* doc/xml/manual/status_cxx2011.xml: Update status.
[official-gcc.git] / gcc / ira-emit.c
blob53612348e300f2b98fb701ca4bd506f1ed16abb9
1 /* Integrated Register Allocator. Changing code and generating moves.
2 Copyright (C) 2006-2014 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* When we have more one region, we need to change the original RTL
22 code after coloring. Let us consider two allocnos representing the
23 same pseudo-register outside and inside a region respectively.
24 They can get different hard-registers. The reload pass works on
25 pseudo registers basis and there is no way to say the reload that
26 pseudo could be in different registers and it is even more
27 difficult to say in what places of the code the pseudo should have
28 particular hard-registers. So in this case IRA has to create and
29 use a new pseudo-register inside the region and adds code to move
30 allocno values on the region's borders. This is done by the code
31 in this file.
33 The code makes top-down traversal of the regions and generate new
34 pseudos and the move code on the region borders. In some
35 complicated cases IRA can create a new pseudo used temporarily to
36 move allocno values when a swap of values stored in two
37 hard-registers is needed (e.g. two allocnos representing different
38 pseudos outside region got respectively hard registers 1 and 2 and
39 the corresponding allocnos inside the region got respectively hard
40 registers 2 and 1). At this stage, the new pseudo is marked as
41 spilled.
43 IRA still creates the pseudo-register and the moves on the region
44 borders even when the both corresponding allocnos were assigned to
45 the same hard-register. It is done because, if the reload pass for
46 some reason spills a pseudo-register representing the original
47 pseudo outside or inside the region, the effect will be smaller
48 because another pseudo will still be in the hard-register. In most
49 cases, this is better then spilling the original pseudo in its
50 whole live-range. If reload does not change the allocation for the
51 two pseudo-registers, the trivial move will be removed by
52 post-reload optimizations.
54 IRA does not generate a new pseudo and moves for the allocno values
55 if the both allocnos representing an original pseudo inside and
56 outside region assigned to the same hard register when the register
57 pressure in the region for the corresponding pressure class is less
58 than number of available hard registers for given pressure class.
60 IRA also does some optimizations to remove redundant moves which is
61 transformed into stores by the reload pass on CFG edges
62 representing exits from the region.
64 IRA tries to reduce duplication of code generated on CFG edges
65 which are enters and exits to/from regions by moving some code to
66 the edge sources or destinations when it is possible. */
68 #include "config.h"
69 #include "system.h"
70 #include "coretypes.h"
71 #include "tm.h"
72 #include "regs.h"
73 #include "rtl.h"
74 #include "tm_p.h"
75 #include "target.h"
76 #include "flags.h"
77 #include "obstack.h"
78 #include "bitmap.h"
79 #include "hard-reg-set.h"
80 #include "basic-block.h"
81 #include "expr.h"
82 #include "recog.h"
83 #include "params.h"
84 #include "reload.h"
85 #include "df.h"
86 #include "ira-int.h"
89 /* Data used to emit live range split insns and to flattening IR. */
90 ira_emit_data_t ira_allocno_emit_data;
92 /* Definitions for vectors of pointers. */
93 typedef void *void_p;
95 /* Pointers to data allocated for allocnos being created during
96 emitting. Usually there are quite few such allocnos because they
97 are created only for resolving loop in register shuffling. */
98 static vec<void_p> new_allocno_emit_data_vec;
100 /* Allocate and initiate the emit data. */
101 void
102 ira_initiate_emit_data (void)
104 ira_allocno_t a;
105 ira_allocno_iterator ai;
107 ira_allocno_emit_data
108 = (ira_emit_data_t) ira_allocate (ira_allocnos_num
109 * sizeof (struct ira_emit_data));
110 memset (ira_allocno_emit_data, 0,
111 ira_allocnos_num * sizeof (struct ira_emit_data));
112 FOR_EACH_ALLOCNO (a, ai)
113 ALLOCNO_ADD_DATA (a) = ira_allocno_emit_data + ALLOCNO_NUM (a);
114 new_allocno_emit_data_vec.create (50);
118 /* Free the emit data. */
119 void
120 ira_finish_emit_data (void)
122 void_p p;
123 ira_allocno_t a;
124 ira_allocno_iterator ai;
126 ira_free (ira_allocno_emit_data);
127 FOR_EACH_ALLOCNO (a, ai)
128 ALLOCNO_ADD_DATA (a) = NULL;
129 for (;new_allocno_emit_data_vec.length () != 0;)
131 p = new_allocno_emit_data_vec.pop ();
132 ira_free (p);
134 new_allocno_emit_data_vec.release ();
137 /* Create and return a new allocno with given REGNO and
138 LOOP_TREE_NODE. Allocate emit data for it. */
139 static ira_allocno_t
140 create_new_allocno (int regno, ira_loop_tree_node_t loop_tree_node)
142 ira_allocno_t a;
144 a = ira_create_allocno (regno, false, loop_tree_node);
145 ALLOCNO_ADD_DATA (a) = ira_allocate (sizeof (struct ira_emit_data));
146 memset (ALLOCNO_ADD_DATA (a), 0, sizeof (struct ira_emit_data));
147 new_allocno_emit_data_vec.safe_push (ALLOCNO_ADD_DATA (a));
148 return a;
153 /* See comments below. */
154 typedef struct move *move_t;
156 /* The structure represents an allocno move. Both allocnos have the
157 same original regno but different allocation. */
158 struct move
160 /* The allocnos involved in the move. */
161 ira_allocno_t from, to;
162 /* The next move in the move sequence. */
163 move_t next;
164 /* Used for finding dependencies. */
165 bool visited_p;
166 /* The size of the following array. */
167 int deps_num;
168 /* Moves on which given move depends on. Dependency can be cyclic.
169 It means we need a temporary to generates the moves. Sequence
170 A1->A2, B1->B2 where A1 and B2 are assigned to reg R1 and A2 and
171 B1 are assigned to reg R2 is an example of the cyclic
172 dependencies. */
173 move_t *deps;
174 /* First insn generated for the move. */
175 rtx_insn *insn;
178 /* Array of moves (indexed by BB index) which should be put at the
179 start/end of the corresponding basic blocks. */
180 static move_t *at_bb_start, *at_bb_end;
182 /* Max regno before renaming some pseudo-registers. For example, the
183 same pseudo-register can be renamed in a loop if its allocation is
184 different outside the loop. */
185 static int max_regno_before_changing;
187 /* Return new move of allocnos TO and FROM. */
188 static move_t
189 create_move (ira_allocno_t to, ira_allocno_t from)
191 move_t move;
193 move = (move_t) ira_allocate (sizeof (struct move));
194 move->deps = NULL;
195 move->deps_num = 0;
196 move->to = to;
197 move->from = from;
198 move->next = NULL;
199 move->insn = NULL;
200 move->visited_p = false;
201 return move;
204 /* Free memory for MOVE and its dependencies. */
205 static void
206 free_move (move_t move)
208 if (move->deps != NULL)
209 ira_free (move->deps);
210 ira_free (move);
213 /* Free memory for list of the moves given by its HEAD. */
214 static void
215 free_move_list (move_t head)
217 move_t next;
219 for (; head != NULL; head = next)
221 next = head->next;
222 free_move (head);
226 /* Return TRUE if the move list LIST1 and LIST2 are equal (two
227 moves are equal if they involve the same allocnos). */
228 static bool
229 eq_move_lists_p (move_t list1, move_t list2)
231 for (; list1 != NULL && list2 != NULL;
232 list1 = list1->next, list2 = list2->next)
233 if (list1->from != list2->from || list1->to != list2->to)
234 return false;
235 return list1 == list2;
238 /* Print move list LIST into file F. */
239 static void
240 print_move_list (FILE *f, move_t list)
242 for (; list != NULL; list = list->next)
243 fprintf (f, " a%dr%d->a%dr%d",
244 ALLOCNO_NUM (list->from), ALLOCNO_REGNO (list->from),
245 ALLOCNO_NUM (list->to), ALLOCNO_REGNO (list->to));
246 fprintf (f, "\n");
249 extern void ira_debug_move_list (move_t list);
251 /* Print move list LIST into stderr. */
252 void
253 ira_debug_move_list (move_t list)
255 print_move_list (stderr, list);
258 /* This recursive function changes pseudo-registers in *LOC if it is
259 necessary. The function returns TRUE if a change was done. */
260 static bool
261 change_regs (rtx *loc)
263 int i, regno, result = false;
264 const char *fmt;
265 enum rtx_code code;
266 rtx reg;
268 if (*loc == NULL_RTX)
269 return false;
270 code = GET_CODE (*loc);
271 if (code == REG)
273 regno = REGNO (*loc);
274 if (regno < FIRST_PSEUDO_REGISTER)
275 return false;
276 if (regno >= max_regno_before_changing)
277 /* It is a shared register which was changed already. */
278 return false;
279 if (ira_curr_regno_allocno_map[regno] == NULL)
280 return false;
281 reg = allocno_emit_reg (ira_curr_regno_allocno_map[regno]);
282 if (reg == *loc)
283 return false;
284 *loc = reg;
285 return true;
288 fmt = GET_RTX_FORMAT (code);
289 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
291 if (fmt[i] == 'e')
292 result = change_regs (&XEXP (*loc, i)) || result;
293 else if (fmt[i] == 'E')
295 int j;
297 for (j = XVECLEN (*loc, i) - 1; j >= 0; j--)
298 result = change_regs (&XVECEXP (*loc, i, j)) || result;
301 return result;
304 static bool
305 change_regs_in_insn (rtx_insn **insn_ptr)
307 rtx rtx = *insn_ptr;
308 bool result = change_regs (&rtx);
309 *insn_ptr = as_a <rtx_insn *> (rtx);
310 return result;
313 /* Attach MOVE to the edge E. The move is attached to the head of the
314 list if HEAD_P is TRUE. */
315 static void
316 add_to_edge_list (edge e, move_t move, bool head_p)
318 move_t last;
320 if (head_p || e->aux == NULL)
322 move->next = (move_t) e->aux;
323 e->aux = move;
325 else
327 for (last = (move_t) e->aux; last->next != NULL; last = last->next)
329 last->next = move;
330 move->next = NULL;
334 /* Create and return new pseudo-register with the same attributes as
335 ORIGINAL_REG. */
337 ira_create_new_reg (rtx original_reg)
339 rtx new_reg;
341 new_reg = gen_reg_rtx (GET_MODE (original_reg));
342 ORIGINAL_REGNO (new_reg) = ORIGINAL_REGNO (original_reg);
343 REG_USERVAR_P (new_reg) = REG_USERVAR_P (original_reg);
344 REG_POINTER (new_reg) = REG_POINTER (original_reg);
345 REG_ATTRS (new_reg) = REG_ATTRS (original_reg);
346 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
347 fprintf (ira_dump_file, " Creating newreg=%i from oldreg=%i\n",
348 REGNO (new_reg), REGNO (original_reg));
349 ira_expand_reg_equiv ();
350 return new_reg;
353 /* Return TRUE if loop given by SUBNODE inside the loop given by
354 NODE. */
355 static bool
356 subloop_tree_node_p (ira_loop_tree_node_t subnode, ira_loop_tree_node_t node)
358 for (; subnode != NULL; subnode = subnode->parent)
359 if (subnode == node)
360 return true;
361 return false;
364 /* Set up member `reg' to REG for allocnos which has the same regno as
365 ALLOCNO and which are inside the loop corresponding to ALLOCNO. */
366 static void
367 set_allocno_reg (ira_allocno_t allocno, rtx reg)
369 int regno;
370 ira_allocno_t a;
371 ira_loop_tree_node_t node;
373 node = ALLOCNO_LOOP_TREE_NODE (allocno);
374 for (a = ira_regno_allocno_map[ALLOCNO_REGNO (allocno)];
375 a != NULL;
376 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
377 if (subloop_tree_node_p (ALLOCNO_LOOP_TREE_NODE (a), node))
378 ALLOCNO_EMIT_DATA (a)->reg = reg;
379 for (a = ALLOCNO_CAP (allocno); a != NULL; a = ALLOCNO_CAP (a))
380 ALLOCNO_EMIT_DATA (a)->reg = reg;
381 regno = ALLOCNO_REGNO (allocno);
382 for (a = allocno;;)
384 if (a == NULL || (a = ALLOCNO_CAP (a)) == NULL)
386 node = node->parent;
387 if (node == NULL)
388 break;
389 a = node->regno_allocno_map[regno];
391 if (a == NULL)
392 continue;
393 if (ALLOCNO_EMIT_DATA (a)->child_renamed_p)
394 break;
395 ALLOCNO_EMIT_DATA (a)->child_renamed_p = true;
399 /* Return true if there is an entry to given loop not from its parent
400 (or grandparent) block. For example, it is possible for two
401 adjacent loops inside another loop. */
402 static bool
403 entered_from_non_parent_p (ira_loop_tree_node_t loop_node)
405 ira_loop_tree_node_t bb_node, src_loop_node, parent;
406 edge e;
407 edge_iterator ei;
409 for (bb_node = loop_node->children;
410 bb_node != NULL;
411 bb_node = bb_node->next)
412 if (bb_node->bb != NULL)
414 FOR_EACH_EDGE (e, ei, bb_node->bb->preds)
415 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
416 && (src_loop_node = IRA_BB_NODE (e->src)->parent) != loop_node)
418 for (parent = src_loop_node->parent;
419 parent != NULL;
420 parent = parent->parent)
421 if (parent == loop_node)
422 break;
423 if (parent != NULL)
424 /* That is an exit from a nested loop -- skip it. */
425 continue;
426 for (parent = loop_node->parent;
427 parent != NULL;
428 parent = parent->parent)
429 if (src_loop_node == parent)
430 break;
431 if (parent == NULL)
432 return true;
435 return false;
438 /* Set up ENTERED_FROM_NON_PARENT_P for each loop region. */
439 static void
440 setup_entered_from_non_parent_p (void)
442 unsigned int i;
443 loop_p loop;
445 ira_assert (current_loops != NULL);
446 FOR_EACH_VEC_SAFE_ELT (get_loops (cfun), i, loop)
447 if (ira_loop_nodes[i].regno_allocno_map != NULL)
448 ira_loop_nodes[i].entered_from_non_parent_p
449 = entered_from_non_parent_p (&ira_loop_nodes[i]);
452 /* Return TRUE if move of SRC_ALLOCNO (assigned to hard register) to
453 DEST_ALLOCNO (assigned to memory) can be removed because it does
454 not change value of the destination. One possible reason for this
455 is the situation when SRC_ALLOCNO is not modified in the
456 corresponding loop. */
457 static bool
458 store_can_be_removed_p (ira_allocno_t src_allocno, ira_allocno_t dest_allocno)
460 int regno, orig_regno;
461 ira_allocno_t a;
462 ira_loop_tree_node_t node;
464 ira_assert (ALLOCNO_CAP_MEMBER (src_allocno) == NULL
465 && ALLOCNO_CAP_MEMBER (dest_allocno) == NULL);
466 orig_regno = ALLOCNO_REGNO (src_allocno);
467 regno = REGNO (allocno_emit_reg (dest_allocno));
468 for (node = ALLOCNO_LOOP_TREE_NODE (src_allocno);
469 node != NULL;
470 node = node->parent)
472 a = node->regno_allocno_map[orig_regno];
473 ira_assert (a != NULL);
474 if (REGNO (allocno_emit_reg (a)) == (unsigned) regno)
475 /* We achieved the destination and everything is ok. */
476 return true;
477 else if (bitmap_bit_p (node->modified_regnos, orig_regno))
478 return false;
479 else if (node->entered_from_non_parent_p)
480 /* If there is a path from a destination loop block to the
481 source loop header containing basic blocks of non-parents
482 (grandparents) of the source loop, we should have checked
483 modifications of the pseudo on this path too to decide
484 about possibility to remove the store. It could be done by
485 solving a data-flow problem. Unfortunately such global
486 solution would complicate IR flattening. Therefore we just
487 prohibit removal of the store in such complicated case. */
488 return false;
490 /* It is actually a loop entry -- do not remove the store. */
491 return false;
494 /* Generate and attach moves to the edge E. This looks at the final
495 regnos of allocnos living on the edge with the same original regno
496 to figure out when moves should be generated. */
497 static void
498 generate_edge_moves (edge e)
500 ira_loop_tree_node_t src_loop_node, dest_loop_node;
501 unsigned int regno;
502 bitmap_iterator bi;
503 ira_allocno_t src_allocno, dest_allocno, *src_map, *dest_map;
504 move_t move;
505 bitmap regs_live_in_dest, regs_live_out_src;
507 src_loop_node = IRA_BB_NODE (e->src)->parent;
508 dest_loop_node = IRA_BB_NODE (e->dest)->parent;
509 e->aux = NULL;
510 if (src_loop_node == dest_loop_node)
511 return;
512 src_map = src_loop_node->regno_allocno_map;
513 dest_map = dest_loop_node->regno_allocno_map;
514 regs_live_in_dest = df_get_live_in (e->dest);
515 regs_live_out_src = df_get_live_out (e->src);
516 EXECUTE_IF_SET_IN_REG_SET (regs_live_in_dest,
517 FIRST_PSEUDO_REGISTER, regno, bi)
518 if (bitmap_bit_p (regs_live_out_src, regno))
520 src_allocno = src_map[regno];
521 dest_allocno = dest_map[regno];
522 if (REGNO (allocno_emit_reg (src_allocno))
523 == REGNO (allocno_emit_reg (dest_allocno)))
524 continue;
525 /* Remove unnecessary stores at the region exit. We should do
526 this for readonly memory for sure and this is guaranteed by
527 that we never generate moves on region borders (see
528 checking in function change_loop). */
529 if (ALLOCNO_HARD_REGNO (dest_allocno) < 0
530 && ALLOCNO_HARD_REGNO (src_allocno) >= 0
531 && store_can_be_removed_p (src_allocno, dest_allocno))
533 ALLOCNO_EMIT_DATA (src_allocno)->mem_optimized_dest = dest_allocno;
534 ALLOCNO_EMIT_DATA (dest_allocno)->mem_optimized_dest_p = true;
535 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
536 fprintf (ira_dump_file, " Remove r%d:a%d->a%d(mem)\n",
537 regno, ALLOCNO_NUM (src_allocno),
538 ALLOCNO_NUM (dest_allocno));
539 continue;
541 move = create_move (dest_allocno, src_allocno);
542 add_to_edge_list (e, move, true);
546 /* Bitmap of allocnos local for the current loop. */
547 static bitmap local_allocno_bitmap;
549 /* This bitmap is used to find that we need to generate and to use a
550 new pseudo-register when processing allocnos with the same original
551 regno. */
552 static bitmap used_regno_bitmap;
554 /* This bitmap contains regnos of allocnos which were renamed locally
555 because the allocnos correspond to disjoint live ranges in loops
556 with a common parent. */
557 static bitmap renamed_regno_bitmap;
559 /* Change (if necessary) pseudo-registers inside loop given by loop
560 tree node NODE. */
561 static void
562 change_loop (ira_loop_tree_node_t node)
564 bitmap_iterator bi;
565 unsigned int i;
566 int regno;
567 bool used_p;
568 ira_allocno_t allocno, parent_allocno, *map;
569 rtx_insn *insn;
570 rtx original_reg;
571 enum reg_class aclass, pclass;
572 ira_loop_tree_node_t parent;
574 if (node != ira_loop_tree_root)
576 ira_assert (current_loops != NULL);
578 if (node->bb != NULL)
580 FOR_BB_INSNS (node->bb, insn)
581 if (INSN_P (insn) && change_regs_in_insn (&insn))
583 df_insn_rescan (insn);
584 df_notes_rescan (insn);
586 return;
589 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
590 fprintf (ira_dump_file,
591 " Changing RTL for loop %d (header bb%d)\n",
592 node->loop_num, node->loop->header->index);
594 parent = ira_curr_loop_tree_node->parent;
595 map = parent->regno_allocno_map;
596 EXECUTE_IF_SET_IN_REG_SET (ira_curr_loop_tree_node->border_allocnos,
597 0, i, bi)
599 allocno = ira_allocnos[i];
600 regno = ALLOCNO_REGNO (allocno);
601 aclass = ALLOCNO_CLASS (allocno);
602 pclass = ira_pressure_class_translate[aclass];
603 parent_allocno = map[regno];
604 ira_assert (regno < ira_reg_equiv_len);
605 /* We generate the same hard register move because the
606 reload pass can put an allocno into memory in this case
607 we will have live range splitting. If it does not happen
608 such the same hard register moves will be removed. The
609 worst case when the both allocnos are put into memory by
610 the reload is very rare. */
611 if (parent_allocno != NULL
612 && (ALLOCNO_HARD_REGNO (allocno)
613 == ALLOCNO_HARD_REGNO (parent_allocno))
614 && (ALLOCNO_HARD_REGNO (allocno) < 0
615 || (parent->reg_pressure[pclass] + 1
616 <= ira_class_hard_regs_num[pclass])
617 || TEST_HARD_REG_BIT (ira_prohibited_mode_move_regs
618 [ALLOCNO_MODE (allocno)],
619 ALLOCNO_HARD_REGNO (allocno))
620 /* don't create copies because reload can spill an
621 allocno set by copy although the allocno will not
622 get memory slot. */
623 || ira_equiv_no_lvalue_p (regno)
624 || (pic_offset_table_rtx != NULL
625 && (ALLOCNO_REGNO (allocno)
626 == (int) REGNO (pic_offset_table_rtx)))))
627 continue;
628 original_reg = allocno_emit_reg (allocno);
629 if (parent_allocno == NULL
630 || (REGNO (allocno_emit_reg (parent_allocno))
631 == REGNO (original_reg)))
633 if (internal_flag_ira_verbose > 3 && ira_dump_file)
634 fprintf (ira_dump_file, " %i vs parent %i:",
635 ALLOCNO_HARD_REGNO (allocno),
636 ALLOCNO_HARD_REGNO (parent_allocno));
637 set_allocno_reg (allocno, ira_create_new_reg (original_reg));
641 /* Rename locals: Local allocnos with same regno in different loops
642 might get the different hard register. So we need to change
643 ALLOCNO_REG. */
644 bitmap_and_compl (local_allocno_bitmap,
645 ira_curr_loop_tree_node->all_allocnos,
646 ira_curr_loop_tree_node->border_allocnos);
647 EXECUTE_IF_SET_IN_REG_SET (local_allocno_bitmap, 0, i, bi)
649 allocno = ira_allocnos[i];
650 regno = ALLOCNO_REGNO (allocno);
651 if (ALLOCNO_CAP_MEMBER (allocno) != NULL)
652 continue;
653 used_p = !bitmap_set_bit (used_regno_bitmap, regno);
654 ALLOCNO_EMIT_DATA (allocno)->somewhere_renamed_p = true;
655 if (! used_p)
656 continue;
657 bitmap_set_bit (renamed_regno_bitmap, regno);
658 set_allocno_reg (allocno, ira_create_new_reg (allocno_emit_reg (allocno)));
662 /* Process to set up flag somewhere_renamed_p. */
663 static void
664 set_allocno_somewhere_renamed_p (void)
666 unsigned int regno;
667 ira_allocno_t allocno;
668 ira_allocno_iterator ai;
670 FOR_EACH_ALLOCNO (allocno, ai)
672 regno = ALLOCNO_REGNO (allocno);
673 if (bitmap_bit_p (renamed_regno_bitmap, regno)
674 && REGNO (allocno_emit_reg (allocno)) == regno)
675 ALLOCNO_EMIT_DATA (allocno)->somewhere_renamed_p = true;
679 /* Return TRUE if move lists on all edges given in vector VEC are
680 equal. */
681 static bool
682 eq_edge_move_lists_p (vec<edge, va_gc> *vec)
684 move_t list;
685 int i;
687 list = (move_t) EDGE_I (vec, 0)->aux;
688 for (i = EDGE_COUNT (vec) - 1; i > 0; i--)
689 if (! eq_move_lists_p (list, (move_t) EDGE_I (vec, i)->aux))
690 return false;
691 return true;
694 /* Look at all entry edges (if START_P) or exit edges of basic block
695 BB and put move lists at the BB start or end if it is possible. In
696 other words, this decreases code duplication of allocno moves. */
697 static void
698 unify_moves (basic_block bb, bool start_p)
700 int i;
701 edge e;
702 move_t list;
703 vec<edge, va_gc> *vec;
705 vec = (start_p ? bb->preds : bb->succs);
706 if (EDGE_COUNT (vec) == 0 || ! eq_edge_move_lists_p (vec))
707 return;
708 e = EDGE_I (vec, 0);
709 list = (move_t) e->aux;
710 if (! start_p && control_flow_insn_p (BB_END (bb)))
711 return;
712 e->aux = NULL;
713 for (i = EDGE_COUNT (vec) - 1; i > 0; i--)
715 e = EDGE_I (vec, i);
716 free_move_list ((move_t) e->aux);
717 e->aux = NULL;
719 if (start_p)
720 at_bb_start[bb->index] = list;
721 else
722 at_bb_end[bb->index] = list;
725 /* Last move (in move sequence being processed) setting up the
726 corresponding hard register. */
727 static move_t hard_regno_last_set[FIRST_PSEUDO_REGISTER];
729 /* If the element value is equal to CURR_TICK then the corresponding
730 element in `hard_regno_last_set' is defined and correct. */
731 static int hard_regno_last_set_check[FIRST_PSEUDO_REGISTER];
733 /* Last move (in move sequence being processed) setting up the
734 corresponding allocno. */
735 static move_t *allocno_last_set;
737 /* If the element value is equal to CURR_TICK then the corresponding
738 element in . `allocno_last_set' is defined and correct. */
739 static int *allocno_last_set_check;
741 /* Definition of vector of moves. */
743 /* This vec contains moves sorted topologically (depth-first) on their
744 dependency graph. */
745 static vec<move_t> move_vec;
747 /* The variable value is used to check correctness of values of
748 elements of arrays `hard_regno_last_set' and
749 `allocno_last_set_check'. */
750 static int curr_tick;
752 /* This recursive function traverses dependencies of MOVE and produces
753 topological sorting (in depth-first order). */
754 static void
755 traverse_moves (move_t move)
757 int i;
759 if (move->visited_p)
760 return;
761 move->visited_p = true;
762 for (i = move->deps_num - 1; i >= 0; i--)
763 traverse_moves (move->deps[i]);
764 move_vec.safe_push (move);
767 /* Remove unnecessary moves in the LIST, makes topological sorting,
768 and removes cycles on hard reg dependencies by introducing new
769 allocnos assigned to memory and additional moves. It returns the
770 result move list. */
771 static move_t
772 modify_move_list (move_t list)
774 int i, n, nregs, hard_regno;
775 ira_allocno_t to, from;
776 move_t move, new_move, set_move, first, last;
778 if (list == NULL)
779 return NULL;
780 /* Create move deps. */
781 curr_tick++;
782 for (move = list; move != NULL; move = move->next)
784 to = move->to;
785 if ((hard_regno = ALLOCNO_HARD_REGNO (to)) < 0)
786 continue;
787 nregs = hard_regno_nregs[hard_regno][ALLOCNO_MODE (to)];
788 for (i = 0; i < nregs; i++)
790 hard_regno_last_set[hard_regno + i] = move;
791 hard_regno_last_set_check[hard_regno + i] = curr_tick;
794 for (move = list; move != NULL; move = move->next)
796 from = move->from;
797 to = move->to;
798 if ((hard_regno = ALLOCNO_HARD_REGNO (from)) >= 0)
800 nregs = hard_regno_nregs[hard_regno][ALLOCNO_MODE (from)];
801 for (n = i = 0; i < nregs; i++)
802 if (hard_regno_last_set_check[hard_regno + i] == curr_tick
803 && (ALLOCNO_REGNO (hard_regno_last_set[hard_regno + i]->to)
804 != ALLOCNO_REGNO (from)))
805 n++;
806 move->deps = (move_t *) ira_allocate (n * sizeof (move_t));
807 for (n = i = 0; i < nregs; i++)
808 if (hard_regno_last_set_check[hard_regno + i] == curr_tick
809 && (ALLOCNO_REGNO (hard_regno_last_set[hard_regno + i]->to)
810 != ALLOCNO_REGNO (from)))
811 move->deps[n++] = hard_regno_last_set[hard_regno + i];
812 move->deps_num = n;
815 /* Topological sorting: */
816 move_vec.truncate (0);
817 for (move = list; move != NULL; move = move->next)
818 traverse_moves (move);
819 last = NULL;
820 for (i = (int) move_vec.length () - 1; i >= 0; i--)
822 move = move_vec[i];
823 move->next = NULL;
824 if (last != NULL)
825 last->next = move;
826 last = move;
828 first = move_vec.last ();
829 /* Removing cycles: */
830 curr_tick++;
831 move_vec.truncate (0);
832 for (move = first; move != NULL; move = move->next)
834 from = move->from;
835 to = move->to;
836 if ((hard_regno = ALLOCNO_HARD_REGNO (from)) >= 0)
838 nregs = hard_regno_nregs[hard_regno][ALLOCNO_MODE (from)];
839 for (i = 0; i < nregs; i++)
840 if (hard_regno_last_set_check[hard_regno + i] == curr_tick
841 && ALLOCNO_HARD_REGNO
842 (hard_regno_last_set[hard_regno + i]->to) >= 0)
844 int n, j;
845 ira_allocno_t new_allocno;
847 set_move = hard_regno_last_set[hard_regno + i];
848 /* It does not matter what loop_tree_node (of TO or
849 FROM) to use for the new allocno because of
850 subsequent IRA internal representation
851 flattening. */
852 new_allocno
853 = create_new_allocno (ALLOCNO_REGNO (set_move->to),
854 ALLOCNO_LOOP_TREE_NODE (set_move->to));
855 ALLOCNO_MODE (new_allocno) = ALLOCNO_MODE (set_move->to);
856 ira_set_allocno_class (new_allocno,
857 ALLOCNO_CLASS (set_move->to));
858 ira_create_allocno_objects (new_allocno);
859 ALLOCNO_ASSIGNED_P (new_allocno) = true;
860 ALLOCNO_HARD_REGNO (new_allocno) = -1;
861 ALLOCNO_EMIT_DATA (new_allocno)->reg
862 = ira_create_new_reg (allocno_emit_reg (set_move->to));
864 /* Make it possibly conflicting with all earlier
865 created allocnos. Cases where temporary allocnos
866 created to remove the cycles are quite rare. */
867 n = ALLOCNO_NUM_OBJECTS (new_allocno);
868 gcc_assert (n == ALLOCNO_NUM_OBJECTS (set_move->to));
869 for (j = 0; j < n; j++)
871 ira_object_t new_obj = ALLOCNO_OBJECT (new_allocno, j);
873 OBJECT_MIN (new_obj) = 0;
874 OBJECT_MAX (new_obj) = ira_objects_num - 1;
877 new_move = create_move (set_move->to, new_allocno);
878 set_move->to = new_allocno;
879 move_vec.safe_push (new_move);
880 ira_move_loops_num++;
881 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
882 fprintf (ira_dump_file,
883 " Creating temporary allocno a%dr%d\n",
884 ALLOCNO_NUM (new_allocno),
885 REGNO (allocno_emit_reg (new_allocno)));
888 if ((hard_regno = ALLOCNO_HARD_REGNO (to)) < 0)
889 continue;
890 nregs = hard_regno_nregs[hard_regno][ALLOCNO_MODE (to)];
891 for (i = 0; i < nregs; i++)
893 hard_regno_last_set[hard_regno + i] = move;
894 hard_regno_last_set_check[hard_regno + i] = curr_tick;
897 for (i = (int) move_vec.length () - 1; i >= 0; i--)
899 move = move_vec[i];
900 move->next = NULL;
901 last->next = move;
902 last = move;
904 return first;
907 /* Generate RTX move insns from the move list LIST. This updates
908 allocation cost using move execution frequency FREQ. */
909 static rtx_insn *
910 emit_move_list (move_t list, int freq)
912 rtx to, from, dest;
913 int to_regno, from_regno, cost, regno;
914 rtx_insn *result, *insn;
915 rtx set;
916 enum machine_mode mode;
917 enum reg_class aclass;
919 grow_reg_equivs ();
920 start_sequence ();
921 for (; list != NULL; list = list->next)
923 start_sequence ();
924 to = allocno_emit_reg (list->to);
925 to_regno = REGNO (to);
926 from = allocno_emit_reg (list->from);
927 from_regno = REGNO (from);
928 emit_move_insn (to, from);
929 list->insn = get_insns ();
930 end_sequence ();
931 for (insn = list->insn; insn != NULL_RTX; insn = NEXT_INSN (insn))
933 /* The reload needs to have set up insn codes. If the
934 reload sets up insn codes by itself, it may fail because
935 insns will have hard registers instead of pseudos and
936 there may be no machine insn with given hard
937 registers. */
938 recog_memoized (insn);
939 /* Add insn to equiv init insn list if it is necessary.
940 Otherwise reload will not remove this insn if it decides
941 to use the equivalence. */
942 if ((set = single_set (insn)) != NULL_RTX)
944 dest = SET_DEST (set);
945 if (GET_CODE (dest) == SUBREG)
946 dest = SUBREG_REG (dest);
947 ira_assert (REG_P (dest));
948 regno = REGNO (dest);
949 if (regno >= ira_reg_equiv_len
950 || (ira_reg_equiv[regno].invariant == NULL_RTX
951 && ira_reg_equiv[regno].constant == NULL_RTX))
952 continue; /* regno has no equivalence. */
953 ira_assert ((int) reg_equivs->length () > regno);
954 reg_equiv_init (regno)
955 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init (regno));
958 if (ira_use_lra_p)
959 ira_update_equiv_info_by_shuffle_insn (to_regno, from_regno, list->insn);
960 emit_insn (list->insn);
961 mode = ALLOCNO_MODE (list->to);
962 aclass = ALLOCNO_CLASS (list->to);
963 cost = 0;
964 if (ALLOCNO_HARD_REGNO (list->to) < 0)
966 if (ALLOCNO_HARD_REGNO (list->from) >= 0)
968 cost = ira_memory_move_cost[mode][aclass][0] * freq;
969 ira_store_cost += cost;
972 else if (ALLOCNO_HARD_REGNO (list->from) < 0)
974 if (ALLOCNO_HARD_REGNO (list->to) >= 0)
976 cost = ira_memory_move_cost[mode][aclass][0] * freq;
977 ira_load_cost += cost;
980 else
982 ira_init_register_move_cost_if_necessary (mode);
983 cost = ira_register_move_cost[mode][aclass][aclass] * freq;
984 ira_shuffle_cost += cost;
986 ira_overall_cost += cost;
988 result = get_insns ();
989 end_sequence ();
990 return result;
993 /* Generate RTX move insns from move lists attached to basic blocks
994 and edges. */
995 static void
996 emit_moves (void)
998 basic_block bb;
999 edge_iterator ei;
1000 edge e;
1001 rtx_insn *insns, *tmp;
1003 FOR_EACH_BB_FN (bb, cfun)
1005 if (at_bb_start[bb->index] != NULL)
1007 at_bb_start[bb->index] = modify_move_list (at_bb_start[bb->index]);
1008 insns = emit_move_list (at_bb_start[bb->index],
1009 REG_FREQ_FROM_BB (bb));
1010 tmp = BB_HEAD (bb);
1011 if (LABEL_P (tmp))
1012 tmp = NEXT_INSN (tmp);
1013 if (NOTE_INSN_BASIC_BLOCK_P (tmp))
1014 tmp = NEXT_INSN (tmp);
1015 if (tmp == BB_HEAD (bb))
1016 emit_insn_before (insns, tmp);
1017 else if (tmp != NULL_RTX)
1018 emit_insn_after (insns, PREV_INSN (tmp));
1019 else
1020 emit_insn_after (insns, get_last_insn ());
1023 if (at_bb_end[bb->index] != NULL)
1025 at_bb_end[bb->index] = modify_move_list (at_bb_end[bb->index]);
1026 insns = emit_move_list (at_bb_end[bb->index], REG_FREQ_FROM_BB (bb));
1027 ira_assert (! control_flow_insn_p (BB_END (bb)));
1028 emit_insn_after (insns, BB_END (bb));
1031 FOR_EACH_EDGE (e, ei, bb->succs)
1033 if (e->aux == NULL)
1034 continue;
1035 ira_assert ((e->flags & EDGE_ABNORMAL) == 0
1036 || ! EDGE_CRITICAL_P (e));
1037 e->aux = modify_move_list ((move_t) e->aux);
1038 insert_insn_on_edge
1039 (emit_move_list ((move_t) e->aux,
1040 REG_FREQ_FROM_EDGE_FREQ (EDGE_FREQUENCY (e))),
1042 if (e->src->next_bb != e->dest)
1043 ira_additional_jumps_num++;
1048 /* Update costs of A and corresponding allocnos on upper levels on the
1049 loop tree from reading (if READ_P) or writing A on an execution
1050 path with FREQ. */
1051 static void
1052 update_costs (ira_allocno_t a, bool read_p, int freq)
1054 ira_loop_tree_node_t parent;
1056 for (;;)
1058 ALLOCNO_NREFS (a)++;
1059 ALLOCNO_FREQ (a) += freq;
1060 ALLOCNO_MEMORY_COST (a)
1061 += (ira_memory_move_cost[ALLOCNO_MODE (a)][ALLOCNO_CLASS (a)]
1062 [read_p ? 1 : 0] * freq);
1063 if (ALLOCNO_CAP (a) != NULL)
1064 a = ALLOCNO_CAP (a);
1065 else if ((parent = ALLOCNO_LOOP_TREE_NODE (a)->parent) == NULL
1066 || (a = parent->regno_allocno_map[ALLOCNO_REGNO (a)]) == NULL)
1067 break;
1071 /* Process moves from LIST with execution FREQ to add ranges, copies,
1072 and modify costs for allocnos involved in the moves. All regnos
1073 living through the list is in LIVE_THROUGH, and the loop tree node
1074 used to find corresponding allocnos is NODE. */
1075 static void
1076 add_range_and_copies_from_move_list (move_t list, ira_loop_tree_node_t node,
1077 bitmap live_through, int freq)
1079 int start, n;
1080 unsigned int regno;
1081 move_t move;
1082 ira_allocno_t a;
1083 ira_copy_t cp;
1084 live_range_t r;
1085 bitmap_iterator bi;
1086 HARD_REG_SET hard_regs_live;
1088 if (list == NULL)
1089 return;
1090 n = 0;
1091 EXECUTE_IF_SET_IN_BITMAP (live_through, FIRST_PSEUDO_REGISTER, regno, bi)
1092 n++;
1093 REG_SET_TO_HARD_REG_SET (hard_regs_live, live_through);
1094 /* This is a trick to guarantee that new ranges is not merged with
1095 the old ones. */
1096 ira_max_point++;
1097 start = ira_max_point;
1098 for (move = list; move != NULL; move = move->next)
1100 ira_allocno_t from = move->from;
1101 ira_allocno_t to = move->to;
1102 int nr, i;
1104 bitmap_clear_bit (live_through, ALLOCNO_REGNO (from));
1105 bitmap_clear_bit (live_through, ALLOCNO_REGNO (to));
1107 nr = ALLOCNO_NUM_OBJECTS (to);
1108 for (i = 0; i < nr; i++)
1110 ira_object_t to_obj = ALLOCNO_OBJECT (to, i);
1111 if (OBJECT_CONFLICT_ARRAY (to_obj) == NULL)
1113 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
1114 fprintf (ira_dump_file, " Allocate conflicts for a%dr%d\n",
1115 ALLOCNO_NUM (to), REGNO (allocno_emit_reg (to)));
1116 ira_allocate_object_conflicts (to_obj, n);
1119 ior_hard_reg_conflicts (from, &hard_regs_live);
1120 ior_hard_reg_conflicts (to, &hard_regs_live);
1122 update_costs (from, true, freq);
1123 update_costs (to, false, freq);
1124 cp = ira_add_allocno_copy (from, to, freq, false, move->insn, NULL);
1125 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
1126 fprintf (ira_dump_file, " Adding cp%d:a%dr%d-a%dr%d\n",
1127 cp->num, ALLOCNO_NUM (cp->first),
1128 REGNO (allocno_emit_reg (cp->first)),
1129 ALLOCNO_NUM (cp->second),
1130 REGNO (allocno_emit_reg (cp->second)));
1132 nr = ALLOCNO_NUM_OBJECTS (from);
1133 for (i = 0; i < nr; i++)
1135 ira_object_t from_obj = ALLOCNO_OBJECT (from, i);
1136 r = OBJECT_LIVE_RANGES (from_obj);
1137 if (r == NULL || r->finish >= 0)
1139 ira_add_live_range_to_object (from_obj, start, ira_max_point);
1140 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
1141 fprintf (ira_dump_file,
1142 " Adding range [%d..%d] to allocno a%dr%d\n",
1143 start, ira_max_point, ALLOCNO_NUM (from),
1144 REGNO (allocno_emit_reg (from)));
1146 else
1148 r->finish = ira_max_point;
1149 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
1150 fprintf (ira_dump_file,
1151 " Adding range [%d..%d] to allocno a%dr%d\n",
1152 r->start, ira_max_point, ALLOCNO_NUM (from),
1153 REGNO (allocno_emit_reg (from)));
1156 ira_max_point++;
1157 nr = ALLOCNO_NUM_OBJECTS (to);
1158 for (i = 0; i < nr; i++)
1160 ira_object_t to_obj = ALLOCNO_OBJECT (to, i);
1161 ira_add_live_range_to_object (to_obj, ira_max_point, -1);
1163 ira_max_point++;
1165 for (move = list; move != NULL; move = move->next)
1167 int nr, i;
1168 nr = ALLOCNO_NUM_OBJECTS (move->to);
1169 for (i = 0; i < nr; i++)
1171 ira_object_t to_obj = ALLOCNO_OBJECT (move->to, i);
1172 r = OBJECT_LIVE_RANGES (to_obj);
1173 if (r->finish < 0)
1175 r->finish = ira_max_point - 1;
1176 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
1177 fprintf (ira_dump_file,
1178 " Adding range [%d..%d] to allocno a%dr%d\n",
1179 r->start, r->finish, ALLOCNO_NUM (move->to),
1180 REGNO (allocno_emit_reg (move->to)));
1184 EXECUTE_IF_SET_IN_BITMAP (live_through, FIRST_PSEUDO_REGISTER, regno, bi)
1186 ira_allocno_t to;
1187 int nr, i;
1189 a = node->regno_allocno_map[regno];
1190 if ((to = ALLOCNO_EMIT_DATA (a)->mem_optimized_dest) != NULL)
1191 a = to;
1192 nr = ALLOCNO_NUM_OBJECTS (a);
1193 for (i = 0; i < nr; i++)
1195 ira_object_t obj = ALLOCNO_OBJECT (a, i);
1196 ira_add_live_range_to_object (obj, start, ira_max_point - 1);
1198 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
1199 fprintf
1200 (ira_dump_file,
1201 " Adding range [%d..%d] to live through %s allocno a%dr%d\n",
1202 start, ira_max_point - 1,
1203 to != NULL ? "upper level" : "",
1204 ALLOCNO_NUM (a), REGNO (allocno_emit_reg (a)));
1208 /* Process all move list to add ranges, conflicts, copies, and modify
1209 costs for allocnos involved in the moves. */
1210 static void
1211 add_ranges_and_copies (void)
1213 basic_block bb;
1214 edge_iterator ei;
1215 edge e;
1216 ira_loop_tree_node_t node;
1217 bitmap live_through;
1219 live_through = ira_allocate_bitmap ();
1220 FOR_EACH_BB_FN (bb, cfun)
1222 /* It does not matter what loop_tree_node (of source or
1223 destination block) to use for searching allocnos by their
1224 regnos because of subsequent IR flattening. */
1225 node = IRA_BB_NODE (bb)->parent;
1226 bitmap_copy (live_through, df_get_live_in (bb));
1227 add_range_and_copies_from_move_list
1228 (at_bb_start[bb->index], node, live_through, REG_FREQ_FROM_BB (bb));
1229 bitmap_copy (live_through, df_get_live_out (bb));
1230 add_range_and_copies_from_move_list
1231 (at_bb_end[bb->index], node, live_through, REG_FREQ_FROM_BB (bb));
1232 FOR_EACH_EDGE (e, ei, bb->succs)
1234 bitmap_and (live_through,
1235 df_get_live_in (e->dest), df_get_live_out (bb));
1236 add_range_and_copies_from_move_list
1237 ((move_t) e->aux, node, live_through,
1238 REG_FREQ_FROM_EDGE_FREQ (EDGE_FREQUENCY (e)));
1241 ira_free_bitmap (live_through);
1244 /* The entry function changes code and generates shuffling allocnos on
1245 region borders for the regional (LOOPS_P is TRUE in this case)
1246 register allocation. */
1247 void
1248 ira_emit (bool loops_p)
1250 basic_block bb;
1251 rtx_insn *insn;
1252 edge_iterator ei;
1253 edge e;
1254 ira_allocno_t a;
1255 ira_allocno_iterator ai;
1256 size_t sz;
1258 FOR_EACH_ALLOCNO (a, ai)
1259 ALLOCNO_EMIT_DATA (a)->reg = regno_reg_rtx[ALLOCNO_REGNO (a)];
1260 if (! loops_p)
1261 return;
1262 sz = sizeof (move_t) * last_basic_block_for_fn (cfun);
1263 at_bb_start = (move_t *) ira_allocate (sz);
1264 memset (at_bb_start, 0, sz);
1265 at_bb_end = (move_t *) ira_allocate (sz);
1266 memset (at_bb_end, 0, sz);
1267 local_allocno_bitmap = ira_allocate_bitmap ();
1268 used_regno_bitmap = ira_allocate_bitmap ();
1269 renamed_regno_bitmap = ira_allocate_bitmap ();
1270 max_regno_before_changing = max_reg_num ();
1271 ira_traverse_loop_tree (true, ira_loop_tree_root, change_loop, NULL);
1272 set_allocno_somewhere_renamed_p ();
1273 ira_free_bitmap (used_regno_bitmap);
1274 ira_free_bitmap (renamed_regno_bitmap);
1275 ira_free_bitmap (local_allocno_bitmap);
1276 setup_entered_from_non_parent_p ();
1277 FOR_EACH_BB_FN (bb, cfun)
1279 at_bb_start[bb->index] = NULL;
1280 at_bb_end[bb->index] = NULL;
1281 FOR_EACH_EDGE (e, ei, bb->succs)
1282 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1283 generate_edge_moves (e);
1285 allocno_last_set
1286 = (move_t *) ira_allocate (sizeof (move_t) * max_reg_num ());
1287 allocno_last_set_check
1288 = (int *) ira_allocate (sizeof (int) * max_reg_num ());
1289 memset (allocno_last_set_check, 0, sizeof (int) * max_reg_num ());
1290 memset (hard_regno_last_set_check, 0, sizeof (hard_regno_last_set_check));
1291 curr_tick = 0;
1292 FOR_EACH_BB_FN (bb, cfun)
1293 unify_moves (bb, true);
1294 FOR_EACH_BB_FN (bb, cfun)
1295 unify_moves (bb, false);
1296 move_vec.create (ira_allocnos_num);
1297 emit_moves ();
1298 add_ranges_and_copies ();
1299 /* Clean up: */
1300 FOR_EACH_BB_FN (bb, cfun)
1302 free_move_list (at_bb_start[bb->index]);
1303 free_move_list (at_bb_end[bb->index]);
1304 FOR_EACH_EDGE (e, ei, bb->succs)
1306 free_move_list ((move_t) e->aux);
1307 e->aux = NULL;
1310 move_vec.release ();
1311 ira_free (allocno_last_set_check);
1312 ira_free (allocno_last_set);
1313 commit_edge_insertions ();
1314 /* Fix insn codes. It is necessary to do it before reload because
1315 reload assumes initial insn codes defined. The insn codes can be
1316 invalidated by CFG infrastructure for example in jump
1317 redirection. */
1318 FOR_EACH_BB_FN (bb, cfun)
1319 FOR_BB_INSNS_REVERSE (bb, insn)
1320 if (INSN_P (insn))
1321 recog_memoized (insn);
1322 ira_free (at_bb_end);
1323 ira_free (at_bb_start);