* expr.c (store_field): Don't set MEM_ALIAS_SET for a field
[official-gcc.git] / gcc / sched-deps.c
blobd303e7a86df9a00a9186e08703fb2acc8c8bb8bc
1 /* Instruction scheduling pass. This file computes dependencies between
2 instructions.
3 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000 Free Software Foundation, Inc.
5 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
6 and currently maintained by, Jim Wilson (wilson@cygnus.com)
8 This file is part of GNU CC.
10 GNU CC is free software; you can redistribute it and/or modify it
11 under the terms of the GNU General Public License as published by the
12 Free Software Foundation; either version 2, or (at your option) any
13 later version.
15 GNU CC is distributed in the hope that it will be useful, but WITHOUT
16 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
20 You should have received a copy of the GNU General Public License
21 along with GNU CC; see the file COPYING. If not, write to the Free
22 the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA
23 02111-1307, USA. */
25 #include "config.h"
26 #include "system.h"
27 #include "toplev.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "hard-reg-set.h"
31 #include "basic-block.h"
32 #include "regs.h"
33 #include "function.h"
34 #include "flags.h"
35 #include "insn-config.h"
36 #include "insn-attr.h"
37 #include "except.h"
38 #include "toplev.h"
39 #include "recog.h"
40 #include "sched-int.h"
42 extern char *reg_known_equiv_p;
43 extern rtx *reg_known_value;
45 static regset_head reg_pending_sets_head;
46 static regset_head reg_pending_clobbers_head;
48 static regset reg_pending_sets;
49 static regset reg_pending_clobbers;
50 static int reg_pending_sets_all;
52 /* To speed up the test for duplicate dependency links we keep a
53 record of dependencies created by add_dependence when the average
54 number of instructions in a basic block is very large.
56 Studies have shown that there is typically around 5 instructions between
57 branches for typical C code. So we can make a guess that the average
58 basic block is approximately 5 instructions long; we will choose 100X
59 the average size as a very large basic block.
61 Each insn has associated bitmaps for its dependencies. Each bitmap
62 has enough entries to represent a dependency on any other insn in
63 the insn chain. All bitmap for true dependencies cache is
64 allocated then the rest two ones are also allocated. */
65 static sbitmap *true_dependency_cache;
66 static sbitmap *anti_dependency_cache;
67 static sbitmap *output_dependency_cache;
69 /* To speed up checking consistency of formed forward insn
70 dependencies we use the following cache. Another possible solution
71 could be switching off checking duplication of insns in forward
72 dependencies. */
73 #ifdef ENABLE_CHECKING
74 static sbitmap *forward_dependency_cache;
75 #endif
77 static int deps_may_trap_p PARAMS ((rtx));
78 static void remove_dependence PARAMS ((rtx, rtx));
79 static void set_sched_group_p PARAMS ((rtx));
81 static void flush_pending_lists PARAMS ((struct deps *, rtx, int));
82 static void sched_analyze_1 PARAMS ((struct deps *, rtx, rtx));
83 static void sched_analyze_2 PARAMS ((struct deps *, rtx, rtx));
84 static void sched_analyze_insn PARAMS ((struct deps *, rtx, rtx, rtx));
85 static rtx group_leader PARAMS ((rtx));
87 static rtx get_condition PARAMS ((rtx));
88 static int conditions_mutex_p PARAMS ((rtx, rtx));
90 /* Return nonzero if a load of the memory reference MEM can cause a trap. */
92 static int
93 deps_may_trap_p (mem)
94 rtx mem;
96 rtx addr = XEXP (mem, 0);
98 if (REG_P (addr)
99 && REGNO (addr) >= FIRST_PSEUDO_REGISTER
100 && reg_known_value[REGNO (addr)])
101 addr = reg_known_value[REGNO (addr)];
102 return rtx_addr_can_trap_p (addr);
105 /* Return the INSN_LIST containing INSN in LIST, or NULL
106 if LIST does not contain INSN. */
108 HAIFA_INLINE rtx
109 find_insn_list (insn, list)
110 rtx insn;
111 rtx list;
113 while (list)
115 if (XEXP (list, 0) == insn)
116 return list;
117 list = XEXP (list, 1);
119 return 0;
122 /* Return 1 if the pair (insn, x) is found in (LIST, LIST1), or 0
123 otherwise. */
125 HAIFA_INLINE int
126 find_insn_mem_list (insn, x, list, list1)
127 rtx insn, x;
128 rtx list, list1;
130 while (list)
132 if (XEXP (list, 0) == insn
133 && XEXP (list1, 0) == x)
134 return 1;
135 list = XEXP (list, 1);
136 list1 = XEXP (list1, 1);
138 return 0;
141 /* Find the condition under which INSN is executed. */
143 static rtx
144 get_condition (insn)
145 rtx insn;
147 rtx pat = PATTERN (insn);
148 rtx cond;
150 if (pat == 0)
151 return 0;
152 if (GET_CODE (pat) == COND_EXEC)
153 return COND_EXEC_TEST (pat);
154 if (GET_CODE (insn) != JUMP_INSN)
155 return 0;
156 if (GET_CODE (pat) != SET || SET_SRC (pat) != pc_rtx)
157 return 0;
158 if (GET_CODE (SET_DEST (pat)) != IF_THEN_ELSE)
159 return 0;
160 pat = SET_DEST (pat);
161 cond = XEXP (pat, 0);
162 if (GET_CODE (XEXP (cond, 1)) == LABEL_REF
163 && XEXP (cond, 2) == pc_rtx)
164 return cond;
165 else if (GET_CODE (XEXP (cond, 2)) == LABEL_REF
166 && XEXP (cond, 1) == pc_rtx)
167 return gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond)), GET_MODE (cond),
168 XEXP (cond, 0), XEXP (cond, 1));
169 else
170 return 0;
173 /* Return nonzero if conditions COND1 and COND2 can never be both true. */
175 static int
176 conditions_mutex_p (cond1, cond2)
177 rtx cond1, cond2;
179 if (GET_RTX_CLASS (GET_CODE (cond1)) == '<'
180 && GET_RTX_CLASS (GET_CODE (cond2)) == '<'
181 && GET_CODE (cond1) == reverse_condition (GET_CODE (cond2))
182 && XEXP (cond1, 0) == XEXP (cond2, 0)
183 && XEXP (cond1, 1) == XEXP (cond2, 1))
184 return 1;
185 return 0;
188 /* Add ELEM wrapped in an INSN_LIST with reg note kind DEP_TYPE to the
189 LOG_LINKS of INSN, if not already there. DEP_TYPE indicates the type
190 of dependence that this link represents. */
192 void
193 add_dependence (insn, elem, dep_type)
194 rtx insn;
195 rtx elem;
196 enum reg_note dep_type;
198 rtx link, next;
199 int present_p;
200 enum reg_note present_dep_type;
201 rtx cond1, cond2;
203 /* Don't depend an insn on itself. */
204 if (insn == elem)
205 return;
207 /* We can get a dependency on deleted insns due to optimizations in
208 the register allocation and reloading or due to splitting. Any
209 such dependency is useless and can be ignored. */
210 if (GET_CODE (elem) == NOTE)
211 return;
213 /* flow.c doesn't handle conditional lifetimes entirely correctly;
214 calls mess up the conditional lifetimes. */
215 if (GET_CODE (insn) != CALL_INSN && GET_CODE (elem) != CALL_INSN)
217 cond1 = get_condition (insn);
218 cond2 = get_condition (elem);
219 if (cond1 && cond2 && conditions_mutex_p (cond1, cond2))
220 return;
223 /* If elem is part of a sequence that must be scheduled together, then
224 make the dependence point to the last insn of the sequence.
225 When HAVE_cc0, it is possible for NOTEs to exist between users and
226 setters of the condition codes, so we must skip past notes here.
227 Otherwise, NOTEs are impossible here. */
228 next = next_nonnote_insn (elem);
229 if (next && SCHED_GROUP_P (next)
230 && GET_CODE (next) != CODE_LABEL)
232 /* Notes will never intervene here though, so don't bother checking
233 for them. */
234 /* Hah! Wrong. */
235 /* We must reject CODE_LABELs, so that we don't get confused by one
236 that has LABEL_PRESERVE_P set, which is represented by the same
237 bit in the rtl as SCHED_GROUP_P. A CODE_LABEL can never be
238 SCHED_GROUP_P. */
240 rtx nnext;
241 while ((nnext = next_nonnote_insn (next)) != NULL
242 && SCHED_GROUP_P (nnext)
243 && GET_CODE (nnext) != CODE_LABEL)
244 next = nnext;
246 /* Again, don't depend an insn on itself. */
247 if (insn == next)
248 return;
250 /* Make the dependence to NEXT, the last insn of the group, instead
251 of the original ELEM. */
252 elem = next;
255 present_p = 1;
256 #ifdef INSN_SCHEDULING
257 /* ??? No good way to tell from here whether we're doing interblock
258 scheduling. Possibly add another callback. */
259 #if 0
260 /* (This code is guarded by INSN_SCHEDULING, otherwise INSN_BB is undefined.)
261 No need for interblock dependences with calls, since
262 calls are not moved between blocks. Note: the edge where
263 elem is a CALL is still required. */
264 if (GET_CODE (insn) == CALL_INSN
265 && (INSN_BB (elem) != INSN_BB (insn)))
266 return;
267 #endif
269 /* If we already have a dependency for ELEM, then we do not need to
270 do anything. Avoiding the list walk below can cut compile times
271 dramatically for some code. */
272 if (true_dependency_cache != NULL)
274 if (anti_dependency_cache == NULL || output_dependency_cache == NULL)
275 abort ();
276 if (TEST_BIT (true_dependency_cache[INSN_LUID (insn)], INSN_LUID (elem)))
277 present_dep_type = 0;
278 else if (TEST_BIT (anti_dependency_cache[INSN_LUID (insn)],
279 INSN_LUID (elem)))
280 present_dep_type = REG_DEP_ANTI;
281 else if (TEST_BIT (output_dependency_cache[INSN_LUID (insn)],
282 INSN_LUID (elem)))
283 present_dep_type = REG_DEP_OUTPUT;
284 else
285 present_p = 0;
286 if (present_p && (int) dep_type >= (int) present_dep_type)
287 return;
289 #endif
291 /* Check that we don't already have this dependence. */
292 if (present_p)
293 for (link = LOG_LINKS (insn); link; link = XEXP (link, 1))
294 if (XEXP (link, 0) == elem)
296 #ifdef INSN_SCHEDULING
297 /* Clear corresponding cache entry because type of the link
298 may be changed. */
299 if (true_dependency_cache != NULL)
301 if (REG_NOTE_KIND (link) == REG_DEP_ANTI)
302 RESET_BIT (anti_dependency_cache[INSN_LUID (insn)],
303 INSN_LUID (elem));
304 else if (REG_NOTE_KIND (link) == REG_DEP_OUTPUT
305 && output_dependency_cache)
306 RESET_BIT (output_dependency_cache[INSN_LUID (insn)],
307 INSN_LUID (elem));
308 else
309 abort ();
311 #endif
313 /* If this is a more restrictive type of dependence than the existing
314 one, then change the existing dependence to this type. */
315 if ((int) dep_type < (int) REG_NOTE_KIND (link))
316 PUT_REG_NOTE_KIND (link, dep_type);
318 #ifdef INSN_SCHEDULING
319 /* If we are adding a dependency to INSN's LOG_LINKs, then
320 note that in the bitmap caches of dependency information. */
321 if (true_dependency_cache != NULL)
323 if ((int)REG_NOTE_KIND (link) == 0)
324 SET_BIT (true_dependency_cache[INSN_LUID (insn)],
325 INSN_LUID (elem));
326 else if (REG_NOTE_KIND (link) == REG_DEP_ANTI)
327 SET_BIT (anti_dependency_cache[INSN_LUID (insn)],
328 INSN_LUID (elem));
329 else if (REG_NOTE_KIND (link) == REG_DEP_OUTPUT)
330 SET_BIT (output_dependency_cache[INSN_LUID (insn)],
331 INSN_LUID (elem));
333 #endif
334 return;
336 /* Might want to check one level of transitivity to save conses. */
338 link = alloc_INSN_LIST (elem, LOG_LINKS (insn));
339 LOG_LINKS (insn) = link;
341 /* Insn dependency, not data dependency. */
342 PUT_REG_NOTE_KIND (link, dep_type);
344 #ifdef INSN_SCHEDULING
345 /* If we are adding a dependency to INSN's LOG_LINKs, then note that
346 in the bitmap caches of dependency information. */
347 if (true_dependency_cache != NULL)
349 if ((int)dep_type == 0)
350 SET_BIT (true_dependency_cache[INSN_LUID (insn)], INSN_LUID (elem));
351 else if (dep_type == REG_DEP_ANTI)
352 SET_BIT (anti_dependency_cache[INSN_LUID (insn)], INSN_LUID (elem));
353 else if (dep_type == REG_DEP_OUTPUT)
354 SET_BIT (output_dependency_cache[INSN_LUID (insn)], INSN_LUID (elem));
356 #endif
359 /* Remove ELEM wrapped in an INSN_LIST from the LOG_LINKS
360 of INSN. Abort if not found. */
362 static void
363 remove_dependence (insn, elem)
364 rtx insn;
365 rtx elem;
367 rtx prev, link, next;
368 int found = 0;
370 for (prev = 0, link = LOG_LINKS (insn); link; link = next)
372 next = XEXP (link, 1);
373 if (XEXP (link, 0) == elem)
375 if (prev)
376 XEXP (prev, 1) = next;
377 else
378 LOG_LINKS (insn) = next;
380 #ifdef INSN_SCHEDULING
381 /* If we are removing a dependency from the LOG_LINKS list,
382 make sure to remove it from the cache too. */
383 if (true_dependency_cache != NULL)
385 if (REG_NOTE_KIND (link) == 0)
386 RESET_BIT (true_dependency_cache[INSN_LUID (insn)],
387 INSN_LUID (elem));
388 else if (REG_NOTE_KIND (link) == REG_DEP_ANTI)
389 RESET_BIT (anti_dependency_cache[INSN_LUID (insn)],
390 INSN_LUID (elem));
391 else if (REG_NOTE_KIND (link) == REG_DEP_OUTPUT)
392 RESET_BIT (output_dependency_cache[INSN_LUID (insn)],
393 INSN_LUID (elem));
395 #endif
397 free_INSN_LIST_node (link);
399 found = 1;
401 else
402 prev = link;
405 if (!found)
406 abort ();
407 return;
410 /* Return an insn which represents a SCHED_GROUP, which is
411 the last insn in the group. */
413 static rtx
414 group_leader (insn)
415 rtx insn;
417 rtx prev;
421 prev = insn;
422 insn = next_nonnote_insn (insn);
424 while (insn && SCHED_GROUP_P (insn) && (GET_CODE (insn) != CODE_LABEL));
426 return prev;
429 /* Set SCHED_GROUP_P and care for the rest of the bookkeeping that
430 goes along with that. */
432 static void
433 set_sched_group_p (insn)
434 rtx insn;
436 rtx link, prev;
438 SCHED_GROUP_P (insn) = 1;
440 /* There may be a note before this insn now, but all notes will
441 be removed before we actually try to schedule the insns, so
442 it won't cause a problem later. We must avoid it here though. */
443 prev = prev_nonnote_insn (insn);
445 /* Make a copy of all dependencies on the immediately previous insn,
446 and add to this insn. This is so that all the dependencies will
447 apply to the group. Remove an explicit dependence on this insn
448 as SCHED_GROUP_P now represents it. */
450 if (find_insn_list (prev, LOG_LINKS (insn)))
451 remove_dependence (insn, prev);
453 for (link = LOG_LINKS (prev); link; link = XEXP (link, 1))
454 add_dependence (insn, XEXP (link, 0), REG_NOTE_KIND (link));
457 /* Process an insn's memory dependencies. There are four kinds of
458 dependencies:
460 (0) read dependence: read follows read
461 (1) true dependence: read follows write
462 (2) anti dependence: write follows read
463 (3) output dependence: write follows write
465 We are careful to build only dependencies which actually exist, and
466 use transitivity to avoid building too many links. */
468 /* Add an INSN and MEM reference pair to a pending INSN_LIST and MEM_LIST.
469 The MEM is a memory reference contained within INSN, which we are saving
470 so that we can do memory aliasing on it. */
472 void
473 add_insn_mem_dependence (deps, insn_list, mem_list, insn, mem)
474 struct deps *deps;
475 rtx *insn_list, *mem_list, insn, mem;
477 register rtx link;
479 link = alloc_INSN_LIST (insn, *insn_list);
480 *insn_list = link;
482 link = alloc_EXPR_LIST (VOIDmode, mem, *mem_list);
483 *mem_list = link;
485 deps->pending_lists_length++;
488 /* Make a dependency between every memory reference on the pending lists
489 and INSN, thus flushing the pending lists. If ONLY_WRITE, don't flush
490 the read list. */
492 static void
493 flush_pending_lists (deps, insn, only_write)
494 struct deps *deps;
495 rtx insn;
496 int only_write;
498 rtx u;
499 rtx link;
501 while (deps->pending_read_insns && ! only_write)
503 add_dependence (insn, XEXP (deps->pending_read_insns, 0),
504 REG_DEP_ANTI);
506 link = deps->pending_read_insns;
507 deps->pending_read_insns = XEXP (deps->pending_read_insns, 1);
508 free_INSN_LIST_node (link);
510 link = deps->pending_read_mems;
511 deps->pending_read_mems = XEXP (deps->pending_read_mems, 1);
512 free_EXPR_LIST_node (link);
514 while (deps->pending_write_insns)
516 add_dependence (insn, XEXP (deps->pending_write_insns, 0),
517 REG_DEP_ANTI);
519 link = deps->pending_write_insns;
520 deps->pending_write_insns = XEXP (deps->pending_write_insns, 1);
521 free_INSN_LIST_node (link);
523 link = deps->pending_write_mems;
524 deps->pending_write_mems = XEXP (deps->pending_write_mems, 1);
525 free_EXPR_LIST_node (link);
527 deps->pending_lists_length = 0;
529 /* last_pending_memory_flush is now a list of insns. */
530 for (u = deps->last_pending_memory_flush; u; u = XEXP (u, 1))
531 add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
533 free_INSN_LIST_list (&deps->last_pending_memory_flush);
534 deps->last_pending_memory_flush = alloc_INSN_LIST (insn, NULL_RTX);
537 /* Analyze a single SET, CLOBBER, PRE_DEC, POST_DEC, PRE_INC or POST_INC
538 rtx, X, creating all dependencies generated by the write to the
539 destination of X, and reads of everything mentioned. */
541 static void
542 sched_analyze_1 (deps, x, insn)
543 struct deps *deps;
544 rtx x;
545 rtx insn;
547 register int regno;
548 register rtx dest = XEXP (x, 0);
549 enum rtx_code code = GET_CODE (x);
551 if (dest == 0)
552 return;
554 if (GET_CODE (dest) == PARALLEL)
556 register int i;
558 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
559 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
560 sched_analyze_1 (deps,
561 gen_rtx_CLOBBER (VOIDmode,
562 XEXP (XVECEXP (dest, 0, i), 0)),
563 insn);
565 if (GET_CODE (x) == SET)
566 sched_analyze_2 (deps, SET_SRC (x), insn);
567 return;
570 while (GET_CODE (dest) == STRICT_LOW_PART || GET_CODE (dest) == SUBREG
571 || GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == SIGN_EXTRACT)
573 if (GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == SIGN_EXTRACT)
575 /* The second and third arguments are values read by this insn. */
576 sched_analyze_2 (deps, XEXP (dest, 1), insn);
577 sched_analyze_2 (deps, XEXP (dest, 2), insn);
579 dest = XEXP (dest, 0);
582 if (GET_CODE (dest) == REG)
584 register int i;
586 regno = REGNO (dest);
588 /* A hard reg in a wide mode may really be multiple registers.
589 If so, mark all of them just like the first. */
590 if (regno < FIRST_PSEUDO_REGISTER)
592 i = HARD_REGNO_NREGS (regno, GET_MODE (dest));
593 while (--i >= 0)
595 int r = regno + i;
596 rtx u;
598 for (u = deps->reg_last[r].uses; u; u = XEXP (u, 1))
599 add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
601 for (u = deps->reg_last[r].sets; u; u = XEXP (u, 1))
602 add_dependence (insn, XEXP (u, 0), REG_DEP_OUTPUT);
604 /* Clobbers need not be ordered with respect to one
605 another, but sets must be ordered with respect to a
606 pending clobber. */
607 if (code == SET)
609 if (GET_CODE (PATTERN (insn)) != COND_EXEC)
610 free_INSN_LIST_list (&deps->reg_last[r].uses);
611 for (u = deps->reg_last[r].clobbers; u; u = XEXP (u, 1))
612 add_dependence (insn, XEXP (u, 0), REG_DEP_OUTPUT);
613 SET_REGNO_REG_SET (reg_pending_sets, r);
615 else
616 SET_REGNO_REG_SET (reg_pending_clobbers, r);
618 /* Function calls clobber all call_used regs. */
619 if (global_regs[r] || (code == SET && call_used_regs[r]))
620 for (u = deps->last_function_call; u; u = XEXP (u, 1))
621 add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
624 /* ??? Reload sometimes emits USEs and CLOBBERs of pseudos that
625 it does not reload. Ignore these as they have served their
626 purpose already. */
627 else if (regno >= deps->max_reg)
629 if (GET_CODE (PATTERN (insn)) != USE
630 && GET_CODE (PATTERN (insn)) != CLOBBER)
631 abort ();
633 else
635 rtx u;
637 for (u = deps->reg_last[regno].uses; u; u = XEXP (u, 1))
638 add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
640 for (u = deps->reg_last[regno].sets; u; u = XEXP (u, 1))
641 add_dependence (insn, XEXP (u, 0), REG_DEP_OUTPUT);
643 if (code == SET)
645 if (GET_CODE (PATTERN (insn)) != COND_EXEC)
646 free_INSN_LIST_list (&deps->reg_last[regno].uses);
647 for (u = deps->reg_last[regno].clobbers; u; u = XEXP (u, 1))
648 add_dependence (insn, XEXP (u, 0), REG_DEP_OUTPUT);
649 SET_REGNO_REG_SET (reg_pending_sets, regno);
651 else
652 SET_REGNO_REG_SET (reg_pending_clobbers, regno);
654 /* Pseudos that are REG_EQUIV to something may be replaced
655 by that during reloading. We need only add dependencies for
656 the address in the REG_EQUIV note. */
657 if (!reload_completed
658 && reg_known_equiv_p[regno]
659 && GET_CODE (reg_known_value[regno]) == MEM)
660 sched_analyze_2 (deps, XEXP (reg_known_value[regno], 0), insn);
662 /* Don't let it cross a call after scheduling if it doesn't
663 already cross one. */
665 if (REG_N_CALLS_CROSSED (regno) == 0)
666 for (u = deps->last_function_call; u; u = XEXP (u, 1))
667 add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
670 else if (GET_CODE (dest) == MEM)
672 /* Writing memory. */
674 if (deps->pending_lists_length > 32)
676 /* Flush all pending reads and writes to prevent the pending lists
677 from getting any larger. Insn scheduling runs too slowly when
678 these lists get long. The number 32 was chosen because it
679 seems like a reasonable number. When compiling GCC with itself,
680 this flush occurs 8 times for sparc, and 10 times for m88k using
681 the number 32. */
682 flush_pending_lists (deps, insn, 0);
684 else
686 rtx u;
687 rtx pending, pending_mem;
689 pending = deps->pending_read_insns;
690 pending_mem = deps->pending_read_mems;
691 while (pending)
693 if (anti_dependence (XEXP (pending_mem, 0), dest))
694 add_dependence (insn, XEXP (pending, 0), REG_DEP_ANTI);
696 pending = XEXP (pending, 1);
697 pending_mem = XEXP (pending_mem, 1);
700 pending = deps->pending_write_insns;
701 pending_mem = deps->pending_write_mems;
702 while (pending)
704 if (output_dependence (XEXP (pending_mem, 0), dest))
705 add_dependence (insn, XEXP (pending, 0), REG_DEP_OUTPUT);
707 pending = XEXP (pending, 1);
708 pending_mem = XEXP (pending_mem, 1);
711 for (u = deps->last_pending_memory_flush; u; u = XEXP (u, 1))
712 add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
714 add_insn_mem_dependence (deps, &deps->pending_write_insns,
715 &deps->pending_write_mems, insn, dest);
717 sched_analyze_2 (deps, XEXP (dest, 0), insn);
720 /* Analyze reads. */
721 if (GET_CODE (x) == SET)
722 sched_analyze_2 (deps, SET_SRC (x), insn);
725 /* Analyze the uses of memory and registers in rtx X in INSN. */
727 static void
728 sched_analyze_2 (deps, x, insn)
729 struct deps *deps;
730 rtx x;
731 rtx insn;
733 register int i;
734 register int j;
735 register enum rtx_code code;
736 register const char *fmt;
738 if (x == 0)
739 return;
741 code = GET_CODE (x);
743 switch (code)
745 case CONST_INT:
746 case CONST_DOUBLE:
747 case SYMBOL_REF:
748 case CONST:
749 case LABEL_REF:
750 /* Ignore constants. Note that we must handle CONST_DOUBLE here
751 because it may have a cc0_rtx in its CONST_DOUBLE_CHAIN field, but
752 this does not mean that this insn is using cc0. */
753 return;
755 #ifdef HAVE_cc0
756 case CC0:
757 /* User of CC0 depends on immediately preceding insn. */
758 set_sched_group_p (insn);
759 return;
760 #endif
762 case REG:
764 rtx u;
765 int regno = REGNO (x);
766 if (regno < FIRST_PSEUDO_REGISTER)
768 int i;
770 i = HARD_REGNO_NREGS (regno, GET_MODE (x));
771 while (--i >= 0)
773 int r = regno + i;
774 deps->reg_last[r].uses
775 = alloc_INSN_LIST (insn, deps->reg_last[r].uses);
776 SET_REGNO_REG_SET (&deps->reg_last_in_use, r);
778 for (u = deps->reg_last[r].sets; u; u = XEXP (u, 1))
779 add_dependence (insn, XEXP (u, 0), 0);
781 /* ??? This should never happen. */
782 for (u = deps->reg_last[r].clobbers; u; u = XEXP (u, 1))
783 add_dependence (insn, XEXP (u, 0), 0);
785 if (call_used_regs[r] || global_regs[r])
786 /* Function calls clobber all call_used regs. */
787 for (u = deps->last_function_call; u; u = XEXP (u, 1))
788 add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
791 /* ??? Reload sometimes emits USEs and CLOBBERs of pseudos that
792 it does not reload. Ignore these as they have served their
793 purpose already. */
794 else if (regno >= deps->max_reg)
796 if (GET_CODE (PATTERN (insn)) != USE
797 && GET_CODE (PATTERN (insn)) != CLOBBER)
798 abort ();
800 else
802 deps->reg_last[regno].uses
803 = alloc_INSN_LIST (insn, deps->reg_last[regno].uses);
804 SET_REGNO_REG_SET (&deps->reg_last_in_use, regno);
806 for (u = deps->reg_last[regno].sets; u; u = XEXP (u, 1))
807 add_dependence (insn, XEXP (u, 0), 0);
809 /* ??? This should never happen. */
810 for (u = deps->reg_last[regno].clobbers; u; u = XEXP (u, 1))
811 add_dependence (insn, XEXP (u, 0), 0);
813 /* Pseudos that are REG_EQUIV to something may be replaced
814 by that during reloading. We need only add dependencies for
815 the address in the REG_EQUIV note. */
816 if (!reload_completed
817 && reg_known_equiv_p[regno]
818 && GET_CODE (reg_known_value[regno]) == MEM)
819 sched_analyze_2 (deps, XEXP (reg_known_value[regno], 0), insn);
821 /* If the register does not already cross any calls, then add this
822 insn to the sched_before_next_call list so that it will still
823 not cross calls after scheduling. */
824 if (REG_N_CALLS_CROSSED (regno) == 0)
825 add_dependence (deps->sched_before_next_call, insn,
826 REG_DEP_ANTI);
828 return;
831 case MEM:
833 /* Reading memory. */
834 rtx u;
835 rtx pending, pending_mem;
837 pending = deps->pending_read_insns;
838 pending_mem = deps->pending_read_mems;
839 while (pending)
841 if (read_dependence (XEXP (pending_mem, 0), x))
842 add_dependence (insn, XEXP (pending, 0), REG_DEP_ANTI);
844 pending = XEXP (pending, 1);
845 pending_mem = XEXP (pending_mem, 1);
848 pending = deps->pending_write_insns;
849 pending_mem = deps->pending_write_mems;
850 while (pending)
852 if (true_dependence (XEXP (pending_mem, 0), VOIDmode,
853 x, rtx_varies_p))
854 add_dependence (insn, XEXP (pending, 0), 0);
856 pending = XEXP (pending, 1);
857 pending_mem = XEXP (pending_mem, 1);
860 for (u = deps->last_pending_memory_flush; u; u = XEXP (u, 1))
861 if (GET_CODE (XEXP (u, 0)) != JUMP_INSN
862 || deps_may_trap_p (x))
863 add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
865 /* Always add these dependencies to pending_reads, since
866 this insn may be followed by a write. */
867 add_insn_mem_dependence (deps, &deps->pending_read_insns,
868 &deps->pending_read_mems, insn, x);
870 /* Take advantage of tail recursion here. */
871 sched_analyze_2 (deps, XEXP (x, 0), insn);
872 return;
875 /* Force pending stores to memory in case a trap handler needs them. */
876 case TRAP_IF:
877 flush_pending_lists (deps, insn, 1);
878 break;
880 case ASM_OPERANDS:
881 case ASM_INPUT:
882 case UNSPEC_VOLATILE:
884 rtx u;
886 /* Traditional and volatile asm instructions must be considered to use
887 and clobber all hard registers, all pseudo-registers and all of
888 memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
890 Consider for instance a volatile asm that changes the fpu rounding
891 mode. An insn should not be moved across this even if it only uses
892 pseudo-regs because it might give an incorrectly rounded result. */
893 if (code != ASM_OPERANDS || MEM_VOLATILE_P (x))
895 for (i = 0; i < deps->max_reg; i++)
897 struct deps_reg *reg_last = &deps->reg_last[i];
899 for (u = reg_last->uses; u; u = XEXP (u, 1))
900 add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
901 for (u = reg_last->sets; u; u = XEXP (u, 1))
902 add_dependence (insn, XEXP (u, 0), 0);
903 for (u = reg_last->clobbers; u; u = XEXP (u, 1))
904 add_dependence (insn, XEXP (u, 0), 0);
906 if (GET_CODE (PATTERN (insn)) != COND_EXEC)
907 free_INSN_LIST_list (&reg_last->uses);
909 reg_pending_sets_all = 1;
911 flush_pending_lists (deps, insn, 0);
914 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
915 We can not just fall through here since then we would be confused
916 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
917 traditional asms unlike their normal usage. */
919 if (code == ASM_OPERANDS)
921 for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
922 sched_analyze_2 (deps, ASM_OPERANDS_INPUT (x, j), insn);
923 return;
925 break;
928 case PRE_DEC:
929 case POST_DEC:
930 case PRE_INC:
931 case POST_INC:
932 /* These both read and modify the result. We must handle them as writes
933 to get proper dependencies for following instructions. We must handle
934 them as reads to get proper dependencies from this to previous
935 instructions. Thus we need to pass them to both sched_analyze_1
936 and sched_analyze_2. We must call sched_analyze_2 first in order
937 to get the proper antecedent for the read. */
938 sched_analyze_2 (deps, XEXP (x, 0), insn);
939 sched_analyze_1 (deps, x, insn);
940 return;
942 case POST_MODIFY:
943 case PRE_MODIFY:
944 /* op0 = op0 + op1 */
945 sched_analyze_2 (deps, XEXP (x, 0), insn);
946 sched_analyze_2 (deps, XEXP (x, 1), insn);
947 sched_analyze_1 (deps, x, insn);
948 return;
950 default:
951 break;
954 /* Other cases: walk the insn. */
955 fmt = GET_RTX_FORMAT (code);
956 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
958 if (fmt[i] == 'e')
959 sched_analyze_2 (deps, XEXP (x, i), insn);
960 else if (fmt[i] == 'E')
961 for (j = 0; j < XVECLEN (x, i); j++)
962 sched_analyze_2 (deps, XVECEXP (x, i, j), insn);
966 /* Analyze an INSN with pattern X to find all dependencies. */
968 static void
969 sched_analyze_insn (deps, x, insn, loop_notes)
970 struct deps *deps;
971 rtx x, insn;
972 rtx loop_notes;
974 register RTX_CODE code = GET_CODE (x);
975 int schedule_barrier_found = 0;
976 rtx link;
977 int i;
979 if (code == COND_EXEC)
981 sched_analyze_2 (deps, COND_EXEC_TEST (x), insn);
983 /* ??? Should be recording conditions so we reduce the number of
984 false dependancies. */
985 x = COND_EXEC_CODE (x);
986 code = GET_CODE (x);
988 if (code == SET || code == CLOBBER)
989 sched_analyze_1 (deps, x, insn);
990 else if (code == PARALLEL)
992 register int i;
993 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
995 rtx sub = XVECEXP (x, 0, i);
996 code = GET_CODE (sub);
998 if (code == COND_EXEC)
1000 sched_analyze_2 (deps, COND_EXEC_TEST (sub), insn);
1001 sub = COND_EXEC_CODE (sub);
1002 code = GET_CODE (sub);
1004 if (code == SET || code == CLOBBER)
1005 sched_analyze_1 (deps, sub, insn);
1006 else
1007 sched_analyze_2 (deps, sub, insn);
1010 else
1011 sched_analyze_2 (deps, x, insn);
1013 /* Mark registers CLOBBERED or used by called function. */
1014 if (GET_CODE (insn) == CALL_INSN)
1015 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1017 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
1018 sched_analyze_1 (deps, XEXP (link, 0), insn);
1019 else
1020 sched_analyze_2 (deps, XEXP (link, 0), insn);
1023 if (GET_CODE (insn) == JUMP_INSN)
1025 rtx next;
1026 next = next_nonnote_insn (insn);
1027 if (next && GET_CODE (next) == BARRIER)
1028 schedule_barrier_found = 1;
1029 else
1031 rtx pending, pending_mem, u;
1032 regset_head tmp;
1033 INIT_REG_SET (&tmp);
1035 (*current_sched_info->compute_jump_reg_dependencies) (insn, &tmp);
1036 EXECUTE_IF_SET_IN_REG_SET (&tmp, 0, i,
1038 struct deps_reg *reg_last = &deps->reg_last[i];
1039 for (u = reg_last->sets; u; u = XEXP (u, 1))
1040 add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
1041 reg_last->uses = alloc_INSN_LIST (insn, reg_last->uses);
1042 SET_REGNO_REG_SET (&deps->reg_last_in_use, i);
1045 CLEAR_REG_SET (&tmp);
1047 /* All memory writes and volatile reads must happen before the
1048 jump. Non-volatile reads must happen before the jump iff
1049 the result is needed by the above register used mask. */
1051 pending = deps->pending_write_insns;
1052 pending_mem = deps->pending_write_mems;
1053 while (pending)
1055 add_dependence (insn, XEXP (pending, 0), REG_DEP_OUTPUT);
1056 pending = XEXP (pending, 1);
1057 pending_mem = XEXP (pending_mem, 1);
1060 pending = deps->pending_read_insns;
1061 pending_mem = deps->pending_read_mems;
1062 while (pending)
1064 if (MEM_VOLATILE_P (XEXP (pending_mem, 0)))
1065 add_dependence (insn, XEXP (pending, 0), REG_DEP_OUTPUT);
1066 pending = XEXP (pending, 1);
1067 pending_mem = XEXP (pending_mem, 1);
1070 for (u = deps->last_pending_memory_flush; u; u = XEXP (u, 1))
1071 add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
1075 /* If there is a {LOOP,EHREGION}_{BEG,END} note in the middle of a basic
1076 block, then we must be sure that no instructions are scheduled across it.
1077 Otherwise, the reg_n_refs info (which depends on loop_depth) would
1078 become incorrect. */
1079 if (loop_notes)
1081 rtx link;
1083 /* Update loop_notes with any notes from this insn. Also determine
1084 if any of the notes on the list correspond to instruction scheduling
1085 barriers (loop, eh & setjmp notes, but not range notes). */
1086 link = loop_notes;
1087 while (XEXP (link, 1))
1089 if (INTVAL (XEXP (link, 0)) == NOTE_INSN_LOOP_BEG
1090 || INTVAL (XEXP (link, 0)) == NOTE_INSN_LOOP_END
1091 || INTVAL (XEXP (link, 0)) == NOTE_INSN_EH_REGION_BEG
1092 || INTVAL (XEXP (link, 0)) == NOTE_INSN_EH_REGION_END
1093 || INTVAL (XEXP (link, 0)) == NOTE_INSN_SETJMP)
1094 schedule_barrier_found = 1;
1096 link = XEXP (link, 1);
1098 XEXP (link, 1) = REG_NOTES (insn);
1099 REG_NOTES (insn) = loop_notes;
1102 /* If this instruction can throw an exception, then moving it changes
1103 where block boundaries fall. This is mighty confusing elsewhere.
1104 Therefore, prevent such an instruction from being moved. */
1105 if (flag_non_call_exceptions && can_throw_internal (insn))
1106 schedule_barrier_found = 1;
1108 /* Add dependencies if a scheduling barrier was found. */
1109 if (schedule_barrier_found)
1111 rtx u;
1113 for (i = 0; i < deps->max_reg; i++)
1115 struct deps_reg *reg_last = &deps->reg_last[i];
1117 for (u = reg_last->uses; u; u = XEXP (u, 1))
1118 add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
1119 for (u = reg_last->sets; u; u = XEXP (u, 1))
1120 add_dependence (insn, XEXP (u, 0), 0);
1121 for (u = reg_last->clobbers; u; u = XEXP (u, 1))
1122 add_dependence (insn, XEXP (u, 0), 0);
1124 if (GET_CODE (PATTERN (insn)) != COND_EXEC)
1125 free_INSN_LIST_list (&reg_last->uses);
1127 flush_pending_lists (deps, insn, 0);
1129 reg_pending_sets_all = 1;
1132 /* Accumulate clobbers until the next set so that it will be output
1133 dependent on all of them. At the next set we can clear the clobber
1134 list, since subsequent sets will be output dependent on it. */
1135 if (reg_pending_sets_all)
1137 reg_pending_sets_all = 0;
1138 for (i = 0; i < deps->max_reg; i++)
1140 struct deps_reg *reg_last = &deps->reg_last[i];
1141 if (GET_CODE (PATTERN (insn)) != COND_EXEC)
1143 free_INSN_LIST_list (&reg_last->sets);
1144 free_INSN_LIST_list (&reg_last->clobbers);
1146 reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
1147 SET_REGNO_REG_SET (&deps->reg_last_in_use, i);
1150 else
1152 EXECUTE_IF_SET_IN_REG_SET (reg_pending_sets, 0, i,
1154 struct deps_reg *reg_last = &deps->reg_last[i];
1155 if (GET_CODE (PATTERN (insn)) != COND_EXEC)
1157 free_INSN_LIST_list (&reg_last->sets);
1158 free_INSN_LIST_list (&reg_last->clobbers);
1160 reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
1161 SET_REGNO_REG_SET (&deps->reg_last_in_use, i);
1163 EXECUTE_IF_SET_IN_REG_SET (reg_pending_clobbers, 0, i,
1165 struct deps_reg *reg_last = &deps->reg_last[i];
1166 reg_last->clobbers = alloc_INSN_LIST (insn, reg_last->clobbers);
1167 SET_REGNO_REG_SET (&deps->reg_last_in_use, i);
1170 CLEAR_REG_SET (reg_pending_sets);
1171 CLEAR_REG_SET (reg_pending_clobbers);
1173 /* If a post-call group is still open, see if it should remain so.
1174 This insn must be a simple move of a hard reg to a pseudo or
1175 vice-versa.
1177 We must avoid moving these insns for correctness on
1178 SMALL_REGISTER_CLASS machines, and for special registers like
1179 PIC_OFFSET_TABLE_REGNUM. For simplicity, extend this to all
1180 hard regs for all targets. */
1182 if (deps->in_post_call_group_p)
1184 rtx tmp, set = single_set (insn);
1185 int src_regno, dest_regno;
1187 if (set == NULL)
1188 goto end_call_group;
1190 tmp = SET_DEST (set);
1191 if (GET_CODE (tmp) == SUBREG)
1192 tmp = SUBREG_REG (tmp);
1193 if (GET_CODE (tmp) == REG)
1194 dest_regno = REGNO (tmp);
1195 else
1196 goto end_call_group;
1198 tmp = SET_SRC (set);
1199 if (GET_CODE (tmp) == SUBREG)
1200 tmp = SUBREG_REG (tmp);
1201 if (GET_CODE (tmp) == REG)
1202 src_regno = REGNO (tmp);
1203 else
1204 goto end_call_group;
1206 if (src_regno < FIRST_PSEUDO_REGISTER
1207 || dest_regno < FIRST_PSEUDO_REGISTER)
1209 set_sched_group_p (insn);
1210 CANT_MOVE (insn) = 1;
1212 else
1214 end_call_group:
1215 deps->in_post_call_group_p = 0;
1220 /* Analyze every insn between HEAD and TAIL inclusive, creating LOG_LINKS
1221 for every dependency. */
1223 void
1224 sched_analyze (deps, head, tail)
1225 struct deps *deps;
1226 rtx head, tail;
1228 register rtx insn;
1229 register rtx u;
1230 rtx loop_notes = 0;
1232 for (insn = head;; insn = NEXT_INSN (insn))
1234 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN)
1236 /* Clear out the stale LOG_LINKS from flow. */
1237 free_INSN_LIST_list (&LOG_LINKS (insn));
1239 /* Clear out stale SCHED_GROUP_P. */
1240 SCHED_GROUP_P (insn) = 0;
1242 /* Make each JUMP_INSN a scheduling barrier for memory
1243 references. */
1244 if (GET_CODE (insn) == JUMP_INSN)
1245 deps->last_pending_memory_flush
1246 = alloc_INSN_LIST (insn, deps->last_pending_memory_flush);
1247 sched_analyze_insn (deps, PATTERN (insn), insn, loop_notes);
1248 loop_notes = 0;
1250 else if (GET_CODE (insn) == CALL_INSN)
1252 rtx x;
1253 register int i;
1255 /* Clear out stale SCHED_GROUP_P. */
1256 SCHED_GROUP_P (insn) = 0;
1258 CANT_MOVE (insn) = 1;
1260 /* Clear out the stale LOG_LINKS from flow. */
1261 free_INSN_LIST_list (&LOG_LINKS (insn));
1263 /* Any instruction using a hard register which may get clobbered
1264 by a call needs to be marked as dependent on this call.
1265 This prevents a use of a hard return reg from being moved
1266 past a void call (i.e. it does not explicitly set the hard
1267 return reg). */
1269 /* If this call is followed by a NOTE_INSN_SETJMP, then assume that
1270 all registers, not just hard registers, may be clobbered by this
1271 call. */
1273 /* Insn, being a CALL_INSN, magically depends on
1274 `last_function_call' already. */
1276 if (NEXT_INSN (insn) && GET_CODE (NEXT_INSN (insn)) == NOTE
1277 && NOTE_LINE_NUMBER (NEXT_INSN (insn)) == NOTE_INSN_SETJMP)
1279 for (i = 0; i < deps->max_reg; i++)
1281 struct deps_reg *reg_last = &deps->reg_last[i];
1283 for (u = reg_last->uses; u; u = XEXP (u, 1))
1284 add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
1285 for (u = reg_last->sets; u; u = XEXP (u, 1))
1286 add_dependence (insn, XEXP (u, 0), 0);
1287 for (u = reg_last->clobbers; u; u = XEXP (u, 1))
1288 add_dependence (insn, XEXP (u, 0), 0);
1290 free_INSN_LIST_list (&reg_last->uses);
1292 reg_pending_sets_all = 1;
1294 /* Add a pair of REG_SAVE_NOTEs which we will later
1295 convert back into a NOTE_INSN_SETJMP note. See
1296 reemit_notes for why we use a pair of NOTEs. */
1297 REG_NOTES (insn) = alloc_EXPR_LIST (REG_SAVE_NOTE,
1298 GEN_INT (0),
1299 REG_NOTES (insn));
1300 REG_NOTES (insn) = alloc_EXPR_LIST (REG_SAVE_NOTE,
1301 GEN_INT (NOTE_INSN_SETJMP),
1302 REG_NOTES (insn));
1304 else
1306 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1307 if (call_used_regs[i] || global_regs[i])
1309 for (u = deps->reg_last[i].uses; u; u = XEXP (u, 1))
1310 add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
1311 for (u = deps->reg_last[i].sets; u; u = XEXP (u, 1))
1312 add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
1314 SET_REGNO_REG_SET (reg_pending_clobbers, i);
1318 /* For each insn which shouldn't cross a call, add a dependence
1319 between that insn and this call insn. */
1320 x = LOG_LINKS (deps->sched_before_next_call);
1321 while (x)
1323 add_dependence (insn, XEXP (x, 0), REG_DEP_ANTI);
1324 x = XEXP (x, 1);
1326 free_INSN_LIST_list (&LOG_LINKS (deps->sched_before_next_call));
1328 sched_analyze_insn (deps, PATTERN (insn), insn, loop_notes);
1329 loop_notes = 0;
1331 /* In the absence of interprocedural alias analysis, we must flush
1332 all pending reads and writes, and start new dependencies starting
1333 from here. But only flush writes for constant calls (which may
1334 be passed a pointer to something we haven't written yet). */
1335 flush_pending_lists (deps, insn, CONST_CALL_P (insn));
1337 /* Depend this function call (actually, the user of this
1338 function call) on all hard register clobberage. */
1340 /* last_function_call is now a list of insns. */
1341 free_INSN_LIST_list (&deps->last_function_call);
1342 deps->last_function_call = alloc_INSN_LIST (insn, NULL_RTX);
1344 /* Before reload, begin a post-call group, so as to keep the
1345 lifetimes of hard registers correct. */
1346 if (! reload_completed)
1347 deps->in_post_call_group_p = 1;
1350 /* See comments on reemit_notes as to why we do this.
1351 ??? Actually, the reemit_notes just say what is done, not why. */
1353 else if (GET_CODE (insn) == NOTE
1354 && (NOTE_LINE_NUMBER (insn) == NOTE_INSN_RANGE_BEG
1355 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_RANGE_END))
1357 loop_notes = alloc_EXPR_LIST (REG_SAVE_NOTE, NOTE_RANGE_INFO (insn),
1358 loop_notes);
1359 loop_notes = alloc_EXPR_LIST (REG_SAVE_NOTE,
1360 GEN_INT (NOTE_LINE_NUMBER (insn)),
1361 loop_notes);
1363 else if (GET_CODE (insn) == NOTE
1364 && (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG
1365 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END
1366 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG
1367 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END
1368 || (NOTE_LINE_NUMBER (insn) == NOTE_INSN_SETJMP
1369 && GET_CODE (PREV_INSN (insn)) != CALL_INSN)))
1371 rtx rtx_region;
1373 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG
1374 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END)
1375 rtx_region = GEN_INT (NOTE_EH_HANDLER (insn));
1376 else
1377 rtx_region = GEN_INT (0);
1379 loop_notes = alloc_EXPR_LIST (REG_SAVE_NOTE,
1380 rtx_region,
1381 loop_notes);
1382 loop_notes = alloc_EXPR_LIST (REG_SAVE_NOTE,
1383 GEN_INT (NOTE_LINE_NUMBER (insn)),
1384 loop_notes);
1385 CONST_CALL_P (loop_notes) = CONST_CALL_P (insn);
1388 if (insn == tail)
1389 return;
1391 abort ();
1394 /* Examine insns in the range [ HEAD, TAIL ] and Use the backward
1395 dependences from LOG_LINKS to build forward dependences in
1396 INSN_DEPEND. */
1398 void
1399 compute_forward_dependences (head, tail)
1400 rtx head, tail;
1402 rtx insn, link;
1403 rtx next_tail;
1404 enum reg_note dep_type;
1406 next_tail = NEXT_INSN (tail);
1407 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
1409 if (! INSN_P (insn))
1410 continue;
1412 insn = group_leader (insn);
1414 for (link = LOG_LINKS (insn); link; link = XEXP (link, 1))
1416 rtx x = group_leader (XEXP (link, 0));
1417 rtx new_link;
1419 if (x != XEXP (link, 0))
1420 continue;
1422 #ifdef ENABLE_CHECKING
1423 /* If add_dependence is working properly there should never
1424 be notes, deleted insns or duplicates in the backward
1425 links. Thus we need not check for them here.
1427 However, if we have enabled checking we might as well go
1428 ahead and verify that add_dependence worked properly. */
1429 if (GET_CODE (x) == NOTE
1430 || INSN_DELETED_P (x)
1431 || (forward_dependency_cache != NULL
1432 && TEST_BIT (forward_dependency_cache[INSN_LUID (x)],
1433 INSN_LUID (insn)))
1434 || (forward_dependency_cache == NULL
1435 && find_insn_list (insn, INSN_DEPEND (x))))
1436 abort ();
1437 if (forward_dependency_cache != NULL)
1438 SET_BIT (forward_dependency_cache[INSN_LUID (x)],
1439 INSN_LUID (insn));
1440 #endif
1442 new_link = alloc_INSN_LIST (insn, INSN_DEPEND (x));
1444 dep_type = REG_NOTE_KIND (link);
1445 PUT_REG_NOTE_KIND (new_link, dep_type);
1447 INSN_DEPEND (x) = new_link;
1448 INSN_DEP_COUNT (insn) += 1;
1453 /* Initialize variables for region data dependence analysis.
1454 n_bbs is the number of region blocks. */
1456 void
1457 init_deps (deps)
1458 struct deps *deps;
1460 int max_reg = (reload_completed ? FIRST_PSEUDO_REGISTER : max_reg_num ());
1462 deps->max_reg = max_reg;
1463 deps->reg_last = (struct deps_reg *)
1464 xcalloc (max_reg, sizeof (struct deps_reg));
1465 INIT_REG_SET (&deps->reg_last_in_use);
1467 deps->pending_read_insns = 0;
1468 deps->pending_read_mems = 0;
1469 deps->pending_write_insns = 0;
1470 deps->pending_write_mems = 0;
1471 deps->pending_lists_length = 0;
1472 deps->last_pending_memory_flush = 0;
1473 deps->last_function_call = 0;
1474 deps->in_post_call_group_p = 0;
1476 deps->sched_before_next_call
1477 = gen_rtx_INSN (VOIDmode, 0, NULL_RTX, NULL_RTX,
1478 NULL_RTX, 0, NULL_RTX, NULL_RTX);
1479 LOG_LINKS (deps->sched_before_next_call) = 0;
1482 /* Free insn lists found in DEPS. */
1484 void
1485 free_deps (deps)
1486 struct deps *deps;
1488 int i;
1490 /* Without the EXECUTE_IF_SET, this loop is executed max_reg * nr_regions
1491 times. For a test case with 42000 regs and 8000 small basic blocks,
1492 this loop accounted for nearly 60% (84 sec) of the total -O2 runtime. */
1493 EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i,
1495 struct deps_reg *reg_last = &deps->reg_last[i];
1496 free_INSN_LIST_list (&reg_last->uses);
1497 free_INSN_LIST_list (&reg_last->sets);
1498 free_INSN_LIST_list (&reg_last->clobbers);
1500 CLEAR_REG_SET (&deps->reg_last_in_use);
1502 free (deps->reg_last);
1503 deps->reg_last = NULL;
1506 /* If it is profitable to use them, initialize caches for tracking
1507 dependency informatino. LUID is the number of insns to be scheduled,
1508 it is used in the estimate of profitability. */
1510 void
1511 init_dependency_caches (luid)
1512 int luid;
1514 /* ?!? We could save some memory by computing a per-region luid mapping
1515 which could reduce both the number of vectors in the cache and the size
1516 of each vector. Instead we just avoid the cache entirely unless the
1517 average number of instructions in a basic block is very high. See
1518 the comment before the declaration of true_dependency_cache for
1519 what we consider "very high". */
1520 if (luid / n_basic_blocks > 100 * 5)
1522 true_dependency_cache = sbitmap_vector_alloc (luid, luid);
1523 sbitmap_vector_zero (true_dependency_cache, luid);
1524 anti_dependency_cache = sbitmap_vector_alloc (luid, luid);
1525 sbitmap_vector_zero (anti_dependency_cache, luid);
1526 output_dependency_cache = sbitmap_vector_alloc (luid, luid);
1527 sbitmap_vector_zero (output_dependency_cache, luid);
1528 #ifdef ENABLE_CHECKING
1529 forward_dependency_cache = sbitmap_vector_alloc (luid, luid);
1530 sbitmap_vector_zero (forward_dependency_cache, luid);
1531 #endif
1535 /* Free the caches allocated in init_dependency_caches. */
1537 void
1538 free_dependency_caches ()
1540 if (true_dependency_cache)
1542 free (true_dependency_cache);
1543 true_dependency_cache = NULL;
1544 free (anti_dependency_cache);
1545 anti_dependency_cache = NULL;
1546 free (output_dependency_cache);
1547 output_dependency_cache = NULL;
1548 #ifdef ENABLE_CHECKING
1549 free (forward_dependency_cache);
1550 forward_dependency_cache = NULL;
1551 #endif
1555 /* Initialize some global variables needed by the dependency analysis
1556 code. */
1558 void
1559 init_deps_global ()
1561 reg_pending_sets = INITIALIZE_REG_SET (reg_pending_sets_head);
1562 reg_pending_clobbers = INITIALIZE_REG_SET (reg_pending_clobbers_head);
1563 reg_pending_sets_all = 0;
1566 /* Free everything used by the dependency analysis code. */
1568 void
1569 finish_deps_global ()
1571 FREE_REG_SET (reg_pending_sets);
1572 FREE_REG_SET (reg_pending_clobbers);