1 /* Sign extension elimination optimization for GNU compiler.
2 Copyright (C) 2005 Free Software Foundation, Inc.
3 Contributed by Leehod Baruch <leehod@il.ibm.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 -Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
24 In order to support 32bit computations on a 64bit machine, sign
25 extension instructions are generated to ensure the correctness of
27 A possible policy (as currently implemented) is to generate a sign
28 extension right after each 32bit computation.
29 Depending on the instruction set of the architecture, some of these
30 sign extension instructions may be redundant.
31 There are two cases in which the extension may be redundant:
34 The instruction that uses the 64bit operands that are sign
35 extended has a dual mode that works with 32bit operands.
45 cmpd a, b --> cmpw a, b //half word compare
48 The instruction that defines the 64bit operand (which is later sign
49 extended) has a dual mode that defines and sign-extends simultaneously
50 a 32bit operand. For example:
54 ld a --> lwa a // load half word and sign extend
60 General idea for solution:
61 --------------------------
62 First, try to merge the sign extension with the instruction that
63 defines the source of the extension and (separately) with the
64 instructions that uses the extended result. By doing this, both cases
65 of redundancies (as described above) will be eliminated.
67 Then, use partial redundancy elimination to place the non redundant
68 ones at optimal placements.
71 Implementation by example:
72 --------------------------
73 Note: The instruction stream is not changed till the last phase.
75 Phase 0: Initial code, as currently generated by gcc.
88 set ((reg:SI 10) (..def1rhs..))
89 set ((reg:DI 100) (sign_extend:DI (reg:SI 10)))
92 set ((reg:DI 100) (const_int 7))
95 set ((reg:SI 20) (..def3rhs..))
96 set ((reg:DI 100) (sign_extend:DI (reg:SI 20)))
99 set ((reg:CC...) (compare:CC (reg:DI 100) (...)))
102 set ((...) (reg:DI 100))
104 Phase 1: Propagate extensions to uses.
119 From here, all of the subregs are lowpart !
121 def1, def2, def3: No change.
124 set ((reg:DI 100) (sign_extend:DI ((subreg:SI (reg:DI 100)))))
125 set ((reg:CC...) (compare:CC (reg:DI 100) (...)))
128 set ((reg:DI 100) (sign_extend:DI ((subreg:SI (reg:DI 100)))))
129 set ((...) (reg:DI 100))
132 Phase 2: Merge and eliminate locally redundant extensions.
148 The instructions that were changed at this phase are marked with
152 Remove the sign extension instruction, modify def1 and
153 insert a move instruction to assure to correctness of the code.
154 set ((subreg:SI (reg:DI 100)) (..def1rhs..))
155 set ((reg:SI 10) (subreg:SI (reg:DI 100)))
157 def2 + se: There is no need for merge.
158 Def2 is not changed but a sign extension instruction is
160 set ((reg:DI 100) (const_int 7))
161 set ((reg:DI 100) (sign_extend:DI ((subreg:SI (reg:DI 100)))))
163 *def3 + se3: Merge succeeded.
164 set ((reg:DI 100) (sign_extend:DI (..def3rhs..)))
165 set ((reg:SI 20) (reg:DI 100))
166 set ((reg:DI 100) (sign_extend:DI (reg:SI 20)))
167 (The extension instruction is the original one).
169 *use1: Merge succeeded. Remove the sign extension instruction.
171 (compare:CC (subreg:SI (reg:DI 100)) (...)))
173 use2, use3: Merge failed. No change.
175 use4: The extension is locally redundant, therefore it is eliminated
179 Phase 3: Eliminate globally redundant extensions.
181 Following the LCM output:
196 set ((reg:DI 100) (sign_extend:DI ((subreg:SI (reg:DI 100)))))
199 set ((reg:DI 100) (sign_extend:DI (reg:SI 20)))
202 Phase 4: Commit changes to the insn stream.
205 def1 def3 *def1 def2 *def3
206 se1 def2 se3 [se removed] [se removed]
208 | \ | / | ------> | \ | / |
209 | \ | / | ------> | se | / |
213 use1 use2 use3 *use1 use2 use3
216 The instructions that were changed during the whole optimization are
217 marked with asterisk.
222 [ set ((reg:SI 10) (..def1rhs..)) ] - Deleted
223 [ set ((reg:DI 100) (sign_extend:DI (reg:SI 10))) ] - Deleted
224 set ((subreg:SI (reg:DI 100)) (..def3rhs..)) - Inserted
225 set ((reg:SI 10) (subreg:SI (reg:DI 100))) - Inserted
228 set ((reg:DI 100) (const_int 7)) - No change
231 [ set ((reg:SI 20) (..def3rhs..)) ] - Deleted
232 [ set ((reg:DI 100) (sign_extend:DI (reg:SI 20))) ] - Deleted
233 set ((reg:DI 100) (sign_extend:DI (..def3rhs..))) - Inserted
234 set ((reg:SI 20) (reg:DI 100)) - Inserted
237 [ set ((reg:CC...) (compare:CC (reg:DI 100) (...))) ] - Deleted
238 set ((reg:CC...) - Inserted
239 (compare:CC (subreg:SI (reg:DI 100)) (...)))
242 set ((...) (reg:DI 100)) - No change
245 set ((reg:DI 100) (sign_extend:DI ((subreg:SI (reg:DI 100)))))
247 Note: Most of the simple move instructions that were inserted will be
248 trivially dead and therefore eliminated.
250 The implementation outline:
251 ---------------------------
253 A web is RELEVANT if at the end of phase 1, his leader's
254 relevancy is {ZERO, SIGN}_EXTENDED_DEF. The source_mode of
255 the web is the source_mode of his leader.
256 A definition is a candidate for the optimization if it is part
257 of a RELEVANT web and his local source_mode is not narrower
258 then the source_mode of its web.
259 A use is a candidate for the optimization if it is part of a
261 A simple explicit extension is a single set instruction that
262 extends a register (or a subregister) to a register (or
264 A complex explicit extension is an explicit extension instruction
266 A def extension is a simple explicit extension that is
267 also a candidate for the optimization. This extension is part
268 of the instruction stream, it is not generated by this
270 A use extension is a simple explicit extension that is generated
271 and stored for candidate use during this optimization. It is
272 not emitted to the instruction stream till the last phase of
274 A reference is an instruction that satisfy at least on of these
276 - It contains a definition with EXTENDED_DEF relevancy in a RELEVANT web.
277 - It is followed by a def extension.
278 - It contains a candidate use.
280 Phase 1: Propagate extensions to uses.
281 In this phase, we find candidate extensions for the optimization
282 and we generate (but not emit) proper extensions "right before the
285 a. Build a DF object.
286 b. Traverse over all the instructions that contains a definition
287 and set their local relevancy and local source_mode like this:
288 - If the instruction is a simple explicit extension instruction,
289 mark it as {ZERO, SIGN}_EXTENDED_DEF according to the extension
290 type and mark its source_mode to be the mode of the quantity
291 that is been extended.
292 - Otherwise, If the instruction has an implicit extension,
293 which means that its high part is an extension of its low part,
294 or if it is a complicated explicit extension, mark it as
295 EXTENDED_DEF and set its source_mode to be the narrowest
296 mode that is been extended in the instruction.
297 c. Traverse over all the instructions that contains a use and set
298 their local relevancy to RELEVANT_USE (except for few corner
300 d. Produce the web. During union of two entries, update the
301 relevancy and source_mode of the leader. There are two major
302 guide lines for this update:
303 - If one of the entries is NOT_RELEVANT, mark the leader
305 - If one is ZERO_EXTENDED_DEF and the other is SIGN_EXTENDED_DEF
306 (or vice versa) mark the leader as NOT_RELEVANT. We don't
307 handle this kind of mixed webs.
308 (For more details about this update process,
309 see see_update_leader_extra_info ()).
310 e. Generate uses extensions according to the relevancy and
311 source_mode of the webs.
313 Phase 2: Merge and eliminate locally redundant extensions.
314 In this phase, we try to merge def extensions and use
315 extensions with their references, and eliminate redundant extensions
316 in the same basic block.
318 Traverse over all the references. Do this in basic block number and
319 luid number forward order.
320 For each reference do:
321 a. Peephole optimization - try to merge it with all its
322 def extensions and use extensions in the following
324 - Try to merge only the def extensions, one by one.
325 - Try to merge only the use extensions, one by one.
326 - Try to merge any couple of use extensions simultaneously.
327 - Try to merge any def extension with one or two uses
328 extensions simultaneously.
329 b. Handle each EXTENDED_DEF in it as if it was already merged with
332 During the merge process we save the following data for each
333 register in each basic block:
334 a. The first instruction that defines the register in the basic
336 b. The last instruction that defines the register in the basic
338 c. The first extension of this register before the first
339 instruction that defines it in the basic block.
340 c. The first extension of this register after the last
341 instruction that defines it in the basic block.
342 This data will help us eliminate (or more precisely, not generate)
343 locally redundant extensions, and will be useful in the next stage.
345 While merging extensions with their reference there are 4 possible
347 a. A use extension was merged with the reference:
348 Delete the extension instruction and save the merged reference
349 for phase 4. (For details, see see_use_extension_merged ())
350 b. A use extension failed to be merged with the reference:
351 If there is already such an extension in the same basic block
352 and it is not dead at this point, delete the unmerged extension
353 (it is locally redundant), otherwise properly update the above
355 (For details, see see_merge_one_use_extension ())
356 c. A def extension was merged with the reference:
357 Mark this extension as a merged_def extension and properly
358 update the above basic block data.
359 (For details, see see_merge_one_def_extension ())
360 d. A def extension failed to be merged with the reference:
361 Replace the definition of the NARROWmode register in the
362 reference with the proper subreg of WIDEmode register and save
363 the result as a merged reference. Also, properly update the
364 the above basic block data.
365 (For details, see see_def_extension_not_merged ())
367 Phase 3: Eliminate globally redundant extensions.
368 In this phase, we set the bit vectors input of the edge based LCM
369 using the recorded data on the registers in each basic block.
370 We also save pointers for all the anticipatable and available
371 occurrences of the relevant extensions. Then we run the LCM.
373 a. Initialize the comp, antloc, kill bit vectors to zero and the
374 transp bit vector to ones.
376 b. Traverse over all the references. Do this in basic block number
377 and luid number forward order. For each reference:
378 - Go over all its use extensions. For each such extension -
379 If it is not dead from the beginning of the basic block SET
380 the antloc bit of the current extension in the current
382 If it is not dead till the end of the basic block SET the
383 comp bit of the current extension in the current basic
385 - Go over all its def extensions that were merged with
386 it. For each such extension -
387 If it is not dead till the end of the basic block SET the
388 comp bit of the current extension in the current basic
390 RESET the proper transp and kill bits.
391 - Go over all its def extensions that were not merged
392 with it. For each such extension -
393 RESET the transp bit and SET the kill bit of the current
394 extension in the current basic block bits.
396 c. Run the edge based LCM.
398 Phase 4: Commit changes to the insn stream.
399 This is the only phase that actually changes the instruction stream.
400 Up to this point the optimization could be aborted at any time.
401 Here we insert extensions at their best placements and delete the
402 redundant ones according to the output of the LCM. We also replace
403 some of the instructions according to the second phase merges results.
405 a. Use the pre_delete_map (from the output of the LCM) in order to
406 delete redundant extensions. This will prevent them from been
407 emitted in the first place.
409 b. Insert extensions on edges where needed according to
410 pre_insert_map and edge_list (from the output of the LCM).
412 c. For each reference do-
413 - Emit all the uses extensions that were not deleted until now,
414 right before the reference.
415 - Delete all the merged and unmerged def extensions from
416 the instruction stream.
417 - Replace the reference with the merged one, if exist.
419 The implementation consists of four data structures:
421 Purpose: To handle the relevancy of the uses, definitions and webs.
422 Relevant structures: web_entry (from df.h), see_entry_extra_info.
423 Details: This is a disjoint-set data structure. Most of its functions are
424 implemented in web.c. Each definition and use in the code are
425 elements. A web_entry structure is allocated for each element to
426 hold the element's relevancy and source_mode. The union rules are
427 defined in see_update_leader_extra_info ().
429 Purpose: To store references and their extensions (uses and defs)
430 and to enable traverse over these references according to basic
432 Relevant structure: see_ref_s.
433 Details: This data structure consists of an array of splay trees. One splay
434 tree for each basic block. The splay tree nodes are references and
435 the keys are the luids of the references.
436 A see_ref_s structure is allocated for each reference. It holds the
437 reference itself, its def and uses extensions and later the merged
438 version of the reference.
439 Using this data structure we can traverse over all the references of
440 a basic block and their extensions in forward order.
441 - Data structure III.
442 Purpose: To store local properties of registers for each basic block.
443 This data will later help us build the LCM sbitmap_vectors
445 Relevant structure: see_register_properties.
446 Details: This data structure consists of an array of hash tables. One hash
447 for each basic block. The hash node are a register properties
448 and the keys are the numbers of the registers.
449 A see_register_properties structure is allocated for each register
450 that we might be interested in its properties.
451 Using this data structure we can easily find the properties of a
452 register in a specific basic block. This is necessary for locally
453 redundancy elimination and for setting up the LCM input.
455 Purpose: To store the extensions that are candidate for PRE and their
456 anticipatable and available occurrences.
457 Relevant structure: see_occr, see_pre_extension_expr.
458 Details: This data structure is a hash tables. Its nodes are the extensions
459 that are candidate for PRE.
460 A see_pre_extension_expr structure is allocated for each candidate
461 extension. It holds a copy of the extension and a linked list of all
462 the anticipatable and available occurrences of it.
463 We use this data structure when we read the output of the LCM. */
467 #include "coretypes.h"
474 #include "insn-config.h"
477 #include "splay-tree.h"
481 #include "tree-pass.h"
483 /* Used to classify defs and uses according to relevancy. */
492 /* Used to classify extensions in relevant webs. */
493 enum extension_type
{
495 EXPLICIT_DEF_EXTENSION
,
496 IMPLICIT_DEF_EXTENSION
,
500 /* Global data structures and flags. */
502 /* This structure will be assigned for each web_entry structure (defined
503 in df.h). It is placed in the extra_info field of a web_entry and holds the
504 relevancy and source mode of the web_entry. */
506 struct see_entry_extra_info
508 /* The relevancy of the ref. */
509 enum entry_type relevancy
;
510 /* The relevancy of the ref.
511 This field is updated only once - when this structure is created. */
512 enum entry_type local_relevancy
;
513 /* The source register mode. */
514 enum machine_mode source_mode
;
515 /* This field is used only if the relevancy is ZERO/SIGN_EXTENDED_DEF.
516 It is updated only once when this structure is created. */
517 enum machine_mode local_source_mode
;
518 /* This field is used only if the relevancy is EXTENDED_DEF.
519 It holds the narrowest mode that is sign extended. */
520 enum machine_mode source_mode_signed
;
521 /* This field is used only if the relevancy is EXTENDED_DEF.
522 It holds the narrowest mode that is zero extended. */
523 enum machine_mode source_mode_unsigned
;
526 /* There is one such structure for every reference. It stores the reference
527 itself as well as its extensions (uses and definitions).
528 Used as the value in splay_tree see_bb_splay_ar[]. */
531 /* The luid of the insn. */
533 /* The insn of the ref. */
535 /* The merged insn that was formed from the reference's insn and extensions.
536 If all merges failed, it remains NULL. */
538 /* The def extensions of the reference that were not merged with
540 htab_t unmerged_def_se_hash
;
541 /* The def extensions of the reference that were merged with
542 it. Implicit extensions of the reference will be stored here too. */
543 htab_t merged_def_se_hash
;
544 /* The uses extensions of reference. */
548 /* There is one such structure for every relevant extended register in a
549 specific basic block. This data will help us build the LCM sbitmap_vectors
551 struct see_register_properties
553 /* The register number. */
555 /* The last luid of the reference that defines this register in this basic
558 /* The luid of the reference that has the first extension of this register
559 that appears before any definition in this basic block. */
560 int first_se_before_any_def
;
561 /* The luid of the reference that has the first extension of this register
562 that appears after the last definition in this basic block. */
563 int first_se_after_last_def
;
566 /* Occurrence of an expression.
567 There must be at most one available occurrence and at most one anticipatable
568 occurrence per basic block. */
571 /* Next occurrence of this expression. */
572 struct see_occr
*next
;
573 /* The insn that computes the expression. */
578 /* There is one such structure for every relevant extension expression.
579 It holds a copy of this extension instruction as well as a linked lists of
580 pointers to all the antic and avail occurrences of it. */
581 struct see_pre_extension_expr
583 /* A copy of the extension instruction. */
585 /* Index in the available expression bitmaps. */
587 /* List of anticipatable occurrences in basic blocks in the function.
588 An "anticipatable occurrence" is the first occurrence in the basic block,
589 the operands are not modified in the basic block prior to the occurrence
590 and the output is not used between the start of the block and the
592 struct see_occr
*antic_occr
;
593 /* List of available occurrence in basic blocks in the function.
594 An "available occurrence" is the last occurrence in the basic block and
595 the operands are not modified by following statements in the basic block
596 [including this insn]. */
597 struct see_occr
*avail_occr
;
600 /* Helper structure for the note_uses and see_replace_src functions. */
601 struct see_replace_data
607 /* Helper structure for the note_uses and see_mentioned_reg functions. */
608 struct see_mentioned_reg_data
614 /* A data flow object that will be created once and used throughout the
616 static struct df
*df
= NULL
;
617 /* An array of web_entries. The i'th definition in the df object is associated
619 static struct web_entry
*def_entry
= NULL
;
620 /* An array of web_entries. The i'th use in the df object is associated with
622 static struct web_entry
*use_entry
= NULL
;
623 /* Array of splay_trees.
624 see_bb_splay_ar[i] refers to the splay tree of the i'th basic block.
625 The splay tree will hold see_ref_s structures. The key is the luid
626 of the insn. This way we can traverse over the references of each basic
627 block in forward or backward order. */
628 static splay_tree
*see_bb_splay_ar
= NULL
;
630 see_bb_hash_ar[i] refers to the hash of the i'th basic block.
631 The hash will hold see_register_properties structure. The key is regno. */
632 static htab_t
*see_bb_hash_ar
= NULL
;
633 /* Hash table that holds a copy of all the extensions. The key is the right
634 hand side of the se_insn field. */
635 static htab_t see_pre_extension_hash
= NULL
;
637 /* Local LCM properties of expressions. */
638 /* Nonzero for expressions that are transparent in the block. */
639 static sbitmap
*transp
= NULL
;
640 /* Nonzero for expressions that are computed (available) in the block. */
641 static sbitmap
*comp
= NULL
;
642 /* Nonzero for expressions that are locally anticipatable in the block. */
643 static sbitmap
*antloc
= NULL
;
644 /* Nonzero for expressions that are locally killed in the block. */
645 static sbitmap
*ae_kill
= NULL
;
646 /* Nonzero for expressions which should be inserted on a specific edge. */
647 static sbitmap
*pre_insert_map
= NULL
;
648 /* Nonzero for expressions which should be deleted in a specific block. */
649 static sbitmap
*pre_delete_map
= NULL
;
650 /* Contains the edge_list returned by pre_edge_lcm. */
651 static struct edge_list
*edge_list
= NULL
;
652 /* Records the last basic block at the beginning of the optimization. */
654 /* Records the number of uses at the beginning of the optimization. */
655 static unsigned int uses_num
;
656 /* Records the number of definitions at the beginning of the optimization. */
657 static unsigned int defs_num
;
659 #define ENTRY_EI(ENTRY) ((struct see_entry_extra_info *) (ENTRY)->extra_info)
661 /* Functions implementation. */
663 /* Verifies that EXTENSION's pattern is this:
665 set (reg/subreg reg1) (sign/zero_extend:WIDEmode (reg/subreg reg2))
667 If it doesn't have the expected pattern return NULL.
668 Otherwise, if RETURN_DEST_REG is set, return reg1 else return reg2. */
671 see_get_extension_reg (rtx extension
, bool return_dest_reg
)
677 /* Parallel pattern for extension not supported for the moment. */
678 if (GET_CODE (PATTERN (extension
)) == PARALLEL
)
681 set
= single_set (extension
);
684 lhs
= SET_DEST (set
);
689 else if (REG_P (SUBREG_REG (lhs
)))
690 reg1
= SUBREG_REG (lhs
);
694 if (GET_CODE (rhs
) != SIGN_EXTEND
&& GET_CODE (rhs
) != ZERO_EXTEND
)
700 else if (REG_P (SUBREG_REG (rhs
)))
701 reg2
= SUBREG_REG (rhs
);
710 /* Verifies that EXTENSION's pattern is this:
712 set (reg/subreg reg1) (sign/zero_extend: (...expr...)
714 If it doesn't have the expected pattern return UNKNOWN.
715 Otherwise, set SOURCE_MODE to be the mode of the extended expr and return
716 the rtx code of the extension. */
719 see_get_extension_data (rtx extension
, enum machine_mode
*source_mode
)
723 if (!extension
|| !INSN_P (extension
))
726 /* Parallel pattern for extension not supported for the moment. */
727 if (GET_CODE (PATTERN (extension
)) == PARALLEL
)
730 set
= single_set (extension
);
734 lhs
= SET_DEST (set
);
736 /* Don't handle extensions to something other then register or
738 if (!REG_P (lhs
) && !SUBREG_REG (lhs
))
741 if (GET_CODE (rhs
) != SIGN_EXTEND
&& GET_CODE (rhs
) != ZERO_EXTEND
)
744 if (!REG_P (XEXP (rhs
, 0))
745 && !(GET_CODE (XEXP (rhs
, 0)) == SUBREG
746 && REG_P (SUBREG_REG (XEXP (rhs
, 0)))))
749 *source_mode
= GET_MODE (XEXP (rhs
, 0));
751 if (GET_CODE (rhs
) == SIGN_EXTEND
)
757 /* Generate instruction with the pattern:
758 set ((reg r) (sign/zero_extend (subreg:mode (reg r))))
759 (the register r on both sides of the set is the same register).
761 If the recognition failed, this is very bad, return NULL (This will abort
762 the entire optimization).
763 Otherwise, return the generated instruction. */
766 see_gen_normalized_extension (rtx reg
, enum rtx_code extension_code
,
767 enum machine_mode mode
)
770 rtx extension
= NULL
;
774 || (extension_code
!= SIGN_EXTEND
&& extension_code
!= ZERO_EXTEND
))
777 subreg
= gen_lowpart_SUBREG (mode
, reg
);
778 if (extension_code
== SIGN_EXTEND
)
779 extension
= gen_rtx_SIGN_EXTEND (GET_MODE (reg
), subreg
);
781 extension
= gen_rtx_ZERO_EXTEND (GET_MODE (reg
), subreg
);
784 emit_insn (gen_rtx_SET (VOIDmode
, reg
, extension
));
788 if (insn_invalid_p (insn
))
789 /* Recognition failed, this is very bad for this optimization.
790 Abort the optimization. */
795 /* Hashes and splay_trees related functions implementation. */
797 /* Helper functions for the pre_extension hash.
798 This kind of hash will hold see_pre_extension_expr structures.
800 The key is the right hand side of the se_insn field.
801 Note that the se_insn is an expression that looks like:
803 set ((reg:WIDEmode r1) (sign_extend:WIDEmode
804 (subreg:NARROWmode (reg:WIDEmode r2)))) */
806 /* Return TRUE if P1 has the same value in its rhs as P2.
807 Otherwise, return FALSE.
808 P1 and P2 are see_pre_extension_expr structures. */
811 eq_descriptor_pre_extension (const void *p1
, const void *p2
)
813 const struct see_pre_extension_expr
*extension1
= p1
;
814 const struct see_pre_extension_expr
*extension2
= p2
;
815 rtx set1
= single_set (extension1
->se_insn
);
816 rtx set2
= single_set (extension2
->se_insn
);
819 gcc_assert (set1
&& set2
);
820 rhs1
= SET_SRC (set1
);
821 rhs2
= SET_SRC (set2
);
823 return rtx_equal_p (rhs1
, rhs2
);
827 /* P is a see_pre_extension_expr struct, use the RHS of the se_insn field.
828 Note that the RHS is an expression that looks like this:
829 (sign_extend:WIDEmode (subreg:NARROWmode (reg:WIDEmode r))) */
832 hash_descriptor_pre_extension (const void *p
)
834 const struct see_pre_extension_expr
*extension
= p
;
835 rtx set
= single_set (extension
->se_insn
);
841 return hash_rtx (rhs
, GET_MODE (rhs
), 0, NULL
, 0);
845 /* Free the allocated memory of the current see_pre_extension_expr struct.
847 It frees the two linked list of the occurrences structures. */
850 hash_del_pre_extension (void *p
)
852 struct see_pre_extension_expr
*extension
= p
;
853 struct see_occr
*curr_occr
= extension
->antic_occr
;
854 struct see_occr
*next_occr
= NULL
;
856 /* Free the linked list of the anticipatable occurrences. */
859 next_occr
= curr_occr
->next
;
861 curr_occr
= next_occr
;
864 /* Free the linked list of the available occurrences. */
865 curr_occr
= extension
->avail_occr
;
868 next_occr
= curr_occr
->next
;
870 curr_occr
= next_occr
;
873 /* Free the see_pre_extension_expr structure itself. */
878 /* Helper functions for the register_properties hash.
879 This kind of hash will hold see_register_properties structures.
881 The value of the key is the regno field of the structure. */
883 /* Return TRUE if P1 has the same value in the regno field as P2.
884 Otherwise, return FALSE.
885 Where P1 and P2 are see_register_properties structures. */
888 eq_descriptor_properties (const void *p1
, const void *p2
)
890 const struct see_register_properties
*curr_prop1
= p1
;
891 const struct see_register_properties
*curr_prop2
= p2
;
893 return curr_prop1
->regno
== curr_prop2
->regno
;
897 /* P is a see_register_properties struct, use the register number in the
901 hash_descriptor_properties (const void *p
)
903 const struct see_register_properties
*curr_prop
= p
;
904 return curr_prop
->regno
;
908 /* Free the allocated memory of the current see_register_properties struct. */
910 hash_del_properties (void *p
)
912 struct see_register_properties
*curr_prop
= p
;
917 /* Helper functions for an extension hash.
918 This kind of hash will hold insns that look like:
920 set ((reg:WIDEmode r1) (sign_extend:WIDEmode
921 (subreg:NARROWmode (reg:WIDEmode r2))))
923 set ((reg:WIDEmode r1) (sign_extend:WIDEmode (reg:NARROWmode r2)))
925 The value of the key is (REGNO (reg:WIDEmode r1))
926 It is possible to search this hash in two ways:
927 1. By a register rtx. The Value that is been compared to the keys is the
929 2. By an insn with the above pattern. The Value that is been compared to
930 the keys is the REGNO of the reg on the lhs. */
932 /* Return TRUE if P1 has the same value as P2. Otherwise, return FALSE.
933 Where P1 is an insn and P2 is an insn or a register. */
936 eq_descriptor_extension (const void *p1
, const void *p2
)
938 const rtx insn
= (rtx
) p1
;
939 const rtx element
= (rtx
) p2
;
940 rtx set1
= single_set (insn
);
943 rtx dest_reg2
= NULL
;
945 gcc_assert (set1
&& element
&& (REG_P (element
) || INSN_P (element
)));
947 dest_reg1
= SET_DEST (set1
);
949 if (INSN_P (element
))
951 set2
= single_set (element
);
952 dest_reg2
= SET_DEST (set2
);
957 return REGNO (dest_reg1
) == REGNO (dest_reg2
);
961 /* If P is an insn, use the register number of its lhs
962 otherwise, P is a register, use its number. */
965 hash_descriptor_extension (const void *p
)
967 const rtx r
= (rtx
) p
;
973 gcc_assert (r
&& INSN_P (r
));
974 set
= single_set (r
);
976 lhs
= SET_DEST (set
);
981 /* Helper function for a see_bb_splay_ar[i] splay tree.
982 It frees all the allocated memory of a struct see_ref_s pointer.
984 VALUE is the value of a splay tree node. */
987 see_free_ref_s (splay_tree_value value
)
989 struct see_ref_s
*ref_s
= (struct see_ref_s
*)value
;
991 if (ref_s
->unmerged_def_se_hash
)
992 htab_delete (ref_s
->unmerged_def_se_hash
);
993 if (ref_s
->merged_def_se_hash
)
994 htab_delete (ref_s
->merged_def_se_hash
);
995 if (ref_s
->use_se_hash
)
996 htab_delete (ref_s
->use_se_hash
);
1001 /* Rest of the implementation. */
1003 /* Search the extension hash for a suitable entry for EXTENSION.
1004 TYPE is the type of EXTENSION (USE_EXTENSION or DEF_EXTENSION).
1006 If TYPE is DEF_EXTENSION we need to normalize EXTENSION before searching the
1009 If a suitable entry was found, return the slot. Otherwise, store EXTENSION
1010 in the hash and return NULL. */
1012 static struct see_pre_extension_expr
*
1013 see_seek_pre_extension_expr (rtx extension
, enum extension_type type
)
1015 struct see_pre_extension_expr
**slot_pre_exp
, temp_pre_exp
;
1016 rtx dest_extension_reg
= see_get_extension_reg (extension
, 1);
1017 enum rtx_code extension_code
;
1018 enum machine_mode source_extension_mode
;
1020 if (type
== DEF_EXTENSION
)
1022 extension_code
= see_get_extension_data (extension
,
1023 &source_extension_mode
);
1024 gcc_assert (extension_code
!= UNKNOWN
);
1026 see_gen_normalized_extension (dest_extension_reg
, extension_code
,
1027 source_extension_mode
);
1029 temp_pre_exp
.se_insn
= extension
;
1031 (struct see_pre_extension_expr
**) htab_find_slot (see_pre_extension_hash
,
1032 &temp_pre_exp
, INSERT
);
1033 if (*slot_pre_exp
== NULL
)
1034 /* This is the first time this extension instruction is encountered. Store
1037 (*slot_pre_exp
) = xmalloc (sizeof (struct see_pre_extension_expr
));
1038 (*slot_pre_exp
)->se_insn
= extension
;
1039 (*slot_pre_exp
)->bitmap_index
=
1040 (htab_elements (see_pre_extension_hash
) - 1);
1041 (*slot_pre_exp
)->antic_occr
= NULL
;
1042 (*slot_pre_exp
)->avail_occr
= NULL
;
1045 return *slot_pre_exp
;
1049 /* This function defines how to update the extra_info of the web_entry.
1051 FIRST is the pointer of the extra_info of the first web_entry.
1052 SECOND is the pointer of the extra_info of the second web_entry.
1053 The first web_entry will be the predecessor (leader) of the second web_entry
1056 Return true if FIRST and SECOND points to the same web entry structure and
1057 nothing is done. Otherwise, return false. */
1060 see_update_leader_extra_info (struct web_entry
*first
, struct web_entry
*second
)
1062 struct see_entry_extra_info
*first_ei
, *second_ei
;
1064 first
= unionfind_root (first
);
1065 second
= unionfind_root (second
);
1067 if (unionfind_union (first
, second
))
1070 first_ei
= (struct see_entry_extra_info
*) first
->extra_info
;
1071 second_ei
= (struct see_entry_extra_info
*) second
->extra_info
;
1073 gcc_assert (first_ei
&& second_ei
);
1075 if (second_ei
->relevancy
== NOT_RELEVANT
)
1077 first_ei
->relevancy
= NOT_RELEVANT
;
1080 switch (first_ei
->relevancy
)
1085 switch (second_ei
->relevancy
)
1090 first_ei
->relevancy
= second_ei
->relevancy
;
1091 first_ei
->source_mode_signed
= second_ei
->source_mode_signed
;
1092 first_ei
->source_mode_unsigned
= second_ei
->source_mode_unsigned
;
1094 case SIGN_EXTENDED_DEF
:
1095 case ZERO_EXTENDED_DEF
:
1096 first_ei
->relevancy
= second_ei
->relevancy
;
1097 first_ei
->source_mode
= second_ei
->source_mode
;
1103 case SIGN_EXTENDED_DEF
:
1104 switch (second_ei
->relevancy
)
1106 case SIGN_EXTENDED_DEF
:
1107 /* The mode of the root should be the wider one in this case. */
1108 first_ei
->source_mode
=
1109 (first_ei
->source_mode
> second_ei
->source_mode
) ?
1110 first_ei
->source_mode
: second_ei
->source_mode
;
1114 case ZERO_EXTENDED_DEF
:
1115 /* Don't mix webs with zero extend and sign extend. */
1116 first_ei
->relevancy
= NOT_RELEVANT
;
1119 if (second_ei
->source_mode_signed
== MAX_MACHINE_MODE
)
1120 first_ei
->relevancy
= NOT_RELEVANT
;
1122 /* The mode of the root should be the wider one in this case. */
1123 first_ei
->source_mode
=
1124 (first_ei
->source_mode
> second_ei
->source_mode_signed
) ?
1125 first_ei
->source_mode
: second_ei
->source_mode_signed
;
1131 /* This case is similar to the previous one, with little changes. */
1132 case ZERO_EXTENDED_DEF
:
1133 switch (second_ei
->relevancy
)
1135 case SIGN_EXTENDED_DEF
:
1136 /* Don't mix webs with zero extend and sign extend. */
1137 first_ei
->relevancy
= NOT_RELEVANT
;
1141 case ZERO_EXTENDED_DEF
:
1142 /* The mode of the root should be the wider one in this case. */
1143 first_ei
->source_mode
=
1144 (first_ei
->source_mode
> second_ei
->source_mode
) ?
1145 first_ei
->source_mode
: second_ei
->source_mode
;
1148 if (second_ei
->source_mode_unsigned
== MAX_MACHINE_MODE
)
1149 first_ei
->relevancy
= NOT_RELEVANT
;
1151 /* The mode of the root should be the wider one in this case. */
1152 first_ei
->source_mode
=
1153 (first_ei
->source_mode
> second_ei
->source_mode_unsigned
) ?
1154 first_ei
->source_mode
: second_ei
->source_mode_unsigned
;
1161 if (first_ei
->source_mode_signed
!= MAX_MACHINE_MODE
1162 && first_ei
->source_mode_unsigned
!= MAX_MACHINE_MODE
)
1164 switch (second_ei
->relevancy
)
1166 case SIGN_EXTENDED_DEF
:
1167 first_ei
->relevancy
= SIGN_EXTENDED_DEF
;
1168 first_ei
->source_mode
=
1169 (first_ei
->source_mode_signed
> second_ei
->source_mode
) ?
1170 first_ei
->source_mode_signed
: second_ei
->source_mode
;
1174 case ZERO_EXTENDED_DEF
:
1175 first_ei
->relevancy
= ZERO_EXTENDED_DEF
;
1176 first_ei
->source_mode
=
1177 (first_ei
->source_mode_unsigned
> second_ei
->source_mode
) ?
1178 first_ei
->source_mode_unsigned
: second_ei
->source_mode
;
1181 if (second_ei
->source_mode_unsigned
!= MAX_MACHINE_MODE
)
1182 first_ei
->source_mode_unsigned
=
1183 (first_ei
->source_mode_unsigned
>
1184 second_ei
->source_mode_unsigned
) ?
1185 first_ei
->source_mode_unsigned
:
1186 second_ei
->source_mode_unsigned
;
1187 if (second_ei
->source_mode_signed
!= MAX_MACHINE_MODE
)
1188 first_ei
->source_mode_signed
=
1189 (first_ei
->source_mode_signed
>
1190 second_ei
->source_mode_signed
) ?
1191 first_ei
->source_mode_signed
: second_ei
->source_mode_signed
;
1197 else if (first_ei
->source_mode_signed
== MAX_MACHINE_MODE
)
1199 gcc_assert (first_ei
->source_mode_unsigned
!= MAX_MACHINE_MODE
);
1200 switch (second_ei
->relevancy
)
1202 case SIGN_EXTENDED_DEF
:
1203 first_ei
->relevancy
= NOT_RELEVANT
;
1207 case ZERO_EXTENDED_DEF
:
1208 first_ei
->relevancy
= ZERO_EXTENDED_DEF
;
1209 first_ei
->source_mode
=
1210 (first_ei
->source_mode_unsigned
> second_ei
->source_mode
) ?
1211 first_ei
->source_mode_unsigned
: second_ei
->source_mode
;
1214 if (second_ei
->source_mode_unsigned
== MAX_MACHINE_MODE
)
1215 first_ei
->relevancy
= NOT_RELEVANT
;
1217 first_ei
->source_mode_unsigned
=
1218 (first_ei
->source_mode_unsigned
>
1219 second_ei
->source_mode_unsigned
) ?
1220 first_ei
->source_mode_unsigned
:
1221 second_ei
->source_mode_unsigned
;
1229 gcc_assert (first_ei
->source_mode_unsigned
== MAX_MACHINE_MODE
);
1230 gcc_assert (first_ei
->source_mode_signed
!= MAX_MACHINE_MODE
);
1231 switch (second_ei
->relevancy
)
1233 case SIGN_EXTENDED_DEF
:
1234 first_ei
->relevancy
= SIGN_EXTENDED_DEF
;
1235 first_ei
->source_mode
=
1236 (first_ei
->source_mode_signed
> second_ei
->source_mode
) ?
1237 first_ei
->source_mode_signed
: second_ei
->source_mode
;
1241 case ZERO_EXTENDED_DEF
:
1242 first_ei
->relevancy
= NOT_RELEVANT
;
1245 if (second_ei
->source_mode_signed
== MAX_MACHINE_MODE
)
1246 first_ei
->relevancy
= NOT_RELEVANT
;
1248 first_ei
->source_mode_signed
=
1249 (first_ei
->source_mode_signed
>
1250 second_ei
->source_mode_signed
) ?
1251 first_ei
->source_mode_signed
: second_ei
->source_mode_signed
;
1259 /* Unknown patern type. */
1267 /* Free global data structures. */
1270 see_free_data_structures (void)
1275 /* Free the bitmap vectors. */
1278 sbitmap_vector_free (transp
);
1280 sbitmap_vector_free (comp
);
1282 sbitmap_vector_free (antloc
);
1284 sbitmap_vector_free (ae_kill
);
1289 sbitmap_vector_free (pre_insert_map
);
1290 pre_insert_map
= NULL
;
1294 sbitmap_vector_free (pre_delete_map
);
1295 pre_delete_map
= NULL
;
1299 free_edge_list (edge_list
);
1303 /* Free the extension hash. */
1304 htab_delete (see_pre_extension_hash
);
1306 /* Free the array of hashes. */
1307 for (i
= 0; i
< last_bb
; i
++)
1308 if (see_bb_hash_ar
[i
])
1309 htab_delete (see_bb_hash_ar
[i
]);
1310 free (see_bb_hash_ar
);
1312 /* Free the array of splay trees. */
1313 for (i
= 0; i
< last_bb
; i
++)
1314 if (see_bb_splay_ar
[i
])
1315 splay_tree_delete (see_bb_splay_ar
[i
]);
1316 free (see_bb_splay_ar
);
1318 /* Free the array of web entries and their extra info field. */
1319 for (j
= 0; j
< defs_num
; j
++)
1320 free (def_entry
[j
].extra_info
);
1322 for (j
= 0; j
< uses_num
; j
++)
1323 free (use_entry
[j
].extra_info
);
1328 /* Initialize global data structures and variables. */
1331 see_initialize_data_structures (void)
1333 /* Build the df object. */
1334 df
= df_init (DF_HARD_REGS
| DF_EQUIV_NOTES
| DF_SUBREGS
);
1335 df_rd_add_problem (df
, 0);
1336 df_chain_add_problem (df
, DF_DU_CHAIN
| DF_UD_CHAIN
);
1340 df_dump (df
, dump_file
);
1342 /* Record the last basic block at the beginning of the optimization. */
1343 last_bb
= last_basic_block
;
1344 /* Record the number of uses at the beginning of the optimization. */
1345 uses_num
= DF_USES_SIZE (df
);
1346 /* Record the number of definitions at the beginning of the optimization. */
1347 defs_num
= DF_DEFS_SIZE (df
);
1349 /* Allocate web entries array for the union-find data structure. */
1350 def_entry
= xcalloc (defs_num
, sizeof (struct web_entry
));
1351 use_entry
= xcalloc (uses_num
, sizeof (struct web_entry
));
1353 /* Allocate an array of splay trees.
1354 One splay tree for each basic block. */
1355 see_bb_splay_ar
= xcalloc (last_bb
, sizeof (splay_tree
));
1357 /* Allocate an array of hashes.
1358 One hash for each basic block. */
1359 see_bb_hash_ar
= xcalloc (last_bb
, sizeof (htab_t
));
1361 /* Allocate the extension hash. It will hold the extensions that we want
1363 see_pre_extension_hash
= htab_create (10,
1364 hash_descriptor_pre_extension
,
1365 eq_descriptor_pre_extension
,
1366 hash_del_pre_extension
);
1370 /* Function called by note_uses to check if a register is used in a
1373 X is a pointer to the subexpression and DATA is a pointer to a
1374 see_mentioned_reg_data structure that contains the register to look for and
1375 a place for the result. */
1378 see_mentioned_reg (rtx
*x
, void *data
)
1380 struct see_mentioned_reg_data
*d
1381 = (struct see_mentioned_reg_data
*) data
;
1383 if (reg_mentioned_p (d
->reg
, *x
))
1384 d
->mentioned
= true;
1388 /* We don't want to merge a use extension with a reference if the extended
1389 register is used only in a simple move instruction. We also don't want to
1390 merge a def extension with a reference if the source register of the
1391 extension is defined only in a simple move in the reference.
1393 REF is the reference instruction.
1394 EXTENSION is the use extension or def extension instruction.
1395 TYPE is the type of the extension (use or def).
1397 Return true if the reference is complicated enough, so we would like to merge
1398 it with the extension. Otherwise, return false. */
1401 see_want_to_be_merged_with_extension (rtx ref
, rtx extension
,
1402 enum extension_type type
)
1405 rtx dest_extension_reg
= see_get_extension_reg (extension
, 1);
1406 rtx source_extension_reg
= see_get_extension_reg (extension
, 0);
1408 struct see_mentioned_reg_data d
;
1411 pat
= PATTERN (ref
);
1412 code
= GET_CODE (pat
);
1414 if (code
== PARALLEL
)
1416 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
1418 rtx sub
= XVECEXP (pat
, 0, i
);
1420 if (GET_CODE (sub
) == SET
1421 && (REG_P (SET_DEST (sub
))
1422 || (GET_CODE (SET_DEST (sub
)) == SUBREG
1423 && REG_P (SUBREG_REG (SET_DEST (sub
)))))
1424 && (REG_P (SET_SRC (sub
))
1425 || (GET_CODE (SET_SRC (sub
)) == SUBREG
1426 && REG_P (SUBREG_REG (SET_SRC (sub
))))))
1428 /* This is a simple move SET. */
1429 if (type
== DEF_EXTENSION
1430 && reg_mentioned_p (source_extension_reg
, SET_DEST (sub
)))
1435 /* This is not a simple move SET.
1436 Check if it uses the source of the extension. */
1437 if (type
== USE_EXTENSION
)
1439 d
.reg
= dest_extension_reg
;
1440 d
.mentioned
= false;
1441 note_uses (&sub
, see_mentioned_reg
, &d
);
1447 if (type
== USE_EXTENSION
)
1453 && (REG_P (SET_DEST (pat
))
1454 || (GET_CODE (SET_DEST (pat
)) == SUBREG
1455 && REG_P (SUBREG_REG (SET_DEST (pat
)))))
1456 && (REG_P (SET_SRC (pat
))
1457 || (GET_CODE (SET_SRC (pat
)) == SUBREG
1458 && REG_P (SUBREG_REG (SET_SRC (pat
))))))
1459 /* This is a simple move SET. */
1467 /* Print the register number of the current see_register_properties
1470 This is a subroutine of see_main called via htab_traverse.
1471 SLOT contains the current see_register_properties structure pointer. */
1474 see_print_register_properties (void **slot
, void *b ATTRIBUTE_UNUSED
)
1476 struct see_register_properties
*prop
= *slot
;
1479 fprintf (dump_file
, "Property found for register %d\n", prop
->regno
);
1484 /* Print the extension instruction of the current see_register_properties
1487 This is a subroutine of see_main called via htab_traverse.
1488 SLOT contains the current see_pre_extension_expr structure pointer. */
1491 see_print_pre_extension_expr (void **slot
, void *b ATTRIBUTE_UNUSED
)
1493 struct see_pre_extension_expr
*pre_extension
= *slot
;
1495 gcc_assert (pre_extension
1496 && pre_extension
->se_insn
1497 && INSN_P (pre_extension
->se_insn
));
1499 fprintf (dump_file
, "Index %d for:\n", pre_extension
->bitmap_index
);
1500 print_rtl_single (dump_file
, pre_extension
->se_insn
);
1506 /* Phase 4 implementation: Commit changes to the insn stream. */
1508 /* Delete the merged def extension.
1510 This is a subroutine of see_commit_ref_changes called via htab_traverse.
1512 SLOT contains the current def extension instruction.
1513 B is the see_ref_s structure pointer. */
1516 see_delete_merged_def_extension (void **slot
, void *b ATTRIBUTE_UNUSED
)
1522 fprintf (dump_file
, "Deleting merged def extension:\n");
1523 print_rtl_single (dump_file
, def_se
);
1526 if (INSN_DELETED_P (def_se
))
1527 /* This def extension is an implicit one. No need to delete it since
1528 it is not in the insn stream. */
1531 delete_insn (def_se
);
1536 /* Delete the unmerged def extension.
1538 This is a subroutine of see_commit_ref_changes called via htab_traverse.
1540 SLOT contains the current def extension instruction.
1541 B is the see_ref_s structure pointer. */
1544 see_delete_unmerged_def_extension (void **slot
, void *b ATTRIBUTE_UNUSED
)
1550 fprintf (dump_file
, "Deleting unmerged def extension:\n");
1551 print_rtl_single (dump_file
, def_se
);
1554 delete_insn (def_se
);
1559 /* Emit the non-redundant use extension to the instruction stream.
1561 This is a subroutine of see_commit_ref_changes called via htab_traverse.
1563 SLOT contains the current use extension instruction.
1564 B is the see_ref_s structure pointer. */
1567 see_emit_use_extension (void **slot
, void *b
)
1570 struct see_ref_s
*curr_ref_s
= (struct see_ref_s
*) b
;
1572 if (INSN_DELETED_P (use_se
))
1573 /* This use extension was previously removed according to the lcm
1579 fprintf (dump_file
, "Inserting use extension:\n");
1580 print_rtl_single (dump_file
, use_se
);
1583 add_insn_before (use_se
, curr_ref_s
->insn
);
1589 /* For each relevant reference:
1590 a. Emit the non-redundant use extensions.
1591 b. Delete the def extensions.
1592 c. Replace the original reference with the merged one (if exists) and add the
1593 move instructions that were generated.
1595 This is a subroutine of see_commit_changes called via splay_tree_foreach.
1597 STN is the current node in the see_bb_splay_ar[i] splay tree. It holds a
1598 see_ref_s structure. */
1601 see_commit_ref_changes (splay_tree_node stn
,
1602 void *data ATTRIBUTE_UNUSED
)
1604 htab_t use_se_hash
= ((struct see_ref_s
*) (stn
->value
))->use_se_hash
;
1605 htab_t unmerged_def_se_hash
=
1606 ((struct see_ref_s
*) (stn
->value
))->unmerged_def_se_hash
;
1607 htab_t merged_def_se_hash
=
1608 ((struct see_ref_s
*) (stn
->value
))->merged_def_se_hash
;
1609 rtx ref
= ((struct see_ref_s
*) (stn
->value
))->insn
;
1610 rtx merged_ref
= ((struct see_ref_s
*) (stn
->value
))->merged_insn
;
1612 /* Emit the non-redundant use extensions. */
1614 htab_traverse_noresize (use_se_hash
, see_emit_use_extension
,
1615 (PTR
) (stn
->value
));
1617 /* Delete the def extensions. */
1618 if (unmerged_def_se_hash
)
1619 htab_traverse (unmerged_def_se_hash
, see_delete_unmerged_def_extension
,
1620 (PTR
) (stn
->value
));
1622 if (merged_def_se_hash
)
1623 htab_traverse (merged_def_se_hash
, see_delete_merged_def_extension
,
1624 (PTR
) (stn
->value
));
1626 /* Replace the original reference with the merged one (if exists) and add the
1627 move instructions that were generated. */
1628 if (merged_ref
&& !INSN_DELETED_P (ref
))
1632 fprintf (dump_file
, "Replacing orig reference:\n");
1633 print_rtl_single (dump_file
, ref
);
1634 fprintf (dump_file
, "With merged reference:\n");
1635 print_rtl_single (dump_file
, merged_ref
);
1637 emit_insn_after (merged_ref
, ref
);
1641 /* Continue to the next reference. */
1646 /* Insert partially redundant expressions on edges to make the expressions fully
1649 INDEX_MAP is a mapping of an index to an expression.
1650 Return true if an instruction was inserted on an edge.
1651 Otherwise, return false. */
1654 see_pre_insert_extensions (struct see_pre_extension_expr
**index_map
)
1656 int num_edges
= NUM_EDGES (edge_list
);
1657 int set_size
= pre_insert_map
[0]->size
;
1658 size_t pre_extension_num
= htab_elements (see_pre_extension_hash
);
1665 for (e
= 0; e
< num_edges
; e
++)
1668 basic_block bb
= INDEX_EDGE_PRED_BB (edge_list
, e
);
1670 for (i
= indx
= 0; i
< set_size
; i
++, indx
+= SBITMAP_ELT_BITS
)
1672 SBITMAP_ELT_TYPE insert
= pre_insert_map
[e
]->elms
[i
];
1674 for (j
= indx
; insert
&& j
< (int) pre_extension_num
;
1678 struct see_pre_extension_expr
*expr
= index_map
[j
];
1679 int idx
= expr
->bitmap_index
;
1681 edge eg
= INDEX_EDGE (edge_list
, e
);
1684 emit_insn (PATTERN (expr
->se_insn
));
1685 se_insn
= get_insns ();
1688 if (eg
->flags
& EDGE_ABNORMAL
)
1690 rtx new_insn
= NULL
;
1692 new_insn
= insert_insn_end_bb_new (se_insn
, bb
);
1693 gcc_assert (new_insn
&& INSN_P (new_insn
));
1698 "PRE: end of bb %d, insn %d, ",
1699 bb
->index
, INSN_UID (new_insn
));
1701 "inserting expression %d\n", idx
);
1706 insert_insn_on_edge (se_insn
, eg
);
1710 fprintf (dump_file
, "PRE: edge (%d,%d), ",
1712 INDEX_EDGE_SUCC_BB (edge_list
, e
)->index
);
1713 fprintf (dump_file
, "inserting expression %d\n", idx
);
1724 /* Since all the redundant extensions must be anticipatable, they must be a use
1725 extensions. Mark them as deleted. This will prevent them from been emitted
1728 This is a subroutine of see_commit_changes called via htab_traverse.
1730 SLOT contains the current see_pre_extension_expr structure pointer. */
1733 see_pre_delete_extension (void **slot
, void *b ATTRIBUTE_UNUSED
)
1735 struct see_pre_extension_expr
*expr
= *slot
;
1736 struct see_occr
*occr
;
1737 int indx
= expr
->bitmap_index
;
1739 for (occr
= expr
->antic_occr
; occr
!= NULL
; occr
= occr
->next
)
1741 if (TEST_BIT (pre_delete_map
[occr
->block_num
], indx
))
1743 /* Mark as deleted. */
1744 INSN_DELETED_P (occr
->insn
) = 1;
1747 fprintf (dump_file
,"Redundant extension deleted:\n");
1748 print_rtl_single (dump_file
, occr
->insn
);
1756 /* Create the index_map mapping of an index to an expression.
1758 This is a subroutine of see_commit_changes called via htab_traverse.
1760 SLOT contains the current see_pre_extension_expr structure pointer.
1761 B a pointer to see_pre_extension_expr structure pointer. */
1764 see_map_extension (void **slot
, void *b
)
1766 struct see_pre_extension_expr
*expr
= *slot
;
1767 struct see_pre_extension_expr
**index_map
=
1768 (struct see_pre_extension_expr
**) b
;
1770 index_map
[expr
->bitmap_index
] = expr
;
1776 /* Phase 4 top level function.
1777 In this phase we finally change the instruction stream.
1778 Here we insert extensions at their best placements and delete the
1779 redundant ones according to the output of the LCM. We also replace
1780 some of the instructions according to phase 2 merges results. */
1783 see_commit_changes (void)
1785 struct see_pre_extension_expr
**index_map
;
1786 size_t pre_extension_num
= htab_elements (see_pre_extension_hash
);
1787 bool did_insert
= false;
1790 index_map
= xcalloc (pre_extension_num
,
1791 sizeof (struct see_pre_extension_expr
*));
1795 "* Phase 4: Commit changes to the insn stream. *\n");
1797 /* Produce a mapping of all the pre_extensions. */
1798 htab_traverse (see_pre_extension_hash
, see_map_extension
, (PTR
) index_map
);
1800 /* Delete redundant extension. This will prevent them from been emitted in
1802 htab_traverse (see_pre_extension_hash
, see_pre_delete_extension
, NULL
);
1804 /* At this point, we must free the DF object, since the number of basic blocks
1809 /* Insert extensions on edges, according to the LCM result. */
1810 did_insert
= see_pre_insert_extensions (index_map
);
1813 commit_edge_insertions ();
1815 /* Commit the rest of the changes. */
1816 for (i
= 0; i
< last_bb
; i
++)
1818 if (see_bb_splay_ar
[i
])
1820 /* Traverse over all the references in the basic block in forward
1822 splay_tree_foreach (see_bb_splay_ar
[i
],
1823 see_commit_ref_changes
, NULL
);
1831 /* Phase 3 implementation: Eliminate globally redundant extensions. */
1833 /* Analyze the properties of a merged def extension for the LCM and record avail
1836 This is a subroutine of see_analyze_ref_local_prop called
1839 SLOT contains the current def extension instruction.
1840 B is the see_ref_s structure pointer. */
1843 see_analyze_merged_def_local_prop (void **slot
, void *b
)
1846 struct see_ref_s
*curr_ref_s
= (struct see_ref_s
*) b
;
1847 rtx ref
= curr_ref_s
->insn
;
1848 struct see_pre_extension_expr
*extension_expr
;
1850 int bb_num
= BLOCK_NUM (ref
);
1851 htab_t curr_bb_hash
;
1852 struct see_register_properties
*curr_prop
, **slot_prop
;
1853 struct see_register_properties temp_prop
;
1854 rtx dest_extension_reg
= see_get_extension_reg (def_se
, 1);
1855 struct see_occr
*curr_occr
= NULL
;
1856 struct see_occr
*tmp_occr
= NULL
;
1858 extension_expr
= see_seek_pre_extension_expr (def_se
, DEF_EXTENSION
);
1859 /* The extension_expr must be found. */
1860 gcc_assert (extension_expr
);
1862 curr_bb_hash
= see_bb_hash_ar
[bb_num
];
1863 gcc_assert (curr_bb_hash
);
1864 temp_prop
.regno
= REGNO (dest_extension_reg
);
1866 (struct see_register_properties
**) htab_find_slot (curr_bb_hash
,
1867 &temp_prop
, INSERT
);
1868 curr_prop
= *slot_prop
;
1869 gcc_assert (curr_prop
);
1871 indx
= extension_expr
->bitmap_index
;
1873 /* Reset the transparency bit. */
1874 RESET_BIT (transp
[bb_num
], indx
);
1875 /* Reset the killed bit. */
1876 RESET_BIT (ae_kill
[bb_num
], indx
);
1878 if (curr_prop
->first_se_after_last_def
== DF_INSN_LUID (df
, ref
))
1880 /* Set the available bit. */
1881 SET_BIT (comp
[bb_num
], indx
);
1882 /* Record the available occurrence. */
1883 curr_occr
= xmalloc (sizeof (struct see_occr
));
1884 curr_occr
->next
= NULL
;
1885 curr_occr
->insn
= def_se
;
1886 curr_occr
->block_num
= bb_num
;
1887 tmp_occr
= extension_expr
->avail_occr
;
1889 extension_expr
->avail_occr
= curr_occr
;
1892 while (tmp_occr
->next
)
1893 tmp_occr
= tmp_occr
->next
;
1894 tmp_occr
->next
= curr_occr
;
1902 /* Analyze the properties of a unmerged def extension for the LCM.
1904 This is a subroutine of see_analyze_ref_local_prop called
1907 SLOT contains the current def extension instruction.
1908 B is the see_ref_s structure pointer. */
1911 see_analyze_unmerged_def_local_prop (void **slot
, void *b
)
1914 struct see_ref_s
*curr_ref_s
= (struct see_ref_s
*) b
;
1915 rtx ref
= curr_ref_s
->insn
;
1916 struct see_pre_extension_expr
*extension_expr
;
1918 int bb_num
= BLOCK_NUM (ref
);
1919 htab_t curr_bb_hash
;
1920 struct see_register_properties
*curr_prop
, **slot_prop
;
1921 struct see_register_properties temp_prop
;
1922 rtx dest_extension_reg
= see_get_extension_reg (def_se
, 1);
1924 extension_expr
= see_seek_pre_extension_expr (def_se
, DEF_EXTENSION
);
1925 /* The extension_expr must be found. */
1926 gcc_assert (extension_expr
);
1928 curr_bb_hash
= see_bb_hash_ar
[bb_num
];
1929 gcc_assert (curr_bb_hash
);
1930 temp_prop
.regno
= REGNO (dest_extension_reg
);
1932 (struct see_register_properties
**) htab_find_slot (curr_bb_hash
,
1933 &temp_prop
, INSERT
);
1934 curr_prop
= *slot_prop
;
1935 gcc_assert (curr_prop
);
1937 indx
= extension_expr
->bitmap_index
;
1939 /* Reset the transparency bit. */
1940 RESET_BIT (transp
[bb_num
], indx
);
1941 /* Set the killed bit. */
1942 SET_BIT (ae_kill
[bb_num
], indx
);
1948 /* Analyze the properties of a use extension for the LCM and record anic and
1951 This is a subroutine of see_analyze_ref_local_prop called
1954 SLOT contains the current use extension instruction.
1955 B is the see_ref_s structure pointer. */
1958 see_analyze_use_local_prop (void **slot
, void *b
)
1960 struct see_ref_s
*curr_ref_s
= (struct see_ref_s
*) b
;
1962 rtx ref
= curr_ref_s
->insn
;
1963 rtx dest_extension_reg
= see_get_extension_reg (use_se
, 1);
1964 struct see_pre_extension_expr
*extension_expr
;
1965 struct see_register_properties
*curr_prop
, **slot_prop
;
1966 struct see_register_properties temp_prop
;
1967 struct see_occr
*curr_occr
= NULL
;
1968 struct see_occr
*tmp_occr
= NULL
;
1969 htab_t curr_bb_hash
;
1971 int bb_num
= BLOCK_NUM (ref
);
1973 extension_expr
= see_seek_pre_extension_expr (use_se
, USE_EXTENSION
);
1974 /* The extension_expr must be found. */
1975 gcc_assert (extension_expr
);
1977 curr_bb_hash
= see_bb_hash_ar
[bb_num
];
1978 gcc_assert (curr_bb_hash
);
1979 temp_prop
.regno
= REGNO (dest_extension_reg
);
1981 (struct see_register_properties
**) htab_find_slot (curr_bb_hash
,
1982 &temp_prop
, INSERT
);
1983 curr_prop
= *slot_prop
;
1984 gcc_assert (curr_prop
);
1986 indx
= extension_expr
->bitmap_index
;
1988 if (curr_prop
->first_se_before_any_def
== DF_INSN_LUID (df
, ref
))
1990 /* Set the anticipatable bit. */
1991 SET_BIT (antloc
[bb_num
], indx
);
1992 /* Record the anticipatable occurrence. */
1993 curr_occr
= xmalloc (sizeof (struct see_occr
));
1994 curr_occr
->next
= NULL
;
1995 curr_occr
->insn
= use_se
;
1996 curr_occr
->block_num
= bb_num
;
1997 tmp_occr
= extension_expr
->antic_occr
;
1999 extension_expr
->antic_occr
= curr_occr
;
2002 while (tmp_occr
->next
)
2003 tmp_occr
= tmp_occr
->next
;
2004 tmp_occr
->next
= curr_occr
;
2006 if (curr_prop
->last_def
< 0)
2008 /* Set the available bit. */
2009 SET_BIT (comp
[bb_num
], indx
);
2010 /* Record the available occurrence. */
2011 curr_occr
= xmalloc (sizeof (struct see_occr
));
2012 curr_occr
->next
= NULL
;
2013 curr_occr
->insn
= use_se
;
2014 curr_occr
->block_num
= bb_num
;
2015 tmp_occr
= extension_expr
->avail_occr
;
2017 extension_expr
->avail_occr
= curr_occr
;
2020 while (tmp_occr
->next
)
2021 tmp_occr
= tmp_occr
->next
;
2022 tmp_occr
->next
= curr_occr
;
2025 /* Note: there is no need to reset the killed bit since it must be zero at
2028 else if (curr_prop
->first_se_after_last_def
== DF_INSN_LUID (df
, ref
))
2030 /* Set the available bit. */
2031 SET_BIT (comp
[bb_num
], indx
);
2032 /* Reset the killed bit. */
2033 RESET_BIT (ae_kill
[bb_num
], indx
);
2034 /* Record the available occurrence. */
2035 curr_occr
= xmalloc (sizeof (struct see_occr
));
2036 curr_occr
->next
= NULL
;
2037 curr_occr
->insn
= use_se
;
2038 curr_occr
->block_num
= bb_num
;
2039 tmp_occr
= extension_expr
->avail_occr
;
2041 extension_expr
->avail_occr
= curr_occr
;
2044 while (tmp_occr
->next
)
2045 tmp_occr
= tmp_occr
->next
;
2046 tmp_occr
->next
= curr_occr
;
2053 /* Here we traverse over all the merged and unmerged extensions of the reference
2054 and analyze their properties for the LCM.
2056 This is a subroutine of see_execute_LCM called via splay_tree_foreach.
2058 STN is the current node in the see_bb_splay_ar[i] splay tree. It holds a
2059 see_ref_s structure. */
2062 see_analyze_ref_local_prop (splay_tree_node stn
,
2063 void *data ATTRIBUTE_UNUSED
)
2065 htab_t use_se_hash
= ((struct see_ref_s
*) (stn
->value
))->use_se_hash
;
2066 htab_t unmerged_def_se_hash
=
2067 ((struct see_ref_s
*) (stn
->value
))->unmerged_def_se_hash
;
2068 htab_t merged_def_se_hash
=
2069 ((struct see_ref_s
*) (stn
->value
))->merged_def_se_hash
;
2071 /* Analyze use extensions that were not merged with the reference. */
2073 htab_traverse_noresize (use_se_hash
, see_analyze_use_local_prop
,
2074 (PTR
) (stn
->value
));
2076 /* Analyze def extensions that were not merged with the reference. */
2077 if (unmerged_def_se_hash
)
2078 htab_traverse (unmerged_def_se_hash
, see_analyze_unmerged_def_local_prop
,
2079 (PTR
) (stn
->value
));
2081 /* Analyze def extensions that were merged with the reference. */
2082 if (merged_def_se_hash
)
2083 htab_traverse (merged_def_se_hash
, see_analyze_merged_def_local_prop
,
2084 (PTR
) (stn
->value
));
2086 /* Continue to the next definition. */
2091 /* Phase 3 top level function.
2092 In this phase, we set the input bit vectors of the LCM according to data
2093 gathered in phase 2.
2094 Then we run the edge based LCM. */
2097 see_execute_LCM (void)
2099 size_t pre_extension_num
= htab_elements (see_pre_extension_hash
);
2104 "* Phase 3: Eliminate globally redundant extensions. *\n");
2106 /* Initialize the global sbitmap vectors. */
2107 transp
= sbitmap_vector_alloc (last_bb
, pre_extension_num
);
2108 comp
= sbitmap_vector_alloc (last_bb
, pre_extension_num
);
2109 antloc
= sbitmap_vector_alloc (last_bb
, pre_extension_num
);
2110 ae_kill
= sbitmap_vector_alloc (last_bb
, pre_extension_num
);
2111 sbitmap_vector_ones (transp
, last_bb
);
2112 sbitmap_vector_zero (comp
, last_bb
);
2113 sbitmap_vector_zero (antloc
, last_bb
);
2114 sbitmap_vector_zero (ae_kill
, last_bb
);
2116 /* Traverse over all the splay trees of the basic blocks. */
2117 for (i
= 0; i
< last_bb
; i
++)
2119 if (see_bb_splay_ar
[i
])
2121 /* Traverse over all the references in the basic block in forward
2123 splay_tree_foreach (see_bb_splay_ar
[i
],
2124 see_analyze_ref_local_prop
, NULL
);
2128 /* Add fake exit edges before running the lcm. */
2129 add_noreturn_fake_exit_edges ();
2132 edge_list
= pre_edge_lcm (pre_extension_num
, transp
, comp
, antloc
,
2133 ae_kill
, &pre_insert_map
, &pre_delete_map
);
2135 /* Remove the fake edges. */
2136 remove_fake_exit_edges ();
2140 /* Phase 2 implementation: Merge and eliminate locally redundant extensions. */
2142 /* In this function we set the register properties for the register that is
2143 defined and extended in the reference.
2144 The properties are defined in see_register_properties structure which is
2145 allocated per basic block and per register.
2146 Later the extension is inserted into the see_pre_extension_hash for the next
2147 phase of the optimization.
2149 This is a subroutine of see_handle_extensions_for_one_ref called
2152 SLOT contains the current def extension instruction.
2153 B is the see_ref_s structure pointer. */
2156 see_set_prop_merged_def (void **slot
, void *b
)
2159 struct see_ref_s
*curr_ref_s
= (struct see_ref_s
*) b
;
2160 rtx insn
= curr_ref_s
->insn
;
2161 rtx dest_extension_reg
= see_get_extension_reg (def_se
, 1);
2162 htab_t curr_bb_hash
;
2163 struct see_register_properties
*curr_prop
= NULL
;
2164 struct see_register_properties
**slot_prop
;
2165 struct see_register_properties temp_prop
;
2166 int ref_luid
= DF_INSN_LUID (df
, insn
);
2168 curr_bb_hash
= see_bb_hash_ar
[BLOCK_NUM (curr_ref_s
->insn
)];
2171 /* The hash doesn't exist yet. Create it. */
2172 curr_bb_hash
= htab_create (10,
2173 hash_descriptor_properties
,
2174 eq_descriptor_properties
,
2175 hash_del_properties
);
2176 see_bb_hash_ar
[BLOCK_NUM (curr_ref_s
->insn
)] = curr_bb_hash
;
2179 /* Find the right register properties in the right basic block. */
2180 temp_prop
.regno
= REGNO (dest_extension_reg
);
2182 (struct see_register_properties
**) htab_find_slot (curr_bb_hash
,
2183 &temp_prop
, INSERT
);
2185 if (slot_prop
&& *slot_prop
!= NULL
)
2187 /* Property already exists. */
2188 curr_prop
= *slot_prop
;
2189 gcc_assert (curr_prop
->regno
== REGNO (dest_extension_reg
));
2191 curr_prop
->last_def
= ref_luid
;
2192 curr_prop
->first_se_after_last_def
= ref_luid
;
2196 /* Property doesn't exist yet. */
2197 curr_prop
= xmalloc (sizeof (struct see_register_properties
));
2198 curr_prop
->regno
= REGNO (dest_extension_reg
);
2199 curr_prop
->last_def
= ref_luid
;
2200 curr_prop
->first_se_before_any_def
= -1;
2201 curr_prop
->first_se_after_last_def
= ref_luid
;
2202 *slot_prop
= curr_prop
;
2205 /* Insert the def_se into see_pre_extension_hash if it isn't already
2207 see_seek_pre_extension_expr (def_se
, DEF_EXTENSION
);
2213 /* In this function we set the register properties for the register that is
2214 defined but not extended in the reference.
2215 The properties are defined in see_register_properties structure which is
2216 allocated per basic block and per register.
2217 Later the extension is inserted into the see_pre_extension_hash for the next
2218 phase of the optimization.
2220 This is a subroutine of see_handle_extensions_for_one_ref called
2223 SLOT contains the current def extension instruction.
2224 B is the see_ref_s structure pointer. */
2227 see_set_prop_unmerged_def (void **slot
, void *b
)
2230 struct see_ref_s
*curr_ref_s
= (struct see_ref_s
*) b
;
2231 rtx insn
= curr_ref_s
->insn
;
2232 rtx dest_extension_reg
= see_get_extension_reg (def_se
, 1);
2233 htab_t curr_bb_hash
;
2234 struct see_register_properties
*curr_prop
= NULL
;
2235 struct see_register_properties
**slot_prop
;
2236 struct see_register_properties temp_prop
;
2237 int ref_luid
= DF_INSN_LUID (df
, insn
);
2239 curr_bb_hash
= see_bb_hash_ar
[BLOCK_NUM (curr_ref_s
->insn
)];
2242 /* The hash doesn't exist yet. Create it. */
2243 curr_bb_hash
= htab_create (10,
2244 hash_descriptor_properties
,
2245 eq_descriptor_properties
,
2246 hash_del_properties
);
2247 see_bb_hash_ar
[BLOCK_NUM (curr_ref_s
->insn
)] = curr_bb_hash
;
2250 /* Find the right register properties in the right basic block. */
2251 temp_prop
.regno
= REGNO (dest_extension_reg
);
2253 (struct see_register_properties
**) htab_find_slot (curr_bb_hash
,
2254 &temp_prop
, INSERT
);
2256 if (slot_prop
&& *slot_prop
!= NULL
)
2258 /* Property already exists. */
2259 curr_prop
= *slot_prop
;
2260 gcc_assert (curr_prop
->regno
== REGNO (dest_extension_reg
));
2262 curr_prop
->last_def
= ref_luid
;
2263 curr_prop
->first_se_after_last_def
= -1;
2267 /* Property doesn't exist yet. */
2268 curr_prop
= xmalloc (sizeof (struct see_register_properties
));
2269 curr_prop
->regno
= REGNO (dest_extension_reg
);
2270 curr_prop
->last_def
= ref_luid
;
2271 curr_prop
->first_se_before_any_def
= -1;
2272 curr_prop
->first_se_after_last_def
= -1;
2273 *slot_prop
= curr_prop
;
2276 /* Insert the def_se into see_pre_extension_hash if it isn't already
2278 see_seek_pre_extension_expr (def_se
, DEF_EXTENSION
);
2284 /* In this function we set the register properties for the register that is used
2286 The properties are defined in see_register_properties structure which is
2287 allocated per basic block and per register.
2288 When a redundant use extension is found it is removed from the hash of the
2290 If the extension is non redundant it is inserted into the
2291 see_pre_extension_hash for the next phase of the optimization.
2293 This is a subroutine of see_handle_extensions_for_one_ref called
2296 SLOT contains the current use extension instruction.
2297 B is the see_ref_s structure pointer. */
2300 see_set_prop_unmerged_use (void **slot
, void *b
)
2303 struct see_ref_s
*curr_ref_s
= (struct see_ref_s
*) b
;
2304 rtx insn
= curr_ref_s
->insn
;
2305 rtx dest_extension_reg
= see_get_extension_reg (use_se
, 1);
2306 htab_t curr_bb_hash
;
2307 struct see_register_properties
*curr_prop
= NULL
;
2308 struct see_register_properties
**slot_prop
;
2309 struct see_register_properties temp_prop
;
2310 bool locally_redundant
= false;
2311 int ref_luid
= DF_INSN_LUID (df
, insn
);
2313 curr_bb_hash
= see_bb_hash_ar
[BLOCK_NUM (curr_ref_s
->insn
)];
2316 /* The hash doesn't exist yet. Create it. */
2317 curr_bb_hash
= htab_create (10,
2318 hash_descriptor_properties
,
2319 eq_descriptor_properties
,
2320 hash_del_properties
);
2321 see_bb_hash_ar
[BLOCK_NUM (curr_ref_s
->insn
)] = curr_bb_hash
;
2324 /* Find the right register properties in the right basic block. */
2325 temp_prop
.regno
= REGNO (dest_extension_reg
);
2327 (struct see_register_properties
**) htab_find_slot (curr_bb_hash
,
2328 &temp_prop
, INSERT
);
2330 if (slot_prop
&& *slot_prop
!= NULL
)
2332 /* Property already exists. */
2333 curr_prop
= *slot_prop
;
2334 gcc_assert (curr_prop
->regno
== REGNO (dest_extension_reg
));
2337 if (curr_prop
->last_def
< 0 && curr_prop
->first_se_before_any_def
< 0)
2338 curr_prop
->first_se_before_any_def
= ref_luid
;
2339 else if (curr_prop
->last_def
< 0
2340 && curr_prop
->first_se_before_any_def
>= 0)
2342 /* In this case the extension is locally redundant. */
2343 htab_clear_slot (curr_ref_s
->use_se_hash
, (PTR
*)slot
);
2344 locally_redundant
= true;
2346 else if (curr_prop
->last_def
>= 0
2347 && curr_prop
->first_se_after_last_def
< 0)
2348 curr_prop
->first_se_after_last_def
= ref_luid
;
2349 else if (curr_prop
->last_def
>= 0
2350 && curr_prop
->first_se_after_last_def
>= 0)
2352 /* In this case the extension is locally redundant. */
2353 htab_clear_slot (curr_ref_s
->use_se_hash
, (PTR
*)slot
);
2354 locally_redundant
= true;
2361 /* Property doesn't exist yet. Create a new one. */
2362 curr_prop
= xmalloc (sizeof (struct see_register_properties
));
2363 curr_prop
->regno
= REGNO (dest_extension_reg
);
2364 curr_prop
->last_def
= -1;
2365 curr_prop
->first_se_before_any_def
= ref_luid
;
2366 curr_prop
->first_se_after_last_def
= -1;
2367 *slot_prop
= curr_prop
;
2370 /* Insert the use_se into see_pre_extension_hash if it isn't already
2372 if (!locally_redundant
)
2373 see_seek_pre_extension_expr (use_se
, USE_EXTENSION
);
2374 if (locally_redundant
&& dump_file
)
2376 fprintf (dump_file
, "Locally redundant extension:\n");
2377 print_rtl_single (dump_file
, use_se
);
2383 /* Print an extension instruction.
2385 This is a subroutine of see_handle_extensions_for_one_ref called
2387 SLOT contains the extension instruction. */
2390 see_print_one_extension (void **slot
, void *b ATTRIBUTE_UNUSED
)
2394 gcc_assert (def_se
&& INSN_P (def_se
));
2395 print_rtl_single (dump_file
, def_se
);
2400 /* Function called by note_uses to replace used subexpressions.
2402 X is a pointer to the subexpression and DATA is a pointer to a
2403 see_replace_data structure that contains the data for the replacement. */
2406 see_replace_src (rtx
*x
, void *data
)
2408 struct see_replace_data
*d
2409 = (struct see_replace_data
*) data
;
2411 *x
= replace_rtx (*x
, d
->from
, d
->to
);
2415 /* At this point the pattern is expected to be:
2417 ref: set (dest_reg) (rhs)
2418 def_se: set (dest_extension_reg) (sign/zero_extend (source_extension_reg))
2420 The merge of these two instructions didn't succeed.
2422 We try to generate the pattern:
2423 set (subreg (dest_extension_reg)) (rhs)
2425 We do this in 4 steps:
2426 a. Replace every use of dest_reg with a new pseudo register.
2427 b. Replace every instance of dest_reg with the subreg.
2428 c. Replace every use of the new pseudo register back to dest_reg.
2429 d. Try to recognize and simplify.
2431 If the manipulation failed, leave the original ref but try to generate and
2432 recognize a simple move instruction:
2433 set (subreg (dest_extension_reg)) (dest_reg)
2434 This move instruction will be emitted right after the ref to the instruction
2435 stream and assure the correctness of the code after def_se will be removed.
2437 CURR_REF_S is the current reference.
2438 DEF_SE is the extension that couldn't be merged. */
2441 see_def_extension_not_merged (struct see_ref_s
*curr_ref_s
, rtx def_se
)
2443 struct see_replace_data d
;
2444 /* If the original insn was already merged with an extension before,
2445 take the merged one. */
2446 rtx ref
= (curr_ref_s
->merged_insn
) ? curr_ref_s
->merged_insn
:
2448 rtx merged_ref_next
= (curr_ref_s
->merged_insn
) ?
2449 NEXT_INSN (curr_ref_s
->merged_insn
): NULL_RTX
;
2450 rtx ref_copy
= copy_rtx (ref
);
2451 rtx source_extension_reg
= see_get_extension_reg (def_se
, 0);
2452 rtx dest_extension_reg
= see_get_extension_reg (def_se
, 1);
2453 rtx move_insn
= NULL
;
2455 rtx dest_reg
, dest_real_reg
;
2456 rtx new_pseudo_reg
, subreg
;
2457 enum machine_mode source_extension_mode
= GET_MODE (source_extension_reg
);
2458 enum machine_mode dest_mode
;
2460 set
= single_set (def_se
);
2462 rhs
= SET_SRC (set
);
2463 gcc_assert (GET_CODE (rhs
) == SIGN_EXTEND
2464 || GET_CODE (rhs
) == ZERO_EXTEND
);
2465 dest_reg
= XEXP (rhs
, 0);
2466 gcc_assert (REG_P (dest_reg
)
2467 || (GET_CODE (dest_reg
) == SUBREG
2468 && REG_P (SUBREG_REG (dest_reg
))));
2469 dest_real_reg
= REG_P (dest_reg
) ? dest_reg
: SUBREG_REG (dest_reg
);
2470 dest_mode
= GET_MODE (dest_reg
);
2472 subreg
= gen_lowpart_SUBREG (dest_mode
, dest_extension_reg
);
2473 new_pseudo_reg
= gen_reg_rtx (source_extension_mode
);
2475 /* Step a: Replace every use of dest_real_reg with a new pseudo register. */
2476 d
.from
= dest_real_reg
;
2477 d
.to
= new_pseudo_reg
;
2478 note_uses (&PATTERN (ref_copy
), see_replace_src
, &d
);
2479 /* Step b: Replace every instance of dest_reg with the subreg. */
2480 ref_copy
= replace_rtx (ref_copy
, dest_reg
, subreg
);
2482 /* Step c: Replace every use of the new pseudo register back to
2484 d
.from
= new_pseudo_reg
;
2485 d
.to
= dest_real_reg
;
2486 note_uses (&PATTERN (ref_copy
), see_replace_src
, &d
);
2488 if (rtx_equal_p (PATTERN (ref
), PATTERN (ref_copy
))
2489 || insn_invalid_p (ref_copy
))
2491 /* The manipulation failed. */
2493 /* Create a new copy. */
2494 ref_copy
= copy_rtx (ref
);
2496 /* Create a simple move instruction that will replace the def_se. */
2498 emit_move_insn (subreg
, dest_reg
);
2499 move_insn
= get_insns ();
2502 /* Link the manipulated instruction to the newly created move instruction
2503 and to the former created move instructions. */
2504 PREV_INSN (ref_copy
) = NULL_RTX
;
2505 NEXT_INSN (ref_copy
) = move_insn
;
2506 PREV_INSN (move_insn
) = ref_copy
;
2507 NEXT_INSN (move_insn
) = merged_ref_next
;
2508 if (merged_ref_next
!= NULL_RTX
)
2509 PREV_INSN (merged_ref_next
) = move_insn
;
2510 curr_ref_s
->merged_insn
= ref_copy
;
2514 fprintf (dump_file
, "Following def merge failure a move ");
2515 fprintf (dump_file
, "insn was added after the ref.\n");
2516 fprintf (dump_file
, "Original ref:\n");
2517 print_rtl_single (dump_file
, ref
);
2518 fprintf (dump_file
, "Move insn that was added:\n");
2519 print_rtl_single (dump_file
, move_insn
);
2524 /* The manipulation succeeded. Store the new manipulated reference. */
2526 /* Try to simplify the new manipulated insn. */
2527 validate_simplify_insn (ref_copy
);
2529 /* Create a simple move instruction to assure the correctness of the code. */
2531 emit_move_insn (dest_reg
, subreg
);
2532 move_insn
= get_insns ();
2535 /* Link the manipulated instruction to the newly created move instruction and
2536 to the former created move instructions. */
2537 PREV_INSN (ref_copy
) = NULL_RTX
;
2538 NEXT_INSN (ref_copy
) = move_insn
;
2539 PREV_INSN (move_insn
) = ref_copy
;
2540 NEXT_INSN (move_insn
) = merged_ref_next
;
2541 if (merged_ref_next
!= NULL_RTX
)
2542 PREV_INSN (merged_ref_next
) = move_insn
;
2543 curr_ref_s
->merged_insn
= ref_copy
;
2547 fprintf (dump_file
, "Following merge failure the ref was transformed!\n");
2548 fprintf (dump_file
, "Original ref:\n");
2549 print_rtl_single (dump_file
, ref
);
2550 fprintf (dump_file
, "Transformed ref:\n");
2551 print_rtl_single (dump_file
, ref_copy
);
2552 fprintf (dump_file
, "Move insn that was added:\n");
2553 print_rtl_single (dump_file
, move_insn
);
2558 /* Merge the reference instruction (ref) with the current use extension.
2560 use_se extends a NARROWmode register to a WIDEmode register.
2561 ref uses the WIDEmode register.
2563 The pattern we try to merge is this:
2564 use_se: set (dest_extension_reg) (sign/zero_extend (source_extension_reg))
2565 ref: use (dest_extension_reg)
2567 where dest_extension_reg and source_extension_reg can be subregs.
2569 The merge is done by generating, simplifying and recognizing the pattern:
2570 use (sign/zero_extend (source_extension_reg))
2572 If ref is too simple (according to see_want_to_be_merged_with_extension ())
2573 we don't try to merge it with use_se and we continue as if the merge failed.
2575 This is a subroutine of see_handle_extensions_for_one_ref called
2577 SLOT contains the current use extension instruction.
2578 B is the see_ref_s structure pointer. */
2581 see_merge_one_use_extension (void **slot
, void *b
)
2583 struct see_ref_s
*curr_ref_s
= (struct see_ref_s
*) b
;
2585 rtx ref
= (curr_ref_s
->merged_insn
) ? curr_ref_s
->merged_insn
:
2587 rtx merged_ref_next
= (curr_ref_s
->merged_insn
) ?
2588 NEXT_INSN (curr_ref_s
->merged_insn
): NULL_RTX
;
2589 rtx ref_copy
= copy_rtx (ref
);
2590 rtx extension_set
= single_set (use_se
);
2591 rtx extension_rhs
= NULL
;
2592 rtx dest_extension_reg
= see_get_extension_reg (use_se
, 1);
2594 rtx simplified_note
= NULL
;
2596 gcc_assert (use_se
&& curr_ref_s
&& extension_set
);
2598 extension_rhs
= SET_SRC (extension_set
);
2600 /* In REG_EQUIV and REG_EQUAL notes that mention the register we need to
2601 replace the uses of the dest_extension_reg with the rhs of the extension
2602 instruction. This is necessary since there might not be an extension in
2603 the path between the definition and the note when this optimization is
2605 note
= find_reg_equal_equiv_note (ref_copy
);
2608 simplified_note
= simplify_replace_rtx (XEXP (note
, 0),
2611 if (rtx_equal_p (XEXP (note
, 0), simplified_note
))
2612 /* Replacement failed. Remove the note. */
2613 remove_note (ref_copy
, note
);
2615 XEXP (note
, 0) = simplified_note
;
2618 if (!see_want_to_be_merged_with_extension (ref
, use_se
, USE_EXTENSION
))
2620 /* The use in the reference is too simple. Don't try to merge. */
2623 fprintf (dump_file
, "Use merge skipped!\n");
2624 fprintf (dump_file
, "Original instructions:\n");
2625 print_rtl_single (dump_file
, use_se
);
2626 print_rtl_single (dump_file
, ref
);
2628 /* Don't remove the current use_se from the use_se_hash and continue to
2629 the next extension. */
2633 validate_replace_src_group (dest_extension_reg
, extension_rhs
, ref_copy
);
2635 if (!num_changes_pending ())
2636 /* In this case this is not a real use (the only use is/was in the notes
2637 list). Remove the use extension from the hash. This will prevent it
2638 from been emitted in the first place. */
2642 fprintf (dump_file
, "Use extension not necessary before:\n");
2643 print_rtl_single (dump_file
, ref
);
2645 htab_clear_slot (curr_ref_s
->use_se_hash
, (PTR
*)slot
);
2646 PREV_INSN (ref_copy
) = NULL_RTX
;
2647 NEXT_INSN (ref_copy
) = merged_ref_next
;
2648 if (merged_ref_next
!= NULL_RTX
)
2649 PREV_INSN (merged_ref_next
) = ref_copy
;
2650 curr_ref_s
->merged_insn
= ref_copy
;
2654 if (!apply_change_group ())
2656 /* The merge failed. */
2659 fprintf (dump_file
, "Use merge failed!\n");
2660 fprintf (dump_file
, "Original instructions:\n");
2661 print_rtl_single (dump_file
, use_se
);
2662 print_rtl_single (dump_file
, ref
);
2664 /* Don't remove the current use_se from the use_se_hash and continue to
2665 the next extension. */
2669 /* The merge succeeded! */
2671 /* Try to simplify the new merged insn. */
2672 validate_simplify_insn (ref_copy
);
2674 PREV_INSN (ref_copy
) = NULL_RTX
;
2675 NEXT_INSN (ref_copy
) = merged_ref_next
;
2676 if (merged_ref_next
!= NULL_RTX
)
2677 PREV_INSN (merged_ref_next
) = ref_copy
;
2678 curr_ref_s
->merged_insn
= ref_copy
;
2682 fprintf (dump_file
, "Use merge succeeded!\n");
2683 fprintf (dump_file
, "Original instructions:\n");
2684 print_rtl_single (dump_file
, use_se
);
2685 print_rtl_single (dump_file
, ref
);
2686 fprintf (dump_file
, "Merged instruction:\n");
2687 print_rtl_single (dump_file
, ref_copy
);
2690 /* Remove the current use_se from the use_se_hash. This will prevent it from
2691 been emitted in the first place. */
2692 htab_clear_slot (curr_ref_s
->use_se_hash
, (PTR
*)slot
);
2697 /* Merge the reference instruction (ref) with the extension that follows it
2698 in the same basic block (def_se).
2699 ref sets a NARROWmode register and def_se extends it to WIDEmode register.
2701 The pattern we try to merge is this:
2702 ref: set (dest_reg) (rhs)
2703 def_se: set (dest_extension_reg) (sign/zero_extend (source_extension_reg))
2705 where dest_reg and source_extension_reg can both be subregs (together)
2706 and (REGNO (dest_reg) == REGNO (source_extension_reg))
2708 The merge is done by generating, simplifying and recognizing the pattern:
2709 set (dest_extension_reg) (sign/zero_extend (rhs))
2710 If ref is a parallel instruction we just replace the relevant set in it.
2712 If ref is too simple (according to see_want_to_be_merged_with_extension ())
2713 we don't try to merge it with def_se and we continue as if the merge failed.
2715 This is a subroutine of see_handle_extensions_for_one_ref called
2718 SLOT contains the current def extension instruction.
2719 B is the see_ref_s structure pointer. */
2722 see_merge_one_def_extension (void **slot
, void *b
)
2724 struct see_ref_s
*curr_ref_s
= (struct see_ref_s
*) b
;
2726 /* If the original insn was already merged with an extension before,
2727 take the merged one. */
2728 rtx ref
= (curr_ref_s
->merged_insn
) ? curr_ref_s
->merged_insn
:
2730 rtx merged_ref_next
= (curr_ref_s
->merged_insn
) ?
2731 NEXT_INSN (curr_ref_s
->merged_insn
): NULL_RTX
;
2732 rtx ref_copy
= copy_rtx (ref
);
2734 rtx source_extension_reg
= see_get_extension_reg (def_se
, 0);
2735 rtx dest_extension_reg
= see_get_extension_reg (def_se
, 1);
2736 rtx move_insn
, *rtx_slot
, subreg
;
2737 rtx temp_extension
= NULL
;
2738 rtx simplified_temp_extension
= NULL
;
2741 enum rtx_code extension_code
;
2742 enum machine_mode source_extension_mode
;
2743 enum machine_mode source_mode
;
2744 enum machine_mode dest_extension_mode
;
2745 bool merge_success
= false;
2754 if (!see_want_to_be_merged_with_extension (ref
, def_se
, DEF_EXTENSION
))
2756 /* The definition in the reference is too simple. Don't try to merge. */
2759 fprintf (dump_file
, "Def merge skipped!\n");
2760 fprintf (dump_file
, "Original instructions:\n");
2761 print_rtl_single (dump_file
, ref
);
2762 print_rtl_single (dump_file
, def_se
);
2765 see_def_extension_not_merged (curr_ref_s
, def_se
);
2766 /* Continue to the next extension. */
2770 extension_code
= see_get_extension_data (def_se
, &source_mode
);
2772 /* Try to merge and simplify the extension. */
2773 source_extension_mode
= GET_MODE (source_extension_reg
);
2774 dest_extension_mode
= GET_MODE (dest_extension_reg
);
2776 pat
= &PATTERN (ref_copy
);
2777 code
= GET_CODE (*pat
);
2779 if (code
== PARALLEL
)
2781 bool need_to_apply_change
= false;
2783 for (i
= 0; i
< XVECLEN (*pat
, 0); i
++)
2785 rtx
*sub
= &XVECEXP (*pat
, 0, i
);
2787 if (GET_CODE (*sub
) == SET
2788 && GET_MODE (SET_SRC (*sub
)) != VOIDmode
2789 && GET_MODE (SET_DEST (*sub
)) == source_mode
2790 && ((REG_P (SET_DEST (*sub
))
2791 && REGNO (SET_DEST (*sub
)) == REGNO (source_extension_reg
))
2792 || (GET_CODE (SET_DEST (*sub
)) == SUBREG
2793 && REG_P (SUBREG_REG (SET_DEST (*sub
)))
2794 && (REGNO (SUBREG_REG (SET_DEST (*sub
))) ==
2795 REGNO (source_extension_reg
)))))
2797 rtx orig_src
= SET_SRC (*sub
);
2799 if (extension_code
== SIGN_EXTEND
)
2800 temp_extension
= gen_rtx_SIGN_EXTEND (dest_extension_mode
,
2803 temp_extension
= gen_rtx_ZERO_EXTEND (dest_extension_mode
,
2805 simplified_temp_extension
= simplify_rtx (temp_extension
);
2807 (simplified_temp_extension
) ? simplified_temp_extension
:
2809 new_set
= gen_rtx_SET (VOIDmode
, dest_extension_reg
,
2811 validate_change (ref_copy
, sub
, new_set
, 1);
2812 need_to_apply_change
= true;
2815 if (need_to_apply_change
)
2816 if (apply_change_group ())
2817 merge_success
= true;
2819 else if (code
== SET
2820 && GET_MODE (SET_SRC (*pat
)) != VOIDmode
2821 && GET_MODE (SET_DEST (*pat
)) == source_mode
2822 && ((REG_P (SET_DEST (*pat
))
2823 && REGNO (SET_DEST (*pat
)) == REGNO (source_extension_reg
))
2824 || (GET_CODE (SET_DEST (*pat
)) == SUBREG
2825 && REG_P (SUBREG_REG (SET_DEST (*pat
)))
2826 && (REGNO (SUBREG_REG (SET_DEST (*pat
))) ==
2827 REGNO (source_extension_reg
)))))
2829 rtx orig_src
= SET_SRC (*pat
);
2831 if (extension_code
== SIGN_EXTEND
)
2832 temp_extension
= gen_rtx_SIGN_EXTEND (dest_extension_mode
, orig_src
);
2834 temp_extension
= gen_rtx_ZERO_EXTEND (dest_extension_mode
, orig_src
);
2835 simplified_temp_extension
= simplify_rtx (temp_extension
);
2836 temp_extension
= (simplified_temp_extension
) ? simplified_temp_extension
:
2838 new_set
= gen_rtx_SET (VOIDmode
, dest_extension_reg
, temp_extension
);
2839 if (validate_change (ref_copy
, pat
, new_set
, 0))
2840 merge_success
= true;
2844 /* The merge failed. */
2847 fprintf (dump_file
, "Def merge failed!\n");
2848 fprintf (dump_file
, "Original instructions:\n");
2849 print_rtl_single (dump_file
, ref
);
2850 print_rtl_single (dump_file
, def_se
);
2853 see_def_extension_not_merged (curr_ref_s
, def_se
);
2854 /* Continue to the next extension. */
2858 /* The merge succeeded! */
2860 /* Create a simple move instruction to assure the correctness of the code. */
2861 subreg
= gen_lowpart_SUBREG (source_extension_mode
, dest_extension_reg
);
2863 emit_move_insn (source_extension_reg
, subreg
);
2864 move_insn
= get_insns ();
2867 /* Link the merged instruction to the newly created move instruction and
2868 to the former created move instructions. */
2869 PREV_INSN (ref_copy
) = NULL_RTX
;
2870 NEXT_INSN (ref_copy
) = move_insn
;
2871 PREV_INSN (move_insn
) = ref_copy
;
2872 NEXT_INSN (move_insn
) = merged_ref_next
;
2873 if (merged_ref_next
!= NULL_RTX
)
2874 PREV_INSN (merged_ref_next
) = move_insn
;
2875 curr_ref_s
->merged_insn
= ref_copy
;
2879 fprintf (dump_file
, "Def merge succeeded!\n");
2880 fprintf (dump_file
, "Original instructions:\n");
2881 print_rtl_single (dump_file
, ref
);
2882 print_rtl_single (dump_file
, def_se
);
2883 fprintf (dump_file
, "Merged instruction:\n");
2884 print_rtl_single (dump_file
, ref_copy
);
2885 fprintf (dump_file
, "Move instruction that was added:\n");
2886 print_rtl_single (dump_file
, move_insn
);
2889 /* Remove the current def_se from the unmerged_def_se_hash and insert it to
2890 the merged_def_se_hash. */
2891 htab_clear_slot (curr_ref_s
->unmerged_def_se_hash
, (PTR
*)slot
);
2892 if (!curr_ref_s
->merged_def_se_hash
)
2893 curr_ref_s
->merged_def_se_hash
= htab_create (10,
2894 hash_descriptor_extension
,
2895 eq_descriptor_extension
,
2897 rtx_slot
= (rtx
*) htab_find_slot (curr_ref_s
->merged_def_se_hash
,
2898 dest_extension_reg
, INSERT
);
2899 gcc_assert (*rtx_slot
== NULL
);
2906 /* Try to eliminate extensions in this order:
2907 a. Try to merge only the def extensions, one by one.
2908 b. Try to merge only the use extensions, one by one.
2911 Try to merge any couple of use extensions simultaneously.
2912 Try to merge any def extension with one or two uses extensions
2915 After all the merges are done, update the register properties for the basic
2916 block and eliminate locally redundant use extensions.
2918 This is a subroutine of see_merge_and_eliminate_extensions called
2919 via splay_tree_foreach.
2920 STN is the current node in the see_bb_splay_ar[i] splay tree. It holds a
2921 see_ref_s structure. */
2924 see_handle_extensions_for_one_ref (splay_tree_node stn
,
2925 void *data ATTRIBUTE_UNUSED
)
2927 htab_t use_se_hash
= ((struct see_ref_s
*) (stn
->value
))->use_se_hash
;
2928 htab_t unmerged_def_se_hash
=
2929 ((struct see_ref_s
*) (stn
->value
))->unmerged_def_se_hash
;
2930 htab_t merged_def_se_hash
;
2931 rtx ref
= ((struct see_ref_s
*) (stn
->value
))->insn
;
2935 fprintf (dump_file
, "Handling ref:\n");
2936 print_rtl_single (dump_file
, ref
);
2939 /* a. Try to eliminate only def extensions, one by one. */
2940 if (unmerged_def_se_hash
)
2941 htab_traverse_noresize (unmerged_def_se_hash
, see_merge_one_def_extension
,
2942 (PTR
) (stn
->value
));
2945 /* b. Try to eliminate only use extensions, one by one. */
2946 htab_traverse_noresize (use_se_hash
, see_merge_one_use_extension
,
2947 (PTR
) (stn
->value
));
2949 merged_def_se_hash
= ((struct see_ref_s
*) (stn
->value
))->merged_def_se_hash
;
2953 fprintf (dump_file
, "The hashes of the current reference:\n");
2954 if (unmerged_def_se_hash
)
2956 fprintf (dump_file
, "unmerged_def_se_hash:\n");
2957 htab_traverse (unmerged_def_se_hash
, see_print_one_extension
, NULL
);
2959 if (merged_def_se_hash
)
2961 fprintf (dump_file
, "merged_def_se_hash:\n");
2962 htab_traverse (merged_def_se_hash
, see_print_one_extension
, NULL
);
2966 fprintf (dump_file
, "use_se_hash:\n");
2967 htab_traverse (use_se_hash
, see_print_one_extension
, NULL
);
2971 /* Now that all the merges are done, update the register properties of the
2972 basic block and eliminate locally redundant extensions.
2973 It is important that we first traverse the use extensions hash and
2974 afterwards the def extensions hashes. */
2977 htab_traverse_noresize (use_se_hash
, see_set_prop_unmerged_use
,
2978 (PTR
) (stn
->value
));
2980 if (unmerged_def_se_hash
)
2981 htab_traverse (unmerged_def_se_hash
, see_set_prop_unmerged_def
,
2982 (PTR
) (stn
->value
));
2984 if (merged_def_se_hash
)
2985 htab_traverse (merged_def_se_hash
, see_set_prop_merged_def
,
2986 (PTR
) (stn
->value
));
2988 /* Continue to the next definition. */
2993 /* Phase 2 top level function.
2994 In this phase, we try to merge def extensions and use extensions with their
2995 references, and eliminate redundant extensions in the same basic block.
2996 We also gather information for the next phases. */
2999 see_merge_and_eliminate_extensions (void)
3005 "* Phase 2: Merge and eliminate locally redundant extensions. *\n");
3007 /* Traverse over all the splay trees of the basic blocks. */
3008 for (i
= 0; i
< last_bb
; i
++)
3010 if (see_bb_splay_ar
[i
])
3013 fprintf (dump_file
, "Handling references for bb %d\n", i
);
3014 /* Traverse over all the references in the basic block in forward
3016 splay_tree_foreach (see_bb_splay_ar
[i
],
3017 see_handle_extensions_for_one_ref
, NULL
);
3023 /* Phase 1 implementation: Propagate extensions to uses. */
3025 /* Insert REF_INSN into the splay tree of its basic block.
3026 SE_INSN is the extension to store in the proper hash according to TYPE.
3028 Return true if everything went well.
3029 Otherwise, return false (this will cause the optimization to be aborted). */
3032 see_store_reference_and_extension (rtx ref_insn
, rtx se_insn
,
3033 enum extension_type type
)
3037 splay_tree_node stn
= NULL
;
3038 htab_t se_hash
= NULL
;
3039 struct see_ref_s
*ref_s
= NULL
;
3041 /* Check the arguments. */
3042 gcc_assert (ref_insn
&& se_insn
);
3043 if (!see_bb_splay_ar
)
3046 curr_bb_num
= BLOCK_NUM (ref_insn
);
3047 gcc_assert (curr_bb_num
< last_bb
&& curr_bb_num
>= 0);
3049 /* Insert the reference to the splay tree of its basic block. */
3050 if (!see_bb_splay_ar
[curr_bb_num
])
3051 /* The splay tree for this block doesn't exist yet, create it. */
3052 see_bb_splay_ar
[curr_bb_num
] = splay_tree_new (splay_tree_compare_ints
,
3053 NULL
, see_free_ref_s
);
3055 /* Splay tree already exists, check if the current reference is already
3058 stn
= splay_tree_lookup (see_bb_splay_ar
[curr_bb_num
],
3059 DF_INSN_LUID (df
, ref_insn
));
3063 case EXPLICIT_DEF_EXTENSION
:
3065 ((struct see_ref_s
*) (stn
->value
))->unmerged_def_se_hash
;
3068 se_hash
= htab_create (10,
3069 hash_descriptor_extension
,
3070 eq_descriptor_extension
,
3072 ((struct see_ref_s
*) (stn
->value
))->unmerged_def_se_hash
=
3076 case IMPLICIT_DEF_EXTENSION
:
3077 se_hash
= ((struct see_ref_s
*) (stn
->value
))->merged_def_se_hash
;
3080 se_hash
= htab_create (10,
3081 hash_descriptor_extension
,
3082 eq_descriptor_extension
,
3084 ((struct see_ref_s
*) (stn
->value
))->merged_def_se_hash
=
3089 se_hash
= ((struct see_ref_s
*) (stn
->value
))->use_se_hash
;
3092 se_hash
= htab_create (10,
3093 hash_descriptor_extension
,
3094 eq_descriptor_extension
,
3096 ((struct see_ref_s
*) (stn
->value
))->use_se_hash
= se_hash
;
3104 /* Initialize a new see_ref_s structure and insert it to the splay
3108 ref_s
= xmalloc (sizeof (struct see_ref_s
));
3109 ref_s
->luid
= DF_INSN_LUID (df
, ref_insn
);
3110 ref_s
->insn
= ref_insn
;
3111 ref_s
->merged_insn
= NULL
;
3113 /* Initialize the hashes. */
3116 case EXPLICIT_DEF_EXTENSION
:
3117 ref_s
->unmerged_def_se_hash
= htab_create (10,
3118 hash_descriptor_extension
,
3119 eq_descriptor_extension
,
3121 se_hash
= ref_s
->unmerged_def_se_hash
;
3122 ref_s
->merged_def_se_hash
= NULL
;
3123 ref_s
->use_se_hash
= NULL
;
3125 case IMPLICIT_DEF_EXTENSION
:
3126 ref_s
->merged_def_se_hash
= htab_create (10,
3127 hash_descriptor_extension
,
3128 eq_descriptor_extension
,
3130 se_hash
= ref_s
->merged_def_se_hash
;
3131 ref_s
->unmerged_def_se_hash
= NULL
;
3132 ref_s
->use_se_hash
= NULL
;
3135 ref_s
->use_se_hash
= htab_create (10,
3136 hash_descriptor_extension
,
3137 eq_descriptor_extension
,
3139 se_hash
= ref_s
->use_se_hash
;
3140 ref_s
->unmerged_def_se_hash
= NULL
;
3141 ref_s
->merged_def_se_hash
= NULL
;
3148 /* Insert the new extension instruction into the correct se_hash of the
3149 current reference. */
3150 rtx_slot
= (rtx
*) htab_find_slot (se_hash
, se_insn
, INSERT
);
3151 if (*rtx_slot
!= NULL
)
3153 gcc_assert (type
== USE_EXTENSION
);
3154 gcc_assert (rtx_equal_p (PATTERN (*rtx_slot
), PATTERN (se_insn
)));
3157 *rtx_slot
= se_insn
;
3159 /* If this is a new reference, insert it into the splay_tree. */
3161 splay_tree_insert (see_bb_splay_ar
[curr_bb_num
],
3162 DF_INSN_LUID (df
, ref_insn
), (splay_tree_value
) ref_s
);
3167 /* Go over all the defs, for each relevant definition (defined below) store its
3168 instruction as a reference.
3170 A definition is relevant if its root has
3171 ((entry_type == SIGN_EXTENDED_DEF) || (entry_type == ZERO_EXTENDED_DEF)) and
3172 his source_mode is not narrower then the the roots source_mode.
3174 Return the number of relevant defs or negative number if something bad had
3175 happened and the optimization should be aborted. */
3178 see_handle_relevant_defs (void)
3183 rtx ref_insn
= NULL
;
3184 struct web_entry
*root_entry
= NULL
;
3186 int num_relevant_defs
= 0;
3187 enum rtx_code extension_code
;
3189 for (i
= 0; i
< defs_num
; i
++)
3191 insn
= DF_REF_INSN (DF_DEFS_GET (df
, i
));
3192 reg
= DF_REF_REAL_REG (DF_DEFS_GET (df
, i
));
3200 root_entry
= unionfind_root (&def_entry
[i
]);
3202 if (ENTRY_EI (root_entry
)->relevancy
!= SIGN_EXTENDED_DEF
3203 && ENTRY_EI (root_entry
)->relevancy
!= ZERO_EXTENDED_DEF
)
3204 /* The current web is not relevant. Continue to the next def. */
3207 if (root_entry
->reg
)
3208 /* It isn't possible to have two different register for the same
3210 gcc_assert (rtx_equal_p (root_entry
->reg
, reg
));
3212 root_entry
->reg
= reg
;
3214 /* The current definition is an EXTENDED_DEF or a definition that its
3215 source_mode is narrower then its web's source_mode.
3216 This means that we need to generate the implicit extension explicitly
3217 and store it in the current reference's merged_def_se_hash. */
3218 if (ENTRY_EI (&def_entry
[i
])->local_relevancy
== EXTENDED_DEF
3219 || (ENTRY_EI (&def_entry
[i
])->local_source_mode
<
3220 ENTRY_EI (root_entry
)->source_mode
))
3222 num_relevant_defs
++;
3224 if (ENTRY_EI (root_entry
)->relevancy
== SIGN_EXTENDED_DEF
)
3225 extension_code
= SIGN_EXTEND
;
3227 extension_code
= ZERO_EXTEND
;
3230 see_gen_normalized_extension (reg
, extension_code
,
3231 ENTRY_EI (root_entry
)->source_mode
);
3233 /* This is a dummy extension, mark it as deleted. */
3234 INSN_DELETED_P (se_insn
) = 1;
3236 if (!see_store_reference_and_extension (insn
, se_insn
,
3237 IMPLICIT_DEF_EXTENSION
))
3238 /* Something bad happened. Abort the optimization. */
3243 ref_insn
= PREV_INSN (insn
);
3244 gcc_assert (BLOCK_NUM (ref_insn
) == BLOCK_NUM (insn
));
3246 num_relevant_defs
++;
3248 if (!see_store_reference_and_extension (ref_insn
, insn
,
3249 EXPLICIT_DEF_EXTENSION
))
3250 /* Something bad happened. Abort the optimization. */
3253 return num_relevant_defs
;
3257 /* Go over all the uses, for each use in relevant web store its instruction as
3258 a reference and generate an extension before it.
3260 Return the number of relevant uses or negative number if something bad had
3261 happened and the optimization should be aborted. */
3264 see_handle_relevant_uses (void)
3268 struct web_entry
*root_entry
= NULL
;
3271 int num_relevant_uses
= 0;
3272 enum rtx_code extension_code
;
3274 for (i
= 0; i
< uses_num
; i
++)
3276 insn
= DF_REF_INSN (DF_USES_GET (df
, i
));
3277 reg
= DF_REF_REAL_REG (DF_USES_GET (df
, i
));
3285 root_entry
= unionfind_root (&use_entry
[i
]);
3287 if (ENTRY_EI (root_entry
)->relevancy
!= SIGN_EXTENDED_DEF
3288 && ENTRY_EI (root_entry
)->relevancy
!= ZERO_EXTENDED_DEF
)
3289 /* The current web is not relevant. Continue to the next use. */
3292 if (root_entry
->reg
)
3293 /* It isn't possible to have two different register for the same
3295 gcc_assert (rtx_equal_p (root_entry
->reg
, reg
));
3297 root_entry
->reg
= reg
;
3299 /* Generate the use extension. */
3300 if (ENTRY_EI (root_entry
)->relevancy
== SIGN_EXTENDED_DEF
)
3301 extension_code
= SIGN_EXTEND
;
3303 extension_code
= ZERO_EXTEND
;
3306 see_gen_normalized_extension (reg
, extension_code
,
3307 ENTRY_EI (root_entry
)->source_mode
);
3309 /* This is very bad, abort the transformation. */
3312 num_relevant_uses
++;
3314 if (!see_store_reference_and_extension (insn
, se_insn
,
3316 /* Something bad happened. Abort the optimization. */
3320 return num_relevant_uses
;
3324 /* Updates the relevancy of all the uses.
3325 The information of the i'th use is stored in use_entry[i].
3326 Currently all the uses are relevant for the optimization except for uses that
3327 are in LIBCALL or RETVAL instructions. */
3330 see_update_uses_relevancy (void)
3334 struct see_entry_extra_info
*curr_entry_extra_info
;
3338 if (!df
|| !use_entry
)
3341 for (i
= 0; i
< uses_num
; i
++)
3344 insn
= DF_REF_INSN (DF_USES_GET (df
, i
));
3345 reg
= DF_REF_REAL_REG (DF_USES_GET (df
, i
));
3353 if (insn
&& find_reg_note (insn
, REG_LIBCALL
, NULL_RTX
))
3355 if (find_reg_note (insn
, REG_RETVAL
, NULL_RTX
))
3363 fprintf (dump_file
, "u%i insn %i reg %i ",
3364 i
, (insn
? INSN_UID (insn
) : -1), REGNO (reg
));
3365 if (et
== NOT_RELEVANT
)
3366 fprintf (dump_file
, "NOT RELEVANT \n");
3368 fprintf (dump_file
, "RELEVANT USE \n");
3371 curr_entry_extra_info
= xmalloc (sizeof (struct see_entry_extra_info
));
3372 curr_entry_extra_info
->relevancy
= et
;
3373 curr_entry_extra_info
->local_relevancy
= et
;
3374 use_entry
[i
].extra_info
= curr_entry_extra_info
;
3375 use_entry
[i
].reg
= NULL
;
3376 use_entry
[i
].pred
= NULL
;
3381 /* A definition in a candidate for this optimization only if its pattern is
3382 recognized as relevant in this function.
3383 INSN is the instruction to be recognized.
3385 - If this is the pattern of a common sign extension after definition:
3386 PREV_INSN (INSN): def (reg:NARROWmode r)
3387 INSN: set ((reg:WIDEmode r')
3388 (sign_extend:WIDEmode (reg:NARROWmode r)))
3389 return SIGN_EXTENDED_DEF and set SOURCE_MODE to NARROWmode.
3391 - If this is the pattern of a common zero extension after definition:
3392 PREV_INSN (INSN): def (reg:NARROWmode r)
3393 INSN: set ((reg:WIDEmode r')
3394 (zero_extend:WIDEmode (reg:NARROWmode r)))
3395 return ZERO_EXTENDED_DEF and set SOURCE_MODE to NARROWmode.
3400 INSN: set ((reg:WIDEmode r) (sign_extend:WIDEmode (...expr...)))
3401 return EXTENDED_DEF and set SOURCE_MODE to the mode of expr.
3404 INSN: set ((reg:WIDEmode r) (zero_extend:WIDEmode (...expr...)))
3405 return EXTENDED_DEF and set SOURCE_MODE_UNSIGNED to the mode of expr.
3408 INSN: set ((reg:WIDEmode r) (CONST_INT (...)))
3409 return EXTENDED_DEF and set SOURCE_MODE(_UNSIGNED) to the narrowest mode that
3410 is implicitly sign(zero) extended to WIDEmode in the INSN.
3412 - FIXME: Extensions that are not adjacent to their definition and EXTENDED_DEF
3413 that is part of a PARALLEL instruction are not handled.
3414 These restriction can be relaxed. */
3416 static enum entry_type
3417 see_analyze_one_def (rtx insn
, enum machine_mode
*source_mode
,
3418 enum machine_mode
*source_mode_unsigned
)
3420 enum rtx_code extension_code
;
3424 rtx source_register
= NULL
;
3425 rtx prev_insn
= NULL
;
3426 rtx next_insn
= NULL
;
3427 enum machine_mode mode
;
3428 enum machine_mode next_source_mode
;
3429 HOST_WIDE_INT val
= 0;
3430 HOST_WIDE_INT val2
= 0;
3433 *source_mode
= MAX_MACHINE_MODE
;
3434 *source_mode_unsigned
= MAX_MACHINE_MODE
;
3437 return NOT_RELEVANT
;
3440 return NOT_RELEVANT
;
3442 extension_code
= see_get_extension_data (insn
, source_mode
);
3443 switch (extension_code
)
3447 source_register
= see_get_extension_reg (insn
, 0);
3448 /* FIXME: This restriction can be relaxed. The only thing that is
3449 important is that the reference would be inside the same basic block
3450 as the extension. */
3451 prev_insn
= PREV_INSN (insn
);
3452 if (!prev_insn
|| !INSN_P (prev_insn
))
3453 return NOT_RELEVANT
;
3455 if (!reg_set_between_p (source_register
, PREV_INSN (prev_insn
), insn
))
3456 return NOT_RELEVANT
;
3458 if (find_reg_note (prev_insn
, REG_LIBCALL
, NULL_RTX
))
3459 return NOT_RELEVANT
;
3461 if (find_reg_note (prev_insn
, REG_RETVAL
, NULL_RTX
))
3462 return NOT_RELEVANT
;
3464 /* If we can't use copy_rtx on the reference it can't be a reference. */
3465 if (GET_CODE (PATTERN (prev_insn
)) == PARALLEL
3466 && asm_noperands (PATTERN (prev_insn
)) >= 0)
3467 return NOT_RELEVANT
;
3469 /* Now, check if this extension is a reference itself. If so, it is not
3470 relevant. Handling this extension as relevant would make things much
3471 more complicated. */
3472 next_insn
= NEXT_INSN (insn
);
3474 && INSN_P (next_insn
)
3475 && (see_get_extension_data (next_insn
, &next_source_mode
) !=
3478 rtx curr_dest_register
= see_get_extension_reg (insn
, 1);
3479 rtx next_source_register
= see_get_extension_reg (next_insn
, 0);
3481 if (REGNO (curr_dest_register
) == REGNO (next_source_register
))
3482 return NOT_RELEVANT
;
3485 if (extension_code
== SIGN_EXTEND
)
3486 return SIGN_EXTENDED_DEF
;
3488 return ZERO_EXTENDED_DEF
;
3491 /* This may still be an EXTENDED_DEF. */
3493 /* FIXME: This restriction can be relaxed. It is possible to handle
3494 PARALLEL insns too. */
3495 set
= single_set (insn
);
3497 return NOT_RELEVANT
;
3498 rhs
= SET_SRC (set
);
3499 lhs
= SET_DEST (set
);
3501 /* Don't handle extensions to something other then register or
3503 if (!REG_P (lhs
) && !SUBREG_REG (lhs
))
3504 return NOT_RELEVANT
;
3506 switch (GET_CODE (rhs
))
3509 *source_mode
= GET_MODE (XEXP (rhs
, 0));
3510 *source_mode_unsigned
= MAX_MACHINE_MODE
;
3511 return EXTENDED_DEF
;
3513 *source_mode
= MAX_MACHINE_MODE
;
3514 *source_mode_unsigned
= GET_MODE (XEXP (rhs
, 0));
3515 return EXTENDED_DEF
;
3520 /* Find the narrowest mode, val could fit into. */
3521 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
), i
= 0;
3522 GET_MODE_BITSIZE (mode
) < BITS_PER_WORD
;
3523 mode
= GET_MODE_WIDER_MODE (mode
), i
++)
3525 val2
= trunc_int_for_mode (val
, mode
);
3526 if (val2
== val
&& *source_mode
== MAX_MACHINE_MODE
)
3527 *source_mode
= mode
;
3528 if (val
== (val
& (HOST_WIDE_INT
)GET_MODE_MASK (mode
))
3529 && *source_mode_unsigned
== MAX_MACHINE_MODE
)
3530 *source_mode_unsigned
= mode
;
3531 if (*source_mode
!= MAX_MACHINE_MODE
3532 && *source_mode_unsigned
!=MAX_MACHINE_MODE
)
3533 return EXTENDED_DEF
;
3535 if (*source_mode
!= MAX_MACHINE_MODE
3536 || *source_mode_unsigned
!=MAX_MACHINE_MODE
)
3537 return EXTENDED_DEF
;
3538 return NOT_RELEVANT
;
3540 return NOT_RELEVANT
;
3548 /* Updates the relevancy and source_mode of all the definitions.
3549 The information of the i'th definition is stored in def_entry[i]. */
3552 see_update_defs_relevancy (void)
3554 struct see_entry_extra_info
*curr_entry_extra_info
;
3559 enum machine_mode source_mode
;
3560 enum machine_mode source_mode_unsigned
;
3562 if (!df
|| !def_entry
)
3565 for (i
= 0; i
< defs_num
; i
++)
3567 insn
= DF_REF_INSN (DF_DEFS_GET (df
, i
));
3568 reg
= DF_REF_REAL_REG (DF_DEFS_GET (df
, i
));
3570 et
= see_analyze_one_def (insn
, &source_mode
, &source_mode_unsigned
);
3572 curr_entry_extra_info
= xmalloc (sizeof (struct see_entry_extra_info
));
3573 curr_entry_extra_info
->relevancy
= et
;
3574 curr_entry_extra_info
->local_relevancy
= et
;
3575 if (et
!= EXTENDED_DEF
)
3577 curr_entry_extra_info
->source_mode
= source_mode
;
3578 curr_entry_extra_info
->local_source_mode
= source_mode
;
3582 curr_entry_extra_info
->source_mode_signed
= source_mode
;
3583 curr_entry_extra_info
->source_mode_unsigned
= source_mode_unsigned
;
3585 def_entry
[i
].extra_info
= curr_entry_extra_info
;
3586 def_entry
[i
].reg
= NULL
;
3587 def_entry
[i
].pred
= NULL
;
3591 if (et
== NOT_RELEVANT
)
3593 fprintf (dump_file
, "d%i insn %i reg %i ",
3594 i
, (insn
? INSN_UID (insn
) : -1), REGNO (reg
));
3595 fprintf (dump_file
, "NOT RELEVANT \n");
3599 fprintf (dump_file
, "d%i insn %i reg %i ",
3600 i
,INSN_UID (insn
), REGNO (reg
));
3601 fprintf (dump_file
, "RELEVANT - ");
3604 case SIGN_EXTENDED_DEF
:
3605 fprintf (dump_file
, "SIGN_EXTENDED_DEF, source_mode = %s\n",
3606 GET_MODE_NAME (source_mode
));
3608 case ZERO_EXTENDED_DEF
:
3609 fprintf (dump_file
, "ZERO_EXTENDED_DEF, source_mode = %s\n",
3610 GET_MODE_NAME (source_mode
));
3613 fprintf (dump_file
, "EXTENDED_DEF, ");
3614 if (source_mode
!= MAX_MACHINE_MODE
3615 && source_mode_unsigned
!= MAX_MACHINE_MODE
)
3617 fprintf (dump_file
, "positive const, ");
3618 fprintf (dump_file
, "source_mode_signed = %s, ",
3619 GET_MODE_NAME (source_mode
));
3620 fprintf (dump_file
, "source_mode_unsigned = %s\n",
3621 GET_MODE_NAME (source_mode_unsigned
));
3623 else if (source_mode
!= MAX_MACHINE_MODE
)
3624 fprintf (dump_file
, "source_mode_signed = %s\n",
3625 GET_MODE_NAME (source_mode
));
3627 fprintf (dump_file
, "source_mode_unsigned = %s\n",
3628 GET_MODE_NAME (source_mode_unsigned
));
3639 /* Phase 1 top level function.
3640 In this phase the relevancy of all the definitions and uses are checked,
3641 later the webs are produces and the extensions are generated.
3642 These extensions are not emitted yet into the insns stream.
3644 returns true if at list one relevant web was found and there were no
3645 problems, otherwise return false. */
3648 see_propagate_extensions_to_uses (void)
3651 int num_relevant_uses
;
3652 int num_relevant_defs
;
3656 "* Phase 1: Propagate extensions to uses. *\n");
3658 /* Update the relevancy of references using the DF object. */
3659 see_update_defs_relevancy ();
3660 see_update_uses_relevancy ();
3662 /* Produce the webs and update the extra_info of the root.
3663 In general, a web is relevant if all its definitions and uses are relevant
3664 and there is at least one definition that was marked as SIGN_EXTENDED_DEF
3665 or ZERO_EXTENDED_DEF. */
3666 for (i
= 0; i
< uses_num
; i
++)
3667 union_defs (df
, DF_USES_GET (df
, i
), def_entry
, use_entry
,
3668 see_update_leader_extra_info
);
3670 /* Generate use extensions for references and insert these
3671 references to see_bb_splay_ar data structure. */
3672 num_relevant_uses
= see_handle_relevant_uses ();
3674 if (num_relevant_uses
< 0)
3677 /* Store the def extensions in their references structures and insert these
3678 references to see_bb_splay_ar data structure. */
3679 num_relevant_defs
= see_handle_relevant_defs ();
3681 if (num_relevant_defs
< 0)
3684 return num_relevant_uses
> 0 || num_relevant_defs
> 0;
3688 /* Main entry point for the sign extension elimination optimization. */
3696 /* Initialize global data structures. */
3697 see_initialize_data_structures ();
3699 /* Phase 1: Propagate extensions to uses. */
3700 cont
= see_propagate_extensions_to_uses ();
3706 /* Phase 2: Merge and eliminate locally redundant extensions. */
3707 see_merge_and_eliminate_extensions ();
3709 /* Phase 3: Eliminate globally redundant extensions. */
3712 /* Phase 4: Commit changes to the insn stream. */
3713 see_commit_changes ();
3717 /* For debug purpose only. */
3718 fprintf (dump_file
, "see_pre_extension_hash:\n");
3719 htab_traverse (see_pre_extension_hash
, see_print_pre_extension_expr
,
3722 for (i
= 0; i
< last_bb
; i
++)
3724 if (see_bb_hash_ar
[i
])
3725 /* Traverse over all the references in the basic block in
3729 "Searching register properties in bb %d\n", i
);
3730 htab_traverse (see_bb_hash_ar
[i
],
3731 see_print_register_properties
, NULL
);
3737 /* Free global data structures. */
3738 see_free_data_structures ();
3743 gate_handle_see (void)
3745 return optimize
> 1 && flag_see
;
3749 rest_of_handle_see (void)
3751 int no_new_pseudos_bcp
= no_new_pseudos
;
3755 no_new_pseudos
= no_new_pseudos_bcp
;
3757 delete_trivially_dead_insns (get_insns (), max_reg_num ());
3758 update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES
,
3759 (PROP_DEATH_NOTES
));
3760 cleanup_cfg (CLEANUP_EXPENSIVE
);
3761 reg_scan (get_insns (), max_reg_num ());
3766 struct tree_opt_pass pass_see
=
3769 gate_handle_see
, /* gate */
3770 rest_of_handle_see
, /* execute */
3773 0, /* static_pass_number */
3775 0, /* properties_required */
3776 0, /* properties_provided */
3777 0, /* properties_destroyed */
3778 0, /* todo_flags_start */
3779 TODO_dump_func
, /* todo_flags_finish */