* optimize.c (initialize_inlined_parameters): Take FN to which the
[official-gcc.git] / gcc / unroll.c
blob94451e1717bae3c5c74c2ce11e06059645bf3bcf
1 /* Try to unroll loops, and split induction variables.
2 Copyright (C) 1992, 93, 94, 95, 97, 98, 1999 Free Software Foundation, Inc.
3 Contributed by James E. Wilson, Cygnus Support/UC Berkeley.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
22 /* Try to unroll a loop, and split induction variables.
24 Loops for which the number of iterations can be calculated exactly are
25 handled specially. If the number of iterations times the insn_count is
26 less than MAX_UNROLLED_INSNS, then the loop is unrolled completely.
27 Otherwise, we try to unroll the loop a number of times modulo the number
28 of iterations, so that only one exit test will be needed. It is unrolled
29 a number of times approximately equal to MAX_UNROLLED_INSNS divided by
30 the insn count.
32 Otherwise, if the number of iterations can be calculated exactly at
33 run time, and the loop is always entered at the top, then we try to
34 precondition the loop. That is, at run time, calculate how many times
35 the loop will execute, and then execute the loop body a few times so
36 that the remaining iterations will be some multiple of 4 (or 2 if the
37 loop is large). Then fall through to a loop unrolled 4 (or 2) times,
38 with only one exit test needed at the end of the loop.
40 Otherwise, if the number of iterations can not be calculated exactly,
41 not even at run time, then we still unroll the loop a number of times
42 approximately equal to MAX_UNROLLED_INSNS divided by the insn count,
43 but there must be an exit test after each copy of the loop body.
45 For each induction variable, which is dead outside the loop (replaceable)
46 or for which we can easily calculate the final value, if we can easily
47 calculate its value at each place where it is set as a function of the
48 current loop unroll count and the variable's value at loop entry, then
49 the induction variable is split into `N' different variables, one for
50 each copy of the loop body. One variable is live across the backward
51 branch, and the others are all calculated as a function of this variable.
52 This helps eliminate data dependencies, and leads to further opportunities
53 for cse. */
55 /* Possible improvements follow: */
57 /* ??? Add an extra pass somewhere to determine whether unrolling will
58 give any benefit. E.g. after generating all unrolled insns, compute the
59 cost of all insns and compare against cost of insns in rolled loop.
61 - On traditional architectures, unrolling a non-constant bound loop
62 is a win if there is a giv whose only use is in memory addresses, the
63 memory addresses can be split, and hence giv increments can be
64 eliminated.
65 - It is also a win if the loop is executed many times, and preconditioning
66 can be performed for the loop.
67 Add code to check for these and similar cases. */
69 /* ??? Improve control of which loops get unrolled. Could use profiling
70 info to only unroll the most commonly executed loops. Perhaps have
71 a user specifyable option to control the amount of code expansion,
72 or the percent of loops to consider for unrolling. Etc. */
74 /* ??? Look at the register copies inside the loop to see if they form a
75 simple permutation. If so, iterate the permutation until it gets back to
76 the start state. This is how many times we should unroll the loop, for
77 best results, because then all register copies can be eliminated.
78 For example, the lisp nreverse function should be unrolled 3 times
79 while (this)
81 next = this->cdr;
82 this->cdr = prev;
83 prev = this;
84 this = next;
87 ??? The number of times to unroll the loop may also be based on data
88 references in the loop. For example, if we have a loop that references
89 x[i-1], x[i], and x[i+1], we should unroll it a multiple of 3 times. */
91 /* ??? Add some simple linear equation solving capability so that we can
92 determine the number of loop iterations for more complex loops.
93 For example, consider this loop from gdb
94 #define SWAP_TARGET_AND_HOST(buffer,len)
96 char tmp;
97 char *p = (char *) buffer;
98 char *q = ((char *) buffer) + len - 1;
99 int iterations = (len + 1) >> 1;
100 int i;
101 for (p; p < q; p++, q--;)
103 tmp = *q;
104 *q = *p;
105 *p = tmp;
108 Note that:
109 start value = p = &buffer + current_iteration
110 end value = q = &buffer + len - 1 - current_iteration
111 Given the loop exit test of "p < q", then there must be "q - p" iterations,
112 set equal to zero and solve for number of iterations:
113 q - p = len - 1 - 2*current_iteration = 0
114 current_iteration = (len - 1) / 2
115 Hence, there are (len - 1) / 2 (rounded up to the nearest integer)
116 iterations of this loop. */
118 /* ??? Currently, no labels are marked as loop invariant when doing loop
119 unrolling. This is because an insn inside the loop, that loads the address
120 of a label inside the loop into a register, could be moved outside the loop
121 by the invariant code motion pass if labels were invariant. If the loop
122 is subsequently unrolled, the code will be wrong because each unrolled
123 body of the loop will use the same address, whereas each actually needs a
124 different address. A case where this happens is when a loop containing
125 a switch statement is unrolled.
127 It would be better to let labels be considered invariant. When we
128 unroll loops here, check to see if any insns using a label local to the
129 loop were moved before the loop. If so, then correct the problem, by
130 moving the insn back into the loop, or perhaps replicate the insn before
131 the loop, one copy for each time the loop is unrolled. */
133 /* The prime factors looked for when trying to unroll a loop by some
134 number which is modulo the total number of iterations. Just checking
135 for these 4 prime factors will find at least one factor for 75% of
136 all numbers theoretically. Practically speaking, this will succeed
137 almost all of the time since loops are generally a multiple of 2
138 and/or 5. */
140 #define NUM_FACTORS 4
142 struct _factor { int factor, count; } factors[NUM_FACTORS]
143 = { {2, 0}, {3, 0}, {5, 0}, {7, 0}};
145 /* Describes the different types of loop unrolling performed. */
147 enum unroll_types { UNROLL_COMPLETELY, UNROLL_MODULO, UNROLL_NAIVE };
149 #include "config.h"
150 #include "system.h"
151 #include "rtl.h"
152 #include "tm_p.h"
153 #include "insn-config.h"
154 #include "integrate.h"
155 #include "regs.h"
156 #include "recog.h"
157 #include "flags.h"
158 #include "function.h"
159 #include "expr.h"
160 #include "loop.h"
161 #include "toplev.h"
163 /* This controls which loops are unrolled, and by how much we unroll
164 them. */
166 #ifndef MAX_UNROLLED_INSNS
167 #define MAX_UNROLLED_INSNS 100
168 #endif
170 /* Indexed by register number, if non-zero, then it contains a pointer
171 to a struct induction for a DEST_REG giv which has been combined with
172 one of more address givs. This is needed because whenever such a DEST_REG
173 giv is modified, we must modify the value of all split address givs
174 that were combined with this DEST_REG giv. */
176 static struct induction **addr_combined_regs;
178 /* Indexed by register number, if this is a splittable induction variable,
179 then this will hold the current value of the register, which depends on the
180 iteration number. */
182 static rtx *splittable_regs;
184 /* Indexed by register number, if this is a splittable induction variable,
185 this indicates if it was made from a derived giv. */
186 static char *derived_regs;
188 /* Indexed by register number, if this is a splittable induction variable,
189 then this will hold the number of instructions in the loop that modify
190 the induction variable. Used to ensure that only the last insn modifying
191 a split iv will update the original iv of the dest. */
193 static int *splittable_regs_updates;
195 /* Forward declarations. */
197 static void init_reg_map PROTO((struct inline_remap *, int));
198 static rtx calculate_giv_inc PROTO((rtx, rtx, int));
199 static rtx initial_reg_note_copy PROTO((rtx, struct inline_remap *));
200 static void final_reg_note_copy PROTO((rtx, struct inline_remap *));
201 static void copy_loop_body PROTO((rtx, rtx, struct inline_remap *, rtx, int,
202 enum unroll_types, rtx, rtx, rtx, rtx));
203 static void iteration_info PROTO((rtx, rtx *, rtx *, rtx, rtx));
204 static int find_splittable_regs PROTO((enum unroll_types, rtx, rtx, rtx, int,
205 unsigned HOST_WIDE_INT));
206 static int find_splittable_givs PROTO((struct iv_class *, enum unroll_types,
207 rtx, rtx, rtx, int));
208 static int reg_dead_after_loop PROTO((rtx, rtx, rtx));
209 static rtx fold_rtx_mult_add PROTO((rtx, rtx, rtx, enum machine_mode));
210 static int verify_addresses PROTO((struct induction *, rtx, int));
211 static rtx remap_split_bivs PROTO((rtx));
212 static rtx find_common_reg_term PROTO((rtx, rtx));
213 static rtx subtract_reg_term PROTO((rtx, rtx));
214 static rtx loop_find_equiv_value PROTO((rtx, rtx));
216 /* Try to unroll one loop and split induction variables in the loop.
218 The loop is described by the arguments LOOP_END, INSN_COUNT, and
219 LOOP_START. END_INSERT_BEFORE indicates where insns should be added
220 which need to be executed when the loop falls through. STRENGTH_REDUCTION_P
221 indicates whether information generated in the strength reduction pass
222 is available.
224 This function is intended to be called from within `strength_reduce'
225 in loop.c. */
227 void
228 unroll_loop (loop_end, insn_count, loop_start, end_insert_before,
229 loop_info, strength_reduce_p)
230 rtx loop_end;
231 int insn_count;
232 rtx loop_start;
233 rtx end_insert_before;
234 struct loop_info *loop_info;
235 int strength_reduce_p;
237 int i, j;
238 unsigned HOST_WIDE_INT temp;
239 int unroll_number = 1;
240 rtx copy_start, copy_end;
241 rtx insn, sequence, pattern, tem;
242 int max_labelno, max_insnno;
243 rtx insert_before;
244 struct inline_remap *map;
245 char *local_label = NULL;
246 char *local_regno;
247 int max_local_regnum;
248 int maxregnum;
249 rtx exit_label = 0;
250 rtx start_label;
251 struct iv_class *bl;
252 int splitting_not_safe = 0;
253 enum unroll_types unroll_type;
254 int loop_preconditioned = 0;
255 rtx safety_label;
256 /* This points to the last real insn in the loop, which should be either
257 a JUMP_INSN (for conditional jumps) or a BARRIER (for unconditional
258 jumps). */
259 rtx last_loop_insn;
261 /* Don't bother unrolling huge loops. Since the minimum factor is
262 two, loops greater than one half of MAX_UNROLLED_INSNS will never
263 be unrolled. */
264 if (insn_count > MAX_UNROLLED_INSNS / 2)
266 if (loop_dump_stream)
267 fprintf (loop_dump_stream, "Unrolling failure: Loop too big.\n");
268 return;
271 /* When emitting debugger info, we can't unroll loops with unequal numbers
272 of block_beg and block_end notes, because that would unbalance the block
273 structure of the function. This can happen as a result of the
274 "if (foo) bar; else break;" optimization in jump.c. */
275 /* ??? Gcc has a general policy that -g is never supposed to change the code
276 that the compiler emits, so we must disable this optimization always,
277 even if debug info is not being output. This is rare, so this should
278 not be a significant performance problem. */
280 if (1 /* write_symbols != NO_DEBUG */)
282 int block_begins = 0;
283 int block_ends = 0;
285 for (insn = loop_start; insn != loop_end; insn = NEXT_INSN (insn))
287 if (GET_CODE (insn) == NOTE)
289 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
290 block_begins++;
291 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
292 block_ends++;
296 if (block_begins != block_ends)
298 if (loop_dump_stream)
299 fprintf (loop_dump_stream,
300 "Unrolling failure: Unbalanced block notes.\n");
301 return;
305 /* Determine type of unroll to perform. Depends on the number of iterations
306 and the size of the loop. */
308 /* If there is no strength reduce info, then set
309 loop_info->n_iterations to zero. This can happen if
310 strength_reduce can't find any bivs in the loop. A value of zero
311 indicates that the number of iterations could not be calculated. */
313 if (! strength_reduce_p)
314 loop_info->n_iterations = 0;
316 if (loop_dump_stream && loop_info->n_iterations > 0)
318 fputs ("Loop unrolling: ", loop_dump_stream);
319 fprintf (loop_dump_stream, HOST_WIDE_INT_PRINT_DEC,
320 loop_info->n_iterations);
321 fputs (" iterations.\n", loop_dump_stream);
324 /* Find and save a pointer to the last nonnote insn in the loop. */
326 last_loop_insn = prev_nonnote_insn (loop_end);
328 /* Calculate how many times to unroll the loop. Indicate whether or
329 not the loop is being completely unrolled. */
331 if (loop_info->n_iterations == 1)
333 /* If number of iterations is exactly 1, then eliminate the compare and
334 branch at the end of the loop since they will never be taken.
335 Then return, since no other action is needed here. */
337 /* If the last instruction is not a BARRIER or a JUMP_INSN, then
338 don't do anything. */
340 if (GET_CODE (last_loop_insn) == BARRIER)
342 /* Delete the jump insn. This will delete the barrier also. */
343 delete_insn (PREV_INSN (last_loop_insn));
345 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
347 #ifdef HAVE_cc0
348 rtx prev = PREV_INSN (last_loop_insn);
349 #endif
350 delete_insn (last_loop_insn);
351 #ifdef HAVE_cc0
352 /* The immediately preceding insn may be a compare which must be
353 deleted. */
354 if (sets_cc0_p (prev))
355 delete_insn (prev);
356 #endif
359 /* Remove the loop notes since this is no longer a loop. */
360 if (loop_info->vtop)
361 delete_insn (loop_info->vtop);
362 if (loop_info->cont)
363 delete_insn (loop_info->cont);
364 if (loop_start)
365 delete_insn (loop_start);
366 if (loop_end)
367 delete_insn (loop_end);
369 return;
371 else if (loop_info->n_iterations > 0
372 && loop_info->n_iterations * insn_count < MAX_UNROLLED_INSNS)
374 unroll_number = loop_info->n_iterations;
375 unroll_type = UNROLL_COMPLETELY;
377 else if (loop_info->n_iterations > 0)
379 /* Try to factor the number of iterations. Don't bother with the
380 general case, only using 2, 3, 5, and 7 will get 75% of all
381 numbers theoretically, and almost all in practice. */
383 for (i = 0; i < NUM_FACTORS; i++)
384 factors[i].count = 0;
386 temp = loop_info->n_iterations;
387 for (i = NUM_FACTORS - 1; i >= 0; i--)
388 while (temp % factors[i].factor == 0)
390 factors[i].count++;
391 temp = temp / factors[i].factor;
394 /* Start with the larger factors first so that we generally
395 get lots of unrolling. */
397 unroll_number = 1;
398 temp = insn_count;
399 for (i = 3; i >= 0; i--)
400 while (factors[i].count--)
402 if (temp * factors[i].factor < MAX_UNROLLED_INSNS)
404 unroll_number *= factors[i].factor;
405 temp *= factors[i].factor;
407 else
408 break;
411 /* If we couldn't find any factors, then unroll as in the normal
412 case. */
413 if (unroll_number == 1)
415 if (loop_dump_stream)
416 fprintf (loop_dump_stream,
417 "Loop unrolling: No factors found.\n");
419 else
420 unroll_type = UNROLL_MODULO;
424 /* Default case, calculate number of times to unroll loop based on its
425 size. */
426 if (unroll_number == 1)
428 if (8 * insn_count < MAX_UNROLLED_INSNS)
429 unroll_number = 8;
430 else if (4 * insn_count < MAX_UNROLLED_INSNS)
431 unroll_number = 4;
432 else
433 unroll_number = 2;
435 unroll_type = UNROLL_NAIVE;
438 /* Now we know how many times to unroll the loop. */
440 if (loop_dump_stream)
441 fprintf (loop_dump_stream,
442 "Unrolling loop %d times.\n", unroll_number);
445 if (unroll_type == UNROLL_COMPLETELY || unroll_type == UNROLL_MODULO)
447 /* Loops of these types can start with jump down to the exit condition
448 in rare circumstances.
450 Consider a pair of nested loops where the inner loop is part
451 of the exit code for the outer loop.
453 In this case jump.c will not duplicate the exit test for the outer
454 loop, so it will start with a jump to the exit code.
456 Then consider if the inner loop turns out to iterate once and
457 only once. We will end up deleting the jumps associated with
458 the inner loop. However, the loop notes are not removed from
459 the instruction stream.
461 And finally assume that we can compute the number of iterations
462 for the outer loop.
464 In this case unroll may want to unroll the outer loop even though
465 it starts with a jump to the outer loop's exit code.
467 We could try to optimize this case, but it hardly seems worth it.
468 Just return without unrolling the loop in such cases. */
470 insn = loop_start;
471 while (GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != JUMP_INSN)
472 insn = NEXT_INSN (insn);
473 if (GET_CODE (insn) == JUMP_INSN)
474 return;
477 if (unroll_type == UNROLL_COMPLETELY)
479 /* Completely unrolling the loop: Delete the compare and branch at
480 the end (the last two instructions). This delete must done at the
481 very end of loop unrolling, to avoid problems with calls to
482 back_branch_in_range_p, which is called by find_splittable_regs.
483 All increments of splittable bivs/givs are changed to load constant
484 instructions. */
486 copy_start = loop_start;
488 /* Set insert_before to the instruction immediately after the JUMP_INSN
489 (or BARRIER), so that any NOTEs between the JUMP_INSN and the end of
490 the loop will be correctly handled by copy_loop_body. */
491 insert_before = NEXT_INSN (last_loop_insn);
493 /* Set copy_end to the insn before the jump at the end of the loop. */
494 if (GET_CODE (last_loop_insn) == BARRIER)
495 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
496 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
498 copy_end = PREV_INSN (last_loop_insn);
499 #ifdef HAVE_cc0
500 /* The instruction immediately before the JUMP_INSN may be a compare
501 instruction which we do not want to copy. */
502 if (sets_cc0_p (PREV_INSN (copy_end)))
503 copy_end = PREV_INSN (copy_end);
504 #endif
506 else
508 /* We currently can't unroll a loop if it doesn't end with a
509 JUMP_INSN. There would need to be a mechanism that recognizes
510 this case, and then inserts a jump after each loop body, which
511 jumps to after the last loop body. */
512 if (loop_dump_stream)
513 fprintf (loop_dump_stream,
514 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
515 return;
518 else if (unroll_type == UNROLL_MODULO)
520 /* Partially unrolling the loop: The compare and branch at the end
521 (the last two instructions) must remain. Don't copy the compare
522 and branch instructions at the end of the loop. Insert the unrolled
523 code immediately before the compare/branch at the end so that the
524 code will fall through to them as before. */
526 copy_start = loop_start;
528 /* Set insert_before to the jump insn at the end of the loop.
529 Set copy_end to before the jump insn at the end of the loop. */
530 if (GET_CODE (last_loop_insn) == BARRIER)
532 insert_before = PREV_INSN (last_loop_insn);
533 copy_end = PREV_INSN (insert_before);
535 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
537 insert_before = last_loop_insn;
538 #ifdef HAVE_cc0
539 /* The instruction immediately before the JUMP_INSN may be a compare
540 instruction which we do not want to copy or delete. */
541 if (sets_cc0_p (PREV_INSN (insert_before)))
542 insert_before = PREV_INSN (insert_before);
543 #endif
544 copy_end = PREV_INSN (insert_before);
546 else
548 /* We currently can't unroll a loop if it doesn't end with a
549 JUMP_INSN. There would need to be a mechanism that recognizes
550 this case, and then inserts a jump after each loop body, which
551 jumps to after the last loop body. */
552 if (loop_dump_stream)
553 fprintf (loop_dump_stream,
554 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
555 return;
558 else
560 /* Normal case: Must copy the compare and branch instructions at the
561 end of the loop. */
563 if (GET_CODE (last_loop_insn) == BARRIER)
565 /* Loop ends with an unconditional jump and a barrier.
566 Handle this like above, don't copy jump and barrier.
567 This is not strictly necessary, but doing so prevents generating
568 unconditional jumps to an immediately following label.
570 This will be corrected below if the target of this jump is
571 not the start_label. */
573 insert_before = PREV_INSN (last_loop_insn);
574 copy_end = PREV_INSN (insert_before);
576 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
578 /* Set insert_before to immediately after the JUMP_INSN, so that
579 NOTEs at the end of the loop will be correctly handled by
580 copy_loop_body. */
581 insert_before = NEXT_INSN (last_loop_insn);
582 copy_end = last_loop_insn;
584 else
586 /* We currently can't unroll a loop if it doesn't end with a
587 JUMP_INSN. There would need to be a mechanism that recognizes
588 this case, and then inserts a jump after each loop body, which
589 jumps to after the last loop body. */
590 if (loop_dump_stream)
591 fprintf (loop_dump_stream,
592 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
593 return;
596 /* If copying exit test branches because they can not be eliminated,
597 then must convert the fall through case of the branch to a jump past
598 the end of the loop. Create a label to emit after the loop and save
599 it for later use. Do not use the label after the loop, if any, since
600 it might be used by insns outside the loop, or there might be insns
601 added before it later by final_[bg]iv_value which must be after
602 the real exit label. */
603 exit_label = gen_label_rtx ();
605 insn = loop_start;
606 while (GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != JUMP_INSN)
607 insn = NEXT_INSN (insn);
609 if (GET_CODE (insn) == JUMP_INSN)
611 /* The loop starts with a jump down to the exit condition test.
612 Start copying the loop after the barrier following this
613 jump insn. */
614 copy_start = NEXT_INSN (insn);
616 /* Splitting induction variables doesn't work when the loop is
617 entered via a jump to the bottom, because then we end up doing
618 a comparison against a new register for a split variable, but
619 we did not execute the set insn for the new register because
620 it was skipped over. */
621 splitting_not_safe = 1;
622 if (loop_dump_stream)
623 fprintf (loop_dump_stream,
624 "Splitting not safe, because loop not entered at top.\n");
626 else
627 copy_start = loop_start;
630 /* This should always be the first label in the loop. */
631 start_label = NEXT_INSN (copy_start);
632 /* There may be a line number note and/or a loop continue note here. */
633 while (GET_CODE (start_label) == NOTE)
634 start_label = NEXT_INSN (start_label);
635 if (GET_CODE (start_label) != CODE_LABEL)
637 /* This can happen as a result of jump threading. If the first insns in
638 the loop test the same condition as the loop's backward jump, or the
639 opposite condition, then the backward jump will be modified to point
640 to elsewhere, and the loop's start label is deleted.
642 This case currently can not be handled by the loop unrolling code. */
644 if (loop_dump_stream)
645 fprintf (loop_dump_stream,
646 "Unrolling failure: unknown insns between BEG note and loop label.\n");
647 return;
649 if (LABEL_NAME (start_label))
651 /* The jump optimization pass must have combined the original start label
652 with a named label for a goto. We can't unroll this case because
653 jumps which go to the named label must be handled differently than
654 jumps to the loop start, and it is impossible to differentiate them
655 in this case. */
656 if (loop_dump_stream)
657 fprintf (loop_dump_stream,
658 "Unrolling failure: loop start label is gone\n");
659 return;
662 if (unroll_type == UNROLL_NAIVE
663 && GET_CODE (last_loop_insn) == BARRIER
664 && GET_CODE (PREV_INSN (last_loop_insn)) == JUMP_INSN
665 && start_label != JUMP_LABEL (PREV_INSN (last_loop_insn)))
667 /* In this case, we must copy the jump and barrier, because they will
668 not be converted to jumps to an immediately following label. */
670 insert_before = NEXT_INSN (last_loop_insn);
671 copy_end = last_loop_insn;
674 if (unroll_type == UNROLL_NAIVE
675 && GET_CODE (last_loop_insn) == JUMP_INSN
676 && start_label != JUMP_LABEL (last_loop_insn))
678 /* ??? The loop ends with a conditional branch that does not branch back
679 to the loop start label. In this case, we must emit an unconditional
680 branch to the loop exit after emitting the final branch.
681 copy_loop_body does not have support for this currently, so we
682 give up. It doesn't seem worthwhile to unroll anyways since
683 unrolling would increase the number of branch instructions
684 executed. */
685 if (loop_dump_stream)
686 fprintf (loop_dump_stream,
687 "Unrolling failure: final conditional branch not to loop start\n");
688 return;
691 /* Allocate a translation table for the labels and insn numbers.
692 They will be filled in as we copy the insns in the loop. */
694 max_labelno = max_label_num ();
695 max_insnno = get_max_uid ();
697 /* Various paths through the unroll code may reach the "egress" label
698 without initializing fields within the map structure.
700 To be safe, we use xcalloc to zero the memory. */
701 map = (struct inline_remap *) xcalloc (1, sizeof (struct inline_remap));
703 /* Allocate the label map. */
705 if (max_labelno > 0)
707 map->label_map = (rtx *) xmalloc (max_labelno * sizeof (rtx));
709 local_label = (char *) xcalloc (max_labelno, sizeof (char));
712 /* Search the loop and mark all local labels, i.e. the ones which have to
713 be distinct labels when copied. For all labels which might be
714 non-local, set their label_map entries to point to themselves.
715 If they happen to be local their label_map entries will be overwritten
716 before the loop body is copied. The label_map entries for local labels
717 will be set to a different value each time the loop body is copied. */
719 for (insn = copy_start; insn != loop_end; insn = NEXT_INSN (insn))
721 rtx note;
723 if (GET_CODE (insn) == CODE_LABEL)
724 local_label[CODE_LABEL_NUMBER (insn)] = 1;
725 else if (GET_CODE (insn) == JUMP_INSN)
727 if (JUMP_LABEL (insn))
728 set_label_in_map (map,
729 CODE_LABEL_NUMBER (JUMP_LABEL (insn)),
730 JUMP_LABEL (insn));
731 else if (GET_CODE (PATTERN (insn)) == ADDR_VEC
732 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
734 rtx pat = PATTERN (insn);
735 int diff_vec_p = GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC;
736 int len = XVECLEN (pat, diff_vec_p);
737 rtx label;
739 for (i = 0; i < len; i++)
741 label = XEXP (XVECEXP (pat, diff_vec_p, i), 0);
742 set_label_in_map (map,
743 CODE_LABEL_NUMBER (label),
744 label);
748 else if ((note = find_reg_note (insn, REG_LABEL, NULL_RTX)))
749 set_label_in_map (map, CODE_LABEL_NUMBER (XEXP (note, 0)),
750 XEXP (note, 0));
753 /* Allocate space for the insn map. */
755 map->insn_map = (rtx *) xmalloc (max_insnno * sizeof (rtx));
757 /* Set this to zero, to indicate that we are doing loop unrolling,
758 not function inlining. */
759 map->inline_target = 0;
761 /* The register and constant maps depend on the number of registers
762 present, so the final maps can't be created until after
763 find_splittable_regs is called. However, they are needed for
764 preconditioning, so we create temporary maps when preconditioning
765 is performed. */
767 /* The preconditioning code may allocate two new pseudo registers. */
768 maxregnum = max_reg_num ();
770 /* local_regno is only valid for regnos < max_local_regnum. */
771 max_local_regnum = maxregnum;
773 /* Allocate and zero out the splittable_regs and addr_combined_regs
774 arrays. These must be zeroed here because they will be used if
775 loop preconditioning is performed, and must be zero for that case.
777 It is safe to do this here, since the extra registers created by the
778 preconditioning code and find_splittable_regs will never be used
779 to access the splittable_regs[] and addr_combined_regs[] arrays. */
781 splittable_regs = (rtx *) xcalloc (maxregnum, sizeof (rtx));
782 derived_regs = (char *) xcalloc (maxregnum, sizeof (char));
783 splittable_regs_updates = (int *) xcalloc (maxregnum, sizeof (int));
784 addr_combined_regs
785 = (struct induction **) xcalloc (maxregnum, sizeof (struct induction *));
786 local_regno = (char *) xcalloc (maxregnum, sizeof (char));
788 /* Mark all local registers, i.e. the ones which are referenced only
789 inside the loop. */
790 if (INSN_UID (copy_end) < max_uid_for_loop)
792 int copy_start_luid = INSN_LUID (copy_start);
793 int copy_end_luid = INSN_LUID (copy_end);
795 /* If a register is used in the jump insn, we must not duplicate it
796 since it will also be used outside the loop. */
797 if (GET_CODE (copy_end) == JUMP_INSN)
798 copy_end_luid--;
800 /* If we have a target that uses cc0, then we also must not duplicate
801 the insn that sets cc0 before the jump insn, if one is present. */
802 #ifdef HAVE_cc0
803 if (GET_CODE (copy_end) == JUMP_INSN && sets_cc0_p (PREV_INSN (copy_end)))
804 copy_end_luid--;
805 #endif
807 /* If copy_start points to the NOTE that starts the loop, then we must
808 use the next luid, because invariant pseudo-regs moved out of the loop
809 have their lifetimes modified to start here, but they are not safe
810 to duplicate. */
811 if (copy_start == loop_start)
812 copy_start_luid++;
814 /* If a pseudo's lifetime is entirely contained within this loop, then we
815 can use a different pseudo in each unrolled copy of the loop. This
816 results in better code. */
817 /* We must limit the generic test to max_reg_before_loop, because only
818 these pseudo registers have valid regno_first_uid info. */
819 for (j = FIRST_PSEUDO_REGISTER; j < max_reg_before_loop; ++j)
820 if (REGNO_FIRST_UID (j) > 0 && REGNO_FIRST_UID (j) <= max_uid_for_loop
821 && uid_luid[REGNO_FIRST_UID (j)] >= copy_start_luid
822 && REGNO_LAST_UID (j) > 0 && REGNO_LAST_UID (j) <= max_uid_for_loop
823 && uid_luid[REGNO_LAST_UID (j)] <= copy_end_luid)
825 /* However, we must also check for loop-carried dependencies.
826 If the value the pseudo has at the end of iteration X is
827 used by iteration X+1, then we can not use a different pseudo
828 for each unrolled copy of the loop. */
829 /* A pseudo is safe if regno_first_uid is a set, and this
830 set dominates all instructions from regno_first_uid to
831 regno_last_uid. */
832 /* ??? This check is simplistic. We would get better code if
833 this check was more sophisticated. */
834 if (set_dominates_use (j, REGNO_FIRST_UID (j), REGNO_LAST_UID (j),
835 copy_start, copy_end))
836 local_regno[j] = 1;
838 if (loop_dump_stream)
840 if (local_regno[j])
841 fprintf (loop_dump_stream, "Marked reg %d as local\n", j);
842 else
843 fprintf (loop_dump_stream, "Did not mark reg %d as local\n",
847 /* Givs that have been created from multiple biv increments always have
848 local registers. */
849 for (j = first_increment_giv; j <= last_increment_giv; j++)
851 local_regno[j] = 1;
852 if (loop_dump_stream)
853 fprintf (loop_dump_stream, "Marked reg %d as local\n", j);
857 /* If this loop requires exit tests when unrolled, check to see if we
858 can precondition the loop so as to make the exit tests unnecessary.
859 Just like variable splitting, this is not safe if the loop is entered
860 via a jump to the bottom. Also, can not do this if no strength
861 reduce info, because precondition_loop_p uses this info. */
863 /* Must copy the loop body for preconditioning before the following
864 find_splittable_regs call since that will emit insns which need to
865 be after the preconditioned loop copies, but immediately before the
866 unrolled loop copies. */
868 /* Also, it is not safe to split induction variables for the preconditioned
869 copies of the loop body. If we split induction variables, then the code
870 assumes that each induction variable can be represented as a function
871 of its initial value and the loop iteration number. This is not true
872 in this case, because the last preconditioned copy of the loop body
873 could be any iteration from the first up to the `unroll_number-1'th,
874 depending on the initial value of the iteration variable. Therefore
875 we can not split induction variables here, because we can not calculate
876 their value. Hence, this code must occur before find_splittable_regs
877 is called. */
879 if (unroll_type == UNROLL_NAIVE && ! splitting_not_safe && strength_reduce_p)
881 rtx initial_value, final_value, increment;
882 enum machine_mode mode;
884 if (precondition_loop_p (loop_start, loop_info,
885 &initial_value, &final_value, &increment,
886 &mode))
888 register rtx diff ;
889 rtx *labels;
890 int abs_inc, neg_inc;
892 map->reg_map = (rtx *) xmalloc (maxregnum * sizeof (rtx));
894 VARRAY_CONST_EQUIV_INIT (map->const_equiv_varray, maxregnum,
895 "unroll_loop");
896 global_const_equiv_varray = map->const_equiv_varray;
898 init_reg_map (map, maxregnum);
900 /* Limit loop unrolling to 4, since this will make 7 copies of
901 the loop body. */
902 if (unroll_number > 4)
903 unroll_number = 4;
905 /* Save the absolute value of the increment, and also whether or
906 not it is negative. */
907 neg_inc = 0;
908 abs_inc = INTVAL (increment);
909 if (abs_inc < 0)
911 abs_inc = - abs_inc;
912 neg_inc = 1;
915 start_sequence ();
917 /* Calculate the difference between the final and initial values.
918 Final value may be a (plus (reg x) (const_int 1)) rtx.
919 Let the following cse pass simplify this if initial value is
920 a constant.
922 We must copy the final and initial values here to avoid
923 improperly shared rtl. */
925 diff = expand_binop (mode, sub_optab, copy_rtx (final_value),
926 copy_rtx (initial_value), NULL_RTX, 0,
927 OPTAB_LIB_WIDEN);
929 /* Now calculate (diff % (unroll * abs (increment))) by using an
930 and instruction. */
931 diff = expand_binop (GET_MODE (diff), and_optab, diff,
932 GEN_INT (unroll_number * abs_inc - 1),
933 NULL_RTX, 0, OPTAB_LIB_WIDEN);
935 /* Now emit a sequence of branches to jump to the proper precond
936 loop entry point. */
938 labels = (rtx *) xmalloc (sizeof (rtx) * unroll_number);
939 for (i = 0; i < unroll_number; i++)
940 labels[i] = gen_label_rtx ();
942 /* Check for the case where the initial value is greater than or
943 equal to the final value. In that case, we want to execute
944 exactly one loop iteration. The code below will fail for this
945 case. This check does not apply if the loop has a NE
946 comparison at the end. */
948 if (loop_info->comparison_code != NE)
950 emit_cmp_and_jump_insns (initial_value, final_value,
951 neg_inc ? LE : GE,
952 NULL_RTX, mode, 0, 0, labels[1]);
953 JUMP_LABEL (get_last_insn ()) = labels[1];
954 LABEL_NUSES (labels[1])++;
957 /* Assuming the unroll_number is 4, and the increment is 2, then
958 for a negative increment: for a positive increment:
959 diff = 0,1 precond 0 diff = 0,7 precond 0
960 diff = 2,3 precond 3 diff = 1,2 precond 1
961 diff = 4,5 precond 2 diff = 3,4 precond 2
962 diff = 6,7 precond 1 diff = 5,6 precond 3 */
964 /* We only need to emit (unroll_number - 1) branches here, the
965 last case just falls through to the following code. */
967 /* ??? This would give better code if we emitted a tree of branches
968 instead of the current linear list of branches. */
970 for (i = 0; i < unroll_number - 1; i++)
972 int cmp_const;
973 enum rtx_code cmp_code;
975 /* For negative increments, must invert the constant compared
976 against, except when comparing against zero. */
977 if (i == 0)
979 cmp_const = 0;
980 cmp_code = EQ;
982 else if (neg_inc)
984 cmp_const = unroll_number - i;
985 cmp_code = GE;
987 else
989 cmp_const = i;
990 cmp_code = LE;
993 emit_cmp_and_jump_insns (diff, GEN_INT (abs_inc * cmp_const),
994 cmp_code, NULL_RTX, mode, 0, 0,
995 labels[i]);
996 JUMP_LABEL (get_last_insn ()) = labels[i];
997 LABEL_NUSES (labels[i])++;
1000 /* If the increment is greater than one, then we need another branch,
1001 to handle other cases equivalent to 0. */
1003 /* ??? This should be merged into the code above somehow to help
1004 simplify the code here, and reduce the number of branches emitted.
1005 For the negative increment case, the branch here could easily
1006 be merged with the `0' case branch above. For the positive
1007 increment case, it is not clear how this can be simplified. */
1009 if (abs_inc != 1)
1011 int cmp_const;
1012 enum rtx_code cmp_code;
1014 if (neg_inc)
1016 cmp_const = abs_inc - 1;
1017 cmp_code = LE;
1019 else
1021 cmp_const = abs_inc * (unroll_number - 1) + 1;
1022 cmp_code = GE;
1025 emit_cmp_and_jump_insns (diff, GEN_INT (cmp_const), cmp_code,
1026 NULL_RTX, mode, 0, 0, labels[0]);
1027 JUMP_LABEL (get_last_insn ()) = labels[0];
1028 LABEL_NUSES (labels[0])++;
1031 sequence = gen_sequence ();
1032 end_sequence ();
1033 emit_insn_before (sequence, loop_start);
1035 /* Only the last copy of the loop body here needs the exit
1036 test, so set copy_end to exclude the compare/branch here,
1037 and then reset it inside the loop when get to the last
1038 copy. */
1040 if (GET_CODE (last_loop_insn) == BARRIER)
1041 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
1042 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
1044 copy_end = PREV_INSN (last_loop_insn);
1045 #ifdef HAVE_cc0
1046 /* The immediately preceding insn may be a compare which we do not
1047 want to copy. */
1048 if (sets_cc0_p (PREV_INSN (copy_end)))
1049 copy_end = PREV_INSN (copy_end);
1050 #endif
1052 else
1053 abort ();
1055 for (i = 1; i < unroll_number; i++)
1057 emit_label_after (labels[unroll_number - i],
1058 PREV_INSN (loop_start));
1060 bzero ((char *) map->insn_map, max_insnno * sizeof (rtx));
1061 bzero ((char *) &VARRAY_CONST_EQUIV (map->const_equiv_varray, 0),
1062 (VARRAY_SIZE (map->const_equiv_varray)
1063 * sizeof (struct const_equiv_data)));
1064 map->const_age = 0;
1066 for (j = 0; j < max_labelno; j++)
1067 if (local_label[j])
1068 set_label_in_map (map, j, gen_label_rtx ());
1070 for (j = FIRST_PSEUDO_REGISTER; j < max_local_regnum; j++)
1071 if (local_regno[j])
1073 map->reg_map[j] = gen_reg_rtx (GET_MODE (regno_reg_rtx[j]));
1074 record_base_value (REGNO (map->reg_map[j]),
1075 regno_reg_rtx[j], 0);
1077 /* The last copy needs the compare/branch insns at the end,
1078 so reset copy_end here if the loop ends with a conditional
1079 branch. */
1081 if (i == unroll_number - 1)
1083 if (GET_CODE (last_loop_insn) == BARRIER)
1084 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
1085 else
1086 copy_end = last_loop_insn;
1089 /* None of the copies are the `last_iteration', so just
1090 pass zero for that parameter. */
1091 copy_loop_body (copy_start, copy_end, map, exit_label, 0,
1092 unroll_type, start_label, loop_end,
1093 loop_start, copy_end);
1095 emit_label_after (labels[0], PREV_INSN (loop_start));
1097 if (GET_CODE (last_loop_insn) == BARRIER)
1099 insert_before = PREV_INSN (last_loop_insn);
1100 copy_end = PREV_INSN (insert_before);
1102 else
1104 insert_before = last_loop_insn;
1105 #ifdef HAVE_cc0
1106 /* The instruction immediately before the JUMP_INSN may be a compare
1107 instruction which we do not want to copy or delete. */
1108 if (sets_cc0_p (PREV_INSN (insert_before)))
1109 insert_before = PREV_INSN (insert_before);
1110 #endif
1111 copy_end = PREV_INSN (insert_before);
1114 /* Set unroll type to MODULO now. */
1115 unroll_type = UNROLL_MODULO;
1116 loop_preconditioned = 1;
1118 /* Clean up. */
1119 free (labels);
1123 /* If reach here, and the loop type is UNROLL_NAIVE, then don't unroll
1124 the loop unless all loops are being unrolled. */
1125 if (unroll_type == UNROLL_NAIVE && ! flag_unroll_all_loops)
1127 if (loop_dump_stream)
1128 fprintf (loop_dump_stream, "Unrolling failure: Naive unrolling not being done.\n");
1129 goto egress;
1132 /* At this point, we are guaranteed to unroll the loop. */
1134 /* Keep track of the unroll factor for the loop. */
1135 loop_info->unroll_number = unroll_number;
1137 /* For each biv and giv, determine whether it can be safely split into
1138 a different variable for each unrolled copy of the loop body.
1139 We precalculate and save this info here, since computing it is
1140 expensive.
1142 Do this before deleting any instructions from the loop, so that
1143 back_branch_in_range_p will work correctly. */
1145 if (splitting_not_safe)
1146 temp = 0;
1147 else
1148 temp = find_splittable_regs (unroll_type, loop_start, loop_end,
1149 end_insert_before, unroll_number,
1150 loop_info->n_iterations);
1152 /* find_splittable_regs may have created some new registers, so must
1153 reallocate the reg_map with the new larger size, and must realloc
1154 the constant maps also. */
1156 maxregnum = max_reg_num ();
1157 map->reg_map = (rtx *) xmalloc (maxregnum * sizeof (rtx));
1159 init_reg_map (map, maxregnum);
1161 if (map->const_equiv_varray == 0)
1162 VARRAY_CONST_EQUIV_INIT (map->const_equiv_varray,
1163 maxregnum + temp * unroll_number * 2,
1164 "unroll_loop");
1165 global_const_equiv_varray = map->const_equiv_varray;
1167 /* Search the list of bivs and givs to find ones which need to be remapped
1168 when split, and set their reg_map entry appropriately. */
1170 for (bl = loop_iv_list; bl; bl = bl->next)
1172 if (REGNO (bl->biv->src_reg) != bl->regno)
1173 map->reg_map[bl->regno] = bl->biv->src_reg;
1174 #if 0
1175 /* Currently, non-reduced/final-value givs are never split. */
1176 for (v = bl->giv; v; v = v->next_iv)
1177 if (REGNO (v->src_reg) != bl->regno)
1178 map->reg_map[REGNO (v->dest_reg)] = v->src_reg;
1179 #endif
1182 /* Use our current register alignment and pointer flags. */
1183 map->regno_pointer_flag = current_function->emit->regno_pointer_flag;
1184 map->regno_pointer_align = current_function->emit->regno_pointer_align;
1186 /* If the loop is being partially unrolled, and the iteration variables
1187 are being split, and are being renamed for the split, then must fix up
1188 the compare/jump instruction at the end of the loop to refer to the new
1189 registers. This compare isn't copied, so the registers used in it
1190 will never be replaced if it isn't done here. */
1192 if (unroll_type == UNROLL_MODULO)
1194 insn = NEXT_INSN (copy_end);
1195 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN)
1196 PATTERN (insn) = remap_split_bivs (PATTERN (insn));
1199 /* For unroll_number times, make a copy of each instruction
1200 between copy_start and copy_end, and insert these new instructions
1201 before the end of the loop. */
1203 for (i = 0; i < unroll_number; i++)
1205 bzero ((char *) map->insn_map, max_insnno * sizeof (rtx));
1206 bzero ((char *) &VARRAY_CONST_EQUIV (map->const_equiv_varray, 0),
1207 VARRAY_SIZE (map->const_equiv_varray) * sizeof (struct const_equiv_data));
1208 map->const_age = 0;
1210 for (j = 0; j < max_labelno; j++)
1211 if (local_label[j])
1212 set_label_in_map (map, j, gen_label_rtx ());
1214 for (j = FIRST_PSEUDO_REGISTER; j < max_local_regnum; j++)
1215 if (local_regno[j])
1217 map->reg_map[j] = gen_reg_rtx (GET_MODE (regno_reg_rtx[j]));
1218 record_base_value (REGNO (map->reg_map[j]),
1219 regno_reg_rtx[j], 0);
1222 /* If loop starts with a branch to the test, then fix it so that
1223 it points to the test of the first unrolled copy of the loop. */
1224 if (i == 0 && loop_start != copy_start)
1226 insn = PREV_INSN (copy_start);
1227 pattern = PATTERN (insn);
1229 tem = get_label_from_map (map,
1230 CODE_LABEL_NUMBER
1231 (XEXP (SET_SRC (pattern), 0)));
1232 SET_SRC (pattern) = gen_rtx_LABEL_REF (VOIDmode, tem);
1234 /* Set the jump label so that it can be used by later loop unrolling
1235 passes. */
1236 JUMP_LABEL (insn) = tem;
1237 LABEL_NUSES (tem)++;
1240 copy_loop_body (copy_start, copy_end, map, exit_label,
1241 i == unroll_number - 1, unroll_type, start_label,
1242 loop_end, insert_before, insert_before);
1245 /* Before deleting any insns, emit a CODE_LABEL immediately after the last
1246 insn to be deleted. This prevents any runaway delete_insn call from
1247 more insns that it should, as it always stops at a CODE_LABEL. */
1249 /* Delete the compare and branch at the end of the loop if completely
1250 unrolling the loop. Deleting the backward branch at the end also
1251 deletes the code label at the start of the loop. This is done at
1252 the very end to avoid problems with back_branch_in_range_p. */
1254 if (unroll_type == UNROLL_COMPLETELY)
1255 safety_label = emit_label_after (gen_label_rtx (), last_loop_insn);
1256 else
1257 safety_label = emit_label_after (gen_label_rtx (), copy_end);
1259 /* Delete all of the original loop instructions. Don't delete the
1260 LOOP_BEG note, or the first code label in the loop. */
1262 insn = NEXT_INSN (copy_start);
1263 while (insn != safety_label)
1265 /* ??? Don't delete named code labels. They will be deleted when the
1266 jump that references them is deleted. Otherwise, we end up deleting
1267 them twice, which causes them to completely disappear instead of turn
1268 into NOTE_INSN_DELETED_LABEL notes. This in turn causes aborts in
1269 dwarfout.c/dwarf2out.c. We could perhaps fix the dwarf*out.c files
1270 to handle deleted labels instead. Or perhaps fix DECL_RTL of the
1271 associated LABEL_DECL to point to one of the new label instances. */
1272 /* ??? Likewise, we can't delete a NOTE_INSN_DELETED_LABEL note. */
1273 if (insn != start_label
1274 && ! (GET_CODE (insn) == CODE_LABEL && LABEL_NAME (insn))
1275 && ! (GET_CODE (insn) == NOTE
1276 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL))
1277 insn = delete_insn (insn);
1278 else
1279 insn = NEXT_INSN (insn);
1282 /* Can now delete the 'safety' label emitted to protect us from runaway
1283 delete_insn calls. */
1284 if (INSN_DELETED_P (safety_label))
1285 abort ();
1286 delete_insn (safety_label);
1288 /* If exit_label exists, emit it after the loop. Doing the emit here
1289 forces it to have a higher INSN_UID than any insn in the unrolled loop.
1290 This is needed so that mostly_true_jump in reorg.c will treat jumps
1291 to this loop end label correctly, i.e. predict that they are usually
1292 not taken. */
1293 if (exit_label)
1294 emit_label_after (exit_label, loop_end);
1296 egress:
1297 if (unroll_type == UNROLL_COMPLETELY)
1299 /* Remove the loop notes since this is no longer a loop. */
1300 if (loop_info->vtop)
1301 delete_insn (loop_info->vtop);
1302 if (loop_info->cont)
1303 delete_insn (loop_info->cont);
1304 if (loop_start)
1305 delete_insn (loop_start);
1306 if (loop_end)
1307 delete_insn (loop_end);
1310 if (map->const_equiv_varray)
1311 VARRAY_FREE (map->const_equiv_varray);
1312 if (map->label_map)
1314 free (map->label_map);
1315 free (local_label);
1317 free (map->insn_map);
1318 free (splittable_regs);
1319 free (derived_regs);
1320 free (splittable_regs_updates);
1321 free (addr_combined_regs);
1322 free (local_regno);
1323 if (map->reg_map)
1324 free (map->reg_map);
1325 free (map);
1328 /* Return true if the loop can be safely, and profitably, preconditioned
1329 so that the unrolled copies of the loop body don't need exit tests.
1331 This only works if final_value, initial_value and increment can be
1332 determined, and if increment is a constant power of 2.
1333 If increment is not a power of 2, then the preconditioning modulo
1334 operation would require a real modulo instead of a boolean AND, and this
1335 is not considered `profitable'. */
1337 /* ??? If the loop is known to be executed very many times, or the machine
1338 has a very cheap divide instruction, then preconditioning is a win even
1339 when the increment is not a power of 2. Use RTX_COST to compute
1340 whether divide is cheap.
1341 ??? A divide by constant doesn't actually need a divide, look at
1342 expand_divmod. The reduced cost of this optimized modulo is not
1343 reflected in RTX_COST. */
1346 precondition_loop_p (loop_start, loop_info,
1347 initial_value, final_value, increment, mode)
1348 rtx loop_start;
1349 struct loop_info *loop_info;
1350 rtx *initial_value, *final_value, *increment;
1351 enum machine_mode *mode;
1354 if (loop_info->n_iterations > 0)
1356 *initial_value = const0_rtx;
1357 *increment = const1_rtx;
1358 *final_value = GEN_INT (loop_info->n_iterations);
1359 *mode = word_mode;
1361 if (loop_dump_stream)
1363 fputs ("Preconditioning: Success, number of iterations known, ",
1364 loop_dump_stream);
1365 fprintf (loop_dump_stream, HOST_WIDE_INT_PRINT_DEC,
1366 loop_info->n_iterations);
1367 fputs (".\n", loop_dump_stream);
1369 return 1;
1372 if (loop_info->initial_value == 0)
1374 if (loop_dump_stream)
1375 fprintf (loop_dump_stream,
1376 "Preconditioning: Could not find initial value.\n");
1377 return 0;
1379 else if (loop_info->increment == 0)
1381 if (loop_dump_stream)
1382 fprintf (loop_dump_stream,
1383 "Preconditioning: Could not find increment value.\n");
1384 return 0;
1386 else if (GET_CODE (loop_info->increment) != CONST_INT)
1388 if (loop_dump_stream)
1389 fprintf (loop_dump_stream,
1390 "Preconditioning: Increment not a constant.\n");
1391 return 0;
1393 else if ((exact_log2 (INTVAL (loop_info->increment)) < 0)
1394 && (exact_log2 (- INTVAL (loop_info->increment)) < 0))
1396 if (loop_dump_stream)
1397 fprintf (loop_dump_stream,
1398 "Preconditioning: Increment not a constant power of 2.\n");
1399 return 0;
1402 /* Unsigned_compare and compare_dir can be ignored here, since they do
1403 not matter for preconditioning. */
1405 if (loop_info->final_value == 0)
1407 if (loop_dump_stream)
1408 fprintf (loop_dump_stream,
1409 "Preconditioning: EQ comparison loop.\n");
1410 return 0;
1413 /* Must ensure that final_value is invariant, so call invariant_p to
1414 check. Before doing so, must check regno against max_reg_before_loop
1415 to make sure that the register is in the range covered by invariant_p.
1416 If it isn't, then it is most likely a biv/giv which by definition are
1417 not invariant. */
1418 if ((GET_CODE (loop_info->final_value) == REG
1419 && REGNO (loop_info->final_value) >= max_reg_before_loop)
1420 || (GET_CODE (loop_info->final_value) == PLUS
1421 && REGNO (XEXP (loop_info->final_value, 0)) >= max_reg_before_loop)
1422 || ! invariant_p (loop_info->final_value))
1424 if (loop_dump_stream)
1425 fprintf (loop_dump_stream,
1426 "Preconditioning: Final value not invariant.\n");
1427 return 0;
1430 /* Fail for floating point values, since the caller of this function
1431 does not have code to deal with them. */
1432 if (GET_MODE_CLASS (GET_MODE (loop_info->final_value)) == MODE_FLOAT
1433 || GET_MODE_CLASS (GET_MODE (loop_info->initial_value)) == MODE_FLOAT)
1435 if (loop_dump_stream)
1436 fprintf (loop_dump_stream,
1437 "Preconditioning: Floating point final or initial value.\n");
1438 return 0;
1441 /* Fail if loop_info->iteration_var is not live before loop_start,
1442 since we need to test its value in the preconditioning code. */
1444 if (uid_luid[REGNO_FIRST_UID (REGNO (loop_info->iteration_var))]
1445 > INSN_LUID (loop_start))
1447 if (loop_dump_stream)
1448 fprintf (loop_dump_stream,
1449 "Preconditioning: Iteration var not live before loop start.\n");
1450 return 0;
1453 /* Note that iteration_info biases the initial value for GIV iterators
1454 such as "while (i-- > 0)" so that we can calculate the number of
1455 iterations just like for BIV iterators.
1457 Also note that the absolute values of initial_value and
1458 final_value are unimportant as only their difference is used for
1459 calculating the number of loop iterations. */
1460 *initial_value = loop_info->initial_value;
1461 *increment = loop_info->increment;
1462 *final_value = loop_info->final_value;
1464 /* Decide what mode to do these calculations in. Choose the larger
1465 of final_value's mode and initial_value's mode, or a full-word if
1466 both are constants. */
1467 *mode = GET_MODE (*final_value);
1468 if (*mode == VOIDmode)
1470 *mode = GET_MODE (*initial_value);
1471 if (*mode == VOIDmode)
1472 *mode = word_mode;
1474 else if (*mode != GET_MODE (*initial_value)
1475 && (GET_MODE_SIZE (*mode)
1476 < GET_MODE_SIZE (GET_MODE (*initial_value))))
1477 *mode = GET_MODE (*initial_value);
1479 /* Success! */
1480 if (loop_dump_stream)
1481 fprintf (loop_dump_stream, "Preconditioning: Successful.\n");
1482 return 1;
1486 /* All pseudo-registers must be mapped to themselves. Two hard registers
1487 must be mapped, VIRTUAL_STACK_VARS_REGNUM and VIRTUAL_INCOMING_ARGS_
1488 REGNUM, to avoid function-inlining specific conversions of these
1489 registers. All other hard regs can not be mapped because they may be
1490 used with different
1491 modes. */
1493 static void
1494 init_reg_map (map, maxregnum)
1495 struct inline_remap *map;
1496 int maxregnum;
1498 int i;
1500 for (i = maxregnum - 1; i > LAST_VIRTUAL_REGISTER; i--)
1501 map->reg_map[i] = regno_reg_rtx[i];
1502 /* Just clear the rest of the entries. */
1503 for (i = LAST_VIRTUAL_REGISTER; i >= 0; i--)
1504 map->reg_map[i] = 0;
1506 map->reg_map[VIRTUAL_STACK_VARS_REGNUM]
1507 = regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM];
1508 map->reg_map[VIRTUAL_INCOMING_ARGS_REGNUM]
1509 = regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM];
1512 /* Strength-reduction will often emit code for optimized biv/givs which
1513 calculates their value in a temporary register, and then copies the result
1514 to the iv. This procedure reconstructs the pattern computing the iv;
1515 verifying that all operands are of the proper form.
1517 PATTERN must be the result of single_set.
1518 The return value is the amount that the giv is incremented by. */
1520 static rtx
1521 calculate_giv_inc (pattern, src_insn, regno)
1522 rtx pattern, src_insn;
1523 int regno;
1525 rtx increment;
1526 rtx increment_total = 0;
1527 int tries = 0;
1529 retry:
1530 /* Verify that we have an increment insn here. First check for a plus
1531 as the set source. */
1532 if (GET_CODE (SET_SRC (pattern)) != PLUS)
1534 /* SR sometimes computes the new giv value in a temp, then copies it
1535 to the new_reg. */
1536 src_insn = PREV_INSN (src_insn);
1537 pattern = PATTERN (src_insn);
1538 if (GET_CODE (SET_SRC (pattern)) != PLUS)
1539 abort ();
1541 /* The last insn emitted is not needed, so delete it to avoid confusing
1542 the second cse pass. This insn sets the giv unnecessarily. */
1543 delete_insn (get_last_insn ());
1546 /* Verify that we have a constant as the second operand of the plus. */
1547 increment = XEXP (SET_SRC (pattern), 1);
1548 if (GET_CODE (increment) != CONST_INT)
1550 /* SR sometimes puts the constant in a register, especially if it is
1551 too big to be an add immed operand. */
1552 src_insn = PREV_INSN (src_insn);
1553 increment = SET_SRC (PATTERN (src_insn));
1555 /* SR may have used LO_SUM to compute the constant if it is too large
1556 for a load immed operand. In this case, the constant is in operand
1557 one of the LO_SUM rtx. */
1558 if (GET_CODE (increment) == LO_SUM)
1559 increment = XEXP (increment, 1);
1561 /* Some ports store large constants in memory and add a REG_EQUAL
1562 note to the store insn. */
1563 else if (GET_CODE (increment) == MEM)
1565 rtx note = find_reg_note (src_insn, REG_EQUAL, 0);
1566 if (note)
1567 increment = XEXP (note, 0);
1570 else if (GET_CODE (increment) == IOR
1571 || GET_CODE (increment) == ASHIFT
1572 || GET_CODE (increment) == PLUS)
1574 /* The rs6000 port loads some constants with IOR.
1575 The alpha port loads some constants with ASHIFT and PLUS. */
1576 rtx second_part = XEXP (increment, 1);
1577 enum rtx_code code = GET_CODE (increment);
1579 src_insn = PREV_INSN (src_insn);
1580 increment = SET_SRC (PATTERN (src_insn));
1581 /* Don't need the last insn anymore. */
1582 delete_insn (get_last_insn ());
1584 if (GET_CODE (second_part) != CONST_INT
1585 || GET_CODE (increment) != CONST_INT)
1586 abort ();
1588 if (code == IOR)
1589 increment = GEN_INT (INTVAL (increment) | INTVAL (second_part));
1590 else if (code == PLUS)
1591 increment = GEN_INT (INTVAL (increment) + INTVAL (second_part));
1592 else
1593 increment = GEN_INT (INTVAL (increment) << INTVAL (second_part));
1596 if (GET_CODE (increment) != CONST_INT)
1597 abort ();
1599 /* The insn loading the constant into a register is no longer needed,
1600 so delete it. */
1601 delete_insn (get_last_insn ());
1604 if (increment_total)
1605 increment_total = GEN_INT (INTVAL (increment_total) + INTVAL (increment));
1606 else
1607 increment_total = increment;
1609 /* Check that the source register is the same as the register we expected
1610 to see as the source. If not, something is seriously wrong. */
1611 if (GET_CODE (XEXP (SET_SRC (pattern), 0)) != REG
1612 || REGNO (XEXP (SET_SRC (pattern), 0)) != regno)
1614 /* Some machines (e.g. the romp), may emit two add instructions for
1615 certain constants, so lets try looking for another add immediately
1616 before this one if we have only seen one add insn so far. */
1618 if (tries == 0)
1620 tries++;
1622 src_insn = PREV_INSN (src_insn);
1623 pattern = PATTERN (src_insn);
1625 delete_insn (get_last_insn ());
1627 goto retry;
1630 abort ();
1633 return increment_total;
1636 /* Copy REG_NOTES, except for insn references, because not all insn_map
1637 entries are valid yet. We do need to copy registers now though, because
1638 the reg_map entries can change during copying. */
1640 static rtx
1641 initial_reg_note_copy (notes, map)
1642 rtx notes;
1643 struct inline_remap *map;
1645 rtx copy;
1647 if (notes == 0)
1648 return 0;
1650 copy = rtx_alloc (GET_CODE (notes));
1651 PUT_MODE (copy, GET_MODE (notes));
1653 if (GET_CODE (notes) == EXPR_LIST)
1654 XEXP (copy, 0) = copy_rtx_and_substitute (XEXP (notes, 0), map, 0);
1655 else if (GET_CODE (notes) == INSN_LIST)
1656 /* Don't substitute for these yet. */
1657 XEXP (copy, 0) = XEXP (notes, 0);
1658 else
1659 abort ();
1661 XEXP (copy, 1) = initial_reg_note_copy (XEXP (notes, 1), map);
1663 return copy;
1666 /* Fixup insn references in copied REG_NOTES. */
1668 static void
1669 final_reg_note_copy (notes, map)
1670 rtx notes;
1671 struct inline_remap *map;
1673 rtx note;
1675 for (note = notes; note; note = XEXP (note, 1))
1676 if (GET_CODE (note) == INSN_LIST)
1677 XEXP (note, 0) = map->insn_map[INSN_UID (XEXP (note, 0))];
1680 /* Copy each instruction in the loop, substituting from map as appropriate.
1681 This is very similar to a loop in expand_inline_function. */
1683 static void
1684 copy_loop_body (copy_start, copy_end, map, exit_label, last_iteration,
1685 unroll_type, start_label, loop_end, insert_before,
1686 copy_notes_from)
1687 rtx copy_start, copy_end;
1688 struct inline_remap *map;
1689 rtx exit_label;
1690 int last_iteration;
1691 enum unroll_types unroll_type;
1692 rtx start_label, loop_end, insert_before, copy_notes_from;
1694 rtx insn, pattern;
1695 rtx set, tem, copy;
1696 int dest_reg_was_split, i;
1697 #ifdef HAVE_cc0
1698 rtx cc0_insn = 0;
1699 #endif
1700 rtx final_label = 0;
1701 rtx giv_inc, giv_dest_reg, giv_src_reg;
1703 /* If this isn't the last iteration, then map any references to the
1704 start_label to final_label. Final label will then be emitted immediately
1705 after the end of this loop body if it was ever used.
1707 If this is the last iteration, then map references to the start_label
1708 to itself. */
1709 if (! last_iteration)
1711 final_label = gen_label_rtx ();
1712 set_label_in_map (map, CODE_LABEL_NUMBER (start_label),
1713 final_label);
1715 else
1716 set_label_in_map (map, CODE_LABEL_NUMBER (start_label), start_label);
1718 start_sequence ();
1720 /* Emit a NOTE_INSN_DELETED to force at least two insns onto the sequence.
1721 Else gen_sequence could return a raw pattern for a jump which we pass
1722 off to emit_insn_before (instead of emit_jump_insn_before) which causes
1723 a variety of losing behaviors later. */
1724 emit_note (0, NOTE_INSN_DELETED);
1726 insn = copy_start;
1729 insn = NEXT_INSN (insn);
1731 map->orig_asm_operands_vector = 0;
1733 switch (GET_CODE (insn))
1735 case INSN:
1736 pattern = PATTERN (insn);
1737 copy = 0;
1738 giv_inc = 0;
1740 /* Check to see if this is a giv that has been combined with
1741 some split address givs. (Combined in the sense that
1742 `combine_givs' in loop.c has put two givs in the same register.)
1743 In this case, we must search all givs based on the same biv to
1744 find the address givs. Then split the address givs.
1745 Do this before splitting the giv, since that may map the
1746 SET_DEST to a new register. */
1748 if ((set = single_set (insn))
1749 && GET_CODE (SET_DEST (set)) == REG
1750 && addr_combined_regs[REGNO (SET_DEST (set))])
1752 struct iv_class *bl;
1753 struct induction *v, *tv;
1754 int regno = REGNO (SET_DEST (set));
1756 v = addr_combined_regs[REGNO (SET_DEST (set))];
1757 bl = reg_biv_class[REGNO (v->src_reg)];
1759 /* Although the giv_inc amount is not needed here, we must call
1760 calculate_giv_inc here since it might try to delete the
1761 last insn emitted. If we wait until later to call it,
1762 we might accidentally delete insns generated immediately
1763 below by emit_unrolled_add. */
1765 if (! derived_regs[regno])
1766 giv_inc = calculate_giv_inc (set, insn, regno);
1768 /* Now find all address giv's that were combined with this
1769 giv 'v'. */
1770 for (tv = bl->giv; tv; tv = tv->next_iv)
1771 if (tv->giv_type == DEST_ADDR && tv->same == v)
1773 int this_giv_inc;
1775 /* If this DEST_ADDR giv was not split, then ignore it. */
1776 if (*tv->location != tv->dest_reg)
1777 continue;
1779 /* Scale this_giv_inc if the multiplicative factors of
1780 the two givs are different. */
1781 this_giv_inc = INTVAL (giv_inc);
1782 if (tv->mult_val != v->mult_val)
1783 this_giv_inc = (this_giv_inc / INTVAL (v->mult_val)
1784 * INTVAL (tv->mult_val));
1786 tv->dest_reg = plus_constant (tv->dest_reg, this_giv_inc);
1787 *tv->location = tv->dest_reg;
1789 if (last_iteration && unroll_type != UNROLL_COMPLETELY)
1791 /* Must emit an insn to increment the split address
1792 giv. Add in the const_adjust field in case there
1793 was a constant eliminated from the address. */
1794 rtx value, dest_reg;
1796 /* tv->dest_reg will be either a bare register,
1797 or else a register plus a constant. */
1798 if (GET_CODE (tv->dest_reg) == REG)
1799 dest_reg = tv->dest_reg;
1800 else
1801 dest_reg = XEXP (tv->dest_reg, 0);
1803 /* Check for shared address givs, and avoid
1804 incrementing the shared pseudo reg more than
1805 once. */
1806 if (! tv->same_insn && ! tv->shared)
1808 /* tv->dest_reg may actually be a (PLUS (REG)
1809 (CONST)) here, so we must call plus_constant
1810 to add the const_adjust amount before calling
1811 emit_unrolled_add below. */
1812 value = plus_constant (tv->dest_reg,
1813 tv->const_adjust);
1815 /* The constant could be too large for an add
1816 immediate, so can't directly emit an insn
1817 here. */
1818 emit_unrolled_add (dest_reg, XEXP (value, 0),
1819 XEXP (value, 1));
1822 /* Reset the giv to be just the register again, in case
1823 it is used after the set we have just emitted.
1824 We must subtract the const_adjust factor added in
1825 above. */
1826 tv->dest_reg = plus_constant (dest_reg,
1827 - tv->const_adjust);
1828 *tv->location = tv->dest_reg;
1833 /* If this is a setting of a splittable variable, then determine
1834 how to split the variable, create a new set based on this split,
1835 and set up the reg_map so that later uses of the variable will
1836 use the new split variable. */
1838 dest_reg_was_split = 0;
1840 if ((set = single_set (insn))
1841 && GET_CODE (SET_DEST (set)) == REG
1842 && splittable_regs[REGNO (SET_DEST (set))])
1844 int regno = REGNO (SET_DEST (set));
1845 int src_regno;
1847 dest_reg_was_split = 1;
1849 giv_dest_reg = SET_DEST (set);
1850 if (derived_regs[regno])
1852 /* ??? This relies on SET_SRC (SET) to be of
1853 the form (plus (reg) (const_int)), and thus
1854 forces recombine_givs to restrict the kind
1855 of giv derivations it does before unrolling. */
1856 giv_src_reg = XEXP (SET_SRC (set), 0);
1857 giv_inc = XEXP (SET_SRC (set), 1);
1859 else
1861 giv_src_reg = giv_dest_reg;
1862 /* Compute the increment value for the giv, if it wasn't
1863 already computed above. */
1864 if (giv_inc == 0)
1865 giv_inc = calculate_giv_inc (set, insn, regno);
1867 src_regno = REGNO (giv_src_reg);
1869 if (unroll_type == UNROLL_COMPLETELY)
1871 /* Completely unrolling the loop. Set the induction
1872 variable to a known constant value. */
1874 /* The value in splittable_regs may be an invariant
1875 value, so we must use plus_constant here. */
1876 splittable_regs[regno]
1877 = plus_constant (splittable_regs[src_regno],
1878 INTVAL (giv_inc));
1880 if (GET_CODE (splittable_regs[regno]) == PLUS)
1882 giv_src_reg = XEXP (splittable_regs[regno], 0);
1883 giv_inc = XEXP (splittable_regs[regno], 1);
1885 else
1887 /* The splittable_regs value must be a REG or a
1888 CONST_INT, so put the entire value in the giv_src_reg
1889 variable. */
1890 giv_src_reg = splittable_regs[regno];
1891 giv_inc = const0_rtx;
1894 else
1896 /* Partially unrolling loop. Create a new pseudo
1897 register for the iteration variable, and set it to
1898 be a constant plus the original register. Except
1899 on the last iteration, when the result has to
1900 go back into the original iteration var register. */
1902 /* Handle bivs which must be mapped to a new register
1903 when split. This happens for bivs which need their
1904 final value set before loop entry. The new register
1905 for the biv was stored in the biv's first struct
1906 induction entry by find_splittable_regs. */
1908 if (regno < max_reg_before_loop
1909 && REG_IV_TYPE (regno) == BASIC_INDUCT)
1911 giv_src_reg = reg_biv_class[regno]->biv->src_reg;
1912 giv_dest_reg = giv_src_reg;
1915 #if 0
1916 /* If non-reduced/final-value givs were split, then
1917 this would have to remap those givs also. See
1918 find_splittable_regs. */
1919 #endif
1921 splittable_regs[regno]
1922 = GEN_INT (INTVAL (giv_inc)
1923 + INTVAL (splittable_regs[src_regno]));
1924 giv_inc = splittable_regs[regno];
1926 /* Now split the induction variable by changing the dest
1927 of this insn to a new register, and setting its
1928 reg_map entry to point to this new register.
1930 If this is the last iteration, and this is the last insn
1931 that will update the iv, then reuse the original dest,
1932 to ensure that the iv will have the proper value when
1933 the loop exits or repeats.
1935 Using splittable_regs_updates here like this is safe,
1936 because it can only be greater than one if all
1937 instructions modifying the iv are always executed in
1938 order. */
1940 if (! last_iteration
1941 || (splittable_regs_updates[regno]-- != 1))
1943 tem = gen_reg_rtx (GET_MODE (giv_src_reg));
1944 giv_dest_reg = tem;
1945 map->reg_map[regno] = tem;
1946 record_base_value (REGNO (tem),
1947 giv_inc == const0_rtx
1948 ? giv_src_reg
1949 : gen_rtx_PLUS (GET_MODE (giv_src_reg),
1950 giv_src_reg, giv_inc),
1953 else
1954 map->reg_map[regno] = giv_src_reg;
1957 /* The constant being added could be too large for an add
1958 immediate, so can't directly emit an insn here. */
1959 emit_unrolled_add (giv_dest_reg, giv_src_reg, giv_inc);
1960 copy = get_last_insn ();
1961 pattern = PATTERN (copy);
1963 else
1965 pattern = copy_rtx_and_substitute (pattern, map, 0);
1966 copy = emit_insn (pattern);
1968 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
1970 #ifdef HAVE_cc0
1971 /* If this insn is setting CC0, it may need to look at
1972 the insn that uses CC0 to see what type of insn it is.
1973 In that case, the call to recog via validate_change will
1974 fail. So don't substitute constants here. Instead,
1975 do it when we emit the following insn.
1977 For example, see the pyr.md file. That machine has signed and
1978 unsigned compares. The compare patterns must check the
1979 following branch insn to see which what kind of compare to
1980 emit.
1982 If the previous insn set CC0, substitute constants on it as
1983 well. */
1984 if (sets_cc0_p (PATTERN (copy)) != 0)
1985 cc0_insn = copy;
1986 else
1988 if (cc0_insn)
1989 try_constants (cc0_insn, map);
1990 cc0_insn = 0;
1991 try_constants (copy, map);
1993 #else
1994 try_constants (copy, map);
1995 #endif
1997 /* Make split induction variable constants `permanent' since we
1998 know there are no backward branches across iteration variable
1999 settings which would invalidate this. */
2000 if (dest_reg_was_split)
2002 int regno = REGNO (SET_DEST (set));
2004 if ((size_t) regno < VARRAY_SIZE (map->const_equiv_varray)
2005 && (VARRAY_CONST_EQUIV (map->const_equiv_varray, regno).age
2006 == map->const_age))
2007 VARRAY_CONST_EQUIV (map->const_equiv_varray, regno).age = -1;
2009 break;
2011 case JUMP_INSN:
2012 pattern = copy_rtx_and_substitute (PATTERN (insn), map, 0);
2013 copy = emit_jump_insn (pattern);
2014 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
2016 if (JUMP_LABEL (insn) == start_label && insn == copy_end
2017 && ! last_iteration)
2019 /* This is a branch to the beginning of the loop; this is the
2020 last insn being copied; and this is not the last iteration.
2021 In this case, we want to change the original fall through
2022 case to be a branch past the end of the loop, and the
2023 original jump label case to fall_through. */
2025 if (invert_exp (pattern, copy))
2027 if (! redirect_exp (&pattern,
2028 get_label_from_map (map,
2029 CODE_LABEL_NUMBER
2030 (JUMP_LABEL (insn))),
2031 exit_label, copy))
2032 abort ();
2034 else
2036 rtx jmp;
2037 rtx lab = gen_label_rtx ();
2038 /* Can't do it by reversing the jump (probably because we
2039 couldn't reverse the conditions), so emit a new
2040 jump_insn after COPY, and redirect the jump around
2041 that. */
2042 jmp = emit_jump_insn_after (gen_jump (exit_label), copy);
2043 jmp = emit_barrier_after (jmp);
2044 emit_label_after (lab, jmp);
2045 LABEL_NUSES (lab) = 0;
2046 if (! redirect_exp (&pattern,
2047 get_label_from_map (map,
2048 CODE_LABEL_NUMBER
2049 (JUMP_LABEL (insn))),
2050 lab, copy))
2051 abort ();
2055 #ifdef HAVE_cc0
2056 if (cc0_insn)
2057 try_constants (cc0_insn, map);
2058 cc0_insn = 0;
2059 #endif
2060 try_constants (copy, map);
2062 /* Set the jump label of COPY correctly to avoid problems with
2063 later passes of unroll_loop, if INSN had jump label set. */
2064 if (JUMP_LABEL (insn))
2066 rtx label = 0;
2068 /* Can't use the label_map for every insn, since this may be
2069 the backward branch, and hence the label was not mapped. */
2070 if ((set = single_set (copy)))
2072 tem = SET_SRC (set);
2073 if (GET_CODE (tem) == LABEL_REF)
2074 label = XEXP (tem, 0);
2075 else if (GET_CODE (tem) == IF_THEN_ELSE)
2077 if (XEXP (tem, 1) != pc_rtx)
2078 label = XEXP (XEXP (tem, 1), 0);
2079 else
2080 label = XEXP (XEXP (tem, 2), 0);
2084 if (label && GET_CODE (label) == CODE_LABEL)
2085 JUMP_LABEL (copy) = label;
2086 else
2088 /* An unrecognizable jump insn, probably the entry jump
2089 for a switch statement. This label must have been mapped,
2090 so just use the label_map to get the new jump label. */
2091 JUMP_LABEL (copy)
2092 = get_label_from_map (map,
2093 CODE_LABEL_NUMBER (JUMP_LABEL (insn)));
2096 /* If this is a non-local jump, then must increase the label
2097 use count so that the label will not be deleted when the
2098 original jump is deleted. */
2099 LABEL_NUSES (JUMP_LABEL (copy))++;
2101 else if (GET_CODE (PATTERN (copy)) == ADDR_VEC
2102 || GET_CODE (PATTERN (copy)) == ADDR_DIFF_VEC)
2104 rtx pat = PATTERN (copy);
2105 int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
2106 int len = XVECLEN (pat, diff_vec_p);
2107 int i;
2109 for (i = 0; i < len; i++)
2110 LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))++;
2113 /* If this used to be a conditional jump insn but whose branch
2114 direction is now known, we must do something special. */
2115 if (condjump_p (insn) && !simplejump_p (insn) && map->last_pc_value)
2117 #ifdef HAVE_cc0
2118 /* If the previous insn set cc0 for us, delete it. */
2119 if (sets_cc0_p (PREV_INSN (copy)))
2120 delete_insn (PREV_INSN (copy));
2121 #endif
2123 /* If this is now a no-op, delete it. */
2124 if (map->last_pc_value == pc_rtx)
2126 /* Don't let delete_insn delete the label referenced here,
2127 because we might possibly need it later for some other
2128 instruction in the loop. */
2129 if (JUMP_LABEL (copy))
2130 LABEL_NUSES (JUMP_LABEL (copy))++;
2131 delete_insn (copy);
2132 if (JUMP_LABEL (copy))
2133 LABEL_NUSES (JUMP_LABEL (copy))--;
2134 copy = 0;
2136 else
2137 /* Otherwise, this is unconditional jump so we must put a
2138 BARRIER after it. We could do some dead code elimination
2139 here, but jump.c will do it just as well. */
2140 emit_barrier ();
2142 break;
2144 case CALL_INSN:
2145 pattern = copy_rtx_and_substitute (PATTERN (insn), map, 0);
2146 copy = emit_call_insn (pattern);
2147 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
2149 /* Because the USAGE information potentially contains objects other
2150 than hard registers, we need to copy it. */
2151 CALL_INSN_FUNCTION_USAGE (copy)
2152 = copy_rtx_and_substitute (CALL_INSN_FUNCTION_USAGE (insn),
2153 map, 0);
2155 #ifdef HAVE_cc0
2156 if (cc0_insn)
2157 try_constants (cc0_insn, map);
2158 cc0_insn = 0;
2159 #endif
2160 try_constants (copy, map);
2162 /* Be lazy and assume CALL_INSNs clobber all hard registers. */
2163 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2164 VARRAY_CONST_EQUIV (map->const_equiv_varray, i).rtx = 0;
2165 break;
2167 case CODE_LABEL:
2168 /* If this is the loop start label, then we don't need to emit a
2169 copy of this label since no one will use it. */
2171 if (insn != start_label)
2173 copy = emit_label (get_label_from_map (map,
2174 CODE_LABEL_NUMBER (insn)));
2175 map->const_age++;
2177 break;
2179 case BARRIER:
2180 copy = emit_barrier ();
2181 break;
2183 case NOTE:
2184 /* VTOP and CONT notes are valid only before the loop exit test.
2185 If placed anywhere else, loop may generate bad code. */
2186 /* BASIC_BLOCK notes exist to stabilize basic block structures with
2187 the associated rtl. We do not want to share the structure in
2188 this new block. */
2190 if (NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED
2191 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK
2192 && ((NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_VTOP
2193 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_CONT)
2194 || (last_iteration && unroll_type != UNROLL_COMPLETELY)))
2195 copy = emit_note (NOTE_SOURCE_FILE (insn),
2196 NOTE_LINE_NUMBER (insn));
2197 else
2198 copy = 0;
2199 break;
2201 default:
2202 abort ();
2205 map->insn_map[INSN_UID (insn)] = copy;
2207 while (insn != copy_end);
2209 /* Now finish coping the REG_NOTES. */
2210 insn = copy_start;
2213 insn = NEXT_INSN (insn);
2214 if ((GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
2215 || GET_CODE (insn) == CALL_INSN)
2216 && map->insn_map[INSN_UID (insn)])
2217 final_reg_note_copy (REG_NOTES (map->insn_map[INSN_UID (insn)]), map);
2219 while (insn != copy_end);
2221 /* There may be notes between copy_notes_from and loop_end. Emit a copy of
2222 each of these notes here, since there may be some important ones, such as
2223 NOTE_INSN_BLOCK_END notes, in this group. We don't do this on the last
2224 iteration, because the original notes won't be deleted.
2226 We can't use insert_before here, because when from preconditioning,
2227 insert_before points before the loop. We can't use copy_end, because
2228 there may be insns already inserted after it (which we don't want to
2229 copy) when not from preconditioning code. */
2231 if (! last_iteration)
2233 for (insn = copy_notes_from; insn != loop_end; insn = NEXT_INSN (insn))
2235 /* VTOP notes are valid only before the loop exit test.
2236 If placed anywhere else, loop may generate bad code.
2237 There is no need to test for NOTE_INSN_LOOP_CONT notes
2238 here, since COPY_NOTES_FROM will be at most one or two (for cc0)
2239 instructions before the last insn in the loop, and if the
2240 end test is that short, there will be a VTOP note between
2241 the CONT note and the test. */
2242 if (GET_CODE (insn) == NOTE
2243 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED
2244 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK
2245 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_VTOP)
2246 emit_note (NOTE_SOURCE_FILE (insn), NOTE_LINE_NUMBER (insn));
2250 if (final_label && LABEL_NUSES (final_label) > 0)
2251 emit_label (final_label);
2253 tem = gen_sequence ();
2254 end_sequence ();
2255 emit_insn_before (tem, insert_before);
2258 /* Emit an insn, using the expand_binop to ensure that a valid insn is
2259 emitted. This will correctly handle the case where the increment value
2260 won't fit in the immediate field of a PLUS insns. */
2262 void
2263 emit_unrolled_add (dest_reg, src_reg, increment)
2264 rtx dest_reg, src_reg, increment;
2266 rtx result;
2268 result = expand_binop (GET_MODE (dest_reg), add_optab, src_reg, increment,
2269 dest_reg, 0, OPTAB_LIB_WIDEN);
2271 if (dest_reg != result)
2272 emit_move_insn (dest_reg, result);
2275 /* Searches the insns between INSN and LOOP_END. Returns 1 if there
2276 is a backward branch in that range that branches to somewhere between
2277 LOOP_START and INSN. Returns 0 otherwise. */
2279 /* ??? This is quadratic algorithm. Could be rewritten to be linear.
2280 In practice, this is not a problem, because this function is seldom called,
2281 and uses a negligible amount of CPU time on average. */
2284 back_branch_in_range_p (insn, loop_start, loop_end)
2285 rtx insn;
2286 rtx loop_start, loop_end;
2288 rtx p, q, target_insn;
2289 rtx orig_loop_end = loop_end;
2291 /* Stop before we get to the backward branch at the end of the loop. */
2292 loop_end = prev_nonnote_insn (loop_end);
2293 if (GET_CODE (loop_end) == BARRIER)
2294 loop_end = PREV_INSN (loop_end);
2296 /* Check in case insn has been deleted, search forward for first non
2297 deleted insn following it. */
2298 while (INSN_DELETED_P (insn))
2299 insn = NEXT_INSN (insn);
2301 /* Check for the case where insn is the last insn in the loop. Deal
2302 with the case where INSN was a deleted loop test insn, in which case
2303 it will now be the NOTE_LOOP_END. */
2304 if (insn == loop_end || insn == orig_loop_end)
2305 return 0;
2307 for (p = NEXT_INSN (insn); p != loop_end; p = NEXT_INSN (p))
2309 if (GET_CODE (p) == JUMP_INSN)
2311 target_insn = JUMP_LABEL (p);
2313 /* Search from loop_start to insn, to see if one of them is
2314 the target_insn. We can't use INSN_LUID comparisons here,
2315 since insn may not have an LUID entry. */
2316 for (q = loop_start; q != insn; q = NEXT_INSN (q))
2317 if (q == target_insn)
2318 return 1;
2322 return 0;
2325 /* Try to generate the simplest rtx for the expression
2326 (PLUS (MULT mult1 mult2) add1). This is used to calculate the initial
2327 value of giv's. */
2329 static rtx
2330 fold_rtx_mult_add (mult1, mult2, add1, mode)
2331 rtx mult1, mult2, add1;
2332 enum machine_mode mode;
2334 rtx temp, mult_res;
2335 rtx result;
2337 /* The modes must all be the same. This should always be true. For now,
2338 check to make sure. */
2339 if ((GET_MODE (mult1) != mode && GET_MODE (mult1) != VOIDmode)
2340 || (GET_MODE (mult2) != mode && GET_MODE (mult2) != VOIDmode)
2341 || (GET_MODE (add1) != mode && GET_MODE (add1) != VOIDmode))
2342 abort ();
2344 /* Ensure that if at least one of mult1/mult2 are constant, then mult2
2345 will be a constant. */
2346 if (GET_CODE (mult1) == CONST_INT)
2348 temp = mult2;
2349 mult2 = mult1;
2350 mult1 = temp;
2353 mult_res = simplify_binary_operation (MULT, mode, mult1, mult2);
2354 if (! mult_res)
2355 mult_res = gen_rtx_MULT (mode, mult1, mult2);
2357 /* Again, put the constant second. */
2358 if (GET_CODE (add1) == CONST_INT)
2360 temp = add1;
2361 add1 = mult_res;
2362 mult_res = temp;
2365 result = simplify_binary_operation (PLUS, mode, add1, mult_res);
2366 if (! result)
2367 result = gen_rtx_PLUS (mode, add1, mult_res);
2369 return result;
2372 /* Searches the list of induction struct's for the biv BL, to try to calculate
2373 the total increment value for one iteration of the loop as a constant.
2375 Returns the increment value as an rtx, simplified as much as possible,
2376 if it can be calculated. Otherwise, returns 0. */
2379 biv_total_increment (bl, loop_start, loop_end)
2380 struct iv_class *bl;
2381 rtx loop_start, loop_end;
2383 struct induction *v;
2384 rtx result;
2386 /* For increment, must check every instruction that sets it. Each
2387 instruction must be executed only once each time through the loop.
2388 To verify this, we check that the insn is always executed, and that
2389 there are no backward branches after the insn that branch to before it.
2390 Also, the insn must have a mult_val of one (to make sure it really is
2391 an increment). */
2393 result = const0_rtx;
2394 for (v = bl->biv; v; v = v->next_iv)
2396 if (v->always_computable && v->mult_val == const1_rtx
2397 && ! v->maybe_multiple)
2398 result = fold_rtx_mult_add (result, const1_rtx, v->add_val, v->mode);
2399 else
2400 return 0;
2403 return result;
2406 /* Determine the initial value of the iteration variable, and the amount
2407 that it is incremented each loop. Use the tables constructed by
2408 the strength reduction pass to calculate these values.
2410 Initial_value and/or increment are set to zero if their values could not
2411 be calculated. */
2413 static void
2414 iteration_info (iteration_var, initial_value, increment, loop_start, loop_end)
2415 rtx iteration_var, *initial_value, *increment;
2416 rtx loop_start, loop_end;
2418 struct iv_class *bl;
2419 #if 0
2420 struct induction *v;
2421 #endif
2423 /* Clear the result values, in case no answer can be found. */
2424 *initial_value = 0;
2425 *increment = 0;
2427 /* The iteration variable can be either a giv or a biv. Check to see
2428 which it is, and compute the variable's initial value, and increment
2429 value if possible. */
2431 /* If this is a new register, can't handle it since we don't have any
2432 reg_iv_type entry for it. */
2433 if ((unsigned) REGNO (iteration_var) >= reg_iv_type->num_elements)
2435 if (loop_dump_stream)
2436 fprintf (loop_dump_stream,
2437 "Loop unrolling: No reg_iv_type entry for iteration var.\n");
2438 return;
2441 /* Reject iteration variables larger than the host wide int size, since they
2442 could result in a number of iterations greater than the range of our
2443 `unsigned HOST_WIDE_INT' variable loop_info->n_iterations. */
2444 else if ((GET_MODE_BITSIZE (GET_MODE (iteration_var))
2445 > HOST_BITS_PER_WIDE_INT))
2447 if (loop_dump_stream)
2448 fprintf (loop_dump_stream,
2449 "Loop unrolling: Iteration var rejected because mode too large.\n");
2450 return;
2452 else if (GET_MODE_CLASS (GET_MODE (iteration_var)) != MODE_INT)
2454 if (loop_dump_stream)
2455 fprintf (loop_dump_stream,
2456 "Loop unrolling: Iteration var not an integer.\n");
2457 return;
2459 else if (REG_IV_TYPE (REGNO (iteration_var)) == BASIC_INDUCT)
2461 /* When reg_iv_type / reg_iv_info is resized for biv increments
2462 that are turned into givs, reg_biv_class is not resized.
2463 So check here that we don't make an out-of-bounds access. */
2464 if (REGNO (iteration_var) >= max_reg_before_loop)
2465 abort ();
2467 /* Grab initial value, only useful if it is a constant. */
2468 bl = reg_biv_class[REGNO (iteration_var)];
2469 *initial_value = bl->initial_value;
2471 *increment = biv_total_increment (bl, loop_start, loop_end);
2473 else if (REG_IV_TYPE (REGNO (iteration_var)) == GENERAL_INDUCT)
2475 HOST_WIDE_INT offset = 0;
2476 struct induction *v = REG_IV_INFO (REGNO (iteration_var));
2478 if (REGNO (v->src_reg) >= max_reg_before_loop)
2479 abort ();
2481 bl = reg_biv_class[REGNO (v->src_reg)];
2483 /* Increment value is mult_val times the increment value of the biv. */
2485 *increment = biv_total_increment (bl, loop_start, loop_end);
2486 if (*increment)
2488 struct induction *biv_inc;
2490 *increment
2491 = fold_rtx_mult_add (v->mult_val, *increment, const0_rtx, v->mode);
2492 /* The caller assumes that one full increment has occured at the
2493 first loop test. But that's not true when the biv is incremented
2494 after the giv is set (which is the usual case), e.g.:
2495 i = 6; do {;} while (i++ < 9) .
2496 Therefore, we bias the initial value by subtracting the amount of
2497 the increment that occurs between the giv set and the giv test. */
2498 for (biv_inc = bl->biv; biv_inc; biv_inc = biv_inc->next_iv)
2500 if (loop_insn_first_p (v->insn, biv_inc->insn))
2501 offset -= INTVAL (biv_inc->add_val);
2503 offset *= INTVAL (v->mult_val);
2505 if (loop_dump_stream)
2506 fprintf (loop_dump_stream,
2507 "Loop unrolling: Giv iterator, initial value bias %ld.\n",
2508 (long) offset);
2509 /* Initial value is mult_val times the biv's initial value plus
2510 add_val. Only useful if it is a constant. */
2511 *initial_value
2512 = fold_rtx_mult_add (v->mult_val,
2513 plus_constant (bl->initial_value, offset),
2514 v->add_val, v->mode);
2516 else
2518 if (loop_dump_stream)
2519 fprintf (loop_dump_stream,
2520 "Loop unrolling: Not basic or general induction var.\n");
2521 return;
2526 /* For each biv and giv, determine whether it can be safely split into
2527 a different variable for each unrolled copy of the loop body. If it
2528 is safe to split, then indicate that by saving some useful info
2529 in the splittable_regs array.
2531 If the loop is being completely unrolled, then splittable_regs will hold
2532 the current value of the induction variable while the loop is unrolled.
2533 It must be set to the initial value of the induction variable here.
2534 Otherwise, splittable_regs will hold the difference between the current
2535 value of the induction variable and the value the induction variable had
2536 at the top of the loop. It must be set to the value 0 here.
2538 Returns the total number of instructions that set registers that are
2539 splittable. */
2541 /* ?? If the loop is only unrolled twice, then most of the restrictions to
2542 constant values are unnecessary, since we can easily calculate increment
2543 values in this case even if nothing is constant. The increment value
2544 should not involve a multiply however. */
2546 /* ?? Even if the biv/giv increment values aren't constant, it may still
2547 be beneficial to split the variable if the loop is only unrolled a few
2548 times, since multiplies by small integers (1,2,3,4) are very cheap. */
2550 static int
2551 find_splittable_regs (unroll_type, loop_start, loop_end, end_insert_before,
2552 unroll_number, n_iterations)
2553 enum unroll_types unroll_type;
2554 rtx loop_start, loop_end;
2555 rtx end_insert_before;
2556 int unroll_number;
2557 unsigned HOST_WIDE_INT n_iterations;
2559 struct iv_class *bl;
2560 struct induction *v;
2561 rtx increment, tem;
2562 rtx biv_final_value;
2563 int biv_splittable;
2564 int result = 0;
2566 for (bl = loop_iv_list; bl; bl = bl->next)
2568 /* Biv_total_increment must return a constant value,
2569 otherwise we can not calculate the split values. */
2571 increment = biv_total_increment (bl, loop_start, loop_end);
2572 if (! increment || GET_CODE (increment) != CONST_INT)
2573 continue;
2575 /* The loop must be unrolled completely, or else have a known number
2576 of iterations and only one exit, or else the biv must be dead
2577 outside the loop, or else the final value must be known. Otherwise,
2578 it is unsafe to split the biv since it may not have the proper
2579 value on loop exit. */
2581 /* loop_number_exit_count is non-zero if the loop has an exit other than
2582 a fall through at the end. */
2584 biv_splittable = 1;
2585 biv_final_value = 0;
2586 if (unroll_type != UNROLL_COMPLETELY
2587 && (loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]]
2588 || unroll_type == UNROLL_NAIVE)
2589 && (uid_luid[REGNO_LAST_UID (bl->regno)] >= INSN_LUID (loop_end)
2590 || ! bl->init_insn
2591 || INSN_UID (bl->init_insn) >= max_uid_for_loop
2592 || (uid_luid[REGNO_FIRST_UID (bl->regno)]
2593 < INSN_LUID (bl->init_insn))
2594 || reg_mentioned_p (bl->biv->dest_reg, SET_SRC (bl->init_set)))
2595 && ! (biv_final_value = final_biv_value (bl, loop_start, loop_end,
2596 n_iterations)))
2597 biv_splittable = 0;
2599 /* If any of the insns setting the BIV don't do so with a simple
2600 PLUS, we don't know how to split it. */
2601 for (v = bl->biv; biv_splittable && v; v = v->next_iv)
2602 if ((tem = single_set (v->insn)) == 0
2603 || GET_CODE (SET_DEST (tem)) != REG
2604 || REGNO (SET_DEST (tem)) != bl->regno
2605 || GET_CODE (SET_SRC (tem)) != PLUS)
2606 biv_splittable = 0;
2608 /* If final value is non-zero, then must emit an instruction which sets
2609 the value of the biv to the proper value. This is done after
2610 handling all of the givs, since some of them may need to use the
2611 biv's value in their initialization code. */
2613 /* This biv is splittable. If completely unrolling the loop, save
2614 the biv's initial value. Otherwise, save the constant zero. */
2616 if (biv_splittable == 1)
2618 if (unroll_type == UNROLL_COMPLETELY)
2620 /* If the initial value of the biv is itself (i.e. it is too
2621 complicated for strength_reduce to compute), or is a hard
2622 register, or it isn't invariant, then we must create a new
2623 pseudo reg to hold the initial value of the biv. */
2625 if (GET_CODE (bl->initial_value) == REG
2626 && (REGNO (bl->initial_value) == bl->regno
2627 || REGNO (bl->initial_value) < FIRST_PSEUDO_REGISTER
2628 || ! invariant_p (bl->initial_value)))
2630 rtx tem = gen_reg_rtx (bl->biv->mode);
2632 record_base_value (REGNO (tem), bl->biv->add_val, 0);
2633 emit_insn_before (gen_move_insn (tem, bl->biv->src_reg),
2634 loop_start);
2636 if (loop_dump_stream)
2637 fprintf (loop_dump_stream, "Biv %d initial value remapped to %d.\n",
2638 bl->regno, REGNO (tem));
2640 splittable_regs[bl->regno] = tem;
2642 else
2643 splittable_regs[bl->regno] = bl->initial_value;
2645 else
2646 splittable_regs[bl->regno] = const0_rtx;
2648 /* Save the number of instructions that modify the biv, so that
2649 we can treat the last one specially. */
2651 splittable_regs_updates[bl->regno] = bl->biv_count;
2652 result += bl->biv_count;
2654 if (loop_dump_stream)
2655 fprintf (loop_dump_stream,
2656 "Biv %d safe to split.\n", bl->regno);
2659 /* Check every giv that depends on this biv to see whether it is
2660 splittable also. Even if the biv isn't splittable, givs which
2661 depend on it may be splittable if the biv is live outside the
2662 loop, and the givs aren't. */
2664 result += find_splittable_givs (bl, unroll_type, loop_start, loop_end,
2665 increment, unroll_number);
2667 /* If final value is non-zero, then must emit an instruction which sets
2668 the value of the biv to the proper value. This is done after
2669 handling all of the givs, since some of them may need to use the
2670 biv's value in their initialization code. */
2671 if (biv_final_value)
2673 /* If the loop has multiple exits, emit the insns before the
2674 loop to ensure that it will always be executed no matter
2675 how the loop exits. Otherwise emit the insn after the loop,
2676 since this is slightly more efficient. */
2677 if (! loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]])
2678 emit_insn_before (gen_move_insn (bl->biv->src_reg,
2679 biv_final_value),
2680 end_insert_before);
2681 else
2683 /* Create a new register to hold the value of the biv, and then
2684 set the biv to its final value before the loop start. The biv
2685 is set to its final value before loop start to ensure that
2686 this insn will always be executed, no matter how the loop
2687 exits. */
2688 rtx tem = gen_reg_rtx (bl->biv->mode);
2689 record_base_value (REGNO (tem), bl->biv->add_val, 0);
2691 emit_insn_before (gen_move_insn (tem, bl->biv->src_reg),
2692 loop_start);
2693 emit_insn_before (gen_move_insn (bl->biv->src_reg,
2694 biv_final_value),
2695 loop_start);
2697 if (loop_dump_stream)
2698 fprintf (loop_dump_stream, "Biv %d mapped to %d for split.\n",
2699 REGNO (bl->biv->src_reg), REGNO (tem));
2701 /* Set up the mapping from the original biv register to the new
2702 register. */
2703 bl->biv->src_reg = tem;
2707 return result;
2710 /* Return 1 if the first and last unrolled copy of the address giv V is valid
2711 for the instruction that is using it. Do not make any changes to that
2712 instruction. */
2714 static int
2715 verify_addresses (v, giv_inc, unroll_number)
2716 struct induction *v;
2717 rtx giv_inc;
2718 int unroll_number;
2720 int ret = 1;
2721 rtx orig_addr = *v->location;
2722 rtx last_addr = plus_constant (v->dest_reg,
2723 INTVAL (giv_inc) * (unroll_number - 1));
2725 /* First check to see if either address would fail. Handle the fact
2726 that we have may have a match_dup. */
2727 if (! validate_replace_rtx (*v->location, v->dest_reg, v->insn)
2728 || ! validate_replace_rtx (*v->location, last_addr, v->insn))
2729 ret = 0;
2731 /* Now put things back the way they were before. This should always
2732 succeed. */
2733 if (! validate_replace_rtx (*v->location, orig_addr, v->insn))
2734 abort ();
2736 return ret;
2739 /* For every giv based on the biv BL, check to determine whether it is
2740 splittable. This is a subroutine to find_splittable_regs ().
2742 Return the number of instructions that set splittable registers. */
2744 static int
2745 find_splittable_givs (bl, unroll_type, loop_start, loop_end, increment,
2746 unroll_number)
2747 struct iv_class *bl;
2748 enum unroll_types unroll_type;
2749 rtx loop_start, loop_end;
2750 rtx increment;
2751 int unroll_number;
2753 struct induction *v, *v2;
2754 rtx final_value;
2755 rtx tem;
2756 int result = 0;
2758 /* Scan the list of givs, and set the same_insn field when there are
2759 multiple identical givs in the same insn. */
2760 for (v = bl->giv; v; v = v->next_iv)
2761 for (v2 = v->next_iv; v2; v2 = v2->next_iv)
2762 if (v->insn == v2->insn && rtx_equal_p (v->new_reg, v2->new_reg)
2763 && ! v2->same_insn)
2764 v2->same_insn = v;
2766 for (v = bl->giv; v; v = v->next_iv)
2768 rtx giv_inc, value;
2770 /* Only split the giv if it has already been reduced, or if the loop is
2771 being completely unrolled. */
2772 if (unroll_type != UNROLL_COMPLETELY && v->ignore)
2773 continue;
2775 /* The giv can be split if the insn that sets the giv is executed once
2776 and only once on every iteration of the loop. */
2777 /* An address giv can always be split. v->insn is just a use not a set,
2778 and hence it does not matter whether it is always executed. All that
2779 matters is that all the biv increments are always executed, and we
2780 won't reach here if they aren't. */
2781 if (v->giv_type != DEST_ADDR
2782 && (! v->always_computable
2783 || back_branch_in_range_p (v->insn, loop_start, loop_end)))
2784 continue;
2786 /* The giv increment value must be a constant. */
2787 giv_inc = fold_rtx_mult_add (v->mult_val, increment, const0_rtx,
2788 v->mode);
2789 if (! giv_inc || GET_CODE (giv_inc) != CONST_INT)
2790 continue;
2792 /* The loop must be unrolled completely, or else have a known number of
2793 iterations and only one exit, or else the giv must be dead outside
2794 the loop, or else the final value of the giv must be known.
2795 Otherwise, it is not safe to split the giv since it may not have the
2796 proper value on loop exit. */
2798 /* The used outside loop test will fail for DEST_ADDR givs. They are
2799 never used outside the loop anyways, so it is always safe to split a
2800 DEST_ADDR giv. */
2802 final_value = 0;
2803 if (unroll_type != UNROLL_COMPLETELY
2804 && (loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]]
2805 || unroll_type == UNROLL_NAIVE)
2806 && v->giv_type != DEST_ADDR
2807 /* The next part is true if the pseudo is used outside the loop.
2808 We assume that this is true for any pseudo created after loop
2809 starts, because we don't have a reg_n_info entry for them. */
2810 && (REGNO (v->dest_reg) >= max_reg_before_loop
2811 || (REGNO_FIRST_UID (REGNO (v->dest_reg)) != INSN_UID (v->insn)
2812 /* Check for the case where the pseudo is set by a shift/add
2813 sequence, in which case the first insn setting the pseudo
2814 is the first insn of the shift/add sequence. */
2815 && (! (tem = find_reg_note (v->insn, REG_RETVAL, NULL_RTX))
2816 || (REGNO_FIRST_UID (REGNO (v->dest_reg))
2817 != INSN_UID (XEXP (tem, 0)))))
2818 /* Line above always fails if INSN was moved by loop opt. */
2819 || (uid_luid[REGNO_LAST_UID (REGNO (v->dest_reg))]
2820 >= INSN_LUID (loop_end)))
2821 /* Givs made from biv increments are missed by the above test, so
2822 test explicitly for them. */
2823 && (REGNO (v->dest_reg) < first_increment_giv
2824 || REGNO (v->dest_reg) > last_increment_giv)
2825 && ! (final_value = v->final_value))
2826 continue;
2828 #if 0
2829 /* Currently, non-reduced/final-value givs are never split. */
2830 /* Should emit insns after the loop if possible, as the biv final value
2831 code below does. */
2833 /* If the final value is non-zero, and the giv has not been reduced,
2834 then must emit an instruction to set the final value. */
2835 if (final_value && !v->new_reg)
2837 /* Create a new register to hold the value of the giv, and then set
2838 the giv to its final value before the loop start. The giv is set
2839 to its final value before loop start to ensure that this insn
2840 will always be executed, no matter how we exit. */
2841 tem = gen_reg_rtx (v->mode);
2842 emit_insn_before (gen_move_insn (tem, v->dest_reg), loop_start);
2843 emit_insn_before (gen_move_insn (v->dest_reg, final_value),
2844 loop_start);
2846 if (loop_dump_stream)
2847 fprintf (loop_dump_stream, "Giv %d mapped to %d for split.\n",
2848 REGNO (v->dest_reg), REGNO (tem));
2850 v->src_reg = tem;
2852 #endif
2854 /* This giv is splittable. If completely unrolling the loop, save the
2855 giv's initial value. Otherwise, save the constant zero for it. */
2857 if (unroll_type == UNROLL_COMPLETELY)
2859 /* It is not safe to use bl->initial_value here, because it may not
2860 be invariant. It is safe to use the initial value stored in
2861 the splittable_regs array if it is set. In rare cases, it won't
2862 be set, so then we do exactly the same thing as
2863 find_splittable_regs does to get a safe value. */
2864 rtx biv_initial_value;
2866 if (splittable_regs[bl->regno])
2867 biv_initial_value = splittable_regs[bl->regno];
2868 else if (GET_CODE (bl->initial_value) != REG
2869 || (REGNO (bl->initial_value) != bl->regno
2870 && REGNO (bl->initial_value) >= FIRST_PSEUDO_REGISTER))
2871 biv_initial_value = bl->initial_value;
2872 else
2874 rtx tem = gen_reg_rtx (bl->biv->mode);
2876 record_base_value (REGNO (tem), bl->biv->add_val, 0);
2877 emit_insn_before (gen_move_insn (tem, bl->biv->src_reg),
2878 loop_start);
2879 biv_initial_value = tem;
2881 value = fold_rtx_mult_add (v->mult_val, biv_initial_value,
2882 v->add_val, v->mode);
2884 else
2885 value = const0_rtx;
2887 if (v->new_reg)
2889 /* If a giv was combined with another giv, then we can only split
2890 this giv if the giv it was combined with was reduced. This
2891 is because the value of v->new_reg is meaningless in this
2892 case. */
2893 if (v->same && ! v->same->new_reg)
2895 if (loop_dump_stream)
2896 fprintf (loop_dump_stream,
2897 "giv combined with unreduced giv not split.\n");
2898 continue;
2900 /* If the giv is an address destination, it could be something other
2901 than a simple register, these have to be treated differently. */
2902 else if (v->giv_type == DEST_REG)
2904 /* If value is not a constant, register, or register plus
2905 constant, then compute its value into a register before
2906 loop start. This prevents invalid rtx sharing, and should
2907 generate better code. We can use bl->initial_value here
2908 instead of splittable_regs[bl->regno] because this code
2909 is going before the loop start. */
2910 if (unroll_type == UNROLL_COMPLETELY
2911 && GET_CODE (value) != CONST_INT
2912 && GET_CODE (value) != REG
2913 && (GET_CODE (value) != PLUS
2914 || GET_CODE (XEXP (value, 0)) != REG
2915 || GET_CODE (XEXP (value, 1)) != CONST_INT))
2917 rtx tem = gen_reg_rtx (v->mode);
2918 record_base_value (REGNO (tem), v->add_val, 0);
2919 emit_iv_add_mult (bl->initial_value, v->mult_val,
2920 v->add_val, tem, loop_start);
2921 value = tem;
2924 splittable_regs[REGNO (v->new_reg)] = value;
2925 derived_regs[REGNO (v->new_reg)] = v->derived_from != 0;
2927 else
2929 /* Splitting address givs is useful since it will often allow us
2930 to eliminate some increment insns for the base giv as
2931 unnecessary. */
2933 /* If the addr giv is combined with a dest_reg giv, then all
2934 references to that dest reg will be remapped, which is NOT
2935 what we want for split addr regs. We always create a new
2936 register for the split addr giv, just to be safe. */
2938 /* If we have multiple identical address givs within a
2939 single instruction, then use a single pseudo reg for
2940 both. This is necessary in case one is a match_dup
2941 of the other. */
2943 v->const_adjust = 0;
2945 if (v->same_insn)
2947 v->dest_reg = v->same_insn->dest_reg;
2948 if (loop_dump_stream)
2949 fprintf (loop_dump_stream,
2950 "Sharing address givs in insn %d\n",
2951 INSN_UID (v->insn));
2953 /* If multiple address GIVs have been combined with the
2954 same dest_reg GIV, do not create a new register for
2955 each. */
2956 else if (unroll_type != UNROLL_COMPLETELY
2957 && v->giv_type == DEST_ADDR
2958 && v->same && v->same->giv_type == DEST_ADDR
2959 && v->same->unrolled
2960 /* combine_givs_p may return true for some cases
2961 where the add and mult values are not equal.
2962 To share a register here, the values must be
2963 equal. */
2964 && rtx_equal_p (v->same->mult_val, v->mult_val)
2965 && rtx_equal_p (v->same->add_val, v->add_val)
2966 /* If the memory references have different modes,
2967 then the address may not be valid and we must
2968 not share registers. */
2969 && verify_addresses (v, giv_inc, unroll_number))
2971 v->dest_reg = v->same->dest_reg;
2972 v->shared = 1;
2974 else if (unroll_type != UNROLL_COMPLETELY)
2976 /* If not completely unrolling the loop, then create a new
2977 register to hold the split value of the DEST_ADDR giv.
2978 Emit insn to initialize its value before loop start. */
2980 rtx tem = gen_reg_rtx (v->mode);
2981 struct induction *same = v->same;
2982 rtx new_reg = v->new_reg;
2983 record_base_value (REGNO (tem), v->add_val, 0);
2985 if (same && same->derived_from)
2987 /* calculate_giv_inc doesn't work for derived givs.
2988 copy_loop_body works around the problem for the
2989 DEST_REG givs themselves, but it can't handle
2990 DEST_ADDR givs that have been combined with
2991 a derived DEST_REG giv.
2992 So Handle V as if the giv from which V->SAME has
2993 been derived has been combined with V.
2994 recombine_givs only derives givs from givs that
2995 are reduced the ordinary, so we need not worry
2996 about same->derived_from being in turn derived. */
2998 same = same->derived_from;
2999 new_reg = express_from (same, v);
3000 new_reg = replace_rtx (new_reg, same->dest_reg,
3001 same->new_reg);
3004 /* If the address giv has a constant in its new_reg value,
3005 then this constant can be pulled out and put in value,
3006 instead of being part of the initialization code. */
3008 if (GET_CODE (new_reg) == PLUS
3009 && GET_CODE (XEXP (new_reg, 1)) == CONST_INT)
3011 v->dest_reg
3012 = plus_constant (tem, INTVAL (XEXP (new_reg, 1)));
3014 /* Only succeed if this will give valid addresses.
3015 Try to validate both the first and the last
3016 address resulting from loop unrolling, if
3017 one fails, then can't do const elim here. */
3018 if (verify_addresses (v, giv_inc, unroll_number))
3020 /* Save the negative of the eliminated const, so
3021 that we can calculate the dest_reg's increment
3022 value later. */
3023 v->const_adjust = - INTVAL (XEXP (new_reg, 1));
3025 new_reg = XEXP (new_reg, 0);
3026 if (loop_dump_stream)
3027 fprintf (loop_dump_stream,
3028 "Eliminating constant from giv %d\n",
3029 REGNO (tem));
3031 else
3032 v->dest_reg = tem;
3034 else
3035 v->dest_reg = tem;
3037 /* If the address hasn't been checked for validity yet, do so
3038 now, and fail completely if either the first or the last
3039 unrolled copy of the address is not a valid address
3040 for the instruction that uses it. */
3041 if (v->dest_reg == tem
3042 && ! verify_addresses (v, giv_inc, unroll_number))
3044 for (v2 = v->next_iv; v2; v2 = v2->next_iv)
3045 if (v2->same_insn == v)
3046 v2->same_insn = 0;
3048 if (loop_dump_stream)
3049 fprintf (loop_dump_stream,
3050 "Invalid address for giv at insn %d\n",
3051 INSN_UID (v->insn));
3052 continue;
3055 v->new_reg = new_reg;
3056 v->same = same;
3058 /* We set this after the address check, to guarantee that
3059 the register will be initialized. */
3060 v->unrolled = 1;
3062 /* To initialize the new register, just move the value of
3063 new_reg into it. This is not guaranteed to give a valid
3064 instruction on machines with complex addressing modes.
3065 If we can't recognize it, then delete it and emit insns
3066 to calculate the value from scratch. */
3067 emit_insn_before (gen_rtx_SET (VOIDmode, tem,
3068 copy_rtx (v->new_reg)),
3069 loop_start);
3070 if (recog_memoized (PREV_INSN (loop_start)) < 0)
3072 rtx sequence, ret;
3074 /* We can't use bl->initial_value to compute the initial
3075 value, because the loop may have been preconditioned.
3076 We must calculate it from NEW_REG. Try using
3077 force_operand instead of emit_iv_add_mult. */
3078 delete_insn (PREV_INSN (loop_start));
3080 start_sequence ();
3081 ret = force_operand (v->new_reg, tem);
3082 if (ret != tem)
3083 emit_move_insn (tem, ret);
3084 sequence = gen_sequence ();
3085 end_sequence ();
3086 emit_insn_before (sequence, loop_start);
3088 if (loop_dump_stream)
3089 fprintf (loop_dump_stream,
3090 "Invalid init insn, rewritten.\n");
3093 else
3095 v->dest_reg = value;
3097 /* Check the resulting address for validity, and fail
3098 if the resulting address would be invalid. */
3099 if (! verify_addresses (v, giv_inc, unroll_number))
3101 for (v2 = v->next_iv; v2; v2 = v2->next_iv)
3102 if (v2->same_insn == v)
3103 v2->same_insn = 0;
3105 if (loop_dump_stream)
3106 fprintf (loop_dump_stream,
3107 "Invalid address for giv at insn %d\n",
3108 INSN_UID (v->insn));
3109 continue;
3111 if (v->same && v->same->derived_from)
3113 /* Handle V as if the giv from which V->SAME has
3114 been derived has been combined with V. */
3116 v->same = v->same->derived_from;
3117 v->new_reg = express_from (v->same, v);
3118 v->new_reg = replace_rtx (v->new_reg, v->same->dest_reg,
3119 v->same->new_reg);
3124 /* Store the value of dest_reg into the insn. This sharing
3125 will not be a problem as this insn will always be copied
3126 later. */
3128 *v->location = v->dest_reg;
3130 /* If this address giv is combined with a dest reg giv, then
3131 save the base giv's induction pointer so that we will be
3132 able to handle this address giv properly. The base giv
3133 itself does not have to be splittable. */
3135 if (v->same && v->same->giv_type == DEST_REG)
3136 addr_combined_regs[REGNO (v->same->new_reg)] = v->same;
3138 if (GET_CODE (v->new_reg) == REG)
3140 /* This giv maybe hasn't been combined with any others.
3141 Make sure that it's giv is marked as splittable here. */
3143 splittable_regs[REGNO (v->new_reg)] = value;
3144 derived_regs[REGNO (v->new_reg)] = v->derived_from != 0;
3146 /* Make it appear to depend upon itself, so that the
3147 giv will be properly split in the main loop above. */
3148 if (! v->same)
3150 v->same = v;
3151 addr_combined_regs[REGNO (v->new_reg)] = v;
3155 if (loop_dump_stream)
3156 fprintf (loop_dump_stream, "DEST_ADDR giv being split.\n");
3159 else
3161 #if 0
3162 /* Currently, unreduced giv's can't be split. This is not too much
3163 of a problem since unreduced giv's are not live across loop
3164 iterations anyways. When unrolling a loop completely though,
3165 it makes sense to reduce&split givs when possible, as this will
3166 result in simpler instructions, and will not require that a reg
3167 be live across loop iterations. */
3169 splittable_regs[REGNO (v->dest_reg)] = value;
3170 fprintf (stderr, "Giv %d at insn %d not reduced\n",
3171 REGNO (v->dest_reg), INSN_UID (v->insn));
3172 #else
3173 continue;
3174 #endif
3177 /* Unreduced givs are only updated once by definition. Reduced givs
3178 are updated as many times as their biv is. Mark it so if this is
3179 a splittable register. Don't need to do anything for address givs
3180 where this may not be a register. */
3182 if (GET_CODE (v->new_reg) == REG)
3184 int count = 1;
3185 if (! v->ignore)
3186 count = reg_biv_class[REGNO (v->src_reg)]->biv_count;
3188 if (count > 1 && v->derived_from)
3189 /* In this case, there is one set where the giv insn was and one
3190 set each after each biv increment. (Most are likely dead.) */
3191 count++;
3193 splittable_regs_updates[REGNO (v->new_reg)] = count;
3196 result++;
3198 if (loop_dump_stream)
3200 int regnum;
3202 if (GET_CODE (v->dest_reg) == CONST_INT)
3203 regnum = -1;
3204 else if (GET_CODE (v->dest_reg) != REG)
3205 regnum = REGNO (XEXP (v->dest_reg, 0));
3206 else
3207 regnum = REGNO (v->dest_reg);
3208 fprintf (loop_dump_stream, "Giv %d at insn %d safe to split.\n",
3209 regnum, INSN_UID (v->insn));
3213 return result;
3216 /* Try to prove that the register is dead after the loop exits. Trace every
3217 loop exit looking for an insn that will always be executed, which sets
3218 the register to some value, and appears before the first use of the register
3219 is found. If successful, then return 1, otherwise return 0. */
3221 /* ?? Could be made more intelligent in the handling of jumps, so that
3222 it can search past if statements and other similar structures. */
3224 static int
3225 reg_dead_after_loop (reg, loop_start, loop_end)
3226 rtx reg, loop_start, loop_end;
3228 rtx insn, label;
3229 enum rtx_code code;
3230 int jump_count = 0;
3231 int label_count = 0;
3232 int this_loop_num = uid_loop_num[INSN_UID (loop_start)];
3234 /* In addition to checking all exits of this loop, we must also check
3235 all exits of inner nested loops that would exit this loop. We don't
3236 have any way to identify those, so we just give up if there are any
3237 such inner loop exits. */
3239 for (label = loop_number_exit_labels[this_loop_num]; label;
3240 label = LABEL_NEXTREF (label))
3241 label_count++;
3243 if (label_count != loop_number_exit_count[this_loop_num])
3244 return 0;
3246 /* HACK: Must also search the loop fall through exit, create a label_ref
3247 here which points to the loop_end, and append the loop_number_exit_labels
3248 list to it. */
3249 label = gen_rtx_LABEL_REF (VOIDmode, loop_end);
3250 LABEL_NEXTREF (label) = loop_number_exit_labels[this_loop_num];
3252 for ( ; label; label = LABEL_NEXTREF (label))
3254 /* Succeed if find an insn which sets the biv or if reach end of
3255 function. Fail if find an insn that uses the biv, or if come to
3256 a conditional jump. */
3258 insn = NEXT_INSN (XEXP (label, 0));
3259 while (insn)
3261 code = GET_CODE (insn);
3262 if (GET_RTX_CLASS (code) == 'i')
3264 rtx set;
3266 if (reg_referenced_p (reg, PATTERN (insn)))
3267 return 0;
3269 set = single_set (insn);
3270 if (set && rtx_equal_p (SET_DEST (set), reg))
3271 break;
3274 if (code == JUMP_INSN)
3276 if (GET_CODE (PATTERN (insn)) == RETURN)
3277 break;
3278 else if (! simplejump_p (insn)
3279 /* Prevent infinite loop following infinite loops. */
3280 || jump_count++ > 20)
3281 return 0;
3282 else
3283 insn = JUMP_LABEL (insn);
3286 insn = NEXT_INSN (insn);
3290 /* Success, the register is dead on all loop exits. */
3291 return 1;
3294 /* Try to calculate the final value of the biv, the value it will have at
3295 the end of the loop. If we can do it, return that value. */
3298 final_biv_value (bl, loop_start, loop_end, n_iterations)
3299 struct iv_class *bl;
3300 rtx loop_start, loop_end;
3301 unsigned HOST_WIDE_INT n_iterations;
3303 rtx increment, tem;
3305 /* ??? This only works for MODE_INT biv's. Reject all others for now. */
3307 if (GET_MODE_CLASS (bl->biv->mode) != MODE_INT)
3308 return 0;
3310 /* The final value for reversed bivs must be calculated differently than
3311 for ordinary bivs. In this case, there is already an insn after the
3312 loop which sets this biv's final value (if necessary), and there are
3313 no other loop exits, so we can return any value. */
3314 if (bl->reversed)
3316 if (loop_dump_stream)
3317 fprintf (loop_dump_stream,
3318 "Final biv value for %d, reversed biv.\n", bl->regno);
3320 return const0_rtx;
3323 /* Try to calculate the final value as initial value + (number of iterations
3324 * increment). For this to work, increment must be invariant, the only
3325 exit from the loop must be the fall through at the bottom (otherwise
3326 it may not have its final value when the loop exits), and the initial
3327 value of the biv must be invariant. */
3329 if (n_iterations != 0
3330 && ! loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]]
3331 && invariant_p (bl->initial_value))
3333 increment = biv_total_increment (bl, loop_start, loop_end);
3335 if (increment && invariant_p (increment))
3337 /* Can calculate the loop exit value, emit insns after loop
3338 end to calculate this value into a temporary register in
3339 case it is needed later. */
3341 tem = gen_reg_rtx (bl->biv->mode);
3342 record_base_value (REGNO (tem), bl->biv->add_val, 0);
3343 /* Make sure loop_end is not the last insn. */
3344 if (NEXT_INSN (loop_end) == 0)
3345 emit_note_after (NOTE_INSN_DELETED, loop_end);
3346 emit_iv_add_mult (increment, GEN_INT (n_iterations),
3347 bl->initial_value, tem, NEXT_INSN (loop_end));
3349 if (loop_dump_stream)
3350 fprintf (loop_dump_stream,
3351 "Final biv value for %d, calculated.\n", bl->regno);
3353 return tem;
3357 /* Check to see if the biv is dead at all loop exits. */
3358 if (reg_dead_after_loop (bl->biv->src_reg, loop_start, loop_end))
3360 if (loop_dump_stream)
3361 fprintf (loop_dump_stream,
3362 "Final biv value for %d, biv dead after loop exit.\n",
3363 bl->regno);
3365 return const0_rtx;
3368 return 0;
3371 /* Try to calculate the final value of the giv, the value it will have at
3372 the end of the loop. If we can do it, return that value. */
3375 final_giv_value (v, loop_start, loop_end, n_iterations)
3376 struct induction *v;
3377 rtx loop_start, loop_end;
3378 unsigned HOST_WIDE_INT n_iterations;
3380 struct iv_class *bl;
3381 rtx insn;
3382 rtx increment, tem;
3383 rtx insert_before, seq;
3385 bl = reg_biv_class[REGNO (v->src_reg)];
3387 /* The final value for givs which depend on reversed bivs must be calculated
3388 differently than for ordinary givs. In this case, there is already an
3389 insn after the loop which sets this giv's final value (if necessary),
3390 and there are no other loop exits, so we can return any value. */
3391 if (bl->reversed)
3393 if (loop_dump_stream)
3394 fprintf (loop_dump_stream,
3395 "Final giv value for %d, depends on reversed biv\n",
3396 REGNO (v->dest_reg));
3397 return const0_rtx;
3400 /* Try to calculate the final value as a function of the biv it depends
3401 upon. The only exit from the loop must be the fall through at the bottom
3402 (otherwise it may not have its final value when the loop exits). */
3404 /* ??? Can calculate the final giv value by subtracting off the
3405 extra biv increments times the giv's mult_val. The loop must have
3406 only one exit for this to work, but the loop iterations does not need
3407 to be known. */
3409 if (n_iterations != 0
3410 && ! loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]])
3412 /* ?? It is tempting to use the biv's value here since these insns will
3413 be put after the loop, and hence the biv will have its final value
3414 then. However, this fails if the biv is subsequently eliminated.
3415 Perhaps determine whether biv's are eliminable before trying to
3416 determine whether giv's are replaceable so that we can use the
3417 biv value here if it is not eliminable. */
3419 /* We are emitting code after the end of the loop, so we must make
3420 sure that bl->initial_value is still valid then. It will still
3421 be valid if it is invariant. */
3423 increment = biv_total_increment (bl, loop_start, loop_end);
3425 if (increment && invariant_p (increment)
3426 && invariant_p (bl->initial_value))
3428 /* Can calculate the loop exit value of its biv as
3429 (n_iterations * increment) + initial_value */
3431 /* The loop exit value of the giv is then
3432 (final_biv_value - extra increments) * mult_val + add_val.
3433 The extra increments are any increments to the biv which
3434 occur in the loop after the giv's value is calculated.
3435 We must search from the insn that sets the giv to the end
3436 of the loop to calculate this value. */
3438 insert_before = NEXT_INSN (loop_end);
3440 /* Put the final biv value in tem. */
3441 tem = gen_reg_rtx (bl->biv->mode);
3442 record_base_value (REGNO (tem), bl->biv->add_val, 0);
3443 emit_iv_add_mult (increment, GEN_INT (n_iterations),
3444 bl->initial_value, tem, insert_before);
3446 /* Subtract off extra increments as we find them. */
3447 for (insn = NEXT_INSN (v->insn); insn != loop_end;
3448 insn = NEXT_INSN (insn))
3450 struct induction *biv;
3452 for (biv = bl->biv; biv; biv = biv->next_iv)
3453 if (biv->insn == insn)
3455 start_sequence ();
3456 tem = expand_binop (GET_MODE (tem), sub_optab, tem,
3457 biv->add_val, NULL_RTX, 0,
3458 OPTAB_LIB_WIDEN);
3459 seq = gen_sequence ();
3460 end_sequence ();
3461 emit_insn_before (seq, insert_before);
3465 /* Now calculate the giv's final value. */
3466 emit_iv_add_mult (tem, v->mult_val, v->add_val, tem,
3467 insert_before);
3469 if (loop_dump_stream)
3470 fprintf (loop_dump_stream,
3471 "Final giv value for %d, calc from biv's value.\n",
3472 REGNO (v->dest_reg));
3474 return tem;
3478 /* Replaceable giv's should never reach here. */
3479 if (v->replaceable)
3480 abort ();
3482 /* Check to see if the biv is dead at all loop exits. */
3483 if (reg_dead_after_loop (v->dest_reg, loop_start, loop_end))
3485 if (loop_dump_stream)
3486 fprintf (loop_dump_stream,
3487 "Final giv value for %d, giv dead after loop exit.\n",
3488 REGNO (v->dest_reg));
3490 return const0_rtx;
3493 return 0;
3497 /* Look back before LOOP_START for then insn that sets REG and return
3498 the equivalent constant if there is a REG_EQUAL note otherwise just
3499 the SET_SRC of REG. */
3501 static rtx
3502 loop_find_equiv_value (loop_start, reg)
3503 rtx loop_start;
3504 rtx reg;
3506 rtx insn, set;
3507 rtx ret;
3509 ret = reg;
3510 for (insn = PREV_INSN (loop_start); insn ; insn = PREV_INSN (insn))
3512 if (GET_CODE (insn) == CODE_LABEL)
3513 break;
3515 else if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
3516 && reg_set_p (reg, insn))
3518 /* We found the last insn before the loop that sets the register.
3519 If it sets the entire register, and has a REG_EQUAL note,
3520 then use the value of the REG_EQUAL note. */
3521 if ((set = single_set (insn))
3522 && (SET_DEST (set) == reg))
3524 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
3526 /* Only use the REG_EQUAL note if it is a constant.
3527 Other things, divide in particular, will cause
3528 problems later if we use them. */
3529 if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST
3530 && CONSTANT_P (XEXP (note, 0)))
3531 ret = XEXP (note, 0);
3532 else
3533 ret = SET_SRC (set);
3535 break;
3538 return ret;
3541 /* Return a simplified rtx for the expression OP - REG.
3543 REG must appear in OP, and OP must be a register or the sum of a register
3544 and a second term.
3546 Thus, the return value must be const0_rtx or the second term.
3548 The caller is responsible for verifying that REG appears in OP and OP has
3549 the proper form. */
3551 static rtx
3552 subtract_reg_term (op, reg)
3553 rtx op, reg;
3555 if (op == reg)
3556 return const0_rtx;
3557 if (GET_CODE (op) == PLUS)
3559 if (XEXP (op, 0) == reg)
3560 return XEXP (op, 1);
3561 else if (XEXP (op, 1) == reg)
3562 return XEXP (op, 0);
3564 /* OP does not contain REG as a term. */
3565 abort ();
3569 /* Find and return register term common to both expressions OP0 and
3570 OP1 or NULL_RTX if no such term exists. Each expression must be a
3571 REG or a PLUS of a REG. */
3573 static rtx
3574 find_common_reg_term (op0, op1)
3575 rtx op0, op1;
3577 if ((GET_CODE (op0) == REG || GET_CODE (op0) == PLUS)
3578 && (GET_CODE (op1) == REG || GET_CODE (op1) == PLUS))
3580 rtx op00;
3581 rtx op01;
3582 rtx op10;
3583 rtx op11;
3585 if (GET_CODE (op0) == PLUS)
3586 op01 = XEXP (op0, 1), op00 = XEXP (op0, 0);
3587 else
3588 op01 = const0_rtx, op00 = op0;
3590 if (GET_CODE (op1) == PLUS)
3591 op11 = XEXP (op1, 1), op10 = XEXP (op1, 0);
3592 else
3593 op11 = const0_rtx, op10 = op1;
3595 /* Find and return common register term if present. */
3596 if (REG_P (op00) && (op00 == op10 || op00 == op11))
3597 return op00;
3598 else if (REG_P (op01) && (op01 == op10 || op01 == op11))
3599 return op01;
3602 /* No common register term found. */
3603 return NULL_RTX;
3606 /* Calculate the number of loop iterations. Returns the exact number of loop
3607 iterations if it can be calculated, otherwise returns zero. */
3609 unsigned HOST_WIDE_INT
3610 loop_iterations (loop_start, loop_end, loop_info)
3611 rtx loop_start, loop_end;
3612 struct loop_info *loop_info;
3614 rtx comparison, comparison_value;
3615 rtx iteration_var, initial_value, increment, final_value;
3616 enum rtx_code comparison_code;
3617 HOST_WIDE_INT abs_inc;
3618 unsigned HOST_WIDE_INT abs_diff;
3619 int off_by_one;
3620 int increment_dir;
3621 int unsigned_p, compare_dir, final_larger;
3622 rtx last_loop_insn;
3623 rtx reg_term;
3625 loop_info->n_iterations = 0;
3626 loop_info->initial_value = 0;
3627 loop_info->initial_equiv_value = 0;
3628 loop_info->comparison_value = 0;
3629 loop_info->final_value = 0;
3630 loop_info->final_equiv_value = 0;
3631 loop_info->increment = 0;
3632 loop_info->iteration_var = 0;
3633 loop_info->unroll_number = 1;
3635 /* We used to use prev_nonnote_insn here, but that fails because it might
3636 accidentally get the branch for a contained loop if the branch for this
3637 loop was deleted. We can only trust branches immediately before the
3638 loop_end. */
3639 last_loop_insn = PREV_INSN (loop_end);
3641 /* ??? We should probably try harder to find the jump insn
3642 at the end of the loop. The following code assumes that
3643 the last loop insn is a jump to the top of the loop. */
3644 if (GET_CODE (last_loop_insn) != JUMP_INSN)
3646 if (loop_dump_stream)
3647 fprintf (loop_dump_stream,
3648 "Loop iterations: No final conditional branch found.\n");
3649 return 0;
3652 /* If there is a more than a single jump to the top of the loop
3653 we cannot (easily) determine the iteration count. */
3654 if (LABEL_NUSES (JUMP_LABEL (last_loop_insn)) > 1)
3656 if (loop_dump_stream)
3657 fprintf (loop_dump_stream,
3658 "Loop iterations: Loop has multiple back edges.\n");
3659 return 0;
3662 /* Find the iteration variable. If the last insn is a conditional
3663 branch, and the insn before tests a register value, make that the
3664 iteration variable. */
3666 comparison = get_condition_for_loop (last_loop_insn);
3667 if (comparison == 0)
3669 if (loop_dump_stream)
3670 fprintf (loop_dump_stream,
3671 "Loop iterations: No final comparison found.\n");
3672 return 0;
3675 /* ??? Get_condition may switch position of induction variable and
3676 invariant register when it canonicalizes the comparison. */
3678 comparison_code = GET_CODE (comparison);
3679 iteration_var = XEXP (comparison, 0);
3680 comparison_value = XEXP (comparison, 1);
3682 if (GET_CODE (iteration_var) != REG)
3684 if (loop_dump_stream)
3685 fprintf (loop_dump_stream,
3686 "Loop iterations: Comparison not against register.\n");
3687 return 0;
3690 /* This can happen due to optimization in load_mems. */
3691 if ((unsigned) REGNO (iteration_var) >= reg_iv_type->num_elements)
3692 return 0;
3694 iteration_info (iteration_var, &initial_value, &increment,
3695 loop_start, loop_end);
3696 if (initial_value == 0)
3697 /* iteration_info already printed a message. */
3698 return 0;
3700 unsigned_p = 0;
3701 off_by_one = 0;
3702 switch (comparison_code)
3704 case LEU:
3705 unsigned_p = 1;
3706 case LE:
3707 compare_dir = 1;
3708 off_by_one = 1;
3709 break;
3710 case GEU:
3711 unsigned_p = 1;
3712 case GE:
3713 compare_dir = -1;
3714 off_by_one = -1;
3715 break;
3716 case EQ:
3717 /* Cannot determine loop iterations with this case. */
3718 compare_dir = 0;
3719 break;
3720 case LTU:
3721 unsigned_p = 1;
3722 case LT:
3723 compare_dir = 1;
3724 break;
3725 case GTU:
3726 unsigned_p = 1;
3727 case GT:
3728 compare_dir = -1;
3729 case NE:
3730 compare_dir = 0;
3731 break;
3732 default:
3733 abort ();
3736 /* If the comparison value is an invariant register, then try to find
3737 its value from the insns before the start of the loop. */
3739 final_value = comparison_value;
3740 if (GET_CODE (comparison_value) == REG && invariant_p (comparison_value))
3742 final_value = loop_find_equiv_value (loop_start, comparison_value);
3743 /* If we don't get an invariant final value, we are better
3744 off with the original register. */
3745 if (!invariant_p (final_value))
3746 final_value = comparison_value;
3749 /* Calculate the approximate final value of the induction variable
3750 (on the last successful iteration). The exact final value
3751 depends on the branch operator, and increment sign. It will be
3752 wrong if the iteration variable is not incremented by one each
3753 time through the loop and (comparison_value + off_by_one -
3754 initial_value) % increment != 0.
3755 ??? Note that the final_value may overflow and thus final_larger
3756 will be bogus. A potentially infinite loop will be classified
3757 as immediate, e.g. for (i = 0x7ffffff0; i <= 0x7fffffff; i++) */
3758 if (off_by_one)
3759 final_value = plus_constant (final_value, off_by_one);
3761 /* Save the calculated values describing this loop's bounds, in case
3762 precondition_loop_p will need them later. These values can not be
3763 recalculated inside precondition_loop_p because strength reduction
3764 optimizations may obscure the loop's structure.
3766 These values are only required by precondition_loop_p and insert_bct
3767 whenever the number of iterations cannot be computed at compile time.
3768 Only the difference between final_value and initial_value is
3769 important. Note that final_value is only approximate. */
3770 loop_info->initial_value = initial_value;
3771 loop_info->comparison_value = comparison_value;
3772 loop_info->final_value = plus_constant (comparison_value, off_by_one);
3773 loop_info->increment = increment;
3774 loop_info->iteration_var = iteration_var;
3775 loop_info->comparison_code = comparison_code;
3777 /* Try to determine the iteration count for loops such
3778 as (for i = init; i < init + const; i++). When running the
3779 loop optimization twice, the first pass often converts simple
3780 loops into this form. */
3782 if (REG_P (initial_value))
3784 rtx reg1;
3785 rtx reg2;
3786 rtx const2;
3788 reg1 = initial_value;
3789 if (GET_CODE (final_value) == PLUS)
3790 reg2 = XEXP (final_value, 0), const2 = XEXP (final_value, 1);
3791 else
3792 reg2 = final_value, const2 = const0_rtx;
3794 /* Check for initial_value = reg1, final_value = reg2 + const2,
3795 where reg1 != reg2. */
3796 if (REG_P (reg2) && reg2 != reg1)
3798 rtx temp;
3800 /* Find what reg1 is equivalent to. Hopefully it will
3801 either be reg2 or reg2 plus a constant. */
3802 temp = loop_find_equiv_value (loop_start, reg1);
3803 if (find_common_reg_term (temp, reg2))
3804 initial_value = temp;
3805 else
3807 /* Find what reg2 is equivalent to. Hopefully it will
3808 either be reg1 or reg1 plus a constant. Let's ignore
3809 the latter case for now since it is not so common. */
3810 temp = loop_find_equiv_value (loop_start, reg2);
3811 if (temp == loop_info->iteration_var)
3812 temp = initial_value;
3813 if (temp == reg1)
3814 final_value = (const2 == const0_rtx)
3815 ? reg1 : gen_rtx_PLUS (GET_MODE (reg1), reg1, const2);
3818 else if (loop_info->vtop && GET_CODE (reg2) == CONST_INT)
3820 rtx temp;
3822 /* When running the loop optimizer twice, check_dbra_loop
3823 further obfuscates reversible loops of the form:
3824 for (i = init; i < init + const; i++). We often end up with
3825 final_value = 0, initial_value = temp, temp = temp2 - init,
3826 where temp2 = init + const. If the loop has a vtop we
3827 can replace initial_value with const. */
3829 temp = loop_find_equiv_value (loop_start, reg1);
3830 if (GET_CODE (temp) == MINUS && REG_P (XEXP (temp, 0)))
3832 rtx temp2 = loop_find_equiv_value (loop_start, XEXP (temp, 0));
3833 if (GET_CODE (temp2) == PLUS
3834 && XEXP (temp2, 0) == XEXP (temp, 1))
3835 initial_value = XEXP (temp2, 1);
3840 /* If have initial_value = reg + const1 and final_value = reg +
3841 const2, then replace initial_value with const1 and final_value
3842 with const2. This should be safe since we are protected by the
3843 initial comparison before entering the loop if we have a vtop.
3844 For example, a + b < a + c is not equivalent to b < c for all a
3845 when using modulo arithmetic.
3847 ??? Without a vtop we could still perform the optimization if we check
3848 the initial and final values carefully. */
3849 if (loop_info->vtop
3850 && (reg_term = find_common_reg_term (initial_value, final_value)))
3852 initial_value = subtract_reg_term (initial_value, reg_term);
3853 final_value = subtract_reg_term (final_value, reg_term);
3856 loop_info->initial_equiv_value = initial_value;
3857 loop_info->final_equiv_value = final_value;
3859 /* For EQ comparison loops, we don't have a valid final value.
3860 Check this now so that we won't leave an invalid value if we
3861 return early for any other reason. */
3862 if (comparison_code == EQ)
3863 loop_info->final_equiv_value = loop_info->final_value = 0;
3865 if (increment == 0)
3867 if (loop_dump_stream)
3868 fprintf (loop_dump_stream,
3869 "Loop iterations: Increment value can't be calculated.\n");
3870 return 0;
3873 if (GET_CODE (increment) != CONST_INT)
3875 /* If we have a REG, check to see if REG holds a constant value. */
3876 /* ??? Other RTL, such as (neg (reg)) is possible here, but it isn't
3877 clear if it is worthwhile to try to handle such RTL. */
3878 if (GET_CODE (increment) == REG || GET_CODE (increment) == SUBREG)
3879 increment = loop_find_equiv_value (loop_start, increment);
3881 if (GET_CODE (increment) != CONST_INT)
3883 if (loop_dump_stream)
3885 fprintf (loop_dump_stream,
3886 "Loop iterations: Increment value not constant ");
3887 print_rtl (loop_dump_stream, increment);
3888 fprintf (loop_dump_stream, ".\n");
3890 return 0;
3892 loop_info->increment = increment;
3895 if (GET_CODE (initial_value) != CONST_INT)
3897 if (loop_dump_stream)
3899 fprintf (loop_dump_stream,
3900 "Loop iterations: Initial value not constant ");
3901 print_rtl (loop_dump_stream, initial_value);
3902 fprintf (loop_dump_stream, ".\n");
3904 return 0;
3906 else if (comparison_code == EQ)
3908 if (loop_dump_stream)
3909 fprintf (loop_dump_stream,
3910 "Loop iterations: EQ comparison loop.\n");
3911 return 0;
3913 else if (GET_CODE (final_value) != CONST_INT)
3915 if (loop_dump_stream)
3917 fprintf (loop_dump_stream,
3918 "Loop iterations: Final value not constant ");
3919 print_rtl (loop_dump_stream, final_value);
3920 fprintf (loop_dump_stream, ".\n");
3922 return 0;
3925 /* Final_larger is 1 if final larger, 0 if they are equal, otherwise -1. */
3926 if (unsigned_p)
3927 final_larger
3928 = ((unsigned HOST_WIDE_INT) INTVAL (final_value)
3929 > (unsigned HOST_WIDE_INT) INTVAL (initial_value))
3930 - ((unsigned HOST_WIDE_INT) INTVAL (final_value)
3931 < (unsigned HOST_WIDE_INT) INTVAL (initial_value));
3932 else
3933 final_larger = (INTVAL (final_value) > INTVAL (initial_value))
3934 - (INTVAL (final_value) < INTVAL (initial_value));
3936 if (INTVAL (increment) > 0)
3937 increment_dir = 1;
3938 else if (INTVAL (increment) == 0)
3939 increment_dir = 0;
3940 else
3941 increment_dir = -1;
3943 /* There are 27 different cases: compare_dir = -1, 0, 1;
3944 final_larger = -1, 0, 1; increment_dir = -1, 0, 1.
3945 There are 4 normal cases, 4 reverse cases (where the iteration variable
3946 will overflow before the loop exits), 4 infinite loop cases, and 15
3947 immediate exit (0 or 1 iteration depending on loop type) cases.
3948 Only try to optimize the normal cases. */
3950 /* (compare_dir/final_larger/increment_dir)
3951 Normal cases: (0/-1/-1), (0/1/1), (-1/-1/-1), (1/1/1)
3952 Reverse cases: (0/-1/1), (0/1/-1), (-1/-1/1), (1/1/-1)
3953 Infinite loops: (0/-1/0), (0/1/0), (-1/-1/0), (1/1/0)
3954 Immediate exit: (0/0/X), (-1/0/X), (-1/1/X), (1/0/X), (1/-1/X) */
3956 /* ?? If the meaning of reverse loops (where the iteration variable
3957 will overflow before the loop exits) is undefined, then could
3958 eliminate all of these special checks, and just always assume
3959 the loops are normal/immediate/infinite. Note that this means
3960 the sign of increment_dir does not have to be known. Also,
3961 since it does not really hurt if immediate exit loops or infinite loops
3962 are optimized, then that case could be ignored also, and hence all
3963 loops can be optimized.
3965 According to ANSI Spec, the reverse loop case result is undefined,
3966 because the action on overflow is undefined.
3968 See also the special test for NE loops below. */
3970 if (final_larger == increment_dir && final_larger != 0
3971 && (final_larger == compare_dir || compare_dir == 0))
3972 /* Normal case. */
3974 else
3976 if (loop_dump_stream)
3977 fprintf (loop_dump_stream,
3978 "Loop iterations: Not normal loop.\n");
3979 return 0;
3982 /* Calculate the number of iterations, final_value is only an approximation,
3983 so correct for that. Note that abs_diff and n_iterations are
3984 unsigned, because they can be as large as 2^n - 1. */
3986 abs_inc = INTVAL (increment);
3987 if (abs_inc > 0)
3988 abs_diff = INTVAL (final_value) - INTVAL (initial_value);
3989 else if (abs_inc < 0)
3991 abs_diff = INTVAL (initial_value) - INTVAL (final_value);
3992 abs_inc = -abs_inc;
3994 else
3995 abort ();
3997 /* For NE tests, make sure that the iteration variable won't miss
3998 the final value. If abs_diff mod abs_incr is not zero, then the
3999 iteration variable will overflow before the loop exits, and we
4000 can not calculate the number of iterations. */
4001 if (compare_dir == 0 && (abs_diff % abs_inc) != 0)
4002 return 0;
4004 /* Note that the number of iterations could be calculated using
4005 (abs_diff + abs_inc - 1) / abs_inc, provided care was taken to
4006 handle potential overflow of the summation. */
4007 loop_info->n_iterations = abs_diff / abs_inc + ((abs_diff % abs_inc) != 0);
4008 return loop_info->n_iterations;
4012 /* Replace uses of split bivs with their split pseudo register. This is
4013 for original instructions which remain after loop unrolling without
4014 copying. */
4016 static rtx
4017 remap_split_bivs (x)
4018 rtx x;
4020 register enum rtx_code code;
4021 register int i;
4022 register const char *fmt;
4024 if (x == 0)
4025 return x;
4027 code = GET_CODE (x);
4028 switch (code)
4030 case SCRATCH:
4031 case PC:
4032 case CC0:
4033 case CONST_INT:
4034 case CONST_DOUBLE:
4035 case CONST:
4036 case SYMBOL_REF:
4037 case LABEL_REF:
4038 return x;
4040 case REG:
4041 #if 0
4042 /* If non-reduced/final-value givs were split, then this would also
4043 have to remap those givs also. */
4044 #endif
4045 if (REGNO (x) < max_reg_before_loop
4046 && REG_IV_TYPE (REGNO (x)) == BASIC_INDUCT)
4047 return reg_biv_class[REGNO (x)]->biv->src_reg;
4048 break;
4050 default:
4051 break;
4054 fmt = GET_RTX_FORMAT (code);
4055 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4057 if (fmt[i] == 'e')
4058 XEXP (x, i) = remap_split_bivs (XEXP (x, i));
4059 if (fmt[i] == 'E')
4061 register int j;
4062 for (j = 0; j < XVECLEN (x, i); j++)
4063 XVECEXP (x, i, j) = remap_split_bivs (XVECEXP (x, i, j));
4066 return x;
4069 /* If FIRST_UID is a set of REGNO, and FIRST_UID dominates LAST_UID (e.g.
4070 FIST_UID is always executed if LAST_UID is), then return 1. Otherwise
4071 return 0. COPY_START is where we can start looking for the insns
4072 FIRST_UID and LAST_UID. COPY_END is where we stop looking for these
4073 insns.
4075 If there is no JUMP_INSN between LOOP_START and FIRST_UID, then FIRST_UID
4076 must dominate LAST_UID.
4078 If there is a CODE_LABEL between FIRST_UID and LAST_UID, then FIRST_UID
4079 may not dominate LAST_UID.
4081 If there is no CODE_LABEL between FIRST_UID and LAST_UID, then FIRST_UID
4082 must dominate LAST_UID. */
4085 set_dominates_use (regno, first_uid, last_uid, copy_start, copy_end)
4086 int regno;
4087 int first_uid;
4088 int last_uid;
4089 rtx copy_start;
4090 rtx copy_end;
4092 int passed_jump = 0;
4093 rtx p = NEXT_INSN (copy_start);
4095 while (INSN_UID (p) != first_uid)
4097 if (GET_CODE (p) == JUMP_INSN)
4098 passed_jump= 1;
4099 /* Could not find FIRST_UID. */
4100 if (p == copy_end)
4101 return 0;
4102 p = NEXT_INSN (p);
4105 /* Verify that FIRST_UID is an insn that entirely sets REGNO. */
4106 if (GET_RTX_CLASS (GET_CODE (p)) != 'i'
4107 || ! dead_or_set_regno_p (p, regno))
4108 return 0;
4110 /* FIRST_UID is always executed. */
4111 if (passed_jump == 0)
4112 return 1;
4114 while (INSN_UID (p) != last_uid)
4116 /* If we see a CODE_LABEL between FIRST_UID and LAST_UID, then we
4117 can not be sure that FIRST_UID dominates LAST_UID. */
4118 if (GET_CODE (p) == CODE_LABEL)
4119 return 0;
4120 /* Could not find LAST_UID, but we reached the end of the loop, so
4121 it must be safe. */
4122 else if (p == copy_end)
4123 return 1;
4124 p = NEXT_INSN (p);
4127 /* FIRST_UID is always executed if LAST_UID is executed. */
4128 return 1;