* config/h8300/h8300.md (pushqi_h8300): Don't push the stack
[official-gcc.git] / gcc / flow.c
blob17cf6aa8ed49a79d0609a40921bb1d9de8e1e4b4
1 /* Data flow analysis for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This file contains the data flow analysis pass of the compiler. It
23 computes data flow information which tells combine_instructions
24 which insns to consider combining and controls register allocation.
26 Additional data flow information that is too bulky to record is
27 generated during the analysis, and is used at that time to create
28 autoincrement and autodecrement addressing.
30 The first step is dividing the function into basic blocks.
31 find_basic_blocks does this. Then life_analysis determines
32 where each register is live and where it is dead.
34 ** find_basic_blocks **
36 find_basic_blocks divides the current function's rtl into basic
37 blocks and constructs the CFG. The blocks are recorded in the
38 basic_block_info array; the CFG exists in the edge structures
39 referenced by the blocks.
41 find_basic_blocks also finds any unreachable loops and deletes them.
43 ** life_analysis **
45 life_analysis is called immediately after find_basic_blocks.
46 It uses the basic block information to determine where each
47 hard or pseudo register is live.
49 ** live-register info **
51 The information about where each register is live is in two parts:
52 the REG_NOTES of insns, and the vector basic_block->global_live_at_start.
54 basic_block->global_live_at_start has an element for each basic
55 block, and the element is a bit-vector with a bit for each hard or
56 pseudo register. The bit is 1 if the register is live at the
57 beginning of the basic block.
59 Two types of elements can be added to an insn's REG_NOTES.
60 A REG_DEAD note is added to an insn's REG_NOTES for any register
61 that meets both of two conditions: The value in the register is not
62 needed in subsequent insns and the insn does not replace the value in
63 the register (in the case of multi-word hard registers, the value in
64 each register must be replaced by the insn to avoid a REG_DEAD note).
66 In the vast majority of cases, an object in a REG_DEAD note will be
67 used somewhere in the insn. The (rare) exception to this is if an
68 insn uses a multi-word hard register and only some of the registers are
69 needed in subsequent insns. In that case, REG_DEAD notes will be
70 provided for those hard registers that are not subsequently needed.
71 Partial REG_DEAD notes of this type do not occur when an insn sets
72 only some of the hard registers used in such a multi-word operand;
73 omitting REG_DEAD notes for objects stored in an insn is optional and
74 the desire to do so does not justify the complexity of the partial
75 REG_DEAD notes.
77 REG_UNUSED notes are added for each register that is set by the insn
78 but is unused subsequently (if every register set by the insn is unused
79 and the insn does not reference memory or have some other side-effect,
80 the insn is deleted instead). If only part of a multi-word hard
81 register is used in a subsequent insn, REG_UNUSED notes are made for
82 the parts that will not be used.
84 To determine which registers are live after any insn, one can
85 start from the beginning of the basic block and scan insns, noting
86 which registers are set by each insn and which die there.
88 ** Other actions of life_analysis **
90 life_analysis sets up the LOG_LINKS fields of insns because the
91 information needed to do so is readily available.
93 life_analysis deletes insns whose only effect is to store a value
94 that is never used.
96 life_analysis notices cases where a reference to a register as
97 a memory address can be combined with a preceding or following
98 incrementation or decrementation of the register. The separate
99 instruction to increment or decrement is deleted and the address
100 is changed to a POST_INC or similar rtx.
102 Each time an incrementing or decrementing address is created,
103 a REG_INC element is added to the insn's REG_NOTES list.
105 life_analysis fills in certain vectors containing information about
106 register usage: REG_N_REFS, REG_N_DEATHS, REG_N_SETS, REG_LIVE_LENGTH,
107 REG_N_CALLS_CROSSED and REG_BASIC_BLOCK.
109 life_analysis sets current_function_sp_is_unchanging if the function
110 doesn't modify the stack pointer. */
112 /* TODO:
114 Split out from life_analysis:
115 - local property discovery (bb->local_live, bb->local_set)
116 - global property computation
117 - log links creation
118 - pre/post modify transformation
121 #include "config.h"
122 #include "system.h"
123 #include "coretypes.h"
124 #include "tm.h"
125 #include "tree.h"
126 #include "rtl.h"
127 #include "tm_p.h"
128 #include "hard-reg-set.h"
129 #include "basic-block.h"
130 #include "insn-config.h"
131 #include "regs.h"
132 #include "flags.h"
133 #include "output.h"
134 #include "function.h"
135 #include "except.h"
136 #include "toplev.h"
137 #include "recog.h"
138 #include "expr.h"
139 #include "ssa.h"
140 #include "timevar.h"
142 #include "obstack.h"
143 #include "splay-tree.h"
145 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
146 the stack pointer does not matter. The value is tested only in
147 functions that have frame pointers.
148 No definition is equivalent to always zero. */
149 #ifndef EXIT_IGNORE_STACK
150 #define EXIT_IGNORE_STACK 0
151 #endif
153 #ifndef HAVE_epilogue
154 #define HAVE_epilogue 0
155 #endif
156 #ifndef HAVE_prologue
157 #define HAVE_prologue 0
158 #endif
159 #ifndef HAVE_sibcall_epilogue
160 #define HAVE_sibcall_epilogue 0
161 #endif
163 #ifndef LOCAL_REGNO
164 #define LOCAL_REGNO(REGNO) 0
165 #endif
166 #ifndef EPILOGUE_USES
167 #define EPILOGUE_USES(REGNO) 0
168 #endif
169 #ifndef EH_USES
170 #define EH_USES(REGNO) 0
171 #endif
173 #ifdef HAVE_conditional_execution
174 #ifndef REVERSE_CONDEXEC_PREDICATES_P
175 #define REVERSE_CONDEXEC_PREDICATES_P(x, y) ((x) == reverse_condition (y))
176 #endif
177 #endif
179 /* Nonzero if the second flow pass has completed. */
180 int flow2_completed;
182 /* Maximum register number used in this function, plus one. */
184 int max_regno;
186 /* Indexed by n, giving various register information */
188 varray_type reg_n_info;
190 /* Size of a regset for the current function,
191 in (1) bytes and (2) elements. */
193 int regset_bytes;
194 int regset_size;
196 /* Regset of regs live when calls to `setjmp'-like functions happen. */
197 /* ??? Does this exist only for the setjmp-clobbered warning message? */
199 regset regs_live_at_setjmp;
201 /* List made of EXPR_LIST rtx's which gives pairs of pseudo registers
202 that have to go in the same hard reg.
203 The first two regs in the list are a pair, and the next two
204 are another pair, etc. */
205 rtx regs_may_share;
207 /* Callback that determines if it's ok for a function to have no
208 noreturn attribute. */
209 int (*lang_missing_noreturn_ok_p) PARAMS ((tree));
211 /* Set of registers that may be eliminable. These are handled specially
212 in updating regs_ever_live. */
214 static HARD_REG_SET elim_reg_set;
216 /* Holds information for tracking conditional register life information. */
217 struct reg_cond_life_info
219 /* A boolean expression of conditions under which a register is dead. */
220 rtx condition;
221 /* Conditions under which a register is dead at the basic block end. */
222 rtx orig_condition;
224 /* A boolean expression of conditions under which a register has been
225 stored into. */
226 rtx stores;
228 /* ??? Could store mask of bytes that are dead, so that we could finally
229 track lifetimes of multi-word registers accessed via subregs. */
232 /* For use in communicating between propagate_block and its subroutines.
233 Holds all information needed to compute life and def-use information. */
235 struct propagate_block_info
237 /* The basic block we're considering. */
238 basic_block bb;
240 /* Bit N is set if register N is conditionally or unconditionally live. */
241 regset reg_live;
243 /* Bit N is set if register N is set this insn. */
244 regset new_set;
246 /* Element N is the next insn that uses (hard or pseudo) register N
247 within the current basic block; or zero, if there is no such insn. */
248 rtx *reg_next_use;
250 /* Contains a list of all the MEMs we are tracking for dead store
251 elimination. */
252 rtx mem_set_list;
254 /* If non-null, record the set of registers set unconditionally in the
255 basic block. */
256 regset local_set;
258 /* If non-null, record the set of registers set conditionally in the
259 basic block. */
260 regset cond_local_set;
262 #ifdef HAVE_conditional_execution
263 /* Indexed by register number, holds a reg_cond_life_info for each
264 register that is not unconditionally live or dead. */
265 splay_tree reg_cond_dead;
267 /* Bit N is set if register N is in an expression in reg_cond_dead. */
268 regset reg_cond_reg;
269 #endif
271 /* The length of mem_set_list. */
272 int mem_set_list_len;
274 /* Nonzero if the value of CC0 is live. */
275 int cc0_live;
277 /* Flags controling the set of information propagate_block collects. */
278 int flags;
281 /* Number of dead insns removed. */
282 static int ndead;
284 /* Maximum length of pbi->mem_set_list before we start dropping
285 new elements on the floor. */
286 #define MAX_MEM_SET_LIST_LEN 100
288 /* Forward declarations */
289 static int verify_wide_reg_1 PARAMS ((rtx *, void *));
290 static void verify_wide_reg PARAMS ((int, basic_block));
291 static void verify_local_live_at_start PARAMS ((regset, basic_block));
292 static void notice_stack_pointer_modification_1 PARAMS ((rtx, rtx, void *));
293 static void notice_stack_pointer_modification PARAMS ((rtx));
294 static void mark_reg PARAMS ((rtx, void *));
295 static void mark_regs_live_at_end PARAMS ((regset));
296 static int set_phi_alternative_reg PARAMS ((rtx, int, int, void *));
297 static void calculate_global_regs_live PARAMS ((sbitmap, sbitmap, int));
298 static void propagate_block_delete_insn PARAMS ((rtx));
299 static rtx propagate_block_delete_libcall PARAMS ((rtx, rtx));
300 static int insn_dead_p PARAMS ((struct propagate_block_info *,
301 rtx, int, rtx));
302 static int libcall_dead_p PARAMS ((struct propagate_block_info *,
303 rtx, rtx));
304 static void mark_set_regs PARAMS ((struct propagate_block_info *,
305 rtx, rtx));
306 static void mark_set_1 PARAMS ((struct propagate_block_info *,
307 enum rtx_code, rtx, rtx,
308 rtx, int));
309 static int find_regno_partial PARAMS ((rtx *, void *));
311 #ifdef HAVE_conditional_execution
312 static int mark_regno_cond_dead PARAMS ((struct propagate_block_info *,
313 int, rtx));
314 static void free_reg_cond_life_info PARAMS ((splay_tree_value));
315 static int flush_reg_cond_reg_1 PARAMS ((splay_tree_node, void *));
316 static void flush_reg_cond_reg PARAMS ((struct propagate_block_info *,
317 int));
318 static rtx elim_reg_cond PARAMS ((rtx, unsigned int));
319 static rtx ior_reg_cond PARAMS ((rtx, rtx, int));
320 static rtx not_reg_cond PARAMS ((rtx));
321 static rtx and_reg_cond PARAMS ((rtx, rtx, int));
322 #endif
323 #ifdef AUTO_INC_DEC
324 static void attempt_auto_inc PARAMS ((struct propagate_block_info *,
325 rtx, rtx, rtx, rtx, rtx));
326 static void find_auto_inc PARAMS ((struct propagate_block_info *,
327 rtx, rtx));
328 static int try_pre_increment_1 PARAMS ((struct propagate_block_info *,
329 rtx));
330 static int try_pre_increment PARAMS ((rtx, rtx, HOST_WIDE_INT));
331 #endif
332 static void mark_used_reg PARAMS ((struct propagate_block_info *,
333 rtx, rtx, rtx));
334 static void mark_used_regs PARAMS ((struct propagate_block_info *,
335 rtx, rtx, rtx));
336 void dump_flow_info PARAMS ((FILE *));
337 void debug_flow_info PARAMS ((void));
338 static void add_to_mem_set_list PARAMS ((struct propagate_block_info *,
339 rtx));
340 static int invalidate_mems_from_autoinc PARAMS ((rtx *, void *));
341 static void invalidate_mems_from_set PARAMS ((struct propagate_block_info *,
342 rtx));
343 static void clear_log_links PARAMS ((sbitmap));
346 void
347 check_function_return_warnings ()
349 if (warn_missing_noreturn
350 && !TREE_THIS_VOLATILE (cfun->decl)
351 && EXIT_BLOCK_PTR->pred == NULL
352 && (lang_missing_noreturn_ok_p
353 && !lang_missing_noreturn_ok_p (cfun->decl)))
354 warning ("function might be possible candidate for attribute `noreturn'");
356 /* If we have a path to EXIT, then we do return. */
357 if (TREE_THIS_VOLATILE (cfun->decl)
358 && EXIT_BLOCK_PTR->pred != NULL)
359 warning ("`noreturn' function does return");
361 /* If the clobber_return_insn appears in some basic block, then we
362 do reach the end without returning a value. */
363 else if (warn_return_type
364 && cfun->x_clobber_return_insn != NULL
365 && EXIT_BLOCK_PTR->pred != NULL)
367 int max_uid = get_max_uid ();
369 /* If clobber_return_insn was excised by jump1, then renumber_insns
370 can make max_uid smaller than the number still recorded in our rtx.
371 That's fine, since this is a quick way of verifying that the insn
372 is no longer in the chain. */
373 if (INSN_UID (cfun->x_clobber_return_insn) < max_uid)
375 rtx insn;
377 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
378 if (insn == cfun->x_clobber_return_insn)
380 warning ("control reaches end of non-void function");
381 break;
387 /* Return the INSN immediately following the NOTE_INSN_BASIC_BLOCK
388 note associated with the BLOCK. */
391 first_insn_after_basic_block_note (block)
392 basic_block block;
394 rtx insn;
396 /* Get the first instruction in the block. */
397 insn = block->head;
399 if (insn == NULL_RTX)
400 return NULL_RTX;
401 if (GET_CODE (insn) == CODE_LABEL)
402 insn = NEXT_INSN (insn);
403 if (!NOTE_INSN_BASIC_BLOCK_P (insn))
404 abort ();
406 return NEXT_INSN (insn);
409 /* Perform data flow analysis.
410 F is the first insn of the function; FLAGS is a set of PROP_* flags
411 to be used in accumulating flow info. */
413 void
414 life_analysis (f, file, flags)
415 rtx f;
416 FILE *file;
417 int flags;
419 int i;
420 #ifdef ELIMINABLE_REGS
421 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
422 #endif
424 /* Record which registers will be eliminated. We use this in
425 mark_used_regs. */
427 CLEAR_HARD_REG_SET (elim_reg_set);
429 #ifdef ELIMINABLE_REGS
430 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
431 SET_HARD_REG_BIT (elim_reg_set, eliminables[i].from);
432 #else
433 SET_HARD_REG_BIT (elim_reg_set, FRAME_POINTER_REGNUM);
434 #endif
437 #ifdef CANNOT_CHANGE_MODE_CLASS
438 if (flags & PROP_REG_INFO)
439 for (i=0; i < NUM_MACHINE_MODES; ++i)
440 INIT_REG_SET (&subregs_of_mode[i]);
441 #endif
443 if (! optimize)
444 flags &= ~(PROP_LOG_LINKS | PROP_AUTOINC | PROP_ALLOW_CFG_CHANGES);
446 /* The post-reload life analysis have (on a global basis) the same
447 registers live as was computed by reload itself. elimination
448 Otherwise offsets and such may be incorrect.
450 Reload will make some registers as live even though they do not
451 appear in the rtl.
453 We don't want to create new auto-incs after reload, since they
454 are unlikely to be useful and can cause problems with shared
455 stack slots. */
456 if (reload_completed)
457 flags &= ~(PROP_REG_INFO | PROP_AUTOINC);
459 /* We want alias analysis information for local dead store elimination. */
460 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
461 init_alias_analysis ();
463 /* Always remove no-op moves. Do this before other processing so
464 that we don't have to keep re-scanning them. */
465 delete_noop_moves (f);
467 /* Some targets can emit simpler epilogues if they know that sp was
468 not ever modified during the function. After reload, of course,
469 we've already emitted the epilogue so there's no sense searching. */
470 if (! reload_completed)
471 notice_stack_pointer_modification (f);
473 /* Allocate and zero out data structures that will record the
474 data from lifetime analysis. */
475 allocate_reg_life_data ();
476 allocate_bb_life_data ();
478 /* Find the set of registers live on function exit. */
479 mark_regs_live_at_end (EXIT_BLOCK_PTR->global_live_at_start);
481 /* "Update" life info from zero. It'd be nice to begin the
482 relaxation with just the exit and noreturn blocks, but that set
483 is not immediately handy. */
485 if (flags & PROP_REG_INFO)
486 memset (regs_ever_live, 0, sizeof (regs_ever_live));
487 update_life_info (NULL, UPDATE_LIFE_GLOBAL, flags);
489 /* Clean up. */
490 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
491 end_alias_analysis ();
493 if (file)
494 dump_flow_info (file);
496 free_basic_block_vars (1);
498 /* Removing dead insns should've made jumptables really dead. */
499 delete_dead_jumptables ();
502 /* A subroutine of verify_wide_reg, called through for_each_rtx.
503 Search for REGNO. If found, return 2 if it is not wider than
504 word_mode. */
506 static int
507 verify_wide_reg_1 (px, pregno)
508 rtx *px;
509 void *pregno;
511 rtx x = *px;
512 unsigned int regno = *(int *) pregno;
514 if (GET_CODE (x) == REG && REGNO (x) == regno)
516 if (GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD)
517 return 2;
518 return 1;
520 return 0;
523 /* A subroutine of verify_local_live_at_start. Search through insns
524 of BB looking for register REGNO. */
526 static void
527 verify_wide_reg (regno, bb)
528 int regno;
529 basic_block bb;
531 rtx head = bb->head, end = bb->end;
533 while (1)
535 if (INSN_P (head))
537 int r = for_each_rtx (&PATTERN (head), verify_wide_reg_1, &regno);
538 if (r == 1)
539 return;
540 if (r == 2)
541 break;
543 if (head == end)
544 break;
545 head = NEXT_INSN (head);
548 if (rtl_dump_file)
550 fprintf (rtl_dump_file, "Register %d died unexpectedly.\n", regno);
551 dump_bb (bb, rtl_dump_file);
553 abort ();
556 /* A subroutine of update_life_info. Verify that there are no untoward
557 changes in live_at_start during a local update. */
559 static void
560 verify_local_live_at_start (new_live_at_start, bb)
561 regset new_live_at_start;
562 basic_block bb;
564 if (reload_completed)
566 /* After reload, there are no pseudos, nor subregs of multi-word
567 registers. The regsets should exactly match. */
568 if (! REG_SET_EQUAL_P (new_live_at_start, bb->global_live_at_start))
570 if (rtl_dump_file)
572 fprintf (rtl_dump_file,
573 "live_at_start mismatch in bb %d, aborting\nNew:\n",
574 bb->index);
575 debug_bitmap_file (rtl_dump_file, new_live_at_start);
576 fputs ("Old:\n", rtl_dump_file);
577 dump_bb (bb, rtl_dump_file);
579 abort ();
582 else
584 int i;
586 /* Find the set of changed registers. */
587 XOR_REG_SET (new_live_at_start, bb->global_live_at_start);
589 EXECUTE_IF_SET_IN_REG_SET (new_live_at_start, 0, i,
591 /* No registers should die. */
592 if (REGNO_REG_SET_P (bb->global_live_at_start, i))
594 if (rtl_dump_file)
596 fprintf (rtl_dump_file,
597 "Register %d died unexpectedly.\n", i);
598 dump_bb (bb, rtl_dump_file);
600 abort ();
603 /* Verify that the now-live register is wider than word_mode. */
604 verify_wide_reg (i, bb);
609 /* Updates life information starting with the basic blocks set in BLOCKS.
610 If BLOCKS is null, consider it to be the universal set.
612 If EXTENT is UPDATE_LIFE_LOCAL, such as after splitting or peepholeing,
613 we are only expecting local modifications to basic blocks. If we find
614 extra registers live at the beginning of a block, then we either killed
615 useful data, or we have a broken split that wants data not provided.
616 If we find registers removed from live_at_start, that means we have
617 a broken peephole that is killing a register it shouldn't.
619 ??? This is not true in one situation -- when a pre-reload splitter
620 generates subregs of a multi-word pseudo, current life analysis will
621 lose the kill. So we _can_ have a pseudo go live. How irritating.
623 Including PROP_REG_INFO does not properly refresh regs_ever_live
624 unless the caller resets it to zero. */
627 update_life_info (blocks, extent, prop_flags)
628 sbitmap blocks;
629 enum update_life_extent extent;
630 int prop_flags;
632 regset tmp;
633 regset_head tmp_head;
634 int i;
635 int stabilized_prop_flags = prop_flags;
636 basic_block bb;
638 tmp = INITIALIZE_REG_SET (tmp_head);
639 ndead = 0;
641 timevar_push ((extent == UPDATE_LIFE_LOCAL || blocks)
642 ? TV_LIFE_UPDATE : TV_LIFE);
644 /* Changes to the CFG are only allowed when
645 doing a global update for the entire CFG. */
646 if ((prop_flags & PROP_ALLOW_CFG_CHANGES)
647 && (extent == UPDATE_LIFE_LOCAL || blocks))
648 abort ();
650 /* For a global update, we go through the relaxation process again. */
651 if (extent != UPDATE_LIFE_LOCAL)
653 for ( ; ; )
655 int changed = 0;
657 calculate_global_regs_live (blocks, blocks,
658 prop_flags & (PROP_SCAN_DEAD_CODE
659 | PROP_SCAN_DEAD_STORES
660 | PROP_ALLOW_CFG_CHANGES));
662 if ((prop_flags & (PROP_KILL_DEAD_CODE | PROP_ALLOW_CFG_CHANGES))
663 != (PROP_KILL_DEAD_CODE | PROP_ALLOW_CFG_CHANGES))
664 break;
666 /* Removing dead code may allow the CFG to be simplified which
667 in turn may allow for further dead code detection / removal. */
668 FOR_EACH_BB_REVERSE (bb)
670 COPY_REG_SET (tmp, bb->global_live_at_end);
671 changed |= propagate_block (bb, tmp, NULL, NULL,
672 prop_flags & (PROP_SCAN_DEAD_CODE
673 | PROP_SCAN_DEAD_STORES
674 | PROP_KILL_DEAD_CODE));
677 /* Don't pass PROP_SCAN_DEAD_CODE or PROP_KILL_DEAD_CODE to
678 subsequent propagate_block calls, since removing or acting as
679 removing dead code can affect global register liveness, which
680 is supposed to be finalized for this call after this loop. */
681 stabilized_prop_flags
682 &= ~(PROP_SCAN_DEAD_CODE | PROP_SCAN_DEAD_STORES
683 | PROP_KILL_DEAD_CODE);
685 if (! changed)
686 break;
688 /* We repeat regardless of what cleanup_cfg says. If there were
689 instructions deleted above, that might have been only a
690 partial improvement (see MAX_MEM_SET_LIST_LEN usage).
691 Further improvement may be possible. */
692 cleanup_cfg (CLEANUP_EXPENSIVE);
695 /* If asked, remove notes from the blocks we'll update. */
696 if (extent == UPDATE_LIFE_GLOBAL_RM_NOTES)
697 count_or_remove_death_notes (blocks, 1);
700 /* Clear log links in case we are asked to (re)compute them. */
701 if (prop_flags & PROP_LOG_LINKS)
702 clear_log_links (blocks);
704 if (blocks)
706 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
708 bb = BASIC_BLOCK (i);
710 COPY_REG_SET (tmp, bb->global_live_at_end);
711 propagate_block (bb, tmp, NULL, NULL, stabilized_prop_flags);
713 if (extent == UPDATE_LIFE_LOCAL)
714 verify_local_live_at_start (tmp, bb);
717 else
719 FOR_EACH_BB_REVERSE (bb)
721 COPY_REG_SET (tmp, bb->global_live_at_end);
723 propagate_block (bb, tmp, NULL, NULL, stabilized_prop_flags);
725 if (extent == UPDATE_LIFE_LOCAL)
726 verify_local_live_at_start (tmp, bb);
730 FREE_REG_SET (tmp);
732 if (prop_flags & PROP_REG_INFO)
734 /* The only pseudos that are live at the beginning of the function
735 are those that were not set anywhere in the function. local-alloc
736 doesn't know how to handle these correctly, so mark them as not
737 local to any one basic block. */
738 EXECUTE_IF_SET_IN_REG_SET (ENTRY_BLOCK_PTR->global_live_at_end,
739 FIRST_PSEUDO_REGISTER, i,
740 { REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL; });
742 /* We have a problem with any pseudoreg that lives across the setjmp.
743 ANSI says that if a user variable does not change in value between
744 the setjmp and the longjmp, then the longjmp preserves it. This
745 includes longjmp from a place where the pseudo appears dead.
746 (In principle, the value still exists if it is in scope.)
747 If the pseudo goes in a hard reg, some other value may occupy
748 that hard reg where this pseudo is dead, thus clobbering the pseudo.
749 Conclusion: such a pseudo must not go in a hard reg. */
750 EXECUTE_IF_SET_IN_REG_SET (regs_live_at_setjmp,
751 FIRST_PSEUDO_REGISTER, i,
753 if (regno_reg_rtx[i] != 0)
755 REG_LIVE_LENGTH (i) = -1;
756 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
760 timevar_pop ((extent == UPDATE_LIFE_LOCAL || blocks)
761 ? TV_LIFE_UPDATE : TV_LIFE);
762 if (ndead && rtl_dump_file)
763 fprintf (rtl_dump_file, "deleted %i dead insns\n", ndead);
764 return ndead;
767 /* Update life information in all blocks where BB_DIRTY is set. */
770 update_life_info_in_dirty_blocks (extent, prop_flags)
771 enum update_life_extent extent;
772 int prop_flags;
774 sbitmap update_life_blocks = sbitmap_alloc (last_basic_block);
775 int n = 0;
776 basic_block bb;
777 int retval = 0;
779 sbitmap_zero (update_life_blocks);
780 FOR_EACH_BB (bb)
782 if (extent == UPDATE_LIFE_LOCAL)
784 if (bb->flags & BB_DIRTY)
786 SET_BIT (update_life_blocks, bb->index);
787 n++;
790 else
792 /* ??? Bootstrap with -march=pentium4 fails to terminate
793 with only a partial life update. */
794 SET_BIT (update_life_blocks, bb->index);
795 if (bb->flags & BB_DIRTY)
796 n++;
800 if (n)
801 retval = update_life_info (update_life_blocks, extent, prop_flags);
803 sbitmap_free (update_life_blocks);
804 return retval;
807 /* Free the variables allocated by find_basic_blocks.
809 KEEP_HEAD_END_P is nonzero if basic_block_info is not to be freed. */
811 void
812 free_basic_block_vars (keep_head_end_p)
813 int keep_head_end_p;
815 if (! keep_head_end_p)
817 if (basic_block_info)
819 clear_edges ();
820 VARRAY_FREE (basic_block_info);
822 n_basic_blocks = 0;
823 last_basic_block = 0;
825 ENTRY_BLOCK_PTR->aux = NULL;
826 ENTRY_BLOCK_PTR->global_live_at_end = NULL;
827 EXIT_BLOCK_PTR->aux = NULL;
828 EXIT_BLOCK_PTR->global_live_at_start = NULL;
832 /* Delete any insns that copy a register to itself. */
835 delete_noop_moves (f)
836 rtx f ATTRIBUTE_UNUSED;
838 rtx insn, next;
839 basic_block bb;
840 int nnoops = 0;
842 FOR_EACH_BB (bb)
844 for (insn = bb->head; insn != NEXT_INSN (bb->end); insn = next)
846 next = NEXT_INSN (insn);
847 if (INSN_P (insn) && noop_move_p (insn))
849 rtx note;
851 /* If we're about to remove the first insn of a libcall
852 then move the libcall note to the next real insn and
853 update the retval note. */
854 if ((note = find_reg_note (insn, REG_LIBCALL, NULL_RTX))
855 && XEXP (note, 0) != insn)
857 rtx new_libcall_insn = next_real_insn (insn);
858 rtx retval_note = find_reg_note (XEXP (note, 0),
859 REG_RETVAL, NULL_RTX);
860 REG_NOTES (new_libcall_insn)
861 = gen_rtx_INSN_LIST (REG_LIBCALL, XEXP (note, 0),
862 REG_NOTES (new_libcall_insn));
863 XEXP (retval_note, 0) = new_libcall_insn;
866 delete_insn_and_edges (insn);
867 nnoops++;
871 if (nnoops && rtl_dump_file)
872 fprintf (rtl_dump_file, "deleted %i noop moves", nnoops);
873 return nnoops;
876 /* Delete any jump tables never referenced. We can't delete them at the
877 time of removing tablejump insn as they are referenced by the preceding
878 insns computing the destination, so we delay deleting and garbagecollect
879 them once life information is computed. */
880 void
881 delete_dead_jumptables ()
883 rtx insn, next;
884 for (insn = get_insns (); insn; insn = next)
886 next = NEXT_INSN (insn);
887 if (GET_CODE (insn) == CODE_LABEL
888 && LABEL_NUSES (insn) == LABEL_PRESERVE_P (insn)
889 && GET_CODE (next) == JUMP_INSN
890 && (GET_CODE (PATTERN (next)) == ADDR_VEC
891 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
893 if (rtl_dump_file)
894 fprintf (rtl_dump_file, "Dead jumptable %i removed\n", INSN_UID (insn));
895 delete_insn (NEXT_INSN (insn));
896 delete_insn (insn);
897 next = NEXT_INSN (next);
902 /* Determine if the stack pointer is constant over the life of the function.
903 Only useful before prologues have been emitted. */
905 static void
906 notice_stack_pointer_modification_1 (x, pat, data)
907 rtx x;
908 rtx pat ATTRIBUTE_UNUSED;
909 void *data ATTRIBUTE_UNUSED;
911 if (x == stack_pointer_rtx
912 /* The stack pointer is only modified indirectly as the result
913 of a push until later in flow. See the comments in rtl.texi
914 regarding Embedded Side-Effects on Addresses. */
915 || (GET_CODE (x) == MEM
916 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == 'a'
917 && XEXP (XEXP (x, 0), 0) == stack_pointer_rtx))
918 current_function_sp_is_unchanging = 0;
921 static void
922 notice_stack_pointer_modification (f)
923 rtx f;
925 rtx insn;
927 /* Assume that the stack pointer is unchanging if alloca hasn't
928 been used. */
929 current_function_sp_is_unchanging = !current_function_calls_alloca;
930 if (! current_function_sp_is_unchanging)
931 return;
933 for (insn = f; insn; insn = NEXT_INSN (insn))
935 if (INSN_P (insn))
937 /* Check if insn modifies the stack pointer. */
938 note_stores (PATTERN (insn), notice_stack_pointer_modification_1,
939 NULL);
940 if (! current_function_sp_is_unchanging)
941 return;
946 /* Mark a register in SET. Hard registers in large modes get all
947 of their component registers set as well. */
949 static void
950 mark_reg (reg, xset)
951 rtx reg;
952 void *xset;
954 regset set = (regset) xset;
955 int regno = REGNO (reg);
957 if (GET_MODE (reg) == BLKmode)
958 abort ();
960 SET_REGNO_REG_SET (set, regno);
961 if (regno < FIRST_PSEUDO_REGISTER)
963 int n = HARD_REGNO_NREGS (regno, GET_MODE (reg));
964 while (--n > 0)
965 SET_REGNO_REG_SET (set, regno + n);
969 /* Mark those regs which are needed at the end of the function as live
970 at the end of the last basic block. */
972 static void
973 mark_regs_live_at_end (set)
974 regset set;
976 unsigned int i;
978 /* If exiting needs the right stack value, consider the stack pointer
979 live at the end of the function. */
980 if ((HAVE_epilogue && reload_completed)
981 || ! EXIT_IGNORE_STACK
982 || (! FRAME_POINTER_REQUIRED
983 && ! current_function_calls_alloca
984 && flag_omit_frame_pointer)
985 || current_function_sp_is_unchanging)
987 SET_REGNO_REG_SET (set, STACK_POINTER_REGNUM);
990 /* Mark the frame pointer if needed at the end of the function. If
991 we end up eliminating it, it will be removed from the live list
992 of each basic block by reload. */
994 if (! reload_completed || frame_pointer_needed)
996 SET_REGNO_REG_SET (set, FRAME_POINTER_REGNUM);
997 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
998 /* If they are different, also mark the hard frame pointer as live. */
999 if (! LOCAL_REGNO (HARD_FRAME_POINTER_REGNUM))
1000 SET_REGNO_REG_SET (set, HARD_FRAME_POINTER_REGNUM);
1001 #endif
1004 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
1005 /* Many architectures have a GP register even without flag_pic.
1006 Assume the pic register is not in use, or will be handled by
1007 other means, if it is not fixed. */
1008 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
1009 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
1010 SET_REGNO_REG_SET (set, PIC_OFFSET_TABLE_REGNUM);
1011 #endif
1013 /* Mark all global registers, and all registers used by the epilogue
1014 as being live at the end of the function since they may be
1015 referenced by our caller. */
1016 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1017 if (global_regs[i] || EPILOGUE_USES (i))
1018 SET_REGNO_REG_SET (set, i);
1020 if (HAVE_epilogue && reload_completed)
1022 /* Mark all call-saved registers that we actually used. */
1023 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1024 if (regs_ever_live[i] && ! LOCAL_REGNO (i)
1025 && ! TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1026 SET_REGNO_REG_SET (set, i);
1029 #ifdef EH_RETURN_DATA_REGNO
1030 /* Mark the registers that will contain data for the handler. */
1031 if (reload_completed && current_function_calls_eh_return)
1032 for (i = 0; ; ++i)
1034 unsigned regno = EH_RETURN_DATA_REGNO(i);
1035 if (regno == INVALID_REGNUM)
1036 break;
1037 SET_REGNO_REG_SET (set, regno);
1039 #endif
1040 #ifdef EH_RETURN_STACKADJ_RTX
1041 if ((! HAVE_epilogue || ! reload_completed)
1042 && current_function_calls_eh_return)
1044 rtx tmp = EH_RETURN_STACKADJ_RTX;
1045 if (tmp && REG_P (tmp))
1046 mark_reg (tmp, set);
1048 #endif
1049 #ifdef EH_RETURN_HANDLER_RTX
1050 if ((! HAVE_epilogue || ! reload_completed)
1051 && current_function_calls_eh_return)
1053 rtx tmp = EH_RETURN_HANDLER_RTX;
1054 if (tmp && REG_P (tmp))
1055 mark_reg (tmp, set);
1057 #endif
1059 /* Mark function return value. */
1060 diddle_return_value (mark_reg, set);
1063 /* Callback function for for_each_successor_phi. DATA is a regset.
1064 Sets the SRC_REGNO, the regno of the phi alternative for phi node
1065 INSN, in the regset. */
1067 static int
1068 set_phi_alternative_reg (insn, dest_regno, src_regno, data)
1069 rtx insn ATTRIBUTE_UNUSED;
1070 int dest_regno ATTRIBUTE_UNUSED;
1071 int src_regno;
1072 void *data;
1074 regset live = (regset) data;
1075 SET_REGNO_REG_SET (live, src_regno);
1076 return 0;
1079 /* Propagate global life info around the graph of basic blocks. Begin
1080 considering blocks with their corresponding bit set in BLOCKS_IN.
1081 If BLOCKS_IN is null, consider it the universal set.
1083 BLOCKS_OUT is set for every block that was changed. */
1085 static void
1086 calculate_global_regs_live (blocks_in, blocks_out, flags)
1087 sbitmap blocks_in, blocks_out;
1088 int flags;
1090 basic_block *queue, *qhead, *qtail, *qend, bb;
1091 regset tmp, new_live_at_end, invalidated_by_call;
1092 regset_head tmp_head, invalidated_by_call_head;
1093 regset_head new_live_at_end_head;
1094 int i;
1096 /* Some passes used to forget clear aux field of basic block causing
1097 sick behavior here. */
1098 #ifdef ENABLE_CHECKING
1099 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1100 if (bb->aux)
1101 abort ();
1102 #endif
1104 tmp = INITIALIZE_REG_SET (tmp_head);
1105 new_live_at_end = INITIALIZE_REG_SET (new_live_at_end_head);
1106 invalidated_by_call = INITIALIZE_REG_SET (invalidated_by_call_head);
1108 /* Inconveniently, this is only readily available in hard reg set form. */
1109 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1110 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1111 SET_REGNO_REG_SET (invalidated_by_call, i);
1113 /* Create a worklist. Allocate an extra slot for ENTRY_BLOCK, and one
1114 because the `head == tail' style test for an empty queue doesn't
1115 work with a full queue. */
1116 queue = (basic_block *) xmalloc ((n_basic_blocks + 2) * sizeof (*queue));
1117 qtail = queue;
1118 qhead = qend = queue + n_basic_blocks + 2;
1120 /* Queue the blocks set in the initial mask. Do this in reverse block
1121 number order so that we are more likely for the first round to do
1122 useful work. We use AUX non-null to flag that the block is queued. */
1123 if (blocks_in)
1125 FOR_EACH_BB (bb)
1126 if (TEST_BIT (blocks_in, bb->index))
1128 *--qhead = bb;
1129 bb->aux = bb;
1132 else
1134 FOR_EACH_BB (bb)
1136 *--qhead = bb;
1137 bb->aux = bb;
1141 /* We clean aux when we remove the initially-enqueued bbs, but we
1142 don't enqueue ENTRY and EXIT initially, so clean them upfront and
1143 unconditionally. */
1144 ENTRY_BLOCK_PTR->aux = EXIT_BLOCK_PTR->aux = NULL;
1146 if (blocks_out)
1147 sbitmap_zero (blocks_out);
1149 /* We work through the queue until there are no more blocks. What
1150 is live at the end of this block is precisely the union of what
1151 is live at the beginning of all its successors. So, we set its
1152 GLOBAL_LIVE_AT_END field based on the GLOBAL_LIVE_AT_START field
1153 for its successors. Then, we compute GLOBAL_LIVE_AT_START for
1154 this block by walking through the instructions in this block in
1155 reverse order and updating as we go. If that changed
1156 GLOBAL_LIVE_AT_START, we add the predecessors of the block to the
1157 queue; they will now need to recalculate GLOBAL_LIVE_AT_END.
1159 We are guaranteed to terminate, because GLOBAL_LIVE_AT_START
1160 never shrinks. If a register appears in GLOBAL_LIVE_AT_START, it
1161 must either be live at the end of the block, or used within the
1162 block. In the latter case, it will certainly never disappear
1163 from GLOBAL_LIVE_AT_START. In the former case, the register
1164 could go away only if it disappeared from GLOBAL_LIVE_AT_START
1165 for one of the successor blocks. By induction, that cannot
1166 occur. */
1167 while (qhead != qtail)
1169 int rescan, changed;
1170 basic_block bb;
1171 edge e;
1173 bb = *qhead++;
1174 if (qhead == qend)
1175 qhead = queue;
1176 bb->aux = NULL;
1178 /* Begin by propagating live_at_start from the successor blocks. */
1179 CLEAR_REG_SET (new_live_at_end);
1181 if (bb->succ)
1182 for (e = bb->succ; e; e = e->succ_next)
1184 basic_block sb = e->dest;
1186 /* Call-clobbered registers die across exception and
1187 call edges. */
1188 /* ??? Abnormal call edges ignored for the moment, as this gets
1189 confused by sibling call edges, which crashes reg-stack. */
1190 if (e->flags & EDGE_EH)
1192 bitmap_operation (tmp, sb->global_live_at_start,
1193 invalidated_by_call, BITMAP_AND_COMPL);
1194 IOR_REG_SET (new_live_at_end, tmp);
1196 else
1197 IOR_REG_SET (new_live_at_end, sb->global_live_at_start);
1199 /* If a target saves one register in another (instead of on
1200 the stack) the save register will need to be live for EH. */
1201 if (e->flags & EDGE_EH)
1202 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1203 if (EH_USES (i))
1204 SET_REGNO_REG_SET (new_live_at_end, i);
1206 else
1208 /* This might be a noreturn function that throws. And
1209 even if it isn't, getting the unwind info right helps
1210 debugging. */
1211 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1212 if (EH_USES (i))
1213 SET_REGNO_REG_SET (new_live_at_end, i);
1216 /* The all-important stack pointer must always be live. */
1217 SET_REGNO_REG_SET (new_live_at_end, STACK_POINTER_REGNUM);
1219 /* Before reload, there are a few registers that must be forced
1220 live everywhere -- which might not already be the case for
1221 blocks within infinite loops. */
1222 if (! reload_completed)
1224 /* Any reference to any pseudo before reload is a potential
1225 reference of the frame pointer. */
1226 SET_REGNO_REG_SET (new_live_at_end, FRAME_POINTER_REGNUM);
1228 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1229 /* Pseudos with argument area equivalences may require
1230 reloading via the argument pointer. */
1231 if (fixed_regs[ARG_POINTER_REGNUM])
1232 SET_REGNO_REG_SET (new_live_at_end, ARG_POINTER_REGNUM);
1233 #endif
1235 /* Any constant, or pseudo with constant equivalences, may
1236 require reloading from memory using the pic register. */
1237 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
1238 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
1239 SET_REGNO_REG_SET (new_live_at_end, PIC_OFFSET_TABLE_REGNUM);
1242 /* Regs used in phi nodes are not included in
1243 global_live_at_start, since they are live only along a
1244 particular edge. Set those regs that are live because of a
1245 phi node alternative corresponding to this particular block. */
1246 if (in_ssa_form)
1247 for_each_successor_phi (bb, &set_phi_alternative_reg,
1248 new_live_at_end);
1250 if (bb == ENTRY_BLOCK_PTR)
1252 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1253 continue;
1256 /* On our first pass through this block, we'll go ahead and continue.
1257 Recognize first pass by local_set NULL. On subsequent passes, we
1258 get to skip out early if live_at_end wouldn't have changed. */
1260 if (bb->local_set == NULL)
1262 bb->local_set = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1263 bb->cond_local_set = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1264 rescan = 1;
1266 else
1268 /* If any bits were removed from live_at_end, we'll have to
1269 rescan the block. This wouldn't be necessary if we had
1270 precalculated local_live, however with PROP_SCAN_DEAD_CODE
1271 local_live is really dependent on live_at_end. */
1272 CLEAR_REG_SET (tmp);
1273 rescan = bitmap_operation (tmp, bb->global_live_at_end,
1274 new_live_at_end, BITMAP_AND_COMPL);
1276 if (! rescan)
1278 /* If any of the registers in the new live_at_end set are
1279 conditionally set in this basic block, we must rescan.
1280 This is because conditional lifetimes at the end of the
1281 block do not just take the live_at_end set into account,
1282 but also the liveness at the start of each successor
1283 block. We can miss changes in those sets if we only
1284 compare the new live_at_end against the previous one. */
1285 CLEAR_REG_SET (tmp);
1286 rescan = bitmap_operation (tmp, new_live_at_end,
1287 bb->cond_local_set, BITMAP_AND);
1290 if (! rescan)
1292 /* Find the set of changed bits. Take this opportunity
1293 to notice that this set is empty and early out. */
1294 CLEAR_REG_SET (tmp);
1295 changed = bitmap_operation (tmp, bb->global_live_at_end,
1296 new_live_at_end, BITMAP_XOR);
1297 if (! changed)
1298 continue;
1300 /* If any of the changed bits overlap with local_set,
1301 we'll have to rescan the block. Detect overlap by
1302 the AND with ~local_set turning off bits. */
1303 rescan = bitmap_operation (tmp, tmp, bb->local_set,
1304 BITMAP_AND_COMPL);
1308 /* Let our caller know that BB changed enough to require its
1309 death notes updated. */
1310 if (blocks_out)
1311 SET_BIT (blocks_out, bb->index);
1313 if (! rescan)
1315 /* Add to live_at_start the set of all registers in
1316 new_live_at_end that aren't in the old live_at_end. */
1318 bitmap_operation (tmp, new_live_at_end, bb->global_live_at_end,
1319 BITMAP_AND_COMPL);
1320 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1322 changed = bitmap_operation (bb->global_live_at_start,
1323 bb->global_live_at_start,
1324 tmp, BITMAP_IOR);
1325 if (! changed)
1326 continue;
1328 else
1330 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1332 /* Rescan the block insn by insn to turn (a copy of) live_at_end
1333 into live_at_start. */
1334 propagate_block (bb, new_live_at_end, bb->local_set,
1335 bb->cond_local_set, flags);
1337 /* If live_at start didn't change, no need to go farther. */
1338 if (REG_SET_EQUAL_P (bb->global_live_at_start, new_live_at_end))
1339 continue;
1341 COPY_REG_SET (bb->global_live_at_start, new_live_at_end);
1344 /* Queue all predecessors of BB so that we may re-examine
1345 their live_at_end. */
1346 for (e = bb->pred; e; e = e->pred_next)
1348 basic_block pb = e->src;
1349 if (pb->aux == NULL)
1351 *qtail++ = pb;
1352 if (qtail == qend)
1353 qtail = queue;
1354 pb->aux = pb;
1359 FREE_REG_SET (tmp);
1360 FREE_REG_SET (new_live_at_end);
1361 FREE_REG_SET (invalidated_by_call);
1363 if (blocks_out)
1365 EXECUTE_IF_SET_IN_SBITMAP (blocks_out, 0, i,
1367 basic_block bb = BASIC_BLOCK (i);
1368 FREE_REG_SET (bb->local_set);
1369 FREE_REG_SET (bb->cond_local_set);
1372 else
1374 FOR_EACH_BB (bb)
1376 FREE_REG_SET (bb->local_set);
1377 FREE_REG_SET (bb->cond_local_set);
1381 free (queue);
1385 /* This structure is used to pass parameters to and from the
1386 the function find_regno_partial(). It is used to pass in the
1387 register number we are looking, as well as to return any rtx
1388 we find. */
1390 typedef struct {
1391 unsigned regno_to_find;
1392 rtx retval;
1393 } find_regno_partial_param;
1396 /* Find the rtx for the reg numbers specified in 'data' if it is
1397 part of an expression which only uses part of the register. Return
1398 it in the structure passed in. */
1399 static int
1400 find_regno_partial (ptr, data)
1401 rtx *ptr;
1402 void *data;
1404 find_regno_partial_param *param = (find_regno_partial_param *)data;
1405 unsigned reg = param->regno_to_find;
1406 param->retval = NULL_RTX;
1408 if (*ptr == NULL_RTX)
1409 return 0;
1411 switch (GET_CODE (*ptr))
1413 case ZERO_EXTRACT:
1414 case SIGN_EXTRACT:
1415 case STRICT_LOW_PART:
1416 if (GET_CODE (XEXP (*ptr, 0)) == REG && REGNO (XEXP (*ptr, 0)) == reg)
1418 param->retval = XEXP (*ptr, 0);
1419 return 1;
1421 break;
1423 case SUBREG:
1424 if (GET_CODE (SUBREG_REG (*ptr)) == REG
1425 && REGNO (SUBREG_REG (*ptr)) == reg)
1427 param->retval = SUBREG_REG (*ptr);
1428 return 1;
1430 break;
1432 default:
1433 break;
1436 return 0;
1439 /* Process all immediate successors of the entry block looking for pseudo
1440 registers which are live on entry. Find all of those whose first
1441 instance is a partial register reference of some kind, and initialize
1442 them to 0 after the entry block. This will prevent bit sets within
1443 registers whose value is unknown, and may contain some kind of sticky
1444 bits we don't want. */
1447 initialize_uninitialized_subregs ()
1449 rtx insn;
1450 edge e;
1451 int reg, did_something = 0;
1452 find_regno_partial_param param;
1454 for (e = ENTRY_BLOCK_PTR->succ; e; e = e->succ_next)
1456 basic_block bb = e->dest;
1457 regset map = bb->global_live_at_start;
1458 EXECUTE_IF_SET_IN_REG_SET (map,
1459 FIRST_PSEUDO_REGISTER, reg,
1461 int uid = REGNO_FIRST_UID (reg);
1462 rtx i;
1464 /* Find an insn which mentions the register we are looking for.
1465 Its preferable to have an instance of the register's rtl since
1466 there may be various flags set which we need to duplicate.
1467 If we can't find it, its probably an automatic whose initial
1468 value doesn't matter, or hopefully something we don't care about. */
1469 for (i = get_insns (); i && INSN_UID (i) != uid; i = NEXT_INSN (i))
1471 if (i != NULL_RTX)
1473 /* Found the insn, now get the REG rtx, if we can. */
1474 param.regno_to_find = reg;
1475 for_each_rtx (&i, find_regno_partial, &param);
1476 if (param.retval != NULL_RTX)
1478 insn = gen_move_insn (param.retval,
1479 CONST0_RTX (GET_MODE (param.retval)));
1480 insert_insn_on_edge (insn, e);
1481 did_something = 1;
1487 if (did_something)
1488 commit_edge_insertions ();
1489 return did_something;
1493 /* Subroutines of life analysis. */
1495 /* Allocate the permanent data structures that represent the results
1496 of life analysis. Not static since used also for stupid life analysis. */
1498 void
1499 allocate_bb_life_data ()
1501 basic_block bb;
1503 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1505 bb->global_live_at_start = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1506 bb->global_live_at_end = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1509 regs_live_at_setjmp = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1512 void
1513 allocate_reg_life_data ()
1515 int i;
1517 max_regno = max_reg_num ();
1519 /* Recalculate the register space, in case it has grown. Old style
1520 vector oriented regsets would set regset_{size,bytes} here also. */
1521 allocate_reg_info (max_regno, FALSE, FALSE);
1523 /* Reset all the data we'll collect in propagate_block and its
1524 subroutines. */
1525 for (i = 0; i < max_regno; i++)
1527 REG_N_SETS (i) = 0;
1528 REG_N_REFS (i) = 0;
1529 REG_N_DEATHS (i) = 0;
1530 REG_N_CALLS_CROSSED (i) = 0;
1531 REG_LIVE_LENGTH (i) = 0;
1532 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
1536 /* Delete dead instructions for propagate_block. */
1538 static void
1539 propagate_block_delete_insn (insn)
1540 rtx insn;
1542 rtx inote = find_reg_note (insn, REG_LABEL, NULL_RTX);
1544 /* If the insn referred to a label, and that label was attached to
1545 an ADDR_VEC, it's safe to delete the ADDR_VEC. In fact, it's
1546 pretty much mandatory to delete it, because the ADDR_VEC may be
1547 referencing labels that no longer exist.
1549 INSN may reference a deleted label, particularly when a jump
1550 table has been optimized into a direct jump. There's no
1551 real good way to fix up the reference to the deleted label
1552 when the label is deleted, so we just allow it here. */
1554 if (inote && GET_CODE (inote) == CODE_LABEL)
1556 rtx label = XEXP (inote, 0);
1557 rtx next;
1559 /* The label may be forced if it has been put in the constant
1560 pool. If that is the only use we must discard the table
1561 jump following it, but not the label itself. */
1562 if (LABEL_NUSES (label) == 1 + LABEL_PRESERVE_P (label)
1563 && (next = next_nonnote_insn (label)) != NULL
1564 && GET_CODE (next) == JUMP_INSN
1565 && (GET_CODE (PATTERN (next)) == ADDR_VEC
1566 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
1568 rtx pat = PATTERN (next);
1569 int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
1570 int len = XVECLEN (pat, diff_vec_p);
1571 int i;
1573 for (i = 0; i < len; i++)
1574 LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))--;
1576 delete_insn_and_edges (next);
1577 ndead++;
1581 delete_insn_and_edges (insn);
1582 ndead++;
1585 /* Delete dead libcalls for propagate_block. Return the insn
1586 before the libcall. */
1588 static rtx
1589 propagate_block_delete_libcall ( insn, note)
1590 rtx insn, note;
1592 rtx first = XEXP (note, 0);
1593 rtx before = PREV_INSN (first);
1595 delete_insn_chain_and_edges (first, insn);
1596 ndead++;
1597 return before;
1600 /* Update the life-status of regs for one insn. Return the previous insn. */
1603 propagate_one_insn (pbi, insn)
1604 struct propagate_block_info *pbi;
1605 rtx insn;
1607 rtx prev = PREV_INSN (insn);
1608 int flags = pbi->flags;
1609 int insn_is_dead = 0;
1610 int libcall_is_dead = 0;
1611 rtx note;
1612 int i;
1614 if (! INSN_P (insn))
1615 return prev;
1617 note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
1618 if (flags & PROP_SCAN_DEAD_CODE)
1620 insn_is_dead = insn_dead_p (pbi, PATTERN (insn), 0, REG_NOTES (insn));
1621 libcall_is_dead = (insn_is_dead && note != 0
1622 && libcall_dead_p (pbi, note, insn));
1625 /* If an instruction consists of just dead store(s) on final pass,
1626 delete it. */
1627 if ((flags & PROP_KILL_DEAD_CODE) && insn_is_dead)
1629 /* If we're trying to delete a prologue or epilogue instruction
1630 that isn't flagged as possibly being dead, something is wrong.
1631 But if we are keeping the stack pointer depressed, we might well
1632 be deleting insns that are used to compute the amount to update
1633 it by, so they are fine. */
1634 if (reload_completed
1635 && !(TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
1636 && (TYPE_RETURNS_STACK_DEPRESSED
1637 (TREE_TYPE (current_function_decl))))
1638 && (((HAVE_epilogue || HAVE_prologue)
1639 && prologue_epilogue_contains (insn))
1640 || (HAVE_sibcall_epilogue
1641 && sibcall_epilogue_contains (insn)))
1642 && find_reg_note (insn, REG_MAYBE_DEAD, NULL_RTX) == 0)
1643 fatal_insn ("Attempt to delete prologue/epilogue insn:", insn);
1645 /* Record sets. Do this even for dead instructions, since they
1646 would have killed the values if they hadn't been deleted. */
1647 mark_set_regs (pbi, PATTERN (insn), insn);
1649 /* CC0 is now known to be dead. Either this insn used it,
1650 in which case it doesn't anymore, or clobbered it,
1651 so the next insn can't use it. */
1652 pbi->cc0_live = 0;
1654 if (libcall_is_dead)
1655 prev = propagate_block_delete_libcall ( insn, note);
1656 else
1659 /* If INSN contains a RETVAL note and is dead, but the libcall
1660 as a whole is not dead, then we want to remove INSN, but
1661 not the whole libcall sequence.
1663 However, we need to also remove the dangling REG_LIBCALL
1664 note so that we do not have mis-matched LIBCALL/RETVAL
1665 notes. In theory we could find a new location for the
1666 REG_RETVAL note, but it hardly seems worth the effort.
1668 NOTE at this point will be the RETVAL note if it exists. */
1669 if (note)
1671 rtx libcall_note;
1673 libcall_note
1674 = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
1675 remove_note (XEXP (note, 0), libcall_note);
1678 /* Similarly if INSN contains a LIBCALL note, remove the
1679 dnagling REG_RETVAL note. */
1680 note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
1681 if (note)
1683 rtx retval_note;
1685 retval_note
1686 = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
1687 remove_note (XEXP (note, 0), retval_note);
1690 /* Now delete INSN. */
1691 propagate_block_delete_insn (insn);
1694 return prev;
1697 /* See if this is an increment or decrement that can be merged into
1698 a following memory address. */
1699 #ifdef AUTO_INC_DEC
1701 rtx x = single_set (insn);
1703 /* Does this instruction increment or decrement a register? */
1704 if ((flags & PROP_AUTOINC)
1705 && x != 0
1706 && GET_CODE (SET_DEST (x)) == REG
1707 && (GET_CODE (SET_SRC (x)) == PLUS
1708 || GET_CODE (SET_SRC (x)) == MINUS)
1709 && XEXP (SET_SRC (x), 0) == SET_DEST (x)
1710 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
1711 /* Ok, look for a following memory ref we can combine with.
1712 If one is found, change the memory ref to a PRE_INC
1713 or PRE_DEC, cancel this insn, and return 1.
1714 Return 0 if nothing has been done. */
1715 && try_pre_increment_1 (pbi, insn))
1716 return prev;
1718 #endif /* AUTO_INC_DEC */
1720 CLEAR_REG_SET (pbi->new_set);
1722 /* If this is not the final pass, and this insn is copying the value of
1723 a library call and it's dead, don't scan the insns that perform the
1724 library call, so that the call's arguments are not marked live. */
1725 if (libcall_is_dead)
1727 /* Record the death of the dest reg. */
1728 mark_set_regs (pbi, PATTERN (insn), insn);
1730 insn = XEXP (note, 0);
1731 return PREV_INSN (insn);
1733 else if (GET_CODE (PATTERN (insn)) == SET
1734 && SET_DEST (PATTERN (insn)) == stack_pointer_rtx
1735 && GET_CODE (SET_SRC (PATTERN (insn))) == PLUS
1736 && XEXP (SET_SRC (PATTERN (insn)), 0) == stack_pointer_rtx
1737 && GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 1)) == CONST_INT)
1738 /* We have an insn to pop a constant amount off the stack.
1739 (Such insns use PLUS regardless of the direction of the stack,
1740 and any insn to adjust the stack by a constant is always a pop.)
1741 These insns, if not dead stores, have no effect on life, though
1742 they do have an effect on the memory stores we are tracking. */
1743 invalidate_mems_from_set (pbi, stack_pointer_rtx);
1744 else
1746 rtx note;
1747 /* Any regs live at the time of a call instruction must not go
1748 in a register clobbered by calls. Find all regs now live and
1749 record this for them. */
1751 if (GET_CODE (insn) == CALL_INSN && (flags & PROP_REG_INFO))
1752 EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i,
1753 { REG_N_CALLS_CROSSED (i)++; });
1755 /* Record sets. Do this even for dead instructions, since they
1756 would have killed the values if they hadn't been deleted. */
1757 mark_set_regs (pbi, PATTERN (insn), insn);
1759 if (GET_CODE (insn) == CALL_INSN)
1761 int i;
1762 rtx note, cond;
1764 cond = NULL_RTX;
1765 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
1766 cond = COND_EXEC_TEST (PATTERN (insn));
1768 /* Non-constant calls clobber memory, constant calls do not
1769 clobber memory, though they may clobber outgoing arguments
1770 on the stack. */
1771 if (! CONST_OR_PURE_CALL_P (insn))
1773 free_EXPR_LIST_list (&pbi->mem_set_list);
1774 pbi->mem_set_list_len = 0;
1776 else
1777 invalidate_mems_from_set (pbi, stack_pointer_rtx);
1779 /* There may be extra registers to be clobbered. */
1780 for (note = CALL_INSN_FUNCTION_USAGE (insn);
1781 note;
1782 note = XEXP (note, 1))
1783 if (GET_CODE (XEXP (note, 0)) == CLOBBER)
1784 mark_set_1 (pbi, CLOBBER, XEXP (XEXP (note, 0), 0),
1785 cond, insn, pbi->flags);
1787 /* Calls change all call-used and global registers. */
1788 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1789 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1791 /* We do not want REG_UNUSED notes for these registers. */
1792 mark_set_1 (pbi, CLOBBER, regno_reg_rtx[i], cond, insn,
1793 pbi->flags & ~(PROP_DEATH_NOTES | PROP_REG_INFO));
1797 /* If an insn doesn't use CC0, it becomes dead since we assume
1798 that every insn clobbers it. So show it dead here;
1799 mark_used_regs will set it live if it is referenced. */
1800 pbi->cc0_live = 0;
1802 /* Record uses. */
1803 if (! insn_is_dead)
1804 mark_used_regs (pbi, PATTERN (insn), NULL_RTX, insn);
1805 if ((flags & PROP_EQUAL_NOTES)
1806 && ((note = find_reg_note (insn, REG_EQUAL, NULL_RTX))
1807 || (note = find_reg_note (insn, REG_EQUIV, NULL_RTX))))
1808 mark_used_regs (pbi, XEXP (note, 0), NULL_RTX, insn);
1810 /* Sometimes we may have inserted something before INSN (such as a move)
1811 when we make an auto-inc. So ensure we will scan those insns. */
1812 #ifdef AUTO_INC_DEC
1813 prev = PREV_INSN (insn);
1814 #endif
1816 if (! insn_is_dead && GET_CODE (insn) == CALL_INSN)
1818 int i;
1819 rtx note, cond;
1821 cond = NULL_RTX;
1822 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
1823 cond = COND_EXEC_TEST (PATTERN (insn));
1825 /* Calls use their arguments. */
1826 for (note = CALL_INSN_FUNCTION_USAGE (insn);
1827 note;
1828 note = XEXP (note, 1))
1829 if (GET_CODE (XEXP (note, 0)) == USE)
1830 mark_used_regs (pbi, XEXP (XEXP (note, 0), 0),
1831 cond, insn);
1833 /* The stack ptr is used (honorarily) by a CALL insn. */
1834 SET_REGNO_REG_SET (pbi->reg_live, STACK_POINTER_REGNUM);
1836 /* Calls may also reference any of the global registers,
1837 so they are made live. */
1838 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1839 if (global_regs[i])
1840 mark_used_reg (pbi, regno_reg_rtx[i], cond, insn);
1844 /* On final pass, update counts of how many insns in which each reg
1845 is live. */
1846 if (flags & PROP_REG_INFO)
1847 EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i,
1848 { REG_LIVE_LENGTH (i)++; });
1850 return prev;
1853 /* Initialize a propagate_block_info struct for public consumption.
1854 Note that the structure itself is opaque to this file, but that
1855 the user can use the regsets provided here. */
1857 struct propagate_block_info *
1858 init_propagate_block_info (bb, live, local_set, cond_local_set, flags)
1859 basic_block bb;
1860 regset live, local_set, cond_local_set;
1861 int flags;
1863 struct propagate_block_info *pbi = xmalloc (sizeof (*pbi));
1865 pbi->bb = bb;
1866 pbi->reg_live = live;
1867 pbi->mem_set_list = NULL_RTX;
1868 pbi->mem_set_list_len = 0;
1869 pbi->local_set = local_set;
1870 pbi->cond_local_set = cond_local_set;
1871 pbi->cc0_live = 0;
1872 pbi->flags = flags;
1874 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
1875 pbi->reg_next_use = (rtx *) xcalloc (max_reg_num (), sizeof (rtx));
1876 else
1877 pbi->reg_next_use = NULL;
1879 pbi->new_set = BITMAP_XMALLOC ();
1881 #ifdef HAVE_conditional_execution
1882 pbi->reg_cond_dead = splay_tree_new (splay_tree_compare_ints, NULL,
1883 free_reg_cond_life_info);
1884 pbi->reg_cond_reg = BITMAP_XMALLOC ();
1886 /* If this block ends in a conditional branch, for each register live
1887 from one side of the branch and not the other, record the register
1888 as conditionally dead. */
1889 if (GET_CODE (bb->end) == JUMP_INSN
1890 && any_condjump_p (bb->end))
1892 regset_head diff_head;
1893 regset diff = INITIALIZE_REG_SET (diff_head);
1894 basic_block bb_true, bb_false;
1895 rtx cond_true, cond_false, set_src;
1896 int i;
1898 /* Identify the successor blocks. */
1899 bb_true = bb->succ->dest;
1900 if (bb->succ->succ_next != NULL)
1902 bb_false = bb->succ->succ_next->dest;
1904 if (bb->succ->flags & EDGE_FALLTHRU)
1906 basic_block t = bb_false;
1907 bb_false = bb_true;
1908 bb_true = t;
1910 else if (! (bb->succ->succ_next->flags & EDGE_FALLTHRU))
1911 abort ();
1913 else
1915 /* This can happen with a conditional jump to the next insn. */
1916 if (JUMP_LABEL (bb->end) != bb_true->head)
1917 abort ();
1919 /* Simplest way to do nothing. */
1920 bb_false = bb_true;
1923 /* Extract the condition from the branch. */
1924 set_src = SET_SRC (pc_set (bb->end));
1925 cond_true = XEXP (set_src, 0);
1926 cond_false = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond_true)),
1927 GET_MODE (cond_true), XEXP (cond_true, 0),
1928 XEXP (cond_true, 1));
1929 if (GET_CODE (XEXP (set_src, 1)) == PC)
1931 rtx t = cond_false;
1932 cond_false = cond_true;
1933 cond_true = t;
1936 /* Compute which register lead different lives in the successors. */
1937 if (bitmap_operation (diff, bb_true->global_live_at_start,
1938 bb_false->global_live_at_start, BITMAP_XOR))
1940 rtx reg = XEXP (cond_true, 0);
1942 if (GET_CODE (reg) == SUBREG)
1943 reg = SUBREG_REG (reg);
1945 if (GET_CODE (reg) != REG)
1946 abort ();
1948 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (reg));
1950 /* For each such register, mark it conditionally dead. */
1951 EXECUTE_IF_SET_IN_REG_SET
1952 (diff, 0, i,
1954 struct reg_cond_life_info *rcli;
1955 rtx cond;
1957 rcli = (struct reg_cond_life_info *) xmalloc (sizeof (*rcli));
1959 if (REGNO_REG_SET_P (bb_true->global_live_at_start, i))
1960 cond = cond_false;
1961 else
1962 cond = cond_true;
1963 rcli->condition = cond;
1964 rcli->stores = const0_rtx;
1965 rcli->orig_condition = cond;
1967 splay_tree_insert (pbi->reg_cond_dead, i,
1968 (splay_tree_value) rcli);
1972 FREE_REG_SET (diff);
1974 #endif
1976 /* If this block has no successors, any stores to the frame that aren't
1977 used later in the block are dead. So make a pass over the block
1978 recording any such that are made and show them dead at the end. We do
1979 a very conservative and simple job here. */
1980 if (optimize
1981 && ! (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
1982 && (TYPE_RETURNS_STACK_DEPRESSED
1983 (TREE_TYPE (current_function_decl))))
1984 && (flags & PROP_SCAN_DEAD_STORES)
1985 && (bb->succ == NULL
1986 || (bb->succ->succ_next == NULL
1987 && bb->succ->dest == EXIT_BLOCK_PTR
1988 && ! current_function_calls_eh_return)))
1990 rtx insn, set;
1991 for (insn = bb->end; insn != bb->head; insn = PREV_INSN (insn))
1992 if (GET_CODE (insn) == INSN
1993 && (set = single_set (insn))
1994 && GET_CODE (SET_DEST (set)) == MEM)
1996 rtx mem = SET_DEST (set);
1997 rtx canon_mem = canon_rtx (mem);
1999 /* This optimization is performed by faking a store to the
2000 memory at the end of the block. This doesn't work for
2001 unchanging memories because multiple stores to unchanging
2002 memory is illegal and alias analysis doesn't consider it. */
2003 if (RTX_UNCHANGING_P (canon_mem))
2004 continue;
2006 if (XEXP (canon_mem, 0) == frame_pointer_rtx
2007 || (GET_CODE (XEXP (canon_mem, 0)) == PLUS
2008 && XEXP (XEXP (canon_mem, 0), 0) == frame_pointer_rtx
2009 && GET_CODE (XEXP (XEXP (canon_mem, 0), 1)) == CONST_INT))
2010 add_to_mem_set_list (pbi, canon_mem);
2014 return pbi;
2017 /* Release a propagate_block_info struct. */
2019 void
2020 free_propagate_block_info (pbi)
2021 struct propagate_block_info *pbi;
2023 free_EXPR_LIST_list (&pbi->mem_set_list);
2025 BITMAP_XFREE (pbi->new_set);
2027 #ifdef HAVE_conditional_execution
2028 splay_tree_delete (pbi->reg_cond_dead);
2029 BITMAP_XFREE (pbi->reg_cond_reg);
2030 #endif
2032 if (pbi->reg_next_use)
2033 free (pbi->reg_next_use);
2035 free (pbi);
2038 /* Compute the registers live at the beginning of a basic block BB from
2039 those live at the end.
2041 When called, REG_LIVE contains those live at the end. On return, it
2042 contains those live at the beginning.
2044 LOCAL_SET, if non-null, will be set with all registers killed
2045 unconditionally by this basic block.
2046 Likewise, COND_LOCAL_SET, if non-null, will be set with all registers
2047 killed conditionally by this basic block. If there is any unconditional
2048 set of a register, then the corresponding bit will be set in LOCAL_SET
2049 and cleared in COND_LOCAL_SET.
2050 It is valid for LOCAL_SET and COND_LOCAL_SET to be the same set. In this
2051 case, the resulting set will be equal to the union of the two sets that
2052 would otherwise be computed.
2054 Return nonzero if an INSN is deleted (i.e. by dead code removal). */
2057 propagate_block (bb, live, local_set, cond_local_set, flags)
2058 basic_block bb;
2059 regset live;
2060 regset local_set;
2061 regset cond_local_set;
2062 int flags;
2064 struct propagate_block_info *pbi;
2065 rtx insn, prev;
2066 int changed;
2068 pbi = init_propagate_block_info (bb, live, local_set, cond_local_set, flags);
2070 if (flags & PROP_REG_INFO)
2072 int i;
2074 /* Process the regs live at the end of the block.
2075 Mark them as not local to any one basic block. */
2076 EXECUTE_IF_SET_IN_REG_SET (live, 0, i,
2077 { REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL; });
2080 /* Scan the block an insn at a time from end to beginning. */
2082 changed = 0;
2083 for (insn = bb->end;; insn = prev)
2085 /* If this is a call to `setjmp' et al, warn if any
2086 non-volatile datum is live. */
2087 if ((flags & PROP_REG_INFO)
2088 && GET_CODE (insn) == CALL_INSN
2089 && find_reg_note (insn, REG_SETJMP, NULL))
2090 IOR_REG_SET (regs_live_at_setjmp, pbi->reg_live);
2092 prev = propagate_one_insn (pbi, insn);
2093 changed |= NEXT_INSN (prev) != insn;
2095 if (insn == bb->head)
2096 break;
2099 free_propagate_block_info (pbi);
2101 return changed;
2104 /* Return 1 if X (the body of an insn, or part of it) is just dead stores
2105 (SET expressions whose destinations are registers dead after the insn).
2106 NEEDED is the regset that says which regs are alive after the insn.
2108 Unless CALL_OK is nonzero, an insn is needed if it contains a CALL.
2110 If X is the entire body of an insn, NOTES contains the reg notes
2111 pertaining to the insn. */
2113 static int
2114 insn_dead_p (pbi, x, call_ok, notes)
2115 struct propagate_block_info *pbi;
2116 rtx x;
2117 int call_ok;
2118 rtx notes ATTRIBUTE_UNUSED;
2120 enum rtx_code code = GET_CODE (x);
2122 /* Don't eliminate insns that may trap. */
2123 if (flag_non_call_exceptions && may_trap_p (x))
2124 return 0;
2126 #ifdef AUTO_INC_DEC
2127 /* As flow is invoked after combine, we must take existing AUTO_INC
2128 expressions into account. */
2129 for (; notes; notes = XEXP (notes, 1))
2131 if (REG_NOTE_KIND (notes) == REG_INC)
2133 int regno = REGNO (XEXP (notes, 0));
2135 /* Don't delete insns to set global regs. */
2136 if ((regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2137 || REGNO_REG_SET_P (pbi->reg_live, regno))
2138 return 0;
2141 #endif
2143 /* If setting something that's a reg or part of one,
2144 see if that register's altered value will be live. */
2146 if (code == SET)
2148 rtx r = SET_DEST (x);
2150 #ifdef HAVE_cc0
2151 if (GET_CODE (r) == CC0)
2152 return ! pbi->cc0_live;
2153 #endif
2155 /* A SET that is a subroutine call cannot be dead. */
2156 if (GET_CODE (SET_SRC (x)) == CALL)
2158 if (! call_ok)
2159 return 0;
2162 /* Don't eliminate loads from volatile memory or volatile asms. */
2163 else if (volatile_refs_p (SET_SRC (x)))
2164 return 0;
2166 if (GET_CODE (r) == MEM)
2168 rtx temp, canon_r;
2170 if (MEM_VOLATILE_P (r) || GET_MODE (r) == BLKmode)
2171 return 0;
2173 canon_r = canon_rtx (r);
2175 /* Walk the set of memory locations we are currently tracking
2176 and see if one is an identical match to this memory location.
2177 If so, this memory write is dead (remember, we're walking
2178 backwards from the end of the block to the start). Since
2179 rtx_equal_p does not check the alias set or flags, we also
2180 must have the potential for them to conflict (anti_dependence). */
2181 for (temp = pbi->mem_set_list; temp != 0; temp = XEXP (temp, 1))
2182 if (anti_dependence (r, XEXP (temp, 0)))
2184 rtx mem = XEXP (temp, 0);
2186 if (rtx_equal_p (XEXP (canon_r, 0), XEXP (mem, 0))
2187 && (GET_MODE_SIZE (GET_MODE (canon_r))
2188 <= GET_MODE_SIZE (GET_MODE (mem))))
2189 return 1;
2191 #ifdef AUTO_INC_DEC
2192 /* Check if memory reference matches an auto increment. Only
2193 post increment/decrement or modify are valid. */
2194 if (GET_MODE (mem) == GET_MODE (r)
2195 && (GET_CODE (XEXP (mem, 0)) == POST_DEC
2196 || GET_CODE (XEXP (mem, 0)) == POST_INC
2197 || GET_CODE (XEXP (mem, 0)) == POST_MODIFY)
2198 && GET_MODE (XEXP (mem, 0)) == GET_MODE (r)
2199 && rtx_equal_p (XEXP (XEXP (mem, 0), 0), XEXP (r, 0)))
2200 return 1;
2201 #endif
2204 else
2206 while (GET_CODE (r) == SUBREG
2207 || GET_CODE (r) == STRICT_LOW_PART
2208 || GET_CODE (r) == ZERO_EXTRACT)
2209 r = XEXP (r, 0);
2211 if (GET_CODE (r) == REG)
2213 int regno = REGNO (r);
2215 /* Obvious. */
2216 if (REGNO_REG_SET_P (pbi->reg_live, regno))
2217 return 0;
2219 /* If this is a hard register, verify that subsequent
2220 words are not needed. */
2221 if (regno < FIRST_PSEUDO_REGISTER)
2223 int n = HARD_REGNO_NREGS (regno, GET_MODE (r));
2225 while (--n > 0)
2226 if (REGNO_REG_SET_P (pbi->reg_live, regno+n))
2227 return 0;
2230 /* Don't delete insns to set global regs. */
2231 if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2232 return 0;
2234 /* Make sure insns to set the stack pointer aren't deleted. */
2235 if (regno == STACK_POINTER_REGNUM)
2236 return 0;
2238 /* ??? These bits might be redundant with the force live bits
2239 in calculate_global_regs_live. We would delete from
2240 sequential sets; whether this actually affects real code
2241 for anything but the stack pointer I don't know. */
2242 /* Make sure insns to set the frame pointer aren't deleted. */
2243 if (regno == FRAME_POINTER_REGNUM
2244 && (! reload_completed || frame_pointer_needed))
2245 return 0;
2246 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2247 if (regno == HARD_FRAME_POINTER_REGNUM
2248 && (! reload_completed || frame_pointer_needed))
2249 return 0;
2250 #endif
2252 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2253 /* Make sure insns to set arg pointer are never deleted
2254 (if the arg pointer isn't fixed, there will be a USE
2255 for it, so we can treat it normally). */
2256 if (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
2257 return 0;
2258 #endif
2260 /* Otherwise, the set is dead. */
2261 return 1;
2266 /* If performing several activities, insn is dead if each activity
2267 is individually dead. Also, CLOBBERs and USEs can be ignored; a
2268 CLOBBER or USE that's inside a PARALLEL doesn't make the insn
2269 worth keeping. */
2270 else if (code == PARALLEL)
2272 int i = XVECLEN (x, 0);
2274 for (i--; i >= 0; i--)
2275 if (GET_CODE (XVECEXP (x, 0, i)) != CLOBBER
2276 && GET_CODE (XVECEXP (x, 0, i)) != USE
2277 && ! insn_dead_p (pbi, XVECEXP (x, 0, i), call_ok, NULL_RTX))
2278 return 0;
2280 return 1;
2283 /* A CLOBBER of a pseudo-register that is dead serves no purpose. That
2284 is not necessarily true for hard registers. */
2285 else if (code == CLOBBER && GET_CODE (XEXP (x, 0)) == REG
2286 && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER
2287 && ! REGNO_REG_SET_P (pbi->reg_live, REGNO (XEXP (x, 0))))
2288 return 1;
2290 /* We do not check other CLOBBER or USE here. An insn consisting of just
2291 a CLOBBER or just a USE should not be deleted. */
2292 return 0;
2295 /* If INSN is the last insn in a libcall, and assuming INSN is dead,
2296 return 1 if the entire library call is dead.
2297 This is true if INSN copies a register (hard or pseudo)
2298 and if the hard return reg of the call insn is dead.
2299 (The caller should have tested the destination of the SET inside
2300 INSN already for death.)
2302 If this insn doesn't just copy a register, then we don't
2303 have an ordinary libcall. In that case, cse could not have
2304 managed to substitute the source for the dest later on,
2305 so we can assume the libcall is dead.
2307 PBI is the block info giving pseudoregs live before this insn.
2308 NOTE is the REG_RETVAL note of the insn. */
2310 static int
2311 libcall_dead_p (pbi, note, insn)
2312 struct propagate_block_info *pbi;
2313 rtx note;
2314 rtx insn;
2316 rtx x = single_set (insn);
2318 if (x)
2320 rtx r = SET_SRC (x);
2322 if (GET_CODE (r) == REG)
2324 rtx call = XEXP (note, 0);
2325 rtx call_pat;
2326 int i;
2328 /* Find the call insn. */
2329 while (call != insn && GET_CODE (call) != CALL_INSN)
2330 call = NEXT_INSN (call);
2332 /* If there is none, do nothing special,
2333 since ordinary death handling can understand these insns. */
2334 if (call == insn)
2335 return 0;
2337 /* See if the hard reg holding the value is dead.
2338 If this is a PARALLEL, find the call within it. */
2339 call_pat = PATTERN (call);
2340 if (GET_CODE (call_pat) == PARALLEL)
2342 for (i = XVECLEN (call_pat, 0) - 1; i >= 0; i--)
2343 if (GET_CODE (XVECEXP (call_pat, 0, i)) == SET
2344 && GET_CODE (SET_SRC (XVECEXP (call_pat, 0, i))) == CALL)
2345 break;
2347 /* This may be a library call that is returning a value
2348 via invisible pointer. Do nothing special, since
2349 ordinary death handling can understand these insns. */
2350 if (i < 0)
2351 return 0;
2353 call_pat = XVECEXP (call_pat, 0, i);
2356 return insn_dead_p (pbi, call_pat, 1, REG_NOTES (call));
2359 return 1;
2362 /* Return 1 if register REGNO was used before it was set, i.e. if it is
2363 live at function entry. Don't count global register variables, variables
2364 in registers that can be used for function arg passing, or variables in
2365 fixed hard registers. */
2368 regno_uninitialized (regno)
2369 unsigned int regno;
2371 if (n_basic_blocks == 0
2372 || (regno < FIRST_PSEUDO_REGISTER
2373 && (global_regs[regno]
2374 || fixed_regs[regno]
2375 || FUNCTION_ARG_REGNO_P (regno))))
2376 return 0;
2378 return REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, regno);
2381 /* 1 if register REGNO was alive at a place where `setjmp' was called
2382 and was set more than once or is an argument.
2383 Such regs may be clobbered by `longjmp'. */
2386 regno_clobbered_at_setjmp (regno)
2387 int regno;
2389 if (n_basic_blocks == 0)
2390 return 0;
2392 return ((REG_N_SETS (regno) > 1
2393 || REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, regno))
2394 && REGNO_REG_SET_P (regs_live_at_setjmp, regno));
2397 /* Add MEM to PBI->MEM_SET_LIST. MEM should be canonical. Respect the
2398 maximal list size; look for overlaps in mode and select the largest. */
2399 static void
2400 add_to_mem_set_list (pbi, mem)
2401 struct propagate_block_info *pbi;
2402 rtx mem;
2404 rtx i;
2406 /* We don't know how large a BLKmode store is, so we must not
2407 take them into consideration. */
2408 if (GET_MODE (mem) == BLKmode)
2409 return;
2411 for (i = pbi->mem_set_list; i ; i = XEXP (i, 1))
2413 rtx e = XEXP (i, 0);
2414 if (rtx_equal_p (XEXP (mem, 0), XEXP (e, 0)))
2416 if (GET_MODE_SIZE (GET_MODE (mem)) > GET_MODE_SIZE (GET_MODE (e)))
2418 #ifdef AUTO_INC_DEC
2419 /* If we must store a copy of the mem, we can just modify
2420 the mode of the stored copy. */
2421 if (pbi->flags & PROP_AUTOINC)
2422 PUT_MODE (e, GET_MODE (mem));
2423 else
2424 #endif
2425 XEXP (i, 0) = mem;
2427 return;
2431 if (pbi->mem_set_list_len < MAX_MEM_SET_LIST_LEN)
2433 #ifdef AUTO_INC_DEC
2434 /* Store a copy of mem, otherwise the address may be
2435 scrogged by find_auto_inc. */
2436 if (pbi->flags & PROP_AUTOINC)
2437 mem = shallow_copy_rtx (mem);
2438 #endif
2439 pbi->mem_set_list = alloc_EXPR_LIST (0, mem, pbi->mem_set_list);
2440 pbi->mem_set_list_len++;
2444 /* INSN references memory, possibly using autoincrement addressing modes.
2445 Find any entries on the mem_set_list that need to be invalidated due
2446 to an address change. */
2448 static int
2449 invalidate_mems_from_autoinc (px, data)
2450 rtx *px;
2451 void *data;
2453 rtx x = *px;
2454 struct propagate_block_info *pbi = data;
2456 if (GET_RTX_CLASS (GET_CODE (x)) == 'a')
2458 invalidate_mems_from_set (pbi, XEXP (x, 0));
2459 return -1;
2462 return 0;
2465 /* EXP is a REG. Remove any dependent entries from pbi->mem_set_list. */
2467 static void
2468 invalidate_mems_from_set (pbi, exp)
2469 struct propagate_block_info *pbi;
2470 rtx exp;
2472 rtx temp = pbi->mem_set_list;
2473 rtx prev = NULL_RTX;
2474 rtx next;
2476 while (temp)
2478 next = XEXP (temp, 1);
2479 if (reg_overlap_mentioned_p (exp, XEXP (temp, 0)))
2481 /* Splice this entry out of the list. */
2482 if (prev)
2483 XEXP (prev, 1) = next;
2484 else
2485 pbi->mem_set_list = next;
2486 free_EXPR_LIST_node (temp);
2487 pbi->mem_set_list_len--;
2489 else
2490 prev = temp;
2491 temp = next;
2495 /* Process the registers that are set within X. Their bits are set to
2496 1 in the regset DEAD, because they are dead prior to this insn.
2498 If INSN is nonzero, it is the insn being processed.
2500 FLAGS is the set of operations to perform. */
2502 static void
2503 mark_set_regs (pbi, x, insn)
2504 struct propagate_block_info *pbi;
2505 rtx x, insn;
2507 rtx cond = NULL_RTX;
2508 rtx link;
2509 enum rtx_code code;
2511 if (insn)
2512 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2514 if (REG_NOTE_KIND (link) == REG_INC)
2515 mark_set_1 (pbi, SET, XEXP (link, 0),
2516 (GET_CODE (x) == COND_EXEC
2517 ? COND_EXEC_TEST (x) : NULL_RTX),
2518 insn, pbi->flags);
2520 retry:
2521 switch (code = GET_CODE (x))
2523 case SET:
2524 case CLOBBER:
2525 mark_set_1 (pbi, code, SET_DEST (x), cond, insn, pbi->flags);
2526 return;
2528 case COND_EXEC:
2529 cond = COND_EXEC_TEST (x);
2530 x = COND_EXEC_CODE (x);
2531 goto retry;
2533 case PARALLEL:
2535 int i;
2537 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
2539 rtx sub = XVECEXP (x, 0, i);
2540 switch (code = GET_CODE (sub))
2542 case COND_EXEC:
2543 if (cond != NULL_RTX)
2544 abort ();
2546 cond = COND_EXEC_TEST (sub);
2547 sub = COND_EXEC_CODE (sub);
2548 if (GET_CODE (sub) != SET && GET_CODE (sub) != CLOBBER)
2549 break;
2550 /* Fall through. */
2552 case SET:
2553 case CLOBBER:
2554 mark_set_1 (pbi, code, SET_DEST (sub), cond, insn, pbi->flags);
2555 break;
2557 default:
2558 break;
2561 break;
2564 default:
2565 break;
2569 /* Process a single set, which appears in INSN. REG (which may not
2570 actually be a REG, it may also be a SUBREG, PARALLEL, etc.) is
2571 being set using the CODE (which may be SET, CLOBBER, or COND_EXEC).
2572 If the set is conditional (because it appear in a COND_EXEC), COND
2573 will be the condition. */
2575 static void
2576 mark_set_1 (pbi, code, reg, cond, insn, flags)
2577 struct propagate_block_info *pbi;
2578 enum rtx_code code;
2579 rtx reg, cond, insn;
2580 int flags;
2582 int regno_first = -1, regno_last = -1;
2583 unsigned long not_dead = 0;
2584 int i;
2586 /* Modifying just one hardware register of a multi-reg value or just a
2587 byte field of a register does not mean the value from before this insn
2588 is now dead. Of course, if it was dead after it's unused now. */
2590 switch (GET_CODE (reg))
2592 case PARALLEL:
2593 /* Some targets place small structures in registers for return values of
2594 functions. We have to detect this case specially here to get correct
2595 flow information. */
2596 for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
2597 if (XEXP (XVECEXP (reg, 0, i), 0) != 0)
2598 mark_set_1 (pbi, code, XEXP (XVECEXP (reg, 0, i), 0), cond, insn,
2599 flags);
2600 return;
2602 case ZERO_EXTRACT:
2603 case SIGN_EXTRACT:
2604 case STRICT_LOW_PART:
2605 /* ??? Assumes STRICT_LOW_PART not used on multi-word registers. */
2607 reg = XEXP (reg, 0);
2608 while (GET_CODE (reg) == SUBREG
2609 || GET_CODE (reg) == ZERO_EXTRACT
2610 || GET_CODE (reg) == SIGN_EXTRACT
2611 || GET_CODE (reg) == STRICT_LOW_PART);
2612 if (GET_CODE (reg) == MEM)
2613 break;
2614 not_dead = (unsigned long) REGNO_REG_SET_P (pbi->reg_live, REGNO (reg));
2615 /* Fall through. */
2617 case REG:
2618 regno_last = regno_first = REGNO (reg);
2619 if (regno_first < FIRST_PSEUDO_REGISTER)
2620 regno_last += HARD_REGNO_NREGS (regno_first, GET_MODE (reg)) - 1;
2621 break;
2623 case SUBREG:
2624 if (GET_CODE (SUBREG_REG (reg)) == REG)
2626 enum machine_mode outer_mode = GET_MODE (reg);
2627 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (reg));
2629 /* Identify the range of registers affected. This is moderately
2630 tricky for hard registers. See alter_subreg. */
2632 regno_last = regno_first = REGNO (SUBREG_REG (reg));
2633 if (regno_first < FIRST_PSEUDO_REGISTER)
2635 regno_first += subreg_regno_offset (regno_first, inner_mode,
2636 SUBREG_BYTE (reg),
2637 outer_mode);
2638 regno_last = (regno_first
2639 + HARD_REGNO_NREGS (regno_first, outer_mode) - 1);
2641 /* Since we've just adjusted the register number ranges, make
2642 sure REG matches. Otherwise some_was_live will be clear
2643 when it shouldn't have been, and we'll create incorrect
2644 REG_UNUSED notes. */
2645 reg = gen_rtx_REG (outer_mode, regno_first);
2647 else
2649 /* If the number of words in the subreg is less than the number
2650 of words in the full register, we have a well-defined partial
2651 set. Otherwise the high bits are undefined.
2653 This is only really applicable to pseudos, since we just took
2654 care of multi-word hard registers. */
2655 if (((GET_MODE_SIZE (outer_mode)
2656 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
2657 < ((GET_MODE_SIZE (inner_mode)
2658 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
2659 not_dead = (unsigned long) REGNO_REG_SET_P (pbi->reg_live,
2660 regno_first);
2662 reg = SUBREG_REG (reg);
2665 else
2666 reg = SUBREG_REG (reg);
2667 break;
2669 default:
2670 break;
2673 /* If this set is a MEM, then it kills any aliased writes.
2674 If this set is a REG, then it kills any MEMs which use the reg. */
2675 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
2677 if (GET_CODE (reg) == REG)
2678 invalidate_mems_from_set (pbi, reg);
2680 /* If the memory reference had embedded side effects (autoincrement
2681 address modes. Then we may need to kill some entries on the
2682 memory set list. */
2683 if (insn && GET_CODE (reg) == MEM)
2684 for_each_rtx (&PATTERN (insn), invalidate_mems_from_autoinc, pbi);
2686 if (GET_CODE (reg) == MEM && ! side_effects_p (reg)
2687 /* ??? With more effort we could track conditional memory life. */
2688 && ! cond)
2689 add_to_mem_set_list (pbi, canon_rtx (reg));
2692 if (GET_CODE (reg) == REG
2693 && ! (regno_first == FRAME_POINTER_REGNUM
2694 && (! reload_completed || frame_pointer_needed))
2695 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2696 && ! (regno_first == HARD_FRAME_POINTER_REGNUM
2697 && (! reload_completed || frame_pointer_needed))
2698 #endif
2699 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2700 && ! (regno_first == ARG_POINTER_REGNUM && fixed_regs[regno_first])
2701 #endif
2704 int some_was_live = 0, some_was_dead = 0;
2706 for (i = regno_first; i <= regno_last; ++i)
2708 int needed_regno = REGNO_REG_SET_P (pbi->reg_live, i);
2709 if (pbi->local_set)
2711 /* Order of the set operation matters here since both
2712 sets may be the same. */
2713 CLEAR_REGNO_REG_SET (pbi->cond_local_set, i);
2714 if (cond != NULL_RTX
2715 && ! REGNO_REG_SET_P (pbi->local_set, i))
2716 SET_REGNO_REG_SET (pbi->cond_local_set, i);
2717 else
2718 SET_REGNO_REG_SET (pbi->local_set, i);
2720 if (code != CLOBBER)
2721 SET_REGNO_REG_SET (pbi->new_set, i);
2723 some_was_live |= needed_regno;
2724 some_was_dead |= ! needed_regno;
2727 #ifdef HAVE_conditional_execution
2728 /* Consider conditional death in deciding that the register needs
2729 a death note. */
2730 if (some_was_live && ! not_dead
2731 /* The stack pointer is never dead. Well, not strictly true,
2732 but it's very difficult to tell from here. Hopefully
2733 combine_stack_adjustments will fix up the most egregious
2734 errors. */
2735 && regno_first != STACK_POINTER_REGNUM)
2737 for (i = regno_first; i <= regno_last; ++i)
2738 if (! mark_regno_cond_dead (pbi, i, cond))
2739 not_dead |= ((unsigned long) 1) << (i - regno_first);
2741 #endif
2743 /* Additional data to record if this is the final pass. */
2744 if (flags & (PROP_LOG_LINKS | PROP_REG_INFO
2745 | PROP_DEATH_NOTES | PROP_AUTOINC))
2747 rtx y;
2748 int blocknum = pbi->bb->index;
2750 y = NULL_RTX;
2751 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
2753 y = pbi->reg_next_use[regno_first];
2755 /* The next use is no longer next, since a store intervenes. */
2756 for (i = regno_first; i <= regno_last; ++i)
2757 pbi->reg_next_use[i] = 0;
2760 if (flags & PROP_REG_INFO)
2762 for (i = regno_first; i <= regno_last; ++i)
2764 /* Count (weighted) references, stores, etc. This counts a
2765 register twice if it is modified, but that is correct. */
2766 REG_N_SETS (i) += 1;
2767 REG_N_REFS (i) += 1;
2768 REG_FREQ (i) += REG_FREQ_FROM_BB (pbi->bb);
2770 /* The insns where a reg is live are normally counted
2771 elsewhere, but we want the count to include the insn
2772 where the reg is set, and the normal counting mechanism
2773 would not count it. */
2774 REG_LIVE_LENGTH (i) += 1;
2777 /* If this is a hard reg, record this function uses the reg. */
2778 if (regno_first < FIRST_PSEUDO_REGISTER)
2780 for (i = regno_first; i <= regno_last; i++)
2781 regs_ever_live[i] = 1;
2783 else
2785 /* Keep track of which basic blocks each reg appears in. */
2786 if (REG_BASIC_BLOCK (regno_first) == REG_BLOCK_UNKNOWN)
2787 REG_BASIC_BLOCK (regno_first) = blocknum;
2788 else if (REG_BASIC_BLOCK (regno_first) != blocknum)
2789 REG_BASIC_BLOCK (regno_first) = REG_BLOCK_GLOBAL;
2793 if (! some_was_dead)
2795 if (flags & PROP_LOG_LINKS)
2797 /* Make a logical link from the next following insn
2798 that uses this register, back to this insn.
2799 The following insns have already been processed.
2801 We don't build a LOG_LINK for hard registers containing
2802 in ASM_OPERANDs. If these registers get replaced,
2803 we might wind up changing the semantics of the insn,
2804 even if reload can make what appear to be valid
2805 assignments later. */
2806 if (y && (BLOCK_NUM (y) == blocknum)
2807 && (regno_first >= FIRST_PSEUDO_REGISTER
2808 || asm_noperands (PATTERN (y)) < 0))
2809 LOG_LINKS (y) = alloc_INSN_LIST (insn, LOG_LINKS (y));
2812 else if (not_dead)
2814 else if (! some_was_live)
2816 if (flags & PROP_REG_INFO)
2817 REG_N_DEATHS (regno_first) += 1;
2819 if (flags & PROP_DEATH_NOTES)
2821 /* Note that dead stores have already been deleted
2822 when possible. If we get here, we have found a
2823 dead store that cannot be eliminated (because the
2824 same insn does something useful). Indicate this
2825 by marking the reg being set as dying here. */
2826 REG_NOTES (insn)
2827 = alloc_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
2830 else
2832 if (flags & PROP_DEATH_NOTES)
2834 /* This is a case where we have a multi-word hard register
2835 and some, but not all, of the words of the register are
2836 needed in subsequent insns. Write REG_UNUSED notes
2837 for those parts that were not needed. This case should
2838 be rare. */
2840 for (i = regno_first; i <= regno_last; ++i)
2841 if (! REGNO_REG_SET_P (pbi->reg_live, i))
2842 REG_NOTES (insn)
2843 = alloc_EXPR_LIST (REG_UNUSED,
2844 regno_reg_rtx[i],
2845 REG_NOTES (insn));
2850 /* Mark the register as being dead. */
2851 if (some_was_live
2852 /* The stack pointer is never dead. Well, not strictly true,
2853 but it's very difficult to tell from here. Hopefully
2854 combine_stack_adjustments will fix up the most egregious
2855 errors. */
2856 && regno_first != STACK_POINTER_REGNUM)
2858 for (i = regno_first; i <= regno_last; ++i)
2859 if (!(not_dead & (((unsigned long) 1) << (i - regno_first))))
2860 CLEAR_REGNO_REG_SET (pbi->reg_live, i);
2863 else if (GET_CODE (reg) == REG)
2865 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
2866 pbi->reg_next_use[regno_first] = 0;
2869 /* If this is the last pass and this is a SCRATCH, show it will be dying
2870 here and count it. */
2871 else if (GET_CODE (reg) == SCRATCH)
2873 if (flags & PROP_DEATH_NOTES)
2874 REG_NOTES (insn)
2875 = alloc_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
2879 #ifdef HAVE_conditional_execution
2880 /* Mark REGNO conditionally dead.
2881 Return true if the register is now unconditionally dead. */
2883 static int
2884 mark_regno_cond_dead (pbi, regno, cond)
2885 struct propagate_block_info *pbi;
2886 int regno;
2887 rtx cond;
2889 /* If this is a store to a predicate register, the value of the
2890 predicate is changing, we don't know that the predicate as seen
2891 before is the same as that seen after. Flush all dependent
2892 conditions from reg_cond_dead. This will make all such
2893 conditionally live registers unconditionally live. */
2894 if (REGNO_REG_SET_P (pbi->reg_cond_reg, regno))
2895 flush_reg_cond_reg (pbi, regno);
2897 /* If this is an unconditional store, remove any conditional
2898 life that may have existed. */
2899 if (cond == NULL_RTX)
2900 splay_tree_remove (pbi->reg_cond_dead, regno);
2901 else
2903 splay_tree_node node;
2904 struct reg_cond_life_info *rcli;
2905 rtx ncond;
2907 /* Otherwise this is a conditional set. Record that fact.
2908 It may have been conditionally used, or there may be a
2909 subsequent set with a complimentary condition. */
2911 node = splay_tree_lookup (pbi->reg_cond_dead, regno);
2912 if (node == NULL)
2914 /* The register was unconditionally live previously.
2915 Record the current condition as the condition under
2916 which it is dead. */
2917 rcli = (struct reg_cond_life_info *) xmalloc (sizeof (*rcli));
2918 rcli->condition = cond;
2919 rcli->stores = cond;
2920 rcli->orig_condition = const0_rtx;
2921 splay_tree_insert (pbi->reg_cond_dead, regno,
2922 (splay_tree_value) rcli);
2924 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
2926 /* Not unconditionally dead. */
2927 return 0;
2929 else
2931 /* The register was conditionally live previously.
2932 Add the new condition to the old. */
2933 rcli = (struct reg_cond_life_info *) node->value;
2934 ncond = rcli->condition;
2935 ncond = ior_reg_cond (ncond, cond, 1);
2936 if (rcli->stores == const0_rtx)
2937 rcli->stores = cond;
2938 else if (rcli->stores != const1_rtx)
2939 rcli->stores = ior_reg_cond (rcli->stores, cond, 1);
2941 /* If the register is now unconditionally dead, remove the entry
2942 in the splay_tree. A register is unconditionally dead if the
2943 dead condition ncond is true. A register is also unconditionally
2944 dead if the sum of all conditional stores is an unconditional
2945 store (stores is true), and the dead condition is identically the
2946 same as the original dead condition initialized at the end of
2947 the block. This is a pointer compare, not an rtx_equal_p
2948 compare. */
2949 if (ncond == const1_rtx
2950 || (ncond == rcli->orig_condition && rcli->stores == const1_rtx))
2951 splay_tree_remove (pbi->reg_cond_dead, regno);
2952 else
2954 rcli->condition = ncond;
2956 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
2958 /* Not unconditionally dead. */
2959 return 0;
2964 return 1;
2967 /* Called from splay_tree_delete for pbi->reg_cond_life. */
2969 static void
2970 free_reg_cond_life_info (value)
2971 splay_tree_value value;
2973 struct reg_cond_life_info *rcli = (struct reg_cond_life_info *) value;
2974 free (rcli);
2977 /* Helper function for flush_reg_cond_reg. */
2979 static int
2980 flush_reg_cond_reg_1 (node, data)
2981 splay_tree_node node;
2982 void *data;
2984 struct reg_cond_life_info *rcli;
2985 int *xdata = (int *) data;
2986 unsigned int regno = xdata[0];
2988 /* Don't need to search if last flushed value was farther on in
2989 the in-order traversal. */
2990 if (xdata[1] >= (int) node->key)
2991 return 0;
2993 /* Splice out portions of the expression that refer to regno. */
2994 rcli = (struct reg_cond_life_info *) node->value;
2995 rcli->condition = elim_reg_cond (rcli->condition, regno);
2996 if (rcli->stores != const0_rtx && rcli->stores != const1_rtx)
2997 rcli->stores = elim_reg_cond (rcli->stores, regno);
2999 /* If the entire condition is now false, signal the node to be removed. */
3000 if (rcli->condition == const0_rtx)
3002 xdata[1] = node->key;
3003 return -1;
3005 else if (rcli->condition == const1_rtx)
3006 abort ();
3008 return 0;
3011 /* Flush all (sub) expressions referring to REGNO from REG_COND_LIVE. */
3013 static void
3014 flush_reg_cond_reg (pbi, regno)
3015 struct propagate_block_info *pbi;
3016 int regno;
3018 int pair[2];
3020 pair[0] = regno;
3021 pair[1] = -1;
3022 while (splay_tree_foreach (pbi->reg_cond_dead,
3023 flush_reg_cond_reg_1, pair) == -1)
3024 splay_tree_remove (pbi->reg_cond_dead, pair[1]);
3026 CLEAR_REGNO_REG_SET (pbi->reg_cond_reg, regno);
3029 /* Logical arithmetic on predicate conditions. IOR, NOT and AND.
3030 For ior/and, the ADD flag determines whether we want to add the new
3031 condition X to the old one unconditionally. If it is zero, we will
3032 only return a new expression if X allows us to simplify part of
3033 OLD, otherwise we return NULL to the caller.
3034 If ADD is nonzero, we will return a new condition in all cases. The
3035 toplevel caller of one of these functions should always pass 1 for
3036 ADD. */
3038 static rtx
3039 ior_reg_cond (old, x, add)
3040 rtx old, x;
3041 int add;
3043 rtx op0, op1;
3045 if (GET_RTX_CLASS (GET_CODE (old)) == '<')
3047 if (GET_RTX_CLASS (GET_CODE (x)) == '<'
3048 && REVERSE_CONDEXEC_PREDICATES_P (GET_CODE (x), GET_CODE (old))
3049 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3050 return const1_rtx;
3051 if (GET_CODE (x) == GET_CODE (old)
3052 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3053 return old;
3054 if (! add)
3055 return NULL;
3056 return gen_rtx_IOR (0, old, x);
3059 switch (GET_CODE (old))
3061 case IOR:
3062 op0 = ior_reg_cond (XEXP (old, 0), x, 0);
3063 op1 = ior_reg_cond (XEXP (old, 1), x, 0);
3064 if (op0 != NULL || op1 != NULL)
3066 if (op0 == const0_rtx)
3067 return op1 ? op1 : gen_rtx_IOR (0, XEXP (old, 1), x);
3068 if (op1 == const0_rtx)
3069 return op0 ? op0 : gen_rtx_IOR (0, XEXP (old, 0), x);
3070 if (op0 == const1_rtx || op1 == const1_rtx)
3071 return const1_rtx;
3072 if (op0 == NULL)
3073 op0 = gen_rtx_IOR (0, XEXP (old, 0), x);
3074 else if (rtx_equal_p (x, op0))
3075 /* (x | A) | x ~ (x | A). */
3076 return old;
3077 if (op1 == NULL)
3078 op1 = gen_rtx_IOR (0, XEXP (old, 1), x);
3079 else if (rtx_equal_p (x, op1))
3080 /* (A | x) | x ~ (A | x). */
3081 return old;
3082 return gen_rtx_IOR (0, op0, op1);
3084 if (! add)
3085 return NULL;
3086 return gen_rtx_IOR (0, old, x);
3088 case AND:
3089 op0 = ior_reg_cond (XEXP (old, 0), x, 0);
3090 op1 = ior_reg_cond (XEXP (old, 1), x, 0);
3091 if (op0 != NULL || op1 != NULL)
3093 if (op0 == const1_rtx)
3094 return op1 ? op1 : gen_rtx_IOR (0, XEXP (old, 1), x);
3095 if (op1 == const1_rtx)
3096 return op0 ? op0 : gen_rtx_IOR (0, XEXP (old, 0), x);
3097 if (op0 == const0_rtx || op1 == const0_rtx)
3098 return const0_rtx;
3099 if (op0 == NULL)
3100 op0 = gen_rtx_IOR (0, XEXP (old, 0), x);
3101 else if (rtx_equal_p (x, op0))
3102 /* (x & A) | x ~ x. */
3103 return op0;
3104 if (op1 == NULL)
3105 op1 = gen_rtx_IOR (0, XEXP (old, 1), x);
3106 else if (rtx_equal_p (x, op1))
3107 /* (A & x) | x ~ x. */
3108 return op1;
3109 return gen_rtx_AND (0, op0, op1);
3111 if (! add)
3112 return NULL;
3113 return gen_rtx_IOR (0, old, x);
3115 case NOT:
3116 op0 = and_reg_cond (XEXP (old, 0), not_reg_cond (x), 0);
3117 if (op0 != NULL)
3118 return not_reg_cond (op0);
3119 if (! add)
3120 return NULL;
3121 return gen_rtx_IOR (0, old, x);
3123 default:
3124 abort ();
3128 static rtx
3129 not_reg_cond (x)
3130 rtx x;
3132 enum rtx_code x_code;
3134 if (x == const0_rtx)
3135 return const1_rtx;
3136 else if (x == const1_rtx)
3137 return const0_rtx;
3138 x_code = GET_CODE (x);
3139 if (x_code == NOT)
3140 return XEXP (x, 0);
3141 if (GET_RTX_CLASS (x_code) == '<'
3142 && GET_CODE (XEXP (x, 0)) == REG)
3144 if (XEXP (x, 1) != const0_rtx)
3145 abort ();
3147 return gen_rtx_fmt_ee (reverse_condition (x_code),
3148 VOIDmode, XEXP (x, 0), const0_rtx);
3150 return gen_rtx_NOT (0, x);
3153 static rtx
3154 and_reg_cond (old, x, add)
3155 rtx old, x;
3156 int add;
3158 rtx op0, op1;
3160 if (GET_RTX_CLASS (GET_CODE (old)) == '<')
3162 if (GET_RTX_CLASS (GET_CODE (x)) == '<'
3163 && GET_CODE (x) == reverse_condition (GET_CODE (old))
3164 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3165 return const0_rtx;
3166 if (GET_CODE (x) == GET_CODE (old)
3167 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3168 return old;
3169 if (! add)
3170 return NULL;
3171 return gen_rtx_AND (0, old, x);
3174 switch (GET_CODE (old))
3176 case IOR:
3177 op0 = and_reg_cond (XEXP (old, 0), x, 0);
3178 op1 = and_reg_cond (XEXP (old, 1), x, 0);
3179 if (op0 != NULL || op1 != NULL)
3181 if (op0 == const0_rtx)
3182 return op1 ? op1 : gen_rtx_AND (0, XEXP (old, 1), x);
3183 if (op1 == const0_rtx)
3184 return op0 ? op0 : gen_rtx_AND (0, XEXP (old, 0), x);
3185 if (op0 == const1_rtx || op1 == const1_rtx)
3186 return const1_rtx;
3187 if (op0 == NULL)
3188 op0 = gen_rtx_AND (0, XEXP (old, 0), x);
3189 else if (rtx_equal_p (x, op0))
3190 /* (x | A) & x ~ x. */
3191 return op0;
3192 if (op1 == NULL)
3193 op1 = gen_rtx_AND (0, XEXP (old, 1), x);
3194 else if (rtx_equal_p (x, op1))
3195 /* (A | x) & x ~ x. */
3196 return op1;
3197 return gen_rtx_IOR (0, op0, op1);
3199 if (! add)
3200 return NULL;
3201 return gen_rtx_AND (0, old, x);
3203 case AND:
3204 op0 = and_reg_cond (XEXP (old, 0), x, 0);
3205 op1 = and_reg_cond (XEXP (old, 1), x, 0);
3206 if (op0 != NULL || op1 != NULL)
3208 if (op0 == const1_rtx)
3209 return op1 ? op1 : gen_rtx_AND (0, XEXP (old, 1), x);
3210 if (op1 == const1_rtx)
3211 return op0 ? op0 : gen_rtx_AND (0, XEXP (old, 0), x);
3212 if (op0 == const0_rtx || op1 == const0_rtx)
3213 return const0_rtx;
3214 if (op0 == NULL)
3215 op0 = gen_rtx_AND (0, XEXP (old, 0), x);
3216 else if (rtx_equal_p (x, op0))
3217 /* (x & A) & x ~ (x & A). */
3218 return old;
3219 if (op1 == NULL)
3220 op1 = gen_rtx_AND (0, XEXP (old, 1), x);
3221 else if (rtx_equal_p (x, op1))
3222 /* (A & x) & x ~ (A & x). */
3223 return old;
3224 return gen_rtx_AND (0, op0, op1);
3226 if (! add)
3227 return NULL;
3228 return gen_rtx_AND (0, old, x);
3230 case NOT:
3231 op0 = ior_reg_cond (XEXP (old, 0), not_reg_cond (x), 0);
3232 if (op0 != NULL)
3233 return not_reg_cond (op0);
3234 if (! add)
3235 return NULL;
3236 return gen_rtx_AND (0, old, x);
3238 default:
3239 abort ();
3243 /* Given a condition X, remove references to reg REGNO and return the
3244 new condition. The removal will be done so that all conditions
3245 involving REGNO are considered to evaluate to false. This function
3246 is used when the value of REGNO changes. */
3248 static rtx
3249 elim_reg_cond (x, regno)
3250 rtx x;
3251 unsigned int regno;
3253 rtx op0, op1;
3255 if (GET_RTX_CLASS (GET_CODE (x)) == '<')
3257 if (REGNO (XEXP (x, 0)) == regno)
3258 return const0_rtx;
3259 return x;
3262 switch (GET_CODE (x))
3264 case AND:
3265 op0 = elim_reg_cond (XEXP (x, 0), regno);
3266 op1 = elim_reg_cond (XEXP (x, 1), regno);
3267 if (op0 == const0_rtx || op1 == const0_rtx)
3268 return const0_rtx;
3269 if (op0 == const1_rtx)
3270 return op1;
3271 if (op1 == const1_rtx)
3272 return op0;
3273 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
3274 return x;
3275 return gen_rtx_AND (0, op0, op1);
3277 case IOR:
3278 op0 = elim_reg_cond (XEXP (x, 0), regno);
3279 op1 = elim_reg_cond (XEXP (x, 1), regno);
3280 if (op0 == const1_rtx || op1 == const1_rtx)
3281 return const1_rtx;
3282 if (op0 == const0_rtx)
3283 return op1;
3284 if (op1 == const0_rtx)
3285 return op0;
3286 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
3287 return x;
3288 return gen_rtx_IOR (0, op0, op1);
3290 case NOT:
3291 op0 = elim_reg_cond (XEXP (x, 0), regno);
3292 if (op0 == const0_rtx)
3293 return const1_rtx;
3294 if (op0 == const1_rtx)
3295 return const0_rtx;
3296 if (op0 != XEXP (x, 0))
3297 return not_reg_cond (op0);
3298 return x;
3300 default:
3301 abort ();
3304 #endif /* HAVE_conditional_execution */
3306 #ifdef AUTO_INC_DEC
3308 /* Try to substitute the auto-inc expression INC as the address inside
3309 MEM which occurs in INSN. Currently, the address of MEM is an expression
3310 involving INCR_REG, and INCR is the next use of INCR_REG; it is an insn
3311 that has a single set whose source is a PLUS of INCR_REG and something
3312 else. */
3314 static void
3315 attempt_auto_inc (pbi, inc, insn, mem, incr, incr_reg)
3316 struct propagate_block_info *pbi;
3317 rtx inc, insn, mem, incr, incr_reg;
3319 int regno = REGNO (incr_reg);
3320 rtx set = single_set (incr);
3321 rtx q = SET_DEST (set);
3322 rtx y = SET_SRC (set);
3323 int opnum = XEXP (y, 0) == incr_reg ? 0 : 1;
3325 /* Make sure this reg appears only once in this insn. */
3326 if (count_occurrences (PATTERN (insn), incr_reg, 1) != 1)
3327 return;
3329 if (dead_or_set_p (incr, incr_reg)
3330 /* Mustn't autoinc an eliminable register. */
3331 && (regno >= FIRST_PSEUDO_REGISTER
3332 || ! TEST_HARD_REG_BIT (elim_reg_set, regno)))
3334 /* This is the simple case. Try to make the auto-inc. If
3335 we can't, we are done. Otherwise, we will do any
3336 needed updates below. */
3337 if (! validate_change (insn, &XEXP (mem, 0), inc, 0))
3338 return;
3340 else if (GET_CODE (q) == REG
3341 /* PREV_INSN used here to check the semi-open interval
3342 [insn,incr). */
3343 && ! reg_used_between_p (q, PREV_INSN (insn), incr)
3344 /* We must also check for sets of q as q may be
3345 a call clobbered hard register and there may
3346 be a call between PREV_INSN (insn) and incr. */
3347 && ! reg_set_between_p (q, PREV_INSN (insn), incr))
3349 /* We have *p followed sometime later by q = p+size.
3350 Both p and q must be live afterward,
3351 and q is not used between INSN and its assignment.
3352 Change it to q = p, ...*q..., q = q+size.
3353 Then fall into the usual case. */
3354 rtx insns, temp;
3356 start_sequence ();
3357 emit_move_insn (q, incr_reg);
3358 insns = get_insns ();
3359 end_sequence ();
3361 /* If we can't make the auto-inc, or can't make the
3362 replacement into Y, exit. There's no point in making
3363 the change below if we can't do the auto-inc and doing
3364 so is not correct in the pre-inc case. */
3366 XEXP (inc, 0) = q;
3367 validate_change (insn, &XEXP (mem, 0), inc, 1);
3368 validate_change (incr, &XEXP (y, opnum), q, 1);
3369 if (! apply_change_group ())
3370 return;
3372 /* We now know we'll be doing this change, so emit the
3373 new insn(s) and do the updates. */
3374 emit_insn_before (insns, insn);
3376 if (pbi->bb->head == insn)
3377 pbi->bb->head = insns;
3379 /* INCR will become a NOTE and INSN won't contain a
3380 use of INCR_REG. If a use of INCR_REG was just placed in
3381 the insn before INSN, make that the next use.
3382 Otherwise, invalidate it. */
3383 if (GET_CODE (PREV_INSN (insn)) == INSN
3384 && GET_CODE (PATTERN (PREV_INSN (insn))) == SET
3385 && SET_SRC (PATTERN (PREV_INSN (insn))) == incr_reg)
3386 pbi->reg_next_use[regno] = PREV_INSN (insn);
3387 else
3388 pbi->reg_next_use[regno] = 0;
3390 incr_reg = q;
3391 regno = REGNO (q);
3393 /* REGNO is now used in INCR which is below INSN, but
3394 it previously wasn't live here. If we don't mark
3395 it as live, we'll put a REG_DEAD note for it
3396 on this insn, which is incorrect. */
3397 SET_REGNO_REG_SET (pbi->reg_live, regno);
3399 /* If there are any calls between INSN and INCR, show
3400 that REGNO now crosses them. */
3401 for (temp = insn; temp != incr; temp = NEXT_INSN (temp))
3402 if (GET_CODE (temp) == CALL_INSN)
3403 REG_N_CALLS_CROSSED (regno)++;
3405 /* Invalidate alias info for Q since we just changed its value. */
3406 clear_reg_alias_info (q);
3408 else
3409 return;
3411 /* If we haven't returned, it means we were able to make the
3412 auto-inc, so update the status. First, record that this insn
3413 has an implicit side effect. */
3415 REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, incr_reg, REG_NOTES (insn));
3417 /* Modify the old increment-insn to simply copy
3418 the already-incremented value of our register. */
3419 if (! validate_change (incr, &SET_SRC (set), incr_reg, 0))
3420 abort ();
3422 /* If that makes it a no-op (copying the register into itself) delete
3423 it so it won't appear to be a "use" and a "set" of this
3424 register. */
3425 if (REGNO (SET_DEST (set)) == REGNO (incr_reg))
3427 /* If the original source was dead, it's dead now. */
3428 rtx note;
3430 while ((note = find_reg_note (incr, REG_DEAD, NULL_RTX)) != NULL_RTX)
3432 remove_note (incr, note);
3433 if (XEXP (note, 0) != incr_reg)
3434 CLEAR_REGNO_REG_SET (pbi->reg_live, REGNO (XEXP (note, 0)));
3437 PUT_CODE (incr, NOTE);
3438 NOTE_LINE_NUMBER (incr) = NOTE_INSN_DELETED;
3439 NOTE_SOURCE_FILE (incr) = 0;
3442 if (regno >= FIRST_PSEUDO_REGISTER)
3444 /* Count an extra reference to the reg. When a reg is
3445 incremented, spilling it is worse, so we want to make
3446 that less likely. */
3447 REG_FREQ (regno) += REG_FREQ_FROM_BB (pbi->bb);
3449 /* Count the increment as a setting of the register,
3450 even though it isn't a SET in rtl. */
3451 REG_N_SETS (regno)++;
3455 /* X is a MEM found in INSN. See if we can convert it into an auto-increment
3456 reference. */
3458 static void
3459 find_auto_inc (pbi, x, insn)
3460 struct propagate_block_info *pbi;
3461 rtx x;
3462 rtx insn;
3464 rtx addr = XEXP (x, 0);
3465 HOST_WIDE_INT offset = 0;
3466 rtx set, y, incr, inc_val;
3467 int regno;
3468 int size = GET_MODE_SIZE (GET_MODE (x));
3470 if (GET_CODE (insn) == JUMP_INSN)
3471 return;
3473 /* Here we detect use of an index register which might be good for
3474 postincrement, postdecrement, preincrement, or predecrement. */
3476 if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
3477 offset = INTVAL (XEXP (addr, 1)), addr = XEXP (addr, 0);
3479 if (GET_CODE (addr) != REG)
3480 return;
3482 regno = REGNO (addr);
3484 /* Is the next use an increment that might make auto-increment? */
3485 incr = pbi->reg_next_use[regno];
3486 if (incr == 0 || BLOCK_NUM (incr) != BLOCK_NUM (insn))
3487 return;
3488 set = single_set (incr);
3489 if (set == 0 || GET_CODE (set) != SET)
3490 return;
3491 y = SET_SRC (set);
3493 if (GET_CODE (y) != PLUS)
3494 return;
3496 if (REG_P (XEXP (y, 0)) && REGNO (XEXP (y, 0)) == REGNO (addr))
3497 inc_val = XEXP (y, 1);
3498 else if (REG_P (XEXP (y, 1)) && REGNO (XEXP (y, 1)) == REGNO (addr))
3499 inc_val = XEXP (y, 0);
3500 else
3501 return;
3503 if (GET_CODE (inc_val) == CONST_INT)
3505 if (HAVE_POST_INCREMENT
3506 && (INTVAL (inc_val) == size && offset == 0))
3507 attempt_auto_inc (pbi, gen_rtx_POST_INC (Pmode, addr), insn, x,
3508 incr, addr);
3509 else if (HAVE_POST_DECREMENT
3510 && (INTVAL (inc_val) == -size && offset == 0))
3511 attempt_auto_inc (pbi, gen_rtx_POST_DEC (Pmode, addr), insn, x,
3512 incr, addr);
3513 else if (HAVE_PRE_INCREMENT
3514 && (INTVAL (inc_val) == size && offset == size))
3515 attempt_auto_inc (pbi, gen_rtx_PRE_INC (Pmode, addr), insn, x,
3516 incr, addr);
3517 else if (HAVE_PRE_DECREMENT
3518 && (INTVAL (inc_val) == -size && offset == -size))
3519 attempt_auto_inc (pbi, gen_rtx_PRE_DEC (Pmode, addr), insn, x,
3520 incr, addr);
3521 else if (HAVE_POST_MODIFY_DISP && offset == 0)
3522 attempt_auto_inc (pbi, gen_rtx_POST_MODIFY (Pmode, addr,
3523 gen_rtx_PLUS (Pmode,
3524 addr,
3525 inc_val)),
3526 insn, x, incr, addr);
3528 else if (GET_CODE (inc_val) == REG
3529 && ! reg_set_between_p (inc_val, PREV_INSN (insn),
3530 NEXT_INSN (incr)))
3533 if (HAVE_POST_MODIFY_REG && offset == 0)
3534 attempt_auto_inc (pbi, gen_rtx_POST_MODIFY (Pmode, addr,
3535 gen_rtx_PLUS (Pmode,
3536 addr,
3537 inc_val)),
3538 insn, x, incr, addr);
3542 #endif /* AUTO_INC_DEC */
3544 static void
3545 mark_used_reg (pbi, reg, cond, insn)
3546 struct propagate_block_info *pbi;
3547 rtx reg;
3548 rtx cond ATTRIBUTE_UNUSED;
3549 rtx insn;
3551 unsigned int regno_first, regno_last, i;
3552 int some_was_live, some_was_dead, some_not_set;
3554 regno_last = regno_first = REGNO (reg);
3555 if (regno_first < FIRST_PSEUDO_REGISTER)
3556 regno_last += HARD_REGNO_NREGS (regno_first, GET_MODE (reg)) - 1;
3558 /* Find out if any of this register is live after this instruction. */
3559 some_was_live = some_was_dead = 0;
3560 for (i = regno_first; i <= regno_last; ++i)
3562 int needed_regno = REGNO_REG_SET_P (pbi->reg_live, i);
3563 some_was_live |= needed_regno;
3564 some_was_dead |= ! needed_regno;
3567 /* Find out if any of the register was set this insn. */
3568 some_not_set = 0;
3569 for (i = regno_first; i <= regno_last; ++i)
3570 some_not_set |= ! REGNO_REG_SET_P (pbi->new_set, i);
3572 if (pbi->flags & (PROP_LOG_LINKS | PROP_AUTOINC))
3574 /* Record where each reg is used, so when the reg is set we know
3575 the next insn that uses it. */
3576 pbi->reg_next_use[regno_first] = insn;
3579 if (pbi->flags & PROP_REG_INFO)
3581 if (regno_first < FIRST_PSEUDO_REGISTER)
3583 /* If this is a register we are going to try to eliminate,
3584 don't mark it live here. If we are successful in
3585 eliminating it, it need not be live unless it is used for
3586 pseudos, in which case it will have been set live when it
3587 was allocated to the pseudos. If the register will not
3588 be eliminated, reload will set it live at that point.
3590 Otherwise, record that this function uses this register. */
3591 /* ??? The PPC backend tries to "eliminate" on the pic
3592 register to itself. This should be fixed. In the mean
3593 time, hack around it. */
3595 if (! (TEST_HARD_REG_BIT (elim_reg_set, regno_first)
3596 && (regno_first == FRAME_POINTER_REGNUM
3597 || regno_first == ARG_POINTER_REGNUM)))
3598 for (i = regno_first; i <= regno_last; ++i)
3599 regs_ever_live[i] = 1;
3601 else
3603 /* Keep track of which basic block each reg appears in. */
3605 int blocknum = pbi->bb->index;
3606 if (REG_BASIC_BLOCK (regno_first) == REG_BLOCK_UNKNOWN)
3607 REG_BASIC_BLOCK (regno_first) = blocknum;
3608 else if (REG_BASIC_BLOCK (regno_first) != blocknum)
3609 REG_BASIC_BLOCK (regno_first) = REG_BLOCK_GLOBAL;
3611 /* Count (weighted) number of uses of each reg. */
3612 REG_FREQ (regno_first) += REG_FREQ_FROM_BB (pbi->bb);
3613 REG_N_REFS (regno_first)++;
3617 /* Record and count the insns in which a reg dies. If it is used in
3618 this insn and was dead below the insn then it dies in this insn.
3619 If it was set in this insn, we do not make a REG_DEAD note;
3620 likewise if we already made such a note. */
3621 if ((pbi->flags & (PROP_DEATH_NOTES | PROP_REG_INFO))
3622 && some_was_dead
3623 && some_not_set)
3625 /* Check for the case where the register dying partially
3626 overlaps the register set by this insn. */
3627 if (regno_first != regno_last)
3628 for (i = regno_first; i <= regno_last; ++i)
3629 some_was_live |= REGNO_REG_SET_P (pbi->new_set, i);
3631 /* If none of the words in X is needed, make a REG_DEAD note.
3632 Otherwise, we must make partial REG_DEAD notes. */
3633 if (! some_was_live)
3635 if ((pbi->flags & PROP_DEATH_NOTES)
3636 && ! find_regno_note (insn, REG_DEAD, regno_first))
3637 REG_NOTES (insn)
3638 = alloc_EXPR_LIST (REG_DEAD, reg, REG_NOTES (insn));
3640 if (pbi->flags & PROP_REG_INFO)
3641 REG_N_DEATHS (regno_first)++;
3643 else
3645 /* Don't make a REG_DEAD note for a part of a register
3646 that is set in the insn. */
3647 for (i = regno_first; i <= regno_last; ++i)
3648 if (! REGNO_REG_SET_P (pbi->reg_live, i)
3649 && ! dead_or_set_regno_p (insn, i))
3650 REG_NOTES (insn)
3651 = alloc_EXPR_LIST (REG_DEAD,
3652 regno_reg_rtx[i],
3653 REG_NOTES (insn));
3657 /* Mark the register as being live. */
3658 for (i = regno_first; i <= regno_last; ++i)
3660 #ifdef HAVE_conditional_execution
3661 int this_was_live = REGNO_REG_SET_P (pbi->reg_live, i);
3662 #endif
3664 SET_REGNO_REG_SET (pbi->reg_live, i);
3666 #ifdef HAVE_conditional_execution
3667 /* If this is a conditional use, record that fact. If it is later
3668 conditionally set, we'll know to kill the register. */
3669 if (cond != NULL_RTX)
3671 splay_tree_node node;
3672 struct reg_cond_life_info *rcli;
3673 rtx ncond;
3675 if (this_was_live)
3677 node = splay_tree_lookup (pbi->reg_cond_dead, i);
3678 if (node == NULL)
3680 /* The register was unconditionally live previously.
3681 No need to do anything. */
3683 else
3685 /* The register was conditionally live previously.
3686 Subtract the new life cond from the old death cond. */
3687 rcli = (struct reg_cond_life_info *) node->value;
3688 ncond = rcli->condition;
3689 ncond = and_reg_cond (ncond, not_reg_cond (cond), 1);
3691 /* If the register is now unconditionally live,
3692 remove the entry in the splay_tree. */
3693 if (ncond == const0_rtx)
3694 splay_tree_remove (pbi->reg_cond_dead, i);
3695 else
3697 rcli->condition = ncond;
3698 SET_REGNO_REG_SET (pbi->reg_cond_reg,
3699 REGNO (XEXP (cond, 0)));
3703 else
3705 /* The register was not previously live at all. Record
3706 the condition under which it is still dead. */
3707 rcli = (struct reg_cond_life_info *) xmalloc (sizeof (*rcli));
3708 rcli->condition = not_reg_cond (cond);
3709 rcli->stores = const0_rtx;
3710 rcli->orig_condition = const0_rtx;
3711 splay_tree_insert (pbi->reg_cond_dead, i,
3712 (splay_tree_value) rcli);
3714 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
3717 else if (this_was_live)
3719 /* The register may have been conditionally live previously, but
3720 is now unconditionally live. Remove it from the conditionally
3721 dead list, so that a conditional set won't cause us to think
3722 it dead. */
3723 splay_tree_remove (pbi->reg_cond_dead, i);
3725 #endif
3729 /* Scan expression X and store a 1-bit in NEW_LIVE for each reg it uses.
3730 This is done assuming the registers needed from X are those that
3731 have 1-bits in PBI->REG_LIVE.
3733 INSN is the containing instruction. If INSN is dead, this function
3734 is not called. */
3736 static void
3737 mark_used_regs (pbi, x, cond, insn)
3738 struct propagate_block_info *pbi;
3739 rtx x, cond, insn;
3741 RTX_CODE code;
3742 int regno;
3743 int flags = pbi->flags;
3745 retry:
3746 if (!x)
3747 return;
3748 code = GET_CODE (x);
3749 switch (code)
3751 case LABEL_REF:
3752 case SYMBOL_REF:
3753 case CONST_INT:
3754 case CONST:
3755 case CONST_DOUBLE:
3756 case CONST_VECTOR:
3757 case PC:
3758 case ADDR_VEC:
3759 case ADDR_DIFF_VEC:
3760 return;
3762 #ifdef HAVE_cc0
3763 case CC0:
3764 pbi->cc0_live = 1;
3765 return;
3766 #endif
3768 case CLOBBER:
3769 /* If we are clobbering a MEM, mark any registers inside the address
3770 as being used. */
3771 if (GET_CODE (XEXP (x, 0)) == MEM)
3772 mark_used_regs (pbi, XEXP (XEXP (x, 0), 0), cond, insn);
3773 return;
3775 case MEM:
3776 /* Don't bother watching stores to mems if this is not the
3777 final pass. We'll not be deleting dead stores this round. */
3778 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
3780 /* Invalidate the data for the last MEM stored, but only if MEM is
3781 something that can be stored into. */
3782 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
3783 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
3784 /* Needn't clear the memory set list. */
3786 else
3788 rtx temp = pbi->mem_set_list;
3789 rtx prev = NULL_RTX;
3790 rtx next;
3792 while (temp)
3794 next = XEXP (temp, 1);
3795 if (anti_dependence (XEXP (temp, 0), x))
3797 /* Splice temp out of the list. */
3798 if (prev)
3799 XEXP (prev, 1) = next;
3800 else
3801 pbi->mem_set_list = next;
3802 free_EXPR_LIST_node (temp);
3803 pbi->mem_set_list_len--;
3805 else
3806 prev = temp;
3807 temp = next;
3811 /* If the memory reference had embedded side effects (autoincrement
3812 address modes. Then we may need to kill some entries on the
3813 memory set list. */
3814 if (insn)
3815 for_each_rtx (&PATTERN (insn), invalidate_mems_from_autoinc, pbi);
3818 #ifdef AUTO_INC_DEC
3819 if (flags & PROP_AUTOINC)
3820 find_auto_inc (pbi, x, insn);
3821 #endif
3822 break;
3824 case SUBREG:
3825 #ifdef CANNOT_CHANGE_MODE_CLASS
3826 if (GET_CODE (SUBREG_REG (x)) == REG
3827 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER)
3828 SET_REGNO_REG_SET (&subregs_of_mode[GET_MODE (x)],
3829 REGNO (SUBREG_REG (x)));
3830 #endif
3832 /* While we're here, optimize this case. */
3833 x = SUBREG_REG (x);
3834 if (GET_CODE (x) != REG)
3835 goto retry;
3836 /* Fall through. */
3838 case REG:
3839 /* See a register other than being set => mark it as needed. */
3840 mark_used_reg (pbi, x, cond, insn);
3841 return;
3843 case SET:
3845 rtx testreg = SET_DEST (x);
3846 int mark_dest = 0;
3848 /* If storing into MEM, don't show it as being used. But do
3849 show the address as being used. */
3850 if (GET_CODE (testreg) == MEM)
3852 #ifdef AUTO_INC_DEC
3853 if (flags & PROP_AUTOINC)
3854 find_auto_inc (pbi, testreg, insn);
3855 #endif
3856 mark_used_regs (pbi, XEXP (testreg, 0), cond, insn);
3857 mark_used_regs (pbi, SET_SRC (x), cond, insn);
3858 return;
3861 /* Storing in STRICT_LOW_PART is like storing in a reg
3862 in that this SET might be dead, so ignore it in TESTREG.
3863 but in some other ways it is like using the reg.
3865 Storing in a SUBREG or a bit field is like storing the entire
3866 register in that if the register's value is not used
3867 then this SET is not needed. */
3868 while (GET_CODE (testreg) == STRICT_LOW_PART
3869 || GET_CODE (testreg) == ZERO_EXTRACT
3870 || GET_CODE (testreg) == SIGN_EXTRACT
3871 || GET_CODE (testreg) == SUBREG)
3873 #ifdef CANNOT_CHANGE_MODE_CLASS
3874 if (GET_CODE (testreg) == SUBREG
3875 && GET_CODE (SUBREG_REG (testreg)) == REG
3876 && REGNO (SUBREG_REG (testreg)) >= FIRST_PSEUDO_REGISTER)
3877 SET_REGNO_REG_SET (&subregs_of_mode[GET_MODE (testreg)],
3878 REGNO (SUBREG_REG (testreg)));
3879 #endif
3881 /* Modifying a single register in an alternate mode
3882 does not use any of the old value. But these other
3883 ways of storing in a register do use the old value. */
3884 if (GET_CODE (testreg) == SUBREG
3885 && !((REG_BYTES (SUBREG_REG (testreg))
3886 + UNITS_PER_WORD - 1) / UNITS_PER_WORD
3887 > (REG_BYTES (testreg)
3888 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
3890 else
3891 mark_dest = 1;
3893 testreg = XEXP (testreg, 0);
3896 /* If this is a store into a register or group of registers,
3897 recursively scan the value being stored. */
3899 if ((GET_CODE (testreg) == PARALLEL
3900 && GET_MODE (testreg) == BLKmode)
3901 || (GET_CODE (testreg) == REG
3902 && (regno = REGNO (testreg),
3903 ! (regno == FRAME_POINTER_REGNUM
3904 && (! reload_completed || frame_pointer_needed)))
3905 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
3906 && ! (regno == HARD_FRAME_POINTER_REGNUM
3907 && (! reload_completed || frame_pointer_needed))
3908 #endif
3909 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3910 && ! (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
3911 #endif
3914 if (mark_dest)
3915 mark_used_regs (pbi, SET_DEST (x), cond, insn);
3916 mark_used_regs (pbi, SET_SRC (x), cond, insn);
3917 return;
3920 break;
3922 case ASM_OPERANDS:
3923 case UNSPEC_VOLATILE:
3924 case TRAP_IF:
3925 case ASM_INPUT:
3927 /* Traditional and volatile asm instructions must be considered to use
3928 and clobber all hard registers, all pseudo-registers and all of
3929 memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
3931 Consider for instance a volatile asm that changes the fpu rounding
3932 mode. An insn should not be moved across this even if it only uses
3933 pseudo-regs because it might give an incorrectly rounded result.
3935 ?!? Unfortunately, marking all hard registers as live causes massive
3936 problems for the register allocator and marking all pseudos as live
3937 creates mountains of uninitialized variable warnings.
3939 So for now, just clear the memory set list and mark any regs
3940 we can find in ASM_OPERANDS as used. */
3941 if (code != ASM_OPERANDS || MEM_VOLATILE_P (x))
3943 free_EXPR_LIST_list (&pbi->mem_set_list);
3944 pbi->mem_set_list_len = 0;
3947 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
3948 We can not just fall through here since then we would be confused
3949 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
3950 traditional asms unlike their normal usage. */
3951 if (code == ASM_OPERANDS)
3953 int j;
3955 for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
3956 mark_used_regs (pbi, ASM_OPERANDS_INPUT (x, j), cond, insn);
3958 break;
3961 case COND_EXEC:
3962 if (cond != NULL_RTX)
3963 abort ();
3965 mark_used_regs (pbi, COND_EXEC_TEST (x), NULL_RTX, insn);
3967 cond = COND_EXEC_TEST (x);
3968 x = COND_EXEC_CODE (x);
3969 goto retry;
3971 case PHI:
3972 /* We _do_not_ want to scan operands of phi nodes. Operands of
3973 a phi function are evaluated only when control reaches this
3974 block along a particular edge. Therefore, regs that appear
3975 as arguments to phi should not be added to the global live at
3976 start. */
3977 return;
3979 default:
3980 break;
3983 /* Recursively scan the operands of this expression. */
3986 const char * const fmt = GET_RTX_FORMAT (code);
3987 int i;
3989 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3991 if (fmt[i] == 'e')
3993 /* Tail recursive case: save a function call level. */
3994 if (i == 0)
3996 x = XEXP (x, 0);
3997 goto retry;
3999 mark_used_regs (pbi, XEXP (x, i), cond, insn);
4001 else if (fmt[i] == 'E')
4003 int j;
4004 for (j = 0; j < XVECLEN (x, i); j++)
4005 mark_used_regs (pbi, XVECEXP (x, i, j), cond, insn);
4011 #ifdef AUTO_INC_DEC
4013 static int
4014 try_pre_increment_1 (pbi, insn)
4015 struct propagate_block_info *pbi;
4016 rtx insn;
4018 /* Find the next use of this reg. If in same basic block,
4019 make it do pre-increment or pre-decrement if appropriate. */
4020 rtx x = single_set (insn);
4021 HOST_WIDE_INT amount = ((GET_CODE (SET_SRC (x)) == PLUS ? 1 : -1)
4022 * INTVAL (XEXP (SET_SRC (x), 1)));
4023 int regno = REGNO (SET_DEST (x));
4024 rtx y = pbi->reg_next_use[regno];
4025 if (y != 0
4026 && SET_DEST (x) != stack_pointer_rtx
4027 && BLOCK_NUM (y) == BLOCK_NUM (insn)
4028 /* Don't do this if the reg dies, or gets set in y; a standard addressing
4029 mode would be better. */
4030 && ! dead_or_set_p (y, SET_DEST (x))
4031 && try_pre_increment (y, SET_DEST (x), amount))
4033 /* We have found a suitable auto-increment and already changed
4034 insn Y to do it. So flush this increment instruction. */
4035 propagate_block_delete_insn (insn);
4037 /* Count a reference to this reg for the increment insn we are
4038 deleting. When a reg is incremented, spilling it is worse,
4039 so we want to make that less likely. */
4040 if (regno >= FIRST_PSEUDO_REGISTER)
4042 REG_FREQ (regno) += REG_FREQ_FROM_BB (pbi->bb);
4043 REG_N_SETS (regno)++;
4046 /* Flush any remembered memories depending on the value of
4047 the incremented register. */
4048 invalidate_mems_from_set (pbi, SET_DEST (x));
4050 return 1;
4052 return 0;
4055 /* Try to change INSN so that it does pre-increment or pre-decrement
4056 addressing on register REG in order to add AMOUNT to REG.
4057 AMOUNT is negative for pre-decrement.
4058 Returns 1 if the change could be made.
4059 This checks all about the validity of the result of modifying INSN. */
4061 static int
4062 try_pre_increment (insn, reg, amount)
4063 rtx insn, reg;
4064 HOST_WIDE_INT amount;
4066 rtx use;
4068 /* Nonzero if we can try to make a pre-increment or pre-decrement.
4069 For example, addl $4,r1; movl (r1),... can become movl +(r1),... */
4070 int pre_ok = 0;
4071 /* Nonzero if we can try to make a post-increment or post-decrement.
4072 For example, addl $4,r1; movl -4(r1),... can become movl (r1)+,...
4073 It is possible for both PRE_OK and POST_OK to be nonzero if the machine
4074 supports both pre-inc and post-inc, or both pre-dec and post-dec. */
4075 int post_ok = 0;
4077 /* Nonzero if the opportunity actually requires post-inc or post-dec. */
4078 int do_post = 0;
4080 /* From the sign of increment, see which possibilities are conceivable
4081 on this target machine. */
4082 if (HAVE_PRE_INCREMENT && amount > 0)
4083 pre_ok = 1;
4084 if (HAVE_POST_INCREMENT && amount > 0)
4085 post_ok = 1;
4087 if (HAVE_PRE_DECREMENT && amount < 0)
4088 pre_ok = 1;
4089 if (HAVE_POST_DECREMENT && amount < 0)
4090 post_ok = 1;
4092 if (! (pre_ok || post_ok))
4093 return 0;
4095 /* It is not safe to add a side effect to a jump insn
4096 because if the incremented register is spilled and must be reloaded
4097 there would be no way to store the incremented value back in memory. */
4099 if (GET_CODE (insn) == JUMP_INSN)
4100 return 0;
4102 use = 0;
4103 if (pre_ok)
4104 use = find_use_as_address (PATTERN (insn), reg, 0);
4105 if (post_ok && (use == 0 || use == (rtx) (size_t) 1))
4107 use = find_use_as_address (PATTERN (insn), reg, -amount);
4108 do_post = 1;
4111 if (use == 0 || use == (rtx) (size_t) 1)
4112 return 0;
4114 if (GET_MODE_SIZE (GET_MODE (use)) != (amount > 0 ? amount : - amount))
4115 return 0;
4117 /* See if this combination of instruction and addressing mode exists. */
4118 if (! validate_change (insn, &XEXP (use, 0),
4119 gen_rtx_fmt_e (amount > 0
4120 ? (do_post ? POST_INC : PRE_INC)
4121 : (do_post ? POST_DEC : PRE_DEC),
4122 Pmode, reg), 0))
4123 return 0;
4125 /* Record that this insn now has an implicit side effect on X. */
4126 REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, reg, REG_NOTES (insn));
4127 return 1;
4130 #endif /* AUTO_INC_DEC */
4132 /* Find the place in the rtx X where REG is used as a memory address.
4133 Return the MEM rtx that so uses it.
4134 If PLUSCONST is nonzero, search instead for a memory address equivalent to
4135 (plus REG (const_int PLUSCONST)).
4137 If such an address does not appear, return 0.
4138 If REG appears more than once, or is used other than in such an address,
4139 return (rtx) 1. */
4142 find_use_as_address (x, reg, plusconst)
4143 rtx x;
4144 rtx reg;
4145 HOST_WIDE_INT plusconst;
4147 enum rtx_code code = GET_CODE (x);
4148 const char * const fmt = GET_RTX_FORMAT (code);
4149 int i;
4150 rtx value = 0;
4151 rtx tem;
4153 if (code == MEM && XEXP (x, 0) == reg && plusconst == 0)
4154 return x;
4156 if (code == MEM && GET_CODE (XEXP (x, 0)) == PLUS
4157 && XEXP (XEXP (x, 0), 0) == reg
4158 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4159 && INTVAL (XEXP (XEXP (x, 0), 1)) == plusconst)
4160 return x;
4162 if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
4164 /* If REG occurs inside a MEM used in a bit-field reference,
4165 that is unacceptable. */
4166 if (find_use_as_address (XEXP (x, 0), reg, 0) != 0)
4167 return (rtx) (size_t) 1;
4170 if (x == reg)
4171 return (rtx) (size_t) 1;
4173 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4175 if (fmt[i] == 'e')
4177 tem = find_use_as_address (XEXP (x, i), reg, plusconst);
4178 if (value == 0)
4179 value = tem;
4180 else if (tem != 0)
4181 return (rtx) (size_t) 1;
4183 else if (fmt[i] == 'E')
4185 int j;
4186 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4188 tem = find_use_as_address (XVECEXP (x, i, j), reg, plusconst);
4189 if (value == 0)
4190 value = tem;
4191 else if (tem != 0)
4192 return (rtx) (size_t) 1;
4197 return value;
4200 /* Write information about registers and basic blocks into FILE.
4201 This is part of making a debugging dump. */
4203 void
4204 dump_regset (r, outf)
4205 regset r;
4206 FILE *outf;
4208 int i;
4209 if (r == NULL)
4211 fputs (" (nil)", outf);
4212 return;
4215 EXECUTE_IF_SET_IN_REG_SET (r, 0, i,
4217 fprintf (outf, " %d", i);
4218 if (i < FIRST_PSEUDO_REGISTER)
4219 fprintf (outf, " [%s]",
4220 reg_names[i]);
4224 /* Print a human-reaable representation of R on the standard error
4225 stream. This function is designed to be used from within the
4226 debugger. */
4228 void
4229 debug_regset (r)
4230 regset r;
4232 dump_regset (r, stderr);
4233 putc ('\n', stderr);
4236 /* Recompute register set/reference counts immediately prior to register
4237 allocation.
4239 This avoids problems with set/reference counts changing to/from values
4240 which have special meanings to the register allocators.
4242 Additionally, the reference counts are the primary component used by the
4243 register allocators to prioritize pseudos for allocation to hard regs.
4244 More accurate reference counts generally lead to better register allocation.
4246 F is the first insn to be scanned.
4248 LOOP_STEP denotes how much loop_depth should be incremented per
4249 loop nesting level in order to increase the ref count more for
4250 references in a loop.
4252 It might be worthwhile to update REG_LIVE_LENGTH, REG_BASIC_BLOCK and
4253 possibly other information which is used by the register allocators. */
4255 void
4256 recompute_reg_usage (f, loop_step)
4257 rtx f ATTRIBUTE_UNUSED;
4258 int loop_step ATTRIBUTE_UNUSED;
4260 allocate_reg_life_data ();
4261 update_life_info (NULL, UPDATE_LIFE_LOCAL, PROP_REG_INFO);
4264 /* Optionally removes all the REG_DEAD and REG_UNUSED notes from a set of
4265 blocks. If BLOCKS is NULL, assume the universal set. Returns a count
4266 of the number of registers that died. */
4269 count_or_remove_death_notes (blocks, kill)
4270 sbitmap blocks;
4271 int kill;
4273 int count = 0;
4274 basic_block bb;
4276 FOR_EACH_BB_REVERSE (bb)
4278 rtx insn;
4280 if (blocks && ! TEST_BIT (blocks, bb->index))
4281 continue;
4283 for (insn = bb->head;; insn = NEXT_INSN (insn))
4285 if (INSN_P (insn))
4287 rtx *pprev = &REG_NOTES (insn);
4288 rtx link = *pprev;
4290 while (link)
4292 switch (REG_NOTE_KIND (link))
4294 case REG_DEAD:
4295 if (GET_CODE (XEXP (link, 0)) == REG)
4297 rtx reg = XEXP (link, 0);
4298 int n;
4300 if (REGNO (reg) >= FIRST_PSEUDO_REGISTER)
4301 n = 1;
4302 else
4303 n = HARD_REGNO_NREGS (REGNO (reg), GET_MODE (reg));
4304 count += n;
4306 /* Fall through. */
4308 case REG_UNUSED:
4309 if (kill)
4311 rtx next = XEXP (link, 1);
4312 free_EXPR_LIST_node (link);
4313 *pprev = link = next;
4314 break;
4316 /* Fall through. */
4318 default:
4319 pprev = &XEXP (link, 1);
4320 link = *pprev;
4321 break;
4326 if (insn == bb->end)
4327 break;
4331 return count;
4333 /* Clear LOG_LINKS fields of insns in a selected blocks or whole chain
4334 if blocks is NULL. */
4336 static void
4337 clear_log_links (blocks)
4338 sbitmap blocks;
4340 rtx insn;
4341 int i;
4343 if (!blocks)
4345 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4346 if (INSN_P (insn))
4347 free_INSN_LIST_list (&LOG_LINKS (insn));
4349 else
4350 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
4352 basic_block bb = BASIC_BLOCK (i);
4354 for (insn = bb->head; insn != NEXT_INSN (bb->end);
4355 insn = NEXT_INSN (insn))
4356 if (INSN_P (insn))
4357 free_INSN_LIST_list (&LOG_LINKS (insn));
4361 /* Given a register bitmap, turn on the bits in a HARD_REG_SET that
4362 correspond to the hard registers, if any, set in that map. This
4363 could be done far more efficiently by having all sorts of special-cases
4364 with moving single words, but probably isn't worth the trouble. */
4366 void
4367 reg_set_to_hard_reg_set (to, from)
4368 HARD_REG_SET *to;
4369 bitmap from;
4371 int i;
4373 EXECUTE_IF_SET_IN_BITMAP
4374 (from, 0, i,
4376 if (i >= FIRST_PSEUDO_REGISTER)
4377 return;
4378 SET_HARD_REG_BIT (*to, i);