* pt.c (instantiate_decl): Call push/pop_deferring_access_checks.
[official-gcc.git] / gcc / tree.c
blob8cff4ce0e2fc14e6eecdd28b23ecf02cade785e0
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This file contains the low level primitives for operating on tree nodes,
23 including allocation, list operations, interning of identifiers,
24 construction of data type nodes and statement nodes,
25 and construction of type conversion nodes. It also contains
26 tables index by tree code that describe how to take apart
27 nodes of that code.
29 It is intended to be language-independent, but occasionally
30 calls language-dependent routines defined (for C) in typecheck.c. */
32 #include "config.h"
33 #include "system.h"
34 #include "coretypes.h"
35 #include "tm.h"
36 #include "flags.h"
37 #include "tree.h"
38 #include "real.h"
39 #include "tm_p.h"
40 #include "function.h"
41 #include "obstack.h"
42 #include "toplev.h"
43 #include "ggc.h"
44 #include "hashtab.h"
45 #include "output.h"
46 #include "target.h"
47 #include "langhooks.h"
49 /* obstack.[ch] explicitly declined to prototype this. */
50 extern int _obstack_allocated_p PARAMS ((struct obstack *h, PTR obj));
52 #ifdef GATHER_STATISTICS
53 /* Statistics-gathering stuff. */
54 typedef enum
56 d_kind,
57 t_kind,
58 b_kind,
59 s_kind,
60 r_kind,
61 e_kind,
62 c_kind,
63 id_kind,
64 perm_list_kind,
65 temp_list_kind,
66 vec_kind,
67 x_kind,
68 lang_decl,
69 lang_type,
70 all_kinds
71 } tree_node_kind;
73 int tree_node_counts[(int) all_kinds];
74 int tree_node_sizes[(int) all_kinds];
76 static const char * const tree_node_kind_names[] = {
77 "decls",
78 "types",
79 "blocks",
80 "stmts",
81 "refs",
82 "exprs",
83 "constants",
84 "identifiers",
85 "perm_tree_lists",
86 "temp_tree_lists",
87 "vecs",
88 "random kinds",
89 "lang_decl kinds",
90 "lang_type kinds"
92 #endif /* GATHER_STATISTICS */
94 /* Unique id for next decl created. */
95 static GTY(()) int next_decl_uid;
96 /* Unique id for next type created. */
97 static GTY(()) int next_type_uid = 1;
99 /* Since we cannot rehash a type after it is in the table, we have to
100 keep the hash code. */
102 struct type_hash GTY(())
104 unsigned long hash;
105 tree type;
108 /* Initial size of the hash table (rounded to next prime). */
109 #define TYPE_HASH_INITIAL_SIZE 1000
111 /* Now here is the hash table. When recording a type, it is added to
112 the slot whose index is the hash code. Note that the hash table is
113 used for several kinds of types (function types, array types and
114 array index range types, for now). While all these live in the
115 same table, they are completely independent, and the hash code is
116 computed differently for each of these. */
118 static GTY ((if_marked ("type_hash_marked_p"), param_is (struct type_hash)))
119 htab_t type_hash_table;
121 static void set_type_quals PARAMS ((tree, int));
122 static void append_random_chars PARAMS ((char *));
123 static int type_hash_eq PARAMS ((const void *, const void *));
124 static hashval_t type_hash_hash PARAMS ((const void *));
125 static void print_type_hash_statistics PARAMS((void));
126 static void finish_vector_type PARAMS((tree));
127 static tree make_vector PARAMS ((enum machine_mode, tree, int));
128 static int type_hash_marked_p PARAMS ((const void *));
130 tree global_trees[TI_MAX];
131 tree integer_types[itk_none];
133 /* Init tree.c. */
135 void
136 init_ttree ()
138 /* Initialize the hash table of types. */
139 type_hash_table = htab_create_ggc (TYPE_HASH_INITIAL_SIZE, type_hash_hash,
140 type_hash_eq, 0);
144 /* The name of the object as the assembler will see it (but before any
145 translations made by ASM_OUTPUT_LABELREF). Often this is the same
146 as DECL_NAME. It is an IDENTIFIER_NODE. */
147 tree
148 decl_assembler_name (decl)
149 tree decl;
151 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
152 (*lang_hooks.set_decl_assembler_name) (decl);
153 return DECL_CHECK (decl)->decl.assembler_name;
156 /* Compute the number of bytes occupied by 'node'. This routine only
157 looks at TREE_CODE and, if the code is TREE_VEC, TREE_VEC_LENGTH. */
158 size_t
159 tree_size (node)
160 tree node;
162 enum tree_code code = TREE_CODE (node);
164 switch (TREE_CODE_CLASS (code))
166 case 'd': /* A decl node */
167 return sizeof (struct tree_decl);
169 case 't': /* a type node */
170 return sizeof (struct tree_type);
172 case 'b': /* a lexical block node */
173 return sizeof (struct tree_block);
175 case 'r': /* a reference */
176 case 'e': /* an expression */
177 case 's': /* an expression with side effects */
178 case '<': /* a comparison expression */
179 case '1': /* a unary arithmetic expression */
180 case '2': /* a binary arithmetic expression */
181 return (sizeof (struct tree_exp)
182 + TREE_CODE_LENGTH (code) * sizeof (char *) - sizeof (char *));
184 case 'c': /* a constant */
185 switch (code)
187 case INTEGER_CST: return sizeof (struct tree_int_cst);
188 case REAL_CST: return sizeof (struct tree_real_cst);
189 case COMPLEX_CST: return sizeof (struct tree_complex);
190 case VECTOR_CST: return sizeof (struct tree_vector);
191 case STRING_CST: return sizeof (struct tree_string);
192 default:
193 return (*lang_hooks.tree_size) (code);
196 case 'x': /* something random, like an identifier. */
197 switch (code)
199 case IDENTIFIER_NODE: return lang_hooks.identifier_size;
200 case TREE_LIST: return sizeof (struct tree_list);
201 case TREE_VEC: return (sizeof (struct tree_vec)
202 + TREE_VEC_LENGTH(node) * sizeof(char *)
203 - sizeof (char *));
205 case ERROR_MARK:
206 case PLACEHOLDER_EXPR: return sizeof (struct tree_common);
208 default:
209 return (*lang_hooks.tree_size) (code);
212 default:
213 abort ();
217 /* Return a newly allocated node of code CODE.
218 For decl and type nodes, some other fields are initialized.
219 The rest of the node is initialized to zero.
221 Achoo! I got a code in the node. */
223 tree
224 make_node (code)
225 enum tree_code code;
227 tree t;
228 int type = TREE_CODE_CLASS (code);
229 size_t length;
230 #ifdef GATHER_STATISTICS
231 tree_node_kind kind;
232 #endif
233 struct tree_common ttmp;
235 /* We can't allocate a TREE_VEC without knowing how many elements
236 it will have. */
237 if (code == TREE_VEC)
238 abort ();
240 TREE_SET_CODE ((tree)&ttmp, code);
241 length = tree_size ((tree)&ttmp);
243 #ifdef GATHER_STATISTICS
244 switch (type)
246 case 'd': /* A decl node */
247 kind = d_kind;
248 break;
250 case 't': /* a type node */
251 kind = t_kind;
252 break;
254 case 'b': /* a lexical block */
255 kind = b_kind;
256 break;
258 case 's': /* an expression with side effects */
259 kind = s_kind;
260 break;
262 case 'r': /* a reference */
263 kind = r_kind;
264 break;
266 case 'e': /* an expression */
267 case '<': /* a comparison expression */
268 case '1': /* a unary arithmetic expression */
269 case '2': /* a binary arithmetic expression */
270 kind = e_kind;
271 break;
273 case 'c': /* a constant */
274 kind = c_kind;
275 break;
277 case 'x': /* something random, like an identifier. */
278 if (code == IDENTIFIER_NODE)
279 kind = id_kind;
280 else if (code == TREE_VEC)
281 kind = vec_kind;
282 else
283 kind = x_kind;
284 break;
286 default:
287 abort ();
290 tree_node_counts[(int) kind]++;
291 tree_node_sizes[(int) kind] += length;
292 #endif
294 t = ggc_alloc_tree (length);
296 memset ((PTR) t, 0, length);
298 TREE_SET_CODE (t, code);
300 switch (type)
302 case 's':
303 TREE_SIDE_EFFECTS (t) = 1;
304 break;
306 case 'd':
307 if (code != FUNCTION_DECL)
308 DECL_ALIGN (t) = 1;
309 DECL_USER_ALIGN (t) = 0;
310 DECL_IN_SYSTEM_HEADER (t) = in_system_header;
311 DECL_SOURCE_LINE (t) = input_line;
312 DECL_SOURCE_FILE (t) =
313 (input_filename) ? input_filename : "<built-in>";
314 DECL_UID (t) = next_decl_uid++;
316 /* We have not yet computed the alias set for this declaration. */
317 DECL_POINTER_ALIAS_SET (t) = -1;
318 break;
320 case 't':
321 TYPE_UID (t) = next_type_uid++;
322 TYPE_ALIGN (t) = char_type_node ? TYPE_ALIGN (char_type_node) : 0;
323 TYPE_USER_ALIGN (t) = 0;
324 TYPE_MAIN_VARIANT (t) = t;
326 /* Default to no attributes for type, but let target change that. */
327 TYPE_ATTRIBUTES (t) = NULL_TREE;
328 (*targetm.set_default_type_attributes) (t);
330 /* We have not yet computed the alias set for this type. */
331 TYPE_ALIAS_SET (t) = -1;
332 break;
334 case 'c':
335 TREE_CONSTANT (t) = 1;
336 break;
338 case 'e':
339 switch (code)
341 case INIT_EXPR:
342 case MODIFY_EXPR:
343 case VA_ARG_EXPR:
344 case RTL_EXPR:
345 case PREDECREMENT_EXPR:
346 case PREINCREMENT_EXPR:
347 case POSTDECREMENT_EXPR:
348 case POSTINCREMENT_EXPR:
349 /* All of these have side-effects, no matter what their
350 operands are. */
351 TREE_SIDE_EFFECTS (t) = 1;
352 break;
354 default:
355 break;
357 break;
360 return t;
363 /* Return a new node with the same contents as NODE except that its
364 TREE_CHAIN is zero and it has a fresh uid. */
366 tree
367 copy_node (node)
368 tree node;
370 tree t;
371 enum tree_code code = TREE_CODE (node);
372 size_t length;
374 length = tree_size (node);
375 t = ggc_alloc_tree (length);
376 memcpy (t, node, length);
378 TREE_CHAIN (t) = 0;
379 TREE_ASM_WRITTEN (t) = 0;
381 if (TREE_CODE_CLASS (code) == 'd')
382 DECL_UID (t) = next_decl_uid++;
383 else if (TREE_CODE_CLASS (code) == 't')
385 TYPE_UID (t) = next_type_uid++;
386 /* The following is so that the debug code for
387 the copy is different from the original type.
388 The two statements usually duplicate each other
389 (because they clear fields of the same union),
390 but the optimizer should catch that. */
391 TYPE_SYMTAB_POINTER (t) = 0;
392 TYPE_SYMTAB_ADDRESS (t) = 0;
395 return t;
398 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
399 For example, this can copy a list made of TREE_LIST nodes. */
401 tree
402 copy_list (list)
403 tree list;
405 tree head;
406 tree prev, next;
408 if (list == 0)
409 return 0;
411 head = prev = copy_node (list);
412 next = TREE_CHAIN (list);
413 while (next)
415 TREE_CHAIN (prev) = copy_node (next);
416 prev = TREE_CHAIN (prev);
417 next = TREE_CHAIN (next);
419 return head;
423 /* Return a newly constructed INTEGER_CST node whose constant value
424 is specified by the two ints LOW and HI.
425 The TREE_TYPE is set to `int'.
427 This function should be used via the `build_int_2' macro. */
429 tree
430 build_int_2_wide (low, hi)
431 unsigned HOST_WIDE_INT low;
432 HOST_WIDE_INT hi;
434 tree t = make_node (INTEGER_CST);
436 TREE_INT_CST_LOW (t) = low;
437 TREE_INT_CST_HIGH (t) = hi;
438 TREE_TYPE (t) = integer_type_node;
439 return t;
442 /* Return a new VECTOR_CST node whose type is TYPE and whose values
443 are in a list pointed by VALS. */
445 tree
446 build_vector (type, vals)
447 tree type, vals;
449 tree v = make_node (VECTOR_CST);
450 int over1 = 0, over2 = 0;
451 tree link;
453 TREE_VECTOR_CST_ELTS (v) = vals;
454 TREE_TYPE (v) = type;
456 /* Iterate through elements and check for overflow. */
457 for (link = vals; link; link = TREE_CHAIN (link))
459 tree value = TREE_VALUE (link);
461 over1 |= TREE_OVERFLOW (value);
462 over2 |= TREE_CONSTANT_OVERFLOW (value);
465 TREE_OVERFLOW (v) = over1;
466 TREE_CONSTANT_OVERFLOW (v) = over2;
468 return v;
471 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
472 are in a list pointed to by VALS. */
473 tree
474 build_constructor (type, vals)
475 tree type, vals;
477 tree c = make_node (CONSTRUCTOR);
478 TREE_TYPE (c) = type;
479 CONSTRUCTOR_ELTS (c) = vals;
481 /* ??? May not be necessary. Mirrors what build does. */
482 if (vals)
484 TREE_SIDE_EFFECTS (c) = TREE_SIDE_EFFECTS (vals);
485 TREE_READONLY (c) = TREE_READONLY (vals);
486 TREE_CONSTANT (c) = TREE_CONSTANT (vals);
488 else
489 TREE_CONSTANT (c) = 0; /* safe side */
491 return c;
494 /* Return a new REAL_CST node whose type is TYPE and value is D. */
496 tree
497 build_real (type, d)
498 tree type;
499 REAL_VALUE_TYPE d;
501 tree v;
502 REAL_VALUE_TYPE *dp;
503 int overflow = 0;
505 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
506 Consider doing it via real_convert now. */
508 v = make_node (REAL_CST);
509 dp = ggc_alloc (sizeof (REAL_VALUE_TYPE));
510 memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
512 TREE_TYPE (v) = type;
513 TREE_REAL_CST_PTR (v) = dp;
514 TREE_OVERFLOW (v) = TREE_CONSTANT_OVERFLOW (v) = overflow;
515 return v;
518 /* Return a new REAL_CST node whose type is TYPE
519 and whose value is the integer value of the INTEGER_CST node I. */
521 REAL_VALUE_TYPE
522 real_value_from_int_cst (type, i)
523 tree type ATTRIBUTE_UNUSED, i;
525 REAL_VALUE_TYPE d;
527 /* Clear all bits of the real value type so that we can later do
528 bitwise comparisons to see if two values are the same. */
529 memset ((char *) &d, 0, sizeof d);
531 if (! TREE_UNSIGNED (TREE_TYPE (i)))
532 REAL_VALUE_FROM_INT (d, TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
533 TYPE_MODE (type));
534 else
535 REAL_VALUE_FROM_UNSIGNED_INT (d, TREE_INT_CST_LOW (i),
536 TREE_INT_CST_HIGH (i), TYPE_MODE (type));
537 return d;
540 /* Given a tree representing an integer constant I, return a tree
541 representing the same value as a floating-point constant of type TYPE. */
543 tree
544 build_real_from_int_cst (type, i)
545 tree type;
546 tree i;
548 tree v;
549 int overflow = TREE_OVERFLOW (i);
551 v = build_real (type, real_value_from_int_cst (type, i));
553 TREE_OVERFLOW (v) |= overflow;
554 TREE_CONSTANT_OVERFLOW (v) |= overflow;
555 return v;
558 /* Return a newly constructed STRING_CST node whose value is
559 the LEN characters at STR.
560 The TREE_TYPE is not initialized. */
562 tree
563 build_string (len, str)
564 int len;
565 const char *str;
567 tree s = make_node (STRING_CST);
569 TREE_STRING_LENGTH (s) = len;
570 TREE_STRING_POINTER (s) = ggc_alloc_string (str, len);
572 return s;
575 /* Return a newly constructed COMPLEX_CST node whose value is
576 specified by the real and imaginary parts REAL and IMAG.
577 Both REAL and IMAG should be constant nodes. TYPE, if specified,
578 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
580 tree
581 build_complex (type, real, imag)
582 tree type;
583 tree real, imag;
585 tree t = make_node (COMPLEX_CST);
587 TREE_REALPART (t) = real;
588 TREE_IMAGPART (t) = imag;
589 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
590 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
591 TREE_CONSTANT_OVERFLOW (t)
592 = TREE_CONSTANT_OVERFLOW (real) | TREE_CONSTANT_OVERFLOW (imag);
593 return t;
596 /* Build a newly constructed TREE_VEC node of length LEN. */
598 tree
599 make_tree_vec (len)
600 int len;
602 tree t;
603 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
605 #ifdef GATHER_STATISTICS
606 tree_node_counts[(int) vec_kind]++;
607 tree_node_sizes[(int) vec_kind] += length;
608 #endif
610 t = ggc_alloc_tree (length);
612 memset ((PTR) t, 0, length);
613 TREE_SET_CODE (t, TREE_VEC);
614 TREE_VEC_LENGTH (t) = len;
616 return t;
619 /* Return 1 if EXPR is the integer constant zero or a complex constant
620 of zero. */
623 integer_zerop (expr)
624 tree expr;
626 STRIP_NOPS (expr);
628 return ((TREE_CODE (expr) == INTEGER_CST
629 && ! TREE_CONSTANT_OVERFLOW (expr)
630 && TREE_INT_CST_LOW (expr) == 0
631 && TREE_INT_CST_HIGH (expr) == 0)
632 || (TREE_CODE (expr) == COMPLEX_CST
633 && integer_zerop (TREE_REALPART (expr))
634 && integer_zerop (TREE_IMAGPART (expr))));
637 /* Return 1 if EXPR is the integer constant one or the corresponding
638 complex constant. */
641 integer_onep (expr)
642 tree expr;
644 STRIP_NOPS (expr);
646 return ((TREE_CODE (expr) == INTEGER_CST
647 && ! TREE_CONSTANT_OVERFLOW (expr)
648 && TREE_INT_CST_LOW (expr) == 1
649 && TREE_INT_CST_HIGH (expr) == 0)
650 || (TREE_CODE (expr) == COMPLEX_CST
651 && integer_onep (TREE_REALPART (expr))
652 && integer_zerop (TREE_IMAGPART (expr))));
655 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
656 it contains. Likewise for the corresponding complex constant. */
659 integer_all_onesp (expr)
660 tree expr;
662 int prec;
663 int uns;
665 STRIP_NOPS (expr);
667 if (TREE_CODE (expr) == COMPLEX_CST
668 && integer_all_onesp (TREE_REALPART (expr))
669 && integer_zerop (TREE_IMAGPART (expr)))
670 return 1;
672 else if (TREE_CODE (expr) != INTEGER_CST
673 || TREE_CONSTANT_OVERFLOW (expr))
674 return 0;
676 uns = TREE_UNSIGNED (TREE_TYPE (expr));
677 if (!uns)
678 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
679 && TREE_INT_CST_HIGH (expr) == -1);
681 /* Note that using TYPE_PRECISION here is wrong. We care about the
682 actual bits, not the (arbitrary) range of the type. */
683 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)));
684 if (prec >= HOST_BITS_PER_WIDE_INT)
686 HOST_WIDE_INT high_value;
687 int shift_amount;
689 shift_amount = prec - HOST_BITS_PER_WIDE_INT;
691 if (shift_amount > HOST_BITS_PER_WIDE_INT)
692 /* Can not handle precisions greater than twice the host int size. */
693 abort ();
694 else if (shift_amount == HOST_BITS_PER_WIDE_INT)
695 /* Shifting by the host word size is undefined according to the ANSI
696 standard, so we must handle this as a special case. */
697 high_value = -1;
698 else
699 high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
701 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
702 && TREE_INT_CST_HIGH (expr) == high_value);
704 else
705 return TREE_INT_CST_LOW (expr) == ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
708 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
709 one bit on). */
712 integer_pow2p (expr)
713 tree expr;
715 int prec;
716 HOST_WIDE_INT high, low;
718 STRIP_NOPS (expr);
720 if (TREE_CODE (expr) == COMPLEX_CST
721 && integer_pow2p (TREE_REALPART (expr))
722 && integer_zerop (TREE_IMAGPART (expr)))
723 return 1;
725 if (TREE_CODE (expr) != INTEGER_CST || TREE_CONSTANT_OVERFLOW (expr))
726 return 0;
728 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
729 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
730 high = TREE_INT_CST_HIGH (expr);
731 low = TREE_INT_CST_LOW (expr);
733 /* First clear all bits that are beyond the type's precision in case
734 we've been sign extended. */
736 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
738 else if (prec > HOST_BITS_PER_WIDE_INT)
739 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
740 else
742 high = 0;
743 if (prec < HOST_BITS_PER_WIDE_INT)
744 low &= ~((HOST_WIDE_INT) (-1) << prec);
747 if (high == 0 && low == 0)
748 return 0;
750 return ((high == 0 && (low & (low - 1)) == 0)
751 || (low == 0 && (high & (high - 1)) == 0));
754 /* Return 1 if EXPR is an integer constant other than zero or a
755 complex constant other than zero. */
758 integer_nonzerop (expr)
759 tree expr;
761 STRIP_NOPS (expr);
763 return ((TREE_CODE (expr) == INTEGER_CST
764 && ! TREE_CONSTANT_OVERFLOW (expr)
765 && (TREE_INT_CST_LOW (expr) != 0
766 || TREE_INT_CST_HIGH (expr) != 0))
767 || (TREE_CODE (expr) == COMPLEX_CST
768 && (integer_nonzerop (TREE_REALPART (expr))
769 || integer_nonzerop (TREE_IMAGPART (expr)))));
772 /* Return the power of two represented by a tree node known to be a
773 power of two. */
776 tree_log2 (expr)
777 tree expr;
779 int prec;
780 HOST_WIDE_INT high, low;
782 STRIP_NOPS (expr);
784 if (TREE_CODE (expr) == COMPLEX_CST)
785 return tree_log2 (TREE_REALPART (expr));
787 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
788 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
790 high = TREE_INT_CST_HIGH (expr);
791 low = TREE_INT_CST_LOW (expr);
793 /* First clear all bits that are beyond the type's precision in case
794 we've been sign extended. */
796 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
798 else if (prec > HOST_BITS_PER_WIDE_INT)
799 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
800 else
802 high = 0;
803 if (prec < HOST_BITS_PER_WIDE_INT)
804 low &= ~((HOST_WIDE_INT) (-1) << prec);
807 return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
808 : exact_log2 (low));
811 /* Similar, but return the largest integer Y such that 2 ** Y is less
812 than or equal to EXPR. */
815 tree_floor_log2 (expr)
816 tree expr;
818 int prec;
819 HOST_WIDE_INT high, low;
821 STRIP_NOPS (expr);
823 if (TREE_CODE (expr) == COMPLEX_CST)
824 return tree_log2 (TREE_REALPART (expr));
826 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
827 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
829 high = TREE_INT_CST_HIGH (expr);
830 low = TREE_INT_CST_LOW (expr);
832 /* First clear all bits that are beyond the type's precision in case
833 we've been sign extended. Ignore if type's precision hasn't been set
834 since what we are doing is setting it. */
836 if (prec == 2 * HOST_BITS_PER_WIDE_INT || prec == 0)
838 else if (prec > HOST_BITS_PER_WIDE_INT)
839 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
840 else
842 high = 0;
843 if (prec < HOST_BITS_PER_WIDE_INT)
844 low &= ~((HOST_WIDE_INT) (-1) << prec);
847 return (high != 0 ? HOST_BITS_PER_WIDE_INT + floor_log2 (high)
848 : floor_log2 (low));
851 /* Return 1 if EXPR is the real constant zero. */
854 real_zerop (expr)
855 tree expr;
857 STRIP_NOPS (expr);
859 return ((TREE_CODE (expr) == REAL_CST
860 && ! TREE_CONSTANT_OVERFLOW (expr)
861 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0))
862 || (TREE_CODE (expr) == COMPLEX_CST
863 && real_zerop (TREE_REALPART (expr))
864 && real_zerop (TREE_IMAGPART (expr))));
867 /* Return 1 if EXPR is the real constant one in real or complex form. */
870 real_onep (expr)
871 tree expr;
873 STRIP_NOPS (expr);
875 return ((TREE_CODE (expr) == REAL_CST
876 && ! TREE_CONSTANT_OVERFLOW (expr)
877 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1))
878 || (TREE_CODE (expr) == COMPLEX_CST
879 && real_onep (TREE_REALPART (expr))
880 && real_zerop (TREE_IMAGPART (expr))));
883 /* Return 1 if EXPR is the real constant two. */
886 real_twop (expr)
887 tree expr;
889 STRIP_NOPS (expr);
891 return ((TREE_CODE (expr) == REAL_CST
892 && ! TREE_CONSTANT_OVERFLOW (expr)
893 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2))
894 || (TREE_CODE (expr) == COMPLEX_CST
895 && real_twop (TREE_REALPART (expr))
896 && real_zerop (TREE_IMAGPART (expr))));
899 /* Return 1 if EXPR is the real constant minus one. */
902 real_minus_onep (expr)
903 tree expr;
905 STRIP_NOPS (expr);
907 return ((TREE_CODE (expr) == REAL_CST
908 && ! TREE_CONSTANT_OVERFLOW (expr)
909 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconstm1))
910 || (TREE_CODE (expr) == COMPLEX_CST
911 && real_minus_onep (TREE_REALPART (expr))
912 && real_zerop (TREE_IMAGPART (expr))));
915 /* Nonzero if EXP is a constant or a cast of a constant. */
918 really_constant_p (exp)
919 tree exp;
921 /* This is not quite the same as STRIP_NOPS. It does more. */
922 while (TREE_CODE (exp) == NOP_EXPR
923 || TREE_CODE (exp) == CONVERT_EXPR
924 || TREE_CODE (exp) == NON_LVALUE_EXPR)
925 exp = TREE_OPERAND (exp, 0);
926 return TREE_CONSTANT (exp);
929 /* Return first list element whose TREE_VALUE is ELEM.
930 Return 0 if ELEM is not in LIST. */
932 tree
933 value_member (elem, list)
934 tree elem, list;
936 while (list)
938 if (elem == TREE_VALUE (list))
939 return list;
940 list = TREE_CHAIN (list);
942 return NULL_TREE;
945 /* Return first list element whose TREE_PURPOSE is ELEM.
946 Return 0 if ELEM is not in LIST. */
948 tree
949 purpose_member (elem, list)
950 tree elem, list;
952 while (list)
954 if (elem == TREE_PURPOSE (list))
955 return list;
956 list = TREE_CHAIN (list);
958 return NULL_TREE;
961 /* Return first list element whose BINFO_TYPE is ELEM.
962 Return 0 if ELEM is not in LIST. */
964 tree
965 binfo_member (elem, list)
966 tree elem, list;
968 while (list)
970 if (elem == BINFO_TYPE (list))
971 return list;
972 list = TREE_CHAIN (list);
974 return NULL_TREE;
977 /* Return nonzero if ELEM is part of the chain CHAIN. */
980 chain_member (elem, chain)
981 tree elem, chain;
983 while (chain)
985 if (elem == chain)
986 return 1;
987 chain = TREE_CHAIN (chain);
990 return 0;
993 /* Return the length of a chain of nodes chained through TREE_CHAIN.
994 We expect a null pointer to mark the end of the chain.
995 This is the Lisp primitive `length'. */
998 list_length (t)
999 tree t;
1001 tree tail;
1002 int len = 0;
1004 for (tail = t; tail; tail = TREE_CHAIN (tail))
1005 len++;
1007 return len;
1010 /* Returns the number of FIELD_DECLs in TYPE. */
1013 fields_length (type)
1014 tree type;
1016 tree t = TYPE_FIELDS (type);
1017 int count = 0;
1019 for (; t; t = TREE_CHAIN (t))
1020 if (TREE_CODE (t) == FIELD_DECL)
1021 ++count;
1023 return count;
1026 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
1027 by modifying the last node in chain 1 to point to chain 2.
1028 This is the Lisp primitive `nconc'. */
1030 tree
1031 chainon (op1, op2)
1032 tree op1, op2;
1035 if (op1)
1037 tree t1;
1038 #ifdef ENABLE_TREE_CHECKING
1039 tree t2;
1040 #endif
1042 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
1044 TREE_CHAIN (t1) = op2;
1045 #ifdef ENABLE_TREE_CHECKING
1046 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
1047 if (t2 == t1)
1048 abort (); /* Circularity created. */
1049 #endif
1050 return op1;
1052 else
1053 return op2;
1056 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
1058 tree
1059 tree_last (chain)
1060 tree chain;
1062 tree next;
1063 if (chain)
1064 while ((next = TREE_CHAIN (chain)))
1065 chain = next;
1066 return chain;
1069 /* Reverse the order of elements in the chain T,
1070 and return the new head of the chain (old last element). */
1072 tree
1073 nreverse (t)
1074 tree t;
1076 tree prev = 0, decl, next;
1077 for (decl = t; decl; decl = next)
1079 next = TREE_CHAIN (decl);
1080 TREE_CHAIN (decl) = prev;
1081 prev = decl;
1083 return prev;
1086 /* Return a newly created TREE_LIST node whose
1087 purpose and value fields are PARM and VALUE. */
1089 tree
1090 build_tree_list (parm, value)
1091 tree parm, value;
1093 tree t = make_node (TREE_LIST);
1094 TREE_PURPOSE (t) = parm;
1095 TREE_VALUE (t) = value;
1096 return t;
1099 /* Return a newly created TREE_LIST node whose
1100 purpose and value fields are PURPOSE and VALUE
1101 and whose TREE_CHAIN is CHAIN. */
1103 tree
1104 tree_cons (purpose, value, chain)
1105 tree purpose, value, chain;
1107 tree node;
1109 node = ggc_alloc_tree (sizeof (struct tree_list));
1111 memset (node, 0, sizeof (struct tree_common));
1113 #ifdef GATHER_STATISTICS
1114 tree_node_counts[(int) x_kind]++;
1115 tree_node_sizes[(int) x_kind] += sizeof (struct tree_list);
1116 #endif
1118 TREE_SET_CODE (node, TREE_LIST);
1119 TREE_CHAIN (node) = chain;
1120 TREE_PURPOSE (node) = purpose;
1121 TREE_VALUE (node) = value;
1122 return node;
1126 /* Return the size nominally occupied by an object of type TYPE
1127 when it resides in memory. The value is measured in units of bytes,
1128 and its data type is that normally used for type sizes
1129 (which is the first type created by make_signed_type or
1130 make_unsigned_type). */
1132 tree
1133 size_in_bytes (type)
1134 tree type;
1136 tree t;
1138 if (type == error_mark_node)
1139 return integer_zero_node;
1141 type = TYPE_MAIN_VARIANT (type);
1142 t = TYPE_SIZE_UNIT (type);
1144 if (t == 0)
1146 (*lang_hooks.types.incomplete_type_error) (NULL_TREE, type);
1147 return size_zero_node;
1150 if (TREE_CODE (t) == INTEGER_CST)
1151 force_fit_type (t, 0);
1153 return t;
1156 /* Return the size of TYPE (in bytes) as a wide integer
1157 or return -1 if the size can vary or is larger than an integer. */
1159 HOST_WIDE_INT
1160 int_size_in_bytes (type)
1161 tree type;
1163 tree t;
1165 if (type == error_mark_node)
1166 return 0;
1168 type = TYPE_MAIN_VARIANT (type);
1169 t = TYPE_SIZE_UNIT (type);
1170 if (t == 0
1171 || TREE_CODE (t) != INTEGER_CST
1172 || TREE_OVERFLOW (t)
1173 || TREE_INT_CST_HIGH (t) != 0
1174 /* If the result would appear negative, it's too big to represent. */
1175 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
1176 return -1;
1178 return TREE_INT_CST_LOW (t);
1181 /* Return the bit position of FIELD, in bits from the start of the record.
1182 This is a tree of type bitsizetype. */
1184 tree
1185 bit_position (field)
1186 tree field;
1189 return bit_from_pos (DECL_FIELD_OFFSET (field),
1190 DECL_FIELD_BIT_OFFSET (field));
1193 /* Likewise, but return as an integer. Abort if it cannot be represented
1194 in that way (since it could be a signed value, we don't have the option
1195 of returning -1 like int_size_in_byte can. */
1197 HOST_WIDE_INT
1198 int_bit_position (field)
1199 tree field;
1201 return tree_low_cst (bit_position (field), 0);
1204 /* Return the byte position of FIELD, in bytes from the start of the record.
1205 This is a tree of type sizetype. */
1207 tree
1208 byte_position (field)
1209 tree field;
1211 return byte_from_pos (DECL_FIELD_OFFSET (field),
1212 DECL_FIELD_BIT_OFFSET (field));
1215 /* Likewise, but return as an integer. Abort if it cannot be represented
1216 in that way (since it could be a signed value, we don't have the option
1217 of returning -1 like int_size_in_byte can. */
1219 HOST_WIDE_INT
1220 int_byte_position (field)
1221 tree field;
1223 return tree_low_cst (byte_position (field), 0);
1226 /* Return the strictest alignment, in bits, that T is known to have. */
1228 unsigned int
1229 expr_align (t)
1230 tree t;
1232 unsigned int align0, align1;
1234 switch (TREE_CODE (t))
1236 case NOP_EXPR: case CONVERT_EXPR: case NON_LVALUE_EXPR:
1237 /* If we have conversions, we know that the alignment of the
1238 object must meet each of the alignments of the types. */
1239 align0 = expr_align (TREE_OPERAND (t, 0));
1240 align1 = TYPE_ALIGN (TREE_TYPE (t));
1241 return MAX (align0, align1);
1243 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
1244 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
1245 case WITH_RECORD_EXPR: case CLEANUP_POINT_EXPR: case UNSAVE_EXPR:
1246 /* These don't change the alignment of an object. */
1247 return expr_align (TREE_OPERAND (t, 0));
1249 case COND_EXPR:
1250 /* The best we can do is say that the alignment is the least aligned
1251 of the two arms. */
1252 align0 = expr_align (TREE_OPERAND (t, 1));
1253 align1 = expr_align (TREE_OPERAND (t, 2));
1254 return MIN (align0, align1);
1256 case LABEL_DECL: case CONST_DECL:
1257 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
1258 if (DECL_ALIGN (t) != 0)
1259 return DECL_ALIGN (t);
1260 break;
1262 case FUNCTION_DECL:
1263 return FUNCTION_BOUNDARY;
1265 default:
1266 break;
1269 /* Otherwise take the alignment from that of the type. */
1270 return TYPE_ALIGN (TREE_TYPE (t));
1273 /* Return, as a tree node, the number of elements for TYPE (which is an
1274 ARRAY_TYPE) minus one. This counts only elements of the top array. */
1276 tree
1277 array_type_nelts (type)
1278 tree type;
1280 tree index_type, min, max;
1282 /* If they did it with unspecified bounds, then we should have already
1283 given an error about it before we got here. */
1284 if (! TYPE_DOMAIN (type))
1285 return error_mark_node;
1287 index_type = TYPE_DOMAIN (type);
1288 min = TYPE_MIN_VALUE (index_type);
1289 max = TYPE_MAX_VALUE (index_type);
1291 return (integer_zerop (min)
1292 ? max
1293 : fold (build (MINUS_EXPR, TREE_TYPE (max), max, min)));
1296 /* Return nonzero if arg is static -- a reference to an object in
1297 static storage. This is not the same as the C meaning of `static'. */
1300 staticp (arg)
1301 tree arg;
1303 switch (TREE_CODE (arg))
1305 case FUNCTION_DECL:
1306 /* Nested functions aren't static, since taking their address
1307 involves a trampoline. */
1308 return ((decl_function_context (arg) == 0 || DECL_NO_STATIC_CHAIN (arg))
1309 && ! DECL_NON_ADDR_CONST_P (arg));
1311 case VAR_DECL:
1312 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
1313 && ! DECL_THREAD_LOCAL (arg)
1314 && ! DECL_NON_ADDR_CONST_P (arg));
1316 case CONSTRUCTOR:
1317 return TREE_STATIC (arg);
1319 case LABEL_DECL:
1320 case STRING_CST:
1321 return 1;
1323 /* If we are referencing a bitfield, we can't evaluate an
1324 ADDR_EXPR at compile time and so it isn't a constant. */
1325 case COMPONENT_REF:
1326 return (! DECL_BIT_FIELD (TREE_OPERAND (arg, 1))
1327 && staticp (TREE_OPERAND (arg, 0)));
1329 case BIT_FIELD_REF:
1330 return 0;
1332 #if 0
1333 /* This case is technically correct, but results in setting
1334 TREE_CONSTANT on ADDR_EXPRs that cannot be evaluated at
1335 compile time. */
1336 case INDIRECT_REF:
1337 return TREE_CONSTANT (TREE_OPERAND (arg, 0));
1338 #endif
1340 case ARRAY_REF:
1341 case ARRAY_RANGE_REF:
1342 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
1343 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
1344 return staticp (TREE_OPERAND (arg, 0));
1346 default:
1347 if ((unsigned int) TREE_CODE (arg)
1348 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
1349 return (*lang_hooks.staticp) (arg);
1350 else
1351 return 0;
1355 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
1356 Do this to any expression which may be used in more than one place,
1357 but must be evaluated only once.
1359 Normally, expand_expr would reevaluate the expression each time.
1360 Calling save_expr produces something that is evaluated and recorded
1361 the first time expand_expr is called on it. Subsequent calls to
1362 expand_expr just reuse the recorded value.
1364 The call to expand_expr that generates code that actually computes
1365 the value is the first call *at compile time*. Subsequent calls
1366 *at compile time* generate code to use the saved value.
1367 This produces correct result provided that *at run time* control
1368 always flows through the insns made by the first expand_expr
1369 before reaching the other places where the save_expr was evaluated.
1370 You, the caller of save_expr, must make sure this is so.
1372 Constants, and certain read-only nodes, are returned with no
1373 SAVE_EXPR because that is safe. Expressions containing placeholders
1374 are not touched; see tree.def for an explanation of what these
1375 are used for. */
1377 tree
1378 save_expr (expr)
1379 tree expr;
1381 tree t = expr;
1382 tree inner;
1384 /* Don't fold a COMPONENT_EXPR: if the operand was a CONSTRUCTOR (the
1385 only time it will fold), it can cause problems with PLACEHOLDER_EXPRs
1386 in Ada. Moreover, it isn't at all clear why we fold here at all. */
1387 if (TREE_CODE (t) != COMPONENT_REF)
1388 t = fold (t);
1390 /* If the tree evaluates to a constant, then we don't want to hide that
1391 fact (i.e. this allows further folding, and direct checks for constants).
1392 However, a read-only object that has side effects cannot be bypassed.
1393 Since it is no problem to reevaluate literals, we just return the
1394 literal node. */
1395 inner = skip_simple_arithmetic (t);
1396 if (TREE_CONSTANT (inner)
1397 || (TREE_READONLY (inner) && ! TREE_SIDE_EFFECTS (inner))
1398 || TREE_CODE (inner) == SAVE_EXPR
1399 || TREE_CODE (inner) == ERROR_MARK)
1400 return t;
1402 /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
1403 it means that the size or offset of some field of an object depends on
1404 the value within another field.
1406 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
1407 and some variable since it would then need to be both evaluated once and
1408 evaluated more than once. Front-ends must assure this case cannot
1409 happen by surrounding any such subexpressions in their own SAVE_EXPR
1410 and forcing evaluation at the proper time. */
1411 if (contains_placeholder_p (inner))
1412 return t;
1414 t = build (SAVE_EXPR, TREE_TYPE (expr), t, current_function_decl, NULL_TREE);
1416 /* This expression might be placed ahead of a jump to ensure that the
1417 value was computed on both sides of the jump. So make sure it isn't
1418 eliminated as dead. */
1419 TREE_SIDE_EFFECTS (t) = 1;
1420 TREE_READONLY (t) = 1;
1421 return t;
1424 /* Look inside EXPR and into any simple arithmetic operations. Return
1425 the innermost non-arithmetic node. */
1427 tree
1428 skip_simple_arithmetic (expr)
1429 tree expr;
1431 tree inner;
1433 /* We don't care about whether this can be used as an lvalue in this
1434 context. */
1435 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
1436 expr = TREE_OPERAND (expr, 0);
1438 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
1439 a constant, it will be more efficient to not make another SAVE_EXPR since
1440 it will allow better simplification and GCSE will be able to merge the
1441 computations if they actually occur. */
1442 inner = expr;
1443 while (1)
1445 if (TREE_CODE_CLASS (TREE_CODE (inner)) == '1')
1446 inner = TREE_OPERAND (inner, 0);
1447 else if (TREE_CODE_CLASS (TREE_CODE (inner)) == '2')
1449 if (TREE_CONSTANT (TREE_OPERAND (inner, 1)))
1450 inner = TREE_OPERAND (inner, 0);
1451 else if (TREE_CONSTANT (TREE_OPERAND (inner, 0)))
1452 inner = TREE_OPERAND (inner, 1);
1453 else
1454 break;
1456 else
1457 break;
1460 return inner;
1463 /* Return TRUE if EXPR is a SAVE_EXPR or wraps simple arithmetic around a
1464 SAVE_EXPR. Return FALSE otherwise. */
1466 bool
1467 saved_expr_p (expr)
1468 tree expr;
1470 return TREE_CODE (skip_simple_arithmetic (expr)) == SAVE_EXPR;
1473 /* Arrange for an expression to be expanded multiple independent
1474 times. This is useful for cleanup actions, as the backend can
1475 expand them multiple times in different places. */
1477 tree
1478 unsave_expr (expr)
1479 tree expr;
1481 tree t;
1483 /* If this is already protected, no sense in protecting it again. */
1484 if (TREE_CODE (expr) == UNSAVE_EXPR)
1485 return expr;
1487 t = build1 (UNSAVE_EXPR, TREE_TYPE (expr), expr);
1488 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (expr);
1489 return t;
1492 /* Returns the index of the first non-tree operand for CODE, or the number
1493 of operands if all are trees. */
1496 first_rtl_op (code)
1497 enum tree_code code;
1499 switch (code)
1501 case SAVE_EXPR:
1502 return 2;
1503 case GOTO_SUBROUTINE_EXPR:
1504 case RTL_EXPR:
1505 return 0;
1506 case WITH_CLEANUP_EXPR:
1507 return 2;
1508 case METHOD_CALL_EXPR:
1509 return 3;
1510 default:
1511 return TREE_CODE_LENGTH (code);
1515 /* Return which tree structure is used by T. */
1517 enum tree_node_structure_enum
1518 tree_node_structure (t)
1519 tree t;
1521 enum tree_code code = TREE_CODE (t);
1523 switch (TREE_CODE_CLASS (code))
1525 case 'd': return TS_DECL;
1526 case 't': return TS_TYPE;
1527 case 'b': return TS_BLOCK;
1528 case 'r': case '<': case '1': case '2': case 'e': case 's':
1529 return TS_EXP;
1530 default: /* 'c' and 'x' */
1531 break;
1533 switch (code)
1535 /* 'c' cases. */
1536 case INTEGER_CST: return TS_INT_CST;
1537 case REAL_CST: return TS_REAL_CST;
1538 case COMPLEX_CST: return TS_COMPLEX;
1539 case VECTOR_CST: return TS_VECTOR;
1540 case STRING_CST: return TS_STRING;
1541 /* 'x' cases. */
1542 case ERROR_MARK: return TS_COMMON;
1543 case IDENTIFIER_NODE: return TS_IDENTIFIER;
1544 case TREE_LIST: return TS_LIST;
1545 case TREE_VEC: return TS_VEC;
1546 case PLACEHOLDER_EXPR: return TS_COMMON;
1548 default:
1549 abort ();
1553 /* Perform any modifications to EXPR required when it is unsaved. Does
1554 not recurse into EXPR's subtrees. */
1556 void
1557 unsave_expr_1 (expr)
1558 tree expr;
1560 switch (TREE_CODE (expr))
1562 case SAVE_EXPR:
1563 if (! SAVE_EXPR_PERSISTENT_P (expr))
1564 SAVE_EXPR_RTL (expr) = 0;
1565 break;
1567 case TARGET_EXPR:
1568 /* Don't mess with a TARGET_EXPR that hasn't been expanded.
1569 It's OK for this to happen if it was part of a subtree that
1570 isn't immediately expanded, such as operand 2 of another
1571 TARGET_EXPR. */
1572 if (TREE_OPERAND (expr, 1))
1573 break;
1575 TREE_OPERAND (expr, 1) = TREE_OPERAND (expr, 3);
1576 TREE_OPERAND (expr, 3) = NULL_TREE;
1577 break;
1579 case RTL_EXPR:
1580 /* I don't yet know how to emit a sequence multiple times. */
1581 if (RTL_EXPR_SEQUENCE (expr) != 0)
1582 abort ();
1583 break;
1585 default:
1586 break;
1590 /* Default lang hook for "unsave_expr_now". */
1592 tree
1593 lhd_unsave_expr_now (expr)
1594 tree expr;
1596 enum tree_code code;
1598 /* There's nothing to do for NULL_TREE. */
1599 if (expr == 0)
1600 return expr;
1602 unsave_expr_1 (expr);
1604 code = TREE_CODE (expr);
1605 switch (TREE_CODE_CLASS (code))
1607 case 'c': /* a constant */
1608 case 't': /* a type node */
1609 case 'd': /* A decl node */
1610 case 'b': /* A block node */
1611 break;
1613 case 'x': /* miscellaneous: e.g., identifier, TREE_LIST or ERROR_MARK. */
1614 if (code == TREE_LIST)
1616 lhd_unsave_expr_now (TREE_VALUE (expr));
1617 lhd_unsave_expr_now (TREE_CHAIN (expr));
1619 break;
1621 case 'e': /* an expression */
1622 case 'r': /* a reference */
1623 case 's': /* an expression with side effects */
1624 case '<': /* a comparison expression */
1625 case '2': /* a binary arithmetic expression */
1626 case '1': /* a unary arithmetic expression */
1628 int i;
1630 for (i = first_rtl_op (code) - 1; i >= 0; i--)
1631 lhd_unsave_expr_now (TREE_OPERAND (expr, i));
1633 break;
1635 default:
1636 abort ();
1639 return expr;
1642 /* Return 0 if it is safe to evaluate EXPR multiple times,
1643 return 1 if it is safe if EXPR is unsaved afterward, or
1644 return 2 if it is completely unsafe.
1646 This assumes that CALL_EXPRs and TARGET_EXPRs are never replicated in
1647 an expression tree, so that it safe to unsave them and the surrounding
1648 context will be correct.
1650 SAVE_EXPRs basically *only* appear replicated in an expression tree,
1651 occasionally across the whole of a function. It is therefore only
1652 safe to unsave a SAVE_EXPR if you know that all occurrences appear
1653 below the UNSAVE_EXPR.
1655 RTL_EXPRs consume their rtl during evaluation. It is therefore
1656 never possible to unsave them. */
1659 unsafe_for_reeval (expr)
1660 tree expr;
1662 int unsafeness = 0;
1663 enum tree_code code;
1664 int i, tmp, tmp2;
1665 tree exp;
1666 int first_rtl;
1668 if (expr == NULL_TREE)
1669 return 1;
1671 code = TREE_CODE (expr);
1672 first_rtl = first_rtl_op (code);
1674 switch (code)
1676 case SAVE_EXPR:
1677 case RTL_EXPR:
1678 return 2;
1680 case TREE_LIST:
1681 for (exp = expr; exp != 0; exp = TREE_CHAIN (exp))
1683 tmp = unsafe_for_reeval (TREE_VALUE (exp));
1684 unsafeness = MAX (tmp, unsafeness);
1687 return unsafeness;
1689 case CALL_EXPR:
1690 tmp2 = unsafe_for_reeval (TREE_OPERAND (expr, 0));
1691 tmp = unsafe_for_reeval (TREE_OPERAND (expr, 1));
1692 return MAX (MAX (tmp, 1), tmp2);
1694 case TARGET_EXPR:
1695 unsafeness = 1;
1696 break;
1698 default:
1699 tmp = (*lang_hooks.unsafe_for_reeval) (expr);
1700 if (tmp >= 0)
1701 return tmp;
1702 break;
1705 switch (TREE_CODE_CLASS (code))
1707 case 'c': /* a constant */
1708 case 't': /* a type node */
1709 case 'x': /* something random, like an identifier or an ERROR_MARK. */
1710 case 'd': /* A decl node */
1711 case 'b': /* A block node */
1712 return 0;
1714 case 'e': /* an expression */
1715 case 'r': /* a reference */
1716 case 's': /* an expression with side effects */
1717 case '<': /* a comparison expression */
1718 case '2': /* a binary arithmetic expression */
1719 case '1': /* a unary arithmetic expression */
1720 for (i = first_rtl - 1; i >= 0; i--)
1722 tmp = unsafe_for_reeval (TREE_OPERAND (expr, i));
1723 unsafeness = MAX (tmp, unsafeness);
1726 return unsafeness;
1728 default:
1729 return 2;
1733 /* Return 1 if EXP contains a PLACEHOLDER_EXPR; i.e., if it represents a size
1734 or offset that depends on a field within a record. */
1737 contains_placeholder_p (exp)
1738 tree exp;
1740 enum tree_code code;
1741 int result;
1743 if (!exp)
1744 return 0;
1746 /* If we have a WITH_RECORD_EXPR, it "cancels" any PLACEHOLDER_EXPR
1747 in it since it is supplying a value for it. */
1748 code = TREE_CODE (exp);
1749 if (code == WITH_RECORD_EXPR)
1750 return 0;
1751 else if (code == PLACEHOLDER_EXPR)
1752 return 1;
1754 switch (TREE_CODE_CLASS (code))
1756 case 'r':
1757 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
1758 position computations since they will be converted into a
1759 WITH_RECORD_EXPR involving the reference, which will assume
1760 here will be valid. */
1761 return contains_placeholder_p (TREE_OPERAND (exp, 0));
1763 case 'x':
1764 if (code == TREE_LIST)
1765 return (contains_placeholder_p (TREE_VALUE (exp))
1766 || (TREE_CHAIN (exp) != 0
1767 && contains_placeholder_p (TREE_CHAIN (exp))));
1768 break;
1770 case '1':
1771 case '2': case '<':
1772 case 'e':
1773 switch (code)
1775 case COMPOUND_EXPR:
1776 /* Ignoring the first operand isn't quite right, but works best. */
1777 return contains_placeholder_p (TREE_OPERAND (exp, 1));
1779 case RTL_EXPR:
1780 case CONSTRUCTOR:
1781 return 0;
1783 case COND_EXPR:
1784 return (contains_placeholder_p (TREE_OPERAND (exp, 0))
1785 || contains_placeholder_p (TREE_OPERAND (exp, 1))
1786 || contains_placeholder_p (TREE_OPERAND (exp, 2)));
1788 case SAVE_EXPR:
1789 /* If we already know this doesn't have a placeholder, don't
1790 check again. */
1791 if (SAVE_EXPR_NOPLACEHOLDER (exp) || SAVE_EXPR_RTL (exp) != 0)
1792 return 0;
1794 SAVE_EXPR_NOPLACEHOLDER (exp) = 1;
1795 result = contains_placeholder_p (TREE_OPERAND (exp, 0));
1796 if (result)
1797 SAVE_EXPR_NOPLACEHOLDER (exp) = 0;
1799 return result;
1801 case CALL_EXPR:
1802 return (TREE_OPERAND (exp, 1) != 0
1803 && contains_placeholder_p (TREE_OPERAND (exp, 1)));
1805 default:
1806 break;
1809 switch (TREE_CODE_LENGTH (code))
1811 case 1:
1812 return contains_placeholder_p (TREE_OPERAND (exp, 0));
1813 case 2:
1814 return (contains_placeholder_p (TREE_OPERAND (exp, 0))
1815 || contains_placeholder_p (TREE_OPERAND (exp, 1)));
1816 default:
1817 return 0;
1820 default:
1821 return 0;
1823 return 0;
1826 /* Return 1 if EXP contains any expressions that produce cleanups for an
1827 outer scope to deal with. Used by fold. */
1830 has_cleanups (exp)
1831 tree exp;
1833 int i, nops, cmp;
1835 if (! TREE_SIDE_EFFECTS (exp))
1836 return 0;
1838 switch (TREE_CODE (exp))
1840 case TARGET_EXPR:
1841 case GOTO_SUBROUTINE_EXPR:
1842 case WITH_CLEANUP_EXPR:
1843 return 1;
1845 case CLEANUP_POINT_EXPR:
1846 return 0;
1848 case CALL_EXPR:
1849 for (exp = TREE_OPERAND (exp, 1); exp; exp = TREE_CHAIN (exp))
1851 cmp = has_cleanups (TREE_VALUE (exp));
1852 if (cmp)
1853 return cmp;
1855 return 0;
1857 default:
1858 break;
1861 /* This general rule works for most tree codes. All exceptions should be
1862 handled above. If this is a language-specific tree code, we can't
1863 trust what might be in the operand, so say we don't know
1864 the situation. */
1865 if ((int) TREE_CODE (exp) >= (int) LAST_AND_UNUSED_TREE_CODE)
1866 return -1;
1868 nops = first_rtl_op (TREE_CODE (exp));
1869 for (i = 0; i < nops; i++)
1870 if (TREE_OPERAND (exp, i) != 0)
1872 int type = TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, i)));
1873 if (type == 'e' || type == '<' || type == '1' || type == '2'
1874 || type == 'r' || type == 's')
1876 cmp = has_cleanups (TREE_OPERAND (exp, i));
1877 if (cmp)
1878 return cmp;
1882 return 0;
1885 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
1886 return a tree with all occurrences of references to F in a
1887 PLACEHOLDER_EXPR replaced by R. Note that we assume here that EXP
1888 contains only arithmetic expressions or a CALL_EXPR with a
1889 PLACEHOLDER_EXPR occurring only in its arglist. */
1891 tree
1892 substitute_in_expr (exp, f, r)
1893 tree exp;
1894 tree f;
1895 tree r;
1897 enum tree_code code = TREE_CODE (exp);
1898 tree op0, op1, op2;
1899 tree new;
1900 tree inner;
1902 switch (TREE_CODE_CLASS (code))
1904 case 'c':
1905 case 'd':
1906 return exp;
1908 case 'x':
1909 if (code == PLACEHOLDER_EXPR)
1910 return exp;
1911 else if (code == TREE_LIST)
1913 op0 = (TREE_CHAIN (exp) == 0
1914 ? 0 : substitute_in_expr (TREE_CHAIN (exp), f, r));
1915 op1 = substitute_in_expr (TREE_VALUE (exp), f, r);
1916 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
1917 return exp;
1919 return tree_cons (TREE_PURPOSE (exp), op1, op0);
1922 abort ();
1924 case '1':
1925 case '2':
1926 case '<':
1927 case 'e':
1928 switch (TREE_CODE_LENGTH (code))
1930 case 1:
1931 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
1932 if (op0 == TREE_OPERAND (exp, 0))
1933 return exp;
1935 if (code == NON_LVALUE_EXPR)
1936 return op0;
1938 new = fold (build1 (code, TREE_TYPE (exp), op0));
1939 break;
1941 case 2:
1942 /* An RTL_EXPR cannot contain a PLACEHOLDER_EXPR; a CONSTRUCTOR
1943 could, but we don't support it. */
1944 if (code == RTL_EXPR)
1945 return exp;
1946 else if (code == CONSTRUCTOR)
1947 abort ();
1949 op0 = TREE_OPERAND (exp, 0);
1950 op1 = TREE_OPERAND (exp, 1);
1951 if (contains_placeholder_p (op0))
1952 op0 = substitute_in_expr (op0, f, r);
1953 if (contains_placeholder_p (op1))
1954 op1 = substitute_in_expr (op1, f, r);
1956 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
1957 return exp;
1959 new = fold (build (code, TREE_TYPE (exp), op0, op1));
1960 break;
1962 case 3:
1963 /* It cannot be that anything inside a SAVE_EXPR contains a
1964 PLACEHOLDER_EXPR. */
1965 if (code == SAVE_EXPR)
1966 return exp;
1968 else if (code == CALL_EXPR)
1970 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
1971 if (op1 == TREE_OPERAND (exp, 1))
1972 return exp;
1974 return build (code, TREE_TYPE (exp),
1975 TREE_OPERAND (exp, 0), op1, NULL_TREE);
1978 else if (code != COND_EXPR)
1979 abort ();
1981 op0 = TREE_OPERAND (exp, 0);
1982 op1 = TREE_OPERAND (exp, 1);
1983 op2 = TREE_OPERAND (exp, 2);
1985 if (contains_placeholder_p (op0))
1986 op0 = substitute_in_expr (op0, f, r);
1987 if (contains_placeholder_p (op1))
1988 op1 = substitute_in_expr (op1, f, r);
1989 if (contains_placeholder_p (op2))
1990 op2 = substitute_in_expr (op2, f, r);
1992 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
1993 && op2 == TREE_OPERAND (exp, 2))
1994 return exp;
1996 new = fold (build (code, TREE_TYPE (exp), op0, op1, op2));
1997 break;
1999 default:
2000 abort ();
2003 break;
2005 case 'r':
2006 switch (code)
2008 case COMPONENT_REF:
2009 /* If this expression is getting a value from a PLACEHOLDER_EXPR
2010 and it is the right field, replace it with R. */
2011 for (inner = TREE_OPERAND (exp, 0);
2012 TREE_CODE_CLASS (TREE_CODE (inner)) == 'r';
2013 inner = TREE_OPERAND (inner, 0))
2015 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
2016 && TREE_OPERAND (exp, 1) == f)
2017 return r;
2019 /* If this expression hasn't been completed let, leave it
2020 alone. */
2021 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
2022 && TREE_TYPE (inner) == 0)
2023 return exp;
2025 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2026 if (op0 == TREE_OPERAND (exp, 0))
2027 return exp;
2029 new = fold (build (code, TREE_TYPE (exp), op0,
2030 TREE_OPERAND (exp, 1)));
2031 break;
2033 case BIT_FIELD_REF:
2034 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2035 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
2036 op2 = substitute_in_expr (TREE_OPERAND (exp, 2), f, r);
2037 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2038 && op2 == TREE_OPERAND (exp, 2))
2039 return exp;
2041 new = fold (build (code, TREE_TYPE (exp), op0, op1, op2));
2042 break;
2044 case INDIRECT_REF:
2045 case BUFFER_REF:
2046 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2047 if (op0 == TREE_OPERAND (exp, 0))
2048 return exp;
2050 new = fold (build1 (code, TREE_TYPE (exp), op0));
2051 break;
2053 default:
2054 abort ();
2056 break;
2058 default:
2059 abort ();
2062 TREE_READONLY (new) = TREE_READONLY (exp);
2063 return new;
2066 /* Stabilize a reference so that we can use it any number of times
2067 without causing its operands to be evaluated more than once.
2068 Returns the stabilized reference. This works by means of save_expr,
2069 so see the caveats in the comments about save_expr.
2071 Also allows conversion expressions whose operands are references.
2072 Any other kind of expression is returned unchanged. */
2074 tree
2075 stabilize_reference (ref)
2076 tree ref;
2078 tree result;
2079 enum tree_code code = TREE_CODE (ref);
2081 switch (code)
2083 case VAR_DECL:
2084 case PARM_DECL:
2085 case RESULT_DECL:
2086 /* No action is needed in this case. */
2087 return ref;
2089 case NOP_EXPR:
2090 case CONVERT_EXPR:
2091 case FLOAT_EXPR:
2092 case FIX_TRUNC_EXPR:
2093 case FIX_FLOOR_EXPR:
2094 case FIX_ROUND_EXPR:
2095 case FIX_CEIL_EXPR:
2096 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
2097 break;
2099 case INDIRECT_REF:
2100 result = build_nt (INDIRECT_REF,
2101 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
2102 break;
2104 case COMPONENT_REF:
2105 result = build_nt (COMPONENT_REF,
2106 stabilize_reference (TREE_OPERAND (ref, 0)),
2107 TREE_OPERAND (ref, 1));
2108 break;
2110 case BIT_FIELD_REF:
2111 result = build_nt (BIT_FIELD_REF,
2112 stabilize_reference (TREE_OPERAND (ref, 0)),
2113 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2114 stabilize_reference_1 (TREE_OPERAND (ref, 2)));
2115 break;
2117 case ARRAY_REF:
2118 result = build_nt (ARRAY_REF,
2119 stabilize_reference (TREE_OPERAND (ref, 0)),
2120 stabilize_reference_1 (TREE_OPERAND (ref, 1)));
2121 break;
2123 case ARRAY_RANGE_REF:
2124 result = build_nt (ARRAY_RANGE_REF,
2125 stabilize_reference (TREE_OPERAND (ref, 0)),
2126 stabilize_reference_1 (TREE_OPERAND (ref, 1)));
2127 break;
2129 case COMPOUND_EXPR:
2130 /* We cannot wrap the first expression in a SAVE_EXPR, as then
2131 it wouldn't be ignored. This matters when dealing with
2132 volatiles. */
2133 return stabilize_reference_1 (ref);
2135 case RTL_EXPR:
2136 result = build1 (INDIRECT_REF, TREE_TYPE (ref),
2137 save_expr (build1 (ADDR_EXPR,
2138 build_pointer_type (TREE_TYPE (ref)),
2139 ref)));
2140 break;
2142 /* If arg isn't a kind of lvalue we recognize, make no change.
2143 Caller should recognize the error for an invalid lvalue. */
2144 default:
2145 return ref;
2147 case ERROR_MARK:
2148 return error_mark_node;
2151 TREE_TYPE (result) = TREE_TYPE (ref);
2152 TREE_READONLY (result) = TREE_READONLY (ref);
2153 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
2154 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
2156 return result;
2159 /* Subroutine of stabilize_reference; this is called for subtrees of
2160 references. Any expression with side-effects must be put in a SAVE_EXPR
2161 to ensure that it is only evaluated once.
2163 We don't put SAVE_EXPR nodes around everything, because assigning very
2164 simple expressions to temporaries causes us to miss good opportunities
2165 for optimizations. Among other things, the opportunity to fold in the
2166 addition of a constant into an addressing mode often gets lost, e.g.
2167 "y[i+1] += x;". In general, we take the approach that we should not make
2168 an assignment unless we are forced into it - i.e., that any non-side effect
2169 operator should be allowed, and that cse should take care of coalescing
2170 multiple utterances of the same expression should that prove fruitful. */
2172 tree
2173 stabilize_reference_1 (e)
2174 tree e;
2176 tree result;
2177 enum tree_code code = TREE_CODE (e);
2179 /* We cannot ignore const expressions because it might be a reference
2180 to a const array but whose index contains side-effects. But we can
2181 ignore things that are actual constant or that already have been
2182 handled by this function. */
2184 if (TREE_CONSTANT (e) || code == SAVE_EXPR)
2185 return e;
2187 switch (TREE_CODE_CLASS (code))
2189 case 'x':
2190 case 't':
2191 case 'd':
2192 case 'b':
2193 case '<':
2194 case 's':
2195 case 'e':
2196 case 'r':
2197 /* If the expression has side-effects, then encase it in a SAVE_EXPR
2198 so that it will only be evaluated once. */
2199 /* The reference (r) and comparison (<) classes could be handled as
2200 below, but it is generally faster to only evaluate them once. */
2201 if (TREE_SIDE_EFFECTS (e))
2202 return save_expr (e);
2203 return e;
2205 case 'c':
2206 /* Constants need no processing. In fact, we should never reach
2207 here. */
2208 return e;
2210 case '2':
2211 /* Division is slow and tends to be compiled with jumps,
2212 especially the division by powers of 2 that is often
2213 found inside of an array reference. So do it just once. */
2214 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
2215 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
2216 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
2217 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
2218 return save_expr (e);
2219 /* Recursively stabilize each operand. */
2220 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
2221 stabilize_reference_1 (TREE_OPERAND (e, 1)));
2222 break;
2224 case '1':
2225 /* Recursively stabilize each operand. */
2226 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
2227 break;
2229 default:
2230 abort ();
2233 TREE_TYPE (result) = TREE_TYPE (e);
2234 TREE_READONLY (result) = TREE_READONLY (e);
2235 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
2236 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
2238 return result;
2241 /* Low-level constructors for expressions. */
2243 /* Build an expression of code CODE, data type TYPE,
2244 and operands as specified by the arguments ARG1 and following arguments.
2245 Expressions and reference nodes can be created this way.
2246 Constants, decls, types and misc nodes cannot be. */
2248 tree
2249 build VPARAMS ((enum tree_code code, tree tt, ...))
2251 tree t;
2252 int length;
2253 int i;
2254 int fro;
2255 int constant;
2257 VA_OPEN (p, tt);
2258 VA_FIXEDARG (p, enum tree_code, code);
2259 VA_FIXEDARG (p, tree, tt);
2261 t = make_node (code);
2262 length = TREE_CODE_LENGTH (code);
2263 TREE_TYPE (t) = tt;
2265 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
2266 result based on those same flags for the arguments. But if the
2267 arguments aren't really even `tree' expressions, we shouldn't be trying
2268 to do this. */
2269 fro = first_rtl_op (code);
2271 /* Expressions without side effects may be constant if their
2272 arguments are as well. */
2273 constant = (TREE_CODE_CLASS (code) == '<'
2274 || TREE_CODE_CLASS (code) == '1'
2275 || TREE_CODE_CLASS (code) == '2'
2276 || TREE_CODE_CLASS (code) == 'c');
2278 if (length == 2)
2280 /* This is equivalent to the loop below, but faster. */
2281 tree arg0 = va_arg (p, tree);
2282 tree arg1 = va_arg (p, tree);
2284 TREE_OPERAND (t, 0) = arg0;
2285 TREE_OPERAND (t, 1) = arg1;
2286 TREE_READONLY (t) = 1;
2287 if (arg0 && fro > 0)
2289 if (TREE_SIDE_EFFECTS (arg0))
2290 TREE_SIDE_EFFECTS (t) = 1;
2291 if (!TREE_READONLY (arg0))
2292 TREE_READONLY (t) = 0;
2293 if (!TREE_CONSTANT (arg0))
2294 constant = 0;
2297 if (arg1 && fro > 1)
2299 if (TREE_SIDE_EFFECTS (arg1))
2300 TREE_SIDE_EFFECTS (t) = 1;
2301 if (!TREE_READONLY (arg1))
2302 TREE_READONLY (t) = 0;
2303 if (!TREE_CONSTANT (arg1))
2304 constant = 0;
2307 else if (length == 1)
2309 tree arg0 = va_arg (p, tree);
2311 /* The only one-operand cases we handle here are those with side-effects.
2312 Others are handled with build1. So don't bother checked if the
2313 arg has side-effects since we'll already have set it.
2315 ??? This really should use build1 too. */
2316 if (TREE_CODE_CLASS (code) != 's')
2317 abort ();
2318 TREE_OPERAND (t, 0) = arg0;
2320 else
2322 for (i = 0; i < length; i++)
2324 tree operand = va_arg (p, tree);
2326 TREE_OPERAND (t, i) = operand;
2327 if (operand && fro > i)
2329 if (TREE_SIDE_EFFECTS (operand))
2330 TREE_SIDE_EFFECTS (t) = 1;
2331 if (!TREE_CONSTANT (operand))
2332 constant = 0;
2336 VA_CLOSE (p);
2338 TREE_CONSTANT (t) = constant;
2339 return t;
2342 /* Same as above, but only builds for unary operators.
2343 Saves lions share of calls to `build'; cuts down use
2344 of varargs, which is expensive for RISC machines. */
2346 tree
2347 build1 (code, type, node)
2348 enum tree_code code;
2349 tree type;
2350 tree node;
2352 int length = sizeof (struct tree_exp);
2353 #ifdef GATHER_STATISTICS
2354 tree_node_kind kind;
2355 #endif
2356 tree t;
2358 #ifdef GATHER_STATISTICS
2359 switch (TREE_CODE_CLASS (code))
2361 case 's': /* an expression with side effects */
2362 kind = s_kind;
2363 break;
2364 case 'r': /* a reference */
2365 kind = r_kind;
2366 break;
2367 default:
2368 kind = e_kind;
2369 break;
2372 tree_node_counts[(int) kind]++;
2373 tree_node_sizes[(int) kind] += length;
2374 #endif
2376 #ifdef ENABLE_CHECKING
2377 if (TREE_CODE_CLASS (code) == '2'
2378 || TREE_CODE_CLASS (code) == '<'
2379 || TREE_CODE_LENGTH (code) != 1)
2380 abort ();
2381 #endif /* ENABLE_CHECKING */
2383 t = ggc_alloc_tree (length);
2385 memset ((PTR) t, 0, sizeof (struct tree_common));
2387 TREE_SET_CODE (t, code);
2389 TREE_TYPE (t) = type;
2390 TREE_COMPLEXITY (t) = 0;
2391 TREE_OPERAND (t, 0) = node;
2392 if (node && first_rtl_op (code) != 0)
2394 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
2395 TREE_READONLY (t) = TREE_READONLY (node);
2398 if (TREE_CODE_CLASS (code) == 's')
2399 TREE_SIDE_EFFECTS (t) = 1;
2400 else switch (code)
2402 case INIT_EXPR:
2403 case MODIFY_EXPR:
2404 case VA_ARG_EXPR:
2405 case RTL_EXPR:
2406 case PREDECREMENT_EXPR:
2407 case PREINCREMENT_EXPR:
2408 case POSTDECREMENT_EXPR:
2409 case POSTINCREMENT_EXPR:
2410 /* All of these have side-effects, no matter what their
2411 operands are. */
2412 TREE_SIDE_EFFECTS (t) = 1;
2413 TREE_READONLY (t) = 0;
2414 break;
2416 case INDIRECT_REF:
2417 /* Whether a dereference is readonly has nothing to do with whether
2418 its operand is readonly. */
2419 TREE_READONLY (t) = 0;
2420 break;
2422 default:
2423 if (TREE_CODE_CLASS (code) == '1' && node && TREE_CONSTANT (node))
2424 TREE_CONSTANT (t) = 1;
2425 break;
2428 return t;
2431 /* Similar except don't specify the TREE_TYPE
2432 and leave the TREE_SIDE_EFFECTS as 0.
2433 It is permissible for arguments to be null,
2434 or even garbage if their values do not matter. */
2436 tree
2437 build_nt VPARAMS ((enum tree_code code, ...))
2439 tree t;
2440 int length;
2441 int i;
2443 VA_OPEN (p, code);
2444 VA_FIXEDARG (p, enum tree_code, code);
2446 t = make_node (code);
2447 length = TREE_CODE_LENGTH (code);
2449 for (i = 0; i < length; i++)
2450 TREE_OPERAND (t, i) = va_arg (p, tree);
2452 VA_CLOSE (p);
2453 return t;
2456 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
2457 We do NOT enter this node in any sort of symbol table.
2459 layout_decl is used to set up the decl's storage layout.
2460 Other slots are initialized to 0 or null pointers. */
2462 tree
2463 build_decl (code, name, type)
2464 enum tree_code code;
2465 tree name, type;
2467 tree t;
2469 t = make_node (code);
2471 /* if (type == error_mark_node)
2472 type = integer_type_node; */
2473 /* That is not done, deliberately, so that having error_mark_node
2474 as the type can suppress useless errors in the use of this variable. */
2476 DECL_NAME (t) = name;
2477 TREE_TYPE (t) = type;
2479 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
2480 layout_decl (t, 0);
2481 else if (code == FUNCTION_DECL)
2482 DECL_MODE (t) = FUNCTION_MODE;
2484 return t;
2487 /* BLOCK nodes are used to represent the structure of binding contours
2488 and declarations, once those contours have been exited and their contents
2489 compiled. This information is used for outputting debugging info. */
2491 tree
2492 build_block (vars, tags, subblocks, supercontext, chain)
2493 tree vars, tags ATTRIBUTE_UNUSED, subblocks, supercontext, chain;
2495 tree block = make_node (BLOCK);
2497 BLOCK_VARS (block) = vars;
2498 BLOCK_SUBBLOCKS (block) = subblocks;
2499 BLOCK_SUPERCONTEXT (block) = supercontext;
2500 BLOCK_CHAIN (block) = chain;
2501 return block;
2504 /* EXPR_WITH_FILE_LOCATION are used to keep track of the exact
2505 location where an expression or an identifier were encountered. It
2506 is necessary for languages where the frontend parser will handle
2507 recursively more than one file (Java is one of them). */
2509 tree
2510 build_expr_wfl (node, file, line, col)
2511 tree node;
2512 const char *file;
2513 int line, col;
2515 static const char *last_file = 0;
2516 static tree last_filenode = NULL_TREE;
2517 tree wfl = make_node (EXPR_WITH_FILE_LOCATION);
2519 EXPR_WFL_NODE (wfl) = node;
2520 EXPR_WFL_SET_LINECOL (wfl, line, col);
2521 if (file != last_file)
2523 last_file = file;
2524 last_filenode = file ? get_identifier (file) : NULL_TREE;
2527 EXPR_WFL_FILENAME_NODE (wfl) = last_filenode;
2528 if (node)
2530 TREE_SIDE_EFFECTS (wfl) = TREE_SIDE_EFFECTS (node);
2531 TREE_TYPE (wfl) = TREE_TYPE (node);
2534 return wfl;
2537 /* Return a declaration like DDECL except that its DECL_ATTRIBUTES
2538 is ATTRIBUTE. */
2540 tree
2541 build_decl_attribute_variant (ddecl, attribute)
2542 tree ddecl, attribute;
2544 DECL_ATTRIBUTES (ddecl) = attribute;
2545 return ddecl;
2548 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
2549 is ATTRIBUTE.
2551 Record such modified types already made so we don't make duplicates. */
2553 tree
2554 build_type_attribute_variant (ttype, attribute)
2555 tree ttype, attribute;
2557 if (! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
2559 unsigned int hashcode;
2560 tree ntype;
2562 ntype = copy_node (ttype);
2564 TYPE_POINTER_TO (ntype) = 0;
2565 TYPE_REFERENCE_TO (ntype) = 0;
2566 TYPE_ATTRIBUTES (ntype) = attribute;
2568 /* Create a new main variant of TYPE. */
2569 TYPE_MAIN_VARIANT (ntype) = ntype;
2570 TYPE_NEXT_VARIANT (ntype) = 0;
2571 set_type_quals (ntype, TYPE_UNQUALIFIED);
2573 hashcode = (TYPE_HASH (TREE_CODE (ntype))
2574 + TYPE_HASH (TREE_TYPE (ntype))
2575 + attribute_hash_list (attribute));
2577 switch (TREE_CODE (ntype))
2579 case FUNCTION_TYPE:
2580 hashcode += TYPE_HASH (TYPE_ARG_TYPES (ntype));
2581 break;
2582 case ARRAY_TYPE:
2583 hashcode += TYPE_HASH (TYPE_DOMAIN (ntype));
2584 break;
2585 case INTEGER_TYPE:
2586 hashcode += TYPE_HASH (TYPE_MAX_VALUE (ntype));
2587 break;
2588 case REAL_TYPE:
2589 hashcode += TYPE_HASH (TYPE_PRECISION (ntype));
2590 break;
2591 default:
2592 break;
2595 ntype = type_hash_canon (hashcode, ntype);
2596 ttype = build_qualified_type (ntype, TYPE_QUALS (ttype));
2599 return ttype;
2602 /* Return nonzero if IDENT is a valid name for attribute ATTR,
2603 or zero if not.
2605 We try both `text' and `__text__', ATTR may be either one. */
2606 /* ??? It might be a reasonable simplification to require ATTR to be only
2607 `text'. One might then also require attribute lists to be stored in
2608 their canonicalized form. */
2611 is_attribute_p (attr, ident)
2612 const char *attr;
2613 tree ident;
2615 int ident_len, attr_len;
2616 const char *p;
2618 if (TREE_CODE (ident) != IDENTIFIER_NODE)
2619 return 0;
2621 if (strcmp (attr, IDENTIFIER_POINTER (ident)) == 0)
2622 return 1;
2624 p = IDENTIFIER_POINTER (ident);
2625 ident_len = strlen (p);
2626 attr_len = strlen (attr);
2628 /* If ATTR is `__text__', IDENT must be `text'; and vice versa. */
2629 if (attr[0] == '_')
2631 if (attr[1] != '_'
2632 || attr[attr_len - 2] != '_'
2633 || attr[attr_len - 1] != '_')
2634 abort ();
2635 if (ident_len == attr_len - 4
2636 && strncmp (attr + 2, p, attr_len - 4) == 0)
2637 return 1;
2639 else
2641 if (ident_len == attr_len + 4
2642 && p[0] == '_' && p[1] == '_'
2643 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
2644 && strncmp (attr, p + 2, attr_len) == 0)
2645 return 1;
2648 return 0;
2651 /* Given an attribute name and a list of attributes, return a pointer to the
2652 attribute's list element if the attribute is part of the list, or NULL_TREE
2653 if not found. If the attribute appears more than once, this only
2654 returns the first occurrence; the TREE_CHAIN of the return value should
2655 be passed back in if further occurrences are wanted. */
2657 tree
2658 lookup_attribute (attr_name, list)
2659 const char *attr_name;
2660 tree list;
2662 tree l;
2664 for (l = list; l; l = TREE_CHAIN (l))
2666 if (TREE_CODE (TREE_PURPOSE (l)) != IDENTIFIER_NODE)
2667 abort ();
2668 if (is_attribute_p (attr_name, TREE_PURPOSE (l)))
2669 return l;
2672 return NULL_TREE;
2675 /* Return an attribute list that is the union of a1 and a2. */
2677 tree
2678 merge_attributes (a1, a2)
2679 tree a1, a2;
2681 tree attributes;
2683 /* Either one unset? Take the set one. */
2685 if ((attributes = a1) == 0)
2686 attributes = a2;
2688 /* One that completely contains the other? Take it. */
2690 else if (a2 != 0 && ! attribute_list_contained (a1, a2))
2692 if (attribute_list_contained (a2, a1))
2693 attributes = a2;
2694 else
2696 /* Pick the longest list, and hang on the other list. */
2698 if (list_length (a1) < list_length (a2))
2699 attributes = a2, a2 = a1;
2701 for (; a2 != 0; a2 = TREE_CHAIN (a2))
2703 tree a;
2704 for (a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
2705 attributes);
2706 a != NULL_TREE;
2707 a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
2708 TREE_CHAIN (a)))
2710 if (simple_cst_equal (TREE_VALUE (a), TREE_VALUE (a2)) == 1)
2711 break;
2713 if (a == NULL_TREE)
2715 a1 = copy_node (a2);
2716 TREE_CHAIN (a1) = attributes;
2717 attributes = a1;
2722 return attributes;
2725 /* Given types T1 and T2, merge their attributes and return
2726 the result. */
2728 tree
2729 merge_type_attributes (t1, t2)
2730 tree t1, t2;
2732 return merge_attributes (TYPE_ATTRIBUTES (t1),
2733 TYPE_ATTRIBUTES (t2));
2736 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
2737 the result. */
2739 tree
2740 merge_decl_attributes (olddecl, newdecl)
2741 tree olddecl, newdecl;
2743 return merge_attributes (DECL_ATTRIBUTES (olddecl),
2744 DECL_ATTRIBUTES (newdecl));
2747 #ifdef TARGET_DLLIMPORT_DECL_ATTRIBUTES
2749 /* Specialization of merge_decl_attributes for various Windows targets.
2751 This handles the following situation:
2753 __declspec (dllimport) int foo;
2754 int foo;
2756 The second instance of `foo' nullifies the dllimport. */
2758 tree
2759 merge_dllimport_decl_attributes (old, new)
2760 tree old;
2761 tree new;
2763 tree a;
2764 int delete_dllimport_p;
2766 old = DECL_ATTRIBUTES (old);
2767 new = DECL_ATTRIBUTES (new);
2769 /* What we need to do here is remove from `old' dllimport if it doesn't
2770 appear in `new'. dllimport behaves like extern: if a declaration is
2771 marked dllimport and a definition appears later, then the object
2772 is not dllimport'd. */
2773 if (lookup_attribute ("dllimport", old) != NULL_TREE
2774 && lookup_attribute ("dllimport", new) == NULL_TREE)
2775 delete_dllimport_p = 1;
2776 else
2777 delete_dllimport_p = 0;
2779 a = merge_attributes (old, new);
2781 if (delete_dllimport_p)
2783 tree prev, t;
2785 /* Scan the list for dllimport and delete it. */
2786 for (prev = NULL_TREE, t = a; t; prev = t, t = TREE_CHAIN (t))
2788 if (is_attribute_p ("dllimport", TREE_PURPOSE (t)))
2790 if (prev == NULL_TREE)
2791 a = TREE_CHAIN (a);
2792 else
2793 TREE_CHAIN (prev) = TREE_CHAIN (t);
2794 break;
2799 return a;
2802 #endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES */
2804 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
2805 of the various TYPE_QUAL values. */
2807 static void
2808 set_type_quals (type, type_quals)
2809 tree type;
2810 int type_quals;
2812 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
2813 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
2814 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
2817 /* Return a version of the TYPE, qualified as indicated by the
2818 TYPE_QUALS, if one exists. If no qualified version exists yet,
2819 return NULL_TREE. */
2821 tree
2822 get_qualified_type (type, type_quals)
2823 tree type;
2824 int type_quals;
2826 tree t;
2828 /* Search the chain of variants to see if there is already one there just
2829 like the one we need to have. If so, use that existing one. We must
2830 preserve the TYPE_NAME, since there is code that depends on this. */
2831 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
2832 if (TYPE_QUALS (t) == type_quals && TYPE_NAME (t) == TYPE_NAME (type)
2833 && TYPE_CONTEXT (t) == TYPE_CONTEXT (type))
2834 return t;
2836 return NULL_TREE;
2839 /* Like get_qualified_type, but creates the type if it does not
2840 exist. This function never returns NULL_TREE. */
2842 tree
2843 build_qualified_type (type, type_quals)
2844 tree type;
2845 int type_quals;
2847 tree t;
2849 /* See if we already have the appropriate qualified variant. */
2850 t = get_qualified_type (type, type_quals);
2852 /* If not, build it. */
2853 if (!t)
2855 t = build_type_copy (type);
2856 set_type_quals (t, type_quals);
2859 return t;
2862 /* Create a new variant of TYPE, equivalent but distinct.
2863 This is so the caller can modify it. */
2865 tree
2866 build_type_copy (type)
2867 tree type;
2869 tree t, m = TYPE_MAIN_VARIANT (type);
2871 t = copy_node (type);
2873 TYPE_POINTER_TO (t) = 0;
2874 TYPE_REFERENCE_TO (t) = 0;
2876 /* Add this type to the chain of variants of TYPE. */
2877 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
2878 TYPE_NEXT_VARIANT (m) = t;
2880 return t;
2883 /* Hashing of types so that we don't make duplicates.
2884 The entry point is `type_hash_canon'. */
2886 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
2887 with types in the TREE_VALUE slots), by adding the hash codes
2888 of the individual types. */
2890 unsigned int
2891 type_hash_list (list)
2892 tree list;
2894 unsigned int hashcode;
2895 tree tail;
2897 for (hashcode = 0, tail = list; tail; tail = TREE_CHAIN (tail))
2898 hashcode += TYPE_HASH (TREE_VALUE (tail));
2900 return hashcode;
2903 /* These are the Hashtable callback functions. */
2905 /* Returns true if the types are equal. */
2907 static int
2908 type_hash_eq (va, vb)
2909 const void *va;
2910 const void *vb;
2912 const struct type_hash *a = va, *b = vb;
2913 if (a->hash == b->hash
2914 && TREE_CODE (a->type) == TREE_CODE (b->type)
2915 && TREE_TYPE (a->type) == TREE_TYPE (b->type)
2916 && attribute_list_equal (TYPE_ATTRIBUTES (a->type),
2917 TYPE_ATTRIBUTES (b->type))
2918 && TYPE_ALIGN (a->type) == TYPE_ALIGN (b->type)
2919 && (TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
2920 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
2921 TYPE_MAX_VALUE (b->type)))
2922 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
2923 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
2924 TYPE_MIN_VALUE (b->type)))
2925 /* Note that TYPE_DOMAIN is TYPE_ARG_TYPES for FUNCTION_TYPE. */
2926 && (TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type)
2927 || (TYPE_DOMAIN (a->type)
2928 && TREE_CODE (TYPE_DOMAIN (a->type)) == TREE_LIST
2929 && TYPE_DOMAIN (b->type)
2930 && TREE_CODE (TYPE_DOMAIN (b->type)) == TREE_LIST
2931 && type_list_equal (TYPE_DOMAIN (a->type),
2932 TYPE_DOMAIN (b->type)))))
2933 return 1;
2934 return 0;
2937 /* Return the cached hash value. */
2939 static hashval_t
2940 type_hash_hash (item)
2941 const void *item;
2943 return ((const struct type_hash *) item)->hash;
2946 /* Look in the type hash table for a type isomorphic to TYPE.
2947 If one is found, return it. Otherwise return 0. */
2949 tree
2950 type_hash_lookup (hashcode, type)
2951 unsigned int hashcode;
2952 tree type;
2954 struct type_hash *h, in;
2956 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
2957 must call that routine before comparing TYPE_ALIGNs. */
2958 layout_type (type);
2960 in.hash = hashcode;
2961 in.type = type;
2963 h = htab_find_with_hash (type_hash_table, &in, hashcode);
2964 if (h)
2965 return h->type;
2966 return NULL_TREE;
2969 /* Add an entry to the type-hash-table
2970 for a type TYPE whose hash code is HASHCODE. */
2972 void
2973 type_hash_add (hashcode, type)
2974 unsigned int hashcode;
2975 tree type;
2977 struct type_hash *h;
2978 void **loc;
2980 h = (struct type_hash *) ggc_alloc (sizeof (struct type_hash));
2981 h->hash = hashcode;
2982 h->type = type;
2983 loc = htab_find_slot_with_hash (type_hash_table, h, hashcode, INSERT);
2984 *(struct type_hash **) loc = h;
2987 /* Given TYPE, and HASHCODE its hash code, return the canonical
2988 object for an identical type if one already exists.
2989 Otherwise, return TYPE, and record it as the canonical object
2990 if it is a permanent object.
2992 To use this function, first create a type of the sort you want.
2993 Then compute its hash code from the fields of the type that
2994 make it different from other similar types.
2995 Then call this function and use the value.
2996 This function frees the type you pass in if it is a duplicate. */
2998 /* Set to 1 to debug without canonicalization. Never set by program. */
2999 int debug_no_type_hash = 0;
3001 tree
3002 type_hash_canon (hashcode, type)
3003 unsigned int hashcode;
3004 tree type;
3006 tree t1;
3008 if (debug_no_type_hash)
3009 return type;
3011 /* See if the type is in the hash table already. If so, return it.
3012 Otherwise, add the type. */
3013 t1 = type_hash_lookup (hashcode, type);
3014 if (t1 != 0)
3016 #ifdef GATHER_STATISTICS
3017 tree_node_counts[(int) t_kind]--;
3018 tree_node_sizes[(int) t_kind] -= sizeof (struct tree_type);
3019 #endif
3020 return t1;
3022 else
3024 type_hash_add (hashcode, type);
3025 return type;
3029 /* See if the data pointed to by the type hash table is marked. We consider
3030 it marked if the type is marked or if a debug type number or symbol
3031 table entry has been made for the type. This reduces the amount of
3032 debugging output and eliminates that dependency of the debug output on
3033 the number of garbage collections. */
3035 static int
3036 type_hash_marked_p (p)
3037 const void *p;
3039 tree type = ((struct type_hash *) p)->type;
3041 return ggc_marked_p (type) || TYPE_SYMTAB_POINTER (type);
3044 static void
3045 print_type_hash_statistics ()
3047 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
3048 (long) htab_size (type_hash_table),
3049 (long) htab_elements (type_hash_table),
3050 htab_collisions (type_hash_table));
3053 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
3054 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
3055 by adding the hash codes of the individual attributes. */
3057 unsigned int
3058 attribute_hash_list (list)
3059 tree list;
3061 unsigned int hashcode;
3062 tree tail;
3064 for (hashcode = 0, tail = list; tail; tail = TREE_CHAIN (tail))
3065 /* ??? Do we want to add in TREE_VALUE too? */
3066 hashcode += TYPE_HASH (TREE_PURPOSE (tail));
3067 return hashcode;
3070 /* Given two lists of attributes, return true if list l2 is
3071 equivalent to l1. */
3074 attribute_list_equal (l1, l2)
3075 tree l1, l2;
3077 return attribute_list_contained (l1, l2)
3078 && attribute_list_contained (l2, l1);
3081 /* Given two lists of attributes, return true if list L2 is
3082 completely contained within L1. */
3083 /* ??? This would be faster if attribute names were stored in a canonicalized
3084 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
3085 must be used to show these elements are equivalent (which they are). */
3086 /* ??? It's not clear that attributes with arguments will always be handled
3087 correctly. */
3090 attribute_list_contained (l1, l2)
3091 tree l1, l2;
3093 tree t1, t2;
3095 /* First check the obvious, maybe the lists are identical. */
3096 if (l1 == l2)
3097 return 1;
3099 /* Maybe the lists are similar. */
3100 for (t1 = l1, t2 = l2;
3101 t1 != 0 && t2 != 0
3102 && TREE_PURPOSE (t1) == TREE_PURPOSE (t2)
3103 && TREE_VALUE (t1) == TREE_VALUE (t2);
3104 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2));
3106 /* Maybe the lists are equal. */
3107 if (t1 == 0 && t2 == 0)
3108 return 1;
3110 for (; t2 != 0; t2 = TREE_CHAIN (t2))
3112 tree attr;
3113 for (attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)), l1);
3114 attr != NULL_TREE;
3115 attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
3116 TREE_CHAIN (attr)))
3118 if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) == 1)
3119 break;
3122 if (attr == 0)
3123 return 0;
3125 if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) != 1)
3126 return 0;
3129 return 1;
3132 /* Given two lists of types
3133 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
3134 return 1 if the lists contain the same types in the same order.
3135 Also, the TREE_PURPOSEs must match. */
3138 type_list_equal (l1, l2)
3139 tree l1, l2;
3141 tree t1, t2;
3143 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
3144 if (TREE_VALUE (t1) != TREE_VALUE (t2)
3145 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
3146 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
3147 && (TREE_TYPE (TREE_PURPOSE (t1))
3148 == TREE_TYPE (TREE_PURPOSE (t2))))))
3149 return 0;
3151 return t1 == t2;
3154 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
3155 given by TYPE. If the argument list accepts variable arguments,
3156 then this function counts only the ordinary arguments. */
3159 type_num_arguments (type)
3160 tree type;
3162 int i = 0;
3163 tree t;
3165 for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
3166 /* If the function does not take a variable number of arguments,
3167 the last element in the list will have type `void'. */
3168 if (VOID_TYPE_P (TREE_VALUE (t)))
3169 break;
3170 else
3171 ++i;
3173 return i;
3176 /* Nonzero if integer constants T1 and T2
3177 represent the same constant value. */
3180 tree_int_cst_equal (t1, t2)
3181 tree t1, t2;
3183 if (t1 == t2)
3184 return 1;
3186 if (t1 == 0 || t2 == 0)
3187 return 0;
3189 if (TREE_CODE (t1) == INTEGER_CST
3190 && TREE_CODE (t2) == INTEGER_CST
3191 && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
3192 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
3193 return 1;
3195 return 0;
3198 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
3199 The precise way of comparison depends on their data type. */
3202 tree_int_cst_lt (t1, t2)
3203 tree t1, t2;
3205 if (t1 == t2)
3206 return 0;
3208 if (TREE_UNSIGNED (TREE_TYPE (t1)) != TREE_UNSIGNED (TREE_TYPE (t2)))
3210 int t1_sgn = tree_int_cst_sgn (t1);
3211 int t2_sgn = tree_int_cst_sgn (t2);
3213 if (t1_sgn < t2_sgn)
3214 return 1;
3215 else if (t1_sgn > t2_sgn)
3216 return 0;
3217 /* Otherwise, both are non-negative, so we compare them as
3218 unsigned just in case one of them would overflow a signed
3219 type. */
3221 else if (! TREE_UNSIGNED (TREE_TYPE (t1)))
3222 return INT_CST_LT (t1, t2);
3224 return INT_CST_LT_UNSIGNED (t1, t2);
3227 /* Returns -1 if T1 < T2, 0 if T1 == T2, and 1 if T1 > T2. */
3230 tree_int_cst_compare (t1, t2)
3231 tree t1;
3232 tree t2;
3234 if (tree_int_cst_lt (t1, t2))
3235 return -1;
3236 else if (tree_int_cst_lt (t2, t1))
3237 return 1;
3238 else
3239 return 0;
3242 /* Return 1 if T is an INTEGER_CST that can be manipulated efficiently on
3243 the host. If POS is zero, the value can be represented in a single
3244 HOST_WIDE_INT. If POS is nonzero, the value must be positive and can
3245 be represented in a single unsigned HOST_WIDE_INT. */
3248 host_integerp (t, pos)
3249 tree t;
3250 int pos;
3252 return (TREE_CODE (t) == INTEGER_CST
3253 && ! TREE_OVERFLOW (t)
3254 && ((TREE_INT_CST_HIGH (t) == 0
3255 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) >= 0)
3256 || (! pos && TREE_INT_CST_HIGH (t) == -1
3257 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0
3258 && ! TREE_UNSIGNED (TREE_TYPE (t)))
3259 || (pos && TREE_INT_CST_HIGH (t) == 0)));
3262 /* Return the HOST_WIDE_INT least significant bits of T if it is an
3263 INTEGER_CST and there is no overflow. POS is nonzero if the result must
3264 be positive. Abort if we cannot satisfy the above conditions. */
3266 HOST_WIDE_INT
3267 tree_low_cst (t, pos)
3268 tree t;
3269 int pos;
3271 if (host_integerp (t, pos))
3272 return TREE_INT_CST_LOW (t);
3273 else
3274 abort ();
3277 /* Return the most significant bit of the integer constant T. */
3280 tree_int_cst_msb (t)
3281 tree t;
3283 int prec;
3284 HOST_WIDE_INT h;
3285 unsigned HOST_WIDE_INT l;
3287 /* Note that using TYPE_PRECISION here is wrong. We care about the
3288 actual bits, not the (arbitrary) range of the type. */
3289 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t))) - 1;
3290 rshift_double (TREE_INT_CST_LOW (t), TREE_INT_CST_HIGH (t), prec,
3291 2 * HOST_BITS_PER_WIDE_INT, &l, &h, 0);
3292 return (l & 1) == 1;
3295 /* Return an indication of the sign of the integer constant T.
3296 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
3297 Note that -1 will never be returned it T's type is unsigned. */
3300 tree_int_cst_sgn (t)
3301 tree t;
3303 if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
3304 return 0;
3305 else if (TREE_UNSIGNED (TREE_TYPE (t)))
3306 return 1;
3307 else if (TREE_INT_CST_HIGH (t) < 0)
3308 return -1;
3309 else
3310 return 1;
3313 /* Compare two constructor-element-type constants. Return 1 if the lists
3314 are known to be equal; otherwise return 0. */
3317 simple_cst_list_equal (l1, l2)
3318 tree l1, l2;
3320 while (l1 != NULL_TREE && l2 != NULL_TREE)
3322 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
3323 return 0;
3325 l1 = TREE_CHAIN (l1);
3326 l2 = TREE_CHAIN (l2);
3329 return l1 == l2;
3332 /* Return truthvalue of whether T1 is the same tree structure as T2.
3333 Return 1 if they are the same.
3334 Return 0 if they are understandably different.
3335 Return -1 if either contains tree structure not understood by
3336 this function. */
3339 simple_cst_equal (t1, t2)
3340 tree t1, t2;
3342 enum tree_code code1, code2;
3343 int cmp;
3344 int i;
3346 if (t1 == t2)
3347 return 1;
3348 if (t1 == 0 || t2 == 0)
3349 return 0;
3351 code1 = TREE_CODE (t1);
3352 code2 = TREE_CODE (t2);
3354 if (code1 == NOP_EXPR || code1 == CONVERT_EXPR || code1 == NON_LVALUE_EXPR)
3356 if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
3357 || code2 == NON_LVALUE_EXPR)
3358 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3359 else
3360 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
3363 else if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
3364 || code2 == NON_LVALUE_EXPR)
3365 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
3367 if (code1 != code2)
3368 return 0;
3370 switch (code1)
3372 case INTEGER_CST:
3373 return (TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
3374 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2));
3376 case REAL_CST:
3377 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
3379 case STRING_CST:
3380 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
3381 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
3382 TREE_STRING_LENGTH (t1)));
3384 case CONSTRUCTOR:
3385 if (CONSTRUCTOR_ELTS (t1) == CONSTRUCTOR_ELTS (t2))
3386 return 1;
3387 else
3388 abort ();
3390 case SAVE_EXPR:
3391 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3393 case CALL_EXPR:
3394 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3395 if (cmp <= 0)
3396 return cmp;
3397 return
3398 simple_cst_list_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
3400 case TARGET_EXPR:
3401 /* Special case: if either target is an unallocated VAR_DECL,
3402 it means that it's going to be unified with whatever the
3403 TARGET_EXPR is really supposed to initialize, so treat it
3404 as being equivalent to anything. */
3405 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
3406 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
3407 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
3408 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
3409 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
3410 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
3411 cmp = 1;
3412 else
3413 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3415 if (cmp <= 0)
3416 return cmp;
3418 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
3420 case WITH_CLEANUP_EXPR:
3421 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3422 if (cmp <= 0)
3423 return cmp;
3425 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
3427 case COMPONENT_REF:
3428 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
3429 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3431 return 0;
3433 case VAR_DECL:
3434 case PARM_DECL:
3435 case CONST_DECL:
3436 case FUNCTION_DECL:
3437 return 0;
3439 default:
3440 break;
3443 /* This general rule works for most tree codes. All exceptions should be
3444 handled above. If this is a language-specific tree code, we can't
3445 trust what might be in the operand, so say we don't know
3446 the situation. */
3447 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
3448 return -1;
3450 switch (TREE_CODE_CLASS (code1))
3452 case '1':
3453 case '2':
3454 case '<':
3455 case 'e':
3456 case 'r':
3457 case 's':
3458 cmp = 1;
3459 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
3461 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
3462 if (cmp <= 0)
3463 return cmp;
3466 return cmp;
3468 default:
3469 return -1;
3473 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
3474 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
3475 than U, respectively. */
3478 compare_tree_int (t, u)
3479 tree t;
3480 unsigned HOST_WIDE_INT u;
3482 if (tree_int_cst_sgn (t) < 0)
3483 return -1;
3484 else if (TREE_INT_CST_HIGH (t) != 0)
3485 return 1;
3486 else if (TREE_INT_CST_LOW (t) == u)
3487 return 0;
3488 else if (TREE_INT_CST_LOW (t) < u)
3489 return -1;
3490 else
3491 return 1;
3494 /* Constructors for pointer, array and function types.
3495 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
3496 constructed by language-dependent code, not here.) */
3498 /* Construct, lay out and return the type of pointers to TO_TYPE
3499 with mode MODE. If such a type has already been constructed,
3500 reuse it. */
3502 tree
3503 build_pointer_type_for_mode (to_type, mode)
3504 tree to_type;
3505 enum machine_mode mode;
3507 tree t = TYPE_POINTER_TO (to_type);
3509 /* First, if we already have a type for pointers to TO_TYPE, use it. */
3510 if (t != 0 && mode == ptr_mode)
3511 return t;
3513 t = make_node (POINTER_TYPE);
3515 TREE_TYPE (t) = to_type;
3516 TYPE_MODE (t) = mode;
3518 /* Record this type as the pointer to TO_TYPE. */
3519 if (mode == ptr_mode)
3520 TYPE_POINTER_TO (to_type) = t;
3522 /* Lay out the type. This function has many callers that are concerned
3523 with expression-construction, and this simplifies them all.
3524 Also, it guarantees the TYPE_SIZE is in the same obstack as the type. */
3525 layout_type (t);
3527 return t;
3530 /* By default build pointers in ptr_mode. */
3532 tree
3533 build_pointer_type (to_type)
3534 tree to_type;
3536 return build_pointer_type_for_mode (to_type, ptr_mode);
3539 /* Construct, lay out and return the type of references to TO_TYPE
3540 with mode MODE. If such a type has already been constructed,
3541 reuse it. */
3543 tree
3544 build_reference_type_for_mode (to_type, mode)
3545 tree to_type;
3546 enum machine_mode mode;
3548 tree t = TYPE_REFERENCE_TO (to_type);
3550 /* First, if we already have a type for pointers to TO_TYPE, use it. */
3551 if (t != 0 && mode == ptr_mode)
3552 return t;
3554 t = make_node (REFERENCE_TYPE);
3556 TREE_TYPE (t) = to_type;
3557 TYPE_MODE (t) = mode;
3559 /* Record this type as the pointer to TO_TYPE. */
3560 if (mode == ptr_mode)
3561 TYPE_REFERENCE_TO (to_type) = t;
3563 layout_type (t);
3565 return t;
3569 /* Build the node for the type of references-to-TO_TYPE by default
3570 in ptr_mode. */
3572 tree
3573 build_reference_type (to_type)
3574 tree to_type;
3576 return build_reference_type_for_mode (to_type, ptr_mode);
3579 /* Build a type that is compatible with t but has no cv quals anywhere
3580 in its type, thus
3582 const char *const *const * -> char ***. */
3584 tree
3585 build_type_no_quals (t)
3586 tree t;
3588 switch (TREE_CODE (t))
3590 case POINTER_TYPE:
3591 return build_pointer_type (build_type_no_quals (TREE_TYPE (t)));
3592 case REFERENCE_TYPE:
3593 return build_reference_type (build_type_no_quals (TREE_TYPE (t)));
3594 default:
3595 return TYPE_MAIN_VARIANT (t);
3599 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
3600 MAXVAL should be the maximum value in the domain
3601 (one less than the length of the array).
3603 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
3604 We don't enforce this limit, that is up to caller (e.g. language front end).
3605 The limit exists because the result is a signed type and we don't handle
3606 sizes that use more than one HOST_WIDE_INT. */
3608 tree
3609 build_index_type (maxval)
3610 tree maxval;
3612 tree itype = make_node (INTEGER_TYPE);
3614 TREE_TYPE (itype) = sizetype;
3615 TYPE_PRECISION (itype) = TYPE_PRECISION (sizetype);
3616 TYPE_MIN_VALUE (itype) = size_zero_node;
3617 TYPE_MAX_VALUE (itype) = convert (sizetype, maxval);
3618 TYPE_MODE (itype) = TYPE_MODE (sizetype);
3619 TYPE_SIZE (itype) = TYPE_SIZE (sizetype);
3620 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (sizetype);
3621 TYPE_ALIGN (itype) = TYPE_ALIGN (sizetype);
3622 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (sizetype);
3624 if (host_integerp (maxval, 1))
3625 return type_hash_canon (tree_low_cst (maxval, 1), itype);
3626 else
3627 return itype;
3630 /* Create a range of some discrete type TYPE (an INTEGER_TYPE,
3631 ENUMERAL_TYPE, BOOLEAN_TYPE, or CHAR_TYPE), with
3632 low bound LOWVAL and high bound HIGHVAL.
3633 if TYPE==NULL_TREE, sizetype is used. */
3635 tree
3636 build_range_type (type, lowval, highval)
3637 tree type, lowval, highval;
3639 tree itype = make_node (INTEGER_TYPE);
3641 TREE_TYPE (itype) = type;
3642 if (type == NULL_TREE)
3643 type = sizetype;
3645 TYPE_MIN_VALUE (itype) = convert (type, lowval);
3646 TYPE_MAX_VALUE (itype) = highval ? convert (type, highval) : NULL;
3648 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
3649 TYPE_MODE (itype) = TYPE_MODE (type);
3650 TYPE_SIZE (itype) = TYPE_SIZE (type);
3651 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
3652 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
3653 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
3655 if (host_integerp (lowval, 0) && highval != 0 && host_integerp (highval, 0))
3656 return type_hash_canon (tree_low_cst (highval, 0)
3657 - tree_low_cst (lowval, 0),
3658 itype);
3659 else
3660 return itype;
3663 /* Just like build_index_type, but takes lowval and highval instead
3664 of just highval (maxval). */
3666 tree
3667 build_index_2_type (lowval, highval)
3668 tree lowval, highval;
3670 return build_range_type (sizetype, lowval, highval);
3673 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
3674 and number of elements specified by the range of values of INDEX_TYPE.
3675 If such a type has already been constructed, reuse it. */
3677 tree
3678 build_array_type (elt_type, index_type)
3679 tree elt_type, index_type;
3681 tree t;
3682 unsigned int hashcode;
3684 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
3686 error ("arrays of functions are not meaningful");
3687 elt_type = integer_type_node;
3690 /* Make sure TYPE_POINTER_TO (elt_type) is filled in. */
3691 build_pointer_type (elt_type);
3693 /* Allocate the array after the pointer type,
3694 in case we free it in type_hash_canon. */
3695 t = make_node (ARRAY_TYPE);
3696 TREE_TYPE (t) = elt_type;
3697 TYPE_DOMAIN (t) = index_type;
3699 if (index_type == 0)
3701 return t;
3704 hashcode = TYPE_HASH (elt_type) + TYPE_HASH (index_type);
3705 t = type_hash_canon (hashcode, t);
3707 if (!COMPLETE_TYPE_P (t))
3708 layout_type (t);
3709 return t;
3712 /* Return the TYPE of the elements comprising
3713 the innermost dimension of ARRAY. */
3715 tree
3716 get_inner_array_type (array)
3717 tree array;
3719 tree type = TREE_TYPE (array);
3721 while (TREE_CODE (type) == ARRAY_TYPE)
3722 type = TREE_TYPE (type);
3724 return type;
3727 /* Construct, lay out and return
3728 the type of functions returning type VALUE_TYPE
3729 given arguments of types ARG_TYPES.
3730 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
3731 are data type nodes for the arguments of the function.
3732 If such a type has already been constructed, reuse it. */
3734 tree
3735 build_function_type (value_type, arg_types)
3736 tree value_type, arg_types;
3738 tree t;
3739 unsigned int hashcode;
3741 if (TREE_CODE (value_type) == FUNCTION_TYPE)
3743 error ("function return type cannot be function");
3744 value_type = integer_type_node;
3747 /* Make a node of the sort we want. */
3748 t = make_node (FUNCTION_TYPE);
3749 TREE_TYPE (t) = value_type;
3750 TYPE_ARG_TYPES (t) = arg_types;
3752 /* If we already have such a type, use the old one and free this one. */
3753 hashcode = TYPE_HASH (value_type) + type_hash_list (arg_types);
3754 t = type_hash_canon (hashcode, t);
3756 if (!COMPLETE_TYPE_P (t))
3757 layout_type (t);
3758 return t;
3761 /* Build a function type. The RETURN_TYPE is the type retured by the
3762 function. If additional arguments are provided, they are
3763 additional argument types. The list of argument types must always
3764 be terminated by NULL_TREE. */
3766 tree
3767 build_function_type_list VPARAMS ((tree return_type, ...))
3769 tree t, args, last;
3771 VA_OPEN (p, return_type);
3772 VA_FIXEDARG (p, tree, return_type);
3774 t = va_arg (p, tree);
3775 for (args = NULL_TREE; t != NULL_TREE; t = va_arg (p, tree))
3776 args = tree_cons (NULL_TREE, t, args);
3778 last = args;
3779 args = nreverse (args);
3780 TREE_CHAIN (last) = void_list_node;
3781 args = build_function_type (return_type, args);
3783 VA_CLOSE (p);
3784 return args;
3787 /* Construct, lay out and return the type of methods belonging to class
3788 BASETYPE and whose arguments and values are described by TYPE.
3789 If that type exists already, reuse it.
3790 TYPE must be a FUNCTION_TYPE node. */
3792 tree
3793 build_method_type (basetype, type)
3794 tree basetype, type;
3796 tree t;
3797 unsigned int hashcode;
3799 /* Make a node of the sort we want. */
3800 t = make_node (METHOD_TYPE);
3802 if (TREE_CODE (type) != FUNCTION_TYPE)
3803 abort ();
3805 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
3806 TREE_TYPE (t) = TREE_TYPE (type);
3808 /* The actual arglist for this function includes a "hidden" argument
3809 which is "this". Put it into the list of argument types. */
3811 TYPE_ARG_TYPES (t)
3812 = tree_cons (NULL_TREE,
3813 build_pointer_type (basetype), TYPE_ARG_TYPES (type));
3815 /* If we already have such a type, use the old one and free this one. */
3816 hashcode = TYPE_HASH (basetype) + TYPE_HASH (type);
3817 t = type_hash_canon (hashcode, t);
3819 if (!COMPLETE_TYPE_P (t))
3820 layout_type (t);
3822 return t;
3825 /* Construct, lay out and return the type of offsets to a value
3826 of type TYPE, within an object of type BASETYPE.
3827 If a suitable offset type exists already, reuse it. */
3829 tree
3830 build_offset_type (basetype, type)
3831 tree basetype, type;
3833 tree t;
3834 unsigned int hashcode;
3836 /* Make a node of the sort we want. */
3837 t = make_node (OFFSET_TYPE);
3839 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
3840 TREE_TYPE (t) = type;
3842 /* If we already have such a type, use the old one and free this one. */
3843 hashcode = TYPE_HASH (basetype) + TYPE_HASH (type);
3844 t = type_hash_canon (hashcode, t);
3846 if (!COMPLETE_TYPE_P (t))
3847 layout_type (t);
3849 return t;
3852 /* Create a complex type whose components are COMPONENT_TYPE. */
3854 tree
3855 build_complex_type (component_type)
3856 tree component_type;
3858 tree t;
3859 unsigned int hashcode;
3861 /* Make a node of the sort we want. */
3862 t = make_node (COMPLEX_TYPE);
3864 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
3865 set_type_quals (t, TYPE_QUALS (component_type));
3867 /* If we already have such a type, use the old one and free this one. */
3868 hashcode = TYPE_HASH (component_type);
3869 t = type_hash_canon (hashcode, t);
3871 if (!COMPLETE_TYPE_P (t))
3872 layout_type (t);
3874 /* If we are writing Dwarf2 output we need to create a name,
3875 since complex is a fundamental type. */
3876 if ((write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
3877 && ! TYPE_NAME (t))
3879 const char *name;
3880 if (component_type == char_type_node)
3881 name = "complex char";
3882 else if (component_type == signed_char_type_node)
3883 name = "complex signed char";
3884 else if (component_type == unsigned_char_type_node)
3885 name = "complex unsigned char";
3886 else if (component_type == short_integer_type_node)
3887 name = "complex short int";
3888 else if (component_type == short_unsigned_type_node)
3889 name = "complex short unsigned int";
3890 else if (component_type == integer_type_node)
3891 name = "complex int";
3892 else if (component_type == unsigned_type_node)
3893 name = "complex unsigned int";
3894 else if (component_type == long_integer_type_node)
3895 name = "complex long int";
3896 else if (component_type == long_unsigned_type_node)
3897 name = "complex long unsigned int";
3898 else if (component_type == long_long_integer_type_node)
3899 name = "complex long long int";
3900 else if (component_type == long_long_unsigned_type_node)
3901 name = "complex long long unsigned int";
3902 else
3903 name = 0;
3905 if (name != 0)
3906 TYPE_NAME (t) = get_identifier (name);
3909 return t;
3912 /* Return OP, stripped of any conversions to wider types as much as is safe.
3913 Converting the value back to OP's type makes a value equivalent to OP.
3915 If FOR_TYPE is nonzero, we return a value which, if converted to
3916 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
3918 If FOR_TYPE is nonzero, unaligned bit-field references may be changed to the
3919 narrowest type that can hold the value, even if they don't exactly fit.
3920 Otherwise, bit-field references are changed to a narrower type
3921 only if they can be fetched directly from memory in that type.
3923 OP must have integer, real or enumeral type. Pointers are not allowed!
3925 There are some cases where the obvious value we could return
3926 would regenerate to OP if converted to OP's type,
3927 but would not extend like OP to wider types.
3928 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
3929 For example, if OP is (unsigned short)(signed char)-1,
3930 we avoid returning (signed char)-1 if FOR_TYPE is int,
3931 even though extending that to an unsigned short would regenerate OP,
3932 since the result of extending (signed char)-1 to (int)
3933 is different from (int) OP. */
3935 tree
3936 get_unwidened (op, for_type)
3937 tree op;
3938 tree for_type;
3940 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
3941 tree type = TREE_TYPE (op);
3942 unsigned final_prec
3943 = TYPE_PRECISION (for_type != 0 ? for_type : type);
3944 int uns
3945 = (for_type != 0 && for_type != type
3946 && final_prec > TYPE_PRECISION (type)
3947 && TREE_UNSIGNED (type));
3948 tree win = op;
3950 while (TREE_CODE (op) == NOP_EXPR)
3952 int bitschange
3953 = TYPE_PRECISION (TREE_TYPE (op))
3954 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
3956 /* Truncations are many-one so cannot be removed.
3957 Unless we are later going to truncate down even farther. */
3958 if (bitschange < 0
3959 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
3960 break;
3962 /* See what's inside this conversion. If we decide to strip it,
3963 we will set WIN. */
3964 op = TREE_OPERAND (op, 0);
3966 /* If we have not stripped any zero-extensions (uns is 0),
3967 we can strip any kind of extension.
3968 If we have previously stripped a zero-extension,
3969 only zero-extensions can safely be stripped.
3970 Any extension can be stripped if the bits it would produce
3971 are all going to be discarded later by truncating to FOR_TYPE. */
3973 if (bitschange > 0)
3975 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
3976 win = op;
3977 /* TREE_UNSIGNED says whether this is a zero-extension.
3978 Let's avoid computing it if it does not affect WIN
3979 and if UNS will not be needed again. */
3980 if ((uns || TREE_CODE (op) == NOP_EXPR)
3981 && TREE_UNSIGNED (TREE_TYPE (op)))
3983 uns = 1;
3984 win = op;
3989 if (TREE_CODE (op) == COMPONENT_REF
3990 /* Since type_for_size always gives an integer type. */
3991 && TREE_CODE (type) != REAL_TYPE
3992 /* Don't crash if field not laid out yet. */
3993 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
3994 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
3996 unsigned int innerprec
3997 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
3998 int unsignedp = TREE_UNSIGNED (TREE_OPERAND (op, 1));
3999 type = (*lang_hooks.types.type_for_size) (innerprec, unsignedp);
4001 /* We can get this structure field in the narrowest type it fits in.
4002 If FOR_TYPE is 0, do this only for a field that matches the
4003 narrower type exactly and is aligned for it
4004 The resulting extension to its nominal type (a fullword type)
4005 must fit the same conditions as for other extensions. */
4007 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
4008 && (for_type || ! DECL_BIT_FIELD (TREE_OPERAND (op, 1)))
4009 && (! uns || final_prec <= innerprec || unsignedp)
4010 && type != 0)
4012 win = build (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4013 TREE_OPERAND (op, 1));
4014 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4015 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4019 return win;
4022 /* Return OP or a simpler expression for a narrower value
4023 which can be sign-extended or zero-extended to give back OP.
4024 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
4025 or 0 if the value should be sign-extended. */
4027 tree
4028 get_narrower (op, unsignedp_ptr)
4029 tree op;
4030 int *unsignedp_ptr;
4032 int uns = 0;
4033 int first = 1;
4034 tree win = op;
4036 while (TREE_CODE (op) == NOP_EXPR)
4038 int bitschange
4039 = (TYPE_PRECISION (TREE_TYPE (op))
4040 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
4042 /* Truncations are many-one so cannot be removed. */
4043 if (bitschange < 0)
4044 break;
4046 /* See what's inside this conversion. If we decide to strip it,
4047 we will set WIN. */
4049 if (bitschange > 0)
4051 op = TREE_OPERAND (op, 0);
4052 /* An extension: the outermost one can be stripped,
4053 but remember whether it is zero or sign extension. */
4054 if (first)
4055 uns = TREE_UNSIGNED (TREE_TYPE (op));
4056 /* Otherwise, if a sign extension has been stripped,
4057 only sign extensions can now be stripped;
4058 if a zero extension has been stripped, only zero-extensions. */
4059 else if (uns != TREE_UNSIGNED (TREE_TYPE (op)))
4060 break;
4061 first = 0;
4063 else /* bitschange == 0 */
4065 /* A change in nominal type can always be stripped, but we must
4066 preserve the unsignedness. */
4067 if (first)
4068 uns = TREE_UNSIGNED (TREE_TYPE (op));
4069 first = 0;
4070 op = TREE_OPERAND (op, 0);
4073 win = op;
4076 if (TREE_CODE (op) == COMPONENT_REF
4077 /* Since type_for_size always gives an integer type. */
4078 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
4079 /* Ensure field is laid out already. */
4080 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0)
4082 unsigned HOST_WIDE_INT innerprec
4083 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
4084 tree type = (*lang_hooks.types.type_for_size) (innerprec,
4085 TREE_UNSIGNED (op));
4087 /* We can get this structure field in a narrower type that fits it,
4088 but the resulting extension to its nominal type (a fullword type)
4089 must satisfy the same conditions as for other extensions.
4091 Do this only for fields that are aligned (not bit-fields),
4092 because when bit-field insns will be used there is no
4093 advantage in doing this. */
4095 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
4096 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
4097 && (first || uns == TREE_UNSIGNED (TREE_OPERAND (op, 1)))
4098 && type != 0)
4100 if (first)
4101 uns = TREE_UNSIGNED (TREE_OPERAND (op, 1));
4102 win = build (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4103 TREE_OPERAND (op, 1));
4104 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4105 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4108 *unsignedp_ptr = uns;
4109 return win;
4112 /* Nonzero if integer constant C has a value that is permissible
4113 for type TYPE (an INTEGER_TYPE). */
4116 int_fits_type_p (c, type)
4117 tree c, type;
4119 tree type_low_bound = TYPE_MIN_VALUE (type);
4120 tree type_high_bound = TYPE_MAX_VALUE (type);
4121 int ok_for_low_bound, ok_for_high_bound;
4123 /* Perform some generic filtering first, which may allow making a decision
4124 even if the bounds are not constant. First, negative integers never fit
4125 in unsigned types, */
4126 if ((TREE_UNSIGNED (type) && tree_int_cst_sgn (c) < 0)
4127 /* Also, unsigned integers with top bit set never fit signed types. */
4128 || (! TREE_UNSIGNED (type)
4129 && TREE_UNSIGNED (TREE_TYPE (c)) && tree_int_cst_msb (c)))
4130 return 0;
4132 /* If at least one bound of the type is a constant integer, we can check
4133 ourselves and maybe make a decision. If no such decision is possible, but
4134 this type is a subtype, try checking against that. Otherwise, use
4135 force_fit_type, which checks against the precision.
4137 Compute the status for each possibly constant bound, and return if we see
4138 one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
4139 for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
4140 for "constant known to fit". */
4142 ok_for_low_bound = -1;
4143 ok_for_high_bound = -1;
4145 /* Check if C >= type_low_bound. */
4146 if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
4148 ok_for_low_bound = ! tree_int_cst_lt (c, type_low_bound);
4149 if (! ok_for_low_bound)
4150 return 0;
4153 /* Check if c <= type_high_bound. */
4154 if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
4156 ok_for_high_bound = ! tree_int_cst_lt (type_high_bound, c);
4157 if (! ok_for_high_bound)
4158 return 0;
4161 /* If the constant fits both bounds, the result is known. */
4162 if (ok_for_low_bound == 1 && ok_for_high_bound == 1)
4163 return 1;
4165 /* If we haven't been able to decide at this point, there nothing more we
4166 can check ourselves here. Look at the base type if we have one. */
4167 else if (TREE_CODE (type) == INTEGER_TYPE && TREE_TYPE (type) != 0)
4168 return int_fits_type_p (c, TREE_TYPE (type));
4170 /* Or to force_fit_type, if nothing else. */
4171 else
4173 c = copy_node (c);
4174 TREE_TYPE (c) = type;
4175 return !force_fit_type (c, 0);
4179 /* Returns true if T is, contains, or refers to a type with variable
4180 size. This concept is more general than that of C99 'variably
4181 modified types': in C99, a struct type is never variably modified
4182 because a VLA may not appear as a structure member. However, in
4183 GNU C code like:
4185 struct S { int i[f()]; };
4187 is valid, and other languages may define similar constructs. */
4189 bool
4190 variably_modified_type_p (type)
4191 tree type;
4193 if (type == error_mark_node)
4194 return false;
4196 /* If TYPE itself has variable size, it is variably modified.
4198 We do not yet have a representation of the C99 '[*]' syntax.
4199 When a representation is chosen, this function should be modified
4200 to test for that case as well. */
4201 if (TYPE_SIZE (type)
4202 && TYPE_SIZE (type) != error_mark_node
4203 && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4204 return true;
4206 /* If TYPE is a pointer or reference, it is variably modified if
4207 the type pointed to is variably modified. */
4208 if ((TREE_CODE (type) == POINTER_TYPE
4209 || TREE_CODE (type) == REFERENCE_TYPE)
4210 && variably_modified_type_p (TREE_TYPE (type)))
4211 return true;
4213 /* If TYPE is an array, it is variably modified if the array
4214 elements are. (Note that the VLA case has already been checked
4215 above.) */
4216 if (TREE_CODE (type) == ARRAY_TYPE
4217 && variably_modified_type_p (TREE_TYPE (type)))
4218 return true;
4220 /* If TYPE is a function type, it is variably modified if any of the
4221 parameters or the return type are variably modified. */
4222 if (TREE_CODE (type) == FUNCTION_TYPE
4223 || TREE_CODE (type) == METHOD_TYPE)
4225 tree parm;
4227 if (variably_modified_type_p (TREE_TYPE (type)))
4228 return true;
4229 for (parm = TYPE_ARG_TYPES (type);
4230 parm && parm != void_list_node;
4231 parm = TREE_CHAIN (parm))
4232 if (variably_modified_type_p (TREE_VALUE (parm)))
4233 return true;
4236 /* The current language may have other cases to check, but in general,
4237 all other types are not variably modified. */
4238 return (*lang_hooks.tree_inlining.var_mod_type_p) (type);
4241 /* Given a DECL or TYPE, return the scope in which it was declared, or
4242 NULL_TREE if there is no containing scope. */
4244 tree
4245 get_containing_scope (t)
4246 tree t;
4248 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
4251 /* Return the innermost context enclosing DECL that is
4252 a FUNCTION_DECL, or zero if none. */
4254 tree
4255 decl_function_context (decl)
4256 tree decl;
4258 tree context;
4260 if (TREE_CODE (decl) == ERROR_MARK)
4261 return 0;
4263 if (TREE_CODE (decl) == SAVE_EXPR)
4264 context = SAVE_EXPR_CONTEXT (decl);
4266 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
4267 where we look up the function at runtime. Such functions always take
4268 a first argument of type 'pointer to real context'.
4270 C++ should really be fixed to use DECL_CONTEXT for the real context,
4271 and use something else for the "virtual context". */
4272 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
4273 context
4274 = TYPE_MAIN_VARIANT
4275 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
4276 else
4277 context = DECL_CONTEXT (decl);
4279 while (context && TREE_CODE (context) != FUNCTION_DECL)
4281 if (TREE_CODE (context) == BLOCK)
4282 context = BLOCK_SUPERCONTEXT (context);
4283 else
4284 context = get_containing_scope (context);
4287 return context;
4290 /* Return the innermost context enclosing DECL that is
4291 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
4292 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
4294 tree
4295 decl_type_context (decl)
4296 tree decl;
4298 tree context = DECL_CONTEXT (decl);
4300 while (context)
4302 if (TREE_CODE (context) == NAMESPACE_DECL)
4303 return NULL_TREE;
4305 if (TREE_CODE (context) == RECORD_TYPE
4306 || TREE_CODE (context) == UNION_TYPE
4307 || TREE_CODE (context) == QUAL_UNION_TYPE)
4308 return context;
4310 if (TREE_CODE (context) == TYPE_DECL
4311 || TREE_CODE (context) == FUNCTION_DECL)
4312 context = DECL_CONTEXT (context);
4314 else if (TREE_CODE (context) == BLOCK)
4315 context = BLOCK_SUPERCONTEXT (context);
4317 else
4318 /* Unhandled CONTEXT!? */
4319 abort ();
4321 return NULL_TREE;
4324 /* CALL is a CALL_EXPR. Return the declaration for the function
4325 called, or NULL_TREE if the called function cannot be
4326 determined. */
4328 tree
4329 get_callee_fndecl (call)
4330 tree call;
4332 tree addr;
4334 /* It's invalid to call this function with anything but a
4335 CALL_EXPR. */
4336 if (TREE_CODE (call) != CALL_EXPR)
4337 abort ();
4339 /* The first operand to the CALL is the address of the function
4340 called. */
4341 addr = TREE_OPERAND (call, 0);
4343 STRIP_NOPS (addr);
4345 /* If this is a readonly function pointer, extract its initial value. */
4346 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
4347 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
4348 && DECL_INITIAL (addr))
4349 addr = DECL_INITIAL (addr);
4351 /* If the address is just `&f' for some function `f', then we know
4352 that `f' is being called. */
4353 if (TREE_CODE (addr) == ADDR_EXPR
4354 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
4355 return TREE_OPERAND (addr, 0);
4357 /* We couldn't figure out what was being called. */
4358 return NULL_TREE;
4361 /* Print debugging information about tree nodes generated during the compile,
4362 and any language-specific information. */
4364 void
4365 dump_tree_statistics ()
4367 #ifdef GATHER_STATISTICS
4368 int i;
4369 int total_nodes, total_bytes;
4370 #endif
4372 fprintf (stderr, "\n??? tree nodes created\n\n");
4373 #ifdef GATHER_STATISTICS
4374 fprintf (stderr, "Kind Nodes Bytes\n");
4375 fprintf (stderr, "-------------------------------------\n");
4376 total_nodes = total_bytes = 0;
4377 for (i = 0; i < (int) all_kinds; i++)
4379 fprintf (stderr, "%-20s %6d %9d\n", tree_node_kind_names[i],
4380 tree_node_counts[i], tree_node_sizes[i]);
4381 total_nodes += tree_node_counts[i];
4382 total_bytes += tree_node_sizes[i];
4384 fprintf (stderr, "-------------------------------------\n");
4385 fprintf (stderr, "%-20s %6d %9d\n", "Total", total_nodes, total_bytes);
4386 fprintf (stderr, "-------------------------------------\n");
4387 #else
4388 fprintf (stderr, "(No per-node statistics)\n");
4389 #endif
4390 print_type_hash_statistics ();
4391 (*lang_hooks.print_statistics) ();
4394 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
4396 const char *flag_random_seed;
4398 /* Set up a default flag_random_seed value, if there wasn't one already. */
4400 void
4401 default_flag_random_seed (void)
4403 unsigned HOST_WIDE_INT value;
4404 char *new_random_seed;
4406 if (flag_random_seed != NULL)
4407 return;
4409 /* Get some more or less random data. */
4410 #ifdef HAVE_GETTIMEOFDAY
4412 struct timeval tv;
4414 gettimeofday (&tv, NULL);
4415 value = (((unsigned HOST_WIDE_INT) tv.tv_usec << 16)
4416 ^ tv.tv_sec ^ getpid ());
4418 #else
4419 value = getpid ();
4420 #endif
4422 /* This slightly overestimates the space required. */
4423 new_random_seed = xmalloc (HOST_BITS_PER_WIDE_INT / 3 + 2);
4424 sprintf (new_random_seed, HOST_WIDE_INT_PRINT_UNSIGNED, value);
4425 flag_random_seed = new_random_seed;
4428 /* Appends 6 random characters to TEMPLATE to (hopefully) avoid name
4429 clashes in cases where we can't reliably choose a unique name.
4431 Derived from mkstemp.c in libiberty. */
4433 static void
4434 append_random_chars (template)
4435 char *template;
4437 static const char letters[]
4438 = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789";
4439 unsigned HOST_WIDE_INT v;
4440 size_t i;
4442 default_flag_random_seed ();
4444 /* This isn't a very good hash, but it does guarantee no collisions
4445 when the random string is generated by the code above and the time
4446 delta is small. */
4447 v = 0;
4448 for (i = 0; i < strlen (flag_random_seed); i++)
4449 v = (v << 4) ^ (v >> (HOST_BITS_PER_WIDE_INT - 4)) ^ flag_random_seed[i];
4451 template += strlen (template);
4453 /* Fill in the random bits. */
4454 template[0] = letters[v % 62];
4455 v /= 62;
4456 template[1] = letters[v % 62];
4457 v /= 62;
4458 template[2] = letters[v % 62];
4459 v /= 62;
4460 template[3] = letters[v % 62];
4461 v /= 62;
4462 template[4] = letters[v % 62];
4463 v /= 62;
4464 template[5] = letters[v % 62];
4466 template[6] = '\0';
4469 /* P is a string that will be used in a symbol. Mask out any characters
4470 that are not valid in that context. */
4472 void
4473 clean_symbol_name (p)
4474 char *p;
4476 for (; *p; p++)
4477 if (! (ISALNUM (*p)
4478 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
4479 || *p == '$'
4480 #endif
4481 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
4482 || *p == '.'
4483 #endif
4485 *p = '_';
4488 /* Generate a name for a function unique to this translation unit.
4489 TYPE is some string to identify the purpose of this function to the
4490 linker or collect2. */
4492 tree
4493 get_file_function_name_long (type)
4494 const char *type;
4496 char *buf;
4497 const char *p;
4498 char *q;
4500 if (first_global_object_name)
4501 p = first_global_object_name;
4502 else
4504 /* We don't have anything that we know to be unique to this translation
4505 unit, so use what we do have and throw in some randomness. */
4507 const char *name = weak_global_object_name;
4508 const char *file = main_input_filename;
4510 if (! name)
4511 name = "";
4512 if (! file)
4513 file = input_filename;
4515 q = (char *) alloca (7 + strlen (name) + strlen (file));
4517 sprintf (q, "%s%s", name, file);
4518 append_random_chars (q);
4519 p = q;
4522 buf = (char *) alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p)
4523 + strlen (type));
4525 /* Set up the name of the file-level functions we may need.
4526 Use a global object (which is already required to be unique over
4527 the program) rather than the file name (which imposes extra
4528 constraints). */
4529 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
4531 /* Don't need to pull weird characters out of global names. */
4532 if (p != first_global_object_name)
4533 clean_symbol_name (buf + 11);
4535 return get_identifier (buf);
4538 /* If KIND=='I', return a suitable global initializer (constructor) name.
4539 If KIND=='D', return a suitable global clean-up (destructor) name. */
4541 tree
4542 get_file_function_name (kind)
4543 int kind;
4545 char p[2];
4547 p[0] = kind;
4548 p[1] = 0;
4550 return get_file_function_name_long (p);
4553 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
4554 The result is placed in BUFFER (which has length BIT_SIZE),
4555 with one bit in each char ('\000' or '\001').
4557 If the constructor is constant, NULL_TREE is returned.
4558 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
4560 tree
4561 get_set_constructor_bits (init, buffer, bit_size)
4562 tree init;
4563 char *buffer;
4564 int bit_size;
4566 int i;
4567 tree vals;
4568 HOST_WIDE_INT domain_min
4569 = tree_low_cst (TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (init))), 0);
4570 tree non_const_bits = NULL_TREE;
4572 for (i = 0; i < bit_size; i++)
4573 buffer[i] = 0;
4575 for (vals = TREE_OPERAND (init, 1);
4576 vals != NULL_TREE; vals = TREE_CHAIN (vals))
4578 if (!host_integerp (TREE_VALUE (vals), 0)
4579 || (TREE_PURPOSE (vals) != NULL_TREE
4580 && !host_integerp (TREE_PURPOSE (vals), 0)))
4581 non_const_bits
4582 = tree_cons (TREE_PURPOSE (vals), TREE_VALUE (vals), non_const_bits);
4583 else if (TREE_PURPOSE (vals) != NULL_TREE)
4585 /* Set a range of bits to ones. */
4586 HOST_WIDE_INT lo_index
4587 = tree_low_cst (TREE_PURPOSE (vals), 0) - domain_min;
4588 HOST_WIDE_INT hi_index
4589 = tree_low_cst (TREE_VALUE (vals), 0) - domain_min;
4591 if (lo_index < 0 || lo_index >= bit_size
4592 || hi_index < 0 || hi_index >= bit_size)
4593 abort ();
4594 for (; lo_index <= hi_index; lo_index++)
4595 buffer[lo_index] = 1;
4597 else
4599 /* Set a single bit to one. */
4600 HOST_WIDE_INT index
4601 = tree_low_cst (TREE_VALUE (vals), 0) - domain_min;
4602 if (index < 0 || index >= bit_size)
4604 error ("invalid initializer for bit string");
4605 return NULL_TREE;
4607 buffer[index] = 1;
4610 return non_const_bits;
4613 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
4614 The result is placed in BUFFER (which is an array of bytes).
4615 If the constructor is constant, NULL_TREE is returned.
4616 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
4618 tree
4619 get_set_constructor_bytes (init, buffer, wd_size)
4620 tree init;
4621 unsigned char *buffer;
4622 int wd_size;
4624 int i;
4625 int set_word_size = BITS_PER_UNIT;
4626 int bit_size = wd_size * set_word_size;
4627 int bit_pos = 0;
4628 unsigned char *bytep = buffer;
4629 char *bit_buffer = (char *) alloca (bit_size);
4630 tree non_const_bits = get_set_constructor_bits (init, bit_buffer, bit_size);
4632 for (i = 0; i < wd_size; i++)
4633 buffer[i] = 0;
4635 for (i = 0; i < bit_size; i++)
4637 if (bit_buffer[i])
4639 if (BYTES_BIG_ENDIAN)
4640 *bytep |= (1 << (set_word_size - 1 - bit_pos));
4641 else
4642 *bytep |= 1 << bit_pos;
4644 bit_pos++;
4645 if (bit_pos >= set_word_size)
4646 bit_pos = 0, bytep++;
4648 return non_const_bits;
4651 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
4652 /* Complain that the tree code of NODE does not match the expected CODE.
4653 FILE, LINE, and FUNCTION are of the caller. */
4655 void
4656 tree_check_failed (node, code, file, line, function)
4657 const tree node;
4658 enum tree_code code;
4659 const char *file;
4660 int line;
4661 const char *function;
4663 internal_error ("tree check: expected %s, have %s in %s, at %s:%d",
4664 tree_code_name[code], tree_code_name[TREE_CODE (node)],
4665 function, trim_filename (file), line);
4668 /* Similar to above, except that we check for a class of tree
4669 code, given in CL. */
4671 void
4672 tree_class_check_failed (node, cl, file, line, function)
4673 const tree node;
4674 int cl;
4675 const char *file;
4676 int line;
4677 const char *function;
4679 internal_error
4680 ("tree check: expected class '%c', have '%c' (%s) in %s, at %s:%d",
4681 cl, TREE_CODE_CLASS (TREE_CODE (node)),
4682 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
4685 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
4686 (dynamically sized) vector. */
4688 void
4689 tree_vec_elt_check_failed (idx, len, file, line, function)
4690 int idx;
4691 int len;
4692 const char *file;
4693 int line;
4694 const char *function;
4696 internal_error
4697 ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
4698 idx + 1, len, function, trim_filename (file), line);
4701 /* Similar to above, except that the check is for the bounds of the operand
4702 vector of an expression node. */
4704 void
4705 tree_operand_check_failed (idx, code, file, line, function)
4706 int idx;
4707 enum tree_code code;
4708 const char *file;
4709 int line;
4710 const char *function;
4712 internal_error
4713 ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
4714 idx + 1, tree_code_name[code], TREE_CODE_LENGTH (code),
4715 function, trim_filename (file), line);
4717 #endif /* ENABLE_TREE_CHECKING */
4719 /* For a new vector type node T, build the information necessary for
4720 debugging output. */
4722 static void
4723 finish_vector_type (t)
4724 tree t;
4726 layout_type (t);
4729 tree index = build_int_2 (TYPE_VECTOR_SUBPARTS (t) - 1, 0);
4730 tree array = build_array_type (TREE_TYPE (t),
4731 build_index_type (index));
4732 tree rt = make_node (RECORD_TYPE);
4734 TYPE_FIELDS (rt) = build_decl (FIELD_DECL, get_identifier ("f"), array);
4735 DECL_CONTEXT (TYPE_FIELDS (rt)) = rt;
4736 layout_type (rt);
4737 TYPE_DEBUG_REPRESENTATION_TYPE (t) = rt;
4738 /* In dwarfout.c, type lookup uses TYPE_UID numbers. We want to output
4739 the representation type, and we want to find that die when looking up
4740 the vector type. This is most easily achieved by making the TYPE_UID
4741 numbers equal. */
4742 TYPE_UID (rt) = TYPE_UID (t);
4746 /* Create nodes for all integer types (and error_mark_node) using the sizes
4747 of C datatypes. The caller should call set_sizetype soon after calling
4748 this function to select one of the types as sizetype. */
4750 void
4751 build_common_tree_nodes (signed_char)
4752 int signed_char;
4754 error_mark_node = make_node (ERROR_MARK);
4755 TREE_TYPE (error_mark_node) = error_mark_node;
4757 initialize_sizetypes ();
4759 /* Define both `signed char' and `unsigned char'. */
4760 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
4761 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
4763 /* Define `char', which is like either `signed char' or `unsigned char'
4764 but not the same as either. */
4765 char_type_node
4766 = (signed_char
4767 ? make_signed_type (CHAR_TYPE_SIZE)
4768 : make_unsigned_type (CHAR_TYPE_SIZE));
4770 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
4771 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
4772 integer_type_node = make_signed_type (INT_TYPE_SIZE);
4773 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
4774 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
4775 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
4776 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
4777 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
4779 intQI_type_node = make_signed_type (GET_MODE_BITSIZE (QImode));
4780 intHI_type_node = make_signed_type (GET_MODE_BITSIZE (HImode));
4781 intSI_type_node = make_signed_type (GET_MODE_BITSIZE (SImode));
4782 intDI_type_node = make_signed_type (GET_MODE_BITSIZE (DImode));
4783 intTI_type_node = make_signed_type (GET_MODE_BITSIZE (TImode));
4785 unsigned_intQI_type_node = make_unsigned_type (GET_MODE_BITSIZE (QImode));
4786 unsigned_intHI_type_node = make_unsigned_type (GET_MODE_BITSIZE (HImode));
4787 unsigned_intSI_type_node = make_unsigned_type (GET_MODE_BITSIZE (SImode));
4788 unsigned_intDI_type_node = make_unsigned_type (GET_MODE_BITSIZE (DImode));
4789 unsigned_intTI_type_node = make_unsigned_type (GET_MODE_BITSIZE (TImode));
4792 /* Call this function after calling build_common_tree_nodes and set_sizetype.
4793 It will create several other common tree nodes. */
4795 void
4796 build_common_tree_nodes_2 (short_double)
4797 int short_double;
4799 /* Define these next since types below may used them. */
4800 integer_zero_node = build_int_2 (0, 0);
4801 integer_one_node = build_int_2 (1, 0);
4802 integer_minus_one_node = build_int_2 (-1, -1);
4804 size_zero_node = size_int (0);
4805 size_one_node = size_int (1);
4806 bitsize_zero_node = bitsize_int (0);
4807 bitsize_one_node = bitsize_int (1);
4808 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
4810 void_type_node = make_node (VOID_TYPE);
4811 layout_type (void_type_node);
4813 /* We are not going to have real types in C with less than byte alignment,
4814 so we might as well not have any types that claim to have it. */
4815 TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
4816 TYPE_USER_ALIGN (void_type_node) = 0;
4818 null_pointer_node = build_int_2 (0, 0);
4819 TREE_TYPE (null_pointer_node) = build_pointer_type (void_type_node);
4820 layout_type (TREE_TYPE (null_pointer_node));
4822 ptr_type_node = build_pointer_type (void_type_node);
4823 const_ptr_type_node
4824 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
4826 float_type_node = make_node (REAL_TYPE);
4827 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
4828 layout_type (float_type_node);
4830 double_type_node = make_node (REAL_TYPE);
4831 if (short_double)
4832 TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
4833 else
4834 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
4835 layout_type (double_type_node);
4837 long_double_type_node = make_node (REAL_TYPE);
4838 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
4839 layout_type (long_double_type_node);
4841 complex_integer_type_node = make_node (COMPLEX_TYPE);
4842 TREE_TYPE (complex_integer_type_node) = integer_type_node;
4843 layout_type (complex_integer_type_node);
4845 complex_float_type_node = make_node (COMPLEX_TYPE);
4846 TREE_TYPE (complex_float_type_node) = float_type_node;
4847 layout_type (complex_float_type_node);
4849 complex_double_type_node = make_node (COMPLEX_TYPE);
4850 TREE_TYPE (complex_double_type_node) = double_type_node;
4851 layout_type (complex_double_type_node);
4853 complex_long_double_type_node = make_node (COMPLEX_TYPE);
4854 TREE_TYPE (complex_long_double_type_node) = long_double_type_node;
4855 layout_type (complex_long_double_type_node);
4858 tree t;
4859 BUILD_VA_LIST_TYPE (t);
4861 /* Many back-ends define record types without seting TYPE_NAME.
4862 If we copied the record type here, we'd keep the original
4863 record type without a name. This breaks name mangling. So,
4864 don't copy record types and let c_common_nodes_and_builtins()
4865 declare the type to be __builtin_va_list. */
4866 if (TREE_CODE (t) != RECORD_TYPE)
4867 t = build_type_copy (t);
4869 va_list_type_node = t;
4872 unsigned_V4SI_type_node
4873 = make_vector (V4SImode, unsigned_intSI_type_node, 1);
4874 unsigned_V2HI_type_node
4875 = make_vector (V2HImode, unsigned_intHI_type_node, 1);
4876 unsigned_V2SI_type_node
4877 = make_vector (V2SImode, unsigned_intSI_type_node, 1);
4878 unsigned_V2DI_type_node
4879 = make_vector (V2DImode, unsigned_intDI_type_node, 1);
4880 unsigned_V4HI_type_node
4881 = make_vector (V4HImode, unsigned_intHI_type_node, 1);
4882 unsigned_V8QI_type_node
4883 = make_vector (V8QImode, unsigned_intQI_type_node, 1);
4884 unsigned_V8HI_type_node
4885 = make_vector (V8HImode, unsigned_intHI_type_node, 1);
4886 unsigned_V16QI_type_node
4887 = make_vector (V16QImode, unsigned_intQI_type_node, 1);
4888 unsigned_V1DI_type_node
4889 = make_vector (V1DImode, unsigned_intDI_type_node, 1);
4891 V16SF_type_node = make_vector (V16SFmode, float_type_node, 0);
4892 V4SF_type_node = make_vector (V4SFmode, float_type_node, 0);
4893 V4SI_type_node = make_vector (V4SImode, intSI_type_node, 0);
4894 V2HI_type_node = make_vector (V2HImode, intHI_type_node, 0);
4895 V2SI_type_node = make_vector (V2SImode, intSI_type_node, 0);
4896 V2DI_type_node = make_vector (V2DImode, intDI_type_node, 0);
4897 V4HI_type_node = make_vector (V4HImode, intHI_type_node, 0);
4898 V8QI_type_node = make_vector (V8QImode, intQI_type_node, 0);
4899 V8HI_type_node = make_vector (V8HImode, intHI_type_node, 0);
4900 V2SF_type_node = make_vector (V2SFmode, float_type_node, 0);
4901 V2DF_type_node = make_vector (V2DFmode, double_type_node, 0);
4902 V16QI_type_node = make_vector (V16QImode, intQI_type_node, 0);
4903 V1DI_type_node = make_vector (V1DImode, intDI_type_node, 0);
4906 /* Returns a vector tree node given a vector mode, the inner type, and
4907 the signness. */
4909 static tree
4910 make_vector (mode, innertype, unsignedp)
4911 enum machine_mode mode;
4912 tree innertype;
4913 int unsignedp;
4915 tree t;
4917 t = make_node (VECTOR_TYPE);
4918 TREE_TYPE (t) = innertype;
4919 TYPE_MODE (t) = mode;
4920 TREE_UNSIGNED (TREE_TYPE (t)) = unsignedp;
4921 finish_vector_type (t);
4923 return t;
4926 /* Given an initializer INIT, return TRUE if INIT is zero or some
4927 aggregate of zeros. Otherwise return FALSE. */
4929 bool
4930 initializer_zerop (init)
4931 tree init;
4933 STRIP_NOPS (init);
4935 switch (TREE_CODE (init))
4937 case INTEGER_CST:
4938 return integer_zerop (init);
4939 case REAL_CST:
4940 return real_zerop (init)
4941 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init));
4942 case COMPLEX_CST:
4943 return integer_zerop (init)
4944 || (real_zerop (init)
4945 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
4946 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init))));
4947 case CONSTRUCTOR:
4949 if (AGGREGATE_TYPE_P (TREE_TYPE (init)))
4951 tree aggr_init = CONSTRUCTOR_ELTS (init);
4953 while (aggr_init)
4955 if (! initializer_zerop (TREE_VALUE (aggr_init)))
4956 return false;
4957 aggr_init = TREE_CHAIN (aggr_init);
4959 return true;
4961 return false;
4963 default:
4964 return false;
4968 #include "gt-tree.h"