Fix PR 93568 (thinko)
[official-gcc.git] / gcc / tree-vectorizer.h
blobf7becb34ab41c645e5e76065377d78f2af39a09a
1 /* Vectorizer
2 Copyright (C) 2003-2020 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #ifndef GCC_TREE_VECTORIZER_H
22 #define GCC_TREE_VECTORIZER_H
24 typedef class _stmt_vec_info *stmt_vec_info;
26 #include "tree-data-ref.h"
27 #include "tree-hash-traits.h"
28 #include "target.h"
29 #include <utility>
31 /* Used for naming of new temporaries. */
32 enum vect_var_kind {
33 vect_simple_var,
34 vect_pointer_var,
35 vect_scalar_var,
36 vect_mask_var
39 /* Defines type of operation. */
40 enum operation_type {
41 unary_op = 1,
42 binary_op,
43 ternary_op
46 /* Define type of available alignment support. */
47 enum dr_alignment_support {
48 dr_unaligned_unsupported,
49 dr_unaligned_supported,
50 dr_explicit_realign,
51 dr_explicit_realign_optimized,
52 dr_aligned
55 /* Define type of def-use cross-iteration cycle. */
56 enum vect_def_type {
57 vect_uninitialized_def = 0,
58 vect_constant_def = 1,
59 vect_external_def,
60 vect_internal_def,
61 vect_induction_def,
62 vect_reduction_def,
63 vect_double_reduction_def,
64 vect_nested_cycle,
65 vect_unknown_def_type
68 /* Define type of reduction. */
69 enum vect_reduction_type {
70 TREE_CODE_REDUCTION,
71 COND_REDUCTION,
72 INTEGER_INDUC_COND_REDUCTION,
73 CONST_COND_REDUCTION,
75 /* Retain a scalar phi and use a FOLD_EXTRACT_LAST within the loop
76 to implement:
78 for (int i = 0; i < VF; ++i)
79 res = cond[i] ? val[i] : res; */
80 EXTRACT_LAST_REDUCTION,
82 /* Use a folding reduction within the loop to implement:
84 for (int i = 0; i < VF; ++i)
85 res = res OP val[i];
87 (with no reassocation). */
88 FOLD_LEFT_REDUCTION
91 #define VECTORIZABLE_CYCLE_DEF(D) (((D) == vect_reduction_def) \
92 || ((D) == vect_double_reduction_def) \
93 || ((D) == vect_nested_cycle))
95 /* Structure to encapsulate information about a group of like
96 instructions to be presented to the target cost model. */
97 struct stmt_info_for_cost {
98 int count;
99 enum vect_cost_for_stmt kind;
100 enum vect_cost_model_location where;
101 stmt_vec_info stmt_info;
102 int misalign;
105 typedef vec<stmt_info_for_cost> stmt_vector_for_cost;
107 /* Maps base addresses to an innermost_loop_behavior that gives the maximum
108 known alignment for that base. */
109 typedef hash_map<tree_operand_hash,
110 innermost_loop_behavior *> vec_base_alignments;
112 /************************************************************************
114 ************************************************************************/
115 typedef struct _slp_tree *slp_tree;
117 /* A computation tree of an SLP instance. Each node corresponds to a group of
118 stmts to be packed in a SIMD stmt. */
119 struct _slp_tree {
120 /* Nodes that contain def-stmts of this node statements operands. */
121 vec<slp_tree> children;
122 /* A group of scalar stmts to be vectorized together. */
123 vec<stmt_vec_info> stmts;
124 /* A group of scalar operands to be vectorized together. */
125 vec<tree> ops;
126 /* Load permutation relative to the stores, NULL if there is no
127 permutation. */
128 vec<unsigned> load_permutation;
129 /* Vectorized stmt/s. */
130 vec<stmt_vec_info> vec_stmts;
131 /* Number of vector stmts that are created to replace the group of scalar
132 stmts. It is calculated during the transformation phase as the number of
133 scalar elements in one scalar iteration (GROUP_SIZE) multiplied by VF
134 divided by vector size. */
135 unsigned int vec_stmts_size;
136 /* Reference count in the SLP graph. */
137 unsigned int refcnt;
138 /* The maximum number of vector elements for the subtree rooted
139 at this node. */
140 poly_uint64 max_nunits;
141 /* Whether the scalar computations use two different operators. */
142 bool two_operators;
143 /* The DEF type of this node. */
144 enum vect_def_type def_type;
148 /* SLP instance is a sequence of stmts in a loop that can be packed into
149 SIMD stmts. */
150 typedef class _slp_instance {
151 public:
152 /* The root of SLP tree. */
153 slp_tree root;
155 /* For vector constructors, the constructor stmt that the SLP tree is built
156 from, NULL otherwise. */
157 stmt_vec_info root_stmt;
159 /* Size of groups of scalar stmts that will be replaced by SIMD stmt/s. */
160 unsigned int group_size;
162 /* The unrolling factor required to vectorized this SLP instance. */
163 poly_uint64 unrolling_factor;
165 /* The group of nodes that contain loads of this SLP instance. */
166 vec<slp_tree> loads;
168 /* The SLP node containing the reduction PHIs. */
169 slp_tree reduc_phis;
170 } *slp_instance;
173 /* Access Functions. */
174 #define SLP_INSTANCE_TREE(S) (S)->root
175 #define SLP_INSTANCE_GROUP_SIZE(S) (S)->group_size
176 #define SLP_INSTANCE_UNROLLING_FACTOR(S) (S)->unrolling_factor
177 #define SLP_INSTANCE_LOADS(S) (S)->loads
178 #define SLP_INSTANCE_ROOT_STMT(S) (S)->root_stmt
180 #define SLP_TREE_CHILDREN(S) (S)->children
181 #define SLP_TREE_SCALAR_STMTS(S) (S)->stmts
182 #define SLP_TREE_SCALAR_OPS(S) (S)->ops
183 #define SLP_TREE_VEC_STMTS(S) (S)->vec_stmts
184 #define SLP_TREE_NUMBER_OF_VEC_STMTS(S) (S)->vec_stmts_size
185 #define SLP_TREE_LOAD_PERMUTATION(S) (S)->load_permutation
186 #define SLP_TREE_TWO_OPERATORS(S) (S)->two_operators
187 #define SLP_TREE_DEF_TYPE(S) (S)->def_type
189 /* Key for map that records association between
190 scalar conditions and corresponding loop mask, and
191 is populated by vect_record_loop_mask. */
193 struct scalar_cond_masked_key
195 scalar_cond_masked_key (tree t, unsigned ncopies_)
196 : ncopies (ncopies_)
198 get_cond_ops_from_tree (t);
201 void get_cond_ops_from_tree (tree);
203 unsigned ncopies;
204 tree_code code;
205 tree op0;
206 tree op1;
209 template<>
210 struct default_hash_traits<scalar_cond_masked_key>
212 typedef scalar_cond_masked_key compare_type;
213 typedef scalar_cond_masked_key value_type;
215 static inline hashval_t
216 hash (value_type v)
218 inchash::hash h;
219 h.add_int (v.code);
220 inchash::add_expr (v.op0, h, 0);
221 inchash::add_expr (v.op1, h, 0);
222 h.add_int (v.ncopies);
223 return h.end ();
226 static inline bool
227 equal (value_type existing, value_type candidate)
229 return (existing.ncopies == candidate.ncopies
230 && existing.code == candidate.code
231 && operand_equal_p (existing.op0, candidate.op0, 0)
232 && operand_equal_p (existing.op1, candidate.op1, 0));
235 static const bool empty_zero_p = true;
237 static inline void
238 mark_empty (value_type &v)
240 v.ncopies = 0;
243 static inline bool
244 is_empty (value_type v)
246 return v.ncopies == 0;
249 static inline void mark_deleted (value_type &) {}
251 static inline bool is_deleted (const value_type &)
253 return false;
256 static inline void remove (value_type &) {}
259 typedef hash_set<scalar_cond_masked_key> scalar_cond_masked_set_type;
261 /* Describes two objects whose addresses must be unequal for the vectorized
262 loop to be valid. */
263 typedef std::pair<tree, tree> vec_object_pair;
265 /* Records that vectorization is only possible if abs (EXPR) >= MIN_VALUE.
266 UNSIGNED_P is true if we can assume that abs (EXPR) == EXPR. */
267 class vec_lower_bound {
268 public:
269 vec_lower_bound () {}
270 vec_lower_bound (tree e, bool u, poly_uint64 m)
271 : expr (e), unsigned_p (u), min_value (m) {}
273 tree expr;
274 bool unsigned_p;
275 poly_uint64 min_value;
278 /* Vectorizer state shared between different analyses like vector sizes
279 of the same CFG region. */
280 class vec_info_shared {
281 public:
282 vec_info_shared();
283 ~vec_info_shared();
285 void save_datarefs();
286 void check_datarefs();
288 /* All data references. Freed by free_data_refs, so not an auto_vec. */
289 vec<data_reference_p> datarefs;
290 vec<data_reference> datarefs_copy;
292 /* The loop nest in which the data dependences are computed. */
293 auto_vec<loop_p> loop_nest;
295 /* All data dependences. Freed by free_dependence_relations, so not
296 an auto_vec. */
297 vec<ddr_p> ddrs;
300 /* Vectorizer state common between loop and basic-block vectorization. */
301 class vec_info {
302 public:
303 typedef hash_set<int_hash<machine_mode, E_VOIDmode, E_BLKmode> > mode_set;
304 enum vec_kind { bb, loop };
306 vec_info (vec_kind, void *, vec_info_shared *);
307 ~vec_info ();
309 stmt_vec_info add_stmt (gimple *);
310 stmt_vec_info lookup_stmt (gimple *);
311 stmt_vec_info lookup_def (tree);
312 stmt_vec_info lookup_single_use (tree);
313 class dr_vec_info *lookup_dr (data_reference *);
314 void move_dr (stmt_vec_info, stmt_vec_info);
315 void remove_stmt (stmt_vec_info);
316 void replace_stmt (gimple_stmt_iterator *, stmt_vec_info, gimple *);
318 /* The type of vectorization. */
319 vec_kind kind;
321 /* Shared vectorizer state. */
322 vec_info_shared *shared;
324 /* The mapping of GIMPLE UID to stmt_vec_info. */
325 vec<stmt_vec_info> stmt_vec_infos;
327 /* All SLP instances. */
328 auto_vec<slp_instance> slp_instances;
330 /* Maps base addresses to an innermost_loop_behavior that gives the maximum
331 known alignment for that base. */
332 vec_base_alignments base_alignments;
334 /* All interleaving chains of stores, represented by the first
335 stmt in the chain. */
336 auto_vec<stmt_vec_info> grouped_stores;
338 /* Cost data used by the target cost model. */
339 void *target_cost_data;
341 /* The set of vector modes used in the vectorized region. */
342 mode_set used_vector_modes;
344 /* The argument we should pass to related_vector_mode when looking up
345 the vector mode for a scalar mode, or VOIDmode if we haven't yet
346 made any decisions about which vector modes to use. */
347 machine_mode vector_mode;
349 private:
350 stmt_vec_info new_stmt_vec_info (gimple *stmt);
351 void set_vinfo_for_stmt (gimple *, stmt_vec_info);
352 void free_stmt_vec_infos ();
353 void free_stmt_vec_info (stmt_vec_info);
356 class _loop_vec_info;
357 class _bb_vec_info;
359 template<>
360 template<>
361 inline bool
362 is_a_helper <_loop_vec_info *>::test (vec_info *i)
364 return i->kind == vec_info::loop;
367 template<>
368 template<>
369 inline bool
370 is_a_helper <_bb_vec_info *>::test (vec_info *i)
372 return i->kind == vec_info::bb;
376 /* In general, we can divide the vector statements in a vectorized loop
377 into related groups ("rgroups") and say that for each rgroup there is
378 some nS such that the rgroup operates on nS values from one scalar
379 iteration followed by nS values from the next. That is, if VF is the
380 vectorization factor of the loop, the rgroup operates on a sequence:
382 (1,1) (1,2) ... (1,nS) (2,1) ... (2,nS) ... (VF,1) ... (VF,nS)
384 where (i,j) represents a scalar value with index j in a scalar
385 iteration with index i.
387 [ We use the term "rgroup" to emphasise that this grouping isn't
388 necessarily the same as the grouping of statements used elsewhere.
389 For example, if we implement a group of scalar loads using gather
390 loads, we'll use a separate gather load for each scalar load, and
391 thus each gather load will belong to its own rgroup. ]
393 In general this sequence will occupy nV vectors concatenated
394 together. If these vectors have nL lanes each, the total number
395 of scalar values N is given by:
397 N = nS * VF = nV * nL
399 None of nS, VF, nV and nL are required to be a power of 2. nS and nV
400 are compile-time constants but VF and nL can be variable (if the target
401 supports variable-length vectors).
403 In classical vectorization, each iteration of the vector loop would
404 handle exactly VF iterations of the original scalar loop. However,
405 in a fully-masked loop, a particular iteration of the vector loop
406 might handle fewer than VF iterations of the scalar loop. The vector
407 lanes that correspond to iterations of the scalar loop are said to be
408 "active" and the other lanes are said to be "inactive".
410 In a fully-masked loop, many rgroups need to be masked to ensure that
411 they have no effect for the inactive lanes. Each such rgroup needs a
412 sequence of booleans in the same order as above, but with each (i,j)
413 replaced by a boolean that indicates whether iteration i is active.
414 This sequence occupies nV vector masks that again have nL lanes each.
415 Thus the mask sequence as a whole consists of VF independent booleans
416 that are each repeated nS times.
418 We make the simplifying assumption that if a sequence of nV masks is
419 suitable for one (nS,nL) pair, we can reuse it for (nS/2,nL/2) by
420 VIEW_CONVERTing it. This holds for all current targets that support
421 fully-masked loops. For example, suppose the scalar loop is:
423 float *f;
424 double *d;
425 for (int i = 0; i < n; ++i)
427 f[i * 2 + 0] += 1.0f;
428 f[i * 2 + 1] += 2.0f;
429 d[i] += 3.0;
432 and suppose that vectors have 256 bits. The vectorized f accesses
433 will belong to one rgroup and the vectorized d access to another:
435 f rgroup: nS = 2, nV = 1, nL = 8
436 d rgroup: nS = 1, nV = 1, nL = 4
437 VF = 4
439 [ In this simple example the rgroups do correspond to the normal
440 SLP grouping scheme. ]
442 If only the first three lanes are active, the masks we need are:
444 f rgroup: 1 1 | 1 1 | 1 1 | 0 0
445 d rgroup: 1 | 1 | 1 | 0
447 Here we can use a mask calculated for f's rgroup for d's, but not
448 vice versa.
450 Thus for each value of nV, it is enough to provide nV masks, with the
451 mask being calculated based on the highest nL (or, equivalently, based
452 on the highest nS) required by any rgroup with that nV. We therefore
453 represent the entire collection of masks as a two-level table, with the
454 first level being indexed by nV - 1 (since nV == 0 doesn't exist) and
455 the second being indexed by the mask index 0 <= i < nV. */
457 /* The masks needed by rgroups with nV vectors, according to the
458 description above. */
459 struct rgroup_masks {
460 /* The largest nS for all rgroups that use these masks. */
461 unsigned int max_nscalars_per_iter;
463 /* The type of mask to use, based on the highest nS recorded above. */
464 tree mask_type;
466 /* A vector of nV masks, in iteration order. */
467 vec<tree> masks;
470 typedef auto_vec<rgroup_masks> vec_loop_masks;
472 typedef auto_vec<std::pair<data_reference*, tree> > drs_init_vec;
474 /*-----------------------------------------------------------------*/
475 /* Info on vectorized loops. */
476 /*-----------------------------------------------------------------*/
477 typedef class _loop_vec_info : public vec_info {
478 public:
479 _loop_vec_info (class loop *, vec_info_shared *);
480 ~_loop_vec_info ();
482 /* The loop to which this info struct refers to. */
483 class loop *loop;
485 /* The loop basic blocks. */
486 basic_block *bbs;
488 /* Number of latch executions. */
489 tree num_itersm1;
490 /* Number of iterations. */
491 tree num_iters;
492 /* Number of iterations of the original loop. */
493 tree num_iters_unchanged;
494 /* Condition under which this loop is analyzed and versioned. */
495 tree num_iters_assumptions;
497 /* Threshold of number of iterations below which vectorization will not be
498 performed. It is calculated from MIN_PROFITABLE_ITERS and
499 param_min_vect_loop_bound. */
500 unsigned int th;
502 /* When applying loop versioning, the vector form should only be used
503 if the number of scalar iterations is >= this value, on top of all
504 the other requirements. Ignored when loop versioning is not being
505 used. */
506 poly_uint64 versioning_threshold;
508 /* Unrolling factor */
509 poly_uint64 vectorization_factor;
511 /* Maximum runtime vectorization factor, or MAX_VECTORIZATION_FACTOR
512 if there is no particular limit. */
513 unsigned HOST_WIDE_INT max_vectorization_factor;
515 /* The masks that a fully-masked loop should use to avoid operating
516 on inactive scalars. */
517 vec_loop_masks masks;
519 /* Set of scalar conditions that have loop mask applied. */
520 scalar_cond_masked_set_type scalar_cond_masked_set;
522 /* If we are using a loop mask to align memory addresses, this variable
523 contains the number of vector elements that we should skip in the
524 first iteration of the vector loop (i.e. the number of leading
525 elements that should be false in the first mask). */
526 tree mask_skip_niters;
528 /* Type of the variables to use in the WHILE_ULT call for fully-masked
529 loops. */
530 tree mask_compare_type;
532 /* For #pragma omp simd if (x) loops the x expression. If constant 0,
533 the loop should not be vectorized, if constant non-zero, simd_if_cond
534 shouldn't be set and loop vectorized normally, if SSA_NAME, the loop
535 should be versioned on that condition, using scalar loop if the condition
536 is false and vectorized loop otherwise. */
537 tree simd_if_cond;
539 /* Type of the IV to use in the WHILE_ULT call for fully-masked
540 loops. */
541 tree iv_type;
543 /* Unknown DRs according to which loop was peeled. */
544 class dr_vec_info *unaligned_dr;
546 /* peeling_for_alignment indicates whether peeling for alignment will take
547 place, and what the peeling factor should be:
548 peeling_for_alignment = X means:
549 If X=0: Peeling for alignment will not be applied.
550 If X>0: Peel first X iterations.
551 If X=-1: Generate a runtime test to calculate the number of iterations
552 to be peeled, using the dataref recorded in the field
553 unaligned_dr. */
554 int peeling_for_alignment;
556 /* The mask used to check the alignment of pointers or arrays. */
557 int ptr_mask;
559 /* Data Dependence Relations defining address ranges that are candidates
560 for a run-time aliasing check. */
561 auto_vec<ddr_p> may_alias_ddrs;
563 /* Data Dependence Relations defining address ranges together with segment
564 lengths from which the run-time aliasing check is built. */
565 auto_vec<dr_with_seg_len_pair_t> comp_alias_ddrs;
567 /* Check that the addresses of each pair of objects is unequal. */
568 auto_vec<vec_object_pair> check_unequal_addrs;
570 /* List of values that are required to be nonzero. This is used to check
571 whether things like "x[i * n] += 1;" are safe and eventually gets added
572 to the checks for lower bounds below. */
573 auto_vec<tree> check_nonzero;
575 /* List of values that need to be checked for a minimum value. */
576 auto_vec<vec_lower_bound> lower_bounds;
578 /* Statements in the loop that have data references that are candidates for a
579 runtime (loop versioning) misalignment check. */
580 auto_vec<stmt_vec_info> may_misalign_stmts;
582 /* Reduction cycles detected in the loop. Used in loop-aware SLP. */
583 auto_vec<stmt_vec_info> reductions;
585 /* All reduction chains in the loop, represented by the first
586 stmt in the chain. */
587 auto_vec<stmt_vec_info> reduction_chains;
589 /* Cost vector for a single scalar iteration. */
590 auto_vec<stmt_info_for_cost> scalar_cost_vec;
592 /* Map of IV base/step expressions to inserted name in the preheader. */
593 hash_map<tree_operand_hash, tree> *ivexpr_map;
595 /* Map of OpenMP "omp simd array" scan variables to corresponding
596 rhs of the store of the initializer. */
597 hash_map<tree, tree> *scan_map;
599 /* The unrolling factor needed to SLP the loop. In case of that pure SLP is
600 applied to the loop, i.e., no unrolling is needed, this is 1. */
601 poly_uint64 slp_unrolling_factor;
603 /* Cost of a single scalar iteration. */
604 int single_scalar_iteration_cost;
606 /* The cost of the vector prologue and epilogue, including peeled
607 iterations and set-up code. */
608 int vec_outside_cost;
610 /* The cost of the vector loop body. */
611 int vec_inside_cost;
613 /* Is the loop vectorizable? */
614 bool vectorizable;
616 /* Records whether we still have the option of using a fully-masked loop. */
617 bool can_fully_mask_p;
619 /* True if have decided to use a fully-masked loop. */
620 bool fully_masked_p;
622 /* When we have grouped data accesses with gaps, we may introduce invalid
623 memory accesses. We peel the last iteration of the loop to prevent
624 this. */
625 bool peeling_for_gaps;
627 /* When the number of iterations is not a multiple of the vector size
628 we need to peel off iterations at the end to form an epilogue loop. */
629 bool peeling_for_niter;
631 /* True if there are no loop carried data dependencies in the loop.
632 If loop->safelen <= 1, then this is always true, either the loop
633 didn't have any loop carried data dependencies, or the loop is being
634 vectorized guarded with some runtime alias checks, or couldn't
635 be vectorized at all, but then this field shouldn't be used.
636 For loop->safelen >= 2, the user has asserted that there are no
637 backward dependencies, but there still could be loop carried forward
638 dependencies in such loops. This flag will be false if normal
639 vectorizer data dependency analysis would fail or require versioning
640 for alias, but because of loop->safelen >= 2 it has been vectorized
641 even without versioning for alias. E.g. in:
642 #pragma omp simd
643 for (int i = 0; i < m; i++)
644 a[i] = a[i + k] * c;
645 (or #pragma simd or #pragma ivdep) we can vectorize this and it will
646 DTRT even for k > 0 && k < m, but without safelen we would not
647 vectorize this, so this field would be false. */
648 bool no_data_dependencies;
650 /* Mark loops having masked stores. */
651 bool has_mask_store;
653 /* Queued scaling factor for the scalar loop. */
654 profile_probability scalar_loop_scaling;
656 /* If if-conversion versioned this loop before conversion, this is the
657 loop version without if-conversion. */
658 class loop *scalar_loop;
660 /* For loops being epilogues of already vectorized loops
661 this points to the original vectorized loop. Otherwise NULL. */
662 _loop_vec_info *orig_loop_info;
664 /* Used to store loop_vec_infos of epilogues of this loop during
665 analysis. */
666 vec<_loop_vec_info *> epilogue_vinfos;
668 } *loop_vec_info;
670 /* Access Functions. */
671 #define LOOP_VINFO_LOOP(L) (L)->loop
672 #define LOOP_VINFO_BBS(L) (L)->bbs
673 #define LOOP_VINFO_NITERSM1(L) (L)->num_itersm1
674 #define LOOP_VINFO_NITERS(L) (L)->num_iters
675 /* Since LOOP_VINFO_NITERS and LOOP_VINFO_NITERSM1 can change after
676 prologue peeling retain total unchanged scalar loop iterations for
677 cost model. */
678 #define LOOP_VINFO_NITERS_UNCHANGED(L) (L)->num_iters_unchanged
679 #define LOOP_VINFO_NITERS_ASSUMPTIONS(L) (L)->num_iters_assumptions
680 #define LOOP_VINFO_COST_MODEL_THRESHOLD(L) (L)->th
681 #define LOOP_VINFO_VERSIONING_THRESHOLD(L) (L)->versioning_threshold
682 #define LOOP_VINFO_VECTORIZABLE_P(L) (L)->vectorizable
683 #define LOOP_VINFO_CAN_FULLY_MASK_P(L) (L)->can_fully_mask_p
684 #define LOOP_VINFO_FULLY_MASKED_P(L) (L)->fully_masked_p
685 #define LOOP_VINFO_VECT_FACTOR(L) (L)->vectorization_factor
686 #define LOOP_VINFO_MAX_VECT_FACTOR(L) (L)->max_vectorization_factor
687 #define LOOP_VINFO_MASKS(L) (L)->masks
688 #define LOOP_VINFO_MASK_SKIP_NITERS(L) (L)->mask_skip_niters
689 #define LOOP_VINFO_MASK_COMPARE_TYPE(L) (L)->mask_compare_type
690 #define LOOP_VINFO_MASK_IV_TYPE(L) (L)->iv_type
691 #define LOOP_VINFO_PTR_MASK(L) (L)->ptr_mask
692 #define LOOP_VINFO_LOOP_NEST(L) (L)->shared->loop_nest
693 #define LOOP_VINFO_DATAREFS(L) (L)->shared->datarefs
694 #define LOOP_VINFO_DDRS(L) (L)->shared->ddrs
695 #define LOOP_VINFO_INT_NITERS(L) (TREE_INT_CST_LOW ((L)->num_iters))
696 #define LOOP_VINFO_PEELING_FOR_ALIGNMENT(L) (L)->peeling_for_alignment
697 #define LOOP_VINFO_UNALIGNED_DR(L) (L)->unaligned_dr
698 #define LOOP_VINFO_MAY_MISALIGN_STMTS(L) (L)->may_misalign_stmts
699 #define LOOP_VINFO_MAY_ALIAS_DDRS(L) (L)->may_alias_ddrs
700 #define LOOP_VINFO_COMP_ALIAS_DDRS(L) (L)->comp_alias_ddrs
701 #define LOOP_VINFO_CHECK_UNEQUAL_ADDRS(L) (L)->check_unequal_addrs
702 #define LOOP_VINFO_CHECK_NONZERO(L) (L)->check_nonzero
703 #define LOOP_VINFO_LOWER_BOUNDS(L) (L)->lower_bounds
704 #define LOOP_VINFO_GROUPED_STORES(L) (L)->grouped_stores
705 #define LOOP_VINFO_SLP_INSTANCES(L) (L)->slp_instances
706 #define LOOP_VINFO_SLP_UNROLLING_FACTOR(L) (L)->slp_unrolling_factor
707 #define LOOP_VINFO_REDUCTIONS(L) (L)->reductions
708 #define LOOP_VINFO_REDUCTION_CHAINS(L) (L)->reduction_chains
709 #define LOOP_VINFO_TARGET_COST_DATA(L) (L)->target_cost_data
710 #define LOOP_VINFO_PEELING_FOR_GAPS(L) (L)->peeling_for_gaps
711 #define LOOP_VINFO_PEELING_FOR_NITER(L) (L)->peeling_for_niter
712 #define LOOP_VINFO_NO_DATA_DEPENDENCIES(L) (L)->no_data_dependencies
713 #define LOOP_VINFO_SCALAR_LOOP(L) (L)->scalar_loop
714 #define LOOP_VINFO_SCALAR_LOOP_SCALING(L) (L)->scalar_loop_scaling
715 #define LOOP_VINFO_HAS_MASK_STORE(L) (L)->has_mask_store
716 #define LOOP_VINFO_SCALAR_ITERATION_COST(L) (L)->scalar_cost_vec
717 #define LOOP_VINFO_SINGLE_SCALAR_ITERATION_COST(L) (L)->single_scalar_iteration_cost
718 #define LOOP_VINFO_ORIG_LOOP_INFO(L) (L)->orig_loop_info
719 #define LOOP_VINFO_SIMD_IF_COND(L) (L)->simd_if_cond
721 #define LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT(L) \
722 ((L)->may_misalign_stmts.length () > 0)
723 #define LOOP_REQUIRES_VERSIONING_FOR_ALIAS(L) \
724 ((L)->comp_alias_ddrs.length () > 0 \
725 || (L)->check_unequal_addrs.length () > 0 \
726 || (L)->lower_bounds.length () > 0)
727 #define LOOP_REQUIRES_VERSIONING_FOR_NITERS(L) \
728 (LOOP_VINFO_NITERS_ASSUMPTIONS (L))
729 #define LOOP_REQUIRES_VERSIONING_FOR_SIMD_IF_COND(L) \
730 (LOOP_VINFO_SIMD_IF_COND (L))
731 #define LOOP_REQUIRES_VERSIONING(L) \
732 (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (L) \
733 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (L) \
734 || LOOP_REQUIRES_VERSIONING_FOR_NITERS (L) \
735 || LOOP_REQUIRES_VERSIONING_FOR_SIMD_IF_COND (L))
737 #define LOOP_VINFO_NITERS_KNOWN_P(L) \
738 (tree_fits_shwi_p ((L)->num_iters) && tree_to_shwi ((L)->num_iters) > 0)
740 #define LOOP_VINFO_EPILOGUE_P(L) \
741 (LOOP_VINFO_ORIG_LOOP_INFO (L) != NULL)
743 #define LOOP_VINFO_ORIG_MAX_VECT_FACTOR(L) \
744 (LOOP_VINFO_MAX_VECT_FACTOR (LOOP_VINFO_ORIG_LOOP_INFO (L)))
746 /* Wrapper for loop_vec_info, for tracking success/failure, where a non-NULL
747 value signifies success, and a NULL value signifies failure, supporting
748 propagating an opt_problem * describing the failure back up the call
749 stack. */
750 typedef opt_pointer_wrapper <loop_vec_info> opt_loop_vec_info;
752 static inline loop_vec_info
753 loop_vec_info_for_loop (class loop *loop)
755 return (loop_vec_info) loop->aux;
758 typedef class _bb_vec_info : public vec_info
760 public:
761 _bb_vec_info (gimple_stmt_iterator, gimple_stmt_iterator, vec_info_shared *);
762 ~_bb_vec_info ();
764 basic_block bb;
765 gimple_stmt_iterator region_begin;
766 gimple_stmt_iterator region_end;
767 } *bb_vec_info;
769 #define BB_VINFO_BB(B) (B)->bb
770 #define BB_VINFO_GROUPED_STORES(B) (B)->grouped_stores
771 #define BB_VINFO_SLP_INSTANCES(B) (B)->slp_instances
772 #define BB_VINFO_DATAREFS(B) (B)->shared->datarefs
773 #define BB_VINFO_DDRS(B) (B)->shared->ddrs
774 #define BB_VINFO_TARGET_COST_DATA(B) (B)->target_cost_data
776 static inline bb_vec_info
777 vec_info_for_bb (basic_block bb)
779 return (bb_vec_info) bb->aux;
782 /*-----------------------------------------------------------------*/
783 /* Info on vectorized defs. */
784 /*-----------------------------------------------------------------*/
785 enum stmt_vec_info_type {
786 undef_vec_info_type = 0,
787 load_vec_info_type,
788 store_vec_info_type,
789 shift_vec_info_type,
790 op_vec_info_type,
791 call_vec_info_type,
792 call_simd_clone_vec_info_type,
793 assignment_vec_info_type,
794 condition_vec_info_type,
795 comparison_vec_info_type,
796 reduc_vec_info_type,
797 induc_vec_info_type,
798 type_promotion_vec_info_type,
799 type_demotion_vec_info_type,
800 type_conversion_vec_info_type,
801 cycle_phi_info_type,
802 lc_phi_info_type,
803 loop_exit_ctrl_vec_info_type
806 /* Indicates whether/how a variable is used in the scope of loop/basic
807 block. */
808 enum vect_relevant {
809 vect_unused_in_scope = 0,
811 /* The def is only used outside the loop. */
812 vect_used_only_live,
813 /* The def is in the inner loop, and the use is in the outer loop, and the
814 use is a reduction stmt. */
815 vect_used_in_outer_by_reduction,
816 /* The def is in the inner loop, and the use is in the outer loop (and is
817 not part of reduction). */
818 vect_used_in_outer,
820 /* defs that feed computations that end up (only) in a reduction. These
821 defs may be used by non-reduction stmts, but eventually, any
822 computations/values that are affected by these defs are used to compute
823 a reduction (i.e. don't get stored to memory, for example). We use this
824 to identify computations that we can change the order in which they are
825 computed. */
826 vect_used_by_reduction,
828 vect_used_in_scope
831 /* The type of vectorization that can be applied to the stmt: regular loop-based
832 vectorization; pure SLP - the stmt is a part of SLP instances and does not
833 have uses outside SLP instances; or hybrid SLP and loop-based - the stmt is
834 a part of SLP instance and also must be loop-based vectorized, since it has
835 uses outside SLP sequences.
837 In the loop context the meanings of pure and hybrid SLP are slightly
838 different. By saying that pure SLP is applied to the loop, we mean that we
839 exploit only intra-iteration parallelism in the loop; i.e., the loop can be
840 vectorized without doing any conceptual unrolling, cause we don't pack
841 together stmts from different iterations, only within a single iteration.
842 Loop hybrid SLP means that we exploit both intra-iteration and
843 inter-iteration parallelism (e.g., number of elements in the vector is 4
844 and the slp-group-size is 2, in which case we don't have enough parallelism
845 within an iteration, so we obtain the rest of the parallelism from subsequent
846 iterations by unrolling the loop by 2). */
847 enum slp_vect_type {
848 loop_vect = 0,
849 pure_slp,
850 hybrid
853 /* Says whether a statement is a load, a store of a vectorized statement
854 result, or a store of an invariant value. */
855 enum vec_load_store_type {
856 VLS_LOAD,
857 VLS_STORE,
858 VLS_STORE_INVARIANT
861 /* Describes how we're going to vectorize an individual load or store,
862 or a group of loads or stores. */
863 enum vect_memory_access_type {
864 /* An access to an invariant address. This is used only for loads. */
865 VMAT_INVARIANT,
867 /* A simple contiguous access. */
868 VMAT_CONTIGUOUS,
870 /* A contiguous access that goes down in memory rather than up,
871 with no additional permutation. This is used only for stores
872 of invariants. */
873 VMAT_CONTIGUOUS_DOWN,
875 /* A simple contiguous access in which the elements need to be permuted
876 after loading or before storing. Only used for loop vectorization;
877 SLP uses separate permutes. */
878 VMAT_CONTIGUOUS_PERMUTE,
880 /* A simple contiguous access in which the elements need to be reversed
881 after loading or before storing. */
882 VMAT_CONTIGUOUS_REVERSE,
884 /* An access that uses IFN_LOAD_LANES or IFN_STORE_LANES. */
885 VMAT_LOAD_STORE_LANES,
887 /* An access in which each scalar element is loaded or stored
888 individually. */
889 VMAT_ELEMENTWISE,
891 /* A hybrid of VMAT_CONTIGUOUS and VMAT_ELEMENTWISE, used for grouped
892 SLP accesses. Each unrolled iteration uses a contiguous load
893 or store for the whole group, but the groups from separate iterations
894 are combined in the same way as for VMAT_ELEMENTWISE. */
895 VMAT_STRIDED_SLP,
897 /* The access uses gather loads or scatter stores. */
898 VMAT_GATHER_SCATTER
901 class dr_vec_info {
902 public:
903 /* The data reference itself. */
904 data_reference *dr;
905 /* The statement that contains the data reference. */
906 stmt_vec_info stmt;
907 /* The misalignment in bytes of the reference, or -1 if not known. */
908 int misalignment;
909 /* The byte alignment that we'd ideally like the reference to have,
910 and the value that misalignment is measured against. */
911 poly_uint64 target_alignment;
912 /* If true the alignment of base_decl needs to be increased. */
913 bool base_misaligned;
914 tree base_decl;
916 /* Stores current vectorized loop's offset. To be added to the DR's
917 offset to calculate current offset of data reference. */
918 tree offset;
921 typedef struct data_reference *dr_p;
923 class _stmt_vec_info {
924 public:
926 enum stmt_vec_info_type type;
928 /* Indicates whether this stmts is part of a computation whose result is
929 used outside the loop. */
930 bool live;
932 /* Stmt is part of some pattern (computation idiom) */
933 bool in_pattern_p;
935 /* True if the statement was created during pattern recognition as
936 part of the replacement for RELATED_STMT. This implies that the
937 statement isn't part of any basic block, although for convenience
938 its gimple_bb is the same as for RELATED_STMT. */
939 bool pattern_stmt_p;
941 /* Is this statement vectorizable or should it be skipped in (partial)
942 vectorization. */
943 bool vectorizable;
945 /* The stmt to which this info struct refers to. */
946 gimple *stmt;
948 /* The vec_info with respect to which STMT is vectorized. */
949 vec_info *vinfo;
951 /* The vector type to be used for the LHS of this statement. */
952 tree vectype;
954 /* The vectorized version of the stmt. */
955 stmt_vec_info vectorized_stmt;
958 /* The following is relevant only for stmts that contain a non-scalar
959 data-ref (array/pointer/struct access). A GIMPLE stmt is expected to have
960 at most one such data-ref. */
962 dr_vec_info dr_aux;
964 /* Information about the data-ref relative to this loop
965 nest (the loop that is being considered for vectorization). */
966 innermost_loop_behavior dr_wrt_vec_loop;
968 /* For loop PHI nodes, the base and evolution part of it. This makes sure
969 this information is still available in vect_update_ivs_after_vectorizer
970 where we may not be able to re-analyze the PHI nodes evolution as
971 peeling for the prologue loop can make it unanalyzable. The evolution
972 part is still correct after peeling, but the base may have changed from
973 the version here. */
974 tree loop_phi_evolution_base_unchanged;
975 tree loop_phi_evolution_part;
977 /* Used for various bookkeeping purposes, generally holding a pointer to
978 some other stmt S that is in some way "related" to this stmt.
979 Current use of this field is:
980 If this stmt is part of a pattern (i.e. the field 'in_pattern_p' is
981 true): S is the "pattern stmt" that represents (and replaces) the
982 sequence of stmts that constitutes the pattern. Similarly, the
983 related_stmt of the "pattern stmt" points back to this stmt (which is
984 the last stmt in the original sequence of stmts that constitutes the
985 pattern). */
986 stmt_vec_info related_stmt;
988 /* Used to keep a sequence of def stmts of a pattern stmt if such exists.
989 The sequence is attached to the original statement rather than the
990 pattern statement. */
991 gimple_seq pattern_def_seq;
993 /* List of datarefs that are known to have the same alignment as the dataref
994 of this stmt. */
995 vec<dr_p> same_align_refs;
997 /* Selected SIMD clone's function info. First vector element
998 is SIMD clone's function decl, followed by a pair of trees (base + step)
999 for linear arguments (pair of NULLs for other arguments). */
1000 vec<tree> simd_clone_info;
1002 /* Classify the def of this stmt. */
1003 enum vect_def_type def_type;
1005 /* Whether the stmt is SLPed, loop-based vectorized, or both. */
1006 enum slp_vect_type slp_type;
1008 /* Interleaving and reduction chains info. */
1009 /* First element in the group. */
1010 stmt_vec_info first_element;
1011 /* Pointer to the next element in the group. */
1012 stmt_vec_info next_element;
1013 /* The size of the group. */
1014 unsigned int size;
1015 /* For stores, number of stores from this group seen. We vectorize the last
1016 one. */
1017 unsigned int store_count;
1018 /* For loads only, the gap from the previous load. For consecutive loads, GAP
1019 is 1. */
1020 unsigned int gap;
1022 /* The minimum negative dependence distance this stmt participates in
1023 or zero if none. */
1024 unsigned int min_neg_dist;
1026 /* Not all stmts in the loop need to be vectorized. e.g, the increment
1027 of the loop induction variable and computation of array indexes. relevant
1028 indicates whether the stmt needs to be vectorized. */
1029 enum vect_relevant relevant;
1031 /* For loads if this is a gather, for stores if this is a scatter. */
1032 bool gather_scatter_p;
1034 /* True if this is an access with loop-invariant stride. */
1035 bool strided_p;
1037 /* For both loads and stores. */
1038 unsigned simd_lane_access_p : 3;
1040 /* Classifies how the load or store is going to be implemented
1041 for loop vectorization. */
1042 vect_memory_access_type memory_access_type;
1044 /* For INTEGER_INDUC_COND_REDUCTION, the initial value to be used. */
1045 tree induc_cond_initial_val;
1047 /* If not NULL the value to be added to compute final reduction value. */
1048 tree reduc_epilogue_adjustment;
1050 /* On a reduction PHI the reduction type as detected by
1051 vect_is_simple_reduction and vectorizable_reduction. */
1052 enum vect_reduction_type reduc_type;
1054 /* The original reduction code, to be used in the epilogue. */
1055 enum tree_code reduc_code;
1056 /* An internal function we should use in the epilogue. */
1057 internal_fn reduc_fn;
1059 /* On a stmt participating in the reduction the index of the operand
1060 on the reduction SSA cycle. */
1061 int reduc_idx;
1063 /* On a reduction PHI the def returned by vect_force_simple_reduction.
1064 On the def returned by vect_force_simple_reduction the
1065 corresponding PHI. */
1066 stmt_vec_info reduc_def;
1068 /* The vector input type relevant for reduction vectorization. */
1069 tree reduc_vectype_in;
1071 /* The vector type for performing the actual reduction. */
1072 tree reduc_vectype;
1074 /* Whether we force a single cycle PHI during reduction vectorization. */
1075 bool force_single_cycle;
1077 /* Whether on this stmt reduction meta is recorded. */
1078 bool is_reduc_info;
1080 /* The number of scalar stmt references from active SLP instances. */
1081 unsigned int num_slp_uses;
1083 /* If nonzero, the lhs of the statement could be truncated to this
1084 many bits without affecting any users of the result. */
1085 unsigned int min_output_precision;
1087 /* If nonzero, all non-boolean input operands have the same precision,
1088 and they could each be truncated to this many bits without changing
1089 the result. */
1090 unsigned int min_input_precision;
1092 /* If OPERATION_BITS is nonzero, the statement could be performed on
1093 an integer with the sign and number of bits given by OPERATION_SIGN
1094 and OPERATION_BITS without changing the result. */
1095 unsigned int operation_precision;
1096 signop operation_sign;
1098 /* If the statement produces a boolean result, this value describes
1099 how we should choose the associated vector type. The possible
1100 values are:
1102 - an integer precision N if we should use the vector mask type
1103 associated with N-bit integers. This is only used if all relevant
1104 input booleans also want the vector mask type for N-bit integers,
1105 or if we can convert them into that form by pattern-matching.
1107 - ~0U if we considered choosing a vector mask type but decided
1108 to treat the boolean as a normal integer type instead.
1110 - 0 otherwise. This means either that the operation isn't one that
1111 could have a vector mask type (and so should have a normal vector
1112 type instead) or that we simply haven't made a choice either way. */
1113 unsigned int mask_precision;
1115 /* True if this is only suitable for SLP vectorization. */
1116 bool slp_vect_only_p;
1119 /* Information about a gather/scatter call. */
1120 struct gather_scatter_info {
1121 /* The internal function to use for the gather/scatter operation,
1122 or IFN_LAST if a built-in function should be used instead. */
1123 internal_fn ifn;
1125 /* The FUNCTION_DECL for the built-in gather/scatter function,
1126 or null if an internal function should be used instead. */
1127 tree decl;
1129 /* The loop-invariant base value. */
1130 tree base;
1132 /* The original scalar offset, which is a non-loop-invariant SSA_NAME. */
1133 tree offset;
1135 /* Each offset element should be multiplied by this amount before
1136 being added to the base. */
1137 int scale;
1139 /* The definition type for the vectorized offset. */
1140 enum vect_def_type offset_dt;
1142 /* The type of the vectorized offset. */
1143 tree offset_vectype;
1145 /* The type of the scalar elements after loading or before storing. */
1146 tree element_type;
1148 /* The type of the scalar elements being loaded or stored. */
1149 tree memory_type;
1152 /* Access Functions. */
1153 #define STMT_VINFO_TYPE(S) (S)->type
1154 #define STMT_VINFO_STMT(S) (S)->stmt
1155 inline loop_vec_info
1156 STMT_VINFO_LOOP_VINFO (stmt_vec_info stmt_vinfo)
1158 if (loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (stmt_vinfo->vinfo))
1159 return loop_vinfo;
1160 return NULL;
1162 inline bb_vec_info
1163 STMT_VINFO_BB_VINFO (stmt_vec_info stmt_vinfo)
1165 if (bb_vec_info bb_vinfo = dyn_cast <bb_vec_info> (stmt_vinfo->vinfo))
1166 return bb_vinfo;
1167 return NULL;
1169 #define STMT_VINFO_RELEVANT(S) (S)->relevant
1170 #define STMT_VINFO_LIVE_P(S) (S)->live
1171 #define STMT_VINFO_VECTYPE(S) (S)->vectype
1172 #define STMT_VINFO_VEC_STMT(S) (S)->vectorized_stmt
1173 #define STMT_VINFO_VECTORIZABLE(S) (S)->vectorizable
1174 #define STMT_VINFO_DATA_REF(S) ((S)->dr_aux.dr + 0)
1175 #define STMT_VINFO_GATHER_SCATTER_P(S) (S)->gather_scatter_p
1176 #define STMT_VINFO_STRIDED_P(S) (S)->strided_p
1177 #define STMT_VINFO_MEMORY_ACCESS_TYPE(S) (S)->memory_access_type
1178 #define STMT_VINFO_SIMD_LANE_ACCESS_P(S) (S)->simd_lane_access_p
1179 #define STMT_VINFO_VEC_INDUC_COND_INITIAL_VAL(S) (S)->induc_cond_initial_val
1180 #define STMT_VINFO_REDUC_EPILOGUE_ADJUSTMENT(S) (S)->reduc_epilogue_adjustment
1181 #define STMT_VINFO_REDUC_IDX(S) (S)->reduc_idx
1182 #define STMT_VINFO_FORCE_SINGLE_CYCLE(S) (S)->force_single_cycle
1184 #define STMT_VINFO_DR_WRT_VEC_LOOP(S) (S)->dr_wrt_vec_loop
1185 #define STMT_VINFO_DR_BASE_ADDRESS(S) (S)->dr_wrt_vec_loop.base_address
1186 #define STMT_VINFO_DR_INIT(S) (S)->dr_wrt_vec_loop.init
1187 #define STMT_VINFO_DR_OFFSET(S) (S)->dr_wrt_vec_loop.offset
1188 #define STMT_VINFO_DR_STEP(S) (S)->dr_wrt_vec_loop.step
1189 #define STMT_VINFO_DR_BASE_ALIGNMENT(S) (S)->dr_wrt_vec_loop.base_alignment
1190 #define STMT_VINFO_DR_BASE_MISALIGNMENT(S) \
1191 (S)->dr_wrt_vec_loop.base_misalignment
1192 #define STMT_VINFO_DR_OFFSET_ALIGNMENT(S) \
1193 (S)->dr_wrt_vec_loop.offset_alignment
1194 #define STMT_VINFO_DR_STEP_ALIGNMENT(S) \
1195 (S)->dr_wrt_vec_loop.step_alignment
1197 #define STMT_VINFO_DR_INFO(S) \
1198 (gcc_checking_assert ((S)->dr_aux.stmt == (S)), &(S)->dr_aux)
1200 #define STMT_VINFO_IN_PATTERN_P(S) (S)->in_pattern_p
1201 #define STMT_VINFO_RELATED_STMT(S) (S)->related_stmt
1202 #define STMT_VINFO_PATTERN_DEF_SEQ(S) (S)->pattern_def_seq
1203 #define STMT_VINFO_SAME_ALIGN_REFS(S) (S)->same_align_refs
1204 #define STMT_VINFO_SIMD_CLONE_INFO(S) (S)->simd_clone_info
1205 #define STMT_VINFO_DEF_TYPE(S) (S)->def_type
1206 #define STMT_VINFO_GROUPED_ACCESS(S) \
1207 ((S)->dr_aux.dr && DR_GROUP_FIRST_ELEMENT(S))
1208 #define STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED(S) (S)->loop_phi_evolution_base_unchanged
1209 #define STMT_VINFO_LOOP_PHI_EVOLUTION_PART(S) (S)->loop_phi_evolution_part
1210 #define STMT_VINFO_MIN_NEG_DIST(S) (S)->min_neg_dist
1211 #define STMT_VINFO_NUM_SLP_USES(S) (S)->num_slp_uses
1212 #define STMT_VINFO_REDUC_TYPE(S) (S)->reduc_type
1213 #define STMT_VINFO_REDUC_CODE(S) (S)->reduc_code
1214 #define STMT_VINFO_REDUC_FN(S) (S)->reduc_fn
1215 #define STMT_VINFO_REDUC_DEF(S) (S)->reduc_def
1216 #define STMT_VINFO_REDUC_VECTYPE(S) (S)->reduc_vectype
1217 #define STMT_VINFO_REDUC_VECTYPE_IN(S) (S)->reduc_vectype_in
1218 #define STMT_VINFO_SLP_VECT_ONLY(S) (S)->slp_vect_only_p
1220 #define DR_GROUP_FIRST_ELEMENT(S) \
1221 (gcc_checking_assert ((S)->dr_aux.dr), (S)->first_element)
1222 #define DR_GROUP_NEXT_ELEMENT(S) \
1223 (gcc_checking_assert ((S)->dr_aux.dr), (S)->next_element)
1224 #define DR_GROUP_SIZE(S) \
1225 (gcc_checking_assert ((S)->dr_aux.dr), (S)->size)
1226 #define DR_GROUP_STORE_COUNT(S) \
1227 (gcc_checking_assert ((S)->dr_aux.dr), (S)->store_count)
1228 #define DR_GROUP_GAP(S) \
1229 (gcc_checking_assert ((S)->dr_aux.dr), (S)->gap)
1231 #define REDUC_GROUP_FIRST_ELEMENT(S) \
1232 (gcc_checking_assert (!(S)->dr_aux.dr), (S)->first_element)
1233 #define REDUC_GROUP_NEXT_ELEMENT(S) \
1234 (gcc_checking_assert (!(S)->dr_aux.dr), (S)->next_element)
1235 #define REDUC_GROUP_SIZE(S) \
1236 (gcc_checking_assert (!(S)->dr_aux.dr), (S)->size)
1238 #define STMT_VINFO_RELEVANT_P(S) ((S)->relevant != vect_unused_in_scope)
1240 #define HYBRID_SLP_STMT(S) ((S)->slp_type == hybrid)
1241 #define PURE_SLP_STMT(S) ((S)->slp_type == pure_slp)
1242 #define STMT_SLP_TYPE(S) (S)->slp_type
1244 #define VECT_MAX_COST 1000
1246 /* The maximum number of intermediate steps required in multi-step type
1247 conversion. */
1248 #define MAX_INTERM_CVT_STEPS 3
1250 #define MAX_VECTORIZATION_FACTOR INT_MAX
1252 /* Nonzero if TYPE represents a (scalar) boolean type or type
1253 in the middle-end compatible with it (unsigned precision 1 integral
1254 types). Used to determine which types should be vectorized as
1255 VECTOR_BOOLEAN_TYPE_P. */
1257 #define VECT_SCALAR_BOOLEAN_TYPE_P(TYPE) \
1258 (TREE_CODE (TYPE) == BOOLEAN_TYPE \
1259 || ((TREE_CODE (TYPE) == INTEGER_TYPE \
1260 || TREE_CODE (TYPE) == ENUMERAL_TYPE) \
1261 && TYPE_PRECISION (TYPE) == 1 \
1262 && TYPE_UNSIGNED (TYPE)))
1264 static inline bool
1265 nested_in_vect_loop_p (class loop *loop, stmt_vec_info stmt_info)
1267 return (loop->inner
1268 && (loop->inner == (gimple_bb (stmt_info->stmt))->loop_father));
1271 /* Return true if STMT_INFO should produce a vector mask type rather than
1272 a normal nonmask type. */
1274 static inline bool
1275 vect_use_mask_type_p (stmt_vec_info stmt_info)
1277 return stmt_info->mask_precision && stmt_info->mask_precision != ~0U;
1280 /* Return TRUE if a statement represented by STMT_INFO is a part of a
1281 pattern. */
1283 static inline bool
1284 is_pattern_stmt_p (stmt_vec_info stmt_info)
1286 return stmt_info->pattern_stmt_p;
1289 /* If STMT_INFO is a pattern statement, return the statement that it
1290 replaces, otherwise return STMT_INFO itself. */
1292 inline stmt_vec_info
1293 vect_orig_stmt (stmt_vec_info stmt_info)
1295 if (is_pattern_stmt_p (stmt_info))
1296 return STMT_VINFO_RELATED_STMT (stmt_info);
1297 return stmt_info;
1300 /* Return the later statement between STMT1_INFO and STMT2_INFO. */
1302 static inline stmt_vec_info
1303 get_later_stmt (stmt_vec_info stmt1_info, stmt_vec_info stmt2_info)
1305 if (gimple_uid (vect_orig_stmt (stmt1_info)->stmt)
1306 > gimple_uid (vect_orig_stmt (stmt2_info)->stmt))
1307 return stmt1_info;
1308 else
1309 return stmt2_info;
1312 /* If STMT_INFO has been replaced by a pattern statement, return the
1313 replacement statement, otherwise return STMT_INFO itself. */
1315 inline stmt_vec_info
1316 vect_stmt_to_vectorize (stmt_vec_info stmt_info)
1318 if (STMT_VINFO_IN_PATTERN_P (stmt_info))
1319 return STMT_VINFO_RELATED_STMT (stmt_info);
1320 return stmt_info;
1323 /* Return true if BB is a loop header. */
1325 static inline bool
1326 is_loop_header_bb_p (basic_block bb)
1328 if (bb == (bb->loop_father)->header)
1329 return true;
1330 gcc_checking_assert (EDGE_COUNT (bb->preds) == 1);
1331 return false;
1334 /* Return pow2 (X). */
1336 static inline int
1337 vect_pow2 (int x)
1339 int i, res = 1;
1341 for (i = 0; i < x; i++)
1342 res *= 2;
1344 return res;
1347 /* Alias targetm.vectorize.builtin_vectorization_cost. */
1349 static inline int
1350 builtin_vectorization_cost (enum vect_cost_for_stmt type_of_cost,
1351 tree vectype, int misalign)
1353 return targetm.vectorize.builtin_vectorization_cost (type_of_cost,
1354 vectype, misalign);
1357 /* Get cost by calling cost target builtin. */
1359 static inline
1360 int vect_get_stmt_cost (enum vect_cost_for_stmt type_of_cost)
1362 return builtin_vectorization_cost (type_of_cost, NULL, 0);
1365 /* Alias targetm.vectorize.init_cost. */
1367 static inline void *
1368 init_cost (class loop *loop_info)
1370 return targetm.vectorize.init_cost (loop_info);
1373 extern void dump_stmt_cost (FILE *, void *, int, enum vect_cost_for_stmt,
1374 stmt_vec_info, int, unsigned,
1375 enum vect_cost_model_location);
1377 /* Alias targetm.vectorize.add_stmt_cost. */
1379 static inline unsigned
1380 add_stmt_cost (void *data, int count, enum vect_cost_for_stmt kind,
1381 stmt_vec_info stmt_info, int misalign,
1382 enum vect_cost_model_location where)
1384 unsigned cost = targetm.vectorize.add_stmt_cost (data, count, kind,
1385 stmt_info, misalign, where);
1386 if (dump_file && (dump_flags & TDF_DETAILS))
1387 dump_stmt_cost (dump_file, data, count, kind, stmt_info, misalign,
1388 cost, where);
1389 return cost;
1392 /* Alias targetm.vectorize.finish_cost. */
1394 static inline void
1395 finish_cost (void *data, unsigned *prologue_cost,
1396 unsigned *body_cost, unsigned *epilogue_cost)
1398 targetm.vectorize.finish_cost (data, prologue_cost, body_cost, epilogue_cost);
1401 /* Alias targetm.vectorize.destroy_cost_data. */
1403 static inline void
1404 destroy_cost_data (void *data)
1406 targetm.vectorize.destroy_cost_data (data);
1409 inline void
1410 add_stmt_costs (void *data, stmt_vector_for_cost *cost_vec)
1412 stmt_info_for_cost *cost;
1413 unsigned i;
1414 FOR_EACH_VEC_ELT (*cost_vec, i, cost)
1415 add_stmt_cost (data, cost->count, cost->kind, cost->stmt_info,
1416 cost->misalign, cost->where);
1419 /*-----------------------------------------------------------------*/
1420 /* Info on data references alignment. */
1421 /*-----------------------------------------------------------------*/
1422 #define DR_MISALIGNMENT_UNKNOWN (-1)
1423 #define DR_MISALIGNMENT_UNINITIALIZED (-2)
1425 inline void
1426 set_dr_misalignment (dr_vec_info *dr_info, int val)
1428 dr_info->misalignment = val;
1431 inline int
1432 dr_misalignment (dr_vec_info *dr_info)
1434 int misalign = dr_info->misalignment;
1435 gcc_assert (misalign != DR_MISALIGNMENT_UNINITIALIZED);
1436 return misalign;
1439 /* Reflects actual alignment of first access in the vectorized loop,
1440 taking into account peeling/versioning if applied. */
1441 #define DR_MISALIGNMENT(DR) dr_misalignment (DR)
1442 #define SET_DR_MISALIGNMENT(DR, VAL) set_dr_misalignment (DR, VAL)
1444 /* Only defined once DR_MISALIGNMENT is defined. */
1445 #define DR_TARGET_ALIGNMENT(DR) ((DR)->target_alignment)
1447 /* Return true if data access DR_INFO is aligned to its target alignment
1448 (which may be less than a full vector). */
1450 static inline bool
1451 aligned_access_p (dr_vec_info *dr_info)
1453 return (DR_MISALIGNMENT (dr_info) == 0);
1456 /* Return TRUE if the alignment of the data access is known, and FALSE
1457 otherwise. */
1459 static inline bool
1460 known_alignment_for_access_p (dr_vec_info *dr_info)
1462 return (DR_MISALIGNMENT (dr_info) != DR_MISALIGNMENT_UNKNOWN);
1465 /* Return the minimum alignment in bytes that the vectorized version
1466 of DR_INFO is guaranteed to have. */
1468 static inline unsigned int
1469 vect_known_alignment_in_bytes (dr_vec_info *dr_info)
1471 if (DR_MISALIGNMENT (dr_info) == DR_MISALIGNMENT_UNKNOWN)
1472 return TYPE_ALIGN_UNIT (TREE_TYPE (DR_REF (dr_info->dr)));
1473 if (DR_MISALIGNMENT (dr_info) == 0)
1474 return known_alignment (DR_TARGET_ALIGNMENT (dr_info));
1475 return DR_MISALIGNMENT (dr_info) & -DR_MISALIGNMENT (dr_info);
1478 /* Return the behavior of DR_INFO with respect to the vectorization context
1479 (which for outer loop vectorization might not be the behavior recorded
1480 in DR_INFO itself). */
1482 static inline innermost_loop_behavior *
1483 vect_dr_behavior (dr_vec_info *dr_info)
1485 stmt_vec_info stmt_info = dr_info->stmt;
1486 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
1487 if (loop_vinfo == NULL
1488 || !nested_in_vect_loop_p (LOOP_VINFO_LOOP (loop_vinfo), stmt_info))
1489 return &DR_INNERMOST (dr_info->dr);
1490 else
1491 return &STMT_VINFO_DR_WRT_VEC_LOOP (stmt_info);
1494 /* Return the offset calculated by adding the offset of this DR_INFO to the
1495 corresponding data_reference's offset. If CHECK_OUTER then use
1496 vect_dr_behavior to select the appropriate data_reference to use. */
1498 inline tree
1499 get_dr_vinfo_offset (dr_vec_info *dr_info, bool check_outer = false)
1501 innermost_loop_behavior *base;
1502 if (check_outer)
1503 base = vect_dr_behavior (dr_info);
1504 else
1505 base = &dr_info->dr->innermost;
1507 tree offset = base->offset;
1509 if (!dr_info->offset)
1510 return offset;
1512 offset = fold_convert (sizetype, offset);
1513 return fold_build2 (PLUS_EXPR, TREE_TYPE (dr_info->offset), offset,
1514 dr_info->offset);
1518 /* Return true if the vect cost model is unlimited. */
1519 static inline bool
1520 unlimited_cost_model (loop_p loop)
1522 if (loop != NULL && loop->force_vectorize
1523 && flag_simd_cost_model != VECT_COST_MODEL_DEFAULT)
1524 return flag_simd_cost_model == VECT_COST_MODEL_UNLIMITED;
1525 return (flag_vect_cost_model == VECT_COST_MODEL_UNLIMITED);
1528 /* Return true if the loop described by LOOP_VINFO is fully-masked and
1529 if the first iteration should use a partial mask in order to achieve
1530 alignment. */
1532 static inline bool
1533 vect_use_loop_mask_for_alignment_p (loop_vec_info loop_vinfo)
1535 return (LOOP_VINFO_FULLY_MASKED_P (loop_vinfo)
1536 && LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo));
1539 /* Return the number of vectors of type VECTYPE that are needed to get
1540 NUNITS elements. NUNITS should be based on the vectorization factor,
1541 so it is always a known multiple of the number of elements in VECTYPE. */
1543 static inline unsigned int
1544 vect_get_num_vectors (poly_uint64 nunits, tree vectype)
1546 return exact_div (nunits, TYPE_VECTOR_SUBPARTS (vectype)).to_constant ();
1549 /* Return the number of copies needed for loop vectorization when
1550 a statement operates on vectors of type VECTYPE. This is the
1551 vectorization factor divided by the number of elements in
1552 VECTYPE and is always known at compile time. */
1554 static inline unsigned int
1555 vect_get_num_copies (loop_vec_info loop_vinfo, tree vectype)
1557 return vect_get_num_vectors (LOOP_VINFO_VECT_FACTOR (loop_vinfo), vectype);
1560 /* Update maximum unit count *MAX_NUNITS so that it accounts for
1561 NUNITS. *MAX_NUNITS can be 1 if we haven't yet recorded anything. */
1563 static inline void
1564 vect_update_max_nunits (poly_uint64 *max_nunits, poly_uint64 nunits)
1566 /* All unit counts have the form vec_info::vector_size * X for some
1567 rational X, so two unit sizes must have a common multiple.
1568 Everything is a multiple of the initial value of 1. */
1569 *max_nunits = force_common_multiple (*max_nunits, nunits);
1572 /* Update maximum unit count *MAX_NUNITS so that it accounts for
1573 the number of units in vector type VECTYPE. *MAX_NUNITS can be 1
1574 if we haven't yet recorded any vector types. */
1576 static inline void
1577 vect_update_max_nunits (poly_uint64 *max_nunits, tree vectype)
1579 vect_update_max_nunits (max_nunits, TYPE_VECTOR_SUBPARTS (vectype));
1582 /* Return the vectorization factor that should be used for costing
1583 purposes while vectorizing the loop described by LOOP_VINFO.
1584 Pick a reasonable estimate if the vectorization factor isn't
1585 known at compile time. */
1587 static inline unsigned int
1588 vect_vf_for_cost (loop_vec_info loop_vinfo)
1590 return estimated_poly_value (LOOP_VINFO_VECT_FACTOR (loop_vinfo));
1593 /* Estimate the number of elements in VEC_TYPE for costing purposes.
1594 Pick a reasonable estimate if the exact number isn't known at
1595 compile time. */
1597 static inline unsigned int
1598 vect_nunits_for_cost (tree vec_type)
1600 return estimated_poly_value (TYPE_VECTOR_SUBPARTS (vec_type));
1603 /* Return the maximum possible vectorization factor for LOOP_VINFO. */
1605 static inline unsigned HOST_WIDE_INT
1606 vect_max_vf (loop_vec_info loop_vinfo)
1608 unsigned HOST_WIDE_INT vf;
1609 if (LOOP_VINFO_VECT_FACTOR (loop_vinfo).is_constant (&vf))
1610 return vf;
1611 return MAX_VECTORIZATION_FACTOR;
1614 /* Return the size of the value accessed by unvectorized data reference
1615 DR_INFO. This is only valid once STMT_VINFO_VECTYPE has been calculated
1616 for the associated gimple statement, since that guarantees that DR_INFO
1617 accesses either a scalar or a scalar equivalent. ("Scalar equivalent"
1618 here includes things like V1SI, which can be vectorized in the same way
1619 as a plain SI.) */
1621 inline unsigned int
1622 vect_get_scalar_dr_size (dr_vec_info *dr_info)
1624 return tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr_info->dr))));
1627 /* Return true if LOOP_VINFO requires a runtime check for whether the
1628 vector loop is profitable. */
1630 inline bool
1631 vect_apply_runtime_profitability_check_p (loop_vec_info loop_vinfo)
1633 unsigned int th = LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo);
1634 return (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
1635 && th >= vect_vf_for_cost (loop_vinfo));
1638 /* Source location + hotness information. */
1639 extern dump_user_location_t vect_location;
1641 /* A macro for calling:
1642 dump_begin_scope (MSG, vect_location);
1643 via an RAII object, thus printing "=== MSG ===\n" to the dumpfile etc,
1644 and then calling
1645 dump_end_scope ();
1646 once the object goes out of scope, thus capturing the nesting of
1647 the scopes.
1649 These scopes affect dump messages within them: dump messages at the
1650 top level implicitly default to MSG_PRIORITY_USER_FACING, whereas those
1651 in a nested scope implicitly default to MSG_PRIORITY_INTERNALS. */
1653 #define DUMP_VECT_SCOPE(MSG) \
1654 AUTO_DUMP_SCOPE (MSG, vect_location)
1656 /* A sentinel class for ensuring that the "vect_location" global gets
1657 reset at the end of a scope.
1659 The "vect_location" global is used during dumping and contains a
1660 location_t, which could contain references to a tree block via the
1661 ad-hoc data. This data is used for tracking inlining information,
1662 but it's not a GC root; it's simply assumed that such locations never
1663 get accessed if the blocks are optimized away.
1665 Hence we need to ensure that such locations are purged at the end
1666 of any operations using them (e.g. via this class). */
1668 class auto_purge_vect_location
1670 public:
1671 ~auto_purge_vect_location ();
1674 /*-----------------------------------------------------------------*/
1675 /* Function prototypes. */
1676 /*-----------------------------------------------------------------*/
1678 /* Simple loop peeling and versioning utilities for vectorizer's purposes -
1679 in tree-vect-loop-manip.c. */
1680 extern void vect_set_loop_condition (class loop *, loop_vec_info,
1681 tree, tree, tree, bool);
1682 extern bool slpeel_can_duplicate_loop_p (const class loop *, const_edge);
1683 class loop *slpeel_tree_duplicate_loop_to_edge_cfg (class loop *,
1684 class loop *, edge);
1685 class loop *vect_loop_versioning (loop_vec_info, gimple *);
1686 extern class loop *vect_do_peeling (loop_vec_info, tree, tree,
1687 tree *, tree *, tree *, int, bool, bool,
1688 tree *);
1689 extern void vect_prepare_for_masked_peels (loop_vec_info);
1690 extern dump_user_location_t find_loop_location (class loop *);
1691 extern bool vect_can_advance_ivs_p (loop_vec_info);
1692 extern void vect_update_inits_of_drs (loop_vec_info, tree, tree_code);
1694 /* In tree-vect-stmts.c. */
1695 extern tree get_related_vectype_for_scalar_type (machine_mode, tree,
1696 poly_uint64 = 0);
1697 extern tree get_vectype_for_scalar_type (vec_info *, tree, unsigned int = 0);
1698 extern tree get_vectype_for_scalar_type (vec_info *, tree, slp_tree);
1699 extern tree get_mask_type_for_scalar_type (vec_info *, tree, unsigned int = 0);
1700 extern tree get_same_sized_vectype (tree, tree);
1701 extern bool vect_chooses_same_modes_p (vec_info *, machine_mode);
1702 extern bool vect_get_loop_mask_type (loop_vec_info);
1703 extern bool vect_is_simple_use (tree, vec_info *, enum vect_def_type *,
1704 stmt_vec_info * = NULL, gimple ** = NULL);
1705 extern bool vect_is_simple_use (tree, vec_info *, enum vect_def_type *,
1706 tree *, stmt_vec_info * = NULL,
1707 gimple ** = NULL);
1708 extern bool supportable_widening_operation (enum tree_code, stmt_vec_info,
1709 tree, tree, enum tree_code *,
1710 enum tree_code *, int *,
1711 vec<tree> *);
1712 extern bool supportable_narrowing_operation (enum tree_code, tree, tree,
1713 enum tree_code *, int *,
1714 vec<tree> *);
1715 extern unsigned record_stmt_cost (stmt_vector_for_cost *, int,
1716 enum vect_cost_for_stmt, stmt_vec_info,
1717 int, enum vect_cost_model_location);
1718 extern stmt_vec_info vect_finish_replace_stmt (stmt_vec_info, gimple *);
1719 extern stmt_vec_info vect_finish_stmt_generation (stmt_vec_info, gimple *,
1720 gimple_stmt_iterator *);
1721 extern opt_result vect_mark_stmts_to_be_vectorized (loop_vec_info, bool *);
1722 extern tree vect_get_store_rhs (stmt_vec_info);
1723 extern tree vect_get_vec_def_for_operand_1 (stmt_vec_info, enum vect_def_type);
1724 extern tree vect_get_vec_def_for_operand (tree, stmt_vec_info, tree = NULL);
1725 extern void vect_get_vec_defs (tree, tree, stmt_vec_info, vec<tree> *,
1726 vec<tree> *, slp_tree);
1727 extern void vect_get_vec_defs_for_stmt_copy (vec_info *,
1728 vec<tree> *, vec<tree> *);
1729 extern tree vect_init_vector (stmt_vec_info, tree, tree,
1730 gimple_stmt_iterator *);
1731 extern tree vect_get_vec_def_for_stmt_copy (vec_info *, tree);
1732 extern bool vect_transform_stmt (stmt_vec_info, gimple_stmt_iterator *,
1733 slp_tree, slp_instance);
1734 extern void vect_remove_stores (stmt_vec_info);
1735 extern bool vect_nop_conversion_p (stmt_vec_info);
1736 extern opt_result vect_analyze_stmt (stmt_vec_info, bool *, slp_tree,
1737 slp_instance, stmt_vector_for_cost *);
1738 extern void vect_get_load_cost (stmt_vec_info, int, bool,
1739 unsigned int *, unsigned int *,
1740 stmt_vector_for_cost *,
1741 stmt_vector_for_cost *, bool);
1742 extern void vect_get_store_cost (stmt_vec_info, int,
1743 unsigned int *, stmt_vector_for_cost *);
1744 extern bool vect_supportable_shift (vec_info *, enum tree_code, tree);
1745 extern tree vect_gen_perm_mask_any (tree, const vec_perm_indices &);
1746 extern tree vect_gen_perm_mask_checked (tree, const vec_perm_indices &);
1747 extern void optimize_mask_stores (class loop*);
1748 extern gcall *vect_gen_while (tree, tree, tree);
1749 extern tree vect_gen_while_not (gimple_seq *, tree, tree, tree);
1750 extern opt_result vect_get_vector_types_for_stmt (stmt_vec_info, tree *,
1751 tree *, unsigned int = 0);
1752 extern opt_tree vect_get_mask_type_for_stmt (stmt_vec_info, unsigned int = 0);
1754 /* In tree-vect-data-refs.c. */
1755 extern bool vect_can_force_dr_alignment_p (const_tree, poly_uint64);
1756 extern enum dr_alignment_support vect_supportable_dr_alignment
1757 (dr_vec_info *, bool);
1758 extern tree vect_get_smallest_scalar_type (stmt_vec_info, HOST_WIDE_INT *,
1759 HOST_WIDE_INT *);
1760 extern opt_result vect_analyze_data_ref_dependences (loop_vec_info, unsigned int *);
1761 extern bool vect_slp_analyze_instance_dependence (slp_instance);
1762 extern opt_result vect_enhance_data_refs_alignment (loop_vec_info);
1763 extern opt_result vect_analyze_data_refs_alignment (loop_vec_info);
1764 extern opt_result vect_verify_datarefs_alignment (loop_vec_info);
1765 extern bool vect_slp_analyze_and_verify_instance_alignment (slp_instance);
1766 extern opt_result vect_analyze_data_ref_accesses (vec_info *);
1767 extern opt_result vect_prune_runtime_alias_test_list (loop_vec_info);
1768 extern bool vect_gather_scatter_fn_p (vec_info *, bool, bool, tree, tree,
1769 tree, int, internal_fn *, tree *);
1770 extern bool vect_check_gather_scatter (stmt_vec_info, loop_vec_info,
1771 gather_scatter_info *);
1772 extern opt_result vect_find_stmt_data_reference (loop_p, gimple *,
1773 vec<data_reference_p> *);
1774 extern opt_result vect_analyze_data_refs (vec_info *, poly_uint64 *, bool *);
1775 extern void vect_record_base_alignments (vec_info *);
1776 extern tree vect_create_data_ref_ptr (stmt_vec_info, tree, class loop *, tree,
1777 tree *, gimple_stmt_iterator *,
1778 gimple **, bool,
1779 tree = NULL_TREE, tree = NULL_TREE);
1780 extern tree bump_vector_ptr (tree, gimple *, gimple_stmt_iterator *,
1781 stmt_vec_info, tree);
1782 extern void vect_copy_ref_info (tree, tree);
1783 extern tree vect_create_destination_var (tree, tree);
1784 extern bool vect_grouped_store_supported (tree, unsigned HOST_WIDE_INT);
1785 extern bool vect_store_lanes_supported (tree, unsigned HOST_WIDE_INT, bool);
1786 extern bool vect_grouped_load_supported (tree, bool, unsigned HOST_WIDE_INT);
1787 extern bool vect_load_lanes_supported (tree, unsigned HOST_WIDE_INT, bool);
1788 extern void vect_permute_store_chain (vec<tree> ,unsigned int, stmt_vec_info,
1789 gimple_stmt_iterator *, vec<tree> *);
1790 extern tree vect_setup_realignment (stmt_vec_info, gimple_stmt_iterator *,
1791 tree *, enum dr_alignment_support, tree,
1792 class loop **);
1793 extern void vect_transform_grouped_load (stmt_vec_info, vec<tree> , int,
1794 gimple_stmt_iterator *);
1795 extern void vect_record_grouped_load_vectors (stmt_vec_info, vec<tree>);
1796 extern tree vect_get_new_vect_var (tree, enum vect_var_kind, const char *);
1797 extern tree vect_get_new_ssa_name (tree, enum vect_var_kind,
1798 const char * = NULL);
1799 extern tree vect_create_addr_base_for_vector_ref (stmt_vec_info, gimple_seq *,
1800 tree, tree = NULL_TREE);
1802 /* In tree-vect-loop.c. */
1803 extern widest_int vect_iv_limit_for_full_masking (loop_vec_info loop_vinfo);
1804 /* Used in tree-vect-loop-manip.c */
1805 extern void determine_peel_for_niter (loop_vec_info);
1806 /* Used in gimple-loop-interchange.c and tree-parloops.c. */
1807 extern bool check_reduction_path (dump_user_location_t, loop_p, gphi *, tree,
1808 enum tree_code);
1809 extern bool needs_fold_left_reduction_p (tree, tree_code);
1810 /* Drive for loop analysis stage. */
1811 extern opt_loop_vec_info vect_analyze_loop (class loop *, vec_info_shared *);
1812 extern tree vect_build_loop_niters (loop_vec_info, bool * = NULL);
1813 extern void vect_gen_vector_loop_niters (loop_vec_info, tree, tree *,
1814 tree *, bool);
1815 extern tree vect_halve_mask_nunits (tree, machine_mode);
1816 extern tree vect_double_mask_nunits (tree, machine_mode);
1817 extern void vect_record_loop_mask (loop_vec_info, vec_loop_masks *,
1818 unsigned int, tree, tree);
1819 extern tree vect_get_loop_mask (gimple_stmt_iterator *, vec_loop_masks *,
1820 unsigned int, tree, unsigned int);
1821 extern stmt_vec_info info_for_reduction (stmt_vec_info);
1823 /* Drive for loop transformation stage. */
1824 extern class loop *vect_transform_loop (loop_vec_info, gimple *);
1825 extern opt_loop_vec_info vect_analyze_loop_form (class loop *,
1826 vec_info_shared *);
1827 extern bool vectorizable_live_operation (stmt_vec_info, gimple_stmt_iterator *,
1828 slp_tree, slp_instance, int,
1829 bool, stmt_vector_for_cost *);
1830 extern bool vectorizable_reduction (stmt_vec_info, slp_tree, slp_instance,
1831 stmt_vector_for_cost *);
1832 extern bool vectorizable_induction (stmt_vec_info, gimple_stmt_iterator *,
1833 stmt_vec_info *, slp_tree,
1834 stmt_vector_for_cost *);
1835 extern bool vect_transform_reduction (stmt_vec_info, gimple_stmt_iterator *,
1836 stmt_vec_info *, slp_tree);
1837 extern bool vect_transform_cycle_phi (stmt_vec_info, stmt_vec_info *,
1838 slp_tree, slp_instance);
1839 extern bool vectorizable_lc_phi (stmt_vec_info, stmt_vec_info *, slp_tree);
1840 extern bool vect_worthwhile_without_simd_p (vec_info *, tree_code);
1841 extern int vect_get_known_peeling_cost (loop_vec_info, int, int *,
1842 stmt_vector_for_cost *,
1843 stmt_vector_for_cost *,
1844 stmt_vector_for_cost *);
1845 extern tree cse_and_gimplify_to_preheader (loop_vec_info, tree);
1847 /* In tree-vect-slp.c. */
1848 extern void vect_free_slp_instance (slp_instance, bool);
1849 extern bool vect_transform_slp_perm_load (slp_tree, vec<tree> ,
1850 gimple_stmt_iterator *, poly_uint64,
1851 slp_instance, bool, unsigned *);
1852 extern bool vect_slp_analyze_operations (vec_info *);
1853 extern void vect_schedule_slp (vec_info *);
1854 extern opt_result vect_analyze_slp (vec_info *, unsigned);
1855 extern bool vect_make_slp_decision (loop_vec_info);
1856 extern void vect_detect_hybrid_slp (loop_vec_info);
1857 extern void vect_get_slp_defs (slp_tree, vec<vec<tree> > *, unsigned n = -1U);
1858 extern bool vect_slp_bb (basic_block);
1859 extern stmt_vec_info vect_find_last_scalar_stmt_in_slp (slp_tree);
1860 extern bool is_simple_and_all_uses_invariant (stmt_vec_info, loop_vec_info);
1861 extern bool can_duplicate_and_interleave_p (vec_info *, unsigned int, tree,
1862 unsigned int * = NULL,
1863 tree * = NULL, tree * = NULL);
1864 extern void duplicate_and_interleave (vec_info *, gimple_seq *, tree,
1865 vec<tree>, unsigned int, vec<tree> &);
1866 extern int vect_get_place_in_interleaving_chain (stmt_vec_info, stmt_vec_info);
1868 /* In tree-vect-patterns.c. */
1869 /* Pattern recognition functions.
1870 Additional pattern recognition functions can (and will) be added
1871 in the future. */
1872 void vect_pattern_recog (vec_info *);
1874 /* In tree-vectorizer.c. */
1875 unsigned vectorize_loops (void);
1876 void vect_free_loop_info_assumptions (class loop *);
1877 gimple *vect_loop_vectorized_call (class loop *, gcond **cond = NULL);
1880 #endif /* GCC_TREE_VECTORIZER_H */