1 /* Alias analysis for GNU C
2 Copyright (C) 1997, 1998, 1999 Free Software Foundation, Inc.
3 Contributed by John Carr (jfc@mit.edu).
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
28 #include "insn-flags.h"
31 #include "hard-reg-set.h"
35 #include "splay-tree.h"
38 /* The alias sets assigned to MEMs assist the back-end in determining
39 which MEMs can alias which other MEMs. In general, two MEMs in
40 different alias sets to not alias each other. There is one
41 exception, however. Consider something like:
43 struct S {int i; double d; };
45 a store to an `S' can alias something of either type `int' or type
46 `double'. (However, a store to an `int' cannot alias a `double'
47 and vice versa.) We indicate this via a tree structure that looks
55 (The arrows are directed and point downwards.) If, when comparing
56 two alias sets, we can hold one set fixed, and trace the other set
57 downwards, and at some point find the first set, the two MEMs can
58 alias one another. In this situation we say the alias set for
59 `struct S' is the `superset' and that those for `int' and `double'
62 Alias set zero is implicitly a superset of all other alias sets.
63 However, this is no actual entry for alias set zero. It is an
64 error to attempt to explicitly construct a subset of zero. */
66 typedef struct alias_set_entry
{
67 /* The alias set number, as stored in MEM_ALIAS_SET. */
70 /* The children of the alias set. These are not just the immediate
71 children, but, in fact, all children. So, if we have:
73 struct T { struct S s; float f; }
75 continuing our example above, the children here will be all of
76 `int', `double', `float', and `struct S'. */
80 static rtx canon_rtx
PROTO((rtx
));
81 static int rtx_equal_for_memref_p
PROTO((rtx
, rtx
));
82 static rtx find_symbolic_term
PROTO((rtx
));
83 static int memrefs_conflict_p
PROTO((int, rtx
, int, rtx
,
85 static void record_set
PROTO((rtx
, rtx
, void *));
86 static rtx find_base_term
PROTO((rtx
));
87 static int base_alias_check
PROTO((rtx
, rtx
, enum machine_mode
,
89 static rtx find_base_value
PROTO((rtx
));
90 static int mems_in_disjoint_alias_sets_p
PROTO((rtx
, rtx
));
91 static int insert_subset_children
PROTO((splay_tree_node
,
93 static alias_set_entry get_alias_set_entry
PROTO((int));
94 static rtx fixed_scalar_and_varying_struct_p
PROTO((rtx
, rtx
, int (*)(rtx
)));
95 static int aliases_everything_p
PROTO((rtx
));
96 static int write_dependence_p
PROTO((rtx
, rtx
, int));
97 static int nonlocal_reference_p
PROTO((rtx
));
99 /* Set up all info needed to perform alias analysis on memory references. */
101 #define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
103 /* Returns nonzero if MEM1 and MEM2 do not alias because they are in
104 different alias sets. We ignore alias sets in functions making use
105 of variable arguments because the va_arg macros on some systems are
107 #define DIFFERENT_ALIAS_SETS_P(MEM1, MEM2) \
108 mems_in_disjoint_alias_sets_p (MEM1, MEM2)
110 /* Cap the number of passes we make over the insns propagating alias
111 information through set chains.
113 10 is a completely arbitrary choice. */
114 #define MAX_ALIAS_LOOP_PASSES 10
116 /* reg_base_value[N] gives an address to which register N is related.
117 If all sets after the first add or subtract to the current value
118 or otherwise modify it so it does not point to a different top level
119 object, reg_base_value[N] is equal to the address part of the source
122 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
123 expressions represent certain special values: function arguments and
124 the stack, frame, and argument pointers.
126 The contents of an ADDRESS is not normally used, the mode of the
127 ADDRESS determines whether the ADDRESS is a function argument or some
128 other special value. Pointer equality, not rtx_equal_p, determines whether
129 two ADDRESS expressions refer to the same base address.
131 The only use of the contents of an ADDRESS is for determining if the
132 current function performs nonlocal memory memory references for the
133 purposes of marking the function as a constant function. */
135 static rtx
*reg_base_value
;
136 static rtx
*new_reg_base_value
;
137 static unsigned int reg_base_value_size
; /* size of reg_base_value array */
138 #define REG_BASE_VALUE(X) \
139 ((unsigned) REGNO (X) < reg_base_value_size ? reg_base_value[REGNO (X)] : 0)
141 /* Vector of known invariant relationships between registers. Set in
142 loop unrolling. Indexed by register number, if nonzero the value
143 is an expression describing this register in terms of another.
145 The length of this array is REG_BASE_VALUE_SIZE.
147 Because this array contains only pseudo registers it has no effect
149 static rtx
*alias_invariant
;
151 /* Vector indexed by N giving the initial (unchanging) value known
152 for pseudo-register N. */
153 rtx
*reg_known_value
;
155 /* Indicates number of valid entries in reg_known_value. */
156 static int reg_known_value_size
;
158 /* Vector recording for each reg_known_value whether it is due to a
159 REG_EQUIV note. Future passes (viz., reload) may replace the
160 pseudo with the equivalent expression and so we account for the
161 dependences that would be introduced if that happens. */
162 /* ??? This is a problem only on the Convex. The REG_EQUIV notes created in
163 assign_parms mention the arg pointer, and there are explicit insns in the
164 RTL that modify the arg pointer. Thus we must ensure that such insns don't
165 get scheduled across each other because that would invalidate the REG_EQUIV
166 notes. One could argue that the REG_EQUIV notes are wrong, but solving
167 the problem in the scheduler will likely give better code, so we do it
169 char *reg_known_equiv_p
;
171 /* True when scanning insns from the start of the rtl to the
172 NOTE_INSN_FUNCTION_BEG note. */
174 static int copying_arguments
;
176 /* The splay-tree used to store the various alias set entries. */
178 static splay_tree alias_sets
;
180 /* Returns a pointer to the alias set entry for ALIAS_SET, if there is
181 such an entry, or NULL otherwise. */
183 static alias_set_entry
184 get_alias_set_entry (alias_set
)
188 splay_tree_lookup (alias_sets
, (splay_tree_key
) alias_set
);
190 return sn
? ((alias_set_entry
) sn
->value
) : ((alias_set_entry
) 0);
193 /* Returns nonzero value if the alias sets for MEM1 and MEM2 are such
194 that the two MEMs cannot alias each other. */
197 mems_in_disjoint_alias_sets_p (mem1
, mem2
)
203 #ifdef ENABLE_CHECKING
204 /* Perform a basic sanity check. Namely, that there are no alias sets
205 if we're not using strict aliasing. This helps to catch bugs
206 whereby someone uses PUT_CODE, but doesn't clear MEM_ALIAS_SET, or
207 where a MEM is allocated in some way other than by the use of
208 gen_rtx_MEM, and the MEM_ALIAS_SET is not cleared. If we begin to
209 use alias sets to indicate that spilled registers cannot alias each
210 other, we might need to remove this check. */
211 if (!flag_strict_aliasing
&&
212 (MEM_ALIAS_SET (mem1
) || MEM_ALIAS_SET (mem2
)))
216 /* The code used in varargs macros are often not conforming ANSI C,
217 which can trick the compiler into making incorrect aliasing
218 assumptions in these functions. So, we don't use alias sets in
219 such a function. FIXME: This should be moved into the front-end;
220 it is a language-dependent notion, and there's no reason not to
221 still use these checks to handle globals. */
222 if (current_function_stdarg
|| current_function_varargs
)
225 if (!MEM_ALIAS_SET (mem1
) || !MEM_ALIAS_SET (mem2
))
226 /* We have no alias set information for one of the MEMs, so we
227 have to assume it can alias anything. */
230 if (MEM_ALIAS_SET (mem1
) == MEM_ALIAS_SET (mem2
))
231 /* The two alias sets are the same, so they may alias. */
234 /* Iterate through each of the children of the first alias set,
235 comparing it with the second alias set. */
236 ase
= get_alias_set_entry (MEM_ALIAS_SET (mem1
));
237 if (ase
&& splay_tree_lookup (ase
->children
,
238 (splay_tree_key
) MEM_ALIAS_SET (mem2
)))
241 /* Now do the same, but with the alias sets reversed. */
242 ase
= get_alias_set_entry (MEM_ALIAS_SET (mem2
));
243 if (ase
&& splay_tree_lookup (ase
->children
,
244 (splay_tree_key
) MEM_ALIAS_SET (mem1
)))
247 /* The two MEMs are in distinct alias sets, and neither one is the
248 child of the other. Therefore, they cannot alias. */
252 /* Insert the NODE into the splay tree given by DATA. Used by
253 record_alias_subset via splay_tree_foreach. */
256 insert_subset_children (node
, data
)
257 splay_tree_node node
;
260 splay_tree_insert ((splay_tree
) data
,
267 /* Indicate that things in SUBSET can alias things in SUPERSET, but
268 not vice versa. For example, in C, a store to an `int' can alias a
269 structure containing an `int', but not vice versa. Here, the
270 structure would be the SUPERSET and `int' the SUBSET. This
271 function should be called only once per SUPERSET/SUBSET pair. At
272 present any given alias set may only be a subset of one superset.
274 It is illegal for SUPERSET to be zero; everything is implicitly a
275 subset of alias set zero. */
278 record_alias_subset (superset
, subset
)
282 alias_set_entry superset_entry
;
283 alias_set_entry subset_entry
;
288 superset_entry
= get_alias_set_entry (superset
);
291 /* Create an entry for the SUPERSET, so that we have a place to
292 attach the SUBSET. */
294 (alias_set_entry
) xmalloc (sizeof (struct alias_set_entry
));
295 superset_entry
->alias_set
= superset
;
296 superset_entry
->children
297 = splay_tree_new (splay_tree_compare_ints
, 0, 0);
298 splay_tree_insert (alias_sets
,
299 (splay_tree_key
) superset
,
300 (splay_tree_value
) superset_entry
);
304 subset_entry
= get_alias_set_entry (subset
);
306 /* There is an entry for the subset. Enter all of its children
307 (if they are not already present) as children of the SUPERSET. */
308 splay_tree_foreach (subset_entry
->children
,
309 insert_subset_children
,
310 superset_entry
->children
);
312 /* Enter the SUBSET itself as a child of the SUPERSET. */
313 splay_tree_insert (superset_entry
->children
,
314 (splay_tree_key
) subset
,
318 /* Inside SRC, the source of a SET, find a base address. */
321 find_base_value (src
)
324 switch (GET_CODE (src
))
331 /* At the start of a function argument registers have known base
332 values which may be lost later. Returning an ADDRESS
333 expression here allows optimization based on argument values
334 even when the argument registers are used for other purposes. */
335 if (REGNO (src
) < FIRST_PSEUDO_REGISTER
&& copying_arguments
)
336 return new_reg_base_value
[REGNO (src
)];
338 /* If a pseudo has a known base value, return it. Do not do this
339 for hard regs since it can result in a circular dependency
340 chain for registers which have values at function entry.
342 The test above is not sufficient because the scheduler may move
343 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
344 if (REGNO (src
) >= FIRST_PSEUDO_REGISTER
345 && (unsigned) REGNO (src
) < reg_base_value_size
346 && reg_base_value
[REGNO (src
)])
347 return reg_base_value
[REGNO (src
)];
352 /* Check for an argument passed in memory. Only record in the
353 copying-arguments block; it is too hard to track changes
355 if (copying_arguments
356 && (XEXP (src
, 0) == arg_pointer_rtx
357 || (GET_CODE (XEXP (src
, 0)) == PLUS
358 && XEXP (XEXP (src
, 0), 0) == arg_pointer_rtx
)))
359 return gen_rtx_ADDRESS (VOIDmode
, src
);
364 if (GET_CODE (src
) != PLUS
&& GET_CODE (src
) != MINUS
)
371 rtx temp
, src_0
= XEXP (src
, 0), src_1
= XEXP (src
, 1);
373 /* If either operand is a REG, then see if we already have
374 a known value for it. */
375 if (GET_CODE (src_0
) == REG
)
377 temp
= find_base_value (src_0
);
382 if (GET_CODE (src_1
) == REG
)
384 temp
= find_base_value (src_1
);
389 /* Guess which operand is the base address.
391 If either operand is a symbol, then it is the base. If
392 either operand is a CONST_INT, then the other is the base. */
394 if (GET_CODE (src_1
) == CONST_INT
395 || GET_CODE (src_0
) == SYMBOL_REF
396 || GET_CODE (src_0
) == LABEL_REF
397 || GET_CODE (src_0
) == CONST
)
398 return find_base_value (src_0
);
400 if (GET_CODE (src_0
) == CONST_INT
401 || GET_CODE (src_1
) == SYMBOL_REF
402 || GET_CODE (src_1
) == LABEL_REF
403 || GET_CODE (src_1
) == CONST
)
404 return find_base_value (src_1
);
406 /* This might not be necessary anymore.
408 If either operand is a REG that is a known pointer, then it
410 if (GET_CODE (src_0
) == REG
&& REGNO_POINTER_FLAG (REGNO (src_0
)))
411 return find_base_value (src_0
);
413 if (GET_CODE (src_1
) == REG
&& REGNO_POINTER_FLAG (REGNO (src_1
)))
414 return find_base_value (src_1
);
420 /* The standard form is (lo_sum reg sym) so look only at the
422 return find_base_value (XEXP (src
, 1));
425 /* If the second operand is constant set the base
426 address to the first operand. */
427 if (GET_CODE (XEXP (src
, 1)) == CONST_INT
&& INTVAL (XEXP (src
, 1)) != 0)
428 return find_base_value (XEXP (src
, 0));
432 case SIGN_EXTEND
: /* used for NT/Alpha pointers */
434 return find_base_value (XEXP (src
, 0));
443 /* Called from init_alias_analysis indirectly through note_stores. */
445 /* while scanning insns to find base values, reg_seen[N] is nonzero if
446 register N has been set in this function. */
447 static char *reg_seen
;
449 /* Addresses which are known not to alias anything else are identified
450 by a unique integer. */
451 static int unique_id
;
454 record_set (dest
, set
, data
)
456 void *data ATTRIBUTE_UNUSED
;
458 register unsigned regno
;
461 if (GET_CODE (dest
) != REG
)
464 regno
= REGNO (dest
);
466 if (regno
>= reg_base_value_size
)
471 /* A CLOBBER wipes out any old value but does not prevent a previously
472 unset register from acquiring a base address (i.e. reg_seen is not
474 if (GET_CODE (set
) == CLOBBER
)
476 new_reg_base_value
[regno
] = 0;
485 new_reg_base_value
[regno
] = 0;
489 new_reg_base_value
[regno
] = gen_rtx_ADDRESS (Pmode
,
490 GEN_INT (unique_id
++));
494 /* This is not the first set. If the new value is not related to the
495 old value, forget the base value. Note that the following code is
497 extern int x, y; int *p = &x; p += (&y-&x);
498 ANSI C does not allow computing the difference of addresses
499 of distinct top level objects. */
500 if (new_reg_base_value
[regno
])
501 switch (GET_CODE (src
))
506 if (XEXP (src
, 0) != dest
&& XEXP (src
, 1) != dest
)
507 new_reg_base_value
[regno
] = 0;
510 if (XEXP (src
, 0) != dest
|| GET_CODE (XEXP (src
, 1)) != CONST_INT
)
511 new_reg_base_value
[regno
] = 0;
514 new_reg_base_value
[regno
] = 0;
517 /* If this is the first set of a register, record the value. */
518 else if ((regno
>= FIRST_PSEUDO_REGISTER
|| ! fixed_regs
[regno
])
519 && ! reg_seen
[regno
] && new_reg_base_value
[regno
] == 0)
520 new_reg_base_value
[regno
] = find_base_value (src
);
525 /* Called from loop optimization when a new pseudo-register is created. */
527 record_base_value (regno
, val
, invariant
)
532 if ((unsigned) regno
>= reg_base_value_size
)
535 /* If INVARIANT is true then this value also describes an invariant
536 relationship which can be used to deduce that two registers with
537 unknown values are different. */
538 if (invariant
&& alias_invariant
)
539 alias_invariant
[regno
] = val
;
541 if (GET_CODE (val
) == REG
)
543 if ((unsigned) REGNO (val
) < reg_base_value_size
)
545 reg_base_value
[regno
] = reg_base_value
[REGNO (val
)];
549 reg_base_value
[regno
] = find_base_value (val
);
556 /* Recursively look for equivalences. */
557 if (GET_CODE (x
) == REG
&& REGNO (x
) >= FIRST_PSEUDO_REGISTER
558 && REGNO (x
) < reg_known_value_size
)
559 return reg_known_value
[REGNO (x
)] == x
560 ? x
: canon_rtx (reg_known_value
[REGNO (x
)]);
561 else if (GET_CODE (x
) == PLUS
)
563 rtx x0
= canon_rtx (XEXP (x
, 0));
564 rtx x1
= canon_rtx (XEXP (x
, 1));
566 if (x0
!= XEXP (x
, 0) || x1
!= XEXP (x
, 1))
568 /* We can tolerate LO_SUMs being offset here; these
569 rtl are used for nothing other than comparisons. */
570 if (GET_CODE (x0
) == CONST_INT
)
571 return plus_constant_for_output (x1
, INTVAL (x0
));
572 else if (GET_CODE (x1
) == CONST_INT
)
573 return plus_constant_for_output (x0
, INTVAL (x1
));
574 return gen_rtx_PLUS (GET_MODE (x
), x0
, x1
);
577 /* This gives us much better alias analysis when called from
578 the loop optimizer. Note we want to leave the original
579 MEM alone, but need to return the canonicalized MEM with
580 all the flags with their original values. */
581 else if (GET_CODE (x
) == MEM
)
583 rtx addr
= canon_rtx (XEXP (x
, 0));
584 if (addr
!= XEXP (x
, 0))
586 rtx
new = gen_rtx_MEM (GET_MODE (x
), addr
);
587 RTX_UNCHANGING_P (new) = RTX_UNCHANGING_P (x
);
588 MEM_COPY_ATTRIBUTES (new, x
);
589 MEM_ALIAS_SET (new) = MEM_ALIAS_SET (x
);
596 /* Return 1 if X and Y are identical-looking rtx's.
598 We use the data in reg_known_value above to see if two registers with
599 different numbers are, in fact, equivalent. */
602 rtx_equal_for_memref_p (x
, y
)
607 register enum rtx_code code
;
608 register const char *fmt
;
610 if (x
== 0 && y
== 0)
612 if (x
== 0 || y
== 0)
621 /* Rtx's of different codes cannot be equal. */
622 if (code
!= GET_CODE (y
))
625 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
626 (REG:SI x) and (REG:HI x) are NOT equivalent. */
628 if (GET_MODE (x
) != GET_MODE (y
))
631 /* REG, LABEL_REF, and SYMBOL_REF can be compared nonrecursively. */
634 return REGNO (x
) == REGNO (y
);
635 if (code
== LABEL_REF
)
636 return XEXP (x
, 0) == XEXP (y
, 0);
637 if (code
== SYMBOL_REF
)
638 return XSTR (x
, 0) == XSTR (y
, 0);
639 if (code
== CONST_INT
)
640 return INTVAL (x
) == INTVAL (y
);
641 /* There's no need to compare the contents of CONST_DOUBLEs because
643 if (code
== CONST_DOUBLE
)
645 if (code
== ADDRESSOF
)
646 return REGNO (XEXP (x
, 0)) == REGNO (XEXP (y
, 0)) && XINT (x
, 1) == XINT (y
, 1);
648 /* For commutative operations, the RTX match if the operand match in any
649 order. Also handle the simple binary and unary cases without a loop. */
650 if (code
== EQ
|| code
== NE
|| GET_RTX_CLASS (code
) == 'c')
651 return ((rtx_equal_for_memref_p (XEXP (x
, 0), XEXP (y
, 0))
652 && rtx_equal_for_memref_p (XEXP (x
, 1), XEXP (y
, 1)))
653 || (rtx_equal_for_memref_p (XEXP (x
, 0), XEXP (y
, 1))
654 && rtx_equal_for_memref_p (XEXP (x
, 1), XEXP (y
, 0))));
655 else if (GET_RTX_CLASS (code
) == '<' || GET_RTX_CLASS (code
) == '2')
656 return (rtx_equal_for_memref_p (XEXP (x
, 0), XEXP (y
, 0))
657 && rtx_equal_for_memref_p (XEXP (x
, 1), XEXP (y
, 1)));
658 else if (GET_RTX_CLASS (code
) == '1')
659 return rtx_equal_for_memref_p (XEXP (x
, 0), XEXP (y
, 0));
661 /* Compare the elements. If any pair of corresponding elements
662 fail to match, return 0 for the whole things.
664 Limit cases to types which actually appear in addresses. */
666 fmt
= GET_RTX_FORMAT (code
);
667 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
672 if (XINT (x
, i
) != XINT (y
, i
))
677 /* Two vectors must have the same length. */
678 if (XVECLEN (x
, i
) != XVECLEN (y
, i
))
681 /* And the corresponding elements must match. */
682 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
683 if (rtx_equal_for_memref_p (XVECEXP (x
, i
, j
), XVECEXP (y
, i
, j
)) == 0)
688 if (rtx_equal_for_memref_p (XEXP (x
, i
), XEXP (y
, i
)) == 0)
692 /* This can happen for an asm which clobbers memory. */
696 /* It is believed that rtx's at this level will never
697 contain anything but integers and other rtx's,
698 except for within LABEL_REFs and SYMBOL_REFs. */
706 /* Given an rtx X, find a SYMBOL_REF or LABEL_REF within
707 X and return it, or return 0 if none found. */
710 find_symbolic_term (x
)
714 register enum rtx_code code
;
715 register const char *fmt
;
718 if (code
== SYMBOL_REF
|| code
== LABEL_REF
)
720 if (GET_RTX_CLASS (code
) == 'o')
723 fmt
= GET_RTX_FORMAT (code
);
724 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
730 t
= find_symbolic_term (XEXP (x
, i
));
734 else if (fmt
[i
] == 'E')
744 switch (GET_CODE (x
))
747 return REG_BASE_VALUE (x
);
750 case SIGN_EXTEND
: /* Used for Alpha/NT pointers */
756 return find_base_term (XEXP (x
, 0));
760 if (GET_CODE (x
) != PLUS
&& GET_CODE (x
) != MINUS
)
767 rtx tmp1
= XEXP (x
, 0);
768 rtx tmp2
= XEXP (x
, 1);
770 /* This is a litle bit tricky since we have to determine which of
771 the two operands represents the real base address. Otherwise this
772 routine may return the index register instead of the base register.
774 That may cause us to believe no aliasing was possible, when in
775 fact aliasing is possible.
777 We use a few simple tests to guess the base register. Additional
778 tests can certainly be added. For example, if one of the operands
779 is a shift or multiply, then it must be the index register and the
780 other operand is the base register. */
782 /* If either operand is known to be a pointer, then use it
783 to determine the base term. */
784 if (REG_P (tmp1
) && REGNO_POINTER_FLAG (REGNO (tmp1
)))
785 return find_base_term (tmp1
);
787 if (REG_P (tmp2
) && REGNO_POINTER_FLAG (REGNO (tmp2
)))
788 return find_base_term (tmp2
);
790 /* Neither operand was known to be a pointer. Go ahead and find the
791 base term for both operands. */
792 tmp1
= find_base_term (tmp1
);
793 tmp2
= find_base_term (tmp2
);
795 /* If either base term is named object or a special address
796 (like an argument or stack reference), then use it for the
799 && (GET_CODE (tmp1
) == SYMBOL_REF
800 || GET_CODE (tmp1
) == LABEL_REF
801 || (GET_CODE (tmp1
) == ADDRESS
802 && GET_MODE (tmp1
) != VOIDmode
)))
806 && (GET_CODE (tmp2
) == SYMBOL_REF
807 || GET_CODE (tmp2
) == LABEL_REF
808 || (GET_CODE (tmp2
) == ADDRESS
809 && GET_MODE (tmp2
) != VOIDmode
)))
812 /* We could not determine which of the two operands was the
813 base register and which was the index. So we can determine
814 nothing from the base alias check. */
819 if (GET_CODE (XEXP (x
, 0)) == REG
&& GET_CODE (XEXP (x
, 1)) == CONST_INT
)
820 return REG_BASE_VALUE (XEXP (x
, 0));
832 /* Return 0 if the addresses X and Y are known to point to different
833 objects, 1 if they might be pointers to the same object. */
836 base_alias_check (x
, y
, x_mode
, y_mode
)
838 enum machine_mode x_mode
, y_mode
;
840 rtx x_base
= find_base_term (x
);
841 rtx y_base
= find_base_term (y
);
843 /* If the address itself has no known base see if a known equivalent
844 value has one. If either address still has no known base, nothing
845 is known about aliasing. */
849 if (! flag_expensive_optimizations
|| (x_c
= canon_rtx (x
)) == x
)
851 x_base
= find_base_term (x_c
);
859 if (! flag_expensive_optimizations
|| (y_c
= canon_rtx (y
)) == y
)
861 y_base
= find_base_term (y_c
);
866 /* If the base addresses are equal nothing is known about aliasing. */
867 if (rtx_equal_p (x_base
, y_base
))
870 /* The base addresses of the read and write are different expressions.
871 If they are both symbols and they are not accessed via AND, there is
872 no conflict. We can bring knowledge of object alignment into play
873 here. For example, on alpha, "char a, b;" can alias one another,
874 though "char a; long b;" cannot. */
875 if (GET_CODE (x_base
) != ADDRESS
&& GET_CODE (y_base
) != ADDRESS
)
877 if (GET_CODE (x
) == AND
&& GET_CODE (y
) == AND
)
879 if (GET_CODE (x
) == AND
880 && (GET_CODE (XEXP (x
, 1)) != CONST_INT
881 || GET_MODE_UNIT_SIZE (y_mode
) < -INTVAL (XEXP (x
, 1))))
883 if (GET_CODE (y
) == AND
884 && (GET_CODE (XEXP (y
, 1)) != CONST_INT
885 || GET_MODE_UNIT_SIZE (x_mode
) < -INTVAL (XEXP (y
, 1))))
887 /* Differing symbols never alias. */
891 /* If one address is a stack reference there can be no alias:
892 stack references using different base registers do not alias,
893 a stack reference can not alias a parameter, and a stack reference
894 can not alias a global. */
895 if ((GET_CODE (x_base
) == ADDRESS
&& GET_MODE (x_base
) == Pmode
)
896 || (GET_CODE (y_base
) == ADDRESS
&& GET_MODE (y_base
) == Pmode
))
899 if (! flag_argument_noalias
)
902 if (flag_argument_noalias
> 1)
905 /* Weak noalias assertion (arguments are distinct, but may match globals). */
906 return ! (GET_MODE (x_base
) == VOIDmode
&& GET_MODE (y_base
) == VOIDmode
);
909 /* Return the address of the (N_REFS + 1)th memory reference to ADDR
910 where SIZE is the size in bytes of the memory reference. If ADDR
911 is not modified by the memory reference then ADDR is returned. */
914 addr_side_effect_eval (addr
, size
, n_refs
)
921 switch (GET_CODE (addr
))
924 offset
= (n_refs
+ 1) * size
;
927 offset
= -(n_refs
+ 1) * size
;
930 offset
= n_refs
* size
;
933 offset
= -n_refs
* size
;
941 addr
= gen_rtx_PLUS (GET_MODE (addr
), XEXP (addr
, 0), GEN_INT (offset
));
943 addr
= XEXP (addr
, 0);
948 /* Return nonzero if X and Y (memory addresses) could reference the
949 same location in memory. C is an offset accumulator. When
950 C is nonzero, we are testing aliases between X and Y + C.
951 XSIZE is the size in bytes of the X reference,
952 similarly YSIZE is the size in bytes for Y.
954 If XSIZE or YSIZE is zero, we do not know the amount of memory being
955 referenced (the reference was BLKmode), so make the most pessimistic
958 If XSIZE or YSIZE is negative, we may access memory outside the object
959 being referenced as a side effect. This can happen when using AND to
960 align memory references, as is done on the Alpha.
962 Nice to notice that varying addresses cannot conflict with fp if no
963 local variables had their addresses taken, but that's too hard now. */
967 memrefs_conflict_p (xsize
, x
, ysize
, y
, c
)
972 if (GET_CODE (x
) == HIGH
)
974 else if (GET_CODE (x
) == LO_SUM
)
977 x
= canon_rtx (addr_side_effect_eval (x
, xsize
, 0));
978 if (GET_CODE (y
) == HIGH
)
980 else if (GET_CODE (y
) == LO_SUM
)
983 y
= canon_rtx (addr_side_effect_eval (y
, ysize
, 0));
985 if (rtx_equal_for_memref_p (x
, y
))
987 if (xsize
<= 0 || ysize
<= 0)
989 if (c
>= 0 && xsize
> c
)
991 if (c
< 0 && ysize
+c
> 0)
996 /* This code used to check for conflicts involving stack references and
997 globals but the base address alias code now handles these cases. */
999 if (GET_CODE (x
) == PLUS
)
1001 /* The fact that X is canonicalized means that this
1002 PLUS rtx is canonicalized. */
1003 rtx x0
= XEXP (x
, 0);
1004 rtx x1
= XEXP (x
, 1);
1006 if (GET_CODE (y
) == PLUS
)
1008 /* The fact that Y is canonicalized means that this
1009 PLUS rtx is canonicalized. */
1010 rtx y0
= XEXP (y
, 0);
1011 rtx y1
= XEXP (y
, 1);
1013 if (rtx_equal_for_memref_p (x1
, y1
))
1014 return memrefs_conflict_p (xsize
, x0
, ysize
, y0
, c
);
1015 if (rtx_equal_for_memref_p (x0
, y0
))
1016 return memrefs_conflict_p (xsize
, x1
, ysize
, y1
, c
);
1017 if (GET_CODE (x1
) == CONST_INT
)
1019 if (GET_CODE (y1
) == CONST_INT
)
1020 return memrefs_conflict_p (xsize
, x0
, ysize
, y0
,
1021 c
- INTVAL (x1
) + INTVAL (y1
));
1023 return memrefs_conflict_p (xsize
, x0
, ysize
, y
,
1026 else if (GET_CODE (y1
) == CONST_INT
)
1027 return memrefs_conflict_p (xsize
, x
, ysize
, y0
, c
+ INTVAL (y1
));
1031 else if (GET_CODE (x1
) == CONST_INT
)
1032 return memrefs_conflict_p (xsize
, x0
, ysize
, y
, c
- INTVAL (x1
));
1034 else if (GET_CODE (y
) == PLUS
)
1036 /* The fact that Y is canonicalized means that this
1037 PLUS rtx is canonicalized. */
1038 rtx y0
= XEXP (y
, 0);
1039 rtx y1
= XEXP (y
, 1);
1041 if (GET_CODE (y1
) == CONST_INT
)
1042 return memrefs_conflict_p (xsize
, x
, ysize
, y0
, c
+ INTVAL (y1
));
1047 if (GET_CODE (x
) == GET_CODE (y
))
1048 switch (GET_CODE (x
))
1052 /* Handle cases where we expect the second operands to be the
1053 same, and check only whether the first operand would conflict
1056 rtx x1
= canon_rtx (XEXP (x
, 1));
1057 rtx y1
= canon_rtx (XEXP (y
, 1));
1058 if (! rtx_equal_for_memref_p (x1
, y1
))
1060 x0
= canon_rtx (XEXP (x
, 0));
1061 y0
= canon_rtx (XEXP (y
, 0));
1062 if (rtx_equal_for_memref_p (x0
, y0
))
1063 return (xsize
== 0 || ysize
== 0
1064 || (c
>= 0 && xsize
> c
) || (c
< 0 && ysize
+c
> 0));
1066 /* Can't properly adjust our sizes. */
1067 if (GET_CODE (x1
) != CONST_INT
)
1069 xsize
/= INTVAL (x1
);
1070 ysize
/= INTVAL (x1
);
1072 return memrefs_conflict_p (xsize
, x0
, ysize
, y0
, c
);
1076 /* Are these registers known not to be equal? */
1077 if (alias_invariant
)
1079 unsigned int r_x
= REGNO (x
), r_y
= REGNO (y
);
1080 rtx i_x
, i_y
; /* invariant relationships of X and Y */
1082 i_x
= r_x
>= reg_base_value_size
? 0 : alias_invariant
[r_x
];
1083 i_y
= r_y
>= reg_base_value_size
? 0 : alias_invariant
[r_y
];
1085 if (i_x
== 0 && i_y
== 0)
1088 if (! memrefs_conflict_p (xsize
, i_x
? i_x
: x
,
1089 ysize
, i_y
? i_y
: y
, c
))
1098 /* Treat an access through an AND (e.g. a subword access on an Alpha)
1099 as an access with indeterminate size. Assume that references
1100 besides AND are aligned, so if the size of the other reference is
1101 at least as large as the alignment, assume no other overlap. */
1102 if (GET_CODE (x
) == AND
&& GET_CODE (XEXP (x
, 1)) == CONST_INT
)
1104 if (GET_CODE (y
) == AND
|| ysize
< -INTVAL (XEXP (x
, 1)))
1106 return memrefs_conflict_p (xsize
, XEXP (x
, 0), ysize
, y
, c
);
1108 if (GET_CODE (y
) == AND
&& GET_CODE (XEXP (y
, 1)) == CONST_INT
)
1110 /* ??? If we are indexing far enough into the array/structure, we
1111 may yet be able to determine that we can not overlap. But we
1112 also need to that we are far enough from the end not to overlap
1113 a following reference, so we do nothing with that for now. */
1114 if (GET_CODE (x
) == AND
|| xsize
< -INTVAL (XEXP (y
, 1)))
1116 return memrefs_conflict_p (xsize
, x
, ysize
, XEXP (y
, 0), c
);
1121 if (GET_CODE (x
) == CONST_INT
&& GET_CODE (y
) == CONST_INT
)
1123 c
+= (INTVAL (y
) - INTVAL (x
));
1124 return (xsize
<= 0 || ysize
<= 0
1125 || (c
>= 0 && xsize
> c
) || (c
< 0 && ysize
+c
> 0));
1128 if (GET_CODE (x
) == CONST
)
1130 if (GET_CODE (y
) == CONST
)
1131 return memrefs_conflict_p (xsize
, canon_rtx (XEXP (x
, 0)),
1132 ysize
, canon_rtx (XEXP (y
, 0)), c
);
1134 return memrefs_conflict_p (xsize
, canon_rtx (XEXP (x
, 0)),
1137 if (GET_CODE (y
) == CONST
)
1138 return memrefs_conflict_p (xsize
, x
, ysize
,
1139 canon_rtx (XEXP (y
, 0)), c
);
1142 return (xsize
< 0 || ysize
< 0
1143 || (rtx_equal_for_memref_p (x
, y
)
1144 && (xsize
== 0 || ysize
== 0
1145 || (c
>= 0 && xsize
> c
) || (c
< 0 && ysize
+c
> 0))));
1152 /* Functions to compute memory dependencies.
1154 Since we process the insns in execution order, we can build tables
1155 to keep track of what registers are fixed (and not aliased), what registers
1156 are varying in known ways, and what registers are varying in unknown
1159 If both memory references are volatile, then there must always be a
1160 dependence between the two references, since their order can not be
1161 changed. A volatile and non-volatile reference can be interchanged
1164 A MEM_IN_STRUCT reference at a non-QImode non-AND varying address can never
1165 conflict with a non-MEM_IN_STRUCT reference at a fixed address. We must
1166 allow QImode aliasing because the ANSI C standard allows character
1167 pointers to alias anything. We are assuming that characters are
1168 always QImode here. We also must allow AND addresses, because they may
1169 generate accesses outside the object being referenced. This is used to
1170 generate aligned addresses from unaligned addresses, for instance, the
1171 alpha storeqi_unaligned pattern. */
1173 /* Read dependence: X is read after read in MEM takes place. There can
1174 only be a dependence here if both reads are volatile. */
1177 read_dependence (mem
, x
)
1181 return MEM_VOLATILE_P (x
) && MEM_VOLATILE_P (mem
);
1184 /* Returns MEM1 if and only if MEM1 is a scalar at a fixed address and
1185 MEM2 is a reference to a structure at a varying address, or returns
1186 MEM2 if vice versa. Otherwise, returns NULL_RTX. If a non-NULL
1187 value is returned MEM1 and MEM2 can never alias. VARIES_P is used
1188 to decide whether or not an address may vary; it should return
1189 nozero whenever variation is possible. */
1192 fixed_scalar_and_varying_struct_p (mem1
, mem2
, varies_p
)
1195 int (*varies_p
) PROTO((rtx
));
1197 rtx mem1_addr
= XEXP (mem1
, 0);
1198 rtx mem2_addr
= XEXP (mem2
, 0);
1200 if (MEM_SCALAR_P (mem1
) && MEM_IN_STRUCT_P (mem2
)
1201 && !varies_p (mem1_addr
) && varies_p (mem2_addr
))
1202 /* MEM1 is a scalar at a fixed address; MEM2 is a struct at a
1206 if (MEM_IN_STRUCT_P (mem1
) && MEM_SCALAR_P (mem2
)
1207 && varies_p (mem1_addr
) && !varies_p (mem2_addr
))
1208 /* MEM2 is a scalar at a fixed address; MEM1 is a struct at a
1215 /* Returns nonzero if something about the mode or address format MEM1
1216 indicates that it might well alias *anything*. */
1219 aliases_everything_p (mem
)
1222 if (GET_MODE (mem
) == QImode
)
1223 /* ANSI C says that a `char*' can point to anything. */
1226 if (GET_CODE (XEXP (mem
, 0)) == AND
)
1227 /* If the address is an AND, its very hard to know at what it is
1228 actually pointing. */
1234 /* True dependence: X is read after store in MEM takes place. */
1237 true_dependence (mem
, mem_mode
, x
, varies
)
1239 enum machine_mode mem_mode
;
1241 int (*varies
) PROTO((rtx
));
1243 register rtx x_addr
, mem_addr
;
1245 if (MEM_VOLATILE_P (x
) && MEM_VOLATILE_P (mem
))
1248 if (DIFFERENT_ALIAS_SETS_P (x
, mem
))
1251 /* If X is an unchanging read, then it can't possibly conflict with any
1252 non-unchanging store. It may conflict with an unchanging write though,
1253 because there may be a single store to this address to initialize it.
1254 Just fall through to the code below to resolve the case where we have
1255 both an unchanging read and an unchanging write. This won't handle all
1256 cases optimally, but the possible performance loss should be
1258 if (RTX_UNCHANGING_P (x
) && ! RTX_UNCHANGING_P (mem
))
1261 if (mem_mode
== VOIDmode
)
1262 mem_mode
= GET_MODE (mem
);
1264 if (! base_alias_check (XEXP (x
, 0), XEXP (mem
, 0), GET_MODE (x
), mem_mode
))
1267 x_addr
= canon_rtx (XEXP (x
, 0));
1268 mem_addr
= canon_rtx (XEXP (mem
, 0));
1270 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode
), mem_addr
,
1271 SIZE_FOR_MODE (x
), x_addr
, 0))
1274 if (aliases_everything_p (x
))
1277 /* We cannot use aliases_everyting_p to test MEM, since we must look
1278 at MEM_MODE, rather than GET_MODE (MEM). */
1279 if (mem_mode
== QImode
|| GET_CODE (mem_addr
) == AND
)
1282 /* In true_dependence we also allow BLKmode to alias anything. Why
1283 don't we do this in anti_dependence and output_dependence? */
1284 if (mem_mode
== BLKmode
|| GET_MODE (x
) == BLKmode
)
1287 return !fixed_scalar_and_varying_struct_p (mem
, x
, varies
);
1290 /* Returns non-zero if a write to X might alias a previous read from
1291 (or, if WRITEP is non-zero, a write to) MEM. */
1294 write_dependence_p (mem
, x
, writep
)
1299 rtx x_addr
, mem_addr
;
1302 if (MEM_VOLATILE_P (x
) && MEM_VOLATILE_P (mem
))
1305 /* If MEM is an unchanging read, then it can't possibly conflict with
1306 the store to X, because there is at most one store to MEM, and it must
1307 have occurred somewhere before MEM. */
1308 if (!writep
&& RTX_UNCHANGING_P (mem
))
1311 if (! base_alias_check (XEXP (x
, 0), XEXP (mem
, 0), GET_MODE (x
),
1316 mem
= canon_rtx (mem
);
1318 if (DIFFERENT_ALIAS_SETS_P (x
, mem
))
1321 x_addr
= XEXP (x
, 0);
1322 mem_addr
= XEXP (mem
, 0);
1324 if (!memrefs_conflict_p (SIZE_FOR_MODE (mem
), mem_addr
,
1325 SIZE_FOR_MODE (x
), x_addr
, 0))
1329 = fixed_scalar_and_varying_struct_p (mem
, x
, rtx_addr_varies_p
);
1331 return (!(fixed_scalar
== mem
&& !aliases_everything_p (x
))
1332 && !(fixed_scalar
== x
&& !aliases_everything_p (mem
)));
1335 /* Anti dependence: X is written after read in MEM takes place. */
1338 anti_dependence (mem
, x
)
1342 return write_dependence_p (mem
, x
, /*writep=*/0);
1345 /* Output dependence: X is written after store in MEM takes place. */
1348 output_dependence (mem
, x
)
1352 return write_dependence_p (mem
, x
, /*writep=*/1);
1355 /* Returns non-zero if X might refer to something which is not
1356 local to the function and is not constant. */
1359 nonlocal_reference_p (x
)
1363 register RTX_CODE code
;
1366 code
= GET_CODE (x
);
1368 if (GET_RTX_CLASS (code
) == 'i')
1370 /* Constant functions are constant. */
1371 if (code
== CALL_INSN
&& CONST_CALL_P (x
))
1374 code
= GET_CODE (x
);
1380 if (GET_CODE (SUBREG_REG (x
)) == REG
)
1382 /* Global registers are not local. */
1383 if (REGNO (SUBREG_REG (x
)) < FIRST_PSEUDO_REGISTER
1384 && global_regs
[REGNO (SUBREG_REG (x
)) + SUBREG_WORD (x
)])
1392 /* Global registers are not local. */
1393 if (regno
< FIRST_PSEUDO_REGISTER
&& global_regs
[regno
])
1407 /* Constants in the function's constants pool are constant. */
1408 if (CONSTANT_POOL_ADDRESS_P (x
))
1413 /* Recursion introduces no additional considerations. */
1414 if (GET_CODE (XEXP (x
, 0)) == MEM
1415 && GET_CODE (XEXP (XEXP (x
, 0), 0)) == SYMBOL_REF
1416 && strcmp(XSTR (XEXP (XEXP (x
, 0), 0), 0),
1417 IDENTIFIER_POINTER (
1418 DECL_ASSEMBLER_NAME (current_function_decl
))) == 0)
1423 /* Be overly conservative and consider any volatile memory
1424 reference as not local. */
1425 if (MEM_VOLATILE_P (x
))
1427 base
= find_base_term (XEXP (x
, 0));
1430 /* A Pmode ADDRESS could be a reference via the structure value
1431 address or static chain. Such memory references are nonlocal.
1433 Thus, we have to examine the contents of the ADDRESS to find
1434 out if this is a local reference or not. */
1435 if (GET_CODE (base
) == ADDRESS
1436 && GET_MODE (base
) == Pmode
1437 && (XEXP (base
, 0) == stack_pointer_rtx
1438 || XEXP (base
, 0) == arg_pointer_rtx
1439 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1440 || XEXP (base
, 0) == hard_frame_pointer_rtx
1442 || XEXP (base
, 0) == frame_pointer_rtx
))
1444 /* Constants in the function's constant pool are constant. */
1445 if (GET_CODE (base
) == SYMBOL_REF
&& CONSTANT_POOL_ADDRESS_P (base
))
1458 /* Recursively scan the operands of this expression. */
1461 register const char *fmt
= GET_RTX_FORMAT (code
);
1464 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1468 if (nonlocal_reference_p (XEXP (x
, i
)))
1474 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
1475 if (nonlocal_reference_p (XVECEXP (x
, i
, j
)))
1484 /* Mark the function if it is constant. */
1487 mark_constant_function ()
1491 if (TREE_PUBLIC (current_function_decl
)
1492 || TREE_READONLY (current_function_decl
)
1493 || TREE_THIS_VOLATILE (current_function_decl
)
1494 || TYPE_MODE (TREE_TYPE (current_function_decl
)) == VOIDmode
)
1497 /* Determine if this is a constant function. */
1499 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
1500 if (GET_RTX_CLASS (GET_CODE (insn
)) == 'i'
1501 && nonlocal_reference_p (insn
))
1504 /* Mark the function. */
1506 TREE_READONLY (current_function_decl
) = 1;
1510 static HARD_REG_SET argument_registers
;
1517 #ifndef OUTGOING_REGNO
1518 #define OUTGOING_REGNO(N) N
1520 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
1521 /* Check whether this register can hold an incoming pointer
1522 argument. FUNCTION_ARG_REGNO_P tests outgoing register
1523 numbers, so translate if necessary due to register windows. */
1524 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i
))
1525 && HARD_REGNO_MODE_OK (i
, Pmode
))
1526 SET_HARD_REG_BIT (argument_registers
, i
);
1528 alias_sets
= splay_tree_new (splay_tree_compare_ints
, 0, 0);
1532 init_alias_analysis ()
1534 int maxreg
= max_reg_num ();
1537 register unsigned int ui
;
1540 reg_known_value_size
= maxreg
;
1543 = (rtx
*) xcalloc ((maxreg
- FIRST_PSEUDO_REGISTER
), sizeof (rtx
))
1544 - FIRST_PSEUDO_REGISTER
;
1546 = (char*) xcalloc ((maxreg
- FIRST_PSEUDO_REGISTER
), sizeof (char))
1547 - FIRST_PSEUDO_REGISTER
;
1549 /* Overallocate reg_base_value to allow some growth during loop
1550 optimization. Loop unrolling can create a large number of
1552 reg_base_value_size
= maxreg
* 2;
1553 reg_base_value
= (rtx
*) xcalloc (reg_base_value_size
, sizeof (rtx
));
1555 ggc_add_rtx_root (reg_base_value
, reg_base_value_size
);
1557 new_reg_base_value
= (rtx
*) xmalloc (reg_base_value_size
* sizeof (rtx
));
1558 reg_seen
= (char *) xmalloc (reg_base_value_size
);
1559 if (! reload_completed
&& flag_unroll_loops
)
1561 /* ??? Why are we realloc'ing if we're just going to zero it? */
1562 alias_invariant
= (rtx
*)xrealloc (alias_invariant
,
1563 reg_base_value_size
* sizeof (rtx
));
1564 bzero ((char *)alias_invariant
, reg_base_value_size
* sizeof (rtx
));
1568 /* The basic idea is that each pass through this loop will use the
1569 "constant" information from the previous pass to propagate alias
1570 information through another level of assignments.
1572 This could get expensive if the assignment chains are long. Maybe
1573 we should throttle the number of iterations, possibly based on
1574 the optimization level or flag_expensive_optimizations.
1576 We could propagate more information in the first pass by making use
1577 of REG_N_SETS to determine immediately that the alias information
1578 for a pseudo is "constant".
1580 A program with an uninitialized variable can cause an infinite loop
1581 here. Instead of doing a full dataflow analysis to detect such problems
1582 we just cap the number of iterations for the loop.
1584 The state of the arrays for the set chain in question does not matter
1585 since the program has undefined behavior. */
1590 /* Assume nothing will change this iteration of the loop. */
1593 /* We want to assign the same IDs each iteration of this loop, so
1594 start counting from zero each iteration of the loop. */
1597 /* We're at the start of the funtion each iteration through the
1598 loop, so we're copying arguments. */
1599 copying_arguments
= 1;
1601 /* Wipe the potential alias information clean for this pass. */
1602 bzero ((char *) new_reg_base_value
, reg_base_value_size
* sizeof (rtx
));
1604 /* Wipe the reg_seen array clean. */
1605 bzero ((char *) reg_seen
, reg_base_value_size
);
1607 /* Mark all hard registers which may contain an address.
1608 The stack, frame and argument pointers may contain an address.
1609 An argument register which can hold a Pmode value may contain
1610 an address even if it is not in BASE_REGS.
1612 The address expression is VOIDmode for an argument and
1613 Pmode for other registers. */
1615 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
1616 if (TEST_HARD_REG_BIT (argument_registers
, i
))
1617 new_reg_base_value
[i
] = gen_rtx_ADDRESS (VOIDmode
,
1618 gen_rtx_REG (Pmode
, i
));
1620 new_reg_base_value
[STACK_POINTER_REGNUM
]
1621 = gen_rtx_ADDRESS (Pmode
, stack_pointer_rtx
);
1622 new_reg_base_value
[ARG_POINTER_REGNUM
]
1623 = gen_rtx_ADDRESS (Pmode
, arg_pointer_rtx
);
1624 new_reg_base_value
[FRAME_POINTER_REGNUM
]
1625 = gen_rtx_ADDRESS (Pmode
, frame_pointer_rtx
);
1626 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1627 new_reg_base_value
[HARD_FRAME_POINTER_REGNUM
]
1628 = gen_rtx_ADDRESS (Pmode
, hard_frame_pointer_rtx
);
1630 if (struct_value_incoming_rtx
1631 && GET_CODE (struct_value_incoming_rtx
) == REG
)
1632 new_reg_base_value
[REGNO (struct_value_incoming_rtx
)]
1633 = gen_rtx_ADDRESS (Pmode
, struct_value_incoming_rtx
);
1635 if (static_chain_rtx
1636 && GET_CODE (static_chain_rtx
) == REG
)
1637 new_reg_base_value
[REGNO (static_chain_rtx
)]
1638 = gen_rtx_ADDRESS (Pmode
, static_chain_rtx
);
1640 /* Walk the insns adding values to the new_reg_base_value array. */
1641 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
1643 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
1644 if (prologue_epilogue_contains (insn
))
1647 if (GET_RTX_CLASS (GET_CODE (insn
)) == 'i')
1650 /* If this insn has a noalias note, process it, Otherwise,
1651 scan for sets. A simple set will have no side effects
1652 which could change the base value of any other register. */
1654 if (GET_CODE (PATTERN (insn
)) == SET
1655 && (find_reg_note (insn
, REG_NOALIAS
, NULL_RTX
)))
1656 record_set (SET_DEST (PATTERN (insn
)), NULL_RTX
, NULL
);
1658 note_stores (PATTERN (insn
), record_set
, NULL
);
1660 set
= single_set (insn
);
1663 && GET_CODE (SET_DEST (set
)) == REG
1664 && REGNO (SET_DEST (set
)) >= FIRST_PSEUDO_REGISTER
1665 && (((note
= find_reg_note (insn
, REG_EQUAL
, 0)) != 0
1666 && REG_N_SETS (REGNO (SET_DEST (set
))) == 1)
1667 || (note
= find_reg_note (insn
, REG_EQUIV
, NULL_RTX
)) != 0)
1668 && GET_CODE (XEXP (note
, 0)) != EXPR_LIST
1669 && ! reg_overlap_mentioned_p (SET_DEST (set
), XEXP (note
, 0)))
1671 int regno
= REGNO (SET_DEST (set
));
1672 reg_known_value
[regno
] = XEXP (note
, 0);
1673 reg_known_equiv_p
[regno
] = REG_NOTE_KIND (note
) == REG_EQUIV
;
1676 else if (GET_CODE (insn
) == NOTE
1677 && NOTE_LINE_NUMBER (insn
) == NOTE_INSN_FUNCTION_BEG
)
1678 copying_arguments
= 0;
1681 /* Now propagate values from new_reg_base_value to reg_base_value. */
1682 for (ui
= 0; ui
< reg_base_value_size
; ui
++)
1684 if (new_reg_base_value
[ui
]
1685 && new_reg_base_value
[ui
] != reg_base_value
[ui
]
1686 && ! rtx_equal_p (new_reg_base_value
[ui
], reg_base_value
[ui
]))
1688 reg_base_value
[ui
] = new_reg_base_value
[ui
];
1693 while (changed
&& ++pass
< MAX_ALIAS_LOOP_PASSES
);
1695 /* Fill in the remaining entries. */
1696 for (i
= FIRST_PSEUDO_REGISTER
; i
< maxreg
; i
++)
1697 if (reg_known_value
[i
] == 0)
1698 reg_known_value
[i
] = regno_reg_rtx
[i
];
1700 /* Simplify the reg_base_value array so that no register refers to
1701 another register, except to special registers indirectly through
1702 ADDRESS expressions.
1704 In theory this loop can take as long as O(registers^2), but unless
1705 there are very long dependency chains it will run in close to linear
1708 This loop may not be needed any longer now that the main loop does
1709 a better job at propagating alias information. */
1715 for (ui
= 0; ui
< reg_base_value_size
; ui
++)
1717 rtx base
= reg_base_value
[ui
];
1718 if (base
&& GET_CODE (base
) == REG
)
1720 unsigned int base_regno
= REGNO (base
);
1721 if (base_regno
== ui
) /* register set from itself */
1722 reg_base_value
[ui
] = 0;
1724 reg_base_value
[ui
] = reg_base_value
[base_regno
];
1729 while (changed
&& pass
< MAX_ALIAS_LOOP_PASSES
);
1732 free (new_reg_base_value
);
1733 new_reg_base_value
= 0;
1739 end_alias_analysis ()
1741 free (reg_known_value
+ FIRST_PSEUDO_REGISTER
);
1742 reg_known_value
= 0;
1743 reg_known_value_size
= 0;
1744 free (reg_known_equiv_p
+ FIRST_PSEUDO_REGISTER
);
1745 reg_known_equiv_p
= 0;
1749 ggc_del_root (reg_base_value
);
1750 free (reg_base_value
);
1753 reg_base_value_size
= 0;
1754 if (alias_invariant
)
1756 free (alias_invariant
);
1757 alias_invariant
= 0;