not allowed", N);
20181 end if;
20183 -- The flag Is_Tagged_Type might have already been set by
20184 -- Find_Type_Name if it detected an error for declaration T. This
20185 -- arises in the case of private tagged types where the full view
20186 -- omits the word tagged.
20188 Is_Tagged :=
20189 Tagged_Present (Def)
20190 or else (Serious_Errors_Detected > 0 and then Is_Tagged_Type (T));
20192 Set_Is_Tagged_Type (T, Is_Tagged);
20193 Set_Is_Limited_Record (T, Limited_Present (Def));
20195 -- Type is abstract if full declaration carries keyword, or if
20196 -- previous partial view did.
20198 Set_Is_Abstract_Type (T, Is_Abstract_Type (T)
20199 or else Abstract_Present (Def));
20201 else
20202 Check_SPARK_Restriction ("interface is not allowed", N);
20204 Is_Tagged := True;
20205 Analyze_Interface_Declaration (T, Def);
20207 if Present (Discriminant_Specifications (N)) then
20208 Error_Msg_N
20209 ("interface types cannot have discriminants",
20210 Defining_Identifier
20211 (First (Discriminant_Specifications (N))));
20212 end if;
20213 end if;
20215 -- First pass: if there are self-referential access components,
20216 -- create the required anonymous access type declarations, and if
20217 -- need be an incomplete type declaration for T itself.
20219 Check_Anonymous_Access_Components (N, T, Prev, Component_List (Def));
20221 if Ada_Version >= Ada_2005
20222 and then Present (Interface_List (Def))
20223 then
20224 Check_Interfaces (N, Def);
20226 declare
20227 Ifaces_List : Elist_Id;
20229 begin
20230 -- Ada 2005 (AI-251): Collect the list of progenitors that are not
20231 -- already in the parents.
20233 Collect_Interfaces
20234 (T => T,
20235 Ifaces_List => Ifaces_List,
20236 Exclude_Parents => True);
20238 Set_Interfaces (T, Ifaces_List);
20239 end;
20240 end if;
20242 -- Records constitute a scope for the component declarations within.
20243 -- The scope is created prior to the processing of these declarations.
20244 -- Discriminants are processed first, so that they are visible when
20245 -- processing the other components. The Ekind of the record type itself
20246 -- is set to E_Record_Type (subtypes appear as E_Record_Subtype).
20248 -- Enter record scope
20250 Push_Scope (T);
20252 -- If an incomplete or private type declaration was already given for
20253 -- the type, then this scope already exists, and the discriminants have
20254 -- been declared within. We must verify that the full declaration
20255 -- matches the incomplete one.
20257 Check_Or_Process_Discriminants (N, T, Prev);
20259 Set_Is_Constrained (T, not Has_Discriminants (T));
20260 Set_Has_Delayed_Freeze (T, True);
20262 -- For tagged types add a manually analyzed component corresponding
20263 -- to the component _tag, the corresponding piece of tree will be
20264 -- expanded as part of the freezing actions if it is not a CPP_Class.
20266 if Is_Tagged then
20268 -- Do not add the tag unless we are in expansion mode
20270 if Expander_Active then
20271 Tag_Comp := Make_Defining_Identifier (Sloc (Def), Name_uTag);
20272 Enter_Name (Tag_Comp);
20274 Set_Ekind (Tag_Comp, E_Component);
20275 Set_Is_Tag (Tag_Comp);
20276 Set_Is_Aliased (Tag_Comp);
20277 Set_Etype (Tag_Comp, RTE (RE_Tag));
20278 Set_DT_Entry_Count (Tag_Comp, No_Uint);
20279 Set_Original_Record_Component (Tag_Comp, Tag_Comp);
20280 Init_Component_Location (Tag_Comp);
20282 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
20283 -- implemented interfaces.
20285 if Has_Interfaces (T) then
20286 Add_Interface_Tag_Components (N, T);
20287 end if;
20288 end if;
20290 Make_Class_Wide_Type (T);
20291 Set_Direct_Primitive_Operations (T, New_Elmt_List);
20292 end if;
20294 -- We must suppress range checks when processing record components in
20295 -- the presence of discriminants, since we don't want spurious checks to
20296 -- be generated during their analysis, but Suppress_Range_Checks flags
20297 -- must be reset the after processing the record definition.
20299 -- Note: this is the only use of Kill_Range_Checks, and is a bit odd,
20300 -- couldn't we just use the normal range check suppression method here.
20301 -- That would seem cleaner ???
20303 if Has_Discriminants (T) and then not Range_Checks_Suppressed (T) then
20304 Set_Kill_Range_Checks (T, True);
20305 Record_Type_Definition (Def, Prev);
20306 Set_Kill_Range_Checks (T, False);
20307 else
20308 Record_Type_Definition (Def, Prev);
20309 end if;
20311 -- Exit from record scope
20313 End_Scope;
20315 -- Ada 2005 (AI-251 and AI-345): Derive the interface subprograms of all
20316 -- the implemented interfaces and associate them an aliased entity.
20318 if Is_Tagged
20319 and then not Is_Empty_List (Interface_List (Def))
20320 then
20321 Derive_Progenitor_Subprograms (T, T);
20322 end if;
20324 Check_Function_Writable_Actuals (N);
20325 end Record_Type_Declaration;
20327 ----------------------------
20328 -- Record_Type_Definition --
20329 ----------------------------
20331 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id) is
20332 Component : Entity_Id;
20333 Ctrl_Components : Boolean := False;
20334 Final_Storage_Only : Boolean;
20335 T : Entity_Id;
20337 begin
20338 if Ekind (Prev_T) = E_Incomplete_Type then
20339 T := Full_View (Prev_T);
20340 else
20341 T := Prev_T;
20342 end if;
20344 -- In SPARK, tagged types and type extensions may only be declared in
20345 -- the specification of library unit packages.
20347 if Present (Def) and then Is_Tagged_Type (T) then
20348 declare
20349 Typ : Node_Id;
20350 Ctxt : Node_Id;
20352 begin
20353 if Nkind (Parent (Def)) = N_Full_Type_Declaration then
20354 Typ := Parent (Def);
20355 else
20356 pragma Assert
20357 (Nkind (Parent (Def)) = N_Derived_Type_Definition);
20358 Typ := Parent (Parent (Def));
20359 end if;
20361 Ctxt := Parent (Typ);
20363 if Nkind (Ctxt) = N_Package_Body
20364 and then Nkind (Parent (Ctxt)) = N_Compilation_Unit
20365 then
20366 Check_SPARK_Restriction
20367 ("type should be defined in package specification", Typ);
20369 elsif Nkind (Ctxt) /= N_Package_Specification
20370 or else Nkind (Parent (Parent (Ctxt))) /= N_Compilation_Unit
20371 then
20372 Check_SPARK_Restriction
20373 ("type should be defined in library unit package", Typ);
20374 end if;
20375 end;
20376 end if;
20378 Final_Storage_Only := not Is_Controlled (T);
20380 -- Ada 2005: Check whether an explicit Limited is present in a derived
20381 -- type declaration.
20383 if Nkind (Parent (Def)) = N_Derived_Type_Definition
20384 and then Limited_Present (Parent (Def))
20385 then
20386 Set_Is_Limited_Record (T);
20387 end if;
20389 -- If the component list of a record type is defined by the reserved
20390 -- word null and there is no discriminant part, then the record type has
20391 -- no components and all records of the type are null records (RM 3.7)
20392 -- This procedure is also called to process the extension part of a
20393 -- record extension, in which case the current scope may have inherited
20394 -- components.
20396 if No (Def)
20397 or else No (Component_List (Def))
20398 or else Null_Present (Component_List (Def))
20399 then
20400 if not Is_Tagged_Type (T) then
20401 Check_SPARK_Restriction ("untagged record cannot be null", Def);
20402 end if;
20404 else
20405 Analyze_Declarations (Component_Items (Component_List (Def)));
20407 if Present (Variant_Part (Component_List (Def))) then
20408 Check_SPARK_Restriction ("variant part is not allowed", Def);
20409 Analyze (Variant_Part (Component_List (Def)));
20410 end if;
20411 end if;
20413 -- After completing the semantic analysis of the record definition,
20414 -- record components, both new and inherited, are accessible. Set their
20415 -- kind accordingly. Exclude malformed itypes from illegal declarations,
20416 -- whose Ekind may be void.
20418 Component := First_Entity (Current_Scope);
20419 while Present (Component) loop
20420 if Ekind (Component) = E_Void
20421 and then not Is_Itype (Component)
20422 then
20423 Set_Ekind (Component, E_Component);
20424 Init_Component_Location (Component);
20425 end if;
20427 if Has_Task (Etype (Component)) then
20428 Set_Has_Task (T);
20429 end if;
20431 if Has_Protected (Etype (Component)) then
20432 Set_Has_Protected (T);
20433 end if;
20435 if Ekind (Component) /= E_Component then
20436 null;
20438 -- Do not set Has_Controlled_Component on a class-wide equivalent
20439 -- type. See Make_CW_Equivalent_Type.
20441 elsif not Is_Class_Wide_Equivalent_Type (T)
20442 and then (Has_Controlled_Component (Etype (Component))
20443 or else (Chars (Component) /= Name_uParent
20444 and then Is_Controlled (Etype (Component))))
20445 then
20446 Set_Has_Controlled_Component (T, True);
20447 Final_Storage_Only :=
20448 Final_Storage_Only
20449 and then Finalize_Storage_Only (Etype (Component));
20450 Ctrl_Components := True;
20451 end if;
20453 Next_Entity (Component);
20454 end loop;
20456 -- A Type is Finalize_Storage_Only only if all its controlled components
20457 -- are also.
20459 if Ctrl_Components then
20460 Set_Finalize_Storage_Only (T, Final_Storage_Only);
20461 end if;
20463 -- Place reference to end record on the proper entity, which may
20464 -- be a partial view.
20466 if Present (Def) then
20467 Process_End_Label (Def, 'e', Prev_T);
20468 end if;
20469 end Record_Type_Definition;
20471 ------------------------
20472 -- Replace_Components --
20473 ------------------------
20475 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id) is
20476 function Process (N : Node_Id) return Traverse_Result;
20478 -------------
20479 -- Process --
20480 -------------
20482 function Process (N : Node_Id) return Traverse_Result is
20483 Comp : Entity_Id;
20485 begin
20486 if Nkind (N) = N_Discriminant_Specification then
20487 Comp := First_Discriminant (Typ);
20488 while Present (Comp) loop
20489 if Chars (Comp) = Chars (Defining_Identifier (N)) then
20490 Set_Defining_Identifier (N, Comp);
20491 exit;
20492 end if;
20494 Next_Discriminant (Comp);
20495 end loop;
20497 elsif Nkind (N) = N_Component_Declaration then
20498 Comp := First_Component (Typ);
20499 while Present (Comp) loop
20500 if Chars (Comp) = Chars (Defining_Identifier (N)) then
20501 Set_Defining_Identifier (N, Comp);
20502 exit;
20503 end if;
20505 Next_Component (Comp);
20506 end loop;
20507 end if;
20509 return OK;
20510 end Process;
20512 procedure Replace is new Traverse_Proc (Process);
20514 -- Start of processing for Replace_Components
20516 begin
20517 Replace (Decl);
20518 end Replace_Components;
20520 -------------------------------
20521 -- Set_Completion_Referenced --
20522 -------------------------------
20524 procedure Set_Completion_Referenced (E : Entity_Id) is
20525 begin
20526 -- If in main unit, mark entity that is a completion as referenced,
20527 -- warnings go on the partial view when needed.
20529 if In_Extended_Main_Source_Unit (E) then
20530 Set_Referenced (E);
20531 end if;
20532 end Set_Completion_Referenced;
20534 ---------------------
20535 -- Set_Default_SSO --
20536 ---------------------
20538 procedure Set_Default_SSO (T : Entity_Id) is
20539 begin
20540 case Opt.Default_SSO is
20541 when ' ' =>
20542 null;
20543 when 'L' =>
20544 Set_SSO_Set_Low_By_Default (T, True);
20545 when 'H' =>
20546 Set_SSO_Set_High_By_Default (T, True);
20547 when others =>
20548 raise Program_Error;
20549 end case;
20550 end Set_Default_SSO;
20552 ---------------------
20553 -- Set_Fixed_Range --
20554 ---------------------
20556 -- The range for fixed-point types is complicated by the fact that we
20557 -- do not know the exact end points at the time of the declaration. This
20558 -- is true for three reasons:
20560 -- A size clause may affect the fudging of the end-points.
20561 -- A small clause may affect the values of the end-points.
20562 -- We try to include the end-points if it does not affect the size.
20564 -- This means that the actual end-points must be established at the
20565 -- point when the type is frozen. Meanwhile, we first narrow the range
20566 -- as permitted (so that it will fit if necessary in a small specified
20567 -- size), and then build a range subtree with these narrowed bounds.
20568 -- Set_Fixed_Range constructs the range from real literal values, and
20569 -- sets the range as the Scalar_Range of the given fixed-point type entity.
20571 -- The parent of this range is set to point to the entity so that it is
20572 -- properly hooked into the tree (unlike normal Scalar_Range entries for
20573 -- other scalar types, which are just pointers to the range in the
20574 -- original tree, this would otherwise be an orphan).
20576 -- The tree is left unanalyzed. When the type is frozen, the processing
20577 -- in Freeze.Freeze_Fixed_Point_Type notices that the range is not
20578 -- analyzed, and uses this as an indication that it should complete
20579 -- work on the range (it will know the final small and size values).
20581 procedure Set_Fixed_Range
20582 (E : Entity_Id;
20583 Loc : Source_Ptr;
20584 Lo : Ureal;
20585 Hi : Ureal)
20587 S : constant Node_Id :=
20588 Make_Range (Loc,
20589 Low_Bound => Make_Real_Literal (Loc, Lo),
20590 High_Bound => Make_Real_Literal (Loc, Hi));
20591 begin
20592 Set_Scalar_Range (E, S);
20593 Set_Parent (S, E);
20595 -- Before the freeze point, the bounds of a fixed point are universal
20596 -- and carry the corresponding type.
20598 Set_Etype (Low_Bound (S), Universal_Real);
20599 Set_Etype (High_Bound (S), Universal_Real);
20600 end Set_Fixed_Range;
20602 ----------------------------------
20603 -- Set_Scalar_Range_For_Subtype --
20604 ----------------------------------
20606 procedure Set_Scalar_Range_For_Subtype
20607 (Def_Id : Entity_Id;
20608 R : Node_Id;
20609 Subt : Entity_Id)
20611 Kind : constant Entity_Kind := Ekind (Def_Id);
20613 begin
20614 -- Defend against previous error
20616 if Nkind (R) = N_Error then
20617 return;
20618 end if;
20620 Set_Scalar_Range (Def_Id, R);
20622 -- We need to link the range into the tree before resolving it so
20623 -- that types that are referenced, including importantly the subtype
20624 -- itself, are properly frozen (Freeze_Expression requires that the
20625 -- expression be properly linked into the tree). Of course if it is
20626 -- already linked in, then we do not disturb the current link.
20628 if No (Parent (R)) then
20629 Set_Parent (R, Def_Id);
20630 end if;
20632 -- Reset the kind of the subtype during analysis of the range, to
20633 -- catch possible premature use in the bounds themselves.
20635 Set_Ekind (Def_Id, E_Void);
20636 Process_Range_Expr_In_Decl (R, Subt, Subtyp => Def_Id);
20637 Set_Ekind (Def_Id, Kind);
20638 end Set_Scalar_Range_For_Subtype;
20640 --------------------------------------------------------
20641 -- Set_Stored_Constraint_From_Discriminant_Constraint --
20642 --------------------------------------------------------
20644 procedure Set_Stored_Constraint_From_Discriminant_Constraint
20645 (E : Entity_Id)
20647 begin
20648 -- Make sure set if encountered during Expand_To_Stored_Constraint
20650 Set_Stored_Constraint (E, No_Elist);
20652 -- Give it the right value
20654 if Is_Constrained (E) and then Has_Discriminants (E) then
20655 Set_Stored_Constraint (E,
20656 Expand_To_Stored_Constraint (E, Discriminant_Constraint (E)));
20657 end if;
20658 end Set_Stored_Constraint_From_Discriminant_Constraint;
20660 -------------------------------------
20661 -- Signed_Integer_Type_Declaration --
20662 -------------------------------------
20664 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id) is
20665 Implicit_Base : Entity_Id;
20666 Base_Typ : Entity_Id;
20667 Lo_Val : Uint;
20668 Hi_Val : Uint;
20669 Errs : Boolean := False;
20670 Lo : Node_Id;
20671 Hi : Node_Id;
20673 function Can_Derive_From (E : Entity_Id) return Boolean;
20674 -- Determine whether given bounds allow derivation from specified type
20676 procedure Check_Bound (Expr : Node_Id);
20677 -- Check bound to make sure it is integral and static. If not, post
20678 -- appropriate error message and set Errs flag
20680 ---------------------
20681 -- Can_Derive_From --
20682 ---------------------
20684 -- Note we check both bounds against both end values, to deal with
20685 -- strange types like ones with a range of 0 .. -12341234.
20687 function Can_Derive_From (E : Entity_Id) return Boolean is
20688 Lo : constant Uint := Expr_Value (Type_Low_Bound (E));
20689 Hi : constant Uint := Expr_Value (Type_High_Bound (E));
20690 begin
20691 return Lo <= Lo_Val and then Lo_Val <= Hi
20692 and then
20693 Lo <= Hi_Val and then Hi_Val <= Hi;
20694 end Can_Derive_From;
20696 -----------------
20697 -- Check_Bound --
20698 -----------------
20700 procedure Check_Bound (Expr : Node_Id) is
20701 begin
20702 -- If a range constraint is used as an integer type definition, each
20703 -- bound of the range must be defined by a static expression of some
20704 -- integer type, but the two bounds need not have the same integer
20705 -- type (Negative bounds are allowed.) (RM 3.5.4)
20707 if not Is_Integer_Type (Etype (Expr)) then
20708 Error_Msg_N
20709 ("integer type definition bounds must be of integer type", Expr);
20710 Errs := True;
20712 elsif not Is_OK_Static_Expression (Expr) then
20713 Flag_Non_Static_Expr
20714 ("non-static expression used for integer type bound!", Expr);
20715 Errs := True;
20717 -- The bounds are folded into literals, and we set their type to be
20718 -- universal, to avoid typing difficulties: we cannot set the type
20719 -- of the literal to the new type, because this would be a forward
20720 -- reference for the back end, and if the original type is user-
20721 -- defined this can lead to spurious semantic errors (e.g. 2928-003).
20723 else
20724 if Is_Entity_Name (Expr) then
20725 Fold_Uint (Expr, Expr_Value (Expr), True);
20726 end if;
20728 Set_Etype (Expr, Universal_Integer);
20729 end if;
20730 end Check_Bound;
20732 -- Start of processing for Signed_Integer_Type_Declaration
20734 begin
20735 -- Create an anonymous base type
20737 Implicit_Base :=
20738 Create_Itype (E_Signed_Integer_Type, Parent (Def), T, 'B');
20740 -- Analyze and check the bounds, they can be of any integer type
20742 Lo := Low_Bound (Def);
20743 Hi := High_Bound (Def);
20745 -- Arbitrarily use Integer as the type if either bound had an error
20747 if Hi = Error or else Lo = Error then
20748 Base_Typ := Any_Integer;
20749 Set_Error_Posted (T, True);
20751 -- Here both bounds are OK expressions
20753 else
20754 Analyze_And_Resolve (Lo, Any_Integer);
20755 Analyze_And_Resolve (Hi, Any_Integer);
20757 Check_Bound (Lo);
20758 Check_Bound (Hi);
20760 if Errs then
20761 Hi := Type_High_Bound (Standard_Long_Long_Integer);
20762 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
20763 end if;
20765 -- Find type to derive from
20767 Lo_Val := Expr_Value (Lo);
20768 Hi_Val := Expr_Value (Hi);
20770 if Can_Derive_From (Standard_Short_Short_Integer) then
20771 Base_Typ := Base_Type (Standard_Short_Short_Integer);
20773 elsif Can_Derive_From (Standard_Short_Integer) then
20774 Base_Typ := Base_Type (Standard_Short_Integer);
20776 elsif Can_Derive_From (Standard_Integer) then
20777 Base_Typ := Base_Type (Standard_Integer);
20779 elsif Can_Derive_From (Standard_Long_Integer) then
20780 Base_Typ := Base_Type (Standard_Long_Integer);
20782 elsif Can_Derive_From (Standard_Long_Long_Integer) then
20783 Check_Restriction (No_Long_Long_Integers, Def);
20784 Base_Typ := Base_Type (Standard_Long_Long_Integer);
20786 else
20787 Base_Typ := Base_Type (Standard_Long_Long_Integer);
20788 Error_Msg_N ("integer type definition bounds out of range", Def);
20789 Hi := Type_High_Bound (Standard_Long_Long_Integer);
20790 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
20791 end if;
20792 end if;
20794 -- Complete both implicit base and declared first subtype entities
20796 Set_Etype (Implicit_Base, Base_Typ);
20797 Set_Size_Info (Implicit_Base, (Base_Typ));
20798 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
20799 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
20801 Set_Ekind (T, E_Signed_Integer_Subtype);
20802 Set_Etype (T, Implicit_Base);
20804 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
20806 Set_Size_Info (T, (Implicit_Base));
20807 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
20808 Set_Scalar_Range (T, Def);
20809 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
20810 Set_Is_Constrained (T);
20811 end Signed_Integer_Type_Declaration;
20813 end Sem_Ch3;