2014-10-31 Richard Biener <rguenther@suse.de>
[official-gcc.git] / gcc / ipa-inline-analysis.c
blobeb1c6ec2d0def83313c10a989b5b812bcf57b5ac
1 /* Inlining decision heuristics.
2 Copyright (C) 2003-2014 Free Software Foundation, Inc.
3 Contributed by Jan Hubicka
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* Analysis used by the inliner and other passes limiting code size growth.
23 We estimate for each function
24 - function body size
25 - average function execution time
26 - inlining size benefit (that is how much of function body size
27 and its call sequence is expected to disappear by inlining)
28 - inlining time benefit
29 - function frame size
30 For each call
31 - call statement size and time
33 inlinie_summary datastructures store above information locally (i.e.
34 parameters of the function itself) and globally (i.e. parameters of
35 the function created by applying all the inline decisions already
36 present in the callgraph).
38 We provide accestor to the inline_summary datastructure and
39 basic logic updating the parameters when inlining is performed.
41 The summaries are context sensitive. Context means
42 1) partial assignment of known constant values of operands
43 2) whether function is inlined into the call or not.
44 It is easy to add more variants. To represent function size and time
45 that depends on context (i.e. it is known to be optimized away when
46 context is known either by inlining or from IP-CP and clonning),
47 we use predicates. Predicates are logical formulas in
48 conjunctive-disjunctive form consisting of clauses. Clauses are bitmaps
49 specifying what conditions must be true. Conditions are simple test
50 of the form described above.
52 In order to make predicate (possibly) true, all of its clauses must
53 be (possibly) true. To make clause (possibly) true, one of conditions
54 it mentions must be (possibly) true. There are fixed bounds on
55 number of clauses and conditions and all the manipulation functions
56 are conservative in positive direction. I.e. we may lose precision
57 by thinking that predicate may be true even when it is not.
59 estimate_edge_size and estimate_edge_growth can be used to query
60 function size/time in the given context. inline_merge_summary merges
61 properties of caller and callee after inlining.
63 Finally pass_inline_parameters is exported. This is used to drive
64 computation of function parameters used by the early inliner. IPA
65 inlined performs analysis via its analyze_function method. */
67 #include "config.h"
68 #include "system.h"
69 #include "coretypes.h"
70 #include "tm.h"
71 #include "tree.h"
72 #include "stor-layout.h"
73 #include "stringpool.h"
74 #include "print-tree.h"
75 #include "tree-inline.h"
76 #include "langhooks.h"
77 #include "flags.h"
78 #include "diagnostic.h"
79 #include "gimple-pretty-print.h"
80 #include "params.h"
81 #include "tree-pass.h"
82 #include "coverage.h"
83 #include "predict.h"
84 #include "vec.h"
85 #include "hashtab.h"
86 #include "hash-set.h"
87 #include "machmode.h"
88 #include "hard-reg-set.h"
89 #include "input.h"
90 #include "function.h"
91 #include "dominance.h"
92 #include "cfg.h"
93 #include "cfganal.h"
94 #include "basic-block.h"
95 #include "tree-ssa-alias.h"
96 #include "internal-fn.h"
97 #include "gimple-expr.h"
98 #include "is-a.h"
99 #include "gimple.h"
100 #include "gimple-iterator.h"
101 #include "gimple-ssa.h"
102 #include "tree-cfg.h"
103 #include "tree-phinodes.h"
104 #include "ssa-iterators.h"
105 #include "tree-ssanames.h"
106 #include "tree-ssa-loop-niter.h"
107 #include "tree-ssa-loop.h"
108 #include "hash-map.h"
109 #include "plugin-api.h"
110 #include "ipa-ref.h"
111 #include "cgraph.h"
112 #include "alloc-pool.h"
113 #include "ipa-prop.h"
114 #include "lto-streamer.h"
115 #include "data-streamer.h"
116 #include "tree-streamer.h"
117 #include "ipa-inline.h"
118 #include "cfgloop.h"
119 #include "tree-scalar-evolution.h"
120 #include "ipa-utils.h"
121 #include "cilk.h"
122 #include "cfgexpand.h"
124 /* Estimate runtime of function can easilly run into huge numbers with many
125 nested loops. Be sure we can compute time * INLINE_SIZE_SCALE * 2 in an
126 integer. For anything larger we use gcov_type. */
127 #define MAX_TIME 500000
129 /* Number of bits in integer, but we really want to be stable across different
130 hosts. */
131 #define NUM_CONDITIONS 32
133 enum predicate_conditions
135 predicate_false_condition = 0,
136 predicate_not_inlined_condition = 1,
137 predicate_first_dynamic_condition = 2
140 /* Special condition code we use to represent test that operand is compile time
141 constant. */
142 #define IS_NOT_CONSTANT ERROR_MARK
143 /* Special condition code we use to represent test that operand is not changed
144 across invocation of the function. When operand IS_NOT_CONSTANT it is always
145 CHANGED, however i.e. loop invariants can be NOT_CHANGED given percentage
146 of executions even when they are not compile time constants. */
147 #define CHANGED IDENTIFIER_NODE
149 /* Holders of ipa cgraph hooks: */
150 static struct cgraph_node_hook_list *function_insertion_hook_holder;
151 static struct cgraph_node_hook_list *node_removal_hook_holder;
152 static struct cgraph_2node_hook_list *node_duplication_hook_holder;
153 static struct cgraph_2edge_hook_list *edge_duplication_hook_holder;
154 static struct cgraph_edge_hook_list *edge_removal_hook_holder;
155 static void inline_node_removal_hook (struct cgraph_node *, void *);
156 static void inline_node_duplication_hook (struct cgraph_node *,
157 struct cgraph_node *, void *);
158 static void inline_edge_removal_hook (struct cgraph_edge *, void *);
159 static void inline_edge_duplication_hook (struct cgraph_edge *,
160 struct cgraph_edge *, void *);
162 /* VECtor holding inline summaries.
163 In GGC memory because conditions might point to constant trees. */
164 vec<inline_summary_t, va_gc> *inline_summary_vec;
165 vec<inline_edge_summary_t> inline_edge_summary_vec;
167 /* Cached node/edge growths. */
168 vec<int> node_growth_cache;
169 vec<edge_growth_cache_entry> edge_growth_cache;
171 /* Edge predicates goes here. */
172 static alloc_pool edge_predicate_pool;
174 /* Return true predicate (tautology).
175 We represent it by empty list of clauses. */
177 static inline struct predicate
178 true_predicate (void)
180 struct predicate p;
181 p.clause[0] = 0;
182 return p;
186 /* Return predicate testing single condition number COND. */
188 static inline struct predicate
189 single_cond_predicate (int cond)
191 struct predicate p;
192 p.clause[0] = 1 << cond;
193 p.clause[1] = 0;
194 return p;
198 /* Return false predicate. First clause require false condition. */
200 static inline struct predicate
201 false_predicate (void)
203 return single_cond_predicate (predicate_false_condition);
207 /* Return true if P is (true). */
209 static inline bool
210 true_predicate_p (struct predicate *p)
212 return !p->clause[0];
216 /* Return true if P is (false). */
218 static inline bool
219 false_predicate_p (struct predicate *p)
221 if (p->clause[0] == (1 << predicate_false_condition))
223 gcc_checking_assert (!p->clause[1]
224 && p->clause[0] == 1 << predicate_false_condition);
225 return true;
227 return false;
231 /* Return predicate that is set true when function is not inlined. */
233 static inline struct predicate
234 not_inlined_predicate (void)
236 return single_cond_predicate (predicate_not_inlined_condition);
239 /* Simple description of whether a memory load or a condition refers to a load
240 from an aggregate and if so, how and where from in the aggregate.
241 Individual fields have the same meaning like fields with the same name in
242 struct condition. */
244 struct agg_position_info
246 HOST_WIDE_INT offset;
247 bool agg_contents;
248 bool by_ref;
251 /* Add condition to condition list CONDS. AGGPOS describes whether the used
252 oprand is loaded from an aggregate and where in the aggregate it is. It can
253 be NULL, which means this not a load from an aggregate. */
255 static struct predicate
256 add_condition (struct inline_summary *summary, int operand_num,
257 struct agg_position_info *aggpos,
258 enum tree_code code, tree val)
260 int i;
261 struct condition *c;
262 struct condition new_cond;
263 HOST_WIDE_INT offset;
264 bool agg_contents, by_ref;
266 if (aggpos)
268 offset = aggpos->offset;
269 agg_contents = aggpos->agg_contents;
270 by_ref = aggpos->by_ref;
272 else
274 offset = 0;
275 agg_contents = false;
276 by_ref = false;
279 gcc_checking_assert (operand_num >= 0);
280 for (i = 0; vec_safe_iterate (summary->conds, i, &c); i++)
282 if (c->operand_num == operand_num
283 && c->code == code
284 && c->val == val
285 && c->agg_contents == agg_contents
286 && (!agg_contents || (c->offset == offset && c->by_ref == by_ref)))
287 return single_cond_predicate (i + predicate_first_dynamic_condition);
289 /* Too many conditions. Give up and return constant true. */
290 if (i == NUM_CONDITIONS - predicate_first_dynamic_condition)
291 return true_predicate ();
293 new_cond.operand_num = operand_num;
294 new_cond.code = code;
295 new_cond.val = val;
296 new_cond.agg_contents = agg_contents;
297 new_cond.by_ref = by_ref;
298 new_cond.offset = offset;
299 vec_safe_push (summary->conds, new_cond);
300 return single_cond_predicate (i + predicate_first_dynamic_condition);
304 /* Add clause CLAUSE into the predicate P. */
306 static inline void
307 add_clause (conditions conditions, struct predicate *p, clause_t clause)
309 int i;
310 int i2;
311 int insert_here = -1;
312 int c1, c2;
314 /* True clause. */
315 if (!clause)
316 return;
318 /* False clause makes the whole predicate false. Kill the other variants. */
319 if (clause == (1 << predicate_false_condition))
321 p->clause[0] = (1 << predicate_false_condition);
322 p->clause[1] = 0;
323 return;
325 if (false_predicate_p (p))
326 return;
328 /* No one should be silly enough to add false into nontrivial clauses. */
329 gcc_checking_assert (!(clause & (1 << predicate_false_condition)));
331 /* Look where to insert the clause. At the same time prune out
332 clauses of P that are implied by the new clause and thus
333 redundant. */
334 for (i = 0, i2 = 0; i <= MAX_CLAUSES; i++)
336 p->clause[i2] = p->clause[i];
338 if (!p->clause[i])
339 break;
341 /* If p->clause[i] implies clause, there is nothing to add. */
342 if ((p->clause[i] & clause) == p->clause[i])
344 /* We had nothing to add, none of clauses should've become
345 redundant. */
346 gcc_checking_assert (i == i2);
347 return;
350 if (p->clause[i] < clause && insert_here < 0)
351 insert_here = i2;
353 /* If clause implies p->clause[i], then p->clause[i] becomes redundant.
354 Otherwise the p->clause[i] has to stay. */
355 if ((p->clause[i] & clause) != clause)
356 i2++;
359 /* Look for clauses that are obviously true. I.e.
360 op0 == 5 || op0 != 5. */
361 for (c1 = predicate_first_dynamic_condition; c1 < NUM_CONDITIONS; c1++)
363 condition *cc1;
364 if (!(clause & (1 << c1)))
365 continue;
366 cc1 = &(*conditions)[c1 - predicate_first_dynamic_condition];
367 /* We have no way to represent !CHANGED and !IS_NOT_CONSTANT
368 and thus there is no point for looking for them. */
369 if (cc1->code == CHANGED || cc1->code == IS_NOT_CONSTANT)
370 continue;
371 for (c2 = c1 + 1; c2 < NUM_CONDITIONS; c2++)
372 if (clause & (1 << c2))
374 condition *cc1 =
375 &(*conditions)[c1 - predicate_first_dynamic_condition];
376 condition *cc2 =
377 &(*conditions)[c2 - predicate_first_dynamic_condition];
378 if (cc1->operand_num == cc2->operand_num
379 && cc1->val == cc2->val
380 && cc2->code != IS_NOT_CONSTANT
381 && cc2->code != CHANGED
382 && cc1->code == invert_tree_comparison
383 (cc2->code,
384 HONOR_NANS (TYPE_MODE (TREE_TYPE (cc1->val)))))
385 return;
390 /* We run out of variants. Be conservative in positive direction. */
391 if (i2 == MAX_CLAUSES)
392 return;
393 /* Keep clauses in decreasing order. This makes equivalence testing easy. */
394 p->clause[i2 + 1] = 0;
395 if (insert_here >= 0)
396 for (; i2 > insert_here; i2--)
397 p->clause[i2] = p->clause[i2 - 1];
398 else
399 insert_here = i2;
400 p->clause[insert_here] = clause;
404 /* Return P & P2. */
406 static struct predicate
407 and_predicates (conditions conditions,
408 struct predicate *p, struct predicate *p2)
410 struct predicate out = *p;
411 int i;
413 /* Avoid busy work. */
414 if (false_predicate_p (p2) || true_predicate_p (p))
415 return *p2;
416 if (false_predicate_p (p) || true_predicate_p (p2))
417 return *p;
419 /* See how far predicates match. */
420 for (i = 0; p->clause[i] && p->clause[i] == p2->clause[i]; i++)
422 gcc_checking_assert (i < MAX_CLAUSES);
425 /* Combine the predicates rest. */
426 for (; p2->clause[i]; i++)
428 gcc_checking_assert (i < MAX_CLAUSES);
429 add_clause (conditions, &out, p2->clause[i]);
431 return out;
435 /* Return true if predicates are obviously equal. */
437 static inline bool
438 predicates_equal_p (struct predicate *p, struct predicate *p2)
440 int i;
441 for (i = 0; p->clause[i]; i++)
443 gcc_checking_assert (i < MAX_CLAUSES);
444 gcc_checking_assert (p->clause[i] > p->clause[i + 1]);
445 gcc_checking_assert (!p2->clause[i]
446 || p2->clause[i] > p2->clause[i + 1]);
447 if (p->clause[i] != p2->clause[i])
448 return false;
450 return !p2->clause[i];
454 /* Return P | P2. */
456 static struct predicate
457 or_predicates (conditions conditions,
458 struct predicate *p, struct predicate *p2)
460 struct predicate out = true_predicate ();
461 int i, j;
463 /* Avoid busy work. */
464 if (false_predicate_p (p2) || true_predicate_p (p))
465 return *p;
466 if (false_predicate_p (p) || true_predicate_p (p2))
467 return *p2;
468 if (predicates_equal_p (p, p2))
469 return *p;
471 /* OK, combine the predicates. */
472 for (i = 0; p->clause[i]; i++)
473 for (j = 0; p2->clause[j]; j++)
475 gcc_checking_assert (i < MAX_CLAUSES && j < MAX_CLAUSES);
476 add_clause (conditions, &out, p->clause[i] | p2->clause[j]);
478 return out;
482 /* Having partial truth assignment in POSSIBLE_TRUTHS, return false
483 if predicate P is known to be false. */
485 static bool
486 evaluate_predicate (struct predicate *p, clause_t possible_truths)
488 int i;
490 /* True remains true. */
491 if (true_predicate_p (p))
492 return true;
494 gcc_assert (!(possible_truths & (1 << predicate_false_condition)));
496 /* See if we can find clause we can disprove. */
497 for (i = 0; p->clause[i]; i++)
499 gcc_checking_assert (i < MAX_CLAUSES);
500 if (!(p->clause[i] & possible_truths))
501 return false;
503 return true;
506 /* Return the probability in range 0...REG_BR_PROB_BASE that the predicated
507 instruction will be recomputed per invocation of the inlined call. */
509 static int
510 predicate_probability (conditions conds,
511 struct predicate *p, clause_t possible_truths,
512 vec<inline_param_summary> inline_param_summary)
514 int i;
515 int combined_prob = REG_BR_PROB_BASE;
517 /* True remains true. */
518 if (true_predicate_p (p))
519 return REG_BR_PROB_BASE;
521 if (false_predicate_p (p))
522 return 0;
524 gcc_assert (!(possible_truths & (1 << predicate_false_condition)));
526 /* See if we can find clause we can disprove. */
527 for (i = 0; p->clause[i]; i++)
529 gcc_checking_assert (i < MAX_CLAUSES);
530 if (!(p->clause[i] & possible_truths))
531 return 0;
532 else
534 int this_prob = 0;
535 int i2;
536 if (!inline_param_summary.exists ())
537 return REG_BR_PROB_BASE;
538 for (i2 = 0; i2 < NUM_CONDITIONS; i2++)
539 if ((p->clause[i] & possible_truths) & (1 << i2))
541 if (i2 >= predicate_first_dynamic_condition)
543 condition *c =
544 &(*conds)[i2 - predicate_first_dynamic_condition];
545 if (c->code == CHANGED
546 && (c->operand_num <
547 (int) inline_param_summary.length ()))
549 int iprob =
550 inline_param_summary[c->operand_num].change_prob;
551 this_prob = MAX (this_prob, iprob);
553 else
554 this_prob = REG_BR_PROB_BASE;
556 else
557 this_prob = REG_BR_PROB_BASE;
559 combined_prob = MIN (this_prob, combined_prob);
560 if (!combined_prob)
561 return 0;
564 return combined_prob;
568 /* Dump conditional COND. */
570 static void
571 dump_condition (FILE *f, conditions conditions, int cond)
573 condition *c;
574 if (cond == predicate_false_condition)
575 fprintf (f, "false");
576 else if (cond == predicate_not_inlined_condition)
577 fprintf (f, "not inlined");
578 else
580 c = &(*conditions)[cond - predicate_first_dynamic_condition];
581 fprintf (f, "op%i", c->operand_num);
582 if (c->agg_contents)
583 fprintf (f, "[%soffset: " HOST_WIDE_INT_PRINT_DEC "]",
584 c->by_ref ? "ref " : "", c->offset);
585 if (c->code == IS_NOT_CONSTANT)
587 fprintf (f, " not constant");
588 return;
590 if (c->code == CHANGED)
592 fprintf (f, " changed");
593 return;
595 fprintf (f, " %s ", op_symbol_code (c->code));
596 print_generic_expr (f, c->val, 1);
601 /* Dump clause CLAUSE. */
603 static void
604 dump_clause (FILE *f, conditions conds, clause_t clause)
606 int i;
607 bool found = false;
608 fprintf (f, "(");
609 if (!clause)
610 fprintf (f, "true");
611 for (i = 0; i < NUM_CONDITIONS; i++)
612 if (clause & (1 << i))
614 if (found)
615 fprintf (f, " || ");
616 found = true;
617 dump_condition (f, conds, i);
619 fprintf (f, ")");
623 /* Dump predicate PREDICATE. */
625 static void
626 dump_predicate (FILE *f, conditions conds, struct predicate *pred)
628 int i;
629 if (true_predicate_p (pred))
630 dump_clause (f, conds, 0);
631 else
632 for (i = 0; pred->clause[i]; i++)
634 if (i)
635 fprintf (f, " && ");
636 dump_clause (f, conds, pred->clause[i]);
638 fprintf (f, "\n");
642 /* Dump inline hints. */
643 void
644 dump_inline_hints (FILE *f, inline_hints hints)
646 if (!hints)
647 return;
648 fprintf (f, "inline hints:");
649 if (hints & INLINE_HINT_indirect_call)
651 hints &= ~INLINE_HINT_indirect_call;
652 fprintf (f, " indirect_call");
654 if (hints & INLINE_HINT_loop_iterations)
656 hints &= ~INLINE_HINT_loop_iterations;
657 fprintf (f, " loop_iterations");
659 if (hints & INLINE_HINT_loop_stride)
661 hints &= ~INLINE_HINT_loop_stride;
662 fprintf (f, " loop_stride");
664 if (hints & INLINE_HINT_same_scc)
666 hints &= ~INLINE_HINT_same_scc;
667 fprintf (f, " same_scc");
669 if (hints & INLINE_HINT_in_scc)
671 hints &= ~INLINE_HINT_in_scc;
672 fprintf (f, " in_scc");
674 if (hints & INLINE_HINT_cross_module)
676 hints &= ~INLINE_HINT_cross_module;
677 fprintf (f, " cross_module");
679 if (hints & INLINE_HINT_declared_inline)
681 hints &= ~INLINE_HINT_declared_inline;
682 fprintf (f, " declared_inline");
684 if (hints & INLINE_HINT_array_index)
686 hints &= ~INLINE_HINT_array_index;
687 fprintf (f, " array_index");
689 if (hints & INLINE_HINT_known_hot)
691 hints &= ~INLINE_HINT_known_hot;
692 fprintf (f, " known_hot");
694 gcc_assert (!hints);
698 /* Record SIZE and TIME under condition PRED into the inline summary. */
700 static void
701 account_size_time (struct inline_summary *summary, int size, int time,
702 struct predicate *pred)
704 size_time_entry *e;
705 bool found = false;
706 int i;
708 if (false_predicate_p (pred))
709 return;
711 /* We need to create initial empty unconitional clause, but otherwie
712 we don't need to account empty times and sizes. */
713 if (!size && !time && summary->entry)
714 return;
716 /* Watch overflow that might result from insane profiles. */
717 if (time > MAX_TIME * INLINE_TIME_SCALE)
718 time = MAX_TIME * INLINE_TIME_SCALE;
719 gcc_assert (time >= 0);
721 for (i = 0; vec_safe_iterate (summary->entry, i, &e); i++)
722 if (predicates_equal_p (&e->predicate, pred))
724 found = true;
725 break;
727 if (i == 256)
729 i = 0;
730 found = true;
731 e = &(*summary->entry)[0];
732 gcc_assert (!e->predicate.clause[0]);
733 if (dump_file && (dump_flags & TDF_DETAILS))
734 fprintf (dump_file,
735 "\t\tReached limit on number of entries, "
736 "ignoring the predicate.");
738 if (dump_file && (dump_flags & TDF_DETAILS) && (time || size))
740 fprintf (dump_file,
741 "\t\tAccounting size:%3.2f, time:%3.2f on %spredicate:",
742 ((double) size) / INLINE_SIZE_SCALE,
743 ((double) time) / INLINE_TIME_SCALE, found ? "" : "new ");
744 dump_predicate (dump_file, summary->conds, pred);
746 if (!found)
748 struct size_time_entry new_entry;
749 new_entry.size = size;
750 new_entry.time = time;
751 new_entry.predicate = *pred;
752 vec_safe_push (summary->entry, new_entry);
754 else
756 e->size += size;
757 e->time += time;
758 if (e->time > MAX_TIME * INLINE_TIME_SCALE)
759 e->time = MAX_TIME * INLINE_TIME_SCALE;
763 /* Set predicate for edge E. */
765 static void
766 edge_set_predicate (struct cgraph_edge *e, struct predicate *predicate)
768 struct inline_edge_summary *es = inline_edge_summary (e);
770 /* If the edge is determined to be never executed, redirect it
771 to BUILTIN_UNREACHABLE to save inliner from inlining into it. */
772 if (predicate && false_predicate_p (predicate) && e->callee)
774 struct cgraph_node *callee = !e->inline_failed ? e->callee : NULL;
776 e->redirect_callee (cgraph_node::get_create
777 (builtin_decl_implicit (BUILT_IN_UNREACHABLE)));
778 e->inline_failed = CIF_UNREACHABLE;
779 if (callee)
780 callee->remove_symbol_and_inline_clones ();
782 if (predicate && !true_predicate_p (predicate))
784 if (!es->predicate)
785 es->predicate = (struct predicate *) pool_alloc (edge_predicate_pool);
786 *es->predicate = *predicate;
788 else
790 if (es->predicate)
791 pool_free (edge_predicate_pool, es->predicate);
792 es->predicate = NULL;
796 /* Set predicate for hint *P. */
798 static void
799 set_hint_predicate (struct predicate **p, struct predicate new_predicate)
801 if (false_predicate_p (&new_predicate) || true_predicate_p (&new_predicate))
803 if (*p)
804 pool_free (edge_predicate_pool, *p);
805 *p = NULL;
807 else
809 if (!*p)
810 *p = (struct predicate *) pool_alloc (edge_predicate_pool);
811 **p = new_predicate;
816 /* KNOWN_VALS is partial mapping of parameters of NODE to constant values.
817 KNOWN_AGGS is a vector of aggreggate jump functions for each parameter.
818 Return clause of possible truths. When INLINE_P is true, assume that we are
819 inlining.
821 ERROR_MARK means compile time invariant. */
823 static clause_t
824 evaluate_conditions_for_known_args (struct cgraph_node *node,
825 bool inline_p,
826 vec<tree> known_vals,
827 vec<ipa_agg_jump_function_p>
828 known_aggs)
830 clause_t clause = inline_p ? 0 : 1 << predicate_not_inlined_condition;
831 struct inline_summary *info = inline_summary (node);
832 int i;
833 struct condition *c;
835 for (i = 0; vec_safe_iterate (info->conds, i, &c); i++)
837 tree val;
838 tree res;
840 /* We allow call stmt to have fewer arguments than the callee function
841 (especially for K&R style programs). So bound check here (we assume
842 known_aggs vector, if non-NULL, has the same length as
843 known_vals). */
844 gcc_checking_assert (!known_aggs.exists ()
845 || (known_vals.length () == known_aggs.length ()));
846 if (c->operand_num >= (int) known_vals.length ())
848 clause |= 1 << (i + predicate_first_dynamic_condition);
849 continue;
852 if (c->agg_contents)
854 struct ipa_agg_jump_function *agg;
856 if (c->code == CHANGED
857 && !c->by_ref
858 && (known_vals[c->operand_num] == error_mark_node))
859 continue;
861 if (known_aggs.exists ())
863 agg = known_aggs[c->operand_num];
864 val = ipa_find_agg_cst_for_param (agg, c->offset, c->by_ref);
866 else
867 val = NULL_TREE;
869 else
871 val = known_vals[c->operand_num];
872 if (val == error_mark_node && c->code != CHANGED)
873 val = NULL_TREE;
876 if (!val)
878 clause |= 1 << (i + predicate_first_dynamic_condition);
879 continue;
881 if (c->code == IS_NOT_CONSTANT || c->code == CHANGED)
882 continue;
883 res = fold_binary_to_constant (c->code, boolean_type_node, val, c->val);
884 if (res && integer_zerop (res))
885 continue;
886 clause |= 1 << (i + predicate_first_dynamic_condition);
888 return clause;
892 /* Work out what conditions might be true at invocation of E. */
894 static void
895 evaluate_properties_for_edge (struct cgraph_edge *e, bool inline_p,
896 clause_t *clause_ptr,
897 vec<tree> *known_vals_ptr,
898 vec<tree> *known_binfos_ptr,
899 vec<ipa_agg_jump_function_p> *known_aggs_ptr)
901 struct cgraph_node *callee = e->callee->ultimate_alias_target ();
902 struct inline_summary *info = inline_summary (callee);
903 vec<tree> known_vals = vNULL;
904 vec<ipa_agg_jump_function_p> known_aggs = vNULL;
906 if (clause_ptr)
907 *clause_ptr = inline_p ? 0 : 1 << predicate_not_inlined_condition;
908 if (known_vals_ptr)
909 known_vals_ptr->create (0);
910 if (known_binfos_ptr)
911 known_binfos_ptr->create (0);
913 if (ipa_node_params_vector.exists ()
914 && !e->call_stmt_cannot_inline_p
915 && ((clause_ptr && info->conds) || known_vals_ptr || known_binfos_ptr))
917 struct ipa_node_params *parms_info;
918 struct ipa_edge_args *args = IPA_EDGE_REF (e);
919 struct inline_edge_summary *es = inline_edge_summary (e);
920 int i, count = ipa_get_cs_argument_count (args);
922 if (e->caller->global.inlined_to)
923 parms_info = IPA_NODE_REF (e->caller->global.inlined_to);
924 else
925 parms_info = IPA_NODE_REF (e->caller);
927 if (count && (info->conds || known_vals_ptr))
928 known_vals.safe_grow_cleared (count);
929 if (count && (info->conds || known_aggs_ptr))
930 known_aggs.safe_grow_cleared (count);
931 if (count && known_binfos_ptr)
932 known_binfos_ptr->safe_grow_cleared (count);
934 for (i = 0; i < count; i++)
936 struct ipa_jump_func *jf = ipa_get_ith_jump_func (args, i);
937 tree cst = ipa_value_from_jfunc (parms_info, jf);
938 if (cst)
940 if (known_vals.exists () && TREE_CODE (cst) != TREE_BINFO)
941 known_vals[i] = cst;
942 else if (known_binfos_ptr != NULL
943 && TREE_CODE (cst) == TREE_BINFO)
944 (*known_binfos_ptr)[i] = cst;
946 else if (inline_p && !es->param[i].change_prob)
947 known_vals[i] = error_mark_node;
948 /* TODO: When IPA-CP starts propagating and merging aggregate jump
949 functions, use its knowledge of the caller too, just like the
950 scalar case above. */
951 known_aggs[i] = &jf->agg;
955 if (clause_ptr)
956 *clause_ptr = evaluate_conditions_for_known_args (callee, inline_p,
957 known_vals, known_aggs);
959 if (known_vals_ptr)
960 *known_vals_ptr = known_vals;
961 else
962 known_vals.release ();
964 if (known_aggs_ptr)
965 *known_aggs_ptr = known_aggs;
966 else
967 known_aggs.release ();
971 /* Allocate the inline summary vector or resize it to cover all cgraph nodes. */
973 static void
974 inline_summary_alloc (void)
976 if (!node_removal_hook_holder)
977 node_removal_hook_holder =
978 symtab->add_cgraph_removal_hook (&inline_node_removal_hook, NULL);
979 if (!edge_removal_hook_holder)
980 edge_removal_hook_holder =
981 symtab->add_edge_removal_hook (&inline_edge_removal_hook, NULL);
982 if (!node_duplication_hook_holder)
983 node_duplication_hook_holder =
984 symtab->add_cgraph_duplication_hook (&inline_node_duplication_hook, NULL);
985 if (!edge_duplication_hook_holder)
986 edge_duplication_hook_holder =
987 symtab->add_edge_duplication_hook (&inline_edge_duplication_hook, NULL);
989 if (vec_safe_length (inline_summary_vec) <= (unsigned) symtab->cgraph_max_uid)
990 vec_safe_grow_cleared (inline_summary_vec, symtab->cgraph_max_uid + 1);
991 if (inline_edge_summary_vec.length () <= (unsigned) symtab->edges_max_uid)
992 inline_edge_summary_vec.safe_grow_cleared (symtab->edges_max_uid + 1);
993 if (!edge_predicate_pool)
994 edge_predicate_pool = create_alloc_pool ("edge predicates",
995 sizeof (struct predicate), 10);
998 /* We are called multiple time for given function; clear
999 data from previous run so they are not cumulated. */
1001 static void
1002 reset_inline_edge_summary (struct cgraph_edge *e)
1004 if (e->uid < (int) inline_edge_summary_vec.length ())
1006 struct inline_edge_summary *es = inline_edge_summary (e);
1008 es->call_stmt_size = es->call_stmt_time = 0;
1009 if (es->predicate)
1010 pool_free (edge_predicate_pool, es->predicate);
1011 es->predicate = NULL;
1012 es->param.release ();
1016 /* We are called multiple time for given function; clear
1017 data from previous run so they are not cumulated. */
1019 static void
1020 reset_inline_summary (struct cgraph_node *node)
1022 struct inline_summary *info = inline_summary (node);
1023 struct cgraph_edge *e;
1025 info->self_size = info->self_time = 0;
1026 info->estimated_stack_size = 0;
1027 info->estimated_self_stack_size = 0;
1028 info->stack_frame_offset = 0;
1029 info->size = 0;
1030 info->time = 0;
1031 info->growth = 0;
1032 info->scc_no = 0;
1033 if (info->loop_iterations)
1035 pool_free (edge_predicate_pool, info->loop_iterations);
1036 info->loop_iterations = NULL;
1038 if (info->loop_stride)
1040 pool_free (edge_predicate_pool, info->loop_stride);
1041 info->loop_stride = NULL;
1043 if (info->array_index)
1045 pool_free (edge_predicate_pool, info->array_index);
1046 info->array_index = NULL;
1048 vec_free (info->conds);
1049 vec_free (info->entry);
1050 for (e = node->callees; e; e = e->next_callee)
1051 reset_inline_edge_summary (e);
1052 for (e = node->indirect_calls; e; e = e->next_callee)
1053 reset_inline_edge_summary (e);
1056 /* Hook that is called by cgraph.c when a node is removed. */
1058 static void
1059 inline_node_removal_hook (struct cgraph_node *node,
1060 void *data ATTRIBUTE_UNUSED)
1062 struct inline_summary *info;
1063 if (vec_safe_length (inline_summary_vec) <= (unsigned) node->uid)
1064 return;
1065 info = inline_summary (node);
1066 reset_inline_summary (node);
1067 memset (info, 0, sizeof (inline_summary_t));
1070 /* Remap predicate P of former function to be predicate of duplicated function.
1071 POSSIBLE_TRUTHS is clause of possible truths in the duplicated node,
1072 INFO is inline summary of the duplicated node. */
1074 static struct predicate
1075 remap_predicate_after_duplication (struct predicate *p,
1076 clause_t possible_truths,
1077 struct inline_summary *info)
1079 struct predicate new_predicate = true_predicate ();
1080 int j;
1081 for (j = 0; p->clause[j]; j++)
1082 if (!(possible_truths & p->clause[j]))
1084 new_predicate = false_predicate ();
1085 break;
1087 else
1088 add_clause (info->conds, &new_predicate,
1089 possible_truths & p->clause[j]);
1090 return new_predicate;
1093 /* Same as remap_predicate_after_duplication but handle hint predicate *P.
1094 Additionally care about allocating new memory slot for updated predicate
1095 and set it to NULL when it becomes true or false (and thus uninteresting).
1098 static void
1099 remap_hint_predicate_after_duplication (struct predicate **p,
1100 clause_t possible_truths,
1101 struct inline_summary *info)
1103 struct predicate new_predicate;
1105 if (!*p)
1106 return;
1108 new_predicate = remap_predicate_after_duplication (*p,
1109 possible_truths, info);
1110 /* We do not want to free previous predicate; it is used by node origin. */
1111 *p = NULL;
1112 set_hint_predicate (p, new_predicate);
1116 /* Hook that is called by cgraph.c when a node is duplicated. */
1118 static void
1119 inline_node_duplication_hook (struct cgraph_node *src,
1120 struct cgraph_node *dst,
1121 ATTRIBUTE_UNUSED void *data)
1123 struct inline_summary *info;
1124 inline_summary_alloc ();
1125 info = inline_summary (dst);
1126 memcpy (info, inline_summary (src), sizeof (struct inline_summary));
1127 /* TODO: as an optimization, we may avoid copying conditions
1128 that are known to be false or true. */
1129 info->conds = vec_safe_copy (info->conds);
1131 /* When there are any replacements in the function body, see if we can figure
1132 out that something was optimized out. */
1133 if (ipa_node_params_vector.exists () && dst->clone.tree_map)
1135 vec<size_time_entry, va_gc> *entry = info->entry;
1136 /* Use SRC parm info since it may not be copied yet. */
1137 struct ipa_node_params *parms_info = IPA_NODE_REF (src);
1138 vec<tree> known_vals = vNULL;
1139 int count = ipa_get_param_count (parms_info);
1140 int i, j;
1141 clause_t possible_truths;
1142 struct predicate true_pred = true_predicate ();
1143 size_time_entry *e;
1144 int optimized_out_size = 0;
1145 bool inlined_to_p = false;
1146 struct cgraph_edge *edge;
1148 info->entry = 0;
1149 known_vals.safe_grow_cleared (count);
1150 for (i = 0; i < count; i++)
1152 struct ipa_replace_map *r;
1154 for (j = 0; vec_safe_iterate (dst->clone.tree_map, j, &r); j++)
1156 if (((!r->old_tree && r->parm_num == i)
1157 || (r->old_tree && r->old_tree == ipa_get_param (parms_info, i)))
1158 && r->replace_p && !r->ref_p)
1160 known_vals[i] = r->new_tree;
1161 break;
1165 possible_truths = evaluate_conditions_for_known_args (dst, false,
1166 known_vals,
1167 vNULL);
1168 known_vals.release ();
1170 account_size_time (info, 0, 0, &true_pred);
1172 /* Remap size_time vectors.
1173 Simplify the predicate by prunning out alternatives that are known
1174 to be false.
1175 TODO: as on optimization, we can also eliminate conditions known
1176 to be true. */
1177 for (i = 0; vec_safe_iterate (entry, i, &e); i++)
1179 struct predicate new_predicate;
1180 new_predicate = remap_predicate_after_duplication (&e->predicate,
1181 possible_truths,
1182 info);
1183 if (false_predicate_p (&new_predicate))
1184 optimized_out_size += e->size;
1185 else
1186 account_size_time (info, e->size, e->time, &new_predicate);
1189 /* Remap edge predicates with the same simplification as above.
1190 Also copy constantness arrays. */
1191 for (edge = dst->callees; edge; edge = edge->next_callee)
1193 struct predicate new_predicate;
1194 struct inline_edge_summary *es = inline_edge_summary (edge);
1196 if (!edge->inline_failed)
1197 inlined_to_p = true;
1198 if (!es->predicate)
1199 continue;
1200 new_predicate = remap_predicate_after_duplication (es->predicate,
1201 possible_truths,
1202 info);
1203 if (false_predicate_p (&new_predicate)
1204 && !false_predicate_p (es->predicate))
1206 optimized_out_size += es->call_stmt_size * INLINE_SIZE_SCALE;
1207 edge->frequency = 0;
1209 edge_set_predicate (edge, &new_predicate);
1212 /* Remap indirect edge predicates with the same simplificaiton as above.
1213 Also copy constantness arrays. */
1214 for (edge = dst->indirect_calls; edge; edge = edge->next_callee)
1216 struct predicate new_predicate;
1217 struct inline_edge_summary *es = inline_edge_summary (edge);
1219 gcc_checking_assert (edge->inline_failed);
1220 if (!es->predicate)
1221 continue;
1222 new_predicate = remap_predicate_after_duplication (es->predicate,
1223 possible_truths,
1224 info);
1225 if (false_predicate_p (&new_predicate)
1226 && !false_predicate_p (es->predicate))
1228 optimized_out_size += es->call_stmt_size * INLINE_SIZE_SCALE;
1229 edge->frequency = 0;
1231 edge_set_predicate (edge, &new_predicate);
1233 remap_hint_predicate_after_duplication (&info->loop_iterations,
1234 possible_truths, info);
1235 remap_hint_predicate_after_duplication (&info->loop_stride,
1236 possible_truths, info);
1237 remap_hint_predicate_after_duplication (&info->array_index,
1238 possible_truths, info);
1240 /* If inliner or someone after inliner will ever start producing
1241 non-trivial clones, we will get trouble with lack of information
1242 about updating self sizes, because size vectors already contains
1243 sizes of the calees. */
1244 gcc_assert (!inlined_to_p || !optimized_out_size);
1246 else
1248 info->entry = vec_safe_copy (info->entry);
1249 if (info->loop_iterations)
1251 predicate p = *info->loop_iterations;
1252 info->loop_iterations = NULL;
1253 set_hint_predicate (&info->loop_iterations, p);
1255 if (info->loop_stride)
1257 predicate p = *info->loop_stride;
1258 info->loop_stride = NULL;
1259 set_hint_predicate (&info->loop_stride, p);
1261 if (info->array_index)
1263 predicate p = *info->array_index;
1264 info->array_index = NULL;
1265 set_hint_predicate (&info->array_index, p);
1268 inline_update_overall_summary (dst);
1272 /* Hook that is called by cgraph.c when a node is duplicated. */
1274 static void
1275 inline_edge_duplication_hook (struct cgraph_edge *src,
1276 struct cgraph_edge *dst,
1277 ATTRIBUTE_UNUSED void *data)
1279 struct inline_edge_summary *info;
1280 struct inline_edge_summary *srcinfo;
1281 inline_summary_alloc ();
1282 info = inline_edge_summary (dst);
1283 srcinfo = inline_edge_summary (src);
1284 memcpy (info, srcinfo, sizeof (struct inline_edge_summary));
1285 info->predicate = NULL;
1286 edge_set_predicate (dst, srcinfo->predicate);
1287 info->param = srcinfo->param.copy ();
1291 /* Keep edge cache consistent across edge removal. */
1293 static void
1294 inline_edge_removal_hook (struct cgraph_edge *edge,
1295 void *data ATTRIBUTE_UNUSED)
1297 if (edge_growth_cache.exists ())
1298 reset_edge_growth_cache (edge);
1299 reset_inline_edge_summary (edge);
1303 /* Initialize growth caches. */
1305 void
1306 initialize_growth_caches (void)
1308 if (symtab->edges_max_uid)
1309 edge_growth_cache.safe_grow_cleared (symtab->edges_max_uid);
1310 if (symtab->cgraph_max_uid)
1311 node_growth_cache.safe_grow_cleared (symtab->cgraph_max_uid);
1315 /* Free growth caches. */
1317 void
1318 free_growth_caches (void)
1320 edge_growth_cache.release ();
1321 node_growth_cache.release ();
1325 /* Dump edge summaries associated to NODE and recursively to all clones.
1326 Indent by INDENT. */
1328 static void
1329 dump_inline_edge_summary (FILE *f, int indent, struct cgraph_node *node,
1330 struct inline_summary *info)
1332 struct cgraph_edge *edge;
1333 for (edge = node->callees; edge; edge = edge->next_callee)
1335 struct inline_edge_summary *es = inline_edge_summary (edge);
1336 struct cgraph_node *callee = edge->callee->ultimate_alias_target ();
1337 int i;
1339 fprintf (f,
1340 "%*s%s/%i %s\n%*s loop depth:%2i freq:%4i size:%2i"
1341 " time: %2i callee size:%2i stack:%2i",
1342 indent, "", callee->name (), callee->order,
1343 !edge->inline_failed
1344 ? "inlined" : cgraph_inline_failed_string (edge-> inline_failed),
1345 indent, "", es->loop_depth, edge->frequency,
1346 es->call_stmt_size, es->call_stmt_time,
1347 (int) inline_summary (callee)->size / INLINE_SIZE_SCALE,
1348 (int) inline_summary (callee)->estimated_stack_size);
1350 if (es->predicate)
1352 fprintf (f, " predicate: ");
1353 dump_predicate (f, info->conds, es->predicate);
1355 else
1356 fprintf (f, "\n");
1357 if (es->param.exists ())
1358 for (i = 0; i < (int) es->param.length (); i++)
1360 int prob = es->param[i].change_prob;
1362 if (!prob)
1363 fprintf (f, "%*s op%i is compile time invariant\n",
1364 indent + 2, "", i);
1365 else if (prob != REG_BR_PROB_BASE)
1366 fprintf (f, "%*s op%i change %f%% of time\n", indent + 2, "", i,
1367 prob * 100.0 / REG_BR_PROB_BASE);
1369 if (!edge->inline_failed)
1371 fprintf (f, "%*sStack frame offset %i, callee self size %i,"
1372 " callee size %i\n",
1373 indent + 2, "",
1374 (int) inline_summary (callee)->stack_frame_offset,
1375 (int) inline_summary (callee)->estimated_self_stack_size,
1376 (int) inline_summary (callee)->estimated_stack_size);
1377 dump_inline_edge_summary (f, indent + 2, callee, info);
1380 for (edge = node->indirect_calls; edge; edge = edge->next_callee)
1382 struct inline_edge_summary *es = inline_edge_summary (edge);
1383 fprintf (f, "%*sindirect call loop depth:%2i freq:%4i size:%2i"
1384 " time: %2i",
1385 indent, "",
1386 es->loop_depth,
1387 edge->frequency, es->call_stmt_size, es->call_stmt_time);
1388 if (es->predicate)
1390 fprintf (f, "predicate: ");
1391 dump_predicate (f, info->conds, es->predicate);
1393 else
1394 fprintf (f, "\n");
1399 void
1400 dump_inline_summary (FILE *f, struct cgraph_node *node)
1402 if (node->definition)
1404 struct inline_summary *s = inline_summary (node);
1405 size_time_entry *e;
1406 int i;
1407 fprintf (f, "Inline summary for %s/%i", node->name (),
1408 node->order);
1409 if (DECL_DISREGARD_INLINE_LIMITS (node->decl))
1410 fprintf (f, " always_inline");
1411 if (s->inlinable)
1412 fprintf (f, " inlinable");
1413 fprintf (f, "\n self time: %i\n", s->self_time);
1414 fprintf (f, " global time: %i\n", s->time);
1415 fprintf (f, " self size: %i\n", s->self_size);
1416 fprintf (f, " global size: %i\n", s->size);
1417 fprintf (f, " min size: %i\n", s->min_size);
1418 fprintf (f, " self stack: %i\n",
1419 (int) s->estimated_self_stack_size);
1420 fprintf (f, " global stack: %i\n", (int) s->estimated_stack_size);
1421 if (s->growth)
1422 fprintf (f, " estimated growth:%i\n", (int) s->growth);
1423 if (s->scc_no)
1424 fprintf (f, " In SCC: %i\n", (int) s->scc_no);
1425 for (i = 0; vec_safe_iterate (s->entry, i, &e); i++)
1427 fprintf (f, " size:%f, time:%f, predicate:",
1428 (double) e->size / INLINE_SIZE_SCALE,
1429 (double) e->time / INLINE_TIME_SCALE);
1430 dump_predicate (f, s->conds, &e->predicate);
1432 if (s->loop_iterations)
1434 fprintf (f, " loop iterations:");
1435 dump_predicate (f, s->conds, s->loop_iterations);
1437 if (s->loop_stride)
1439 fprintf (f, " loop stride:");
1440 dump_predicate (f, s->conds, s->loop_stride);
1442 if (s->array_index)
1444 fprintf (f, " array index:");
1445 dump_predicate (f, s->conds, s->array_index);
1447 fprintf (f, " calls:\n");
1448 dump_inline_edge_summary (f, 4, node, s);
1449 fprintf (f, "\n");
1453 DEBUG_FUNCTION void
1454 debug_inline_summary (struct cgraph_node *node)
1456 dump_inline_summary (stderr, node);
1459 void
1460 dump_inline_summaries (FILE *f)
1462 struct cgraph_node *node;
1464 FOR_EACH_DEFINED_FUNCTION (node)
1465 if (!node->global.inlined_to)
1466 dump_inline_summary (f, node);
1469 /* Give initial reasons why inlining would fail on EDGE. This gets either
1470 nullified or usually overwritten by more precise reasons later. */
1472 void
1473 initialize_inline_failed (struct cgraph_edge *e)
1475 struct cgraph_node *callee = e->callee;
1477 if (e->indirect_unknown_callee)
1478 e->inline_failed = CIF_INDIRECT_UNKNOWN_CALL;
1479 else if (!callee->definition)
1480 e->inline_failed = CIF_BODY_NOT_AVAILABLE;
1481 else if (callee->local.redefined_extern_inline)
1482 e->inline_failed = CIF_REDEFINED_EXTERN_INLINE;
1483 else if (e->call_stmt_cannot_inline_p)
1484 e->inline_failed = CIF_MISMATCHED_ARGUMENTS;
1485 else if (cfun && fn_contains_cilk_spawn_p (cfun))
1486 /* We can't inline if the function is spawing a function. */
1487 e->inline_failed = CIF_FUNCTION_NOT_INLINABLE;
1488 else
1489 e->inline_failed = CIF_FUNCTION_NOT_CONSIDERED;
1492 /* Callback of walk_aliased_vdefs. Flags that it has been invoked to the
1493 boolean variable pointed to by DATA. */
1495 static bool
1496 mark_modified (ao_ref *ao ATTRIBUTE_UNUSED, tree vdef ATTRIBUTE_UNUSED,
1497 void *data)
1499 bool *b = (bool *) data;
1500 *b = true;
1501 return true;
1504 /* If OP refers to value of function parameter, return the corresponding
1505 parameter. */
1507 static tree
1508 unmodified_parm_1 (gimple stmt, tree op)
1510 /* SSA_NAME referring to parm default def? */
1511 if (TREE_CODE (op) == SSA_NAME
1512 && SSA_NAME_IS_DEFAULT_DEF (op)
1513 && TREE_CODE (SSA_NAME_VAR (op)) == PARM_DECL)
1514 return SSA_NAME_VAR (op);
1515 /* Non-SSA parm reference? */
1516 if (TREE_CODE (op) == PARM_DECL)
1518 bool modified = false;
1520 ao_ref refd;
1521 ao_ref_init (&refd, op);
1522 walk_aliased_vdefs (&refd, gimple_vuse (stmt), mark_modified, &modified,
1523 NULL);
1524 if (!modified)
1525 return op;
1527 return NULL_TREE;
1530 /* If OP refers to value of function parameter, return the corresponding
1531 parameter. Also traverse chains of SSA register assignments. */
1533 static tree
1534 unmodified_parm (gimple stmt, tree op)
1536 tree res = unmodified_parm_1 (stmt, op);
1537 if (res)
1538 return res;
1540 if (TREE_CODE (op) == SSA_NAME
1541 && !SSA_NAME_IS_DEFAULT_DEF (op)
1542 && gimple_assign_single_p (SSA_NAME_DEF_STMT (op)))
1543 return unmodified_parm (SSA_NAME_DEF_STMT (op),
1544 gimple_assign_rhs1 (SSA_NAME_DEF_STMT (op)));
1545 return NULL_TREE;
1548 /* If OP refers to a value of a function parameter or value loaded from an
1549 aggregate passed to a parameter (either by value or reference), return TRUE
1550 and store the number of the parameter to *INDEX_P and information whether
1551 and how it has been loaded from an aggregate into *AGGPOS. INFO describes
1552 the function parameters, STMT is the statement in which OP is used or
1553 loaded. */
1555 static bool
1556 unmodified_parm_or_parm_agg_item (struct ipa_node_params *info,
1557 gimple stmt, tree op, int *index_p,
1558 struct agg_position_info *aggpos)
1560 tree res = unmodified_parm_1 (stmt, op);
1562 gcc_checking_assert (aggpos);
1563 if (res)
1565 *index_p = ipa_get_param_decl_index (info, res);
1566 if (*index_p < 0)
1567 return false;
1568 aggpos->agg_contents = false;
1569 aggpos->by_ref = false;
1570 return true;
1573 if (TREE_CODE (op) == SSA_NAME)
1575 if (SSA_NAME_IS_DEFAULT_DEF (op)
1576 || !gimple_assign_single_p (SSA_NAME_DEF_STMT (op)))
1577 return false;
1578 stmt = SSA_NAME_DEF_STMT (op);
1579 op = gimple_assign_rhs1 (stmt);
1580 if (!REFERENCE_CLASS_P (op))
1581 return unmodified_parm_or_parm_agg_item (info, stmt, op, index_p,
1582 aggpos);
1585 aggpos->agg_contents = true;
1586 return ipa_load_from_parm_agg (info, stmt, op, index_p, &aggpos->offset,
1587 &aggpos->by_ref);
1590 /* See if statement might disappear after inlining.
1591 0 - means not eliminated
1592 1 - half of statements goes away
1593 2 - for sure it is eliminated.
1594 We are not terribly sophisticated, basically looking for simple abstraction
1595 penalty wrappers. */
1597 static int
1598 eliminated_by_inlining_prob (gimple stmt)
1600 enum gimple_code code = gimple_code (stmt);
1601 enum tree_code rhs_code;
1603 if (!optimize)
1604 return 0;
1606 switch (code)
1608 case GIMPLE_RETURN:
1609 return 2;
1610 case GIMPLE_ASSIGN:
1611 if (gimple_num_ops (stmt) != 2)
1612 return 0;
1614 rhs_code = gimple_assign_rhs_code (stmt);
1616 /* Casts of parameters, loads from parameters passed by reference
1617 and stores to return value or parameters are often free after
1618 inlining dua to SRA and further combining.
1619 Assume that half of statements goes away. */
1620 if (CONVERT_EXPR_CODE_P (rhs_code)
1621 || rhs_code == VIEW_CONVERT_EXPR
1622 || rhs_code == ADDR_EXPR
1623 || gimple_assign_rhs_class (stmt) == GIMPLE_SINGLE_RHS)
1625 tree rhs = gimple_assign_rhs1 (stmt);
1626 tree lhs = gimple_assign_lhs (stmt);
1627 tree inner_rhs = get_base_address (rhs);
1628 tree inner_lhs = get_base_address (lhs);
1629 bool rhs_free = false;
1630 bool lhs_free = false;
1632 if (!inner_rhs)
1633 inner_rhs = rhs;
1634 if (!inner_lhs)
1635 inner_lhs = lhs;
1637 /* Reads of parameter are expected to be free. */
1638 if (unmodified_parm (stmt, inner_rhs))
1639 rhs_free = true;
1640 /* Match expressions of form &this->field. Those will most likely
1641 combine with something upstream after inlining. */
1642 else if (TREE_CODE (inner_rhs) == ADDR_EXPR)
1644 tree op = get_base_address (TREE_OPERAND (inner_rhs, 0));
1645 if (TREE_CODE (op) == PARM_DECL)
1646 rhs_free = true;
1647 else if (TREE_CODE (op) == MEM_REF
1648 && unmodified_parm (stmt, TREE_OPERAND (op, 0)))
1649 rhs_free = true;
1652 /* When parameter is not SSA register because its address is taken
1653 and it is just copied into one, the statement will be completely
1654 free after inlining (we will copy propagate backward). */
1655 if (rhs_free && is_gimple_reg (lhs))
1656 return 2;
1658 /* Reads of parameters passed by reference
1659 expected to be free (i.e. optimized out after inlining). */
1660 if (TREE_CODE (inner_rhs) == MEM_REF
1661 && unmodified_parm (stmt, TREE_OPERAND (inner_rhs, 0)))
1662 rhs_free = true;
1664 /* Copying parameter passed by reference into gimple register is
1665 probably also going to copy propagate, but we can't be quite
1666 sure. */
1667 if (rhs_free && is_gimple_reg (lhs))
1668 lhs_free = true;
1670 /* Writes to parameters, parameters passed by value and return value
1671 (either dirrectly or passed via invisible reference) are free.
1673 TODO: We ought to handle testcase like
1674 struct a {int a,b;};
1675 struct a
1676 retrurnsturct (void)
1678 struct a a ={1,2};
1679 return a;
1682 This translate into:
1684 retrurnsturct ()
1686 int a$b;
1687 int a$a;
1688 struct a a;
1689 struct a D.2739;
1691 <bb 2>:
1692 D.2739.a = 1;
1693 D.2739.b = 2;
1694 return D.2739;
1697 For that we either need to copy ipa-split logic detecting writes
1698 to return value. */
1699 if (TREE_CODE (inner_lhs) == PARM_DECL
1700 || TREE_CODE (inner_lhs) == RESULT_DECL
1701 || (TREE_CODE (inner_lhs) == MEM_REF
1702 && (unmodified_parm (stmt, TREE_OPERAND (inner_lhs, 0))
1703 || (TREE_CODE (TREE_OPERAND (inner_lhs, 0)) == SSA_NAME
1704 && SSA_NAME_VAR (TREE_OPERAND (inner_lhs, 0))
1705 && TREE_CODE (SSA_NAME_VAR (TREE_OPERAND
1706 (inner_lhs,
1707 0))) == RESULT_DECL))))
1708 lhs_free = true;
1709 if (lhs_free
1710 && (is_gimple_reg (rhs) || is_gimple_min_invariant (rhs)))
1711 rhs_free = true;
1712 if (lhs_free && rhs_free)
1713 return 1;
1715 return 0;
1716 default:
1717 return 0;
1722 /* If BB ends by a conditional we can turn into predicates, attach corresponding
1723 predicates to the CFG edges. */
1725 static void
1726 set_cond_stmt_execution_predicate (struct ipa_node_params *info,
1727 struct inline_summary *summary,
1728 basic_block bb)
1730 gimple last;
1731 tree op;
1732 int index;
1733 struct agg_position_info aggpos;
1734 enum tree_code code, inverted_code;
1735 edge e;
1736 edge_iterator ei;
1737 gimple set_stmt;
1738 tree op2;
1740 last = last_stmt (bb);
1741 if (!last || gimple_code (last) != GIMPLE_COND)
1742 return;
1743 if (!is_gimple_ip_invariant (gimple_cond_rhs (last)))
1744 return;
1745 op = gimple_cond_lhs (last);
1746 /* TODO: handle conditionals like
1747 var = op0 < 4;
1748 if (var != 0). */
1749 if (unmodified_parm_or_parm_agg_item (info, last, op, &index, &aggpos))
1751 code = gimple_cond_code (last);
1752 inverted_code
1753 = invert_tree_comparison (code,
1754 HONOR_NANS (TYPE_MODE (TREE_TYPE (op))));
1756 FOR_EACH_EDGE (e, ei, bb->succs)
1758 enum tree_code this_code = (e->flags & EDGE_TRUE_VALUE
1759 ? code : inverted_code);
1760 /* invert_tree_comparison will return ERROR_MARK on FP
1761 comparsions that are not EQ/NE instead of returning proper
1762 unordered one. Be sure it is not confused with NON_CONSTANT. */
1763 if (this_code != ERROR_MARK)
1765 struct predicate p = add_condition (summary, index, &aggpos,
1766 this_code,
1767 gimple_cond_rhs (last));
1768 e->aux = pool_alloc (edge_predicate_pool);
1769 *(struct predicate *) e->aux = p;
1774 if (TREE_CODE (op) != SSA_NAME)
1775 return;
1776 /* Special case
1777 if (builtin_constant_p (op))
1778 constant_code
1779 else
1780 nonconstant_code.
1781 Here we can predicate nonconstant_code. We can't
1782 really handle constant_code since we have no predicate
1783 for this and also the constant code is not known to be
1784 optimized away when inliner doen't see operand is constant.
1785 Other optimizers might think otherwise. */
1786 if (gimple_cond_code (last) != NE_EXPR
1787 || !integer_zerop (gimple_cond_rhs (last)))
1788 return;
1789 set_stmt = SSA_NAME_DEF_STMT (op);
1790 if (!gimple_call_builtin_p (set_stmt, BUILT_IN_CONSTANT_P)
1791 || gimple_call_num_args (set_stmt) != 1)
1792 return;
1793 op2 = gimple_call_arg (set_stmt, 0);
1794 if (!unmodified_parm_or_parm_agg_item
1795 (info, set_stmt, op2, &index, &aggpos))
1796 return;
1797 FOR_EACH_EDGE (e, ei, bb->succs) if (e->flags & EDGE_FALSE_VALUE)
1799 struct predicate p = add_condition (summary, index, &aggpos,
1800 IS_NOT_CONSTANT, NULL_TREE);
1801 e->aux = pool_alloc (edge_predicate_pool);
1802 *(struct predicate *) e->aux = p;
1807 /* If BB ends by a switch we can turn into predicates, attach corresponding
1808 predicates to the CFG edges. */
1810 static void
1811 set_switch_stmt_execution_predicate (struct ipa_node_params *info,
1812 struct inline_summary *summary,
1813 basic_block bb)
1815 gimple last;
1816 tree op;
1817 int index;
1818 struct agg_position_info aggpos;
1819 edge e;
1820 edge_iterator ei;
1821 size_t n;
1822 size_t case_idx;
1824 last = last_stmt (bb);
1825 if (!last || gimple_code (last) != GIMPLE_SWITCH)
1826 return;
1827 op = gimple_switch_index (last);
1828 if (!unmodified_parm_or_parm_agg_item (info, last, op, &index, &aggpos))
1829 return;
1831 FOR_EACH_EDGE (e, ei, bb->succs)
1833 e->aux = pool_alloc (edge_predicate_pool);
1834 *(struct predicate *) e->aux = false_predicate ();
1836 n = gimple_switch_num_labels (last);
1837 for (case_idx = 0; case_idx < n; ++case_idx)
1839 tree cl = gimple_switch_label (last, case_idx);
1840 tree min, max;
1841 struct predicate p;
1843 e = find_edge (bb, label_to_block (CASE_LABEL (cl)));
1844 min = CASE_LOW (cl);
1845 max = CASE_HIGH (cl);
1847 /* For default we might want to construct predicate that none
1848 of cases is met, but it is bit hard to do not having negations
1849 of conditionals handy. */
1850 if (!min && !max)
1851 p = true_predicate ();
1852 else if (!max)
1853 p = add_condition (summary, index, &aggpos, EQ_EXPR, min);
1854 else
1856 struct predicate p1, p2;
1857 p1 = add_condition (summary, index, &aggpos, GE_EXPR, min);
1858 p2 = add_condition (summary, index, &aggpos, LE_EXPR, max);
1859 p = and_predicates (summary->conds, &p1, &p2);
1861 *(struct predicate *) e->aux
1862 = or_predicates (summary->conds, &p, (struct predicate *) e->aux);
1867 /* For each BB in NODE attach to its AUX pointer predicate under
1868 which it is executable. */
1870 static void
1871 compute_bb_predicates (struct cgraph_node *node,
1872 struct ipa_node_params *parms_info,
1873 struct inline_summary *summary)
1875 struct function *my_function = DECL_STRUCT_FUNCTION (node->decl);
1876 bool done = false;
1877 basic_block bb;
1879 FOR_EACH_BB_FN (bb, my_function)
1881 set_cond_stmt_execution_predicate (parms_info, summary, bb);
1882 set_switch_stmt_execution_predicate (parms_info, summary, bb);
1885 /* Entry block is always executable. */
1886 ENTRY_BLOCK_PTR_FOR_FN (my_function)->aux
1887 = pool_alloc (edge_predicate_pool);
1888 *(struct predicate *) ENTRY_BLOCK_PTR_FOR_FN (my_function)->aux
1889 = true_predicate ();
1891 /* A simple dataflow propagation of predicates forward in the CFG.
1892 TODO: work in reverse postorder. */
1893 while (!done)
1895 done = true;
1896 FOR_EACH_BB_FN (bb, my_function)
1898 struct predicate p = false_predicate ();
1899 edge e;
1900 edge_iterator ei;
1901 FOR_EACH_EDGE (e, ei, bb->preds)
1903 if (e->src->aux)
1905 struct predicate this_bb_predicate
1906 = *(struct predicate *) e->src->aux;
1907 if (e->aux)
1908 this_bb_predicate
1909 = and_predicates (summary->conds, &this_bb_predicate,
1910 (struct predicate *) e->aux);
1911 p = or_predicates (summary->conds, &p, &this_bb_predicate);
1912 if (true_predicate_p (&p))
1913 break;
1916 if (false_predicate_p (&p))
1917 gcc_assert (!bb->aux);
1918 else
1920 if (!bb->aux)
1922 done = false;
1923 bb->aux = pool_alloc (edge_predicate_pool);
1924 *((struct predicate *) bb->aux) = p;
1926 else if (!predicates_equal_p (&p, (struct predicate *) bb->aux))
1928 /* This OR operation is needed to ensure monotonous data flow
1929 in the case we hit the limit on number of clauses and the
1930 and/or operations above give approximate answers. */
1931 p = or_predicates (summary->conds, &p, (struct predicate *)bb->aux);
1932 if (!predicates_equal_p (&p, (struct predicate *) bb->aux))
1934 done = false;
1935 *((struct predicate *) bb->aux) = p;
1944 /* We keep info about constantness of SSA names. */
1946 typedef struct predicate predicate_t;
1947 /* Return predicate specifying when the STMT might have result that is not
1948 a compile time constant. */
1950 static struct predicate
1951 will_be_nonconstant_expr_predicate (struct ipa_node_params *info,
1952 struct inline_summary *summary,
1953 tree expr,
1954 vec<predicate_t> nonconstant_names)
1956 tree parm;
1957 int index;
1959 while (UNARY_CLASS_P (expr))
1960 expr = TREE_OPERAND (expr, 0);
1962 parm = unmodified_parm (NULL, expr);
1963 if (parm && (index = ipa_get_param_decl_index (info, parm)) >= 0)
1964 return add_condition (summary, index, NULL, CHANGED, NULL_TREE);
1965 if (is_gimple_min_invariant (expr))
1966 return false_predicate ();
1967 if (TREE_CODE (expr) == SSA_NAME)
1968 return nonconstant_names[SSA_NAME_VERSION (expr)];
1969 if (BINARY_CLASS_P (expr) || COMPARISON_CLASS_P (expr))
1971 struct predicate p1 = will_be_nonconstant_expr_predicate
1972 (info, summary, TREE_OPERAND (expr, 0),
1973 nonconstant_names);
1974 struct predicate p2;
1975 if (true_predicate_p (&p1))
1976 return p1;
1977 p2 = will_be_nonconstant_expr_predicate (info, summary,
1978 TREE_OPERAND (expr, 1),
1979 nonconstant_names);
1980 return or_predicates (summary->conds, &p1, &p2);
1982 else if (TREE_CODE (expr) == COND_EXPR)
1984 struct predicate p1 = will_be_nonconstant_expr_predicate
1985 (info, summary, TREE_OPERAND (expr, 0),
1986 nonconstant_names);
1987 struct predicate p2;
1988 if (true_predicate_p (&p1))
1989 return p1;
1990 p2 = will_be_nonconstant_expr_predicate (info, summary,
1991 TREE_OPERAND (expr, 1),
1992 nonconstant_names);
1993 if (true_predicate_p (&p2))
1994 return p2;
1995 p1 = or_predicates (summary->conds, &p1, &p2);
1996 p2 = will_be_nonconstant_expr_predicate (info, summary,
1997 TREE_OPERAND (expr, 2),
1998 nonconstant_names);
1999 return or_predicates (summary->conds, &p1, &p2);
2001 else
2003 debug_tree (expr);
2004 gcc_unreachable ();
2006 return false_predicate ();
2010 /* Return predicate specifying when the STMT might have result that is not
2011 a compile time constant. */
2013 static struct predicate
2014 will_be_nonconstant_predicate (struct ipa_node_params *info,
2015 struct inline_summary *summary,
2016 gimple stmt,
2017 vec<predicate_t> nonconstant_names)
2019 struct predicate p = true_predicate ();
2020 ssa_op_iter iter;
2021 tree use;
2022 struct predicate op_non_const;
2023 bool is_load;
2024 int base_index;
2025 struct agg_position_info aggpos;
2027 /* What statments might be optimized away
2028 when their arguments are constant
2029 TODO: also trivial builtins.
2030 builtin_constant_p is already handled later. */
2031 if (gimple_code (stmt) != GIMPLE_ASSIGN
2032 && gimple_code (stmt) != GIMPLE_COND
2033 && gimple_code (stmt) != GIMPLE_SWITCH)
2034 return p;
2036 /* Stores will stay anyway. */
2037 if (gimple_store_p (stmt))
2038 return p;
2040 is_load = gimple_assign_load_p (stmt);
2042 /* Loads can be optimized when the value is known. */
2043 if (is_load)
2045 tree op;
2046 gcc_assert (gimple_assign_single_p (stmt));
2047 op = gimple_assign_rhs1 (stmt);
2048 if (!unmodified_parm_or_parm_agg_item (info, stmt, op, &base_index,
2049 &aggpos))
2050 return p;
2052 else
2053 base_index = -1;
2055 /* See if we understand all operands before we start
2056 adding conditionals. */
2057 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
2059 tree parm = unmodified_parm (stmt, use);
2060 /* For arguments we can build a condition. */
2061 if (parm && ipa_get_param_decl_index (info, parm) >= 0)
2062 continue;
2063 if (TREE_CODE (use) != SSA_NAME)
2064 return p;
2065 /* If we know when operand is constant,
2066 we still can say something useful. */
2067 if (!true_predicate_p (&nonconstant_names[SSA_NAME_VERSION (use)]))
2068 continue;
2069 return p;
2072 if (is_load)
2073 op_non_const =
2074 add_condition (summary, base_index, &aggpos, CHANGED, NULL);
2075 else
2076 op_non_const = false_predicate ();
2077 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
2079 tree parm = unmodified_parm (stmt, use);
2080 int index;
2082 if (parm && (index = ipa_get_param_decl_index (info, parm)) >= 0)
2084 if (index != base_index)
2085 p = add_condition (summary, index, NULL, CHANGED, NULL_TREE);
2086 else
2087 continue;
2089 else
2090 p = nonconstant_names[SSA_NAME_VERSION (use)];
2091 op_non_const = or_predicates (summary->conds, &p, &op_non_const);
2093 if (gimple_code (stmt) == GIMPLE_ASSIGN
2094 && TREE_CODE (gimple_assign_lhs (stmt)) == SSA_NAME)
2095 nonconstant_names[SSA_NAME_VERSION (gimple_assign_lhs (stmt))]
2096 = op_non_const;
2097 return op_non_const;
2100 struct record_modified_bb_info
2102 bitmap bb_set;
2103 gimple stmt;
2106 /* Callback of walk_aliased_vdefs. Records basic blocks where the value may be
2107 set except for info->stmt. */
2109 static bool
2110 record_modified (ao_ref *ao ATTRIBUTE_UNUSED, tree vdef, void *data)
2112 struct record_modified_bb_info *info =
2113 (struct record_modified_bb_info *) data;
2114 if (SSA_NAME_DEF_STMT (vdef) == info->stmt)
2115 return false;
2116 bitmap_set_bit (info->bb_set,
2117 SSA_NAME_IS_DEFAULT_DEF (vdef)
2118 ? ENTRY_BLOCK_PTR_FOR_FN (cfun)->index
2119 : gimple_bb (SSA_NAME_DEF_STMT (vdef))->index);
2120 return false;
2123 /* Return probability (based on REG_BR_PROB_BASE) that I-th parameter of STMT
2124 will change since last invocation of STMT.
2126 Value 0 is reserved for compile time invariants.
2127 For common parameters it is REG_BR_PROB_BASE. For loop invariants it
2128 ought to be REG_BR_PROB_BASE / estimated_iters. */
2130 static int
2131 param_change_prob (gimple stmt, int i)
2133 tree op = gimple_call_arg (stmt, i);
2134 basic_block bb = gimple_bb (stmt);
2135 tree base;
2137 /* Global invariants neve change. */
2138 if (is_gimple_min_invariant (op))
2139 return 0;
2140 /* We would have to do non-trivial analysis to really work out what
2141 is the probability of value to change (i.e. when init statement
2142 is in a sibling loop of the call).
2144 We do an conservative estimate: when call is executed N times more often
2145 than the statement defining value, we take the frequency 1/N. */
2146 if (TREE_CODE (op) == SSA_NAME)
2148 int init_freq;
2150 if (!bb->frequency)
2151 return REG_BR_PROB_BASE;
2153 if (SSA_NAME_IS_DEFAULT_DEF (op))
2154 init_freq = ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency;
2155 else
2156 init_freq = gimple_bb (SSA_NAME_DEF_STMT (op))->frequency;
2158 if (!init_freq)
2159 init_freq = 1;
2160 if (init_freq < bb->frequency)
2161 return MAX (GCOV_COMPUTE_SCALE (init_freq, bb->frequency), 1);
2162 else
2163 return REG_BR_PROB_BASE;
2166 base = get_base_address (op);
2167 if (base)
2169 ao_ref refd;
2170 int max;
2171 struct record_modified_bb_info info;
2172 bitmap_iterator bi;
2173 unsigned index;
2174 tree init = ctor_for_folding (base);
2176 if (init != error_mark_node)
2177 return 0;
2178 if (!bb->frequency)
2179 return REG_BR_PROB_BASE;
2180 ao_ref_init (&refd, op);
2181 info.stmt = stmt;
2182 info.bb_set = BITMAP_ALLOC (NULL);
2183 walk_aliased_vdefs (&refd, gimple_vuse (stmt), record_modified, &info,
2184 NULL);
2185 if (bitmap_bit_p (info.bb_set, bb->index))
2187 BITMAP_FREE (info.bb_set);
2188 return REG_BR_PROB_BASE;
2191 /* Assume that every memory is initialized at entry.
2192 TODO: Can we easilly determine if value is always defined
2193 and thus we may skip entry block? */
2194 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency)
2195 max = ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency;
2196 else
2197 max = 1;
2199 EXECUTE_IF_SET_IN_BITMAP (info.bb_set, 0, index, bi)
2200 max = MIN (max, BASIC_BLOCK_FOR_FN (cfun, index)->frequency);
2202 BITMAP_FREE (info.bb_set);
2203 if (max < bb->frequency)
2204 return MAX (GCOV_COMPUTE_SCALE (max, bb->frequency), 1);
2205 else
2206 return REG_BR_PROB_BASE;
2208 return REG_BR_PROB_BASE;
2211 /* Find whether a basic block BB is the final block of a (half) diamond CFG
2212 sub-graph and if the predicate the condition depends on is known. If so,
2213 return true and store the pointer the predicate in *P. */
2215 static bool
2216 phi_result_unknown_predicate (struct ipa_node_params *info,
2217 struct inline_summary *summary, basic_block bb,
2218 struct predicate *p,
2219 vec<predicate_t> nonconstant_names)
2221 edge e;
2222 edge_iterator ei;
2223 basic_block first_bb = NULL;
2224 gimple stmt;
2226 if (single_pred_p (bb))
2228 *p = false_predicate ();
2229 return true;
2232 FOR_EACH_EDGE (e, ei, bb->preds)
2234 if (single_succ_p (e->src))
2236 if (!single_pred_p (e->src))
2237 return false;
2238 if (!first_bb)
2239 first_bb = single_pred (e->src);
2240 else if (single_pred (e->src) != first_bb)
2241 return false;
2243 else
2245 if (!first_bb)
2246 first_bb = e->src;
2247 else if (e->src != first_bb)
2248 return false;
2252 if (!first_bb)
2253 return false;
2255 stmt = last_stmt (first_bb);
2256 if (!stmt
2257 || gimple_code (stmt) != GIMPLE_COND
2258 || !is_gimple_ip_invariant (gimple_cond_rhs (stmt)))
2259 return false;
2261 *p = will_be_nonconstant_expr_predicate (info, summary,
2262 gimple_cond_lhs (stmt),
2263 nonconstant_names);
2264 if (true_predicate_p (p))
2265 return false;
2266 else
2267 return true;
2270 /* Given a PHI statement in a function described by inline properties SUMMARY
2271 and *P being the predicate describing whether the selected PHI argument is
2272 known, store a predicate for the result of the PHI statement into
2273 NONCONSTANT_NAMES, if possible. */
2275 static void
2276 predicate_for_phi_result (struct inline_summary *summary, gimple phi,
2277 struct predicate *p,
2278 vec<predicate_t> nonconstant_names)
2280 unsigned i;
2282 for (i = 0; i < gimple_phi_num_args (phi); i++)
2284 tree arg = gimple_phi_arg (phi, i)->def;
2285 if (!is_gimple_min_invariant (arg))
2287 gcc_assert (TREE_CODE (arg) == SSA_NAME);
2288 *p = or_predicates (summary->conds, p,
2289 &nonconstant_names[SSA_NAME_VERSION (arg)]);
2290 if (true_predicate_p (p))
2291 return;
2295 if (dump_file && (dump_flags & TDF_DETAILS))
2297 fprintf (dump_file, "\t\tphi predicate: ");
2298 dump_predicate (dump_file, summary->conds, p);
2300 nonconstant_names[SSA_NAME_VERSION (gimple_phi_result (phi))] = *p;
2303 /* Return predicate specifying when array index in access OP becomes non-constant. */
2305 static struct predicate
2306 array_index_predicate (struct inline_summary *info,
2307 vec< predicate_t> nonconstant_names, tree op)
2309 struct predicate p = false_predicate ();
2310 while (handled_component_p (op))
2312 if (TREE_CODE (op) == ARRAY_REF || TREE_CODE (op) == ARRAY_RANGE_REF)
2314 if (TREE_CODE (TREE_OPERAND (op, 1)) == SSA_NAME)
2315 p = or_predicates (info->conds, &p,
2316 &nonconstant_names[SSA_NAME_VERSION
2317 (TREE_OPERAND (op, 1))]);
2319 op = TREE_OPERAND (op, 0);
2321 return p;
2324 /* For a typical usage of __builtin_expect (a<b, 1), we
2325 may introduce an extra relation stmt:
2326 With the builtin, we have
2327 t1 = a <= b;
2328 t2 = (long int) t1;
2329 t3 = __builtin_expect (t2, 1);
2330 if (t3 != 0)
2331 goto ...
2332 Without the builtin, we have
2333 if (a<=b)
2334 goto...
2335 This affects the size/time estimation and may have
2336 an impact on the earlier inlining.
2337 Here find this pattern and fix it up later. */
2339 static gimple
2340 find_foldable_builtin_expect (basic_block bb)
2342 gimple_stmt_iterator bsi;
2344 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
2346 gimple stmt = gsi_stmt (bsi);
2347 if (gimple_call_builtin_p (stmt, BUILT_IN_EXPECT)
2348 || (is_gimple_call (stmt)
2349 && gimple_call_internal_p (stmt)
2350 && gimple_call_internal_fn (stmt) == IFN_BUILTIN_EXPECT))
2352 tree var = gimple_call_lhs (stmt);
2353 tree arg = gimple_call_arg (stmt, 0);
2354 use_operand_p use_p;
2355 gimple use_stmt;
2356 bool match = false;
2357 bool done = false;
2359 if (!var || !arg)
2360 continue;
2361 gcc_assert (TREE_CODE (var) == SSA_NAME);
2363 while (TREE_CODE (arg) == SSA_NAME)
2365 gimple stmt_tmp = SSA_NAME_DEF_STMT (arg);
2366 if (!is_gimple_assign (stmt_tmp))
2367 break;
2368 switch (gimple_assign_rhs_code (stmt_tmp))
2370 case LT_EXPR:
2371 case LE_EXPR:
2372 case GT_EXPR:
2373 case GE_EXPR:
2374 case EQ_EXPR:
2375 case NE_EXPR:
2376 match = true;
2377 done = true;
2378 break;
2379 CASE_CONVERT:
2380 break;
2381 default:
2382 done = true;
2383 break;
2385 if (done)
2386 break;
2387 arg = gimple_assign_rhs1 (stmt_tmp);
2390 if (match && single_imm_use (var, &use_p, &use_stmt)
2391 && gimple_code (use_stmt) == GIMPLE_COND)
2392 return use_stmt;
2395 return NULL;
2398 /* Return true when the basic blocks contains only clobbers followed by RESX.
2399 Such BBs are kept around to make removal of dead stores possible with
2400 presence of EH and will be optimized out by optimize_clobbers later in the
2401 game.
2403 NEED_EH is used to recurse in case the clobber has non-EH predecestors
2404 that can be clobber only, too.. When it is false, the RESX is not necessary
2405 on the end of basic block. */
2407 static bool
2408 clobber_only_eh_bb_p (basic_block bb, bool need_eh = true)
2410 gimple_stmt_iterator gsi = gsi_last_bb (bb);
2411 edge_iterator ei;
2412 edge e;
2414 if (need_eh)
2416 if (gsi_end_p (gsi))
2417 return false;
2418 if (gimple_code (gsi_stmt (gsi)) != GIMPLE_RESX)
2419 return false;
2420 gsi_prev (&gsi);
2422 else if (!single_succ_p (bb))
2423 return false;
2425 for (; !gsi_end_p (gsi); gsi_prev (&gsi))
2427 gimple stmt = gsi_stmt (gsi);
2428 if (is_gimple_debug (stmt))
2429 continue;
2430 if (gimple_clobber_p (stmt))
2431 continue;
2432 if (gimple_code (stmt) == GIMPLE_LABEL)
2433 break;
2434 return false;
2437 /* See if all predecestors are either throws or clobber only BBs. */
2438 FOR_EACH_EDGE (e, ei, bb->preds)
2439 if (!(e->flags & EDGE_EH)
2440 && !clobber_only_eh_bb_p (e->src, false))
2441 return false;
2443 return true;
2446 /* Compute function body size parameters for NODE.
2447 When EARLY is true, we compute only simple summaries without
2448 non-trivial predicates to drive the early inliner. */
2450 static void
2451 estimate_function_body_sizes (struct cgraph_node *node, bool early)
2453 gcov_type time = 0;
2454 /* Estimate static overhead for function prologue/epilogue and alignment. */
2455 int size = 2;
2456 /* Benefits are scaled by probability of elimination that is in range
2457 <0,2>. */
2458 basic_block bb;
2459 gimple_stmt_iterator bsi;
2460 struct function *my_function = DECL_STRUCT_FUNCTION (node->decl);
2461 int freq;
2462 struct inline_summary *info = inline_summary (node);
2463 struct predicate bb_predicate;
2464 struct ipa_node_params *parms_info = NULL;
2465 vec<predicate_t> nonconstant_names = vNULL;
2466 int nblocks, n;
2467 int *order;
2468 predicate array_index = true_predicate ();
2469 gimple fix_builtin_expect_stmt;
2471 info->conds = NULL;
2472 info->entry = NULL;
2474 if (optimize && !early)
2476 calculate_dominance_info (CDI_DOMINATORS);
2477 loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
2479 if (ipa_node_params_vector.exists ())
2481 parms_info = IPA_NODE_REF (node);
2482 nonconstant_names.safe_grow_cleared
2483 (SSANAMES (my_function)->length ());
2487 if (dump_file)
2488 fprintf (dump_file, "\nAnalyzing function body size: %s\n",
2489 node->name ());
2491 /* When we run into maximal number of entries, we assign everything to the
2492 constant truth case. Be sure to have it in list. */
2493 bb_predicate = true_predicate ();
2494 account_size_time (info, 0, 0, &bb_predicate);
2496 bb_predicate = not_inlined_predicate ();
2497 account_size_time (info, 2 * INLINE_SIZE_SCALE, 0, &bb_predicate);
2499 gcc_assert (my_function && my_function->cfg);
2500 if (parms_info)
2501 compute_bb_predicates (node, parms_info, info);
2502 gcc_assert (cfun == my_function);
2503 order = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
2504 nblocks = pre_and_rev_post_order_compute (NULL, order, false);
2505 for (n = 0; n < nblocks; n++)
2507 bb = BASIC_BLOCK_FOR_FN (cfun, order[n]);
2508 freq = compute_call_stmt_bb_frequency (node->decl, bb);
2509 if (clobber_only_eh_bb_p (bb))
2511 if (dump_file && (dump_flags & TDF_DETAILS))
2512 fprintf (dump_file, "\n Ignoring BB %i;"
2513 " it will be optimized away by cleanup_clobbers\n",
2514 bb->index);
2515 continue;
2518 /* TODO: Obviously predicates can be propagated down across CFG. */
2519 if (parms_info)
2521 if (bb->aux)
2522 bb_predicate = *(struct predicate *) bb->aux;
2523 else
2524 bb_predicate = false_predicate ();
2526 else
2527 bb_predicate = true_predicate ();
2529 if (dump_file && (dump_flags & TDF_DETAILS))
2531 fprintf (dump_file, "\n BB %i predicate:", bb->index);
2532 dump_predicate (dump_file, info->conds, &bb_predicate);
2535 if (parms_info && nonconstant_names.exists ())
2537 struct predicate phi_predicate;
2538 bool first_phi = true;
2540 for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); gsi_next (&bsi))
2542 if (first_phi
2543 && !phi_result_unknown_predicate (parms_info, info, bb,
2544 &phi_predicate,
2545 nonconstant_names))
2546 break;
2547 first_phi = false;
2548 if (dump_file && (dump_flags & TDF_DETAILS))
2550 fprintf (dump_file, " ");
2551 print_gimple_stmt (dump_file, gsi_stmt (bsi), 0, 0);
2553 predicate_for_phi_result (info, gsi_stmt (bsi), &phi_predicate,
2554 nonconstant_names);
2558 fix_builtin_expect_stmt = find_foldable_builtin_expect (bb);
2560 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
2562 gimple stmt = gsi_stmt (bsi);
2563 int this_size = estimate_num_insns (stmt, &eni_size_weights);
2564 int this_time = estimate_num_insns (stmt, &eni_time_weights);
2565 int prob;
2566 struct predicate will_be_nonconstant;
2568 /* This relation stmt should be folded after we remove
2569 buildin_expect call. Adjust the cost here. */
2570 if (stmt == fix_builtin_expect_stmt)
2572 this_size--;
2573 this_time--;
2576 if (dump_file && (dump_flags & TDF_DETAILS))
2578 fprintf (dump_file, " ");
2579 print_gimple_stmt (dump_file, stmt, 0, 0);
2580 fprintf (dump_file, "\t\tfreq:%3.2f size:%3i time:%3i\n",
2581 ((double) freq) / CGRAPH_FREQ_BASE, this_size,
2582 this_time);
2585 if (gimple_assign_load_p (stmt) && nonconstant_names.exists ())
2587 struct predicate this_array_index;
2588 this_array_index =
2589 array_index_predicate (info, nonconstant_names,
2590 gimple_assign_rhs1 (stmt));
2591 if (!false_predicate_p (&this_array_index))
2592 array_index =
2593 and_predicates (info->conds, &array_index,
2594 &this_array_index);
2596 if (gimple_store_p (stmt) && nonconstant_names.exists ())
2598 struct predicate this_array_index;
2599 this_array_index =
2600 array_index_predicate (info, nonconstant_names,
2601 gimple_get_lhs (stmt));
2602 if (!false_predicate_p (&this_array_index))
2603 array_index =
2604 and_predicates (info->conds, &array_index,
2605 &this_array_index);
2609 if (is_gimple_call (stmt)
2610 && !gimple_call_internal_p (stmt))
2612 struct cgraph_edge *edge = node->get_edge (stmt);
2613 struct inline_edge_summary *es = inline_edge_summary (edge);
2615 /* Special case: results of BUILT_IN_CONSTANT_P will be always
2616 resolved as constant. We however don't want to optimize
2617 out the cgraph edges. */
2618 if (nonconstant_names.exists ()
2619 && gimple_call_builtin_p (stmt, BUILT_IN_CONSTANT_P)
2620 && gimple_call_lhs (stmt)
2621 && TREE_CODE (gimple_call_lhs (stmt)) == SSA_NAME)
2623 struct predicate false_p = false_predicate ();
2624 nonconstant_names[SSA_NAME_VERSION (gimple_call_lhs (stmt))]
2625 = false_p;
2627 if (ipa_node_params_vector.exists ())
2629 int count = gimple_call_num_args (stmt);
2630 int i;
2632 if (count)
2633 es->param.safe_grow_cleared (count);
2634 for (i = 0; i < count; i++)
2636 int prob = param_change_prob (stmt, i);
2637 gcc_assert (prob >= 0 && prob <= REG_BR_PROB_BASE);
2638 es->param[i].change_prob = prob;
2642 es->call_stmt_size = this_size;
2643 es->call_stmt_time = this_time;
2644 es->loop_depth = bb_loop_depth (bb);
2645 edge_set_predicate (edge, &bb_predicate);
2648 /* TODO: When conditional jump or swithc is known to be constant, but
2649 we did not translate it into the predicates, we really can account
2650 just maximum of the possible paths. */
2651 if (parms_info)
2652 will_be_nonconstant
2653 = will_be_nonconstant_predicate (parms_info, info,
2654 stmt, nonconstant_names);
2655 if (this_time || this_size)
2657 struct predicate p;
2659 this_time *= freq;
2661 prob = eliminated_by_inlining_prob (stmt);
2662 if (prob == 1 && dump_file && (dump_flags & TDF_DETAILS))
2663 fprintf (dump_file,
2664 "\t\t50%% will be eliminated by inlining\n");
2665 if (prob == 2 && dump_file && (dump_flags & TDF_DETAILS))
2666 fprintf (dump_file, "\t\tWill be eliminated by inlining\n");
2668 if (parms_info)
2669 p = and_predicates (info->conds, &bb_predicate,
2670 &will_be_nonconstant);
2671 else
2672 p = true_predicate ();
2674 if (!false_predicate_p (&p))
2676 time += this_time;
2677 size += this_size;
2678 if (time > MAX_TIME * INLINE_TIME_SCALE)
2679 time = MAX_TIME * INLINE_TIME_SCALE;
2682 /* We account everything but the calls. Calls have their own
2683 size/time info attached to cgraph edges. This is necessary
2684 in order to make the cost disappear after inlining. */
2685 if (!is_gimple_call (stmt))
2687 if (prob)
2689 struct predicate ip = not_inlined_predicate ();
2690 ip = and_predicates (info->conds, &ip, &p);
2691 account_size_time (info, this_size * prob,
2692 this_time * prob, &ip);
2694 if (prob != 2)
2695 account_size_time (info, this_size * (2 - prob),
2696 this_time * (2 - prob), &p);
2699 gcc_assert (time >= 0);
2700 gcc_assert (size >= 0);
2704 set_hint_predicate (&inline_summary (node)->array_index, array_index);
2705 time = (time + CGRAPH_FREQ_BASE / 2) / CGRAPH_FREQ_BASE;
2706 if (time > MAX_TIME)
2707 time = MAX_TIME;
2708 free (order);
2710 if (!early && nonconstant_names.exists ())
2712 struct loop *loop;
2713 predicate loop_iterations = true_predicate ();
2714 predicate loop_stride = true_predicate ();
2716 if (dump_file && (dump_flags & TDF_DETAILS))
2717 flow_loops_dump (dump_file, NULL, 0);
2718 scev_initialize ();
2719 FOR_EACH_LOOP (loop, 0)
2721 vec<edge> exits;
2722 edge ex;
2723 unsigned int j, i;
2724 struct tree_niter_desc niter_desc;
2725 basic_block *body = get_loop_body (loop);
2726 bb_predicate = *(struct predicate *) loop->header->aux;
2728 exits = get_loop_exit_edges (loop);
2729 FOR_EACH_VEC_ELT (exits, j, ex)
2730 if (number_of_iterations_exit (loop, ex, &niter_desc, false)
2731 && !is_gimple_min_invariant (niter_desc.niter))
2733 predicate will_be_nonconstant
2734 = will_be_nonconstant_expr_predicate (parms_info, info,
2735 niter_desc.niter,
2736 nonconstant_names);
2737 if (!true_predicate_p (&will_be_nonconstant))
2738 will_be_nonconstant = and_predicates (info->conds,
2739 &bb_predicate,
2740 &will_be_nonconstant);
2741 if (!true_predicate_p (&will_be_nonconstant)
2742 && !false_predicate_p (&will_be_nonconstant))
2743 /* This is slightly inprecise. We may want to represent each
2744 loop with independent predicate. */
2745 loop_iterations =
2746 and_predicates (info->conds, &loop_iterations,
2747 &will_be_nonconstant);
2749 exits.release ();
2751 for (i = 0; i < loop->num_nodes; i++)
2753 gimple_stmt_iterator gsi;
2754 bb_predicate = *(struct predicate *) body[i]->aux;
2755 for (gsi = gsi_start_bb (body[i]); !gsi_end_p (gsi);
2756 gsi_next (&gsi))
2758 gimple stmt = gsi_stmt (gsi);
2759 affine_iv iv;
2760 ssa_op_iter iter;
2761 tree use;
2763 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
2765 predicate will_be_nonconstant;
2767 if (!simple_iv
2768 (loop, loop_containing_stmt (stmt), use, &iv, true)
2769 || is_gimple_min_invariant (iv.step))
2770 continue;
2771 will_be_nonconstant
2772 = will_be_nonconstant_expr_predicate (parms_info, info,
2773 iv.step,
2774 nonconstant_names);
2775 if (!true_predicate_p (&will_be_nonconstant))
2776 will_be_nonconstant
2777 = and_predicates (info->conds,
2778 &bb_predicate,
2779 &will_be_nonconstant);
2780 if (!true_predicate_p (&will_be_nonconstant)
2781 && !false_predicate_p (&will_be_nonconstant))
2782 /* This is slightly inprecise. We may want to represent
2783 each loop with independent predicate. */
2784 loop_stride =
2785 and_predicates (info->conds, &loop_stride,
2786 &will_be_nonconstant);
2790 free (body);
2792 set_hint_predicate (&inline_summary (node)->loop_iterations,
2793 loop_iterations);
2794 set_hint_predicate (&inline_summary (node)->loop_stride, loop_stride);
2795 scev_finalize ();
2797 FOR_ALL_BB_FN (bb, my_function)
2799 edge e;
2800 edge_iterator ei;
2802 if (bb->aux)
2803 pool_free (edge_predicate_pool, bb->aux);
2804 bb->aux = NULL;
2805 FOR_EACH_EDGE (e, ei, bb->succs)
2807 if (e->aux)
2808 pool_free (edge_predicate_pool, e->aux);
2809 e->aux = NULL;
2812 inline_summary (node)->self_time = time;
2813 inline_summary (node)->self_size = size;
2814 nonconstant_names.release ();
2815 if (optimize && !early)
2817 loop_optimizer_finalize ();
2818 free_dominance_info (CDI_DOMINATORS);
2820 if (dump_file)
2822 fprintf (dump_file, "\n");
2823 dump_inline_summary (dump_file, node);
2828 /* Compute parameters of functions used by inliner.
2829 EARLY is true when we compute parameters for the early inliner */
2831 void
2832 compute_inline_parameters (struct cgraph_node *node, bool early)
2834 HOST_WIDE_INT self_stack_size;
2835 struct cgraph_edge *e;
2836 struct inline_summary *info;
2838 gcc_assert (!node->global.inlined_to);
2840 inline_summary_alloc ();
2842 info = inline_summary (node);
2843 reset_inline_summary (node);
2845 /* FIXME: Thunks are inlinable, but tree-inline don't know how to do that.
2846 Once this happen, we will need to more curefully predict call
2847 statement size. */
2848 if (node->thunk.thunk_p)
2850 struct inline_edge_summary *es = inline_edge_summary (node->callees);
2851 struct predicate t = true_predicate ();
2853 info->inlinable = 0;
2854 node->callees->call_stmt_cannot_inline_p = true;
2855 node->local.can_change_signature = false;
2856 es->call_stmt_time = 1;
2857 es->call_stmt_size = 1;
2858 account_size_time (info, 0, 0, &t);
2859 return;
2862 /* Even is_gimple_min_invariant rely on current_function_decl. */
2863 push_cfun (DECL_STRUCT_FUNCTION (node->decl));
2865 /* Estimate the stack size for the function if we're optimizing. */
2866 self_stack_size = optimize ? estimated_stack_frame_size (node) : 0;
2867 info->estimated_self_stack_size = self_stack_size;
2868 info->estimated_stack_size = self_stack_size;
2869 info->stack_frame_offset = 0;
2871 /* Can this function be inlined at all? */
2872 if (!optimize && !lookup_attribute ("always_inline",
2873 DECL_ATTRIBUTES (node->decl)))
2874 info->inlinable = false;
2875 else
2876 info->inlinable = tree_inlinable_function_p (node->decl);
2878 /* Type attributes can use parameter indices to describe them. */
2879 if (TYPE_ATTRIBUTES (TREE_TYPE (node->decl)))
2880 node->local.can_change_signature = false;
2881 else
2883 /* Otherwise, inlinable functions always can change signature. */
2884 if (info->inlinable)
2885 node->local.can_change_signature = true;
2886 else
2888 /* Functions calling builtin_apply can not change signature. */
2889 for (e = node->callees; e; e = e->next_callee)
2891 tree cdecl = e->callee->decl;
2892 if (DECL_BUILT_IN (cdecl)
2893 && DECL_BUILT_IN_CLASS (cdecl) == BUILT_IN_NORMAL
2894 && (DECL_FUNCTION_CODE (cdecl) == BUILT_IN_APPLY_ARGS
2895 || DECL_FUNCTION_CODE (cdecl) == BUILT_IN_VA_START))
2896 break;
2898 node->local.can_change_signature = !e;
2901 estimate_function_body_sizes (node, early);
2903 for (e = node->callees; e; e = e->next_callee)
2904 if (e->callee->comdat_local_p ())
2905 break;
2906 node->calls_comdat_local = (e != NULL);
2908 /* Inlining characteristics are maintained by the cgraph_mark_inline. */
2909 info->time = info->self_time;
2910 info->size = info->self_size;
2911 info->stack_frame_offset = 0;
2912 info->estimated_stack_size = info->estimated_self_stack_size;
2913 #ifdef ENABLE_CHECKING
2914 inline_update_overall_summary (node);
2915 gcc_assert (info->time == info->self_time && info->size == info->self_size);
2916 #endif
2918 pop_cfun ();
2922 /* Compute parameters of functions used by inliner using
2923 current_function_decl. */
2925 static unsigned int
2926 compute_inline_parameters_for_current (void)
2928 compute_inline_parameters (cgraph_node::get (current_function_decl), true);
2929 return 0;
2932 namespace {
2934 const pass_data pass_data_inline_parameters =
2936 GIMPLE_PASS, /* type */
2937 "inline_param", /* name */
2938 OPTGROUP_INLINE, /* optinfo_flags */
2939 TV_INLINE_PARAMETERS, /* tv_id */
2940 0, /* properties_required */
2941 0, /* properties_provided */
2942 0, /* properties_destroyed */
2943 0, /* todo_flags_start */
2944 0, /* todo_flags_finish */
2947 class pass_inline_parameters : public gimple_opt_pass
2949 public:
2950 pass_inline_parameters (gcc::context *ctxt)
2951 : gimple_opt_pass (pass_data_inline_parameters, ctxt)
2954 /* opt_pass methods: */
2955 opt_pass * clone () { return new pass_inline_parameters (m_ctxt); }
2956 virtual unsigned int execute (function *)
2958 return compute_inline_parameters_for_current ();
2961 }; // class pass_inline_parameters
2963 } // anon namespace
2965 gimple_opt_pass *
2966 make_pass_inline_parameters (gcc::context *ctxt)
2968 return new pass_inline_parameters (ctxt);
2972 /* Estimate benefit devirtualizing indirect edge IE, provided KNOWN_VALS and
2973 KNOWN_BINFOS. */
2975 static bool
2976 estimate_edge_devirt_benefit (struct cgraph_edge *ie,
2977 int *size, int *time,
2978 vec<tree> known_vals,
2979 vec<tree> known_binfos,
2980 vec<ipa_agg_jump_function_p> known_aggs)
2982 tree target;
2983 struct cgraph_node *callee;
2984 struct inline_summary *isummary;
2985 enum availability avail;
2987 if (!known_vals.exists () && !known_binfos.exists ())
2988 return false;
2989 if (!flag_indirect_inlining)
2990 return false;
2992 target = ipa_get_indirect_edge_target (ie, known_vals, known_binfos,
2993 known_aggs);
2994 if (!target)
2995 return false;
2997 /* Account for difference in cost between indirect and direct calls. */
2998 *size -= (eni_size_weights.indirect_call_cost - eni_size_weights.call_cost);
2999 *time -= (eni_time_weights.indirect_call_cost - eni_time_weights.call_cost);
3000 gcc_checking_assert (*time >= 0);
3001 gcc_checking_assert (*size >= 0);
3003 callee = cgraph_node::get (target);
3004 if (!callee || !callee->definition)
3005 return false;
3006 callee = callee->function_symbol (&avail);
3007 if (avail < AVAIL_AVAILABLE)
3008 return false;
3009 isummary = inline_summary (callee);
3010 return isummary->inlinable;
3013 /* Increase SIZE, MIN_SIZE (if non-NULL) and TIME for size and time needed to
3014 handle edge E with probability PROB.
3015 Set HINTS if edge may be devirtualized.
3016 KNOWN_VALS, KNOWN_AGGS and KNOWN_BINFOS describe context of the call
3017 site. */
3019 static inline void
3020 estimate_edge_size_and_time (struct cgraph_edge *e, int *size, int *min_size,
3021 int *time,
3022 int prob,
3023 vec<tree> known_vals,
3024 vec<tree> known_binfos,
3025 vec<ipa_agg_jump_function_p> known_aggs,
3026 inline_hints *hints)
3028 struct inline_edge_summary *es = inline_edge_summary (e);
3029 int call_size = es->call_stmt_size;
3030 int call_time = es->call_stmt_time;
3031 int cur_size;
3032 if (!e->callee
3033 && estimate_edge_devirt_benefit (e, &call_size, &call_time,
3034 known_vals, known_binfos, known_aggs)
3035 && hints && e->maybe_hot_p ())
3036 *hints |= INLINE_HINT_indirect_call;
3037 cur_size = call_size * INLINE_SIZE_SCALE;
3038 *size += cur_size;
3039 if (min_size)
3040 *min_size += cur_size;
3041 *time += apply_probability ((gcov_type) call_time, prob)
3042 * e->frequency * (INLINE_TIME_SCALE / CGRAPH_FREQ_BASE);
3043 if (*time > MAX_TIME * INLINE_TIME_SCALE)
3044 *time = MAX_TIME * INLINE_TIME_SCALE;
3049 /* Increase SIZE, MIN_SIZE and TIME for size and time needed to handle all
3050 calls in NODE.
3051 POSSIBLE_TRUTHS, KNOWN_VALS, KNOWN_AGGS and KNOWN_BINFOS describe context of
3052 the call site. */
3054 static void
3055 estimate_calls_size_and_time (struct cgraph_node *node, int *size,
3056 int *min_size, int *time,
3057 inline_hints *hints,
3058 clause_t possible_truths,
3059 vec<tree> known_vals,
3060 vec<tree> known_binfos,
3061 vec<ipa_agg_jump_function_p> known_aggs)
3063 struct cgraph_edge *e;
3064 for (e = node->callees; e; e = e->next_callee)
3066 struct inline_edge_summary *es = inline_edge_summary (e);
3067 if (!es->predicate
3068 || evaluate_predicate (es->predicate, possible_truths))
3070 if (e->inline_failed)
3072 /* Predicates of calls shall not use NOT_CHANGED codes,
3073 sowe do not need to compute probabilities. */
3074 estimate_edge_size_and_time (e, size,
3075 es->predicate ? NULL : min_size,
3076 time, REG_BR_PROB_BASE,
3077 known_vals, known_binfos,
3078 known_aggs, hints);
3080 else
3081 estimate_calls_size_and_time (e->callee, size, min_size, time,
3082 hints,
3083 possible_truths,
3084 known_vals, known_binfos,
3085 known_aggs);
3088 for (e = node->indirect_calls; e; e = e->next_callee)
3090 struct inline_edge_summary *es = inline_edge_summary (e);
3091 if (!es->predicate
3092 || evaluate_predicate (es->predicate, possible_truths))
3093 estimate_edge_size_and_time (e, size,
3094 es->predicate ? NULL : min_size,
3095 time, REG_BR_PROB_BASE,
3096 known_vals, known_binfos, known_aggs,
3097 hints);
3102 /* Estimate size and time needed to execute NODE assuming
3103 POSSIBLE_TRUTHS clause, and KNOWN_VALS, KNOWN_AGGS and KNOWN_BINFOS
3104 information about NODE's arguments. If non-NULL use also probability
3105 information present in INLINE_PARAM_SUMMARY vector.
3106 Additionally detemine hints determined by the context. Finally compute
3107 minimal size needed for the call that is independent on the call context and
3108 can be used for fast estimates. Return the values in RET_SIZE,
3109 RET_MIN_SIZE, RET_TIME and RET_HINTS. */
3111 static void
3112 estimate_node_size_and_time (struct cgraph_node *node,
3113 clause_t possible_truths,
3114 vec<tree> known_vals,
3115 vec<tree> known_binfos,
3116 vec<ipa_agg_jump_function_p> known_aggs,
3117 int *ret_size, int *ret_min_size, int *ret_time,
3118 inline_hints *ret_hints,
3119 vec<inline_param_summary>
3120 inline_param_summary)
3122 struct inline_summary *info = inline_summary (node);
3123 size_time_entry *e;
3124 int size = 0;
3125 int time = 0;
3126 int min_size = 0;
3127 inline_hints hints = 0;
3128 int i;
3130 if (dump_file && (dump_flags & TDF_DETAILS))
3132 bool found = false;
3133 fprintf (dump_file, " Estimating body: %s/%i\n"
3134 " Known to be false: ", node->name (),
3135 node->order);
3137 for (i = predicate_not_inlined_condition;
3138 i < (predicate_first_dynamic_condition
3139 + (int) vec_safe_length (info->conds)); i++)
3140 if (!(possible_truths & (1 << i)))
3142 if (found)
3143 fprintf (dump_file, ", ");
3144 found = true;
3145 dump_condition (dump_file, info->conds, i);
3149 for (i = 0; vec_safe_iterate (info->entry, i, &e); i++)
3150 if (evaluate_predicate (&e->predicate, possible_truths))
3152 size += e->size;
3153 gcc_checking_assert (e->time >= 0);
3154 gcc_checking_assert (time >= 0);
3155 if (!inline_param_summary.exists ())
3156 time += e->time;
3157 else
3159 int prob = predicate_probability (info->conds,
3160 &e->predicate,
3161 possible_truths,
3162 inline_param_summary);
3163 gcc_checking_assert (prob >= 0);
3164 gcc_checking_assert (prob <= REG_BR_PROB_BASE);
3165 time += apply_probability ((gcov_type) e->time, prob);
3167 if (time > MAX_TIME * INLINE_TIME_SCALE)
3168 time = MAX_TIME * INLINE_TIME_SCALE;
3169 gcc_checking_assert (time >= 0);
3172 gcc_checking_assert (true_predicate_p (&(*info->entry)[0].predicate));
3173 min_size = (*info->entry)[0].size;
3174 gcc_checking_assert (size >= 0);
3175 gcc_checking_assert (time >= 0);
3177 if (info->loop_iterations
3178 && !evaluate_predicate (info->loop_iterations, possible_truths))
3179 hints |= INLINE_HINT_loop_iterations;
3180 if (info->loop_stride
3181 && !evaluate_predicate (info->loop_stride, possible_truths))
3182 hints |= INLINE_HINT_loop_stride;
3183 if (info->array_index
3184 && !evaluate_predicate (info->array_index, possible_truths))
3185 hints |= INLINE_HINT_array_index;
3186 if (info->scc_no)
3187 hints |= INLINE_HINT_in_scc;
3188 if (DECL_DECLARED_INLINE_P (node->decl))
3189 hints |= INLINE_HINT_declared_inline;
3191 estimate_calls_size_and_time (node, &size, &min_size, &time, &hints, possible_truths,
3192 known_vals, known_binfos, known_aggs);
3193 gcc_checking_assert (size >= 0);
3194 gcc_checking_assert (time >= 0);
3195 time = RDIV (time, INLINE_TIME_SCALE);
3196 size = RDIV (size, INLINE_SIZE_SCALE);
3197 min_size = RDIV (min_size, INLINE_SIZE_SCALE);
3199 if (dump_file && (dump_flags & TDF_DETAILS))
3200 fprintf (dump_file, "\n size:%i time:%i\n", (int) size, (int) time);
3201 if (ret_time)
3202 *ret_time = time;
3203 if (ret_size)
3204 *ret_size = size;
3205 if (ret_min_size)
3206 *ret_min_size = min_size;
3207 if (ret_hints)
3208 *ret_hints = hints;
3209 return;
3213 /* Estimate size and time needed to execute callee of EDGE assuming that
3214 parameters known to be constant at caller of EDGE are propagated.
3215 KNOWN_VALS and KNOWN_BINFOS are vectors of assumed known constant values
3216 and types for parameters. */
3218 void
3219 estimate_ipcp_clone_size_and_time (struct cgraph_node *node,
3220 vec<tree> known_vals,
3221 vec<tree> known_binfos,
3222 vec<ipa_agg_jump_function_p> known_aggs,
3223 int *ret_size, int *ret_time,
3224 inline_hints *hints)
3226 clause_t clause;
3228 clause = evaluate_conditions_for_known_args (node, false, known_vals,
3229 known_aggs);
3230 estimate_node_size_and_time (node, clause, known_vals, known_binfos,
3231 known_aggs, ret_size, NULL, ret_time, hints, vNULL);
3234 /* Translate all conditions from callee representation into caller
3235 representation and symbolically evaluate predicate P into new predicate.
3237 INFO is inline_summary of function we are adding predicate into, CALLEE_INFO
3238 is summary of function predicate P is from. OPERAND_MAP is array giving
3239 callee formal IDs the caller formal IDs. POSSSIBLE_TRUTHS is clausule of all
3240 callee conditions that may be true in caller context. TOPLEV_PREDICATE is
3241 predicate under which callee is executed. OFFSET_MAP is an array of of
3242 offsets that need to be added to conditions, negative offset means that
3243 conditions relying on values passed by reference have to be discarded
3244 because they might not be preserved (and should be considered offset zero
3245 for other purposes). */
3247 static struct predicate
3248 remap_predicate (struct inline_summary *info,
3249 struct inline_summary *callee_info,
3250 struct predicate *p,
3251 vec<int> operand_map,
3252 vec<int> offset_map,
3253 clause_t possible_truths, struct predicate *toplev_predicate)
3255 int i;
3256 struct predicate out = true_predicate ();
3258 /* True predicate is easy. */
3259 if (true_predicate_p (p))
3260 return *toplev_predicate;
3261 for (i = 0; p->clause[i]; i++)
3263 clause_t clause = p->clause[i];
3264 int cond;
3265 struct predicate clause_predicate = false_predicate ();
3267 gcc_assert (i < MAX_CLAUSES);
3269 for (cond = 0; cond < NUM_CONDITIONS; cond++)
3270 /* Do we have condition we can't disprove? */
3271 if (clause & possible_truths & (1 << cond))
3273 struct predicate cond_predicate;
3274 /* Work out if the condition can translate to predicate in the
3275 inlined function. */
3276 if (cond >= predicate_first_dynamic_condition)
3278 struct condition *c;
3280 c = &(*callee_info->conds)[cond
3282 predicate_first_dynamic_condition];
3283 /* See if we can remap condition operand to caller's operand.
3284 Otherwise give up. */
3285 if (!operand_map.exists ()
3286 || (int) operand_map.length () <= c->operand_num
3287 || operand_map[c->operand_num] == -1
3288 /* TODO: For non-aggregate conditions, adding an offset is
3289 basically an arithmetic jump function processing which
3290 we should support in future. */
3291 || ((!c->agg_contents || !c->by_ref)
3292 && offset_map[c->operand_num] > 0)
3293 || (c->agg_contents && c->by_ref
3294 && offset_map[c->operand_num] < 0))
3295 cond_predicate = true_predicate ();
3296 else
3298 struct agg_position_info ap;
3299 HOST_WIDE_INT offset_delta = offset_map[c->operand_num];
3300 if (offset_delta < 0)
3302 gcc_checking_assert (!c->agg_contents || !c->by_ref);
3303 offset_delta = 0;
3305 gcc_assert (!c->agg_contents
3306 || c->by_ref || offset_delta == 0);
3307 ap.offset = c->offset + offset_delta;
3308 ap.agg_contents = c->agg_contents;
3309 ap.by_ref = c->by_ref;
3310 cond_predicate = add_condition (info,
3311 operand_map[c->operand_num],
3312 &ap, c->code, c->val);
3315 /* Fixed conditions remains same, construct single
3316 condition predicate. */
3317 else
3319 cond_predicate.clause[0] = 1 << cond;
3320 cond_predicate.clause[1] = 0;
3322 clause_predicate = or_predicates (info->conds, &clause_predicate,
3323 &cond_predicate);
3325 out = and_predicates (info->conds, &out, &clause_predicate);
3327 return and_predicates (info->conds, &out, toplev_predicate);
3331 /* Update summary information of inline clones after inlining.
3332 Compute peak stack usage. */
3334 static void
3335 inline_update_callee_summaries (struct cgraph_node *node, int depth)
3337 struct cgraph_edge *e;
3338 struct inline_summary *callee_info = inline_summary (node);
3339 struct inline_summary *caller_info = inline_summary (node->callers->caller);
3340 HOST_WIDE_INT peak;
3342 callee_info->stack_frame_offset
3343 = caller_info->stack_frame_offset
3344 + caller_info->estimated_self_stack_size;
3345 peak = callee_info->stack_frame_offset
3346 + callee_info->estimated_self_stack_size;
3347 if (inline_summary (node->global.inlined_to)->estimated_stack_size < peak)
3348 inline_summary (node->global.inlined_to)->estimated_stack_size = peak;
3349 ipa_propagate_frequency (node);
3350 for (e = node->callees; e; e = e->next_callee)
3352 if (!e->inline_failed)
3353 inline_update_callee_summaries (e->callee, depth);
3354 inline_edge_summary (e)->loop_depth += depth;
3356 for (e = node->indirect_calls; e; e = e->next_callee)
3357 inline_edge_summary (e)->loop_depth += depth;
3360 /* Update change_prob of EDGE after INLINED_EDGE has been inlined.
3361 When functoin A is inlined in B and A calls C with parameter that
3362 changes with probability PROB1 and C is known to be passthroug
3363 of argument if B that change with probability PROB2, the probability
3364 of change is now PROB1*PROB2. */
3366 static void
3367 remap_edge_change_prob (struct cgraph_edge *inlined_edge,
3368 struct cgraph_edge *edge)
3370 if (ipa_node_params_vector.exists ())
3372 int i;
3373 struct ipa_edge_args *args = IPA_EDGE_REF (edge);
3374 struct inline_edge_summary *es = inline_edge_summary (edge);
3375 struct inline_edge_summary *inlined_es
3376 = inline_edge_summary (inlined_edge);
3378 for (i = 0; i < ipa_get_cs_argument_count (args); i++)
3380 struct ipa_jump_func *jfunc = ipa_get_ith_jump_func (args, i);
3381 if (jfunc->type == IPA_JF_PASS_THROUGH
3382 && (ipa_get_jf_pass_through_formal_id (jfunc)
3383 < (int) inlined_es->param.length ()))
3385 int jf_formal_id = ipa_get_jf_pass_through_formal_id (jfunc);
3386 int prob1 = es->param[i].change_prob;
3387 int prob2 = inlined_es->param[jf_formal_id].change_prob;
3388 int prob = combine_probabilities (prob1, prob2);
3390 if (prob1 && prob2 && !prob)
3391 prob = 1;
3393 es->param[i].change_prob = prob;
3399 /* Update edge summaries of NODE after INLINED_EDGE has been inlined.
3401 Remap predicates of callees of NODE. Rest of arguments match
3402 remap_predicate.
3404 Also update change probabilities. */
3406 static void
3407 remap_edge_summaries (struct cgraph_edge *inlined_edge,
3408 struct cgraph_node *node,
3409 struct inline_summary *info,
3410 struct inline_summary *callee_info,
3411 vec<int> operand_map,
3412 vec<int> offset_map,
3413 clause_t possible_truths,
3414 struct predicate *toplev_predicate)
3416 struct cgraph_edge *e;
3417 for (e = node->callees; e; e = e->next_callee)
3419 struct inline_edge_summary *es = inline_edge_summary (e);
3420 struct predicate p;
3422 if (e->inline_failed)
3424 remap_edge_change_prob (inlined_edge, e);
3426 if (es->predicate)
3428 p = remap_predicate (info, callee_info,
3429 es->predicate, operand_map, offset_map,
3430 possible_truths, toplev_predicate);
3431 edge_set_predicate (e, &p);
3432 /* TODO: We should remove the edge for code that will be
3433 optimized out, but we need to keep verifiers and tree-inline
3434 happy. Make it cold for now. */
3435 if (false_predicate_p (&p))
3437 e->count = 0;
3438 e->frequency = 0;
3441 else
3442 edge_set_predicate (e, toplev_predicate);
3444 else
3445 remap_edge_summaries (inlined_edge, e->callee, info, callee_info,
3446 operand_map, offset_map, possible_truths,
3447 toplev_predicate);
3449 for (e = node->indirect_calls; e; e = e->next_callee)
3451 struct inline_edge_summary *es = inline_edge_summary (e);
3452 struct predicate p;
3454 remap_edge_change_prob (inlined_edge, e);
3455 if (es->predicate)
3457 p = remap_predicate (info, callee_info,
3458 es->predicate, operand_map, offset_map,
3459 possible_truths, toplev_predicate);
3460 edge_set_predicate (e, &p);
3461 /* TODO: We should remove the edge for code that will be optimized
3462 out, but we need to keep verifiers and tree-inline happy.
3463 Make it cold for now. */
3464 if (false_predicate_p (&p))
3466 e->count = 0;
3467 e->frequency = 0;
3470 else
3471 edge_set_predicate (e, toplev_predicate);
3475 /* Same as remap_predicate, but set result into hint *HINT. */
3477 static void
3478 remap_hint_predicate (struct inline_summary *info,
3479 struct inline_summary *callee_info,
3480 struct predicate **hint,
3481 vec<int> operand_map,
3482 vec<int> offset_map,
3483 clause_t possible_truths,
3484 struct predicate *toplev_predicate)
3486 predicate p;
3488 if (!*hint)
3489 return;
3490 p = remap_predicate (info, callee_info,
3491 *hint,
3492 operand_map, offset_map,
3493 possible_truths, toplev_predicate);
3494 if (!false_predicate_p (&p) && !true_predicate_p (&p))
3496 if (!*hint)
3497 set_hint_predicate (hint, p);
3498 else
3499 **hint = and_predicates (info->conds, *hint, &p);
3503 /* We inlined EDGE. Update summary of the function we inlined into. */
3505 void
3506 inline_merge_summary (struct cgraph_edge *edge)
3508 struct inline_summary *callee_info = inline_summary (edge->callee);
3509 struct cgraph_node *to = (edge->caller->global.inlined_to
3510 ? edge->caller->global.inlined_to : edge->caller);
3511 struct inline_summary *info = inline_summary (to);
3512 clause_t clause = 0; /* not_inline is known to be false. */
3513 size_time_entry *e;
3514 vec<int> operand_map = vNULL;
3515 vec<int> offset_map = vNULL;
3516 int i;
3517 struct predicate toplev_predicate;
3518 struct predicate true_p = true_predicate ();
3519 struct inline_edge_summary *es = inline_edge_summary (edge);
3521 if (es->predicate)
3522 toplev_predicate = *es->predicate;
3523 else
3524 toplev_predicate = true_predicate ();
3526 if (ipa_node_params_vector.exists () && callee_info->conds)
3528 struct ipa_edge_args *args = IPA_EDGE_REF (edge);
3529 int count = ipa_get_cs_argument_count (args);
3530 int i;
3532 evaluate_properties_for_edge (edge, true, &clause, NULL, NULL, NULL);
3533 if (count)
3535 operand_map.safe_grow_cleared (count);
3536 offset_map.safe_grow_cleared (count);
3538 for (i = 0; i < count; i++)
3540 struct ipa_jump_func *jfunc = ipa_get_ith_jump_func (args, i);
3541 int map = -1;
3543 /* TODO: handle non-NOPs when merging. */
3544 if (jfunc->type == IPA_JF_PASS_THROUGH)
3546 if (ipa_get_jf_pass_through_operation (jfunc) == NOP_EXPR)
3547 map = ipa_get_jf_pass_through_formal_id (jfunc);
3548 if (!ipa_get_jf_pass_through_agg_preserved (jfunc))
3549 offset_map[i] = -1;
3551 else if (jfunc->type == IPA_JF_ANCESTOR)
3553 HOST_WIDE_INT offset = ipa_get_jf_ancestor_offset (jfunc);
3554 if (offset >= 0 && offset < INT_MAX)
3556 map = ipa_get_jf_ancestor_formal_id (jfunc);
3557 if (!ipa_get_jf_ancestor_agg_preserved (jfunc))
3558 offset = -1;
3559 offset_map[i] = offset;
3562 operand_map[i] = map;
3563 gcc_assert (map < ipa_get_param_count (IPA_NODE_REF (to)));
3566 for (i = 0; vec_safe_iterate (callee_info->entry, i, &e); i++)
3568 struct predicate p = remap_predicate (info, callee_info,
3569 &e->predicate, operand_map,
3570 offset_map, clause,
3571 &toplev_predicate);
3572 if (!false_predicate_p (&p))
3574 gcov_type add_time = ((gcov_type) e->time * edge->frequency
3575 + CGRAPH_FREQ_BASE / 2) / CGRAPH_FREQ_BASE;
3576 int prob = predicate_probability (callee_info->conds,
3577 &e->predicate,
3578 clause, es->param);
3579 add_time = apply_probability ((gcov_type) add_time, prob);
3580 if (add_time > MAX_TIME * INLINE_TIME_SCALE)
3581 add_time = MAX_TIME * INLINE_TIME_SCALE;
3582 if (prob != REG_BR_PROB_BASE
3583 && dump_file && (dump_flags & TDF_DETAILS))
3585 fprintf (dump_file, "\t\tScaling time by probability:%f\n",
3586 (double) prob / REG_BR_PROB_BASE);
3588 account_size_time (info, e->size, add_time, &p);
3591 remap_edge_summaries (edge, edge->callee, info, callee_info, operand_map,
3592 offset_map, clause, &toplev_predicate);
3593 remap_hint_predicate (info, callee_info,
3594 &callee_info->loop_iterations,
3595 operand_map, offset_map, clause, &toplev_predicate);
3596 remap_hint_predicate (info, callee_info,
3597 &callee_info->loop_stride,
3598 operand_map, offset_map, clause, &toplev_predicate);
3599 remap_hint_predicate (info, callee_info,
3600 &callee_info->array_index,
3601 operand_map, offset_map, clause, &toplev_predicate);
3603 inline_update_callee_summaries (edge->callee,
3604 inline_edge_summary (edge)->loop_depth);
3606 /* We do not maintain predicates of inlined edges, free it. */
3607 edge_set_predicate (edge, &true_p);
3608 /* Similarly remove param summaries. */
3609 es->param.release ();
3610 operand_map.release ();
3611 offset_map.release ();
3614 /* For performance reasons inline_merge_summary is not updating overall size
3615 and time. Recompute it. */
3617 void
3618 inline_update_overall_summary (struct cgraph_node *node)
3620 struct inline_summary *info = inline_summary (node);
3621 size_time_entry *e;
3622 int i;
3624 info->size = 0;
3625 info->time = 0;
3626 for (i = 0; vec_safe_iterate (info->entry, i, &e); i++)
3628 info->size += e->size, info->time += e->time;
3629 if (info->time > MAX_TIME * INLINE_TIME_SCALE)
3630 info->time = MAX_TIME * INLINE_TIME_SCALE;
3632 estimate_calls_size_and_time (node, &info->size, &info->min_size,
3633 &info->time, NULL,
3634 ~(clause_t) (1 << predicate_false_condition),
3635 vNULL, vNULL, vNULL);
3636 info->time = (info->time + INLINE_TIME_SCALE / 2) / INLINE_TIME_SCALE;
3637 info->size = (info->size + INLINE_SIZE_SCALE / 2) / INLINE_SIZE_SCALE;
3640 /* Return hints derrived from EDGE. */
3642 simple_edge_hints (struct cgraph_edge *edge)
3644 int hints = 0;
3645 struct cgraph_node *to = (edge->caller->global.inlined_to
3646 ? edge->caller->global.inlined_to : edge->caller);
3647 if (inline_summary (to)->scc_no
3648 && inline_summary (to)->scc_no == inline_summary (edge->callee)->scc_no
3649 && !edge->recursive_p ())
3650 hints |= INLINE_HINT_same_scc;
3652 if (to->lto_file_data && edge->callee->lto_file_data
3653 && to->lto_file_data != edge->callee->lto_file_data)
3654 hints |= INLINE_HINT_cross_module;
3656 return hints;
3659 /* Estimate the time cost for the caller when inlining EDGE.
3660 Only to be called via estimate_edge_time, that handles the
3661 caching mechanism.
3663 When caching, also update the cache entry. Compute both time and
3664 size, since we always need both metrics eventually. */
3667 do_estimate_edge_time (struct cgraph_edge *edge)
3669 int time;
3670 int size;
3671 inline_hints hints;
3672 struct cgraph_node *callee;
3673 clause_t clause;
3674 vec<tree> known_vals;
3675 vec<tree> known_binfos;
3676 vec<ipa_agg_jump_function_p> known_aggs;
3677 struct inline_edge_summary *es = inline_edge_summary (edge);
3678 int min_size;
3680 callee = edge->callee->ultimate_alias_target ();
3682 gcc_checking_assert (edge->inline_failed);
3683 evaluate_properties_for_edge (edge, true,
3684 &clause, &known_vals, &known_binfos,
3685 &known_aggs);
3686 estimate_node_size_and_time (callee, clause, known_vals, known_binfos,
3687 known_aggs, &size, &min_size, &time, &hints, es->param);
3689 /* When we have profile feedback, we can quite safely identify hot
3690 edges and for those we disable size limits. Don't do that when
3691 probability that caller will call the callee is low however, since it
3692 may hurt optimization of the caller's hot path. */
3693 if (edge->count && edge->maybe_hot_p ()
3694 && (edge->count * 2
3695 > (edge->caller->global.inlined_to
3696 ? edge->caller->global.inlined_to->count : edge->caller->count)))
3697 hints |= INLINE_HINT_known_hot;
3699 known_vals.release ();
3700 known_binfos.release ();
3701 known_aggs.release ();
3702 gcc_checking_assert (size >= 0);
3703 gcc_checking_assert (time >= 0);
3705 /* When caching, update the cache entry. */
3706 if (edge_growth_cache.exists ())
3708 inline_summary (edge->callee)->min_size = min_size;
3709 if ((int) edge_growth_cache.length () <= edge->uid)
3710 edge_growth_cache.safe_grow_cleared (symtab->edges_max_uid);
3711 edge_growth_cache[edge->uid].time = time + (time >= 0);
3713 edge_growth_cache[edge->uid].size = size + (size >= 0);
3714 hints |= simple_edge_hints (edge);
3715 edge_growth_cache[edge->uid].hints = hints + 1;
3717 return time;
3721 /* Return estimated callee growth after inlining EDGE.
3722 Only to be called via estimate_edge_size. */
3725 do_estimate_edge_size (struct cgraph_edge *edge)
3727 int size;
3728 struct cgraph_node *callee;
3729 clause_t clause;
3730 vec<tree> known_vals;
3731 vec<tree> known_binfos;
3732 vec<ipa_agg_jump_function_p> known_aggs;
3734 /* When we do caching, use do_estimate_edge_time to populate the entry. */
3736 if (edge_growth_cache.exists ())
3738 do_estimate_edge_time (edge);
3739 size = edge_growth_cache[edge->uid].size;
3740 gcc_checking_assert (size);
3741 return size - (size > 0);
3744 callee = edge->callee->ultimate_alias_target ();
3746 /* Early inliner runs without caching, go ahead and do the dirty work. */
3747 gcc_checking_assert (edge->inline_failed);
3748 evaluate_properties_for_edge (edge, true,
3749 &clause, &known_vals, &known_binfos,
3750 &known_aggs);
3751 estimate_node_size_and_time (callee, clause, known_vals, known_binfos,
3752 known_aggs, &size, NULL, NULL, NULL, vNULL);
3753 known_vals.release ();
3754 known_binfos.release ();
3755 known_aggs.release ();
3756 return size;
3760 /* Estimate the growth of the caller when inlining EDGE.
3761 Only to be called via estimate_edge_size. */
3763 inline_hints
3764 do_estimate_edge_hints (struct cgraph_edge *edge)
3766 inline_hints hints;
3767 struct cgraph_node *callee;
3768 clause_t clause;
3769 vec<tree> known_vals;
3770 vec<tree> known_binfos;
3771 vec<ipa_agg_jump_function_p> known_aggs;
3773 /* When we do caching, use do_estimate_edge_time to populate the entry. */
3775 if (edge_growth_cache.exists ())
3777 do_estimate_edge_time (edge);
3778 hints = edge_growth_cache[edge->uid].hints;
3779 gcc_checking_assert (hints);
3780 return hints - 1;
3783 callee = edge->callee->ultimate_alias_target ();
3785 /* Early inliner runs without caching, go ahead and do the dirty work. */
3786 gcc_checking_assert (edge->inline_failed);
3787 evaluate_properties_for_edge (edge, true,
3788 &clause, &known_vals, &known_binfos,
3789 &known_aggs);
3790 estimate_node_size_and_time (callee, clause, known_vals, known_binfos,
3791 known_aggs, NULL, NULL, NULL, &hints, vNULL);
3792 known_vals.release ();
3793 known_binfos.release ();
3794 known_aggs.release ();
3795 hints |= simple_edge_hints (edge);
3796 return hints;
3800 /* Estimate self time of the function NODE after inlining EDGE. */
3803 estimate_time_after_inlining (struct cgraph_node *node,
3804 struct cgraph_edge *edge)
3806 struct inline_edge_summary *es = inline_edge_summary (edge);
3807 if (!es->predicate || !false_predicate_p (es->predicate))
3809 gcov_type time =
3810 inline_summary (node)->time + estimate_edge_time (edge);
3811 if (time < 0)
3812 time = 0;
3813 if (time > MAX_TIME)
3814 time = MAX_TIME;
3815 return time;
3817 return inline_summary (node)->time;
3821 /* Estimate the size of NODE after inlining EDGE which should be an
3822 edge to either NODE or a call inlined into NODE. */
3825 estimate_size_after_inlining (struct cgraph_node *node,
3826 struct cgraph_edge *edge)
3828 struct inline_edge_summary *es = inline_edge_summary (edge);
3829 if (!es->predicate || !false_predicate_p (es->predicate))
3831 int size = inline_summary (node)->size + estimate_edge_growth (edge);
3832 gcc_assert (size >= 0);
3833 return size;
3835 return inline_summary (node)->size;
3839 struct growth_data
3841 struct cgraph_node *node;
3842 bool self_recursive;
3843 int growth;
3847 /* Worker for do_estimate_growth. Collect growth for all callers. */
3849 static bool
3850 do_estimate_growth_1 (struct cgraph_node *node, void *data)
3852 struct cgraph_edge *e;
3853 struct growth_data *d = (struct growth_data *) data;
3855 for (e = node->callers; e; e = e->next_caller)
3857 gcc_checking_assert (e->inline_failed);
3859 if (e->caller == d->node
3860 || (e->caller->global.inlined_to
3861 && e->caller->global.inlined_to == d->node))
3862 d->self_recursive = true;
3863 d->growth += estimate_edge_growth (e);
3865 return false;
3869 /* Estimate the growth caused by inlining NODE into all callees. */
3872 do_estimate_growth (struct cgraph_node *node)
3874 struct growth_data d = { node, 0, false };
3875 struct inline_summary *info = inline_summary (node);
3877 node->call_for_symbol_thunks_and_aliases (do_estimate_growth_1, &d, true);
3879 /* For self recursive functions the growth estimation really should be
3880 infinity. We don't want to return very large values because the growth
3881 plays various roles in badness computation fractions. Be sure to not
3882 return zero or negative growths. */
3883 if (d.self_recursive)
3884 d.growth = d.growth < info->size ? info->size : d.growth;
3885 else if (DECL_EXTERNAL (node->decl))
3887 else
3889 if (node->will_be_removed_from_program_if_no_direct_calls_p ())
3890 d.growth -= info->size;
3891 /* COMDAT functions are very often not shared across multiple units
3892 since they come from various template instantiations.
3893 Take this into account. */
3894 else if (DECL_COMDAT (node->decl)
3895 && node->can_remove_if_no_direct_calls_p ())
3896 d.growth -= (info->size
3897 * (100 - PARAM_VALUE (PARAM_COMDAT_SHARING_PROBABILITY))
3898 + 50) / 100;
3901 if (node_growth_cache.exists ())
3903 if ((int) node_growth_cache.length () <= node->uid)
3904 node_growth_cache.safe_grow_cleared (symtab->cgraph_max_uid);
3905 node_growth_cache[node->uid] = d.growth + (d.growth >= 0);
3907 return d.growth;
3911 /* Make cheap estimation if growth of NODE is likely positive knowing
3912 EDGE_GROWTH of one particular edge.
3913 We assume that most of other edges will have similar growth
3914 and skip computation if there are too many callers. */
3916 bool
3917 growth_likely_positive (struct cgraph_node *node, int edge_growth ATTRIBUTE_UNUSED)
3919 int max_callers;
3920 int ret;
3921 struct cgraph_edge *e;
3922 gcc_checking_assert (edge_growth > 0);
3924 /* Unlike for functions called once, we play unsafe with
3925 COMDATs. We can allow that since we know functions
3926 in consideration are small (and thus risk is small) and
3927 moreover grow estimates already accounts that COMDAT
3928 functions may or may not disappear when eliminated from
3929 current unit. With good probability making aggressive
3930 choice in all units is going to make overall program
3931 smaller.
3933 Consequently we ask cgraph_can_remove_if_no_direct_calls_p
3934 instead of
3935 cgraph_will_be_removed_from_program_if_no_direct_calls */
3936 if (DECL_EXTERNAL (node->decl)
3937 || !node->can_remove_if_no_direct_calls_p ())
3938 return true;
3940 /* If there is cached value, just go ahead. */
3941 if ((int)node_growth_cache.length () > node->uid
3942 && (ret = node_growth_cache[node->uid]))
3943 return ret > 0;
3944 if (!node->will_be_removed_from_program_if_no_direct_calls_p ()
3945 && (!DECL_COMDAT (node->decl)
3946 || !node->can_remove_if_no_direct_calls_p ()))
3947 return true;
3948 max_callers = inline_summary (node)->size * 4 / edge_growth + 2;
3950 for (e = node->callers; e; e = e->next_caller)
3952 max_callers--;
3953 if (!max_callers)
3954 return true;
3956 return estimate_growth (node) > 0;
3960 /* This function performs intraprocedural analysis in NODE that is required to
3961 inline indirect calls. */
3963 static void
3964 inline_indirect_intraprocedural_analysis (struct cgraph_node *node)
3966 ipa_analyze_node (node);
3967 if (dump_file && (dump_flags & TDF_DETAILS))
3969 ipa_print_node_params (dump_file, node);
3970 ipa_print_node_jump_functions (dump_file, node);
3975 /* Note function body size. */
3977 void
3978 inline_analyze_function (struct cgraph_node *node)
3980 push_cfun (DECL_STRUCT_FUNCTION (node->decl));
3982 if (dump_file)
3983 fprintf (dump_file, "\nAnalyzing function: %s/%u\n",
3984 node->name (), node->order);
3985 if (optimize && !node->thunk.thunk_p)
3986 inline_indirect_intraprocedural_analysis (node);
3987 compute_inline_parameters (node, false);
3988 if (!optimize)
3990 struct cgraph_edge *e;
3991 for (e = node->callees; e; e = e->next_callee)
3993 if (e->inline_failed == CIF_FUNCTION_NOT_CONSIDERED)
3994 e->inline_failed = CIF_FUNCTION_NOT_OPTIMIZED;
3995 e->call_stmt_cannot_inline_p = true;
3997 for (e = node->indirect_calls; e; e = e->next_callee)
3999 if (e->inline_failed == CIF_FUNCTION_NOT_CONSIDERED)
4000 e->inline_failed = CIF_FUNCTION_NOT_OPTIMIZED;
4001 e->call_stmt_cannot_inline_p = true;
4005 pop_cfun ();
4009 /* Called when new function is inserted to callgraph late. */
4011 static void
4012 add_new_function (struct cgraph_node *node, void *data ATTRIBUTE_UNUSED)
4014 inline_analyze_function (node);
4018 /* Note function body size. */
4020 void
4021 inline_generate_summary (void)
4023 struct cgraph_node *node;
4025 /* When not optimizing, do not bother to analyze. Inlining is still done
4026 because edge redirection needs to happen there. */
4027 if (!optimize && !flag_lto && !flag_wpa)
4028 return;
4030 function_insertion_hook_holder =
4031 symtab->add_cgraph_insertion_hook (&add_new_function, NULL);
4033 ipa_register_cgraph_hooks ();
4034 inline_free_summary ();
4036 FOR_EACH_DEFINED_FUNCTION (node)
4037 if (!node->alias)
4038 inline_analyze_function (node);
4042 /* Read predicate from IB. */
4044 static struct predicate
4045 read_predicate (struct lto_input_block *ib)
4047 struct predicate out;
4048 clause_t clause;
4049 int k = 0;
4053 gcc_assert (k <= MAX_CLAUSES);
4054 clause = out.clause[k++] = streamer_read_uhwi (ib);
4056 while (clause);
4058 /* Zero-initialize the remaining clauses in OUT. */
4059 while (k <= MAX_CLAUSES)
4060 out.clause[k++] = 0;
4062 return out;
4066 /* Write inline summary for edge E to OB. */
4068 static void
4069 read_inline_edge_summary (struct lto_input_block *ib, struct cgraph_edge *e)
4071 struct inline_edge_summary *es = inline_edge_summary (e);
4072 struct predicate p;
4073 int length, i;
4075 es->call_stmt_size = streamer_read_uhwi (ib);
4076 es->call_stmt_time = streamer_read_uhwi (ib);
4077 es->loop_depth = streamer_read_uhwi (ib);
4078 p = read_predicate (ib);
4079 edge_set_predicate (e, &p);
4080 length = streamer_read_uhwi (ib);
4081 if (length)
4083 es->param.safe_grow_cleared (length);
4084 for (i = 0; i < length; i++)
4085 es->param[i].change_prob = streamer_read_uhwi (ib);
4090 /* Stream in inline summaries from the section. */
4092 static void
4093 inline_read_section (struct lto_file_decl_data *file_data, const char *data,
4094 size_t len)
4096 const struct lto_function_header *header =
4097 (const struct lto_function_header *) data;
4098 const int cfg_offset = sizeof (struct lto_function_header);
4099 const int main_offset = cfg_offset + header->cfg_size;
4100 const int string_offset = main_offset + header->main_size;
4101 struct data_in *data_in;
4102 unsigned int i, count2, j;
4103 unsigned int f_count;
4105 lto_input_block ib ((const char *) data + main_offset, header->main_size);
4107 data_in =
4108 lto_data_in_create (file_data, (const char *) data + string_offset,
4109 header->string_size, vNULL);
4110 f_count = streamer_read_uhwi (&ib);
4111 for (i = 0; i < f_count; i++)
4113 unsigned int index;
4114 struct cgraph_node *node;
4115 struct inline_summary *info;
4116 lto_symtab_encoder_t encoder;
4117 struct bitpack_d bp;
4118 struct cgraph_edge *e;
4119 predicate p;
4121 index = streamer_read_uhwi (&ib);
4122 encoder = file_data->symtab_node_encoder;
4123 node = dyn_cast<cgraph_node *> (lto_symtab_encoder_deref (encoder,
4124 index));
4125 info = inline_summary (node);
4127 info->estimated_stack_size
4128 = info->estimated_self_stack_size = streamer_read_uhwi (&ib);
4129 info->size = info->self_size = streamer_read_uhwi (&ib);
4130 info->time = info->self_time = streamer_read_uhwi (&ib);
4132 bp = streamer_read_bitpack (&ib);
4133 info->inlinable = bp_unpack_value (&bp, 1);
4135 count2 = streamer_read_uhwi (&ib);
4136 gcc_assert (!info->conds);
4137 for (j = 0; j < count2; j++)
4139 struct condition c;
4140 c.operand_num = streamer_read_uhwi (&ib);
4141 c.code = (enum tree_code) streamer_read_uhwi (&ib);
4142 c.val = stream_read_tree (&ib, data_in);
4143 bp = streamer_read_bitpack (&ib);
4144 c.agg_contents = bp_unpack_value (&bp, 1);
4145 c.by_ref = bp_unpack_value (&bp, 1);
4146 if (c.agg_contents)
4147 c.offset = streamer_read_uhwi (&ib);
4148 vec_safe_push (info->conds, c);
4150 count2 = streamer_read_uhwi (&ib);
4151 gcc_assert (!info->entry);
4152 for (j = 0; j < count2; j++)
4154 struct size_time_entry e;
4156 e.size = streamer_read_uhwi (&ib);
4157 e.time = streamer_read_uhwi (&ib);
4158 e.predicate = read_predicate (&ib);
4160 vec_safe_push (info->entry, e);
4163 p = read_predicate (&ib);
4164 set_hint_predicate (&info->loop_iterations, p);
4165 p = read_predicate (&ib);
4166 set_hint_predicate (&info->loop_stride, p);
4167 p = read_predicate (&ib);
4168 set_hint_predicate (&info->array_index, p);
4169 for (e = node->callees; e; e = e->next_callee)
4170 read_inline_edge_summary (&ib, e);
4171 for (e = node->indirect_calls; e; e = e->next_callee)
4172 read_inline_edge_summary (&ib, e);
4175 lto_free_section_data (file_data, LTO_section_inline_summary, NULL, data,
4176 len);
4177 lto_data_in_delete (data_in);
4181 /* Read inline summary. Jump functions are shared among ipa-cp
4182 and inliner, so when ipa-cp is active, we don't need to write them
4183 twice. */
4185 void
4186 inline_read_summary (void)
4188 struct lto_file_decl_data **file_data_vec = lto_get_file_decl_data ();
4189 struct lto_file_decl_data *file_data;
4190 unsigned int j = 0;
4192 inline_summary_alloc ();
4194 while ((file_data = file_data_vec[j++]))
4196 size_t len;
4197 const char *data = lto_get_section_data (file_data,
4198 LTO_section_inline_summary,
4199 NULL, &len);
4200 if (data)
4201 inline_read_section (file_data, data, len);
4202 else
4203 /* Fatal error here. We do not want to support compiling ltrans units
4204 with different version of compiler or different flags than the WPA
4205 unit, so this should never happen. */
4206 fatal_error ("ipa inline summary is missing in input file");
4208 if (optimize)
4210 ipa_register_cgraph_hooks ();
4211 if (!flag_ipa_cp)
4212 ipa_prop_read_jump_functions ();
4214 function_insertion_hook_holder =
4215 symtab->add_cgraph_insertion_hook (&add_new_function, NULL);
4219 /* Write predicate P to OB. */
4221 static void
4222 write_predicate (struct output_block *ob, struct predicate *p)
4224 int j;
4225 if (p)
4226 for (j = 0; p->clause[j]; j++)
4228 gcc_assert (j < MAX_CLAUSES);
4229 streamer_write_uhwi (ob, p->clause[j]);
4231 streamer_write_uhwi (ob, 0);
4235 /* Write inline summary for edge E to OB. */
4237 static void
4238 write_inline_edge_summary (struct output_block *ob, struct cgraph_edge *e)
4240 struct inline_edge_summary *es = inline_edge_summary (e);
4241 int i;
4243 streamer_write_uhwi (ob, es->call_stmt_size);
4244 streamer_write_uhwi (ob, es->call_stmt_time);
4245 streamer_write_uhwi (ob, es->loop_depth);
4246 write_predicate (ob, es->predicate);
4247 streamer_write_uhwi (ob, es->param.length ());
4248 for (i = 0; i < (int) es->param.length (); i++)
4249 streamer_write_uhwi (ob, es->param[i].change_prob);
4253 /* Write inline summary for node in SET.
4254 Jump functions are shared among ipa-cp and inliner, so when ipa-cp is
4255 active, we don't need to write them twice. */
4257 void
4258 inline_write_summary (void)
4260 struct cgraph_node *node;
4261 struct output_block *ob = create_output_block (LTO_section_inline_summary);
4262 lto_symtab_encoder_t encoder = ob->decl_state->symtab_node_encoder;
4263 unsigned int count = 0;
4264 int i;
4266 for (i = 0; i < lto_symtab_encoder_size (encoder); i++)
4268 symtab_node *snode = lto_symtab_encoder_deref (encoder, i);
4269 cgraph_node *cnode = dyn_cast <cgraph_node *> (snode);
4270 if (cnode && cnode->definition && !cnode->alias)
4271 count++;
4273 streamer_write_uhwi (ob, count);
4275 for (i = 0; i < lto_symtab_encoder_size (encoder); i++)
4277 symtab_node *snode = lto_symtab_encoder_deref (encoder, i);
4278 cgraph_node *cnode = dyn_cast <cgraph_node *> (snode);
4279 if (cnode && (node = cnode)->definition && !node->alias)
4281 struct inline_summary *info = inline_summary (node);
4282 struct bitpack_d bp;
4283 struct cgraph_edge *edge;
4284 int i;
4285 size_time_entry *e;
4286 struct condition *c;
4288 streamer_write_uhwi (ob,
4289 lto_symtab_encoder_encode (encoder,
4291 node));
4292 streamer_write_hwi (ob, info->estimated_self_stack_size);
4293 streamer_write_hwi (ob, info->self_size);
4294 streamer_write_hwi (ob, info->self_time);
4295 bp = bitpack_create (ob->main_stream);
4296 bp_pack_value (&bp, info->inlinable, 1);
4297 streamer_write_bitpack (&bp);
4298 streamer_write_uhwi (ob, vec_safe_length (info->conds));
4299 for (i = 0; vec_safe_iterate (info->conds, i, &c); i++)
4301 streamer_write_uhwi (ob, c->operand_num);
4302 streamer_write_uhwi (ob, c->code);
4303 stream_write_tree (ob, c->val, true);
4304 bp = bitpack_create (ob->main_stream);
4305 bp_pack_value (&bp, c->agg_contents, 1);
4306 bp_pack_value (&bp, c->by_ref, 1);
4307 streamer_write_bitpack (&bp);
4308 if (c->agg_contents)
4309 streamer_write_uhwi (ob, c->offset);
4311 streamer_write_uhwi (ob, vec_safe_length (info->entry));
4312 for (i = 0; vec_safe_iterate (info->entry, i, &e); i++)
4314 streamer_write_uhwi (ob, e->size);
4315 streamer_write_uhwi (ob, e->time);
4316 write_predicate (ob, &e->predicate);
4318 write_predicate (ob, info->loop_iterations);
4319 write_predicate (ob, info->loop_stride);
4320 write_predicate (ob, info->array_index);
4321 for (edge = node->callees; edge; edge = edge->next_callee)
4322 write_inline_edge_summary (ob, edge);
4323 for (edge = node->indirect_calls; edge; edge = edge->next_callee)
4324 write_inline_edge_summary (ob, edge);
4327 streamer_write_char_stream (ob->main_stream, 0);
4328 produce_asm (ob, NULL);
4329 destroy_output_block (ob);
4331 if (optimize && !flag_ipa_cp)
4332 ipa_prop_write_jump_functions ();
4336 /* Release inline summary. */
4338 void
4339 inline_free_summary (void)
4341 struct cgraph_node *node;
4342 if (!inline_edge_summary_vec.exists ())
4343 return;
4344 FOR_EACH_DEFINED_FUNCTION (node)
4345 if (!node->alias)
4346 reset_inline_summary (node);
4347 if (function_insertion_hook_holder)
4348 symtab->remove_cgraph_insertion_hook (function_insertion_hook_holder);
4349 function_insertion_hook_holder = NULL;
4350 if (node_removal_hook_holder)
4351 symtab->remove_cgraph_removal_hook (node_removal_hook_holder);
4352 node_removal_hook_holder = NULL;
4353 if (edge_removal_hook_holder)
4354 symtab->remove_edge_removal_hook (edge_removal_hook_holder);
4355 edge_removal_hook_holder = NULL;
4356 if (node_duplication_hook_holder)
4357 symtab->remove_cgraph_duplication_hook (node_duplication_hook_holder);
4358 node_duplication_hook_holder = NULL;
4359 if (edge_duplication_hook_holder)
4360 symtab->remove_edge_duplication_hook (edge_duplication_hook_holder);
4361 edge_duplication_hook_holder = NULL;
4362 vec_free (inline_summary_vec);
4363 inline_edge_summary_vec.release ();
4364 if (edge_predicate_pool)
4365 free_alloc_pool (edge_predicate_pool);
4366 edge_predicate_pool = 0;