gcc/
[official-gcc.git] / gcc / lra-constraints.c
blob4d59b5a6ff22861a07f8d1903b4b9467dc5f27e8
1 /* Code for RTL transformations to satisfy insn constraints.
2 Copyright (C) 2010-2013 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
22 /* This file contains code for 3 passes: constraint pass,
23 inheritance/split pass, and pass for undoing failed inheritance and
24 split.
26 The major goal of constraint pass is to transform RTL to satisfy
27 insn and address constraints by:
28 o choosing insn alternatives;
29 o generating *reload insns* (or reloads in brief) and *reload
30 pseudos* which will get necessary hard registers later;
31 o substituting pseudos with equivalent values and removing the
32 instructions that initialized those pseudos.
34 The constraint pass has biggest and most complicated code in LRA.
35 There are a lot of important details like:
36 o reuse of input reload pseudos to simplify reload pseudo
37 allocations;
38 o some heuristics to choose insn alternative to improve the
39 inheritance;
40 o early clobbers etc.
42 The pass is mimicking former reload pass in alternative choosing
43 because the reload pass is oriented to current machine description
44 model. It might be changed if the machine description model is
45 changed.
47 There is special code for preventing all LRA and this pass cycling
48 in case of bugs.
50 On the first iteration of the pass we process every instruction and
51 choose an alternative for each one. On subsequent iterations we try
52 to avoid reprocessing instructions if we can be sure that the old
53 choice is still valid.
55 The inheritance/spilt pass is to transform code to achieve
56 ineheritance and live range splitting. It is done on backward
57 traversal of EBBs.
59 The inheritance optimization goal is to reuse values in hard
60 registers. There is analogous optimization in old reload pass. The
61 inheritance is achieved by following transformation:
63 reload_p1 <- p reload_p1 <- p
64 ... new_p <- reload_p1
65 ... => ...
66 reload_p2 <- p reload_p2 <- new_p
68 where p is spilled and not changed between the insns. Reload_p1 is
69 also called *original pseudo* and new_p is called *inheritance
70 pseudo*.
72 The subsequent assignment pass will try to assign the same (or
73 another if it is not possible) hard register to new_p as to
74 reload_p1 or reload_p2.
76 If the assignment pass fails to assign a hard register to new_p,
77 this file will undo the inheritance and restore the original code.
78 This is because implementing the above sequence with a spilled
79 new_p would make the code much worse. The inheritance is done in
80 EBB scope. The above is just a simplified example to get an idea
81 of the inheritance as the inheritance is also done for non-reload
82 insns.
84 Splitting (transformation) is also done in EBB scope on the same
85 pass as the inheritance:
87 r <- ... or ... <- r r <- ... or ... <- r
88 ... s <- r (new insn -- save)
89 ... =>
90 ... r <- s (new insn -- restore)
91 ... <- r ... <- r
93 The *split pseudo* s is assigned to the hard register of the
94 original pseudo or hard register r.
96 Splitting is done:
97 o In EBBs with high register pressure for global pseudos (living
98 in at least 2 BBs) and assigned to hard registers when there
99 are more one reloads needing the hard registers;
100 o for pseudos needing save/restore code around calls.
102 If the split pseudo still has the same hard register as the
103 original pseudo after the subsequent assignment pass or the
104 original pseudo was split, the opposite transformation is done on
105 the same pass for undoing inheritance. */
107 #undef REG_OK_STRICT
109 #include "config.h"
110 #include "system.h"
111 #include "coretypes.h"
112 #include "tm.h"
113 #include "hard-reg-set.h"
114 #include "rtl.h"
115 #include "tm_p.h"
116 #include "regs.h"
117 #include "insn-config.h"
118 #include "insn-codes.h"
119 #include "recog.h"
120 #include "output.h"
121 #include "addresses.h"
122 #include "target.h"
123 #include "function.h"
124 #include "expr.h"
125 #include "basic-block.h"
126 #include "except.h"
127 #include "optabs.h"
128 #include "df.h"
129 #include "ira.h"
130 #include "rtl-error.h"
131 #include "lra-int.h"
133 /* Value of LRA_CURR_RELOAD_NUM at the beginning of BB of the current
134 insn. Remember that LRA_CURR_RELOAD_NUM is the number of emitted
135 reload insns. */
136 static int bb_reload_num;
138 /* The current insn being processed and corresponding its single set
139 (NULL otherwise), its data (basic block, the insn data, the insn
140 static data, and the mode of each operand). */
141 static rtx curr_insn;
142 static rtx curr_insn_set;
143 static basic_block curr_bb;
144 static lra_insn_recog_data_t curr_id;
145 static struct lra_static_insn_data *curr_static_id;
146 static enum machine_mode curr_operand_mode[MAX_RECOG_OPERANDS];
150 /* Start numbers for new registers and insns at the current constraints
151 pass start. */
152 static int new_regno_start;
153 static int new_insn_uid_start;
155 /* If LOC is nonnull, strip any outer subreg from it. */
156 static inline rtx *
157 strip_subreg (rtx *loc)
159 return loc && GET_CODE (*loc) == SUBREG ? &SUBREG_REG (*loc) : loc;
162 /* Return hard regno of REGNO or if it is was not assigned to a hard
163 register, use a hard register from its allocno class. */
164 static int
165 get_try_hard_regno (int regno)
167 int hard_regno;
168 enum reg_class rclass;
170 if ((hard_regno = regno) >= FIRST_PSEUDO_REGISTER)
171 hard_regno = lra_get_regno_hard_regno (regno);
172 if (hard_regno >= 0)
173 return hard_regno;
174 rclass = lra_get_allocno_class (regno);
175 if (rclass == NO_REGS)
176 return -1;
177 return ira_class_hard_regs[rclass][0];
180 /* Return final hard regno (plus offset) which will be after
181 elimination. We do this for matching constraints because the final
182 hard regno could have a different class. */
183 static int
184 get_final_hard_regno (int hard_regno, int offset)
186 if (hard_regno < 0)
187 return hard_regno;
188 hard_regno = lra_get_elimination_hard_regno (hard_regno);
189 return hard_regno + offset;
192 /* Return hard regno of X after removing subreg and making
193 elimination. If X is not a register or subreg of register, return
194 -1. For pseudo use its assignment. */
195 static int
196 get_hard_regno (rtx x)
198 rtx reg;
199 int offset, hard_regno;
201 reg = x;
202 if (GET_CODE (x) == SUBREG)
203 reg = SUBREG_REG (x);
204 if (! REG_P (reg))
205 return -1;
206 if ((hard_regno = REGNO (reg)) >= FIRST_PSEUDO_REGISTER)
207 hard_regno = lra_get_regno_hard_regno (hard_regno);
208 if (hard_regno < 0)
209 return -1;
210 offset = 0;
211 if (GET_CODE (x) == SUBREG)
212 offset += subreg_regno_offset (hard_regno, GET_MODE (reg),
213 SUBREG_BYTE (x), GET_MODE (x));
214 return get_final_hard_regno (hard_regno, offset);
217 /* If REGNO is a hard register or has been allocated a hard register,
218 return the class of that register. If REGNO is a reload pseudo
219 created by the current constraints pass, return its allocno class.
220 Return NO_REGS otherwise. */
221 static enum reg_class
222 get_reg_class (int regno)
224 int hard_regno;
226 if ((hard_regno = regno) >= FIRST_PSEUDO_REGISTER)
227 hard_regno = lra_get_regno_hard_regno (regno);
228 if (hard_regno >= 0)
230 hard_regno = get_final_hard_regno (hard_regno, 0);
231 return REGNO_REG_CLASS (hard_regno);
233 if (regno >= new_regno_start)
234 return lra_get_allocno_class (regno);
235 return NO_REGS;
238 /* Return true if REG satisfies (or will satisfy) reg class constraint
239 CL. Use elimination first if REG is a hard register. If REG is a
240 reload pseudo created by this constraints pass, assume that it will
241 be allocated a hard register from its allocno class, but allow that
242 class to be narrowed to CL if it is currently a superset of CL.
244 If NEW_CLASS is nonnull, set *NEW_CLASS to the new allocno class of
245 REGNO (reg), or NO_REGS if no change in its class was needed. */
246 static bool
247 in_class_p (rtx reg, enum reg_class cl, enum reg_class *new_class)
249 enum reg_class rclass, common_class;
250 enum machine_mode reg_mode;
251 int class_size, hard_regno, nregs, i, j;
252 int regno = REGNO (reg);
254 if (new_class != NULL)
255 *new_class = NO_REGS;
256 if (regno < FIRST_PSEUDO_REGISTER)
258 rtx final_reg = reg;
259 rtx *final_loc = &final_reg;
261 lra_eliminate_reg_if_possible (final_loc);
262 return TEST_HARD_REG_BIT (reg_class_contents[cl], REGNO (*final_loc));
264 reg_mode = GET_MODE (reg);
265 rclass = get_reg_class (regno);
266 if (regno < new_regno_start
267 /* Do not allow the constraints for reload instructions to
268 influence the classes of new pseudos. These reloads are
269 typically moves that have many alternatives, and restricting
270 reload pseudos for one alternative may lead to situations
271 where other reload pseudos are no longer allocatable. */
272 || INSN_UID (curr_insn) >= new_insn_uid_start)
273 /* When we don't know what class will be used finally for reload
274 pseudos, we use ALL_REGS. */
275 return ((regno >= new_regno_start && rclass == ALL_REGS)
276 || (rclass != NO_REGS && ira_class_subset_p[rclass][cl]
277 && ! hard_reg_set_subset_p (reg_class_contents[cl],
278 lra_no_alloc_regs)));
279 else
281 common_class = ira_reg_class_subset[rclass][cl];
282 if (new_class != NULL)
283 *new_class = common_class;
284 if (hard_reg_set_subset_p (reg_class_contents[common_class],
285 lra_no_alloc_regs))
286 return false;
287 /* Check that there are enough allocatable regs. */
288 class_size = ira_class_hard_regs_num[common_class];
289 for (i = 0; i < class_size; i++)
291 hard_regno = ira_class_hard_regs[common_class][i];
292 nregs = hard_regno_nregs[hard_regno][reg_mode];
293 if (nregs == 1)
294 return true;
295 for (j = 0; j < nregs; j++)
296 if (TEST_HARD_REG_BIT (lra_no_alloc_regs, hard_regno + j)
297 || ! TEST_HARD_REG_BIT (reg_class_contents[common_class],
298 hard_regno + j))
299 break;
300 if (j >= nregs)
301 return true;
303 return false;
307 /* Return true if REGNO satisfies a memory constraint. */
308 static bool
309 in_mem_p (int regno)
311 return get_reg_class (regno) == NO_REGS;
314 /* If we have decided to substitute X with another value, return that
315 value, otherwise return X. */
316 static rtx
317 get_equiv_substitution (rtx x)
319 int regno;
320 rtx res;
322 if (! REG_P (x) || (regno = REGNO (x)) < FIRST_PSEUDO_REGISTER
323 || ! ira_reg_equiv[regno].defined_p
324 || ! ira_reg_equiv[regno].profitable_p
325 || lra_get_regno_hard_regno (regno) >= 0)
326 return x;
327 if ((res = ira_reg_equiv[regno].memory) != NULL_RTX)
328 return res;
329 if ((res = ira_reg_equiv[regno].constant) != NULL_RTX)
330 return res;
331 if ((res = ira_reg_equiv[regno].invariant) != NULL_RTX)
332 return res;
333 gcc_unreachable ();
336 /* Set up curr_operand_mode. */
337 static void
338 init_curr_operand_mode (void)
340 int nop = curr_static_id->n_operands;
341 for (int i = 0; i < nop; i++)
343 enum machine_mode mode = GET_MODE (*curr_id->operand_loc[i]);
344 if (mode == VOIDmode)
346 /* The .md mode for address operands is the mode of the
347 addressed value rather than the mode of the address itself. */
348 if (curr_id->icode >= 0 && curr_static_id->operand[i].is_address)
349 mode = Pmode;
350 else
351 mode = curr_static_id->operand[i].mode;
353 curr_operand_mode[i] = mode;
359 /* The page contains code to reuse input reloads. */
361 /* Structure describes input reload of the current insns. */
362 struct input_reload
364 /* Reloaded value. */
365 rtx input;
366 /* Reload pseudo used. */
367 rtx reg;
370 /* The number of elements in the following array. */
371 static int curr_insn_input_reloads_num;
372 /* Array containing info about input reloads. It is used to find the
373 same input reload and reuse the reload pseudo in this case. */
374 static struct input_reload curr_insn_input_reloads[LRA_MAX_INSN_RELOADS];
376 /* Initiate data concerning reuse of input reloads for the current
377 insn. */
378 static void
379 init_curr_insn_input_reloads (void)
381 curr_insn_input_reloads_num = 0;
384 /* Change class of pseudo REGNO to NEW_CLASS. Print info about it
385 using TITLE. Output a new line if NL_P. */
386 static void
387 change_class (int regno, enum reg_class new_class,
388 const char *title, bool nl_p)
390 lra_assert (regno >= FIRST_PSEUDO_REGISTER);
391 if (lra_dump_file != NULL)
392 fprintf (lra_dump_file, "%s to class %s for r%d",
393 title, reg_class_names[new_class], regno);
394 setup_reg_classes (regno, new_class, NO_REGS, new_class);
395 if (lra_dump_file != NULL && nl_p)
396 fprintf (lra_dump_file, "\n");
399 /* Create a new pseudo using MODE, RCLASS, ORIGINAL or reuse already
400 created input reload pseudo (only if TYPE is not OP_OUT). The
401 result pseudo is returned through RESULT_REG. Return TRUE if we
402 created a new pseudo, FALSE if we reused the already created input
403 reload pseudo. Use TITLE to describe new registers for debug
404 purposes. */
405 static bool
406 get_reload_reg (enum op_type type, enum machine_mode mode, rtx original,
407 enum reg_class rclass, const char *title, rtx *result_reg)
409 int i, regno;
410 enum reg_class new_class;
412 if (type == OP_OUT)
414 *result_reg
415 = lra_create_new_reg_with_unique_value (mode, original, rclass, title);
416 return true;
418 /* Prevent reuse value of expression with side effects,
419 e.g. volatile memory. */
420 if (! side_effects_p (original))
421 for (i = 0; i < curr_insn_input_reloads_num; i++)
422 if (rtx_equal_p (curr_insn_input_reloads[i].input, original)
423 && in_class_p (curr_insn_input_reloads[i].reg, rclass, &new_class))
425 rtx reg = curr_insn_input_reloads[i].reg;
426 regno = REGNO (reg);
427 /* If input is equal to original and both are VOIDmode,
428 GET_MODE (reg) might be still different from mode.
429 Ensure we don't return *result_reg with wrong mode. */
430 if (GET_MODE (reg) != mode)
432 if (GET_MODE_SIZE (GET_MODE (reg)) < GET_MODE_SIZE (mode))
433 continue;
434 reg = lowpart_subreg (mode, reg, GET_MODE (reg));
435 if (reg == NULL_RTX || GET_CODE (reg) != SUBREG)
436 continue;
438 *result_reg = reg;
439 if (lra_dump_file != NULL)
441 fprintf (lra_dump_file, " Reuse r%d for reload ", regno);
442 dump_value_slim (lra_dump_file, original, 1);
444 if (new_class != lra_get_allocno_class (regno))
445 change_class (regno, new_class, ", change", false);
446 if (lra_dump_file != NULL)
447 fprintf (lra_dump_file, "\n");
448 return false;
450 *result_reg = lra_create_new_reg (mode, original, rclass, title);
451 lra_assert (curr_insn_input_reloads_num < LRA_MAX_INSN_RELOADS);
452 curr_insn_input_reloads[curr_insn_input_reloads_num].input = original;
453 curr_insn_input_reloads[curr_insn_input_reloads_num++].reg = *result_reg;
454 return true;
459 /* The page contains code to extract memory address parts. */
461 /* Wrapper around REGNO_OK_FOR_INDEX_P, to allow pseudos. */
462 static inline bool
463 ok_for_index_p_nonstrict (rtx reg)
465 unsigned regno = REGNO (reg);
467 return regno >= FIRST_PSEUDO_REGISTER || REGNO_OK_FOR_INDEX_P (regno);
470 /* A version of regno_ok_for_base_p for use here, when all pseudos
471 should count as OK. Arguments as for regno_ok_for_base_p. */
472 static inline bool
473 ok_for_base_p_nonstrict (rtx reg, enum machine_mode mode, addr_space_t as,
474 enum rtx_code outer_code, enum rtx_code index_code)
476 unsigned regno = REGNO (reg);
478 if (regno >= FIRST_PSEUDO_REGISTER)
479 return true;
480 return ok_for_base_p_1 (regno, mode, as, outer_code, index_code);
485 /* The page contains major code to choose the current insn alternative
486 and generate reloads for it. */
488 /* Return the offset from REGNO of the least significant register
489 in (reg:MODE REGNO).
491 This function is used to tell whether two registers satisfy
492 a matching constraint. (reg:MODE1 REGNO1) matches (reg:MODE2 REGNO2) if:
494 REGNO1 + lra_constraint_offset (REGNO1, MODE1)
495 == REGNO2 + lra_constraint_offset (REGNO2, MODE2) */
497 lra_constraint_offset (int regno, enum machine_mode mode)
499 lra_assert (regno < FIRST_PSEUDO_REGISTER);
500 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (mode) > UNITS_PER_WORD
501 && SCALAR_INT_MODE_P (mode))
502 return hard_regno_nregs[regno][mode] - 1;
503 return 0;
506 /* Like rtx_equal_p except that it allows a REG and a SUBREG to match
507 if they are the same hard reg, and has special hacks for
508 auto-increment and auto-decrement. This is specifically intended for
509 process_alt_operands to use in determining whether two operands
510 match. X is the operand whose number is the lower of the two.
512 It is supposed that X is the output operand and Y is the input
513 operand. Y_HARD_REGNO is the final hard regno of register Y or
514 register in subreg Y as we know it now. Otherwise, it is a
515 negative value. */
516 static bool
517 operands_match_p (rtx x, rtx y, int y_hard_regno)
519 int i;
520 RTX_CODE code = GET_CODE (x);
521 const char *fmt;
523 if (x == y)
524 return true;
525 if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
526 && (REG_P (y) || (GET_CODE (y) == SUBREG && REG_P (SUBREG_REG (y)))))
528 int j;
530 i = get_hard_regno (x);
531 if (i < 0)
532 goto slow;
534 if ((j = y_hard_regno) < 0)
535 goto slow;
537 i += lra_constraint_offset (i, GET_MODE (x));
538 j += lra_constraint_offset (j, GET_MODE (y));
540 return i == j;
543 /* If two operands must match, because they are really a single
544 operand of an assembler insn, then two post-increments are invalid
545 because the assembler insn would increment only once. On the
546 other hand, a post-increment matches ordinary indexing if the
547 post-increment is the output operand. */
548 if (code == POST_DEC || code == POST_INC || code == POST_MODIFY)
549 return operands_match_p (XEXP (x, 0), y, y_hard_regno);
551 /* Two pre-increments are invalid because the assembler insn would
552 increment only once. On the other hand, a pre-increment matches
553 ordinary indexing if the pre-increment is the input operand. */
554 if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC
555 || GET_CODE (y) == PRE_MODIFY)
556 return operands_match_p (x, XEXP (y, 0), -1);
558 slow:
560 if (code == REG && GET_CODE (y) == SUBREG && REG_P (SUBREG_REG (y))
561 && x == SUBREG_REG (y))
562 return true;
563 if (GET_CODE (y) == REG && code == SUBREG && REG_P (SUBREG_REG (x))
564 && SUBREG_REG (x) == y)
565 return true;
567 /* Now we have disposed of all the cases in which different rtx
568 codes can match. */
569 if (code != GET_CODE (y))
570 return false;
572 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
573 if (GET_MODE (x) != GET_MODE (y))
574 return false;
576 switch (code)
578 CASE_CONST_UNIQUE:
579 return false;
581 case LABEL_REF:
582 return XEXP (x, 0) == XEXP (y, 0);
583 case SYMBOL_REF:
584 return XSTR (x, 0) == XSTR (y, 0);
586 default:
587 break;
590 /* Compare the elements. If any pair of corresponding elements fail
591 to match, return false for the whole things. */
593 fmt = GET_RTX_FORMAT (code);
594 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
596 int val, j;
597 switch (fmt[i])
599 case 'w':
600 if (XWINT (x, i) != XWINT (y, i))
601 return false;
602 break;
604 case 'i':
605 if (XINT (x, i) != XINT (y, i))
606 return false;
607 break;
609 case 'e':
610 val = operands_match_p (XEXP (x, i), XEXP (y, i), -1);
611 if (val == 0)
612 return false;
613 break;
615 case '0':
616 break;
618 case 'E':
619 if (XVECLEN (x, i) != XVECLEN (y, i))
620 return false;
621 for (j = XVECLEN (x, i) - 1; j >= 0; --j)
623 val = operands_match_p (XVECEXP (x, i, j), XVECEXP (y, i, j), -1);
624 if (val == 0)
625 return false;
627 break;
629 /* It is believed that rtx's at this level will never
630 contain anything but integers and other rtx's, except for
631 within LABEL_REFs and SYMBOL_REFs. */
632 default:
633 gcc_unreachable ();
636 return true;
639 /* True if X is a constant that can be forced into the constant pool.
640 MODE is the mode of the operand, or VOIDmode if not known. */
641 #define CONST_POOL_OK_P(MODE, X) \
642 ((MODE) != VOIDmode \
643 && CONSTANT_P (X) \
644 && GET_CODE (X) != HIGH \
645 && !targetm.cannot_force_const_mem (MODE, X))
647 /* True if C is a non-empty register class that has too few registers
648 to be safely used as a reload target class. */
649 #define SMALL_REGISTER_CLASS_P(C) \
650 (reg_class_size [(C)] == 1 \
651 || (reg_class_size [(C)] >= 1 && targetm.class_likely_spilled_p (C)))
653 /* If REG is a reload pseudo, try to make its class satisfying CL. */
654 static void
655 narrow_reload_pseudo_class (rtx reg, enum reg_class cl)
657 enum reg_class rclass;
659 /* Do not make more accurate class from reloads generated. They are
660 mostly moves with a lot of constraints. Making more accurate
661 class may results in very narrow class and impossibility of find
662 registers for several reloads of one insn. */
663 if (INSN_UID (curr_insn) >= new_insn_uid_start)
664 return;
665 if (GET_CODE (reg) == SUBREG)
666 reg = SUBREG_REG (reg);
667 if (! REG_P (reg) || (int) REGNO (reg) < new_regno_start)
668 return;
669 if (in_class_p (reg, cl, &rclass) && rclass != cl)
670 change_class (REGNO (reg), rclass, " Change", true);
673 /* Generate reloads for matching OUT and INS (array of input operand
674 numbers with end marker -1) with reg class GOAL_CLASS. Add input
675 and output reloads correspondingly to the lists *BEFORE and *AFTER.
676 OUT might be negative. In this case we generate input reloads for
677 matched input operands INS. */
678 static void
679 match_reload (signed char out, signed char *ins, enum reg_class goal_class,
680 rtx *before, rtx *after)
682 int i, in;
683 rtx new_in_reg, new_out_reg, reg, clobber;
684 enum machine_mode inmode, outmode;
685 rtx in_rtx = *curr_id->operand_loc[ins[0]];
686 rtx out_rtx = out < 0 ? in_rtx : *curr_id->operand_loc[out];
688 inmode = curr_operand_mode[ins[0]];
689 outmode = out < 0 ? inmode : curr_operand_mode[out];
690 push_to_sequence (*before);
691 if (inmode != outmode)
693 if (GET_MODE_SIZE (inmode) > GET_MODE_SIZE (outmode))
695 reg = new_in_reg
696 = lra_create_new_reg_with_unique_value (inmode, in_rtx,
697 goal_class, "");
698 if (SCALAR_INT_MODE_P (inmode))
699 new_out_reg = gen_lowpart_SUBREG (outmode, reg);
700 else
701 new_out_reg = gen_rtx_SUBREG (outmode, reg, 0);
702 LRA_SUBREG_P (new_out_reg) = 1;
703 /* If the input reg is dying here, we can use the same hard
704 register for REG and IN_RTX. We do it only for original
705 pseudos as reload pseudos can die although original
706 pseudos still live where reload pseudos dies. */
707 if (REG_P (in_rtx) && (int) REGNO (in_rtx) < lra_new_regno_start
708 && find_regno_note (curr_insn, REG_DEAD, REGNO (in_rtx)))
709 lra_assign_reg_val (REGNO (in_rtx), REGNO (reg));
711 else
713 reg = new_out_reg
714 = lra_create_new_reg_with_unique_value (outmode, out_rtx,
715 goal_class, "");
716 if (SCALAR_INT_MODE_P (outmode))
717 new_in_reg = gen_lowpart_SUBREG (inmode, reg);
718 else
719 new_in_reg = gen_rtx_SUBREG (inmode, reg, 0);
720 /* NEW_IN_REG is non-paradoxical subreg. We don't want
721 NEW_OUT_REG living above. We add clobber clause for
722 this. This is just a temporary clobber. We can remove
723 it at the end of LRA work. */
724 clobber = emit_clobber (new_out_reg);
725 LRA_TEMP_CLOBBER_P (PATTERN (clobber)) = 1;
726 LRA_SUBREG_P (new_in_reg) = 1;
727 if (GET_CODE (in_rtx) == SUBREG)
729 rtx subreg_reg = SUBREG_REG (in_rtx);
731 /* If SUBREG_REG is dying here and sub-registers IN_RTX
732 and NEW_IN_REG are similar, we can use the same hard
733 register for REG and SUBREG_REG. */
734 if (REG_P (subreg_reg)
735 && (int) REGNO (subreg_reg) < lra_new_regno_start
736 && GET_MODE (subreg_reg) == outmode
737 && SUBREG_BYTE (in_rtx) == SUBREG_BYTE (new_in_reg)
738 && find_regno_note (curr_insn, REG_DEAD, REGNO (subreg_reg)))
739 lra_assign_reg_val (REGNO (subreg_reg), REGNO (reg));
743 else
745 /* Pseudos have values -- see comments for lra_reg_info.
746 Different pseudos with the same value do not conflict even if
747 they live in the same place. When we create a pseudo we
748 assign value of original pseudo (if any) from which we
749 created the new pseudo. If we create the pseudo from the
750 input pseudo, the new pseudo will no conflict with the input
751 pseudo which is wrong when the input pseudo lives after the
752 insn and as the new pseudo value is changed by the insn
753 output. Therefore we create the new pseudo from the output.
755 We cannot reuse the current output register because we might
756 have a situation like "a <- a op b", where the constraints
757 force the second input operand ("b") to match the output
758 operand ("a"). "b" must then be copied into a new register
759 so that it doesn't clobber the current value of "a". */
761 new_in_reg = new_out_reg
762 = lra_create_new_reg_with_unique_value (outmode, out_rtx,
763 goal_class, "");
765 /* In operand can be got from transformations before processing insn
766 constraints. One example of such transformations is subreg
767 reloading (see function simplify_operand_subreg). The new
768 pseudos created by the transformations might have inaccurate
769 class (ALL_REGS) and we should make their classes more
770 accurate. */
771 narrow_reload_pseudo_class (in_rtx, goal_class);
772 lra_emit_move (copy_rtx (new_in_reg), in_rtx);
773 *before = get_insns ();
774 end_sequence ();
775 for (i = 0; (in = ins[i]) >= 0; i++)
777 lra_assert
778 (GET_MODE (*curr_id->operand_loc[in]) == VOIDmode
779 || GET_MODE (new_in_reg) == GET_MODE (*curr_id->operand_loc[in]));
780 *curr_id->operand_loc[in] = new_in_reg;
782 lra_update_dups (curr_id, ins);
783 if (out < 0)
784 return;
785 /* See a comment for the input operand above. */
786 narrow_reload_pseudo_class (out_rtx, goal_class);
787 if (find_reg_note (curr_insn, REG_UNUSED, out_rtx) == NULL_RTX)
789 start_sequence ();
790 lra_emit_move (out_rtx, copy_rtx (new_out_reg));
791 emit_insn (*after);
792 *after = get_insns ();
793 end_sequence ();
795 *curr_id->operand_loc[out] = new_out_reg;
796 lra_update_dup (curr_id, out);
799 /* Return register class which is union of all reg classes in insn
800 constraint alternative string starting with P. */
801 static enum reg_class
802 reg_class_from_constraints (const char *p)
804 int c, len;
805 enum reg_class op_class = NO_REGS;
808 switch ((c = *p, len = CONSTRAINT_LEN (c, p)), c)
810 case '#':
811 case ',':
812 return op_class;
814 case 'p':
815 op_class = (reg_class_subunion
816 [op_class][base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
817 ADDRESS, SCRATCH)]);
818 break;
820 case 'g':
821 case 'r':
822 op_class = reg_class_subunion[op_class][GENERAL_REGS];
823 break;
825 default:
826 if (REG_CLASS_FROM_CONSTRAINT (c, p) == NO_REGS)
828 #ifdef EXTRA_CONSTRAINT_STR
829 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
830 op_class
831 = (reg_class_subunion
832 [op_class][base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
833 ADDRESS, SCRATCH)]);
834 #endif
835 break;
838 op_class
839 = reg_class_subunion[op_class][REG_CLASS_FROM_CONSTRAINT (c, p)];
840 break;
842 while ((p += len), c);
843 return op_class;
846 /* If OP is a register, return the class of the register as per
847 get_reg_class, otherwise return NO_REGS. */
848 static inline enum reg_class
849 get_op_class (rtx op)
851 return REG_P (op) ? get_reg_class (REGNO (op)) : NO_REGS;
854 /* Return generated insn mem_pseudo:=val if TO_P or val:=mem_pseudo
855 otherwise. If modes of MEM_PSEUDO and VAL are different, use
856 SUBREG for VAL to make them equal. */
857 static rtx
858 emit_spill_move (bool to_p, rtx mem_pseudo, rtx val)
860 if (GET_MODE (mem_pseudo) != GET_MODE (val))
862 /* Usually size of mem_pseudo is greater than val size but in
863 rare cases it can be less as it can be defined by target
864 dependent macro HARD_REGNO_CALLER_SAVE_MODE. */
865 if (! MEM_P (val))
867 val = gen_rtx_SUBREG (GET_MODE (mem_pseudo),
868 GET_CODE (val) == SUBREG ? SUBREG_REG (val) : val,
870 LRA_SUBREG_P (val) = 1;
872 else
874 mem_pseudo = gen_lowpart_SUBREG (GET_MODE (val), mem_pseudo);
875 LRA_SUBREG_P (mem_pseudo) = 1;
878 return (to_p
879 ? gen_move_insn (mem_pseudo, val)
880 : gen_move_insn (val, mem_pseudo));
883 /* Process a special case insn (register move), return true if we
884 don't need to process it anymore. INSN should be a single set
885 insn. Set up that RTL was changed through CHANGE_P and macro
886 SECONDARY_MEMORY_NEEDED says to use secondary memory through
887 SEC_MEM_P. */
888 static bool
889 check_and_process_move (bool *change_p, bool *sec_mem_p ATTRIBUTE_UNUSED)
891 int sregno, dregno;
892 rtx dest, src, dreg, sreg, old_sreg, new_reg, before, scratch_reg;
893 enum reg_class dclass, sclass, secondary_class;
894 enum machine_mode sreg_mode;
895 secondary_reload_info sri;
897 lra_assert (curr_insn_set != NULL_RTX);
898 dreg = dest = SET_DEST (curr_insn_set);
899 sreg = src = SET_SRC (curr_insn_set);
900 if (GET_CODE (dest) == SUBREG)
901 dreg = SUBREG_REG (dest);
902 if (GET_CODE (src) == SUBREG)
903 sreg = SUBREG_REG (src);
904 if (! (REG_P (dreg) || MEM_P (dreg)) || ! (REG_P (sreg) || MEM_P (sreg)))
905 return false;
906 sclass = dclass = NO_REGS;
907 if (REG_P (dreg))
908 dclass = get_reg_class (REGNO (dreg));
909 if (dclass == ALL_REGS)
910 /* ALL_REGS is used for new pseudos created by transformations
911 like reload of SUBREG_REG (see function
912 simplify_operand_subreg). We don't know their class yet. We
913 should figure out the class from processing the insn
914 constraints not in this fast path function. Even if ALL_REGS
915 were a right class for the pseudo, secondary_... hooks usually
916 are not define for ALL_REGS. */
917 return false;
918 sreg_mode = GET_MODE (sreg);
919 old_sreg = sreg;
920 if (REG_P (sreg))
921 sclass = get_reg_class (REGNO (sreg));
922 if (sclass == ALL_REGS)
923 /* See comments above. */
924 return false;
925 if (sclass == NO_REGS && dclass == NO_REGS)
926 return false;
927 #ifdef SECONDARY_MEMORY_NEEDED
928 if (SECONDARY_MEMORY_NEEDED (sclass, dclass, GET_MODE (src))
929 #ifdef SECONDARY_MEMORY_NEEDED_MODE
930 && ((sclass != NO_REGS && dclass != NO_REGS)
931 || GET_MODE (src) != SECONDARY_MEMORY_NEEDED_MODE (GET_MODE (src)))
932 #endif
935 *sec_mem_p = true;
936 return false;
938 #endif
939 if (! REG_P (dreg) || ! REG_P (sreg))
940 return false;
941 sri.prev_sri = NULL;
942 sri.icode = CODE_FOR_nothing;
943 sri.extra_cost = 0;
944 secondary_class = NO_REGS;
945 /* Set up hard register for a reload pseudo for hook
946 secondary_reload because some targets just ignore unassigned
947 pseudos in the hook. */
948 if (dclass != NO_REGS && lra_get_regno_hard_regno (REGNO (dreg)) < 0)
950 dregno = REGNO (dreg);
951 reg_renumber[dregno] = ira_class_hard_regs[dclass][0];
953 else
954 dregno = -1;
955 if (sclass != NO_REGS && lra_get_regno_hard_regno (REGNO (sreg)) < 0)
957 sregno = REGNO (sreg);
958 reg_renumber[sregno] = ira_class_hard_regs[sclass][0];
960 else
961 sregno = -1;
962 if (sclass != NO_REGS)
963 secondary_class
964 = (enum reg_class) targetm.secondary_reload (false, dest,
965 (reg_class_t) sclass,
966 GET_MODE (src), &sri);
967 if (sclass == NO_REGS
968 || ((secondary_class != NO_REGS || sri.icode != CODE_FOR_nothing)
969 && dclass != NO_REGS))
971 enum reg_class old_sclass = secondary_class;
972 secondary_reload_info old_sri = sri;
974 sri.prev_sri = NULL;
975 sri.icode = CODE_FOR_nothing;
976 sri.extra_cost = 0;
977 secondary_class
978 = (enum reg_class) targetm.secondary_reload (true, sreg,
979 (reg_class_t) dclass,
980 sreg_mode, &sri);
981 /* Check the target hook consistency. */
982 lra_assert
983 ((secondary_class == NO_REGS && sri.icode == CODE_FOR_nothing)
984 || (old_sclass == NO_REGS && old_sri.icode == CODE_FOR_nothing)
985 || (secondary_class == old_sclass && sri.icode == old_sri.icode));
987 if (sregno >= 0)
988 reg_renumber [sregno] = -1;
989 if (dregno >= 0)
990 reg_renumber [dregno] = -1;
991 if (secondary_class == NO_REGS && sri.icode == CODE_FOR_nothing)
992 return false;
993 *change_p = true;
994 new_reg = NULL_RTX;
995 if (secondary_class != NO_REGS)
996 new_reg = lra_create_new_reg_with_unique_value (sreg_mode, NULL_RTX,
997 secondary_class,
998 "secondary");
999 start_sequence ();
1000 if (old_sreg != sreg)
1001 sreg = copy_rtx (sreg);
1002 if (sri.icode == CODE_FOR_nothing)
1003 lra_emit_move (new_reg, sreg);
1004 else
1006 enum reg_class scratch_class;
1008 scratch_class = (reg_class_from_constraints
1009 (insn_data[sri.icode].operand[2].constraint));
1010 scratch_reg = (lra_create_new_reg_with_unique_value
1011 (insn_data[sri.icode].operand[2].mode, NULL_RTX,
1012 scratch_class, "scratch"));
1013 emit_insn (GEN_FCN (sri.icode) (new_reg != NULL_RTX ? new_reg : dest,
1014 sreg, scratch_reg));
1016 before = get_insns ();
1017 end_sequence ();
1018 lra_process_new_insns (curr_insn, before, NULL_RTX, "Inserting the move");
1019 if (new_reg != NULL_RTX)
1021 if (GET_CODE (src) == SUBREG)
1022 SUBREG_REG (src) = new_reg;
1023 else
1024 SET_SRC (curr_insn_set) = new_reg;
1026 else
1028 if (lra_dump_file != NULL)
1030 fprintf (lra_dump_file, "Deleting move %u\n", INSN_UID (curr_insn));
1031 dump_insn_slim (lra_dump_file, curr_insn);
1033 lra_set_insn_deleted (curr_insn);
1034 return true;
1036 return false;
1039 /* The following data describe the result of process_alt_operands.
1040 The data are used in curr_insn_transform to generate reloads. */
1042 /* The chosen reg classes which should be used for the corresponding
1043 operands. */
1044 static enum reg_class goal_alt[MAX_RECOG_OPERANDS];
1045 /* True if the operand should be the same as another operand and that
1046 other operand does not need a reload. */
1047 static bool goal_alt_match_win[MAX_RECOG_OPERANDS];
1048 /* True if the operand does not need a reload. */
1049 static bool goal_alt_win[MAX_RECOG_OPERANDS];
1050 /* True if the operand can be offsetable memory. */
1051 static bool goal_alt_offmemok[MAX_RECOG_OPERANDS];
1052 /* The number of an operand to which given operand can be matched to. */
1053 static int goal_alt_matches[MAX_RECOG_OPERANDS];
1054 /* The number of elements in the following array. */
1055 static int goal_alt_dont_inherit_ops_num;
1056 /* Numbers of operands whose reload pseudos should not be inherited. */
1057 static int goal_alt_dont_inherit_ops[MAX_RECOG_OPERANDS];
1058 /* True if the insn commutative operands should be swapped. */
1059 static bool goal_alt_swapped;
1060 /* The chosen insn alternative. */
1061 static int goal_alt_number;
1063 /* The following five variables are used to choose the best insn
1064 alternative. They reflect final characteristics of the best
1065 alternative. */
1067 /* Number of necessary reloads and overall cost reflecting the
1068 previous value and other unpleasantness of the best alternative. */
1069 static int best_losers, best_overall;
1070 /* Overall number hard registers used for reloads. For example, on
1071 some targets we need 2 general registers to reload DFmode and only
1072 one floating point register. */
1073 static int best_reload_nregs;
1074 /* Overall number reflecting distances of previous reloading the same
1075 value. The distances are counted from the current BB start. It is
1076 used to improve inheritance chances. */
1077 static int best_reload_sum;
1079 /* True if the current insn should have no correspondingly input or
1080 output reloads. */
1081 static bool no_input_reloads_p, no_output_reloads_p;
1083 /* True if we swapped the commutative operands in the current
1084 insn. */
1085 static int curr_swapped;
1087 /* Arrange for address element *LOC to be a register of class CL.
1088 Add any input reloads to list BEFORE. AFTER is nonnull if *LOC is an
1089 automodified value; handle that case by adding the required output
1090 reloads to list AFTER. Return true if the RTL was changed. */
1091 static bool
1092 process_addr_reg (rtx *loc, rtx *before, rtx *after, enum reg_class cl)
1094 int regno;
1095 enum reg_class rclass, new_class;
1096 rtx reg;
1097 rtx new_reg;
1098 enum machine_mode mode;
1099 bool before_p = false;
1101 loc = strip_subreg (loc);
1102 reg = *loc;
1103 mode = GET_MODE (reg);
1104 if (! REG_P (reg))
1106 /* Always reload memory in an address even if the target supports
1107 such addresses. */
1108 new_reg = lra_create_new_reg_with_unique_value (mode, reg, cl, "address");
1109 before_p = true;
1111 else
1113 regno = REGNO (reg);
1114 rclass = get_reg_class (regno);
1115 if ((*loc = get_equiv_substitution (reg)) != reg)
1117 if (lra_dump_file != NULL)
1119 fprintf (lra_dump_file,
1120 "Changing pseudo %d in address of insn %u on equiv ",
1121 REGNO (reg), INSN_UID (curr_insn));
1122 dump_value_slim (lra_dump_file, *loc, 1);
1123 fprintf (lra_dump_file, "\n");
1125 *loc = copy_rtx (*loc);
1127 if (*loc != reg || ! in_class_p (reg, cl, &new_class))
1129 reg = *loc;
1130 if (get_reload_reg (after == NULL ? OP_IN : OP_INOUT,
1131 mode, reg, cl, "address", &new_reg))
1132 before_p = true;
1134 else if (new_class != NO_REGS && rclass != new_class)
1136 change_class (regno, new_class, " Change", true);
1137 return false;
1139 else
1140 return false;
1142 if (before_p)
1144 push_to_sequence (*before);
1145 lra_emit_move (new_reg, reg);
1146 *before = get_insns ();
1147 end_sequence ();
1149 *loc = new_reg;
1150 if (after != NULL)
1152 start_sequence ();
1153 lra_emit_move (reg, new_reg);
1154 emit_insn (*after);
1155 *after = get_insns ();
1156 end_sequence ();
1158 return true;
1161 /* Make reloads for subreg in operand NOP with internal subreg mode
1162 REG_MODE, add new reloads for further processing. Return true if
1163 any reload was generated. */
1164 static bool
1165 simplify_operand_subreg (int nop, enum machine_mode reg_mode)
1167 int hard_regno;
1168 rtx before, after;
1169 enum machine_mode mode;
1170 rtx reg, new_reg;
1171 rtx operand = *curr_id->operand_loc[nop];
1173 before = after = NULL_RTX;
1175 if (GET_CODE (operand) != SUBREG)
1176 return false;
1178 mode = GET_MODE (operand);
1179 reg = SUBREG_REG (operand);
1180 /* If we change address for paradoxical subreg of memory, the
1181 address might violate the necessary alignment or the access might
1182 be slow. So take this into consideration. We should not worry
1183 about access beyond allocated memory for paradoxical memory
1184 subregs as we don't substitute such equiv memory (see processing
1185 equivalences in function lra_constraints) and because for spilled
1186 pseudos we allocate stack memory enough for the biggest
1187 corresponding paradoxical subreg. */
1188 if ((MEM_P (reg)
1189 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (reg))
1190 || MEM_ALIGN (reg) >= GET_MODE_ALIGNMENT (mode)))
1191 || (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER))
1193 alter_subreg (curr_id->operand_loc[nop], false);
1194 return true;
1196 /* Put constant into memory when we have mixed modes. It generates
1197 a better code in most cases as it does not need a secondary
1198 reload memory. It also prevents LRA looping when LRA is using
1199 secondary reload memory again and again. */
1200 if (CONSTANT_P (reg) && CONST_POOL_OK_P (reg_mode, reg)
1201 && SCALAR_INT_MODE_P (reg_mode) != SCALAR_INT_MODE_P (mode))
1203 SUBREG_REG (operand) = force_const_mem (reg_mode, reg);
1204 alter_subreg (curr_id->operand_loc[nop], false);
1205 return true;
1207 /* Force a reload of the SUBREG_REG if this is a constant or PLUS or
1208 if there may be a problem accessing OPERAND in the outer
1209 mode. */
1210 if ((REG_P (reg)
1211 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
1212 && (hard_regno = lra_get_regno_hard_regno (REGNO (reg))) >= 0
1213 /* Don't reload paradoxical subregs because we could be looping
1214 having repeatedly final regno out of hard regs range. */
1215 && (hard_regno_nregs[hard_regno][GET_MODE (reg)]
1216 >= hard_regno_nregs[hard_regno][mode])
1217 && simplify_subreg_regno (hard_regno, GET_MODE (reg),
1218 SUBREG_BYTE (operand), mode) < 0
1219 /* Don't reload subreg for matching reload. It is actually
1220 valid subreg in LRA. */
1221 && ! LRA_SUBREG_P (operand))
1222 || CONSTANT_P (reg) || GET_CODE (reg) == PLUS || MEM_P (reg))
1224 enum op_type type = curr_static_id->operand[nop].type;
1225 /* The class will be defined later in curr_insn_transform. */
1226 enum reg_class rclass
1227 = (enum reg_class) targetm.preferred_reload_class (reg, ALL_REGS);
1229 if (get_reload_reg (curr_static_id->operand[nop].type, reg_mode, reg,
1230 rclass, "subreg reg", &new_reg))
1232 bitmap_set_bit (&lra_subreg_reload_pseudos, REGNO (new_reg));
1233 if (type != OP_OUT
1234 || GET_MODE_SIZE (GET_MODE (reg)) > GET_MODE_SIZE (mode))
1236 push_to_sequence (before);
1237 lra_emit_move (new_reg, reg);
1238 before = get_insns ();
1239 end_sequence ();
1241 if (type != OP_IN)
1243 start_sequence ();
1244 lra_emit_move (reg, new_reg);
1245 emit_insn (after);
1246 after = get_insns ();
1247 end_sequence ();
1250 SUBREG_REG (operand) = new_reg;
1251 lra_process_new_insns (curr_insn, before, after,
1252 "Inserting subreg reload");
1253 return true;
1255 return false;
1258 /* Return TRUE if X refers for a hard register from SET. */
1259 static bool
1260 uses_hard_regs_p (rtx x, HARD_REG_SET set)
1262 int i, j, x_hard_regno;
1263 enum machine_mode mode;
1264 const char *fmt;
1265 enum rtx_code code;
1267 if (x == NULL_RTX)
1268 return false;
1269 code = GET_CODE (x);
1270 mode = GET_MODE (x);
1271 if (code == SUBREG)
1273 x = SUBREG_REG (x);
1274 code = GET_CODE (x);
1275 if (GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (mode))
1276 mode = GET_MODE (x);
1279 if (REG_P (x))
1281 x_hard_regno = get_hard_regno (x);
1282 return (x_hard_regno >= 0
1283 && overlaps_hard_reg_set_p (set, mode, x_hard_regno));
1285 if (MEM_P (x))
1287 struct address_info ad;
1289 decompose_mem_address (&ad, x);
1290 if (ad.base_term != NULL && uses_hard_regs_p (*ad.base_term, set))
1291 return true;
1292 if (ad.index_term != NULL && uses_hard_regs_p (*ad.index_term, set))
1293 return true;
1295 fmt = GET_RTX_FORMAT (code);
1296 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1298 if (fmt[i] == 'e')
1300 if (uses_hard_regs_p (XEXP (x, i), set))
1301 return true;
1303 else if (fmt[i] == 'E')
1305 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1306 if (uses_hard_regs_p (XVECEXP (x, i, j), set))
1307 return true;
1310 return false;
1313 /* Return true if OP is a spilled pseudo. */
1314 static inline bool
1315 spilled_pseudo_p (rtx op)
1317 return (REG_P (op)
1318 && REGNO (op) >= FIRST_PSEUDO_REGISTER && in_mem_p (REGNO (op)));
1321 /* Return true if X is a general constant. */
1322 static inline bool
1323 general_constant_p (rtx x)
1325 return CONSTANT_P (x) && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (x));
1328 static bool
1329 reg_in_class_p (rtx reg, enum reg_class cl)
1331 if (cl == NO_REGS)
1332 return get_reg_class (REGNO (reg)) == NO_REGS;
1333 return in_class_p (reg, cl, NULL);
1336 /* Major function to choose the current insn alternative and what
1337 operands should be reloaded and how. If ONLY_ALTERNATIVE is not
1338 negative we should consider only this alternative. Return false if
1339 we can not choose the alternative or find how to reload the
1340 operands. */
1341 static bool
1342 process_alt_operands (int only_alternative)
1344 bool ok_p = false;
1345 int nop, overall, nalt;
1346 int n_alternatives = curr_static_id->n_alternatives;
1347 int n_operands = curr_static_id->n_operands;
1348 /* LOSERS counts the operands that don't fit this alternative and
1349 would require loading. */
1350 int losers;
1351 /* REJECT is a count of how undesirable this alternative says it is
1352 if any reloading is required. If the alternative matches exactly
1353 then REJECT is ignored, but otherwise it gets this much counted
1354 against it in addition to the reloading needed. */
1355 int reject;
1356 /* The number of elements in the following array. */
1357 int early_clobbered_regs_num;
1358 /* Numbers of operands which are early clobber registers. */
1359 int early_clobbered_nops[MAX_RECOG_OPERANDS];
1360 enum reg_class curr_alt[MAX_RECOG_OPERANDS];
1361 HARD_REG_SET curr_alt_set[MAX_RECOG_OPERANDS];
1362 bool curr_alt_match_win[MAX_RECOG_OPERANDS];
1363 bool curr_alt_win[MAX_RECOG_OPERANDS];
1364 bool curr_alt_offmemok[MAX_RECOG_OPERANDS];
1365 int curr_alt_matches[MAX_RECOG_OPERANDS];
1366 /* The number of elements in the following array. */
1367 int curr_alt_dont_inherit_ops_num;
1368 /* Numbers of operands whose reload pseudos should not be inherited. */
1369 int curr_alt_dont_inherit_ops[MAX_RECOG_OPERANDS];
1370 rtx op;
1371 /* The register when the operand is a subreg of register, otherwise the
1372 operand itself. */
1373 rtx no_subreg_reg_operand[MAX_RECOG_OPERANDS];
1374 /* The register if the operand is a register or subreg of register,
1375 otherwise NULL. */
1376 rtx operand_reg[MAX_RECOG_OPERANDS];
1377 int hard_regno[MAX_RECOG_OPERANDS];
1378 enum machine_mode biggest_mode[MAX_RECOG_OPERANDS];
1379 int reload_nregs, reload_sum;
1380 bool costly_p;
1381 enum reg_class cl;
1383 /* Calculate some data common for all alternatives to speed up the
1384 function. */
1385 for (nop = 0; nop < n_operands; nop++)
1387 op = no_subreg_reg_operand[nop] = *curr_id->operand_loc[nop];
1388 /* The real hard regno of the operand after the allocation. */
1389 hard_regno[nop] = get_hard_regno (op);
1391 operand_reg[nop] = op;
1392 biggest_mode[nop] = GET_MODE (operand_reg[nop]);
1393 if (GET_CODE (operand_reg[nop]) == SUBREG)
1395 operand_reg[nop] = SUBREG_REG (operand_reg[nop]);
1396 if (GET_MODE_SIZE (biggest_mode[nop])
1397 < GET_MODE_SIZE (GET_MODE (operand_reg[nop])))
1398 biggest_mode[nop] = GET_MODE (operand_reg[nop]);
1400 if (REG_P (operand_reg[nop]))
1401 no_subreg_reg_operand[nop] = operand_reg[nop];
1402 else
1403 operand_reg[nop] = NULL_RTX;
1406 /* The constraints are made of several alternatives. Each operand's
1407 constraint looks like foo,bar,... with commas separating the
1408 alternatives. The first alternatives for all operands go
1409 together, the second alternatives go together, etc.
1411 First loop over alternatives. */
1412 for (nalt = 0; nalt < n_alternatives; nalt++)
1414 /* Loop over operands for one constraint alternative. */
1415 #if HAVE_ATTR_enabled
1416 if (curr_id->alternative_enabled_p != NULL
1417 && ! curr_id->alternative_enabled_p[nalt])
1418 continue;
1419 #endif
1421 if (only_alternative >= 0 && nalt != only_alternative)
1422 continue;
1425 overall = losers = reject = reload_nregs = reload_sum = 0;
1426 for (nop = 0; nop < n_operands; nop++)
1428 int inc = (curr_static_id
1429 ->operand_alternative[nalt * n_operands + nop].reject);
1430 if (lra_dump_file != NULL && inc != 0)
1431 fprintf (lra_dump_file,
1432 " Staticly defined alt reject+=%d\n", inc);
1433 reject += inc;
1435 early_clobbered_regs_num = 0;
1437 for (nop = 0; nop < n_operands; nop++)
1439 const char *p;
1440 char *end;
1441 int len, c, m, i, opalt_num, this_alternative_matches;
1442 bool win, did_match, offmemok, early_clobber_p;
1443 /* false => this operand can be reloaded somehow for this
1444 alternative. */
1445 bool badop;
1446 /* true => this operand can be reloaded if the alternative
1447 allows regs. */
1448 bool winreg;
1449 /* True if a constant forced into memory would be OK for
1450 this operand. */
1451 bool constmemok;
1452 enum reg_class this_alternative, this_costly_alternative;
1453 HARD_REG_SET this_alternative_set, this_costly_alternative_set;
1454 bool this_alternative_match_win, this_alternative_win;
1455 bool this_alternative_offmemok;
1456 enum machine_mode mode;
1458 opalt_num = nalt * n_operands + nop;
1459 if (curr_static_id->operand_alternative[opalt_num].anything_ok)
1461 /* Fast track for no constraints at all. */
1462 curr_alt[nop] = NO_REGS;
1463 CLEAR_HARD_REG_SET (curr_alt_set[nop]);
1464 curr_alt_win[nop] = true;
1465 curr_alt_match_win[nop] = false;
1466 curr_alt_offmemok[nop] = false;
1467 curr_alt_matches[nop] = -1;
1468 continue;
1471 op = no_subreg_reg_operand[nop];
1472 mode = curr_operand_mode[nop];
1474 win = did_match = winreg = offmemok = constmemok = false;
1475 badop = true;
1477 early_clobber_p = false;
1478 p = curr_static_id->operand_alternative[opalt_num].constraint;
1480 this_costly_alternative = this_alternative = NO_REGS;
1481 /* We update set of possible hard regs besides its class
1482 because reg class might be inaccurate. For example,
1483 union of LO_REGS (l), HI_REGS(h), and STACK_REG(k) in ARM
1484 is translated in HI_REGS because classes are merged by
1485 pairs and there is no accurate intermediate class. */
1486 CLEAR_HARD_REG_SET (this_alternative_set);
1487 CLEAR_HARD_REG_SET (this_costly_alternative_set);
1488 this_alternative_win = false;
1489 this_alternative_match_win = false;
1490 this_alternative_offmemok = false;
1491 this_alternative_matches = -1;
1493 /* An empty constraint should be excluded by the fast
1494 track. */
1495 lra_assert (*p != 0 && *p != ',');
1497 /* Scan this alternative's specs for this operand; set WIN
1498 if the operand fits any letter in this alternative.
1499 Otherwise, clear BADOP if this operand could fit some
1500 letter after reloads, or set WINREG if this operand could
1501 fit after reloads provided the constraint allows some
1502 registers. */
1503 costly_p = false;
1506 switch ((c = *p, len = CONSTRAINT_LEN (c, p)), c)
1508 case '\0':
1509 len = 0;
1510 break;
1511 case ',':
1512 c = '\0';
1513 break;
1515 case '=': case '+': case '?': case '*': case '!':
1516 case ' ': case '\t':
1517 break;
1519 case '%':
1520 /* We only support one commutative marker, the first
1521 one. We already set commutative above. */
1522 break;
1524 case '&':
1525 early_clobber_p = true;
1526 break;
1528 case '#':
1529 /* Ignore rest of this alternative. */
1530 c = '\0';
1531 break;
1533 case '0': case '1': case '2': case '3': case '4':
1534 case '5': case '6': case '7': case '8': case '9':
1536 int m_hregno;
1537 bool match_p;
1539 m = strtoul (p, &end, 10);
1540 p = end;
1541 len = 0;
1542 lra_assert (nop > m);
1544 this_alternative_matches = m;
1545 m_hregno = get_hard_regno (*curr_id->operand_loc[m]);
1546 /* We are supposed to match a previous operand.
1547 If we do, we win if that one did. If we do
1548 not, count both of the operands as losers.
1549 (This is too conservative, since most of the
1550 time only a single reload insn will be needed
1551 to make the two operands win. As a result,
1552 this alternative may be rejected when it is
1553 actually desirable.) */
1554 match_p = false;
1555 if (operands_match_p (*curr_id->operand_loc[nop],
1556 *curr_id->operand_loc[m], m_hregno))
1558 /* We should reject matching of an early
1559 clobber operand if the matching operand is
1560 not dying in the insn. */
1561 if (! curr_static_id->operand[m].early_clobber
1562 || operand_reg[nop] == NULL_RTX
1563 || (find_regno_note (curr_insn, REG_DEAD,
1564 REGNO (op))
1565 || REGNO (op) == REGNO (operand_reg[m])))
1566 match_p = true;
1568 if (match_p)
1570 /* If we are matching a non-offsettable
1571 address where an offsettable address was
1572 expected, then we must reject this
1573 combination, because we can't reload
1574 it. */
1575 if (curr_alt_offmemok[m]
1576 && MEM_P (*curr_id->operand_loc[m])
1577 && curr_alt[m] == NO_REGS && ! curr_alt_win[m])
1578 continue;
1581 else
1583 /* Operands don't match. Both operands must
1584 allow a reload register, otherwise we
1585 cannot make them match. */
1586 if (curr_alt[m] == NO_REGS)
1587 break;
1588 /* Retroactively mark the operand we had to
1589 match as a loser, if it wasn't already and
1590 it wasn't matched to a register constraint
1591 (e.g it might be matched by memory). */
1592 if (curr_alt_win[m]
1593 && (operand_reg[m] == NULL_RTX
1594 || hard_regno[m] < 0))
1596 losers++;
1597 reload_nregs
1598 += (ira_reg_class_max_nregs[curr_alt[m]]
1599 [GET_MODE (*curr_id->operand_loc[m])]);
1602 /* We prefer no matching alternatives because
1603 it gives more freedom in RA. */
1604 if (operand_reg[nop] == NULL_RTX
1605 || (find_regno_note (curr_insn, REG_DEAD,
1606 REGNO (operand_reg[nop]))
1607 == NULL_RTX))
1609 if (lra_dump_file != NULL)
1610 fprintf
1611 (lra_dump_file,
1612 " %d Matching alt: reject+=2\n",
1613 nop);
1614 reject += 2;
1617 /* If we have to reload this operand and some
1618 previous operand also had to match the same
1619 thing as this operand, we don't know how to do
1620 that. */
1621 if (!match_p || !curr_alt_win[m])
1623 for (i = 0; i < nop; i++)
1624 if (curr_alt_matches[i] == m)
1625 break;
1626 if (i < nop)
1627 break;
1629 else
1630 did_match = true;
1632 /* This can be fixed with reloads if the operand
1633 we are supposed to match can be fixed with
1634 reloads. */
1635 badop = false;
1636 this_alternative = curr_alt[m];
1637 COPY_HARD_REG_SET (this_alternative_set, curr_alt_set[m]);
1638 winreg = this_alternative != NO_REGS;
1639 break;
1642 case 'p':
1643 cl = base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
1644 ADDRESS, SCRATCH);
1645 this_alternative = reg_class_subunion[this_alternative][cl];
1646 IOR_HARD_REG_SET (this_alternative_set,
1647 reg_class_contents[cl]);
1648 if (costly_p)
1650 this_costly_alternative
1651 = reg_class_subunion[this_costly_alternative][cl];
1652 IOR_HARD_REG_SET (this_costly_alternative_set,
1653 reg_class_contents[cl]);
1655 win = true;
1656 badop = false;
1657 break;
1659 case TARGET_MEM_CONSTRAINT:
1660 if (MEM_P (op) || spilled_pseudo_p (op))
1661 win = true;
1662 /* We can put constant or pseudo value into memory
1663 to satisfy the constraint. */
1664 if (CONST_POOL_OK_P (mode, op) || REG_P (op))
1665 badop = false;
1666 constmemok = true;
1667 break;
1669 case '<':
1670 if (MEM_P (op)
1671 && (GET_CODE (XEXP (op, 0)) == PRE_DEC
1672 || GET_CODE (XEXP (op, 0)) == POST_DEC))
1673 win = true;
1674 break;
1676 case '>':
1677 if (MEM_P (op)
1678 && (GET_CODE (XEXP (op, 0)) == PRE_INC
1679 || GET_CODE (XEXP (op, 0)) == POST_INC))
1680 win = true;
1681 break;
1683 /* Memory op whose address is not offsettable. */
1684 case 'V':
1685 if (MEM_P (op)
1686 && ! offsettable_nonstrict_memref_p (op))
1687 win = true;
1688 break;
1690 /* Memory operand whose address is offsettable. */
1691 case 'o':
1692 if ((MEM_P (op)
1693 && offsettable_nonstrict_memref_p (op))
1694 || spilled_pseudo_p (op))
1695 win = true;
1696 /* We can put constant or pseudo value into memory
1697 or make memory address offsetable to satisfy the
1698 constraint. */
1699 if (CONST_POOL_OK_P (mode, op) || MEM_P (op) || REG_P (op))
1700 badop = false;
1701 constmemok = true;
1702 offmemok = true;
1703 break;
1705 case 'E':
1706 case 'F':
1707 if (GET_CODE (op) == CONST_DOUBLE
1708 || (GET_CODE (op) == CONST_VECTOR
1709 && (GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT)))
1710 win = true;
1711 break;
1713 case 'G':
1714 case 'H':
1715 if (CONST_DOUBLE_AS_FLOAT_P (op)
1716 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, c, p))
1717 win = true;
1718 break;
1720 case 's':
1721 if (CONST_SCALAR_INT_P (op))
1722 break;
1724 case 'i':
1725 if (general_constant_p (op))
1726 win = true;
1727 break;
1729 case 'n':
1730 if (CONST_SCALAR_INT_P (op))
1731 win = true;
1732 break;
1734 case 'I':
1735 case 'J':
1736 case 'K':
1737 case 'L':
1738 case 'M':
1739 case 'N':
1740 case 'O':
1741 case 'P':
1742 if (CONST_INT_P (op)
1743 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), c, p))
1744 win = true;
1745 break;
1747 case 'X':
1748 /* This constraint should be excluded by the fast
1749 track. */
1750 gcc_unreachable ();
1751 break;
1753 case 'g':
1754 if (MEM_P (op)
1755 || general_constant_p (op)
1756 || spilled_pseudo_p (op))
1757 win = true;
1758 /* Drop through into 'r' case. */
1760 case 'r':
1761 this_alternative
1762 = reg_class_subunion[this_alternative][GENERAL_REGS];
1763 IOR_HARD_REG_SET (this_alternative_set,
1764 reg_class_contents[GENERAL_REGS]);
1765 if (costly_p)
1767 this_costly_alternative
1768 = (reg_class_subunion
1769 [this_costly_alternative][GENERAL_REGS]);
1770 IOR_HARD_REG_SET (this_costly_alternative_set,
1771 reg_class_contents[GENERAL_REGS]);
1773 goto reg;
1775 default:
1776 if (REG_CLASS_FROM_CONSTRAINT (c, p) == NO_REGS)
1778 #ifdef EXTRA_CONSTRAINT_STR
1779 if (EXTRA_MEMORY_CONSTRAINT (c, p))
1781 if (EXTRA_CONSTRAINT_STR (op, c, p))
1782 win = true;
1783 else if (spilled_pseudo_p (op))
1784 win = true;
1786 /* If we didn't already win, we can reload
1787 constants via force_const_mem or put the
1788 pseudo value into memory, or make other
1789 memory by reloading the address like for
1790 'o'. */
1791 if (CONST_POOL_OK_P (mode, op)
1792 || MEM_P (op) || REG_P (op))
1793 badop = false;
1794 constmemok = true;
1795 offmemok = true;
1796 break;
1798 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
1800 if (EXTRA_CONSTRAINT_STR (op, c, p))
1801 win = true;
1803 /* If we didn't already win, we can reload
1804 the address into a base register. */
1805 cl = base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
1806 ADDRESS, SCRATCH);
1807 this_alternative
1808 = reg_class_subunion[this_alternative][cl];
1809 IOR_HARD_REG_SET (this_alternative_set,
1810 reg_class_contents[cl]);
1811 if (costly_p)
1813 this_costly_alternative
1814 = (reg_class_subunion
1815 [this_costly_alternative][cl]);
1816 IOR_HARD_REG_SET (this_costly_alternative_set,
1817 reg_class_contents[cl]);
1819 badop = false;
1820 break;
1823 if (EXTRA_CONSTRAINT_STR (op, c, p))
1824 win = true;
1825 #endif
1826 break;
1829 cl = REG_CLASS_FROM_CONSTRAINT (c, p);
1830 this_alternative = reg_class_subunion[this_alternative][cl];
1831 IOR_HARD_REG_SET (this_alternative_set,
1832 reg_class_contents[cl]);
1833 if (costly_p)
1835 this_costly_alternative
1836 = reg_class_subunion[this_costly_alternative][cl];
1837 IOR_HARD_REG_SET (this_costly_alternative_set,
1838 reg_class_contents[cl]);
1840 reg:
1841 if (mode == BLKmode)
1842 break;
1843 winreg = true;
1844 if (REG_P (op))
1846 if (hard_regno[nop] >= 0
1847 && in_hard_reg_set_p (this_alternative_set,
1848 mode, hard_regno[nop]))
1849 win = true;
1850 else if (hard_regno[nop] < 0
1851 && in_class_p (op, this_alternative, NULL))
1852 win = true;
1854 break;
1856 if (c != ' ' && c != '\t')
1857 costly_p = c == '*';
1859 while ((p += len), c);
1861 /* Record which operands fit this alternative. */
1862 if (win)
1864 this_alternative_win = true;
1865 if (operand_reg[nop] != NULL_RTX)
1867 if (hard_regno[nop] >= 0)
1869 if (in_hard_reg_set_p (this_costly_alternative_set,
1870 mode, hard_regno[nop]))
1872 if (lra_dump_file != NULL)
1873 fprintf (lra_dump_file,
1874 " %d Costly set: reject++\n",
1875 nop);
1876 reject++;
1879 else
1881 /* Prefer won reg to spilled pseudo under other equal
1882 conditions. */
1883 if (lra_dump_file != NULL)
1884 fprintf
1885 (lra_dump_file,
1886 " %d Non pseudo reload: reject++\n",
1887 nop);
1888 reject++;
1889 if (in_class_p (operand_reg[nop],
1890 this_costly_alternative, NULL))
1892 if (lra_dump_file != NULL)
1893 fprintf
1894 (lra_dump_file,
1895 " %d Non pseudo costly reload:"
1896 " reject++\n",
1897 nop);
1898 reject++;
1901 /* We simulate the behaviour of old reload here.
1902 Although scratches need hard registers and it
1903 might result in spilling other pseudos, no reload
1904 insns are generated for the scratches. So it
1905 might cost something but probably less than old
1906 reload pass believes. */
1907 if (lra_former_scratch_p (REGNO (operand_reg[nop])))
1909 if (lra_dump_file != NULL)
1910 fprintf (lra_dump_file,
1911 " %d Scratch win: reject+=3\n",
1912 nop);
1913 reject += 3;
1917 else if (did_match)
1918 this_alternative_match_win = true;
1919 else
1921 int const_to_mem = 0;
1922 bool no_regs_p;
1924 /* If this alternative asks for a specific reg class, see if there
1925 is at least one allocatable register in that class. */
1926 no_regs_p
1927 = (this_alternative == NO_REGS
1928 || (hard_reg_set_subset_p
1929 (reg_class_contents[this_alternative],
1930 lra_no_alloc_regs)));
1932 /* For asms, verify that the class for this alternative is possible
1933 for the mode that is specified. */
1934 if (!no_regs_p && INSN_CODE (curr_insn) < 0)
1936 int i;
1937 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1938 if (HARD_REGNO_MODE_OK (i, mode)
1939 && in_hard_reg_set_p (reg_class_contents[this_alternative], mode, i))
1940 break;
1941 if (i == FIRST_PSEUDO_REGISTER)
1942 winreg = false;
1945 /* If this operand accepts a register, and if the
1946 register class has at least one allocatable register,
1947 then this operand can be reloaded. */
1948 if (winreg && !no_regs_p)
1949 badop = false;
1951 if (badop)
1952 goto fail;
1954 this_alternative_offmemok = offmemok;
1955 if (this_costly_alternative != NO_REGS)
1957 if (lra_dump_file != NULL)
1958 fprintf (lra_dump_file,
1959 " %d Costly loser: reject++\n", nop);
1960 reject++;
1962 /* If the operand is dying, has a matching constraint,
1963 and satisfies constraints of the matched operand
1964 which failed to satisfy the own constraints, we do
1965 not need to generate a reload insn for this
1966 operand. */
1967 if (!(this_alternative_matches >= 0
1968 && !curr_alt_win[this_alternative_matches]
1969 && REG_P (op)
1970 && find_regno_note (curr_insn, REG_DEAD, REGNO (op))
1971 && (hard_regno[nop] >= 0
1972 ? in_hard_reg_set_p (this_alternative_set,
1973 mode, hard_regno[nop])
1974 : in_class_p (op, this_alternative, NULL))))
1976 /* Strict_low_part requires to reload the register
1977 not the sub-register. In this case we should
1978 check that a final reload hard reg can hold the
1979 value mode. */
1980 if (curr_static_id->operand[nop].strict_low
1981 && REG_P (op)
1982 && hard_regno[nop] < 0
1983 && GET_CODE (*curr_id->operand_loc[nop]) == SUBREG
1984 && ira_class_hard_regs_num[this_alternative] > 0
1985 && ! HARD_REGNO_MODE_OK (ira_class_hard_regs
1986 [this_alternative][0],
1987 GET_MODE
1988 (*curr_id->operand_loc[nop])))
1989 goto fail;
1990 losers++;
1992 if (operand_reg[nop] != NULL_RTX
1993 /* Output operands and matched input operands are
1994 not inherited. The following conditions do not
1995 exactly describe the previous statement but they
1996 are pretty close. */
1997 && curr_static_id->operand[nop].type != OP_OUT
1998 && (this_alternative_matches < 0
1999 || curr_static_id->operand[nop].type != OP_IN))
2001 int last_reload = (lra_reg_info[ORIGINAL_REGNO
2002 (operand_reg[nop])]
2003 .last_reload);
2005 if (last_reload > bb_reload_num)
2006 reload_sum += last_reload - bb_reload_num;
2008 /* If this is a constant that is reloaded into the
2009 desired class by copying it to memory first, count
2010 that as another reload. This is consistent with
2011 other code and is required to avoid choosing another
2012 alternative when the constant is moved into memory.
2013 Note that the test here is precisely the same as in
2014 the code below that calls force_const_mem. */
2015 if (CONST_POOL_OK_P (mode, op)
2016 && ((targetm.preferred_reload_class
2017 (op, this_alternative) == NO_REGS)
2018 || no_input_reloads_p))
2020 const_to_mem = 1;
2021 if (! no_regs_p)
2022 losers++;
2025 /* Alternative loses if it requires a type of reload not
2026 permitted for this insn. We can always reload
2027 objects with a REG_UNUSED note. */
2028 if ((curr_static_id->operand[nop].type != OP_IN
2029 && no_output_reloads_p
2030 && ! find_reg_note (curr_insn, REG_UNUSED, op))
2031 || (curr_static_id->operand[nop].type != OP_OUT
2032 && no_input_reloads_p && ! const_to_mem))
2033 goto fail;
2035 /* Check strong discouragement of reload of non-constant
2036 into class THIS_ALTERNATIVE. */
2037 if (! CONSTANT_P (op) && ! no_regs_p
2038 && (targetm.preferred_reload_class
2039 (op, this_alternative) == NO_REGS
2040 || (curr_static_id->operand[nop].type == OP_OUT
2041 && (targetm.preferred_output_reload_class
2042 (op, this_alternative) == NO_REGS))))
2044 if (lra_dump_file != NULL)
2045 fprintf (lra_dump_file,
2046 " %d Non-prefered reload: reject+=%d\n",
2047 nop, LRA_MAX_REJECT);
2048 reject += LRA_MAX_REJECT;
2051 if (! (MEM_P (op) && offmemok)
2052 && ! (const_to_mem && constmemok))
2054 /* We prefer to reload pseudos over reloading other
2055 things, since such reloads may be able to be
2056 eliminated later. So bump REJECT in other cases.
2057 Don't do this in the case where we are forcing a
2058 constant into memory and it will then win since
2059 we don't want to have a different alternative
2060 match then. */
2061 if (! (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER))
2063 if (lra_dump_file != NULL)
2064 fprintf
2065 (lra_dump_file,
2066 " %d Non-pseudo reload: reject+=2\n",
2067 nop);
2068 reject += 2;
2071 if (! no_regs_p)
2072 reload_nregs
2073 += ira_reg_class_max_nregs[this_alternative][mode];
2075 if (SMALL_REGISTER_CLASS_P (this_alternative))
2077 if (lra_dump_file != NULL)
2078 fprintf
2079 (lra_dump_file,
2080 " %d Small class reload: reject+=%d\n",
2081 nop, LRA_LOSER_COST_FACTOR / 2);
2082 reject += LRA_LOSER_COST_FACTOR / 2;
2086 /* We are trying to spill pseudo into memory. It is
2087 usually more costly than moving to a hard register
2088 although it might takes the same number of
2089 reloads. */
2090 if (no_regs_p && REG_P (op) && hard_regno[nop] >= 0)
2092 if (lra_dump_file != NULL)
2093 fprintf
2094 (lra_dump_file,
2095 " %d Spill pseudo in memory: reject+=3\n",
2096 nop);
2097 reject += 3;
2100 #ifdef SECONDARY_MEMORY_NEEDED
2101 /* If reload requires moving value through secondary
2102 memory, it will need one more insn at least. */
2103 if (this_alternative != NO_REGS
2104 && REG_P (op) && (cl = get_reg_class (REGNO (op))) != NO_REGS
2105 && ((curr_static_id->operand[nop].type != OP_OUT
2106 && SECONDARY_MEMORY_NEEDED (cl, this_alternative,
2107 GET_MODE (op)))
2108 || (curr_static_id->operand[nop].type != OP_IN
2109 && SECONDARY_MEMORY_NEEDED (this_alternative, cl,
2110 GET_MODE (op)))))
2111 losers++;
2112 #endif
2113 /* Input reloads can be inherited more often than output
2114 reloads can be removed, so penalize output
2115 reloads. */
2116 if (!REG_P (op) || curr_static_id->operand[nop].type != OP_IN)
2118 if (lra_dump_file != NULL)
2119 fprintf
2120 (lra_dump_file,
2121 " %d Non input pseudo reload: reject++\n",
2122 nop);
2123 reject++;
2127 if (early_clobber_p)
2129 if (lra_dump_file != NULL)
2130 fprintf (lra_dump_file,
2131 " %d Early clobber: reject++\n", nop);
2132 reject++;
2134 /* ??? We check early clobbers after processing all operands
2135 (see loop below) and there we update the costs more.
2136 Should we update the cost (may be approximately) here
2137 because of early clobber register reloads or it is a rare
2138 or non-important thing to be worth to do it. */
2139 overall = losers * LRA_LOSER_COST_FACTOR + reject;
2140 if ((best_losers == 0 || losers != 0) && best_overall < overall)
2142 if (lra_dump_file != NULL)
2143 fprintf (lra_dump_file,
2144 " alt=%d,overall=%d,losers=%d -- refuse\n",
2145 nalt, overall, losers);
2146 goto fail;
2149 curr_alt[nop] = this_alternative;
2150 COPY_HARD_REG_SET (curr_alt_set[nop], this_alternative_set);
2151 curr_alt_win[nop] = this_alternative_win;
2152 curr_alt_match_win[nop] = this_alternative_match_win;
2153 curr_alt_offmemok[nop] = this_alternative_offmemok;
2154 curr_alt_matches[nop] = this_alternative_matches;
2156 if (this_alternative_matches >= 0
2157 && !did_match && !this_alternative_win)
2158 curr_alt_win[this_alternative_matches] = false;
2160 if (early_clobber_p && operand_reg[nop] != NULL_RTX)
2161 early_clobbered_nops[early_clobbered_regs_num++] = nop;
2163 if (curr_insn_set != NULL_RTX && n_operands == 2
2164 /* Prevent processing non-move insns. */
2165 && (GET_CODE (SET_SRC (curr_insn_set)) == SUBREG
2166 || SET_SRC (curr_insn_set) == no_subreg_reg_operand[1])
2167 && ((! curr_alt_win[0] && ! curr_alt_win[1]
2168 && REG_P (no_subreg_reg_operand[0])
2169 && REG_P (no_subreg_reg_operand[1])
2170 && (reg_in_class_p (no_subreg_reg_operand[0], curr_alt[1])
2171 || reg_in_class_p (no_subreg_reg_operand[1], curr_alt[0])))
2172 || (! curr_alt_win[0] && curr_alt_win[1]
2173 && REG_P (no_subreg_reg_operand[1])
2174 && reg_in_class_p (no_subreg_reg_operand[1], curr_alt[0]))
2175 || (curr_alt_win[0] && ! curr_alt_win[1]
2176 && REG_P (no_subreg_reg_operand[0])
2177 && reg_in_class_p (no_subreg_reg_operand[0], curr_alt[1])
2178 && (! CONST_POOL_OK_P (curr_operand_mode[1],
2179 no_subreg_reg_operand[1])
2180 || (targetm.preferred_reload_class
2181 (no_subreg_reg_operand[1],
2182 (enum reg_class) curr_alt[1]) != NO_REGS))
2183 /* If it is a result of recent elimination in move
2184 insn we can transform it into an add still by
2185 using this alternative. */
2186 && GET_CODE (no_subreg_reg_operand[1]) != PLUS)))
2188 /* We have a move insn and a new reload insn will be similar
2189 to the current insn. We should avoid such situation as it
2190 results in LRA cycling. */
2191 overall += LRA_MAX_REJECT;
2193 ok_p = true;
2194 curr_alt_dont_inherit_ops_num = 0;
2195 for (nop = 0; nop < early_clobbered_regs_num; nop++)
2197 int i, j, clobbered_hard_regno, first_conflict_j, last_conflict_j;
2198 HARD_REG_SET temp_set;
2200 i = early_clobbered_nops[nop];
2201 if ((! curr_alt_win[i] && ! curr_alt_match_win[i])
2202 || hard_regno[i] < 0)
2203 continue;
2204 lra_assert (operand_reg[i] != NULL_RTX);
2205 clobbered_hard_regno = hard_regno[i];
2206 CLEAR_HARD_REG_SET (temp_set);
2207 add_to_hard_reg_set (&temp_set, biggest_mode[i], clobbered_hard_regno);
2208 first_conflict_j = last_conflict_j = -1;
2209 for (j = 0; j < n_operands; j++)
2210 if (j == i
2211 /* We don't want process insides of match_operator and
2212 match_parallel because otherwise we would process
2213 their operands once again generating a wrong
2214 code. */
2215 || curr_static_id->operand[j].is_operator)
2216 continue;
2217 else if ((curr_alt_matches[j] == i && curr_alt_match_win[j])
2218 || (curr_alt_matches[i] == j && curr_alt_match_win[i]))
2219 continue;
2220 /* If we don't reload j-th operand, check conflicts. */
2221 else if ((curr_alt_win[j] || curr_alt_match_win[j])
2222 && uses_hard_regs_p (*curr_id->operand_loc[j], temp_set))
2224 if (first_conflict_j < 0)
2225 first_conflict_j = j;
2226 last_conflict_j = j;
2228 if (last_conflict_j < 0)
2229 continue;
2230 /* If earlyclobber operand conflicts with another
2231 non-matching operand which is actually the same register
2232 as the earlyclobber operand, it is better to reload the
2233 another operand as an operand matching the earlyclobber
2234 operand can be also the same. */
2235 if (first_conflict_j == last_conflict_j
2236 && operand_reg[last_conflict_j]
2237 != NULL_RTX && ! curr_alt_match_win[last_conflict_j]
2238 && REGNO (operand_reg[i]) == REGNO (operand_reg[last_conflict_j]))
2240 curr_alt_win[last_conflict_j] = false;
2241 curr_alt_dont_inherit_ops[curr_alt_dont_inherit_ops_num++]
2242 = last_conflict_j;
2243 losers++;
2244 /* Early clobber was already reflected in REJECT. */
2245 lra_assert (reject > 0);
2246 if (lra_dump_file != NULL)
2247 fprintf
2248 (lra_dump_file,
2249 " %d Conflict early clobber reload: reject--\n",
2251 reject--;
2252 overall += LRA_LOSER_COST_FACTOR - 1;
2254 else
2256 /* We need to reload early clobbered register and the
2257 matched registers. */
2258 for (j = 0; j < n_operands; j++)
2259 if (curr_alt_matches[j] == i)
2261 curr_alt_match_win[j] = false;
2262 losers++;
2263 overall += LRA_LOSER_COST_FACTOR;
2265 if (! curr_alt_match_win[i])
2266 curr_alt_dont_inherit_ops[curr_alt_dont_inherit_ops_num++] = i;
2267 else
2269 /* Remember pseudos used for match reloads are never
2270 inherited. */
2271 lra_assert (curr_alt_matches[i] >= 0);
2272 curr_alt_win[curr_alt_matches[i]] = false;
2274 curr_alt_win[i] = curr_alt_match_win[i] = false;
2275 losers++;
2276 /* Early clobber was already reflected in REJECT. */
2277 lra_assert (reject > 0);
2278 if (lra_dump_file != NULL)
2279 fprintf
2280 (lra_dump_file,
2281 " %d Matched conflict early clobber reloads:"
2282 "reject--\n",
2284 reject--;
2285 overall += LRA_LOSER_COST_FACTOR - 1;
2288 if (lra_dump_file != NULL)
2289 fprintf (lra_dump_file, " alt=%d,overall=%d,losers=%d,rld_nregs=%d\n",
2290 nalt, overall, losers, reload_nregs);
2292 /* If this alternative can be made to work by reloading, and it
2293 needs less reloading than the others checked so far, record
2294 it as the chosen goal for reloading. */
2295 if ((best_losers != 0 && losers == 0)
2296 || (((best_losers == 0 && losers == 0)
2297 || (best_losers != 0 && losers != 0))
2298 && (best_overall > overall
2299 || (best_overall == overall
2300 /* If the cost of the reloads is the same,
2301 prefer alternative which requires minimal
2302 number of reload regs. */
2303 && (reload_nregs < best_reload_nregs
2304 || (reload_nregs == best_reload_nregs
2305 && (best_reload_sum < reload_sum
2306 || (best_reload_sum == reload_sum
2307 && nalt < goal_alt_number))))))))
2309 for (nop = 0; nop < n_operands; nop++)
2311 goal_alt_win[nop] = curr_alt_win[nop];
2312 goal_alt_match_win[nop] = curr_alt_match_win[nop];
2313 goal_alt_matches[nop] = curr_alt_matches[nop];
2314 goal_alt[nop] = curr_alt[nop];
2315 goal_alt_offmemok[nop] = curr_alt_offmemok[nop];
2317 goal_alt_dont_inherit_ops_num = curr_alt_dont_inherit_ops_num;
2318 for (nop = 0; nop < curr_alt_dont_inherit_ops_num; nop++)
2319 goal_alt_dont_inherit_ops[nop] = curr_alt_dont_inherit_ops[nop];
2320 goal_alt_swapped = curr_swapped;
2321 best_overall = overall;
2322 best_losers = losers;
2323 best_reload_nregs = reload_nregs;
2324 best_reload_sum = reload_sum;
2325 goal_alt_number = nalt;
2327 if (losers == 0)
2328 /* Everything is satisfied. Do not process alternatives
2329 anymore. */
2330 break;
2331 fail:
2334 return ok_p;
2337 /* Return 1 if ADDR is a valid memory address for mode MODE in address
2338 space AS, and check that each pseudo has the proper kind of hard
2339 reg. */
2340 static int
2341 valid_address_p (enum machine_mode mode ATTRIBUTE_UNUSED,
2342 rtx addr, addr_space_t as)
2344 #ifdef GO_IF_LEGITIMATE_ADDRESS
2345 lra_assert (ADDR_SPACE_GENERIC_P (as));
2346 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
2347 return 0;
2349 win:
2350 return 1;
2351 #else
2352 return targetm.addr_space.legitimate_address_p (mode, addr, 0, as);
2353 #endif
2356 /* Return whether address AD is valid. */
2358 static bool
2359 valid_address_p (struct address_info *ad)
2361 /* Some ports do not check displacements for eliminable registers,
2362 so we replace them temporarily with the elimination target. */
2363 rtx saved_base_reg = NULL_RTX;
2364 rtx saved_index_reg = NULL_RTX;
2365 rtx *base_term = strip_subreg (ad->base_term);
2366 rtx *index_term = strip_subreg (ad->index_term);
2367 if (base_term != NULL)
2369 saved_base_reg = *base_term;
2370 lra_eliminate_reg_if_possible (base_term);
2371 if (ad->base_term2 != NULL)
2372 *ad->base_term2 = *ad->base_term;
2374 if (index_term != NULL)
2376 saved_index_reg = *index_term;
2377 lra_eliminate_reg_if_possible (index_term);
2379 bool ok_p = valid_address_p (ad->mode, *ad->outer, ad->as);
2380 if (saved_base_reg != NULL_RTX)
2382 *base_term = saved_base_reg;
2383 if (ad->base_term2 != NULL)
2384 *ad->base_term2 = *ad->base_term;
2386 if (saved_index_reg != NULL_RTX)
2387 *index_term = saved_index_reg;
2388 return ok_p;
2391 /* Make reload base reg + disp from address AD. Return the new pseudo. */
2392 static rtx
2393 base_plus_disp_to_reg (struct address_info *ad)
2395 enum reg_class cl;
2396 rtx new_reg;
2398 lra_assert (ad->base == ad->base_term && ad->disp == ad->disp_term);
2399 cl = base_reg_class (ad->mode, ad->as, ad->base_outer_code,
2400 get_index_code (ad));
2401 new_reg = lra_create_new_reg (GET_MODE (*ad->base_term), NULL_RTX,
2402 cl, "base + disp");
2403 lra_emit_add (new_reg, *ad->base_term, *ad->disp_term);
2404 return new_reg;
2407 /* Return true if we can add a displacement to address AD, even if that
2408 makes the address invalid. The fix-up code requires any new address
2409 to be the sum of the BASE_TERM, INDEX and DISP_TERM fields. */
2410 static bool
2411 can_add_disp_p (struct address_info *ad)
2413 return (!ad->autoinc_p
2414 && ad->segment == NULL
2415 && ad->base == ad->base_term
2416 && ad->disp == ad->disp_term);
2419 /* Make equiv substitution in address AD. Return true if a substitution
2420 was made. */
2421 static bool
2422 equiv_address_substitution (struct address_info *ad)
2424 rtx base_reg, new_base_reg, index_reg, new_index_reg, *base_term, *index_term;
2425 HOST_WIDE_INT disp, scale;
2426 bool change_p;
2428 base_term = strip_subreg (ad->base_term);
2429 if (base_term == NULL)
2430 base_reg = new_base_reg = NULL_RTX;
2431 else
2433 base_reg = *base_term;
2434 new_base_reg = get_equiv_substitution (base_reg);
2436 index_term = strip_subreg (ad->index_term);
2437 if (index_term == NULL)
2438 index_reg = new_index_reg = NULL_RTX;
2439 else
2441 index_reg = *index_term;
2442 new_index_reg = get_equiv_substitution (index_reg);
2444 if (base_reg == new_base_reg && index_reg == new_index_reg)
2445 return false;
2446 disp = 0;
2447 change_p = false;
2448 if (lra_dump_file != NULL)
2450 fprintf (lra_dump_file, "Changing address in insn %d ",
2451 INSN_UID (curr_insn));
2452 dump_value_slim (lra_dump_file, *ad->outer, 1);
2454 if (base_reg != new_base_reg)
2456 if (REG_P (new_base_reg))
2458 *base_term = new_base_reg;
2459 change_p = true;
2461 else if (GET_CODE (new_base_reg) == PLUS
2462 && REG_P (XEXP (new_base_reg, 0))
2463 && CONST_INT_P (XEXP (new_base_reg, 1))
2464 && can_add_disp_p (ad))
2466 disp += INTVAL (XEXP (new_base_reg, 1));
2467 *base_term = XEXP (new_base_reg, 0);
2468 change_p = true;
2470 if (ad->base_term2 != NULL)
2471 *ad->base_term2 = *ad->base_term;
2473 if (index_reg != new_index_reg)
2475 if (REG_P (new_index_reg))
2477 *index_term = new_index_reg;
2478 change_p = true;
2480 else if (GET_CODE (new_index_reg) == PLUS
2481 && REG_P (XEXP (new_index_reg, 0))
2482 && CONST_INT_P (XEXP (new_index_reg, 1))
2483 && can_add_disp_p (ad)
2484 && (scale = get_index_scale (ad)))
2486 disp += INTVAL (XEXP (new_index_reg, 1)) * scale;
2487 *index_term = XEXP (new_index_reg, 0);
2488 change_p = true;
2491 if (disp != 0)
2493 if (ad->disp != NULL)
2494 *ad->disp = plus_constant (GET_MODE (*ad->inner), *ad->disp, disp);
2495 else
2497 *ad->inner = plus_constant (GET_MODE (*ad->inner), *ad->inner, disp);
2498 update_address (ad);
2500 change_p = true;
2502 if (lra_dump_file != NULL)
2504 if (! change_p)
2505 fprintf (lra_dump_file, " -- no change\n");
2506 else
2508 fprintf (lra_dump_file, " on equiv ");
2509 dump_value_slim (lra_dump_file, *ad->outer, 1);
2510 fprintf (lra_dump_file, "\n");
2513 return change_p;
2516 /* Major function to make reloads for an address in operand NOP.
2517 The supported cases are:
2519 1) an address that existed before LRA started, at which point it
2520 must have been valid. These addresses are subject to elimination
2521 and may have become invalid due to the elimination offset being out
2522 of range.
2524 2) an address created by forcing a constant to memory
2525 (force_const_to_mem). The initial form of these addresses might
2526 not be valid, and it is this function's job to make them valid.
2528 3) a frame address formed from a register and a (possibly zero)
2529 constant offset. As above, these addresses might not be valid and
2530 this function must make them so.
2532 Add reloads to the lists *BEFORE and *AFTER. We might need to add
2533 reloads to *AFTER because of inc/dec, {pre, post} modify in the
2534 address. Return true for any RTL change. */
2535 static bool
2536 process_address (int nop, rtx *before, rtx *after)
2538 struct address_info ad;
2539 rtx new_reg;
2540 rtx op = *curr_id->operand_loc[nop];
2541 const char *constraint = curr_static_id->operand[nop].constraint;
2542 bool change_p;
2544 if (constraint[0] == 'p'
2545 || EXTRA_ADDRESS_CONSTRAINT (constraint[0], constraint))
2546 decompose_lea_address (&ad, curr_id->operand_loc[nop]);
2547 else if (MEM_P (op))
2548 decompose_mem_address (&ad, op);
2549 else if (GET_CODE (op) == SUBREG
2550 && MEM_P (SUBREG_REG (op)))
2551 decompose_mem_address (&ad, SUBREG_REG (op));
2552 else
2553 return false;
2554 change_p = equiv_address_substitution (&ad);
2555 if (ad.base_term != NULL
2556 && (process_addr_reg
2557 (ad.base_term, before,
2558 (ad.autoinc_p
2559 && !(REG_P (*ad.base_term)
2560 && find_regno_note (curr_insn, REG_DEAD,
2561 REGNO (*ad.base_term)) != NULL_RTX)
2562 ? after : NULL),
2563 base_reg_class (ad.mode, ad.as, ad.base_outer_code,
2564 get_index_code (&ad)))))
2566 change_p = true;
2567 if (ad.base_term2 != NULL)
2568 *ad.base_term2 = *ad.base_term;
2570 if (ad.index_term != NULL
2571 && process_addr_reg (ad.index_term, before, NULL, INDEX_REG_CLASS))
2572 change_p = true;
2574 #ifdef EXTRA_CONSTRAINT_STR
2575 /* Target hooks sometimes reject extra constraint addresses -- use
2576 EXTRA_CONSTRAINT_STR for the validation. */
2577 if (constraint[0] != 'p'
2578 && EXTRA_ADDRESS_CONSTRAINT (constraint[0], constraint)
2579 && EXTRA_CONSTRAINT_STR (op, constraint[0], constraint))
2580 return change_p;
2581 #endif
2583 /* There are three cases where the shape of *AD.INNER may now be invalid:
2585 1) the original address was valid, but either elimination or
2586 equiv_address_substitution was applied and that made
2587 the address invalid.
2589 2) the address is an invalid symbolic address created by
2590 force_const_to_mem.
2592 3) the address is a frame address with an invalid offset.
2594 All these cases involve a non-autoinc address, so there is no
2595 point revalidating other types. */
2596 if (ad.autoinc_p || valid_address_p (&ad))
2597 return change_p;
2599 /* Any index existed before LRA started, so we can assume that the
2600 presence and shape of the index is valid. */
2601 push_to_sequence (*before);
2602 lra_assert (ad.disp == ad.disp_term);
2603 if (ad.base == NULL)
2605 if (ad.index == NULL)
2607 int code = -1;
2608 enum reg_class cl = base_reg_class (ad.mode, ad.as,
2609 SCRATCH, SCRATCH);
2610 rtx addr = *ad.inner;
2612 new_reg = lra_create_new_reg (Pmode, NULL_RTX, cl, "addr");
2613 #ifdef HAVE_lo_sum
2615 rtx insn;
2616 rtx last = get_last_insn ();
2618 /* addr => lo_sum (new_base, addr), case (2) above. */
2619 insn = emit_insn (gen_rtx_SET
2620 (VOIDmode, new_reg,
2621 gen_rtx_HIGH (Pmode, copy_rtx (addr))));
2622 code = recog_memoized (insn);
2623 if (code >= 0)
2625 *ad.inner = gen_rtx_LO_SUM (Pmode, new_reg, addr);
2626 if (! valid_address_p (ad.mode, *ad.outer, ad.as))
2628 /* Try to put lo_sum into register. */
2629 insn = emit_insn (gen_rtx_SET
2630 (VOIDmode, new_reg,
2631 gen_rtx_LO_SUM (Pmode, new_reg, addr)));
2632 code = recog_memoized (insn);
2633 if (code >= 0)
2635 *ad.inner = new_reg;
2636 if (! valid_address_p (ad.mode, *ad.outer, ad.as))
2638 *ad.inner = addr;
2639 code = -1;
2645 if (code < 0)
2646 delete_insns_since (last);
2648 #endif
2649 if (code < 0)
2651 /* addr => new_base, case (2) above. */
2652 lra_emit_move (new_reg, addr);
2653 *ad.inner = new_reg;
2656 else
2658 /* index * scale + disp => new base + index * scale,
2659 case (1) above. */
2660 enum reg_class cl = base_reg_class (ad.mode, ad.as, PLUS,
2661 GET_CODE (*ad.index));
2663 lra_assert (INDEX_REG_CLASS != NO_REGS);
2664 new_reg = lra_create_new_reg (Pmode, NULL_RTX, cl, "disp");
2665 lra_emit_move (new_reg, *ad.disp);
2666 *ad.inner = simplify_gen_binary (PLUS, GET_MODE (new_reg),
2667 new_reg, *ad.index);
2670 else if (ad.index == NULL)
2672 int regno;
2673 enum reg_class cl;
2674 rtx set, insns, last_insn;
2675 /* base + disp => new base, cases (1) and (3) above. */
2676 /* Another option would be to reload the displacement into an
2677 index register. However, postreload has code to optimize
2678 address reloads that have the same base and different
2679 displacements, so reloading into an index register would
2680 not necessarily be a win. */
2681 start_sequence ();
2682 new_reg = base_plus_disp_to_reg (&ad);
2683 insns = get_insns ();
2684 last_insn = get_last_insn ();
2685 /* If we generated at least two insns, try last insn source as
2686 an address. If we succeed, we generate one less insn. */
2687 if (last_insn != insns && (set = single_set (last_insn)) != NULL_RTX
2688 && GET_CODE (SET_SRC (set)) == PLUS
2689 && REG_P (XEXP (SET_SRC (set), 0))
2690 && CONSTANT_P (XEXP (SET_SRC (set), 1)))
2692 *ad.inner = SET_SRC (set);
2693 if (valid_address_p (ad.mode, *ad.outer, ad.as))
2695 *ad.base_term = XEXP (SET_SRC (set), 0);
2696 *ad.disp_term = XEXP (SET_SRC (set), 1);
2697 cl = base_reg_class (ad.mode, ad.as, ad.base_outer_code,
2698 get_index_code (&ad));
2699 regno = REGNO (*ad.base_term);
2700 if (regno >= FIRST_PSEUDO_REGISTER
2701 && cl != lra_get_allocno_class (regno))
2702 change_class (regno, cl, " Change", true);
2703 new_reg = SET_SRC (set);
2704 delete_insns_since (PREV_INSN (last_insn));
2707 end_sequence ();
2708 emit_insn (insns);
2709 *ad.inner = new_reg;
2711 else
2713 /* base + scale * index + disp => new base + scale * index,
2714 case (1) above. */
2715 new_reg = base_plus_disp_to_reg (&ad);
2716 *ad.inner = simplify_gen_binary (PLUS, GET_MODE (new_reg),
2717 new_reg, *ad.index);
2719 *before = get_insns ();
2720 end_sequence ();
2721 return true;
2724 /* Emit insns to reload VALUE into a new register. VALUE is an
2725 auto-increment or auto-decrement RTX whose operand is a register or
2726 memory location; so reloading involves incrementing that location.
2727 IN is either identical to VALUE, or some cheaper place to reload
2728 value being incremented/decremented from.
2730 INC_AMOUNT is the number to increment or decrement by (always
2731 positive and ignored for POST_MODIFY/PRE_MODIFY).
2733 Return pseudo containing the result. */
2734 static rtx
2735 emit_inc (enum reg_class new_rclass, rtx in, rtx value, int inc_amount)
2737 /* REG or MEM to be copied and incremented. */
2738 rtx incloc = XEXP (value, 0);
2739 /* Nonzero if increment after copying. */
2740 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC
2741 || GET_CODE (value) == POST_MODIFY);
2742 rtx last;
2743 rtx inc;
2744 rtx add_insn;
2745 int code;
2746 rtx real_in = in == value ? incloc : in;
2747 rtx result;
2748 bool plus_p = true;
2750 if (GET_CODE (value) == PRE_MODIFY || GET_CODE (value) == POST_MODIFY)
2752 lra_assert (GET_CODE (XEXP (value, 1)) == PLUS
2753 || GET_CODE (XEXP (value, 1)) == MINUS);
2754 lra_assert (rtx_equal_p (XEXP (XEXP (value, 1), 0), XEXP (value, 0)));
2755 plus_p = GET_CODE (XEXP (value, 1)) == PLUS;
2756 inc = XEXP (XEXP (value, 1), 1);
2758 else
2760 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
2761 inc_amount = -inc_amount;
2763 inc = GEN_INT (inc_amount);
2766 if (! post && REG_P (incloc))
2767 result = incloc;
2768 else
2769 result = lra_create_new_reg (GET_MODE (value), value, new_rclass,
2770 "INC/DEC result");
2772 if (real_in != result)
2774 /* First copy the location to the result register. */
2775 lra_assert (REG_P (result));
2776 emit_insn (gen_move_insn (result, real_in));
2779 /* We suppose that there are insns to add/sub with the constant
2780 increment permitted in {PRE/POST)_{DEC/INC/MODIFY}. At least the
2781 old reload worked with this assumption. If the assumption
2782 becomes wrong, we should use approach in function
2783 base_plus_disp_to_reg. */
2784 if (in == value)
2786 /* See if we can directly increment INCLOC. */
2787 last = get_last_insn ();
2788 add_insn = emit_insn (plus_p
2789 ? gen_add2_insn (incloc, inc)
2790 : gen_sub2_insn (incloc, inc));
2792 code = recog_memoized (add_insn);
2793 if (code >= 0)
2795 if (! post && result != incloc)
2796 emit_insn (gen_move_insn (result, incloc));
2797 return result;
2799 delete_insns_since (last);
2802 /* If couldn't do the increment directly, must increment in RESULT.
2803 The way we do this depends on whether this is pre- or
2804 post-increment. For pre-increment, copy INCLOC to the reload
2805 register, increment it there, then save back. */
2806 if (! post)
2808 if (real_in != result)
2809 emit_insn (gen_move_insn (result, real_in));
2810 if (plus_p)
2811 emit_insn (gen_add2_insn (result, inc));
2812 else
2813 emit_insn (gen_sub2_insn (result, inc));
2814 if (result != incloc)
2815 emit_insn (gen_move_insn (incloc, result));
2817 else
2819 /* Post-increment.
2821 Because this might be a jump insn or a compare, and because
2822 RESULT may not be available after the insn in an input
2823 reload, we must do the incrementing before the insn being
2824 reloaded for.
2826 We have already copied IN to RESULT. Increment the copy in
2827 RESULT, save that back, then decrement RESULT so it has
2828 the original value. */
2829 if (plus_p)
2830 emit_insn (gen_add2_insn (result, inc));
2831 else
2832 emit_insn (gen_sub2_insn (result, inc));
2833 emit_insn (gen_move_insn (incloc, result));
2834 /* Restore non-modified value for the result. We prefer this
2835 way because it does not require an additional hard
2836 register. */
2837 if (plus_p)
2839 if (CONST_INT_P (inc))
2840 emit_insn (gen_add2_insn (result,
2841 gen_int_mode (-INTVAL (inc),
2842 GET_MODE (result))));
2843 else
2844 emit_insn (gen_sub2_insn (result, inc));
2846 else
2847 emit_insn (gen_add2_insn (result, inc));
2849 return result;
2852 /* Return true if the current move insn does not need processing as we
2853 already know that it satisfies its constraints. */
2854 static bool
2855 simple_move_p (void)
2857 rtx dest, src;
2858 enum reg_class dclass, sclass;
2860 lra_assert (curr_insn_set != NULL_RTX);
2861 dest = SET_DEST (curr_insn_set);
2862 src = SET_SRC (curr_insn_set);
2863 return ((dclass = get_op_class (dest)) != NO_REGS
2864 && (sclass = get_op_class (src)) != NO_REGS
2865 /* The backend guarantees that register moves of cost 2
2866 never need reloads. */
2867 && targetm.register_move_cost (GET_MODE (src), dclass, sclass) == 2);
2870 /* Swap operands NOP and NOP + 1. */
2871 static inline void
2872 swap_operands (int nop)
2874 enum machine_mode mode = curr_operand_mode[nop];
2875 curr_operand_mode[nop] = curr_operand_mode[nop + 1];
2876 curr_operand_mode[nop + 1] = mode;
2877 rtx x = *curr_id->operand_loc[nop];
2878 *curr_id->operand_loc[nop] = *curr_id->operand_loc[nop + 1];
2879 *curr_id->operand_loc[nop + 1] = x;
2880 /* Swap the duplicates too. */
2881 lra_update_dup (curr_id, nop);
2882 lra_update_dup (curr_id, nop + 1);
2885 /* Main entry point of the constraint code: search the body of the
2886 current insn to choose the best alternative. It is mimicking insn
2887 alternative cost calculation model of former reload pass. That is
2888 because machine descriptions were written to use this model. This
2889 model can be changed in future. Make commutative operand exchange
2890 if it is chosen.
2892 Return true if some RTL changes happened during function call. */
2893 static bool
2894 curr_insn_transform (void)
2896 int i, j, k;
2897 int n_operands;
2898 int n_alternatives;
2899 int commutative;
2900 signed char goal_alt_matched[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
2901 signed char match_inputs[MAX_RECOG_OPERANDS + 1];
2902 rtx before, after;
2903 bool alt_p = false;
2904 /* Flag that the insn has been changed through a transformation. */
2905 bool change_p;
2906 bool sec_mem_p;
2907 #ifdef SECONDARY_MEMORY_NEEDED
2908 bool use_sec_mem_p;
2909 #endif
2910 int max_regno_before;
2911 int reused_alternative_num;
2913 curr_insn_set = single_set (curr_insn);
2914 if (curr_insn_set != NULL_RTX && simple_move_p ())
2915 return false;
2917 no_input_reloads_p = no_output_reloads_p = false;
2918 goal_alt_number = -1;
2919 change_p = sec_mem_p = false;
2920 /* JUMP_INSNs and CALL_INSNs are not allowed to have any output
2921 reloads; neither are insns that SET cc0. Insns that use CC0 are
2922 not allowed to have any input reloads. */
2923 if (JUMP_P (curr_insn) || CALL_P (curr_insn))
2924 no_output_reloads_p = true;
2926 #ifdef HAVE_cc0
2927 if (reg_referenced_p (cc0_rtx, PATTERN (curr_insn)))
2928 no_input_reloads_p = true;
2929 if (reg_set_p (cc0_rtx, PATTERN (curr_insn)))
2930 no_output_reloads_p = true;
2931 #endif
2933 n_operands = curr_static_id->n_operands;
2934 n_alternatives = curr_static_id->n_alternatives;
2936 /* Just return "no reloads" if insn has no operands with
2937 constraints. */
2938 if (n_operands == 0 || n_alternatives == 0)
2939 return false;
2941 max_regno_before = max_reg_num ();
2943 for (i = 0; i < n_operands; i++)
2945 goal_alt_matched[i][0] = -1;
2946 goal_alt_matches[i] = -1;
2949 commutative = curr_static_id->commutative;
2951 /* Now see what we need for pseudos that didn't get hard regs or got
2952 the wrong kind of hard reg. For this, we must consider all the
2953 operands together against the register constraints. */
2955 best_losers = best_overall = INT_MAX;
2956 best_reload_sum = 0;
2958 curr_swapped = false;
2959 goal_alt_swapped = false;
2961 /* Make equivalence substitution and memory subreg elimination
2962 before address processing because an address legitimacy can
2963 depend on memory mode. */
2964 for (i = 0; i < n_operands; i++)
2966 rtx op = *curr_id->operand_loc[i];
2967 rtx subst, old = op;
2968 bool op_change_p = false;
2970 if (GET_CODE (old) == SUBREG)
2971 old = SUBREG_REG (old);
2972 subst = get_equiv_substitution (old);
2973 if (subst != old)
2975 subst = copy_rtx (subst);
2976 lra_assert (REG_P (old));
2977 if (GET_CODE (op) == SUBREG)
2978 SUBREG_REG (op) = subst;
2979 else
2980 *curr_id->operand_loc[i] = subst;
2981 if (lra_dump_file != NULL)
2983 fprintf (lra_dump_file,
2984 "Changing pseudo %d in operand %i of insn %u on equiv ",
2985 REGNO (old), i, INSN_UID (curr_insn));
2986 dump_value_slim (lra_dump_file, subst, 1);
2987 fprintf (lra_dump_file, "\n");
2989 op_change_p = change_p = true;
2991 if (simplify_operand_subreg (i, GET_MODE (old)) || op_change_p)
2993 change_p = true;
2994 lra_update_dup (curr_id, i);
2998 /* Reload address registers and displacements. We do it before
2999 finding an alternative because of memory constraints. */
3000 before = after = NULL_RTX;
3001 for (i = 0; i < n_operands; i++)
3002 if (! curr_static_id->operand[i].is_operator
3003 && process_address (i, &before, &after))
3005 change_p = true;
3006 lra_update_dup (curr_id, i);
3009 if (change_p)
3010 /* If we've changed the instruction then any alternative that
3011 we chose previously may no longer be valid. */
3012 lra_set_used_insn_alternative (curr_insn, -1);
3014 if (curr_insn_set != NULL_RTX
3015 && check_and_process_move (&change_p, &sec_mem_p))
3016 return change_p;
3018 try_swapped:
3020 reused_alternative_num = curr_id->used_insn_alternative;
3021 if (lra_dump_file != NULL && reused_alternative_num >= 0)
3022 fprintf (lra_dump_file, "Reusing alternative %d for insn #%u\n",
3023 reused_alternative_num, INSN_UID (curr_insn));
3025 if (process_alt_operands (reused_alternative_num))
3026 alt_p = true;
3028 /* If insn is commutative (it's safe to exchange a certain pair of
3029 operands) then we need to try each alternative twice, the second
3030 time matching those two operands as if we had exchanged them. To
3031 do this, really exchange them in operands.
3033 If we have just tried the alternatives the second time, return
3034 operands to normal and drop through. */
3036 if (reused_alternative_num < 0 && commutative >= 0)
3038 curr_swapped = !curr_swapped;
3039 if (curr_swapped)
3041 swap_operands (commutative);
3042 goto try_swapped;
3044 else
3045 swap_operands (commutative);
3048 if (! alt_p && ! sec_mem_p)
3050 /* No alternative works with reloads?? */
3051 if (INSN_CODE (curr_insn) >= 0)
3052 fatal_insn ("unable to generate reloads for:", curr_insn);
3053 error_for_asm (curr_insn,
3054 "inconsistent operand constraints in an %<asm%>");
3055 /* Avoid further trouble with this insn. */
3056 PATTERN (curr_insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3057 lra_invalidate_insn_data (curr_insn);
3058 return true;
3061 /* If the best alternative is with operands 1 and 2 swapped, swap
3062 them. Update the operand numbers of any reloads already
3063 pushed. */
3065 if (goal_alt_swapped)
3067 if (lra_dump_file != NULL)
3068 fprintf (lra_dump_file, " Commutative operand exchange in insn %u\n",
3069 INSN_UID (curr_insn));
3071 /* Swap the duplicates too. */
3072 swap_operands (commutative);
3073 change_p = true;
3076 #ifdef SECONDARY_MEMORY_NEEDED
3077 /* Some target macros SECONDARY_MEMORY_NEEDED (e.g. x86) are defined
3078 too conservatively. So we use the secondary memory only if there
3079 is no any alternative without reloads. */
3080 use_sec_mem_p = false;
3081 if (! alt_p)
3082 use_sec_mem_p = true;
3083 else if (sec_mem_p)
3085 for (i = 0; i < n_operands; i++)
3086 if (! goal_alt_win[i] && ! goal_alt_match_win[i])
3087 break;
3088 use_sec_mem_p = i < n_operands;
3091 if (use_sec_mem_p)
3093 rtx new_reg, src, dest, rld;
3094 enum machine_mode sec_mode, rld_mode;
3096 lra_assert (sec_mem_p);
3097 lra_assert (curr_static_id->operand[0].type == OP_OUT
3098 && curr_static_id->operand[1].type == OP_IN);
3099 dest = *curr_id->operand_loc[0];
3100 src = *curr_id->operand_loc[1];
3101 rld = (GET_MODE_SIZE (GET_MODE (dest)) <= GET_MODE_SIZE (GET_MODE (src))
3102 ? dest : src);
3103 rld_mode = GET_MODE (rld);
3104 #ifdef SECONDARY_MEMORY_NEEDED_MODE
3105 sec_mode = SECONDARY_MEMORY_NEEDED_MODE (rld_mode);
3106 #else
3107 sec_mode = rld_mode;
3108 #endif
3109 new_reg = lra_create_new_reg (sec_mode, NULL_RTX,
3110 NO_REGS, "secondary");
3111 /* If the mode is changed, it should be wider. */
3112 lra_assert (GET_MODE_SIZE (sec_mode) >= GET_MODE_SIZE (rld_mode));
3113 if (sec_mode != rld_mode)
3115 /* If the target says specifically to use another mode for
3116 secondary memory moves we can not reuse the original
3117 insn. */
3118 after = emit_spill_move (false, new_reg, dest);
3119 lra_process_new_insns (curr_insn, NULL_RTX, after,
3120 "Inserting the sec. move");
3121 /* We may have non null BEFORE here (e.g. after address
3122 processing. */
3123 push_to_sequence (before);
3124 before = emit_spill_move (true, new_reg, src);
3125 emit_insn (before);
3126 before = get_insns ();
3127 end_sequence ();
3128 lra_process_new_insns (curr_insn, before, NULL_RTX, "Changing on");
3129 lra_set_insn_deleted (curr_insn);
3131 else if (dest == rld)
3133 *curr_id->operand_loc[0] = new_reg;
3134 after = emit_spill_move (false, new_reg, dest);
3135 lra_process_new_insns (curr_insn, NULL_RTX, after,
3136 "Inserting the sec. move");
3138 else
3140 *curr_id->operand_loc[1] = new_reg;
3141 /* See comments above. */
3142 push_to_sequence (before);
3143 before = emit_spill_move (true, new_reg, src);
3144 emit_insn (before);
3145 before = get_insns ();
3146 end_sequence ();
3147 lra_process_new_insns (curr_insn, before, NULL_RTX,
3148 "Inserting the sec. move");
3150 lra_update_insn_regno_info (curr_insn);
3151 return true;
3153 #endif
3155 lra_assert (goal_alt_number >= 0);
3156 lra_set_used_insn_alternative (curr_insn, goal_alt_number);
3158 if (lra_dump_file != NULL)
3160 const char *p;
3162 fprintf (lra_dump_file, " Choosing alt %d in insn %u:",
3163 goal_alt_number, INSN_UID (curr_insn));
3164 for (i = 0; i < n_operands; i++)
3166 p = (curr_static_id->operand_alternative
3167 [goal_alt_number * n_operands + i].constraint);
3168 if (*p == '\0')
3169 continue;
3170 fprintf (lra_dump_file, " (%d) ", i);
3171 for (; *p != '\0' && *p != ',' && *p != '#'; p++)
3172 fputc (*p, lra_dump_file);
3174 if (INSN_CODE (curr_insn) >= 0
3175 && (p = get_insn_name (INSN_CODE (curr_insn))) != NULL)
3176 fprintf (lra_dump_file, " {%s}", p);
3177 fprintf (lra_dump_file, "\n");
3180 /* Right now, for any pair of operands I and J that are required to
3181 match, with J < I, goal_alt_matches[I] is J. Add I to
3182 goal_alt_matched[J]. */
3184 for (i = 0; i < n_operands; i++)
3185 if ((j = goal_alt_matches[i]) >= 0)
3187 for (k = 0; goal_alt_matched[j][k] >= 0; k++)
3189 /* We allow matching one output operand and several input
3190 operands. */
3191 lra_assert (k == 0
3192 || (curr_static_id->operand[j].type == OP_OUT
3193 && curr_static_id->operand[i].type == OP_IN
3194 && (curr_static_id->operand
3195 [goal_alt_matched[j][0]].type == OP_IN)));
3196 goal_alt_matched[j][k] = i;
3197 goal_alt_matched[j][k + 1] = -1;
3200 for (i = 0; i < n_operands; i++)
3201 goal_alt_win[i] |= goal_alt_match_win[i];
3203 /* Any constants that aren't allowed and can't be reloaded into
3204 registers are here changed into memory references. */
3205 for (i = 0; i < n_operands; i++)
3206 if (goal_alt_win[i])
3208 int regno;
3209 enum reg_class new_class;
3210 rtx reg = *curr_id->operand_loc[i];
3212 if (GET_CODE (reg) == SUBREG)
3213 reg = SUBREG_REG (reg);
3215 if (REG_P (reg) && (regno = REGNO (reg)) >= FIRST_PSEUDO_REGISTER)
3217 bool ok_p = in_class_p (reg, goal_alt[i], &new_class);
3219 if (new_class != NO_REGS && get_reg_class (regno) != new_class)
3221 lra_assert (ok_p);
3222 change_class (regno, new_class, " Change", true);
3226 else
3228 const char *constraint;
3229 char c;
3230 rtx op = *curr_id->operand_loc[i];
3231 rtx subreg = NULL_RTX;
3232 enum machine_mode mode = curr_operand_mode[i];
3234 if (GET_CODE (op) == SUBREG)
3236 subreg = op;
3237 op = SUBREG_REG (op);
3238 mode = GET_MODE (op);
3241 if (CONST_POOL_OK_P (mode, op)
3242 && ((targetm.preferred_reload_class
3243 (op, (enum reg_class) goal_alt[i]) == NO_REGS)
3244 || no_input_reloads_p))
3246 rtx tem = force_const_mem (mode, op);
3248 change_p = true;
3249 if (subreg != NULL_RTX)
3250 tem = gen_rtx_SUBREG (mode, tem, SUBREG_BYTE (subreg));
3252 *curr_id->operand_loc[i] = tem;
3253 lra_update_dup (curr_id, i);
3254 process_address (i, &before, &after);
3256 /* If the alternative accepts constant pool refs directly
3257 there will be no reload needed at all. */
3258 if (subreg != NULL_RTX)
3259 continue;
3260 /* Skip alternatives before the one requested. */
3261 constraint = (curr_static_id->operand_alternative
3262 [goal_alt_number * n_operands + i].constraint);
3263 for (;
3264 (c = *constraint) && c != ',' && c != '#';
3265 constraint += CONSTRAINT_LEN (c, constraint))
3267 if (c == TARGET_MEM_CONSTRAINT || c == 'o')
3268 break;
3269 #ifdef EXTRA_CONSTRAINT_STR
3270 if (EXTRA_MEMORY_CONSTRAINT (c, constraint)
3271 && EXTRA_CONSTRAINT_STR (tem, c, constraint))
3272 break;
3273 #endif
3275 if (c == '\0' || c == ',' || c == '#')
3276 continue;
3278 goal_alt_win[i] = true;
3282 for (i = 0; i < n_operands; i++)
3284 int regno;
3285 bool optional_p = false;
3286 rtx old, new_reg;
3287 rtx op = *curr_id->operand_loc[i];
3289 if (goal_alt_win[i])
3291 if (goal_alt[i] == NO_REGS
3292 && REG_P (op)
3293 /* When we assign NO_REGS it means that we will not
3294 assign a hard register to the scratch pseudo by
3295 assigment pass and the scratch pseudo will be
3296 spilled. Spilled scratch pseudos are transformed
3297 back to scratches at the LRA end. */
3298 && lra_former_scratch_operand_p (curr_insn, i))
3300 int regno = REGNO (op);
3301 change_class (regno, NO_REGS, " Change", true);
3302 if (lra_get_regno_hard_regno (regno) >= 0)
3303 /* We don't have to mark all insn affected by the
3304 spilled pseudo as there is only one such insn, the
3305 current one. */
3306 reg_renumber[regno] = -1;
3308 /* We can do an optional reload. If the pseudo got a hard
3309 reg, we might improve the code through inheritance. If
3310 it does not get a hard register we coalesce memory/memory
3311 moves later. Ignore move insns to avoid cycling. */
3312 if (0 && ! lra_simple_p
3313 && lra_undo_inheritance_iter < LRA_MAX_INHERITANCE_PASSES
3314 && goal_alt[i] != NO_REGS && REG_P (op)
3315 && (regno = REGNO (op)) >= FIRST_PSEUDO_REGISTER
3316 && reg_renumber[regno] < 0
3317 && (curr_insn_set == NULL_RTX
3318 || !(REG_P (SET_SRC (curr_insn_set))
3319 || MEM_P (SET_SRC (curr_insn_set))
3320 || GET_CODE (SET_SRC (curr_insn_set)) == SUBREG)))
3321 optional_p = true;
3322 else
3323 continue;
3326 /* Operands that match previous ones have already been handled. */
3327 if (goal_alt_matches[i] >= 0)
3328 continue;
3330 /* We should not have an operand with a non-offsettable address
3331 appearing where an offsettable address will do. It also may
3332 be a case when the address should be special in other words
3333 not a general one (e.g. it needs no index reg). */
3334 if (goal_alt_matched[i][0] == -1 && goal_alt_offmemok[i] && MEM_P (op))
3336 enum reg_class rclass;
3337 rtx *loc = &XEXP (op, 0);
3338 enum rtx_code code = GET_CODE (*loc);
3340 push_to_sequence (before);
3341 rclass = base_reg_class (GET_MODE (op), MEM_ADDR_SPACE (op),
3342 MEM, SCRATCH);
3343 if (GET_RTX_CLASS (code) == RTX_AUTOINC)
3344 new_reg = emit_inc (rclass, *loc, *loc,
3345 /* This value does not matter for MODIFY. */
3346 GET_MODE_SIZE (GET_MODE (op)));
3347 else if (get_reload_reg (OP_IN, Pmode, *loc, rclass,
3348 "offsetable address", &new_reg))
3349 lra_emit_move (new_reg, *loc);
3350 before = get_insns ();
3351 end_sequence ();
3352 *loc = new_reg;
3353 lra_update_dup (curr_id, i);
3355 else if (goal_alt_matched[i][0] == -1)
3357 enum machine_mode mode;
3358 rtx reg, *loc;
3359 int hard_regno, byte;
3360 enum op_type type = curr_static_id->operand[i].type;
3362 loc = curr_id->operand_loc[i];
3363 mode = curr_operand_mode[i];
3364 if (GET_CODE (*loc) == SUBREG)
3366 reg = SUBREG_REG (*loc);
3367 byte = SUBREG_BYTE (*loc);
3368 if (REG_P (reg)
3369 /* Strict_low_part requires reload the register not
3370 the sub-register. */
3371 && (curr_static_id->operand[i].strict_low
3372 || (GET_MODE_SIZE (mode)
3373 <= GET_MODE_SIZE (GET_MODE (reg))
3374 && (hard_regno
3375 = get_try_hard_regno (REGNO (reg))) >= 0
3376 && (simplify_subreg_regno
3377 (hard_regno,
3378 GET_MODE (reg), byte, mode) < 0)
3379 && (goal_alt[i] == NO_REGS
3380 || (simplify_subreg_regno
3381 (ira_class_hard_regs[goal_alt[i]][0],
3382 GET_MODE (reg), byte, mode) >= 0)))))
3384 loc = &SUBREG_REG (*loc);
3385 mode = GET_MODE (*loc);
3388 old = *loc;
3389 if (get_reload_reg (type, mode, old, goal_alt[i], "", &new_reg)
3390 && type != OP_OUT)
3392 push_to_sequence (before);
3393 lra_emit_move (new_reg, old);
3394 before = get_insns ();
3395 end_sequence ();
3397 *loc = new_reg;
3398 if (type != OP_IN
3399 && find_reg_note (curr_insn, REG_UNUSED, old) == NULL_RTX)
3401 start_sequence ();
3402 lra_emit_move (type == OP_INOUT ? copy_rtx (old) : old, new_reg);
3403 emit_insn (after);
3404 after = get_insns ();
3405 end_sequence ();
3406 *loc = new_reg;
3408 for (j = 0; j < goal_alt_dont_inherit_ops_num; j++)
3409 if (goal_alt_dont_inherit_ops[j] == i)
3411 lra_set_regno_unique_value (REGNO (new_reg));
3412 break;
3414 lra_update_dup (curr_id, i);
3416 else if (curr_static_id->operand[i].type == OP_IN
3417 && (curr_static_id->operand[goal_alt_matched[i][0]].type
3418 == OP_OUT))
3420 /* generate reloads for input and matched outputs. */
3421 match_inputs[0] = i;
3422 match_inputs[1] = -1;
3423 match_reload (goal_alt_matched[i][0], match_inputs,
3424 goal_alt[i], &before, &after);
3426 else if (curr_static_id->operand[i].type == OP_OUT
3427 && (curr_static_id->operand[goal_alt_matched[i][0]].type
3428 == OP_IN))
3429 /* Generate reloads for output and matched inputs. */
3430 match_reload (i, goal_alt_matched[i], goal_alt[i], &before, &after);
3431 else if (curr_static_id->operand[i].type == OP_IN
3432 && (curr_static_id->operand[goal_alt_matched[i][0]].type
3433 == OP_IN))
3435 /* Generate reloads for matched inputs. */
3436 match_inputs[0] = i;
3437 for (j = 0; (k = goal_alt_matched[i][j]) >= 0; j++)
3438 match_inputs[j + 1] = k;
3439 match_inputs[j + 1] = -1;
3440 match_reload (-1, match_inputs, goal_alt[i], &before, &after);
3442 else
3443 /* We must generate code in any case when function
3444 process_alt_operands decides that it is possible. */
3445 gcc_unreachable ();
3446 if (optional_p)
3448 lra_assert (REG_P (op));
3449 regno = REGNO (op);
3450 op = *curr_id->operand_loc[i]; /* Substitution. */
3451 if (GET_CODE (op) == SUBREG)
3452 op = SUBREG_REG (op);
3453 gcc_assert (REG_P (op) && (int) REGNO (op) >= new_regno_start);
3454 bitmap_set_bit (&lra_optional_reload_pseudos, REGNO (op));
3455 lra_reg_info[REGNO (op)].restore_regno = regno;
3456 if (lra_dump_file != NULL)
3457 fprintf (lra_dump_file,
3458 " Making reload reg %d for reg %d optional\n",
3459 REGNO (op), regno);
3462 if (before != NULL_RTX || after != NULL_RTX
3463 || max_regno_before != max_reg_num ())
3464 change_p = true;
3465 if (change_p)
3467 lra_update_operator_dups (curr_id);
3468 /* Something changes -- process the insn. */
3469 lra_update_insn_regno_info (curr_insn);
3471 lra_process_new_insns (curr_insn, before, after, "Inserting insn reload");
3472 return change_p;
3475 /* Return true if X is in LIST. */
3476 static bool
3477 in_list_p (rtx x, rtx list)
3479 for (; list != NULL_RTX; list = XEXP (list, 1))
3480 if (XEXP (list, 0) == x)
3481 return true;
3482 return false;
3485 /* Return true if X contains an allocatable hard register (if
3486 HARD_REG_P) or a (spilled if SPILLED_P) pseudo. */
3487 static bool
3488 contains_reg_p (rtx x, bool hard_reg_p, bool spilled_p)
3490 int i, j;
3491 const char *fmt;
3492 enum rtx_code code;
3494 code = GET_CODE (x);
3495 if (REG_P (x))
3497 int regno = REGNO (x);
3498 HARD_REG_SET alloc_regs;
3500 if (hard_reg_p)
3502 if (regno >= FIRST_PSEUDO_REGISTER)
3503 regno = lra_get_regno_hard_regno (regno);
3504 if (regno < 0)
3505 return false;
3506 COMPL_HARD_REG_SET (alloc_regs, lra_no_alloc_regs);
3507 return overlaps_hard_reg_set_p (alloc_regs, GET_MODE (x), regno);
3509 else
3511 if (regno < FIRST_PSEUDO_REGISTER)
3512 return false;
3513 if (! spilled_p)
3514 return true;
3515 return lra_get_regno_hard_regno (regno) < 0;
3518 fmt = GET_RTX_FORMAT (code);
3519 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3521 if (fmt[i] == 'e')
3523 if (contains_reg_p (XEXP (x, i), hard_reg_p, spilled_p))
3524 return true;
3526 else if (fmt[i] == 'E')
3528 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3529 if (contains_reg_p (XVECEXP (x, i, j), hard_reg_p, spilled_p))
3530 return true;
3533 return false;
3536 /* Process all regs in location *LOC and change them on equivalent
3537 substitution. Return true if any change was done. */
3538 static bool
3539 loc_equivalence_change_p (rtx *loc)
3541 rtx subst, reg, x = *loc;
3542 bool result = false;
3543 enum rtx_code code = GET_CODE (x);
3544 const char *fmt;
3545 int i, j;
3547 if (code == SUBREG)
3549 reg = SUBREG_REG (x);
3550 if ((subst = get_equiv_substitution (reg)) != reg
3551 && GET_MODE (subst) == VOIDmode)
3553 /* We cannot reload debug location. Simplify subreg here
3554 while we know the inner mode. */
3555 *loc = simplify_gen_subreg (GET_MODE (x), subst,
3556 GET_MODE (reg), SUBREG_BYTE (x));
3557 return true;
3560 if (code == REG && (subst = get_equiv_substitution (x)) != x)
3562 *loc = subst;
3563 return true;
3566 /* Scan all the operand sub-expressions. */
3567 fmt = GET_RTX_FORMAT (code);
3568 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3570 if (fmt[i] == 'e')
3571 result = loc_equivalence_change_p (&XEXP (x, i)) || result;
3572 else if (fmt[i] == 'E')
3573 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3574 result
3575 = loc_equivalence_change_p (&XVECEXP (x, i, j)) || result;
3577 return result;
3580 /* Similar to loc_equivalence_change_p, but for use as
3581 simplify_replace_fn_rtx callback. */
3582 static rtx
3583 loc_equivalence_callback (rtx loc, const_rtx, void *)
3585 if (!REG_P (loc))
3586 return NULL_RTX;
3588 rtx subst = get_equiv_substitution (loc);
3589 if (subst != loc)
3590 return subst;
3592 return NULL_RTX;
3595 /* Maximum number of generated reload insns per an insn. It is for
3596 preventing this pass cycling in a bug case. */
3597 #define MAX_RELOAD_INSNS_NUMBER LRA_MAX_INSN_RELOADS
3599 /* The current iteration number of this LRA pass. */
3600 int lra_constraint_iter;
3602 /* The current iteration number of this LRA pass after the last spill
3603 pass. */
3604 int lra_constraint_iter_after_spill;
3606 /* True if we substituted equiv which needs checking register
3607 allocation correctness because the equivalent value contains
3608 allocatable hard registers or when we restore multi-register
3609 pseudo. */
3610 bool lra_risky_transformations_p;
3612 /* Return true if REGNO is referenced in more than one block. */
3613 static bool
3614 multi_block_pseudo_p (int regno)
3616 basic_block bb = NULL;
3617 unsigned int uid;
3618 bitmap_iterator bi;
3620 if (regno < FIRST_PSEUDO_REGISTER)
3621 return false;
3623 EXECUTE_IF_SET_IN_BITMAP (&lra_reg_info[regno].insn_bitmap, 0, uid, bi)
3624 if (bb == NULL)
3625 bb = BLOCK_FOR_INSN (lra_insn_recog_data[uid]->insn);
3626 else if (BLOCK_FOR_INSN (lra_insn_recog_data[uid]->insn) != bb)
3627 return true;
3628 return false;
3631 /* Return true if LIST contains a deleted insn. */
3632 static bool
3633 contains_deleted_insn_p (rtx list)
3635 for (; list != NULL_RTX; list = XEXP (list, 1))
3636 if (NOTE_P (XEXP (list, 0))
3637 && NOTE_KIND (XEXP (list, 0)) == NOTE_INSN_DELETED)
3638 return true;
3639 return false;
3642 /* Return true if X contains a pseudo dying in INSN. */
3643 static bool
3644 dead_pseudo_p (rtx x, rtx insn)
3646 int i, j;
3647 const char *fmt;
3648 enum rtx_code code;
3650 if (REG_P (x))
3651 return (insn != NULL_RTX
3652 && find_regno_note (insn, REG_DEAD, REGNO (x)) != NULL_RTX);
3653 code = GET_CODE (x);
3654 fmt = GET_RTX_FORMAT (code);
3655 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3657 if (fmt[i] == 'e')
3659 if (dead_pseudo_p (XEXP (x, i), insn))
3660 return true;
3662 else if (fmt[i] == 'E')
3664 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3665 if (dead_pseudo_p (XVECEXP (x, i, j), insn))
3666 return true;
3669 return false;
3672 /* Return true if INSN contains a dying pseudo in INSN right hand
3673 side. */
3674 static bool
3675 insn_rhs_dead_pseudo_p (rtx insn)
3677 rtx set = single_set (insn);
3679 gcc_assert (set != NULL);
3680 return dead_pseudo_p (SET_SRC (set), insn);
3683 /* Return true if any init insn of REGNO contains a dying pseudo in
3684 insn right hand side. */
3685 static bool
3686 init_insn_rhs_dead_pseudo_p (int regno)
3688 rtx insns = ira_reg_equiv[regno].init_insns;
3690 if (insns == NULL)
3691 return false;
3692 if (INSN_P (insns))
3693 return insn_rhs_dead_pseudo_p (insns);
3694 for (; insns != NULL_RTX; insns = XEXP (insns, 1))
3695 if (insn_rhs_dead_pseudo_p (XEXP (insns, 0)))
3696 return true;
3697 return false;
3700 /* Return TRUE if REGNO has a reverse equivalence. The equivalence is
3701 reverse only if we have one init insn with given REGNO as a
3702 source. */
3703 static bool
3704 reverse_equiv_p (int regno)
3706 rtx insns, set;
3708 if ((insns = ira_reg_equiv[regno].init_insns) == NULL_RTX)
3709 return false;
3710 if (! INSN_P (XEXP (insns, 0))
3711 || XEXP (insns, 1) != NULL_RTX)
3712 return false;
3713 if ((set = single_set (XEXP (insns, 0))) == NULL_RTX)
3714 return false;
3715 return REG_P (SET_SRC (set)) && (int) REGNO (SET_SRC (set)) == regno;
3718 /* Return TRUE if REGNO was reloaded in an equivalence init insn. We
3719 call this function only for non-reverse equivalence. */
3720 static bool
3721 contains_reloaded_insn_p (int regno)
3723 rtx set;
3724 rtx list = ira_reg_equiv[regno].init_insns;
3726 for (; list != NULL_RTX; list = XEXP (list, 1))
3727 if ((set = single_set (XEXP (list, 0))) == NULL_RTX
3728 || ! REG_P (SET_DEST (set))
3729 || (int) REGNO (SET_DEST (set)) != regno)
3730 return true;
3731 return false;
3734 /* Entry function of LRA constraint pass. Return true if the
3735 constraint pass did change the code. */
3736 bool
3737 lra_constraints (bool first_p)
3739 bool changed_p;
3740 int i, hard_regno, new_insns_num;
3741 unsigned int min_len, new_min_len, uid;
3742 rtx set, x, reg, dest_reg;
3743 basic_block last_bb;
3744 bitmap_head equiv_insn_bitmap;
3745 bitmap_iterator bi;
3747 lra_constraint_iter++;
3748 if (lra_dump_file != NULL)
3749 fprintf (lra_dump_file, "\n********** Local #%d: **********\n\n",
3750 lra_constraint_iter);
3751 lra_constraint_iter_after_spill++;
3752 if (lra_constraint_iter_after_spill > LRA_MAX_CONSTRAINT_ITERATION_NUMBER)
3753 internal_error
3754 ("Maximum number of LRA constraint passes is achieved (%d)\n",
3755 LRA_MAX_CONSTRAINT_ITERATION_NUMBER);
3756 changed_p = false;
3757 lra_risky_transformations_p = false;
3758 new_insn_uid_start = get_max_uid ();
3759 new_regno_start = first_p ? lra_constraint_new_regno_start : max_reg_num ();
3760 bitmap_initialize (&equiv_insn_bitmap, &reg_obstack);
3761 for (i = FIRST_PSEUDO_REGISTER; i < new_regno_start; i++)
3762 if (lra_reg_info[i].nrefs != 0)
3764 ira_reg_equiv[i].profitable_p = true;
3765 reg = regno_reg_rtx[i];
3766 if ((hard_regno = lra_get_regno_hard_regno (i)) >= 0)
3768 int j, nregs;
3770 nregs = hard_regno_nregs[hard_regno][lra_reg_info[i].biggest_mode];
3771 for (j = 0; j < nregs; j++)
3772 df_set_regs_ever_live (hard_regno + j, true);
3774 else if ((x = get_equiv_substitution (reg)) != reg)
3776 bool pseudo_p = contains_reg_p (x, false, false);
3778 /* After RTL transformation, we can not guarantee that
3779 pseudo in the substitution was not reloaded which might
3780 make equivalence invalid. For example, in reverse
3781 equiv of p0
3783 p0 <- ...
3785 equiv_mem <- p0
3787 the memory address register was reloaded before the 2nd
3788 insn. */
3789 if ((! first_p && pseudo_p)
3790 /* We don't use DF for compilation speed sake. So it
3791 is problematic to update live info when we use an
3792 equivalence containing pseudos in more than one
3793 BB. */
3794 || (pseudo_p && multi_block_pseudo_p (i))
3795 /* If an init insn was deleted for some reason, cancel
3796 the equiv. We could update the equiv insns after
3797 transformations including an equiv insn deletion
3798 but it is not worthy as such cases are extremely
3799 rare. */
3800 || contains_deleted_insn_p (ira_reg_equiv[i].init_insns)
3801 /* If it is not a reverse equivalence, we check that a
3802 pseudo in rhs of the init insn is not dying in the
3803 insn. Otherwise, the live info at the beginning of
3804 the corresponding BB might be wrong after we
3805 removed the insn. When the equiv can be a
3806 constant, the right hand side of the init insn can
3807 be a pseudo. */
3808 || (! reverse_equiv_p (i)
3809 && (init_insn_rhs_dead_pseudo_p (i)
3810 /* If we reloaded the pseudo in an equivalence
3811 init insn, we can not remove the equiv init
3812 insns and the init insns might write into
3813 const memory in this case. */
3814 || contains_reloaded_insn_p (i)))
3815 /* Prevent access beyond equivalent memory for
3816 paradoxical subregs. */
3817 || (MEM_P (x)
3818 && (GET_MODE_SIZE (lra_reg_info[i].biggest_mode)
3819 > GET_MODE_SIZE (GET_MODE (x)))))
3820 ira_reg_equiv[i].defined_p = false;
3821 if (contains_reg_p (x, false, true))
3822 ira_reg_equiv[i].profitable_p = false;
3823 if (get_equiv_substitution (reg) != reg)
3824 bitmap_ior_into (&equiv_insn_bitmap, &lra_reg_info[i].insn_bitmap);
3827 /* We should add all insns containing pseudos which should be
3828 substituted by their equivalences. */
3829 EXECUTE_IF_SET_IN_BITMAP (&equiv_insn_bitmap, 0, uid, bi)
3830 lra_push_insn_by_uid (uid);
3831 lra_eliminate (false);
3832 min_len = lra_insn_stack_length ();
3833 new_insns_num = 0;
3834 last_bb = NULL;
3835 changed_p = false;
3836 while ((new_min_len = lra_insn_stack_length ()) != 0)
3838 curr_insn = lra_pop_insn ();
3839 --new_min_len;
3840 curr_bb = BLOCK_FOR_INSN (curr_insn);
3841 if (curr_bb != last_bb)
3843 last_bb = curr_bb;
3844 bb_reload_num = lra_curr_reload_num;
3846 if (min_len > new_min_len)
3848 min_len = new_min_len;
3849 new_insns_num = 0;
3851 if (new_insns_num > MAX_RELOAD_INSNS_NUMBER)
3852 internal_error
3853 ("Max. number of generated reload insns per insn is achieved (%d)\n",
3854 MAX_RELOAD_INSNS_NUMBER);
3855 new_insns_num++;
3856 if (DEBUG_INSN_P (curr_insn))
3858 /* We need to check equivalence in debug insn and change
3859 pseudo to the equivalent value if necessary. */
3860 curr_id = lra_get_insn_recog_data (curr_insn);
3861 if (bitmap_bit_p (&equiv_insn_bitmap, INSN_UID (curr_insn)))
3863 rtx old = *curr_id->operand_loc[0];
3864 *curr_id->operand_loc[0]
3865 = simplify_replace_fn_rtx (old, NULL_RTX,
3866 loc_equivalence_callback, NULL);
3867 if (old != *curr_id->operand_loc[0])
3869 lra_update_insn_regno_info (curr_insn);
3870 changed_p = true;
3874 else if (INSN_P (curr_insn))
3876 if ((set = single_set (curr_insn)) != NULL_RTX)
3878 dest_reg = SET_DEST (set);
3879 /* The equivalence pseudo could be set up as SUBREG in a
3880 case when it is a call restore insn in a mode
3881 different from the pseudo mode. */
3882 if (GET_CODE (dest_reg) == SUBREG)
3883 dest_reg = SUBREG_REG (dest_reg);
3884 if ((REG_P (dest_reg)
3885 && (x = get_equiv_substitution (dest_reg)) != dest_reg
3886 /* Check that this is actually an insn setting up
3887 the equivalence. */
3888 && (in_list_p (curr_insn,
3889 ira_reg_equiv
3890 [REGNO (dest_reg)].init_insns)
3891 /* Init insns may contain not all insns setting
3892 up equivalence as we have live range
3893 splitting. So here we use another condition
3894 to check insn setting up the equivalence
3895 which should be removed, e.g. in case when
3896 the equivalence is a constant. */
3897 || ! MEM_P (x))
3898 /* Remove insns which set up a pseudo whose value
3899 can not be changed. Such insns might be not in
3900 init_insns because we don't update equiv data
3901 during insn transformations.
3903 As an example, let suppose that a pseudo got
3904 hard register and on the 1st pass was not
3905 changed to equivalent constant. We generate an
3906 additional insn setting up the pseudo because of
3907 secondary memory movement. Then the pseudo is
3908 spilled and we use the equiv constant. In this
3909 case we should remove the additional insn and
3910 this insn is not init_insns list. */
3911 && (! MEM_P (x) || MEM_READONLY_P (x)
3912 || in_list_p (curr_insn,
3913 ira_reg_equiv
3914 [REGNO (dest_reg)].init_insns)))
3915 || (((x = get_equiv_substitution (SET_SRC (set)))
3916 != SET_SRC (set))
3917 && in_list_p (curr_insn,
3918 ira_reg_equiv
3919 [REGNO (SET_SRC (set))].init_insns)))
3921 /* This is equiv init insn of pseudo which did not get a
3922 hard register -- remove the insn. */
3923 if (lra_dump_file != NULL)
3925 fprintf (lra_dump_file,
3926 " Removing equiv init insn %i (freq=%d)\n",
3927 INSN_UID (curr_insn),
3928 BLOCK_FOR_INSN (curr_insn)->frequency);
3929 dump_insn_slim (lra_dump_file, curr_insn);
3931 if (contains_reg_p (x, true, false))
3932 lra_risky_transformations_p = true;
3933 lra_set_insn_deleted (curr_insn);
3934 continue;
3937 curr_id = lra_get_insn_recog_data (curr_insn);
3938 curr_static_id = curr_id->insn_static_data;
3939 init_curr_insn_input_reloads ();
3940 init_curr_operand_mode ();
3941 if (curr_insn_transform ())
3942 changed_p = true;
3943 /* Check non-transformed insns too for equiv change as USE
3944 or CLOBBER don't need reloads but can contain pseudos
3945 being changed on their equivalences. */
3946 else if (bitmap_bit_p (&equiv_insn_bitmap, INSN_UID (curr_insn))
3947 && loc_equivalence_change_p (&PATTERN (curr_insn)))
3949 lra_update_insn_regno_info (curr_insn);
3950 changed_p = true;
3954 bitmap_clear (&equiv_insn_bitmap);
3955 /* If we used a new hard regno, changed_p should be true because the
3956 hard reg is assigned to a new pseudo. */
3957 #ifdef ENABLE_CHECKING
3958 if (! changed_p)
3960 for (i = FIRST_PSEUDO_REGISTER; i < new_regno_start; i++)
3961 if (lra_reg_info[i].nrefs != 0
3962 && (hard_regno = lra_get_regno_hard_regno (i)) >= 0)
3964 int j, nregs = hard_regno_nregs[hard_regno][PSEUDO_REGNO_MODE (i)];
3966 for (j = 0; j < nregs; j++)
3967 lra_assert (df_regs_ever_live_p (hard_regno + j));
3970 #endif
3971 return changed_p;
3974 /* Initiate the LRA constraint pass. It is done once per
3975 function. */
3976 void
3977 lra_constraints_init (void)
3981 /* Finalize the LRA constraint pass. It is done once per
3982 function. */
3983 void
3984 lra_constraints_finish (void)
3990 /* This page contains code to do inheritance/split
3991 transformations. */
3993 /* Number of reloads passed so far in current EBB. */
3994 static int reloads_num;
3996 /* Number of calls passed so far in current EBB. */
3997 static int calls_num;
3999 /* Current reload pseudo check for validity of elements in
4000 USAGE_INSNS. */
4001 static int curr_usage_insns_check;
4003 /* Info about last usage of registers in EBB to do inheritance/split
4004 transformation. Inheritance transformation is done from a spilled
4005 pseudo and split transformations from a hard register or a pseudo
4006 assigned to a hard register. */
4007 struct usage_insns
4009 /* If the value is equal to CURR_USAGE_INSNS_CHECK, then the member
4010 value INSNS is valid. The insns is chain of optional debug insns
4011 and a finishing non-debug insn using the corresponding reg. The
4012 value is also used to mark the registers which are set up in the
4013 current insn. The negated insn uid is used for this. */
4014 int check;
4015 /* Value of global reloads_num at the last insn in INSNS. */
4016 int reloads_num;
4017 /* Value of global reloads_nums at the last insn in INSNS. */
4018 int calls_num;
4019 /* It can be true only for splitting. And it means that the restore
4020 insn should be put after insn given by the following member. */
4021 bool after_p;
4022 /* Next insns in the current EBB which use the original reg and the
4023 original reg value is not changed between the current insn and
4024 the next insns. In order words, e.g. for inheritance, if we need
4025 to use the original reg value again in the next insns we can try
4026 to use the value in a hard register from a reload insn of the
4027 current insn. */
4028 rtx insns;
4031 /* Map: regno -> corresponding pseudo usage insns. */
4032 static struct usage_insns *usage_insns;
4034 static void
4035 setup_next_usage_insn (int regno, rtx insn, int reloads_num, bool after_p)
4037 usage_insns[regno].check = curr_usage_insns_check;
4038 usage_insns[regno].insns = insn;
4039 usage_insns[regno].reloads_num = reloads_num;
4040 usage_insns[regno].calls_num = calls_num;
4041 usage_insns[regno].after_p = after_p;
4044 /* The function is used to form list REGNO usages which consists of
4045 optional debug insns finished by a non-debug insn using REGNO.
4046 RELOADS_NUM is current number of reload insns processed so far. */
4047 static void
4048 add_next_usage_insn (int regno, rtx insn, int reloads_num)
4050 rtx next_usage_insns;
4052 if (usage_insns[regno].check == curr_usage_insns_check
4053 && (next_usage_insns = usage_insns[regno].insns) != NULL_RTX
4054 && DEBUG_INSN_P (insn))
4056 /* Check that we did not add the debug insn yet. */
4057 if (next_usage_insns != insn
4058 && (GET_CODE (next_usage_insns) != INSN_LIST
4059 || XEXP (next_usage_insns, 0) != insn))
4060 usage_insns[regno].insns = gen_rtx_INSN_LIST (VOIDmode, insn,
4061 next_usage_insns);
4063 else if (NONDEBUG_INSN_P (insn))
4064 setup_next_usage_insn (regno, insn, reloads_num, false);
4065 else
4066 usage_insns[regno].check = 0;
4069 /* Replace all references to register OLD_REGNO in *LOC with pseudo
4070 register NEW_REG. Return true if any change was made. */
4071 static bool
4072 substitute_pseudo (rtx *loc, int old_regno, rtx new_reg)
4074 rtx x = *loc;
4075 bool result = false;
4076 enum rtx_code code;
4077 const char *fmt;
4078 int i, j;
4080 if (x == NULL_RTX)
4081 return false;
4083 code = GET_CODE (x);
4084 if (code == REG && (int) REGNO (x) == old_regno)
4086 enum machine_mode mode = GET_MODE (*loc);
4087 enum machine_mode inner_mode = GET_MODE (new_reg);
4089 if (mode != inner_mode)
4091 if (GET_MODE_SIZE (mode) >= GET_MODE_SIZE (inner_mode)
4092 || ! SCALAR_INT_MODE_P (inner_mode))
4093 new_reg = gen_rtx_SUBREG (mode, new_reg, 0);
4094 else
4095 new_reg = gen_lowpart_SUBREG (mode, new_reg);
4097 *loc = new_reg;
4098 return true;
4101 /* Scan all the operand sub-expressions. */
4102 fmt = GET_RTX_FORMAT (code);
4103 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4105 if (fmt[i] == 'e')
4107 if (substitute_pseudo (&XEXP (x, i), old_regno, new_reg))
4108 result = true;
4110 else if (fmt[i] == 'E')
4112 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4113 if (substitute_pseudo (&XVECEXP (x, i, j), old_regno, new_reg))
4114 result = true;
4117 return result;
4120 /* Return first non-debug insn in list USAGE_INSNS. */
4121 static rtx
4122 skip_usage_debug_insns (rtx usage_insns)
4124 rtx insn;
4126 /* Skip debug insns. */
4127 for (insn = usage_insns;
4128 insn != NULL_RTX && GET_CODE (insn) == INSN_LIST;
4129 insn = XEXP (insn, 1))
4131 return insn;
4134 /* Return true if we need secondary memory moves for insn in
4135 USAGE_INSNS after inserting inherited pseudo of class INHER_CL
4136 into the insn. */
4137 static bool
4138 check_secondary_memory_needed_p (enum reg_class inher_cl ATTRIBUTE_UNUSED,
4139 rtx usage_insns ATTRIBUTE_UNUSED)
4141 #ifndef SECONDARY_MEMORY_NEEDED
4142 return false;
4143 #else
4144 rtx insn, set, dest;
4145 enum reg_class cl;
4147 if (inher_cl == ALL_REGS
4148 || (insn = skip_usage_debug_insns (usage_insns)) == NULL_RTX)
4149 return false;
4150 lra_assert (INSN_P (insn));
4151 if ((set = single_set (insn)) == NULL_RTX || ! REG_P (SET_DEST (set)))
4152 return false;
4153 dest = SET_DEST (set);
4154 if (! REG_P (dest))
4155 return false;
4156 lra_assert (inher_cl != NO_REGS);
4157 cl = get_reg_class (REGNO (dest));
4158 return (cl != NO_REGS && cl != ALL_REGS
4159 && SECONDARY_MEMORY_NEEDED (inher_cl, cl, GET_MODE (dest)));
4160 #endif
4163 /* Registers involved in inheritance/split in the current EBB
4164 (inheritance/split pseudos and original registers). */
4165 static bitmap_head check_only_regs;
4167 /* Do inheritance transformations for insn INSN, which defines (if
4168 DEF_P) or uses ORIGINAL_REGNO. NEXT_USAGE_INSNS specifies which
4169 instruction in the EBB next uses ORIGINAL_REGNO; it has the same
4170 form as the "insns" field of usage_insns. Return true if we
4171 succeed in such transformation.
4173 The transformations look like:
4175 p <- ... i <- ...
4176 ... p <- i (new insn)
4177 ... =>
4178 <- ... p ... <- ... i ...
4180 ... i <- p (new insn)
4181 <- ... p ... <- ... i ...
4182 ... =>
4183 <- ... p ... <- ... i ...
4184 where p is a spilled original pseudo and i is a new inheritance pseudo.
4187 The inheritance pseudo has the smallest class of two classes CL and
4188 class of ORIGINAL REGNO. */
4189 static bool
4190 inherit_reload_reg (bool def_p, int original_regno,
4191 enum reg_class cl, rtx insn, rtx next_usage_insns)
4193 enum reg_class rclass = lra_get_allocno_class (original_regno);
4194 rtx original_reg = regno_reg_rtx[original_regno];
4195 rtx new_reg, new_insns, usage_insn;
4197 lra_assert (! usage_insns[original_regno].after_p);
4198 if (lra_dump_file != NULL)
4199 fprintf (lra_dump_file,
4200 " <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<\n");
4201 if (! ira_reg_classes_intersect_p[cl][rclass])
4203 if (lra_dump_file != NULL)
4205 fprintf (lra_dump_file,
4206 " Rejecting inheritance for %d "
4207 "because of disjoint classes %s and %s\n",
4208 original_regno, reg_class_names[cl],
4209 reg_class_names[rclass]);
4210 fprintf (lra_dump_file,
4211 " >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
4213 return false;
4215 if ((ira_class_subset_p[cl][rclass] && cl != rclass)
4216 /* We don't use a subset of two classes because it can be
4217 NO_REGS. This transformation is still profitable in most
4218 cases even if the classes are not intersected as register
4219 move is probably cheaper than a memory load. */
4220 || ira_class_hard_regs_num[cl] < ira_class_hard_regs_num[rclass])
4222 if (lra_dump_file != NULL)
4223 fprintf (lra_dump_file, " Use smallest class of %s and %s\n",
4224 reg_class_names[cl], reg_class_names[rclass]);
4226 rclass = cl;
4228 if (check_secondary_memory_needed_p (rclass, next_usage_insns))
4230 /* Reject inheritance resulting in secondary memory moves.
4231 Otherwise, there is a danger in LRA cycling. Also such
4232 transformation will be unprofitable. */
4233 if (lra_dump_file != NULL)
4235 rtx insn = skip_usage_debug_insns (next_usage_insns);
4236 rtx set = single_set (insn);
4238 lra_assert (set != NULL_RTX);
4240 rtx dest = SET_DEST (set);
4242 lra_assert (REG_P (dest));
4243 fprintf (lra_dump_file,
4244 " Rejecting inheritance for insn %d(%s)<-%d(%s) "
4245 "as secondary mem is needed\n",
4246 REGNO (dest), reg_class_names[get_reg_class (REGNO (dest))],
4247 original_regno, reg_class_names[rclass]);
4248 fprintf (lra_dump_file,
4249 " >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
4251 return false;
4253 new_reg = lra_create_new_reg (GET_MODE (original_reg), original_reg,
4254 rclass, "inheritance");
4255 start_sequence ();
4256 if (def_p)
4257 emit_move_insn (original_reg, new_reg);
4258 else
4259 emit_move_insn (new_reg, original_reg);
4260 new_insns = get_insns ();
4261 end_sequence ();
4262 if (NEXT_INSN (new_insns) != NULL_RTX)
4264 if (lra_dump_file != NULL)
4266 fprintf (lra_dump_file,
4267 " Rejecting inheritance %d->%d "
4268 "as it results in 2 or more insns:\n",
4269 original_regno, REGNO (new_reg));
4270 dump_rtl_slim (lra_dump_file, new_insns, NULL_RTX, -1, 0);
4271 fprintf (lra_dump_file,
4272 " >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
4274 return false;
4276 substitute_pseudo (&insn, original_regno, new_reg);
4277 lra_update_insn_regno_info (insn);
4278 if (! def_p)
4279 /* We now have a new usage insn for original regno. */
4280 setup_next_usage_insn (original_regno, new_insns, reloads_num, false);
4281 if (lra_dump_file != NULL)
4282 fprintf (lra_dump_file, " Original reg change %d->%d (bb%d):\n",
4283 original_regno, REGNO (new_reg), BLOCK_FOR_INSN (insn)->index);
4284 lra_reg_info[REGNO (new_reg)].restore_regno = original_regno;
4285 bitmap_set_bit (&check_only_regs, REGNO (new_reg));
4286 bitmap_set_bit (&check_only_regs, original_regno);
4287 bitmap_set_bit (&lra_inheritance_pseudos, REGNO (new_reg));
4288 if (def_p)
4289 lra_process_new_insns (insn, NULL_RTX, new_insns,
4290 "Add original<-inheritance");
4291 else
4292 lra_process_new_insns (insn, new_insns, NULL_RTX,
4293 "Add inheritance<-original");
4294 while (next_usage_insns != NULL_RTX)
4296 if (GET_CODE (next_usage_insns) != INSN_LIST)
4298 usage_insn = next_usage_insns;
4299 lra_assert (NONDEBUG_INSN_P (usage_insn));
4300 next_usage_insns = NULL;
4302 else
4304 usage_insn = XEXP (next_usage_insns, 0);
4305 lra_assert (DEBUG_INSN_P (usage_insn));
4306 next_usage_insns = XEXP (next_usage_insns, 1);
4308 substitute_pseudo (&usage_insn, original_regno, new_reg);
4309 lra_update_insn_regno_info (usage_insn);
4310 if (lra_dump_file != NULL)
4312 fprintf (lra_dump_file,
4313 " Inheritance reuse change %d->%d (bb%d):\n",
4314 original_regno, REGNO (new_reg),
4315 BLOCK_FOR_INSN (usage_insn)->index);
4316 dump_insn_slim (lra_dump_file, usage_insn);
4319 if (lra_dump_file != NULL)
4320 fprintf (lra_dump_file,
4321 " >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
4322 return true;
4325 /* Return true if we need a caller save/restore for pseudo REGNO which
4326 was assigned to a hard register. */
4327 static inline bool
4328 need_for_call_save_p (int regno)
4330 lra_assert (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] >= 0);
4331 return (usage_insns[regno].calls_num < calls_num
4332 && (overlaps_hard_reg_set_p
4333 (call_used_reg_set,
4334 PSEUDO_REGNO_MODE (regno), reg_renumber[regno])));
4337 /* Global registers occurring in the current EBB. */
4338 static bitmap_head ebb_global_regs;
4340 /* Return true if we need a split for hard register REGNO or pseudo
4341 REGNO which was assigned to a hard register.
4342 POTENTIAL_RELOAD_HARD_REGS contains hard registers which might be
4343 used for reloads since the EBB end. It is an approximation of the
4344 used hard registers in the split range. The exact value would
4345 require expensive calculations. If we were aggressive with
4346 splitting because of the approximation, the split pseudo will save
4347 the same hard register assignment and will be removed in the undo
4348 pass. We still need the approximation because too aggressive
4349 splitting would result in too inaccurate cost calculation in the
4350 assignment pass because of too many generated moves which will be
4351 probably removed in the undo pass. */
4352 static inline bool
4353 need_for_split_p (HARD_REG_SET potential_reload_hard_regs, int regno)
4355 int hard_regno = regno < FIRST_PSEUDO_REGISTER ? regno : reg_renumber[regno];
4357 lra_assert (hard_regno >= 0);
4358 return ((TEST_HARD_REG_BIT (potential_reload_hard_regs, hard_regno)
4359 /* Don't split eliminable hard registers, otherwise we can
4360 split hard registers like hard frame pointer, which
4361 lives on BB start/end according to DF-infrastructure,
4362 when there is a pseudo assigned to the register and
4363 living in the same BB. */
4364 && (regno >= FIRST_PSEUDO_REGISTER
4365 || ! TEST_HARD_REG_BIT (eliminable_regset, hard_regno))
4366 && ! TEST_HARD_REG_BIT (lra_no_alloc_regs, hard_regno)
4367 /* Don't split call clobbered hard regs living through
4368 calls, otherwise we might have a check problem in the
4369 assign sub-pass as in the most cases (exception is a
4370 situation when lra_risky_transformations_p value is
4371 true) the assign pass assumes that all pseudos living
4372 through calls are assigned to call saved hard regs. */
4373 && (regno >= FIRST_PSEUDO_REGISTER
4374 || ! TEST_HARD_REG_BIT (call_used_reg_set, regno)
4375 || usage_insns[regno].calls_num == calls_num)
4376 /* We need at least 2 reloads to make pseudo splitting
4377 profitable. We should provide hard regno splitting in
4378 any case to solve 1st insn scheduling problem when
4379 moving hard register definition up might result in
4380 impossibility to find hard register for reload pseudo of
4381 small register class. */
4382 && (usage_insns[regno].reloads_num
4383 + (regno < FIRST_PSEUDO_REGISTER ? 0 : 2) < reloads_num)
4384 && (regno < FIRST_PSEUDO_REGISTER
4385 /* For short living pseudos, spilling + inheritance can
4386 be considered a substitution for splitting.
4387 Therefore we do not splitting for local pseudos. It
4388 decreases also aggressiveness of splitting. The
4389 minimal number of references is chosen taking into
4390 account that for 2 references splitting has no sense
4391 as we can just spill the pseudo. */
4392 || (regno >= FIRST_PSEUDO_REGISTER
4393 && lra_reg_info[regno].nrefs > 3
4394 && bitmap_bit_p (&ebb_global_regs, regno))))
4395 || (regno >= FIRST_PSEUDO_REGISTER && need_for_call_save_p (regno)));
4398 /* Return class for the split pseudo created from original pseudo with
4399 ALLOCNO_CLASS and MODE which got a hard register HARD_REGNO. We
4400 choose subclass of ALLOCNO_CLASS which contains HARD_REGNO and
4401 results in no secondary memory movements. */
4402 static enum reg_class
4403 choose_split_class (enum reg_class allocno_class,
4404 int hard_regno ATTRIBUTE_UNUSED,
4405 enum machine_mode mode ATTRIBUTE_UNUSED)
4407 #ifndef SECONDARY_MEMORY_NEEDED
4408 return allocno_class;
4409 #else
4410 int i;
4411 enum reg_class cl, best_cl = NO_REGS;
4412 enum reg_class hard_reg_class ATTRIBUTE_UNUSED
4413 = REGNO_REG_CLASS (hard_regno);
4415 if (! SECONDARY_MEMORY_NEEDED (allocno_class, allocno_class, mode)
4416 && TEST_HARD_REG_BIT (reg_class_contents[allocno_class], hard_regno))
4417 return allocno_class;
4418 for (i = 0;
4419 (cl = reg_class_subclasses[allocno_class][i]) != LIM_REG_CLASSES;
4420 i++)
4421 if (! SECONDARY_MEMORY_NEEDED (cl, hard_reg_class, mode)
4422 && ! SECONDARY_MEMORY_NEEDED (hard_reg_class, cl, mode)
4423 && TEST_HARD_REG_BIT (reg_class_contents[cl], hard_regno)
4424 && (best_cl == NO_REGS
4425 || ira_class_hard_regs_num[best_cl] < ira_class_hard_regs_num[cl]))
4426 best_cl = cl;
4427 return best_cl;
4428 #endif
4431 /* Do split transformations for insn INSN, which defines or uses
4432 ORIGINAL_REGNO. NEXT_USAGE_INSNS specifies which instruction in
4433 the EBB next uses ORIGINAL_REGNO; it has the same form as the
4434 "insns" field of usage_insns.
4436 The transformations look like:
4438 p <- ... p <- ...
4439 ... s <- p (new insn -- save)
4440 ... =>
4441 ... p <- s (new insn -- restore)
4442 <- ... p ... <- ... p ...
4444 <- ... p ... <- ... p ...
4445 ... s <- p (new insn -- save)
4446 ... =>
4447 ... p <- s (new insn -- restore)
4448 <- ... p ... <- ... p ...
4450 where p is an original pseudo got a hard register or a hard
4451 register and s is a new split pseudo. The save is put before INSN
4452 if BEFORE_P is true. Return true if we succeed in such
4453 transformation. */
4454 static bool
4455 split_reg (bool before_p, int original_regno, rtx insn, rtx next_usage_insns)
4457 enum reg_class rclass;
4458 rtx original_reg;
4459 int hard_regno, nregs;
4460 rtx new_reg, save, restore, usage_insn;
4461 bool after_p;
4462 bool call_save_p;
4464 if (original_regno < FIRST_PSEUDO_REGISTER)
4466 rclass = ira_allocno_class_translate[REGNO_REG_CLASS (original_regno)];
4467 hard_regno = original_regno;
4468 call_save_p = false;
4469 nregs = 1;
4471 else
4473 hard_regno = reg_renumber[original_regno];
4474 nregs = hard_regno_nregs[hard_regno][PSEUDO_REGNO_MODE (original_regno)];
4475 rclass = lra_get_allocno_class (original_regno);
4476 original_reg = regno_reg_rtx[original_regno];
4477 call_save_p = need_for_call_save_p (original_regno);
4479 original_reg = regno_reg_rtx[original_regno];
4480 lra_assert (hard_regno >= 0);
4481 if (lra_dump_file != NULL)
4482 fprintf (lra_dump_file,
4483 " ((((((((((((((((((((((((((((((((((((((((((((((((\n");
4484 if (call_save_p)
4486 enum machine_mode mode = GET_MODE (original_reg);
4488 mode = HARD_REGNO_CALLER_SAVE_MODE (hard_regno,
4489 hard_regno_nregs[hard_regno][mode],
4490 mode);
4491 new_reg = lra_create_new_reg (mode, NULL_RTX, NO_REGS, "save");
4493 else
4495 rclass = choose_split_class (rclass, hard_regno,
4496 GET_MODE (original_reg));
4497 if (rclass == NO_REGS)
4499 if (lra_dump_file != NULL)
4501 fprintf (lra_dump_file,
4502 " Rejecting split of %d(%s): "
4503 "no good reg class for %d(%s)\n",
4504 original_regno,
4505 reg_class_names[lra_get_allocno_class (original_regno)],
4506 hard_regno,
4507 reg_class_names[REGNO_REG_CLASS (hard_regno)]);
4508 fprintf
4509 (lra_dump_file,
4510 " ))))))))))))))))))))))))))))))))))))))))))))))))\n");
4512 return false;
4514 new_reg = lra_create_new_reg (GET_MODE (original_reg), original_reg,
4515 rclass, "split");
4516 reg_renumber[REGNO (new_reg)] = hard_regno;
4518 save = emit_spill_move (true, new_reg, original_reg);
4519 if (NEXT_INSN (save) != NULL_RTX)
4521 lra_assert (! call_save_p);
4522 if (lra_dump_file != NULL)
4524 fprintf
4525 (lra_dump_file,
4526 " Rejecting split %d->%d resulting in > 2 %s save insns:\n",
4527 original_regno, REGNO (new_reg), call_save_p ? "call" : "");
4528 dump_rtl_slim (lra_dump_file, save, NULL_RTX, -1, 0);
4529 fprintf (lra_dump_file,
4530 " ))))))))))))))))))))))))))))))))))))))))))))))))\n");
4532 return false;
4534 restore = emit_spill_move (false, new_reg, original_reg);
4535 if (NEXT_INSN (restore) != NULL_RTX)
4537 lra_assert (! call_save_p);
4538 if (lra_dump_file != NULL)
4540 fprintf (lra_dump_file,
4541 " Rejecting split %d->%d "
4542 "resulting in > 2 %s restore insns:\n",
4543 original_regno, REGNO (new_reg), call_save_p ? "call" : "");
4544 dump_rtl_slim (lra_dump_file, restore, NULL_RTX, -1, 0);
4545 fprintf (lra_dump_file,
4546 " ))))))))))))))))))))))))))))))))))))))))))))))))\n");
4548 return false;
4550 after_p = usage_insns[original_regno].after_p;
4551 lra_reg_info[REGNO (new_reg)].restore_regno = original_regno;
4552 bitmap_set_bit (&check_only_regs, REGNO (new_reg));
4553 bitmap_set_bit (&check_only_regs, original_regno);
4554 bitmap_set_bit (&lra_split_regs, REGNO (new_reg));
4555 for (;;)
4557 if (GET_CODE (next_usage_insns) != INSN_LIST)
4559 usage_insn = next_usage_insns;
4560 break;
4562 usage_insn = XEXP (next_usage_insns, 0);
4563 lra_assert (DEBUG_INSN_P (usage_insn));
4564 next_usage_insns = XEXP (next_usage_insns, 1);
4565 substitute_pseudo (&usage_insn, original_regno, new_reg);
4566 lra_update_insn_regno_info (usage_insn);
4567 if (lra_dump_file != NULL)
4569 fprintf (lra_dump_file, " Split reuse change %d->%d:\n",
4570 original_regno, REGNO (new_reg));
4571 dump_insn_slim (lra_dump_file, usage_insn);
4574 lra_assert (NOTE_P (usage_insn) || NONDEBUG_INSN_P (usage_insn));
4575 lra_assert (usage_insn != insn || (after_p && before_p));
4576 lra_process_new_insns (usage_insn, after_p ? NULL_RTX : restore,
4577 after_p ? restore : NULL_RTX,
4578 call_save_p
4579 ? "Add reg<-save" : "Add reg<-split");
4580 lra_process_new_insns (insn, before_p ? save : NULL_RTX,
4581 before_p ? NULL_RTX : save,
4582 call_save_p
4583 ? "Add save<-reg" : "Add split<-reg");
4584 if (nregs > 1)
4585 /* If we are trying to split multi-register. We should check
4586 conflicts on the next assignment sub-pass. IRA can allocate on
4587 sub-register levels, LRA do this on pseudos level right now and
4588 this discrepancy may create allocation conflicts after
4589 splitting. */
4590 lra_risky_transformations_p = true;
4591 if (lra_dump_file != NULL)
4592 fprintf (lra_dump_file,
4593 " ))))))))))))))))))))))))))))))))))))))))))))))))\n");
4594 return true;
4597 /* Recognize that we need a split transformation for insn INSN, which
4598 defines or uses REGNO in its insn biggest MODE (we use it only if
4599 REGNO is a hard register). POTENTIAL_RELOAD_HARD_REGS contains
4600 hard registers which might be used for reloads since the EBB end.
4601 Put the save before INSN if BEFORE_P is true. MAX_UID is maximla
4602 uid before starting INSN processing. Return true if we succeed in
4603 such transformation. */
4604 static bool
4605 split_if_necessary (int regno, enum machine_mode mode,
4606 HARD_REG_SET potential_reload_hard_regs,
4607 bool before_p, rtx insn, int max_uid)
4609 bool res = false;
4610 int i, nregs = 1;
4611 rtx next_usage_insns;
4613 if (regno < FIRST_PSEUDO_REGISTER)
4614 nregs = hard_regno_nregs[regno][mode];
4615 for (i = 0; i < nregs; i++)
4616 if (usage_insns[regno + i].check == curr_usage_insns_check
4617 && (next_usage_insns = usage_insns[regno + i].insns) != NULL_RTX
4618 /* To avoid processing the register twice or more. */
4619 && ((GET_CODE (next_usage_insns) != INSN_LIST
4620 && INSN_UID (next_usage_insns) < max_uid)
4621 || (GET_CODE (next_usage_insns) == INSN_LIST
4622 && (INSN_UID (XEXP (next_usage_insns, 0)) < max_uid)))
4623 && need_for_split_p (potential_reload_hard_regs, regno + i)
4624 && split_reg (before_p, regno + i, insn, next_usage_insns))
4625 res = true;
4626 return res;
4629 /* Check only registers living at the current program point in the
4630 current EBB. */
4631 static bitmap_head live_regs;
4633 /* Update live info in EBB given by its HEAD and TAIL insns after
4634 inheritance/split transformation. The function removes dead moves
4635 too. */
4636 static void
4637 update_ebb_live_info (rtx head, rtx tail)
4639 unsigned int j;
4640 int regno;
4641 bool live_p;
4642 rtx prev_insn, set;
4643 bool remove_p;
4644 basic_block last_bb, prev_bb, curr_bb;
4645 bitmap_iterator bi;
4646 struct lra_insn_reg *reg;
4647 edge e;
4648 edge_iterator ei;
4650 last_bb = BLOCK_FOR_INSN (tail);
4651 prev_bb = NULL;
4652 for (curr_insn = tail;
4653 curr_insn != PREV_INSN (head);
4654 curr_insn = prev_insn)
4656 prev_insn = PREV_INSN (curr_insn);
4657 /* We need to process empty blocks too. They contain
4658 NOTE_INSN_BASIC_BLOCK referring for the basic block. */
4659 if (NOTE_P (curr_insn) && NOTE_KIND (curr_insn) != NOTE_INSN_BASIC_BLOCK)
4660 continue;
4661 curr_bb = BLOCK_FOR_INSN (curr_insn);
4662 if (curr_bb != prev_bb)
4664 if (prev_bb != NULL)
4666 /* Update df_get_live_in (prev_bb): */
4667 EXECUTE_IF_SET_IN_BITMAP (&check_only_regs, 0, j, bi)
4668 if (bitmap_bit_p (&live_regs, j))
4669 bitmap_set_bit (df_get_live_in (prev_bb), j);
4670 else
4671 bitmap_clear_bit (df_get_live_in (prev_bb), j);
4673 if (curr_bb != last_bb)
4675 /* Update df_get_live_out (curr_bb): */
4676 EXECUTE_IF_SET_IN_BITMAP (&check_only_regs, 0, j, bi)
4678 live_p = bitmap_bit_p (&live_regs, j);
4679 if (! live_p)
4680 FOR_EACH_EDGE (e, ei, curr_bb->succs)
4681 if (bitmap_bit_p (df_get_live_in (e->dest), j))
4683 live_p = true;
4684 break;
4686 if (live_p)
4687 bitmap_set_bit (df_get_live_out (curr_bb), j);
4688 else
4689 bitmap_clear_bit (df_get_live_out (curr_bb), j);
4692 prev_bb = curr_bb;
4693 bitmap_and (&live_regs, &check_only_regs, df_get_live_out (curr_bb));
4695 if (! NONDEBUG_INSN_P (curr_insn))
4696 continue;
4697 curr_id = lra_get_insn_recog_data (curr_insn);
4698 remove_p = false;
4699 if ((set = single_set (curr_insn)) != NULL_RTX && REG_P (SET_DEST (set))
4700 && (regno = REGNO (SET_DEST (set))) >= FIRST_PSEUDO_REGISTER
4701 && bitmap_bit_p (&check_only_regs, regno)
4702 && ! bitmap_bit_p (&live_regs, regno))
4703 remove_p = true;
4704 /* See which defined values die here. */
4705 for (reg = curr_id->regs; reg != NULL; reg = reg->next)
4706 if (reg->type == OP_OUT && ! reg->subreg_p)
4707 bitmap_clear_bit (&live_regs, reg->regno);
4708 /* Mark each used value as live. */
4709 for (reg = curr_id->regs; reg != NULL; reg = reg->next)
4710 if (reg->type != OP_OUT
4711 && bitmap_bit_p (&check_only_regs, reg->regno))
4712 bitmap_set_bit (&live_regs, reg->regno);
4713 /* It is quite important to remove dead move insns because it
4714 means removing dead store. We don't need to process them for
4715 constraints. */
4716 if (remove_p)
4718 if (lra_dump_file != NULL)
4720 fprintf (lra_dump_file, " Removing dead insn:\n ");
4721 dump_insn_slim (lra_dump_file, curr_insn);
4723 lra_set_insn_deleted (curr_insn);
4728 /* The structure describes info to do an inheritance for the current
4729 insn. We need to collect such info first before doing the
4730 transformations because the transformations change the insn
4731 internal representation. */
4732 struct to_inherit
4734 /* Original regno. */
4735 int regno;
4736 /* Subsequent insns which can inherit original reg value. */
4737 rtx insns;
4740 /* Array containing all info for doing inheritance from the current
4741 insn. */
4742 static struct to_inherit to_inherit[LRA_MAX_INSN_RELOADS];
4744 /* Number elements in the previous array. */
4745 static int to_inherit_num;
4747 /* Add inheritance info REGNO and INSNS. Their meaning is described in
4748 structure to_inherit. */
4749 static void
4750 add_to_inherit (int regno, rtx insns)
4752 int i;
4754 for (i = 0; i < to_inherit_num; i++)
4755 if (to_inherit[i].regno == regno)
4756 return;
4757 lra_assert (to_inherit_num < LRA_MAX_INSN_RELOADS);
4758 to_inherit[to_inherit_num].regno = regno;
4759 to_inherit[to_inherit_num++].insns = insns;
4762 /* Return the last non-debug insn in basic block BB, or the block begin
4763 note if none. */
4764 static rtx
4765 get_last_insertion_point (basic_block bb)
4767 rtx insn;
4769 FOR_BB_INSNS_REVERSE (bb, insn)
4770 if (NONDEBUG_INSN_P (insn) || NOTE_INSN_BASIC_BLOCK_P (insn))
4771 return insn;
4772 gcc_unreachable ();
4775 /* Set up RES by registers living on edges FROM except the edge (FROM,
4776 TO) or by registers set up in a jump insn in BB FROM. */
4777 static void
4778 get_live_on_other_edges (basic_block from, basic_block to, bitmap res)
4780 rtx last;
4781 struct lra_insn_reg *reg;
4782 edge e;
4783 edge_iterator ei;
4785 lra_assert (to != NULL);
4786 bitmap_clear (res);
4787 FOR_EACH_EDGE (e, ei, from->succs)
4788 if (e->dest != to)
4789 bitmap_ior_into (res, df_get_live_in (e->dest));
4790 last = get_last_insertion_point (from);
4791 if (! JUMP_P (last))
4792 return;
4793 curr_id = lra_get_insn_recog_data (last);
4794 for (reg = curr_id->regs; reg != NULL; reg = reg->next)
4795 if (reg->type != OP_IN)
4796 bitmap_set_bit (res, reg->regno);
4799 /* Used as a temporary results of some bitmap calculations. */
4800 static bitmap_head temp_bitmap;
4802 /* Do inheritance/split transformations in EBB starting with HEAD and
4803 finishing on TAIL. We process EBB insns in the reverse order.
4804 Return true if we did any inheritance/split transformation in the
4805 EBB.
4807 We should avoid excessive splitting which results in worse code
4808 because of inaccurate cost calculations for spilling new split
4809 pseudos in such case. To achieve this we do splitting only if
4810 register pressure is high in given basic block and there are reload
4811 pseudos requiring hard registers. We could do more register
4812 pressure calculations at any given program point to avoid necessary
4813 splitting even more but it is to expensive and the current approach
4814 works well enough. */
4815 static bool
4816 inherit_in_ebb (rtx head, rtx tail)
4818 int i, src_regno, dst_regno, nregs;
4819 bool change_p, succ_p;
4820 rtx prev_insn, next_usage_insns, set, last_insn;
4821 enum reg_class cl;
4822 struct lra_insn_reg *reg;
4823 basic_block last_processed_bb, curr_bb = NULL;
4824 HARD_REG_SET potential_reload_hard_regs, live_hard_regs;
4825 bitmap to_process;
4826 unsigned int j;
4827 bitmap_iterator bi;
4828 bool head_p, after_p;
4830 change_p = false;
4831 curr_usage_insns_check++;
4832 reloads_num = calls_num = 0;
4833 bitmap_clear (&check_only_regs);
4834 last_processed_bb = NULL;
4835 CLEAR_HARD_REG_SET (potential_reload_hard_regs);
4836 CLEAR_HARD_REG_SET (live_hard_regs);
4837 /* We don't process new insns generated in the loop. */
4838 for (curr_insn = tail; curr_insn != PREV_INSN (head); curr_insn = prev_insn)
4840 prev_insn = PREV_INSN (curr_insn);
4841 if (BLOCK_FOR_INSN (curr_insn) != NULL)
4842 curr_bb = BLOCK_FOR_INSN (curr_insn);
4843 if (last_processed_bb != curr_bb)
4845 /* We are at the end of BB. Add qualified living
4846 pseudos for potential splitting. */
4847 to_process = df_get_live_out (curr_bb);
4848 if (last_processed_bb != NULL)
4850 /* We are somewhere in the middle of EBB. */
4851 get_live_on_other_edges (curr_bb, last_processed_bb,
4852 &temp_bitmap);
4853 to_process = &temp_bitmap;
4855 last_processed_bb = curr_bb;
4856 last_insn = get_last_insertion_point (curr_bb);
4857 after_p = (! JUMP_P (last_insn)
4858 && (! CALL_P (last_insn)
4859 || (find_reg_note (last_insn,
4860 REG_NORETURN, NULL_RTX) == NULL_RTX
4861 && ! SIBLING_CALL_P (last_insn))));
4862 REG_SET_TO_HARD_REG_SET (live_hard_regs, df_get_live_out (curr_bb));
4863 IOR_HARD_REG_SET (live_hard_regs, eliminable_regset);
4864 IOR_HARD_REG_SET (live_hard_regs, lra_no_alloc_regs);
4865 CLEAR_HARD_REG_SET (potential_reload_hard_regs);
4866 EXECUTE_IF_SET_IN_BITMAP (to_process, 0, j, bi)
4868 if ((int) j >= lra_constraint_new_regno_start)
4869 break;
4870 if (j < FIRST_PSEUDO_REGISTER || reg_renumber[j] >= 0)
4872 if (j < FIRST_PSEUDO_REGISTER)
4873 SET_HARD_REG_BIT (live_hard_regs, j);
4874 else
4875 add_to_hard_reg_set (&live_hard_regs,
4876 PSEUDO_REGNO_MODE (j),
4877 reg_renumber[j]);
4878 setup_next_usage_insn (j, last_insn, reloads_num, after_p);
4882 src_regno = dst_regno = -1;
4883 if (NONDEBUG_INSN_P (curr_insn)
4884 && (set = single_set (curr_insn)) != NULL_RTX
4885 && REG_P (SET_DEST (set)) && REG_P (SET_SRC (set)))
4887 src_regno = REGNO (SET_SRC (set));
4888 dst_regno = REGNO (SET_DEST (set));
4890 if (src_regno < lra_constraint_new_regno_start
4891 && src_regno >= FIRST_PSEUDO_REGISTER
4892 && reg_renumber[src_regno] < 0
4893 && dst_regno >= lra_constraint_new_regno_start
4894 && (cl = lra_get_allocno_class (dst_regno)) != NO_REGS)
4896 /* 'reload_pseudo <- original_pseudo'. */
4897 reloads_num++;
4898 succ_p = false;
4899 if (usage_insns[src_regno].check == curr_usage_insns_check
4900 && (next_usage_insns = usage_insns[src_regno].insns) != NULL_RTX)
4901 succ_p = inherit_reload_reg (false, src_regno, cl,
4902 curr_insn, next_usage_insns);
4903 if (succ_p)
4904 change_p = true;
4905 else
4906 setup_next_usage_insn (src_regno, curr_insn, reloads_num, false);
4907 if (hard_reg_set_subset_p (reg_class_contents[cl], live_hard_regs))
4908 IOR_HARD_REG_SET (potential_reload_hard_regs,
4909 reg_class_contents[cl]);
4911 else if (src_regno >= lra_constraint_new_regno_start
4912 && dst_regno < lra_constraint_new_regno_start
4913 && dst_regno >= FIRST_PSEUDO_REGISTER
4914 && reg_renumber[dst_regno] < 0
4915 && (cl = lra_get_allocno_class (src_regno)) != NO_REGS
4916 && usage_insns[dst_regno].check == curr_usage_insns_check
4917 && (next_usage_insns
4918 = usage_insns[dst_regno].insns) != NULL_RTX)
4920 reloads_num++;
4921 /* 'original_pseudo <- reload_pseudo'. */
4922 if (! JUMP_P (curr_insn)
4923 && inherit_reload_reg (true, dst_regno, cl,
4924 curr_insn, next_usage_insns))
4925 change_p = true;
4926 /* Invalidate. */
4927 usage_insns[dst_regno].check = 0;
4928 if (hard_reg_set_subset_p (reg_class_contents[cl], live_hard_regs))
4929 IOR_HARD_REG_SET (potential_reload_hard_regs,
4930 reg_class_contents[cl]);
4932 else if (INSN_P (curr_insn))
4934 int iter;
4935 int max_uid = get_max_uid ();
4937 curr_id = lra_get_insn_recog_data (curr_insn);
4938 curr_static_id = curr_id->insn_static_data;
4939 to_inherit_num = 0;
4940 /* Process insn definitions. */
4941 for (iter = 0; iter < 2; iter++)
4942 for (reg = iter == 0 ? curr_id->regs : curr_static_id->hard_regs;
4943 reg != NULL;
4944 reg = reg->next)
4945 if (reg->type != OP_IN
4946 && (dst_regno = reg->regno) < lra_constraint_new_regno_start)
4948 if (dst_regno >= FIRST_PSEUDO_REGISTER && reg->type == OP_OUT
4949 && reg_renumber[dst_regno] < 0 && ! reg->subreg_p
4950 && usage_insns[dst_regno].check == curr_usage_insns_check
4951 && (next_usage_insns
4952 = usage_insns[dst_regno].insns) != NULL_RTX)
4954 struct lra_insn_reg *r;
4956 for (r = curr_id->regs; r != NULL; r = r->next)
4957 if (r->type != OP_OUT && r->regno == dst_regno)
4958 break;
4959 /* Don't do inheritance if the pseudo is also
4960 used in the insn. */
4961 if (r == NULL)
4962 /* We can not do inheritance right now
4963 because the current insn reg info (chain
4964 regs) can change after that. */
4965 add_to_inherit (dst_regno, next_usage_insns);
4967 /* We can not process one reg twice here because of
4968 usage_insns invalidation. */
4969 if ((dst_regno < FIRST_PSEUDO_REGISTER
4970 || reg_renumber[dst_regno] >= 0)
4971 && ! reg->subreg_p && reg->type != OP_IN)
4973 HARD_REG_SET s;
4975 if (split_if_necessary (dst_regno, reg->biggest_mode,
4976 potential_reload_hard_regs,
4977 false, curr_insn, max_uid))
4978 change_p = true;
4979 CLEAR_HARD_REG_SET (s);
4980 if (dst_regno < FIRST_PSEUDO_REGISTER)
4981 add_to_hard_reg_set (&s, reg->biggest_mode, dst_regno);
4982 else
4983 add_to_hard_reg_set (&s, PSEUDO_REGNO_MODE (dst_regno),
4984 reg_renumber[dst_regno]);
4985 AND_COMPL_HARD_REG_SET (live_hard_regs, s);
4987 /* We should invalidate potential inheritance or
4988 splitting for the current insn usages to the next
4989 usage insns (see code below) as the output pseudo
4990 prevents this. */
4991 if ((dst_regno >= FIRST_PSEUDO_REGISTER
4992 && reg_renumber[dst_regno] < 0)
4993 || (reg->type == OP_OUT && ! reg->subreg_p
4994 && (dst_regno < FIRST_PSEUDO_REGISTER
4995 || reg_renumber[dst_regno] >= 0)))
4997 /* Invalidate and mark definitions. */
4998 if (dst_regno >= FIRST_PSEUDO_REGISTER)
4999 usage_insns[dst_regno].check = -(int) INSN_UID (curr_insn);
5000 else
5002 nregs = hard_regno_nregs[dst_regno][reg->biggest_mode];
5003 for (i = 0; i < nregs; i++)
5004 usage_insns[dst_regno + i].check
5005 = -(int) INSN_UID (curr_insn);
5009 if (! JUMP_P (curr_insn))
5010 for (i = 0; i < to_inherit_num; i++)
5011 if (inherit_reload_reg (true, to_inherit[i].regno,
5012 ALL_REGS, curr_insn,
5013 to_inherit[i].insns))
5014 change_p = true;
5015 if (CALL_P (curr_insn))
5017 rtx cheap, pat, dest, restore;
5018 int regno, hard_regno;
5020 calls_num++;
5021 if ((cheap = find_reg_note (curr_insn,
5022 REG_RETURNED, NULL_RTX)) != NULL_RTX
5023 && ((cheap = XEXP (cheap, 0)), true)
5024 && (regno = REGNO (cheap)) >= FIRST_PSEUDO_REGISTER
5025 && (hard_regno = reg_renumber[regno]) >= 0
5026 /* If there are pending saves/restores, the
5027 optimization is not worth. */
5028 && usage_insns[regno].calls_num == calls_num - 1
5029 && TEST_HARD_REG_BIT (call_used_reg_set, hard_regno))
5031 /* Restore the pseudo from the call result as
5032 REG_RETURNED note says that the pseudo value is
5033 in the call result and the pseudo is an argument
5034 of the call. */
5035 pat = PATTERN (curr_insn);
5036 if (GET_CODE (pat) == PARALLEL)
5037 pat = XVECEXP (pat, 0, 0);
5038 dest = SET_DEST (pat);
5039 start_sequence ();
5040 emit_move_insn (cheap, copy_rtx (dest));
5041 restore = get_insns ();
5042 end_sequence ();
5043 lra_process_new_insns (curr_insn, NULL, restore,
5044 "Inserting call parameter restore");
5045 /* We don't need to save/restore of the pseudo from
5046 this call. */
5047 usage_insns[regno].calls_num = calls_num;
5048 bitmap_set_bit (&check_only_regs, regno);
5051 to_inherit_num = 0;
5052 /* Process insn usages. */
5053 for (iter = 0; iter < 2; iter++)
5054 for (reg = iter == 0 ? curr_id->regs : curr_static_id->hard_regs;
5055 reg != NULL;
5056 reg = reg->next)
5057 if ((reg->type != OP_OUT
5058 || (reg->type == OP_OUT && reg->subreg_p))
5059 && (src_regno = reg->regno) < lra_constraint_new_regno_start)
5061 if (src_regno >= FIRST_PSEUDO_REGISTER
5062 && reg_renumber[src_regno] < 0 && reg->type == OP_IN)
5064 if (usage_insns[src_regno].check == curr_usage_insns_check
5065 && (next_usage_insns
5066 = usage_insns[src_regno].insns) != NULL_RTX
5067 && NONDEBUG_INSN_P (curr_insn))
5068 add_to_inherit (src_regno, next_usage_insns);
5069 else if (usage_insns[src_regno].check
5070 != -(int) INSN_UID (curr_insn))
5071 /* Add usages but only if the reg is not set up
5072 in the same insn. */
5073 add_next_usage_insn (src_regno, curr_insn, reloads_num);
5075 else if (src_regno < FIRST_PSEUDO_REGISTER
5076 || reg_renumber[src_regno] >= 0)
5078 bool before_p;
5079 rtx use_insn = curr_insn;
5081 before_p = (JUMP_P (curr_insn)
5082 || (CALL_P (curr_insn) && reg->type == OP_IN));
5083 if (NONDEBUG_INSN_P (curr_insn)
5084 && split_if_necessary (src_regno, reg->biggest_mode,
5085 potential_reload_hard_regs,
5086 before_p, curr_insn, max_uid))
5088 if (reg->subreg_p)
5089 lra_risky_transformations_p = true;
5090 change_p = true;
5091 /* Invalidate. */
5092 usage_insns[src_regno].check = 0;
5093 if (before_p)
5094 use_insn = PREV_INSN (curr_insn);
5096 if (NONDEBUG_INSN_P (curr_insn))
5098 if (src_regno < FIRST_PSEUDO_REGISTER)
5099 add_to_hard_reg_set (&live_hard_regs,
5100 reg->biggest_mode, src_regno);
5101 else
5102 add_to_hard_reg_set (&live_hard_regs,
5103 PSEUDO_REGNO_MODE (src_regno),
5104 reg_renumber[src_regno]);
5106 add_next_usage_insn (src_regno, use_insn, reloads_num);
5109 for (i = 0; i < to_inherit_num; i++)
5111 src_regno = to_inherit[i].regno;
5112 if (inherit_reload_reg (false, src_regno, ALL_REGS,
5113 curr_insn, to_inherit[i].insns))
5114 change_p = true;
5115 else
5116 setup_next_usage_insn (src_regno, curr_insn, reloads_num, false);
5119 /* We reached the start of the current basic block. */
5120 if (prev_insn == NULL_RTX || prev_insn == PREV_INSN (head)
5121 || BLOCK_FOR_INSN (prev_insn) != curr_bb)
5123 /* We reached the beginning of the current block -- do
5124 rest of spliting in the current BB. */
5125 to_process = df_get_live_in (curr_bb);
5126 if (BLOCK_FOR_INSN (head) != curr_bb)
5128 /* We are somewhere in the middle of EBB. */
5129 get_live_on_other_edges (EDGE_PRED (curr_bb, 0)->src,
5130 curr_bb, &temp_bitmap);
5131 to_process = &temp_bitmap;
5133 head_p = true;
5134 EXECUTE_IF_SET_IN_BITMAP (to_process, 0, j, bi)
5136 if ((int) j >= lra_constraint_new_regno_start)
5137 break;
5138 if (((int) j < FIRST_PSEUDO_REGISTER || reg_renumber[j] >= 0)
5139 && usage_insns[j].check == curr_usage_insns_check
5140 && (next_usage_insns = usage_insns[j].insns) != NULL_RTX)
5142 if (need_for_split_p (potential_reload_hard_regs, j))
5144 if (lra_dump_file != NULL && head_p)
5146 fprintf (lra_dump_file,
5147 " ----------------------------------\n");
5148 head_p = false;
5150 if (split_reg (false, j, bb_note (curr_bb),
5151 next_usage_insns))
5152 change_p = true;
5154 usage_insns[j].check = 0;
5159 return change_p;
5162 /* This value affects EBB forming. If probability of edge from EBB to
5163 a BB is not greater than the following value, we don't add the BB
5164 to EBB. */
5165 #define EBB_PROBABILITY_CUTOFF ((REG_BR_PROB_BASE * 50) / 100)
5167 /* Current number of inheritance/split iteration. */
5168 int lra_inheritance_iter;
5170 /* Entry function for inheritance/split pass. */
5171 void
5172 lra_inheritance (void)
5174 int i;
5175 basic_block bb, start_bb;
5176 edge e;
5178 lra_inheritance_iter++;
5179 if (lra_inheritance_iter > LRA_MAX_INHERITANCE_PASSES)
5180 return;
5181 timevar_push (TV_LRA_INHERITANCE);
5182 if (lra_dump_file != NULL)
5183 fprintf (lra_dump_file, "\n********** Inheritance #%d: **********\n\n",
5184 lra_inheritance_iter);
5185 curr_usage_insns_check = 0;
5186 usage_insns = XNEWVEC (struct usage_insns, lra_constraint_new_regno_start);
5187 for (i = 0; i < lra_constraint_new_regno_start; i++)
5188 usage_insns[i].check = 0;
5189 bitmap_initialize (&check_only_regs, &reg_obstack);
5190 bitmap_initialize (&live_regs, &reg_obstack);
5191 bitmap_initialize (&temp_bitmap, &reg_obstack);
5192 bitmap_initialize (&ebb_global_regs, &reg_obstack);
5193 FOR_EACH_BB (bb)
5195 start_bb = bb;
5196 if (lra_dump_file != NULL)
5197 fprintf (lra_dump_file, "EBB");
5198 /* Form a EBB starting with BB. */
5199 bitmap_clear (&ebb_global_regs);
5200 bitmap_ior_into (&ebb_global_regs, df_get_live_in (bb));
5201 for (;;)
5203 if (lra_dump_file != NULL)
5204 fprintf (lra_dump_file, " %d", bb->index);
5205 if (bb->next_bb == EXIT_BLOCK_PTR || LABEL_P (BB_HEAD (bb->next_bb)))
5206 break;
5207 e = find_fallthru_edge (bb->succs);
5208 if (! e)
5209 break;
5210 if (e->probability <= EBB_PROBABILITY_CUTOFF)
5211 break;
5212 bb = bb->next_bb;
5214 bitmap_ior_into (&ebb_global_regs, df_get_live_out (bb));
5215 if (lra_dump_file != NULL)
5216 fprintf (lra_dump_file, "\n");
5217 if (inherit_in_ebb (BB_HEAD (start_bb), BB_END (bb)))
5218 /* Remember that the EBB head and tail can change in
5219 inherit_in_ebb. */
5220 update_ebb_live_info (BB_HEAD (start_bb), BB_END (bb));
5222 bitmap_clear (&ebb_global_regs);
5223 bitmap_clear (&temp_bitmap);
5224 bitmap_clear (&live_regs);
5225 bitmap_clear (&check_only_regs);
5226 free (usage_insns);
5228 timevar_pop (TV_LRA_INHERITANCE);
5233 /* This page contains code to undo failed inheritance/split
5234 transformations. */
5236 /* Current number of iteration undoing inheritance/split. */
5237 int lra_undo_inheritance_iter;
5239 /* Fix BB live info LIVE after removing pseudos created on pass doing
5240 inheritance/split which are REMOVED_PSEUDOS. */
5241 static void
5242 fix_bb_live_info (bitmap live, bitmap removed_pseudos)
5244 unsigned int regno;
5245 bitmap_iterator bi;
5247 EXECUTE_IF_SET_IN_BITMAP (removed_pseudos, 0, regno, bi)
5248 if (bitmap_clear_bit (live, regno))
5249 bitmap_set_bit (live, lra_reg_info[regno].restore_regno);
5252 /* Return regno of the (subreg of) REG. Otherwise, return a negative
5253 number. */
5254 static int
5255 get_regno (rtx reg)
5257 if (GET_CODE (reg) == SUBREG)
5258 reg = SUBREG_REG (reg);
5259 if (REG_P (reg))
5260 return REGNO (reg);
5261 return -1;
5264 /* Remove inheritance/split pseudos which are in REMOVE_PSEUDOS and
5265 return true if we did any change. The undo transformations for
5266 inheritance looks like
5267 i <- i2
5268 p <- i => p <- i2
5269 or removing
5270 p <- i, i <- p, and i <- i3
5271 where p is original pseudo from which inheritance pseudo i was
5272 created, i and i3 are removed inheritance pseudos, i2 is another
5273 not removed inheritance pseudo. All split pseudos or other
5274 occurrences of removed inheritance pseudos are changed on the
5275 corresponding original pseudos.
5277 The function also schedules insns changed and created during
5278 inheritance/split pass for processing by the subsequent constraint
5279 pass. */
5280 static bool
5281 remove_inheritance_pseudos (bitmap remove_pseudos)
5283 basic_block bb;
5284 int regno, sregno, prev_sregno, dregno, restore_regno;
5285 rtx set, prev_set, prev_insn;
5286 bool change_p, done_p;
5288 change_p = ! bitmap_empty_p (remove_pseudos);
5289 /* We can not finish the function right away if CHANGE_P is true
5290 because we need to marks insns affected by previous
5291 inheritance/split pass for processing by the subsequent
5292 constraint pass. */
5293 FOR_EACH_BB (bb)
5295 fix_bb_live_info (df_get_live_in (bb), remove_pseudos);
5296 fix_bb_live_info (df_get_live_out (bb), remove_pseudos);
5297 FOR_BB_INSNS_REVERSE (bb, curr_insn)
5299 if (! INSN_P (curr_insn))
5300 continue;
5301 done_p = false;
5302 sregno = dregno = -1;
5303 if (change_p && NONDEBUG_INSN_P (curr_insn)
5304 && (set = single_set (curr_insn)) != NULL_RTX)
5306 dregno = get_regno (SET_DEST (set));
5307 sregno = get_regno (SET_SRC (set));
5310 if (sregno >= 0 && dregno >= 0)
5312 if ((bitmap_bit_p (remove_pseudos, sregno)
5313 && (lra_reg_info[sregno].restore_regno == dregno
5314 || (bitmap_bit_p (remove_pseudos, dregno)
5315 && (lra_reg_info[sregno].restore_regno
5316 == lra_reg_info[dregno].restore_regno))))
5317 || (bitmap_bit_p (remove_pseudos, dregno)
5318 && lra_reg_info[dregno].restore_regno == sregno))
5319 /* One of the following cases:
5320 original <- removed inheritance pseudo
5321 removed inherit pseudo <- another removed inherit pseudo
5322 removed inherit pseudo <- original pseudo
5324 removed_split_pseudo <- original_reg
5325 original_reg <- removed_split_pseudo */
5327 if (lra_dump_file != NULL)
5329 fprintf (lra_dump_file, " Removing %s:\n",
5330 bitmap_bit_p (&lra_split_regs, sregno)
5331 || bitmap_bit_p (&lra_split_regs, dregno)
5332 ? "split" : "inheritance");
5333 dump_insn_slim (lra_dump_file, curr_insn);
5335 lra_set_insn_deleted (curr_insn);
5336 done_p = true;
5338 else if (bitmap_bit_p (remove_pseudos, sregno)
5339 && bitmap_bit_p (&lra_inheritance_pseudos, sregno))
5341 /* Search the following pattern:
5342 inherit_or_split_pseudo1 <- inherit_or_split_pseudo2
5343 original_pseudo <- inherit_or_split_pseudo1
5344 where the 2nd insn is the current insn and
5345 inherit_or_split_pseudo2 is not removed. If it is found,
5346 change the current insn onto:
5347 original_pseudo <- inherit_or_split_pseudo2. */
5348 for (prev_insn = PREV_INSN (curr_insn);
5349 prev_insn != NULL_RTX && ! NONDEBUG_INSN_P (prev_insn);
5350 prev_insn = PREV_INSN (prev_insn))
5352 if (prev_insn != NULL_RTX && BLOCK_FOR_INSN (prev_insn) == bb
5353 && (prev_set = single_set (prev_insn)) != NULL_RTX
5354 /* There should be no subregs in insn we are
5355 searching because only the original reg might
5356 be in subreg when we changed the mode of
5357 load/store for splitting. */
5358 && REG_P (SET_DEST (prev_set))
5359 && REG_P (SET_SRC (prev_set))
5360 && (int) REGNO (SET_DEST (prev_set)) == sregno
5361 && ((prev_sregno = REGNO (SET_SRC (prev_set)))
5362 >= FIRST_PSEUDO_REGISTER)
5363 /* As we consider chain of inheritance or
5364 splitting described in above comment we should
5365 check that sregno and prev_sregno were
5366 inheritance/split pseudos created from the
5367 same original regno. */
5368 && (lra_reg_info[sregno].restore_regno
5369 == lra_reg_info[prev_sregno].restore_regno)
5370 && ! bitmap_bit_p (remove_pseudos, prev_sregno))
5372 lra_assert (GET_MODE (SET_SRC (prev_set))
5373 == GET_MODE (regno_reg_rtx[sregno]));
5374 if (GET_CODE (SET_SRC (set)) == SUBREG)
5375 SUBREG_REG (SET_SRC (set)) = SET_SRC (prev_set);
5376 else
5377 SET_SRC (set) = SET_SRC (prev_set);
5378 lra_push_insn_and_update_insn_regno_info (curr_insn);
5379 lra_set_used_insn_alternative_by_uid
5380 (INSN_UID (curr_insn), -1);
5381 done_p = true;
5382 if (lra_dump_file != NULL)
5384 fprintf (lra_dump_file, " Change reload insn:\n");
5385 dump_insn_slim (lra_dump_file, curr_insn);
5390 if (! done_p)
5392 struct lra_insn_reg *reg;
5393 bool restored_regs_p = false;
5394 bool kept_regs_p = false;
5396 curr_id = lra_get_insn_recog_data (curr_insn);
5397 for (reg = curr_id->regs; reg != NULL; reg = reg->next)
5399 regno = reg->regno;
5400 restore_regno = lra_reg_info[regno].restore_regno;
5401 if (restore_regno >= 0)
5403 if (change_p && bitmap_bit_p (remove_pseudos, regno))
5405 substitute_pseudo (&curr_insn, regno,
5406 regno_reg_rtx[restore_regno]);
5407 restored_regs_p = true;
5409 else
5410 kept_regs_p = true;
5413 if (NONDEBUG_INSN_P (curr_insn) && kept_regs_p)
5415 /* The instruction has changed since the previous
5416 constraints pass. */
5417 lra_push_insn_and_update_insn_regno_info (curr_insn);
5418 lra_set_used_insn_alternative_by_uid
5419 (INSN_UID (curr_insn), -1);
5421 else if (restored_regs_p)
5422 /* The instruction has been restored to the form that
5423 it had during the previous constraints pass. */
5424 lra_update_insn_regno_info (curr_insn);
5425 if (restored_regs_p && lra_dump_file != NULL)
5427 fprintf (lra_dump_file, " Insn after restoring regs:\n");
5428 dump_insn_slim (lra_dump_file, curr_insn);
5433 return change_p;
5436 /* If optional reload pseudos failed to get a hard register or was not
5437 inherited, it is better to remove optional reloads. We do this
5438 transformation after undoing inheritance to figure out necessity to
5439 remove optional reloads easier. Return true if we do any
5440 change. */
5441 static bool
5442 undo_optional_reloads (void)
5444 bool change_p;
5445 unsigned int regno, uid;
5446 bitmap_iterator bi, bi2;
5447 rtx insn, set, src, dest;
5448 bitmap_head removed_optional_reload_pseudos, insn_bitmap;
5450 bitmap_initialize (&removed_optional_reload_pseudos, &reg_obstack);
5451 bitmap_copy (&removed_optional_reload_pseudos, &lra_optional_reload_pseudos);
5452 EXECUTE_IF_SET_IN_BITMAP (&lra_optional_reload_pseudos, 0, regno, bi)
5453 if (reg_renumber[regno] >= 0)
5454 EXECUTE_IF_SET_IN_BITMAP (&lra_reg_info[regno].insn_bitmap, 0, uid, bi2)
5456 insn = lra_insn_recog_data[uid]->insn;
5457 if ((set = single_set (insn)) == NULL_RTX)
5458 continue;
5459 src = SET_SRC (set);
5460 dest = SET_DEST (set);
5461 if (! REG_P (src) || ! REG_P (dest))
5462 continue;
5463 if ((REGNO (src) == regno
5464 && lra_reg_info[regno].restore_regno != (int) REGNO (dest))
5465 || (REGNO (dest) == regno
5466 && lra_reg_info[regno].restore_regno != (int) REGNO (src)))
5468 /* Optional reload was inherited. Keep it. */
5469 bitmap_clear_bit (&removed_optional_reload_pseudos, regno);
5470 if (lra_dump_file != NULL)
5471 fprintf (lra_dump_file, "Keep optional reload reg %d\n", regno);
5474 change_p = ! bitmap_empty_p (&removed_optional_reload_pseudos);
5475 bitmap_initialize (&insn_bitmap, &reg_obstack);
5476 EXECUTE_IF_SET_IN_BITMAP (&removed_optional_reload_pseudos, 0, regno, bi)
5478 if (lra_dump_file != NULL)
5479 fprintf (lra_dump_file, "Remove optional reload reg %d\n", regno);
5480 bitmap_copy (&insn_bitmap, &lra_reg_info[regno].insn_bitmap);
5481 EXECUTE_IF_SET_IN_BITMAP (&insn_bitmap, 0, uid, bi2)
5483 insn = lra_insn_recog_data[uid]->insn;
5484 if ((set = single_set (insn)) != NULL_RTX)
5486 src = SET_SRC (set);
5487 dest = SET_DEST (set);
5488 if (REG_P (src) && REG_P (dest)
5489 && ((REGNO (src) == regno
5490 && (lra_reg_info[regno].restore_regno
5491 == (int) REGNO (dest)))
5492 || (REGNO (dest) == regno
5493 && (lra_reg_info[regno].restore_regno
5494 == (int) REGNO (src)))))
5496 if (lra_dump_file != NULL)
5498 fprintf (lra_dump_file, " Deleting move %u\n",
5499 INSN_UID (insn));
5500 dump_insn_slim (lra_dump_file, insn);
5502 lra_set_insn_deleted (insn);
5503 continue;
5505 /* We should not worry about generation memory-memory
5506 moves here as if the corresponding inheritance did
5507 not work (inheritance pseudo did not get a hard reg),
5508 we remove the inheritance pseudo and the optional
5509 reload. */
5511 substitute_pseudo (&insn, regno,
5512 regno_reg_rtx[lra_reg_info[regno].restore_regno]);
5513 lra_update_insn_regno_info (insn);
5514 if (lra_dump_file != NULL)
5516 fprintf (lra_dump_file,
5517 " Restoring original insn:\n");
5518 dump_insn_slim (lra_dump_file, insn);
5522 /* Clear restore_regnos. */
5523 EXECUTE_IF_SET_IN_BITMAP (&lra_optional_reload_pseudos, 0, regno, bi)
5524 lra_reg_info[regno].restore_regno = -1;
5525 bitmap_clear (&insn_bitmap);
5526 bitmap_clear (&removed_optional_reload_pseudos);
5527 return change_p;
5530 /* Entry function for undoing inheritance/split transformation. Return true
5531 if we did any RTL change in this pass. */
5532 bool
5533 lra_undo_inheritance (void)
5535 unsigned int regno;
5536 int restore_regno, hard_regno;
5537 int n_all_inherit, n_inherit, n_all_split, n_split;
5538 bitmap_head remove_pseudos;
5539 bitmap_iterator bi;
5540 bool change_p;
5542 lra_undo_inheritance_iter++;
5543 if (lra_undo_inheritance_iter > LRA_MAX_INHERITANCE_PASSES)
5544 return false;
5545 if (lra_dump_file != NULL)
5546 fprintf (lra_dump_file,
5547 "\n********** Undoing inheritance #%d: **********\n\n",
5548 lra_undo_inheritance_iter);
5549 bitmap_initialize (&remove_pseudos, &reg_obstack);
5550 n_inherit = n_all_inherit = 0;
5551 EXECUTE_IF_SET_IN_BITMAP (&lra_inheritance_pseudos, 0, regno, bi)
5552 if (lra_reg_info[regno].restore_regno >= 0)
5554 n_all_inherit++;
5555 if (reg_renumber[regno] < 0)
5556 bitmap_set_bit (&remove_pseudos, regno);
5557 else
5558 n_inherit++;
5560 if (lra_dump_file != NULL && n_all_inherit != 0)
5561 fprintf (lra_dump_file, "Inherit %d out of %d (%.2f%%)\n",
5562 n_inherit, n_all_inherit,
5563 (double) n_inherit / n_all_inherit * 100);
5564 n_split = n_all_split = 0;
5565 EXECUTE_IF_SET_IN_BITMAP (&lra_split_regs, 0, regno, bi)
5566 if ((restore_regno = lra_reg_info[regno].restore_regno) >= 0)
5568 n_all_split++;
5569 hard_regno = (restore_regno >= FIRST_PSEUDO_REGISTER
5570 ? reg_renumber[restore_regno] : restore_regno);
5571 if (hard_regno < 0 || reg_renumber[regno] == hard_regno)
5572 bitmap_set_bit (&remove_pseudos, regno);
5573 else
5575 n_split++;
5576 if (lra_dump_file != NULL)
5577 fprintf (lra_dump_file, " Keep split r%d (orig=r%d)\n",
5578 regno, restore_regno);
5581 if (lra_dump_file != NULL && n_all_split != 0)
5582 fprintf (lra_dump_file, "Split %d out of %d (%.2f%%)\n",
5583 n_split, n_all_split,
5584 (double) n_split / n_all_split * 100);
5585 change_p = remove_inheritance_pseudos (&remove_pseudos);
5586 bitmap_clear (&remove_pseudos);
5587 /* Clear restore_regnos. */
5588 EXECUTE_IF_SET_IN_BITMAP (&lra_inheritance_pseudos, 0, regno, bi)
5589 lra_reg_info[regno].restore_regno = -1;
5590 EXECUTE_IF_SET_IN_BITMAP (&lra_split_regs, 0, regno, bi)
5591 lra_reg_info[regno].restore_regno = -1;
5592 change_p = undo_optional_reloads () || change_p;
5593 return change_p;