1 /* Subroutines needed for unwinding stack frames for exception handling. */
2 /* Compile this one with gcc. */
3 /* Copyright (C) 1997, 1998, 1999 Free Software Foundation, Inc.
4 Contributed by Jason Merrill <jason@cygnus.com>.
6 This file is part of GNU CC.
8 GNU CC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
13 GNU CC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GNU CC; see the file COPYING. If not, write to
20 the Free Software Foundation, 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
23 /* As a special exception, if you link this library with other files,
24 some of which are compiled with GCC, to produce an executable,
25 this library does not by itself cause the resulting executable
26 to be covered by the GNU General Public License.
27 This exception does not however invalidate any other reasons why
28 the executable file might be covered by the GNU General Public License. */
30 /* It is incorrect to include config.h here, because this file is being
31 compiled for the target, and hence definitions concerning only the host
36 /* We disable this when inhibit_libc, so that gcc can still be built without
37 needing header files first. */
38 /* ??? This is not a good solution, since prototypes may be required in
39 some cases for correct code. See also libgcc2.c. */
41 /* fixproto guarantees these system headers exist. */
48 extern void *malloc (size_t);
51 extern void free (void *);
57 #ifdef DWARF2_UNWIND_INFO
63 #ifdef __GTHREAD_MUTEX_INIT
64 static __gthread_mutex_t object_mutex
= __GTHREAD_MUTEX_INIT
;
66 static __gthread_mutex_t object_mutex
;
69 /* Don't use `fancy_abort' here even if config.h says to use it. */
74 /* Some types used by the DWARF 2 spec. */
76 typedef int sword
__attribute__ ((mode (SI
)));
77 typedef unsigned int uword
__attribute__ ((mode (SI
)));
78 typedef unsigned int uaddr
__attribute__ ((mode (pointer
)));
79 typedef int saddr
__attribute__ ((mode (pointer
)));
80 typedef unsigned char ubyte
;
83 CIE - Common Information Element
84 FDE - Frame Descriptor Element
86 There is one per function, and it describes where the function code
87 is located, and what the register lifetimes and stack layout are
90 The data structures are defined in the DWARF specfication, although
91 not in a very readable way (see LITERATURE).
93 Every time an exception is thrown, the code needs to locate the FDE
94 for the current function, and starts to look for exception regions
95 from that FDE. This works in a two-level search:
96 a) in a linear search, find the shared image (i.e. DLL) containing
98 b) using the FDE table for that shared object, locate the FDE using
99 binary search (which requires the sorting). */
101 /* The first few fields of a CIE. The CIE_id field is 0 for a CIE,
102 to distinguish it from a valid FDE. FDEs are aligned to an addressing
103 unit boundary, but the fields within are unaligned. */
109 char augmentation
[0];
110 } __attribute__ ((packed
, aligned (__alignof__ (void *))));
112 /* The first few fields of an FDE. */
119 } __attribute__ ((packed
, aligned (__alignof__ (void *))));
121 typedef struct dwarf_fde fde
;
123 /* Objects to be searched for frame unwind info. */
125 static struct object
*objects
;
127 /* The information we care about from a CIE. */
137 /* The current unwind state, plus a saved copy for DW_CFA_remember_state. */
139 struct frame_state_internal
141 struct frame_state s
;
142 struct frame_state_internal
*saved_state
;
145 /* This is undefined below if we need it to be an actual function. */
146 #define init_object_mutex_once()
149 #ifdef __GTHREAD_MUTEX_INIT_FUNCTION
151 /* Helper for init_object_mutex_once. */
154 init_object_mutex (void)
156 __GTHREAD_MUTEX_INIT_FUNCTION (&object_mutex
);
159 /* Call this to arrange to initialize the object mutex. */
161 #undef init_object_mutex_once
163 init_object_mutex_once (void)
165 static __gthread_once_t once
= __GTHREAD_ONCE_INIT
;
166 __gthread_once (&once
, init_object_mutex
);
169 #endif /* __GTHREAD_MUTEX_INIT_FUNCTION */
170 #endif /* __GTHREADS */
172 /* Decode the unsigned LEB128 constant at BUF into the variable pointed to
173 by R, and return the new value of BUF. */
176 decode_uleb128 (unsigned char *buf
, unsigned *r
)
183 unsigned byte
= *buf
++;
184 result
|= (byte
& 0x7f) << shift
;
185 if ((byte
& 0x80) == 0)
193 /* Decode the signed LEB128 constant at BUF into the variable pointed to
194 by R, and return the new value of BUF. */
197 decode_sleb128 (unsigned char *buf
, int *r
)
206 result
|= (byte
& 0x7f) << shift
;
208 if ((byte
& 0x80) == 0)
211 if (shift
< (sizeof (*r
) * 8) && (byte
& 0x40) != 0)
212 result
|= - (1 << shift
);
218 /* Read unaligned data from the instruction buffer. */
222 unsigned b2
__attribute__ ((mode (HI
)));
223 unsigned b4
__attribute__ ((mode (SI
)));
224 unsigned b8
__attribute__ ((mode (DI
)));
225 } __attribute__ ((packed
));
227 read_pointer (void *p
)
228 { union unaligned
*up
= p
; return up
->p
; }
229 static inline unsigned
231 { return *(unsigned char *)p
; }
232 static inline unsigned
234 { union unaligned
*up
= p
; return up
->b2
; }
235 static inline unsigned
237 { union unaligned
*up
= p
; return up
->b4
; }
238 static inline unsigned long
240 { union unaligned
*up
= p
; return up
->b8
; }
242 /* Ordering function for FDEs. Functions can't overlap, so we just compare
243 their starting addresses. */
246 fde_compare (fde
*x
, fde
*y
)
248 return (saddr
)x
->pc_begin
- (saddr
)y
->pc_begin
;
251 /* Return the address of the FDE after P. */
256 return (fde
*)(((char *)p
) + p
->length
+ sizeof (p
->length
));
259 /* Sorting an array of FDEs by address.
260 (Ideally we would have the linker sort the FDEs so we don't have to do
261 it at run time. But the linkers are not yet prepared for this.) */
263 /* This is a special mix of insertion sort and heap sort, optimized for
264 the data sets that actually occur. They look like
265 101 102 103 127 128 105 108 110 190 111 115 119 125 160 126 129 130.
266 I.e. a linearly increasing sequence (coming from functions in the text
267 section), with additionally a few unordered elements (coming from functions
268 in gnu_linkonce sections) whose values are higher than the values in the
269 surrounding linear sequence (but not necessarily higher than the values
270 at the end of the linear sequence!).
271 The worst-case total run time is O(N) + O(n log (n)), where N is the
272 total number of FDEs and n is the number of erratic ones. */
274 typedef struct fde_vector
280 typedef struct fde_accumulator
287 start_fde_sort (fde_accumulator
*accu
, size_t count
)
289 accu
->linear
.array
= (fde
**) malloc (sizeof (fde
*) * count
);
290 accu
->erratic
.array
= accu
->linear
.array
?
291 (fde
**) malloc (sizeof (fde
*) * count
) : NULL
;
292 accu
->linear
.count
= 0;
293 accu
->erratic
.count
= 0;
295 return accu
->linear
.array
!= NULL
;
299 fde_insert (fde_accumulator
*accu
, fde
*this_fde
)
301 if (accu
->linear
.array
)
302 accu
->linear
.array
[accu
->linear
.count
++] = this_fde
;
305 /* Split LINEAR into a linear sequence with low values and an erratic
306 sequence with high values, put the linear one (of longest possible
307 length) into LINEAR and the erratic one into ERRATIC. This is O(N).
309 Because the longest linear sequence we are trying to locate within the
310 incoming LINEAR array can be interspersed with (high valued) erratic
311 entries. We construct a chain indicating the sequenced entries.
312 To avoid having to allocate this chain, we overlay it onto the space of
313 the ERRATIC array during construction. A final pass iterates over the
314 chain to determine what should be placed in the ERRATIC array, and
315 what is the linear sequence. This overlay is safe from aliasing. */
317 fde_split (fde_vector
*linear
, fde_vector
*erratic
)
320 size_t count
= linear
->count
;
321 fde
**chain_end
= &marker
;
324 /* This should optimize out, but it is wise to make sure this assumption
325 is correct. Should these have different sizes, we cannot cast between
326 them and the overlaying onto ERRATIC will not work. */
327 if (sizeof (fde
*) != sizeof (fde
**))
330 for (i
= 0; i
< count
; i
++)
334 for (probe
= chain_end
;
335 probe
!= &marker
&& fde_compare (linear
->array
[i
], *probe
) < 0;
338 chain_end
= (fde
**)erratic
->array
[probe
- linear
->array
];
339 erratic
->array
[probe
- linear
->array
] = NULL
;
341 erratic
->array
[i
] = (fde
*)chain_end
;
342 chain_end
= &linear
->array
[i
];
345 /* Each entry in LINEAR which is part of the linear sequence we have
346 discovered will correspond to a non-NULL entry in the chain we built in
347 the ERRATIC array. */
348 for (i
= j
= k
= 0; i
< count
; i
++)
349 if (erratic
->array
[i
])
350 linear
->array
[j
++] = linear
->array
[i
];
352 erratic
->array
[k
++] = linear
->array
[i
];
357 /* This is O(n log(n)). BSD/OS defines heapsort in stdlib.h, so we must
358 use a name that does not conflict. */
360 frame_heapsort (fde_vector
*erratic
)
362 /* For a description of this algorithm, see:
363 Samuel P. Harbison, Guy L. Steele Jr.: C, a reference manual, 2nd ed.,
365 fde
** a
= erratic
->array
;
366 /* A portion of the array is called a "heap" if for all i>=0:
367 If i and 2i+1 are valid indices, then a[i] >= a[2i+1].
368 If i and 2i+2 are valid indices, then a[i] >= a[2i+2]. */
369 #define SWAP(x,y) do { fde * tmp = x; x = y; y = tmp; } while (0)
370 size_t n
= erratic
->count
;
376 /* Invariant: a[m..n-1] is a heap. */
378 for (i
= m
; 2*i
+1 < n
; )
381 && fde_compare (a
[2*i
+2], a
[2*i
+1]) > 0
382 && fde_compare (a
[2*i
+2], a
[i
]) > 0)
384 SWAP (a
[i
], a
[2*i
+2]);
387 else if (fde_compare (a
[2*i
+1], a
[i
]) > 0)
389 SWAP (a
[i
], a
[2*i
+1]);
398 /* Invariant: a[0..n-1] is a heap. */
401 for (i
= 0; 2*i
+1 < n
; )
404 && fde_compare (a
[2*i
+2], a
[2*i
+1]) > 0
405 && fde_compare (a
[2*i
+2], a
[i
]) > 0)
407 SWAP (a
[i
], a
[2*i
+2]);
410 else if (fde_compare (a
[2*i
+1], a
[i
]) > 0)
412 SWAP (a
[i
], a
[2*i
+1]);
422 /* Merge V1 and V2, both sorted, and put the result into V1. */
424 fde_merge (fde_vector
*v1
, const fde_vector
*v2
)
435 fde2
= v2
->array
[i2
];
436 while (i1
> 0 && fde_compare (v1
->array
[i1
-1], fde2
) > 0)
438 v1
->array
[i1
+i2
] = v1
->array
[i1
-1];
441 v1
->array
[i1
+i2
] = fde2
;
443 v1
->count
+= v2
->count
;
448 end_fde_sort (fde_accumulator
*accu
, size_t count
)
450 if (accu
->linear
.array
&& accu
->linear
.count
!= count
)
453 if (accu
->erratic
.array
)
455 fde_split (&accu
->linear
, &accu
->erratic
);
456 if (accu
->linear
.count
+ accu
->erratic
.count
!= count
)
458 frame_heapsort (&accu
->erratic
);
459 fde_merge (&accu
->linear
, &accu
->erratic
);
460 if (accu
->erratic
.array
)
461 free (accu
->erratic
.array
);
465 /* We've not managed to malloc an erratic array, so heap sort in the
467 frame_heapsort (&accu
->linear
);
469 return accu
->linear
.array
;
473 count_fdes (fde
*this_fde
)
477 for (count
= 0; this_fde
->length
!= 0; this_fde
= next_fde (this_fde
))
479 /* Skip CIEs and linked once FDE entries. */
480 if (this_fde
->CIE_delta
== 0 || this_fde
->pc_begin
== 0)
490 add_fdes (fde
*this_fde
, fde_accumulator
*accu
, void **beg_ptr
, void **end_ptr
)
492 void *pc_begin
= *beg_ptr
;
493 void *pc_end
= *end_ptr
;
495 for (; this_fde
->length
!= 0; this_fde
= next_fde (this_fde
))
497 /* Skip CIEs and linked once FDE entries. */
498 if (this_fde
->CIE_delta
== 0 || this_fde
->pc_begin
== 0)
501 fde_insert (accu
, this_fde
);
503 if (this_fde
->pc_begin
< pc_begin
)
504 pc_begin
= this_fde
->pc_begin
;
505 if (this_fde
->pc_begin
+ this_fde
->pc_range
> pc_end
)
506 pc_end
= this_fde
->pc_begin
+ this_fde
->pc_range
;
513 /* search this fde table for the one containing the pc */
515 search_fdes (fde
*this_fde
, void *pc
)
517 for (; this_fde
->length
!= 0; this_fde
= next_fde (this_fde
))
519 /* Skip CIEs and linked once FDE entries. */
520 if (this_fde
->CIE_delta
== 0 || this_fde
->pc_begin
== 0)
523 if ((uaddr
)((char *)pc
- (char *)this_fde
->pc_begin
) < this_fde
->pc_range
)
529 /* Set up a sorted array of pointers to FDEs for a loaded object. We
530 count up the entries before allocating the array because it's likely to
531 be faster. We can be called multiple times, should we have failed to
532 allocate a sorted fde array on a previous occasion. */
535 frame_init (struct object
* ob
)
538 fde_accumulator accu
;
539 void *pc_begin
, *pc_end
;
544 else if (ob
->fde_array
)
546 fde
**p
= ob
->fde_array
;
547 for (count
= 0; *p
; ++p
)
548 count
+= count_fdes (*p
);
551 count
= count_fdes (ob
->fde_begin
);
554 if (!start_fde_sort (&accu
, count
) && ob
->pc_begin
)
557 pc_begin
= (void*)(uaddr
)-1;
562 fde
**p
= ob
->fde_array
;
564 add_fdes (*p
, &accu
, &pc_begin
, &pc_end
);
567 add_fdes (ob
->fde_begin
, &accu
, &pc_begin
, &pc_end
);
569 array
= end_fde_sort (&accu
, count
);
571 ob
->fde_array
= array
;
572 ob
->pc_begin
= pc_begin
;
576 /* Return a pointer to the FDE for the function containing PC. */
584 init_object_mutex_once ();
585 __gthread_mutex_lock (&object_mutex
);
587 /* Linear search through the objects, to find the one containing the pc. */
588 for (ob
= objects
; ob
; ob
= ob
->next
)
590 if (ob
->pc_begin
== 0)
592 if (pc
>= ob
->pc_begin
&& pc
< ob
->pc_end
)
598 __gthread_mutex_unlock (&object_mutex
);
602 if (!ob
->fde_array
|| (void *)ob
->fde_array
== (void *)ob
->fde_begin
)
605 if (ob
->fde_array
&& (void *)ob
->fde_array
!= (void *)ob
->fde_begin
)
607 __gthread_mutex_unlock (&object_mutex
);
609 /* Standard binary search algorithm. */
610 for (lo
= 0, hi
= ob
->count
; lo
< hi
; )
612 size_t i
= (lo
+ hi
) / 2;
613 fde
*f
= ob
->fde_array
[i
];
615 if (pc
< f
->pc_begin
)
617 else if (pc
>= f
->pc_begin
+ f
->pc_range
)
625 /* Long slow labourious linear search, cos we've no memory. */
630 fde
**p
= ob
->fde_array
;
634 f
= search_fdes (*p
, pc
);
640 f
= search_fdes (ob
->fde_begin
, pc
);
641 __gthread_mutex_unlock (&object_mutex
);
647 static inline struct dwarf_cie
*
650 return ((void *)&f
->CIE_delta
) - f
->CIE_delta
;
653 /* Extract any interesting information from the CIE for the translation
654 unit F belongs to. */
657 extract_cie_info (fde
*f
, struct cie_info
*c
)
662 c
->augmentation
= get_cie (f
)->augmentation
;
664 if (strcmp (c
->augmentation
, "") != 0
665 && strcmp (c
->augmentation
, "eh") != 0
666 && c
->augmentation
[0] != 'z')
669 p
= c
->augmentation
+ strlen (c
->augmentation
) + 1;
671 if (strcmp (c
->augmentation
, "eh") == 0)
673 c
->eh_ptr
= read_pointer (p
);
674 p
+= sizeof (void *);
679 p
= decode_uleb128 (p
, &c
->code_align
);
680 p
= decode_sleb128 (p
, &c
->data_align
);
681 c
->ra_regno
= *(unsigned char *)p
++;
683 /* If the augmentation starts with 'z', we now see the length of the
684 augmentation fields. */
685 if (c
->augmentation
[0] == 'z')
687 p
= decode_uleb128 (p
, &i
);
694 /* Decode one instruction's worth of DWARF 2 call frame information.
695 Used by __frame_state_for. Takes pointers P to the instruction to
696 decode, STATE to the current register unwind information, INFO to the
697 current CIE information, and PC to the current PC value. Returns a
698 pointer to the next instruction. */
701 execute_cfa_insn (void *p
, struct frame_state_internal
*state
,
702 struct cie_info
*info
, void **pc
)
704 unsigned insn
= *(unsigned char *)p
++;
708 if (insn
& DW_CFA_advance_loc
)
709 *pc
+= ((insn
& 0x3f) * info
->code_align
);
710 else if (insn
& DW_CFA_offset
)
713 p
= decode_uleb128 (p
, &offset
);
714 offset
*= info
->data_align
;
715 state
->s
.saved
[reg
] = REG_SAVED_OFFSET
;
716 state
->s
.reg_or_offset
[reg
] = offset
;
718 else if (insn
& DW_CFA_restore
)
721 state
->s
.saved
[reg
] = REG_UNSAVED
;
726 *pc
= read_pointer (p
);
727 p
+= sizeof (void *);
729 case DW_CFA_advance_loc1
:
730 *pc
+= read_1byte (p
);
733 case DW_CFA_advance_loc2
:
734 *pc
+= read_2byte (p
);
737 case DW_CFA_advance_loc4
:
738 *pc
+= read_4byte (p
);
742 case DW_CFA_offset_extended
:
743 p
= decode_uleb128 (p
, ®
);
744 p
= decode_uleb128 (p
, &offset
);
745 offset
*= info
->data_align
;
746 state
->s
.saved
[reg
] = REG_SAVED_OFFSET
;
747 state
->s
.reg_or_offset
[reg
] = offset
;
749 case DW_CFA_restore_extended
:
750 p
= decode_uleb128 (p
, ®
);
751 state
->s
.saved
[reg
] = REG_UNSAVED
;
754 case DW_CFA_undefined
:
755 case DW_CFA_same_value
:
759 case DW_CFA_register
:
762 p
= decode_uleb128 (p
, ®
);
763 p
= decode_uleb128 (p
, ®2
);
764 state
->s
.saved
[reg
] = REG_SAVED_REG
;
765 state
->s
.reg_or_offset
[reg
] = reg2
;
770 p
= decode_uleb128 (p
, ®
);
771 p
= decode_uleb128 (p
, &offset
);
772 state
->s
.cfa_reg
= reg
;
773 state
->s
.cfa_offset
= offset
;
775 case DW_CFA_def_cfa_register
:
776 p
= decode_uleb128 (p
, ®
);
777 state
->s
.cfa_reg
= reg
;
779 case DW_CFA_def_cfa_offset
:
780 p
= decode_uleb128 (p
, &offset
);
781 state
->s
.cfa_offset
= offset
;
784 case DW_CFA_remember_state
:
786 struct frame_state_internal
*save
=
787 (struct frame_state_internal
*)
788 malloc (sizeof (struct frame_state_internal
));
789 memcpy (save
, state
, sizeof (struct frame_state_internal
));
790 state
->saved_state
= save
;
793 case DW_CFA_restore_state
:
795 struct frame_state_internal
*save
= state
->saved_state
;
796 memcpy (state
, save
, sizeof (struct frame_state_internal
));
801 /* FIXME: Hardcoded for SPARC register window configuration. */
802 case DW_CFA_GNU_window_save
:
803 for (reg
= 16; reg
< 32; ++reg
)
805 state
->s
.saved
[reg
] = REG_SAVED_OFFSET
;
806 state
->s
.reg_or_offset
[reg
] = (reg
- 16) * sizeof (void *);
810 case DW_CFA_GNU_args_size
:
811 p
= decode_uleb128 (p
, &offset
);
812 state
->s
.args_size
= offset
;
821 /* Called from crtbegin.o to register the unwind info for an object. */
824 __register_frame_info (void *begin
, struct object
*ob
)
826 ob
->fde_begin
= begin
;
828 ob
->pc_begin
= ob
->pc_end
= 0;
832 init_object_mutex_once ();
833 __gthread_mutex_lock (&object_mutex
);
838 __gthread_mutex_unlock (&object_mutex
);
842 __register_frame (void *begin
)
844 struct object
*ob
= (struct object
*) malloc (sizeof (struct object
));
845 __register_frame_info (begin
, ob
);
848 /* Similar, but BEGIN is actually a pointer to a table of unwind entries
849 for different translation units. Called from the file generated by
853 __register_frame_info_table (void *begin
, struct object
*ob
)
855 ob
->fde_begin
= begin
;
856 ob
->fde_array
= begin
;
858 ob
->pc_begin
= ob
->pc_end
= 0;
861 init_object_mutex_once ();
862 __gthread_mutex_lock (&object_mutex
);
867 __gthread_mutex_unlock (&object_mutex
);
871 __register_frame_table (void *begin
)
873 struct object
*ob
= (struct object
*) malloc (sizeof (struct object
));
874 __register_frame_info_table (begin
, ob
);
877 /* Called from crtbegin.o to deregister the unwind info for an object. */
880 __deregister_frame_info (void *begin
)
884 init_object_mutex_once ();
885 __gthread_mutex_lock (&object_mutex
);
890 if ((*p
)->fde_begin
== begin
)
892 struct object
*ob
= *p
;
895 /* If we've run init_frame for this object, free the FDE array. */
896 if (ob
->fde_array
&& ob
->fde_array
!= begin
)
897 free (ob
->fde_array
);
899 __gthread_mutex_unlock (&object_mutex
);
905 __gthread_mutex_unlock (&object_mutex
);
910 __deregister_frame (void *begin
)
912 free (__deregister_frame_info (begin
));
915 /* Called from __throw to find the registers to restore for a given
916 PC_TARGET. The caller should allocate a local variable of `struct
917 frame_state' (declared in frame.h) and pass its address to STATE_IN. */
920 __frame_state_for (void *pc_target
, struct frame_state
*state_in
)
923 void *insn
, *end
, *pc
;
924 struct cie_info info
;
925 struct frame_state_internal state
;
927 f
= find_fde (pc_target
);
931 insn
= extract_cie_info (f
, &info
);
935 memset (&state
, 0, sizeof (state
));
936 state
.s
.retaddr_column
= info
.ra_regno
;
937 state
.s
.eh_ptr
= info
.eh_ptr
;
939 /* First decode all the insns in the CIE. */
940 end
= next_fde ((fde
*) get_cie (f
));
942 insn
= execute_cfa_insn (insn
, &state
, &info
, 0);
944 insn
= ((fde
*)f
) + 1;
946 if (info
.augmentation
[0] == 'z')
949 insn
= decode_uleb128 (insn
, &i
);
953 /* Then the insns in the FDE up to our target PC. */
956 while (insn
< end
&& pc
<= pc_target
)
957 insn
= execute_cfa_insn (insn
, &state
, &info
, &pc
);
959 memcpy (state_in
, &state
.s
, sizeof (state
.s
));
962 #endif /* DWARF2_UNWIND_INFO */