PR c++/3637
[official-gcc.git] / gcc / optabs.c
blob8f5c5ca31f3e9c123757d008cc5417a00d680f10
1 /* Expand the basic unary and binary arithmetic operations, for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
23 #include "config.h"
24 #include "system.h"
25 #include "toplev.h"
27 /* Include insn-config.h before expr.h so that HAVE_conditional_move
28 is properly defined. */
29 #include "insn-config.h"
30 #include "rtl.h"
31 #include "tree.h"
32 #include "tm_p.h"
33 #include "flags.h"
34 #include "function.h"
35 #include "except.h"
36 #include "expr.h"
37 #include "optabs.h"
38 #include "libfuncs.h"
39 #include "recog.h"
40 #include "reload.h"
41 #include "ggc.h"
42 #include "real.h"
44 /* Each optab contains info on how this target machine
45 can perform a particular operation
46 for all sizes and kinds of operands.
48 The operation to be performed is often specified
49 by passing one of these optabs as an argument.
51 See expr.h for documentation of these optabs. */
53 optab optab_table[OTI_MAX];
55 rtx libfunc_table[LTI_MAX];
57 /* Tables of patterns for extending one integer mode to another. */
58 enum insn_code extendtab[MAX_MACHINE_MODE][MAX_MACHINE_MODE][2];
60 /* Tables of patterns for converting between fixed and floating point. */
61 enum insn_code fixtab[NUM_MACHINE_MODES][NUM_MACHINE_MODES][2];
62 enum insn_code fixtrunctab[NUM_MACHINE_MODES][NUM_MACHINE_MODES][2];
63 enum insn_code floattab[NUM_MACHINE_MODES][NUM_MACHINE_MODES][2];
65 /* Contains the optab used for each rtx code. */
66 optab code_to_optab[NUM_RTX_CODE + 1];
68 /* Indexed by the rtx-code for a conditional (eg. EQ, LT,...)
69 gives the gen_function to make a branch to test that condition. */
71 rtxfun bcc_gen_fctn[NUM_RTX_CODE];
73 /* Indexed by the rtx-code for a conditional (eg. EQ, LT,...)
74 gives the insn code to make a store-condition insn
75 to test that condition. */
77 enum insn_code setcc_gen_code[NUM_RTX_CODE];
79 #ifdef HAVE_conditional_move
80 /* Indexed by the machine mode, gives the insn code to make a conditional
81 move insn. This is not indexed by the rtx-code like bcc_gen_fctn and
82 setcc_gen_code to cut down on the number of named patterns. Consider a day
83 when a lot more rtx codes are conditional (eg: for the ARM). */
85 enum insn_code movcc_gen_code[NUM_MACHINE_MODES];
86 #endif
88 static int add_equal_note PARAMS ((rtx, rtx, enum rtx_code, rtx, rtx));
89 static rtx widen_operand PARAMS ((rtx, enum machine_mode,
90 enum machine_mode, int, int));
91 static int expand_cmplxdiv_straight PARAMS ((rtx, rtx, rtx, rtx,
92 rtx, rtx, enum machine_mode,
93 int, enum optab_methods,
94 enum mode_class, optab));
95 static int expand_cmplxdiv_wide PARAMS ((rtx, rtx, rtx, rtx,
96 rtx, rtx, enum machine_mode,
97 int, enum optab_methods,
98 enum mode_class, optab));
99 static void prepare_cmp_insn PARAMS ((rtx *, rtx *, enum rtx_code *, rtx,
100 enum machine_mode *, int *,
101 enum can_compare_purpose));
102 static enum insn_code can_fix_p PARAMS ((enum machine_mode, enum machine_mode,
103 int, int *));
104 static enum insn_code can_float_p PARAMS ((enum machine_mode,
105 enum machine_mode,
106 int));
107 static rtx ftruncify PARAMS ((rtx));
108 static optab new_optab PARAMS ((void));
109 static inline optab init_optab PARAMS ((enum rtx_code));
110 static inline optab init_optabv PARAMS ((enum rtx_code));
111 static void init_libfuncs PARAMS ((optab, int, int, const char *, int));
112 static void init_integral_libfuncs PARAMS ((optab, const char *, int));
113 static void init_floating_libfuncs PARAMS ((optab, const char *, int));
114 #ifdef HAVE_conditional_trap
115 static void init_traps PARAMS ((void));
116 #endif
117 static void emit_cmp_and_jump_insn_1 PARAMS ((rtx, rtx, enum machine_mode,
118 enum rtx_code, int, rtx));
119 static void prepare_float_lib_cmp PARAMS ((rtx *, rtx *, enum rtx_code *,
120 enum machine_mode *, int *));
122 /* Add a REG_EQUAL note to the last insn in SEQ. TARGET is being set to
123 the result of operation CODE applied to OP0 (and OP1 if it is a binary
124 operation).
126 If the last insn does not set TARGET, don't do anything, but return 1.
128 If a previous insn sets TARGET and TARGET is one of OP0 or OP1,
129 don't add the REG_EQUAL note but return 0. Our caller can then try
130 again, ensuring that TARGET is not one of the operands. */
132 static int
133 add_equal_note (seq, target, code, op0, op1)
134 rtx seq;
135 rtx target;
136 enum rtx_code code;
137 rtx op0, op1;
139 rtx set;
140 int i;
141 rtx note;
143 if ((GET_RTX_CLASS (code) != '1' && GET_RTX_CLASS (code) != '2'
144 && GET_RTX_CLASS (code) != 'c' && GET_RTX_CLASS (code) != '<')
145 || GET_CODE (seq) != SEQUENCE
146 || (set = single_set (XVECEXP (seq, 0, XVECLEN (seq, 0) - 1))) == 0
147 || GET_CODE (target) == ZERO_EXTRACT
148 || (! rtx_equal_p (SET_DEST (set), target)
149 /* For a STRICT_LOW_PART, the REG_NOTE applies to what is inside the
150 SUBREG. */
151 && (GET_CODE (SET_DEST (set)) != STRICT_LOW_PART
152 || ! rtx_equal_p (SUBREG_REG (XEXP (SET_DEST (set), 0)),
153 target))))
154 return 1;
156 /* If TARGET is in OP0 or OP1, check if anything in SEQ sets TARGET
157 besides the last insn. */
158 if (reg_overlap_mentioned_p (target, op0)
159 || (op1 && reg_overlap_mentioned_p (target, op1)))
160 for (i = XVECLEN (seq, 0) - 2; i >= 0; i--)
161 if (reg_set_p (target, XVECEXP (seq, 0, i)))
162 return 0;
164 if (GET_RTX_CLASS (code) == '1')
165 note = gen_rtx_fmt_e (code, GET_MODE (target), copy_rtx (op0));
166 else
167 note = gen_rtx_fmt_ee (code, GET_MODE (target), copy_rtx (op0), copy_rtx (op1));
169 set_unique_reg_note (XVECEXP (seq, 0, XVECLEN (seq, 0) - 1), REG_EQUAL, note);
171 return 1;
174 /* Widen OP to MODE and return the rtx for the widened operand. UNSIGNEDP
175 says whether OP is signed or unsigned. NO_EXTEND is nonzero if we need
176 not actually do a sign-extend or zero-extend, but can leave the
177 higher-order bits of the result rtx undefined, for example, in the case
178 of logical operations, but not right shifts. */
180 static rtx
181 widen_operand (op, mode, oldmode, unsignedp, no_extend)
182 rtx op;
183 enum machine_mode mode, oldmode;
184 int unsignedp;
185 int no_extend;
187 rtx result;
189 /* If we must extend do so. If OP is either a constant or a SUBREG
190 for a promoted object, also extend since it will be more efficient to
191 do so. */
192 if (! no_extend
193 || GET_MODE (op) == VOIDmode
194 || (GET_CODE (op) == SUBREG && SUBREG_PROMOTED_VAR_P (op)))
195 return convert_modes (mode, oldmode, op, unsignedp);
197 /* If MODE is no wider than a single word, we return a paradoxical
198 SUBREG. */
199 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
200 return gen_rtx_SUBREG (mode, force_reg (GET_MODE (op), op), 0);
202 /* Otherwise, get an object of MODE, clobber it, and set the low-order
203 part to OP. */
205 result = gen_reg_rtx (mode);
206 emit_insn (gen_rtx_CLOBBER (VOIDmode, result));
207 emit_move_insn (gen_lowpart (GET_MODE (op), result), op);
208 return result;
211 /* Generate code to perform a straightforward complex divide. */
213 static int
214 expand_cmplxdiv_straight (real0, real1, imag0, imag1, realr, imagr, submode,
215 unsignedp, methods, class, binoptab)
216 rtx real0, real1, imag0, imag1, realr, imagr;
217 enum machine_mode submode;
218 int unsignedp;
219 enum optab_methods methods;
220 enum mode_class class;
221 optab binoptab;
223 rtx divisor;
224 rtx real_t, imag_t;
225 rtx temp1, temp2;
226 rtx res;
227 optab this_add_optab = add_optab;
228 optab this_sub_optab = sub_optab;
229 optab this_neg_optab = neg_optab;
230 optab this_mul_optab = smul_optab;
232 if (binoptab == sdivv_optab)
234 this_add_optab = addv_optab;
235 this_sub_optab = subv_optab;
236 this_neg_optab = negv_optab;
237 this_mul_optab = smulv_optab;
240 /* Don't fetch these from memory more than once. */
241 real0 = force_reg (submode, real0);
242 real1 = force_reg (submode, real1);
244 if (imag0 != 0)
245 imag0 = force_reg (submode, imag0);
247 imag1 = force_reg (submode, imag1);
249 /* Divisor: c*c + d*d. */
250 temp1 = expand_binop (submode, this_mul_optab, real1, real1,
251 NULL_RTX, unsignedp, methods);
253 temp2 = expand_binop (submode, this_mul_optab, imag1, imag1,
254 NULL_RTX, unsignedp, methods);
256 if (temp1 == 0 || temp2 == 0)
257 return 0;
259 divisor = expand_binop (submode, this_add_optab, temp1, temp2,
260 NULL_RTX, unsignedp, methods);
261 if (divisor == 0)
262 return 0;
264 if (imag0 == 0)
266 /* Mathematically, ((a)(c-id))/divisor. */
267 /* Computationally, (a+i0) / (c+id) = (ac/(cc+dd)) + i(-ad/(cc+dd)). */
269 /* Calculate the dividend. */
270 real_t = expand_binop (submode, this_mul_optab, real0, real1,
271 NULL_RTX, unsignedp, methods);
273 imag_t = expand_binop (submode, this_mul_optab, real0, imag1,
274 NULL_RTX, unsignedp, methods);
276 if (real_t == 0 || imag_t == 0)
277 return 0;
279 imag_t = expand_unop (submode, this_neg_optab, imag_t,
280 NULL_RTX, unsignedp);
282 else
284 /* Mathematically, ((a+ib)(c-id))/divider. */
285 /* Calculate the dividend. */
286 temp1 = expand_binop (submode, this_mul_optab, real0, real1,
287 NULL_RTX, unsignedp, methods);
289 temp2 = expand_binop (submode, this_mul_optab, imag0, imag1,
290 NULL_RTX, unsignedp, methods);
292 if (temp1 == 0 || temp2 == 0)
293 return 0;
295 real_t = expand_binop (submode, this_add_optab, temp1, temp2,
296 NULL_RTX, unsignedp, methods);
298 temp1 = expand_binop (submode, this_mul_optab, imag0, real1,
299 NULL_RTX, unsignedp, methods);
301 temp2 = expand_binop (submode, this_mul_optab, real0, imag1,
302 NULL_RTX, unsignedp, methods);
304 if (temp1 == 0 || temp2 == 0)
305 return 0;
307 imag_t = expand_binop (submode, this_sub_optab, temp1, temp2,
308 NULL_RTX, unsignedp, methods);
310 if (real_t == 0 || imag_t == 0)
311 return 0;
314 if (class == MODE_COMPLEX_FLOAT)
315 res = expand_binop (submode, binoptab, real_t, divisor,
316 realr, unsignedp, methods);
317 else
318 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
319 real_t, divisor, realr, unsignedp);
321 if (res == 0)
322 return 0;
324 if (res != realr)
325 emit_move_insn (realr, res);
327 if (class == MODE_COMPLEX_FLOAT)
328 res = expand_binop (submode, binoptab, imag_t, divisor,
329 imagr, unsignedp, methods);
330 else
331 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
332 imag_t, divisor, imagr, unsignedp);
334 if (res == 0)
335 return 0;
337 if (res != imagr)
338 emit_move_insn (imagr, res);
340 return 1;
343 /* Generate code to perform a wide-input-range-acceptable complex divide. */
345 static int
346 expand_cmplxdiv_wide (real0, real1, imag0, imag1, realr, imagr, submode,
347 unsignedp, methods, class, binoptab)
348 rtx real0, real1, imag0, imag1, realr, imagr;
349 enum machine_mode submode;
350 int unsignedp;
351 enum optab_methods methods;
352 enum mode_class class;
353 optab binoptab;
355 rtx ratio, divisor;
356 rtx real_t, imag_t;
357 rtx temp1, temp2, lab1, lab2;
358 enum machine_mode mode;
359 rtx res;
360 optab this_add_optab = add_optab;
361 optab this_sub_optab = sub_optab;
362 optab this_neg_optab = neg_optab;
363 optab this_mul_optab = smul_optab;
365 if (binoptab == sdivv_optab)
367 this_add_optab = addv_optab;
368 this_sub_optab = subv_optab;
369 this_neg_optab = negv_optab;
370 this_mul_optab = smulv_optab;
373 /* Don't fetch these from memory more than once. */
374 real0 = force_reg (submode, real0);
375 real1 = force_reg (submode, real1);
377 if (imag0 != 0)
378 imag0 = force_reg (submode, imag0);
380 imag1 = force_reg (submode, imag1);
382 /* XXX What's an "unsigned" complex number? */
383 if (unsignedp)
385 temp1 = real1;
386 temp2 = imag1;
388 else
390 temp1 = expand_abs (submode, real1, NULL_RTX, unsignedp, 1);
391 temp2 = expand_abs (submode, imag1, NULL_RTX, unsignedp, 1);
394 if (temp1 == 0 || temp2 == 0)
395 return 0;
397 mode = GET_MODE (temp1);
398 lab1 = gen_label_rtx ();
399 emit_cmp_and_jump_insns (temp1, temp2, LT, NULL_RTX,
400 mode, unsignedp, lab1);
402 /* |c| >= |d|; use ratio d/c to scale dividend and divisor. */
404 if (class == MODE_COMPLEX_FLOAT)
405 ratio = expand_binop (submode, binoptab, imag1, real1,
406 NULL_RTX, unsignedp, methods);
407 else
408 ratio = expand_divmod (0, TRUNC_DIV_EXPR, submode,
409 imag1, real1, NULL_RTX, unsignedp);
411 if (ratio == 0)
412 return 0;
414 /* Calculate divisor. */
416 temp1 = expand_binop (submode, this_mul_optab, imag1, ratio,
417 NULL_RTX, unsignedp, methods);
419 if (temp1 == 0)
420 return 0;
422 divisor = expand_binop (submode, this_add_optab, temp1, real1,
423 NULL_RTX, unsignedp, methods);
425 if (divisor == 0)
426 return 0;
428 /* Calculate dividend. */
430 if (imag0 == 0)
432 real_t = real0;
434 /* Compute a / (c+id) as a / (c+d(d/c)) + i (-a(d/c)) / (c+d(d/c)). */
436 imag_t = expand_binop (submode, this_mul_optab, real0, ratio,
437 NULL_RTX, unsignedp, methods);
439 if (imag_t == 0)
440 return 0;
442 imag_t = expand_unop (submode, this_neg_optab, imag_t,
443 NULL_RTX, unsignedp);
445 if (real_t == 0 || imag_t == 0)
446 return 0;
448 else
450 /* Compute (a+ib)/(c+id) as
451 (a+b(d/c))/(c+d(d/c) + i(b-a(d/c))/(c+d(d/c)). */
453 temp1 = expand_binop (submode, this_mul_optab, imag0, ratio,
454 NULL_RTX, unsignedp, methods);
456 if (temp1 == 0)
457 return 0;
459 real_t = expand_binop (submode, this_add_optab, temp1, real0,
460 NULL_RTX, unsignedp, methods);
462 temp1 = expand_binop (submode, this_mul_optab, real0, ratio,
463 NULL_RTX, unsignedp, methods);
465 if (temp1 == 0)
466 return 0;
468 imag_t = expand_binop (submode, this_sub_optab, imag0, temp1,
469 NULL_RTX, unsignedp, methods);
471 if (real_t == 0 || imag_t == 0)
472 return 0;
475 if (class == MODE_COMPLEX_FLOAT)
476 res = expand_binop (submode, binoptab, real_t, divisor,
477 realr, unsignedp, methods);
478 else
479 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
480 real_t, divisor, realr, unsignedp);
482 if (res == 0)
483 return 0;
485 if (res != realr)
486 emit_move_insn (realr, res);
488 if (class == MODE_COMPLEX_FLOAT)
489 res = expand_binop (submode, binoptab, imag_t, divisor,
490 imagr, unsignedp, methods);
491 else
492 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
493 imag_t, divisor, imagr, unsignedp);
495 if (res == 0)
496 return 0;
498 if (res != imagr)
499 emit_move_insn (imagr, res);
501 lab2 = gen_label_rtx ();
502 emit_jump_insn (gen_jump (lab2));
503 emit_barrier ();
505 emit_label (lab1);
507 /* |d| > |c|; use ratio c/d to scale dividend and divisor. */
509 if (class == MODE_COMPLEX_FLOAT)
510 ratio = expand_binop (submode, binoptab, real1, imag1,
511 NULL_RTX, unsignedp, methods);
512 else
513 ratio = expand_divmod (0, TRUNC_DIV_EXPR, submode,
514 real1, imag1, NULL_RTX, unsignedp);
516 if (ratio == 0)
517 return 0;
519 /* Calculate divisor. */
521 temp1 = expand_binop (submode, this_mul_optab, real1, ratio,
522 NULL_RTX, unsignedp, methods);
524 if (temp1 == 0)
525 return 0;
527 divisor = expand_binop (submode, this_add_optab, temp1, imag1,
528 NULL_RTX, unsignedp, methods);
530 if (divisor == 0)
531 return 0;
533 /* Calculate dividend. */
535 if (imag0 == 0)
537 /* Compute a / (c+id) as a(c/d) / (c(c/d)+d) + i (-a) / (c(c/d)+d). */
539 real_t = expand_binop (submode, this_mul_optab, real0, ratio,
540 NULL_RTX, unsignedp, methods);
542 imag_t = expand_unop (submode, this_neg_optab, real0,
543 NULL_RTX, unsignedp);
545 if (real_t == 0 || imag_t == 0)
546 return 0;
548 else
550 /* Compute (a+ib)/(c+id) as
551 (a(c/d)+b)/(c(c/d)+d) + i (b(c/d)-a)/(c(c/d)+d). */
553 temp1 = expand_binop (submode, this_mul_optab, real0, ratio,
554 NULL_RTX, unsignedp, methods);
556 if (temp1 == 0)
557 return 0;
559 real_t = expand_binop (submode, this_add_optab, temp1, imag0,
560 NULL_RTX, unsignedp, methods);
562 temp1 = expand_binop (submode, this_mul_optab, imag0, ratio,
563 NULL_RTX, unsignedp, methods);
565 if (temp1 == 0)
566 return 0;
568 imag_t = expand_binop (submode, this_sub_optab, temp1, real0,
569 NULL_RTX, unsignedp, methods);
571 if (real_t == 0 || imag_t == 0)
572 return 0;
575 if (class == MODE_COMPLEX_FLOAT)
576 res = expand_binop (submode, binoptab, real_t, divisor,
577 realr, unsignedp, methods);
578 else
579 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
580 real_t, divisor, realr, unsignedp);
582 if (res == 0)
583 return 0;
585 if (res != realr)
586 emit_move_insn (realr, res);
588 if (class == MODE_COMPLEX_FLOAT)
589 res = expand_binop (submode, binoptab, imag_t, divisor,
590 imagr, unsignedp, methods);
591 else
592 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
593 imag_t, divisor, imagr, unsignedp);
595 if (res == 0)
596 return 0;
598 if (res != imagr)
599 emit_move_insn (imagr, res);
601 emit_label (lab2);
603 return 1;
606 /* Wrapper around expand_binop which takes an rtx code to specify
607 the operation to perform, not an optab pointer. All other
608 arguments are the same. */
610 expand_simple_binop (mode, code, op0, op1, target, unsignedp, methods)
611 enum machine_mode mode;
612 enum rtx_code code;
613 rtx op0, op1;
614 rtx target;
615 int unsignedp;
616 enum optab_methods methods;
618 optab binop = code_to_optab [(int) code];
619 if (binop == 0)
620 abort ();
622 return expand_binop (mode, binop, op0, op1, target, unsignedp, methods);
625 /* Generate code to perform an operation specified by BINOPTAB
626 on operands OP0 and OP1, with result having machine-mode MODE.
628 UNSIGNEDP is for the case where we have to widen the operands
629 to perform the operation. It says to use zero-extension.
631 If TARGET is nonzero, the value
632 is generated there, if it is convenient to do so.
633 In all cases an rtx is returned for the locus of the value;
634 this may or may not be TARGET. */
637 expand_binop (mode, binoptab, op0, op1, target, unsignedp, methods)
638 enum machine_mode mode;
639 optab binoptab;
640 rtx op0, op1;
641 rtx target;
642 int unsignedp;
643 enum optab_methods methods;
645 enum optab_methods next_methods
646 = (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN
647 ? OPTAB_WIDEN : methods);
648 enum mode_class class;
649 enum machine_mode wider_mode;
650 rtx temp;
651 int commutative_op = 0;
652 int shift_op = (binoptab->code == ASHIFT
653 || binoptab->code == ASHIFTRT
654 || binoptab->code == LSHIFTRT
655 || binoptab->code == ROTATE
656 || binoptab->code == ROTATERT);
657 rtx entry_last = get_last_insn ();
658 rtx last;
660 class = GET_MODE_CLASS (mode);
662 op0 = protect_from_queue (op0, 0);
663 op1 = protect_from_queue (op1, 0);
664 if (target)
665 target = protect_from_queue (target, 1);
667 if (flag_force_mem)
669 op0 = force_not_mem (op0);
670 op1 = force_not_mem (op1);
673 /* If subtracting an integer constant, convert this into an addition of
674 the negated constant. */
676 if (binoptab == sub_optab && GET_CODE (op1) == CONST_INT)
678 op1 = negate_rtx (mode, op1);
679 binoptab = add_optab;
682 /* If we are inside an appropriately-short loop and one operand is an
683 expensive constant, force it into a register. */
684 if (CONSTANT_P (op0) && preserve_subexpressions_p ()
685 && rtx_cost (op0, binoptab->code) > COSTS_N_INSNS (1))
686 op0 = force_reg (mode, op0);
688 if (CONSTANT_P (op1) && preserve_subexpressions_p ()
689 && ! shift_op && rtx_cost (op1, binoptab->code) > COSTS_N_INSNS (1))
690 op1 = force_reg (mode, op1);
692 /* Record where to delete back to if we backtrack. */
693 last = get_last_insn ();
695 /* If operation is commutative,
696 try to make the first operand a register.
697 Even better, try to make it the same as the target.
698 Also try to make the last operand a constant. */
699 if (GET_RTX_CLASS (binoptab->code) == 'c'
700 || binoptab == smul_widen_optab
701 || binoptab == umul_widen_optab
702 || binoptab == smul_highpart_optab
703 || binoptab == umul_highpart_optab)
705 commutative_op = 1;
707 if (((target == 0 || GET_CODE (target) == REG)
708 ? ((GET_CODE (op1) == REG
709 && GET_CODE (op0) != REG)
710 || target == op1)
711 : rtx_equal_p (op1, target))
712 || GET_CODE (op0) == CONST_INT)
714 temp = op1;
715 op1 = op0;
716 op0 = temp;
720 /* If we can do it with a three-operand insn, do so. */
722 if (methods != OPTAB_MUST_WIDEN
723 && binoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
725 int icode = (int) binoptab->handlers[(int) mode].insn_code;
726 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
727 enum machine_mode mode1 = insn_data[icode].operand[2].mode;
728 rtx pat;
729 rtx xop0 = op0, xop1 = op1;
731 if (target)
732 temp = target;
733 else
734 temp = gen_reg_rtx (mode);
736 /* If it is a commutative operator and the modes would match
737 if we would swap the operands, we can save the conversions. */
738 if (commutative_op)
740 if (GET_MODE (op0) != mode0 && GET_MODE (op1) != mode1
741 && GET_MODE (op0) == mode1 && GET_MODE (op1) == mode0)
743 rtx tmp;
745 tmp = op0; op0 = op1; op1 = tmp;
746 tmp = xop0; xop0 = xop1; xop1 = tmp;
750 /* In case the insn wants input operands in modes different from
751 the result, convert the operands. It would seem that we
752 don't need to convert CONST_INTs, but we do, so that they're
753 a properly sign-extended for their modes; we choose the
754 widest mode between mode and mode[01], so that, in a widening
755 operation, we call convert_modes with different FROM and TO
756 modes, which ensures the value is sign-extended. Shift
757 operations are an exception, because the second operand needs
758 not be extended to the mode of the result. */
760 if (GET_MODE (op0) != mode0
761 && mode0 != VOIDmode)
762 xop0 = convert_modes (mode0,
763 GET_MODE (op0) != VOIDmode
764 ? GET_MODE (op0)
765 : GET_MODE_SIZE (mode) > GET_MODE_SIZE (mode0)
766 ? mode
767 : mode0,
768 xop0, unsignedp);
770 if (GET_MODE (xop1) != mode1
771 && mode1 != VOIDmode)
772 xop1 = convert_modes (mode1,
773 GET_MODE (op1) != VOIDmode
774 ? GET_MODE (op1)
775 : (GET_MODE_SIZE (mode) > GET_MODE_SIZE (mode1)
776 && ! shift_op)
777 ? mode
778 : mode1,
779 xop1, unsignedp);
781 /* Now, if insn's predicates don't allow our operands, put them into
782 pseudo regs. */
784 if (! (*insn_data[icode].operand[1].predicate) (xop0, mode0)
785 && mode0 != VOIDmode)
786 xop0 = copy_to_mode_reg (mode0, xop0);
788 if (! (*insn_data[icode].operand[2].predicate) (xop1, mode1)
789 && mode1 != VOIDmode)
790 xop1 = copy_to_mode_reg (mode1, xop1);
792 if (! (*insn_data[icode].operand[0].predicate) (temp, mode))
793 temp = gen_reg_rtx (mode);
795 pat = GEN_FCN (icode) (temp, xop0, xop1);
796 if (pat)
798 /* If PAT is a multi-insn sequence, try to add an appropriate
799 REG_EQUAL note to it. If we can't because TEMP conflicts with an
800 operand, call ourselves again, this time without a target. */
801 if (GET_CODE (pat) == SEQUENCE
802 && ! add_equal_note (pat, temp, binoptab->code, xop0, xop1))
804 delete_insns_since (last);
805 return expand_binop (mode, binoptab, op0, op1, NULL_RTX,
806 unsignedp, methods);
809 emit_insn (pat);
810 return temp;
812 else
813 delete_insns_since (last);
816 /* If this is a multiply, see if we can do a widening operation that
817 takes operands of this mode and makes a wider mode. */
819 if (binoptab == smul_optab && GET_MODE_WIDER_MODE (mode) != VOIDmode
820 && (((unsignedp ? umul_widen_optab : smul_widen_optab)
821 ->handlers[(int) GET_MODE_WIDER_MODE (mode)].insn_code)
822 != CODE_FOR_nothing))
824 temp = expand_binop (GET_MODE_WIDER_MODE (mode),
825 unsignedp ? umul_widen_optab : smul_widen_optab,
826 op0, op1, NULL_RTX, unsignedp, OPTAB_DIRECT);
828 if (temp != 0)
830 if (GET_MODE_CLASS (mode) == MODE_INT)
831 return gen_lowpart (mode, temp);
832 else
833 return convert_to_mode (mode, temp, unsignedp);
837 /* Look for a wider mode of the same class for which we think we
838 can open-code the operation. Check for a widening multiply at the
839 wider mode as well. */
841 if ((class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
842 && methods != OPTAB_DIRECT && methods != OPTAB_LIB)
843 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
844 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
846 if (binoptab->handlers[(int) wider_mode].insn_code != CODE_FOR_nothing
847 || (binoptab == smul_optab
848 && GET_MODE_WIDER_MODE (wider_mode) != VOIDmode
849 && (((unsignedp ? umul_widen_optab : smul_widen_optab)
850 ->handlers[(int) GET_MODE_WIDER_MODE (wider_mode)].insn_code)
851 != CODE_FOR_nothing)))
853 rtx xop0 = op0, xop1 = op1;
854 int no_extend = 0;
856 /* For certain integer operations, we need not actually extend
857 the narrow operands, as long as we will truncate
858 the results to the same narrowness. */
860 if ((binoptab == ior_optab || binoptab == and_optab
861 || binoptab == xor_optab
862 || binoptab == add_optab || binoptab == sub_optab
863 || binoptab == smul_optab || binoptab == ashl_optab)
864 && class == MODE_INT)
865 no_extend = 1;
867 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp, no_extend);
869 /* The second operand of a shift must always be extended. */
870 xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
871 no_extend && binoptab != ashl_optab);
873 temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
874 unsignedp, OPTAB_DIRECT);
875 if (temp)
877 if (class != MODE_INT)
879 if (target == 0)
880 target = gen_reg_rtx (mode);
881 convert_move (target, temp, 0);
882 return target;
884 else
885 return gen_lowpart (mode, temp);
887 else
888 delete_insns_since (last);
892 /* These can be done a word at a time. */
893 if ((binoptab == and_optab || binoptab == ior_optab || binoptab == xor_optab)
894 && class == MODE_INT
895 && GET_MODE_SIZE (mode) > UNITS_PER_WORD
896 && binoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
898 unsigned int i;
899 rtx insns;
900 rtx equiv_value;
902 /* If TARGET is the same as one of the operands, the REG_EQUAL note
903 won't be accurate, so use a new target. */
904 if (target == 0 || target == op0 || target == op1)
905 target = gen_reg_rtx (mode);
907 start_sequence ();
909 /* Do the actual arithmetic. */
910 for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
912 rtx target_piece = operand_subword (target, i, 1, mode);
913 rtx x = expand_binop (word_mode, binoptab,
914 operand_subword_force (op0, i, mode),
915 operand_subword_force (op1, i, mode),
916 target_piece, unsignedp, next_methods);
918 if (x == 0)
919 break;
921 if (target_piece != x)
922 emit_move_insn (target_piece, x);
925 insns = get_insns ();
926 end_sequence ();
928 if (i == GET_MODE_BITSIZE (mode) / BITS_PER_WORD)
930 if (binoptab->code != UNKNOWN)
931 equiv_value
932 = gen_rtx_fmt_ee (binoptab->code, mode,
933 copy_rtx (op0), copy_rtx (op1));
934 else
935 equiv_value = 0;
937 emit_no_conflict_block (insns, target, op0, op1, equiv_value);
938 return target;
942 /* Synthesize double word shifts from single word shifts. */
943 if ((binoptab == lshr_optab || binoptab == ashl_optab
944 || binoptab == ashr_optab)
945 && class == MODE_INT
946 && GET_CODE (op1) == CONST_INT
947 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
948 && binoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
949 && ashl_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
950 && lshr_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
952 rtx insns, inter, equiv_value;
953 rtx into_target, outof_target;
954 rtx into_input, outof_input;
955 int shift_count, left_shift, outof_word;
957 /* If TARGET is the same as one of the operands, the REG_EQUAL note
958 won't be accurate, so use a new target. */
959 if (target == 0 || target == op0 || target == op1)
960 target = gen_reg_rtx (mode);
962 start_sequence ();
964 shift_count = INTVAL (op1);
966 /* OUTOF_* is the word we are shifting bits away from, and
967 INTO_* is the word that we are shifting bits towards, thus
968 they differ depending on the direction of the shift and
969 WORDS_BIG_ENDIAN. */
971 left_shift = binoptab == ashl_optab;
972 outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
974 outof_target = operand_subword (target, outof_word, 1, mode);
975 into_target = operand_subword (target, 1 - outof_word, 1, mode);
977 outof_input = operand_subword_force (op0, outof_word, mode);
978 into_input = operand_subword_force (op0, 1 - outof_word, mode);
980 if (shift_count >= BITS_PER_WORD)
982 inter = expand_binop (word_mode, binoptab,
983 outof_input,
984 GEN_INT (shift_count - BITS_PER_WORD),
985 into_target, unsignedp, next_methods);
987 if (inter != 0 && inter != into_target)
988 emit_move_insn (into_target, inter);
990 /* For a signed right shift, we must fill the word we are shifting
991 out of with copies of the sign bit. Otherwise it is zeroed. */
992 if (inter != 0 && binoptab != ashr_optab)
993 inter = CONST0_RTX (word_mode);
994 else if (inter != 0)
995 inter = expand_binop (word_mode, binoptab,
996 outof_input,
997 GEN_INT (BITS_PER_WORD - 1),
998 outof_target, unsignedp, next_methods);
1000 if (inter != 0 && inter != outof_target)
1001 emit_move_insn (outof_target, inter);
1003 else
1005 rtx carries;
1006 optab reverse_unsigned_shift, unsigned_shift;
1008 /* For a shift of less then BITS_PER_WORD, to compute the carry,
1009 we must do a logical shift in the opposite direction of the
1010 desired shift. */
1012 reverse_unsigned_shift = (left_shift ? lshr_optab : ashl_optab);
1014 /* For a shift of less than BITS_PER_WORD, to compute the word
1015 shifted towards, we need to unsigned shift the orig value of
1016 that word. */
1018 unsigned_shift = (left_shift ? ashl_optab : lshr_optab);
1020 carries = expand_binop (word_mode, reverse_unsigned_shift,
1021 outof_input,
1022 GEN_INT (BITS_PER_WORD - shift_count),
1023 0, unsignedp, next_methods);
1025 if (carries == 0)
1026 inter = 0;
1027 else
1028 inter = expand_binop (word_mode, unsigned_shift, into_input,
1029 op1, 0, unsignedp, next_methods);
1031 if (inter != 0)
1032 inter = expand_binop (word_mode, ior_optab, carries, inter,
1033 into_target, unsignedp, next_methods);
1035 if (inter != 0 && inter != into_target)
1036 emit_move_insn (into_target, inter);
1038 if (inter != 0)
1039 inter = expand_binop (word_mode, binoptab, outof_input,
1040 op1, outof_target, unsignedp, next_methods);
1042 if (inter != 0 && inter != outof_target)
1043 emit_move_insn (outof_target, inter);
1046 insns = get_insns ();
1047 end_sequence ();
1049 if (inter != 0)
1051 if (binoptab->code != UNKNOWN)
1052 equiv_value = gen_rtx_fmt_ee (binoptab->code, mode, op0, op1);
1053 else
1054 equiv_value = 0;
1056 emit_no_conflict_block (insns, target, op0, op1, equiv_value);
1057 return target;
1061 /* Synthesize double word rotates from single word shifts. */
1062 if ((binoptab == rotl_optab || binoptab == rotr_optab)
1063 && class == MODE_INT
1064 && GET_CODE (op1) == CONST_INT
1065 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
1066 && ashl_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
1067 && lshr_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
1069 rtx insns, equiv_value;
1070 rtx into_target, outof_target;
1071 rtx into_input, outof_input;
1072 rtx inter;
1073 int shift_count, left_shift, outof_word;
1075 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1076 won't be accurate, so use a new target. */
1077 if (target == 0 || target == op0 || target == op1)
1078 target = gen_reg_rtx (mode);
1080 start_sequence ();
1082 shift_count = INTVAL (op1);
1084 /* OUTOF_* is the word we are shifting bits away from, and
1085 INTO_* is the word that we are shifting bits towards, thus
1086 they differ depending on the direction of the shift and
1087 WORDS_BIG_ENDIAN. */
1089 left_shift = (binoptab == rotl_optab);
1090 outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
1092 outof_target = operand_subword (target, outof_word, 1, mode);
1093 into_target = operand_subword (target, 1 - outof_word, 1, mode);
1095 outof_input = operand_subword_force (op0, outof_word, mode);
1096 into_input = operand_subword_force (op0, 1 - outof_word, mode);
1098 if (shift_count == BITS_PER_WORD)
1100 /* This is just a word swap. */
1101 emit_move_insn (outof_target, into_input);
1102 emit_move_insn (into_target, outof_input);
1103 inter = const0_rtx;
1105 else
1107 rtx into_temp1, into_temp2, outof_temp1, outof_temp2;
1108 rtx first_shift_count, second_shift_count;
1109 optab reverse_unsigned_shift, unsigned_shift;
1111 reverse_unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
1112 ? lshr_optab : ashl_optab);
1114 unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
1115 ? ashl_optab : lshr_optab);
1117 if (shift_count > BITS_PER_WORD)
1119 first_shift_count = GEN_INT (shift_count - BITS_PER_WORD);
1120 second_shift_count = GEN_INT (2*BITS_PER_WORD - shift_count);
1122 else
1124 first_shift_count = GEN_INT (BITS_PER_WORD - shift_count);
1125 second_shift_count = GEN_INT (shift_count);
1128 into_temp1 = expand_binop (word_mode, unsigned_shift,
1129 outof_input, first_shift_count,
1130 NULL_RTX, unsignedp, next_methods);
1131 into_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
1132 into_input, second_shift_count,
1133 into_target, unsignedp, next_methods);
1135 if (into_temp1 != 0 && into_temp2 != 0)
1136 inter = expand_binop (word_mode, ior_optab, into_temp1, into_temp2,
1137 into_target, unsignedp, next_methods);
1138 else
1139 inter = 0;
1141 if (inter != 0 && inter != into_target)
1142 emit_move_insn (into_target, inter);
1144 outof_temp1 = expand_binop (word_mode, unsigned_shift,
1145 into_input, first_shift_count,
1146 NULL_RTX, unsignedp, next_methods);
1147 outof_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
1148 outof_input, second_shift_count,
1149 outof_target, unsignedp, next_methods);
1151 if (inter != 0 && outof_temp1 != 0 && outof_temp2 != 0)
1152 inter = expand_binop (word_mode, ior_optab,
1153 outof_temp1, outof_temp2,
1154 outof_target, unsignedp, next_methods);
1156 if (inter != 0 && inter != outof_target)
1157 emit_move_insn (outof_target, inter);
1160 insns = get_insns ();
1161 end_sequence ();
1163 if (inter != 0)
1165 if (binoptab->code != UNKNOWN)
1166 equiv_value = gen_rtx_fmt_ee (binoptab->code, mode, op0, op1);
1167 else
1168 equiv_value = 0;
1170 /* We can't make this a no conflict block if this is a word swap,
1171 because the word swap case fails if the input and output values
1172 are in the same register. */
1173 if (shift_count != BITS_PER_WORD)
1174 emit_no_conflict_block (insns, target, op0, op1, equiv_value);
1175 else
1176 emit_insns (insns);
1179 return target;
1183 /* These can be done a word at a time by propagating carries. */
1184 if ((binoptab == add_optab || binoptab == sub_optab)
1185 && class == MODE_INT
1186 && GET_MODE_SIZE (mode) >= 2 * UNITS_PER_WORD
1187 && binoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
1189 unsigned int i;
1190 optab otheroptab = binoptab == add_optab ? sub_optab : add_optab;
1191 unsigned int nwords = GET_MODE_BITSIZE (mode) / BITS_PER_WORD;
1192 rtx carry_in = NULL_RTX, carry_out = NULL_RTX;
1193 rtx xop0, xop1;
1195 /* We can handle either a 1 or -1 value for the carry. If STORE_FLAG
1196 value is one of those, use it. Otherwise, use 1 since it is the
1197 one easiest to get. */
1198 #if STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1
1199 int normalizep = STORE_FLAG_VALUE;
1200 #else
1201 int normalizep = 1;
1202 #endif
1204 /* Prepare the operands. */
1205 xop0 = force_reg (mode, op0);
1206 xop1 = force_reg (mode, op1);
1208 if (target == 0 || GET_CODE (target) != REG
1209 || target == xop0 || target == xop1)
1210 target = gen_reg_rtx (mode);
1212 /* Indicate for flow that the entire target reg is being set. */
1213 if (GET_CODE (target) == REG)
1214 emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
1216 /* Do the actual arithmetic. */
1217 for (i = 0; i < nwords; i++)
1219 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
1220 rtx target_piece = operand_subword (target, index, 1, mode);
1221 rtx op0_piece = operand_subword_force (xop0, index, mode);
1222 rtx op1_piece = operand_subword_force (xop1, index, mode);
1223 rtx x;
1225 /* Main add/subtract of the input operands. */
1226 x = expand_binop (word_mode, binoptab,
1227 op0_piece, op1_piece,
1228 target_piece, unsignedp, next_methods);
1229 if (x == 0)
1230 break;
1232 if (i + 1 < nwords)
1234 /* Store carry from main add/subtract. */
1235 carry_out = gen_reg_rtx (word_mode);
1236 carry_out = emit_store_flag_force (carry_out,
1237 (binoptab == add_optab
1238 ? LT : GT),
1239 x, op0_piece,
1240 word_mode, 1, normalizep);
1243 if (i > 0)
1245 rtx newx;
1247 /* Add/subtract previous carry to main result. */
1248 newx = expand_binop (word_mode,
1249 normalizep == 1 ? binoptab : otheroptab,
1250 x, carry_in,
1251 NULL_RTX, 1, next_methods);
1253 if (i + 1 < nwords)
1255 /* Get out carry from adding/subtracting carry in. */
1256 rtx carry_tmp = gen_reg_rtx (word_mode);
1257 carry_tmp = emit_store_flag_force (carry_tmp,
1258 (binoptab == add_optab
1259 ? LT : GT),
1260 newx, x,
1261 word_mode, 1, normalizep);
1263 /* Logical-ior the two poss. carry together. */
1264 carry_out = expand_binop (word_mode, ior_optab,
1265 carry_out, carry_tmp,
1266 carry_out, 0, next_methods);
1267 if (carry_out == 0)
1268 break;
1270 emit_move_insn (target_piece, newx);
1273 carry_in = carry_out;
1276 if (i == GET_MODE_BITSIZE (mode) / BITS_PER_WORD)
1278 if (mov_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
1280 rtx temp = emit_move_insn (target, target);
1282 set_unique_reg_note (temp,
1283 REG_EQUAL,
1284 gen_rtx_fmt_ee (binoptab->code, mode,
1285 copy_rtx (xop0),
1286 copy_rtx (xop1)));
1289 return target;
1292 else
1293 delete_insns_since (last);
1296 /* If we want to multiply two two-word values and have normal and widening
1297 multiplies of single-word values, we can do this with three smaller
1298 multiplications. Note that we do not make a REG_NO_CONFLICT block here
1299 because we are not operating on one word at a time.
1301 The multiplication proceeds as follows:
1302 _______________________
1303 [__op0_high_|__op0_low__]
1304 _______________________
1305 * [__op1_high_|__op1_low__]
1306 _______________________________________________
1307 _______________________
1308 (1) [__op0_low__*__op1_low__]
1309 _______________________
1310 (2a) [__op0_low__*__op1_high_]
1311 _______________________
1312 (2b) [__op0_high_*__op1_low__]
1313 _______________________
1314 (3) [__op0_high_*__op1_high_]
1317 This gives a 4-word result. Since we are only interested in the
1318 lower 2 words, partial result (3) and the upper words of (2a) and
1319 (2b) don't need to be calculated. Hence (2a) and (2b) can be
1320 calculated using non-widening multiplication.
1322 (1), however, needs to be calculated with an unsigned widening
1323 multiplication. If this operation is not directly supported we
1324 try using a signed widening multiplication and adjust the result.
1325 This adjustment works as follows:
1327 If both operands are positive then no adjustment is needed.
1329 If the operands have different signs, for example op0_low < 0 and
1330 op1_low >= 0, the instruction treats the most significant bit of
1331 op0_low as a sign bit instead of a bit with significance
1332 2**(BITS_PER_WORD-1), i.e. the instruction multiplies op1_low
1333 with 2**BITS_PER_WORD - op0_low, and two's complements the
1334 result. Conclusion: We need to add op1_low * 2**BITS_PER_WORD to
1335 the result.
1337 Similarly, if both operands are negative, we need to add
1338 (op0_low + op1_low) * 2**BITS_PER_WORD.
1340 We use a trick to adjust quickly. We logically shift op0_low right
1341 (op1_low) BITS_PER_WORD-1 steps to get 0 or 1, and add this to
1342 op0_high (op1_high) before it is used to calculate 2b (2a). If no
1343 logical shift exists, we do an arithmetic right shift and subtract
1344 the 0 or -1. */
1346 if (binoptab == smul_optab
1347 && class == MODE_INT
1348 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
1349 && smul_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
1350 && add_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
1351 && ((umul_widen_optab->handlers[(int) mode].insn_code
1352 != CODE_FOR_nothing)
1353 || (smul_widen_optab->handlers[(int) mode].insn_code
1354 != CODE_FOR_nothing)))
1356 int low = (WORDS_BIG_ENDIAN ? 1 : 0);
1357 int high = (WORDS_BIG_ENDIAN ? 0 : 1);
1358 rtx op0_high = operand_subword_force (op0, high, mode);
1359 rtx op0_low = operand_subword_force (op0, low, mode);
1360 rtx op1_high = operand_subword_force (op1, high, mode);
1361 rtx op1_low = operand_subword_force (op1, low, mode);
1362 rtx product = 0;
1363 rtx op0_xhigh = NULL_RTX;
1364 rtx op1_xhigh = NULL_RTX;
1366 /* If the target is the same as one of the inputs, don't use it. This
1367 prevents problems with the REG_EQUAL note. */
1368 if (target == op0 || target == op1
1369 || (target != 0 && GET_CODE (target) != REG))
1370 target = 0;
1372 /* Multiply the two lower words to get a double-word product.
1373 If unsigned widening multiplication is available, use that;
1374 otherwise use the signed form and compensate. */
1376 if (umul_widen_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
1378 product = expand_binop (mode, umul_widen_optab, op0_low, op1_low,
1379 target, 1, OPTAB_DIRECT);
1381 /* If we didn't succeed, delete everything we did so far. */
1382 if (product == 0)
1383 delete_insns_since (last);
1384 else
1385 op0_xhigh = op0_high, op1_xhigh = op1_high;
1388 if (product == 0
1389 && smul_widen_optab->handlers[(int) mode].insn_code
1390 != CODE_FOR_nothing)
1392 rtx wordm1 = GEN_INT (BITS_PER_WORD - 1);
1393 product = expand_binop (mode, smul_widen_optab, op0_low, op1_low,
1394 target, 1, OPTAB_DIRECT);
1395 op0_xhigh = expand_binop (word_mode, lshr_optab, op0_low, wordm1,
1396 NULL_RTX, 1, next_methods);
1397 if (op0_xhigh)
1398 op0_xhigh = expand_binop (word_mode, add_optab, op0_high,
1399 op0_xhigh, op0_xhigh, 0, next_methods);
1400 else
1402 op0_xhigh = expand_binop (word_mode, ashr_optab, op0_low, wordm1,
1403 NULL_RTX, 0, next_methods);
1404 if (op0_xhigh)
1405 op0_xhigh = expand_binop (word_mode, sub_optab, op0_high,
1406 op0_xhigh, op0_xhigh, 0,
1407 next_methods);
1410 op1_xhigh = expand_binop (word_mode, lshr_optab, op1_low, wordm1,
1411 NULL_RTX, 1, next_methods);
1412 if (op1_xhigh)
1413 op1_xhigh = expand_binop (word_mode, add_optab, op1_high,
1414 op1_xhigh, op1_xhigh, 0, next_methods);
1415 else
1417 op1_xhigh = expand_binop (word_mode, ashr_optab, op1_low, wordm1,
1418 NULL_RTX, 0, next_methods);
1419 if (op1_xhigh)
1420 op1_xhigh = expand_binop (word_mode, sub_optab, op1_high,
1421 op1_xhigh, op1_xhigh, 0,
1422 next_methods);
1426 /* If we have been able to directly compute the product of the
1427 low-order words of the operands and perform any required adjustments
1428 of the operands, we proceed by trying two more multiplications
1429 and then computing the appropriate sum.
1431 We have checked above that the required addition is provided.
1432 Full-word addition will normally always succeed, especially if
1433 it is provided at all, so we don't worry about its failure. The
1434 multiplication may well fail, however, so we do handle that. */
1436 if (product && op0_xhigh && op1_xhigh)
1438 rtx product_high = operand_subword (product, high, 1, mode);
1439 rtx temp = expand_binop (word_mode, binoptab, op0_low, op1_xhigh,
1440 NULL_RTX, 0, OPTAB_DIRECT);
1442 if (temp != 0)
1443 temp = expand_binop (word_mode, add_optab, temp, product_high,
1444 product_high, 0, next_methods);
1446 if (temp != 0 && temp != product_high)
1447 emit_move_insn (product_high, temp);
1449 if (temp != 0)
1450 temp = expand_binop (word_mode, binoptab, op1_low, op0_xhigh,
1451 NULL_RTX, 0, OPTAB_DIRECT);
1453 if (temp != 0)
1454 temp = expand_binop (word_mode, add_optab, temp,
1455 product_high, product_high,
1456 0, next_methods);
1458 if (temp != 0 && temp != product_high)
1459 emit_move_insn (product_high, temp);
1461 if (temp != 0)
1463 if (mov_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
1465 temp = emit_move_insn (product, product);
1466 set_unique_reg_note (temp,
1467 REG_EQUAL,
1468 gen_rtx_fmt_ee (MULT, mode,
1469 copy_rtx (op0),
1470 copy_rtx (op1)));
1473 return product;
1477 /* If we get here, we couldn't do it for some reason even though we
1478 originally thought we could. Delete anything we've emitted in
1479 trying to do it. */
1481 delete_insns_since (last);
1484 /* We need to open-code the complex type operations: '+, -, * and /' */
1486 /* At this point we allow operations between two similar complex
1487 numbers, and also if one of the operands is not a complex number
1488 but rather of MODE_FLOAT or MODE_INT. However, the caller
1489 must make sure that the MODE of the non-complex operand matches
1490 the SUBMODE of the complex operand. */
1492 if (class == MODE_COMPLEX_FLOAT || class == MODE_COMPLEX_INT)
1494 rtx real0 = 0, imag0 = 0;
1495 rtx real1 = 0, imag1 = 0;
1496 rtx realr, imagr, res;
1497 rtx seq;
1498 rtx equiv_value;
1499 int ok = 0;
1501 /* Find the correct mode for the real and imaginary parts */
1502 enum machine_mode submode
1503 = mode_for_size (GET_MODE_UNIT_SIZE (mode) * BITS_PER_UNIT,
1504 class == MODE_COMPLEX_INT ? MODE_INT : MODE_FLOAT,
1507 if (submode == BLKmode)
1508 abort ();
1510 if (! target)
1511 target = gen_reg_rtx (mode);
1513 start_sequence ();
1515 realr = gen_realpart (submode, target);
1516 imagr = gen_imagpart (submode, target);
1518 if (GET_MODE (op0) == mode)
1520 real0 = gen_realpart (submode, op0);
1521 imag0 = gen_imagpart (submode, op0);
1523 else
1524 real0 = op0;
1526 if (GET_MODE (op1) == mode)
1528 real1 = gen_realpart (submode, op1);
1529 imag1 = gen_imagpart (submode, op1);
1531 else
1532 real1 = op1;
1534 if (real0 == 0 || real1 == 0 || ! (imag0 != 0|| imag1 != 0))
1535 abort ();
1537 switch (binoptab->code)
1539 case PLUS:
1540 /* (a+ib) + (c+id) = (a+c) + i(b+d) */
1541 case MINUS:
1542 /* (a+ib) - (c+id) = (a-c) + i(b-d) */
1543 res = expand_binop (submode, binoptab, real0, real1,
1544 realr, unsignedp, methods);
1546 if (res == 0)
1547 break;
1548 else if (res != realr)
1549 emit_move_insn (realr, res);
1551 if (imag0 && imag1)
1552 res = expand_binop (submode, binoptab, imag0, imag1,
1553 imagr, unsignedp, methods);
1554 else if (imag0)
1555 res = imag0;
1556 else if (binoptab->code == MINUS)
1557 res = expand_unop (submode,
1558 binoptab == subv_optab ? negv_optab : neg_optab,
1559 imag1, imagr, unsignedp);
1560 else
1561 res = imag1;
1563 if (res == 0)
1564 break;
1565 else if (res != imagr)
1566 emit_move_insn (imagr, res);
1568 ok = 1;
1569 break;
1571 case MULT:
1572 /* (a+ib) * (c+id) = (ac-bd) + i(ad+cb) */
1574 if (imag0 && imag1)
1576 rtx temp1, temp2;
1578 /* Don't fetch these from memory more than once. */
1579 real0 = force_reg (submode, real0);
1580 real1 = force_reg (submode, real1);
1581 imag0 = force_reg (submode, imag0);
1582 imag1 = force_reg (submode, imag1);
1584 temp1 = expand_binop (submode, binoptab, real0, real1, NULL_RTX,
1585 unsignedp, methods);
1587 temp2 = expand_binop (submode, binoptab, imag0, imag1, NULL_RTX,
1588 unsignedp, methods);
1590 if (temp1 == 0 || temp2 == 0)
1591 break;
1593 res = (expand_binop
1594 (submode,
1595 binoptab == smulv_optab ? subv_optab : sub_optab,
1596 temp1, temp2, realr, unsignedp, methods));
1598 if (res == 0)
1599 break;
1600 else if (res != realr)
1601 emit_move_insn (realr, res);
1603 temp1 = expand_binop (submode, binoptab, real0, imag1,
1604 NULL_RTX, unsignedp, methods);
1606 temp2 = expand_binop (submode, binoptab, real1, imag0,
1607 NULL_RTX, unsignedp, methods);
1609 if (temp1 == 0 || temp2 == 0)
1610 break;
1612 res = (expand_binop
1613 (submode,
1614 binoptab == smulv_optab ? addv_optab : add_optab,
1615 temp1, temp2, imagr, unsignedp, methods));
1617 if (res == 0)
1618 break;
1619 else if (res != imagr)
1620 emit_move_insn (imagr, res);
1622 ok = 1;
1624 else
1626 /* Don't fetch these from memory more than once. */
1627 real0 = force_reg (submode, real0);
1628 real1 = force_reg (submode, real1);
1630 res = expand_binop (submode, binoptab, real0, real1,
1631 realr, unsignedp, methods);
1632 if (res == 0)
1633 break;
1634 else if (res != realr)
1635 emit_move_insn (realr, res);
1637 if (imag0 != 0)
1638 res = expand_binop (submode, binoptab,
1639 real1, imag0, imagr, unsignedp, methods);
1640 else
1641 res = expand_binop (submode, binoptab,
1642 real0, imag1, imagr, unsignedp, methods);
1644 if (res == 0)
1645 break;
1646 else if (res != imagr)
1647 emit_move_insn (imagr, res);
1649 ok = 1;
1651 break;
1653 case DIV:
1654 /* (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd)) */
1656 if (imag1 == 0)
1658 /* (a+ib) / (c+i0) = (a/c) + i(b/c) */
1660 /* Don't fetch these from memory more than once. */
1661 real1 = force_reg (submode, real1);
1663 /* Simply divide the real and imaginary parts by `c' */
1664 if (class == MODE_COMPLEX_FLOAT)
1665 res = expand_binop (submode, binoptab, real0, real1,
1666 realr, unsignedp, methods);
1667 else
1668 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
1669 real0, real1, realr, unsignedp);
1671 if (res == 0)
1672 break;
1673 else if (res != realr)
1674 emit_move_insn (realr, res);
1676 if (class == MODE_COMPLEX_FLOAT)
1677 res = expand_binop (submode, binoptab, imag0, real1,
1678 imagr, unsignedp, methods);
1679 else
1680 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
1681 imag0, real1, imagr, unsignedp);
1683 if (res == 0)
1684 break;
1685 else if (res != imagr)
1686 emit_move_insn (imagr, res);
1688 ok = 1;
1690 else
1692 switch (flag_complex_divide_method)
1694 case 0:
1695 ok = expand_cmplxdiv_straight (real0, real1, imag0, imag1,
1696 realr, imagr, submode,
1697 unsignedp, methods,
1698 class, binoptab);
1699 break;
1701 case 1:
1702 ok = expand_cmplxdiv_wide (real0, real1, imag0, imag1,
1703 realr, imagr, submode,
1704 unsignedp, methods,
1705 class, binoptab);
1706 break;
1708 default:
1709 abort ();
1712 break;
1714 default:
1715 abort ();
1718 seq = get_insns ();
1719 end_sequence ();
1721 if (ok)
1723 if (binoptab->code != UNKNOWN)
1724 equiv_value
1725 = gen_rtx_fmt_ee (binoptab->code, mode,
1726 copy_rtx (op0), copy_rtx (op1));
1727 else
1728 equiv_value = 0;
1730 emit_no_conflict_block (seq, target, op0, op1, equiv_value);
1732 return target;
1736 /* It can't be open-coded in this mode.
1737 Use a library call if one is available and caller says that's ok. */
1739 if (binoptab->handlers[(int) mode].libfunc
1740 && (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN))
1742 rtx insns;
1743 rtx op1x = op1;
1744 enum machine_mode op1_mode = mode;
1745 rtx value;
1747 start_sequence ();
1749 if (shift_op)
1751 op1_mode = word_mode;
1752 /* Specify unsigned here,
1753 since negative shift counts are meaningless. */
1754 op1x = convert_to_mode (word_mode, op1, 1);
1757 if (GET_MODE (op0) != VOIDmode
1758 && GET_MODE (op0) != mode)
1759 op0 = convert_to_mode (mode, op0, unsignedp);
1761 /* Pass 1 for NO_QUEUE so we don't lose any increments
1762 if the libcall is cse'd or moved. */
1763 value = emit_library_call_value (binoptab->handlers[(int) mode].libfunc,
1764 NULL_RTX, LCT_CONST, mode, 2,
1765 op0, mode, op1x, op1_mode);
1767 insns = get_insns ();
1768 end_sequence ();
1770 target = gen_reg_rtx (mode);
1771 emit_libcall_block (insns, target, value,
1772 gen_rtx_fmt_ee (binoptab->code, mode, op0, op1));
1774 return target;
1777 delete_insns_since (last);
1779 /* It can't be done in this mode. Can we do it in a wider mode? */
1781 if (! (methods == OPTAB_WIDEN || methods == OPTAB_LIB_WIDEN
1782 || methods == OPTAB_MUST_WIDEN))
1784 /* Caller says, don't even try. */
1785 delete_insns_since (entry_last);
1786 return 0;
1789 /* Compute the value of METHODS to pass to recursive calls.
1790 Don't allow widening to be tried recursively. */
1792 methods = (methods == OPTAB_LIB_WIDEN ? OPTAB_LIB : OPTAB_DIRECT);
1794 /* Look for a wider mode of the same class for which it appears we can do
1795 the operation. */
1797 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
1799 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
1800 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
1802 if ((binoptab->handlers[(int) wider_mode].insn_code
1803 != CODE_FOR_nothing)
1804 || (methods == OPTAB_LIB
1805 && binoptab->handlers[(int) wider_mode].libfunc))
1807 rtx xop0 = op0, xop1 = op1;
1808 int no_extend = 0;
1810 /* For certain integer operations, we need not actually extend
1811 the narrow operands, as long as we will truncate
1812 the results to the same narrowness. */
1814 if ((binoptab == ior_optab || binoptab == and_optab
1815 || binoptab == xor_optab
1816 || binoptab == add_optab || binoptab == sub_optab
1817 || binoptab == smul_optab || binoptab == ashl_optab)
1818 && class == MODE_INT)
1819 no_extend = 1;
1821 xop0 = widen_operand (xop0, wider_mode, mode,
1822 unsignedp, no_extend);
1824 /* The second operand of a shift must always be extended. */
1825 xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
1826 no_extend && binoptab != ashl_optab);
1828 temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
1829 unsignedp, methods);
1830 if (temp)
1832 if (class != MODE_INT)
1834 if (target == 0)
1835 target = gen_reg_rtx (mode);
1836 convert_move (target, temp, 0);
1837 return target;
1839 else
1840 return gen_lowpart (mode, temp);
1842 else
1843 delete_insns_since (last);
1848 delete_insns_since (entry_last);
1849 return 0;
1852 /* Expand a binary operator which has both signed and unsigned forms.
1853 UOPTAB is the optab for unsigned operations, and SOPTAB is for
1854 signed operations.
1856 If we widen unsigned operands, we may use a signed wider operation instead
1857 of an unsigned wider operation, since the result would be the same. */
1860 sign_expand_binop (mode, uoptab, soptab, op0, op1, target, unsignedp, methods)
1861 enum machine_mode mode;
1862 optab uoptab, soptab;
1863 rtx op0, op1, target;
1864 int unsignedp;
1865 enum optab_methods methods;
1867 rtx temp;
1868 optab direct_optab = unsignedp ? uoptab : soptab;
1869 struct optab wide_soptab;
1871 /* Do it without widening, if possible. */
1872 temp = expand_binop (mode, direct_optab, op0, op1, target,
1873 unsignedp, OPTAB_DIRECT);
1874 if (temp || methods == OPTAB_DIRECT)
1875 return temp;
1877 /* Try widening to a signed int. Make a fake signed optab that
1878 hides any signed insn for direct use. */
1879 wide_soptab = *soptab;
1880 wide_soptab.handlers[(int) mode].insn_code = CODE_FOR_nothing;
1881 wide_soptab.handlers[(int) mode].libfunc = 0;
1883 temp = expand_binop (mode, &wide_soptab, op0, op1, target,
1884 unsignedp, OPTAB_WIDEN);
1886 /* For unsigned operands, try widening to an unsigned int. */
1887 if (temp == 0 && unsignedp)
1888 temp = expand_binop (mode, uoptab, op0, op1, target,
1889 unsignedp, OPTAB_WIDEN);
1890 if (temp || methods == OPTAB_WIDEN)
1891 return temp;
1893 /* Use the right width lib call if that exists. */
1894 temp = expand_binop (mode, direct_optab, op0, op1, target, unsignedp, OPTAB_LIB);
1895 if (temp || methods == OPTAB_LIB)
1896 return temp;
1898 /* Must widen and use a lib call, use either signed or unsigned. */
1899 temp = expand_binop (mode, &wide_soptab, op0, op1, target,
1900 unsignedp, methods);
1901 if (temp != 0)
1902 return temp;
1903 if (unsignedp)
1904 return expand_binop (mode, uoptab, op0, op1, target,
1905 unsignedp, methods);
1906 return 0;
1909 /* Generate code to perform an operation specified by BINOPTAB
1910 on operands OP0 and OP1, with two results to TARG1 and TARG2.
1911 We assume that the order of the operands for the instruction
1912 is TARG0, OP0, OP1, TARG1, which would fit a pattern like
1913 [(set TARG0 (operate OP0 OP1)) (set TARG1 (operate ...))].
1915 Either TARG0 or TARG1 may be zero, but what that means is that
1916 the result is not actually wanted. We will generate it into
1917 a dummy pseudo-reg and discard it. They may not both be zero.
1919 Returns 1 if this operation can be performed; 0 if not. */
1922 expand_twoval_binop (binoptab, op0, op1, targ0, targ1, unsignedp)
1923 optab binoptab;
1924 rtx op0, op1;
1925 rtx targ0, targ1;
1926 int unsignedp;
1928 enum machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
1929 enum mode_class class;
1930 enum machine_mode wider_mode;
1931 rtx entry_last = get_last_insn ();
1932 rtx last;
1934 class = GET_MODE_CLASS (mode);
1936 op0 = protect_from_queue (op0, 0);
1937 op1 = protect_from_queue (op1, 0);
1939 if (flag_force_mem)
1941 op0 = force_not_mem (op0);
1942 op1 = force_not_mem (op1);
1945 /* If we are inside an appropriately-short loop and one operand is an
1946 expensive constant, force it into a register. */
1947 if (CONSTANT_P (op0) && preserve_subexpressions_p ()
1948 && rtx_cost (op0, binoptab->code) > COSTS_N_INSNS (1))
1949 op0 = force_reg (mode, op0);
1951 if (CONSTANT_P (op1) && preserve_subexpressions_p ()
1952 && rtx_cost (op1, binoptab->code) > COSTS_N_INSNS (1))
1953 op1 = force_reg (mode, op1);
1955 if (targ0)
1956 targ0 = protect_from_queue (targ0, 1);
1957 else
1958 targ0 = gen_reg_rtx (mode);
1959 if (targ1)
1960 targ1 = protect_from_queue (targ1, 1);
1961 else
1962 targ1 = gen_reg_rtx (mode);
1964 /* Record where to go back to if we fail. */
1965 last = get_last_insn ();
1967 if (binoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
1969 int icode = (int) binoptab->handlers[(int) mode].insn_code;
1970 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
1971 enum machine_mode mode1 = insn_data[icode].operand[2].mode;
1972 rtx pat;
1973 rtx xop0 = op0, xop1 = op1;
1975 /* In case this insn wants input operands in modes different from the
1976 result, convert the operands. */
1977 if (GET_MODE (op0) != VOIDmode && GET_MODE (op0) != mode0)
1978 xop0 = convert_to_mode (mode0, xop0, unsignedp);
1980 if (GET_MODE (op1) != VOIDmode && GET_MODE (op1) != mode1)
1981 xop1 = convert_to_mode (mode1, xop1, unsignedp);
1983 /* Now, if insn doesn't accept these operands, put them into pseudos. */
1984 if (! (*insn_data[icode].operand[1].predicate) (xop0, mode0))
1985 xop0 = copy_to_mode_reg (mode0, xop0);
1987 if (! (*insn_data[icode].operand[2].predicate) (xop1, mode1))
1988 xop1 = copy_to_mode_reg (mode1, xop1);
1990 /* We could handle this, but we should always be called with a pseudo
1991 for our targets and all insns should take them as outputs. */
1992 if (! (*insn_data[icode].operand[0].predicate) (targ0, mode)
1993 || ! (*insn_data[icode].operand[3].predicate) (targ1, mode))
1994 abort ();
1996 pat = GEN_FCN (icode) (targ0, xop0, xop1, targ1);
1997 if (pat)
1999 emit_insn (pat);
2000 return 1;
2002 else
2003 delete_insns_since (last);
2006 /* It can't be done in this mode. Can we do it in a wider mode? */
2008 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
2010 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
2011 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2013 if (binoptab->handlers[(int) wider_mode].insn_code
2014 != CODE_FOR_nothing)
2016 rtx t0 = gen_reg_rtx (wider_mode);
2017 rtx t1 = gen_reg_rtx (wider_mode);
2018 rtx cop0 = convert_modes (wider_mode, mode, op0, unsignedp);
2019 rtx cop1 = convert_modes (wider_mode, mode, op1, unsignedp);
2021 if (expand_twoval_binop (binoptab, cop0, cop1,
2022 t0, t1, unsignedp))
2024 convert_move (targ0, t0, unsignedp);
2025 convert_move (targ1, t1, unsignedp);
2026 return 1;
2028 else
2029 delete_insns_since (last);
2034 delete_insns_since (entry_last);
2035 return 0;
2038 /* Wrapper around expand_unop which takes an rtx code to specify
2039 the operation to perform, not an optab pointer. All other
2040 arguments are the same. */
2042 expand_simple_unop (mode, code, op0, target, unsignedp)
2043 enum machine_mode mode;
2044 enum rtx_code code;
2045 rtx op0;
2046 rtx target;
2047 int unsignedp;
2049 optab unop = code_to_optab [(int) code];
2050 if (unop == 0)
2051 abort ();
2053 return expand_unop (mode, unop, op0, target, unsignedp);
2056 /* Generate code to perform an operation specified by UNOPTAB
2057 on operand OP0, with result having machine-mode MODE.
2059 UNSIGNEDP is for the case where we have to widen the operands
2060 to perform the operation. It says to use zero-extension.
2062 If TARGET is nonzero, the value
2063 is generated there, if it is convenient to do so.
2064 In all cases an rtx is returned for the locus of the value;
2065 this may or may not be TARGET. */
2068 expand_unop (mode, unoptab, op0, target, unsignedp)
2069 enum machine_mode mode;
2070 optab unoptab;
2071 rtx op0;
2072 rtx target;
2073 int unsignedp;
2075 enum mode_class class;
2076 enum machine_mode wider_mode;
2077 rtx temp;
2078 rtx last = get_last_insn ();
2079 rtx pat;
2081 class = GET_MODE_CLASS (mode);
2083 op0 = protect_from_queue (op0, 0);
2085 if (flag_force_mem)
2087 op0 = force_not_mem (op0);
2090 if (target)
2091 target = protect_from_queue (target, 1);
2093 if (unoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
2095 int icode = (int) unoptab->handlers[(int) mode].insn_code;
2096 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
2097 rtx xop0 = op0;
2099 if (target)
2100 temp = target;
2101 else
2102 temp = gen_reg_rtx (mode);
2104 if (GET_MODE (xop0) != VOIDmode
2105 && GET_MODE (xop0) != mode0)
2106 xop0 = convert_to_mode (mode0, xop0, unsignedp);
2108 /* Now, if insn doesn't accept our operand, put it into a pseudo. */
2110 if (! (*insn_data[icode].operand[1].predicate) (xop0, mode0))
2111 xop0 = copy_to_mode_reg (mode0, xop0);
2113 if (! (*insn_data[icode].operand[0].predicate) (temp, mode))
2114 temp = gen_reg_rtx (mode);
2116 pat = GEN_FCN (icode) (temp, xop0);
2117 if (pat)
2119 if (GET_CODE (pat) == SEQUENCE
2120 && ! add_equal_note (pat, temp, unoptab->code, xop0, NULL_RTX))
2122 delete_insns_since (last);
2123 return expand_unop (mode, unoptab, op0, NULL_RTX, unsignedp);
2126 emit_insn (pat);
2128 return temp;
2130 else
2131 delete_insns_since (last);
2134 /* It can't be done in this mode. Can we open-code it in a wider mode? */
2136 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
2137 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
2138 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2140 if (unoptab->handlers[(int) wider_mode].insn_code != CODE_FOR_nothing)
2142 rtx xop0 = op0;
2144 /* For certain operations, we need not actually extend
2145 the narrow operand, as long as we will truncate the
2146 results to the same narrowness. */
2148 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
2149 (unoptab == neg_optab
2150 || unoptab == one_cmpl_optab)
2151 && class == MODE_INT);
2153 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
2154 unsignedp);
2156 if (temp)
2158 if (class != MODE_INT)
2160 if (target == 0)
2161 target = gen_reg_rtx (mode);
2162 convert_move (target, temp, 0);
2163 return target;
2165 else
2166 return gen_lowpart (mode, temp);
2168 else
2169 delete_insns_since (last);
2173 /* These can be done a word at a time. */
2174 if (unoptab == one_cmpl_optab
2175 && class == MODE_INT
2176 && GET_MODE_SIZE (mode) > UNITS_PER_WORD
2177 && unoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
2179 unsigned int i;
2180 rtx insns;
2182 if (target == 0 || target == op0)
2183 target = gen_reg_rtx (mode);
2185 start_sequence ();
2187 /* Do the actual arithmetic. */
2188 for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
2190 rtx target_piece = operand_subword (target, i, 1, mode);
2191 rtx x = expand_unop (word_mode, unoptab,
2192 operand_subword_force (op0, i, mode),
2193 target_piece, unsignedp);
2194 if (target_piece != x)
2195 emit_move_insn (target_piece, x);
2198 insns = get_insns ();
2199 end_sequence ();
2201 emit_no_conflict_block (insns, target, op0, NULL_RTX,
2202 gen_rtx_fmt_e (unoptab->code, mode,
2203 copy_rtx (op0)));
2204 return target;
2207 /* Open-code the complex negation operation. */
2208 else if (unoptab->code == NEG
2209 && (class == MODE_COMPLEX_FLOAT || class == MODE_COMPLEX_INT))
2211 rtx target_piece;
2212 rtx x;
2213 rtx seq;
2215 /* Find the correct mode for the real and imaginary parts */
2216 enum machine_mode submode
2217 = mode_for_size (GET_MODE_UNIT_SIZE (mode) * BITS_PER_UNIT,
2218 class == MODE_COMPLEX_INT ? MODE_INT : MODE_FLOAT,
2221 if (submode == BLKmode)
2222 abort ();
2224 if (target == 0)
2225 target = gen_reg_rtx (mode);
2227 start_sequence ();
2229 target_piece = gen_imagpart (submode, target);
2230 x = expand_unop (submode, unoptab,
2231 gen_imagpart (submode, op0),
2232 target_piece, unsignedp);
2233 if (target_piece != x)
2234 emit_move_insn (target_piece, x);
2236 target_piece = gen_realpart (submode, target);
2237 x = expand_unop (submode, unoptab,
2238 gen_realpart (submode, op0),
2239 target_piece, unsignedp);
2240 if (target_piece != x)
2241 emit_move_insn (target_piece, x);
2243 seq = get_insns ();
2244 end_sequence ();
2246 emit_no_conflict_block (seq, target, op0, 0,
2247 gen_rtx_fmt_e (unoptab->code, mode,
2248 copy_rtx (op0)));
2249 return target;
2252 /* Now try a library call in this mode. */
2253 if (unoptab->handlers[(int) mode].libfunc)
2255 rtx insns;
2256 rtx value;
2258 start_sequence ();
2260 /* Pass 1 for NO_QUEUE so we don't lose any increments
2261 if the libcall is cse'd or moved. */
2262 value = emit_library_call_value (unoptab->handlers[(int) mode].libfunc,
2263 NULL_RTX, LCT_CONST, mode, 1, op0, mode);
2264 insns = get_insns ();
2265 end_sequence ();
2267 target = gen_reg_rtx (mode);
2268 emit_libcall_block (insns, target, value,
2269 gen_rtx_fmt_e (unoptab->code, mode, op0));
2271 return target;
2274 /* It can't be done in this mode. Can we do it in a wider mode? */
2276 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
2278 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
2279 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2281 if ((unoptab->handlers[(int) wider_mode].insn_code
2282 != CODE_FOR_nothing)
2283 || unoptab->handlers[(int) wider_mode].libfunc)
2285 rtx xop0 = op0;
2287 /* For certain operations, we need not actually extend
2288 the narrow operand, as long as we will truncate the
2289 results to the same narrowness. */
2291 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
2292 (unoptab == neg_optab
2293 || unoptab == one_cmpl_optab)
2294 && class == MODE_INT);
2296 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
2297 unsignedp);
2299 if (temp)
2301 if (class != MODE_INT)
2303 if (target == 0)
2304 target = gen_reg_rtx (mode);
2305 convert_move (target, temp, 0);
2306 return target;
2308 else
2309 return gen_lowpart (mode, temp);
2311 else
2312 delete_insns_since (last);
2317 /* If there is no negate operation, try doing a subtract from zero.
2318 The US Software GOFAST library needs this. */
2319 if (unoptab->code == NEG)
2321 rtx temp;
2322 temp = expand_binop (mode,
2323 unoptab == negv_optab ? subv_optab : sub_optab,
2324 CONST0_RTX (mode), op0,
2325 target, unsignedp, OPTAB_LIB_WIDEN);
2326 if (temp)
2327 return temp;
2330 return 0;
2333 /* Emit code to compute the absolute value of OP0, with result to
2334 TARGET if convenient. (TARGET may be 0.) The return value says
2335 where the result actually is to be found.
2337 MODE is the mode of the operand; the mode of the result is
2338 different but can be deduced from MODE.
2343 expand_abs (mode, op0, target, result_unsignedp, safe)
2344 enum machine_mode mode;
2345 rtx op0;
2346 rtx target;
2347 int result_unsignedp;
2348 int safe;
2350 rtx temp, op1;
2352 if (! flag_trapv)
2353 result_unsignedp = 1;
2355 /* First try to do it with a special abs instruction. */
2356 temp = expand_unop (mode, result_unsignedp ? abs_optab : absv_optab,
2357 op0, target, 0);
2358 if (temp != 0)
2359 return temp;
2361 /* If we have a MAX insn, we can do this as MAX (x, -x). */
2362 if (smax_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
2364 rtx last = get_last_insn ();
2366 temp = expand_unop (mode, neg_optab, op0, NULL_RTX, 0);
2367 if (temp != 0)
2368 temp = expand_binop (mode, smax_optab, op0, temp, target, 0,
2369 OPTAB_WIDEN);
2371 if (temp != 0)
2372 return temp;
2374 delete_insns_since (last);
2377 /* If this machine has expensive jumps, we can do integer absolute
2378 value of X as (((signed) x >> (W-1)) ^ x) - ((signed) x >> (W-1)),
2379 where W is the width of MODE. */
2381 if (GET_MODE_CLASS (mode) == MODE_INT && BRANCH_COST >= 2)
2383 rtx extended = expand_shift (RSHIFT_EXPR, mode, op0,
2384 size_int (GET_MODE_BITSIZE (mode) - 1),
2385 NULL_RTX, 0);
2387 temp = expand_binop (mode, xor_optab, extended, op0, target, 0,
2388 OPTAB_LIB_WIDEN);
2389 if (temp != 0)
2390 temp = expand_binop (mode, result_unsignedp ? sub_optab : subv_optab,
2391 temp, extended, target, 0, OPTAB_LIB_WIDEN);
2393 if (temp != 0)
2394 return temp;
2397 /* If that does not win, use conditional jump and negate. */
2399 /* It is safe to use the target if it is the same
2400 as the source if this is also a pseudo register */
2401 if (op0 == target && GET_CODE (op0) == REG
2402 && REGNO (op0) >= FIRST_PSEUDO_REGISTER)
2403 safe = 1;
2405 op1 = gen_label_rtx ();
2406 if (target == 0 || ! safe
2407 || GET_MODE (target) != mode
2408 || (GET_CODE (target) == MEM && MEM_VOLATILE_P (target))
2409 || (GET_CODE (target) == REG
2410 && REGNO (target) < FIRST_PSEUDO_REGISTER))
2411 target = gen_reg_rtx (mode);
2413 emit_move_insn (target, op0);
2414 NO_DEFER_POP;
2416 /* If this mode is an integer too wide to compare properly,
2417 compare word by word. Rely on CSE to optimize constant cases. */
2418 if (GET_MODE_CLASS (mode) == MODE_INT
2419 && ! can_compare_p (GE, mode, ccp_jump))
2420 do_jump_by_parts_greater_rtx (mode, 0, target, const0_rtx,
2421 NULL_RTX, op1);
2422 else
2423 do_compare_rtx_and_jump (target, CONST0_RTX (mode), GE, 0, mode,
2424 NULL_RTX, NULL_RTX, op1);
2426 op0 = expand_unop (mode, result_unsignedp ? neg_optab : negv_optab,
2427 target, target, 0);
2428 if (op0 != target)
2429 emit_move_insn (target, op0);
2430 emit_label (op1);
2431 OK_DEFER_POP;
2432 return target;
2435 /* Emit code to compute the absolute value of OP0, with result to
2436 TARGET if convenient. (TARGET may be 0.) The return value says
2437 where the result actually is to be found.
2439 MODE is the mode of the operand; the mode of the result is
2440 different but can be deduced from MODE.
2442 UNSIGNEDP is relevant for complex integer modes. */
2445 expand_complex_abs (mode, op0, target, unsignedp)
2446 enum machine_mode mode;
2447 rtx op0;
2448 rtx target;
2449 int unsignedp;
2451 enum mode_class class = GET_MODE_CLASS (mode);
2452 enum machine_mode wider_mode;
2453 rtx temp;
2454 rtx entry_last = get_last_insn ();
2455 rtx last;
2456 rtx pat;
2457 optab this_abs_optab;
2459 /* Find the correct mode for the real and imaginary parts. */
2460 enum machine_mode submode
2461 = mode_for_size (GET_MODE_UNIT_SIZE (mode) * BITS_PER_UNIT,
2462 class == MODE_COMPLEX_INT ? MODE_INT : MODE_FLOAT,
2465 if (submode == BLKmode)
2466 abort ();
2468 op0 = protect_from_queue (op0, 0);
2470 if (flag_force_mem)
2472 op0 = force_not_mem (op0);
2475 last = get_last_insn ();
2477 if (target)
2478 target = protect_from_queue (target, 1);
2480 this_abs_optab = ! unsignedp && flag_trapv
2481 && (GET_MODE_CLASS(mode) == MODE_INT)
2482 ? absv_optab : abs_optab;
2484 if (this_abs_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
2486 int icode = (int) this_abs_optab->handlers[(int) mode].insn_code;
2487 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
2488 rtx xop0 = op0;
2490 if (target)
2491 temp = target;
2492 else
2493 temp = gen_reg_rtx (submode);
2495 if (GET_MODE (xop0) != VOIDmode
2496 && GET_MODE (xop0) != mode0)
2497 xop0 = convert_to_mode (mode0, xop0, unsignedp);
2499 /* Now, if insn doesn't accept our operand, put it into a pseudo. */
2501 if (! (*insn_data[icode].operand[1].predicate) (xop0, mode0))
2502 xop0 = copy_to_mode_reg (mode0, xop0);
2504 if (! (*insn_data[icode].operand[0].predicate) (temp, submode))
2505 temp = gen_reg_rtx (submode);
2507 pat = GEN_FCN (icode) (temp, xop0);
2508 if (pat)
2510 if (GET_CODE (pat) == SEQUENCE
2511 && ! add_equal_note (pat, temp, this_abs_optab->code, xop0,
2512 NULL_RTX))
2514 delete_insns_since (last);
2515 return expand_unop (mode, this_abs_optab, op0, NULL_RTX,
2516 unsignedp);
2519 emit_insn (pat);
2521 return temp;
2523 else
2524 delete_insns_since (last);
2527 /* It can't be done in this mode. Can we open-code it in a wider mode? */
2529 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
2530 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2532 if (this_abs_optab->handlers[(int) wider_mode].insn_code
2533 != CODE_FOR_nothing)
2535 rtx xop0 = op0;
2537 xop0 = convert_modes (wider_mode, mode, xop0, unsignedp);
2538 temp = expand_complex_abs (wider_mode, xop0, NULL_RTX, unsignedp);
2540 if (temp)
2542 if (class != MODE_COMPLEX_INT)
2544 if (target == 0)
2545 target = gen_reg_rtx (submode);
2546 convert_move (target, temp, 0);
2547 return target;
2549 else
2550 return gen_lowpart (submode, temp);
2552 else
2553 delete_insns_since (last);
2557 /* Open-code the complex absolute-value operation
2558 if we can open-code sqrt. Otherwise it's not worth while. */
2559 if (sqrt_optab->handlers[(int) submode].insn_code != CODE_FOR_nothing
2560 && ! flag_trapv)
2562 rtx real, imag, total;
2564 real = gen_realpart (submode, op0);
2565 imag = gen_imagpart (submode, op0);
2567 /* Square both parts. */
2568 real = expand_mult (submode, real, real, NULL_RTX, 0);
2569 imag = expand_mult (submode, imag, imag, NULL_RTX, 0);
2571 /* Sum the parts. */
2572 total = expand_binop (submode, add_optab, real, imag, NULL_RTX,
2573 0, OPTAB_LIB_WIDEN);
2575 /* Get sqrt in TARGET. Set TARGET to where the result is. */
2576 target = expand_unop (submode, sqrt_optab, total, target, 0);
2577 if (target == 0)
2578 delete_insns_since (last);
2579 else
2580 return target;
2583 /* Now try a library call in this mode. */
2584 if (this_abs_optab->handlers[(int) mode].libfunc)
2586 rtx insns;
2587 rtx value;
2589 start_sequence ();
2591 /* Pass 1 for NO_QUEUE so we don't lose any increments
2592 if the libcall is cse'd or moved. */
2593 value = emit_library_call_value (abs_optab->handlers[(int) mode].libfunc,
2594 NULL_RTX, LCT_CONST, submode, 1, op0, mode);
2595 insns = get_insns ();
2596 end_sequence ();
2598 target = gen_reg_rtx (submode);
2599 emit_libcall_block (insns, target, value,
2600 gen_rtx_fmt_e (this_abs_optab->code, mode, op0));
2602 return target;
2605 /* It can't be done in this mode. Can we do it in a wider mode? */
2607 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
2608 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2610 if ((this_abs_optab->handlers[(int) wider_mode].insn_code
2611 != CODE_FOR_nothing)
2612 || this_abs_optab->handlers[(int) wider_mode].libfunc)
2614 rtx xop0 = op0;
2616 xop0 = convert_modes (wider_mode, mode, xop0, unsignedp);
2618 temp = expand_complex_abs (wider_mode, xop0, NULL_RTX, unsignedp);
2620 if (temp)
2622 if (class != MODE_COMPLEX_INT)
2624 if (target == 0)
2625 target = gen_reg_rtx (submode);
2626 convert_move (target, temp, 0);
2627 return target;
2629 else
2630 return gen_lowpart (submode, temp);
2632 else
2633 delete_insns_since (last);
2637 delete_insns_since (entry_last);
2638 return 0;
2641 /* Generate an instruction whose insn-code is INSN_CODE,
2642 with two operands: an output TARGET and an input OP0.
2643 TARGET *must* be nonzero, and the output is always stored there.
2644 CODE is an rtx code such that (CODE OP0) is an rtx that describes
2645 the value that is stored into TARGET. */
2647 void
2648 emit_unop_insn (icode, target, op0, code)
2649 int icode;
2650 rtx target;
2651 rtx op0;
2652 enum rtx_code code;
2654 rtx temp;
2655 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
2656 rtx pat;
2658 temp = target = protect_from_queue (target, 1);
2660 op0 = protect_from_queue (op0, 0);
2662 /* Sign and zero extension from memory is often done specially on
2663 RISC machines, so forcing into a register here can pessimize
2664 code. */
2665 if (flag_force_mem && code != SIGN_EXTEND && code != ZERO_EXTEND)
2666 op0 = force_not_mem (op0);
2668 /* Now, if insn does not accept our operands, put them into pseudos. */
2670 if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
2671 op0 = copy_to_mode_reg (mode0, op0);
2673 if (! (*insn_data[icode].operand[0].predicate) (temp, GET_MODE (temp))
2674 || (flag_force_mem && GET_CODE (temp) == MEM))
2675 temp = gen_reg_rtx (GET_MODE (temp));
2677 pat = GEN_FCN (icode) (temp, op0);
2679 if (GET_CODE (pat) == SEQUENCE && code != UNKNOWN)
2680 add_equal_note (pat, temp, code, op0, NULL_RTX);
2682 emit_insn (pat);
2684 if (temp != target)
2685 emit_move_insn (target, temp);
2688 /* Emit code to perform a series of operations on a multi-word quantity, one
2689 word at a time.
2691 Such a block is preceded by a CLOBBER of the output, consists of multiple
2692 insns, each setting one word of the output, and followed by a SET copying
2693 the output to itself.
2695 Each of the insns setting words of the output receives a REG_NO_CONFLICT
2696 note indicating that it doesn't conflict with the (also multi-word)
2697 inputs. The entire block is surrounded by REG_LIBCALL and REG_RETVAL
2698 notes.
2700 INSNS is a block of code generated to perform the operation, not including
2701 the CLOBBER and final copy. All insns that compute intermediate values
2702 are first emitted, followed by the block as described above.
2704 TARGET, OP0, and OP1 are the output and inputs of the operations,
2705 respectively. OP1 may be zero for a unary operation.
2707 EQUIV, if non-zero, is an expression to be placed into a REG_EQUAL note
2708 on the last insn.
2710 If TARGET is not a register, INSNS is simply emitted with no special
2711 processing. Likewise if anything in INSNS is not an INSN or if
2712 there is a libcall block inside INSNS.
2714 The final insn emitted is returned. */
2717 emit_no_conflict_block (insns, target, op0, op1, equiv)
2718 rtx insns;
2719 rtx target;
2720 rtx op0, op1;
2721 rtx equiv;
2723 rtx prev, next, first, last, insn;
2725 if (GET_CODE (target) != REG || reload_in_progress)
2726 return emit_insns (insns);
2727 else
2728 for (insn = insns; insn; insn = NEXT_INSN (insn))
2729 if (GET_CODE (insn) != INSN
2730 || find_reg_note (insn, REG_LIBCALL, NULL_RTX))
2731 return emit_insns (insns);
2733 /* First emit all insns that do not store into words of the output and remove
2734 these from the list. */
2735 for (insn = insns; insn; insn = next)
2737 rtx set = 0;
2738 int i;
2740 next = NEXT_INSN (insn);
2742 if (GET_CODE (PATTERN (insn)) == SET || GET_CODE (PATTERN (insn)) == USE
2743 || GET_CODE (PATTERN (insn)) == CLOBBER)
2744 set = PATTERN (insn);
2745 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
2747 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
2748 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
2750 set = XVECEXP (PATTERN (insn), 0, i);
2751 break;
2755 if (set == 0)
2756 abort ();
2758 if (! reg_overlap_mentioned_p (target, SET_DEST (set)))
2760 if (PREV_INSN (insn))
2761 NEXT_INSN (PREV_INSN (insn)) = next;
2762 else
2763 insns = next;
2765 if (next)
2766 PREV_INSN (next) = PREV_INSN (insn);
2768 add_insn (insn);
2772 prev = get_last_insn ();
2774 /* Now write the CLOBBER of the output, followed by the setting of each
2775 of the words, followed by the final copy. */
2776 if (target != op0 && target != op1)
2777 emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
2779 for (insn = insns; insn; insn = next)
2781 next = NEXT_INSN (insn);
2782 add_insn (insn);
2784 if (op1 && GET_CODE (op1) == REG)
2785 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_NO_CONFLICT, op1,
2786 REG_NOTES (insn));
2788 if (op0 && GET_CODE (op0) == REG)
2789 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_NO_CONFLICT, op0,
2790 REG_NOTES (insn));
2793 if (mov_optab->handlers[(int) GET_MODE (target)].insn_code
2794 != CODE_FOR_nothing)
2796 last = emit_move_insn (target, target);
2797 if (equiv)
2798 set_unique_reg_note (last, REG_EQUAL, equiv);
2800 else
2802 last = get_last_insn ();
2804 /* Remove any existing REG_EQUAL note from "last", or else it will
2805 be mistaken for a note referring to the full contents of the
2806 alleged libcall value when found together with the REG_RETVAL
2807 note added below. An existing note can come from an insn
2808 expansion at "last". */
2809 remove_note (last, find_reg_note (last, REG_EQUAL, NULL_RTX));
2812 if (prev == 0)
2813 first = get_insns ();
2814 else
2815 first = NEXT_INSN (prev);
2817 /* Encapsulate the block so it gets manipulated as a unit. */
2818 REG_NOTES (first) = gen_rtx_INSN_LIST (REG_LIBCALL, last,
2819 REG_NOTES (first));
2820 REG_NOTES (last) = gen_rtx_INSN_LIST (REG_RETVAL, first, REG_NOTES (last));
2822 return last;
2825 /* Emit code to make a call to a constant function or a library call.
2827 INSNS is a list containing all insns emitted in the call.
2828 These insns leave the result in RESULT. Our block is to copy RESULT
2829 to TARGET, which is logically equivalent to EQUIV.
2831 We first emit any insns that set a pseudo on the assumption that these are
2832 loading constants into registers; doing so allows them to be safely cse'ed
2833 between blocks. Then we emit all the other insns in the block, followed by
2834 an insn to move RESULT to TARGET. This last insn will have a REQ_EQUAL
2835 note with an operand of EQUIV.
2837 Moving assignments to pseudos outside of the block is done to improve
2838 the generated code, but is not required to generate correct code,
2839 hence being unable to move an assignment is not grounds for not making
2840 a libcall block. There are two reasons why it is safe to leave these
2841 insns inside the block: First, we know that these pseudos cannot be
2842 used in generated RTL outside the block since they are created for
2843 temporary purposes within the block. Second, CSE will not record the
2844 values of anything set inside a libcall block, so we know they must
2845 be dead at the end of the block.
2847 Except for the first group of insns (the ones setting pseudos), the
2848 block is delimited by REG_RETVAL and REG_LIBCALL notes. */
2850 void
2851 emit_libcall_block (insns, target, result, equiv)
2852 rtx insns;
2853 rtx target;
2854 rtx result;
2855 rtx equiv;
2857 rtx final_dest = target;
2858 rtx prev, next, first, last, insn;
2860 /* If this is a reg with REG_USERVAR_P set, then it could possibly turn
2861 into a MEM later. Protect the libcall block from this change. */
2862 if (! REG_P (target) || REG_USERVAR_P (target))
2863 target = gen_reg_rtx (GET_MODE (target));
2865 /* If we're using non-call exceptions, a libcall corresponding to an
2866 operation that may trap may also trap. */
2867 if (flag_non_call_exceptions && may_trap_p (equiv))
2869 for (insn = insns; insn; insn = NEXT_INSN (insn))
2870 if (GET_CODE (insn) == CALL_INSN)
2872 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
2874 if (note != 0 && INTVAL (XEXP (note, 0)) <= 0)
2875 remove_note (insn, note);
2878 else
2879 /* look for any CALL_INSNs in this sequence, and attach a REG_EH_REGION
2880 reg note to indicate that this call cannot throw or execute a nonlocal
2881 goto (unless there is already a REG_EH_REGION note, in which case
2882 we update it). */
2883 for (insn = insns; insn; insn = NEXT_INSN (insn))
2884 if (GET_CODE (insn) == CALL_INSN)
2886 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
2888 if (note != 0)
2889 XEXP (note, 0) = GEN_INT (-1);
2890 else
2891 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EH_REGION, GEN_INT (-1),
2892 REG_NOTES (insn));
2895 /* First emit all insns that set pseudos. Remove them from the list as
2896 we go. Avoid insns that set pseudos which were referenced in previous
2897 insns. These can be generated by move_by_pieces, for example,
2898 to update an address. Similarly, avoid insns that reference things
2899 set in previous insns. */
2901 for (insn = insns; insn; insn = next)
2903 rtx set = single_set (insn);
2905 next = NEXT_INSN (insn);
2907 if (set != 0 && GET_CODE (SET_DEST (set)) == REG
2908 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER
2909 && (insn == insns
2910 || ((! INSN_P(insns)
2911 || ! reg_mentioned_p (SET_DEST (set), PATTERN (insns)))
2912 && ! reg_used_between_p (SET_DEST (set), insns, insn)
2913 && ! modified_in_p (SET_SRC (set), insns)
2914 && ! modified_between_p (SET_SRC (set), insns, insn))))
2916 if (PREV_INSN (insn))
2917 NEXT_INSN (PREV_INSN (insn)) = next;
2918 else
2919 insns = next;
2921 if (next)
2922 PREV_INSN (next) = PREV_INSN (insn);
2924 add_insn (insn);
2928 prev = get_last_insn ();
2930 /* Write the remaining insns followed by the final copy. */
2932 for (insn = insns; insn; insn = next)
2934 next = NEXT_INSN (insn);
2936 add_insn (insn);
2939 last = emit_move_insn (target, result);
2940 if (mov_optab->handlers[(int) GET_MODE (target)].insn_code
2941 != CODE_FOR_nothing)
2942 set_unique_reg_note (last, REG_EQUAL, copy_rtx (equiv));
2943 else
2945 /* Remove any existing REG_EQUAL note from "last", or else it will
2946 be mistaken for a note referring to the full contents of the
2947 libcall value when found together with the REG_RETVAL note added
2948 below. An existing note can come from an insn expansion at
2949 "last". */
2950 remove_note (last, find_reg_note (last, REG_EQUAL, NULL_RTX));
2953 if (final_dest != target)
2954 emit_move_insn (final_dest, target);
2956 if (prev == 0)
2957 first = get_insns ();
2958 else
2959 first = NEXT_INSN (prev);
2961 /* Encapsulate the block so it gets manipulated as a unit. */
2962 if (!flag_non_call_exceptions || !may_trap_p (equiv))
2964 REG_NOTES (first) = gen_rtx_INSN_LIST (REG_LIBCALL, last,
2965 REG_NOTES (first));
2966 REG_NOTES (last) = gen_rtx_INSN_LIST (REG_RETVAL, first,
2967 REG_NOTES (last));
2971 /* Generate code to store zero in X. */
2973 void
2974 emit_clr_insn (x)
2975 rtx x;
2977 emit_move_insn (x, const0_rtx);
2980 /* Generate code to store 1 in X
2981 assuming it contains zero beforehand. */
2983 void
2984 emit_0_to_1_insn (x)
2985 rtx x;
2987 emit_move_insn (x, const1_rtx);
2990 /* Nonzero if we can perform a comparison of mode MODE straightforwardly.
2991 PURPOSE describes how this comparison will be used. CODE is the rtx
2992 comparison code we will be using.
2994 ??? Actually, CODE is slightly weaker than that. A target is still
2995 required to implement all of the normal bcc operations, but not
2996 required to implement all (or any) of the unordered bcc operations. */
2999 can_compare_p (code, mode, purpose)
3000 enum rtx_code code;
3001 enum machine_mode mode;
3002 enum can_compare_purpose purpose;
3006 if (cmp_optab->handlers[(int)mode].insn_code != CODE_FOR_nothing)
3008 if (purpose == ccp_jump)
3009 return bcc_gen_fctn[(int)code] != NULL;
3010 else if (purpose == ccp_store_flag)
3011 return setcc_gen_code[(int)code] != CODE_FOR_nothing;
3012 else
3013 /* There's only one cmov entry point, and it's allowed to fail. */
3014 return 1;
3016 if (purpose == ccp_jump
3017 && cbranch_optab->handlers[(int)mode].insn_code != CODE_FOR_nothing)
3018 return 1;
3019 if (purpose == ccp_cmov
3020 && cmov_optab->handlers[(int)mode].insn_code != CODE_FOR_nothing)
3021 return 1;
3022 if (purpose == ccp_store_flag
3023 && cstore_optab->handlers[(int)mode].insn_code != CODE_FOR_nothing)
3024 return 1;
3026 mode = GET_MODE_WIDER_MODE (mode);
3028 while (mode != VOIDmode);
3030 return 0;
3033 /* This function is called when we are going to emit a compare instruction that
3034 compares the values found in *PX and *PY, using the rtl operator COMPARISON.
3036 *PMODE is the mode of the inputs (in case they are const_int).
3037 *PUNSIGNEDP nonzero says that the operands are unsigned;
3038 this matters if they need to be widened.
3040 If they have mode BLKmode, then SIZE specifies the size of both operands.
3042 This function performs all the setup necessary so that the caller only has
3043 to emit a single comparison insn. This setup can involve doing a BLKmode
3044 comparison or emitting a library call to perform the comparison if no insn
3045 is available to handle it.
3046 The values which are passed in through pointers can be modified; the caller
3047 should perform the comparison on the modified values. */
3049 static void
3050 prepare_cmp_insn (px, py, pcomparison, size, pmode, punsignedp, purpose)
3051 rtx *px, *py;
3052 enum rtx_code *pcomparison;
3053 rtx size;
3054 enum machine_mode *pmode;
3055 int *punsignedp;
3056 enum can_compare_purpose purpose;
3058 enum machine_mode mode = *pmode;
3059 rtx x = *px, y = *py;
3060 int unsignedp = *punsignedp;
3061 enum mode_class class;
3063 class = GET_MODE_CLASS (mode);
3065 /* They could both be VOIDmode if both args are immediate constants,
3066 but we should fold that at an earlier stage.
3067 With no special code here, this will call abort,
3068 reminding the programmer to implement such folding. */
3070 if (mode != BLKmode && flag_force_mem)
3072 x = force_not_mem (x);
3073 y = force_not_mem (y);
3076 /* If we are inside an appropriately-short loop and one operand is an
3077 expensive constant, force it into a register. */
3078 if (CONSTANT_P (x) && preserve_subexpressions_p ()
3079 && rtx_cost (x, COMPARE) > COSTS_N_INSNS (1))
3080 x = force_reg (mode, x);
3082 if (CONSTANT_P (y) && preserve_subexpressions_p ()
3083 && rtx_cost (y, COMPARE) > COSTS_N_INSNS (1))
3084 y = force_reg (mode, y);
3086 #ifdef HAVE_cc0
3087 /* Abort if we have a non-canonical comparison. The RTL documentation
3088 states that canonical comparisons are required only for targets which
3089 have cc0. */
3090 if (CONSTANT_P (x) && ! CONSTANT_P (y))
3091 abort();
3092 #endif
3094 /* Don't let both operands fail to indicate the mode. */
3095 if (GET_MODE (x) == VOIDmode && GET_MODE (y) == VOIDmode)
3096 x = force_reg (mode, x);
3098 /* Handle all BLKmode compares. */
3100 if (mode == BLKmode)
3102 rtx result;
3103 enum machine_mode result_mode;
3104 rtx opalign ATTRIBUTE_UNUSED
3105 = GEN_INT (MIN (MEM_ALIGN (x), MEM_ALIGN (y)) / BITS_PER_UNIT);
3107 emit_queue ();
3108 x = protect_from_queue (x, 0);
3109 y = protect_from_queue (y, 0);
3111 if (size == 0)
3112 abort ();
3113 #ifdef HAVE_cmpstrqi
3114 if (HAVE_cmpstrqi
3115 && GET_CODE (size) == CONST_INT
3116 && INTVAL (size) < (1 << GET_MODE_BITSIZE (QImode)))
3118 result_mode = insn_data[(int) CODE_FOR_cmpstrqi].operand[0].mode;
3119 result = gen_reg_rtx (result_mode);
3120 emit_insn (gen_cmpstrqi (result, x, y, size, opalign));
3122 else
3123 #endif
3124 #ifdef HAVE_cmpstrhi
3125 if (HAVE_cmpstrhi
3126 && GET_CODE (size) == CONST_INT
3127 && INTVAL (size) < (1 << GET_MODE_BITSIZE (HImode)))
3129 result_mode = insn_data[(int) CODE_FOR_cmpstrhi].operand[0].mode;
3130 result = gen_reg_rtx (result_mode);
3131 emit_insn (gen_cmpstrhi (result, x, y, size, opalign));
3133 else
3134 #endif
3135 #ifdef HAVE_cmpstrsi
3136 if (HAVE_cmpstrsi)
3138 result_mode = insn_data[(int) CODE_FOR_cmpstrsi].operand[0].mode;
3139 result = gen_reg_rtx (result_mode);
3140 size = protect_from_queue (size, 0);
3141 emit_insn (gen_cmpstrsi (result, x, y,
3142 convert_to_mode (SImode, size, 1),
3143 opalign));
3145 else
3146 #endif
3148 #ifdef TARGET_MEM_FUNCTIONS
3149 emit_library_call (memcmp_libfunc, LCT_PURE_MAKE_BLOCK,
3150 TYPE_MODE (integer_type_node), 3,
3151 XEXP (x, 0), Pmode, XEXP (y, 0), Pmode,
3152 convert_to_mode (TYPE_MODE (sizetype), size,
3153 TREE_UNSIGNED (sizetype)),
3154 TYPE_MODE (sizetype));
3155 #else
3156 emit_library_call (bcmp_libfunc, LCT_PURE_MAKE_BLOCK,
3157 TYPE_MODE (integer_type_node), 3,
3158 XEXP (x, 0), Pmode, XEXP (y, 0), Pmode,
3159 convert_to_mode (TYPE_MODE (integer_type_node),
3160 size,
3161 TREE_UNSIGNED (integer_type_node)),
3162 TYPE_MODE (integer_type_node));
3163 #endif
3165 /* Immediately move the result of the libcall into a pseudo
3166 register so reload doesn't clobber the value if it needs
3167 the return register for a spill reg. */
3168 result = gen_reg_rtx (TYPE_MODE (integer_type_node));
3169 result_mode = TYPE_MODE (integer_type_node);
3170 emit_move_insn (result,
3171 hard_libcall_value (result_mode));
3173 *px = result;
3174 *py = const0_rtx;
3175 *pmode = result_mode;
3176 return;
3179 *px = x;
3180 *py = y;
3181 if (can_compare_p (*pcomparison, mode, purpose))
3182 return;
3184 /* Handle a lib call just for the mode we are using. */
3186 if (cmp_optab->handlers[(int) mode].libfunc && class != MODE_FLOAT)
3188 rtx libfunc = cmp_optab->handlers[(int) mode].libfunc;
3189 rtx result;
3191 /* If we want unsigned, and this mode has a distinct unsigned
3192 comparison routine, use that. */
3193 if (unsignedp && ucmp_optab->handlers[(int) mode].libfunc)
3194 libfunc = ucmp_optab->handlers[(int) mode].libfunc;
3196 emit_library_call (libfunc, 1, word_mode, 2, x, mode, y, mode);
3198 /* Immediately move the result of the libcall into a pseudo
3199 register so reload doesn't clobber the value if it needs
3200 the return register for a spill reg. */
3201 result = gen_reg_rtx (word_mode);
3202 emit_move_insn (result, hard_libcall_value (word_mode));
3204 /* Integer comparison returns a result that must be compared against 1,
3205 so that even if we do an unsigned compare afterward,
3206 there is still a value that can represent the result "less than". */
3207 *px = result;
3208 *py = const1_rtx;
3209 *pmode = word_mode;
3210 return;
3213 if (class == MODE_FLOAT)
3214 prepare_float_lib_cmp (px, py, pcomparison, pmode, punsignedp);
3216 else
3217 abort ();
3220 /* Before emitting an insn with code ICODE, make sure that X, which is going
3221 to be used for operand OPNUM of the insn, is converted from mode MODE to
3222 WIDER_MODE (UNSIGNEDP determines whether it is an unsigned conversion), and
3223 that it is accepted by the operand predicate. Return the new value. */
3226 prepare_operand (icode, x, opnum, mode, wider_mode, unsignedp)
3227 int icode;
3228 rtx x;
3229 int opnum;
3230 enum machine_mode mode, wider_mode;
3231 int unsignedp;
3233 x = protect_from_queue (x, 0);
3235 if (mode != wider_mode)
3236 x = convert_modes (wider_mode, mode, x, unsignedp);
3238 if (! (*insn_data[icode].operand[opnum].predicate)
3239 (x, insn_data[icode].operand[opnum].mode))
3240 x = copy_to_mode_reg (insn_data[icode].operand[opnum].mode, x);
3241 return x;
3244 /* Subroutine of emit_cmp_and_jump_insns; this function is called when we know
3245 we can do the comparison.
3246 The arguments are the same as for emit_cmp_and_jump_insns; but LABEL may
3247 be NULL_RTX which indicates that only a comparison is to be generated. */
3249 static void
3250 emit_cmp_and_jump_insn_1 (x, y, mode, comparison, unsignedp, label)
3251 rtx x, y;
3252 enum machine_mode mode;
3253 enum rtx_code comparison;
3254 int unsignedp;
3255 rtx label;
3257 rtx test = gen_rtx_fmt_ee (comparison, mode, x, y);
3258 enum mode_class class = GET_MODE_CLASS (mode);
3259 enum machine_mode wider_mode = mode;
3261 /* Try combined insns first. */
3264 enum insn_code icode;
3265 PUT_MODE (test, wider_mode);
3267 if (label)
3269 icode = cbranch_optab->handlers[(int)wider_mode].insn_code;
3271 if (icode != CODE_FOR_nothing
3272 && (*insn_data[icode].operand[0].predicate) (test, wider_mode))
3274 x = prepare_operand (icode, x, 1, mode, wider_mode, unsignedp);
3275 y = prepare_operand (icode, y, 2, mode, wider_mode, unsignedp);
3276 emit_jump_insn (GEN_FCN (icode) (test, x, y, label));
3277 return;
3281 /* Handle some compares against zero. */
3282 icode = (int) tst_optab->handlers[(int) wider_mode].insn_code;
3283 if (y == CONST0_RTX (mode) && icode != CODE_FOR_nothing)
3285 x = prepare_operand (icode, x, 0, mode, wider_mode, unsignedp);
3286 emit_insn (GEN_FCN (icode) (x));
3287 if (label)
3288 emit_jump_insn ((*bcc_gen_fctn[(int) comparison]) (label));
3289 return;
3292 /* Handle compares for which there is a directly suitable insn. */
3294 icode = (int) cmp_optab->handlers[(int) wider_mode].insn_code;
3295 if (icode != CODE_FOR_nothing)
3297 x = prepare_operand (icode, x, 0, mode, wider_mode, unsignedp);
3298 y = prepare_operand (icode, y, 1, mode, wider_mode, unsignedp);
3299 emit_insn (GEN_FCN (icode) (x, y));
3300 if (label)
3301 emit_jump_insn ((*bcc_gen_fctn[(int) comparison]) (label));
3302 return;
3305 if (class != MODE_INT && class != MODE_FLOAT
3306 && class != MODE_COMPLEX_FLOAT)
3307 break;
3309 wider_mode = GET_MODE_WIDER_MODE (wider_mode);
3310 } while (wider_mode != VOIDmode);
3312 abort ();
3315 /* Generate code to compare X with Y so that the condition codes are
3316 set and to jump to LABEL if the condition is true. If X is a
3317 constant and Y is not a constant, then the comparison is swapped to
3318 ensure that the comparison RTL has the canonical form.
3320 UNSIGNEDP nonzero says that X and Y are unsigned; this matters if they
3321 need to be widened by emit_cmp_insn. UNSIGNEDP is also used to select
3322 the proper branch condition code.
3324 If X and Y have mode BLKmode, then SIZE specifies the size of both X and Y.
3326 MODE is the mode of the inputs (in case they are const_int).
3328 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). It will
3329 be passed unchanged to emit_cmp_insn, then potentially converted into an
3330 unsigned variant based on UNSIGNEDP to select a proper jump instruction. */
3332 void
3333 emit_cmp_and_jump_insns (x, y, comparison, size, mode, unsignedp, label)
3334 rtx x, y;
3335 enum rtx_code comparison;
3336 rtx size;
3337 enum machine_mode mode;
3338 int unsignedp;
3339 rtx label;
3341 rtx op0 = x, op1 = y;
3343 /* Swap operands and condition to ensure canonical RTL. */
3344 if (swap_commutative_operands_p (x, y))
3346 /* If we're not emitting a branch, this means some caller
3347 is out of sync. */
3348 if (! label)
3349 abort ();
3351 op0 = y, op1 = x;
3352 comparison = swap_condition (comparison);
3355 #ifdef HAVE_cc0
3356 /* If OP0 is still a constant, then both X and Y must be constants. Force
3357 X into a register to avoid aborting in emit_cmp_insn due to non-canonical
3358 RTL. */
3359 if (CONSTANT_P (op0))
3360 op0 = force_reg (mode, op0);
3361 #endif
3363 emit_queue ();
3364 if (unsignedp)
3365 comparison = unsigned_condition (comparison);
3367 prepare_cmp_insn (&op0, &op1, &comparison, size, &mode, &unsignedp,
3368 ccp_jump);
3369 emit_cmp_and_jump_insn_1 (op0, op1, mode, comparison, unsignedp, label);
3372 /* Like emit_cmp_and_jump_insns, but generate only the comparison. */
3374 void
3375 emit_cmp_insn (x, y, comparison, size, mode, unsignedp)
3376 rtx x, y;
3377 enum rtx_code comparison;
3378 rtx size;
3379 enum machine_mode mode;
3380 int unsignedp;
3382 emit_cmp_and_jump_insns (x, y, comparison, size, mode, unsignedp, 0);
3385 /* Emit a library call comparison between floating point X and Y.
3386 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). */
3388 static void
3389 prepare_float_lib_cmp (px, py, pcomparison, pmode, punsignedp)
3390 rtx *px, *py;
3391 enum rtx_code *pcomparison;
3392 enum machine_mode *pmode;
3393 int *punsignedp;
3395 enum rtx_code comparison = *pcomparison;
3396 rtx x = *px = protect_from_queue (*px, 0);
3397 rtx y = *py = protect_from_queue (*py, 0);
3398 enum machine_mode mode = GET_MODE (x);
3399 rtx libfunc = 0;
3400 rtx result;
3402 if (mode == HFmode)
3403 switch (comparison)
3405 case EQ:
3406 libfunc = eqhf2_libfunc;
3407 break;
3409 case NE:
3410 libfunc = nehf2_libfunc;
3411 break;
3413 case GT:
3414 libfunc = gthf2_libfunc;
3415 break;
3417 case GE:
3418 libfunc = gehf2_libfunc;
3419 break;
3421 case LT:
3422 libfunc = lthf2_libfunc;
3423 break;
3425 case LE:
3426 libfunc = lehf2_libfunc;
3427 break;
3429 case UNORDERED:
3430 libfunc = unordhf2_libfunc;
3431 break;
3433 default:
3434 break;
3436 else if (mode == SFmode)
3437 switch (comparison)
3439 case EQ:
3440 libfunc = eqsf2_libfunc;
3441 break;
3443 case NE:
3444 libfunc = nesf2_libfunc;
3445 break;
3447 case GT:
3448 libfunc = gtsf2_libfunc;
3449 break;
3451 case GE:
3452 libfunc = gesf2_libfunc;
3453 break;
3455 case LT:
3456 libfunc = ltsf2_libfunc;
3457 break;
3459 case LE:
3460 libfunc = lesf2_libfunc;
3461 break;
3463 case UNORDERED:
3464 libfunc = unordsf2_libfunc;
3465 break;
3467 default:
3468 break;
3470 else if (mode == DFmode)
3471 switch (comparison)
3473 case EQ:
3474 libfunc = eqdf2_libfunc;
3475 break;
3477 case NE:
3478 libfunc = nedf2_libfunc;
3479 break;
3481 case GT:
3482 libfunc = gtdf2_libfunc;
3483 break;
3485 case GE:
3486 libfunc = gedf2_libfunc;
3487 break;
3489 case LT:
3490 libfunc = ltdf2_libfunc;
3491 break;
3493 case LE:
3494 libfunc = ledf2_libfunc;
3495 break;
3497 case UNORDERED:
3498 libfunc = unorddf2_libfunc;
3499 break;
3501 default:
3502 break;
3504 else if (mode == XFmode)
3505 switch (comparison)
3507 case EQ:
3508 libfunc = eqxf2_libfunc;
3509 break;
3511 case NE:
3512 libfunc = nexf2_libfunc;
3513 break;
3515 case GT:
3516 libfunc = gtxf2_libfunc;
3517 break;
3519 case GE:
3520 libfunc = gexf2_libfunc;
3521 break;
3523 case LT:
3524 libfunc = ltxf2_libfunc;
3525 break;
3527 case LE:
3528 libfunc = lexf2_libfunc;
3529 break;
3531 case UNORDERED:
3532 libfunc = unordxf2_libfunc;
3533 break;
3535 default:
3536 break;
3538 else if (mode == TFmode)
3539 switch (comparison)
3541 case EQ:
3542 libfunc = eqtf2_libfunc;
3543 break;
3545 case NE:
3546 libfunc = netf2_libfunc;
3547 break;
3549 case GT:
3550 libfunc = gttf2_libfunc;
3551 break;
3553 case GE:
3554 libfunc = getf2_libfunc;
3555 break;
3557 case LT:
3558 libfunc = lttf2_libfunc;
3559 break;
3561 case LE:
3562 libfunc = letf2_libfunc;
3563 break;
3565 case UNORDERED:
3566 libfunc = unordtf2_libfunc;
3567 break;
3569 default:
3570 break;
3572 else
3574 enum machine_mode wider_mode;
3576 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
3577 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
3579 if ((cmp_optab->handlers[(int) wider_mode].insn_code
3580 != CODE_FOR_nothing)
3581 || (cmp_optab->handlers[(int) wider_mode].libfunc != 0))
3583 x = protect_from_queue (x, 0);
3584 y = protect_from_queue (y, 0);
3585 *px = convert_to_mode (wider_mode, x, 0);
3586 *py = convert_to_mode (wider_mode, y, 0);
3587 prepare_float_lib_cmp (px, py, pcomparison, pmode, punsignedp);
3588 return;
3591 abort ();
3594 if (libfunc == 0)
3595 abort ();
3597 emit_library_call (libfunc, LCT_CONST_MAKE_BLOCK, word_mode, 2, x, mode, y,
3598 mode);
3600 /* Immediately move the result of the libcall into a pseudo
3601 register so reload doesn't clobber the value if it needs
3602 the return register for a spill reg. */
3603 result = gen_reg_rtx (word_mode);
3604 emit_move_insn (result, hard_libcall_value (word_mode));
3605 *px = result;
3606 *py = const0_rtx;
3607 *pmode = word_mode;
3608 if (comparison == UNORDERED)
3609 *pcomparison = NE;
3610 #ifdef FLOAT_LIB_COMPARE_RETURNS_BOOL
3611 else if (FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison))
3612 *pcomparison = NE;
3613 #endif
3614 *punsignedp = 0;
3617 /* Generate code to indirectly jump to a location given in the rtx LOC. */
3619 void
3620 emit_indirect_jump (loc)
3621 rtx loc;
3623 if (! ((*insn_data[(int)CODE_FOR_indirect_jump].operand[0].predicate)
3624 (loc, Pmode)))
3625 loc = copy_to_mode_reg (Pmode, loc);
3627 emit_jump_insn (gen_indirect_jump (loc));
3628 emit_barrier ();
3631 #ifdef HAVE_conditional_move
3633 /* Emit a conditional move instruction if the machine supports one for that
3634 condition and machine mode.
3636 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
3637 the mode to use should they be constants. If it is VOIDmode, they cannot
3638 both be constants.
3640 OP2 should be stored in TARGET if the comparison is true, otherwise OP3
3641 should be stored there. MODE is the mode to use should they be constants.
3642 If it is VOIDmode, they cannot both be constants.
3644 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
3645 is not supported. */
3648 emit_conditional_move (target, code, op0, op1, cmode, op2, op3, mode,
3649 unsignedp)
3650 rtx target;
3651 enum rtx_code code;
3652 rtx op0, op1;
3653 enum machine_mode cmode;
3654 rtx op2, op3;
3655 enum machine_mode mode;
3656 int unsignedp;
3658 rtx tem, subtarget, comparison, insn;
3659 enum insn_code icode;
3660 enum rtx_code reversed;
3662 /* If one operand is constant, make it the second one. Only do this
3663 if the other operand is not constant as well. */
3665 if (swap_commutative_operands_p (op0, op1))
3667 tem = op0;
3668 op0 = op1;
3669 op1 = tem;
3670 code = swap_condition (code);
3673 /* get_condition will prefer to generate LT and GT even if the old
3674 comparison was against zero, so undo that canonicalization here since
3675 comparisons against zero are cheaper. */
3676 if (code == LT && GET_CODE (op1) == CONST_INT && INTVAL (op1) == 1)
3677 code = LE, op1 = const0_rtx;
3678 else if (code == GT && GET_CODE (op1) == CONST_INT && INTVAL (op1) == -1)
3679 code = GE, op1 = const0_rtx;
3681 if (cmode == VOIDmode)
3682 cmode = GET_MODE (op0);
3684 if (swap_commutative_operands_p (op2, op3)
3685 && ((reversed = reversed_comparison_code_parts (code, op0, op1, NULL))
3686 != UNKNOWN))
3688 tem = op2;
3689 op2 = op3;
3690 op3 = tem;
3691 code = reversed;
3694 if (mode == VOIDmode)
3695 mode = GET_MODE (op2);
3697 icode = movcc_gen_code[mode];
3699 if (icode == CODE_FOR_nothing)
3700 return 0;
3702 if (flag_force_mem)
3704 op2 = force_not_mem (op2);
3705 op3 = force_not_mem (op3);
3708 if (target)
3709 target = protect_from_queue (target, 1);
3710 else
3711 target = gen_reg_rtx (mode);
3713 subtarget = target;
3715 emit_queue ();
3717 op2 = protect_from_queue (op2, 0);
3718 op3 = protect_from_queue (op3, 0);
3720 /* If the insn doesn't accept these operands, put them in pseudos. */
3722 if (! (*insn_data[icode].operand[0].predicate)
3723 (subtarget, insn_data[icode].operand[0].mode))
3724 subtarget = gen_reg_rtx (insn_data[icode].operand[0].mode);
3726 if (! (*insn_data[icode].operand[2].predicate)
3727 (op2, insn_data[icode].operand[2].mode))
3728 op2 = copy_to_mode_reg (insn_data[icode].operand[2].mode, op2);
3730 if (! (*insn_data[icode].operand[3].predicate)
3731 (op3, insn_data[icode].operand[3].mode))
3732 op3 = copy_to_mode_reg (insn_data[icode].operand[3].mode, op3);
3734 /* Everything should now be in the suitable form, so emit the compare insn
3735 and then the conditional move. */
3737 comparison
3738 = compare_from_rtx (op0, op1, code, unsignedp, cmode, NULL_RTX);
3740 /* ??? Watch for const0_rtx (nop) and const_true_rtx (unconditional)? */
3741 /* We can get const0_rtx or const_true_rtx in some circumstances. Just
3742 return NULL and let the caller figure out how best to deal with this
3743 situation. */
3744 if (GET_CODE (comparison) != code)
3745 return NULL_RTX;
3747 insn = GEN_FCN (icode) (subtarget, comparison, op2, op3);
3749 /* If that failed, then give up. */
3750 if (insn == 0)
3751 return 0;
3753 emit_insn (insn);
3755 if (subtarget != target)
3756 convert_move (target, subtarget, 0);
3758 return target;
3761 /* Return non-zero if a conditional move of mode MODE is supported.
3763 This function is for combine so it can tell whether an insn that looks
3764 like a conditional move is actually supported by the hardware. If we
3765 guess wrong we lose a bit on optimization, but that's it. */
3766 /* ??? sparc64 supports conditionally moving integers values based on fp
3767 comparisons, and vice versa. How do we handle them? */
3770 can_conditionally_move_p (mode)
3771 enum machine_mode mode;
3773 if (movcc_gen_code[mode] != CODE_FOR_nothing)
3774 return 1;
3776 return 0;
3779 #endif /* HAVE_conditional_move */
3781 /* These functions generate an insn body and return it
3782 rather than emitting the insn.
3784 They do not protect from queued increments,
3785 because they may be used 1) in protect_from_queue itself
3786 and 2) in other passes where there is no queue. */
3788 /* Generate and return an insn body to add Y to X. */
3791 gen_add2_insn (x, y)
3792 rtx x, y;
3794 int icode = (int) add_optab->handlers[(int) GET_MODE (x)].insn_code;
3796 if (! ((*insn_data[icode].operand[0].predicate)
3797 (x, insn_data[icode].operand[0].mode))
3798 || ! ((*insn_data[icode].operand[1].predicate)
3799 (x, insn_data[icode].operand[1].mode))
3800 || ! ((*insn_data[icode].operand[2].predicate)
3801 (y, insn_data[icode].operand[2].mode)))
3802 abort ();
3804 return (GEN_FCN (icode) (x, x, y));
3807 /* Generate and return an insn body to add r1 and c,
3808 storing the result in r0. */
3810 gen_add3_insn (r0, r1, c)
3811 rtx r0, r1, c;
3813 int icode = (int) add_optab->handlers[(int) GET_MODE (r0)].insn_code;
3815 if (icode == CODE_FOR_nothing
3816 || ! ((*insn_data[icode].operand[0].predicate)
3817 (r0, insn_data[icode].operand[0].mode))
3818 || ! ((*insn_data[icode].operand[1].predicate)
3819 (r1, insn_data[icode].operand[1].mode))
3820 || ! ((*insn_data[icode].operand[2].predicate)
3821 (c, insn_data[icode].operand[2].mode)))
3822 return NULL_RTX;
3824 return (GEN_FCN (icode) (r0, r1, c));
3828 have_add2_insn (x, y)
3829 rtx x, y;
3831 int icode;
3833 if (GET_MODE (x) == VOIDmode)
3834 abort ();
3836 icode = (int) add_optab->handlers[(int) GET_MODE (x)].insn_code;
3838 if (icode == CODE_FOR_nothing)
3839 return 0;
3841 if (! ((*insn_data[icode].operand[0].predicate)
3842 (x, insn_data[icode].operand[0].mode))
3843 || ! ((*insn_data[icode].operand[1].predicate)
3844 (x, insn_data[icode].operand[1].mode))
3845 || ! ((*insn_data[icode].operand[2].predicate)
3846 (y, insn_data[icode].operand[2].mode)))
3847 return 0;
3849 return 1;
3852 /* Generate and return an insn body to subtract Y from X. */
3855 gen_sub2_insn (x, y)
3856 rtx x, y;
3858 int icode = (int) sub_optab->handlers[(int) GET_MODE (x)].insn_code;
3860 if (! ((*insn_data[icode].operand[0].predicate)
3861 (x, insn_data[icode].operand[0].mode))
3862 || ! ((*insn_data[icode].operand[1].predicate)
3863 (x, insn_data[icode].operand[1].mode))
3864 || ! ((*insn_data[icode].operand[2].predicate)
3865 (y, insn_data[icode].operand[2].mode)))
3866 abort ();
3868 return (GEN_FCN (icode) (x, x, y));
3871 /* Generate and return an insn body to subtract r1 and c,
3872 storing the result in r0. */
3874 gen_sub3_insn (r0, r1, c)
3875 rtx r0, r1, c;
3877 int icode = (int) sub_optab->handlers[(int) GET_MODE (r0)].insn_code;
3879 if (icode == CODE_FOR_nothing
3880 || ! ((*insn_data[icode].operand[0].predicate)
3881 (r0, insn_data[icode].operand[0].mode))
3882 || ! ((*insn_data[icode].operand[1].predicate)
3883 (r1, insn_data[icode].operand[1].mode))
3884 || ! ((*insn_data[icode].operand[2].predicate)
3885 (c, insn_data[icode].operand[2].mode)))
3886 return NULL_RTX;
3888 return (GEN_FCN (icode) (r0, r1, c));
3892 have_sub2_insn (x, y)
3893 rtx x, y;
3895 int icode;
3897 if (GET_MODE (x) == VOIDmode)
3898 abort ();
3900 icode = (int) sub_optab->handlers[(int) GET_MODE (x)].insn_code;
3902 if (icode == CODE_FOR_nothing)
3903 return 0;
3905 if (! ((*insn_data[icode].operand[0].predicate)
3906 (x, insn_data[icode].operand[0].mode))
3907 || ! ((*insn_data[icode].operand[1].predicate)
3908 (x, insn_data[icode].operand[1].mode))
3909 || ! ((*insn_data[icode].operand[2].predicate)
3910 (y, insn_data[icode].operand[2].mode)))
3911 return 0;
3913 return 1;
3916 /* Generate the body of an instruction to copy Y into X.
3917 It may be a SEQUENCE, if one insn isn't enough. */
3920 gen_move_insn (x, y)
3921 rtx x, y;
3923 enum machine_mode mode = GET_MODE (x);
3924 enum insn_code insn_code;
3925 rtx seq;
3927 if (mode == VOIDmode)
3928 mode = GET_MODE (y);
3930 insn_code = mov_optab->handlers[(int) mode].insn_code;
3932 /* Handle MODE_CC modes: If we don't have a special move insn for this mode,
3933 find a mode to do it in. If we have a movcc, use it. Otherwise,
3934 find the MODE_INT mode of the same width. */
3936 if (GET_MODE_CLASS (mode) == MODE_CC && insn_code == CODE_FOR_nothing)
3938 enum machine_mode tmode = VOIDmode;
3939 rtx x1 = x, y1 = y;
3941 if (mode != CCmode
3942 && mov_optab->handlers[(int) CCmode].insn_code != CODE_FOR_nothing)
3943 tmode = CCmode;
3944 else
3945 for (tmode = QImode; tmode != VOIDmode;
3946 tmode = GET_MODE_WIDER_MODE (tmode))
3947 if (GET_MODE_SIZE (tmode) == GET_MODE_SIZE (mode))
3948 break;
3950 if (tmode == VOIDmode)
3951 abort ();
3953 /* Get X and Y in TMODE. We can't use gen_lowpart here because it
3954 may call change_address which is not appropriate if we were
3955 called when a reload was in progress. We don't have to worry
3956 about changing the address since the size in bytes is supposed to
3957 be the same. Copy the MEM to change the mode and move any
3958 substitutions from the old MEM to the new one. */
3960 if (reload_in_progress)
3962 x = gen_lowpart_common (tmode, x1);
3963 if (x == 0 && GET_CODE (x1) == MEM)
3965 x = adjust_address_nv (x1, tmode, 0);
3966 copy_replacements (x1, x);
3969 y = gen_lowpart_common (tmode, y1);
3970 if (y == 0 && GET_CODE (y1) == MEM)
3972 y = adjust_address_nv (y1, tmode, 0);
3973 copy_replacements (y1, y);
3976 else
3978 x = gen_lowpart (tmode, x);
3979 y = gen_lowpart (tmode, y);
3982 insn_code = mov_optab->handlers[(int) tmode].insn_code;
3983 return (GEN_FCN (insn_code) (x, y));
3986 start_sequence ();
3987 emit_move_insn_1 (x, y);
3988 seq = gen_sequence ();
3989 end_sequence ();
3990 return seq;
3993 /* Return the insn code used to extend FROM_MODE to TO_MODE.
3994 UNSIGNEDP specifies zero-extension instead of sign-extension. If
3995 no such operation exists, CODE_FOR_nothing will be returned. */
3997 enum insn_code
3998 can_extend_p (to_mode, from_mode, unsignedp)
3999 enum machine_mode to_mode, from_mode;
4000 int unsignedp;
4002 #ifdef HAVE_ptr_extend
4003 if (unsignedp < 0)
4004 return CODE_FOR_ptr_extend;
4005 else
4006 #endif
4007 return extendtab[(int) to_mode][(int) from_mode][unsignedp != 0];
4010 /* Generate the body of an insn to extend Y (with mode MFROM)
4011 into X (with mode MTO). Do zero-extension if UNSIGNEDP is nonzero. */
4014 gen_extend_insn (x, y, mto, mfrom, unsignedp)
4015 rtx x, y;
4016 enum machine_mode mto, mfrom;
4017 int unsignedp;
4019 return (GEN_FCN (extendtab[(int) mto][(int) mfrom][unsignedp != 0]) (x, y));
4022 /* can_fix_p and can_float_p say whether the target machine
4023 can directly convert a given fixed point type to
4024 a given floating point type, or vice versa.
4025 The returned value is the CODE_FOR_... value to use,
4026 or CODE_FOR_nothing if these modes cannot be directly converted.
4028 *TRUNCP_PTR is set to 1 if it is necessary to output
4029 an explicit FTRUNC insn before the fix insn; otherwise 0. */
4031 static enum insn_code
4032 can_fix_p (fixmode, fltmode, unsignedp, truncp_ptr)
4033 enum machine_mode fltmode, fixmode;
4034 int unsignedp;
4035 int *truncp_ptr;
4037 *truncp_ptr = 0;
4038 if (fixtrunctab[(int) fltmode][(int) fixmode][unsignedp != 0]
4039 != CODE_FOR_nothing)
4040 return fixtrunctab[(int) fltmode][(int) fixmode][unsignedp != 0];
4042 if (ftrunc_optab->handlers[(int) fltmode].insn_code != CODE_FOR_nothing)
4044 *truncp_ptr = 1;
4045 return fixtab[(int) fltmode][(int) fixmode][unsignedp != 0];
4047 return CODE_FOR_nothing;
4050 static enum insn_code
4051 can_float_p (fltmode, fixmode, unsignedp)
4052 enum machine_mode fixmode, fltmode;
4053 int unsignedp;
4055 return floattab[(int) fltmode][(int) fixmode][unsignedp != 0];
4058 /* Generate code to convert FROM to floating point
4059 and store in TO. FROM must be fixed point and not VOIDmode.
4060 UNSIGNEDP nonzero means regard FROM as unsigned.
4061 Normally this is done by correcting the final value
4062 if it is negative. */
4064 void
4065 expand_float (to, from, unsignedp)
4066 rtx to, from;
4067 int unsignedp;
4069 enum insn_code icode;
4070 rtx target = to;
4071 enum machine_mode fmode, imode;
4073 /* Crash now, because we won't be able to decide which mode to use. */
4074 if (GET_MODE (from) == VOIDmode)
4075 abort ();
4077 /* Look for an insn to do the conversion. Do it in the specified
4078 modes if possible; otherwise convert either input, output or both to
4079 wider mode. If the integer mode is wider than the mode of FROM,
4080 we can do the conversion signed even if the input is unsigned. */
4082 for (imode = GET_MODE (from); imode != VOIDmode;
4083 imode = GET_MODE_WIDER_MODE (imode))
4084 for (fmode = GET_MODE (to); fmode != VOIDmode;
4085 fmode = GET_MODE_WIDER_MODE (fmode))
4087 int doing_unsigned = unsignedp;
4089 if (fmode != GET_MODE (to)
4090 && significand_size (fmode) < GET_MODE_BITSIZE (GET_MODE (from)))
4091 continue;
4093 icode = can_float_p (fmode, imode, unsignedp);
4094 if (icode == CODE_FOR_nothing && imode != GET_MODE (from) && unsignedp)
4095 icode = can_float_p (fmode, imode, 0), doing_unsigned = 0;
4097 if (icode != CODE_FOR_nothing)
4099 to = protect_from_queue (to, 1);
4100 from = protect_from_queue (from, 0);
4102 if (imode != GET_MODE (from))
4103 from = convert_to_mode (imode, from, unsignedp);
4105 if (fmode != GET_MODE (to))
4106 target = gen_reg_rtx (fmode);
4108 emit_unop_insn (icode, target, from,
4109 doing_unsigned ? UNSIGNED_FLOAT : FLOAT);
4111 if (target != to)
4112 convert_move (to, target, 0);
4113 return;
4117 #if !defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
4119 /* Unsigned integer, and no way to convert directly.
4120 Convert as signed, then conditionally adjust the result. */
4121 if (unsignedp)
4123 rtx label = gen_label_rtx ();
4124 rtx temp;
4125 REAL_VALUE_TYPE offset;
4127 emit_queue ();
4129 to = protect_from_queue (to, 1);
4130 from = protect_from_queue (from, 0);
4132 if (flag_force_mem)
4133 from = force_not_mem (from);
4135 /* Look for a usable floating mode FMODE wider than the source and at
4136 least as wide as the target. Using FMODE will avoid rounding woes
4137 with unsigned values greater than the signed maximum value. */
4139 for (fmode = GET_MODE (to); fmode != VOIDmode;
4140 fmode = GET_MODE_WIDER_MODE (fmode))
4141 if (GET_MODE_BITSIZE (GET_MODE (from)) < GET_MODE_BITSIZE (fmode)
4142 && can_float_p (fmode, GET_MODE (from), 0) != CODE_FOR_nothing)
4143 break;
4145 if (fmode == VOIDmode)
4147 /* There is no such mode. Pretend the target is wide enough. */
4148 fmode = GET_MODE (to);
4150 /* Avoid double-rounding when TO is narrower than FROM. */
4151 if ((significand_size (fmode) + 1)
4152 < GET_MODE_BITSIZE (GET_MODE (from)))
4154 rtx temp1;
4155 rtx neglabel = gen_label_rtx ();
4157 /* Don't use TARGET if it isn't a register, is a hard register,
4158 or is the wrong mode. */
4159 if (GET_CODE (target) != REG
4160 || REGNO (target) < FIRST_PSEUDO_REGISTER
4161 || GET_MODE (target) != fmode)
4162 target = gen_reg_rtx (fmode);
4164 imode = GET_MODE (from);
4165 do_pending_stack_adjust ();
4167 /* Test whether the sign bit is set. */
4168 emit_cmp_and_jump_insns (from, const0_rtx, LT, NULL_RTX, imode,
4169 0, neglabel);
4171 /* The sign bit is not set. Convert as signed. */
4172 expand_float (target, from, 0);
4173 emit_jump_insn (gen_jump (label));
4174 emit_barrier ();
4176 /* The sign bit is set.
4177 Convert to a usable (positive signed) value by shifting right
4178 one bit, while remembering if a nonzero bit was shifted
4179 out; i.e., compute (from & 1) | (from >> 1). */
4181 emit_label (neglabel);
4182 temp = expand_binop (imode, and_optab, from, const1_rtx,
4183 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4184 temp1 = expand_shift (RSHIFT_EXPR, imode, from, integer_one_node,
4185 NULL_RTX, 1);
4186 temp = expand_binop (imode, ior_optab, temp, temp1, temp, 1,
4187 OPTAB_LIB_WIDEN);
4188 expand_float (target, temp, 0);
4190 /* Multiply by 2 to undo the shift above. */
4191 temp = expand_binop (fmode, add_optab, target, target,
4192 target, 0, OPTAB_LIB_WIDEN);
4193 if (temp != target)
4194 emit_move_insn (target, temp);
4196 do_pending_stack_adjust ();
4197 emit_label (label);
4198 goto done;
4202 /* If we are about to do some arithmetic to correct for an
4203 unsigned operand, do it in a pseudo-register. */
4205 if (GET_MODE (to) != fmode
4206 || GET_CODE (to) != REG || REGNO (to) < FIRST_PSEUDO_REGISTER)
4207 target = gen_reg_rtx (fmode);
4209 /* Convert as signed integer to floating. */
4210 expand_float (target, from, 0);
4212 /* If FROM is negative (and therefore TO is negative),
4213 correct its value by 2**bitwidth. */
4215 do_pending_stack_adjust ();
4216 emit_cmp_and_jump_insns (from, const0_rtx, GE, NULL_RTX, GET_MODE (from),
4217 0, label);
4219 /* On SCO 3.2.1, ldexp rejects values outside [0.5, 1).
4220 Rather than setting up a dconst_dot_5, let's hope SCO
4221 fixes the bug. */
4222 offset = REAL_VALUE_LDEXP (dconst1, GET_MODE_BITSIZE (GET_MODE (from)));
4223 temp = expand_binop (fmode, add_optab, target,
4224 CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode),
4225 target, 0, OPTAB_LIB_WIDEN);
4226 if (temp != target)
4227 emit_move_insn (target, temp);
4229 do_pending_stack_adjust ();
4230 emit_label (label);
4231 goto done;
4233 #endif
4235 /* No hardware instruction available; call a library routine to convert from
4236 SImode, DImode, or TImode into SFmode, DFmode, XFmode, or TFmode. */
4238 rtx libfcn;
4239 rtx insns;
4240 rtx value;
4242 to = protect_from_queue (to, 1);
4243 from = protect_from_queue (from, 0);
4245 if (GET_MODE_SIZE (GET_MODE (from)) < GET_MODE_SIZE (SImode))
4246 from = convert_to_mode (SImode, from, unsignedp);
4248 if (flag_force_mem)
4249 from = force_not_mem (from);
4251 if (GET_MODE (to) == SFmode)
4253 if (GET_MODE (from) == SImode)
4254 libfcn = floatsisf_libfunc;
4255 else if (GET_MODE (from) == DImode)
4256 libfcn = floatdisf_libfunc;
4257 else if (GET_MODE (from) == TImode)
4258 libfcn = floattisf_libfunc;
4259 else
4260 abort ();
4262 else if (GET_MODE (to) == DFmode)
4264 if (GET_MODE (from) == SImode)
4265 libfcn = floatsidf_libfunc;
4266 else if (GET_MODE (from) == DImode)
4267 libfcn = floatdidf_libfunc;
4268 else if (GET_MODE (from) == TImode)
4269 libfcn = floattidf_libfunc;
4270 else
4271 abort ();
4273 else if (GET_MODE (to) == XFmode)
4275 if (GET_MODE (from) == SImode)
4276 libfcn = floatsixf_libfunc;
4277 else if (GET_MODE (from) == DImode)
4278 libfcn = floatdixf_libfunc;
4279 else if (GET_MODE (from) == TImode)
4280 libfcn = floattixf_libfunc;
4281 else
4282 abort ();
4284 else if (GET_MODE (to) == TFmode)
4286 if (GET_MODE (from) == SImode)
4287 libfcn = floatsitf_libfunc;
4288 else if (GET_MODE (from) == DImode)
4289 libfcn = floatditf_libfunc;
4290 else if (GET_MODE (from) == TImode)
4291 libfcn = floattitf_libfunc;
4292 else
4293 abort ();
4295 else
4296 abort ();
4298 start_sequence ();
4300 value = emit_library_call_value (libfcn, NULL_RTX, LCT_CONST,
4301 GET_MODE (to), 1, from,
4302 GET_MODE (from));
4303 insns = get_insns ();
4304 end_sequence ();
4306 emit_libcall_block (insns, target, value,
4307 gen_rtx_FLOAT (GET_MODE (to), from));
4310 done:
4312 /* Copy result to requested destination
4313 if we have been computing in a temp location. */
4315 if (target != to)
4317 if (GET_MODE (target) == GET_MODE (to))
4318 emit_move_insn (to, target);
4319 else
4320 convert_move (to, target, 0);
4324 /* expand_fix: generate code to convert FROM to fixed point
4325 and store in TO. FROM must be floating point. */
4327 static rtx
4328 ftruncify (x)
4329 rtx x;
4331 rtx temp = gen_reg_rtx (GET_MODE (x));
4332 return expand_unop (GET_MODE (x), ftrunc_optab, x, temp, 0);
4335 void
4336 expand_fix (to, from, unsignedp)
4337 rtx to, from;
4338 int unsignedp;
4340 enum insn_code icode;
4341 rtx target = to;
4342 enum machine_mode fmode, imode;
4343 int must_trunc = 0;
4344 rtx libfcn = 0;
4346 /* We first try to find a pair of modes, one real and one integer, at
4347 least as wide as FROM and TO, respectively, in which we can open-code
4348 this conversion. If the integer mode is wider than the mode of TO,
4349 we can do the conversion either signed or unsigned. */
4351 for (imode = GET_MODE (to); imode != VOIDmode;
4352 imode = GET_MODE_WIDER_MODE (imode))
4353 for (fmode = GET_MODE (from); fmode != VOIDmode;
4354 fmode = GET_MODE_WIDER_MODE (fmode))
4356 int doing_unsigned = unsignedp;
4358 icode = can_fix_p (imode, fmode, unsignedp, &must_trunc);
4359 if (icode == CODE_FOR_nothing && imode != GET_MODE (to) && unsignedp)
4360 icode = can_fix_p (imode, fmode, 0, &must_trunc), doing_unsigned = 0;
4362 if (icode != CODE_FOR_nothing)
4364 to = protect_from_queue (to, 1);
4365 from = protect_from_queue (from, 0);
4367 if (fmode != GET_MODE (from))
4368 from = convert_to_mode (fmode, from, 0);
4370 if (must_trunc)
4371 from = ftruncify (from);
4373 if (imode != GET_MODE (to))
4374 target = gen_reg_rtx (imode);
4376 emit_unop_insn (icode, target, from,
4377 doing_unsigned ? UNSIGNED_FIX : FIX);
4378 if (target != to)
4379 convert_move (to, target, unsignedp);
4380 return;
4384 #if !defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
4385 /* For an unsigned conversion, there is one more way to do it.
4386 If we have a signed conversion, we generate code that compares
4387 the real value to the largest representable positive number. If if
4388 is smaller, the conversion is done normally. Otherwise, subtract
4389 one plus the highest signed number, convert, and add it back.
4391 We only need to check all real modes, since we know we didn't find
4392 anything with a wider integer mode. */
4394 if (unsignedp && GET_MODE_BITSIZE (GET_MODE (to)) <= HOST_BITS_PER_WIDE_INT)
4395 for (fmode = GET_MODE (from); fmode != VOIDmode;
4396 fmode = GET_MODE_WIDER_MODE (fmode))
4397 /* Make sure we won't lose significant bits doing this. */
4398 if (GET_MODE_BITSIZE (fmode) > GET_MODE_BITSIZE (GET_MODE (to))
4399 && CODE_FOR_nothing != can_fix_p (GET_MODE (to), fmode, 0,
4400 &must_trunc))
4402 int bitsize;
4403 REAL_VALUE_TYPE offset;
4404 rtx limit, lab1, lab2, insn;
4406 bitsize = GET_MODE_BITSIZE (GET_MODE (to));
4407 offset = REAL_VALUE_LDEXP (dconst1, bitsize - 1);
4408 limit = CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode);
4409 lab1 = gen_label_rtx ();
4410 lab2 = gen_label_rtx ();
4412 emit_queue ();
4413 to = protect_from_queue (to, 1);
4414 from = protect_from_queue (from, 0);
4416 if (flag_force_mem)
4417 from = force_not_mem (from);
4419 if (fmode != GET_MODE (from))
4420 from = convert_to_mode (fmode, from, 0);
4422 /* See if we need to do the subtraction. */
4423 do_pending_stack_adjust ();
4424 emit_cmp_and_jump_insns (from, limit, GE, NULL_RTX, GET_MODE (from),
4425 0, lab1);
4427 /* If not, do the signed "fix" and branch around fixup code. */
4428 expand_fix (to, from, 0);
4429 emit_jump_insn (gen_jump (lab2));
4430 emit_barrier ();
4432 /* Otherwise, subtract 2**(N-1), convert to signed number,
4433 then add 2**(N-1). Do the addition using XOR since this
4434 will often generate better code. */
4435 emit_label (lab1);
4436 target = expand_binop (GET_MODE (from), sub_optab, from, limit,
4437 NULL_RTX, 0, OPTAB_LIB_WIDEN);
4438 expand_fix (to, target, 0);
4439 target = expand_binop (GET_MODE (to), xor_optab, to,
4440 GEN_INT (trunc_int_for_mode
4441 ((HOST_WIDE_INT) 1 << (bitsize - 1),
4442 GET_MODE (to))),
4443 to, 1, OPTAB_LIB_WIDEN);
4445 if (target != to)
4446 emit_move_insn (to, target);
4448 emit_label (lab2);
4450 if (mov_optab->handlers[(int) GET_MODE (to)].insn_code
4451 != CODE_FOR_nothing)
4453 /* Make a place for a REG_NOTE and add it. */
4454 insn = emit_move_insn (to, to);
4455 set_unique_reg_note (insn,
4456 REG_EQUAL,
4457 gen_rtx_fmt_e (UNSIGNED_FIX,
4458 GET_MODE (to),
4459 copy_rtx (from)));
4462 return;
4464 #endif
4466 /* We can't do it with an insn, so use a library call. But first ensure
4467 that the mode of TO is at least as wide as SImode, since those are the
4468 only library calls we know about. */
4470 if (GET_MODE_SIZE (GET_MODE (to)) < GET_MODE_SIZE (SImode))
4472 target = gen_reg_rtx (SImode);
4474 expand_fix (target, from, unsignedp);
4476 else if (GET_MODE (from) == SFmode)
4478 if (GET_MODE (to) == SImode)
4479 libfcn = unsignedp ? fixunssfsi_libfunc : fixsfsi_libfunc;
4480 else if (GET_MODE (to) == DImode)
4481 libfcn = unsignedp ? fixunssfdi_libfunc : fixsfdi_libfunc;
4482 else if (GET_MODE (to) == TImode)
4483 libfcn = unsignedp ? fixunssfti_libfunc : fixsfti_libfunc;
4484 else
4485 abort ();
4487 else if (GET_MODE (from) == DFmode)
4489 if (GET_MODE (to) == SImode)
4490 libfcn = unsignedp ? fixunsdfsi_libfunc : fixdfsi_libfunc;
4491 else if (GET_MODE (to) == DImode)
4492 libfcn = unsignedp ? fixunsdfdi_libfunc : fixdfdi_libfunc;
4493 else if (GET_MODE (to) == TImode)
4494 libfcn = unsignedp ? fixunsdfti_libfunc : fixdfti_libfunc;
4495 else
4496 abort ();
4498 else if (GET_MODE (from) == XFmode)
4500 if (GET_MODE (to) == SImode)
4501 libfcn = unsignedp ? fixunsxfsi_libfunc : fixxfsi_libfunc;
4502 else if (GET_MODE (to) == DImode)
4503 libfcn = unsignedp ? fixunsxfdi_libfunc : fixxfdi_libfunc;
4504 else if (GET_MODE (to) == TImode)
4505 libfcn = unsignedp ? fixunsxfti_libfunc : fixxfti_libfunc;
4506 else
4507 abort ();
4509 else if (GET_MODE (from) == TFmode)
4511 if (GET_MODE (to) == SImode)
4512 libfcn = unsignedp ? fixunstfsi_libfunc : fixtfsi_libfunc;
4513 else if (GET_MODE (to) == DImode)
4514 libfcn = unsignedp ? fixunstfdi_libfunc : fixtfdi_libfunc;
4515 else if (GET_MODE (to) == TImode)
4516 libfcn = unsignedp ? fixunstfti_libfunc : fixtfti_libfunc;
4517 else
4518 abort ();
4520 else
4521 abort ();
4523 if (libfcn)
4525 rtx insns;
4526 rtx value;
4528 to = protect_from_queue (to, 1);
4529 from = protect_from_queue (from, 0);
4531 if (flag_force_mem)
4532 from = force_not_mem (from);
4534 start_sequence ();
4536 value = emit_library_call_value (libfcn, NULL_RTX, LCT_CONST,
4537 GET_MODE (to), 1, from,
4538 GET_MODE (from));
4539 insns = get_insns ();
4540 end_sequence ();
4542 emit_libcall_block (insns, target, value,
4543 gen_rtx_fmt_e (unsignedp ? UNSIGNED_FIX : FIX,
4544 GET_MODE (to), from));
4547 if (target != to)
4549 if (GET_MODE (to) == GET_MODE (target))
4550 emit_move_insn (to, target);
4551 else
4552 convert_move (to, target, 0);
4556 /* Report whether we have an instruction to perform the operation
4557 specified by CODE on operands of mode MODE. */
4559 have_insn_for (code, mode)
4560 enum rtx_code code;
4561 enum machine_mode mode;
4563 return (code_to_optab[(int) code] != 0
4564 && (code_to_optab[(int) code]->handlers[(int) mode].insn_code
4565 != CODE_FOR_nothing));
4568 /* Create a blank optab. */
4569 static optab
4570 new_optab ()
4572 int i;
4573 optab op = (optab) xmalloc (sizeof (struct optab));
4574 for (i = 0; i < NUM_MACHINE_MODES; i++)
4576 op->handlers[i].insn_code = CODE_FOR_nothing;
4577 op->handlers[i].libfunc = 0;
4580 return op;
4583 /* Same, but fill in its code as CODE, and write it into the
4584 code_to_optab table. */
4585 static inline optab
4586 init_optab (code)
4587 enum rtx_code code;
4589 optab op = new_optab ();
4590 op->code = code;
4591 code_to_optab[(int) code] = op;
4592 return op;
4595 /* Same, but fill in its code as CODE, and do _not_ write it into
4596 the code_to_optab table. */
4597 static inline optab
4598 init_optabv (code)
4599 enum rtx_code code;
4601 optab op = new_optab ();
4602 op->code = code;
4603 return op;
4606 /* Initialize the libfunc fields of an entire group of entries in some
4607 optab. Each entry is set equal to a string consisting of a leading
4608 pair of underscores followed by a generic operation name followed by
4609 a mode name (downshifted to lower case) followed by a single character
4610 representing the number of operands for the given operation (which is
4611 usually one of the characters '2', '3', or '4').
4613 OPTABLE is the table in which libfunc fields are to be initialized.
4614 FIRST_MODE is the first machine mode index in the given optab to
4615 initialize.
4616 LAST_MODE is the last machine mode index in the given optab to
4617 initialize.
4618 OPNAME is the generic (string) name of the operation.
4619 SUFFIX is the character which specifies the number of operands for
4620 the given generic operation.
4623 static void
4624 init_libfuncs (optable, first_mode, last_mode, opname, suffix)
4625 optab optable;
4626 int first_mode;
4627 int last_mode;
4628 const char *opname;
4629 int suffix;
4631 int mode;
4632 unsigned opname_len = strlen (opname);
4634 for (mode = first_mode; (int) mode <= (int) last_mode;
4635 mode = (enum machine_mode) ((int) mode + 1))
4637 const char *mname = GET_MODE_NAME(mode);
4638 unsigned mname_len = strlen (mname);
4639 char *libfunc_name = alloca (2 + opname_len + mname_len + 1 + 1);
4640 char *p;
4641 const char *q;
4643 p = libfunc_name;
4644 *p++ = '_';
4645 *p++ = '_';
4646 for (q = opname; *q; )
4647 *p++ = *q++;
4648 for (q = mname; *q; q++)
4649 *p++ = TOLOWER (*q);
4650 *p++ = suffix;
4651 *p = '\0';
4653 optable->handlers[(int) mode].libfunc
4654 = gen_rtx_SYMBOL_REF (Pmode, ggc_alloc_string (libfunc_name,
4655 p - libfunc_name));
4659 /* Initialize the libfunc fields of an entire group of entries in some
4660 optab which correspond to all integer mode operations. The parameters
4661 have the same meaning as similarly named ones for the `init_libfuncs'
4662 routine. (See above). */
4664 static void
4665 init_integral_libfuncs (optable, opname, suffix)
4666 optab optable;
4667 const char *opname;
4668 int suffix;
4670 init_libfuncs (optable, SImode, TImode, opname, suffix);
4673 /* Initialize the libfunc fields of an entire group of entries in some
4674 optab which correspond to all real mode operations. The parameters
4675 have the same meaning as similarly named ones for the `init_libfuncs'
4676 routine. (See above). */
4678 static void
4679 init_floating_libfuncs (optable, opname, suffix)
4680 optab optable;
4681 const char *opname;
4682 int suffix;
4684 init_libfuncs (optable, SFmode, TFmode, opname, suffix);
4688 init_one_libfunc (name)
4689 const char *name;
4691 /* Create a FUNCTION_DECL that can be passed to ENCODE_SECTION_INFO. */
4692 /* ??? We don't have any type information except for this is
4693 a function. Pretend this is "int foo()". */
4694 tree decl = build_decl (FUNCTION_DECL, get_identifier (name),
4695 build_function_type (integer_type_node, NULL_TREE));
4696 DECL_ARTIFICIAL (decl) = 1;
4697 DECL_EXTERNAL (decl) = 1;
4698 TREE_PUBLIC (decl) = 1;
4700 /* Return the symbol_ref from the mem rtx. */
4701 return XEXP (DECL_RTL (decl), 0);
4704 /* Mark ARG (which is really an OPTAB *) for GC. */
4706 void
4707 mark_optab (arg)
4708 void *arg;
4710 optab o = *(optab *) arg;
4711 int i;
4713 for (i = 0; i < NUM_MACHINE_MODES; ++i)
4714 ggc_mark_rtx (o->handlers[i].libfunc);
4717 /* Call this once to initialize the contents of the optabs
4718 appropriately for the current target machine. */
4720 void
4721 init_optabs ()
4723 unsigned int i, j, k;
4725 /* Start by initializing all tables to contain CODE_FOR_nothing. */
4727 for (i = 0; i < ARRAY_SIZE (fixtab); i++)
4728 for (j = 0; j < ARRAY_SIZE (fixtab[0]); j++)
4729 for (k = 0; k < ARRAY_SIZE (fixtab[0][0]); k++)
4730 fixtab[i][j][k] = CODE_FOR_nothing;
4732 for (i = 0; i < ARRAY_SIZE (fixtrunctab); i++)
4733 for (j = 0; j < ARRAY_SIZE (fixtrunctab[0]); j++)
4734 for (k = 0; k < ARRAY_SIZE (fixtrunctab[0][0]); k++)
4735 fixtrunctab[i][j][k] = CODE_FOR_nothing;
4737 for (i = 0; i < ARRAY_SIZE (floattab); i++)
4738 for (j = 0; j < ARRAY_SIZE (floattab[0]); j++)
4739 for (k = 0; k < ARRAY_SIZE (floattab[0][0]); k++)
4740 floattab[i][j][k] = CODE_FOR_nothing;
4742 for (i = 0; i < ARRAY_SIZE (extendtab); i++)
4743 for (j = 0; j < ARRAY_SIZE (extendtab[0]); j++)
4744 for (k = 0; k < ARRAY_SIZE (extendtab[0][0]); k++)
4745 extendtab[i][j][k] = CODE_FOR_nothing;
4747 for (i = 0; i < NUM_RTX_CODE; i++)
4748 setcc_gen_code[i] = CODE_FOR_nothing;
4750 #ifdef HAVE_conditional_move
4751 for (i = 0; i < NUM_MACHINE_MODES; i++)
4752 movcc_gen_code[i] = CODE_FOR_nothing;
4753 #endif
4755 add_optab = init_optab (PLUS);
4756 addv_optab = init_optabv (PLUS);
4757 sub_optab = init_optab (MINUS);
4758 subv_optab = init_optabv (MINUS);
4759 smul_optab = init_optab (MULT);
4760 smulv_optab = init_optabv (MULT);
4761 smul_highpart_optab = init_optab (UNKNOWN);
4762 umul_highpart_optab = init_optab (UNKNOWN);
4763 smul_widen_optab = init_optab (UNKNOWN);
4764 umul_widen_optab = init_optab (UNKNOWN);
4765 sdiv_optab = init_optab (DIV);
4766 sdivv_optab = init_optabv (DIV);
4767 sdivmod_optab = init_optab (UNKNOWN);
4768 udiv_optab = init_optab (UDIV);
4769 udivmod_optab = init_optab (UNKNOWN);
4770 smod_optab = init_optab (MOD);
4771 umod_optab = init_optab (UMOD);
4772 ftrunc_optab = init_optab (UNKNOWN);
4773 and_optab = init_optab (AND);
4774 ior_optab = init_optab (IOR);
4775 xor_optab = init_optab (XOR);
4776 ashl_optab = init_optab (ASHIFT);
4777 ashr_optab = init_optab (ASHIFTRT);
4778 lshr_optab = init_optab (LSHIFTRT);
4779 rotl_optab = init_optab (ROTATE);
4780 rotr_optab = init_optab (ROTATERT);
4781 smin_optab = init_optab (SMIN);
4782 smax_optab = init_optab (SMAX);
4783 umin_optab = init_optab (UMIN);
4784 umax_optab = init_optab (UMAX);
4786 /* These three have codes assigned exclusively for the sake of
4787 have_insn_for. */
4788 mov_optab = init_optab (SET);
4789 movstrict_optab = init_optab (STRICT_LOW_PART);
4790 cmp_optab = init_optab (COMPARE);
4792 ucmp_optab = init_optab (UNKNOWN);
4793 tst_optab = init_optab (UNKNOWN);
4794 neg_optab = init_optab (NEG);
4795 negv_optab = init_optabv (NEG);
4796 abs_optab = init_optab (ABS);
4797 absv_optab = init_optabv (ABS);
4798 one_cmpl_optab = init_optab (NOT);
4799 ffs_optab = init_optab (FFS);
4800 sqrt_optab = init_optab (SQRT);
4801 sin_optab = init_optab (UNKNOWN);
4802 cos_optab = init_optab (UNKNOWN);
4803 strlen_optab = init_optab (UNKNOWN);
4804 cbranch_optab = init_optab (UNKNOWN);
4805 cmov_optab = init_optab (UNKNOWN);
4806 cstore_optab = init_optab (UNKNOWN);
4807 push_optab = init_optab (UNKNOWN);
4809 for (i = 0; i < NUM_MACHINE_MODES; i++)
4811 movstr_optab[i] = CODE_FOR_nothing;
4812 clrstr_optab[i] = CODE_FOR_nothing;
4814 #ifdef HAVE_SECONDARY_RELOADS
4815 reload_in_optab[i] = reload_out_optab[i] = CODE_FOR_nothing;
4816 #endif
4819 /* Fill in the optabs with the insns we support. */
4820 init_all_optabs ();
4822 #ifdef FIXUNS_TRUNC_LIKE_FIX_TRUNC
4823 /* This flag says the same insns that convert to a signed fixnum
4824 also convert validly to an unsigned one. */
4825 for (i = 0; i < NUM_MACHINE_MODES; i++)
4826 for (j = 0; j < NUM_MACHINE_MODES; j++)
4827 fixtrunctab[i][j][1] = fixtrunctab[i][j][0];
4828 #endif
4830 /* Initialize the optabs with the names of the library functions. */
4831 init_integral_libfuncs (add_optab, "add", '3');
4832 init_floating_libfuncs (add_optab, "add", '3');
4833 init_integral_libfuncs (addv_optab, "addv", '3');
4834 init_floating_libfuncs (addv_optab, "add", '3');
4835 init_integral_libfuncs (sub_optab, "sub", '3');
4836 init_floating_libfuncs (sub_optab, "sub", '3');
4837 init_integral_libfuncs (subv_optab, "subv", '3');
4838 init_floating_libfuncs (subv_optab, "sub", '3');
4839 init_integral_libfuncs (smul_optab, "mul", '3');
4840 init_floating_libfuncs (smul_optab, "mul", '3');
4841 init_integral_libfuncs (smulv_optab, "mulv", '3');
4842 init_floating_libfuncs (smulv_optab, "mul", '3');
4843 init_integral_libfuncs (sdiv_optab, "div", '3');
4844 init_floating_libfuncs (sdiv_optab, "div", '3');
4845 init_integral_libfuncs (sdivv_optab, "divv", '3');
4846 init_integral_libfuncs (udiv_optab, "udiv", '3');
4847 init_integral_libfuncs (sdivmod_optab, "divmod", '4');
4848 init_integral_libfuncs (udivmod_optab, "udivmod", '4');
4849 init_integral_libfuncs (smod_optab, "mod", '3');
4850 init_integral_libfuncs (umod_optab, "umod", '3');
4851 init_floating_libfuncs (ftrunc_optab, "ftrunc", '2');
4852 init_integral_libfuncs (and_optab, "and", '3');
4853 init_integral_libfuncs (ior_optab, "ior", '3');
4854 init_integral_libfuncs (xor_optab, "xor", '3');
4855 init_integral_libfuncs (ashl_optab, "ashl", '3');
4856 init_integral_libfuncs (ashr_optab, "ashr", '3');
4857 init_integral_libfuncs (lshr_optab, "lshr", '3');
4858 init_integral_libfuncs (smin_optab, "min", '3');
4859 init_floating_libfuncs (smin_optab, "min", '3');
4860 init_integral_libfuncs (smax_optab, "max", '3');
4861 init_floating_libfuncs (smax_optab, "max", '3');
4862 init_integral_libfuncs (umin_optab, "umin", '3');
4863 init_integral_libfuncs (umax_optab, "umax", '3');
4864 init_integral_libfuncs (neg_optab, "neg", '2');
4865 init_floating_libfuncs (neg_optab, "neg", '2');
4866 init_integral_libfuncs (negv_optab, "negv", '2');
4867 init_floating_libfuncs (negv_optab, "neg", '2');
4868 init_integral_libfuncs (one_cmpl_optab, "one_cmpl", '2');
4869 init_integral_libfuncs (ffs_optab, "ffs", '2');
4871 /* Comparison libcalls for integers MUST come in pairs, signed/unsigned. */
4872 init_integral_libfuncs (cmp_optab, "cmp", '2');
4873 init_integral_libfuncs (ucmp_optab, "ucmp", '2');
4874 init_floating_libfuncs (cmp_optab, "cmp", '2');
4876 #ifdef MULSI3_LIBCALL
4877 smul_optab->handlers[(int) SImode].libfunc
4878 = init_one_libfunc (MULSI3_LIBCALL);
4879 #endif
4880 #ifdef MULDI3_LIBCALL
4881 smul_optab->handlers[(int) DImode].libfunc
4882 = init_one_libfunc (MULDI3_LIBCALL);
4883 #endif
4885 #ifdef DIVSI3_LIBCALL
4886 sdiv_optab->handlers[(int) SImode].libfunc
4887 = init_one_libfunc (DIVSI3_LIBCALL);
4888 #endif
4889 #ifdef DIVDI3_LIBCALL
4890 sdiv_optab->handlers[(int) DImode].libfunc
4891 = init_one_libfunc (DIVDI3_LIBCALL);
4892 #endif
4894 #ifdef UDIVSI3_LIBCALL
4895 udiv_optab->handlers[(int) SImode].libfunc
4896 = init_one_libfunc (UDIVSI3_LIBCALL);
4897 #endif
4898 #ifdef UDIVDI3_LIBCALL
4899 udiv_optab->handlers[(int) DImode].libfunc
4900 = init_one_libfunc (UDIVDI3_LIBCALL);
4901 #endif
4903 #ifdef MODSI3_LIBCALL
4904 smod_optab->handlers[(int) SImode].libfunc
4905 = init_one_libfunc (MODSI3_LIBCALL);
4906 #endif
4907 #ifdef MODDI3_LIBCALL
4908 smod_optab->handlers[(int) DImode].libfunc
4909 = init_one_libfunc (MODDI3_LIBCALL);
4910 #endif
4912 #ifdef UMODSI3_LIBCALL
4913 umod_optab->handlers[(int) SImode].libfunc
4914 = init_one_libfunc (UMODSI3_LIBCALL);
4915 #endif
4916 #ifdef UMODDI3_LIBCALL
4917 umod_optab->handlers[(int) DImode].libfunc
4918 = init_one_libfunc (UMODDI3_LIBCALL);
4919 #endif
4921 /* Use cabs for DC complex abs, since systems generally have cabs.
4922 Don't define any libcall for SCmode, so that cabs will be used. */
4923 abs_optab->handlers[(int) DCmode].libfunc
4924 = init_one_libfunc ("cabs");
4926 /* The ffs function operates on `int'. */
4927 ffs_optab->handlers[(int) mode_for_size (INT_TYPE_SIZE, MODE_INT, 0)].libfunc
4928 = init_one_libfunc ("ffs");
4930 extendsfdf2_libfunc = init_one_libfunc ("__extendsfdf2");
4931 extendsfxf2_libfunc = init_one_libfunc ("__extendsfxf2");
4932 extendsftf2_libfunc = init_one_libfunc ("__extendsftf2");
4933 extenddfxf2_libfunc = init_one_libfunc ("__extenddfxf2");
4934 extenddftf2_libfunc = init_one_libfunc ("__extenddftf2");
4936 truncdfsf2_libfunc = init_one_libfunc ("__truncdfsf2");
4937 truncxfsf2_libfunc = init_one_libfunc ("__truncxfsf2");
4938 trunctfsf2_libfunc = init_one_libfunc ("__trunctfsf2");
4939 truncxfdf2_libfunc = init_one_libfunc ("__truncxfdf2");
4940 trunctfdf2_libfunc = init_one_libfunc ("__trunctfdf2");
4942 memcpy_libfunc = init_one_libfunc ("memcpy");
4943 memmove_libfunc = init_one_libfunc ("memmove");
4944 bcopy_libfunc = init_one_libfunc ("bcopy");
4945 memcmp_libfunc = init_one_libfunc ("memcmp");
4946 bcmp_libfunc = init_one_libfunc ("__gcc_bcmp");
4947 memset_libfunc = init_one_libfunc ("memset");
4948 bzero_libfunc = init_one_libfunc ("bzero");
4950 unwind_resume_libfunc = init_one_libfunc (USING_SJLJ_EXCEPTIONS
4951 ? "_Unwind_SjLj_Resume"
4952 : "_Unwind_Resume");
4953 #ifndef DONT_USE_BUILTIN_SETJMP
4954 setjmp_libfunc = init_one_libfunc ("__builtin_setjmp");
4955 longjmp_libfunc = init_one_libfunc ("__builtin_longjmp");
4956 #else
4957 setjmp_libfunc = init_one_libfunc ("setjmp");
4958 longjmp_libfunc = init_one_libfunc ("longjmp");
4959 #endif
4960 unwind_sjlj_register_libfunc = init_one_libfunc ("_Unwind_SjLj_Register");
4961 unwind_sjlj_unregister_libfunc
4962 = init_one_libfunc ("_Unwind_SjLj_Unregister");
4964 eqhf2_libfunc = init_one_libfunc ("__eqhf2");
4965 nehf2_libfunc = init_one_libfunc ("__nehf2");
4966 gthf2_libfunc = init_one_libfunc ("__gthf2");
4967 gehf2_libfunc = init_one_libfunc ("__gehf2");
4968 lthf2_libfunc = init_one_libfunc ("__lthf2");
4969 lehf2_libfunc = init_one_libfunc ("__lehf2");
4970 unordhf2_libfunc = init_one_libfunc ("__unordhf2");
4972 eqsf2_libfunc = init_one_libfunc ("__eqsf2");
4973 nesf2_libfunc = init_one_libfunc ("__nesf2");
4974 gtsf2_libfunc = init_one_libfunc ("__gtsf2");
4975 gesf2_libfunc = init_one_libfunc ("__gesf2");
4976 ltsf2_libfunc = init_one_libfunc ("__ltsf2");
4977 lesf2_libfunc = init_one_libfunc ("__lesf2");
4978 unordsf2_libfunc = init_one_libfunc ("__unordsf2");
4980 eqdf2_libfunc = init_one_libfunc ("__eqdf2");
4981 nedf2_libfunc = init_one_libfunc ("__nedf2");
4982 gtdf2_libfunc = init_one_libfunc ("__gtdf2");
4983 gedf2_libfunc = init_one_libfunc ("__gedf2");
4984 ltdf2_libfunc = init_one_libfunc ("__ltdf2");
4985 ledf2_libfunc = init_one_libfunc ("__ledf2");
4986 unorddf2_libfunc = init_one_libfunc ("__unorddf2");
4988 eqxf2_libfunc = init_one_libfunc ("__eqxf2");
4989 nexf2_libfunc = init_one_libfunc ("__nexf2");
4990 gtxf2_libfunc = init_one_libfunc ("__gtxf2");
4991 gexf2_libfunc = init_one_libfunc ("__gexf2");
4992 ltxf2_libfunc = init_one_libfunc ("__ltxf2");
4993 lexf2_libfunc = init_one_libfunc ("__lexf2");
4994 unordxf2_libfunc = init_one_libfunc ("__unordxf2");
4996 eqtf2_libfunc = init_one_libfunc ("__eqtf2");
4997 netf2_libfunc = init_one_libfunc ("__netf2");
4998 gttf2_libfunc = init_one_libfunc ("__gttf2");
4999 getf2_libfunc = init_one_libfunc ("__getf2");
5000 lttf2_libfunc = init_one_libfunc ("__lttf2");
5001 letf2_libfunc = init_one_libfunc ("__letf2");
5002 unordtf2_libfunc = init_one_libfunc ("__unordtf2");
5004 floatsisf_libfunc = init_one_libfunc ("__floatsisf");
5005 floatdisf_libfunc = init_one_libfunc ("__floatdisf");
5006 floattisf_libfunc = init_one_libfunc ("__floattisf");
5008 floatsidf_libfunc = init_one_libfunc ("__floatsidf");
5009 floatdidf_libfunc = init_one_libfunc ("__floatdidf");
5010 floattidf_libfunc = init_one_libfunc ("__floattidf");
5012 floatsixf_libfunc = init_one_libfunc ("__floatsixf");
5013 floatdixf_libfunc = init_one_libfunc ("__floatdixf");
5014 floattixf_libfunc = init_one_libfunc ("__floattixf");
5016 floatsitf_libfunc = init_one_libfunc ("__floatsitf");
5017 floatditf_libfunc = init_one_libfunc ("__floatditf");
5018 floattitf_libfunc = init_one_libfunc ("__floattitf");
5020 fixsfsi_libfunc = init_one_libfunc ("__fixsfsi");
5021 fixsfdi_libfunc = init_one_libfunc ("__fixsfdi");
5022 fixsfti_libfunc = init_one_libfunc ("__fixsfti");
5024 fixdfsi_libfunc = init_one_libfunc ("__fixdfsi");
5025 fixdfdi_libfunc = init_one_libfunc ("__fixdfdi");
5026 fixdfti_libfunc = init_one_libfunc ("__fixdfti");
5028 fixxfsi_libfunc = init_one_libfunc ("__fixxfsi");
5029 fixxfdi_libfunc = init_one_libfunc ("__fixxfdi");
5030 fixxfti_libfunc = init_one_libfunc ("__fixxfti");
5032 fixtfsi_libfunc = init_one_libfunc ("__fixtfsi");
5033 fixtfdi_libfunc = init_one_libfunc ("__fixtfdi");
5034 fixtfti_libfunc = init_one_libfunc ("__fixtfti");
5036 fixunssfsi_libfunc = init_one_libfunc ("__fixunssfsi");
5037 fixunssfdi_libfunc = init_one_libfunc ("__fixunssfdi");
5038 fixunssfti_libfunc = init_one_libfunc ("__fixunssfti");
5040 fixunsdfsi_libfunc = init_one_libfunc ("__fixunsdfsi");
5041 fixunsdfdi_libfunc = init_one_libfunc ("__fixunsdfdi");
5042 fixunsdfti_libfunc = init_one_libfunc ("__fixunsdfti");
5044 fixunsxfsi_libfunc = init_one_libfunc ("__fixunsxfsi");
5045 fixunsxfdi_libfunc = init_one_libfunc ("__fixunsxfdi");
5046 fixunsxfti_libfunc = init_one_libfunc ("__fixunsxfti");
5048 fixunstfsi_libfunc = init_one_libfunc ("__fixunstfsi");
5049 fixunstfdi_libfunc = init_one_libfunc ("__fixunstfdi");
5050 fixunstfti_libfunc = init_one_libfunc ("__fixunstfti");
5052 /* For check-memory-usage. */
5053 chkr_check_addr_libfunc = init_one_libfunc ("chkr_check_addr");
5054 chkr_set_right_libfunc = init_one_libfunc ("chkr_set_right");
5055 chkr_copy_bitmap_libfunc = init_one_libfunc ("chkr_copy_bitmap");
5056 chkr_check_exec_libfunc = init_one_libfunc ("chkr_check_exec");
5057 chkr_check_str_libfunc = init_one_libfunc ("chkr_check_str");
5059 /* For function entry/exit instrumentation. */
5060 profile_function_entry_libfunc
5061 = init_one_libfunc ("__cyg_profile_func_enter");
5062 profile_function_exit_libfunc
5063 = init_one_libfunc ("__cyg_profile_func_exit");
5065 #ifdef HAVE_conditional_trap
5066 init_traps ();
5067 #endif
5069 #ifdef INIT_TARGET_OPTABS
5070 /* Allow the target to add more libcalls or rename some, etc. */
5071 INIT_TARGET_OPTABS;
5072 #endif
5074 /* Add these GC roots. */
5075 ggc_add_root (optab_table, OTI_MAX, sizeof(optab), mark_optab);
5076 ggc_add_rtx_root (libfunc_table, LTI_MAX);
5079 #ifdef HAVE_conditional_trap
5080 /* The insn generating function can not take an rtx_code argument.
5081 TRAP_RTX is used as an rtx argument. Its code is replaced with
5082 the code to be used in the trap insn and all other fields are
5083 ignored. */
5084 static rtx trap_rtx;
5086 static void
5087 init_traps ()
5089 if (HAVE_conditional_trap)
5091 trap_rtx = gen_rtx_fmt_ee (EQ, VOIDmode, NULL_RTX, NULL_RTX);
5092 ggc_add_rtx_root (&trap_rtx, 1);
5095 #endif
5097 /* Generate insns to trap with code TCODE if OP1 and OP2 satisfy condition
5098 CODE. Return 0 on failure. */
5101 gen_cond_trap (code, op1, op2, tcode)
5102 enum rtx_code code ATTRIBUTE_UNUSED;
5103 rtx op1, op2 ATTRIBUTE_UNUSED, tcode ATTRIBUTE_UNUSED;
5105 enum machine_mode mode = GET_MODE (op1);
5107 if (mode == VOIDmode)
5108 return 0;
5110 #ifdef HAVE_conditional_trap
5111 if (HAVE_conditional_trap
5112 && cmp_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
5114 rtx insn;
5115 start_sequence();
5116 emit_insn (GEN_FCN (cmp_optab->handlers[(int) mode].insn_code) (op1, op2));
5117 PUT_CODE (trap_rtx, code);
5118 insn = gen_conditional_trap (trap_rtx, tcode);
5119 if (insn)
5121 emit_insn (insn);
5122 insn = gen_sequence ();
5124 end_sequence();
5125 return insn;
5127 #endif
5129 return 0;