Add missing word in comment.
[official-gcc.git] / gcc / function.c
blob3becef3183d80ba6c5d30f53394b7f022e766938
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
23 /* This file handles the generation of rtl code from tree structure
24 at the level of the function as a whole.
25 It creates the rtl expressions for parameters and auto variables
26 and has full responsibility for allocating stack slots.
28 `expand_function_start' is called at the beginning of a function,
29 before the function body is parsed, and `expand_function_end' is
30 called after parsing the body.
32 Call `assign_stack_local' to allocate a stack slot for a local variable.
33 This is usually done during the RTL generation for the function body,
34 but it can also be done in the reload pass when a pseudo-register does
35 not get a hard register. */
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "tm.h"
41 #include "rtl.h"
42 #include "tree.h"
43 #include "flags.h"
44 #include "except.h"
45 #include "function.h"
46 #include "expr.h"
47 #include "optabs.h"
48 #include "libfuncs.h"
49 #include "regs.h"
50 #include "hard-reg-set.h"
51 #include "insn-config.h"
52 #include "recog.h"
53 #include "output.h"
54 #include "basic-block.h"
55 #include "toplev.h"
56 #include "hashtab.h"
57 #include "ggc.h"
58 #include "tm_p.h"
59 #include "integrate.h"
60 #include "langhooks.h"
61 #include "target.h"
62 #include "cfglayout.h"
63 #include "tree-gimple.h"
64 #include "tree-pass.h"
65 #include "predict.h"
67 #ifndef LOCAL_ALIGNMENT
68 #define LOCAL_ALIGNMENT(TYPE, ALIGNMENT) ALIGNMENT
69 #endif
71 #ifndef STACK_ALIGNMENT_NEEDED
72 #define STACK_ALIGNMENT_NEEDED 1
73 #endif
75 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
77 /* Some systems use __main in a way incompatible with its use in gcc, in these
78 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
79 give the same symbol without quotes for an alternative entry point. You
80 must define both, or neither. */
81 #ifndef NAME__MAIN
82 #define NAME__MAIN "__main"
83 #endif
85 /* Round a value to the lowest integer less than it that is a multiple of
86 the required alignment. Avoid using division in case the value is
87 negative. Assume the alignment is a power of two. */
88 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
90 /* Similar, but round to the next highest integer that meets the
91 alignment. */
92 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
94 /* Nonzero if function being compiled doesn't contain any calls
95 (ignoring the prologue and epilogue). This is set prior to
96 local register allocation and is valid for the remaining
97 compiler passes. */
98 int current_function_is_leaf;
100 /* Nonzero if function being compiled doesn't modify the stack pointer
101 (ignoring the prologue and epilogue). This is only valid after
102 life_analysis has run. */
103 int current_function_sp_is_unchanging;
105 /* Nonzero if the function being compiled is a leaf function which only
106 uses leaf registers. This is valid after reload (specifically after
107 sched2) and is useful only if the port defines LEAF_REGISTERS. */
108 int current_function_uses_only_leaf_regs;
110 /* Nonzero once virtual register instantiation has been done.
111 assign_stack_local uses frame_pointer_rtx when this is nonzero.
112 calls.c:emit_library_call_value_1 uses it to set up
113 post-instantiation libcalls. */
114 int virtuals_instantiated;
116 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
117 static GTY(()) int funcdef_no;
119 /* These variables hold pointers to functions to create and destroy
120 target specific, per-function data structures. */
121 struct machine_function * (*init_machine_status) (void);
123 /* The currently compiled function. */
124 struct function *cfun = 0;
126 DEF_VEC_I(int);
127 DEF_VEC_ALLOC_I(int,heap);
129 /* These arrays record the INSN_UIDs of the prologue and epilogue insns. */
130 static VEC(int,heap) *prologue;
131 static VEC(int,heap) *epilogue;
133 /* Array of INSN_UIDs to hold the INSN_UIDs for each sibcall epilogue
134 in this function. */
135 static VEC(int,heap) *sibcall_epilogue;
137 /* In order to evaluate some expressions, such as function calls returning
138 structures in memory, we need to temporarily allocate stack locations.
139 We record each allocated temporary in the following structure.
141 Associated with each temporary slot is a nesting level. When we pop up
142 one level, all temporaries associated with the previous level are freed.
143 Normally, all temporaries are freed after the execution of the statement
144 in which they were created. However, if we are inside a ({...}) grouping,
145 the result may be in a temporary and hence must be preserved. If the
146 result could be in a temporary, we preserve it if we can determine which
147 one it is in. If we cannot determine which temporary may contain the
148 result, all temporaries are preserved. A temporary is preserved by
149 pretending it was allocated at the previous nesting level.
151 Automatic variables are also assigned temporary slots, at the nesting
152 level where they are defined. They are marked a "kept" so that
153 free_temp_slots will not free them. */
155 struct temp_slot GTY(())
157 /* Points to next temporary slot. */
158 struct temp_slot *next;
159 /* Points to previous temporary slot. */
160 struct temp_slot *prev;
162 /* The rtx to used to reference the slot. */
163 rtx slot;
164 /* The rtx used to represent the address if not the address of the
165 slot above. May be an EXPR_LIST if multiple addresses exist. */
166 rtx address;
167 /* The alignment (in bits) of the slot. */
168 unsigned int align;
169 /* The size, in units, of the slot. */
170 HOST_WIDE_INT size;
171 /* The type of the object in the slot, or zero if it doesn't correspond
172 to a type. We use this to determine whether a slot can be reused.
173 It can be reused if objects of the type of the new slot will always
174 conflict with objects of the type of the old slot. */
175 tree type;
176 /* Nonzero if this temporary is currently in use. */
177 char in_use;
178 /* Nonzero if this temporary has its address taken. */
179 char addr_taken;
180 /* Nesting level at which this slot is being used. */
181 int level;
182 /* Nonzero if this should survive a call to free_temp_slots. */
183 int keep;
184 /* The offset of the slot from the frame_pointer, including extra space
185 for alignment. This info is for combine_temp_slots. */
186 HOST_WIDE_INT base_offset;
187 /* The size of the slot, including extra space for alignment. This
188 info is for combine_temp_slots. */
189 HOST_WIDE_INT full_size;
192 /* Forward declarations. */
194 static rtx assign_stack_local_1 (enum machine_mode, HOST_WIDE_INT, int,
195 struct function *);
196 static struct temp_slot *find_temp_slot_from_address (rtx);
197 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
198 static void pad_below (struct args_size *, enum machine_mode, tree);
199 static void reorder_blocks_1 (rtx, tree, VEC(tree,heap) **);
200 static void reorder_fix_fragments (tree);
201 static int all_blocks (tree, tree *);
202 static tree *get_block_vector (tree, int *);
203 extern tree debug_find_var_in_block_tree (tree, tree);
204 /* We always define `record_insns' even if it's not used so that we
205 can always export `prologue_epilogue_contains'. */
206 static void record_insns (rtx, VEC(int,heap) **) ATTRIBUTE_UNUSED;
207 static int contains (rtx, VEC(int,heap) **);
208 #ifdef HAVE_return
209 static void emit_return_into_block (basic_block, rtx);
210 #endif
211 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
212 static rtx keep_stack_depressed (rtx);
213 #endif
214 static void prepare_function_start (tree);
215 static void do_clobber_return_reg (rtx, void *);
216 static void do_use_return_reg (rtx, void *);
217 static void set_insn_locators (rtx, int) ATTRIBUTE_UNUSED;
219 /* Pointer to chain of `struct function' for containing functions. */
220 struct function *outer_function_chain;
222 /* Given a function decl for a containing function,
223 return the `struct function' for it. */
225 struct function *
226 find_function_data (tree decl)
228 struct function *p;
230 for (p = outer_function_chain; p; p = p->outer)
231 if (p->decl == decl)
232 return p;
234 gcc_unreachable ();
237 /* Save the current context for compilation of a nested function.
238 This is called from language-specific code. The caller should use
239 the enter_nested langhook to save any language-specific state,
240 since this function knows only about language-independent
241 variables. */
243 void
244 push_function_context_to (tree context ATTRIBUTE_UNUSED)
246 struct function *p;
248 if (cfun == 0)
249 init_dummy_function_start ();
250 p = cfun;
252 p->outer = outer_function_chain;
253 outer_function_chain = p;
255 lang_hooks.function.enter_nested (p);
257 cfun = 0;
260 void
261 push_function_context (void)
263 push_function_context_to (current_function_decl);
266 /* Restore the last saved context, at the end of a nested function.
267 This function is called from language-specific code. */
269 void
270 pop_function_context_from (tree context ATTRIBUTE_UNUSED)
272 struct function *p = outer_function_chain;
274 cfun = p;
275 outer_function_chain = p->outer;
277 current_function_decl = p->decl;
279 lang_hooks.function.leave_nested (p);
281 /* Reset variables that have known state during rtx generation. */
282 virtuals_instantiated = 0;
283 generating_concat_p = 1;
286 void
287 pop_function_context (void)
289 pop_function_context_from (current_function_decl);
292 /* Clear out all parts of the state in F that can safely be discarded
293 after the function has been parsed, but not compiled, to let
294 garbage collection reclaim the memory. */
296 void
297 free_after_parsing (struct function *f)
299 /* f->expr->forced_labels is used by code generation. */
300 /* f->emit->regno_reg_rtx is used by code generation. */
301 /* f->varasm is used by code generation. */
302 /* f->eh->eh_return_stub_label is used by code generation. */
304 lang_hooks.function.final (f);
307 /* Clear out all parts of the state in F that can safely be discarded
308 after the function has been compiled, to let garbage collection
309 reclaim the memory. */
311 void
312 free_after_compilation (struct function *f)
314 VEC_free (int, heap, prologue);
315 VEC_free (int, heap, epilogue);
316 VEC_free (int, heap, sibcall_epilogue);
318 f->eh = NULL;
319 f->expr = NULL;
320 f->emit = NULL;
321 f->varasm = NULL;
322 f->machine = NULL;
323 f->cfg = NULL;
325 f->x_avail_temp_slots = NULL;
326 f->x_used_temp_slots = NULL;
327 f->arg_offset_rtx = NULL;
328 f->return_rtx = NULL;
329 f->internal_arg_pointer = NULL;
330 f->x_nonlocal_goto_handler_labels = NULL;
331 f->x_return_label = NULL;
332 f->x_naked_return_label = NULL;
333 f->x_stack_slot_list = NULL;
334 f->x_stack_check_probe_note = NULL;
335 f->x_arg_pointer_save_area = NULL;
336 f->x_parm_birth_insn = NULL;
337 f->original_arg_vector = NULL;
338 f->original_decl_initial = NULL;
339 f->epilogue_delay_list = NULL;
342 /* Allocate fixed slots in the stack frame of the current function. */
344 /* Return size needed for stack frame based on slots so far allocated in
345 function F.
346 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
347 the caller may have to do that. */
349 static HOST_WIDE_INT
350 get_func_frame_size (struct function *f)
352 if (FRAME_GROWS_DOWNWARD)
353 return -f->x_frame_offset;
354 else
355 return f->x_frame_offset;
358 /* Return size needed for stack frame based on slots so far allocated.
359 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
360 the caller may have to do that. */
362 HOST_WIDE_INT
363 get_frame_size (void)
365 return get_func_frame_size (cfun);
368 /* Issue an error message and return TRUE if frame OFFSET overflows in
369 the signed target pointer arithmetics for function FUNC. Otherwise
370 return FALSE. */
372 bool
373 frame_offset_overflow (HOST_WIDE_INT offset, tree func)
375 unsigned HOST_WIDE_INT size = FRAME_GROWS_DOWNWARD ? -offset : offset;
377 if (size > ((unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (Pmode) - 1))
378 /* Leave room for the fixed part of the frame. */
379 - 64 * UNITS_PER_WORD)
381 error ("%Jtotal size of local objects too large", func);
382 return TRUE;
385 return FALSE;
388 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
389 with machine mode MODE.
391 ALIGN controls the amount of alignment for the address of the slot:
392 0 means according to MODE,
393 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
394 -2 means use BITS_PER_UNIT,
395 positive specifies alignment boundary in bits.
397 We do not round to stack_boundary here.
399 FUNCTION specifies the function to allocate in. */
401 static rtx
402 assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size, int align,
403 struct function *function)
405 rtx x, addr;
406 int bigend_correction = 0;
407 unsigned int alignment;
408 int frame_off, frame_alignment, frame_phase;
410 if (align == 0)
412 tree type;
414 if (mode == BLKmode)
415 alignment = BIGGEST_ALIGNMENT;
416 else
417 alignment = GET_MODE_ALIGNMENT (mode);
419 /* Allow the target to (possibly) increase the alignment of this
420 stack slot. */
421 type = lang_hooks.types.type_for_mode (mode, 0);
422 if (type)
423 alignment = LOCAL_ALIGNMENT (type, alignment);
425 alignment /= BITS_PER_UNIT;
427 else if (align == -1)
429 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
430 size = CEIL_ROUND (size, alignment);
432 else if (align == -2)
433 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
434 else
435 alignment = align / BITS_PER_UNIT;
437 if (FRAME_GROWS_DOWNWARD)
438 function->x_frame_offset -= size;
440 /* Ignore alignment we can't do with expected alignment of the boundary. */
441 if (alignment * BITS_PER_UNIT > PREFERRED_STACK_BOUNDARY)
442 alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
444 if (function->stack_alignment_needed < alignment * BITS_PER_UNIT)
445 function->stack_alignment_needed = alignment * BITS_PER_UNIT;
447 /* Calculate how many bytes the start of local variables is off from
448 stack alignment. */
449 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
450 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
451 frame_phase = frame_off ? frame_alignment - frame_off : 0;
453 /* Round the frame offset to the specified alignment. The default is
454 to always honor requests to align the stack but a port may choose to
455 do its own stack alignment by defining STACK_ALIGNMENT_NEEDED. */
456 if (STACK_ALIGNMENT_NEEDED
457 || mode != BLKmode
458 || size != 0)
460 /* We must be careful here, since FRAME_OFFSET might be negative and
461 division with a negative dividend isn't as well defined as we might
462 like. So we instead assume that ALIGNMENT is a power of two and
463 use logical operations which are unambiguous. */
464 if (FRAME_GROWS_DOWNWARD)
465 function->x_frame_offset
466 = (FLOOR_ROUND (function->x_frame_offset - frame_phase,
467 (unsigned HOST_WIDE_INT) alignment)
468 + frame_phase);
469 else
470 function->x_frame_offset
471 = (CEIL_ROUND (function->x_frame_offset - frame_phase,
472 (unsigned HOST_WIDE_INT) alignment)
473 + frame_phase);
476 /* On a big-endian machine, if we are allocating more space than we will use,
477 use the least significant bytes of those that are allocated. */
478 if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
479 bigend_correction = size - GET_MODE_SIZE (mode);
481 /* If we have already instantiated virtual registers, return the actual
482 address relative to the frame pointer. */
483 if (function == cfun && virtuals_instantiated)
484 addr = plus_constant (frame_pointer_rtx,
485 trunc_int_for_mode
486 (frame_offset + bigend_correction
487 + STARTING_FRAME_OFFSET, Pmode));
488 else
489 addr = plus_constant (virtual_stack_vars_rtx,
490 trunc_int_for_mode
491 (function->x_frame_offset + bigend_correction,
492 Pmode));
494 if (!FRAME_GROWS_DOWNWARD)
495 function->x_frame_offset += size;
497 x = gen_rtx_MEM (mode, addr);
498 MEM_NOTRAP_P (x) = 1;
500 function->x_stack_slot_list
501 = gen_rtx_EXPR_LIST (VOIDmode, x, function->x_stack_slot_list);
503 if (frame_offset_overflow (function->x_frame_offset, function->decl))
504 function->x_frame_offset = 0;
506 return x;
509 /* Wrapper around assign_stack_local_1; assign a local stack slot for the
510 current function. */
513 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
515 return assign_stack_local_1 (mode, size, align, cfun);
519 /* Removes temporary slot TEMP from LIST. */
521 static void
522 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
524 if (temp->next)
525 temp->next->prev = temp->prev;
526 if (temp->prev)
527 temp->prev->next = temp->next;
528 else
529 *list = temp->next;
531 temp->prev = temp->next = NULL;
534 /* Inserts temporary slot TEMP to LIST. */
536 static void
537 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
539 temp->next = *list;
540 if (*list)
541 (*list)->prev = temp;
542 temp->prev = NULL;
543 *list = temp;
546 /* Returns the list of used temp slots at LEVEL. */
548 static struct temp_slot **
549 temp_slots_at_level (int level)
552 if (!used_temp_slots)
553 VARRAY_GENERIC_PTR_INIT (used_temp_slots, 3, "used_temp_slots");
555 while (level >= (int) VARRAY_ACTIVE_SIZE (used_temp_slots))
556 VARRAY_PUSH_GENERIC_PTR (used_temp_slots, NULL);
558 return (struct temp_slot **) &VARRAY_GENERIC_PTR (used_temp_slots, level);
561 /* Returns the maximal temporary slot level. */
563 static int
564 max_slot_level (void)
566 if (!used_temp_slots)
567 return -1;
569 return VARRAY_ACTIVE_SIZE (used_temp_slots) - 1;
572 /* Moves temporary slot TEMP to LEVEL. */
574 static void
575 move_slot_to_level (struct temp_slot *temp, int level)
577 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
578 insert_slot_to_list (temp, temp_slots_at_level (level));
579 temp->level = level;
582 /* Make temporary slot TEMP available. */
584 static void
585 make_slot_available (struct temp_slot *temp)
587 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
588 insert_slot_to_list (temp, &avail_temp_slots);
589 temp->in_use = 0;
590 temp->level = -1;
593 /* Allocate a temporary stack slot and record it for possible later
594 reuse.
596 MODE is the machine mode to be given to the returned rtx.
598 SIZE is the size in units of the space required. We do no rounding here
599 since assign_stack_local will do any required rounding.
601 KEEP is 1 if this slot is to be retained after a call to
602 free_temp_slots. Automatic variables for a block are allocated
603 with this flag. KEEP values of 2 or 3 were needed respectively
604 for variables whose lifetime is controlled by CLEANUP_POINT_EXPRs
605 or for SAVE_EXPRs, but they are now unused.
607 TYPE is the type that will be used for the stack slot. */
610 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size,
611 int keep, tree type)
613 unsigned int align;
614 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
615 rtx slot;
617 /* If SIZE is -1 it means that somebody tried to allocate a temporary
618 of a variable size. */
619 gcc_assert (size != -1);
621 /* These are now unused. */
622 gcc_assert (keep <= 1);
624 if (mode == BLKmode)
625 align = BIGGEST_ALIGNMENT;
626 else
627 align = GET_MODE_ALIGNMENT (mode);
629 if (! type)
630 type = lang_hooks.types.type_for_mode (mode, 0);
632 if (type)
633 align = LOCAL_ALIGNMENT (type, align);
635 /* Try to find an available, already-allocated temporary of the proper
636 mode which meets the size and alignment requirements. Choose the
637 smallest one with the closest alignment.
639 If assign_stack_temp is called outside of the tree->rtl expansion,
640 we cannot reuse the stack slots (that may still refer to
641 VIRTUAL_STACK_VARS_REGNUM). */
642 if (!virtuals_instantiated)
644 for (p = avail_temp_slots; p; p = p->next)
646 if (p->align >= align && p->size >= size
647 && GET_MODE (p->slot) == mode
648 && objects_must_conflict_p (p->type, type)
649 && (best_p == 0 || best_p->size > p->size
650 || (best_p->size == p->size && best_p->align > p->align)))
652 if (p->align == align && p->size == size)
654 selected = p;
655 cut_slot_from_list (selected, &avail_temp_slots);
656 best_p = 0;
657 break;
659 best_p = p;
664 /* Make our best, if any, the one to use. */
665 if (best_p)
667 selected = best_p;
668 cut_slot_from_list (selected, &avail_temp_slots);
670 /* If there are enough aligned bytes left over, make them into a new
671 temp_slot so that the extra bytes don't get wasted. Do this only
672 for BLKmode slots, so that we can be sure of the alignment. */
673 if (GET_MODE (best_p->slot) == BLKmode)
675 int alignment = best_p->align / BITS_PER_UNIT;
676 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
678 if (best_p->size - rounded_size >= alignment)
680 p = ggc_alloc (sizeof (struct temp_slot));
681 p->in_use = p->addr_taken = 0;
682 p->size = best_p->size - rounded_size;
683 p->base_offset = best_p->base_offset + rounded_size;
684 p->full_size = best_p->full_size - rounded_size;
685 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
686 p->align = best_p->align;
687 p->address = 0;
688 p->type = best_p->type;
689 insert_slot_to_list (p, &avail_temp_slots);
691 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
692 stack_slot_list);
694 best_p->size = rounded_size;
695 best_p->full_size = rounded_size;
700 /* If we still didn't find one, make a new temporary. */
701 if (selected == 0)
703 HOST_WIDE_INT frame_offset_old = frame_offset;
705 p = ggc_alloc (sizeof (struct temp_slot));
707 /* We are passing an explicit alignment request to assign_stack_local.
708 One side effect of that is assign_stack_local will not round SIZE
709 to ensure the frame offset remains suitably aligned.
711 So for requests which depended on the rounding of SIZE, we go ahead
712 and round it now. We also make sure ALIGNMENT is at least
713 BIGGEST_ALIGNMENT. */
714 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
715 p->slot = assign_stack_local (mode,
716 (mode == BLKmode
717 ? CEIL_ROUND (size, (int) align / BITS_PER_UNIT)
718 : size),
719 align);
721 p->align = align;
723 /* The following slot size computation is necessary because we don't
724 know the actual size of the temporary slot until assign_stack_local
725 has performed all the frame alignment and size rounding for the
726 requested temporary. Note that extra space added for alignment
727 can be either above or below this stack slot depending on which
728 way the frame grows. We include the extra space if and only if it
729 is above this slot. */
730 if (FRAME_GROWS_DOWNWARD)
731 p->size = frame_offset_old - frame_offset;
732 else
733 p->size = size;
735 /* Now define the fields used by combine_temp_slots. */
736 if (FRAME_GROWS_DOWNWARD)
738 p->base_offset = frame_offset;
739 p->full_size = frame_offset_old - frame_offset;
741 else
743 p->base_offset = frame_offset_old;
744 p->full_size = frame_offset - frame_offset_old;
746 p->address = 0;
748 selected = p;
751 p = selected;
752 p->in_use = 1;
753 p->addr_taken = 0;
754 p->type = type;
755 p->level = temp_slot_level;
756 p->keep = keep;
758 pp = temp_slots_at_level (p->level);
759 insert_slot_to_list (p, pp);
761 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
762 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
763 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
765 /* If we know the alias set for the memory that will be used, use
766 it. If there's no TYPE, then we don't know anything about the
767 alias set for the memory. */
768 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
769 set_mem_align (slot, align);
771 /* If a type is specified, set the relevant flags. */
772 if (type != 0)
774 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
775 MEM_SET_IN_STRUCT_P (slot, AGGREGATE_TYPE_P (type));
777 MEM_NOTRAP_P (slot) = 1;
779 return slot;
782 /* Allocate a temporary stack slot and record it for possible later
783 reuse. First three arguments are same as in preceding function. */
786 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size, int keep)
788 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
791 /* Assign a temporary.
792 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
793 and so that should be used in error messages. In either case, we
794 allocate of the given type.
795 KEEP is as for assign_stack_temp.
796 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
797 it is 0 if a register is OK.
798 DONT_PROMOTE is 1 if we should not promote values in register
799 to wider modes. */
802 assign_temp (tree type_or_decl, int keep, int memory_required,
803 int dont_promote ATTRIBUTE_UNUSED)
805 tree type, decl;
806 enum machine_mode mode;
807 #ifdef PROMOTE_MODE
808 int unsignedp;
809 #endif
811 if (DECL_P (type_or_decl))
812 decl = type_or_decl, type = TREE_TYPE (decl);
813 else
814 decl = NULL, type = type_or_decl;
816 mode = TYPE_MODE (type);
817 #ifdef PROMOTE_MODE
818 unsignedp = TYPE_UNSIGNED (type);
819 #endif
821 if (mode == BLKmode || memory_required)
823 HOST_WIDE_INT size = int_size_in_bytes (type);
824 tree size_tree;
825 rtx tmp;
827 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
828 problems with allocating the stack space. */
829 if (size == 0)
830 size = 1;
832 /* Unfortunately, we don't yet know how to allocate variable-sized
833 temporaries. However, sometimes we have a fixed upper limit on
834 the size (which is stored in TYPE_ARRAY_MAX_SIZE) and can use that
835 instead. This is the case for Chill variable-sized strings. */
836 if (size == -1 && TREE_CODE (type) == ARRAY_TYPE
837 && TYPE_ARRAY_MAX_SIZE (type) != NULL_TREE
838 && host_integerp (TYPE_ARRAY_MAX_SIZE (type), 1))
839 size = tree_low_cst (TYPE_ARRAY_MAX_SIZE (type), 1);
841 /* If we still haven't been able to get a size, see if the language
842 can compute a maximum size. */
843 if (size == -1
844 && (size_tree = lang_hooks.types.max_size (type)) != 0
845 && host_integerp (size_tree, 1))
846 size = tree_low_cst (size_tree, 1);
848 /* The size of the temporary may be too large to fit into an integer. */
849 /* ??? Not sure this should happen except for user silliness, so limit
850 this to things that aren't compiler-generated temporaries. The
851 rest of the time we'll die in assign_stack_temp_for_type. */
852 if (decl && size == -1
853 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
855 error ("size of variable %q+D is too large", decl);
856 size = 1;
859 tmp = assign_stack_temp_for_type (mode, size, keep, type);
860 return tmp;
863 #ifdef PROMOTE_MODE
864 if (! dont_promote)
865 mode = promote_mode (type, mode, &unsignedp, 0);
866 #endif
868 return gen_reg_rtx (mode);
871 /* Combine temporary stack slots which are adjacent on the stack.
873 This allows for better use of already allocated stack space. This is only
874 done for BLKmode slots because we can be sure that we won't have alignment
875 problems in this case. */
877 static void
878 combine_temp_slots (void)
880 struct temp_slot *p, *q, *next, *next_q;
881 int num_slots;
883 /* We can't combine slots, because the information about which slot
884 is in which alias set will be lost. */
885 if (flag_strict_aliasing)
886 return;
888 /* If there are a lot of temp slots, don't do anything unless
889 high levels of optimization. */
890 if (! flag_expensive_optimizations)
891 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
892 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
893 return;
895 for (p = avail_temp_slots; p; p = next)
897 int delete_p = 0;
899 next = p->next;
901 if (GET_MODE (p->slot) != BLKmode)
902 continue;
904 for (q = p->next; q; q = next_q)
906 int delete_q = 0;
908 next_q = q->next;
910 if (GET_MODE (q->slot) != BLKmode)
911 continue;
913 if (p->base_offset + p->full_size == q->base_offset)
915 /* Q comes after P; combine Q into P. */
916 p->size += q->size;
917 p->full_size += q->full_size;
918 delete_q = 1;
920 else if (q->base_offset + q->full_size == p->base_offset)
922 /* P comes after Q; combine P into Q. */
923 q->size += p->size;
924 q->full_size += p->full_size;
925 delete_p = 1;
926 break;
928 if (delete_q)
929 cut_slot_from_list (q, &avail_temp_slots);
932 /* Either delete P or advance past it. */
933 if (delete_p)
934 cut_slot_from_list (p, &avail_temp_slots);
938 /* Find the temp slot corresponding to the object at address X. */
940 static struct temp_slot *
941 find_temp_slot_from_address (rtx x)
943 struct temp_slot *p;
944 rtx next;
945 int i;
947 for (i = max_slot_level (); i >= 0; i--)
948 for (p = *temp_slots_at_level (i); p; p = p->next)
950 if (XEXP (p->slot, 0) == x
951 || p->address == x
952 || (GET_CODE (x) == PLUS
953 && XEXP (x, 0) == virtual_stack_vars_rtx
954 && GET_CODE (XEXP (x, 1)) == CONST_INT
955 && INTVAL (XEXP (x, 1)) >= p->base_offset
956 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size))
957 return p;
959 else if (p->address != 0 && GET_CODE (p->address) == EXPR_LIST)
960 for (next = p->address; next; next = XEXP (next, 1))
961 if (XEXP (next, 0) == x)
962 return p;
965 /* If we have a sum involving a register, see if it points to a temp
966 slot. */
967 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
968 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
969 return p;
970 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
971 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
972 return p;
974 return 0;
977 /* Indicate that NEW is an alternate way of referring to the temp slot
978 that previously was known by OLD. */
980 void
981 update_temp_slot_address (rtx old, rtx new)
983 struct temp_slot *p;
985 if (rtx_equal_p (old, new))
986 return;
988 p = find_temp_slot_from_address (old);
990 /* If we didn't find one, see if both OLD is a PLUS. If so, and NEW
991 is a register, see if one operand of the PLUS is a temporary
992 location. If so, NEW points into it. Otherwise, if both OLD and
993 NEW are a PLUS and if there is a register in common between them.
994 If so, try a recursive call on those values. */
995 if (p == 0)
997 if (GET_CODE (old) != PLUS)
998 return;
1000 if (REG_P (new))
1002 update_temp_slot_address (XEXP (old, 0), new);
1003 update_temp_slot_address (XEXP (old, 1), new);
1004 return;
1006 else if (GET_CODE (new) != PLUS)
1007 return;
1009 if (rtx_equal_p (XEXP (old, 0), XEXP (new, 0)))
1010 update_temp_slot_address (XEXP (old, 1), XEXP (new, 1));
1011 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 0)))
1012 update_temp_slot_address (XEXP (old, 0), XEXP (new, 1));
1013 else if (rtx_equal_p (XEXP (old, 0), XEXP (new, 1)))
1014 update_temp_slot_address (XEXP (old, 1), XEXP (new, 0));
1015 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 1)))
1016 update_temp_slot_address (XEXP (old, 0), XEXP (new, 0));
1018 return;
1021 /* Otherwise add an alias for the temp's address. */
1022 else if (p->address == 0)
1023 p->address = new;
1024 else
1026 if (GET_CODE (p->address) != EXPR_LIST)
1027 p->address = gen_rtx_EXPR_LIST (VOIDmode, p->address, NULL_RTX);
1029 p->address = gen_rtx_EXPR_LIST (VOIDmode, new, p->address);
1033 /* If X could be a reference to a temporary slot, mark the fact that its
1034 address was taken. */
1036 void
1037 mark_temp_addr_taken (rtx x)
1039 struct temp_slot *p;
1041 if (x == 0)
1042 return;
1044 /* If X is not in memory or is at a constant address, it cannot be in
1045 a temporary slot. */
1046 if (!MEM_P (x) || CONSTANT_P (XEXP (x, 0)))
1047 return;
1049 p = find_temp_slot_from_address (XEXP (x, 0));
1050 if (p != 0)
1051 p->addr_taken = 1;
1054 /* If X could be a reference to a temporary slot, mark that slot as
1055 belonging to the to one level higher than the current level. If X
1056 matched one of our slots, just mark that one. Otherwise, we can't
1057 easily predict which it is, so upgrade all of them. Kept slots
1058 need not be touched.
1060 This is called when an ({...}) construct occurs and a statement
1061 returns a value in memory. */
1063 void
1064 preserve_temp_slots (rtx x)
1066 struct temp_slot *p = 0, *next;
1068 /* If there is no result, we still might have some objects whose address
1069 were taken, so we need to make sure they stay around. */
1070 if (x == 0)
1072 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1074 next = p->next;
1076 if (p->addr_taken)
1077 move_slot_to_level (p, temp_slot_level - 1);
1080 return;
1083 /* If X is a register that is being used as a pointer, see if we have
1084 a temporary slot we know it points to. To be consistent with
1085 the code below, we really should preserve all non-kept slots
1086 if we can't find a match, but that seems to be much too costly. */
1087 if (REG_P (x) && REG_POINTER (x))
1088 p = find_temp_slot_from_address (x);
1090 /* If X is not in memory or is at a constant address, it cannot be in
1091 a temporary slot, but it can contain something whose address was
1092 taken. */
1093 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1095 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1097 next = p->next;
1099 if (p->addr_taken)
1100 move_slot_to_level (p, temp_slot_level - 1);
1103 return;
1106 /* First see if we can find a match. */
1107 if (p == 0)
1108 p = find_temp_slot_from_address (XEXP (x, 0));
1110 if (p != 0)
1112 /* Move everything at our level whose address was taken to our new
1113 level in case we used its address. */
1114 struct temp_slot *q;
1116 if (p->level == temp_slot_level)
1118 for (q = *temp_slots_at_level (temp_slot_level); q; q = next)
1120 next = q->next;
1122 if (p != q && q->addr_taken)
1123 move_slot_to_level (q, temp_slot_level - 1);
1126 move_slot_to_level (p, temp_slot_level - 1);
1127 p->addr_taken = 0;
1129 return;
1132 /* Otherwise, preserve all non-kept slots at this level. */
1133 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1135 next = p->next;
1137 if (!p->keep)
1138 move_slot_to_level (p, temp_slot_level - 1);
1142 /* Free all temporaries used so far. This is normally called at the
1143 end of generating code for a statement. */
1145 void
1146 free_temp_slots (void)
1148 struct temp_slot *p, *next;
1150 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1152 next = p->next;
1154 if (!p->keep)
1155 make_slot_available (p);
1158 combine_temp_slots ();
1161 /* Push deeper into the nesting level for stack temporaries. */
1163 void
1164 push_temp_slots (void)
1166 temp_slot_level++;
1169 /* Pop a temporary nesting level. All slots in use in the current level
1170 are freed. */
1172 void
1173 pop_temp_slots (void)
1175 struct temp_slot *p, *next;
1177 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1179 next = p->next;
1180 make_slot_available (p);
1183 combine_temp_slots ();
1185 temp_slot_level--;
1188 /* Initialize temporary slots. */
1190 void
1191 init_temp_slots (void)
1193 /* We have not allocated any temporaries yet. */
1194 avail_temp_slots = 0;
1195 used_temp_slots = 0;
1196 temp_slot_level = 0;
1199 /* These routines are responsible for converting virtual register references
1200 to the actual hard register references once RTL generation is complete.
1202 The following four variables are used for communication between the
1203 routines. They contain the offsets of the virtual registers from their
1204 respective hard registers. */
1206 static int in_arg_offset;
1207 static int var_offset;
1208 static int dynamic_offset;
1209 static int out_arg_offset;
1210 static int cfa_offset;
1212 /* In most machines, the stack pointer register is equivalent to the bottom
1213 of the stack. */
1215 #ifndef STACK_POINTER_OFFSET
1216 #define STACK_POINTER_OFFSET 0
1217 #endif
1219 /* If not defined, pick an appropriate default for the offset of dynamically
1220 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1221 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1223 #ifndef STACK_DYNAMIC_OFFSET
1225 /* The bottom of the stack points to the actual arguments. If
1226 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1227 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1228 stack space for register parameters is not pushed by the caller, but
1229 rather part of the fixed stack areas and hence not included in
1230 `current_function_outgoing_args_size'. Nevertheless, we must allow
1231 for it when allocating stack dynamic objects. */
1233 #if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE)
1234 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1235 ((ACCUMULATE_OUTGOING_ARGS \
1236 ? (current_function_outgoing_args_size + REG_PARM_STACK_SPACE (FNDECL)) : 0)\
1237 + (STACK_POINTER_OFFSET)) \
1239 #else
1240 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1241 ((ACCUMULATE_OUTGOING_ARGS ? current_function_outgoing_args_size : 0) \
1242 + (STACK_POINTER_OFFSET))
1243 #endif
1244 #endif
1247 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1248 is a virtual register, return the equivalent hard register and set the
1249 offset indirectly through the pointer. Otherwise, return 0. */
1251 static rtx
1252 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1254 rtx new;
1255 HOST_WIDE_INT offset;
1257 if (x == virtual_incoming_args_rtx)
1258 new = arg_pointer_rtx, offset = in_arg_offset;
1259 else if (x == virtual_stack_vars_rtx)
1260 new = frame_pointer_rtx, offset = var_offset;
1261 else if (x == virtual_stack_dynamic_rtx)
1262 new = stack_pointer_rtx, offset = dynamic_offset;
1263 else if (x == virtual_outgoing_args_rtx)
1264 new = stack_pointer_rtx, offset = out_arg_offset;
1265 else if (x == virtual_cfa_rtx)
1267 #ifdef FRAME_POINTER_CFA_OFFSET
1268 new = frame_pointer_rtx;
1269 #else
1270 new = arg_pointer_rtx;
1271 #endif
1272 offset = cfa_offset;
1274 else
1275 return NULL_RTX;
1277 *poffset = offset;
1278 return new;
1281 /* A subroutine of instantiate_virtual_regs, called via for_each_rtx.
1282 Instantiate any virtual registers present inside of *LOC. The expression
1283 is simplified, as much as possible, but is not to be considered "valid"
1284 in any sense implied by the target. If any change is made, set CHANGED
1285 to true. */
1287 static int
1288 instantiate_virtual_regs_in_rtx (rtx *loc, void *data)
1290 HOST_WIDE_INT offset;
1291 bool *changed = (bool *) data;
1292 rtx x, new;
1294 x = *loc;
1295 if (x == 0)
1296 return 0;
1298 switch (GET_CODE (x))
1300 case REG:
1301 new = instantiate_new_reg (x, &offset);
1302 if (new)
1304 *loc = plus_constant (new, offset);
1305 if (changed)
1306 *changed = true;
1308 return -1;
1310 case PLUS:
1311 new = instantiate_new_reg (XEXP (x, 0), &offset);
1312 if (new)
1314 new = plus_constant (new, offset);
1315 *loc = simplify_gen_binary (PLUS, GET_MODE (x), new, XEXP (x, 1));
1316 if (changed)
1317 *changed = true;
1318 return -1;
1321 /* FIXME -- from old code */
1322 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1323 we can commute the PLUS and SUBREG because pointers into the
1324 frame are well-behaved. */
1325 break;
1327 default:
1328 break;
1331 return 0;
1334 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1335 matches the predicate for insn CODE operand OPERAND. */
1337 static int
1338 safe_insn_predicate (int code, int operand, rtx x)
1340 const struct insn_operand_data *op_data;
1342 if (code < 0)
1343 return true;
1345 op_data = &insn_data[code].operand[operand];
1346 if (op_data->predicate == NULL)
1347 return true;
1349 return op_data->predicate (x, op_data->mode);
1352 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1353 registers present inside of insn. The result will be a valid insn. */
1355 static void
1356 instantiate_virtual_regs_in_insn (rtx insn)
1358 HOST_WIDE_INT offset;
1359 int insn_code, i;
1360 bool any_change = false;
1361 rtx set, new, x, seq;
1363 /* There are some special cases to be handled first. */
1364 set = single_set (insn);
1365 if (set)
1367 /* We're allowed to assign to a virtual register. This is interpreted
1368 to mean that the underlying register gets assigned the inverse
1369 transformation. This is used, for example, in the handling of
1370 non-local gotos. */
1371 new = instantiate_new_reg (SET_DEST (set), &offset);
1372 if (new)
1374 start_sequence ();
1376 for_each_rtx (&SET_SRC (set), instantiate_virtual_regs_in_rtx, NULL);
1377 x = simplify_gen_binary (PLUS, GET_MODE (new), SET_SRC (set),
1378 GEN_INT (-offset));
1379 x = force_operand (x, new);
1380 if (x != new)
1381 emit_move_insn (new, x);
1383 seq = get_insns ();
1384 end_sequence ();
1386 emit_insn_before (seq, insn);
1387 delete_insn (insn);
1388 return;
1391 /* Handle a straight copy from a virtual register by generating a
1392 new add insn. The difference between this and falling through
1393 to the generic case is avoiding a new pseudo and eliminating a
1394 move insn in the initial rtl stream. */
1395 new = instantiate_new_reg (SET_SRC (set), &offset);
1396 if (new && offset != 0
1397 && REG_P (SET_DEST (set))
1398 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1400 start_sequence ();
1402 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS,
1403 new, GEN_INT (offset), SET_DEST (set),
1404 1, OPTAB_LIB_WIDEN);
1405 if (x != SET_DEST (set))
1406 emit_move_insn (SET_DEST (set), x);
1408 seq = get_insns ();
1409 end_sequence ();
1411 emit_insn_before (seq, insn);
1412 delete_insn (insn);
1413 return;
1416 extract_insn (insn);
1417 insn_code = INSN_CODE (insn);
1419 /* Handle a plus involving a virtual register by determining if the
1420 operands remain valid if they're modified in place. */
1421 if (GET_CODE (SET_SRC (set)) == PLUS
1422 && recog_data.n_operands >= 3
1423 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1424 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1425 && GET_CODE (recog_data.operand[2]) == CONST_INT
1426 && (new = instantiate_new_reg (recog_data.operand[1], &offset)))
1428 offset += INTVAL (recog_data.operand[2]);
1430 /* If the sum is zero, then replace with a plain move. */
1431 if (offset == 0
1432 && REG_P (SET_DEST (set))
1433 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1435 start_sequence ();
1436 emit_move_insn (SET_DEST (set), new);
1437 seq = get_insns ();
1438 end_sequence ();
1440 emit_insn_before (seq, insn);
1441 delete_insn (insn);
1442 return;
1445 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1447 /* Using validate_change and apply_change_group here leaves
1448 recog_data in an invalid state. Since we know exactly what
1449 we want to check, do those two by hand. */
1450 if (safe_insn_predicate (insn_code, 1, new)
1451 && safe_insn_predicate (insn_code, 2, x))
1453 *recog_data.operand_loc[1] = recog_data.operand[1] = new;
1454 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1455 any_change = true;
1457 /* Fall through into the regular operand fixup loop in
1458 order to take care of operands other than 1 and 2. */
1462 else
1464 extract_insn (insn);
1465 insn_code = INSN_CODE (insn);
1468 /* In the general case, we expect virtual registers to appear only in
1469 operands, and then only as either bare registers or inside memories. */
1470 for (i = 0; i < recog_data.n_operands; ++i)
1472 x = recog_data.operand[i];
1473 switch (GET_CODE (x))
1475 case MEM:
1477 rtx addr = XEXP (x, 0);
1478 bool changed = false;
1480 for_each_rtx (&addr, instantiate_virtual_regs_in_rtx, &changed);
1481 if (!changed)
1482 continue;
1484 start_sequence ();
1485 x = replace_equiv_address (x, addr);
1486 seq = get_insns ();
1487 end_sequence ();
1488 if (seq)
1489 emit_insn_before (seq, insn);
1491 break;
1493 case REG:
1494 new = instantiate_new_reg (x, &offset);
1495 if (new == NULL)
1496 continue;
1497 if (offset == 0)
1498 x = new;
1499 else
1501 start_sequence ();
1503 /* Careful, special mode predicates may have stuff in
1504 insn_data[insn_code].operand[i].mode that isn't useful
1505 to us for computing a new value. */
1506 /* ??? Recognize address_operand and/or "p" constraints
1507 to see if (plus new offset) is a valid before we put
1508 this through expand_simple_binop. */
1509 x = expand_simple_binop (GET_MODE (x), PLUS, new,
1510 GEN_INT (offset), NULL_RTX,
1511 1, OPTAB_LIB_WIDEN);
1512 seq = get_insns ();
1513 end_sequence ();
1514 emit_insn_before (seq, insn);
1516 break;
1518 case SUBREG:
1519 new = instantiate_new_reg (SUBREG_REG (x), &offset);
1520 if (new == NULL)
1521 continue;
1522 if (offset != 0)
1524 start_sequence ();
1525 new = expand_simple_binop (GET_MODE (new), PLUS, new,
1526 GEN_INT (offset), NULL_RTX,
1527 1, OPTAB_LIB_WIDEN);
1528 seq = get_insns ();
1529 end_sequence ();
1530 emit_insn_before (seq, insn);
1532 x = simplify_gen_subreg (recog_data.operand_mode[i], new,
1533 GET_MODE (new), SUBREG_BYTE (x));
1534 break;
1536 default:
1537 continue;
1540 /* At this point, X contains the new value for the operand.
1541 Validate the new value vs the insn predicate. Note that
1542 asm insns will have insn_code -1 here. */
1543 if (!safe_insn_predicate (insn_code, i, x))
1544 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1546 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1547 any_change = true;
1550 if (any_change)
1552 /* Propagate operand changes into the duplicates. */
1553 for (i = 0; i < recog_data.n_dups; ++i)
1554 *recog_data.dup_loc[i]
1555 = recog_data.operand[(unsigned)recog_data.dup_num[i]];
1557 /* Force re-recognition of the instruction for validation. */
1558 INSN_CODE (insn) = -1;
1561 if (asm_noperands (PATTERN (insn)) >= 0)
1563 if (!check_asm_operands (PATTERN (insn)))
1565 error_for_asm (insn, "impossible constraint in %<asm%>");
1566 delete_insn (insn);
1569 else
1571 if (recog_memoized (insn) < 0)
1572 fatal_insn_not_found (insn);
1576 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1577 do any instantiation required. */
1579 static void
1580 instantiate_decl (rtx x)
1582 rtx addr;
1584 if (x == 0)
1585 return;
1587 /* If this is a CONCAT, recurse for the pieces. */
1588 if (GET_CODE (x) == CONCAT)
1590 instantiate_decl (XEXP (x, 0));
1591 instantiate_decl (XEXP (x, 1));
1592 return;
1595 /* If this is not a MEM, no need to do anything. Similarly if the
1596 address is a constant or a register that is not a virtual register. */
1597 if (!MEM_P (x))
1598 return;
1600 addr = XEXP (x, 0);
1601 if (CONSTANT_P (addr)
1602 || (REG_P (addr)
1603 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1604 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1605 return;
1607 for_each_rtx (&XEXP (x, 0), instantiate_virtual_regs_in_rtx, NULL);
1610 /* Helper for instantiate_decls called via walk_tree: Process all decls
1611 in the given DECL_VALUE_EXPR. */
1613 static tree
1614 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1616 tree t = *tp;
1617 if (! EXPR_P (t))
1619 *walk_subtrees = 0;
1620 if (DECL_P (t) && DECL_RTL_SET_P (t))
1621 instantiate_decl (DECL_RTL (t));
1623 return NULL;
1626 /* Subroutine of instantiate_decls: Process all decls in the given
1627 BLOCK node and all its subblocks. */
1629 static void
1630 instantiate_decls_1 (tree let)
1632 tree t;
1634 for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
1636 if (DECL_RTL_SET_P (t))
1637 instantiate_decl (DECL_RTL (t));
1638 if (TREE_CODE (t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (t))
1640 tree v = DECL_VALUE_EXPR (t);
1641 walk_tree (&v, instantiate_expr, NULL, NULL);
1645 /* Process all subblocks. */
1646 for (t = BLOCK_SUBBLOCKS (let); t; t = TREE_CHAIN (t))
1647 instantiate_decls_1 (t);
1650 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1651 all virtual registers in their DECL_RTL's. */
1653 static void
1654 instantiate_decls (tree fndecl)
1656 tree decl;
1658 /* Process all parameters of the function. */
1659 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
1661 instantiate_decl (DECL_RTL (decl));
1662 instantiate_decl (DECL_INCOMING_RTL (decl));
1663 if (DECL_HAS_VALUE_EXPR_P (decl))
1665 tree v = DECL_VALUE_EXPR (decl);
1666 walk_tree (&v, instantiate_expr, NULL, NULL);
1670 /* Now process all variables defined in the function or its subblocks. */
1671 instantiate_decls_1 (DECL_INITIAL (fndecl));
1674 /* Pass through the INSNS of function FNDECL and convert virtual register
1675 references to hard register references. */
1677 static unsigned int
1678 instantiate_virtual_regs (void)
1680 rtx insn;
1682 /* Compute the offsets to use for this function. */
1683 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1684 var_offset = STARTING_FRAME_OFFSET;
1685 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1686 out_arg_offset = STACK_POINTER_OFFSET;
1687 #ifdef FRAME_POINTER_CFA_OFFSET
1688 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1689 #else
1690 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1691 #endif
1693 /* Initialize recognition, indicating that volatile is OK. */
1694 init_recog ();
1696 /* Scan through all the insns, instantiating every virtual register still
1697 present. */
1698 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1699 if (INSN_P (insn))
1701 /* These patterns in the instruction stream can never be recognized.
1702 Fortunately, they shouldn't contain virtual registers either. */
1703 if (GET_CODE (PATTERN (insn)) == USE
1704 || GET_CODE (PATTERN (insn)) == CLOBBER
1705 || GET_CODE (PATTERN (insn)) == ADDR_VEC
1706 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
1707 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
1708 continue;
1710 instantiate_virtual_regs_in_insn (insn);
1712 if (INSN_DELETED_P (insn))
1713 continue;
1715 for_each_rtx (&REG_NOTES (insn), instantiate_virtual_regs_in_rtx, NULL);
1717 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1718 if (GET_CODE (insn) == CALL_INSN)
1719 for_each_rtx (&CALL_INSN_FUNCTION_USAGE (insn),
1720 instantiate_virtual_regs_in_rtx, NULL);
1723 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1724 instantiate_decls (current_function_decl);
1726 /* Indicate that, from now on, assign_stack_local should use
1727 frame_pointer_rtx. */
1728 virtuals_instantiated = 1;
1729 return 0;
1732 struct tree_opt_pass pass_instantiate_virtual_regs =
1734 "vregs", /* name */
1735 NULL, /* gate */
1736 instantiate_virtual_regs, /* execute */
1737 NULL, /* sub */
1738 NULL, /* next */
1739 0, /* static_pass_number */
1740 0, /* tv_id */
1741 0, /* properties_required */
1742 0, /* properties_provided */
1743 0, /* properties_destroyed */
1744 0, /* todo_flags_start */
1745 TODO_dump_func, /* todo_flags_finish */
1746 0 /* letter */
1750 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1751 This means a type for which function calls must pass an address to the
1752 function or get an address back from the function.
1753 EXP may be a type node or an expression (whose type is tested). */
1756 aggregate_value_p (tree exp, tree fntype)
1758 int i, regno, nregs;
1759 rtx reg;
1761 tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
1763 if (fntype)
1764 switch (TREE_CODE (fntype))
1766 case CALL_EXPR:
1767 fntype = get_callee_fndecl (fntype);
1768 fntype = fntype ? TREE_TYPE (fntype) : 0;
1769 break;
1770 case FUNCTION_DECL:
1771 fntype = TREE_TYPE (fntype);
1772 break;
1773 case FUNCTION_TYPE:
1774 case METHOD_TYPE:
1775 break;
1776 case IDENTIFIER_NODE:
1777 fntype = 0;
1778 break;
1779 default:
1780 /* We don't expect other rtl types here. */
1781 gcc_unreachable ();
1784 if (TREE_CODE (type) == VOID_TYPE)
1785 return 0;
1786 /* If the front end has decided that this needs to be passed by
1787 reference, do so. */
1788 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
1789 && DECL_BY_REFERENCE (exp))
1790 return 1;
1791 if (targetm.calls.return_in_memory (type, fntype))
1792 return 1;
1793 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
1794 and thus can't be returned in registers. */
1795 if (TREE_ADDRESSABLE (type))
1796 return 1;
1797 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
1798 return 1;
1799 /* Make sure we have suitable call-clobbered regs to return
1800 the value in; if not, we must return it in memory. */
1801 reg = hard_function_value (type, 0, fntype, 0);
1803 /* If we have something other than a REG (e.g. a PARALLEL), then assume
1804 it is OK. */
1805 if (!REG_P (reg))
1806 return 0;
1808 regno = REGNO (reg);
1809 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
1810 for (i = 0; i < nregs; i++)
1811 if (! call_used_regs[regno + i])
1812 return 1;
1813 return 0;
1816 /* Return true if we should assign DECL a pseudo register; false if it
1817 should live on the local stack. */
1819 bool
1820 use_register_for_decl (tree decl)
1822 /* Honor volatile. */
1823 if (TREE_SIDE_EFFECTS (decl))
1824 return false;
1826 /* Honor addressability. */
1827 if (TREE_ADDRESSABLE (decl))
1828 return false;
1830 /* Only register-like things go in registers. */
1831 if (DECL_MODE (decl) == BLKmode)
1832 return false;
1834 /* If -ffloat-store specified, don't put explicit float variables
1835 into registers. */
1836 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
1837 propagates values across these stores, and it probably shouldn't. */
1838 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
1839 return false;
1841 /* If we're not interested in tracking debugging information for
1842 this decl, then we can certainly put it in a register. */
1843 if (DECL_IGNORED_P (decl))
1844 return true;
1846 return (optimize || DECL_REGISTER (decl));
1849 /* Return true if TYPE should be passed by invisible reference. */
1851 bool
1852 pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1853 tree type, bool named_arg)
1855 if (type)
1857 /* If this type contains non-trivial constructors, then it is
1858 forbidden for the middle-end to create any new copies. */
1859 if (TREE_ADDRESSABLE (type))
1860 return true;
1862 /* GCC post 3.4 passes *all* variable sized types by reference. */
1863 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1864 return true;
1867 return targetm.calls.pass_by_reference (ca, mode, type, named_arg);
1870 /* Return true if TYPE, which is passed by reference, should be callee
1871 copied instead of caller copied. */
1873 bool
1874 reference_callee_copied (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1875 tree type, bool named_arg)
1877 if (type && TREE_ADDRESSABLE (type))
1878 return false;
1879 return targetm.calls.callee_copies (ca, mode, type, named_arg);
1882 /* Structures to communicate between the subroutines of assign_parms.
1883 The first holds data persistent across all parameters, the second
1884 is cleared out for each parameter. */
1886 struct assign_parm_data_all
1888 CUMULATIVE_ARGS args_so_far;
1889 struct args_size stack_args_size;
1890 tree function_result_decl;
1891 tree orig_fnargs;
1892 rtx conversion_insns;
1893 HOST_WIDE_INT pretend_args_size;
1894 HOST_WIDE_INT extra_pretend_bytes;
1895 int reg_parm_stack_space;
1898 struct assign_parm_data_one
1900 tree nominal_type;
1901 tree passed_type;
1902 rtx entry_parm;
1903 rtx stack_parm;
1904 enum machine_mode nominal_mode;
1905 enum machine_mode passed_mode;
1906 enum machine_mode promoted_mode;
1907 struct locate_and_pad_arg_data locate;
1908 int partial;
1909 BOOL_BITFIELD named_arg : 1;
1910 BOOL_BITFIELD passed_pointer : 1;
1911 BOOL_BITFIELD on_stack : 1;
1912 BOOL_BITFIELD loaded_in_reg : 1;
1915 /* A subroutine of assign_parms. Initialize ALL. */
1917 static void
1918 assign_parms_initialize_all (struct assign_parm_data_all *all)
1920 tree fntype;
1922 memset (all, 0, sizeof (*all));
1924 fntype = TREE_TYPE (current_function_decl);
1926 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
1927 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far, fntype, NULL_RTX);
1928 #else
1929 INIT_CUMULATIVE_ARGS (all->args_so_far, fntype, NULL_RTX,
1930 current_function_decl, -1);
1931 #endif
1933 #ifdef REG_PARM_STACK_SPACE
1934 all->reg_parm_stack_space = REG_PARM_STACK_SPACE (current_function_decl);
1935 #endif
1938 /* If ARGS contains entries with complex types, split the entry into two
1939 entries of the component type. Return a new list of substitutions are
1940 needed, else the old list. */
1942 static tree
1943 split_complex_args (tree args)
1945 tree p;
1947 /* Before allocating memory, check for the common case of no complex. */
1948 for (p = args; p; p = TREE_CHAIN (p))
1950 tree type = TREE_TYPE (p);
1951 if (TREE_CODE (type) == COMPLEX_TYPE
1952 && targetm.calls.split_complex_arg (type))
1953 goto found;
1955 return args;
1957 found:
1958 args = copy_list (args);
1960 for (p = args; p; p = TREE_CHAIN (p))
1962 tree type = TREE_TYPE (p);
1963 if (TREE_CODE (type) == COMPLEX_TYPE
1964 && targetm.calls.split_complex_arg (type))
1966 tree decl;
1967 tree subtype = TREE_TYPE (type);
1968 bool addressable = TREE_ADDRESSABLE (p);
1970 /* Rewrite the PARM_DECL's type with its component. */
1971 TREE_TYPE (p) = subtype;
1972 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
1973 DECL_MODE (p) = VOIDmode;
1974 DECL_SIZE (p) = NULL;
1975 DECL_SIZE_UNIT (p) = NULL;
1976 /* If this arg must go in memory, put it in a pseudo here.
1977 We can't allow it to go in memory as per normal parms,
1978 because the usual place might not have the imag part
1979 adjacent to the real part. */
1980 DECL_ARTIFICIAL (p) = addressable;
1981 DECL_IGNORED_P (p) = addressable;
1982 TREE_ADDRESSABLE (p) = 0;
1983 layout_decl (p, 0);
1985 /* Build a second synthetic decl. */
1986 decl = build_decl (PARM_DECL, NULL_TREE, subtype);
1987 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
1988 DECL_ARTIFICIAL (decl) = addressable;
1989 DECL_IGNORED_P (decl) = addressable;
1990 layout_decl (decl, 0);
1992 /* Splice it in; skip the new decl. */
1993 TREE_CHAIN (decl) = TREE_CHAIN (p);
1994 TREE_CHAIN (p) = decl;
1995 p = decl;
1999 return args;
2002 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2003 the hidden struct return argument, and (abi willing) complex args.
2004 Return the new parameter list. */
2006 static tree
2007 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2009 tree fndecl = current_function_decl;
2010 tree fntype = TREE_TYPE (fndecl);
2011 tree fnargs = DECL_ARGUMENTS (fndecl);
2013 /* If struct value address is treated as the first argument, make it so. */
2014 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2015 && ! current_function_returns_pcc_struct
2016 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2018 tree type = build_pointer_type (TREE_TYPE (fntype));
2019 tree decl;
2021 decl = build_decl (PARM_DECL, NULL_TREE, type);
2022 DECL_ARG_TYPE (decl) = type;
2023 DECL_ARTIFICIAL (decl) = 1;
2024 DECL_IGNORED_P (decl) = 1;
2026 TREE_CHAIN (decl) = fnargs;
2027 fnargs = decl;
2028 all->function_result_decl = decl;
2031 all->orig_fnargs = fnargs;
2033 /* If the target wants to split complex arguments into scalars, do so. */
2034 if (targetm.calls.split_complex_arg)
2035 fnargs = split_complex_args (fnargs);
2037 return fnargs;
2040 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2041 data for the parameter. Incorporate ABI specifics such as pass-by-
2042 reference and type promotion. */
2044 static void
2045 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2046 struct assign_parm_data_one *data)
2048 tree nominal_type, passed_type;
2049 enum machine_mode nominal_mode, passed_mode, promoted_mode;
2051 memset (data, 0, sizeof (*data));
2053 /* NAMED_ARG is a mis-nomer. We really mean 'non-varadic'. */
2054 if (!current_function_stdarg)
2055 data->named_arg = 1; /* No varadic parms. */
2056 else if (TREE_CHAIN (parm))
2057 data->named_arg = 1; /* Not the last non-varadic parm. */
2058 else if (targetm.calls.strict_argument_naming (&all->args_so_far))
2059 data->named_arg = 1; /* Only varadic ones are unnamed. */
2060 else
2061 data->named_arg = 0; /* Treat as varadic. */
2063 nominal_type = TREE_TYPE (parm);
2064 passed_type = DECL_ARG_TYPE (parm);
2066 /* Look out for errors propagating this far. Also, if the parameter's
2067 type is void then its value doesn't matter. */
2068 if (TREE_TYPE (parm) == error_mark_node
2069 /* This can happen after weird syntax errors
2070 or if an enum type is defined among the parms. */
2071 || TREE_CODE (parm) != PARM_DECL
2072 || passed_type == NULL
2073 || VOID_TYPE_P (nominal_type))
2075 nominal_type = passed_type = void_type_node;
2076 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2077 goto egress;
2080 /* Find mode of arg as it is passed, and mode of arg as it should be
2081 during execution of this function. */
2082 passed_mode = TYPE_MODE (passed_type);
2083 nominal_mode = TYPE_MODE (nominal_type);
2085 /* If the parm is to be passed as a transparent union, use the type of
2086 the first field for the tests below. We have already verified that
2087 the modes are the same. */
2088 if (TREE_CODE (passed_type) == UNION_TYPE
2089 && TYPE_TRANSPARENT_UNION (passed_type))
2090 passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
2092 /* See if this arg was passed by invisible reference. */
2093 if (pass_by_reference (&all->args_so_far, passed_mode,
2094 passed_type, data->named_arg))
2096 passed_type = nominal_type = build_pointer_type (passed_type);
2097 data->passed_pointer = true;
2098 passed_mode = nominal_mode = Pmode;
2101 /* Find mode as it is passed by the ABI. */
2102 promoted_mode = passed_mode;
2103 if (targetm.calls.promote_function_args (TREE_TYPE (current_function_decl)))
2105 int unsignedp = TYPE_UNSIGNED (passed_type);
2106 promoted_mode = promote_mode (passed_type, promoted_mode,
2107 &unsignedp, 1);
2110 egress:
2111 data->nominal_type = nominal_type;
2112 data->passed_type = passed_type;
2113 data->nominal_mode = nominal_mode;
2114 data->passed_mode = passed_mode;
2115 data->promoted_mode = promoted_mode;
2118 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2120 static void
2121 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2122 struct assign_parm_data_one *data, bool no_rtl)
2124 int varargs_pretend_bytes = 0;
2126 targetm.calls.setup_incoming_varargs (&all->args_so_far,
2127 data->promoted_mode,
2128 data->passed_type,
2129 &varargs_pretend_bytes, no_rtl);
2131 /* If the back-end has requested extra stack space, record how much is
2132 needed. Do not change pretend_args_size otherwise since it may be
2133 nonzero from an earlier partial argument. */
2134 if (varargs_pretend_bytes > 0)
2135 all->pretend_args_size = varargs_pretend_bytes;
2138 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2139 the incoming location of the current parameter. */
2141 static void
2142 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2143 struct assign_parm_data_one *data)
2145 HOST_WIDE_INT pretend_bytes = 0;
2146 rtx entry_parm;
2147 bool in_regs;
2149 if (data->promoted_mode == VOIDmode)
2151 data->entry_parm = data->stack_parm = const0_rtx;
2152 return;
2155 #ifdef FUNCTION_INCOMING_ARG
2156 entry_parm = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2157 data->passed_type, data->named_arg);
2158 #else
2159 entry_parm = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2160 data->passed_type, data->named_arg);
2161 #endif
2163 if (entry_parm == 0)
2164 data->promoted_mode = data->passed_mode;
2166 /* Determine parm's home in the stack, in case it arrives in the stack
2167 or we should pretend it did. Compute the stack position and rtx where
2168 the argument arrives and its size.
2170 There is one complexity here: If this was a parameter that would
2171 have been passed in registers, but wasn't only because it is
2172 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2173 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2174 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2175 as it was the previous time. */
2176 in_regs = entry_parm != 0;
2177 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2178 in_regs = true;
2179 #endif
2180 if (!in_regs && !data->named_arg)
2182 if (targetm.calls.pretend_outgoing_varargs_named (&all->args_so_far))
2184 rtx tem;
2185 #ifdef FUNCTION_INCOMING_ARG
2186 tem = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2187 data->passed_type, true);
2188 #else
2189 tem = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2190 data->passed_type, true);
2191 #endif
2192 in_regs = tem != NULL;
2196 /* If this parameter was passed both in registers and in the stack, use
2197 the copy on the stack. */
2198 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2199 data->passed_type))
2200 entry_parm = 0;
2202 if (entry_parm)
2204 int partial;
2206 partial = targetm.calls.arg_partial_bytes (&all->args_so_far,
2207 data->promoted_mode,
2208 data->passed_type,
2209 data->named_arg);
2210 data->partial = partial;
2212 /* The caller might already have allocated stack space for the
2213 register parameters. */
2214 if (partial != 0 && all->reg_parm_stack_space == 0)
2216 /* Part of this argument is passed in registers and part
2217 is passed on the stack. Ask the prologue code to extend
2218 the stack part so that we can recreate the full value.
2220 PRETEND_BYTES is the size of the registers we need to store.
2221 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2222 stack space that the prologue should allocate.
2224 Internally, gcc assumes that the argument pointer is aligned
2225 to STACK_BOUNDARY bits. This is used both for alignment
2226 optimizations (see init_emit) and to locate arguments that are
2227 aligned to more than PARM_BOUNDARY bits. We must preserve this
2228 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2229 a stack boundary. */
2231 /* We assume at most one partial arg, and it must be the first
2232 argument on the stack. */
2233 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2235 pretend_bytes = partial;
2236 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2238 /* We want to align relative to the actual stack pointer, so
2239 don't include this in the stack size until later. */
2240 all->extra_pretend_bytes = all->pretend_args_size;
2244 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2245 entry_parm ? data->partial : 0, current_function_decl,
2246 &all->stack_args_size, &data->locate);
2248 /* Adjust offsets to include the pretend args. */
2249 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2250 data->locate.slot_offset.constant += pretend_bytes;
2251 data->locate.offset.constant += pretend_bytes;
2253 data->entry_parm = entry_parm;
2256 /* A subroutine of assign_parms. If there is actually space on the stack
2257 for this parm, count it in stack_args_size and return true. */
2259 static bool
2260 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2261 struct assign_parm_data_one *data)
2263 /* Trivially true if we've no incoming register. */
2264 if (data->entry_parm == NULL)
2266 /* Also true if we're partially in registers and partially not,
2267 since we've arranged to drop the entire argument on the stack. */
2268 else if (data->partial != 0)
2270 /* Also true if the target says that it's passed in both registers
2271 and on the stack. */
2272 else if (GET_CODE (data->entry_parm) == PARALLEL
2273 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2275 /* Also true if the target says that there's stack allocated for
2276 all register parameters. */
2277 else if (all->reg_parm_stack_space > 0)
2279 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2280 else
2281 return false;
2283 all->stack_args_size.constant += data->locate.size.constant;
2284 if (data->locate.size.var)
2285 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2287 return true;
2290 /* A subroutine of assign_parms. Given that this parameter is allocated
2291 stack space by the ABI, find it. */
2293 static void
2294 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2296 rtx offset_rtx, stack_parm;
2297 unsigned int align, boundary;
2299 /* If we're passing this arg using a reg, make its stack home the
2300 aligned stack slot. */
2301 if (data->entry_parm)
2302 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2303 else
2304 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2306 stack_parm = current_function_internal_arg_pointer;
2307 if (offset_rtx != const0_rtx)
2308 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2309 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2311 set_mem_attributes (stack_parm, parm, 1);
2313 boundary = data->locate.boundary;
2314 align = BITS_PER_UNIT;
2316 /* If we're padding upward, we know that the alignment of the slot
2317 is FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2318 intentionally forcing upward padding. Otherwise we have to come
2319 up with a guess at the alignment based on OFFSET_RTX. */
2320 if (data->locate.where_pad != downward || data->entry_parm)
2321 align = boundary;
2322 else if (GET_CODE (offset_rtx) == CONST_INT)
2324 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2325 align = align & -align;
2327 set_mem_align (stack_parm, align);
2329 if (data->entry_parm)
2330 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2332 data->stack_parm = stack_parm;
2335 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2336 always valid and contiguous. */
2338 static void
2339 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2341 rtx entry_parm = data->entry_parm;
2342 rtx stack_parm = data->stack_parm;
2344 /* If this parm was passed part in regs and part in memory, pretend it
2345 arrived entirely in memory by pushing the register-part onto the stack.
2346 In the special case of a DImode or DFmode that is split, we could put
2347 it together in a pseudoreg directly, but for now that's not worth
2348 bothering with. */
2349 if (data->partial != 0)
2351 /* Handle calls that pass values in multiple non-contiguous
2352 locations. The Irix 6 ABI has examples of this. */
2353 if (GET_CODE (entry_parm) == PARALLEL)
2354 emit_group_store (validize_mem (stack_parm), entry_parm,
2355 data->passed_type,
2356 int_size_in_bytes (data->passed_type));
2357 else
2359 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2360 move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
2361 data->partial / UNITS_PER_WORD);
2364 entry_parm = stack_parm;
2367 /* If we didn't decide this parm came in a register, by default it came
2368 on the stack. */
2369 else if (entry_parm == NULL)
2370 entry_parm = stack_parm;
2372 /* When an argument is passed in multiple locations, we can't make use
2373 of this information, but we can save some copying if the whole argument
2374 is passed in a single register. */
2375 else if (GET_CODE (entry_parm) == PARALLEL
2376 && data->nominal_mode != BLKmode
2377 && data->passed_mode != BLKmode)
2379 size_t i, len = XVECLEN (entry_parm, 0);
2381 for (i = 0; i < len; i++)
2382 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2383 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2384 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2385 == data->passed_mode)
2386 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2388 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2389 break;
2393 data->entry_parm = entry_parm;
2396 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2397 always valid and properly aligned. */
2399 static void
2400 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2402 rtx stack_parm = data->stack_parm;
2404 /* If we can't trust the parm stack slot to be aligned enough for its
2405 ultimate type, don't use that slot after entry. We'll make another
2406 stack slot, if we need one. */
2407 if (stack_parm
2408 && ((STRICT_ALIGNMENT
2409 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2410 || (data->nominal_type
2411 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2412 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2413 stack_parm = NULL;
2415 /* If parm was passed in memory, and we need to convert it on entry,
2416 don't store it back in that same slot. */
2417 else if (data->entry_parm == stack_parm
2418 && data->nominal_mode != BLKmode
2419 && data->nominal_mode != data->passed_mode)
2420 stack_parm = NULL;
2422 /* If stack protection is in effect for this function, don't leave any
2423 pointers in their passed stack slots. */
2424 else if (cfun->stack_protect_guard
2425 && (flag_stack_protect == 2
2426 || data->passed_pointer
2427 || POINTER_TYPE_P (data->nominal_type)))
2428 stack_parm = NULL;
2430 data->stack_parm = stack_parm;
2433 /* A subroutine of assign_parms. Return true if the current parameter
2434 should be stored as a BLKmode in the current frame. */
2436 static bool
2437 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2439 if (data->nominal_mode == BLKmode)
2440 return true;
2441 if (GET_CODE (data->entry_parm) == PARALLEL)
2442 return true;
2444 #ifdef BLOCK_REG_PADDING
2445 /* Only assign_parm_setup_block knows how to deal with register arguments
2446 that are padded at the least significant end. */
2447 if (REG_P (data->entry_parm)
2448 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2449 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2450 == (BYTES_BIG_ENDIAN ? upward : downward)))
2451 return true;
2452 #endif
2454 return false;
2457 /* A subroutine of assign_parms. Arrange for the parameter to be
2458 present and valid in DATA->STACK_RTL. */
2460 static void
2461 assign_parm_setup_block (struct assign_parm_data_all *all,
2462 tree parm, struct assign_parm_data_one *data)
2464 rtx entry_parm = data->entry_parm;
2465 rtx stack_parm = data->stack_parm;
2466 HOST_WIDE_INT size;
2467 HOST_WIDE_INT size_stored;
2468 rtx orig_entry_parm = entry_parm;
2470 if (GET_CODE (entry_parm) == PARALLEL)
2471 entry_parm = emit_group_move_into_temps (entry_parm);
2473 /* If we've a non-block object that's nevertheless passed in parts,
2474 reconstitute it in register operations rather than on the stack. */
2475 if (GET_CODE (entry_parm) == PARALLEL
2476 && data->nominal_mode != BLKmode)
2478 rtx elt0 = XEXP (XVECEXP (orig_entry_parm, 0, 0), 0);
2480 if ((XVECLEN (entry_parm, 0) > 1
2481 || hard_regno_nregs[REGNO (elt0)][GET_MODE (elt0)] > 1)
2482 && use_register_for_decl (parm))
2484 rtx parmreg = gen_reg_rtx (data->nominal_mode);
2486 push_to_sequence (all->conversion_insns);
2488 /* For values returned in multiple registers, handle possible
2489 incompatible calls to emit_group_store.
2491 For example, the following would be invalid, and would have to
2492 be fixed by the conditional below:
2494 emit_group_store ((reg:SF), (parallel:DF))
2495 emit_group_store ((reg:SI), (parallel:DI))
2497 An example of this are doubles in e500 v2:
2498 (parallel:DF (expr_list (reg:SI) (const_int 0))
2499 (expr_list (reg:SI) (const_int 4))). */
2500 if (data->nominal_mode != data->passed_mode)
2502 rtx t = gen_reg_rtx (GET_MODE (entry_parm));
2503 emit_group_store (t, entry_parm, NULL_TREE,
2504 GET_MODE_SIZE (GET_MODE (entry_parm)));
2505 convert_move (parmreg, t, 0);
2507 else
2508 emit_group_store (parmreg, entry_parm, data->nominal_type,
2509 int_size_in_bytes (data->nominal_type));
2511 all->conversion_insns = get_insns ();
2512 end_sequence ();
2514 SET_DECL_RTL (parm, parmreg);
2515 return;
2519 size = int_size_in_bytes (data->passed_type);
2520 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2521 if (stack_parm == 0)
2523 DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
2524 stack_parm = assign_stack_local (BLKmode, size_stored,
2525 DECL_ALIGN (parm));
2526 if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
2527 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2528 set_mem_attributes (stack_parm, parm, 1);
2531 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2532 calls that pass values in multiple non-contiguous locations. */
2533 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2535 rtx mem;
2537 /* Note that we will be storing an integral number of words.
2538 So we have to be careful to ensure that we allocate an
2539 integral number of words. We do this above when we call
2540 assign_stack_local if space was not allocated in the argument
2541 list. If it was, this will not work if PARM_BOUNDARY is not
2542 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2543 if it becomes a problem. Exception is when BLKmode arrives
2544 with arguments not conforming to word_mode. */
2546 if (data->stack_parm == 0)
2548 else if (GET_CODE (entry_parm) == PARALLEL)
2550 else
2551 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2553 mem = validize_mem (stack_parm);
2555 /* Handle values in multiple non-contiguous locations. */
2556 if (GET_CODE (entry_parm) == PARALLEL)
2558 push_to_sequence (all->conversion_insns);
2559 emit_group_store (mem, entry_parm, data->passed_type, size);
2560 all->conversion_insns = get_insns ();
2561 end_sequence ();
2564 else if (size == 0)
2567 /* If SIZE is that of a mode no bigger than a word, just use
2568 that mode's store operation. */
2569 else if (size <= UNITS_PER_WORD)
2571 enum machine_mode mode
2572 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2574 if (mode != BLKmode
2575 #ifdef BLOCK_REG_PADDING
2576 && (size == UNITS_PER_WORD
2577 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2578 != (BYTES_BIG_ENDIAN ? upward : downward)))
2579 #endif
2582 rtx reg = gen_rtx_REG (mode, REGNO (entry_parm));
2583 emit_move_insn (change_address (mem, mode, 0), reg);
2586 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2587 machine must be aligned to the left before storing
2588 to memory. Note that the previous test doesn't
2589 handle all cases (e.g. SIZE == 3). */
2590 else if (size != UNITS_PER_WORD
2591 #ifdef BLOCK_REG_PADDING
2592 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2593 == downward)
2594 #else
2595 && BYTES_BIG_ENDIAN
2596 #endif
2599 rtx tem, x;
2600 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2601 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2603 x = expand_shift (LSHIFT_EXPR, word_mode, reg,
2604 build_int_cst (NULL_TREE, by),
2605 NULL_RTX, 1);
2606 tem = change_address (mem, word_mode, 0);
2607 emit_move_insn (tem, x);
2609 else
2610 move_block_from_reg (REGNO (entry_parm), mem,
2611 size_stored / UNITS_PER_WORD);
2613 else
2614 move_block_from_reg (REGNO (entry_parm), mem,
2615 size_stored / UNITS_PER_WORD);
2617 else if (data->stack_parm == 0)
2619 push_to_sequence (all->conversion_insns);
2620 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
2621 BLOCK_OP_NORMAL);
2622 all->conversion_insns = get_insns ();
2623 end_sequence ();
2626 data->stack_parm = stack_parm;
2627 SET_DECL_RTL (parm, stack_parm);
2630 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
2631 parameter. Get it there. Perform all ABI specified conversions. */
2633 static void
2634 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2635 struct assign_parm_data_one *data)
2637 rtx parmreg;
2638 enum machine_mode promoted_nominal_mode;
2639 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
2640 bool did_conversion = false;
2642 /* Store the parm in a pseudoregister during the function, but we may
2643 need to do it in a wider mode. */
2645 /* This is not really promoting for a call. However we need to be
2646 consistent with assign_parm_find_data_types and expand_expr_real_1. */
2647 promoted_nominal_mode
2648 = promote_mode (data->nominal_type, data->nominal_mode, &unsignedp, 1);
2650 parmreg = gen_reg_rtx (promoted_nominal_mode);
2652 if (!DECL_ARTIFICIAL (parm))
2653 mark_user_reg (parmreg);
2655 /* If this was an item that we received a pointer to,
2656 set DECL_RTL appropriately. */
2657 if (data->passed_pointer)
2659 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
2660 set_mem_attributes (x, parm, 1);
2661 SET_DECL_RTL (parm, x);
2663 else
2664 SET_DECL_RTL (parm, parmreg);
2666 /* Copy the value into the register. */
2667 if (data->nominal_mode != data->passed_mode
2668 || promoted_nominal_mode != data->promoted_mode)
2670 int save_tree_used;
2672 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2673 mode, by the caller. We now have to convert it to
2674 NOMINAL_MODE, if different. However, PARMREG may be in
2675 a different mode than NOMINAL_MODE if it is being stored
2676 promoted.
2678 If ENTRY_PARM is a hard register, it might be in a register
2679 not valid for operating in its mode (e.g., an odd-numbered
2680 register for a DFmode). In that case, moves are the only
2681 thing valid, so we can't do a convert from there. This
2682 occurs when the calling sequence allow such misaligned
2683 usages.
2685 In addition, the conversion may involve a call, which could
2686 clobber parameters which haven't been copied to pseudo
2687 registers yet. Therefore, we must first copy the parm to
2688 a pseudo reg here, and save the conversion until after all
2689 parameters have been moved. */
2691 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2693 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2695 push_to_sequence (all->conversion_insns);
2696 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
2698 if (GET_CODE (tempreg) == SUBREG
2699 && GET_MODE (tempreg) == data->nominal_mode
2700 && REG_P (SUBREG_REG (tempreg))
2701 && data->nominal_mode == data->passed_mode
2702 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
2703 && GET_MODE_SIZE (GET_MODE (tempreg))
2704 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
2706 /* The argument is already sign/zero extended, so note it
2707 into the subreg. */
2708 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
2709 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
2712 /* TREE_USED gets set erroneously during expand_assignment. */
2713 save_tree_used = TREE_USED (parm);
2714 expand_assignment (parm, make_tree (data->nominal_type, tempreg));
2715 TREE_USED (parm) = save_tree_used;
2716 all->conversion_insns = get_insns ();
2717 end_sequence ();
2719 did_conversion = true;
2721 else
2722 emit_move_insn (parmreg, validize_mem (data->entry_parm));
2724 /* If we were passed a pointer but the actual value can safely live
2725 in a register, put it in one. */
2726 if (data->passed_pointer
2727 && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
2728 /* If by-reference argument was promoted, demote it. */
2729 && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
2730 || use_register_for_decl (parm)))
2732 /* We can't use nominal_mode, because it will have been set to
2733 Pmode above. We must use the actual mode of the parm. */
2734 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
2735 mark_user_reg (parmreg);
2737 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
2739 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
2740 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
2742 push_to_sequence (all->conversion_insns);
2743 emit_move_insn (tempreg, DECL_RTL (parm));
2744 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
2745 emit_move_insn (parmreg, tempreg);
2746 all->conversion_insns = get_insns ();
2747 end_sequence ();
2749 did_conversion = true;
2751 else
2752 emit_move_insn (parmreg, DECL_RTL (parm));
2754 SET_DECL_RTL (parm, parmreg);
2756 /* STACK_PARM is the pointer, not the parm, and PARMREG is
2757 now the parm. */
2758 data->stack_parm = NULL;
2761 /* Mark the register as eliminable if we did no conversion and it was
2762 copied from memory at a fixed offset, and the arg pointer was not
2763 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
2764 offset formed an invalid address, such memory-equivalences as we
2765 make here would screw up life analysis for it. */
2766 if (data->nominal_mode == data->passed_mode
2767 && !did_conversion
2768 && data->stack_parm != 0
2769 && MEM_P (data->stack_parm)
2770 && data->locate.offset.var == 0
2771 && reg_mentioned_p (virtual_incoming_args_rtx,
2772 XEXP (data->stack_parm, 0)))
2774 rtx linsn = get_last_insn ();
2775 rtx sinsn, set;
2777 /* Mark complex types separately. */
2778 if (GET_CODE (parmreg) == CONCAT)
2780 enum machine_mode submode
2781 = GET_MODE_INNER (GET_MODE (parmreg));
2782 int regnor = REGNO (XEXP (parmreg, 0));
2783 int regnoi = REGNO (XEXP (parmreg, 1));
2784 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
2785 rtx stacki = adjust_address_nv (data->stack_parm, submode,
2786 GET_MODE_SIZE (submode));
2788 /* Scan backwards for the set of the real and
2789 imaginary parts. */
2790 for (sinsn = linsn; sinsn != 0;
2791 sinsn = prev_nonnote_insn (sinsn))
2793 set = single_set (sinsn);
2794 if (set == 0)
2795 continue;
2797 if (SET_DEST (set) == regno_reg_rtx [regnoi])
2798 REG_NOTES (sinsn)
2799 = gen_rtx_EXPR_LIST (REG_EQUIV, stacki,
2800 REG_NOTES (sinsn));
2801 else if (SET_DEST (set) == regno_reg_rtx [regnor])
2802 REG_NOTES (sinsn)
2803 = gen_rtx_EXPR_LIST (REG_EQUIV, stackr,
2804 REG_NOTES (sinsn));
2807 else if ((set = single_set (linsn)) != 0
2808 && SET_DEST (set) == parmreg)
2809 REG_NOTES (linsn)
2810 = gen_rtx_EXPR_LIST (REG_EQUIV,
2811 data->stack_parm, REG_NOTES (linsn));
2814 /* For pointer data type, suggest pointer register. */
2815 if (POINTER_TYPE_P (TREE_TYPE (parm)))
2816 mark_reg_pointer (parmreg,
2817 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
2820 /* A subroutine of assign_parms. Allocate stack space to hold the current
2821 parameter. Get it there. Perform all ABI specified conversions. */
2823 static void
2824 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
2825 struct assign_parm_data_one *data)
2827 /* Value must be stored in the stack slot STACK_PARM during function
2828 execution. */
2829 bool to_conversion = false;
2831 if (data->promoted_mode != data->nominal_mode)
2833 /* Conversion is required. */
2834 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2836 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2838 push_to_sequence (all->conversion_insns);
2839 to_conversion = true;
2841 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
2842 TYPE_UNSIGNED (TREE_TYPE (parm)));
2844 if (data->stack_parm)
2845 /* ??? This may need a big-endian conversion on sparc64. */
2846 data->stack_parm
2847 = adjust_address (data->stack_parm, data->nominal_mode, 0);
2850 if (data->entry_parm != data->stack_parm)
2852 rtx src, dest;
2854 if (data->stack_parm == 0)
2856 data->stack_parm
2857 = assign_stack_local (GET_MODE (data->entry_parm),
2858 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
2859 TYPE_ALIGN (data->passed_type));
2860 set_mem_attributes (data->stack_parm, parm, 1);
2863 dest = validize_mem (data->stack_parm);
2864 src = validize_mem (data->entry_parm);
2866 if (MEM_P (src))
2868 /* Use a block move to handle potentially misaligned entry_parm. */
2869 if (!to_conversion)
2870 push_to_sequence (all->conversion_insns);
2871 to_conversion = true;
2873 emit_block_move (dest, src,
2874 GEN_INT (int_size_in_bytes (data->passed_type)),
2875 BLOCK_OP_NORMAL);
2877 else
2878 emit_move_insn (dest, src);
2881 if (to_conversion)
2883 all->conversion_insns = get_insns ();
2884 end_sequence ();
2887 SET_DECL_RTL (parm, data->stack_parm);
2890 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
2891 undo the frobbing that we did in assign_parms_augmented_arg_list. */
2893 static void
2894 assign_parms_unsplit_complex (struct assign_parm_data_all *all, tree fnargs)
2896 tree parm;
2897 tree orig_fnargs = all->orig_fnargs;
2899 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm))
2901 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
2902 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
2904 rtx tmp, real, imag;
2905 enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
2907 real = DECL_RTL (fnargs);
2908 imag = DECL_RTL (TREE_CHAIN (fnargs));
2909 if (inner != GET_MODE (real))
2911 real = gen_lowpart_SUBREG (inner, real);
2912 imag = gen_lowpart_SUBREG (inner, imag);
2915 if (TREE_ADDRESSABLE (parm))
2917 rtx rmem, imem;
2918 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
2920 /* split_complex_arg put the real and imag parts in
2921 pseudos. Move them to memory. */
2922 tmp = assign_stack_local (DECL_MODE (parm), size,
2923 TYPE_ALIGN (TREE_TYPE (parm)));
2924 set_mem_attributes (tmp, parm, 1);
2925 rmem = adjust_address_nv (tmp, inner, 0);
2926 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
2927 push_to_sequence (all->conversion_insns);
2928 emit_move_insn (rmem, real);
2929 emit_move_insn (imem, imag);
2930 all->conversion_insns = get_insns ();
2931 end_sequence ();
2933 else
2934 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
2935 SET_DECL_RTL (parm, tmp);
2937 real = DECL_INCOMING_RTL (fnargs);
2938 imag = DECL_INCOMING_RTL (TREE_CHAIN (fnargs));
2939 if (inner != GET_MODE (real))
2941 real = gen_lowpart_SUBREG (inner, real);
2942 imag = gen_lowpart_SUBREG (inner, imag);
2944 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
2945 set_decl_incoming_rtl (parm, tmp);
2946 fnargs = TREE_CHAIN (fnargs);
2948 else
2950 SET_DECL_RTL (parm, DECL_RTL (fnargs));
2951 set_decl_incoming_rtl (parm, DECL_INCOMING_RTL (fnargs));
2953 /* Set MEM_EXPR to the original decl, i.e. to PARM,
2954 instead of the copy of decl, i.e. FNARGS. */
2955 if (DECL_INCOMING_RTL (parm) && MEM_P (DECL_INCOMING_RTL (parm)))
2956 set_mem_expr (DECL_INCOMING_RTL (parm), parm);
2959 fnargs = TREE_CHAIN (fnargs);
2963 /* Assign RTL expressions to the function's parameters. This may involve
2964 copying them into registers and using those registers as the DECL_RTL. */
2966 static void
2967 assign_parms (tree fndecl)
2969 struct assign_parm_data_all all;
2970 tree fnargs, parm;
2972 current_function_internal_arg_pointer
2973 = targetm.calls.internal_arg_pointer ();
2975 assign_parms_initialize_all (&all);
2976 fnargs = assign_parms_augmented_arg_list (&all);
2978 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
2980 struct assign_parm_data_one data;
2982 /* Extract the type of PARM; adjust it according to ABI. */
2983 assign_parm_find_data_types (&all, parm, &data);
2985 /* Early out for errors and void parameters. */
2986 if (data.passed_mode == VOIDmode)
2988 SET_DECL_RTL (parm, const0_rtx);
2989 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
2990 continue;
2993 if (current_function_stdarg && !TREE_CHAIN (parm))
2994 assign_parms_setup_varargs (&all, &data, false);
2996 /* Find out where the parameter arrives in this function. */
2997 assign_parm_find_entry_rtl (&all, &data);
2999 /* Find out where stack space for this parameter might be. */
3000 if (assign_parm_is_stack_parm (&all, &data))
3002 assign_parm_find_stack_rtl (parm, &data);
3003 assign_parm_adjust_entry_rtl (&data);
3006 /* Record permanently how this parm was passed. */
3007 set_decl_incoming_rtl (parm, data.entry_parm);
3009 /* Update info on where next arg arrives in registers. */
3010 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
3011 data.passed_type, data.named_arg);
3013 assign_parm_adjust_stack_rtl (&data);
3015 if (assign_parm_setup_block_p (&data))
3016 assign_parm_setup_block (&all, parm, &data);
3017 else if (data.passed_pointer || use_register_for_decl (parm))
3018 assign_parm_setup_reg (&all, parm, &data);
3019 else
3020 assign_parm_setup_stack (&all, parm, &data);
3023 if (targetm.calls.split_complex_arg && fnargs != all.orig_fnargs)
3024 assign_parms_unsplit_complex (&all, fnargs);
3026 /* Output all parameter conversion instructions (possibly including calls)
3027 now that all parameters have been copied out of hard registers. */
3028 emit_insn (all.conversion_insns);
3030 /* If we are receiving a struct value address as the first argument, set up
3031 the RTL for the function result. As this might require code to convert
3032 the transmitted address to Pmode, we do this here to ensure that possible
3033 preliminary conversions of the address have been emitted already. */
3034 if (all.function_result_decl)
3036 tree result = DECL_RESULT (current_function_decl);
3037 rtx addr = DECL_RTL (all.function_result_decl);
3038 rtx x;
3040 if (DECL_BY_REFERENCE (result))
3041 x = addr;
3042 else
3044 addr = convert_memory_address (Pmode, addr);
3045 x = gen_rtx_MEM (DECL_MODE (result), addr);
3046 set_mem_attributes (x, result, 1);
3048 SET_DECL_RTL (result, x);
3051 /* We have aligned all the args, so add space for the pretend args. */
3052 current_function_pretend_args_size = all.pretend_args_size;
3053 all.stack_args_size.constant += all.extra_pretend_bytes;
3054 current_function_args_size = all.stack_args_size.constant;
3056 /* Adjust function incoming argument size for alignment and
3057 minimum length. */
3059 #ifdef REG_PARM_STACK_SPACE
3060 current_function_args_size = MAX (current_function_args_size,
3061 REG_PARM_STACK_SPACE (fndecl));
3062 #endif
3064 current_function_args_size = CEIL_ROUND (current_function_args_size,
3065 PARM_BOUNDARY / BITS_PER_UNIT);
3067 #ifdef ARGS_GROW_DOWNWARD
3068 current_function_arg_offset_rtx
3069 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3070 : expand_expr (size_diffop (all.stack_args_size.var,
3071 size_int (-all.stack_args_size.constant)),
3072 NULL_RTX, VOIDmode, 0));
3073 #else
3074 current_function_arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3075 #endif
3077 /* See how many bytes, if any, of its args a function should try to pop
3078 on return. */
3080 current_function_pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
3081 current_function_args_size);
3083 /* For stdarg.h function, save info about
3084 regs and stack space used by the named args. */
3086 current_function_args_info = all.args_so_far;
3088 /* Set the rtx used for the function return value. Put this in its
3089 own variable so any optimizers that need this information don't have
3090 to include tree.h. Do this here so it gets done when an inlined
3091 function gets output. */
3093 current_function_return_rtx
3094 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3095 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3097 /* If scalar return value was computed in a pseudo-reg, or was a named
3098 return value that got dumped to the stack, copy that to the hard
3099 return register. */
3100 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3102 tree decl_result = DECL_RESULT (fndecl);
3103 rtx decl_rtl = DECL_RTL (decl_result);
3105 if (REG_P (decl_rtl)
3106 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3107 : DECL_REGISTER (decl_result))
3109 rtx real_decl_rtl;
3111 real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
3112 fndecl, true);
3113 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3114 /* The delay slot scheduler assumes that current_function_return_rtx
3115 holds the hard register containing the return value, not a
3116 temporary pseudo. */
3117 current_function_return_rtx = real_decl_rtl;
3122 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3123 For all seen types, gimplify their sizes. */
3125 static tree
3126 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3128 tree t = *tp;
3130 *walk_subtrees = 0;
3131 if (TYPE_P (t))
3133 if (POINTER_TYPE_P (t))
3134 *walk_subtrees = 1;
3135 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3136 && !TYPE_SIZES_GIMPLIFIED (t))
3138 gimplify_type_sizes (t, (tree *) data);
3139 *walk_subtrees = 1;
3143 return NULL;
3146 /* Gimplify the parameter list for current_function_decl. This involves
3147 evaluating SAVE_EXPRs of variable sized parameters and generating code
3148 to implement callee-copies reference parameters. Returns a list of
3149 statements to add to the beginning of the function, or NULL if nothing
3150 to do. */
3152 tree
3153 gimplify_parameters (void)
3155 struct assign_parm_data_all all;
3156 tree fnargs, parm, stmts = NULL;
3158 assign_parms_initialize_all (&all);
3159 fnargs = assign_parms_augmented_arg_list (&all);
3161 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
3163 struct assign_parm_data_one data;
3165 /* Extract the type of PARM; adjust it according to ABI. */
3166 assign_parm_find_data_types (&all, parm, &data);
3168 /* Early out for errors and void parameters. */
3169 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3170 continue;
3172 /* Update info on where next arg arrives in registers. */
3173 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
3174 data.passed_type, data.named_arg);
3176 /* ??? Once upon a time variable_size stuffed parameter list
3177 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3178 turned out to be less than manageable in the gimple world.
3179 Now we have to hunt them down ourselves. */
3180 walk_tree_without_duplicates (&data.passed_type,
3181 gimplify_parm_type, &stmts);
3183 if (!TREE_CONSTANT (DECL_SIZE (parm)))
3185 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3186 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3189 if (data.passed_pointer)
3191 tree type = TREE_TYPE (data.passed_type);
3192 if (reference_callee_copied (&all.args_so_far, TYPE_MODE (type),
3193 type, data.named_arg))
3195 tree local, t;
3197 /* For constant sized objects, this is trivial; for
3198 variable-sized objects, we have to play games. */
3199 if (TREE_CONSTANT (DECL_SIZE (parm)))
3201 local = create_tmp_var (type, get_name (parm));
3202 DECL_IGNORED_P (local) = 0;
3204 else
3206 tree ptr_type, addr, args;
3208 ptr_type = build_pointer_type (type);
3209 addr = create_tmp_var (ptr_type, get_name (parm));
3210 DECL_IGNORED_P (addr) = 0;
3211 local = build_fold_indirect_ref (addr);
3213 args = tree_cons (NULL, DECL_SIZE_UNIT (parm), NULL);
3214 t = built_in_decls[BUILT_IN_ALLOCA];
3215 t = build_function_call_expr (t, args);
3216 t = fold_convert (ptr_type, t);
3217 t = build2 (MODIFY_EXPR, void_type_node, addr, t);
3218 gimplify_and_add (t, &stmts);
3221 t = build2 (MODIFY_EXPR, void_type_node, local, parm);
3222 gimplify_and_add (t, &stmts);
3224 SET_DECL_VALUE_EXPR (parm, local);
3225 DECL_HAS_VALUE_EXPR_P (parm) = 1;
3230 return stmts;
3233 /* Indicate whether REGNO is an incoming argument to the current function
3234 that was promoted to a wider mode. If so, return the RTX for the
3235 register (to get its mode). PMODE and PUNSIGNEDP are set to the mode
3236 that REGNO is promoted from and whether the promotion was signed or
3237 unsigned. */
3240 promoted_input_arg (unsigned int regno, enum machine_mode *pmode, int *punsignedp)
3242 tree arg;
3244 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
3245 arg = TREE_CHAIN (arg))
3246 if (REG_P (DECL_INCOMING_RTL (arg))
3247 && REGNO (DECL_INCOMING_RTL (arg)) == regno
3248 && TYPE_MODE (DECL_ARG_TYPE (arg)) == TYPE_MODE (TREE_TYPE (arg)))
3250 enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg));
3251 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (arg));
3253 mode = promote_mode (TREE_TYPE (arg), mode, &unsignedp, 1);
3254 if (mode == GET_MODE (DECL_INCOMING_RTL (arg))
3255 && mode != DECL_MODE (arg))
3257 *pmode = DECL_MODE (arg);
3258 *punsignedp = unsignedp;
3259 return DECL_INCOMING_RTL (arg);
3263 return 0;
3267 /* Compute the size and offset from the start of the stacked arguments for a
3268 parm passed in mode PASSED_MODE and with type TYPE.
3270 INITIAL_OFFSET_PTR points to the current offset into the stacked
3271 arguments.
3273 The starting offset and size for this parm are returned in
3274 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3275 nonzero, the offset is that of stack slot, which is returned in
3276 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3277 padding required from the initial offset ptr to the stack slot.
3279 IN_REGS is nonzero if the argument will be passed in registers. It will
3280 never be set if REG_PARM_STACK_SPACE is not defined.
3282 FNDECL is the function in which the argument was defined.
3284 There are two types of rounding that are done. The first, controlled by
3285 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
3286 list to be aligned to the specific boundary (in bits). This rounding
3287 affects the initial and starting offsets, but not the argument size.
3289 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3290 optionally rounds the size of the parm to PARM_BOUNDARY. The
3291 initial offset is not affected by this rounding, while the size always
3292 is and the starting offset may be. */
3294 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3295 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3296 callers pass in the total size of args so far as
3297 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3299 void
3300 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
3301 int partial, tree fndecl ATTRIBUTE_UNUSED,
3302 struct args_size *initial_offset_ptr,
3303 struct locate_and_pad_arg_data *locate)
3305 tree sizetree;
3306 enum direction where_pad;
3307 unsigned int boundary;
3308 int reg_parm_stack_space = 0;
3309 int part_size_in_regs;
3311 #ifdef REG_PARM_STACK_SPACE
3312 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
3314 /* If we have found a stack parm before we reach the end of the
3315 area reserved for registers, skip that area. */
3316 if (! in_regs)
3318 if (reg_parm_stack_space > 0)
3320 if (initial_offset_ptr->var)
3322 initial_offset_ptr->var
3323 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
3324 ssize_int (reg_parm_stack_space));
3325 initial_offset_ptr->constant = 0;
3327 else if (initial_offset_ptr->constant < reg_parm_stack_space)
3328 initial_offset_ptr->constant = reg_parm_stack_space;
3331 #endif /* REG_PARM_STACK_SPACE */
3333 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
3335 sizetree
3336 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3337 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
3338 boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
3339 locate->where_pad = where_pad;
3340 locate->boundary = boundary;
3342 /* Remember if the outgoing parameter requires extra alignment on the
3343 calling function side. */
3344 if (boundary > PREFERRED_STACK_BOUNDARY)
3345 boundary = PREFERRED_STACK_BOUNDARY;
3346 if (cfun->stack_alignment_needed < boundary)
3347 cfun->stack_alignment_needed = boundary;
3349 #ifdef ARGS_GROW_DOWNWARD
3350 locate->slot_offset.constant = -initial_offset_ptr->constant;
3351 if (initial_offset_ptr->var)
3352 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
3353 initial_offset_ptr->var);
3356 tree s2 = sizetree;
3357 if (where_pad != none
3358 && (!host_integerp (sizetree, 1)
3359 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3360 s2 = round_up (s2, PARM_BOUNDARY / BITS_PER_UNIT);
3361 SUB_PARM_SIZE (locate->slot_offset, s2);
3364 locate->slot_offset.constant += part_size_in_regs;
3366 if (!in_regs
3367 #ifdef REG_PARM_STACK_SPACE
3368 || REG_PARM_STACK_SPACE (fndecl) > 0
3369 #endif
3371 pad_to_arg_alignment (&locate->slot_offset, boundary,
3372 &locate->alignment_pad);
3374 locate->size.constant = (-initial_offset_ptr->constant
3375 - locate->slot_offset.constant);
3376 if (initial_offset_ptr->var)
3377 locate->size.var = size_binop (MINUS_EXPR,
3378 size_binop (MINUS_EXPR,
3379 ssize_int (0),
3380 initial_offset_ptr->var),
3381 locate->slot_offset.var);
3383 /* Pad_below needs the pre-rounded size to know how much to pad
3384 below. */
3385 locate->offset = locate->slot_offset;
3386 if (where_pad == downward)
3387 pad_below (&locate->offset, passed_mode, sizetree);
3389 #else /* !ARGS_GROW_DOWNWARD */
3390 if (!in_regs
3391 #ifdef REG_PARM_STACK_SPACE
3392 || REG_PARM_STACK_SPACE (fndecl) > 0
3393 #endif
3395 pad_to_arg_alignment (initial_offset_ptr, boundary,
3396 &locate->alignment_pad);
3397 locate->slot_offset = *initial_offset_ptr;
3399 #ifdef PUSH_ROUNDING
3400 if (passed_mode != BLKmode)
3401 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
3402 #endif
3404 /* Pad_below needs the pre-rounded size to know how much to pad below
3405 so this must be done before rounding up. */
3406 locate->offset = locate->slot_offset;
3407 if (where_pad == downward)
3408 pad_below (&locate->offset, passed_mode, sizetree);
3410 if (where_pad != none
3411 && (!host_integerp (sizetree, 1)
3412 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3413 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3415 ADD_PARM_SIZE (locate->size, sizetree);
3417 locate->size.constant -= part_size_in_regs;
3418 #endif /* ARGS_GROW_DOWNWARD */
3421 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3422 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3424 static void
3425 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
3426 struct args_size *alignment_pad)
3428 tree save_var = NULL_TREE;
3429 HOST_WIDE_INT save_constant = 0;
3430 int boundary_in_bytes = boundary / BITS_PER_UNIT;
3431 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
3433 #ifdef SPARC_STACK_BOUNDARY_HACK
3434 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
3435 the real alignment of %sp. However, when it does this, the
3436 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
3437 if (SPARC_STACK_BOUNDARY_HACK)
3438 sp_offset = 0;
3439 #endif
3441 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3443 save_var = offset_ptr->var;
3444 save_constant = offset_ptr->constant;
3447 alignment_pad->var = NULL_TREE;
3448 alignment_pad->constant = 0;
3450 if (boundary > BITS_PER_UNIT)
3452 if (offset_ptr->var)
3454 tree sp_offset_tree = ssize_int (sp_offset);
3455 tree offset = size_binop (PLUS_EXPR,
3456 ARGS_SIZE_TREE (*offset_ptr),
3457 sp_offset_tree);
3458 #ifdef ARGS_GROW_DOWNWARD
3459 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
3460 #else
3461 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
3462 #endif
3464 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
3465 /* ARGS_SIZE_TREE includes constant term. */
3466 offset_ptr->constant = 0;
3467 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3468 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
3469 save_var);
3471 else
3473 offset_ptr->constant = -sp_offset +
3474 #ifdef ARGS_GROW_DOWNWARD
3475 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3476 #else
3477 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3478 #endif
3479 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3480 alignment_pad->constant = offset_ptr->constant - save_constant;
3485 static void
3486 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
3488 if (passed_mode != BLKmode)
3490 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
3491 offset_ptr->constant
3492 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
3493 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
3494 - GET_MODE_SIZE (passed_mode));
3496 else
3498 if (TREE_CODE (sizetree) != INTEGER_CST
3499 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
3501 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3502 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3503 /* Add it in. */
3504 ADD_PARM_SIZE (*offset_ptr, s2);
3505 SUB_PARM_SIZE (*offset_ptr, sizetree);
3510 /* Walk the tree of blocks describing the binding levels within a function
3511 and warn about variables the might be killed by setjmp or vfork.
3512 This is done after calling flow_analysis and before global_alloc
3513 clobbers the pseudo-regs to hard regs. */
3515 void
3516 setjmp_vars_warning (tree block)
3518 tree decl, sub;
3520 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
3522 if (TREE_CODE (decl) == VAR_DECL
3523 && DECL_RTL_SET_P (decl)
3524 && REG_P (DECL_RTL (decl))
3525 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
3526 warning (0, "variable %q+D might be clobbered by %<longjmp%>"
3527 " or %<vfork%>",
3528 decl);
3531 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
3532 setjmp_vars_warning (sub);
3535 /* Do the appropriate part of setjmp_vars_warning
3536 but for arguments instead of local variables. */
3538 void
3539 setjmp_args_warning (void)
3541 tree decl;
3542 for (decl = DECL_ARGUMENTS (current_function_decl);
3543 decl; decl = TREE_CHAIN (decl))
3544 if (DECL_RTL (decl) != 0
3545 && REG_P (DECL_RTL (decl))
3546 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
3547 warning (0, "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
3548 decl);
3552 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
3553 and create duplicate blocks. */
3554 /* ??? Need an option to either create block fragments or to create
3555 abstract origin duplicates of a source block. It really depends
3556 on what optimization has been performed. */
3558 void
3559 reorder_blocks (void)
3561 tree block = DECL_INITIAL (current_function_decl);
3562 VEC(tree,heap) *block_stack;
3564 if (block == NULL_TREE)
3565 return;
3567 block_stack = VEC_alloc (tree, heap, 10);
3569 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
3570 clear_block_marks (block);
3572 /* Prune the old trees away, so that they don't get in the way. */
3573 BLOCK_SUBBLOCKS (block) = NULL_TREE;
3574 BLOCK_CHAIN (block) = NULL_TREE;
3576 /* Recreate the block tree from the note nesting. */
3577 reorder_blocks_1 (get_insns (), block, &block_stack);
3578 BLOCK_SUBBLOCKS (block) = blocks_nreverse (BLOCK_SUBBLOCKS (block));
3580 /* Remove deleted blocks from the block fragment chains. */
3581 reorder_fix_fragments (block);
3583 VEC_free (tree, heap, block_stack);
3586 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
3588 void
3589 clear_block_marks (tree block)
3591 while (block)
3593 TREE_ASM_WRITTEN (block) = 0;
3594 clear_block_marks (BLOCK_SUBBLOCKS (block));
3595 block = BLOCK_CHAIN (block);
3599 static void
3600 reorder_blocks_1 (rtx insns, tree current_block, VEC(tree,heap) **p_block_stack)
3602 rtx insn;
3604 for (insn = insns; insn; insn = NEXT_INSN (insn))
3606 if (NOTE_P (insn))
3608 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
3610 tree block = NOTE_BLOCK (insn);
3612 /* If we have seen this block before, that means it now
3613 spans multiple address regions. Create a new fragment. */
3614 if (TREE_ASM_WRITTEN (block))
3616 tree new_block = copy_node (block);
3617 tree origin;
3619 origin = (BLOCK_FRAGMENT_ORIGIN (block)
3620 ? BLOCK_FRAGMENT_ORIGIN (block)
3621 : block);
3622 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
3623 BLOCK_FRAGMENT_CHAIN (new_block)
3624 = BLOCK_FRAGMENT_CHAIN (origin);
3625 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
3627 NOTE_BLOCK (insn) = new_block;
3628 block = new_block;
3631 BLOCK_SUBBLOCKS (block) = 0;
3632 TREE_ASM_WRITTEN (block) = 1;
3633 /* When there's only one block for the entire function,
3634 current_block == block and we mustn't do this, it
3635 will cause infinite recursion. */
3636 if (block != current_block)
3638 BLOCK_SUPERCONTEXT (block) = current_block;
3639 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
3640 BLOCK_SUBBLOCKS (current_block) = block;
3641 current_block = block;
3643 VEC_safe_push (tree, heap, *p_block_stack, block);
3645 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
3647 NOTE_BLOCK (insn) = VEC_pop (tree, *p_block_stack);
3648 BLOCK_SUBBLOCKS (current_block)
3649 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
3650 current_block = BLOCK_SUPERCONTEXT (current_block);
3656 /* Rationalize BLOCK_FRAGMENT_ORIGIN. If an origin block no longer
3657 appears in the block tree, select one of the fragments to become
3658 the new origin block. */
3660 static void
3661 reorder_fix_fragments (tree block)
3663 while (block)
3665 tree dup_origin = BLOCK_FRAGMENT_ORIGIN (block);
3666 tree new_origin = NULL_TREE;
3668 if (dup_origin)
3670 if (! TREE_ASM_WRITTEN (dup_origin))
3672 new_origin = BLOCK_FRAGMENT_CHAIN (dup_origin);
3674 /* Find the first of the remaining fragments. There must
3675 be at least one -- the current block. */
3676 while (! TREE_ASM_WRITTEN (new_origin))
3677 new_origin = BLOCK_FRAGMENT_CHAIN (new_origin);
3678 BLOCK_FRAGMENT_ORIGIN (new_origin) = NULL_TREE;
3681 else if (! dup_origin)
3682 new_origin = block;
3684 /* Re-root the rest of the fragments to the new origin. In the
3685 case that DUP_ORIGIN was null, that means BLOCK was the origin
3686 of a chain of fragments and we want to remove those fragments
3687 that didn't make it to the output. */
3688 if (new_origin)
3690 tree *pp = &BLOCK_FRAGMENT_CHAIN (new_origin);
3691 tree chain = *pp;
3693 while (chain)
3695 if (TREE_ASM_WRITTEN (chain))
3697 BLOCK_FRAGMENT_ORIGIN (chain) = new_origin;
3698 *pp = chain;
3699 pp = &BLOCK_FRAGMENT_CHAIN (chain);
3701 chain = BLOCK_FRAGMENT_CHAIN (chain);
3703 *pp = NULL_TREE;
3706 reorder_fix_fragments (BLOCK_SUBBLOCKS (block));
3707 block = BLOCK_CHAIN (block);
3711 /* Reverse the order of elements in the chain T of blocks,
3712 and return the new head of the chain (old last element). */
3714 tree
3715 blocks_nreverse (tree t)
3717 tree prev = 0, decl, next;
3718 for (decl = t; decl; decl = next)
3720 next = BLOCK_CHAIN (decl);
3721 BLOCK_CHAIN (decl) = prev;
3722 prev = decl;
3724 return prev;
3727 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
3728 non-NULL, list them all into VECTOR, in a depth-first preorder
3729 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
3730 blocks. */
3732 static int
3733 all_blocks (tree block, tree *vector)
3735 int n_blocks = 0;
3737 while (block)
3739 TREE_ASM_WRITTEN (block) = 0;
3741 /* Record this block. */
3742 if (vector)
3743 vector[n_blocks] = block;
3745 ++n_blocks;
3747 /* Record the subblocks, and their subblocks... */
3748 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
3749 vector ? vector + n_blocks : 0);
3750 block = BLOCK_CHAIN (block);
3753 return n_blocks;
3756 /* Return a vector containing all the blocks rooted at BLOCK. The
3757 number of elements in the vector is stored in N_BLOCKS_P. The
3758 vector is dynamically allocated; it is the caller's responsibility
3759 to call `free' on the pointer returned. */
3761 static tree *
3762 get_block_vector (tree block, int *n_blocks_p)
3764 tree *block_vector;
3766 *n_blocks_p = all_blocks (block, NULL);
3767 block_vector = XNEWVEC (tree, *n_blocks_p);
3768 all_blocks (block, block_vector);
3770 return block_vector;
3773 static GTY(()) int next_block_index = 2;
3775 /* Set BLOCK_NUMBER for all the blocks in FN. */
3777 void
3778 number_blocks (tree fn)
3780 int i;
3781 int n_blocks;
3782 tree *block_vector;
3784 /* For SDB and XCOFF debugging output, we start numbering the blocks
3785 from 1 within each function, rather than keeping a running
3786 count. */
3787 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
3788 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
3789 next_block_index = 1;
3790 #endif
3792 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
3794 /* The top-level BLOCK isn't numbered at all. */
3795 for (i = 1; i < n_blocks; ++i)
3796 /* We number the blocks from two. */
3797 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
3799 free (block_vector);
3801 return;
3804 /* If VAR is present in a subblock of BLOCK, return the subblock. */
3806 tree
3807 debug_find_var_in_block_tree (tree var, tree block)
3809 tree t;
3811 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
3812 if (t == var)
3813 return block;
3815 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
3817 tree ret = debug_find_var_in_block_tree (var, t);
3818 if (ret)
3819 return ret;
3822 return NULL_TREE;
3825 /* Allocate a function structure for FNDECL and set its contents
3826 to the defaults. */
3828 void
3829 allocate_struct_function (tree fndecl)
3831 tree result;
3832 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
3834 cfun = ggc_alloc_cleared (sizeof (struct function));
3836 cfun->stack_alignment_needed = STACK_BOUNDARY;
3837 cfun->preferred_stack_boundary = STACK_BOUNDARY;
3839 current_function_funcdef_no = funcdef_no++;
3841 cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL;
3843 init_eh_for_function ();
3845 lang_hooks.function.init (cfun);
3846 if (init_machine_status)
3847 cfun->machine = (*init_machine_status) ();
3849 if (fndecl == NULL)
3850 return;
3852 DECL_STRUCT_FUNCTION (fndecl) = cfun;
3853 cfun->decl = fndecl;
3855 result = DECL_RESULT (fndecl);
3856 if (aggregate_value_p (result, fndecl))
3858 #ifdef PCC_STATIC_STRUCT_RETURN
3859 current_function_returns_pcc_struct = 1;
3860 #endif
3861 current_function_returns_struct = 1;
3864 current_function_returns_pointer = POINTER_TYPE_P (TREE_TYPE (result));
3866 current_function_stdarg
3867 = (fntype
3868 && TYPE_ARG_TYPES (fntype) != 0
3869 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
3870 != void_type_node));
3872 /* Assume all registers in stdarg functions need to be saved. */
3873 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
3874 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
3877 /* Reset cfun, and other non-struct-function variables to defaults as
3878 appropriate for emitting rtl at the start of a function. */
3880 static void
3881 prepare_function_start (tree fndecl)
3883 if (fndecl && DECL_STRUCT_FUNCTION (fndecl))
3884 cfun = DECL_STRUCT_FUNCTION (fndecl);
3885 else
3886 allocate_struct_function (fndecl);
3887 init_emit ();
3888 init_varasm_status (cfun);
3889 init_expr ();
3891 cse_not_expected = ! optimize;
3893 /* Caller save not needed yet. */
3894 caller_save_needed = 0;
3896 /* We haven't done register allocation yet. */
3897 reg_renumber = 0;
3899 /* Indicate that we have not instantiated virtual registers yet. */
3900 virtuals_instantiated = 0;
3902 /* Indicate that we want CONCATs now. */
3903 generating_concat_p = 1;
3905 /* Indicate we have no need of a frame pointer yet. */
3906 frame_pointer_needed = 0;
3909 /* Initialize the rtl expansion mechanism so that we can do simple things
3910 like generate sequences. This is used to provide a context during global
3911 initialization of some passes. */
3912 void
3913 init_dummy_function_start (void)
3915 prepare_function_start (NULL);
3918 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
3919 and initialize static variables for generating RTL for the statements
3920 of the function. */
3922 void
3923 init_function_start (tree subr)
3925 prepare_function_start (subr);
3927 /* Prevent ever trying to delete the first instruction of a
3928 function. Also tell final how to output a linenum before the
3929 function prologue. Note linenums could be missing, e.g. when
3930 compiling a Java .class file. */
3931 if (! DECL_IS_BUILTIN (subr))
3932 emit_line_note (DECL_SOURCE_LOCATION (subr));
3934 /* Make sure first insn is a note even if we don't want linenums.
3935 This makes sure the first insn will never be deleted.
3936 Also, final expects a note to appear there. */
3937 emit_note (NOTE_INSN_DELETED);
3939 /* Warn if this value is an aggregate type,
3940 regardless of which calling convention we are using for it. */
3941 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
3942 warning (OPT_Waggregate_return, "function returns an aggregate");
3945 /* Make sure all values used by the optimization passes have sane
3946 defaults. */
3947 unsigned int
3948 init_function_for_compilation (void)
3950 reg_renumber = 0;
3952 /* No prologue/epilogue insns yet. Make sure that these vectors are
3953 empty. */
3954 gcc_assert (VEC_length (int, prologue) == 0);
3955 gcc_assert (VEC_length (int, epilogue) == 0);
3956 gcc_assert (VEC_length (int, sibcall_epilogue) == 0);
3957 return 0;
3960 struct tree_opt_pass pass_init_function =
3962 NULL, /* name */
3963 NULL, /* gate */
3964 init_function_for_compilation, /* execute */
3965 NULL, /* sub */
3966 NULL, /* next */
3967 0, /* static_pass_number */
3968 0, /* tv_id */
3969 0, /* properties_required */
3970 0, /* properties_provided */
3971 0, /* properties_destroyed */
3972 0, /* todo_flags_start */
3973 0, /* todo_flags_finish */
3974 0 /* letter */
3978 void
3979 expand_main_function (void)
3981 #if (defined(INVOKE__main) \
3982 || (!defined(HAS_INIT_SECTION) \
3983 && !defined(INIT_SECTION_ASM_OP) \
3984 && !defined(INIT_ARRAY_SECTION_ASM_OP)))
3985 emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
3986 #endif
3989 /* Expand code to initialize the stack_protect_guard. This is invoked at
3990 the beginning of a function to be protected. */
3992 #ifndef HAVE_stack_protect_set
3993 # define HAVE_stack_protect_set 0
3994 # define gen_stack_protect_set(x,y) (gcc_unreachable (), NULL_RTX)
3995 #endif
3997 void
3998 stack_protect_prologue (void)
4000 tree guard_decl = targetm.stack_protect_guard ();
4001 rtx x, y;
4003 /* Avoid expand_expr here, because we don't want guard_decl pulled
4004 into registers unless absolutely necessary. And we know that
4005 cfun->stack_protect_guard is a local stack slot, so this skips
4006 all the fluff. */
4007 x = validize_mem (DECL_RTL (cfun->stack_protect_guard));
4008 y = validize_mem (DECL_RTL (guard_decl));
4010 /* Allow the target to copy from Y to X without leaking Y into a
4011 register. */
4012 if (HAVE_stack_protect_set)
4014 rtx insn = gen_stack_protect_set (x, y);
4015 if (insn)
4017 emit_insn (insn);
4018 return;
4022 /* Otherwise do a straight move. */
4023 emit_move_insn (x, y);
4026 /* Expand code to verify the stack_protect_guard. This is invoked at
4027 the end of a function to be protected. */
4029 #ifndef HAVE_stack_protect_test
4030 # define HAVE_stack_protect_test 0
4031 # define gen_stack_protect_test(x, y, z) (gcc_unreachable (), NULL_RTX)
4032 #endif
4034 void
4035 stack_protect_epilogue (void)
4037 tree guard_decl = targetm.stack_protect_guard ();
4038 rtx label = gen_label_rtx ();
4039 rtx x, y, tmp;
4041 /* Avoid expand_expr here, because we don't want guard_decl pulled
4042 into registers unless absolutely necessary. And we know that
4043 cfun->stack_protect_guard is a local stack slot, so this skips
4044 all the fluff. */
4045 x = validize_mem (DECL_RTL (cfun->stack_protect_guard));
4046 y = validize_mem (DECL_RTL (guard_decl));
4048 /* Allow the target to compare Y with X without leaking either into
4049 a register. */
4050 switch (HAVE_stack_protect_test != 0)
4052 case 1:
4053 tmp = gen_stack_protect_test (x, y, label);
4054 if (tmp)
4056 emit_insn (tmp);
4057 break;
4059 /* FALLTHRU */
4061 default:
4062 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
4063 break;
4066 /* The noreturn predictor has been moved to the tree level. The rtl-level
4067 predictors estimate this branch about 20%, which isn't enough to get
4068 things moved out of line. Since this is the only extant case of adding
4069 a noreturn function at the rtl level, it doesn't seem worth doing ought
4070 except adding the prediction by hand. */
4071 tmp = get_last_insn ();
4072 if (JUMP_P (tmp))
4073 predict_insn_def (tmp, PRED_NORETURN, TAKEN);
4075 expand_expr_stmt (targetm.stack_protect_fail ());
4076 emit_label (label);
4079 /* Start the RTL for a new function, and set variables used for
4080 emitting RTL.
4081 SUBR is the FUNCTION_DECL node.
4082 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4083 the function's parameters, which must be run at any return statement. */
4085 void
4086 expand_function_start (tree subr)
4088 /* Make sure volatile mem refs aren't considered
4089 valid operands of arithmetic insns. */
4090 init_recog_no_volatile ();
4092 current_function_profile
4093 = (profile_flag
4094 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
4096 current_function_limit_stack
4097 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
4099 /* Make the label for return statements to jump to. Do not special
4100 case machines with special return instructions -- they will be
4101 handled later during jump, ifcvt, or epilogue creation. */
4102 return_label = gen_label_rtx ();
4104 /* Initialize rtx used to return the value. */
4105 /* Do this before assign_parms so that we copy the struct value address
4106 before any library calls that assign parms might generate. */
4108 /* Decide whether to return the value in memory or in a register. */
4109 if (aggregate_value_p (DECL_RESULT (subr), subr))
4111 /* Returning something that won't go in a register. */
4112 rtx value_address = 0;
4114 #ifdef PCC_STATIC_STRUCT_RETURN
4115 if (current_function_returns_pcc_struct)
4117 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
4118 value_address = assemble_static_space (size);
4120 else
4121 #endif
4123 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
4124 /* Expect to be passed the address of a place to store the value.
4125 If it is passed as an argument, assign_parms will take care of
4126 it. */
4127 if (sv)
4129 value_address = gen_reg_rtx (Pmode);
4130 emit_move_insn (value_address, sv);
4133 if (value_address)
4135 rtx x = value_address;
4136 if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
4138 x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
4139 set_mem_attributes (x, DECL_RESULT (subr), 1);
4141 SET_DECL_RTL (DECL_RESULT (subr), x);
4144 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
4145 /* If return mode is void, this decl rtl should not be used. */
4146 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
4147 else
4149 /* Compute the return values into a pseudo reg, which we will copy
4150 into the true return register after the cleanups are done. */
4151 tree return_type = TREE_TYPE (DECL_RESULT (subr));
4152 if (TYPE_MODE (return_type) != BLKmode
4153 && targetm.calls.return_in_msb (return_type))
4154 /* expand_function_end will insert the appropriate padding in
4155 this case. Use the return value's natural (unpadded) mode
4156 within the function proper. */
4157 SET_DECL_RTL (DECL_RESULT (subr),
4158 gen_reg_rtx (TYPE_MODE (return_type)));
4159 else
4161 /* In order to figure out what mode to use for the pseudo, we
4162 figure out what the mode of the eventual return register will
4163 actually be, and use that. */
4164 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
4166 /* Structures that are returned in registers are not
4167 aggregate_value_p, so we may see a PARALLEL or a REG. */
4168 if (REG_P (hard_reg))
4169 SET_DECL_RTL (DECL_RESULT (subr),
4170 gen_reg_rtx (GET_MODE (hard_reg)));
4171 else
4173 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
4174 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
4178 /* Set DECL_REGISTER flag so that expand_function_end will copy the
4179 result to the real return register(s). */
4180 DECL_REGISTER (DECL_RESULT (subr)) = 1;
4183 /* Initialize rtx for parameters and local variables.
4184 In some cases this requires emitting insns. */
4185 assign_parms (subr);
4187 /* If function gets a static chain arg, store it. */
4188 if (cfun->static_chain_decl)
4190 tree parm = cfun->static_chain_decl;
4191 rtx local = gen_reg_rtx (Pmode);
4193 set_decl_incoming_rtl (parm, static_chain_incoming_rtx);
4194 SET_DECL_RTL (parm, local);
4195 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4197 emit_move_insn (local, static_chain_incoming_rtx);
4200 /* If the function receives a non-local goto, then store the
4201 bits we need to restore the frame pointer. */
4202 if (cfun->nonlocal_goto_save_area)
4204 tree t_save;
4205 rtx r_save;
4207 /* ??? We need to do this save early. Unfortunately here is
4208 before the frame variable gets declared. Help out... */
4209 expand_var (TREE_OPERAND (cfun->nonlocal_goto_save_area, 0));
4211 t_save = build4 (ARRAY_REF, ptr_type_node,
4212 cfun->nonlocal_goto_save_area,
4213 integer_zero_node, NULL_TREE, NULL_TREE);
4214 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
4215 r_save = convert_memory_address (Pmode, r_save);
4217 emit_move_insn (r_save, virtual_stack_vars_rtx);
4218 update_nonlocal_goto_save_area ();
4221 /* The following was moved from init_function_start.
4222 The move is supposed to make sdb output more accurate. */
4223 /* Indicate the beginning of the function body,
4224 as opposed to parm setup. */
4225 emit_note (NOTE_INSN_FUNCTION_BEG);
4227 gcc_assert (NOTE_P (get_last_insn ()));
4229 parm_birth_insn = get_last_insn ();
4231 if (current_function_profile)
4233 #ifdef PROFILE_HOOK
4234 PROFILE_HOOK (current_function_funcdef_no);
4235 #endif
4238 /* After the display initializations is where the stack checking
4239 probe should go. */
4240 if(flag_stack_check)
4241 stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
4243 /* Make sure there is a line number after the function entry setup code. */
4244 force_next_line_note ();
4247 /* Undo the effects of init_dummy_function_start. */
4248 void
4249 expand_dummy_function_end (void)
4251 /* End any sequences that failed to be closed due to syntax errors. */
4252 while (in_sequence_p ())
4253 end_sequence ();
4255 /* Outside function body, can't compute type's actual size
4256 until next function's body starts. */
4258 free_after_parsing (cfun);
4259 free_after_compilation (cfun);
4260 cfun = 0;
4263 /* Call DOIT for each hard register used as a return value from
4264 the current function. */
4266 void
4267 diddle_return_value (void (*doit) (rtx, void *), void *arg)
4269 rtx outgoing = current_function_return_rtx;
4271 if (! outgoing)
4272 return;
4274 if (REG_P (outgoing))
4275 (*doit) (outgoing, arg);
4276 else if (GET_CODE (outgoing) == PARALLEL)
4278 int i;
4280 for (i = 0; i < XVECLEN (outgoing, 0); i++)
4282 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
4284 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
4285 (*doit) (x, arg);
4290 static void
4291 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4293 emit_insn (gen_rtx_CLOBBER (VOIDmode, reg));
4296 void
4297 clobber_return_register (void)
4299 diddle_return_value (do_clobber_return_reg, NULL);
4301 /* In case we do use pseudo to return value, clobber it too. */
4302 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4304 tree decl_result = DECL_RESULT (current_function_decl);
4305 rtx decl_rtl = DECL_RTL (decl_result);
4306 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
4308 do_clobber_return_reg (decl_rtl, NULL);
4313 static void
4314 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4316 emit_insn (gen_rtx_USE (VOIDmode, reg));
4319 static void
4320 use_return_register (void)
4322 diddle_return_value (do_use_return_reg, NULL);
4325 /* Possibly warn about unused parameters. */
4326 void
4327 do_warn_unused_parameter (tree fn)
4329 tree decl;
4331 for (decl = DECL_ARGUMENTS (fn);
4332 decl; decl = TREE_CHAIN (decl))
4333 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
4334 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl))
4335 warning (OPT_Wunused_parameter, "unused parameter %q+D", decl);
4338 static GTY(()) rtx initial_trampoline;
4340 /* Generate RTL for the end of the current function. */
4342 void
4343 expand_function_end (void)
4345 rtx clobber_after;
4347 /* If arg_pointer_save_area was referenced only from a nested
4348 function, we will not have initialized it yet. Do that now. */
4349 if (arg_pointer_save_area && ! cfun->arg_pointer_save_area_init)
4350 get_arg_pointer_save_area (cfun);
4352 /* If we are doing stack checking and this function makes calls,
4353 do a stack probe at the start of the function to ensure we have enough
4354 space for another stack frame. */
4355 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
4357 rtx insn, seq;
4359 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4360 if (CALL_P (insn))
4362 start_sequence ();
4363 probe_stack_range (STACK_CHECK_PROTECT,
4364 GEN_INT (STACK_CHECK_MAX_FRAME_SIZE));
4365 seq = get_insns ();
4366 end_sequence ();
4367 emit_insn_before (seq, stack_check_probe_note);
4368 break;
4372 /* Possibly warn about unused parameters.
4373 When frontend does unit-at-a-time, the warning is already
4374 issued at finalization time. */
4375 if (warn_unused_parameter
4376 && !lang_hooks.callgraph.expand_function)
4377 do_warn_unused_parameter (current_function_decl);
4379 /* End any sequences that failed to be closed due to syntax errors. */
4380 while (in_sequence_p ())
4381 end_sequence ();
4383 clear_pending_stack_adjust ();
4384 do_pending_stack_adjust ();
4386 /* Mark the end of the function body.
4387 If control reaches this insn, the function can drop through
4388 without returning a value. */
4389 emit_note (NOTE_INSN_FUNCTION_END);
4391 /* Must mark the last line number note in the function, so that the test
4392 coverage code can avoid counting the last line twice. This just tells
4393 the code to ignore the immediately following line note, since there
4394 already exists a copy of this note somewhere above. This line number
4395 note is still needed for debugging though, so we can't delete it. */
4396 if (flag_test_coverage)
4397 emit_note (NOTE_INSN_REPEATED_LINE_NUMBER);
4399 /* Output a linenumber for the end of the function.
4400 SDB depends on this. */
4401 force_next_line_note ();
4402 emit_line_note (input_location);
4404 /* Before the return label (if any), clobber the return
4405 registers so that they are not propagated live to the rest of
4406 the function. This can only happen with functions that drop
4407 through; if there had been a return statement, there would
4408 have either been a return rtx, or a jump to the return label.
4410 We delay actual code generation after the current_function_value_rtx
4411 is computed. */
4412 clobber_after = get_last_insn ();
4414 /* Output the label for the actual return from the function. */
4415 emit_label (return_label);
4417 if (USING_SJLJ_EXCEPTIONS)
4419 /* Let except.c know where it should emit the call to unregister
4420 the function context for sjlj exceptions. */
4421 if (flag_exceptions)
4422 sjlj_emit_function_exit_after (get_last_insn ());
4424 else
4426 /* @@@ This is a kludge. We want to ensure that instructions that
4427 may trap are not moved into the epilogue by scheduling, because
4428 we don't always emit unwind information for the epilogue.
4429 However, not all machine descriptions define a blockage insn, so
4430 emit an ASM_INPUT to act as one. */
4431 if (flag_non_call_exceptions)
4432 emit_insn (gen_rtx_ASM_INPUT (VOIDmode, ""));
4435 /* If this is an implementation of throw, do what's necessary to
4436 communicate between __builtin_eh_return and the epilogue. */
4437 expand_eh_return ();
4439 /* If scalar return value was computed in a pseudo-reg, or was a named
4440 return value that got dumped to the stack, copy that to the hard
4441 return register. */
4442 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4444 tree decl_result = DECL_RESULT (current_function_decl);
4445 rtx decl_rtl = DECL_RTL (decl_result);
4447 if (REG_P (decl_rtl)
4448 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
4449 : DECL_REGISTER (decl_result))
4451 rtx real_decl_rtl = current_function_return_rtx;
4453 /* This should be set in assign_parms. */
4454 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
4456 /* If this is a BLKmode structure being returned in registers,
4457 then use the mode computed in expand_return. Note that if
4458 decl_rtl is memory, then its mode may have been changed,
4459 but that current_function_return_rtx has not. */
4460 if (GET_MODE (real_decl_rtl) == BLKmode)
4461 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
4463 /* If a non-BLKmode return value should be padded at the least
4464 significant end of the register, shift it left by the appropriate
4465 amount. BLKmode results are handled using the group load/store
4466 machinery. */
4467 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
4468 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
4470 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
4471 REGNO (real_decl_rtl)),
4472 decl_rtl);
4473 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
4475 /* If a named return value dumped decl_return to memory, then
4476 we may need to re-do the PROMOTE_MODE signed/unsigned
4477 extension. */
4478 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
4480 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
4482 if (targetm.calls.promote_function_return (TREE_TYPE (current_function_decl)))
4483 promote_mode (TREE_TYPE (decl_result), GET_MODE (decl_rtl),
4484 &unsignedp, 1);
4486 convert_move (real_decl_rtl, decl_rtl, unsignedp);
4488 else if (GET_CODE (real_decl_rtl) == PARALLEL)
4490 /* If expand_function_start has created a PARALLEL for decl_rtl,
4491 move the result to the real return registers. Otherwise, do
4492 a group load from decl_rtl for a named return. */
4493 if (GET_CODE (decl_rtl) == PARALLEL)
4494 emit_group_move (real_decl_rtl, decl_rtl);
4495 else
4496 emit_group_load (real_decl_rtl, decl_rtl,
4497 TREE_TYPE (decl_result),
4498 int_size_in_bytes (TREE_TYPE (decl_result)));
4500 /* In the case of complex integer modes smaller than a word, we'll
4501 need to generate some non-trivial bitfield insertions. Do that
4502 on a pseudo and not the hard register. */
4503 else if (GET_CODE (decl_rtl) == CONCAT
4504 && GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT
4505 && GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD)
4507 int old_generating_concat_p;
4508 rtx tmp;
4510 old_generating_concat_p = generating_concat_p;
4511 generating_concat_p = 0;
4512 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
4513 generating_concat_p = old_generating_concat_p;
4515 emit_move_insn (tmp, decl_rtl);
4516 emit_move_insn (real_decl_rtl, tmp);
4518 else
4519 emit_move_insn (real_decl_rtl, decl_rtl);
4523 /* If returning a structure, arrange to return the address of the value
4524 in a place where debuggers expect to find it.
4526 If returning a structure PCC style,
4527 the caller also depends on this value.
4528 And current_function_returns_pcc_struct is not necessarily set. */
4529 if (current_function_returns_struct
4530 || current_function_returns_pcc_struct)
4532 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
4533 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
4534 rtx outgoing;
4536 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
4537 type = TREE_TYPE (type);
4538 else
4539 value_address = XEXP (value_address, 0);
4541 outgoing = targetm.calls.function_value (build_pointer_type (type),
4542 current_function_decl, true);
4544 /* Mark this as a function return value so integrate will delete the
4545 assignment and USE below when inlining this function. */
4546 REG_FUNCTION_VALUE_P (outgoing) = 1;
4548 /* The address may be ptr_mode and OUTGOING may be Pmode. */
4549 value_address = convert_memory_address (GET_MODE (outgoing),
4550 value_address);
4552 emit_move_insn (outgoing, value_address);
4554 /* Show return register used to hold result (in this case the address
4555 of the result. */
4556 current_function_return_rtx = outgoing;
4559 /* Emit the actual code to clobber return register. */
4561 rtx seq;
4563 start_sequence ();
4564 clobber_return_register ();
4565 expand_naked_return ();
4566 seq = get_insns ();
4567 end_sequence ();
4569 emit_insn_after (seq, clobber_after);
4572 /* Output the label for the naked return from the function. */
4573 emit_label (naked_return_label);
4575 /* If stack protection is enabled for this function, check the guard. */
4576 if (cfun->stack_protect_guard)
4577 stack_protect_epilogue ();
4579 /* If we had calls to alloca, and this machine needs
4580 an accurate stack pointer to exit the function,
4581 insert some code to save and restore the stack pointer. */
4582 if (! EXIT_IGNORE_STACK
4583 && current_function_calls_alloca)
4585 rtx tem = 0;
4587 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
4588 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
4591 /* ??? This should no longer be necessary since stupid is no longer with
4592 us, but there are some parts of the compiler (eg reload_combine, and
4593 sh mach_dep_reorg) that still try and compute their own lifetime info
4594 instead of using the general framework. */
4595 use_return_register ();
4599 get_arg_pointer_save_area (struct function *f)
4601 rtx ret = f->x_arg_pointer_save_area;
4603 if (! ret)
4605 ret = assign_stack_local_1 (Pmode, GET_MODE_SIZE (Pmode), 0, f);
4606 f->x_arg_pointer_save_area = ret;
4609 if (f == cfun && ! f->arg_pointer_save_area_init)
4611 rtx seq;
4613 /* Save the arg pointer at the beginning of the function. The
4614 generated stack slot may not be a valid memory address, so we
4615 have to check it and fix it if necessary. */
4616 start_sequence ();
4617 emit_move_insn (validize_mem (ret), virtual_incoming_args_rtx);
4618 seq = get_insns ();
4619 end_sequence ();
4621 push_topmost_sequence ();
4622 emit_insn_after (seq, entry_of_function ());
4623 pop_topmost_sequence ();
4626 return ret;
4629 /* Extend a vector that records the INSN_UIDs of INSNS
4630 (a list of one or more insns). */
4632 static void
4633 record_insns (rtx insns, VEC(int,heap) **vecp)
4635 rtx tmp;
4637 for (tmp = insns; tmp != NULL_RTX; tmp = NEXT_INSN (tmp))
4638 VEC_safe_push (int, heap, *vecp, INSN_UID (tmp));
4641 /* Set the locator of the insn chain starting at INSN to LOC. */
4642 static void
4643 set_insn_locators (rtx insn, int loc)
4645 while (insn != NULL_RTX)
4647 if (INSN_P (insn))
4648 INSN_LOCATOR (insn) = loc;
4649 insn = NEXT_INSN (insn);
4653 /* Determine how many INSN_UIDs in VEC are part of INSN. Because we can
4654 be running after reorg, SEQUENCE rtl is possible. */
4656 static int
4657 contains (rtx insn, VEC(int,heap) **vec)
4659 int i, j;
4661 if (NONJUMP_INSN_P (insn)
4662 && GET_CODE (PATTERN (insn)) == SEQUENCE)
4664 int count = 0;
4665 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
4666 for (j = VEC_length (int, *vec) - 1; j >= 0; --j)
4667 if (INSN_UID (XVECEXP (PATTERN (insn), 0, i))
4668 == VEC_index (int, *vec, j))
4669 count++;
4670 return count;
4672 else
4674 for (j = VEC_length (int, *vec) - 1; j >= 0; --j)
4675 if (INSN_UID (insn) == VEC_index (int, *vec, j))
4676 return 1;
4678 return 0;
4682 prologue_epilogue_contains (rtx insn)
4684 if (contains (insn, &prologue))
4685 return 1;
4686 if (contains (insn, &epilogue))
4687 return 1;
4688 return 0;
4692 sibcall_epilogue_contains (rtx insn)
4694 if (sibcall_epilogue)
4695 return contains (insn, &sibcall_epilogue);
4696 return 0;
4699 #ifdef HAVE_return
4700 /* Insert gen_return at the end of block BB. This also means updating
4701 block_for_insn appropriately. */
4703 static void
4704 emit_return_into_block (basic_block bb, rtx line_note)
4706 emit_jump_insn_after (gen_return (), BB_END (bb));
4707 if (line_note)
4708 emit_note_copy_after (line_note, PREV_INSN (BB_END (bb)));
4710 #endif /* HAVE_return */
4712 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
4714 /* These functions convert the epilogue into a variant that does not
4715 modify the stack pointer. This is used in cases where a function
4716 returns an object whose size is not known until it is computed.
4717 The called function leaves the object on the stack, leaves the
4718 stack depressed, and returns a pointer to the object.
4720 What we need to do is track all modifications and references to the
4721 stack pointer, deleting the modifications and changing the
4722 references to point to the location the stack pointer would have
4723 pointed to had the modifications taken place.
4725 These functions need to be portable so we need to make as few
4726 assumptions about the epilogue as we can. However, the epilogue
4727 basically contains three things: instructions to reset the stack
4728 pointer, instructions to reload registers, possibly including the
4729 frame pointer, and an instruction to return to the caller.
4731 We must be sure of what a relevant epilogue insn is doing. We also
4732 make no attempt to validate the insns we make since if they are
4733 invalid, we probably can't do anything valid. The intent is that
4734 these routines get "smarter" as more and more machines start to use
4735 them and they try operating on different epilogues.
4737 We use the following structure to track what the part of the
4738 epilogue that we've already processed has done. We keep two copies
4739 of the SP equivalence, one for use during the insn we are
4740 processing and one for use in the next insn. The difference is
4741 because one part of a PARALLEL may adjust SP and the other may use
4742 it. */
4744 struct epi_info
4746 rtx sp_equiv_reg; /* REG that SP is set from, perhaps SP. */
4747 HOST_WIDE_INT sp_offset; /* Offset from SP_EQUIV_REG of present SP. */
4748 rtx new_sp_equiv_reg; /* REG to be used at end of insn. */
4749 HOST_WIDE_INT new_sp_offset; /* Offset to be used at end of insn. */
4750 rtx equiv_reg_src; /* If nonzero, the value that SP_EQUIV_REG
4751 should be set to once we no longer need
4752 its value. */
4753 rtx const_equiv[FIRST_PSEUDO_REGISTER]; /* Any known constant equivalences
4754 for registers. */
4757 static void handle_epilogue_set (rtx, struct epi_info *);
4758 static void update_epilogue_consts (rtx, rtx, void *);
4759 static void emit_equiv_load (struct epi_info *);
4761 /* Modify INSN, a list of one or more insns that is part of the epilogue, to
4762 no modifications to the stack pointer. Return the new list of insns. */
4764 static rtx
4765 keep_stack_depressed (rtx insns)
4767 int j;
4768 struct epi_info info;
4769 rtx insn, next;
4771 /* If the epilogue is just a single instruction, it must be OK as is. */
4772 if (NEXT_INSN (insns) == NULL_RTX)
4773 return insns;
4775 /* Otherwise, start a sequence, initialize the information we have, and
4776 process all the insns we were given. */
4777 start_sequence ();
4779 info.sp_equiv_reg = stack_pointer_rtx;
4780 info.sp_offset = 0;
4781 info.equiv_reg_src = 0;
4783 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
4784 info.const_equiv[j] = 0;
4786 insn = insns;
4787 next = NULL_RTX;
4788 while (insn != NULL_RTX)
4790 next = NEXT_INSN (insn);
4792 if (!INSN_P (insn))
4794 add_insn (insn);
4795 insn = next;
4796 continue;
4799 /* If this insn references the register that SP is equivalent to and
4800 we have a pending load to that register, we must force out the load
4801 first and then indicate we no longer know what SP's equivalent is. */
4802 if (info.equiv_reg_src != 0
4803 && reg_referenced_p (info.sp_equiv_reg, PATTERN (insn)))
4805 emit_equiv_load (&info);
4806 info.sp_equiv_reg = 0;
4809 info.new_sp_equiv_reg = info.sp_equiv_reg;
4810 info.new_sp_offset = info.sp_offset;
4812 /* If this is a (RETURN) and the return address is on the stack,
4813 update the address and change to an indirect jump. */
4814 if (GET_CODE (PATTERN (insn)) == RETURN
4815 || (GET_CODE (PATTERN (insn)) == PARALLEL
4816 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == RETURN))
4818 rtx retaddr = INCOMING_RETURN_ADDR_RTX;
4819 rtx base = 0;
4820 HOST_WIDE_INT offset = 0;
4821 rtx jump_insn, jump_set;
4823 /* If the return address is in a register, we can emit the insn
4824 unchanged. Otherwise, it must be a MEM and we see what the
4825 base register and offset are. In any case, we have to emit any
4826 pending load to the equivalent reg of SP, if any. */
4827 if (REG_P (retaddr))
4829 emit_equiv_load (&info);
4830 add_insn (insn);
4831 insn = next;
4832 continue;
4834 else
4836 rtx ret_ptr;
4837 gcc_assert (MEM_P (retaddr));
4839 ret_ptr = XEXP (retaddr, 0);
4841 if (REG_P (ret_ptr))
4843 base = gen_rtx_REG (Pmode, REGNO (ret_ptr));
4844 offset = 0;
4846 else
4848 gcc_assert (GET_CODE (ret_ptr) == PLUS
4849 && REG_P (XEXP (ret_ptr, 0))
4850 && GET_CODE (XEXP (ret_ptr, 1)) == CONST_INT);
4851 base = gen_rtx_REG (Pmode, REGNO (XEXP (ret_ptr, 0)));
4852 offset = INTVAL (XEXP (ret_ptr, 1));
4856 /* If the base of the location containing the return pointer
4857 is SP, we must update it with the replacement address. Otherwise,
4858 just build the necessary MEM. */
4859 retaddr = plus_constant (base, offset);
4860 if (base == stack_pointer_rtx)
4861 retaddr = simplify_replace_rtx (retaddr, stack_pointer_rtx,
4862 plus_constant (info.sp_equiv_reg,
4863 info.sp_offset));
4865 retaddr = gen_rtx_MEM (Pmode, retaddr);
4866 MEM_NOTRAP_P (retaddr) = 1;
4868 /* If there is a pending load to the equivalent register for SP
4869 and we reference that register, we must load our address into
4870 a scratch register and then do that load. */
4871 if (info.equiv_reg_src
4872 && reg_overlap_mentioned_p (info.equiv_reg_src, retaddr))
4874 unsigned int regno;
4875 rtx reg;
4877 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
4878 if (HARD_REGNO_MODE_OK (regno, Pmode)
4879 && !fixed_regs[regno]
4880 && TEST_HARD_REG_BIT (regs_invalidated_by_call, regno)
4881 && !REGNO_REG_SET_P
4882 (EXIT_BLOCK_PTR->il.rtl->global_live_at_start, regno)
4883 && !refers_to_regno_p (regno,
4884 regno + hard_regno_nregs[regno]
4885 [Pmode],
4886 info.equiv_reg_src, NULL)
4887 && info.const_equiv[regno] == 0)
4888 break;
4890 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
4892 reg = gen_rtx_REG (Pmode, regno);
4893 emit_move_insn (reg, retaddr);
4894 retaddr = reg;
4897 emit_equiv_load (&info);
4898 jump_insn = emit_jump_insn (gen_indirect_jump (retaddr));
4900 /* Show the SET in the above insn is a RETURN. */
4901 jump_set = single_set (jump_insn);
4902 gcc_assert (jump_set);
4903 SET_IS_RETURN_P (jump_set) = 1;
4906 /* If SP is not mentioned in the pattern and its equivalent register, if
4907 any, is not modified, just emit it. Otherwise, if neither is set,
4908 replace the reference to SP and emit the insn. If none of those are
4909 true, handle each SET individually. */
4910 else if (!reg_mentioned_p (stack_pointer_rtx, PATTERN (insn))
4911 && (info.sp_equiv_reg == stack_pointer_rtx
4912 || !reg_set_p (info.sp_equiv_reg, insn)))
4913 add_insn (insn);
4914 else if (! reg_set_p (stack_pointer_rtx, insn)
4915 && (info.sp_equiv_reg == stack_pointer_rtx
4916 || !reg_set_p (info.sp_equiv_reg, insn)))
4918 int changed;
4920 changed = validate_replace_rtx (stack_pointer_rtx,
4921 plus_constant (info.sp_equiv_reg,
4922 info.sp_offset),
4923 insn);
4924 gcc_assert (changed);
4926 add_insn (insn);
4928 else if (GET_CODE (PATTERN (insn)) == SET)
4929 handle_epilogue_set (PATTERN (insn), &info);
4930 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
4932 for (j = 0; j < XVECLEN (PATTERN (insn), 0); j++)
4933 if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET)
4934 handle_epilogue_set (XVECEXP (PATTERN (insn), 0, j), &info);
4936 else
4937 add_insn (insn);
4939 info.sp_equiv_reg = info.new_sp_equiv_reg;
4940 info.sp_offset = info.new_sp_offset;
4942 /* Now update any constants this insn sets. */
4943 note_stores (PATTERN (insn), update_epilogue_consts, &info);
4944 insn = next;
4947 insns = get_insns ();
4948 end_sequence ();
4949 return insns;
4952 /* SET is a SET from an insn in the epilogue. P is a pointer to the epi_info
4953 structure that contains information about what we've seen so far. We
4954 process this SET by either updating that data or by emitting one or
4955 more insns. */
4957 static void
4958 handle_epilogue_set (rtx set, struct epi_info *p)
4960 /* First handle the case where we are setting SP. Record what it is being
4961 set from, which we must be able to determine */
4962 if (reg_set_p (stack_pointer_rtx, set))
4964 gcc_assert (SET_DEST (set) == stack_pointer_rtx);
4966 if (GET_CODE (SET_SRC (set)) == PLUS)
4968 p->new_sp_equiv_reg = XEXP (SET_SRC (set), 0);
4969 if (GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
4970 p->new_sp_offset = INTVAL (XEXP (SET_SRC (set), 1));
4971 else
4973 gcc_assert (REG_P (XEXP (SET_SRC (set), 1))
4974 && (REGNO (XEXP (SET_SRC (set), 1))
4975 < FIRST_PSEUDO_REGISTER)
4976 && p->const_equiv[REGNO (XEXP (SET_SRC (set), 1))]);
4977 p->new_sp_offset
4978 = INTVAL (p->const_equiv[REGNO (XEXP (SET_SRC (set), 1))]);
4981 else
4982 p->new_sp_equiv_reg = SET_SRC (set), p->new_sp_offset = 0;
4984 /* If we are adjusting SP, we adjust from the old data. */
4985 if (p->new_sp_equiv_reg == stack_pointer_rtx)
4987 p->new_sp_equiv_reg = p->sp_equiv_reg;
4988 p->new_sp_offset += p->sp_offset;
4991 gcc_assert (p->new_sp_equiv_reg && REG_P (p->new_sp_equiv_reg));
4993 return;
4996 /* Next handle the case where we are setting SP's equivalent
4997 register. We must not already have a value to set it to. We
4998 could update, but there seems little point in handling that case.
4999 Note that we have to allow for the case where we are setting the
5000 register set in the previous part of a PARALLEL inside a single
5001 insn. But use the old offset for any updates within this insn.
5002 We must allow for the case where the register is being set in a
5003 different (usually wider) mode than Pmode). */
5004 else if (p->new_sp_equiv_reg != 0 && reg_set_p (p->new_sp_equiv_reg, set))
5006 gcc_assert (!p->equiv_reg_src
5007 && REG_P (p->new_sp_equiv_reg)
5008 && REG_P (SET_DEST (set))
5009 && (GET_MODE_BITSIZE (GET_MODE (SET_DEST (set)))
5010 <= BITS_PER_WORD)
5011 && REGNO (p->new_sp_equiv_reg) == REGNO (SET_DEST (set)));
5012 p->equiv_reg_src
5013 = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
5014 plus_constant (p->sp_equiv_reg,
5015 p->sp_offset));
5018 /* Otherwise, replace any references to SP in the insn to its new value
5019 and emit the insn. */
5020 else
5022 SET_SRC (set) = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
5023 plus_constant (p->sp_equiv_reg,
5024 p->sp_offset));
5025 SET_DEST (set) = simplify_replace_rtx (SET_DEST (set), stack_pointer_rtx,
5026 plus_constant (p->sp_equiv_reg,
5027 p->sp_offset));
5028 emit_insn (set);
5032 /* Update the tracking information for registers set to constants. */
5034 static void
5035 update_epilogue_consts (rtx dest, rtx x, void *data)
5037 struct epi_info *p = (struct epi_info *) data;
5038 rtx new;
5040 if (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER)
5041 return;
5043 /* If we are either clobbering a register or doing a partial set,
5044 show we don't know the value. */
5045 else if (GET_CODE (x) == CLOBBER || ! rtx_equal_p (dest, SET_DEST (x)))
5046 p->const_equiv[REGNO (dest)] = 0;
5048 /* If we are setting it to a constant, record that constant. */
5049 else if (GET_CODE (SET_SRC (x)) == CONST_INT)
5050 p->const_equiv[REGNO (dest)] = SET_SRC (x);
5052 /* If this is a binary operation between a register we have been tracking
5053 and a constant, see if we can compute a new constant value. */
5054 else if (ARITHMETIC_P (SET_SRC (x))
5055 && REG_P (XEXP (SET_SRC (x), 0))
5056 && REGNO (XEXP (SET_SRC (x), 0)) < FIRST_PSEUDO_REGISTER
5057 && p->const_equiv[REGNO (XEXP (SET_SRC (x), 0))] != 0
5058 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
5059 && 0 != (new = simplify_binary_operation
5060 (GET_CODE (SET_SRC (x)), GET_MODE (dest),
5061 p->const_equiv[REGNO (XEXP (SET_SRC (x), 0))],
5062 XEXP (SET_SRC (x), 1)))
5063 && GET_CODE (new) == CONST_INT)
5064 p->const_equiv[REGNO (dest)] = new;
5066 /* Otherwise, we can't do anything with this value. */
5067 else
5068 p->const_equiv[REGNO (dest)] = 0;
5071 /* Emit an insn to do the load shown in p->equiv_reg_src, if needed. */
5073 static void
5074 emit_equiv_load (struct epi_info *p)
5076 if (p->equiv_reg_src != 0)
5078 rtx dest = p->sp_equiv_reg;
5080 if (GET_MODE (p->equiv_reg_src) != GET_MODE (dest))
5081 dest = gen_rtx_REG (GET_MODE (p->equiv_reg_src),
5082 REGNO (p->sp_equiv_reg));
5084 emit_move_insn (dest, p->equiv_reg_src);
5085 p->equiv_reg_src = 0;
5088 #endif
5090 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
5091 this into place with notes indicating where the prologue ends and where
5092 the epilogue begins. Update the basic block information when possible. */
5094 void
5095 thread_prologue_and_epilogue_insns (rtx f ATTRIBUTE_UNUSED)
5097 int inserted = 0;
5098 edge e;
5099 #if defined (HAVE_sibcall_epilogue) || defined (HAVE_epilogue) || defined (HAVE_return) || defined (HAVE_prologue)
5100 rtx seq;
5101 #endif
5102 #ifdef HAVE_prologue
5103 rtx prologue_end = NULL_RTX;
5104 #endif
5105 #if defined (HAVE_epilogue) || defined(HAVE_return)
5106 rtx epilogue_end = NULL_RTX;
5107 #endif
5108 edge_iterator ei;
5110 #ifdef HAVE_prologue
5111 if (HAVE_prologue)
5113 start_sequence ();
5114 seq = gen_prologue ();
5115 emit_insn (seq);
5117 /* Retain a map of the prologue insns. */
5118 record_insns (seq, &prologue);
5119 prologue_end = emit_note (NOTE_INSN_PROLOGUE_END);
5121 seq = get_insns ();
5122 end_sequence ();
5123 set_insn_locators (seq, prologue_locator);
5125 /* Can't deal with multiple successors of the entry block
5126 at the moment. Function should always have at least one
5127 entry point. */
5128 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR));
5130 insert_insn_on_edge (seq, single_succ_edge (ENTRY_BLOCK_PTR));
5131 inserted = 1;
5133 #endif
5135 /* If the exit block has no non-fake predecessors, we don't need
5136 an epilogue. */
5137 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5138 if ((e->flags & EDGE_FAKE) == 0)
5139 break;
5140 if (e == NULL)
5141 goto epilogue_done;
5143 #ifdef HAVE_return
5144 if (optimize && HAVE_return)
5146 /* If we're allowed to generate a simple return instruction,
5147 then by definition we don't need a full epilogue. Examine
5148 the block that falls through to EXIT. If it does not
5149 contain any code, examine its predecessors and try to
5150 emit (conditional) return instructions. */
5152 basic_block last;
5153 rtx label;
5155 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5156 if (e->flags & EDGE_FALLTHRU)
5157 break;
5158 if (e == NULL)
5159 goto epilogue_done;
5160 last = e->src;
5162 /* Verify that there are no active instructions in the last block. */
5163 label = BB_END (last);
5164 while (label && !LABEL_P (label))
5166 if (active_insn_p (label))
5167 break;
5168 label = PREV_INSN (label);
5171 if (BB_HEAD (last) == label && LABEL_P (label))
5173 edge_iterator ei2;
5174 rtx epilogue_line_note = NULL_RTX;
5176 /* Locate the line number associated with the closing brace,
5177 if we can find one. */
5178 for (seq = get_last_insn ();
5179 seq && ! active_insn_p (seq);
5180 seq = PREV_INSN (seq))
5181 if (NOTE_P (seq) && NOTE_LINE_NUMBER (seq) > 0)
5183 epilogue_line_note = seq;
5184 break;
5187 for (ei2 = ei_start (last->preds); (e = ei_safe_edge (ei2)); )
5189 basic_block bb = e->src;
5190 rtx jump;
5192 if (bb == ENTRY_BLOCK_PTR)
5194 ei_next (&ei2);
5195 continue;
5198 jump = BB_END (bb);
5199 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
5201 ei_next (&ei2);
5202 continue;
5205 /* If we have an unconditional jump, we can replace that
5206 with a simple return instruction. */
5207 if (simplejump_p (jump))
5209 emit_return_into_block (bb, epilogue_line_note);
5210 delete_insn (jump);
5213 /* If we have a conditional jump, we can try to replace
5214 that with a conditional return instruction. */
5215 else if (condjump_p (jump))
5217 if (! redirect_jump (jump, 0, 0))
5219 ei_next (&ei2);
5220 continue;
5223 /* If this block has only one successor, it both jumps
5224 and falls through to the fallthru block, so we can't
5225 delete the edge. */
5226 if (single_succ_p (bb))
5228 ei_next (&ei2);
5229 continue;
5232 else
5234 ei_next (&ei2);
5235 continue;
5238 /* Fix up the CFG for the successful change we just made. */
5239 redirect_edge_succ (e, EXIT_BLOCK_PTR);
5242 /* Emit a return insn for the exit fallthru block. Whether
5243 this is still reachable will be determined later. */
5245 emit_barrier_after (BB_END (last));
5246 emit_return_into_block (last, epilogue_line_note);
5247 epilogue_end = BB_END (last);
5248 single_succ_edge (last)->flags &= ~EDGE_FALLTHRU;
5249 goto epilogue_done;
5252 #endif
5253 /* Find the edge that falls through to EXIT. Other edges may exist
5254 due to RETURN instructions, but those don't need epilogues.
5255 There really shouldn't be a mixture -- either all should have
5256 been converted or none, however... */
5258 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5259 if (e->flags & EDGE_FALLTHRU)
5260 break;
5261 if (e == NULL)
5262 goto epilogue_done;
5264 #ifdef HAVE_epilogue
5265 if (HAVE_epilogue)
5267 start_sequence ();
5268 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
5270 seq = gen_epilogue ();
5272 #ifdef INCOMING_RETURN_ADDR_RTX
5273 /* If this function returns with the stack depressed and we can support
5274 it, massage the epilogue to actually do that. */
5275 if (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
5276 && TYPE_RETURNS_STACK_DEPRESSED (TREE_TYPE (current_function_decl)))
5277 seq = keep_stack_depressed (seq);
5278 #endif
5280 emit_jump_insn (seq);
5282 /* Retain a map of the epilogue insns. */
5283 record_insns (seq, &epilogue);
5284 set_insn_locators (seq, epilogue_locator);
5286 seq = get_insns ();
5287 end_sequence ();
5289 insert_insn_on_edge (seq, e);
5290 inserted = 1;
5292 else
5293 #endif
5295 basic_block cur_bb;
5297 if (! next_active_insn (BB_END (e->src)))
5298 goto epilogue_done;
5299 /* We have a fall-through edge to the exit block, the source is not
5300 at the end of the function, and there will be an assembler epilogue
5301 at the end of the function.
5302 We can't use force_nonfallthru here, because that would try to
5303 use return. Inserting a jump 'by hand' is extremely messy, so
5304 we take advantage of cfg_layout_finalize using
5305 fixup_fallthru_exit_predecessor. */
5306 cfg_layout_initialize (0);
5307 FOR_EACH_BB (cur_bb)
5308 if (cur_bb->index >= NUM_FIXED_BLOCKS
5309 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
5310 cur_bb->aux = cur_bb->next_bb;
5311 cfg_layout_finalize ();
5313 epilogue_done:
5315 if (inserted)
5316 commit_edge_insertions ();
5318 #ifdef HAVE_sibcall_epilogue
5319 /* Emit sibling epilogues before any sibling call sites. */
5320 for (ei = ei_start (EXIT_BLOCK_PTR->preds); (e = ei_safe_edge (ei)); )
5322 basic_block bb = e->src;
5323 rtx insn = BB_END (bb);
5325 if (!CALL_P (insn)
5326 || ! SIBLING_CALL_P (insn))
5328 ei_next (&ei);
5329 continue;
5332 start_sequence ();
5333 emit_insn (gen_sibcall_epilogue ());
5334 seq = get_insns ();
5335 end_sequence ();
5337 /* Retain a map of the epilogue insns. Used in life analysis to
5338 avoid getting rid of sibcall epilogue insns. Do this before we
5339 actually emit the sequence. */
5340 record_insns (seq, &sibcall_epilogue);
5341 set_insn_locators (seq, epilogue_locator);
5343 emit_insn_before (seq, insn);
5344 ei_next (&ei);
5346 #endif
5348 #ifdef HAVE_prologue
5349 /* This is probably all useless now that we use locators. */
5350 if (prologue_end)
5352 rtx insn, prev;
5354 /* GDB handles `break f' by setting a breakpoint on the first
5355 line note after the prologue. Which means (1) that if
5356 there are line number notes before where we inserted the
5357 prologue we should move them, and (2) we should generate a
5358 note before the end of the first basic block, if there isn't
5359 one already there.
5361 ??? This behavior is completely broken when dealing with
5362 multiple entry functions. We simply place the note always
5363 into first basic block and let alternate entry points
5364 to be missed.
5367 for (insn = prologue_end; insn; insn = prev)
5369 prev = PREV_INSN (insn);
5370 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
5372 /* Note that we cannot reorder the first insn in the
5373 chain, since rest_of_compilation relies on that
5374 remaining constant. */
5375 if (prev == NULL)
5376 break;
5377 reorder_insns (insn, insn, prologue_end);
5381 /* Find the last line number note in the first block. */
5382 for (insn = BB_END (ENTRY_BLOCK_PTR->next_bb);
5383 insn != prologue_end && insn;
5384 insn = PREV_INSN (insn))
5385 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
5386 break;
5388 /* If we didn't find one, make a copy of the first line number
5389 we run across. */
5390 if (! insn)
5392 for (insn = next_active_insn (prologue_end);
5393 insn;
5394 insn = PREV_INSN (insn))
5395 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
5397 emit_note_copy_after (insn, prologue_end);
5398 break;
5402 #endif
5403 #ifdef HAVE_epilogue
5404 if (epilogue_end)
5406 rtx insn, next;
5408 /* Similarly, move any line notes that appear after the epilogue.
5409 There is no need, however, to be quite so anal about the existence
5410 of such a note. Also move the NOTE_INSN_FUNCTION_END and (possibly)
5411 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
5412 info generation. */
5413 for (insn = epilogue_end; insn; insn = next)
5415 next = NEXT_INSN (insn);
5416 if (NOTE_P (insn)
5417 && (NOTE_LINE_NUMBER (insn) > 0
5418 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG
5419 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_END))
5420 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
5423 #endif
5426 /* Reposition the prologue-end and epilogue-begin notes after instruction
5427 scheduling and delayed branch scheduling. */
5429 void
5430 reposition_prologue_and_epilogue_notes (rtx f ATTRIBUTE_UNUSED)
5432 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
5433 rtx insn, last, note;
5434 int len;
5436 if ((len = VEC_length (int, prologue)) > 0)
5438 last = 0, note = 0;
5440 /* Scan from the beginning until we reach the last prologue insn.
5441 We apparently can't depend on basic_block_{head,end} after
5442 reorg has run. */
5443 for (insn = f; insn; insn = NEXT_INSN (insn))
5445 if (NOTE_P (insn))
5447 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END)
5448 note = insn;
5450 else if (contains (insn, &prologue))
5452 last = insn;
5453 if (--len == 0)
5454 break;
5458 if (last)
5460 /* Find the prologue-end note if we haven't already, and
5461 move it to just after the last prologue insn. */
5462 if (note == 0)
5464 for (note = last; (note = NEXT_INSN (note));)
5465 if (NOTE_P (note)
5466 && NOTE_LINE_NUMBER (note) == NOTE_INSN_PROLOGUE_END)
5467 break;
5470 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
5471 if (LABEL_P (last))
5472 last = NEXT_INSN (last);
5473 reorder_insns (note, note, last);
5477 if ((len = VEC_length (int, epilogue)) > 0)
5479 last = 0, note = 0;
5481 /* Scan from the end until we reach the first epilogue insn.
5482 We apparently can't depend on basic_block_{head,end} after
5483 reorg has run. */
5484 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
5486 if (NOTE_P (insn))
5488 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
5489 note = insn;
5491 else if (contains (insn, &epilogue))
5493 last = insn;
5494 if (--len == 0)
5495 break;
5499 if (last)
5501 /* Find the epilogue-begin note if we haven't already, and
5502 move it to just before the first epilogue insn. */
5503 if (note == 0)
5505 for (note = insn; (note = PREV_INSN (note));)
5506 if (NOTE_P (note)
5507 && NOTE_LINE_NUMBER (note) == NOTE_INSN_EPILOGUE_BEG)
5508 break;
5511 if (PREV_INSN (last) != note)
5512 reorder_insns (note, note, PREV_INSN (last));
5515 #endif /* HAVE_prologue or HAVE_epilogue */
5518 /* Resets insn_block_boundaries array. */
5520 void
5521 reset_block_changes (void)
5523 VARRAY_TREE_INIT (cfun->ib_boundaries_block, 100, "ib_boundaries_block");
5524 VARRAY_PUSH_TREE (cfun->ib_boundaries_block, NULL_TREE);
5527 /* Record the boundary for BLOCK. */
5528 void
5529 record_block_change (tree block)
5531 int i, n;
5532 tree last_block;
5534 if (!block)
5535 return;
5537 if(!cfun->ib_boundaries_block)
5538 return;
5540 last_block = VARRAY_TOP_TREE (cfun->ib_boundaries_block);
5541 VARRAY_POP (cfun->ib_boundaries_block);
5542 n = get_max_uid ();
5543 for (i = VARRAY_ACTIVE_SIZE (cfun->ib_boundaries_block); i < n; i++)
5544 VARRAY_PUSH_TREE (cfun->ib_boundaries_block, last_block);
5546 VARRAY_PUSH_TREE (cfun->ib_boundaries_block, block);
5549 /* Finishes record of boundaries. */
5550 void finalize_block_changes (void)
5552 record_block_change (DECL_INITIAL (current_function_decl));
5555 /* For INSN return the BLOCK it belongs to. */
5556 void
5557 check_block_change (rtx insn, tree *block)
5559 unsigned uid = INSN_UID (insn);
5561 if (uid >= VARRAY_ACTIVE_SIZE (cfun->ib_boundaries_block))
5562 return;
5564 *block = VARRAY_TREE (cfun->ib_boundaries_block, uid);
5567 /* Releases the ib_boundaries_block records. */
5568 void
5569 free_block_changes (void)
5571 cfun->ib_boundaries_block = NULL;
5574 /* Returns the name of the current function. */
5575 const char *
5576 current_function_name (void)
5578 return lang_hooks.decl_printable_name (cfun->decl, 2);
5582 static unsigned int
5583 rest_of_handle_check_leaf_regs (void)
5585 #ifdef LEAF_REGISTERS
5586 current_function_uses_only_leaf_regs
5587 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
5588 #endif
5589 return 0;
5592 struct tree_opt_pass pass_leaf_regs =
5594 NULL, /* name */
5595 NULL, /* gate */
5596 rest_of_handle_check_leaf_regs, /* execute */
5597 NULL, /* sub */
5598 NULL, /* next */
5599 0, /* static_pass_number */
5600 0, /* tv_id */
5601 0, /* properties_required */
5602 0, /* properties_provided */
5603 0, /* properties_destroyed */
5604 0, /* todo_flags_start */
5605 0, /* todo_flags_finish */
5606 0 /* letter */
5610 #include "gt-function.h"