* optimize.c (initialize_inlined_parameters): Take FN to which the
[official-gcc.git] / gcc / jump.c
blob2020840a9d6d0d58563eff44f031e2a8985fa1a2
1 /* Optimize jump instructions, for GNU compiler.
2 Copyright (C) 1987, 88, 89, 91-98, 1999 Free Software Foundation, Inc.
4 This file is part of GNU CC.
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
22 /* This is the jump-optimization pass of the compiler.
23 It is run two or three times: once before cse, sometimes once after cse,
24 and once after reload (before final).
26 jump_optimize deletes unreachable code and labels that are not used.
27 It also deletes jumps that jump to the following insn,
28 and simplifies jumps around unconditional jumps and jumps
29 to unconditional jumps.
31 Each CODE_LABEL has a count of the times it is used
32 stored in the LABEL_NUSES internal field, and each JUMP_INSN
33 has one label that it refers to stored in the
34 JUMP_LABEL internal field. With this we can detect labels that
35 become unused because of the deletion of all the jumps that
36 formerly used them. The JUMP_LABEL info is sometimes looked
37 at by later passes.
39 Optionally, cross-jumping can be done. Currently it is done
40 only the last time (when after reload and before final).
41 In fact, the code for cross-jumping now assumes that register
42 allocation has been done, since it uses `rtx_renumbered_equal_p'.
44 Jump optimization is done after cse when cse's constant-propagation
45 causes jumps to become unconditional or to be deleted.
47 Unreachable loops are not detected here, because the labels
48 have references and the insns appear reachable from the labels.
49 find_basic_blocks in flow.c finds and deletes such loops.
51 The subroutines delete_insn, redirect_jump, and invert_jump are used
52 from other passes as well. */
54 #include "config.h"
55 #include "system.h"
56 #include "rtl.h"
57 #include "tm_p.h"
58 #include "flags.h"
59 #include "hard-reg-set.h"
60 #include "regs.h"
61 #include "insn-config.h"
62 #include "insn-flags.h"
63 #include "insn-attr.h"
64 #include "recog.h"
65 #include "function.h"
66 #include "expr.h"
67 #include "real.h"
68 #include "except.h"
69 #include "toplev.h"
71 /* ??? Eventually must record somehow the labels used by jumps
72 from nested functions. */
73 /* Pre-record the next or previous real insn for each label?
74 No, this pass is very fast anyway. */
75 /* Condense consecutive labels?
76 This would make life analysis faster, maybe. */
77 /* Optimize jump y; x: ... y: jumpif... x?
78 Don't know if it is worth bothering with. */
79 /* Optimize two cases of conditional jump to conditional jump?
80 This can never delete any instruction or make anything dead,
81 or even change what is live at any point.
82 So perhaps let combiner do it. */
84 /* Vector indexed by uid.
85 For each CODE_LABEL, index by its uid to get first unconditional jump
86 that jumps to the label.
87 For each JUMP_INSN, index by its uid to get the next unconditional jump
88 that jumps to the same label.
89 Element 0 is the start of a chain of all return insns.
90 (It is safe to use element 0 because insn uid 0 is not used. */
92 static rtx *jump_chain;
94 /* Maximum index in jump_chain. */
96 static int max_jump_chain;
98 /* Set nonzero by jump_optimize if control can fall through
99 to the end of the function. */
100 int can_reach_end;
102 /* Indicates whether death notes are significant in cross jump analysis.
103 Normally they are not significant, because of A and B jump to C,
104 and R dies in A, it must die in B. But this might not be true after
105 stack register conversion, and we must compare death notes in that
106 case. */
108 static int cross_jump_death_matters = 0;
110 static int init_label_info PROTO((rtx));
111 static void delete_barrier_successors PROTO((rtx));
112 static void mark_all_labels PROTO((rtx, int));
113 static rtx delete_unreferenced_labels PROTO((rtx));
114 static void delete_noop_moves PROTO((rtx));
115 static int calculate_can_reach_end PROTO((rtx, int, int));
116 static int duplicate_loop_exit_test PROTO((rtx));
117 static void find_cross_jump PROTO((rtx, rtx, int, rtx *, rtx *));
118 static void do_cross_jump PROTO((rtx, rtx, rtx));
119 static int jump_back_p PROTO((rtx, rtx));
120 static int tension_vector_labels PROTO((rtx, int));
121 static void mark_jump_label PROTO((rtx, rtx, int));
122 static void delete_computation PROTO((rtx));
123 static void delete_from_jump_chain PROTO((rtx));
124 static int delete_labelref_insn PROTO((rtx, rtx, int));
125 static void mark_modified_reg PROTO((rtx, rtx, void *));
126 static void redirect_tablejump PROTO((rtx, rtx));
127 static void jump_optimize_1 PROTO ((rtx, int, int, int, int));
128 #if ! defined(HAVE_cc0) && ! defined(HAVE_conditional_arithmetic)
129 static rtx find_insert_position PROTO((rtx, rtx));
130 #endif
131 static int returnjump_p_1 PROTO((rtx *, void *));
132 static void delete_prior_computation PROTO((rtx, rtx));
134 /* Main external entry point into the jump optimizer. See comments before
135 jump_optimize_1 for descriptions of the arguments. */
136 void
137 jump_optimize (f, cross_jump, noop_moves, after_regscan)
138 rtx f;
139 int cross_jump;
140 int noop_moves;
141 int after_regscan;
143 jump_optimize_1 (f, cross_jump, noop_moves, after_regscan, 0);
146 /* Alternate entry into the jump optimizer. This entry point only rebuilds
147 the JUMP_LABEL field in jumping insns and REG_LABEL notes in non-jumping
148 instructions. */
149 void
150 rebuild_jump_labels (f)
151 rtx f;
153 jump_optimize_1 (f, 0, 0, 0, 1);
157 /* Delete no-op jumps and optimize jumps to jumps
158 and jumps around jumps.
159 Delete unused labels and unreachable code.
161 If CROSS_JUMP is 1, detect matching code
162 before a jump and its destination and unify them.
163 If CROSS_JUMP is 2, do cross-jumping, but pay attention to death notes.
165 If NOOP_MOVES is nonzero, delete no-op move insns.
167 If AFTER_REGSCAN is nonzero, then this jump pass is being run immediately
168 after regscan, and it is safe to use regno_first_uid and regno_last_uid.
170 If MARK_LABELS_ONLY is nonzero, then we only rebuild the jump chain
171 and JUMP_LABEL field for jumping insns.
173 If `optimize' is zero, don't change any code,
174 just determine whether control drops off the end of the function.
175 This case occurs when we have -W and not -O.
176 It works because `delete_insn' checks the value of `optimize'
177 and refrains from actually deleting when that is 0. */
179 static void
180 jump_optimize_1 (f, cross_jump, noop_moves, after_regscan, mark_labels_only)
181 rtx f;
182 int cross_jump;
183 int noop_moves;
184 int after_regscan;
185 int mark_labels_only;
187 register rtx insn, next;
188 int changed;
189 int old_max_reg;
190 int first = 1;
191 int max_uid = 0;
192 rtx last_insn;
194 cross_jump_death_matters = (cross_jump == 2);
195 max_uid = init_label_info (f) + 1;
197 /* If we are performing cross jump optimizations, then initialize
198 tables mapping UIDs to EH regions to avoid incorrect movement
199 of insns from one EH region to another. */
200 if (flag_exceptions && cross_jump)
201 init_insn_eh_region (f, max_uid);
203 delete_barrier_successors (f);
205 /* Leave some extra room for labels and duplicate exit test insns
206 we make. */
207 max_jump_chain = max_uid * 14 / 10;
208 jump_chain = (rtx *) xcalloc (max_jump_chain, sizeof (rtx));
210 mark_all_labels (f, cross_jump);
212 /* Keep track of labels used from static data;
213 they cannot ever be deleted. */
215 for (insn = forced_labels; insn; insn = XEXP (insn, 1))
216 LABEL_NUSES (XEXP (insn, 0))++;
218 check_exception_handler_labels ();
220 /* Keep track of labels used for marking handlers for exception
221 regions; they cannot usually be deleted. */
223 for (insn = exception_handler_labels; insn; insn = XEXP (insn, 1))
224 LABEL_NUSES (XEXP (insn, 0))++;
226 /* Quit now if we just wanted to rebuild the JUMP_LABEL and REG_LABEL
227 notes and recompute LABEL_NUSES. */
228 if (mark_labels_only)
229 goto end;
231 exception_optimize ();
233 last_insn = delete_unreferenced_labels (f);
235 if (optimize == 0)
237 /* CAN_REACH_END is persistent for each function. Once set it should
238 not be cleared. This is especially true for the case where we
239 delete the NOTE_FUNCTION_END note. CAN_REACH_END is cleared by
240 the front-end before compiling each function. */
241 if (calculate_can_reach_end (last_insn, 1, 0))
242 can_reach_end = 1;
244 /* Zero the "deleted" flag of all the "deleted" insns. */
245 for (insn = f; insn; insn = NEXT_INSN (insn))
246 INSN_DELETED_P (insn) = 0;
248 goto end;
251 #ifdef HAVE_return
252 if (HAVE_return)
254 /* If we fall through to the epilogue, see if we can insert a RETURN insn
255 in front of it. If the machine allows it at this point (we might be
256 after reload for a leaf routine), it will improve optimization for it
257 to be there. */
258 insn = get_last_insn ();
259 while (insn && GET_CODE (insn) == NOTE)
260 insn = PREV_INSN (insn);
262 if (insn && GET_CODE (insn) != BARRIER)
264 emit_jump_insn (gen_return ());
265 emit_barrier ();
268 #endif
270 if (noop_moves)
271 delete_noop_moves (f);
273 /* If we haven't yet gotten to reload and we have just run regscan,
274 delete any insn that sets a register that isn't used elsewhere.
275 This helps some of the optimizations below by having less insns
276 being jumped around. */
278 if (! reload_completed && after_regscan)
279 for (insn = f; insn; insn = next)
281 rtx set = single_set (insn);
283 next = NEXT_INSN (insn);
285 if (set && GET_CODE (SET_DEST (set)) == REG
286 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER
287 && REGNO_FIRST_UID (REGNO (SET_DEST (set))) == INSN_UID (insn)
288 /* We use regno_last_note_uid so as not to delete the setting
289 of a reg that's used in notes. A subsequent optimization
290 might arrange to use that reg for real. */
291 && REGNO_LAST_NOTE_UID (REGNO (SET_DEST (set))) == INSN_UID (insn)
292 && ! side_effects_p (SET_SRC (set))
293 && ! find_reg_note (insn, REG_RETVAL, 0)
294 /* An ADDRESSOF expression can turn into a use of the internal arg
295 pointer, so do not delete the initialization of the internal
296 arg pointer yet. If it is truly dead, flow will delete the
297 initializing insn. */
298 && SET_DEST (set) != current_function_internal_arg_pointer)
299 delete_insn (insn);
302 /* Now iterate optimizing jumps until nothing changes over one pass. */
303 changed = 1;
304 old_max_reg = max_reg_num ();
305 while (changed)
307 changed = 0;
309 for (insn = f; insn; insn = next)
311 rtx reallabelprev;
312 rtx temp, temp1, temp2, temp3, temp4, temp5, temp6;
313 rtx nlabel;
314 int this_is_simplejump, this_is_condjump, reversep = 0;
315 int this_is_condjump_in_parallel;
317 next = NEXT_INSN (insn);
319 /* See if this is a NOTE_INSN_LOOP_BEG followed by an unconditional
320 jump. Try to optimize by duplicating the loop exit test if so.
321 This is only safe immediately after regscan, because it uses
322 the values of regno_first_uid and regno_last_uid. */
323 if (after_regscan && GET_CODE (insn) == NOTE
324 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG
325 && (temp1 = next_nonnote_insn (insn)) != 0
326 && simplejump_p (temp1))
328 temp = PREV_INSN (insn);
329 if (duplicate_loop_exit_test (insn))
331 changed = 1;
332 next = NEXT_INSN (temp);
333 continue;
337 if (GET_CODE (insn) != JUMP_INSN)
338 continue;
340 this_is_simplejump = simplejump_p (insn);
341 this_is_condjump = condjump_p (insn);
342 this_is_condjump_in_parallel = condjump_in_parallel_p (insn);
344 /* Tension the labels in dispatch tables. */
346 if (GET_CODE (PATTERN (insn)) == ADDR_VEC)
347 changed |= tension_vector_labels (PATTERN (insn), 0);
348 if (GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
349 changed |= tension_vector_labels (PATTERN (insn), 1);
351 /* See if this jump goes to another jump and redirect if so. */
352 nlabel = follow_jumps (JUMP_LABEL (insn));
353 if (nlabel != JUMP_LABEL (insn))
354 changed |= redirect_jump (insn, nlabel);
356 /* If a dispatch table always goes to the same place,
357 get rid of it and replace the insn that uses it. */
359 if (GET_CODE (PATTERN (insn)) == ADDR_VEC
360 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
362 int i;
363 rtx pat = PATTERN (insn);
364 int diff_vec_p = GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC;
365 int len = XVECLEN (pat, diff_vec_p);
366 rtx dispatch = prev_real_insn (insn);
367 rtx set;
369 for (i = 0; i < len; i++)
370 if (XEXP (XVECEXP (pat, diff_vec_p, i), 0)
371 != XEXP (XVECEXP (pat, diff_vec_p, 0), 0))
372 break;
374 if (i == len
375 && dispatch != 0
376 && GET_CODE (dispatch) == JUMP_INSN
377 && JUMP_LABEL (dispatch) != 0
378 /* Don't mess with a casesi insn.
379 XXX according to the comment before computed_jump_p(),
380 all casesi insns should be a parallel of the jump
381 and a USE of a LABEL_REF. */
382 && ! ((set = single_set (dispatch)) != NULL
383 && (GET_CODE (SET_SRC (set)) == IF_THEN_ELSE))
384 && next_real_insn (JUMP_LABEL (dispatch)) == insn)
386 redirect_tablejump (dispatch,
387 XEXP (XVECEXP (pat, diff_vec_p, 0), 0));
388 changed = 1;
392 /* If a jump references the end of the function, try to turn
393 it into a RETURN insn, possibly a conditional one. */
394 if (JUMP_LABEL (insn) != 0
395 && (next_active_insn (JUMP_LABEL (insn)) == 0
396 || GET_CODE (PATTERN (next_active_insn (JUMP_LABEL (insn))))
397 == RETURN))
398 changed |= redirect_jump (insn, NULL_RTX);
400 reallabelprev = prev_active_insn (JUMP_LABEL (insn));
402 /* Detect jump to following insn. */
403 if (reallabelprev == insn && this_is_condjump)
405 next = next_real_insn (JUMP_LABEL (insn));
406 delete_jump (insn);
407 changed = 1;
408 continue;
411 /* Detect a conditional jump going to the same place
412 as an immediately following unconditional jump. */
413 else if (this_is_condjump
414 && (temp = next_active_insn (insn)) != 0
415 && simplejump_p (temp)
416 && (next_active_insn (JUMP_LABEL (insn))
417 == next_active_insn (JUMP_LABEL (temp))))
419 /* Don't mess up test coverage analysis. */
420 temp2 = temp;
421 if (flag_test_coverage && !reload_completed)
422 for (temp2 = insn; temp2 != temp; temp2 = NEXT_INSN (temp2))
423 if (GET_CODE (temp2) == NOTE && NOTE_LINE_NUMBER (temp2) > 0)
424 break;
426 if (temp2 == temp)
428 delete_jump (insn);
429 changed = 1;
430 continue;
434 /* Detect a conditional jump jumping over an unconditional jump. */
436 else if ((this_is_condjump || this_is_condjump_in_parallel)
437 && ! this_is_simplejump
438 && reallabelprev != 0
439 && GET_CODE (reallabelprev) == JUMP_INSN
440 && prev_active_insn (reallabelprev) == insn
441 && no_labels_between_p (insn, reallabelprev)
442 && simplejump_p (reallabelprev))
444 /* When we invert the unconditional jump, we will be
445 decrementing the usage count of its old label.
446 Make sure that we don't delete it now because that
447 might cause the following code to be deleted. */
448 rtx prev_uses = prev_nonnote_insn (reallabelprev);
449 rtx prev_label = JUMP_LABEL (insn);
451 if (prev_label)
452 ++LABEL_NUSES (prev_label);
454 if (invert_jump (insn, JUMP_LABEL (reallabelprev)))
456 /* It is very likely that if there are USE insns before
457 this jump, they hold REG_DEAD notes. These REG_DEAD
458 notes are no longer valid due to this optimization,
459 and will cause the life-analysis that following passes
460 (notably delayed-branch scheduling) to think that
461 these registers are dead when they are not.
463 To prevent this trouble, we just remove the USE insns
464 from the insn chain. */
466 while (prev_uses && GET_CODE (prev_uses) == INSN
467 && GET_CODE (PATTERN (prev_uses)) == USE)
469 rtx useless = prev_uses;
470 prev_uses = prev_nonnote_insn (prev_uses);
471 delete_insn (useless);
474 delete_insn (reallabelprev);
475 changed = 1;
478 /* We can now safely delete the label if it is unreferenced
479 since the delete_insn above has deleted the BARRIER. */
480 if (prev_label && --LABEL_NUSES (prev_label) == 0)
481 delete_insn (prev_label);
483 next = NEXT_INSN (insn);
486 /* If we have an unconditional jump preceded by a USE, try to put
487 the USE before the target and jump there. This simplifies many
488 of the optimizations below since we don't have to worry about
489 dealing with these USE insns. We only do this if the label
490 being branch to already has the identical USE or if code
491 never falls through to that label. */
493 else if (this_is_simplejump
494 && (temp = prev_nonnote_insn (insn)) != 0
495 && GET_CODE (temp) == INSN
496 && GET_CODE (PATTERN (temp)) == USE
497 && (temp1 = prev_nonnote_insn (JUMP_LABEL (insn))) != 0
498 && (GET_CODE (temp1) == BARRIER
499 || (GET_CODE (temp1) == INSN
500 && rtx_equal_p (PATTERN (temp), PATTERN (temp1))))
501 /* Don't do this optimization if we have a loop containing
502 only the USE instruction, and the loop start label has
503 a usage count of 1. This is because we will redo this
504 optimization everytime through the outer loop, and jump
505 opt will never exit. */
506 && ! ((temp2 = prev_nonnote_insn (temp)) != 0
507 && temp2 == JUMP_LABEL (insn)
508 && LABEL_NUSES (temp2) == 1))
510 if (GET_CODE (temp1) == BARRIER)
512 emit_insn_after (PATTERN (temp), temp1);
513 temp1 = NEXT_INSN (temp1);
516 delete_insn (temp);
517 redirect_jump (insn, get_label_before (temp1));
518 reallabelprev = prev_real_insn (temp1);
519 changed = 1;
520 next = NEXT_INSN (insn);
523 /* Simplify if (...) x = a; else x = b; by converting it
524 to x = b; if (...) x = a;
525 if B is sufficiently simple, the test doesn't involve X,
526 and nothing in the test modifies B or X.
528 If we have small register classes, we also can't do this if X
529 is a hard register.
531 If the "x = b;" insn has any REG_NOTES, we don't do this because
532 of the possibility that we are running after CSE and there is a
533 REG_EQUAL note that is only valid if the branch has already been
534 taken. If we move the insn with the REG_EQUAL note, we may
535 fold the comparison to always be false in a later CSE pass.
536 (We could also delete the REG_NOTES when moving the insn, but it
537 seems simpler to not move it.) An exception is that we can move
538 the insn if the only note is a REG_EQUAL or REG_EQUIV whose
539 value is the same as "b".
541 INSN is the branch over the `else' part.
543 We set:
545 TEMP to the jump insn preceding "x = a;"
546 TEMP1 to X
547 TEMP2 to the insn that sets "x = b;"
548 TEMP3 to the insn that sets "x = a;"
549 TEMP4 to the set of "x = b"; */
551 if (this_is_simplejump
552 && (temp3 = prev_active_insn (insn)) != 0
553 && GET_CODE (temp3) == INSN
554 && (temp4 = single_set (temp3)) != 0
555 && GET_CODE (temp1 = SET_DEST (temp4)) == REG
556 && (! SMALL_REGISTER_CLASSES
557 || REGNO (temp1) >= FIRST_PSEUDO_REGISTER)
558 && (temp2 = next_active_insn (insn)) != 0
559 && GET_CODE (temp2) == INSN
560 && (temp4 = single_set (temp2)) != 0
561 && rtx_equal_p (SET_DEST (temp4), temp1)
562 && ! side_effects_p (SET_SRC (temp4))
563 && ! may_trap_p (SET_SRC (temp4))
564 && (REG_NOTES (temp2) == 0
565 || ((REG_NOTE_KIND (REG_NOTES (temp2)) == REG_EQUAL
566 || REG_NOTE_KIND (REG_NOTES (temp2)) == REG_EQUIV)
567 && XEXP (REG_NOTES (temp2), 1) == 0
568 && rtx_equal_p (XEXP (REG_NOTES (temp2), 0),
569 SET_SRC (temp4))))
570 && (temp = prev_active_insn (temp3)) != 0
571 && condjump_p (temp) && ! simplejump_p (temp)
572 /* TEMP must skip over the "x = a;" insn */
573 && prev_real_insn (JUMP_LABEL (temp)) == insn
574 && no_labels_between_p (insn, JUMP_LABEL (temp))
575 /* There must be no other entries to the "x = b;" insn. */
576 && no_labels_between_p (JUMP_LABEL (temp), temp2)
577 /* INSN must either branch to the insn after TEMP2 or the insn
578 after TEMP2 must branch to the same place as INSN. */
579 && (reallabelprev == temp2
580 || ((temp5 = next_active_insn (temp2)) != 0
581 && simplejump_p (temp5)
582 && JUMP_LABEL (temp5) == JUMP_LABEL (insn))))
584 /* The test expression, X, may be a complicated test with
585 multiple branches. See if we can find all the uses of
586 the label that TEMP branches to without hitting a CALL_INSN
587 or a jump to somewhere else. */
588 rtx target = JUMP_LABEL (temp);
589 int nuses = LABEL_NUSES (target);
590 rtx p;
591 #ifdef HAVE_cc0
592 rtx q;
593 #endif
595 /* Set P to the first jump insn that goes around "x = a;". */
596 for (p = temp; nuses && p; p = prev_nonnote_insn (p))
598 if (GET_CODE (p) == JUMP_INSN)
600 if (condjump_p (p) && ! simplejump_p (p)
601 && JUMP_LABEL (p) == target)
603 nuses--;
604 if (nuses == 0)
605 break;
607 else
608 break;
610 else if (GET_CODE (p) == CALL_INSN)
611 break;
614 #ifdef HAVE_cc0
615 /* We cannot insert anything between a set of cc and its use
616 so if P uses cc0, we must back up to the previous insn. */
617 q = prev_nonnote_insn (p);
618 if (q && GET_RTX_CLASS (GET_CODE (q)) == 'i'
619 && sets_cc0_p (PATTERN (q)))
620 p = q;
621 #endif
623 if (p)
624 p = PREV_INSN (p);
626 /* If we found all the uses and there was no data conflict, we
627 can move the assignment unless we can branch into the middle
628 from somewhere. */
629 if (nuses == 0 && p
630 && no_labels_between_p (p, insn)
631 && ! reg_referenced_between_p (temp1, p, NEXT_INSN (temp3))
632 && ! reg_set_between_p (temp1, p, temp3)
633 && (GET_CODE (SET_SRC (temp4)) == CONST_INT
634 || ! modified_between_p (SET_SRC (temp4), p, temp2))
635 /* Verify that registers used by the jump are not clobbered
636 by the instruction being moved. */
637 && ! regs_set_between_p (PATTERN (temp),
638 PREV_INSN (temp2),
639 NEXT_INSN (temp2)))
641 emit_insn_after_with_line_notes (PATTERN (temp2), p, temp2);
642 delete_insn (temp2);
644 /* Set NEXT to an insn that we know won't go away. */
645 next = next_active_insn (insn);
647 /* Delete the jump around the set. Note that we must do
648 this before we redirect the test jumps so that it won't
649 delete the code immediately following the assignment
650 we moved (which might be a jump). */
652 delete_insn (insn);
654 /* We either have two consecutive labels or a jump to
655 a jump, so adjust all the JUMP_INSNs to branch to where
656 INSN branches to. */
657 for (p = NEXT_INSN (p); p != next; p = NEXT_INSN (p))
658 if (GET_CODE (p) == JUMP_INSN)
659 redirect_jump (p, target);
661 changed = 1;
662 next = NEXT_INSN (insn);
663 continue;
667 /* Simplify if (...) { x = a; goto l; } x = b; by converting it
668 to x = a; if (...) goto l; x = b;
669 if A is sufficiently simple, the test doesn't involve X,
670 and nothing in the test modifies A or X.
672 If we have small register classes, we also can't do this if X
673 is a hard register.
675 If the "x = a;" insn has any REG_NOTES, we don't do this because
676 of the possibility that we are running after CSE and there is a
677 REG_EQUAL note that is only valid if the branch has already been
678 taken. If we move the insn with the REG_EQUAL note, we may
679 fold the comparison to always be false in a later CSE pass.
680 (We could also delete the REG_NOTES when moving the insn, but it
681 seems simpler to not move it.) An exception is that we can move
682 the insn if the only note is a REG_EQUAL or REG_EQUIV whose
683 value is the same as "a".
685 INSN is the goto.
687 We set:
689 TEMP to the jump insn preceding "x = a;"
690 TEMP1 to X
691 TEMP2 to the insn that sets "x = b;"
692 TEMP3 to the insn that sets "x = a;"
693 TEMP4 to the set of "x = a"; */
695 if (this_is_simplejump
696 && (temp2 = next_active_insn (insn)) != 0
697 && GET_CODE (temp2) == INSN
698 && (temp4 = single_set (temp2)) != 0
699 && GET_CODE (temp1 = SET_DEST (temp4)) == REG
700 && (! SMALL_REGISTER_CLASSES
701 || REGNO (temp1) >= FIRST_PSEUDO_REGISTER)
702 && (temp3 = prev_active_insn (insn)) != 0
703 && GET_CODE (temp3) == INSN
704 && (temp4 = single_set (temp3)) != 0
705 && rtx_equal_p (SET_DEST (temp4), temp1)
706 && ! side_effects_p (SET_SRC (temp4))
707 && ! may_trap_p (SET_SRC (temp4))
708 && (REG_NOTES (temp3) == 0
709 || ((REG_NOTE_KIND (REG_NOTES (temp3)) == REG_EQUAL
710 || REG_NOTE_KIND (REG_NOTES (temp3)) == REG_EQUIV)
711 && XEXP (REG_NOTES (temp3), 1) == 0
712 && rtx_equal_p (XEXP (REG_NOTES (temp3), 0),
713 SET_SRC (temp4))))
714 && (temp = prev_active_insn (temp3)) != 0
715 && condjump_p (temp) && ! simplejump_p (temp)
716 /* TEMP must skip over the "x = a;" insn */
717 && prev_real_insn (JUMP_LABEL (temp)) == insn
718 && no_labels_between_p (temp, insn))
720 rtx prev_label = JUMP_LABEL (temp);
721 rtx insert_after = prev_nonnote_insn (temp);
723 #ifdef HAVE_cc0
724 /* We cannot insert anything between a set of cc and its use. */
725 if (insert_after && GET_RTX_CLASS (GET_CODE (insert_after)) == 'i'
726 && sets_cc0_p (PATTERN (insert_after)))
727 insert_after = prev_nonnote_insn (insert_after);
728 #endif
729 ++LABEL_NUSES (prev_label);
731 if (insert_after
732 && no_labels_between_p (insert_after, temp)
733 && ! reg_referenced_between_p (temp1, insert_after, temp3)
734 && ! reg_referenced_between_p (temp1, temp3,
735 NEXT_INSN (temp2))
736 && ! reg_set_between_p (temp1, insert_after, temp)
737 && ! modified_between_p (SET_SRC (temp4), insert_after, temp)
738 /* Verify that registers used by the jump are not clobbered
739 by the instruction being moved. */
740 && ! regs_set_between_p (PATTERN (temp),
741 PREV_INSN (temp3),
742 NEXT_INSN (temp3))
743 && invert_jump (temp, JUMP_LABEL (insn)))
745 emit_insn_after_with_line_notes (PATTERN (temp3),
746 insert_after, temp3);
747 delete_insn (temp3);
748 delete_insn (insn);
749 /* Set NEXT to an insn that we know won't go away. */
750 next = temp2;
751 changed = 1;
753 if (prev_label && --LABEL_NUSES (prev_label) == 0)
754 delete_insn (prev_label);
755 if (changed)
756 continue;
759 #if !defined(HAVE_cc0) && !defined(HAVE_conditional_arithmetic)
761 /* If we have if (...) x = exp; and branches are expensive,
762 EXP is a single insn, does not have any side effects, cannot
763 trap, and is not too costly, convert this to
764 t = exp; if (...) x = t;
766 Don't do this when we have CC0 because it is unlikely to help
767 and we'd need to worry about where to place the new insn and
768 the potential for conflicts. We also can't do this when we have
769 notes on the insn for the same reason as above.
771 If we have conditional arithmetic, this will make this
772 harder to optimize later and isn't needed, so don't do it
773 in that case either.
775 We set:
777 TEMP to the "x = exp;" insn.
778 TEMP1 to the single set in the "x = exp;" insn.
779 TEMP2 to "x". */
781 if (! reload_completed
782 && this_is_condjump && ! this_is_simplejump
783 && BRANCH_COST >= 3
784 && (temp = next_nonnote_insn (insn)) != 0
785 && GET_CODE (temp) == INSN
786 && REG_NOTES (temp) == 0
787 && (reallabelprev == temp
788 || ((temp2 = next_active_insn (temp)) != 0
789 && simplejump_p (temp2)
790 && JUMP_LABEL (temp2) == JUMP_LABEL (insn)))
791 && (temp1 = single_set (temp)) != 0
792 && (temp2 = SET_DEST (temp1), GET_CODE (temp2) == REG)
793 && (! SMALL_REGISTER_CLASSES
794 || REGNO (temp2) >= FIRST_PSEUDO_REGISTER)
795 && GET_CODE (SET_SRC (temp1)) != REG
796 && GET_CODE (SET_SRC (temp1)) != SUBREG
797 && GET_CODE (SET_SRC (temp1)) != CONST_INT
798 && ! side_effects_p (SET_SRC (temp1))
799 && ! may_trap_p (SET_SRC (temp1))
800 && rtx_cost (SET_SRC (temp1), SET) < 10)
802 rtx new = gen_reg_rtx (GET_MODE (temp2));
804 if ((temp3 = find_insert_position (insn, temp))
805 && validate_change (temp, &SET_DEST (temp1), new, 0))
807 next = emit_insn_after (gen_move_insn (temp2, new), insn);
808 emit_insn_after_with_line_notes (PATTERN (temp),
809 PREV_INSN (temp3), temp);
810 delete_insn (temp);
811 reallabelprev = prev_active_insn (JUMP_LABEL (insn));
813 if (after_regscan)
815 reg_scan_update (temp3, NEXT_INSN (next), old_max_reg);
816 old_max_reg = max_reg_num ();
821 /* Similarly, if it takes two insns to compute EXP but they
822 have the same destination. Here TEMP3 will be the second
823 insn and TEMP4 the SET from that insn. */
825 if (! reload_completed
826 && this_is_condjump && ! this_is_simplejump
827 && BRANCH_COST >= 4
828 && (temp = next_nonnote_insn (insn)) != 0
829 && GET_CODE (temp) == INSN
830 && REG_NOTES (temp) == 0
831 && (temp3 = next_nonnote_insn (temp)) != 0
832 && GET_CODE (temp3) == INSN
833 && REG_NOTES (temp3) == 0
834 && (reallabelprev == temp3
835 || ((temp2 = next_active_insn (temp3)) != 0
836 && simplejump_p (temp2)
837 && JUMP_LABEL (temp2) == JUMP_LABEL (insn)))
838 && (temp1 = single_set (temp)) != 0
839 && (temp2 = SET_DEST (temp1), GET_CODE (temp2) == REG)
840 && GET_MODE_CLASS (GET_MODE (temp2)) == MODE_INT
841 && (! SMALL_REGISTER_CLASSES
842 || REGNO (temp2) >= FIRST_PSEUDO_REGISTER)
843 && ! side_effects_p (SET_SRC (temp1))
844 && ! may_trap_p (SET_SRC (temp1))
845 && rtx_cost (SET_SRC (temp1), SET) < 10
846 && (temp4 = single_set (temp3)) != 0
847 && rtx_equal_p (SET_DEST (temp4), temp2)
848 && ! side_effects_p (SET_SRC (temp4))
849 && ! may_trap_p (SET_SRC (temp4))
850 && rtx_cost (SET_SRC (temp4), SET) < 10)
852 rtx new = gen_reg_rtx (GET_MODE (temp2));
854 if ((temp5 = find_insert_position (insn, temp))
855 && (temp6 = find_insert_position (insn, temp3))
856 && validate_change (temp, &SET_DEST (temp1), new, 0))
858 /* Use the earliest of temp5 and temp6. */
859 if (temp5 != insn)
860 temp6 = temp5;
861 next = emit_insn_after (gen_move_insn (temp2, new), insn);
862 emit_insn_after_with_line_notes (PATTERN (temp),
863 PREV_INSN (temp6), temp);
864 emit_insn_after_with_line_notes
865 (replace_rtx (PATTERN (temp3), temp2, new),
866 PREV_INSN (temp6), temp3);
867 delete_insn (temp);
868 delete_insn (temp3);
869 reallabelprev = prev_active_insn (JUMP_LABEL (insn));
871 if (after_regscan)
873 reg_scan_update (temp6, NEXT_INSN (next), old_max_reg);
874 old_max_reg = max_reg_num ();
879 /* Finally, handle the case where two insns are used to
880 compute EXP but a temporary register is used. Here we must
881 ensure that the temporary register is not used anywhere else. */
883 if (! reload_completed
884 && after_regscan
885 && this_is_condjump && ! this_is_simplejump
886 && BRANCH_COST >= 4
887 && (temp = next_nonnote_insn (insn)) != 0
888 && GET_CODE (temp) == INSN
889 && REG_NOTES (temp) == 0
890 && (temp3 = next_nonnote_insn (temp)) != 0
891 && GET_CODE (temp3) == INSN
892 && REG_NOTES (temp3) == 0
893 && (reallabelprev == temp3
894 || ((temp2 = next_active_insn (temp3)) != 0
895 && simplejump_p (temp2)
896 && JUMP_LABEL (temp2) == JUMP_LABEL (insn)))
897 && (temp1 = single_set (temp)) != 0
898 && (temp5 = SET_DEST (temp1),
899 (GET_CODE (temp5) == REG
900 || (GET_CODE (temp5) == SUBREG
901 && (temp5 = SUBREG_REG (temp5),
902 GET_CODE (temp5) == REG))))
903 && REGNO (temp5) >= FIRST_PSEUDO_REGISTER
904 && REGNO_FIRST_UID (REGNO (temp5)) == INSN_UID (temp)
905 && REGNO_LAST_UID (REGNO (temp5)) == INSN_UID (temp3)
906 && ! side_effects_p (SET_SRC (temp1))
907 && ! may_trap_p (SET_SRC (temp1))
908 && rtx_cost (SET_SRC (temp1), SET) < 10
909 && (temp4 = single_set (temp3)) != 0
910 && (temp2 = SET_DEST (temp4), GET_CODE (temp2) == REG)
911 && GET_MODE_CLASS (GET_MODE (temp2)) == MODE_INT
912 && (! SMALL_REGISTER_CLASSES
913 || REGNO (temp2) >= FIRST_PSEUDO_REGISTER)
914 && rtx_equal_p (SET_DEST (temp4), temp2)
915 && ! side_effects_p (SET_SRC (temp4))
916 && ! may_trap_p (SET_SRC (temp4))
917 && rtx_cost (SET_SRC (temp4), SET) < 10)
919 rtx new = gen_reg_rtx (GET_MODE (temp2));
921 if ((temp5 = find_insert_position (insn, temp))
922 && (temp6 = find_insert_position (insn, temp3))
923 && validate_change (temp3, &SET_DEST (temp4), new, 0))
925 /* Use the earliest of temp5 and temp6. */
926 if (temp5 != insn)
927 temp6 = temp5;
928 next = emit_insn_after (gen_move_insn (temp2, new), insn);
929 emit_insn_after_with_line_notes (PATTERN (temp),
930 PREV_INSN (temp6), temp);
931 emit_insn_after_with_line_notes (PATTERN (temp3),
932 PREV_INSN (temp6), temp3);
933 delete_insn (temp);
934 delete_insn (temp3);
935 reallabelprev = prev_active_insn (JUMP_LABEL (insn));
937 if (after_regscan)
939 reg_scan_update (temp6, NEXT_INSN (next), old_max_reg);
940 old_max_reg = max_reg_num ();
944 #endif /* HAVE_cc0 */
946 #ifdef HAVE_conditional_arithmetic
947 /* ??? This is disabled in genconfig, as this simple-minded
948 transformation can incredibly lengthen register lifetimes.
950 Consider this example from cexp.c's yyparse:
952 234 (set (pc)
953 (if_then_else (ne (reg:DI 149) (const_int 0 [0x0]))
954 (label_ref 248) (pc)))
955 237 (set (reg/i:DI 0 $0) (const_int 1 [0x1]))
956 239 (set (pc) (label_ref 2382))
957 248 (code_label ("yybackup"))
959 This will be transformed to:
961 237 (set (reg/i:DI 0 $0)
962 (if_then_else:DI (eq (reg:DI 149) (const_int 0 [0x0]))
963 (const_int 1 [0x1]) (reg/i:DI 0 $0)))
964 239 (set (pc)
965 (if_then_else (eq (reg:DI 149) (const_int 0 [0x0]))
966 (label_ref 2382) (pc)))
968 which, from this narrow viewpoint looks fine. Except that
969 between this and 3 other ocurrences of the same pattern, $0
970 is now live for basically the entire function, and we'll
971 get an abort in caller_save.
973 Any replacement for this code should recall that a set of
974 a register that is not live need not, and indeed should not,
975 be conditionalized. Either that, or delay the transformation
976 until after register allocation. */
978 /* See if this is a conditional jump around a small number of
979 instructions that we can conditionalize. Don't do this before
980 the initial CSE pass or after reload.
982 We reject any insns that have side effects or may trap.
983 Strictly speaking, this is not needed since the machine may
984 support conditionalizing these too, but we won't deal with that
985 now. Specifically, this means that we can't conditionalize a
986 CALL_INSN, which some machines, such as the ARC, can do, but
987 this is a very minor optimization. */
988 if (this_is_condjump && ! this_is_simplejump
989 && cse_not_expected && optimize > 0 && ! reload_completed
990 && BRANCH_COST > 2
991 && can_reverse_comparison_p (XEXP (SET_SRC (PATTERN (insn)), 0),
992 insn))
994 rtx ourcond = XEXP (SET_SRC (PATTERN (insn)), 0);
995 int num_insns = 0;
996 char *storage = (char *) oballoc (0);
997 int last_insn = 0, failed = 0;
998 rtx changed_jump = 0;
1000 ourcond = gen_rtx (reverse_condition (GET_CODE (ourcond)),
1001 VOIDmode, XEXP (ourcond, 0),
1002 XEXP (ourcond, 1));
1004 /* Scan forward BRANCH_COST real insns looking for the JUMP_LABEL
1005 of this insn. We see if we think we can conditionalize the
1006 insns we pass. For now, we only deal with insns that have
1007 one SET. We stop after an insn that modifies anything in
1008 OURCOND, if we have too many insns, or if we have an insn
1009 with a side effect or that may trip. Note that we will
1010 be modifying any unconditional jumps we encounter to be
1011 conditional; this will have the effect of also doing this
1012 optimization on the "else" the next time around. */
1013 for (temp1 = NEXT_INSN (insn);
1014 num_insns <= BRANCH_COST && ! failed && temp1 != 0
1015 && GET_CODE (temp1) != CODE_LABEL;
1016 temp1 = NEXT_INSN (temp1))
1018 /* Ignore everything but an active insn. */
1019 if (GET_RTX_CLASS (GET_CODE (temp1)) != 'i'
1020 || GET_CODE (PATTERN (temp1)) == USE
1021 || GET_CODE (PATTERN (temp1)) == CLOBBER)
1022 continue;
1024 /* If this was an unconditional jump, record it since we'll
1025 need to remove the BARRIER if we succeed. We can only
1026 have one such jump since there must be a label after
1027 the BARRIER and it's either ours, in which case it's the
1028 only one or some other, in which case we'd fail.
1029 Likewise if it's a CALL_INSN followed by a BARRIER. */
1031 if (simplejump_p (temp1)
1032 || (GET_CODE (temp1) == CALL_INSN
1033 && NEXT_INSN (temp1) != 0
1034 && GET_CODE (NEXT_INSN (temp1)) == BARRIER))
1036 if (changed_jump == 0)
1037 changed_jump = temp1;
1038 else
1039 changed_jump
1040 = gen_rtx_INSN_LIST (VOIDmode, temp1, changed_jump);
1043 /* See if we are allowed another insn and if this insn
1044 if one we think we may be able to handle. */
1045 if (++num_insns > BRANCH_COST
1046 || last_insn
1047 || (((temp2 = single_set (temp1)) == 0
1048 || side_effects_p (SET_SRC (temp2))
1049 || may_trap_p (SET_SRC (temp2)))
1050 && GET_CODE (temp1) != CALL_INSN))
1051 failed = 1;
1052 else if (temp2 != 0)
1053 validate_change (temp1, &SET_SRC (temp2),
1054 gen_rtx_IF_THEN_ELSE
1055 (GET_MODE (SET_DEST (temp2)),
1056 copy_rtx (ourcond),
1057 SET_SRC (temp2), SET_DEST (temp2)),
1059 else
1061 /* This is a CALL_INSN that doesn't have a SET. */
1062 rtx *call_loc = &PATTERN (temp1);
1064 if (GET_CODE (*call_loc) == PARALLEL)
1065 call_loc = &XVECEXP (*call_loc, 0, 0);
1067 validate_change (temp1, call_loc,
1068 gen_rtx_IF_THEN_ELSE
1069 (VOIDmode, copy_rtx (ourcond),
1070 *call_loc, const0_rtx),
1075 if (modified_in_p (ourcond, temp1))
1076 last_insn = 1;
1079 /* If we've reached our jump label, haven't failed, and all
1080 the changes above are valid, we can delete this jump
1081 insn. Also remove a BARRIER after any jump that used
1082 to be unconditional and remove any REG_EQUAL or REG_EQUIV
1083 that might have previously been present on insns we
1084 made conditional. */
1085 if (temp1 == JUMP_LABEL (insn) && ! failed
1086 && apply_change_group ())
1088 for (temp1 = NEXT_INSN (insn); temp1 != JUMP_LABEL (insn);
1089 temp1 = NEXT_INSN (temp1))
1090 if (GET_RTX_CLASS (GET_CODE (temp1)) == 'i')
1091 for (temp2 = REG_NOTES (temp1); temp2 != 0;
1092 temp2 = XEXP (temp2, 1))
1093 if (REG_NOTE_KIND (temp2) == REG_EQUAL
1094 || REG_NOTE_KIND (temp2) == REG_EQUIV)
1095 remove_note (temp1, temp2);
1097 if (changed_jump != 0)
1099 while (GET_CODE (changed_jump) == INSN_LIST)
1101 delete_barrier (NEXT_INSN (XEXP (changed_jump, 0)));
1102 changed_jump = XEXP (changed_jump, 1);
1105 delete_barrier (NEXT_INSN (changed_jump));
1108 delete_insn (insn);
1109 changed = 1;
1110 continue;
1112 else
1114 cancel_changes (0);
1115 obfree (storage);
1118 #endif
1119 /* If branches are expensive, convert
1120 if (foo) bar++; to bar += (foo != 0);
1121 and similarly for "bar--;"
1123 INSN is the conditional branch around the arithmetic. We set:
1125 TEMP is the arithmetic insn.
1126 TEMP1 is the SET doing the arithmetic.
1127 TEMP2 is the operand being incremented or decremented.
1128 TEMP3 to the condition being tested.
1129 TEMP4 to the earliest insn used to find the condition. */
1131 if ((BRANCH_COST >= 2
1132 #ifdef HAVE_incscc
1133 || HAVE_incscc
1134 #endif
1135 #ifdef HAVE_decscc
1136 || HAVE_decscc
1137 #endif
1139 && ! reload_completed
1140 && this_is_condjump && ! this_is_simplejump
1141 && (temp = next_nonnote_insn (insn)) != 0
1142 && (temp1 = single_set (temp)) != 0
1143 && (temp2 = SET_DEST (temp1),
1144 GET_MODE_CLASS (GET_MODE (temp2)) == MODE_INT)
1145 && GET_CODE (SET_SRC (temp1)) == PLUS
1146 && (XEXP (SET_SRC (temp1), 1) == const1_rtx
1147 || XEXP (SET_SRC (temp1), 1) == constm1_rtx)
1148 && rtx_equal_p (temp2, XEXP (SET_SRC (temp1), 0))
1149 && ! side_effects_p (temp2)
1150 && ! may_trap_p (temp2)
1151 /* INSN must either branch to the insn after TEMP or the insn
1152 after TEMP must branch to the same place as INSN. */
1153 && (reallabelprev == temp
1154 || ((temp3 = next_active_insn (temp)) != 0
1155 && simplejump_p (temp3)
1156 && JUMP_LABEL (temp3) == JUMP_LABEL (insn)))
1157 && (temp3 = get_condition (insn, &temp4)) != 0
1158 /* We must be comparing objects whose modes imply the size.
1159 We could handle BLKmode if (1) emit_store_flag could
1160 and (2) we could find the size reliably. */
1161 && GET_MODE (XEXP (temp3, 0)) != BLKmode
1162 && can_reverse_comparison_p (temp3, insn))
1164 rtx temp6, target = 0, seq, init_insn = 0, init = temp2;
1165 enum rtx_code code = reverse_condition (GET_CODE (temp3));
1167 start_sequence ();
1169 /* It must be the case that TEMP2 is not modified in the range
1170 [TEMP4, INSN). The one exception we make is if the insn
1171 before INSN sets TEMP2 to something which is also unchanged
1172 in that range. In that case, we can move the initialization
1173 into our sequence. */
1175 if ((temp5 = prev_active_insn (insn)) != 0
1176 && no_labels_between_p (temp5, insn)
1177 && GET_CODE (temp5) == INSN
1178 && (temp6 = single_set (temp5)) != 0
1179 && rtx_equal_p (temp2, SET_DEST (temp6))
1180 && (CONSTANT_P (SET_SRC (temp6))
1181 || GET_CODE (SET_SRC (temp6)) == REG
1182 || GET_CODE (SET_SRC (temp6)) == SUBREG))
1184 emit_insn (PATTERN (temp5));
1185 init_insn = temp5;
1186 init = SET_SRC (temp6);
1189 if (CONSTANT_P (init)
1190 || ! reg_set_between_p (init, PREV_INSN (temp4), insn))
1191 target = emit_store_flag (gen_reg_rtx (GET_MODE (temp2)), code,
1192 XEXP (temp3, 0), XEXP (temp3, 1),
1193 VOIDmode,
1194 (code == LTU || code == LEU
1195 || code == GTU || code == GEU), 1);
1197 /* If we can do the store-flag, do the addition or
1198 subtraction. */
1200 if (target)
1201 target = expand_binop (GET_MODE (temp2),
1202 (XEXP (SET_SRC (temp1), 1) == const1_rtx
1203 ? add_optab : sub_optab),
1204 temp2, target, temp2, 0, OPTAB_WIDEN);
1206 if (target != 0)
1208 /* Put the result back in temp2 in case it isn't already.
1209 Then replace the jump, possible a CC0-setting insn in
1210 front of the jump, and TEMP, with the sequence we have
1211 made. */
1213 if (target != temp2)
1214 emit_move_insn (temp2, target);
1216 seq = get_insns ();
1217 end_sequence ();
1219 emit_insns_before (seq, temp4);
1220 delete_insn (temp);
1222 if (init_insn)
1223 delete_insn (init_insn);
1225 next = NEXT_INSN (insn);
1226 #ifdef HAVE_cc0
1227 delete_insn (prev_nonnote_insn (insn));
1228 #endif
1229 delete_insn (insn);
1231 if (after_regscan)
1233 reg_scan_update (seq, NEXT_INSN (next), old_max_reg);
1234 old_max_reg = max_reg_num ();
1237 changed = 1;
1238 continue;
1240 else
1241 end_sequence ();
1244 /* Try to use a conditional move (if the target has them), or a
1245 store-flag insn. If the target has conditional arithmetic as
1246 well as conditional move, the above code will have done something.
1247 Note that we prefer the above code since it is more general: the
1248 code below can make changes that require work to undo.
1250 The general case here is:
1252 1) x = a; if (...) x = b; and
1253 2) if (...) x = b;
1255 If the jump would be faster, the machine should not have defined
1256 the movcc or scc insns!. These cases are often made by the
1257 previous optimization.
1259 The second case is treated as x = x; if (...) x = b;.
1261 INSN here is the jump around the store. We set:
1263 TEMP to the "x op= b;" insn.
1264 TEMP1 to X.
1265 TEMP2 to B.
1266 TEMP3 to A (X in the second case).
1267 TEMP4 to the condition being tested.
1268 TEMP5 to the earliest insn used to find the condition.
1269 TEMP6 to the SET of TEMP. */
1271 if (/* We can't do this after reload has completed. */
1272 ! reload_completed
1273 #ifdef HAVE_conditional_arithmetic
1274 /* Defer this until after CSE so the above code gets the
1275 first crack at it. */
1276 && cse_not_expected
1277 #endif
1278 && this_is_condjump && ! this_is_simplejump
1279 /* Set TEMP to the "x = b;" insn. */
1280 && (temp = next_nonnote_insn (insn)) != 0
1281 && GET_CODE (temp) == INSN
1282 && (temp6 = single_set (temp)) != NULL_RTX
1283 && GET_CODE (temp1 = SET_DEST (temp6)) == REG
1284 && (! SMALL_REGISTER_CLASSES
1285 || REGNO (temp1) >= FIRST_PSEUDO_REGISTER)
1286 && ! side_effects_p (temp2 = SET_SRC (temp6))
1287 && ! may_trap_p (temp2)
1288 /* Allow either form, but prefer the former if both apply.
1289 There is no point in using the old value of TEMP1 if
1290 it is a register, since cse will alias them. It can
1291 lose if the old value were a hard register since CSE
1292 won't replace hard registers. Avoid using TEMP3 if
1293 small register classes and it is a hard register. */
1294 && (((temp3 = reg_set_last (temp1, insn)) != 0
1295 && ! (SMALL_REGISTER_CLASSES && GET_CODE (temp3) == REG
1296 && REGNO (temp3) < FIRST_PSEUDO_REGISTER))
1297 /* Make the latter case look like x = x; if (...) x = b; */
1298 || (temp3 = temp1, 1))
1299 /* INSN must either branch to the insn after TEMP or the insn
1300 after TEMP must branch to the same place as INSN. */
1301 && (reallabelprev == temp
1302 || ((temp4 = next_active_insn (temp)) != 0
1303 && simplejump_p (temp4)
1304 && JUMP_LABEL (temp4) == JUMP_LABEL (insn)))
1305 && (temp4 = get_condition (insn, &temp5)) != 0
1306 /* We must be comparing objects whose modes imply the size.
1307 We could handle BLKmode if (1) emit_store_flag could
1308 and (2) we could find the size reliably. */
1309 && GET_MODE (XEXP (temp4, 0)) != BLKmode
1310 /* Even if branches are cheap, the store_flag optimization
1311 can win when the operation to be performed can be
1312 expressed directly. */
1313 #ifdef HAVE_cc0
1314 /* If the previous insn sets CC0 and something else, we can't
1315 do this since we are going to delete that insn. */
1317 && ! ((temp6 = prev_nonnote_insn (insn)) != 0
1318 && GET_CODE (temp6) == INSN
1319 && (sets_cc0_p (PATTERN (temp6)) == -1
1320 || (sets_cc0_p (PATTERN (temp6)) == 1
1321 && FIND_REG_INC_NOTE (temp6, NULL_RTX))))
1322 #endif
1325 #ifdef HAVE_conditional_move
1326 /* First try a conditional move. */
1328 enum rtx_code code = GET_CODE (temp4);
1329 rtx var = temp1;
1330 rtx cond0, cond1, aval, bval;
1331 rtx target, new_insn;
1333 /* Copy the compared variables into cond0 and cond1, so that
1334 any side effects performed in or after the old comparison,
1335 will not affect our compare which will come later. */
1336 /* ??? Is it possible to just use the comparison in the jump
1337 insn? After all, we're going to delete it. We'd have
1338 to modify emit_conditional_move to take a comparison rtx
1339 instead or write a new function. */
1340 cond0 = gen_reg_rtx (GET_MODE (XEXP (temp4, 0)));
1341 /* We want the target to be able to simplify comparisons with
1342 zero (and maybe other constants as well), so don't create
1343 pseudos for them. There's no need to either. */
1344 if (GET_CODE (XEXP (temp4, 1)) == CONST_INT
1345 || GET_CODE (XEXP (temp4, 1)) == CONST_DOUBLE)
1346 cond1 = XEXP (temp4, 1);
1347 else
1348 cond1 = gen_reg_rtx (GET_MODE (XEXP (temp4, 1)));
1350 /* Careful about copying these values -- an IOR or what may
1351 need to do other things, like clobber flags. */
1352 /* ??? Assume for the moment that AVAL is ok. */
1353 aval = temp3;
1355 start_sequence ();
1357 /* We're dealing with a single_set insn with no side effects
1358 on SET_SRC. We do need to be reasonably certain that if
1359 we need to force BVAL into a register that we won't
1360 clobber the flags -- general_operand should suffice. */
1361 if (general_operand (temp2, GET_MODE (var)))
1362 bval = temp2;
1363 else
1365 bval = gen_reg_rtx (GET_MODE (var));
1366 new_insn = copy_rtx (temp);
1367 temp6 = single_set (new_insn);
1368 SET_DEST (temp6) = bval;
1369 emit_insn (PATTERN (new_insn));
1372 target = emit_conditional_move (var, code,
1373 cond0, cond1, VOIDmode,
1374 aval, bval, GET_MODE (var),
1375 (code == LTU || code == GEU
1376 || code == LEU || code == GTU));
1378 if (target)
1380 rtx seq1, seq2, last;
1381 int copy_ok;
1383 /* Save the conditional move sequence but don't emit it
1384 yet. On some machines, like the alpha, it is possible
1385 that temp5 == insn, so next generate the sequence that
1386 saves the compared values and then emit both
1387 sequences ensuring seq1 occurs before seq2. */
1388 seq2 = get_insns ();
1389 end_sequence ();
1391 /* "Now that we can't fail..." Famous last words.
1392 Generate the copy insns that preserve the compared
1393 values. */
1394 start_sequence ();
1395 emit_move_insn (cond0, XEXP (temp4, 0));
1396 if (cond1 != XEXP (temp4, 1))
1397 emit_move_insn (cond1, XEXP (temp4, 1));
1398 seq1 = get_insns ();
1399 end_sequence ();
1401 /* Validate the sequence -- this may be some weird
1402 bit-extract-and-test instruction for which there
1403 exists no complimentary bit-extract insn. */
1404 copy_ok = 1;
1405 for (last = seq1; last ; last = NEXT_INSN (last))
1406 if (recog_memoized (last) < 0)
1408 copy_ok = 0;
1409 break;
1412 if (copy_ok)
1414 emit_insns_before (seq1, temp5);
1416 /* Insert conditional move after insn, to be sure
1417 that the jump and a possible compare won't be
1418 separated. */
1419 last = emit_insns_after (seq2, insn);
1421 /* ??? We can also delete the insn that sets X to A.
1422 Flow will do it too though. */
1423 delete_insn (temp);
1424 next = NEXT_INSN (insn);
1425 delete_jump (insn);
1427 if (after_regscan)
1429 reg_scan_update (seq1, NEXT_INSN (last),
1430 old_max_reg);
1431 old_max_reg = max_reg_num ();
1434 changed = 1;
1435 continue;
1438 else
1439 end_sequence ();
1441 #endif
1443 /* That didn't work, try a store-flag insn.
1445 We further divide the cases into:
1447 1) x = a; if (...) x = b; and either A or B is zero,
1448 2) if (...) x = 0; and jumps are expensive,
1449 3) x = a; if (...) x = b; and A and B are constants where all
1450 the set bits in A are also set in B and jumps are expensive,
1451 4) x = a; if (...) x = b; and A and B non-zero, and jumps are
1452 more expensive, and
1453 5) if (...) x = b; if jumps are even more expensive. */
1455 if (GET_MODE_CLASS (GET_MODE (temp1)) == MODE_INT
1456 /* We will be passing this as operand into expand_and. No
1457 good if it's not valid as an operand. */
1458 && general_operand (temp2, GET_MODE (temp2))
1459 && ((GET_CODE (temp3) == CONST_INT)
1460 /* Make the latter case look like
1461 x = x; if (...) x = 0; */
1462 || (temp3 = temp1,
1463 ((BRANCH_COST >= 2
1464 && temp2 == const0_rtx)
1465 || BRANCH_COST >= 3)))
1466 /* If B is zero, OK; if A is zero, can only do (1) if we
1467 can reverse the condition. See if (3) applies possibly
1468 by reversing the condition. Prefer reversing to (4) when
1469 branches are very expensive. */
1470 && (((BRANCH_COST >= 2
1471 || STORE_FLAG_VALUE == -1
1472 || (STORE_FLAG_VALUE == 1
1473 /* Check that the mask is a power of two,
1474 so that it can probably be generated
1475 with a shift. */
1476 && GET_CODE (temp3) == CONST_INT
1477 && exact_log2 (INTVAL (temp3)) >= 0))
1478 && (reversep = 0, temp2 == const0_rtx))
1479 || ((BRANCH_COST >= 2
1480 || STORE_FLAG_VALUE == -1
1481 || (STORE_FLAG_VALUE == 1
1482 && GET_CODE (temp2) == CONST_INT
1483 && exact_log2 (INTVAL (temp2)) >= 0))
1484 && temp3 == const0_rtx
1485 && (reversep = can_reverse_comparison_p (temp4, insn)))
1486 || (BRANCH_COST >= 2
1487 && GET_CODE (temp2) == CONST_INT
1488 && GET_CODE (temp3) == CONST_INT
1489 && ((INTVAL (temp2) & INTVAL (temp3)) == INTVAL (temp2)
1490 || ((INTVAL (temp2) & INTVAL (temp3)) == INTVAL (temp3)
1491 && (reversep = can_reverse_comparison_p (temp4,
1492 insn)))))
1493 || BRANCH_COST >= 3)
1496 enum rtx_code code = GET_CODE (temp4);
1497 rtx uval, cval, var = temp1;
1498 int normalizep;
1499 rtx target;
1501 /* If necessary, reverse the condition. */
1502 if (reversep)
1503 code = reverse_condition (code), uval = temp2, cval = temp3;
1504 else
1505 uval = temp3, cval = temp2;
1507 /* If CVAL is non-zero, normalize to -1. Otherwise, if UVAL
1508 is the constant 1, it is best to just compute the result
1509 directly. If UVAL is constant and STORE_FLAG_VALUE
1510 includes all of its bits, it is best to compute the flag
1511 value unnormalized and `and' it with UVAL. Otherwise,
1512 normalize to -1 and `and' with UVAL. */
1513 normalizep = (cval != const0_rtx ? -1
1514 : (uval == const1_rtx ? 1
1515 : (GET_CODE (uval) == CONST_INT
1516 && (INTVAL (uval) & ~STORE_FLAG_VALUE) == 0)
1517 ? 0 : -1));
1519 /* We will be putting the store-flag insn immediately in
1520 front of the comparison that was originally being done,
1521 so we know all the variables in TEMP4 will be valid.
1522 However, this might be in front of the assignment of
1523 A to VAR. If it is, it would clobber the store-flag
1524 we will be emitting.
1526 Therefore, emit into a temporary which will be copied to
1527 VAR immediately after TEMP. */
1529 start_sequence ();
1530 target = emit_store_flag (gen_reg_rtx (GET_MODE (var)), code,
1531 XEXP (temp4, 0), XEXP (temp4, 1),
1532 VOIDmode,
1533 (code == LTU || code == LEU
1534 || code == GEU || code == GTU),
1535 normalizep);
1536 if (target)
1538 rtx seq;
1539 rtx before = insn;
1541 seq = get_insns ();
1542 end_sequence ();
1544 /* Put the store-flag insns in front of the first insn
1545 used to compute the condition to ensure that we
1546 use the same values of them as the current
1547 comparison. However, the remainder of the insns we
1548 generate will be placed directly in front of the
1549 jump insn, in case any of the pseudos we use
1550 are modified earlier. */
1552 emit_insns_before (seq, temp5);
1554 start_sequence ();
1556 /* Both CVAL and UVAL are non-zero. */
1557 if (cval != const0_rtx && uval != const0_rtx)
1559 rtx tem1, tem2;
1561 tem1 = expand_and (uval, target, NULL_RTX);
1562 if (GET_CODE (cval) == CONST_INT
1563 && GET_CODE (uval) == CONST_INT
1564 && (INTVAL (cval) & INTVAL (uval)) == INTVAL (cval))
1565 tem2 = cval;
1566 else
1568 tem2 = expand_unop (GET_MODE (var), one_cmpl_optab,
1569 target, NULL_RTX, 0);
1570 tem2 = expand_and (cval, tem2,
1571 (GET_CODE (tem2) == REG
1572 ? tem2 : 0));
1575 /* If we usually make new pseudos, do so here. This
1576 turns out to help machines that have conditional
1577 move insns. */
1578 /* ??? Conditional moves have already been handled.
1579 This may be obsolete. */
1581 if (flag_expensive_optimizations)
1582 target = 0;
1584 target = expand_binop (GET_MODE (var), ior_optab,
1585 tem1, tem2, target,
1586 1, OPTAB_WIDEN);
1588 else if (normalizep != 1)
1590 /* We know that either CVAL or UVAL is zero. If
1591 UVAL is zero, negate TARGET and `and' with CVAL.
1592 Otherwise, `and' with UVAL. */
1593 if (uval == const0_rtx)
1595 target = expand_unop (GET_MODE (var), one_cmpl_optab,
1596 target, NULL_RTX, 0);
1597 uval = cval;
1600 target = expand_and (uval, target,
1601 (GET_CODE (target) == REG
1602 && ! preserve_subexpressions_p ()
1603 ? target : NULL_RTX));
1606 emit_move_insn (var, target);
1607 seq = get_insns ();
1608 end_sequence ();
1609 #ifdef HAVE_cc0
1610 /* If INSN uses CC0, we must not separate it from the
1611 insn that sets cc0. */
1612 if (reg_mentioned_p (cc0_rtx, PATTERN (before)))
1613 before = prev_nonnote_insn (before);
1614 #endif
1615 emit_insns_before (seq, before);
1617 delete_insn (temp);
1618 next = NEXT_INSN (insn);
1619 delete_jump (insn);
1621 if (after_regscan)
1623 reg_scan_update (seq, NEXT_INSN (next), old_max_reg);
1624 old_max_reg = max_reg_num ();
1627 changed = 1;
1628 continue;
1630 else
1631 end_sequence ();
1636 /* Simplify if (...) x = 1; else {...} if (x) ...
1637 We recognize this case scanning backwards as well.
1639 TEMP is the assignment to x;
1640 TEMP1 is the label at the head of the second if. */
1641 /* ?? This should call get_condition to find the values being
1642 compared, instead of looking for a COMPARE insn when HAVE_cc0
1643 is not defined. This would allow it to work on the m88k. */
1644 /* ?? This optimization is only safe before cse is run if HAVE_cc0
1645 is not defined and the condition is tested by a separate compare
1646 insn. This is because the code below assumes that the result
1647 of the compare dies in the following branch.
1649 Not only that, but there might be other insns between the
1650 compare and branch whose results are live. Those insns need
1651 to be executed.
1653 A way to fix this is to move the insns at JUMP_LABEL (insn)
1654 to before INSN. If we are running before flow, they will
1655 be deleted if they aren't needed. But this doesn't work
1656 well after flow.
1658 This is really a special-case of jump threading, anyway. The
1659 right thing to do is to replace this and jump threading with
1660 much simpler code in cse.
1662 This code has been turned off in the non-cc0 case in the
1663 meantime. */
1665 #ifdef HAVE_cc0
1666 else if (this_is_simplejump
1667 /* Safe to skip USE and CLOBBER insns here
1668 since they will not be deleted. */
1669 && (temp = prev_active_insn (insn))
1670 && no_labels_between_p (temp, insn)
1671 && GET_CODE (temp) == INSN
1672 && GET_CODE (PATTERN (temp)) == SET
1673 && GET_CODE (SET_DEST (PATTERN (temp))) == REG
1674 && CONSTANT_P (SET_SRC (PATTERN (temp)))
1675 && (temp1 = next_active_insn (JUMP_LABEL (insn)))
1676 /* If we find that the next value tested is `x'
1677 (TEMP1 is the insn where this happens), win. */
1678 && GET_CODE (temp1) == INSN
1679 && GET_CODE (PATTERN (temp1)) == SET
1680 #ifdef HAVE_cc0
1681 /* Does temp1 `tst' the value of x? */
1682 && SET_SRC (PATTERN (temp1)) == SET_DEST (PATTERN (temp))
1683 && SET_DEST (PATTERN (temp1)) == cc0_rtx
1684 && (temp1 = next_nonnote_insn (temp1))
1685 #else
1686 /* Does temp1 compare the value of x against zero? */
1687 && GET_CODE (SET_SRC (PATTERN (temp1))) == COMPARE
1688 && XEXP (SET_SRC (PATTERN (temp1)), 1) == const0_rtx
1689 && (XEXP (SET_SRC (PATTERN (temp1)), 0)
1690 == SET_DEST (PATTERN (temp)))
1691 && GET_CODE (SET_DEST (PATTERN (temp1))) == REG
1692 && (temp1 = find_next_ref (SET_DEST (PATTERN (temp1)), temp1))
1693 #endif
1694 && condjump_p (temp1))
1696 /* Get the if_then_else from the condjump. */
1697 rtx choice = SET_SRC (PATTERN (temp1));
1698 if (GET_CODE (choice) == IF_THEN_ELSE)
1700 enum rtx_code code = GET_CODE (XEXP (choice, 0));
1701 rtx val = SET_SRC (PATTERN (temp));
1702 rtx cond
1703 = simplify_relational_operation (code, GET_MODE (SET_DEST (PATTERN (temp))),
1704 val, const0_rtx);
1705 rtx ultimate;
1707 if (cond == const_true_rtx)
1708 ultimate = XEXP (choice, 1);
1709 else if (cond == const0_rtx)
1710 ultimate = XEXP (choice, 2);
1711 else
1712 ultimate = 0;
1714 if (ultimate == pc_rtx)
1715 ultimate = get_label_after (temp1);
1716 else if (ultimate && GET_CODE (ultimate) != RETURN)
1717 ultimate = XEXP (ultimate, 0);
1719 if (ultimate && JUMP_LABEL(insn) != ultimate)
1720 changed |= redirect_jump (insn, ultimate);
1723 #endif
1725 #if 0
1726 /* @@ This needs a bit of work before it will be right.
1728 Any type of comparison can be accepted for the first and
1729 second compare. When rewriting the first jump, we must
1730 compute the what conditions can reach label3, and use the
1731 appropriate code. We can not simply reverse/swap the code
1732 of the first jump. In some cases, the second jump must be
1733 rewritten also.
1735 For example,
1736 < == converts to > ==
1737 < != converts to == >
1738 etc.
1740 If the code is written to only accept an '==' test for the second
1741 compare, then all that needs to be done is to swap the condition
1742 of the first branch.
1744 It is questionable whether we want this optimization anyways,
1745 since if the user wrote code like this because he/she knew that
1746 the jump to label1 is taken most of the time, then rewriting
1747 this gives slower code. */
1748 /* @@ This should call get_condition to find the values being
1749 compared, instead of looking for a COMPARE insn when HAVE_cc0
1750 is not defined. This would allow it to work on the m88k. */
1751 /* @@ This optimization is only safe before cse is run if HAVE_cc0
1752 is not defined and the condition is tested by a separate compare
1753 insn. This is because the code below assumes that the result
1754 of the compare dies in the following branch. */
1756 /* Simplify test a ~= b
1757 condjump label1;
1758 test a == b
1759 condjump label2;
1760 jump label3;
1761 label1:
1763 rewriting as
1764 test a ~~= b
1765 condjump label3
1766 test a == b
1767 condjump label2
1768 label1:
1770 where ~= is an inequality, e.g. >, and ~~= is the swapped
1771 inequality, e.g. <.
1773 We recognize this case scanning backwards.
1775 TEMP is the conditional jump to `label2';
1776 TEMP1 is the test for `a == b';
1777 TEMP2 is the conditional jump to `label1';
1778 TEMP3 is the test for `a ~= b'. */
1779 else if (this_is_simplejump
1780 && (temp = prev_active_insn (insn))
1781 && no_labels_between_p (temp, insn)
1782 && condjump_p (temp)
1783 && (temp1 = prev_active_insn (temp))
1784 && no_labels_between_p (temp1, temp)
1785 && GET_CODE (temp1) == INSN
1786 && GET_CODE (PATTERN (temp1)) == SET
1787 #ifdef HAVE_cc0
1788 && sets_cc0_p (PATTERN (temp1)) == 1
1789 #else
1790 && GET_CODE (SET_SRC (PATTERN (temp1))) == COMPARE
1791 && GET_CODE (SET_DEST (PATTERN (temp1))) == REG
1792 && (temp == find_next_ref (SET_DEST (PATTERN (temp1)), temp1))
1793 #endif
1794 && (temp2 = prev_active_insn (temp1))
1795 && no_labels_between_p (temp2, temp1)
1796 && condjump_p (temp2)
1797 && JUMP_LABEL (temp2) == next_nonnote_insn (NEXT_INSN (insn))
1798 && (temp3 = prev_active_insn (temp2))
1799 && no_labels_between_p (temp3, temp2)
1800 && GET_CODE (PATTERN (temp3)) == SET
1801 && rtx_equal_p (SET_DEST (PATTERN (temp3)),
1802 SET_DEST (PATTERN (temp1)))
1803 && rtx_equal_p (SET_SRC (PATTERN (temp1)),
1804 SET_SRC (PATTERN (temp3)))
1805 && ! inequality_comparisons_p (PATTERN (temp))
1806 && inequality_comparisons_p (PATTERN (temp2)))
1808 rtx fallthrough_label = JUMP_LABEL (temp2);
1810 ++LABEL_NUSES (fallthrough_label);
1811 if (swap_jump (temp2, JUMP_LABEL (insn)))
1813 delete_insn (insn);
1814 changed = 1;
1817 if (--LABEL_NUSES (fallthrough_label) == 0)
1818 delete_insn (fallthrough_label);
1820 #endif
1821 /* Simplify if (...) {... x = 1;} if (x) ...
1823 We recognize this case backwards.
1825 TEMP is the test of `x';
1826 TEMP1 is the assignment to `x' at the end of the
1827 previous statement. */
1828 /* @@ This should call get_condition to find the values being
1829 compared, instead of looking for a COMPARE insn when HAVE_cc0
1830 is not defined. This would allow it to work on the m88k. */
1831 /* @@ This optimization is only safe before cse is run if HAVE_cc0
1832 is not defined and the condition is tested by a separate compare
1833 insn. This is because the code below assumes that the result
1834 of the compare dies in the following branch. */
1836 /* ??? This has to be turned off. The problem is that the
1837 unconditional jump might indirectly end up branching to the
1838 label between TEMP1 and TEMP. We can't detect this, in general,
1839 since it may become a jump to there after further optimizations.
1840 If that jump is done, it will be deleted, so we will retry
1841 this optimization in the next pass, thus an infinite loop.
1843 The present code prevents this by putting the jump after the
1844 label, but this is not logically correct. */
1845 #if 0
1846 else if (this_is_condjump
1847 /* Safe to skip USE and CLOBBER insns here
1848 since they will not be deleted. */
1849 && (temp = prev_active_insn (insn))
1850 && no_labels_between_p (temp, insn)
1851 && GET_CODE (temp) == INSN
1852 && GET_CODE (PATTERN (temp)) == SET
1853 #ifdef HAVE_cc0
1854 && sets_cc0_p (PATTERN (temp)) == 1
1855 && GET_CODE (SET_SRC (PATTERN (temp))) == REG
1856 #else
1857 /* Temp must be a compare insn, we can not accept a register
1858 to register move here, since it may not be simply a
1859 tst insn. */
1860 && GET_CODE (SET_SRC (PATTERN (temp))) == COMPARE
1861 && XEXP (SET_SRC (PATTERN (temp)), 1) == const0_rtx
1862 && GET_CODE (XEXP (SET_SRC (PATTERN (temp)), 0)) == REG
1863 && GET_CODE (SET_DEST (PATTERN (temp))) == REG
1864 && insn == find_next_ref (SET_DEST (PATTERN (temp)), temp)
1865 #endif
1866 /* May skip USE or CLOBBER insns here
1867 for checking for opportunity, since we
1868 take care of them later. */
1869 && (temp1 = prev_active_insn (temp))
1870 && GET_CODE (temp1) == INSN
1871 && GET_CODE (PATTERN (temp1)) == SET
1872 #ifdef HAVE_cc0
1873 && SET_SRC (PATTERN (temp)) == SET_DEST (PATTERN (temp1))
1874 #else
1875 && (XEXP (SET_SRC (PATTERN (temp)), 0)
1876 == SET_DEST (PATTERN (temp1)))
1877 #endif
1878 && CONSTANT_P (SET_SRC (PATTERN (temp1)))
1879 /* If this isn't true, cse will do the job. */
1880 && ! no_labels_between_p (temp1, temp))
1882 /* Get the if_then_else from the condjump. */
1883 rtx choice = SET_SRC (PATTERN (insn));
1884 if (GET_CODE (choice) == IF_THEN_ELSE
1885 && (GET_CODE (XEXP (choice, 0)) == EQ
1886 || GET_CODE (XEXP (choice, 0)) == NE))
1888 int want_nonzero = (GET_CODE (XEXP (choice, 0)) == NE);
1889 rtx last_insn;
1890 rtx ultimate;
1891 rtx p;
1893 /* Get the place that condjump will jump to
1894 if it is reached from here. */
1895 if ((SET_SRC (PATTERN (temp1)) != const0_rtx)
1896 == want_nonzero)
1897 ultimate = XEXP (choice, 1);
1898 else
1899 ultimate = XEXP (choice, 2);
1900 /* Get it as a CODE_LABEL. */
1901 if (ultimate == pc_rtx)
1902 ultimate = get_label_after (insn);
1903 else
1904 /* Get the label out of the LABEL_REF. */
1905 ultimate = XEXP (ultimate, 0);
1907 /* Insert the jump immediately before TEMP, specifically
1908 after the label that is between TEMP1 and TEMP. */
1909 last_insn = PREV_INSN (temp);
1911 /* If we would be branching to the next insn, the jump
1912 would immediately be deleted and the re-inserted in
1913 a subsequent pass over the code. So don't do anything
1914 in that case. */
1915 if (next_active_insn (last_insn)
1916 != next_active_insn (ultimate))
1918 emit_barrier_after (last_insn);
1919 p = emit_jump_insn_after (gen_jump (ultimate),
1920 last_insn);
1921 JUMP_LABEL (p) = ultimate;
1922 ++LABEL_NUSES (ultimate);
1923 if (INSN_UID (ultimate) < max_jump_chain
1924 && INSN_CODE (p) < max_jump_chain)
1926 jump_chain[INSN_UID (p)]
1927 = jump_chain[INSN_UID (ultimate)];
1928 jump_chain[INSN_UID (ultimate)] = p;
1930 changed = 1;
1931 continue;
1935 #endif
1936 #ifdef HAVE_trap
1937 /* Detect a conditional jump jumping over an unconditional trap. */
1938 else if (HAVE_trap
1939 && this_is_condjump && ! this_is_simplejump
1940 && reallabelprev != 0
1941 && GET_CODE (reallabelprev) == INSN
1942 && GET_CODE (PATTERN (reallabelprev)) == TRAP_IF
1943 && TRAP_CONDITION (PATTERN (reallabelprev)) == const_true_rtx
1944 && prev_active_insn (reallabelprev) == insn
1945 && no_labels_between_p (insn, reallabelprev)
1946 && (temp2 = get_condition (insn, &temp4))
1947 && can_reverse_comparison_p (temp2, insn))
1949 rtx new = gen_cond_trap (reverse_condition (GET_CODE (temp2)),
1950 XEXP (temp2, 0), XEXP (temp2, 1),
1951 TRAP_CODE (PATTERN (reallabelprev)));
1953 if (new)
1955 emit_insn_before (new, temp4);
1956 delete_insn (reallabelprev);
1957 delete_jump (insn);
1958 changed = 1;
1959 continue;
1962 /* Detect a jump jumping to an unconditional trap. */
1963 else if (HAVE_trap && this_is_condjump
1964 && (temp = next_active_insn (JUMP_LABEL (insn)))
1965 && GET_CODE (temp) == INSN
1966 && GET_CODE (PATTERN (temp)) == TRAP_IF
1967 && (this_is_simplejump
1968 || (temp2 = get_condition (insn, &temp4))))
1970 rtx tc = TRAP_CONDITION (PATTERN (temp));
1972 if (tc == const_true_rtx
1973 || (! this_is_simplejump && rtx_equal_p (temp2, tc)))
1975 rtx new;
1976 /* Replace an unconditional jump to a trap with a trap. */
1977 if (this_is_simplejump)
1979 emit_barrier_after (emit_insn_before (gen_trap (), insn));
1980 delete_jump (insn);
1981 changed = 1;
1982 continue;
1984 new = gen_cond_trap (GET_CODE (temp2), XEXP (temp2, 0),
1985 XEXP (temp2, 1),
1986 TRAP_CODE (PATTERN (temp)));
1987 if (new)
1989 emit_insn_before (new, temp4);
1990 delete_jump (insn);
1991 changed = 1;
1992 continue;
1995 /* If the trap condition and jump condition are mutually
1996 exclusive, redirect the jump to the following insn. */
1997 else if (GET_RTX_CLASS (GET_CODE (tc)) == '<'
1998 && ! this_is_simplejump
1999 && swap_condition (GET_CODE (temp2)) == GET_CODE (tc)
2000 && rtx_equal_p (XEXP (tc, 0), XEXP (temp2, 0))
2001 && rtx_equal_p (XEXP (tc, 1), XEXP (temp2, 1))
2002 && redirect_jump (insn, get_label_after (temp)))
2004 changed = 1;
2005 continue;
2008 #endif
2009 else
2011 /* Detect a jump to a jump. */
2013 /* Look for if (foo) bar; else break; */
2014 /* The insns look like this:
2015 insn = condjump label1;
2016 ...range1 (some insns)...
2017 jump label2;
2018 label1:
2019 ...range2 (some insns)...
2020 jump somewhere unconditionally
2021 label2: */
2023 rtx label1 = next_label (insn);
2024 rtx range1end = label1 ? prev_active_insn (label1) : 0;
2025 /* Don't do this optimization on the first round, so that
2026 jump-around-a-jump gets simplified before we ask here
2027 whether a jump is unconditional.
2029 Also don't do it when we are called after reload since
2030 it will confuse reorg. */
2031 if (! first
2032 && (reload_completed ? ! flag_delayed_branch : 1)
2033 /* Make sure INSN is something we can invert. */
2034 && condjump_p (insn)
2035 && label1 != 0
2036 && JUMP_LABEL (insn) == label1
2037 && LABEL_NUSES (label1) == 1
2038 && GET_CODE (range1end) == JUMP_INSN
2039 && simplejump_p (range1end))
2041 rtx label2 = next_label (label1);
2042 rtx range2end = label2 ? prev_active_insn (label2) : 0;
2043 if (range1end != range2end
2044 && JUMP_LABEL (range1end) == label2
2045 && GET_CODE (range2end) == JUMP_INSN
2046 && GET_CODE (NEXT_INSN (range2end)) == BARRIER
2047 /* Invert the jump condition, so we
2048 still execute the same insns in each case. */
2049 && invert_jump (insn, label1))
2051 rtx range1beg = next_active_insn (insn);
2052 rtx range2beg = next_active_insn (label1);
2053 rtx range1after, range2after;
2054 rtx range1before, range2before;
2055 rtx rangenext;
2057 /* Include in each range any notes before it, to be
2058 sure that we get the line number note if any, even
2059 if there are other notes here. */
2060 while (PREV_INSN (range1beg)
2061 && GET_CODE (PREV_INSN (range1beg)) == NOTE)
2062 range1beg = PREV_INSN (range1beg);
2064 while (PREV_INSN (range2beg)
2065 && GET_CODE (PREV_INSN (range2beg)) == NOTE)
2066 range2beg = PREV_INSN (range2beg);
2068 /* Don't move NOTEs for blocks or loops; shift them
2069 outside the ranges, where they'll stay put. */
2070 range1beg = squeeze_notes (range1beg, range1end);
2071 range2beg = squeeze_notes (range2beg, range2end);
2073 /* Get current surrounds of the 2 ranges. */
2074 range1before = PREV_INSN (range1beg);
2075 range2before = PREV_INSN (range2beg);
2076 range1after = NEXT_INSN (range1end);
2077 range2after = NEXT_INSN (range2end);
2079 /* Splice range2 where range1 was. */
2080 NEXT_INSN (range1before) = range2beg;
2081 PREV_INSN (range2beg) = range1before;
2082 NEXT_INSN (range2end) = range1after;
2083 PREV_INSN (range1after) = range2end;
2084 /* Splice range1 where range2 was. */
2085 NEXT_INSN (range2before) = range1beg;
2086 PREV_INSN (range1beg) = range2before;
2087 NEXT_INSN (range1end) = range2after;
2088 PREV_INSN (range2after) = range1end;
2090 /* Check for loop notes between the end of
2091 range2, and the next code label. If there is one,
2092 then what we have really seen is
2093 if (foo) break; end_of_loop;
2094 and moved the break sequence outside the loop.
2095 We must move LOOP_END, LOOP_VTOP and LOOP_CONT
2096 notes (in order) to where the loop really ends now,
2097 or we will confuse loop optimization. Stop if we
2098 find a LOOP_BEG note first, since we don't want to
2099 move the notes in that case. */
2100 for (;range2after != label2; range2after = rangenext)
2102 rangenext = NEXT_INSN (range2after);
2103 if (GET_CODE (range2after) == NOTE)
2105 int kind = NOTE_LINE_NUMBER (range2after);
2106 if (kind == NOTE_INSN_LOOP_END
2107 || kind == NOTE_INSN_LOOP_VTOP
2108 || kind == NOTE_INSN_LOOP_CONT)
2110 NEXT_INSN (PREV_INSN (range2after))
2111 = rangenext;
2112 PREV_INSN (rangenext)
2113 = PREV_INSN (range2after);
2114 PREV_INSN (range2after)
2115 = PREV_INSN (range1beg);
2116 NEXT_INSN (range2after) = range1beg;
2117 NEXT_INSN (PREV_INSN (range1beg))
2118 = range2after;
2119 PREV_INSN (range1beg) = range2after;
2121 else if (NOTE_LINE_NUMBER (range2after)
2122 == NOTE_INSN_LOOP_BEG)
2123 break;
2126 changed = 1;
2127 continue;
2132 /* Now that the jump has been tensioned,
2133 try cross jumping: check for identical code
2134 before the jump and before its target label. */
2136 /* First, cross jumping of conditional jumps: */
2138 if (cross_jump && condjump_p (insn))
2140 rtx newjpos, newlpos;
2141 rtx x = prev_real_insn (JUMP_LABEL (insn));
2143 /* A conditional jump may be crossjumped
2144 only if the place it jumps to follows
2145 an opposing jump that comes back here. */
2147 if (x != 0 && ! jump_back_p (x, insn))
2148 /* We have no opposing jump;
2149 cannot cross jump this insn. */
2150 x = 0;
2152 newjpos = 0;
2153 /* TARGET is nonzero if it is ok to cross jump
2154 to code before TARGET. If so, see if matches. */
2155 if (x != 0)
2156 find_cross_jump (insn, x, 2,
2157 &newjpos, &newlpos);
2159 if (newjpos != 0)
2161 do_cross_jump (insn, newjpos, newlpos);
2162 /* Make the old conditional jump
2163 into an unconditional one. */
2164 SET_SRC (PATTERN (insn))
2165 = gen_rtx_LABEL_REF (VOIDmode, JUMP_LABEL (insn));
2166 INSN_CODE (insn) = -1;
2167 emit_barrier_after (insn);
2168 /* Add to jump_chain unless this is a new label
2169 whose UID is too large. */
2170 if (INSN_UID (JUMP_LABEL (insn)) < max_jump_chain)
2172 jump_chain[INSN_UID (insn)]
2173 = jump_chain[INSN_UID (JUMP_LABEL (insn))];
2174 jump_chain[INSN_UID (JUMP_LABEL (insn))] = insn;
2176 changed = 1;
2177 next = insn;
2181 /* Cross jumping of unconditional jumps:
2182 a few differences. */
2184 if (cross_jump && simplejump_p (insn))
2186 rtx newjpos, newlpos;
2187 rtx target;
2189 newjpos = 0;
2191 /* TARGET is nonzero if it is ok to cross jump
2192 to code before TARGET. If so, see if matches. */
2193 find_cross_jump (insn, JUMP_LABEL (insn), 1,
2194 &newjpos, &newlpos);
2196 /* If cannot cross jump to code before the label,
2197 see if we can cross jump to another jump to
2198 the same label. */
2199 /* Try each other jump to this label. */
2200 if (INSN_UID (JUMP_LABEL (insn)) < max_uid)
2201 for (target = jump_chain[INSN_UID (JUMP_LABEL (insn))];
2202 target != 0 && newjpos == 0;
2203 target = jump_chain[INSN_UID (target)])
2204 if (target != insn
2205 && JUMP_LABEL (target) == JUMP_LABEL (insn)
2206 /* Ignore TARGET if it's deleted. */
2207 && ! INSN_DELETED_P (target))
2208 find_cross_jump (insn, target, 2,
2209 &newjpos, &newlpos);
2211 if (newjpos != 0)
2213 do_cross_jump (insn, newjpos, newlpos);
2214 changed = 1;
2215 next = insn;
2219 /* This code was dead in the previous jump.c! */
2220 if (cross_jump && GET_CODE (PATTERN (insn)) == RETURN)
2222 /* Return insns all "jump to the same place"
2223 so we can cross-jump between any two of them. */
2225 rtx newjpos, newlpos, target;
2227 newjpos = 0;
2229 /* If cannot cross jump to code before the label,
2230 see if we can cross jump to another jump to
2231 the same label. */
2232 /* Try each other jump to this label. */
2233 for (target = jump_chain[0];
2234 target != 0 && newjpos == 0;
2235 target = jump_chain[INSN_UID (target)])
2236 if (target != insn
2237 && ! INSN_DELETED_P (target)
2238 && GET_CODE (PATTERN (target)) == RETURN)
2239 find_cross_jump (insn, target, 2,
2240 &newjpos, &newlpos);
2242 if (newjpos != 0)
2244 do_cross_jump (insn, newjpos, newlpos);
2245 changed = 1;
2246 next = insn;
2252 first = 0;
2255 /* Delete extraneous line number notes.
2256 Note that two consecutive notes for different lines are not really
2257 extraneous. There should be some indication where that line belonged,
2258 even if it became empty. */
2261 rtx last_note = 0;
2263 for (insn = f; insn; insn = NEXT_INSN (insn))
2264 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) >= 0)
2266 /* Delete this note if it is identical to previous note. */
2267 if (last_note
2268 && NOTE_SOURCE_FILE (insn) == NOTE_SOURCE_FILE (last_note)
2269 && NOTE_LINE_NUMBER (insn) == NOTE_LINE_NUMBER (last_note))
2271 delete_insn (insn);
2272 continue;
2275 last_note = insn;
2279 #ifdef HAVE_return
2280 if (HAVE_return)
2282 /* If we fall through to the epilogue, see if we can insert a RETURN insn
2283 in front of it. If the machine allows it at this point (we might be
2284 after reload for a leaf routine), it will improve optimization for it
2285 to be there. We do this both here and at the start of this pass since
2286 the RETURN might have been deleted by some of our optimizations. */
2287 insn = get_last_insn ();
2288 while (insn && GET_CODE (insn) == NOTE)
2289 insn = PREV_INSN (insn);
2291 if (insn && GET_CODE (insn) != BARRIER)
2293 emit_jump_insn (gen_return ());
2294 emit_barrier ();
2297 #endif
2299 /* CAN_REACH_END is persistent for each function. Once set it should
2300 not be cleared. This is especially true for the case where we
2301 delete the NOTE_FUNCTION_END note. CAN_REACH_END is cleared by
2302 the front-end before compiling each function. */
2303 if (calculate_can_reach_end (last_insn, 0, 1))
2304 can_reach_end = 1;
2306 end:
2307 /* Clean up. */
2308 free (jump_chain);
2309 jump_chain = 0;
2312 /* Initialize LABEL_NUSES and JUMP_LABEL fields. Delete any REG_LABEL
2313 notes whose labels don't occur in the insn any more. Returns the
2314 largest INSN_UID found. */
2315 static int
2316 init_label_info (f)
2317 rtx f;
2319 int largest_uid = 0;
2320 rtx insn;
2322 for (insn = f; insn; insn = NEXT_INSN (insn))
2324 if (GET_CODE (insn) == CODE_LABEL)
2325 LABEL_NUSES (insn) = (LABEL_PRESERVE_P (insn) != 0);
2326 else if (GET_CODE (insn) == JUMP_INSN)
2327 JUMP_LABEL (insn) = 0;
2328 else if (GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN)
2330 rtx note, next;
2332 for (note = REG_NOTES (insn); note; note = next)
2334 next = XEXP (note, 1);
2335 if (REG_NOTE_KIND (note) == REG_LABEL
2336 && ! reg_mentioned_p (XEXP (note, 0), PATTERN (insn)))
2337 remove_note (insn, note);
2340 if (INSN_UID (insn) > largest_uid)
2341 largest_uid = INSN_UID (insn);
2344 return largest_uid;
2347 /* Delete insns following barriers, up to next label.
2349 Also delete no-op jumps created by gcse. */
2350 static void
2351 delete_barrier_successors (f)
2352 rtx f;
2354 rtx insn;
2356 for (insn = f; insn;)
2358 if (GET_CODE (insn) == BARRIER)
2360 insn = NEXT_INSN (insn);
2362 never_reached_warning (insn);
2364 while (insn != 0 && GET_CODE (insn) != CODE_LABEL)
2366 if (GET_CODE (insn) == NOTE
2367 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_FUNCTION_END)
2368 insn = NEXT_INSN (insn);
2369 else
2370 insn = delete_insn (insn);
2372 /* INSN is now the code_label. */
2374 /* Also remove (set (pc) (pc)) insns which can be created by
2375 gcse. We eliminate such insns now to avoid having them
2376 cause problems later. */
2377 else if (GET_CODE (insn) == JUMP_INSN
2378 && GET_CODE (PATTERN (insn)) == SET
2379 && SET_SRC (PATTERN (insn)) == pc_rtx
2380 && SET_DEST (PATTERN (insn)) == pc_rtx)
2381 insn = delete_insn (insn);
2383 else
2384 insn = NEXT_INSN (insn);
2388 /* Mark the label each jump jumps to.
2389 Combine consecutive labels, and count uses of labels.
2391 For each label, make a chain (using `jump_chain')
2392 of all the *unconditional* jumps that jump to it;
2393 also make a chain of all returns.
2395 CROSS_JUMP indicates whether we are doing cross jumping
2396 and if we are whether we will be paying attention to
2397 death notes or not. */
2399 static void
2400 mark_all_labels (f, cross_jump)
2401 rtx f;
2402 int cross_jump;
2404 rtx insn;
2406 for (insn = f; insn; insn = NEXT_INSN (insn))
2407 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
2409 mark_jump_label (PATTERN (insn), insn, cross_jump);
2410 if (! INSN_DELETED_P (insn) && GET_CODE (insn) == JUMP_INSN)
2412 if (JUMP_LABEL (insn) != 0 && simplejump_p (insn))
2414 jump_chain[INSN_UID (insn)]
2415 = jump_chain[INSN_UID (JUMP_LABEL (insn))];
2416 jump_chain[INSN_UID (JUMP_LABEL (insn))] = insn;
2418 if (GET_CODE (PATTERN (insn)) == RETURN)
2420 jump_chain[INSN_UID (insn)] = jump_chain[0];
2421 jump_chain[0] = insn;
2427 /* Delete all labels already not referenced.
2428 Also find and return the last insn. */
2430 static rtx
2431 delete_unreferenced_labels (f)
2432 rtx f;
2434 rtx final = NULL_RTX;
2435 rtx insn;
2437 for (insn = f; insn; )
2439 if (GET_CODE (insn) == CODE_LABEL
2440 && LABEL_NUSES (insn) == 0
2441 && LABEL_ALTERNATE_NAME (insn) == NULL)
2442 insn = delete_insn (insn);
2443 else
2445 final = insn;
2446 insn = NEXT_INSN (insn);
2450 return final;
2453 /* Delete various simple forms of moves which have no necessary
2454 side effect. */
2456 static void
2457 delete_noop_moves (f)
2458 rtx f;
2460 rtx insn, next;
2462 for (insn = f; insn; )
2464 next = NEXT_INSN (insn);
2466 if (GET_CODE (insn) == INSN)
2468 register rtx body = PATTERN (insn);
2470 /* Combine stack_adjusts with following push_insns. */
2471 #ifdef PUSH_ROUNDING
2472 if (GET_CODE (body) == SET
2473 && SET_DEST (body) == stack_pointer_rtx
2474 && GET_CODE (SET_SRC (body)) == PLUS
2475 && XEXP (SET_SRC (body), 0) == stack_pointer_rtx
2476 && GET_CODE (XEXP (SET_SRC (body), 1)) == CONST_INT
2477 && INTVAL (XEXP (SET_SRC (body), 1)) > 0)
2479 rtx p;
2480 rtx stack_adjust_insn = insn;
2481 int stack_adjust_amount = INTVAL (XEXP (SET_SRC (body), 1));
2482 int total_pushed = 0;
2483 int pushes = 0;
2485 /* Find all successive push insns. */
2486 p = insn;
2487 /* Don't convert more than three pushes;
2488 that starts adding too many displaced addresses
2489 and the whole thing starts becoming a losing
2490 proposition. */
2491 while (pushes < 3)
2493 rtx pbody, dest;
2494 p = next_nonnote_insn (p);
2495 if (p == 0 || GET_CODE (p) != INSN)
2496 break;
2497 pbody = PATTERN (p);
2498 if (GET_CODE (pbody) != SET)
2499 break;
2500 dest = SET_DEST (pbody);
2501 /* Allow a no-op move between the adjust and the push. */
2502 if (GET_CODE (dest) == REG
2503 && GET_CODE (SET_SRC (pbody)) == REG
2504 && REGNO (dest) == REGNO (SET_SRC (pbody)))
2505 continue;
2506 if (! (GET_CODE (dest) == MEM
2507 && GET_CODE (XEXP (dest, 0)) == POST_INC
2508 && XEXP (XEXP (dest, 0), 0) == stack_pointer_rtx))
2509 break;
2510 pushes++;
2511 if (total_pushed + GET_MODE_SIZE (GET_MODE (SET_DEST (pbody)))
2512 > stack_adjust_amount)
2513 break;
2514 total_pushed += GET_MODE_SIZE (GET_MODE (SET_DEST (pbody)));
2517 /* Discard the amount pushed from the stack adjust;
2518 maybe eliminate it entirely. */
2519 if (total_pushed >= stack_adjust_amount)
2521 delete_computation (stack_adjust_insn);
2522 total_pushed = stack_adjust_amount;
2524 else
2525 XEXP (SET_SRC (PATTERN (stack_adjust_insn)), 1)
2526 = GEN_INT (stack_adjust_amount - total_pushed);
2528 /* Change the appropriate push insns to ordinary stores. */
2529 p = insn;
2530 while (total_pushed > 0)
2532 rtx pbody, dest;
2533 p = next_nonnote_insn (p);
2534 if (GET_CODE (p) != INSN)
2535 break;
2536 pbody = PATTERN (p);
2537 if (GET_CODE (pbody) != SET)
2538 break;
2539 dest = SET_DEST (pbody);
2540 /* Allow a no-op move between the adjust and the push. */
2541 if (GET_CODE (dest) == REG
2542 && GET_CODE (SET_SRC (pbody)) == REG
2543 && REGNO (dest) == REGNO (SET_SRC (pbody)))
2544 continue;
2545 if (! (GET_CODE (dest) == MEM
2546 && GET_CODE (XEXP (dest, 0)) == POST_INC
2547 && XEXP (XEXP (dest, 0), 0) == stack_pointer_rtx))
2548 break;
2549 total_pushed -= GET_MODE_SIZE (GET_MODE (SET_DEST (pbody)));
2550 /* If this push doesn't fully fit in the space
2551 of the stack adjust that we deleted,
2552 make another stack adjust here for what we
2553 didn't use up. There should be peepholes
2554 to recognize the resulting sequence of insns. */
2555 if (total_pushed < 0)
2557 emit_insn_before (gen_add2_insn (stack_pointer_rtx,
2558 GEN_INT (- total_pushed)),
2560 break;
2562 XEXP (dest, 0)
2563 = plus_constant (stack_pointer_rtx, total_pushed);
2566 #endif
2568 /* Detect and delete no-op move instructions
2569 resulting from not allocating a parameter in a register. */
2571 if (GET_CODE (body) == SET
2572 && (SET_DEST (body) == SET_SRC (body)
2573 || (GET_CODE (SET_DEST (body)) == MEM
2574 && GET_CODE (SET_SRC (body)) == MEM
2575 && rtx_equal_p (SET_SRC (body), SET_DEST (body))))
2576 && ! (GET_CODE (SET_DEST (body)) == MEM
2577 && MEM_VOLATILE_P (SET_DEST (body)))
2578 && ! (GET_CODE (SET_SRC (body)) == MEM
2579 && MEM_VOLATILE_P (SET_SRC (body))))
2580 delete_computation (insn);
2582 /* Detect and ignore no-op move instructions
2583 resulting from smart or fortuitous register allocation. */
2585 else if (GET_CODE (body) == SET)
2587 int sreg = true_regnum (SET_SRC (body));
2588 int dreg = true_regnum (SET_DEST (body));
2590 if (sreg == dreg && sreg >= 0)
2591 delete_insn (insn);
2592 else if (sreg >= 0 && dreg >= 0)
2594 rtx trial;
2595 rtx tem = find_equiv_reg (NULL_RTX, insn, 0,
2596 sreg, NULL_PTR, dreg,
2597 GET_MODE (SET_SRC (body)));
2599 if (tem != 0
2600 && GET_MODE (tem) == GET_MODE (SET_DEST (body)))
2602 /* DREG may have been the target of a REG_DEAD note in
2603 the insn which makes INSN redundant. If so, reorg
2604 would still think it is dead. So search for such a
2605 note and delete it if we find it. */
2606 if (! find_regno_note (insn, REG_UNUSED, dreg))
2607 for (trial = prev_nonnote_insn (insn);
2608 trial && GET_CODE (trial) != CODE_LABEL;
2609 trial = prev_nonnote_insn (trial))
2610 if (find_regno_note (trial, REG_DEAD, dreg))
2612 remove_death (dreg, trial);
2613 break;
2616 /* Deleting insn could lose a death-note for SREG. */
2617 if ((trial = find_regno_note (insn, REG_DEAD, sreg)))
2619 /* Change this into a USE so that we won't emit
2620 code for it, but still can keep the note. */
2621 PATTERN (insn)
2622 = gen_rtx_USE (VOIDmode, XEXP (trial, 0));
2623 INSN_CODE (insn) = -1;
2624 /* Remove all reg notes but the REG_DEAD one. */
2625 REG_NOTES (insn) = trial;
2626 XEXP (trial, 1) = NULL_RTX;
2628 else
2629 delete_insn (insn);
2632 else if (dreg >= 0 && CONSTANT_P (SET_SRC (body))
2633 && find_equiv_reg (SET_SRC (body), insn, 0, dreg,
2634 NULL_PTR, 0,
2635 GET_MODE (SET_DEST (body))))
2637 /* This handles the case where we have two consecutive
2638 assignments of the same constant to pseudos that didn't
2639 get a hard reg. Each SET from the constant will be
2640 converted into a SET of the spill register and an
2641 output reload will be made following it. This produces
2642 two loads of the same constant into the same spill
2643 register. */
2645 rtx in_insn = insn;
2647 /* Look back for a death note for the first reg.
2648 If there is one, it is no longer accurate. */
2649 while (in_insn && GET_CODE (in_insn) != CODE_LABEL)
2651 if ((GET_CODE (in_insn) == INSN
2652 || GET_CODE (in_insn) == JUMP_INSN)
2653 && find_regno_note (in_insn, REG_DEAD, dreg))
2655 remove_death (dreg, in_insn);
2656 break;
2658 in_insn = PREV_INSN (in_insn);
2661 /* Delete the second load of the value. */
2662 delete_insn (insn);
2665 else if (GET_CODE (body) == PARALLEL)
2667 /* If each part is a set between two identical registers or
2668 a USE or CLOBBER, delete the insn. */
2669 int i, sreg, dreg;
2670 rtx tem;
2672 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
2674 tem = XVECEXP (body, 0, i);
2675 if (GET_CODE (tem) == USE || GET_CODE (tem) == CLOBBER)
2676 continue;
2678 if (GET_CODE (tem) != SET
2679 || (sreg = true_regnum (SET_SRC (tem))) < 0
2680 || (dreg = true_regnum (SET_DEST (tem))) < 0
2681 || dreg != sreg)
2682 break;
2685 if (i < 0)
2686 delete_insn (insn);
2688 /* Also delete insns to store bit fields if they are no-ops. */
2689 /* Not worth the hair to detect this in the big-endian case. */
2690 else if (! BYTES_BIG_ENDIAN
2691 && GET_CODE (body) == SET
2692 && GET_CODE (SET_DEST (body)) == ZERO_EXTRACT
2693 && XEXP (SET_DEST (body), 2) == const0_rtx
2694 && XEXP (SET_DEST (body), 0) == SET_SRC (body)
2695 && ! (GET_CODE (SET_SRC (body)) == MEM
2696 && MEM_VOLATILE_P (SET_SRC (body))))
2697 delete_insn (insn);
2699 insn = next;
2703 /* See if there is still a NOTE_INSN_FUNCTION_END in this function.
2704 If so indicate that this function can drop off the end by returning
2705 1, else return 0.
2707 CHECK_DELETED indicates whether we must check if the note being
2708 searched for has the deleted flag set.
2710 DELETE_FINAL_NOTE indicates whether we should delete the note
2711 if we find it. */
2713 static int
2714 calculate_can_reach_end (last, check_deleted, delete_final_note)
2715 rtx last;
2716 int check_deleted;
2717 int delete_final_note;
2719 rtx insn = last;
2720 int n_labels = 1;
2722 while (insn != NULL_RTX)
2724 int ok = 0;
2726 /* One label can follow the end-note: the return label. */
2727 if (GET_CODE (insn) == CODE_LABEL && n_labels-- > 0)
2728 ok = 1;
2729 /* Ordinary insns can follow it if returning a structure. */
2730 else if (GET_CODE (insn) == INSN)
2731 ok = 1;
2732 /* If machine uses explicit RETURN insns, no epilogue,
2733 then one of them follows the note. */
2734 else if (GET_CODE (insn) == JUMP_INSN
2735 && GET_CODE (PATTERN (insn)) == RETURN)
2736 ok = 1;
2737 /* A barrier can follow the return insn. */
2738 else if (GET_CODE (insn) == BARRIER)
2739 ok = 1;
2740 /* Other kinds of notes can follow also. */
2741 else if (GET_CODE (insn) == NOTE
2742 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_FUNCTION_END)
2743 ok = 1;
2745 if (ok != 1)
2746 break;
2748 insn = PREV_INSN (insn);
2751 /* See if we backed up to the appropriate type of note. */
2752 if (insn != NULL_RTX
2753 && GET_CODE (insn) == NOTE
2754 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_END
2755 && (check_deleted == 0
2756 || ! INSN_DELETED_P (insn)))
2758 if (delete_final_note)
2759 delete_insn (insn);
2760 return 1;
2763 return 0;
2766 /* LOOP_START is a NOTE_INSN_LOOP_BEG note that is followed by an unconditional
2767 jump. Assume that this unconditional jump is to the exit test code. If
2768 the code is sufficiently simple, make a copy of it before INSN,
2769 followed by a jump to the exit of the loop. Then delete the unconditional
2770 jump after INSN.
2772 Return 1 if we made the change, else 0.
2774 This is only safe immediately after a regscan pass because it uses the
2775 values of regno_first_uid and regno_last_uid. */
2777 static int
2778 duplicate_loop_exit_test (loop_start)
2779 rtx loop_start;
2781 rtx insn, set, reg, p, link;
2782 rtx copy = 0, first_copy = 0;
2783 int num_insns = 0;
2784 rtx exitcode = NEXT_INSN (JUMP_LABEL (next_nonnote_insn (loop_start)));
2785 rtx lastexit;
2786 int max_reg = max_reg_num ();
2787 rtx *reg_map = 0;
2789 /* Scan the exit code. We do not perform this optimization if any insn:
2791 is a CALL_INSN
2792 is a CODE_LABEL
2793 has a REG_RETVAL or REG_LIBCALL note (hard to adjust)
2794 is a NOTE_INSN_LOOP_BEG because this means we have a nested loop
2795 is a NOTE_INSN_BLOCK_{BEG,END} because duplicating these notes
2796 is not valid.
2798 We also do not do this if we find an insn with ASM_OPERANDS. While
2799 this restriction should not be necessary, copying an insn with
2800 ASM_OPERANDS can confuse asm_noperands in some cases.
2802 Also, don't do this if the exit code is more than 20 insns. */
2804 for (insn = exitcode;
2805 insn
2806 && ! (GET_CODE (insn) == NOTE
2807 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END);
2808 insn = NEXT_INSN (insn))
2810 switch (GET_CODE (insn))
2812 case CODE_LABEL:
2813 case CALL_INSN:
2814 return 0;
2815 case NOTE:
2816 /* We could be in front of the wrong NOTE_INSN_LOOP_END if there is
2817 a jump immediately after the loop start that branches outside
2818 the loop but within an outer loop, near the exit test.
2819 If we copied this exit test and created a phony
2820 NOTE_INSN_LOOP_VTOP, this could make instructions immediately
2821 before the exit test look like these could be safely moved
2822 out of the loop even if they actually may be never executed.
2823 This can be avoided by checking here for NOTE_INSN_LOOP_CONT. */
2825 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG
2826 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_CONT)
2827 return 0;
2829 if (optimize < 2
2830 && (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG
2831 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END))
2832 /* If we were to duplicate this code, we would not move
2833 the BLOCK notes, and so debugging the moved code would
2834 be difficult. Thus, we only move the code with -O2 or
2835 higher. */
2836 return 0;
2838 break;
2839 case JUMP_INSN:
2840 case INSN:
2841 /* The code below would grossly mishandle REG_WAS_0 notes,
2842 so get rid of them here. */
2843 while ((p = find_reg_note (insn, REG_WAS_0, NULL_RTX)) != 0)
2844 remove_note (insn, p);
2845 if (++num_insns > 20
2846 || find_reg_note (insn, REG_RETVAL, NULL_RTX)
2847 || find_reg_note (insn, REG_LIBCALL, NULL_RTX))
2848 return 0;
2849 break;
2850 default:
2851 break;
2855 /* Unless INSN is zero, we can do the optimization. */
2856 if (insn == 0)
2857 return 0;
2859 lastexit = insn;
2861 /* See if any insn sets a register only used in the loop exit code and
2862 not a user variable. If so, replace it with a new register. */
2863 for (insn = exitcode; insn != lastexit; insn = NEXT_INSN (insn))
2864 if (GET_CODE (insn) == INSN
2865 && (set = single_set (insn)) != 0
2866 && ((reg = SET_DEST (set), GET_CODE (reg) == REG)
2867 || (GET_CODE (reg) == SUBREG
2868 && (reg = SUBREG_REG (reg), GET_CODE (reg) == REG)))
2869 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
2870 && REGNO_FIRST_UID (REGNO (reg)) == INSN_UID (insn))
2872 for (p = NEXT_INSN (insn); p != lastexit; p = NEXT_INSN (p))
2873 if (REGNO_LAST_UID (REGNO (reg)) == INSN_UID (p))
2874 break;
2876 if (p != lastexit)
2878 /* We can do the replacement. Allocate reg_map if this is the
2879 first replacement we found. */
2880 if (reg_map == 0)
2881 reg_map = (rtx *) xcalloc (max_reg, sizeof (rtx));
2883 REG_LOOP_TEST_P (reg) = 1;
2885 reg_map[REGNO (reg)] = gen_reg_rtx (GET_MODE (reg));
2889 /* Now copy each insn. */
2890 for (insn = exitcode; insn != lastexit; insn = NEXT_INSN (insn))
2892 switch (GET_CODE (insn))
2894 case BARRIER:
2895 copy = emit_barrier_before (loop_start);
2896 break;
2897 case NOTE:
2898 /* Only copy line-number notes. */
2899 if (NOTE_LINE_NUMBER (insn) >= 0)
2901 copy = emit_note_before (NOTE_LINE_NUMBER (insn), loop_start);
2902 NOTE_SOURCE_FILE (copy) = NOTE_SOURCE_FILE (insn);
2904 break;
2906 case INSN:
2907 copy = emit_insn_before (copy_insn (PATTERN (insn)), loop_start);
2908 if (reg_map)
2909 replace_regs (PATTERN (copy), reg_map, max_reg, 1);
2911 mark_jump_label (PATTERN (copy), copy, 0);
2913 /* Copy all REG_NOTES except REG_LABEL since mark_jump_label will
2914 make them. */
2915 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2916 if (REG_NOTE_KIND (link) != REG_LABEL)
2917 REG_NOTES (copy)
2918 = copy_insn_1 (gen_rtx_EXPR_LIST (REG_NOTE_KIND (link),
2919 XEXP (link, 0),
2920 REG_NOTES (copy)));
2921 if (reg_map && REG_NOTES (copy))
2922 replace_regs (REG_NOTES (copy), reg_map, max_reg, 1);
2923 break;
2925 case JUMP_INSN:
2926 copy = emit_jump_insn_before (copy_insn (PATTERN (insn)), loop_start);
2927 if (reg_map)
2928 replace_regs (PATTERN (copy), reg_map, max_reg, 1);
2929 mark_jump_label (PATTERN (copy), copy, 0);
2930 if (REG_NOTES (insn))
2932 REG_NOTES (copy) = copy_insn_1 (REG_NOTES (insn));
2933 if (reg_map)
2934 replace_regs (REG_NOTES (copy), reg_map, max_reg, 1);
2937 /* If this is a simple jump, add it to the jump chain. */
2939 if (INSN_UID (copy) < max_jump_chain && JUMP_LABEL (copy)
2940 && simplejump_p (copy))
2942 jump_chain[INSN_UID (copy)]
2943 = jump_chain[INSN_UID (JUMP_LABEL (copy))];
2944 jump_chain[INSN_UID (JUMP_LABEL (copy))] = copy;
2946 break;
2948 default:
2949 abort ();
2952 /* Record the first insn we copied. We need it so that we can
2953 scan the copied insns for new pseudo registers. */
2954 if (! first_copy)
2955 first_copy = copy;
2958 /* Now clean up by emitting a jump to the end label and deleting the jump
2959 at the start of the loop. */
2960 if (! copy || GET_CODE (copy) != BARRIER)
2962 copy = emit_jump_insn_before (gen_jump (get_label_after (insn)),
2963 loop_start);
2965 /* Record the first insn we copied. We need it so that we can
2966 scan the copied insns for new pseudo registers. This may not
2967 be strictly necessary since we should have copied at least one
2968 insn above. But I am going to be safe. */
2969 if (! first_copy)
2970 first_copy = copy;
2972 mark_jump_label (PATTERN (copy), copy, 0);
2973 if (INSN_UID (copy) < max_jump_chain
2974 && INSN_UID (JUMP_LABEL (copy)) < max_jump_chain)
2976 jump_chain[INSN_UID (copy)]
2977 = jump_chain[INSN_UID (JUMP_LABEL (copy))];
2978 jump_chain[INSN_UID (JUMP_LABEL (copy))] = copy;
2980 emit_barrier_before (loop_start);
2983 /* Now scan from the first insn we copied to the last insn we copied
2984 (copy) for new pseudo registers. Do this after the code to jump to
2985 the end label since that might create a new pseudo too. */
2986 reg_scan_update (first_copy, copy, max_reg);
2988 /* Mark the exit code as the virtual top of the converted loop. */
2989 emit_note_before (NOTE_INSN_LOOP_VTOP, exitcode);
2991 delete_insn (next_nonnote_insn (loop_start));
2993 /* Clean up. */
2994 if (reg_map)
2995 free (reg_map);
2997 return 1;
3000 /* Move all block-beg, block-end, loop-beg, loop-cont, loop-vtop, and
3001 loop-end notes between START and END out before START. Assume that
3002 END is not such a note. START may be such a note. Returns the value
3003 of the new starting insn, which may be different if the original start
3004 was such a note. */
3007 squeeze_notes (start, end)
3008 rtx start, end;
3010 rtx insn;
3011 rtx next;
3013 for (insn = start; insn != end; insn = next)
3015 next = NEXT_INSN (insn);
3016 if (GET_CODE (insn) == NOTE
3017 && (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END
3018 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG
3019 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG
3020 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END
3021 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_CONT
3022 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_VTOP))
3024 if (insn == start)
3025 start = next;
3026 else
3028 rtx prev = PREV_INSN (insn);
3029 PREV_INSN (insn) = PREV_INSN (start);
3030 NEXT_INSN (insn) = start;
3031 NEXT_INSN (PREV_INSN (insn)) = insn;
3032 PREV_INSN (NEXT_INSN (insn)) = insn;
3033 NEXT_INSN (prev) = next;
3034 PREV_INSN (next) = prev;
3039 return start;
3042 /* Compare the instructions before insn E1 with those before E2
3043 to find an opportunity for cross jumping.
3044 (This means detecting identical sequences of insns followed by
3045 jumps to the same place, or followed by a label and a jump
3046 to that label, and replacing one with a jump to the other.)
3048 Assume E1 is a jump that jumps to label E2
3049 (that is not always true but it might as well be).
3050 Find the longest possible equivalent sequences
3051 and store the first insns of those sequences into *F1 and *F2.
3052 Store zero there if no equivalent preceding instructions are found.
3054 We give up if we find a label in stream 1.
3055 Actually we could transfer that label into stream 2. */
3057 static void
3058 find_cross_jump (e1, e2, minimum, f1, f2)
3059 rtx e1, e2;
3060 int minimum;
3061 rtx *f1, *f2;
3063 register rtx i1 = e1, i2 = e2;
3064 register rtx p1, p2;
3065 int lose = 0;
3067 rtx last1 = 0, last2 = 0;
3068 rtx afterlast1 = 0, afterlast2 = 0;
3070 *f1 = 0;
3071 *f2 = 0;
3073 while (1)
3075 i1 = prev_nonnote_insn (i1);
3077 i2 = PREV_INSN (i2);
3078 while (i2 && (GET_CODE (i2) == NOTE || GET_CODE (i2) == CODE_LABEL))
3079 i2 = PREV_INSN (i2);
3081 if (i1 == 0)
3082 break;
3084 /* Don't allow the range of insns preceding E1 or E2
3085 to include the other (E2 or E1). */
3086 if (i2 == e1 || i1 == e2)
3087 break;
3089 /* If we will get to this code by jumping, those jumps will be
3090 tensioned to go directly to the new label (before I2),
3091 so this cross-jumping won't cost extra. So reduce the minimum. */
3092 if (GET_CODE (i1) == CODE_LABEL)
3094 --minimum;
3095 break;
3098 if (i2 == 0 || GET_CODE (i1) != GET_CODE (i2))
3099 break;
3101 /* Avoid moving insns across EH regions if either of the insns
3102 can throw. */
3103 if (flag_exceptions
3104 && (asynchronous_exceptions || GET_CODE (i1) == CALL_INSN)
3105 && !in_same_eh_region (i1, i2))
3106 break;
3108 p1 = PATTERN (i1);
3109 p2 = PATTERN (i2);
3111 /* If this is a CALL_INSN, compare register usage information.
3112 If we don't check this on stack register machines, the two
3113 CALL_INSNs might be merged leaving reg-stack.c with mismatching
3114 numbers of stack registers in the same basic block.
3115 If we don't check this on machines with delay slots, a delay slot may
3116 be filled that clobbers a parameter expected by the subroutine.
3118 ??? We take the simple route for now and assume that if they're
3119 equal, they were constructed identically. */
3121 if (GET_CODE (i1) == CALL_INSN
3122 && ! rtx_equal_p (CALL_INSN_FUNCTION_USAGE (i1),
3123 CALL_INSN_FUNCTION_USAGE (i2)))
3124 lose = 1;
3126 #ifdef STACK_REGS
3127 /* If cross_jump_death_matters is not 0, the insn's mode
3128 indicates whether or not the insn contains any stack-like
3129 regs. */
3131 if (!lose && cross_jump_death_matters && stack_regs_mentioned (i1))
3133 /* If register stack conversion has already been done, then
3134 death notes must also be compared before it is certain that
3135 the two instruction streams match. */
3137 rtx note;
3138 HARD_REG_SET i1_regset, i2_regset;
3140 CLEAR_HARD_REG_SET (i1_regset);
3141 CLEAR_HARD_REG_SET (i2_regset);
3143 for (note = REG_NOTES (i1); note; note = XEXP (note, 1))
3144 if (REG_NOTE_KIND (note) == REG_DEAD
3145 && STACK_REG_P (XEXP (note, 0)))
3146 SET_HARD_REG_BIT (i1_regset, REGNO (XEXP (note, 0)));
3148 for (note = REG_NOTES (i2); note; note = XEXP (note, 1))
3149 if (REG_NOTE_KIND (note) == REG_DEAD
3150 && STACK_REG_P (XEXP (note, 0)))
3151 SET_HARD_REG_BIT (i2_regset, REGNO (XEXP (note, 0)));
3153 GO_IF_HARD_REG_EQUAL (i1_regset, i2_regset, done);
3155 lose = 1;
3157 done:
3160 #endif
3162 /* Don't allow old-style asm or volatile extended asms to be accepted
3163 for cross jumping purposes. It is conceptually correct to allow
3164 them, since cross-jumping preserves the dynamic instruction order
3165 even though it is changing the static instruction order. However,
3166 if an asm is being used to emit an assembler pseudo-op, such as
3167 the MIPS `.set reorder' pseudo-op, then the static instruction order
3168 matters and it must be preserved. */
3169 if (GET_CODE (p1) == ASM_INPUT || GET_CODE (p2) == ASM_INPUT
3170 || (GET_CODE (p1) == ASM_OPERANDS && MEM_VOLATILE_P (p1))
3171 || (GET_CODE (p2) == ASM_OPERANDS && MEM_VOLATILE_P (p2)))
3172 lose = 1;
3174 if (lose || GET_CODE (p1) != GET_CODE (p2)
3175 || ! rtx_renumbered_equal_p (p1, p2))
3177 /* The following code helps take care of G++ cleanups. */
3178 rtx equiv1;
3179 rtx equiv2;
3181 if (!lose && GET_CODE (p1) == GET_CODE (p2)
3182 && ((equiv1 = find_reg_note (i1, REG_EQUAL, NULL_RTX)) != 0
3183 || (equiv1 = find_reg_note (i1, REG_EQUIV, NULL_RTX)) != 0)
3184 && ((equiv2 = find_reg_note (i2, REG_EQUAL, NULL_RTX)) != 0
3185 || (equiv2 = find_reg_note (i2, REG_EQUIV, NULL_RTX)) != 0)
3186 /* If the equivalences are not to a constant, they may
3187 reference pseudos that no longer exist, so we can't
3188 use them. */
3189 && CONSTANT_P (XEXP (equiv1, 0))
3190 && rtx_equal_p (XEXP (equiv1, 0), XEXP (equiv2, 0)))
3192 rtx s1 = single_set (i1);
3193 rtx s2 = single_set (i2);
3194 if (s1 != 0 && s2 != 0
3195 && rtx_renumbered_equal_p (SET_DEST (s1), SET_DEST (s2)))
3197 validate_change (i1, &SET_SRC (s1), XEXP (equiv1, 0), 1);
3198 validate_change (i2, &SET_SRC (s2), XEXP (equiv2, 0), 1);
3199 if (! rtx_renumbered_equal_p (p1, p2))
3200 cancel_changes (0);
3201 else if (apply_change_group ())
3202 goto win;
3206 /* Insns fail to match; cross jumping is limited to the following
3207 insns. */
3209 #ifdef HAVE_cc0
3210 /* Don't allow the insn after a compare to be shared by
3211 cross-jumping unless the compare is also shared.
3212 Here, if either of these non-matching insns is a compare,
3213 exclude the following insn from possible cross-jumping. */
3214 if (sets_cc0_p (p1) || sets_cc0_p (p2))
3215 last1 = afterlast1, last2 = afterlast2, ++minimum;
3216 #endif
3218 /* If cross-jumping here will feed a jump-around-jump
3219 optimization, this jump won't cost extra, so reduce
3220 the minimum. */
3221 if (GET_CODE (i1) == JUMP_INSN
3222 && JUMP_LABEL (i1)
3223 && prev_real_insn (JUMP_LABEL (i1)) == e1)
3224 --minimum;
3225 break;
3228 win:
3229 if (GET_CODE (p1) != USE && GET_CODE (p1) != CLOBBER)
3231 /* Ok, this insn is potentially includable in a cross-jump here. */
3232 afterlast1 = last1, afterlast2 = last2;
3233 last1 = i1, last2 = i2, --minimum;
3237 if (minimum <= 0 && last1 != 0 && last1 != e1)
3238 *f1 = last1, *f2 = last2;
3241 static void
3242 do_cross_jump (insn, newjpos, newlpos)
3243 rtx insn, newjpos, newlpos;
3245 /* Find an existing label at this point
3246 or make a new one if there is none. */
3247 register rtx label = get_label_before (newlpos);
3249 /* Make the same jump insn jump to the new point. */
3250 if (GET_CODE (PATTERN (insn)) == RETURN)
3252 /* Remove from jump chain of returns. */
3253 delete_from_jump_chain (insn);
3254 /* Change the insn. */
3255 PATTERN (insn) = gen_jump (label);
3256 INSN_CODE (insn) = -1;
3257 JUMP_LABEL (insn) = label;
3258 LABEL_NUSES (label)++;
3259 /* Add to new the jump chain. */
3260 if (INSN_UID (label) < max_jump_chain
3261 && INSN_UID (insn) < max_jump_chain)
3263 jump_chain[INSN_UID (insn)] = jump_chain[INSN_UID (label)];
3264 jump_chain[INSN_UID (label)] = insn;
3267 else
3268 redirect_jump (insn, label);
3270 /* Delete the matching insns before the jump. Also, remove any REG_EQUAL
3271 or REG_EQUIV note in the NEWLPOS stream that isn't also present in
3272 the NEWJPOS stream. */
3274 while (newjpos != insn)
3276 rtx lnote;
3278 for (lnote = REG_NOTES (newlpos); lnote; lnote = XEXP (lnote, 1))
3279 if ((REG_NOTE_KIND (lnote) == REG_EQUAL
3280 || REG_NOTE_KIND (lnote) == REG_EQUIV)
3281 && ! find_reg_note (newjpos, REG_EQUAL, XEXP (lnote, 0))
3282 && ! find_reg_note (newjpos, REG_EQUIV, XEXP (lnote, 0)))
3283 remove_note (newlpos, lnote);
3285 delete_insn (newjpos);
3286 newjpos = next_real_insn (newjpos);
3287 newlpos = next_real_insn (newlpos);
3291 /* Return the label before INSN, or put a new label there. */
3294 get_label_before (insn)
3295 rtx insn;
3297 rtx label;
3299 /* Find an existing label at this point
3300 or make a new one if there is none. */
3301 label = prev_nonnote_insn (insn);
3303 if (label == 0 || GET_CODE (label) != CODE_LABEL)
3305 rtx prev = PREV_INSN (insn);
3307 label = gen_label_rtx ();
3308 emit_label_after (label, prev);
3309 LABEL_NUSES (label) = 0;
3311 return label;
3314 /* Return the label after INSN, or put a new label there. */
3317 get_label_after (insn)
3318 rtx insn;
3320 rtx label;
3322 /* Find an existing label at this point
3323 or make a new one if there is none. */
3324 label = next_nonnote_insn (insn);
3326 if (label == 0 || GET_CODE (label) != CODE_LABEL)
3328 label = gen_label_rtx ();
3329 emit_label_after (label, insn);
3330 LABEL_NUSES (label) = 0;
3332 return label;
3335 /* Return 1 if INSN is a jump that jumps to right after TARGET
3336 only on the condition that TARGET itself would drop through.
3337 Assumes that TARGET is a conditional jump. */
3339 static int
3340 jump_back_p (insn, target)
3341 rtx insn, target;
3343 rtx cinsn, ctarget;
3344 enum rtx_code codei, codet;
3346 if (simplejump_p (insn) || ! condjump_p (insn)
3347 || simplejump_p (target)
3348 || target != prev_real_insn (JUMP_LABEL (insn)))
3349 return 0;
3351 cinsn = XEXP (SET_SRC (PATTERN (insn)), 0);
3352 ctarget = XEXP (SET_SRC (PATTERN (target)), 0);
3354 codei = GET_CODE (cinsn);
3355 codet = GET_CODE (ctarget);
3357 if (XEXP (SET_SRC (PATTERN (insn)), 1) == pc_rtx)
3359 if (! can_reverse_comparison_p (cinsn, insn))
3360 return 0;
3361 codei = reverse_condition (codei);
3364 if (XEXP (SET_SRC (PATTERN (target)), 2) == pc_rtx)
3366 if (! can_reverse_comparison_p (ctarget, target))
3367 return 0;
3368 codet = reverse_condition (codet);
3371 return (codei == codet
3372 && rtx_renumbered_equal_p (XEXP (cinsn, 0), XEXP (ctarget, 0))
3373 && rtx_renumbered_equal_p (XEXP (cinsn, 1), XEXP (ctarget, 1)));
3376 /* Given a comparison, COMPARISON, inside a conditional jump insn, INSN,
3377 return non-zero if it is safe to reverse this comparison. It is if our
3378 floating-point is not IEEE, if this is an NE or EQ comparison, or if
3379 this is known to be an integer comparison. */
3382 can_reverse_comparison_p (comparison, insn)
3383 rtx comparison;
3384 rtx insn;
3386 rtx arg0;
3388 /* If this is not actually a comparison, we can't reverse it. */
3389 if (GET_RTX_CLASS (GET_CODE (comparison)) != '<')
3390 return 0;
3392 if (TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
3393 /* If this is an NE comparison, it is safe to reverse it to an EQ
3394 comparison and vice versa, even for floating point. If no operands
3395 are NaNs, the reversal is valid. If some operand is a NaN, EQ is
3396 always false and NE is always true, so the reversal is also valid. */
3397 || flag_fast_math
3398 || GET_CODE (comparison) == NE
3399 || GET_CODE (comparison) == EQ)
3400 return 1;
3402 arg0 = XEXP (comparison, 0);
3404 /* Make sure ARG0 is one of the actual objects being compared. If we
3405 can't do this, we can't be sure the comparison can be reversed.
3407 Handle cc0 and a MODE_CC register. */
3408 if ((GET_CODE (arg0) == REG && GET_MODE_CLASS (GET_MODE (arg0)) == MODE_CC)
3409 #ifdef HAVE_cc0
3410 || arg0 == cc0_rtx
3411 #endif
3414 rtx prev = prev_nonnote_insn (insn);
3415 rtx set;
3417 /* First see if the condition code mode alone if enough to say we can
3418 reverse the condition. If not, then search backwards for a set of
3419 ARG0. We do not need to check for an insn clobbering it since valid
3420 code will contain set a set with no intervening clobber. But
3421 stop when we reach a label. */
3422 #ifdef REVERSIBLE_CC_MODE
3423 if (GET_MODE_CLASS (GET_MODE (arg0)) == MODE_CC
3424 && REVERSIBLE_CC_MODE (GET_MODE (arg0)))
3425 return 1;
3426 #endif
3428 for (prev = prev_nonnote_insn (insn);
3429 prev != 0 && GET_CODE (prev) != CODE_LABEL;
3430 prev = prev_nonnote_insn (prev))
3431 if ((set = single_set (prev)) != 0
3432 && rtx_equal_p (SET_DEST (set), arg0))
3434 arg0 = SET_SRC (set);
3436 if (GET_CODE (arg0) == COMPARE)
3437 arg0 = XEXP (arg0, 0);
3438 break;
3442 /* We can reverse this if ARG0 is a CONST_INT or if its mode is
3443 not VOIDmode and neither a MODE_CC nor MODE_FLOAT type. */
3444 return (GET_CODE (arg0) == CONST_INT
3445 || (GET_MODE (arg0) != VOIDmode
3446 && GET_MODE_CLASS (GET_MODE (arg0)) != MODE_CC
3447 && GET_MODE_CLASS (GET_MODE (arg0)) != MODE_FLOAT));
3450 /* Given an rtx-code for a comparison, return the code
3451 for the negated comparison.
3452 WATCH OUT! reverse_condition is not safe to use on a jump
3453 that might be acting on the results of an IEEE floating point comparison,
3454 because of the special treatment of non-signaling nans in comparisons.
3455 Use can_reverse_comparison_p to be sure. */
3457 enum rtx_code
3458 reverse_condition (code)
3459 enum rtx_code code;
3461 switch (code)
3463 case EQ:
3464 return NE;
3466 case NE:
3467 return EQ;
3469 case GT:
3470 return LE;
3472 case GE:
3473 return LT;
3475 case LT:
3476 return GE;
3478 case LE:
3479 return GT;
3481 case GTU:
3482 return LEU;
3484 case GEU:
3485 return LTU;
3487 case LTU:
3488 return GEU;
3490 case LEU:
3491 return GTU;
3493 default:
3494 abort ();
3495 return UNKNOWN;
3499 /* Similar, but return the code when two operands of a comparison are swapped.
3500 This IS safe for IEEE floating-point. */
3502 enum rtx_code
3503 swap_condition (code)
3504 enum rtx_code code;
3506 switch (code)
3508 case EQ:
3509 case NE:
3510 return code;
3512 case GT:
3513 return LT;
3515 case GE:
3516 return LE;
3518 case LT:
3519 return GT;
3521 case LE:
3522 return GE;
3524 case GTU:
3525 return LTU;
3527 case GEU:
3528 return LEU;
3530 case LTU:
3531 return GTU;
3533 case LEU:
3534 return GEU;
3536 default:
3537 abort ();
3538 return UNKNOWN;
3542 /* Given a comparison CODE, return the corresponding unsigned comparison.
3543 If CODE is an equality comparison or already an unsigned comparison,
3544 CODE is returned. */
3546 enum rtx_code
3547 unsigned_condition (code)
3548 enum rtx_code code;
3550 switch (code)
3552 case EQ:
3553 case NE:
3554 case GTU:
3555 case GEU:
3556 case LTU:
3557 case LEU:
3558 return code;
3560 case GT:
3561 return GTU;
3563 case GE:
3564 return GEU;
3566 case LT:
3567 return LTU;
3569 case LE:
3570 return LEU;
3572 default:
3573 abort ();
3577 /* Similarly, return the signed version of a comparison. */
3579 enum rtx_code
3580 signed_condition (code)
3581 enum rtx_code code;
3583 switch (code)
3585 case EQ:
3586 case NE:
3587 case GT:
3588 case GE:
3589 case LT:
3590 case LE:
3591 return code;
3593 case GTU:
3594 return GT;
3596 case GEU:
3597 return GE;
3599 case LTU:
3600 return LT;
3602 case LEU:
3603 return LE;
3605 default:
3606 abort ();
3610 /* Return non-zero if CODE1 is more strict than CODE2, i.e., if the
3611 truth of CODE1 implies the truth of CODE2. */
3614 comparison_dominates_p (code1, code2)
3615 enum rtx_code code1, code2;
3617 if (code1 == code2)
3618 return 1;
3620 switch (code1)
3622 case EQ:
3623 if (code2 == LE || code2 == LEU || code2 == GE || code2 == GEU)
3624 return 1;
3625 break;
3627 case LT:
3628 if (code2 == LE || code2 == NE)
3629 return 1;
3630 break;
3632 case GT:
3633 if (code2 == GE || code2 == NE)
3634 return 1;
3635 break;
3637 case LTU:
3638 if (code2 == LEU || code2 == NE)
3639 return 1;
3640 break;
3642 case GTU:
3643 if (code2 == GEU || code2 == NE)
3644 return 1;
3645 break;
3647 default:
3648 break;
3651 return 0;
3654 /* Return 1 if INSN is an unconditional jump and nothing else. */
3657 simplejump_p (insn)
3658 rtx insn;
3660 return (GET_CODE (insn) == JUMP_INSN
3661 && GET_CODE (PATTERN (insn)) == SET
3662 && GET_CODE (SET_DEST (PATTERN (insn))) == PC
3663 && GET_CODE (SET_SRC (PATTERN (insn))) == LABEL_REF);
3666 /* Return nonzero if INSN is a (possibly) conditional jump
3667 and nothing more. */
3670 condjump_p (insn)
3671 rtx insn;
3673 register rtx x = PATTERN (insn);
3675 if (GET_CODE (x) != SET
3676 || GET_CODE (SET_DEST (x)) != PC)
3677 return 0;
3679 x = SET_SRC (x);
3680 if (GET_CODE (x) == LABEL_REF)
3681 return 1;
3682 else return (GET_CODE (x) == IF_THEN_ELSE
3683 && ((GET_CODE (XEXP (x, 2)) == PC
3684 && (GET_CODE (XEXP (x, 1)) == LABEL_REF
3685 || GET_CODE (XEXP (x, 1)) == RETURN))
3686 || (GET_CODE (XEXP (x, 1)) == PC
3687 && (GET_CODE (XEXP (x, 2)) == LABEL_REF
3688 || GET_CODE (XEXP (x, 2)) == RETURN))));
3690 return 0;
3693 /* Return nonzero if INSN is a (possibly) conditional jump inside a
3694 PARALLEL. */
3697 condjump_in_parallel_p (insn)
3698 rtx insn;
3700 register rtx x = PATTERN (insn);
3702 if (GET_CODE (x) != PARALLEL)
3703 return 0;
3704 else
3705 x = XVECEXP (x, 0, 0);
3707 if (GET_CODE (x) != SET)
3708 return 0;
3709 if (GET_CODE (SET_DEST (x)) != PC)
3710 return 0;
3711 if (GET_CODE (SET_SRC (x)) == LABEL_REF)
3712 return 1;
3713 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
3714 return 0;
3715 if (XEXP (SET_SRC (x), 2) == pc_rtx
3716 && (GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF
3717 || GET_CODE (XEXP (SET_SRC (x), 1)) == RETURN))
3718 return 1;
3719 if (XEXP (SET_SRC (x), 1) == pc_rtx
3720 && (GET_CODE (XEXP (SET_SRC (x), 2)) == LABEL_REF
3721 || GET_CODE (XEXP (SET_SRC (x), 2)) == RETURN))
3722 return 1;
3723 return 0;
3726 /* Return the label of a conditional jump. */
3729 condjump_label (insn)
3730 rtx insn;
3732 register rtx x = PATTERN (insn);
3734 if (GET_CODE (x) == PARALLEL)
3735 x = XVECEXP (x, 0, 0);
3736 if (GET_CODE (x) != SET)
3737 return NULL_RTX;
3738 if (GET_CODE (SET_DEST (x)) != PC)
3739 return NULL_RTX;
3740 x = SET_SRC (x);
3741 if (GET_CODE (x) == LABEL_REF)
3742 return x;
3743 if (GET_CODE (x) != IF_THEN_ELSE)
3744 return NULL_RTX;
3745 if (XEXP (x, 2) == pc_rtx && GET_CODE (XEXP (x, 1)) == LABEL_REF)
3746 return XEXP (x, 1);
3747 if (XEXP (x, 1) == pc_rtx && GET_CODE (XEXP (x, 2)) == LABEL_REF)
3748 return XEXP (x, 2);
3749 return NULL_RTX;
3752 /* Return true if INSN is a (possibly conditional) return insn. */
3754 static int
3755 returnjump_p_1 (loc, data)
3756 rtx *loc;
3757 void *data ATTRIBUTE_UNUSED;
3759 rtx x = *loc;
3760 return GET_CODE (x) == RETURN;
3764 returnjump_p (insn)
3765 rtx insn;
3767 return for_each_rtx (&PATTERN (insn), returnjump_p_1, NULL);
3770 /* Return true if INSN is a jump that only transfers control and
3771 nothing more. */
3774 onlyjump_p (insn)
3775 rtx insn;
3777 rtx set;
3779 if (GET_CODE (insn) != JUMP_INSN)
3780 return 0;
3782 set = single_set (insn);
3783 if (set == NULL)
3784 return 0;
3785 if (GET_CODE (SET_DEST (set)) != PC)
3786 return 0;
3787 if (side_effects_p (SET_SRC (set)))
3788 return 0;
3790 return 1;
3793 #ifdef HAVE_cc0
3795 /* Return 1 if X is an RTX that does nothing but set the condition codes
3796 and CLOBBER or USE registers.
3797 Return -1 if X does explicitly set the condition codes,
3798 but also does other things. */
3801 sets_cc0_p (x)
3802 rtx x ATTRIBUTE_UNUSED;
3804 if (GET_CODE (x) == SET && SET_DEST (x) == cc0_rtx)
3805 return 1;
3806 if (GET_CODE (x) == PARALLEL)
3808 int i;
3809 int sets_cc0 = 0;
3810 int other_things = 0;
3811 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
3813 if (GET_CODE (XVECEXP (x, 0, i)) == SET
3814 && SET_DEST (XVECEXP (x, 0, i)) == cc0_rtx)
3815 sets_cc0 = 1;
3816 else if (GET_CODE (XVECEXP (x, 0, i)) == SET)
3817 other_things = 1;
3819 return ! sets_cc0 ? 0 : other_things ? -1 : 1;
3821 return 0;
3823 #endif
3825 /* Follow any unconditional jump at LABEL;
3826 return the ultimate label reached by any such chain of jumps.
3827 If LABEL is not followed by a jump, return LABEL.
3828 If the chain loops or we can't find end, return LABEL,
3829 since that tells caller to avoid changing the insn.
3831 If RELOAD_COMPLETED is 0, we do not chain across a NOTE_INSN_LOOP_BEG or
3832 a USE or CLOBBER. */
3835 follow_jumps (label)
3836 rtx label;
3838 register rtx insn;
3839 register rtx next;
3840 register rtx value = label;
3841 register int depth;
3843 for (depth = 0;
3844 (depth < 10
3845 && (insn = next_active_insn (value)) != 0
3846 && GET_CODE (insn) == JUMP_INSN
3847 && ((JUMP_LABEL (insn) != 0 && simplejump_p (insn))
3848 || GET_CODE (PATTERN (insn)) == RETURN)
3849 && (next = NEXT_INSN (insn))
3850 && GET_CODE (next) == BARRIER);
3851 depth++)
3853 /* Don't chain through the insn that jumps into a loop
3854 from outside the loop,
3855 since that would create multiple loop entry jumps
3856 and prevent loop optimization. */
3857 rtx tem;
3858 if (!reload_completed)
3859 for (tem = value; tem != insn; tem = NEXT_INSN (tem))
3860 if (GET_CODE (tem) == NOTE
3861 && (NOTE_LINE_NUMBER (tem) == NOTE_INSN_LOOP_BEG
3862 /* ??? Optional. Disables some optimizations, but makes
3863 gcov output more accurate with -O. */
3864 || (flag_test_coverage && NOTE_LINE_NUMBER (tem) > 0)))
3865 return value;
3867 /* If we have found a cycle, make the insn jump to itself. */
3868 if (JUMP_LABEL (insn) == label)
3869 return label;
3871 tem = next_active_insn (JUMP_LABEL (insn));
3872 if (tem && (GET_CODE (PATTERN (tem)) == ADDR_VEC
3873 || GET_CODE (PATTERN (tem)) == ADDR_DIFF_VEC))
3874 break;
3876 value = JUMP_LABEL (insn);
3878 if (depth == 10)
3879 return label;
3880 return value;
3883 /* Assuming that field IDX of X is a vector of label_refs,
3884 replace each of them by the ultimate label reached by it.
3885 Return nonzero if a change is made.
3886 If IGNORE_LOOPS is 0, we do not chain across a NOTE_INSN_LOOP_BEG. */
3888 static int
3889 tension_vector_labels (x, idx)
3890 register rtx x;
3891 register int idx;
3893 int changed = 0;
3894 register int i;
3895 for (i = XVECLEN (x, idx) - 1; i >= 0; i--)
3897 register rtx olabel = XEXP (XVECEXP (x, idx, i), 0);
3898 register rtx nlabel = follow_jumps (olabel);
3899 if (nlabel && nlabel != olabel)
3901 XEXP (XVECEXP (x, idx, i), 0) = nlabel;
3902 ++LABEL_NUSES (nlabel);
3903 if (--LABEL_NUSES (olabel) == 0)
3904 delete_insn (olabel);
3905 changed = 1;
3908 return changed;
3911 /* Find all CODE_LABELs referred to in X, and increment their use counts.
3912 If INSN is a JUMP_INSN and there is at least one CODE_LABEL referenced
3913 in INSN, then store one of them in JUMP_LABEL (INSN).
3914 If INSN is an INSN or a CALL_INSN and there is at least one CODE_LABEL
3915 referenced in INSN, add a REG_LABEL note containing that label to INSN.
3916 Also, when there are consecutive labels, canonicalize on the last of them.
3918 Note that two labels separated by a loop-beginning note
3919 must be kept distinct if we have not yet done loop-optimization,
3920 because the gap between them is where loop-optimize
3921 will want to move invariant code to. CROSS_JUMP tells us
3922 that loop-optimization is done with.
3924 Once reload has completed (CROSS_JUMP non-zero), we need not consider
3925 two labels distinct if they are separated by only USE or CLOBBER insns. */
3927 static void
3928 mark_jump_label (x, insn, cross_jump)
3929 register rtx x;
3930 rtx insn;
3931 int cross_jump;
3933 register RTX_CODE code = GET_CODE (x);
3934 register int i;
3935 register const char *fmt;
3937 switch (code)
3939 case PC:
3940 case CC0:
3941 case REG:
3942 case SUBREG:
3943 case CONST_INT:
3944 case SYMBOL_REF:
3945 case CONST_DOUBLE:
3946 case CLOBBER:
3947 case CALL:
3948 return;
3950 case MEM:
3951 /* If this is a constant-pool reference, see if it is a label. */
3952 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
3953 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
3954 mark_jump_label (get_pool_constant (XEXP (x, 0)), insn, cross_jump);
3955 break;
3957 case LABEL_REF:
3959 rtx label = XEXP (x, 0);
3960 rtx olabel = label;
3961 rtx note;
3962 rtx next;
3964 if (GET_CODE (label) != CODE_LABEL)
3965 abort ();
3967 /* Ignore references to labels of containing functions. */
3968 if (LABEL_REF_NONLOCAL_P (x))
3969 break;
3971 /* If there are other labels following this one,
3972 replace it with the last of the consecutive labels. */
3973 for (next = NEXT_INSN (label); next; next = NEXT_INSN (next))
3975 if (GET_CODE (next) == CODE_LABEL)
3976 label = next;
3977 else if (cross_jump && GET_CODE (next) == INSN
3978 && (GET_CODE (PATTERN (next)) == USE
3979 || GET_CODE (PATTERN (next)) == CLOBBER))
3980 continue;
3981 else if (GET_CODE (next) != NOTE)
3982 break;
3983 else if (! cross_jump
3984 && (NOTE_LINE_NUMBER (next) == NOTE_INSN_LOOP_BEG
3985 || NOTE_LINE_NUMBER (next) == NOTE_INSN_FUNCTION_END
3986 /* ??? Optional. Disables some optimizations, but
3987 makes gcov output more accurate with -O. */
3988 || (flag_test_coverage && NOTE_LINE_NUMBER (next) > 0)))
3989 break;
3992 XEXP (x, 0) = label;
3993 if (! insn || ! INSN_DELETED_P (insn))
3994 ++LABEL_NUSES (label);
3996 if (insn)
3998 if (GET_CODE (insn) == JUMP_INSN)
3999 JUMP_LABEL (insn) = label;
4001 /* If we've changed OLABEL and we had a REG_LABEL note
4002 for it, update it as well. */
4003 else if (label != olabel
4004 && (note = find_reg_note (insn, REG_LABEL, olabel)) != 0)
4005 XEXP (note, 0) = label;
4007 /* Otherwise, add a REG_LABEL note for LABEL unless there already
4008 is one. */
4009 else if (! find_reg_note (insn, REG_LABEL, label))
4011 /* This code used to ignore labels which refered to dispatch
4012 tables to avoid flow.c generating worse code.
4014 However, in the presense of global optimizations like
4015 gcse which call find_basic_blocks without calling
4016 life_analysis, not recording such labels will lead
4017 to compiler aborts because of inconsistencies in the
4018 flow graph. So we go ahead and record the label.
4020 It may also be the case that the optimization argument
4021 is no longer valid because of the more accurate cfg
4022 we build in find_basic_blocks -- it no longer pessimizes
4023 code when it finds a REG_LABEL note. */
4024 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_LABEL, label,
4025 REG_NOTES (insn));
4028 return;
4031 /* Do walk the labels in a vector, but not the first operand of an
4032 ADDR_DIFF_VEC. Don't set the JUMP_LABEL of a vector. */
4033 case ADDR_VEC:
4034 case ADDR_DIFF_VEC:
4035 if (! INSN_DELETED_P (insn))
4037 int eltnum = code == ADDR_DIFF_VEC ? 1 : 0;
4039 for (i = 0; i < XVECLEN (x, eltnum); i++)
4040 mark_jump_label (XVECEXP (x, eltnum, i), NULL_RTX, cross_jump);
4042 return;
4044 default:
4045 break;
4048 fmt = GET_RTX_FORMAT (code);
4049 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4051 if (fmt[i] == 'e')
4052 mark_jump_label (XEXP (x, i), insn, cross_jump);
4053 else if (fmt[i] == 'E')
4055 register int j;
4056 for (j = 0; j < XVECLEN (x, i); j++)
4057 mark_jump_label (XVECEXP (x, i, j), insn, cross_jump);
4062 /* If all INSN does is set the pc, delete it,
4063 and delete the insn that set the condition codes for it
4064 if that's what the previous thing was. */
4066 void
4067 delete_jump (insn)
4068 rtx insn;
4070 register rtx set = single_set (insn);
4072 if (set && GET_CODE (SET_DEST (set)) == PC)
4073 delete_computation (insn);
4076 /* Verify INSN is a BARRIER and delete it. */
4078 void
4079 delete_barrier (insn)
4080 rtx insn;
4082 if (GET_CODE (insn) != BARRIER)
4083 abort ();
4085 delete_insn (insn);
4088 /* Recursively delete prior insns that compute the value (used only by INSN
4089 which the caller is deleting) stored in the register mentioned by NOTE
4090 which is a REG_DEAD note associated with INSN. */
4092 static void
4093 delete_prior_computation (note, insn)
4094 rtx note;
4095 rtx insn;
4097 rtx our_prev;
4098 rtx reg = XEXP (note, 0);
4100 for (our_prev = prev_nonnote_insn (insn);
4101 our_prev && (GET_CODE (our_prev) == INSN
4102 || GET_CODE (our_prev) == CALL_INSN);
4103 our_prev = prev_nonnote_insn (our_prev))
4105 rtx pat = PATTERN (our_prev);
4107 /* If we reach a CALL which is not calling a const function
4108 or the callee pops the arguments, then give up. */
4109 if (GET_CODE (our_prev) == CALL_INSN
4110 && (! CONST_CALL_P (our_prev)
4111 || GET_CODE (pat) != SET || GET_CODE (SET_SRC (pat)) != CALL))
4112 break;
4114 /* If we reach a SEQUENCE, it is too complex to try to
4115 do anything with it, so give up. */
4116 if (GET_CODE (pat) == SEQUENCE)
4117 break;
4119 if (GET_CODE (pat) == USE
4120 && GET_CODE (XEXP (pat, 0)) == INSN)
4121 /* reorg creates USEs that look like this. We leave them
4122 alone because reorg needs them for its own purposes. */
4123 break;
4125 if (reg_set_p (reg, pat))
4127 if (side_effects_p (pat) && GET_CODE (our_prev) != CALL_INSN)
4128 break;
4130 if (GET_CODE (pat) == PARALLEL)
4132 /* If we find a SET of something else, we can't
4133 delete the insn. */
4135 int i;
4137 for (i = 0; i < XVECLEN (pat, 0); i++)
4139 rtx part = XVECEXP (pat, 0, i);
4141 if (GET_CODE (part) == SET
4142 && SET_DEST (part) != reg)
4143 break;
4146 if (i == XVECLEN (pat, 0))
4147 delete_computation (our_prev);
4149 else if (GET_CODE (pat) == SET
4150 && GET_CODE (SET_DEST (pat)) == REG)
4152 int dest_regno = REGNO (SET_DEST (pat));
4153 int dest_endregno
4154 = dest_regno + (dest_regno < FIRST_PSEUDO_REGISTER
4155 ? HARD_REGNO_NREGS (dest_regno,
4156 GET_MODE (SET_DEST (pat))) : 1);
4157 int regno = REGNO (reg);
4158 int endregno = regno + (regno < FIRST_PSEUDO_REGISTER
4159 ? HARD_REGNO_NREGS (regno, GET_MODE (reg)) : 1);
4161 if (dest_regno >= regno
4162 && dest_endregno <= endregno)
4163 delete_computation (our_prev);
4165 /* We may have a multi-word hard register and some, but not
4166 all, of the words of the register are needed in subsequent
4167 insns. Write REG_UNUSED notes for those parts that were not
4168 needed. */
4169 else if (dest_regno <= regno
4170 && dest_endregno >= endregno)
4172 int i;
4174 REG_NOTES (our_prev)
4175 = gen_rtx_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (our_prev));
4177 for (i = dest_regno; i < dest_endregno; i++)
4178 if (! find_regno_note (our_prev, REG_UNUSED, i))
4179 break;
4181 if (i == dest_endregno)
4182 delete_computation (our_prev);
4186 break;
4189 /* If PAT references the register that dies here, it is an
4190 additional use. Hence any prior SET isn't dead. However, this
4191 insn becomes the new place for the REG_DEAD note. */
4192 if (reg_overlap_mentioned_p (reg, pat))
4194 XEXP (note, 1) = REG_NOTES (our_prev);
4195 REG_NOTES (our_prev) = note;
4196 break;
4201 /* Delete INSN and recursively delete insns that compute values used only
4202 by INSN. This uses the REG_DEAD notes computed during flow analysis.
4203 If we are running before flow.c, we need do nothing since flow.c will
4204 delete dead code. We also can't know if the registers being used are
4205 dead or not at this point.
4207 Otherwise, look at all our REG_DEAD notes. If a previous insn does
4208 nothing other than set a register that dies in this insn, we can delete
4209 that insn as well.
4211 On machines with CC0, if CC0 is used in this insn, we may be able to
4212 delete the insn that set it. */
4214 static void
4215 delete_computation (insn)
4216 rtx insn;
4218 rtx note, next;
4219 rtx set;
4221 #ifdef HAVE_cc0
4222 if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
4224 rtx prev = prev_nonnote_insn (insn);
4225 /* We assume that at this stage
4226 CC's are always set explicitly
4227 and always immediately before the jump that
4228 will use them. So if the previous insn
4229 exists to set the CC's, delete it
4230 (unless it performs auto-increments, etc.). */
4231 if (prev && GET_CODE (prev) == INSN
4232 && sets_cc0_p (PATTERN (prev)))
4234 if (sets_cc0_p (PATTERN (prev)) > 0
4235 && ! side_effects_p (PATTERN (prev)))
4236 delete_computation (prev);
4237 else
4238 /* Otherwise, show that cc0 won't be used. */
4239 REG_NOTES (prev) = gen_rtx_EXPR_LIST (REG_UNUSED,
4240 cc0_rtx, REG_NOTES (prev));
4243 #endif
4245 #ifdef INSN_SCHEDULING
4246 /* ?!? The schedulers do not keep REG_DEAD notes accurate after
4247 reload has completed. The schedulers need to be fixed. Until
4248 they are, we must not rely on the death notes here. */
4249 if (reload_completed && flag_schedule_insns_after_reload)
4251 delete_insn (insn);
4252 return;
4254 #endif
4256 /* The REG_DEAD note may have been omitted for a register
4257 which is both set and used by the insn. */
4258 set = single_set (insn);
4259 if (set && GET_CODE (SET_DEST (set)) == REG)
4261 int dest_regno = REGNO (SET_DEST (set));
4262 int dest_endregno
4263 = dest_regno + (dest_regno < FIRST_PSEUDO_REGISTER
4264 ? HARD_REGNO_NREGS (dest_regno,
4265 GET_MODE (SET_DEST (set))) : 1);
4266 int i;
4268 for (i = dest_regno; i < dest_endregno; i++)
4270 if (! refers_to_regno_p (i, i + 1, SET_SRC (set), NULL_PTR)
4271 || find_regno_note (insn, REG_DEAD, i))
4272 continue;
4274 note = gen_rtx_EXPR_LIST (REG_DEAD, (i < FIRST_PSEUDO_REGISTER
4275 ? gen_rtx_REG (reg_raw_mode[i], i)
4276 : SET_DEST (set)), NULL_RTX);
4277 delete_prior_computation (note, insn);
4281 for (note = REG_NOTES (insn); note; note = next)
4283 next = XEXP (note, 1);
4285 if (REG_NOTE_KIND (note) != REG_DEAD
4286 /* Verify that the REG_NOTE is legitimate. */
4287 || GET_CODE (XEXP (note, 0)) != REG)
4288 continue;
4290 delete_prior_computation (note, insn);
4293 delete_insn (insn);
4296 /* Delete insn INSN from the chain of insns and update label ref counts.
4297 May delete some following insns as a consequence; may even delete
4298 a label elsewhere and insns that follow it.
4300 Returns the first insn after INSN that was not deleted. */
4303 delete_insn (insn)
4304 register rtx insn;
4306 register rtx next = NEXT_INSN (insn);
4307 register rtx prev = PREV_INSN (insn);
4308 register int was_code_label = (GET_CODE (insn) == CODE_LABEL);
4309 register int dont_really_delete = 0;
4311 while (next && INSN_DELETED_P (next))
4312 next = NEXT_INSN (next);
4314 /* This insn is already deleted => return first following nondeleted. */
4315 if (INSN_DELETED_P (insn))
4316 return next;
4318 if (was_code_label)
4319 remove_node_from_expr_list (insn, &nonlocal_goto_handler_labels);
4321 /* Don't delete user-declared labels. Convert them to special NOTEs
4322 instead. */
4323 if (was_code_label && LABEL_NAME (insn) != 0
4324 && optimize && ! dont_really_delete)
4326 PUT_CODE (insn, NOTE);
4327 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED_LABEL;
4328 NOTE_SOURCE_FILE (insn) = 0;
4329 dont_really_delete = 1;
4331 else
4332 /* Mark this insn as deleted. */
4333 INSN_DELETED_P (insn) = 1;
4335 /* If this is an unconditional jump, delete it from the jump chain. */
4336 if (simplejump_p (insn))
4337 delete_from_jump_chain (insn);
4339 /* If instruction is followed by a barrier,
4340 delete the barrier too. */
4342 if (next != 0 && GET_CODE (next) == BARRIER)
4344 INSN_DELETED_P (next) = 1;
4345 next = NEXT_INSN (next);
4348 /* Patch out INSN (and the barrier if any) */
4350 if (optimize && ! dont_really_delete)
4352 if (prev)
4354 NEXT_INSN (prev) = next;
4355 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
4356 NEXT_INSN (XVECEXP (PATTERN (prev), 0,
4357 XVECLEN (PATTERN (prev), 0) - 1)) = next;
4360 if (next)
4362 PREV_INSN (next) = prev;
4363 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
4364 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
4367 if (prev && NEXT_INSN (prev) == 0)
4368 set_last_insn (prev);
4371 /* If deleting a jump, decrement the count of the label,
4372 and delete the label if it is now unused. */
4374 if (GET_CODE (insn) == JUMP_INSN && JUMP_LABEL (insn))
4376 rtx lab = JUMP_LABEL (insn), lab_next;
4378 if (--LABEL_NUSES (lab) == 0)
4380 /* This can delete NEXT or PREV,
4381 either directly if NEXT is JUMP_LABEL (INSN),
4382 or indirectly through more levels of jumps. */
4383 delete_insn (lab);
4385 /* I feel a little doubtful about this loop,
4386 but I see no clean and sure alternative way
4387 to find the first insn after INSN that is not now deleted.
4388 I hope this works. */
4389 while (next && INSN_DELETED_P (next))
4390 next = NEXT_INSN (next);
4391 return next;
4393 else if ((lab_next = next_nonnote_insn (lab)) != NULL
4394 && GET_CODE (lab_next) == JUMP_INSN
4395 && (GET_CODE (PATTERN (lab_next)) == ADDR_VEC
4396 || GET_CODE (PATTERN (lab_next)) == ADDR_DIFF_VEC))
4398 /* If we're deleting the tablejump, delete the dispatch table.
4399 We may not be able to kill the label immediately preceeding
4400 just yet, as it might be referenced in code leading up to
4401 the tablejump. */
4402 delete_insn (lab_next);
4406 /* Likewise if we're deleting a dispatch table. */
4408 if (GET_CODE (insn) == JUMP_INSN
4409 && (GET_CODE (PATTERN (insn)) == ADDR_VEC
4410 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC))
4412 rtx pat = PATTERN (insn);
4413 int i, diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
4414 int len = XVECLEN (pat, diff_vec_p);
4416 for (i = 0; i < len; i++)
4417 if (--LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0)) == 0)
4418 delete_insn (XEXP (XVECEXP (pat, diff_vec_p, i), 0));
4419 while (next && INSN_DELETED_P (next))
4420 next = NEXT_INSN (next);
4421 return next;
4424 while (prev && (INSN_DELETED_P (prev) || GET_CODE (prev) == NOTE))
4425 prev = PREV_INSN (prev);
4427 /* If INSN was a label and a dispatch table follows it,
4428 delete the dispatch table. The tablejump must have gone already.
4429 It isn't useful to fall through into a table. */
4431 if (was_code_label
4432 && NEXT_INSN (insn) != 0
4433 && GET_CODE (NEXT_INSN (insn)) == JUMP_INSN
4434 && (GET_CODE (PATTERN (NEXT_INSN (insn))) == ADDR_VEC
4435 || GET_CODE (PATTERN (NEXT_INSN (insn))) == ADDR_DIFF_VEC))
4436 next = delete_insn (NEXT_INSN (insn));
4438 /* If INSN was a label, delete insns following it if now unreachable. */
4440 if (was_code_label && prev && GET_CODE (prev) == BARRIER)
4442 register RTX_CODE code;
4443 while (next != 0
4444 && (GET_RTX_CLASS (code = GET_CODE (next)) == 'i'
4445 || code == NOTE || code == BARRIER
4446 || (code == CODE_LABEL && INSN_DELETED_P (next))))
4448 if (code == NOTE
4449 && NOTE_LINE_NUMBER (next) != NOTE_INSN_FUNCTION_END)
4450 next = NEXT_INSN (next);
4451 /* Keep going past other deleted labels to delete what follows. */
4452 else if (code == CODE_LABEL && INSN_DELETED_P (next))
4453 next = NEXT_INSN (next);
4454 else
4455 /* Note: if this deletes a jump, it can cause more
4456 deletion of unreachable code, after a different label.
4457 As long as the value from this recursive call is correct,
4458 this invocation functions correctly. */
4459 next = delete_insn (next);
4463 return next;
4466 /* Advance from INSN till reaching something not deleted
4467 then return that. May return INSN itself. */
4470 next_nondeleted_insn (insn)
4471 rtx insn;
4473 while (INSN_DELETED_P (insn))
4474 insn = NEXT_INSN (insn);
4475 return insn;
4478 /* Delete a range of insns from FROM to TO, inclusive.
4479 This is for the sake of peephole optimization, so assume
4480 that whatever these insns do will still be done by a new
4481 peephole insn that will replace them. */
4483 void
4484 delete_for_peephole (from, to)
4485 register rtx from, to;
4487 register rtx insn = from;
4489 while (1)
4491 register rtx next = NEXT_INSN (insn);
4492 register rtx prev = PREV_INSN (insn);
4494 if (GET_CODE (insn) != NOTE)
4496 INSN_DELETED_P (insn) = 1;
4498 /* Patch this insn out of the chain. */
4499 /* We don't do this all at once, because we
4500 must preserve all NOTEs. */
4501 if (prev)
4502 NEXT_INSN (prev) = next;
4504 if (next)
4505 PREV_INSN (next) = prev;
4508 if (insn == to)
4509 break;
4510 insn = next;
4513 /* Note that if TO is an unconditional jump
4514 we *do not* delete the BARRIER that follows,
4515 since the peephole that replaces this sequence
4516 is also an unconditional jump in that case. */
4519 /* We have determined that INSN is never reached, and are about to
4520 delete it. Print a warning if the user asked for one.
4522 To try to make this warning more useful, this should only be called
4523 once per basic block not reached, and it only warns when the basic
4524 block contains more than one line from the current function, and
4525 contains at least one operation. CSE and inlining can duplicate insns,
4526 so it's possible to get spurious warnings from this. */
4528 void
4529 never_reached_warning (avoided_insn)
4530 rtx avoided_insn;
4532 rtx insn;
4533 rtx a_line_note = NULL;
4534 int two_avoided_lines = 0;
4535 int contains_insn = 0;
4537 if (! warn_notreached)
4538 return;
4540 /* Scan forwards, looking at LINE_NUMBER notes, until
4541 we hit a LABEL or we run out of insns. */
4543 for (insn = avoided_insn; insn != NULL; insn = NEXT_INSN (insn))
4545 if (GET_CODE (insn) == CODE_LABEL)
4546 break;
4547 else if (GET_CODE (insn) == NOTE /* A line number note? */
4548 && NOTE_LINE_NUMBER (insn) >= 0)
4550 if (a_line_note == NULL)
4551 a_line_note = insn;
4552 else
4553 two_avoided_lines |= (NOTE_LINE_NUMBER (a_line_note)
4554 != NOTE_LINE_NUMBER (insn));
4556 else if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
4557 contains_insn = 1;
4559 if (two_avoided_lines && contains_insn)
4560 warning_with_file_and_line (NOTE_SOURCE_FILE (a_line_note),
4561 NOTE_LINE_NUMBER (a_line_note),
4562 "will never be executed");
4565 /* Invert the condition of the jump JUMP, and make it jump
4566 to label NLABEL instead of where it jumps now. */
4569 invert_jump (jump, nlabel)
4570 rtx jump, nlabel;
4572 /* We have to either invert the condition and change the label or
4573 do neither. Either operation could fail. We first try to invert
4574 the jump. If that succeeds, we try changing the label. If that fails,
4575 we invert the jump back to what it was. */
4577 if (! invert_exp (PATTERN (jump), jump))
4578 return 0;
4580 if (redirect_jump (jump, nlabel))
4582 if (flag_branch_probabilities)
4584 rtx note = find_reg_note (jump, REG_BR_PROB, 0);
4586 /* An inverted jump means that a probability taken becomes a
4587 probability not taken. Subtract the branch probability from the
4588 probability base to convert it back to a taken probability.
4589 (We don't flip the probability on a branch that's never taken. */
4590 if (note && XINT (XEXP (note, 0), 0) >= 0)
4591 XINT (XEXP (note, 0), 0) = REG_BR_PROB_BASE - XINT (XEXP (note, 0), 0);
4594 return 1;
4597 if (! invert_exp (PATTERN (jump), jump))
4598 /* This should just be putting it back the way it was. */
4599 abort ();
4601 return 0;
4604 /* Invert the jump condition of rtx X contained in jump insn, INSN.
4606 Return 1 if we can do so, 0 if we cannot find a way to do so that
4607 matches a pattern. */
4610 invert_exp (x, insn)
4611 rtx x;
4612 rtx insn;
4614 register RTX_CODE code;
4615 register int i;
4616 register const char *fmt;
4618 code = GET_CODE (x);
4620 if (code == IF_THEN_ELSE)
4622 register rtx comp = XEXP (x, 0);
4623 register rtx tem;
4625 /* We can do this in two ways: The preferable way, which can only
4626 be done if this is not an integer comparison, is to reverse
4627 the comparison code. Otherwise, swap the THEN-part and ELSE-part
4628 of the IF_THEN_ELSE. If we can't do either, fail. */
4630 if (can_reverse_comparison_p (comp, insn)
4631 && validate_change (insn, &XEXP (x, 0),
4632 gen_rtx_fmt_ee (reverse_condition (GET_CODE (comp)),
4633 GET_MODE (comp), XEXP (comp, 0),
4634 XEXP (comp, 1)), 0))
4635 return 1;
4637 tem = XEXP (x, 1);
4638 validate_change (insn, &XEXP (x, 1), XEXP (x, 2), 1);
4639 validate_change (insn, &XEXP (x, 2), tem, 1);
4640 return apply_change_group ();
4643 fmt = GET_RTX_FORMAT (code);
4644 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4646 if (fmt[i] == 'e')
4647 if (! invert_exp (XEXP (x, i), insn))
4648 return 0;
4649 if (fmt[i] == 'E')
4651 register int j;
4652 for (j = 0; j < XVECLEN (x, i); j++)
4653 if (!invert_exp (XVECEXP (x, i, j), insn))
4654 return 0;
4658 return 1;
4661 /* Make jump JUMP jump to label NLABEL instead of where it jumps now.
4662 If the old jump target label is unused as a result,
4663 it and the code following it may be deleted.
4665 If NLABEL is zero, we are to turn the jump into a (possibly conditional)
4666 RETURN insn.
4668 The return value will be 1 if the change was made, 0 if it wasn't (this
4669 can only occur for NLABEL == 0). */
4672 redirect_jump (jump, nlabel)
4673 rtx jump, nlabel;
4675 register rtx olabel = JUMP_LABEL (jump);
4677 if (nlabel == olabel)
4678 return 1;
4680 if (! redirect_exp (&PATTERN (jump), olabel, nlabel, jump))
4681 return 0;
4683 /* If this is an unconditional branch, delete it from the jump_chain of
4684 OLABEL and add it to the jump_chain of NLABEL (assuming both labels
4685 have UID's in range and JUMP_CHAIN is valid). */
4686 if (jump_chain && (simplejump_p (jump)
4687 || GET_CODE (PATTERN (jump)) == RETURN))
4689 int label_index = nlabel ? INSN_UID (nlabel) : 0;
4691 delete_from_jump_chain (jump);
4692 if (label_index < max_jump_chain
4693 && INSN_UID (jump) < max_jump_chain)
4695 jump_chain[INSN_UID (jump)] = jump_chain[label_index];
4696 jump_chain[label_index] = jump;
4700 JUMP_LABEL (jump) = nlabel;
4701 if (nlabel)
4702 ++LABEL_NUSES (nlabel);
4704 if (olabel && --LABEL_NUSES (olabel) == 0)
4705 delete_insn (olabel);
4707 return 1;
4710 /* Delete the instruction JUMP from any jump chain it might be on. */
4712 static void
4713 delete_from_jump_chain (jump)
4714 rtx jump;
4716 int index;
4717 rtx olabel = JUMP_LABEL (jump);
4719 /* Handle unconditional jumps. */
4720 if (jump_chain && olabel != 0
4721 && INSN_UID (olabel) < max_jump_chain
4722 && simplejump_p (jump))
4723 index = INSN_UID (olabel);
4724 /* Handle return insns. */
4725 else if (jump_chain && GET_CODE (PATTERN (jump)) == RETURN)
4726 index = 0;
4727 else return;
4729 if (jump_chain[index] == jump)
4730 jump_chain[index] = jump_chain[INSN_UID (jump)];
4731 else
4733 rtx insn;
4735 for (insn = jump_chain[index];
4736 insn != 0;
4737 insn = jump_chain[INSN_UID (insn)])
4738 if (jump_chain[INSN_UID (insn)] == jump)
4740 jump_chain[INSN_UID (insn)] = jump_chain[INSN_UID (jump)];
4741 break;
4746 /* If NLABEL is nonzero, throughout the rtx at LOC,
4747 alter (LABEL_REF OLABEL) to (LABEL_REF NLABEL). If OLABEL is
4748 zero, alter (RETURN) to (LABEL_REF NLABEL).
4750 If NLABEL is zero, alter (LABEL_REF OLABEL) to (RETURN) and check
4751 validity with validate_change. Convert (set (pc) (label_ref olabel))
4752 to (return).
4754 Return 0 if we found a change we would like to make but it is invalid.
4755 Otherwise, return 1. */
4758 redirect_exp (loc, olabel, nlabel, insn)
4759 rtx *loc;
4760 rtx olabel, nlabel;
4761 rtx insn;
4763 register rtx x = *loc;
4764 register RTX_CODE code = GET_CODE (x);
4765 register int i;
4766 register const char *fmt;
4768 if (code == LABEL_REF)
4770 if (XEXP (x, 0) == olabel)
4772 if (nlabel)
4773 XEXP (x, 0) = nlabel;
4774 else
4775 return validate_change (insn, loc, gen_rtx_RETURN (VOIDmode), 0);
4776 return 1;
4779 else if (code == RETURN && olabel == 0)
4781 x = gen_rtx_LABEL_REF (VOIDmode, nlabel);
4782 if (loc == &PATTERN (insn))
4783 x = gen_rtx_SET (VOIDmode, pc_rtx, x);
4784 return validate_change (insn, loc, x, 0);
4787 if (code == SET && nlabel == 0 && SET_DEST (x) == pc_rtx
4788 && GET_CODE (SET_SRC (x)) == LABEL_REF
4789 && XEXP (SET_SRC (x), 0) == olabel)
4790 return validate_change (insn, loc, gen_rtx_RETURN (VOIDmode), 0);
4792 fmt = GET_RTX_FORMAT (code);
4793 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4795 if (fmt[i] == 'e')
4796 if (! redirect_exp (&XEXP (x, i), olabel, nlabel, insn))
4797 return 0;
4798 if (fmt[i] == 'E')
4800 register int j;
4801 for (j = 0; j < XVECLEN (x, i); j++)
4802 if (! redirect_exp (&XVECEXP (x, i, j), olabel, nlabel, insn))
4803 return 0;
4807 return 1;
4810 /* Make jump JUMP jump to label NLABEL, assuming it used to be a tablejump.
4812 If the old jump target label (before the dispatch table) becomes unused,
4813 it and the dispatch table may be deleted. In that case, find the insn
4814 before the jump references that label and delete it and logical successors
4815 too. */
4817 static void
4818 redirect_tablejump (jump, nlabel)
4819 rtx jump, nlabel;
4821 register rtx olabel = JUMP_LABEL (jump);
4823 /* Add this jump to the jump_chain of NLABEL. */
4824 if (jump_chain && INSN_UID (nlabel) < max_jump_chain
4825 && INSN_UID (jump) < max_jump_chain)
4827 jump_chain[INSN_UID (jump)] = jump_chain[INSN_UID (nlabel)];
4828 jump_chain[INSN_UID (nlabel)] = jump;
4831 PATTERN (jump) = gen_jump (nlabel);
4832 JUMP_LABEL (jump) = nlabel;
4833 ++LABEL_NUSES (nlabel);
4834 INSN_CODE (jump) = -1;
4836 if (--LABEL_NUSES (olabel) == 0)
4838 delete_labelref_insn (jump, olabel, 0);
4839 delete_insn (olabel);
4843 /* Find the insn referencing LABEL that is a logical predecessor of INSN.
4844 If we found one, delete it and then delete this insn if DELETE_THIS is
4845 non-zero. Return non-zero if INSN or a predecessor references LABEL. */
4847 static int
4848 delete_labelref_insn (insn, label, delete_this)
4849 rtx insn, label;
4850 int delete_this;
4852 int deleted = 0;
4853 rtx link;
4855 if (GET_CODE (insn) != NOTE
4856 && reg_mentioned_p (label, PATTERN (insn)))
4858 if (delete_this)
4860 delete_insn (insn);
4861 deleted = 1;
4863 else
4864 return 1;
4867 for (link = LOG_LINKS (insn); link; link = XEXP (link, 1))
4868 if (delete_labelref_insn (XEXP (link, 0), label, 1))
4870 if (delete_this)
4872 delete_insn (insn);
4873 deleted = 1;
4875 else
4876 return 1;
4879 return deleted;
4882 /* Like rtx_equal_p except that it considers two REGs as equal
4883 if they renumber to the same value and considers two commutative
4884 operations to be the same if the order of the operands has been
4885 reversed.
4887 ??? Addition is not commutative on the PA due to the weird implicit
4888 space register selection rules for memory addresses. Therefore, we
4889 don't consider a + b == b + a.
4891 We could/should make this test a little tighter. Possibly only
4892 disabling it on the PA via some backend macro or only disabling this
4893 case when the PLUS is inside a MEM. */
4896 rtx_renumbered_equal_p (x, y)
4897 rtx x, y;
4899 register int i;
4900 register RTX_CODE code = GET_CODE (x);
4901 register const char *fmt;
4903 if (x == y)
4904 return 1;
4906 if ((code == REG || (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG))
4907 && (GET_CODE (y) == REG || (GET_CODE (y) == SUBREG
4908 && GET_CODE (SUBREG_REG (y)) == REG)))
4910 int reg_x = -1, reg_y = -1;
4911 int word_x = 0, word_y = 0;
4913 if (GET_MODE (x) != GET_MODE (y))
4914 return 0;
4916 /* If we haven't done any renumbering, don't
4917 make any assumptions. */
4918 if (reg_renumber == 0)
4919 return rtx_equal_p (x, y);
4921 if (code == SUBREG)
4923 reg_x = REGNO (SUBREG_REG (x));
4924 word_x = SUBREG_WORD (x);
4926 if (reg_renumber[reg_x] >= 0)
4928 reg_x = reg_renumber[reg_x] + word_x;
4929 word_x = 0;
4933 else
4935 reg_x = REGNO (x);
4936 if (reg_renumber[reg_x] >= 0)
4937 reg_x = reg_renumber[reg_x];
4940 if (GET_CODE (y) == SUBREG)
4942 reg_y = REGNO (SUBREG_REG (y));
4943 word_y = SUBREG_WORD (y);
4945 if (reg_renumber[reg_y] >= 0)
4947 reg_y = reg_renumber[reg_y];
4948 word_y = 0;
4952 else
4954 reg_y = REGNO (y);
4955 if (reg_renumber[reg_y] >= 0)
4956 reg_y = reg_renumber[reg_y];
4959 return reg_x >= 0 && reg_x == reg_y && word_x == word_y;
4962 /* Now we have disposed of all the cases
4963 in which different rtx codes can match. */
4964 if (code != GET_CODE (y))
4965 return 0;
4967 switch (code)
4969 case PC:
4970 case CC0:
4971 case ADDR_VEC:
4972 case ADDR_DIFF_VEC:
4973 return 0;
4975 case CONST_INT:
4976 return INTVAL (x) == INTVAL (y);
4978 case LABEL_REF:
4979 /* We can't assume nonlocal labels have their following insns yet. */
4980 if (LABEL_REF_NONLOCAL_P (x) || LABEL_REF_NONLOCAL_P (y))
4981 return XEXP (x, 0) == XEXP (y, 0);
4983 /* Two label-refs are equivalent if they point at labels
4984 in the same position in the instruction stream. */
4985 return (next_real_insn (XEXP (x, 0))
4986 == next_real_insn (XEXP (y, 0)));
4988 case SYMBOL_REF:
4989 return XSTR (x, 0) == XSTR (y, 0);
4991 case CODE_LABEL:
4992 /* If we didn't match EQ equality above, they aren't the same. */
4993 return 0;
4995 default:
4996 break;
4999 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
5001 if (GET_MODE (x) != GET_MODE (y))
5002 return 0;
5004 /* For commutative operations, the RTX match if the operand match in any
5005 order. Also handle the simple binary and unary cases without a loop.
5007 ??? Don't consider PLUS a commutative operator; see comments above. */
5008 if ((code == EQ || code == NE || GET_RTX_CLASS (code) == 'c')
5009 && code != PLUS)
5010 return ((rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
5011 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)))
5012 || (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 1))
5013 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 0))));
5014 else if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == '2')
5015 return (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
5016 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)));
5017 else if (GET_RTX_CLASS (code) == '1')
5018 return rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0));
5020 /* Compare the elements. If any pair of corresponding elements
5021 fail to match, return 0 for the whole things. */
5023 fmt = GET_RTX_FORMAT (code);
5024 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5026 register int j;
5027 switch (fmt[i])
5029 case 'w':
5030 if (XWINT (x, i) != XWINT (y, i))
5031 return 0;
5032 break;
5034 case 'i':
5035 if (XINT (x, i) != XINT (y, i))
5036 return 0;
5037 break;
5039 case 's':
5040 if (strcmp (XSTR (x, i), XSTR (y, i)))
5041 return 0;
5042 break;
5044 case 'e':
5045 if (! rtx_renumbered_equal_p (XEXP (x, i), XEXP (y, i)))
5046 return 0;
5047 break;
5049 case 'u':
5050 if (XEXP (x, i) != XEXP (y, i))
5051 return 0;
5052 /* fall through. */
5053 case '0':
5054 break;
5056 case 'E':
5057 if (XVECLEN (x, i) != XVECLEN (y, i))
5058 return 0;
5059 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5060 if (!rtx_renumbered_equal_p (XVECEXP (x, i, j), XVECEXP (y, i, j)))
5061 return 0;
5062 break;
5064 default:
5065 abort ();
5068 return 1;
5071 /* If X is a hard register or equivalent to one or a subregister of one,
5072 return the hard register number. If X is a pseudo register that was not
5073 assigned a hard register, return the pseudo register number. Otherwise,
5074 return -1. Any rtx is valid for X. */
5077 true_regnum (x)
5078 rtx x;
5080 if (GET_CODE (x) == REG)
5082 if (REGNO (x) >= FIRST_PSEUDO_REGISTER && reg_renumber[REGNO (x)] >= 0)
5083 return reg_renumber[REGNO (x)];
5084 return REGNO (x);
5086 if (GET_CODE (x) == SUBREG)
5088 int base = true_regnum (SUBREG_REG (x));
5089 if (base >= 0 && base < FIRST_PSEUDO_REGISTER)
5090 return SUBREG_WORD (x) + base;
5092 return -1;
5095 /* Optimize code of the form:
5097 for (x = a[i]; x; ...)
5099 for (x = a[i]; x; ...)
5101 foo:
5103 Loop optimize will change the above code into
5105 if (x = a[i])
5106 for (;;)
5107 { ...; if (! (x = ...)) break; }
5108 if (x = a[i])
5109 for (;;)
5110 { ...; if (! (x = ...)) break; }
5111 foo:
5113 In general, if the first test fails, the program can branch
5114 directly to `foo' and skip the second try which is doomed to fail.
5115 We run this after loop optimization and before flow analysis. */
5117 /* When comparing the insn patterns, we track the fact that different
5118 pseudo-register numbers may have been used in each computation.
5119 The following array stores an equivalence -- same_regs[I] == J means
5120 that pseudo register I was used in the first set of tests in a context
5121 where J was used in the second set. We also count the number of such
5122 pending equivalences. If nonzero, the expressions really aren't the
5123 same. */
5125 static int *same_regs;
5127 static int num_same_regs;
5129 /* Track any registers modified between the target of the first jump and
5130 the second jump. They never compare equal. */
5132 static char *modified_regs;
5134 /* Record if memory was modified. */
5136 static int modified_mem;
5138 /* Called via note_stores on each insn between the target of the first
5139 branch and the second branch. It marks any changed registers. */
5141 static void
5142 mark_modified_reg (dest, x, data)
5143 rtx dest;
5144 rtx x ATTRIBUTE_UNUSED;
5145 void *data ATTRIBUTE_UNUSED;
5147 int regno, i;
5149 if (GET_CODE (dest) == SUBREG)
5150 dest = SUBREG_REG (dest);
5152 if (GET_CODE (dest) == MEM)
5153 modified_mem = 1;
5155 if (GET_CODE (dest) != REG)
5156 return;
5158 regno = REGNO (dest);
5159 if (regno >= FIRST_PSEUDO_REGISTER)
5160 modified_regs[regno] = 1;
5161 else
5162 for (i = 0; i < HARD_REGNO_NREGS (regno, GET_MODE (dest)); i++)
5163 modified_regs[regno + i] = 1;
5166 /* F is the first insn in the chain of insns. */
5168 void
5169 thread_jumps (f, max_reg, flag_before_loop)
5170 rtx f;
5171 int max_reg;
5172 int flag_before_loop;
5174 /* Basic algorithm is to find a conditional branch,
5175 the label it may branch to, and the branch after
5176 that label. If the two branches test the same condition,
5177 walk back from both branch paths until the insn patterns
5178 differ, or code labels are hit. If we make it back to
5179 the target of the first branch, then we know that the first branch
5180 will either always succeed or always fail depending on the relative
5181 senses of the two branches. So adjust the first branch accordingly
5182 in this case. */
5184 rtx label, b1, b2, t1, t2;
5185 enum rtx_code code1, code2;
5186 rtx b1op0, b1op1, b2op0, b2op1;
5187 int changed = 1;
5188 int i;
5189 int *all_reset;
5191 /* Allocate register tables and quick-reset table. */
5192 modified_regs = (char *) xmalloc (max_reg * sizeof (char));
5193 same_regs = (int *) xmalloc (max_reg * sizeof (int));
5194 all_reset = (int *) xmalloc (max_reg * sizeof (int));
5195 for (i = 0; i < max_reg; i++)
5196 all_reset[i] = -1;
5198 while (changed)
5200 changed = 0;
5202 for (b1 = f; b1; b1 = NEXT_INSN (b1))
5204 /* Get to a candidate branch insn. */
5205 if (GET_CODE (b1) != JUMP_INSN
5206 || ! condjump_p (b1) || simplejump_p (b1)
5207 || JUMP_LABEL (b1) == 0)
5208 continue;
5210 bzero (modified_regs, max_reg * sizeof (char));
5211 modified_mem = 0;
5213 bcopy ((char *) all_reset, (char *) same_regs,
5214 max_reg * sizeof (int));
5215 num_same_regs = 0;
5217 label = JUMP_LABEL (b1);
5219 /* Look for a branch after the target. Record any registers and
5220 memory modified between the target and the branch. Stop when we
5221 get to a label since we can't know what was changed there. */
5222 for (b2 = NEXT_INSN (label); b2; b2 = NEXT_INSN (b2))
5224 if (GET_CODE (b2) == CODE_LABEL)
5225 break;
5227 else if (GET_CODE (b2) == JUMP_INSN)
5229 /* If this is an unconditional jump and is the only use of
5230 its target label, we can follow it. */
5231 if (simplejump_p (b2)
5232 && JUMP_LABEL (b2) != 0
5233 && LABEL_NUSES (JUMP_LABEL (b2)) == 1)
5235 b2 = JUMP_LABEL (b2);
5236 continue;
5238 else
5239 break;
5242 if (GET_CODE (b2) != CALL_INSN && GET_CODE (b2) != INSN)
5243 continue;
5245 if (GET_CODE (b2) == CALL_INSN)
5247 modified_mem = 1;
5248 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5249 if (call_used_regs[i] && ! fixed_regs[i]
5250 && i != STACK_POINTER_REGNUM
5251 && i != FRAME_POINTER_REGNUM
5252 && i != HARD_FRAME_POINTER_REGNUM
5253 && i != ARG_POINTER_REGNUM)
5254 modified_regs[i] = 1;
5257 note_stores (PATTERN (b2), mark_modified_reg, NULL);
5260 /* Check the next candidate branch insn from the label
5261 of the first. */
5262 if (b2 == 0
5263 || GET_CODE (b2) != JUMP_INSN
5264 || b2 == b1
5265 || ! condjump_p (b2)
5266 || simplejump_p (b2))
5267 continue;
5269 /* Get the comparison codes and operands, reversing the
5270 codes if appropriate. If we don't have comparison codes,
5271 we can't do anything. */
5272 b1op0 = XEXP (XEXP (SET_SRC (PATTERN (b1)), 0), 0);
5273 b1op1 = XEXP (XEXP (SET_SRC (PATTERN (b1)), 0), 1);
5274 code1 = GET_CODE (XEXP (SET_SRC (PATTERN (b1)), 0));
5275 if (XEXP (SET_SRC (PATTERN (b1)), 1) == pc_rtx)
5276 code1 = reverse_condition (code1);
5278 b2op0 = XEXP (XEXP (SET_SRC (PATTERN (b2)), 0), 0);
5279 b2op1 = XEXP (XEXP (SET_SRC (PATTERN (b2)), 0), 1);
5280 code2 = GET_CODE (XEXP (SET_SRC (PATTERN (b2)), 0));
5281 if (XEXP (SET_SRC (PATTERN (b2)), 1) == pc_rtx)
5282 code2 = reverse_condition (code2);
5284 /* If they test the same things and knowing that B1 branches
5285 tells us whether or not B2 branches, check if we
5286 can thread the branch. */
5287 if (rtx_equal_for_thread_p (b1op0, b2op0, b2)
5288 && rtx_equal_for_thread_p (b1op1, b2op1, b2)
5289 && (comparison_dominates_p (code1, code2)
5290 || (comparison_dominates_p (code1, reverse_condition (code2))
5291 && can_reverse_comparison_p (XEXP (SET_SRC (PATTERN (b1)),
5293 b1))))
5295 t1 = prev_nonnote_insn (b1);
5296 t2 = prev_nonnote_insn (b2);
5298 while (t1 != 0 && t2 != 0)
5300 if (t2 == label)
5302 /* We have reached the target of the first branch.
5303 If there are no pending register equivalents,
5304 we know that this branch will either always
5305 succeed (if the senses of the two branches are
5306 the same) or always fail (if not). */
5307 rtx new_label;
5309 if (num_same_regs != 0)
5310 break;
5312 if (comparison_dominates_p (code1, code2))
5313 new_label = JUMP_LABEL (b2);
5314 else
5315 new_label = get_label_after (b2);
5317 if (JUMP_LABEL (b1) != new_label)
5319 rtx prev = PREV_INSN (new_label);
5321 if (flag_before_loop
5322 && GET_CODE (prev) == NOTE
5323 && NOTE_LINE_NUMBER (prev) == NOTE_INSN_LOOP_BEG)
5325 /* Don't thread to the loop label. If a loop
5326 label is reused, loop optimization will
5327 be disabled for that loop. */
5328 new_label = gen_label_rtx ();
5329 emit_label_after (new_label, PREV_INSN (prev));
5331 changed |= redirect_jump (b1, new_label);
5333 break;
5336 /* If either of these is not a normal insn (it might be
5337 a JUMP_INSN, CALL_INSN, or CODE_LABEL) we fail. (NOTEs
5338 have already been skipped above.) Similarly, fail
5339 if the insns are different. */
5340 if (GET_CODE (t1) != INSN || GET_CODE (t2) != INSN
5341 || recog_memoized (t1) != recog_memoized (t2)
5342 || ! rtx_equal_for_thread_p (PATTERN (t1),
5343 PATTERN (t2), t2))
5344 break;
5346 t1 = prev_nonnote_insn (t1);
5347 t2 = prev_nonnote_insn (t2);
5353 /* Clean up. */
5354 free (modified_regs);
5355 free (same_regs);
5356 free (all_reset);
5359 /* This is like RTX_EQUAL_P except that it knows about our handling of
5360 possibly equivalent registers and knows to consider volatile and
5361 modified objects as not equal.
5363 YINSN is the insn containing Y. */
5366 rtx_equal_for_thread_p (x, y, yinsn)
5367 rtx x, y;
5368 rtx yinsn;
5370 register int i;
5371 register int j;
5372 register enum rtx_code code;
5373 register const char *fmt;
5375 code = GET_CODE (x);
5376 /* Rtx's of different codes cannot be equal. */
5377 if (code != GET_CODE (y))
5378 return 0;
5380 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
5381 (REG:SI x) and (REG:HI x) are NOT equivalent. */
5383 if (GET_MODE (x) != GET_MODE (y))
5384 return 0;
5386 /* For floating-point, consider everything unequal. This is a bit
5387 pessimistic, but this pass would only rarely do anything for FP
5388 anyway. */
5389 if (TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT
5390 && FLOAT_MODE_P (GET_MODE (x)) && ! flag_fast_math)
5391 return 0;
5393 /* For commutative operations, the RTX match if the operand match in any
5394 order. Also handle the simple binary and unary cases without a loop. */
5395 if (code == EQ || code == NE || GET_RTX_CLASS (code) == 'c')
5396 return ((rtx_equal_for_thread_p (XEXP (x, 0), XEXP (y, 0), yinsn)
5397 && rtx_equal_for_thread_p (XEXP (x, 1), XEXP (y, 1), yinsn))
5398 || (rtx_equal_for_thread_p (XEXP (x, 0), XEXP (y, 1), yinsn)
5399 && rtx_equal_for_thread_p (XEXP (x, 1), XEXP (y, 0), yinsn)));
5400 else if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == '2')
5401 return (rtx_equal_for_thread_p (XEXP (x, 0), XEXP (y, 0), yinsn)
5402 && rtx_equal_for_thread_p (XEXP (x, 1), XEXP (y, 1), yinsn));
5403 else if (GET_RTX_CLASS (code) == '1')
5404 return rtx_equal_for_thread_p (XEXP (x, 0), XEXP (y, 0), yinsn);
5406 /* Handle special-cases first. */
5407 switch (code)
5409 case REG:
5410 if (REGNO (x) == REGNO (y) && ! modified_regs[REGNO (x)])
5411 return 1;
5413 /* If neither is user variable or hard register, check for possible
5414 equivalence. */
5415 if (REG_USERVAR_P (x) || REG_USERVAR_P (y)
5416 || REGNO (x) < FIRST_PSEUDO_REGISTER
5417 || REGNO (y) < FIRST_PSEUDO_REGISTER)
5418 return 0;
5420 if (same_regs[REGNO (x)] == -1)
5422 same_regs[REGNO (x)] = REGNO (y);
5423 num_same_regs++;
5425 /* If this is the first time we are seeing a register on the `Y'
5426 side, see if it is the last use. If not, we can't thread the
5427 jump, so mark it as not equivalent. */
5428 if (REGNO_LAST_UID (REGNO (y)) != INSN_UID (yinsn))
5429 return 0;
5431 return 1;
5433 else
5434 return (same_regs[REGNO (x)] == REGNO (y));
5436 break;
5438 case MEM:
5439 /* If memory modified or either volatile, not equivalent.
5440 Else, check address. */
5441 if (modified_mem || MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
5442 return 0;
5444 return rtx_equal_for_thread_p (XEXP (x, 0), XEXP (y, 0), yinsn);
5446 case ASM_INPUT:
5447 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
5448 return 0;
5450 break;
5452 case SET:
5453 /* Cancel a pending `same_regs' if setting equivalenced registers.
5454 Then process source. */
5455 if (GET_CODE (SET_DEST (x)) == REG
5456 && GET_CODE (SET_DEST (y)) == REG)
5458 if (same_regs[REGNO (SET_DEST (x))] == REGNO (SET_DEST (y)))
5460 same_regs[REGNO (SET_DEST (x))] = -1;
5461 num_same_regs--;
5463 else if (REGNO (SET_DEST (x)) != REGNO (SET_DEST (y)))
5464 return 0;
5466 else
5467 if (rtx_equal_for_thread_p (SET_DEST (x), SET_DEST (y), yinsn) == 0)
5468 return 0;
5470 return rtx_equal_for_thread_p (SET_SRC (x), SET_SRC (y), yinsn);
5472 case LABEL_REF:
5473 return XEXP (x, 0) == XEXP (y, 0);
5475 case SYMBOL_REF:
5476 return XSTR (x, 0) == XSTR (y, 0);
5478 default:
5479 break;
5482 if (x == y)
5483 return 1;
5485 fmt = GET_RTX_FORMAT (code);
5486 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5488 switch (fmt[i])
5490 case 'w':
5491 if (XWINT (x, i) != XWINT (y, i))
5492 return 0;
5493 break;
5495 case 'n':
5496 case 'i':
5497 if (XINT (x, i) != XINT (y, i))
5498 return 0;
5499 break;
5501 case 'V':
5502 case 'E':
5503 /* Two vectors must have the same length. */
5504 if (XVECLEN (x, i) != XVECLEN (y, i))
5505 return 0;
5507 /* And the corresponding elements must match. */
5508 for (j = 0; j < XVECLEN (x, i); j++)
5509 if (rtx_equal_for_thread_p (XVECEXP (x, i, j),
5510 XVECEXP (y, i, j), yinsn) == 0)
5511 return 0;
5512 break;
5514 case 'e':
5515 if (rtx_equal_for_thread_p (XEXP (x, i), XEXP (y, i), yinsn) == 0)
5516 return 0;
5517 break;
5519 case 'S':
5520 case 's':
5521 if (strcmp (XSTR (x, i), XSTR (y, i)))
5522 return 0;
5523 break;
5525 case 'u':
5526 /* These are just backpointers, so they don't matter. */
5527 break;
5529 case '0':
5530 case 't':
5531 break;
5533 /* It is believed that rtx's at this level will never
5534 contain anything but integers and other rtx's,
5535 except for within LABEL_REFs and SYMBOL_REFs. */
5536 default:
5537 abort ();
5540 return 1;
5544 #if !defined(HAVE_cc0) && !defined(HAVE_conditional_arithmetic)
5545 /* Return the insn that NEW can be safely inserted in front of starting at
5546 the jump insn INSN. Return 0 if it is not safe to do this jump
5547 optimization. Note that NEW must contain a single set. */
5549 static rtx
5550 find_insert_position (insn, new)
5551 rtx insn;
5552 rtx new;
5554 int i;
5555 rtx prev;
5557 /* If NEW does not clobber, it is safe to insert NEW before INSN. */
5558 if (GET_CODE (PATTERN (new)) != PARALLEL)
5559 return insn;
5561 for (i = XVECLEN (PATTERN (new), 0) - 1; i >= 0; i--)
5562 if (GET_CODE (XVECEXP (PATTERN (new), 0, i)) == CLOBBER
5563 && reg_overlap_mentioned_p (XEXP (XVECEXP (PATTERN (new), 0, i), 0),
5564 insn))
5565 break;
5567 if (i < 0)
5568 return insn;
5570 /* There is a good chance that the previous insn PREV sets the thing
5571 being clobbered (often the CC in a hard reg). If PREV does not
5572 use what NEW sets, we can insert NEW before PREV. */
5574 prev = prev_active_insn (insn);
5575 for (i = XVECLEN (PATTERN (new), 0) - 1; i >= 0; i--)
5576 if (GET_CODE (XVECEXP (PATTERN (new), 0, i)) == CLOBBER
5577 && reg_overlap_mentioned_p (XEXP (XVECEXP (PATTERN (new), 0, i), 0),
5578 insn)
5579 && ! modified_in_p (XEXP (XVECEXP (PATTERN (new), 0, i), 0),
5580 prev))
5581 return 0;
5583 return reg_mentioned_p (SET_DEST (single_set (new)), prev) ? 0 : prev;
5585 #endif /* !HAVE_cc0 */