Use simplify_gen_binary in canon_rtx
[official-gcc.git] / libgcc / libgcc2.c
blob97b9237ea2b9558d230b9caf209fe088189a9391
1 /* More subroutines needed by GCC output code on some machines. */
2 /* Compile this one with gcc. */
3 /* Copyright (C) 1989-2016 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 Under Section 7 of GPL version 3, you are granted additional
18 permissions described in the GCC Runtime Library Exception, version
19 3.1, as published by the Free Software Foundation.
21 You should have received a copy of the GNU General Public License and
22 a copy of the GCC Runtime Library Exception along with this program;
23 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
24 <http://www.gnu.org/licenses/>. */
26 #include "tconfig.h"
27 #include "tsystem.h"
28 #include "coretypes.h"
29 #include "tm.h"
30 #include "libgcc_tm.h"
32 #ifdef HAVE_GAS_HIDDEN
33 #define ATTRIBUTE_HIDDEN __attribute__ ((__visibility__ ("hidden")))
34 #else
35 #define ATTRIBUTE_HIDDEN
36 #endif
38 /* Work out the largest "word" size that we can deal with on this target. */
39 #if MIN_UNITS_PER_WORD > 4
40 # define LIBGCC2_MAX_UNITS_PER_WORD 8
41 #elif (MIN_UNITS_PER_WORD > 2 \
42 || (MIN_UNITS_PER_WORD > 1 && __SIZEOF_LONG_LONG__ > 4))
43 # define LIBGCC2_MAX_UNITS_PER_WORD 4
44 #else
45 # define LIBGCC2_MAX_UNITS_PER_WORD MIN_UNITS_PER_WORD
46 #endif
48 /* Work out what word size we are using for this compilation.
49 The value can be set on the command line. */
50 #ifndef LIBGCC2_UNITS_PER_WORD
51 #define LIBGCC2_UNITS_PER_WORD LIBGCC2_MAX_UNITS_PER_WORD
52 #endif
54 #if LIBGCC2_UNITS_PER_WORD <= LIBGCC2_MAX_UNITS_PER_WORD
56 #include "libgcc2.h"
58 #ifdef DECLARE_LIBRARY_RENAMES
59 DECLARE_LIBRARY_RENAMES
60 #endif
62 #if defined (L_negdi2)
63 DWtype
64 __negdi2 (DWtype u)
66 const DWunion uu = {.ll = u};
67 const DWunion w = { {.low = -uu.s.low,
68 .high = -uu.s.high - ((UWtype) -uu.s.low > 0) } };
70 return w.ll;
72 #endif
74 #ifdef L_addvsi3
75 Wtype
76 __addvSI3 (Wtype a, Wtype b)
78 const Wtype w = (UWtype) a + (UWtype) b;
80 if (b >= 0 ? w < a : w > a)
81 abort ();
83 return w;
85 #ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
86 SItype
87 __addvsi3 (SItype a, SItype b)
89 const SItype w = (USItype) a + (USItype) b;
91 if (b >= 0 ? w < a : w > a)
92 abort ();
94 return w;
96 #endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
97 #endif
99 #ifdef L_addvdi3
100 DWtype
101 __addvDI3 (DWtype a, DWtype b)
103 const DWtype w = (UDWtype) a + (UDWtype) b;
105 if (b >= 0 ? w < a : w > a)
106 abort ();
108 return w;
110 #endif
112 #ifdef L_subvsi3
113 Wtype
114 __subvSI3 (Wtype a, Wtype b)
116 const Wtype w = (UWtype) a - (UWtype) b;
118 if (b >= 0 ? w > a : w < a)
119 abort ();
121 return w;
123 #ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
124 SItype
125 __subvsi3 (SItype a, SItype b)
127 const SItype w = (USItype) a - (USItype) b;
129 if (b >= 0 ? w > a : w < a)
130 abort ();
132 return w;
134 #endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
135 #endif
137 #ifdef L_subvdi3
138 DWtype
139 __subvDI3 (DWtype a, DWtype b)
141 const DWtype w = (UDWtype) a - (UDWtype) b;
143 if (b >= 0 ? w > a : w < a)
144 abort ();
146 return w;
148 #endif
150 #ifdef L_mulvsi3
151 Wtype
152 __mulvSI3 (Wtype a, Wtype b)
154 const DWtype w = (DWtype) a * (DWtype) b;
156 if ((Wtype) (w >> W_TYPE_SIZE) != (Wtype) w >> (W_TYPE_SIZE - 1))
157 abort ();
159 return w;
161 #ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
162 #undef WORD_SIZE
163 #define WORD_SIZE (sizeof (SItype) * __CHAR_BIT__)
164 SItype
165 __mulvsi3 (SItype a, SItype b)
167 const DItype w = (DItype) a * (DItype) b;
169 if ((SItype) (w >> WORD_SIZE) != (SItype) w >> (WORD_SIZE-1))
170 abort ();
172 return w;
174 #endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
175 #endif
177 #ifdef L_negvsi2
178 Wtype
179 __negvSI2 (Wtype a)
181 const Wtype w = -(UWtype) a;
183 if (a >= 0 ? w > 0 : w < 0)
184 abort ();
186 return w;
188 #ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
189 SItype
190 __negvsi2 (SItype a)
192 const SItype w = -(USItype) a;
194 if (a >= 0 ? w > 0 : w < 0)
195 abort ();
197 return w;
199 #endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
200 #endif
202 #ifdef L_negvdi2
203 DWtype
204 __negvDI2 (DWtype a)
206 const DWtype w = -(UDWtype) a;
208 if (a >= 0 ? w > 0 : w < 0)
209 abort ();
211 return w;
213 #endif
215 #ifdef L_absvsi2
216 Wtype
217 __absvSI2 (Wtype a)
219 Wtype w = a;
221 if (a < 0)
222 #ifdef L_negvsi2
223 w = __negvSI2 (a);
224 #else
225 w = -(UWtype) a;
227 if (w < 0)
228 abort ();
229 #endif
231 return w;
233 #ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
234 SItype
235 __absvsi2 (SItype a)
237 SItype w = a;
239 if (a < 0)
240 #ifdef L_negvsi2
241 w = __negvsi2 (a);
242 #else
243 w = -(USItype) a;
245 if (w < 0)
246 abort ();
247 #endif
249 return w;
251 #endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
252 #endif
254 #ifdef L_absvdi2
255 DWtype
256 __absvDI2 (DWtype a)
258 DWtype w = a;
260 if (a < 0)
261 #ifdef L_negvdi2
262 w = __negvDI2 (a);
263 #else
264 w = -(UDWtype) a;
266 if (w < 0)
267 abort ();
268 #endif
270 return w;
272 #endif
274 #ifdef L_mulvdi3
275 DWtype
276 __mulvDI3 (DWtype u, DWtype v)
278 /* The unchecked multiplication needs 3 Wtype x Wtype multiplications,
279 but the checked multiplication needs only two. */
280 const DWunion uu = {.ll = u};
281 const DWunion vv = {.ll = v};
283 if (__builtin_expect (uu.s.high == uu.s.low >> (W_TYPE_SIZE - 1), 1))
285 /* u fits in a single Wtype. */
286 if (__builtin_expect (vv.s.high == vv.s.low >> (W_TYPE_SIZE - 1), 1))
288 /* v fits in a single Wtype as well. */
289 /* A single multiplication. No overflow risk. */
290 return (DWtype) uu.s.low * (DWtype) vv.s.low;
292 else
294 /* Two multiplications. */
295 DWunion w0 = {.ll = (UDWtype) (UWtype) uu.s.low
296 * (UDWtype) (UWtype) vv.s.low};
297 DWunion w1 = {.ll = (UDWtype) (UWtype) uu.s.low
298 * (UDWtype) (UWtype) vv.s.high};
300 if (vv.s.high < 0)
301 w1.s.high -= uu.s.low;
302 if (uu.s.low < 0)
303 w1.ll -= vv.ll;
304 w1.ll += (UWtype) w0.s.high;
305 if (__builtin_expect (w1.s.high == w1.s.low >> (W_TYPE_SIZE - 1), 1))
307 w0.s.high = w1.s.low;
308 return w0.ll;
312 else
314 if (__builtin_expect (vv.s.high == vv.s.low >> (W_TYPE_SIZE - 1), 1))
316 /* v fits into a single Wtype. */
317 /* Two multiplications. */
318 DWunion w0 = {.ll = (UDWtype) (UWtype) uu.s.low
319 * (UDWtype) (UWtype) vv.s.low};
320 DWunion w1 = {.ll = (UDWtype) (UWtype) uu.s.high
321 * (UDWtype) (UWtype) vv.s.low};
323 if (uu.s.high < 0)
324 w1.s.high -= vv.s.low;
325 if (vv.s.low < 0)
326 w1.ll -= uu.ll;
327 w1.ll += (UWtype) w0.s.high;
328 if (__builtin_expect (w1.s.high == w1.s.low >> (W_TYPE_SIZE - 1), 1))
330 w0.s.high = w1.s.low;
331 return w0.ll;
334 else
336 /* A few sign checks and a single multiplication. */
337 if (uu.s.high >= 0)
339 if (vv.s.high >= 0)
341 if (uu.s.high == 0 && vv.s.high == 0)
343 const DWtype w = (UDWtype) (UWtype) uu.s.low
344 * (UDWtype) (UWtype) vv.s.low;
345 if (__builtin_expect (w >= 0, 1))
346 return w;
349 else
351 if (uu.s.high == 0 && vv.s.high == (Wtype) -1)
353 DWunion ww = {.ll = (UDWtype) (UWtype) uu.s.low
354 * (UDWtype) (UWtype) vv.s.low};
356 ww.s.high -= uu.s.low;
357 if (__builtin_expect (ww.s.high < 0, 1))
358 return ww.ll;
362 else
364 if (vv.s.high >= 0)
366 if (uu.s.high == (Wtype) -1 && vv.s.high == 0)
368 DWunion ww = {.ll = (UDWtype) (UWtype) uu.s.low
369 * (UDWtype) (UWtype) vv.s.low};
371 ww.s.high -= vv.s.low;
372 if (__builtin_expect (ww.s.high < 0, 1))
373 return ww.ll;
376 else
378 if (uu.s.high == (Wtype) -1 && vv.s.high == (Wtype) - 1)
380 DWunion ww = {.ll = (UDWtype) (UWtype) uu.s.low
381 * (UDWtype) (UWtype) vv.s.low};
383 ww.s.high -= uu.s.low;
384 ww.s.high -= vv.s.low;
385 if (__builtin_expect (ww.s.high >= 0, 1))
386 return ww.ll;
393 /* Overflow. */
394 abort ();
396 #endif
399 /* Unless shift functions are defined with full ANSI prototypes,
400 parameter b will be promoted to int if shift_count_type is smaller than an int. */
401 #ifdef L_lshrdi3
402 DWtype
403 __lshrdi3 (DWtype u, shift_count_type b)
405 if (b == 0)
406 return u;
408 const DWunion uu = {.ll = u};
409 const shift_count_type bm = W_TYPE_SIZE - b;
410 DWunion w;
412 if (bm <= 0)
414 w.s.high = 0;
415 w.s.low = (UWtype) uu.s.high >> -bm;
417 else
419 const UWtype carries = (UWtype) uu.s.high << bm;
421 w.s.high = (UWtype) uu.s.high >> b;
422 w.s.low = ((UWtype) uu.s.low >> b) | carries;
425 return w.ll;
427 #endif
429 #ifdef L_ashldi3
430 DWtype
431 __ashldi3 (DWtype u, shift_count_type b)
433 if (b == 0)
434 return u;
436 const DWunion uu = {.ll = u};
437 const shift_count_type bm = W_TYPE_SIZE - b;
438 DWunion w;
440 if (bm <= 0)
442 w.s.low = 0;
443 w.s.high = (UWtype) uu.s.low << -bm;
445 else
447 const UWtype carries = (UWtype) uu.s.low >> bm;
449 w.s.low = (UWtype) uu.s.low << b;
450 w.s.high = ((UWtype) uu.s.high << b) | carries;
453 return w.ll;
455 #endif
457 #ifdef L_ashrdi3
458 DWtype
459 __ashrdi3 (DWtype u, shift_count_type b)
461 if (b == 0)
462 return u;
464 const DWunion uu = {.ll = u};
465 const shift_count_type bm = W_TYPE_SIZE - b;
466 DWunion w;
468 if (bm <= 0)
470 /* w.s.high = 1..1 or 0..0 */
471 w.s.high = uu.s.high >> (W_TYPE_SIZE - 1);
472 w.s.low = uu.s.high >> -bm;
474 else
476 const UWtype carries = (UWtype) uu.s.high << bm;
478 w.s.high = uu.s.high >> b;
479 w.s.low = ((UWtype) uu.s.low >> b) | carries;
482 return w.ll;
484 #endif
486 #ifdef L_bswapsi2
487 SItype
488 __bswapsi2 (SItype u)
490 return ((((u) & 0xff000000) >> 24)
491 | (((u) & 0x00ff0000) >> 8)
492 | (((u) & 0x0000ff00) << 8)
493 | (((u) & 0x000000ff) << 24));
495 #endif
496 #ifdef L_bswapdi2
497 DItype
498 __bswapdi2 (DItype u)
500 return ((((u) & 0xff00000000000000ull) >> 56)
501 | (((u) & 0x00ff000000000000ull) >> 40)
502 | (((u) & 0x0000ff0000000000ull) >> 24)
503 | (((u) & 0x000000ff00000000ull) >> 8)
504 | (((u) & 0x00000000ff000000ull) << 8)
505 | (((u) & 0x0000000000ff0000ull) << 24)
506 | (((u) & 0x000000000000ff00ull) << 40)
507 | (((u) & 0x00000000000000ffull) << 56));
509 #endif
510 #ifdef L_ffssi2
511 #undef int
513 __ffsSI2 (UWtype u)
515 UWtype count;
517 if (u == 0)
518 return 0;
520 count_trailing_zeros (count, u);
521 return count + 1;
523 #endif
525 #ifdef L_ffsdi2
526 #undef int
528 __ffsDI2 (DWtype u)
530 const DWunion uu = {.ll = u};
531 UWtype word, count, add;
533 if (uu.s.low != 0)
534 word = uu.s.low, add = 0;
535 else if (uu.s.high != 0)
536 word = uu.s.high, add = W_TYPE_SIZE;
537 else
538 return 0;
540 count_trailing_zeros (count, word);
541 return count + add + 1;
543 #endif
545 #ifdef L_muldi3
546 DWtype
547 __muldi3 (DWtype u, DWtype v)
549 const DWunion uu = {.ll = u};
550 const DWunion vv = {.ll = v};
551 DWunion w = {.ll = __umulsidi3 (uu.s.low, vv.s.low)};
553 w.s.high += ((UWtype) uu.s.low * (UWtype) vv.s.high
554 + (UWtype) uu.s.high * (UWtype) vv.s.low);
556 return w.ll;
558 #endif
560 #if (defined (L_udivdi3) || defined (L_divdi3) || \
561 defined (L_umoddi3) || defined (L_moddi3))
562 #if defined (sdiv_qrnnd)
563 #define L_udiv_w_sdiv
564 #endif
565 #endif
567 #ifdef L_udiv_w_sdiv
568 #if defined (sdiv_qrnnd)
569 #if (defined (L_udivdi3) || defined (L_divdi3) || \
570 defined (L_umoddi3) || defined (L_moddi3))
571 static inline __attribute__ ((__always_inline__))
572 #endif
573 UWtype
574 __udiv_w_sdiv (UWtype *rp, UWtype a1, UWtype a0, UWtype d)
576 UWtype q, r;
577 UWtype c0, c1, b1;
579 if ((Wtype) d >= 0)
581 if (a1 < d - a1 - (a0 >> (W_TYPE_SIZE - 1)))
583 /* Dividend, divisor, and quotient are nonnegative. */
584 sdiv_qrnnd (q, r, a1, a0, d);
586 else
588 /* Compute c1*2^32 + c0 = a1*2^32 + a0 - 2^31*d. */
589 sub_ddmmss (c1, c0, a1, a0, d >> 1, d << (W_TYPE_SIZE - 1));
590 /* Divide (c1*2^32 + c0) by d. */
591 sdiv_qrnnd (q, r, c1, c0, d);
592 /* Add 2^31 to quotient. */
593 q += (UWtype) 1 << (W_TYPE_SIZE - 1);
596 else
598 b1 = d >> 1; /* d/2, between 2^30 and 2^31 - 1 */
599 c1 = a1 >> 1; /* A/2 */
600 c0 = (a1 << (W_TYPE_SIZE - 1)) + (a0 >> 1);
602 if (a1 < b1) /* A < 2^32*b1, so A/2 < 2^31*b1 */
604 sdiv_qrnnd (q, r, c1, c0, b1); /* (A/2) / (d/2) */
606 r = 2*r + (a0 & 1); /* Remainder from A/(2*b1) */
607 if ((d & 1) != 0)
609 if (r >= q)
610 r = r - q;
611 else if (q - r <= d)
613 r = r - q + d;
614 q--;
616 else
618 r = r - q + 2*d;
619 q -= 2;
623 else if (c1 < b1) /* So 2^31 <= (A/2)/b1 < 2^32 */
625 c1 = (b1 - 1) - c1;
626 c0 = ~c0; /* logical NOT */
628 sdiv_qrnnd (q, r, c1, c0, b1); /* (A/2) / (d/2) */
630 q = ~q; /* (A/2)/b1 */
631 r = (b1 - 1) - r;
633 r = 2*r + (a0 & 1); /* A/(2*b1) */
635 if ((d & 1) != 0)
637 if (r >= q)
638 r = r - q;
639 else if (q - r <= d)
641 r = r - q + d;
642 q--;
644 else
646 r = r - q + 2*d;
647 q -= 2;
651 else /* Implies c1 = b1 */
652 { /* Hence a1 = d - 1 = 2*b1 - 1 */
653 if (a0 >= -d)
655 q = -1;
656 r = a0 + d;
658 else
660 q = -2;
661 r = a0 + 2*d;
666 *rp = r;
667 return q;
669 #else
670 /* If sdiv_qrnnd doesn't exist, define dummy __udiv_w_sdiv. */
671 UWtype
672 __udiv_w_sdiv (UWtype *rp __attribute__ ((__unused__)),
673 UWtype a1 __attribute__ ((__unused__)),
674 UWtype a0 __attribute__ ((__unused__)),
675 UWtype d __attribute__ ((__unused__)))
677 return 0;
679 #endif
680 #endif
682 #if (defined (L_udivdi3) || defined (L_divdi3) || \
683 defined (L_umoddi3) || defined (L_moddi3) || \
684 defined (L_divmoddi4))
685 #define L_udivmoddi4
686 #endif
688 #ifdef L_clz
689 const UQItype __clz_tab[256] =
691 0,1,2,2,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
692 6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,
693 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
694 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
695 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
696 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
697 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
698 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8
700 #endif
702 #ifdef L_clzsi2
703 #undef int
705 __clzSI2 (UWtype x)
707 Wtype ret;
709 count_leading_zeros (ret, x);
711 return ret;
713 #endif
715 #ifdef L_clzdi2
716 #undef int
718 __clzDI2 (UDWtype x)
720 const DWunion uu = {.ll = x};
721 UWtype word;
722 Wtype ret, add;
724 if (uu.s.high)
725 word = uu.s.high, add = 0;
726 else
727 word = uu.s.low, add = W_TYPE_SIZE;
729 count_leading_zeros (ret, word);
730 return ret + add;
732 #endif
734 #ifdef L_ctzsi2
735 #undef int
737 __ctzSI2 (UWtype x)
739 Wtype ret;
741 count_trailing_zeros (ret, x);
743 return ret;
745 #endif
747 #ifdef L_ctzdi2
748 #undef int
750 __ctzDI2 (UDWtype x)
752 const DWunion uu = {.ll = x};
753 UWtype word;
754 Wtype ret, add;
756 if (uu.s.low)
757 word = uu.s.low, add = 0;
758 else
759 word = uu.s.high, add = W_TYPE_SIZE;
761 count_trailing_zeros (ret, word);
762 return ret + add;
764 #endif
766 #ifdef L_clrsbsi2
767 #undef int
769 __clrsbSI2 (Wtype x)
771 Wtype ret;
773 if (x < 0)
774 x = ~x;
775 if (x == 0)
776 return W_TYPE_SIZE - 1;
777 count_leading_zeros (ret, x);
778 return ret - 1;
780 #endif
782 #ifdef L_clrsbdi2
783 #undef int
785 __clrsbDI2 (DWtype x)
787 const DWunion uu = {.ll = x};
788 UWtype word;
789 Wtype ret, add;
791 if (uu.s.high == 0)
792 word = uu.s.low, add = W_TYPE_SIZE;
793 else if (uu.s.high == -1)
794 word = ~uu.s.low, add = W_TYPE_SIZE;
795 else if (uu.s.high >= 0)
796 word = uu.s.high, add = 0;
797 else
798 word = ~uu.s.high, add = 0;
800 if (word == 0)
801 ret = W_TYPE_SIZE;
802 else
803 count_leading_zeros (ret, word);
805 return ret + add - 1;
807 #endif
809 #ifdef L_popcount_tab
810 const UQItype __popcount_tab[256] =
812 0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,
813 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
814 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
815 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
816 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
817 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
818 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
819 3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,4,5,5,6,5,6,6,7,5,6,6,7,6,7,7,8
821 #endif
823 #if defined(L_popcountsi2) || defined(L_popcountdi2)
824 #define POPCOUNTCST2(x) (((UWtype) x << __CHAR_BIT__) | x)
825 #define POPCOUNTCST4(x) (((UWtype) x << (2 * __CHAR_BIT__)) | x)
826 #define POPCOUNTCST8(x) (((UWtype) x << (4 * __CHAR_BIT__)) | x)
827 #if W_TYPE_SIZE == __CHAR_BIT__
828 #define POPCOUNTCST(x) x
829 #elif W_TYPE_SIZE == 2 * __CHAR_BIT__
830 #define POPCOUNTCST(x) POPCOUNTCST2 (x)
831 #elif W_TYPE_SIZE == 4 * __CHAR_BIT__
832 #define POPCOUNTCST(x) POPCOUNTCST4 (POPCOUNTCST2 (x))
833 #elif W_TYPE_SIZE == 8 * __CHAR_BIT__
834 #define POPCOUNTCST(x) POPCOUNTCST8 (POPCOUNTCST4 (POPCOUNTCST2 (x)))
835 #endif
836 #endif
838 #ifdef L_popcountsi2
839 #undef int
841 __popcountSI2 (UWtype x)
843 /* Force table lookup on targets like AVR and RL78 which only
844 pretend they have LIBGCC2_UNITS_PER_WORD 4, but actually
845 have 1, and other small word targets. */
846 #if __SIZEOF_INT__ > 2 && defined (POPCOUNTCST) && __CHAR_BIT__ == 8
847 x = x - ((x >> 1) & POPCOUNTCST (0x55));
848 x = (x & POPCOUNTCST (0x33)) + ((x >> 2) & POPCOUNTCST (0x33));
849 x = (x + (x >> 4)) & POPCOUNTCST (0x0F);
850 return (x * POPCOUNTCST (0x01)) >> (W_TYPE_SIZE - __CHAR_BIT__);
851 #else
852 int i, ret = 0;
854 for (i = 0; i < W_TYPE_SIZE; i += 8)
855 ret += __popcount_tab[(x >> i) & 0xff];
857 return ret;
858 #endif
860 #endif
862 #ifdef L_popcountdi2
863 #undef int
865 __popcountDI2 (UDWtype x)
867 /* Force table lookup on targets like AVR and RL78 which only
868 pretend they have LIBGCC2_UNITS_PER_WORD 4, but actually
869 have 1, and other small word targets. */
870 #if __SIZEOF_INT__ > 2 && defined (POPCOUNTCST) && __CHAR_BIT__ == 8
871 const DWunion uu = {.ll = x};
872 UWtype x1 = uu.s.low, x2 = uu.s.high;
873 x1 = x1 - ((x1 >> 1) & POPCOUNTCST (0x55));
874 x2 = x2 - ((x2 >> 1) & POPCOUNTCST (0x55));
875 x1 = (x1 & POPCOUNTCST (0x33)) + ((x1 >> 2) & POPCOUNTCST (0x33));
876 x2 = (x2 & POPCOUNTCST (0x33)) + ((x2 >> 2) & POPCOUNTCST (0x33));
877 x1 = (x1 + (x1 >> 4)) & POPCOUNTCST (0x0F);
878 x2 = (x2 + (x2 >> 4)) & POPCOUNTCST (0x0F);
879 x1 += x2;
880 return (x1 * POPCOUNTCST (0x01)) >> (W_TYPE_SIZE - __CHAR_BIT__);
881 #else
882 int i, ret = 0;
884 for (i = 0; i < 2*W_TYPE_SIZE; i += 8)
885 ret += __popcount_tab[(x >> i) & 0xff];
887 return ret;
888 #endif
890 #endif
892 #ifdef L_paritysi2
893 #undef int
895 __paritySI2 (UWtype x)
897 #if W_TYPE_SIZE > 64
898 # error "fill out the table"
899 #endif
900 #if W_TYPE_SIZE > 32
901 x ^= x >> 32;
902 #endif
903 #if W_TYPE_SIZE > 16
904 x ^= x >> 16;
905 #endif
906 x ^= x >> 8;
907 x ^= x >> 4;
908 x &= 0xf;
909 return (0x6996 >> x) & 1;
911 #endif
913 #ifdef L_paritydi2
914 #undef int
916 __parityDI2 (UDWtype x)
918 const DWunion uu = {.ll = x};
919 UWtype nx = uu.s.low ^ uu.s.high;
921 #if W_TYPE_SIZE > 64
922 # error "fill out the table"
923 #endif
924 #if W_TYPE_SIZE > 32
925 nx ^= nx >> 32;
926 #endif
927 #if W_TYPE_SIZE > 16
928 nx ^= nx >> 16;
929 #endif
930 nx ^= nx >> 8;
931 nx ^= nx >> 4;
932 nx &= 0xf;
933 return (0x6996 >> nx) & 1;
935 #endif
937 #ifdef L_udivmoddi4
938 #ifdef TARGET_HAS_NO_HW_DIVIDE
940 #if (defined (L_udivdi3) || defined (L_divdi3) || \
941 defined (L_umoddi3) || defined (L_moddi3) || \
942 defined (L_divmoddi4))
943 static inline __attribute__ ((__always_inline__))
944 #endif
945 UDWtype
946 __udivmoddi4 (UDWtype n, UDWtype d, UDWtype *rp)
948 UDWtype q = 0, r = n, y = d;
949 UWtype lz1, lz2, i, k;
951 /* Implements align divisor shift dividend method. This algorithm
952 aligns the divisor under the dividend and then perform number of
953 test-subtract iterations which shift the dividend left. Number of
954 iterations is k + 1 where k is the number of bit positions the
955 divisor must be shifted left to align it under the dividend.
956 quotient bits can be saved in the rightmost positions of the dividend
957 as it shifts left on each test-subtract iteration. */
959 if (y <= r)
961 lz1 = __builtin_clzll (d);
962 lz2 = __builtin_clzll (n);
964 k = lz1 - lz2;
965 y = (y << k);
967 /* Dividend can exceed 2 ^ (width − 1) − 1 but still be less than the
968 aligned divisor. Normal iteration can drops the high order bit
969 of the dividend. Therefore, first test-subtract iteration is a
970 special case, saving its quotient bit in a separate location and
971 not shifting the dividend. */
972 if (r >= y)
974 r = r - y;
975 q = (1ULL << k);
978 if (k > 0)
980 y = y >> 1;
982 /* k additional iterations where k regular test subtract shift
983 dividend iterations are done. */
984 i = k;
987 if (r >= y)
988 r = ((r - y) << 1) + 1;
989 else
990 r = (r << 1);
991 i = i - 1;
992 } while (i != 0);
994 /* First quotient bit is combined with the quotient bits resulting
995 from the k regular iterations. */
996 q = q + r;
997 r = r >> k;
998 q = q - (r << k);
1002 if (rp)
1003 *rp = r;
1004 return q;
1006 #else
1008 #if (defined (L_udivdi3) || defined (L_divdi3) || \
1009 defined (L_umoddi3) || defined (L_moddi3) || \
1010 defined (L_divmoddi4))
1011 static inline __attribute__ ((__always_inline__))
1012 #endif
1013 UDWtype
1014 __udivmoddi4 (UDWtype n, UDWtype d, UDWtype *rp)
1016 const DWunion nn = {.ll = n};
1017 const DWunion dd = {.ll = d};
1018 DWunion rr;
1019 UWtype d0, d1, n0, n1, n2;
1020 UWtype q0, q1;
1021 UWtype b, bm;
1023 d0 = dd.s.low;
1024 d1 = dd.s.high;
1025 n0 = nn.s.low;
1026 n1 = nn.s.high;
1028 #if !UDIV_NEEDS_NORMALIZATION
1029 if (d1 == 0)
1031 if (d0 > n1)
1033 /* 0q = nn / 0D */
1035 udiv_qrnnd (q0, n0, n1, n0, d0);
1036 q1 = 0;
1038 /* Remainder in n0. */
1040 else
1042 /* qq = NN / 0d */
1044 if (d0 == 0)
1045 d0 = 1 / d0; /* Divide intentionally by zero. */
1047 udiv_qrnnd (q1, n1, 0, n1, d0);
1048 udiv_qrnnd (q0, n0, n1, n0, d0);
1050 /* Remainder in n0. */
1053 if (rp != 0)
1055 rr.s.low = n0;
1056 rr.s.high = 0;
1057 *rp = rr.ll;
1061 #else /* UDIV_NEEDS_NORMALIZATION */
1063 if (d1 == 0)
1065 if (d0 > n1)
1067 /* 0q = nn / 0D */
1069 count_leading_zeros (bm, d0);
1071 if (bm != 0)
1073 /* Normalize, i.e. make the most significant bit of the
1074 denominator set. */
1076 d0 = d0 << bm;
1077 n1 = (n1 << bm) | (n0 >> (W_TYPE_SIZE - bm));
1078 n0 = n0 << bm;
1081 udiv_qrnnd (q0, n0, n1, n0, d0);
1082 q1 = 0;
1084 /* Remainder in n0 >> bm. */
1086 else
1088 /* qq = NN / 0d */
1090 if (d0 == 0)
1091 d0 = 1 / d0; /* Divide intentionally by zero. */
1093 count_leading_zeros (bm, d0);
1095 if (bm == 0)
1097 /* From (n1 >= d0) /\ (the most significant bit of d0 is set),
1098 conclude (the most significant bit of n1 is set) /\ (the
1099 leading quotient digit q1 = 1).
1101 This special case is necessary, not an optimization.
1102 (Shifts counts of W_TYPE_SIZE are undefined.) */
1104 n1 -= d0;
1105 q1 = 1;
1107 else
1109 /* Normalize. */
1111 b = W_TYPE_SIZE - bm;
1113 d0 = d0 << bm;
1114 n2 = n1 >> b;
1115 n1 = (n1 << bm) | (n0 >> b);
1116 n0 = n0 << bm;
1118 udiv_qrnnd (q1, n1, n2, n1, d0);
1121 /* n1 != d0... */
1123 udiv_qrnnd (q0, n0, n1, n0, d0);
1125 /* Remainder in n0 >> bm. */
1128 if (rp != 0)
1130 rr.s.low = n0 >> bm;
1131 rr.s.high = 0;
1132 *rp = rr.ll;
1135 #endif /* UDIV_NEEDS_NORMALIZATION */
1137 else
1139 if (d1 > n1)
1141 /* 00 = nn / DD */
1143 q0 = 0;
1144 q1 = 0;
1146 /* Remainder in n1n0. */
1147 if (rp != 0)
1149 rr.s.low = n0;
1150 rr.s.high = n1;
1151 *rp = rr.ll;
1154 else
1156 /* 0q = NN / dd */
1158 count_leading_zeros (bm, d1);
1159 if (bm == 0)
1161 /* From (n1 >= d1) /\ (the most significant bit of d1 is set),
1162 conclude (the most significant bit of n1 is set) /\ (the
1163 quotient digit q0 = 0 or 1).
1165 This special case is necessary, not an optimization. */
1167 /* The condition on the next line takes advantage of that
1168 n1 >= d1 (true due to program flow). */
1169 if (n1 > d1 || n0 >= d0)
1171 q0 = 1;
1172 sub_ddmmss (n1, n0, n1, n0, d1, d0);
1174 else
1175 q0 = 0;
1177 q1 = 0;
1179 if (rp != 0)
1181 rr.s.low = n0;
1182 rr.s.high = n1;
1183 *rp = rr.ll;
1186 else
1188 UWtype m1, m0;
1189 /* Normalize. */
1191 b = W_TYPE_SIZE - bm;
1193 d1 = (d1 << bm) | (d0 >> b);
1194 d0 = d0 << bm;
1195 n2 = n1 >> b;
1196 n1 = (n1 << bm) | (n0 >> b);
1197 n0 = n0 << bm;
1199 udiv_qrnnd (q0, n1, n2, n1, d1);
1200 umul_ppmm (m1, m0, q0, d0);
1202 if (m1 > n1 || (m1 == n1 && m0 > n0))
1204 q0--;
1205 sub_ddmmss (m1, m0, m1, m0, d1, d0);
1208 q1 = 0;
1210 /* Remainder in (n1n0 - m1m0) >> bm. */
1211 if (rp != 0)
1213 sub_ddmmss (n1, n0, n1, n0, m1, m0);
1214 rr.s.low = (n1 << b) | (n0 >> bm);
1215 rr.s.high = n1 >> bm;
1216 *rp = rr.ll;
1222 const DWunion ww = {{.low = q0, .high = q1}};
1223 return ww.ll;
1225 #endif
1226 #endif
1228 #ifdef L_divdi3
1229 DWtype
1230 __divdi3 (DWtype u, DWtype v)
1232 Wtype c = 0;
1233 DWunion uu = {.ll = u};
1234 DWunion vv = {.ll = v};
1235 DWtype w;
1237 if (uu.s.high < 0)
1238 c = ~c,
1239 uu.ll = -uu.ll;
1240 if (vv.s.high < 0)
1241 c = ~c,
1242 vv.ll = -vv.ll;
1244 w = __udivmoddi4 (uu.ll, vv.ll, (UDWtype *) 0);
1245 if (c)
1246 w = -w;
1248 return w;
1250 #endif
1252 #ifdef L_moddi3
1253 DWtype
1254 __moddi3 (DWtype u, DWtype v)
1256 Wtype c = 0;
1257 DWunion uu = {.ll = u};
1258 DWunion vv = {.ll = v};
1259 DWtype w;
1261 if (uu.s.high < 0)
1262 c = ~c,
1263 uu.ll = -uu.ll;
1264 if (vv.s.high < 0)
1265 vv.ll = -vv.ll;
1267 (void) __udivmoddi4 (uu.ll, vv.ll, (UDWtype*)&w);
1268 if (c)
1269 w = -w;
1271 return w;
1273 #endif
1275 #ifdef L_divmoddi4
1276 DWtype
1277 __divmoddi4 (DWtype u, DWtype v, DWtype *rp)
1279 Wtype c1 = 0, c2 = 0;
1280 DWunion uu = {.ll = u};
1281 DWunion vv = {.ll = v};
1282 DWtype w;
1283 DWtype r;
1285 if (uu.s.high < 0)
1286 c1 = ~c1, c2 = ~c2,
1287 uu.ll = -uu.ll;
1288 if (vv.s.high < 0)
1289 c1 = ~c1,
1290 vv.ll = -vv.ll;
1292 w = __udivmoddi4 (uu.ll, vv.ll, (UDWtype*)&r);
1293 if (c1)
1294 w = -w;
1295 if (c2)
1296 r = -r;
1298 *rp = r;
1299 return w;
1301 #endif
1303 #ifdef L_umoddi3
1304 UDWtype
1305 __umoddi3 (UDWtype u, UDWtype v)
1307 UDWtype w;
1309 (void) __udivmoddi4 (u, v, &w);
1311 return w;
1313 #endif
1315 #ifdef L_udivdi3
1316 UDWtype
1317 __udivdi3 (UDWtype n, UDWtype d)
1319 return __udivmoddi4 (n, d, (UDWtype *) 0);
1321 #endif
1323 #ifdef L_cmpdi2
1324 cmp_return_type
1325 __cmpdi2 (DWtype a, DWtype b)
1327 const DWunion au = {.ll = a};
1328 const DWunion bu = {.ll = b};
1330 if (au.s.high < bu.s.high)
1331 return 0;
1332 else if (au.s.high > bu.s.high)
1333 return 2;
1334 if ((UWtype) au.s.low < (UWtype) bu.s.low)
1335 return 0;
1336 else if ((UWtype) au.s.low > (UWtype) bu.s.low)
1337 return 2;
1338 return 1;
1340 #endif
1342 #ifdef L_ucmpdi2
1343 cmp_return_type
1344 __ucmpdi2 (DWtype a, DWtype b)
1346 const DWunion au = {.ll = a};
1347 const DWunion bu = {.ll = b};
1349 if ((UWtype) au.s.high < (UWtype) bu.s.high)
1350 return 0;
1351 else if ((UWtype) au.s.high > (UWtype) bu.s.high)
1352 return 2;
1353 if ((UWtype) au.s.low < (UWtype) bu.s.low)
1354 return 0;
1355 else if ((UWtype) au.s.low > (UWtype) bu.s.low)
1356 return 2;
1357 return 1;
1359 #endif
1361 #if defined(L_fixunstfdi) && LIBGCC2_HAS_TF_MODE
1362 UDWtype
1363 __fixunstfDI (TFtype a)
1365 if (a < 0)
1366 return 0;
1368 /* Compute high word of result, as a flonum. */
1369 const TFtype b = (a / Wtype_MAXp1_F);
1370 /* Convert that to fixed (but not to DWtype!),
1371 and shift it into the high word. */
1372 UDWtype v = (UWtype) b;
1373 v <<= W_TYPE_SIZE;
1374 /* Remove high part from the TFtype, leaving the low part as flonum. */
1375 a -= (TFtype)v;
1376 /* Convert that to fixed (but not to DWtype!) and add it in.
1377 Sometimes A comes out negative. This is significant, since
1378 A has more bits than a long int does. */
1379 if (a < 0)
1380 v -= (UWtype) (- a);
1381 else
1382 v += (UWtype) a;
1383 return v;
1385 #endif
1387 #if defined(L_fixtfdi) && LIBGCC2_HAS_TF_MODE
1388 DWtype
1389 __fixtfdi (TFtype a)
1391 if (a < 0)
1392 return - __fixunstfDI (-a);
1393 return __fixunstfDI (a);
1395 #endif
1397 #if defined(L_fixunsxfdi) && LIBGCC2_HAS_XF_MODE
1398 UDWtype
1399 __fixunsxfDI (XFtype a)
1401 if (a < 0)
1402 return 0;
1404 /* Compute high word of result, as a flonum. */
1405 const XFtype b = (a / Wtype_MAXp1_F);
1406 /* Convert that to fixed (but not to DWtype!),
1407 and shift it into the high word. */
1408 UDWtype v = (UWtype) b;
1409 v <<= W_TYPE_SIZE;
1410 /* Remove high part from the XFtype, leaving the low part as flonum. */
1411 a -= (XFtype)v;
1412 /* Convert that to fixed (but not to DWtype!) and add it in.
1413 Sometimes A comes out negative. This is significant, since
1414 A has more bits than a long int does. */
1415 if (a < 0)
1416 v -= (UWtype) (- a);
1417 else
1418 v += (UWtype) a;
1419 return v;
1421 #endif
1423 #if defined(L_fixxfdi) && LIBGCC2_HAS_XF_MODE
1424 DWtype
1425 __fixxfdi (XFtype a)
1427 if (a < 0)
1428 return - __fixunsxfDI (-a);
1429 return __fixunsxfDI (a);
1431 #endif
1433 #if defined(L_fixunsdfdi) && LIBGCC2_HAS_DF_MODE
1434 UDWtype
1435 __fixunsdfDI (DFtype a)
1437 /* Get high part of result. The division here will just moves the radix
1438 point and will not cause any rounding. Then the conversion to integral
1439 type chops result as desired. */
1440 const UWtype hi = a / Wtype_MAXp1_F;
1442 /* Get low part of result. Convert `hi' to floating type and scale it back,
1443 then subtract this from the number being converted. This leaves the low
1444 part. Convert that to integral type. */
1445 const UWtype lo = a - (DFtype) hi * Wtype_MAXp1_F;
1447 /* Assemble result from the two parts. */
1448 return ((UDWtype) hi << W_TYPE_SIZE) | lo;
1450 #endif
1452 #if defined(L_fixdfdi) && LIBGCC2_HAS_DF_MODE
1453 DWtype
1454 __fixdfdi (DFtype a)
1456 if (a < 0)
1457 return - __fixunsdfDI (-a);
1458 return __fixunsdfDI (a);
1460 #endif
1462 #if defined(L_fixunssfdi) && LIBGCC2_HAS_SF_MODE
1463 UDWtype
1464 __fixunssfDI (SFtype a)
1466 #if LIBGCC2_HAS_DF_MODE
1467 /* Convert the SFtype to a DFtype, because that is surely not going
1468 to lose any bits. Some day someone else can write a faster version
1469 that avoids converting to DFtype, and verify it really works right. */
1470 const DFtype dfa = a;
1472 /* Get high part of result. The division here will just moves the radix
1473 point and will not cause any rounding. Then the conversion to integral
1474 type chops result as desired. */
1475 const UWtype hi = dfa / Wtype_MAXp1_F;
1477 /* Get low part of result. Convert `hi' to floating type and scale it back,
1478 then subtract this from the number being converted. This leaves the low
1479 part. Convert that to integral type. */
1480 const UWtype lo = dfa - (DFtype) hi * Wtype_MAXp1_F;
1482 /* Assemble result from the two parts. */
1483 return ((UDWtype) hi << W_TYPE_SIZE) | lo;
1484 #elif FLT_MANT_DIG < W_TYPE_SIZE
1485 if (a < 1)
1486 return 0;
1487 if (a < Wtype_MAXp1_F)
1488 return (UWtype)a;
1489 if (a < Wtype_MAXp1_F * Wtype_MAXp1_F)
1491 /* Since we know that there are fewer significant bits in the SFmode
1492 quantity than in a word, we know that we can convert out all the
1493 significant bits in one step, and thus avoid losing bits. */
1495 /* ??? This following loop essentially performs frexpf. If we could
1496 use the real libm function, or poke at the actual bits of the fp
1497 format, it would be significantly faster. */
1499 UWtype shift = 0, counter;
1500 SFtype msb;
1502 a /= Wtype_MAXp1_F;
1503 for (counter = W_TYPE_SIZE / 2; counter != 0; counter >>= 1)
1505 SFtype counterf = (UWtype)1 << counter;
1506 if (a >= counterf)
1508 shift |= counter;
1509 a /= counterf;
1513 /* Rescale into the range of one word, extract the bits of that
1514 one word, and shift the result into position. */
1515 a *= Wtype_MAXp1_F;
1516 counter = a;
1517 return (DWtype)counter << shift;
1519 return -1;
1520 #else
1521 # error
1522 #endif
1524 #endif
1526 #if defined(L_fixsfdi) && LIBGCC2_HAS_SF_MODE
1527 DWtype
1528 __fixsfdi (SFtype a)
1530 if (a < 0)
1531 return - __fixunssfDI (-a);
1532 return __fixunssfDI (a);
1534 #endif
1536 #if defined(L_floatdixf) && LIBGCC2_HAS_XF_MODE
1537 XFtype
1538 __floatdixf (DWtype u)
1540 #if W_TYPE_SIZE > __LIBGCC_XF_MANT_DIG__
1541 # error
1542 #endif
1543 XFtype d = (Wtype) (u >> W_TYPE_SIZE);
1544 d *= Wtype_MAXp1_F;
1545 d += (UWtype)u;
1546 return d;
1548 #endif
1550 #if defined(L_floatundixf) && LIBGCC2_HAS_XF_MODE
1551 XFtype
1552 __floatundixf (UDWtype u)
1554 #if W_TYPE_SIZE > __LIBGCC_XF_MANT_DIG__
1555 # error
1556 #endif
1557 XFtype d = (UWtype) (u >> W_TYPE_SIZE);
1558 d *= Wtype_MAXp1_F;
1559 d += (UWtype)u;
1560 return d;
1562 #endif
1564 #if defined(L_floatditf) && LIBGCC2_HAS_TF_MODE
1565 TFtype
1566 __floatditf (DWtype u)
1568 #if W_TYPE_SIZE > __LIBGCC_TF_MANT_DIG__
1569 # error
1570 #endif
1571 TFtype d = (Wtype) (u >> W_TYPE_SIZE);
1572 d *= Wtype_MAXp1_F;
1573 d += (UWtype)u;
1574 return d;
1576 #endif
1578 #if defined(L_floatunditf) && LIBGCC2_HAS_TF_MODE
1579 TFtype
1580 __floatunditf (UDWtype u)
1582 #if W_TYPE_SIZE > __LIBGCC_TF_MANT_DIG__
1583 # error
1584 #endif
1585 TFtype d = (UWtype) (u >> W_TYPE_SIZE);
1586 d *= Wtype_MAXp1_F;
1587 d += (UWtype)u;
1588 return d;
1590 #endif
1592 #if (defined(L_floatdisf) && LIBGCC2_HAS_SF_MODE) \
1593 || (defined(L_floatdidf) && LIBGCC2_HAS_DF_MODE)
1594 #define DI_SIZE (W_TYPE_SIZE * 2)
1595 #define F_MODE_OK(SIZE) \
1596 (SIZE < DI_SIZE \
1597 && SIZE > (DI_SIZE - SIZE + FSSIZE) \
1598 && !AVOID_FP_TYPE_CONVERSION(SIZE))
1599 #if defined(L_floatdisf)
1600 #define FUNC __floatdisf
1601 #define FSTYPE SFtype
1602 #define FSSIZE __LIBGCC_SF_MANT_DIG__
1603 #else
1604 #define FUNC __floatdidf
1605 #define FSTYPE DFtype
1606 #define FSSIZE __LIBGCC_DF_MANT_DIG__
1607 #endif
1609 FSTYPE
1610 FUNC (DWtype u)
1612 #if FSSIZE >= W_TYPE_SIZE
1613 /* When the word size is small, we never get any rounding error. */
1614 FSTYPE f = (Wtype) (u >> W_TYPE_SIZE);
1615 f *= Wtype_MAXp1_F;
1616 f += (UWtype)u;
1617 return f;
1618 #elif (LIBGCC2_HAS_DF_MODE && F_MODE_OK (__LIBGCC_DF_MANT_DIG__)) \
1619 || (LIBGCC2_HAS_XF_MODE && F_MODE_OK (__LIBGCC_XF_MANT_DIG__)) \
1620 || (LIBGCC2_HAS_TF_MODE && F_MODE_OK (__LIBGCC_TF_MANT_DIG__))
1622 #if (LIBGCC2_HAS_DF_MODE && F_MODE_OK (__LIBGCC_DF_MANT_DIG__))
1623 # define FSIZE __LIBGCC_DF_MANT_DIG__
1624 # define FTYPE DFtype
1625 #elif (LIBGCC2_HAS_XF_MODE && F_MODE_OK (__LIBGCC_XF_MANT_DIG__))
1626 # define FSIZE __LIBGCC_XF_MANT_DIG__
1627 # define FTYPE XFtype
1628 #elif (LIBGCC2_HAS_TF_MODE && F_MODE_OK (__LIBGCC_TF_MANT_DIG__))
1629 # define FSIZE __LIBGCC_TF_MANT_DIG__
1630 # define FTYPE TFtype
1631 #else
1632 # error
1633 #endif
1635 #define REP_BIT ((UDWtype) 1 << (DI_SIZE - FSIZE))
1637 /* Protect against double-rounding error.
1638 Represent any low-order bits, that might be truncated by a bit that
1639 won't be lost. The bit can go in anywhere below the rounding position
1640 of the FSTYPE. A fixed mask and bit position handles all usual
1641 configurations. */
1642 if (! (- ((DWtype) 1 << FSIZE) < u
1643 && u < ((DWtype) 1 << FSIZE)))
1645 if ((UDWtype) u & (REP_BIT - 1))
1647 u &= ~ (REP_BIT - 1);
1648 u |= REP_BIT;
1652 /* Do the calculation in a wider type so that we don't lose any of
1653 the precision of the high word while multiplying it. */
1654 FTYPE f = (Wtype) (u >> W_TYPE_SIZE);
1655 f *= Wtype_MAXp1_F;
1656 f += (UWtype)u;
1657 return (FSTYPE) f;
1658 #else
1659 #if FSSIZE >= W_TYPE_SIZE - 2
1660 # error
1661 #endif
1662 /* Finally, the word size is larger than the number of bits in the
1663 required FSTYPE, and we've got no suitable wider type. The only
1664 way to avoid double rounding is to special case the
1665 extraction. */
1667 /* If there are no high bits set, fall back to one conversion. */
1668 if ((Wtype)u == u)
1669 return (FSTYPE)(Wtype)u;
1671 /* Otherwise, find the power of two. */
1672 Wtype hi = u >> W_TYPE_SIZE;
1673 if (hi < 0)
1674 hi = -(UWtype) hi;
1676 UWtype count, shift;
1677 #if !defined (COUNT_LEADING_ZEROS_0) || COUNT_LEADING_ZEROS_0 != W_TYPE_SIZE
1678 if (hi == 0)
1679 count = W_TYPE_SIZE;
1680 else
1681 #endif
1682 count_leading_zeros (count, hi);
1684 /* No leading bits means u == minimum. */
1685 if (count == 0)
1686 return -(Wtype_MAXp1_F * (Wtype_MAXp1_F / 2));
1688 shift = 1 + W_TYPE_SIZE - count;
1690 /* Shift down the most significant bits. */
1691 hi = u >> shift;
1693 /* If we lost any nonzero bits, set the lsb to ensure correct rounding. */
1694 if ((UWtype)u << (W_TYPE_SIZE - shift))
1695 hi |= 1;
1697 /* Convert the one word of data, and rescale. */
1698 FSTYPE f = hi, e;
1699 if (shift == W_TYPE_SIZE)
1700 e = Wtype_MAXp1_F;
1701 /* The following two cases could be merged if we knew that the target
1702 supported a native unsigned->float conversion. More often, we only
1703 have a signed conversion, and have to add extra fixup code. */
1704 else if (shift == W_TYPE_SIZE - 1)
1705 e = Wtype_MAXp1_F / 2;
1706 else
1707 e = (Wtype)1 << shift;
1708 return f * e;
1709 #endif
1711 #endif
1713 #if (defined(L_floatundisf) && LIBGCC2_HAS_SF_MODE) \
1714 || (defined(L_floatundidf) && LIBGCC2_HAS_DF_MODE)
1715 #define DI_SIZE (W_TYPE_SIZE * 2)
1716 #define F_MODE_OK(SIZE) \
1717 (SIZE < DI_SIZE \
1718 && SIZE > (DI_SIZE - SIZE + FSSIZE) \
1719 && !AVOID_FP_TYPE_CONVERSION(SIZE))
1720 #if defined(L_floatundisf)
1721 #define FUNC __floatundisf
1722 #define FSTYPE SFtype
1723 #define FSSIZE __LIBGCC_SF_MANT_DIG__
1724 #else
1725 #define FUNC __floatundidf
1726 #define FSTYPE DFtype
1727 #define FSSIZE __LIBGCC_DF_MANT_DIG__
1728 #endif
1730 FSTYPE
1731 FUNC (UDWtype u)
1733 #if FSSIZE >= W_TYPE_SIZE
1734 /* When the word size is small, we never get any rounding error. */
1735 FSTYPE f = (UWtype) (u >> W_TYPE_SIZE);
1736 f *= Wtype_MAXp1_F;
1737 f += (UWtype)u;
1738 return f;
1739 #elif (LIBGCC2_HAS_DF_MODE && F_MODE_OK (__LIBGCC_DF_MANT_DIG__)) \
1740 || (LIBGCC2_HAS_XF_MODE && F_MODE_OK (__LIBGCC_XF_MANT_DIG__)) \
1741 || (LIBGCC2_HAS_TF_MODE && F_MODE_OK (__LIBGCC_TF_MANT_DIG__))
1743 #if (LIBGCC2_HAS_DF_MODE && F_MODE_OK (__LIBGCC_DF_MANT_DIG__))
1744 # define FSIZE __LIBGCC_DF_MANT_DIG__
1745 # define FTYPE DFtype
1746 #elif (LIBGCC2_HAS_XF_MODE && F_MODE_OK (__LIBGCC_XF_MANT_DIG__))
1747 # define FSIZE __LIBGCC_XF_MANT_DIG__
1748 # define FTYPE XFtype
1749 #elif (LIBGCC2_HAS_TF_MODE && F_MODE_OK (__LIBGCC_TF_MANT_DIG__))
1750 # define FSIZE __LIBGCC_TF_MANT_DIG__
1751 # define FTYPE TFtype
1752 #else
1753 # error
1754 #endif
1756 #define REP_BIT ((UDWtype) 1 << (DI_SIZE - FSIZE))
1758 /* Protect against double-rounding error.
1759 Represent any low-order bits, that might be truncated by a bit that
1760 won't be lost. The bit can go in anywhere below the rounding position
1761 of the FSTYPE. A fixed mask and bit position handles all usual
1762 configurations. */
1763 if (u >= ((UDWtype) 1 << FSIZE))
1765 if ((UDWtype) u & (REP_BIT - 1))
1767 u &= ~ (REP_BIT - 1);
1768 u |= REP_BIT;
1772 /* Do the calculation in a wider type so that we don't lose any of
1773 the precision of the high word while multiplying it. */
1774 FTYPE f = (UWtype) (u >> W_TYPE_SIZE);
1775 f *= Wtype_MAXp1_F;
1776 f += (UWtype)u;
1777 return (FSTYPE) f;
1778 #else
1779 #if FSSIZE == W_TYPE_SIZE - 1
1780 # error
1781 #endif
1782 /* Finally, the word size is larger than the number of bits in the
1783 required FSTYPE, and we've got no suitable wider type. The only
1784 way to avoid double rounding is to special case the
1785 extraction. */
1787 /* If there are no high bits set, fall back to one conversion. */
1788 if ((UWtype)u == u)
1789 return (FSTYPE)(UWtype)u;
1791 /* Otherwise, find the power of two. */
1792 UWtype hi = u >> W_TYPE_SIZE;
1794 UWtype count, shift;
1795 count_leading_zeros (count, hi);
1797 shift = W_TYPE_SIZE - count;
1799 /* Shift down the most significant bits. */
1800 hi = u >> shift;
1802 /* If we lost any nonzero bits, set the lsb to ensure correct rounding. */
1803 if ((UWtype)u << (W_TYPE_SIZE - shift))
1804 hi |= 1;
1806 /* Convert the one word of data, and rescale. */
1807 FSTYPE f = hi, e;
1808 if (shift == W_TYPE_SIZE)
1809 e = Wtype_MAXp1_F;
1810 /* The following two cases could be merged if we knew that the target
1811 supported a native unsigned->float conversion. More often, we only
1812 have a signed conversion, and have to add extra fixup code. */
1813 else if (shift == W_TYPE_SIZE - 1)
1814 e = Wtype_MAXp1_F / 2;
1815 else
1816 e = (Wtype)1 << shift;
1817 return f * e;
1818 #endif
1820 #endif
1822 #if defined(L_fixunsxfsi) && LIBGCC2_HAS_XF_MODE
1823 UWtype
1824 __fixunsxfSI (XFtype a)
1826 if (a >= - (DFtype) Wtype_MIN)
1827 return (Wtype) (a + Wtype_MIN) - Wtype_MIN;
1828 return (Wtype) a;
1830 #endif
1832 #if defined(L_fixunsdfsi) && LIBGCC2_HAS_DF_MODE
1833 UWtype
1834 __fixunsdfSI (DFtype a)
1836 if (a >= - (DFtype) Wtype_MIN)
1837 return (Wtype) (a + Wtype_MIN) - Wtype_MIN;
1838 return (Wtype) a;
1840 #endif
1842 #if defined(L_fixunssfsi) && LIBGCC2_HAS_SF_MODE
1843 UWtype
1844 __fixunssfSI (SFtype a)
1846 if (a >= - (SFtype) Wtype_MIN)
1847 return (Wtype) (a + Wtype_MIN) - Wtype_MIN;
1848 return (Wtype) a;
1850 #endif
1852 /* Integer power helper used from __builtin_powi for non-constant
1853 exponents. */
1855 #if (defined(L_powisf2) && LIBGCC2_HAS_SF_MODE) \
1856 || (defined(L_powidf2) && LIBGCC2_HAS_DF_MODE) \
1857 || (defined(L_powixf2) && LIBGCC2_HAS_XF_MODE) \
1858 || (defined(L_powitf2) && LIBGCC2_HAS_TF_MODE)
1859 # if defined(L_powisf2)
1860 # define TYPE SFtype
1861 # define NAME __powisf2
1862 # elif defined(L_powidf2)
1863 # define TYPE DFtype
1864 # define NAME __powidf2
1865 # elif defined(L_powixf2)
1866 # define TYPE XFtype
1867 # define NAME __powixf2
1868 # elif defined(L_powitf2)
1869 # define TYPE TFtype
1870 # define NAME __powitf2
1871 # endif
1873 #undef int
1874 #undef unsigned
1875 TYPE
1876 NAME (TYPE x, int m)
1878 unsigned int n = m < 0 ? -m : m;
1879 TYPE y = n % 2 ? x : 1;
1880 while (n >>= 1)
1882 x = x * x;
1883 if (n % 2)
1884 y = y * x;
1886 return m < 0 ? 1/y : y;
1889 #endif
1891 #if((defined(L_mulhc3) || defined(L_divhc3)) && LIBGCC2_HAS_HF_MODE) \
1892 || ((defined(L_mulsc3) || defined(L_divsc3)) && LIBGCC2_HAS_SF_MODE) \
1893 || ((defined(L_muldc3) || defined(L_divdc3)) && LIBGCC2_HAS_DF_MODE) \
1894 || ((defined(L_mulxc3) || defined(L_divxc3)) && LIBGCC2_HAS_XF_MODE) \
1895 || ((defined(L_multc3) || defined(L_divtc3)) && LIBGCC2_HAS_TF_MODE)
1897 #undef float
1898 #undef double
1899 #undef long
1901 #if defined(L_mulhc3) || defined(L_divhc3)
1902 # define MTYPE HFtype
1903 # define CTYPE HCtype
1904 # define MODE hc
1905 # define CEXT __LIBGCC_HF_FUNC_EXT__
1906 # define NOTRUNC (!__LIBGCC_HF_EXCESS_PRECISION__)
1907 #elif defined(L_mulsc3) || defined(L_divsc3)
1908 # define MTYPE SFtype
1909 # define CTYPE SCtype
1910 # define MODE sc
1911 # define CEXT __LIBGCC_SF_FUNC_EXT__
1912 # define NOTRUNC (!__LIBGCC_SF_EXCESS_PRECISION__)
1913 #elif defined(L_muldc3) || defined(L_divdc3)
1914 # define MTYPE DFtype
1915 # define CTYPE DCtype
1916 # define MODE dc
1917 # define CEXT __LIBGCC_DF_FUNC_EXT__
1918 # define NOTRUNC (!__LIBGCC_DF_EXCESS_PRECISION__)
1919 #elif defined(L_mulxc3) || defined(L_divxc3)
1920 # define MTYPE XFtype
1921 # define CTYPE XCtype
1922 # define MODE xc
1923 # define CEXT __LIBGCC_XF_FUNC_EXT__
1924 # define NOTRUNC (!__LIBGCC_XF_EXCESS_PRECISION__)
1925 #elif defined(L_multc3) || defined(L_divtc3)
1926 # define MTYPE TFtype
1927 # define CTYPE TCtype
1928 # define MODE tc
1929 # define CEXT __LIBGCC_TF_FUNC_EXT__
1930 # define NOTRUNC (!__LIBGCC_TF_EXCESS_PRECISION__)
1931 #else
1932 # error
1933 #endif
1935 #define CONCAT3(A,B,C) _CONCAT3(A,B,C)
1936 #define _CONCAT3(A,B,C) A##B##C
1938 #define CONCAT2(A,B) _CONCAT2(A,B)
1939 #define _CONCAT2(A,B) A##B
1941 /* All of these would be present in a full C99 implementation of <math.h>
1942 and <complex.h>. Our problem is that only a few systems have such full
1943 implementations. Further, libgcc_s.so isn't currently linked against
1944 libm.so, and even for systems that do provide full C99, the extra overhead
1945 of all programs using libgcc having to link against libm. So avoid it. */
1947 #define isnan(x) __builtin_expect ((x) != (x), 0)
1948 #define isfinite(x) __builtin_expect (!isnan((x) - (x)), 1)
1949 #define isinf(x) __builtin_expect (!isnan(x) & !isfinite(x), 0)
1951 #define INFINITY CONCAT2(__builtin_huge_val, CEXT) ()
1952 #define I 1i
1954 /* Helpers to make the following code slightly less gross. */
1955 #define COPYSIGN CONCAT2(__builtin_copysign, CEXT)
1956 #define FABS CONCAT2(__builtin_fabs, CEXT)
1958 /* Verify that MTYPE matches up with CEXT. */
1959 extern void *compile_type_assert[sizeof(INFINITY) == sizeof(MTYPE) ? 1 : -1];
1961 /* Ensure that we've lost any extra precision. */
1962 #if NOTRUNC
1963 # define TRUNC(x)
1964 #else
1965 # define TRUNC(x) __asm__ ("" : "=m"(x) : "m"(x))
1966 #endif
1968 #if defined(L_mulhc3) || defined(L_mulsc3) || defined(L_muldc3) \
1969 || defined(L_mulxc3) || defined(L_multc3)
1971 CTYPE
1972 CONCAT3(__mul,MODE,3) (MTYPE a, MTYPE b, MTYPE c, MTYPE d)
1974 MTYPE ac, bd, ad, bc, x, y;
1975 CTYPE res;
1977 ac = a * c;
1978 bd = b * d;
1979 ad = a * d;
1980 bc = b * c;
1982 TRUNC (ac);
1983 TRUNC (bd);
1984 TRUNC (ad);
1985 TRUNC (bc);
1987 x = ac - bd;
1988 y = ad + bc;
1990 if (isnan (x) && isnan (y))
1992 /* Recover infinities that computed as NaN + iNaN. */
1993 _Bool recalc = 0;
1994 if (isinf (a) || isinf (b))
1996 /* z is infinite. "Box" the infinity and change NaNs in
1997 the other factor to 0. */
1998 a = COPYSIGN (isinf (a) ? 1 : 0, a);
1999 b = COPYSIGN (isinf (b) ? 1 : 0, b);
2000 if (isnan (c)) c = COPYSIGN (0, c);
2001 if (isnan (d)) d = COPYSIGN (0, d);
2002 recalc = 1;
2004 if (isinf (c) || isinf (d))
2006 /* w is infinite. "Box" the infinity and change NaNs in
2007 the other factor to 0. */
2008 c = COPYSIGN (isinf (c) ? 1 : 0, c);
2009 d = COPYSIGN (isinf (d) ? 1 : 0, d);
2010 if (isnan (a)) a = COPYSIGN (0, a);
2011 if (isnan (b)) b = COPYSIGN (0, b);
2012 recalc = 1;
2014 if (!recalc
2015 && (isinf (ac) || isinf (bd)
2016 || isinf (ad) || isinf (bc)))
2018 /* Recover infinities from overflow by changing NaNs to 0. */
2019 if (isnan (a)) a = COPYSIGN (0, a);
2020 if (isnan (b)) b = COPYSIGN (0, b);
2021 if (isnan (c)) c = COPYSIGN (0, c);
2022 if (isnan (d)) d = COPYSIGN (0, d);
2023 recalc = 1;
2025 if (recalc)
2027 x = INFINITY * (a * c - b * d);
2028 y = INFINITY * (a * d + b * c);
2032 __real__ res = x;
2033 __imag__ res = y;
2034 return res;
2036 #endif /* complex multiply */
2038 #if defined(L_divhc3) || defined(L_divsc3) || defined(L_divdc3) \
2039 || defined(L_divxc3) || defined(L_divtc3)
2041 CTYPE
2042 CONCAT3(__div,MODE,3) (MTYPE a, MTYPE b, MTYPE c, MTYPE d)
2044 MTYPE denom, ratio, x, y;
2045 CTYPE res;
2047 /* ??? We can get better behavior from logarithmic scaling instead of
2048 the division. But that would mean starting to link libgcc against
2049 libm. We could implement something akin to ldexp/frexp as gcc builtins
2050 fairly easily... */
2051 if (FABS (c) < FABS (d))
2053 ratio = c / d;
2054 denom = (c * ratio) + d;
2055 x = ((a * ratio) + b) / denom;
2056 y = ((b * ratio) - a) / denom;
2058 else
2060 ratio = d / c;
2061 denom = (d * ratio) + c;
2062 x = ((b * ratio) + a) / denom;
2063 y = (b - (a * ratio)) / denom;
2066 /* Recover infinities and zeros that computed as NaN+iNaN; the only cases
2067 are nonzero/zero, infinite/finite, and finite/infinite. */
2068 if (isnan (x) && isnan (y))
2070 if (c == 0.0 && d == 0.0 && (!isnan (a) || !isnan (b)))
2072 x = COPYSIGN (INFINITY, c) * a;
2073 y = COPYSIGN (INFINITY, c) * b;
2075 else if ((isinf (a) || isinf (b)) && isfinite (c) && isfinite (d))
2077 a = COPYSIGN (isinf (a) ? 1 : 0, a);
2078 b = COPYSIGN (isinf (b) ? 1 : 0, b);
2079 x = INFINITY * (a * c + b * d);
2080 y = INFINITY * (b * c - a * d);
2082 else if ((isinf (c) || isinf (d)) && isfinite (a) && isfinite (b))
2084 c = COPYSIGN (isinf (c) ? 1 : 0, c);
2085 d = COPYSIGN (isinf (d) ? 1 : 0, d);
2086 x = 0.0 * (a * c + b * d);
2087 y = 0.0 * (b * c - a * d);
2091 __real__ res = x;
2092 __imag__ res = y;
2093 return res;
2095 #endif /* complex divide */
2097 #endif /* all complex float routines */
2099 /* From here on down, the routines use normal data types. */
2101 #define SItype bogus_type
2102 #define USItype bogus_type
2103 #define DItype bogus_type
2104 #define UDItype bogus_type
2105 #define SFtype bogus_type
2106 #define DFtype bogus_type
2107 #undef Wtype
2108 #undef UWtype
2109 #undef HWtype
2110 #undef UHWtype
2111 #undef DWtype
2112 #undef UDWtype
2114 #undef char
2115 #undef short
2116 #undef int
2117 #undef long
2118 #undef unsigned
2119 #undef float
2120 #undef double
2122 #ifdef L__gcc_bcmp
2124 /* Like bcmp except the sign is meaningful.
2125 Result is negative if S1 is less than S2,
2126 positive if S1 is greater, 0 if S1 and S2 are equal. */
2129 __gcc_bcmp (const unsigned char *s1, const unsigned char *s2, size_t size)
2131 while (size > 0)
2133 const unsigned char c1 = *s1++, c2 = *s2++;
2134 if (c1 != c2)
2135 return c1 - c2;
2136 size--;
2138 return 0;
2141 #endif
2143 /* __eprintf used to be used by GCC's private version of <assert.h>.
2144 We no longer provide that header, but this routine remains in libgcc.a
2145 for binary backward compatibility. Note that it is not included in
2146 the shared version of libgcc. */
2147 #ifdef L_eprintf
2148 #ifndef inhibit_libc
2150 #undef NULL /* Avoid errors if stdio.h and our stddef.h mismatch. */
2151 #include <stdio.h>
2153 void
2154 __eprintf (const char *string, const char *expression,
2155 unsigned int line, const char *filename)
2157 fprintf (stderr, string, expression, line, filename);
2158 fflush (stderr);
2159 abort ();
2162 #endif
2163 #endif
2166 #ifdef L_clear_cache
2167 /* Clear part of an instruction cache. */
2169 void
2170 __clear_cache (char *beg __attribute__((__unused__)),
2171 char *end __attribute__((__unused__)))
2173 #ifdef CLEAR_INSN_CACHE
2174 CLEAR_INSN_CACHE (beg, end);
2175 #endif /* CLEAR_INSN_CACHE */
2178 #endif /* L_clear_cache */
2180 #ifdef L_trampoline
2182 /* Jump to a trampoline, loading the static chain address. */
2184 #if defined(WINNT) && ! defined(__CYGWIN__)
2185 #include <windows.h>
2186 int getpagesize (void);
2187 int mprotect (char *,int, int);
2190 getpagesize (void)
2192 #ifdef _ALPHA_
2193 return 8192;
2194 #else
2195 return 4096;
2196 #endif
2200 mprotect (char *addr, int len, int prot)
2202 DWORD np, op;
2204 if (prot == 7)
2205 np = 0x40;
2206 else if (prot == 5)
2207 np = 0x20;
2208 else if (prot == 4)
2209 np = 0x10;
2210 else if (prot == 3)
2211 np = 0x04;
2212 else if (prot == 1)
2213 np = 0x02;
2214 else if (prot == 0)
2215 np = 0x01;
2216 else
2217 return -1;
2219 if (VirtualProtect (addr, len, np, &op))
2220 return 0;
2221 else
2222 return -1;
2225 #endif /* WINNT && ! __CYGWIN__ */
2227 #ifdef TRANSFER_FROM_TRAMPOLINE
2228 TRANSFER_FROM_TRAMPOLINE
2229 #endif
2230 #endif /* L_trampoline */
2232 #ifndef __CYGWIN__
2233 #ifdef L__main
2235 #include "gbl-ctors.h"
2237 /* Some systems use __main in a way incompatible with its use in gcc, in these
2238 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
2239 give the same symbol without quotes for an alternative entry point. You
2240 must define both, or neither. */
2241 #ifndef NAME__MAIN
2242 #define NAME__MAIN "__main"
2243 #define SYMBOL__MAIN __main
2244 #endif
2246 #if defined (__LIBGCC_INIT_SECTION_ASM_OP__) \
2247 || defined (__LIBGCC_INIT_ARRAY_SECTION_ASM_OP__)
2248 #undef HAS_INIT_SECTION
2249 #define HAS_INIT_SECTION
2250 #endif
2252 #if !defined (HAS_INIT_SECTION) || !defined (OBJECT_FORMAT_ELF)
2254 /* Some ELF crosses use crtstuff.c to provide __CTOR_LIST__, but use this
2255 code to run constructors. In that case, we need to handle EH here, too.
2256 But MINGW32 is special because it handles CRTSTUFF and EH on its own. */
2258 #ifdef __MINGW32__
2259 #undef __LIBGCC_EH_FRAME_SECTION_NAME__
2260 #endif
2262 #ifdef __LIBGCC_EH_FRAME_SECTION_NAME__
2263 #include "unwind-dw2-fde.h"
2264 extern unsigned char __EH_FRAME_BEGIN__[];
2265 #endif
2267 /* Run all the global destructors on exit from the program. */
2269 void
2270 __do_global_dtors (void)
2272 #ifdef DO_GLOBAL_DTORS_BODY
2273 DO_GLOBAL_DTORS_BODY;
2274 #else
2275 static func_ptr *p = __DTOR_LIST__ + 1;
2276 while (*p)
2278 p++;
2279 (*(p-1)) ();
2281 #endif
2282 #if defined (__LIBGCC_EH_FRAME_SECTION_NAME__) && !defined (HAS_INIT_SECTION)
2284 static int completed = 0;
2285 if (! completed)
2287 completed = 1;
2288 __deregister_frame_info (__EH_FRAME_BEGIN__);
2291 #endif
2293 #endif
2295 #ifndef HAS_INIT_SECTION
2296 /* Run all the global constructors on entry to the program. */
2298 void
2299 __do_global_ctors (void)
2301 #ifdef __LIBGCC_EH_FRAME_SECTION_NAME__
2303 static struct object object;
2304 __register_frame_info (__EH_FRAME_BEGIN__, &object);
2306 #endif
2307 DO_GLOBAL_CTORS_BODY;
2308 atexit (__do_global_dtors);
2310 #endif /* no HAS_INIT_SECTION */
2312 #if !defined (HAS_INIT_SECTION) || defined (INVOKE__main)
2313 /* Subroutine called automatically by `main'.
2314 Compiling a global function named `main'
2315 produces an automatic call to this function at the beginning.
2317 For many systems, this routine calls __do_global_ctors.
2318 For systems which support a .init section we use the .init section
2319 to run __do_global_ctors, so we need not do anything here. */
2321 extern void SYMBOL__MAIN (void);
2322 void
2323 SYMBOL__MAIN (void)
2325 /* Support recursive calls to `main': run initializers just once. */
2326 static int initialized;
2327 if (! initialized)
2329 initialized = 1;
2330 __do_global_ctors ();
2333 #endif /* no HAS_INIT_SECTION or INVOKE__main */
2335 #endif /* L__main */
2336 #endif /* __CYGWIN__ */
2338 #ifdef L_ctors
2340 #include "gbl-ctors.h"
2342 /* Provide default definitions for the lists of constructors and
2343 destructors, so that we don't get linker errors. These symbols are
2344 intentionally bss symbols, so that gld and/or collect will provide
2345 the right values. */
2347 /* We declare the lists here with two elements each,
2348 so that they are valid empty lists if no other definition is loaded.
2350 If we are using the old "set" extensions to have the gnu linker
2351 collect ctors and dtors, then we __CTOR_LIST__ and __DTOR_LIST__
2352 must be in the bss/common section.
2354 Long term no port should use those extensions. But many still do. */
2355 #if !defined(__LIBGCC_INIT_SECTION_ASM_OP__)
2356 #if defined (TARGET_ASM_CONSTRUCTOR) || defined (USE_COLLECT2)
2357 func_ptr __CTOR_LIST__[2] = {0, 0};
2358 func_ptr __DTOR_LIST__[2] = {0, 0};
2359 #else
2360 func_ptr __CTOR_LIST__[2];
2361 func_ptr __DTOR_LIST__[2];
2362 #endif
2363 #endif /* no __LIBGCC_INIT_SECTION_ASM_OP__ */
2364 #endif /* L_ctors */
2365 #endif /* LIBGCC2_UNITS_PER_WORD <= MIN_UNITS_PER_WORD */