re PR tree-optimization/51680 (g++ 4.7 fails to inline trivial template stuff)
[official-gcc.git] / gcc / dse.c
blobc4207df08ec2bae2e4de18fb9e559fb4e1be3043
1 /* RTL dead store elimination.
2 Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
5 Contributed by Richard Sandiford <rsandifor@codesourcery.com>
6 and Kenneth Zadeck <zadeck@naturalbridge.com>
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 3, or (at your option) any later
13 version.
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
24 #undef BASELINE
26 #include "config.h"
27 #include "system.h"
28 #include "coretypes.h"
29 #include "hashtab.h"
30 #include "tm.h"
31 #include "rtl.h"
32 #include "tree.h"
33 #include "tm_p.h"
34 #include "regs.h"
35 #include "hard-reg-set.h"
36 #include "regset.h"
37 #include "flags.h"
38 #include "df.h"
39 #include "cselib.h"
40 #include "timevar.h"
41 #include "tree-pass.h"
42 #include "alloc-pool.h"
43 #include "alias.h"
44 #include "insn-config.h"
45 #include "expr.h"
46 #include "recog.h"
47 #include "dse.h"
48 #include "optabs.h"
49 #include "dbgcnt.h"
50 #include "target.h"
51 #include "params.h"
52 #include "tree-flow.h"
54 /* This file contains three techniques for performing Dead Store
55 Elimination (dse).
57 * The first technique performs dse locally on any base address. It
58 is based on the cselib which is a local value numbering technique.
59 This technique is local to a basic block but deals with a fairly
60 general addresses.
62 * The second technique performs dse globally but is restricted to
63 base addresses that are either constant or are relative to the
64 frame_pointer.
66 * The third technique, (which is only done after register allocation)
67 processes the spill spill slots. This differs from the second
68 technique because it takes advantage of the fact that spilling is
69 completely free from the effects of aliasing.
71 Logically, dse is a backwards dataflow problem. A store can be
72 deleted if it if cannot be reached in the backward direction by any
73 use of the value being stored. However, the local technique uses a
74 forwards scan of the basic block because cselib requires that the
75 block be processed in that order.
77 The pass is logically broken into 7 steps:
79 0) Initialization.
81 1) The local algorithm, as well as scanning the insns for the two
82 global algorithms.
84 2) Analysis to see if the global algs are necessary. In the case
85 of stores base on a constant address, there must be at least two
86 stores to that address, to make it possible to delete some of the
87 stores. In the case of stores off of the frame or spill related
88 stores, only one store to an address is necessary because those
89 stores die at the end of the function.
91 3) Set up the global dataflow equations based on processing the
92 info parsed in the first step.
94 4) Solve the dataflow equations.
96 5) Delete the insns that the global analysis has indicated are
97 unnecessary.
99 6) Delete insns that store the same value as preceeding store
100 where the earlier store couldn't be eliminated.
102 7) Cleanup.
104 This step uses cselib and canon_rtx to build the largest expression
105 possible for each address. This pass is a forwards pass through
106 each basic block. From the point of view of the global technique,
107 the first pass could examine a block in either direction. The
108 forwards ordering is to accommodate cselib.
110 We a simplifying assumption: addresses fall into four broad
111 categories:
113 1) base has rtx_varies_p == false, offset is constant.
114 2) base has rtx_varies_p == false, offset variable.
115 3) base has rtx_varies_p == true, offset constant.
116 4) base has rtx_varies_p == true, offset variable.
118 The local passes are able to process all 4 kinds of addresses. The
119 global pass only handles (1).
121 The global problem is formulated as follows:
123 A store, S1, to address A, where A is not relative to the stack
124 frame, can be eliminated if all paths from S1 to the end of the
125 of the function contain another store to A before a read to A.
127 If the address A is relative to the stack frame, a store S2 to A
128 can be eliminated if there are no paths from S1 that reach the
129 end of the function that read A before another store to A. In
130 this case S2 can be deleted if there are paths to from S2 to the
131 end of the function that have no reads or writes to A. This
132 second case allows stores to the stack frame to be deleted that
133 would otherwise die when the function returns. This cannot be
134 done if stores_off_frame_dead_at_return is not true. See the doc
135 for that variable for when this variable is false.
137 The global problem is formulated as a backwards set union
138 dataflow problem where the stores are the gens and reads are the
139 kills. Set union problems are rare and require some special
140 handling given our representation of bitmaps. A straightforward
141 implementation of requires a lot of bitmaps filled with 1s.
142 These are expensive and cumbersome in our bitmap formulation so
143 care has been taken to avoid large vectors filled with 1s. See
144 the comments in bb_info and in the dataflow confluence functions
145 for details.
147 There are two places for further enhancements to this algorithm:
149 1) The original dse which was embedded in a pass called flow also
150 did local address forwarding. For example in
152 A <- r100
153 ... <- A
155 flow would replace the right hand side of the second insn with a
156 reference to r100. Most of the information is available to add this
157 to this pass. It has not done it because it is a lot of work in
158 the case that either r100 is assigned to between the first and
159 second insn and/or the second insn is a load of part of the value
160 stored by the first insn.
162 insn 5 in gcc.c-torture/compile/990203-1.c simple case.
163 insn 15 in gcc.c-torture/execute/20001017-2.c simple case.
164 insn 25 in gcc.c-torture/execute/20001026-1.c simple case.
165 insn 44 in gcc.c-torture/execute/20010910-1.c simple case.
167 2) The cleaning up of spill code is quite profitable. It currently
168 depends on reading tea leaves and chicken entrails left by reload.
169 This pass depends on reload creating a singleton alias set for each
170 spill slot and telling the next dse pass which of these alias sets
171 are the singletons. Rather than analyze the addresses of the
172 spills, dse's spill processing just does analysis of the loads and
173 stores that use those alias sets. There are three cases where this
174 falls short:
176 a) Reload sometimes creates the slot for one mode of access, and
177 then inserts loads and/or stores for a smaller mode. In this
178 case, the current code just punts on the slot. The proper thing
179 to do is to back out and use one bit vector position for each
180 byte of the entity associated with the slot. This depends on
181 KNOWING that reload always generates the accesses for each of the
182 bytes in some canonical (read that easy to understand several
183 passes after reload happens) way.
185 b) Reload sometimes decides that spill slot it allocated was not
186 large enough for the mode and goes back and allocates more slots
187 with the same mode and alias set. The backout in this case is a
188 little more graceful than (a). In this case the slot is unmarked
189 as being a spill slot and if final address comes out to be based
190 off the frame pointer, the global algorithm handles this slot.
192 c) For any pass that may prespill, there is currently no
193 mechanism to tell the dse pass that the slot being used has the
194 special properties that reload uses. It may be that all that is
195 required is to have those passes make the same calls that reload
196 does, assuming that the alias sets can be manipulated in the same
197 way. */
199 /* There are limits to the size of constant offsets we model for the
200 global problem. There are certainly test cases, that exceed this
201 limit, however, it is unlikely that there are important programs
202 that really have constant offsets this size. */
203 #define MAX_OFFSET (64 * 1024)
206 static bitmap scratch = NULL;
207 struct insn_info;
209 /* This structure holds information about a candidate store. */
210 struct store_info
213 /* False means this is a clobber. */
214 bool is_set;
216 /* False if a single HOST_WIDE_INT bitmap is used for positions_needed. */
217 bool is_large;
219 /* The id of the mem group of the base address. If rtx_varies_p is
220 true, this is -1. Otherwise, it is the index into the group
221 table. */
222 int group_id;
224 /* This is the cselib value. */
225 cselib_val *cse_base;
227 /* This canonized mem. */
228 rtx mem;
230 /* Canonized MEM address for use by canon_true_dependence. */
231 rtx mem_addr;
233 /* If this is non-zero, it is the alias set of a spill location. */
234 alias_set_type alias_set;
236 /* The offset of the first and byte before the last byte associated
237 with the operation. */
238 HOST_WIDE_INT begin, end;
240 union
242 /* A bitmask as wide as the number of bytes in the word that
243 contains a 1 if the byte may be needed. The store is unused if
244 all of the bits are 0. This is used if IS_LARGE is false. */
245 unsigned HOST_WIDE_INT small_bitmask;
247 struct
249 /* A bitmap with one bit per byte. Cleared bit means the position
250 is needed. Used if IS_LARGE is false. */
251 bitmap bmap;
253 /* Number of set bits (i.e. unneeded bytes) in BITMAP. If it is
254 equal to END - BEGIN, the whole store is unused. */
255 int count;
256 } large;
257 } positions_needed;
259 /* The next store info for this insn. */
260 struct store_info *next;
262 /* The right hand side of the store. This is used if there is a
263 subsequent reload of the mems address somewhere later in the
264 basic block. */
265 rtx rhs;
267 /* If rhs is or holds a constant, this contains that constant,
268 otherwise NULL. */
269 rtx const_rhs;
271 /* Set if this store stores the same constant value as REDUNDANT_REASON
272 insn stored. These aren't eliminated early, because doing that
273 might prevent the earlier larger store to be eliminated. */
274 struct insn_info *redundant_reason;
277 /* Return a bitmask with the first N low bits set. */
279 static unsigned HOST_WIDE_INT
280 lowpart_bitmask (int n)
282 unsigned HOST_WIDE_INT mask = ~(unsigned HOST_WIDE_INT) 0;
283 return mask >> (HOST_BITS_PER_WIDE_INT - n);
286 typedef struct store_info *store_info_t;
287 static alloc_pool cse_store_info_pool;
288 static alloc_pool rtx_store_info_pool;
290 /* This structure holds information about a load. These are only
291 built for rtx bases. */
292 struct read_info
294 /* The id of the mem group of the base address. */
295 int group_id;
297 /* If this is non-zero, it is the alias set of a spill location. */
298 alias_set_type alias_set;
300 /* The offset of the first and byte after the last byte associated
301 with the operation. If begin == end == 0, the read did not have
302 a constant offset. */
303 int begin, end;
305 /* The mem being read. */
306 rtx mem;
308 /* The next read_info for this insn. */
309 struct read_info *next;
311 typedef struct read_info *read_info_t;
312 static alloc_pool read_info_pool;
315 /* One of these records is created for each insn. */
317 struct insn_info
319 /* Set true if the insn contains a store but the insn itself cannot
320 be deleted. This is set if the insn is a parallel and there is
321 more than one non dead output or if the insn is in some way
322 volatile. */
323 bool cannot_delete;
325 /* This field is only used by the global algorithm. It is set true
326 if the insn contains any read of mem except for a (1). This is
327 also set if the insn is a call or has a clobber mem. If the insn
328 contains a wild read, the use_rec will be null. */
329 bool wild_read;
331 /* This is true only for CALL instructions which could potentially read
332 any non-frame memory location. This field is used by the global
333 algorithm. */
334 bool non_frame_wild_read;
336 /* This field is only used for the processing of const functions.
337 These functions cannot read memory, but they can read the stack
338 because that is where they may get their parms. We need to be
339 this conservative because, like the store motion pass, we don't
340 consider CALL_INSN_FUNCTION_USAGE when processing call insns.
341 Moreover, we need to distinguish two cases:
342 1. Before reload (register elimination), the stores related to
343 outgoing arguments are stack pointer based and thus deemed
344 of non-constant base in this pass. This requires special
345 handling but also means that the frame pointer based stores
346 need not be killed upon encountering a const function call.
347 2. After reload, the stores related to outgoing arguments can be
348 either stack pointer or hard frame pointer based. This means
349 that we have no other choice than also killing all the frame
350 pointer based stores upon encountering a const function call.
351 This field is set after reload for const function calls. Having
352 this set is less severe than a wild read, it just means that all
353 the frame related stores are killed rather than all the stores. */
354 bool frame_read;
356 /* This field is only used for the processing of const functions.
357 It is set if the insn may contain a stack pointer based store. */
358 bool stack_pointer_based;
360 /* This is true if any of the sets within the store contains a
361 cselib base. Such stores can only be deleted by the local
362 algorithm. */
363 bool contains_cselib_groups;
365 /* The insn. */
366 rtx insn;
368 /* The list of mem sets or mem clobbers that are contained in this
369 insn. If the insn is deletable, it contains only one mem set.
370 But it could also contain clobbers. Insns that contain more than
371 one mem set are not deletable, but each of those mems are here in
372 order to provide info to delete other insns. */
373 store_info_t store_rec;
375 /* The linked list of mem uses in this insn. Only the reads from
376 rtx bases are listed here. The reads to cselib bases are
377 completely processed during the first scan and so are never
378 created. */
379 read_info_t read_rec;
381 /* The live fixed registers. We assume only fixed registers can
382 cause trouble by being clobbered from an expanded pattern;
383 storing only the live fixed registers (rather than all registers)
384 means less memory needs to be allocated / copied for the individual
385 stores. */
386 regset fixed_regs_live;
388 /* The prev insn in the basic block. */
389 struct insn_info * prev_insn;
391 /* The linked list of insns that are in consideration for removal in
392 the forwards pass thru the basic block. This pointer may be
393 trash as it is not cleared when a wild read occurs. The only
394 time it is guaranteed to be correct is when the traversal starts
395 at active_local_stores. */
396 struct insn_info * next_local_store;
399 typedef struct insn_info *insn_info_t;
400 static alloc_pool insn_info_pool;
402 /* The linked list of stores that are under consideration in this
403 basic block. */
404 static insn_info_t active_local_stores;
405 static int active_local_stores_len;
407 struct bb_info
410 /* Pointer to the insn info for the last insn in the block. These
411 are linked so this is how all of the insns are reached. During
412 scanning this is the current insn being scanned. */
413 insn_info_t last_insn;
415 /* The info for the global dataflow problem. */
418 /* This is set if the transfer function should and in the wild_read
419 bitmap before applying the kill and gen sets. That vector knocks
420 out most of the bits in the bitmap and thus speeds up the
421 operations. */
422 bool apply_wild_read;
424 /* The following 4 bitvectors hold information about which positions
425 of which stores are live or dead. They are indexed by
426 get_bitmap_index. */
428 /* The set of store positions that exist in this block before a wild read. */
429 bitmap gen;
431 /* The set of load positions that exist in this block above the
432 same position of a store. */
433 bitmap kill;
435 /* The set of stores that reach the top of the block without being
436 killed by a read.
438 Do not represent the in if it is all ones. Note that this is
439 what the bitvector should logically be initialized to for a set
440 intersection problem. However, like the kill set, this is too
441 expensive. So initially, the in set will only be created for the
442 exit block and any block that contains a wild read. */
443 bitmap in;
445 /* The set of stores that reach the bottom of the block from it's
446 successors.
448 Do not represent the in if it is all ones. Note that this is
449 what the bitvector should logically be initialized to for a set
450 intersection problem. However, like the kill and in set, this is
451 too expensive. So what is done is that the confluence operator
452 just initializes the vector from one of the out sets of the
453 successors of the block. */
454 bitmap out;
456 /* The following bitvector is indexed by the reg number. It
457 contains the set of regs that are live at the current instruction
458 being processed. While it contains info for all of the
459 registers, only the hard registers are actually examined. It is used
460 to assure that shift and/or add sequences that are inserted do not
461 accidently clobber live hard regs. */
462 bitmap regs_live;
465 typedef struct bb_info *bb_info_t;
466 static alloc_pool bb_info_pool;
468 /* Table to hold all bb_infos. */
469 static bb_info_t *bb_table;
471 /* There is a group_info for each rtx base that is used to reference
472 memory. There are also not many of the rtx bases because they are
473 very limited in scope. */
475 struct group_info
477 /* The actual base of the address. */
478 rtx rtx_base;
480 /* The sequential id of the base. This allows us to have a
481 canonical ordering of these that is not based on addresses. */
482 int id;
484 /* True if there are any positions that are to be processed
485 globally. */
486 bool process_globally;
488 /* True if the base of this group is either the frame_pointer or
489 hard_frame_pointer. */
490 bool frame_related;
492 /* A mem wrapped around the base pointer for the group in order to do
493 read dependency. It must be given BLKmode in order to encompass all
494 the possible offsets from the base. */
495 rtx base_mem;
497 /* Canonized version of base_mem's address. */
498 rtx canon_base_addr;
500 /* These two sets of two bitmaps are used to keep track of how many
501 stores are actually referencing that position from this base. We
502 only do this for rtx bases as this will be used to assign
503 positions in the bitmaps for the global problem. Bit N is set in
504 store1 on the first store for offset N. Bit N is set in store2
505 for the second store to offset N. This is all we need since we
506 only care about offsets that have two or more stores for them.
508 The "_n" suffix is for offsets less than 0 and the "_p" suffix is
509 for 0 and greater offsets.
511 There is one special case here, for stores into the stack frame,
512 we will or store1 into store2 before deciding which stores look
513 at globally. This is because stores to the stack frame that have
514 no other reads before the end of the function can also be
515 deleted. */
516 bitmap store1_n, store1_p, store2_n, store2_p;
518 /* These bitmaps keep track of offsets in this group escape this function.
519 An offset escapes if it corresponds to a named variable whose
520 addressable flag is set. */
521 bitmap escaped_n, escaped_p;
523 /* The positions in this bitmap have the same assignments as the in,
524 out, gen and kill bitmaps. This bitmap is all zeros except for
525 the positions that are occupied by stores for this group. */
526 bitmap group_kill;
528 /* The offset_map is used to map the offsets from this base into
529 positions in the global bitmaps. It is only created after all of
530 the all of stores have been scanned and we know which ones we
531 care about. */
532 int *offset_map_n, *offset_map_p;
533 int offset_map_size_n, offset_map_size_p;
535 typedef struct group_info *group_info_t;
536 typedef const struct group_info *const_group_info_t;
537 static alloc_pool rtx_group_info_pool;
539 /* Tables of group_info structures, hashed by base value. */
540 static htab_t rtx_group_table;
542 /* Index into the rtx_group_vec. */
543 static int rtx_group_next_id;
545 DEF_VEC_P(group_info_t);
546 DEF_VEC_ALLOC_P(group_info_t,heap);
548 static VEC(group_info_t,heap) *rtx_group_vec;
551 /* This structure holds the set of changes that are being deferred
552 when removing read operation. See replace_read. */
553 struct deferred_change
556 /* The mem that is being replaced. */
557 rtx *loc;
559 /* The reg it is being replaced with. */
560 rtx reg;
562 struct deferred_change *next;
565 typedef struct deferred_change *deferred_change_t;
566 static alloc_pool deferred_change_pool;
568 static deferred_change_t deferred_change_list = NULL;
570 /* This are used to hold the alias sets of spill variables. Since
571 these are never aliased and there may be a lot of them, it makes
572 sense to treat them specially. This bitvector is only allocated in
573 calls from dse_record_singleton_alias_set which currently is only
574 made during reload1. So when dse is called before reload this
575 mechanism does nothing. */
577 static bitmap clear_alias_sets = NULL;
579 /* The set of clear_alias_sets that have been disqualified because
580 there are loads or stores using a different mode than the alias set
581 was registered with. */
582 static bitmap disqualified_clear_alias_sets = NULL;
584 /* The group that holds all of the clear_alias_sets. */
585 static group_info_t clear_alias_group;
587 /* The modes of the clear_alias_sets. */
588 static htab_t clear_alias_mode_table;
590 /* Hash table element to look up the mode for an alias set. */
591 struct clear_alias_mode_holder
593 alias_set_type alias_set;
594 enum machine_mode mode;
597 static alloc_pool clear_alias_mode_pool;
599 /* This is true except if cfun->stdarg -- i.e. we cannot do
600 this for vararg functions because they play games with the frame. */
601 static bool stores_off_frame_dead_at_return;
603 /* Counter for stats. */
604 static int globally_deleted;
605 static int locally_deleted;
606 static int spill_deleted;
608 static bitmap all_blocks;
610 /* Locations that are killed by calls in the global phase. */
611 static bitmap kill_on_calls;
613 /* The number of bits used in the global bitmaps. */
614 static unsigned int current_position;
617 static bool gate_dse (void);
618 static bool gate_dse1 (void);
619 static bool gate_dse2 (void);
622 /*----------------------------------------------------------------------------
623 Zeroth step.
625 Initialization.
626 ----------------------------------------------------------------------------*/
628 /* Hashtable callbacks for maintaining the "bases" field of
629 store_group_info, given that the addresses are function invariants. */
631 static int
632 clear_alias_mode_eq (const void *p1, const void *p2)
634 const struct clear_alias_mode_holder * h1
635 = (const struct clear_alias_mode_holder *) p1;
636 const struct clear_alias_mode_holder * h2
637 = (const struct clear_alias_mode_holder *) p2;
638 return h1->alias_set == h2->alias_set;
642 static hashval_t
643 clear_alias_mode_hash (const void *p)
645 const struct clear_alias_mode_holder *holder
646 = (const struct clear_alias_mode_holder *) p;
647 return holder->alias_set;
651 /* Find the entry associated with ALIAS_SET. */
653 static struct clear_alias_mode_holder *
654 clear_alias_set_lookup (alias_set_type alias_set)
656 struct clear_alias_mode_holder tmp_holder;
657 void **slot;
659 tmp_holder.alias_set = alias_set;
660 slot = htab_find_slot (clear_alias_mode_table, &tmp_holder, NO_INSERT);
661 gcc_assert (*slot);
663 return (struct clear_alias_mode_holder *) *slot;
667 /* Hashtable callbacks for maintaining the "bases" field of
668 store_group_info, given that the addresses are function invariants. */
670 static int
671 invariant_group_base_eq (const void *p1, const void *p2)
673 const_group_info_t gi1 = (const_group_info_t) p1;
674 const_group_info_t gi2 = (const_group_info_t) p2;
675 return rtx_equal_p (gi1->rtx_base, gi2->rtx_base);
679 static hashval_t
680 invariant_group_base_hash (const void *p)
682 const_group_info_t gi = (const_group_info_t) p;
683 int do_not_record;
684 return hash_rtx (gi->rtx_base, Pmode, &do_not_record, NULL, false);
688 /* Get the GROUP for BASE. Add a new group if it is not there. */
690 static group_info_t
691 get_group_info (rtx base)
693 struct group_info tmp_gi;
694 group_info_t gi;
695 void **slot;
697 if (base)
699 /* Find the store_base_info structure for BASE, creating a new one
700 if necessary. */
701 tmp_gi.rtx_base = base;
702 slot = htab_find_slot (rtx_group_table, &tmp_gi, INSERT);
703 gi = (group_info_t) *slot;
705 else
707 if (!clear_alias_group)
709 clear_alias_group = gi =
710 (group_info_t) pool_alloc (rtx_group_info_pool);
711 memset (gi, 0, sizeof (struct group_info));
712 gi->id = rtx_group_next_id++;
713 gi->store1_n = BITMAP_ALLOC (NULL);
714 gi->store1_p = BITMAP_ALLOC (NULL);
715 gi->store2_n = BITMAP_ALLOC (NULL);
716 gi->store2_p = BITMAP_ALLOC (NULL);
717 gi->escaped_p = BITMAP_ALLOC (NULL);
718 gi->escaped_n = BITMAP_ALLOC (NULL);
719 gi->group_kill = BITMAP_ALLOC (NULL);
720 gi->process_globally = false;
721 gi->offset_map_size_n = 0;
722 gi->offset_map_size_p = 0;
723 gi->offset_map_n = NULL;
724 gi->offset_map_p = NULL;
725 VEC_safe_push (group_info_t, heap, rtx_group_vec, gi);
727 return clear_alias_group;
730 if (gi == NULL)
732 *slot = gi = (group_info_t) pool_alloc (rtx_group_info_pool);
733 gi->rtx_base = base;
734 gi->id = rtx_group_next_id++;
735 gi->base_mem = gen_rtx_MEM (BLKmode, base);
736 gi->canon_base_addr = canon_rtx (base);
737 gi->store1_n = BITMAP_ALLOC (NULL);
738 gi->store1_p = BITMAP_ALLOC (NULL);
739 gi->store2_n = BITMAP_ALLOC (NULL);
740 gi->store2_p = BITMAP_ALLOC (NULL);
741 gi->escaped_p = BITMAP_ALLOC (NULL);
742 gi->escaped_n = BITMAP_ALLOC (NULL);
743 gi->group_kill = BITMAP_ALLOC (NULL);
744 gi->process_globally = false;
745 gi->frame_related =
746 (base == frame_pointer_rtx) || (base == hard_frame_pointer_rtx);
747 gi->offset_map_size_n = 0;
748 gi->offset_map_size_p = 0;
749 gi->offset_map_n = NULL;
750 gi->offset_map_p = NULL;
751 VEC_safe_push (group_info_t, heap, rtx_group_vec, gi);
754 return gi;
758 /* Initialization of data structures. */
760 static void
761 dse_step0 (void)
763 locally_deleted = 0;
764 globally_deleted = 0;
765 spill_deleted = 0;
767 scratch = BITMAP_ALLOC (NULL);
768 kill_on_calls = BITMAP_ALLOC (NULL);
770 rtx_store_info_pool
771 = create_alloc_pool ("rtx_store_info_pool",
772 sizeof (struct store_info), 100);
773 read_info_pool
774 = create_alloc_pool ("read_info_pool",
775 sizeof (struct read_info), 100);
776 insn_info_pool
777 = create_alloc_pool ("insn_info_pool",
778 sizeof (struct insn_info), 100);
779 bb_info_pool
780 = create_alloc_pool ("bb_info_pool",
781 sizeof (struct bb_info), 100);
782 rtx_group_info_pool
783 = create_alloc_pool ("rtx_group_info_pool",
784 sizeof (struct group_info), 100);
785 deferred_change_pool
786 = create_alloc_pool ("deferred_change_pool",
787 sizeof (struct deferred_change), 10);
789 rtx_group_table = htab_create (11, invariant_group_base_hash,
790 invariant_group_base_eq, NULL);
792 bb_table = XCNEWVEC (bb_info_t, last_basic_block);
793 rtx_group_next_id = 0;
795 stores_off_frame_dead_at_return = !cfun->stdarg;
797 init_alias_analysis ();
799 if (clear_alias_sets)
800 clear_alias_group = get_group_info (NULL);
801 else
802 clear_alias_group = NULL;
807 /*----------------------------------------------------------------------------
808 First step.
810 Scan all of the insns. Any random ordering of the blocks is fine.
811 Each block is scanned in forward order to accommodate cselib which
812 is used to remove stores with non-constant bases.
813 ----------------------------------------------------------------------------*/
815 /* Delete all of the store_info recs from INSN_INFO. */
817 static void
818 free_store_info (insn_info_t insn_info)
820 store_info_t store_info = insn_info->store_rec;
821 while (store_info)
823 store_info_t next = store_info->next;
824 if (store_info->is_large)
825 BITMAP_FREE (store_info->positions_needed.large.bmap);
826 if (store_info->cse_base)
827 pool_free (cse_store_info_pool, store_info);
828 else
829 pool_free (rtx_store_info_pool, store_info);
830 store_info = next;
833 insn_info->cannot_delete = true;
834 insn_info->contains_cselib_groups = false;
835 insn_info->store_rec = NULL;
838 typedef struct
840 rtx first, current;
841 regset fixed_regs_live;
842 bool failure;
843 } note_add_store_info;
845 /* Callback for emit_inc_dec_insn_before via note_stores.
846 Check if a register is clobbered which is live afterwards. */
848 static void
849 note_add_store (rtx loc, const_rtx expr ATTRIBUTE_UNUSED, void *data)
851 rtx insn;
852 note_add_store_info *info = (note_add_store_info *) data;
853 int r, n;
855 if (!REG_P (loc))
856 return;
858 /* If this register is referenced by the current or an earlier insn,
859 that's OK. E.g. this applies to the register that is being incremented
860 with this addition. */
861 for (insn = info->first;
862 insn != NEXT_INSN (info->current);
863 insn = NEXT_INSN (insn))
864 if (reg_referenced_p (loc, PATTERN (insn)))
865 return;
867 /* If we come here, we have a clobber of a register that's only OK
868 if that register is not live. If we don't have liveness information
869 available, fail now. */
870 if (!info->fixed_regs_live)
872 info->failure = true;
873 return;
875 /* Now check if this is a live fixed register. */
876 r = REGNO (loc);
877 n = hard_regno_nregs[r][GET_MODE (loc)];
878 while (--n >= 0)
879 if (REGNO_REG_SET_P (info->fixed_regs_live, r+n))
880 info->failure = true;
883 /* Callback for for_each_inc_dec that emits an INSN that sets DEST to
884 SRC + SRCOFF before insn ARG. */
886 static int
887 emit_inc_dec_insn_before (rtx mem ATTRIBUTE_UNUSED,
888 rtx op ATTRIBUTE_UNUSED,
889 rtx dest, rtx src, rtx srcoff, void *arg)
891 insn_info_t insn_info = (insn_info_t) arg;
892 rtx insn = insn_info->insn, new_insn, cur;
893 note_add_store_info info;
895 /* We can reuse all operands without copying, because we are about
896 to delete the insn that contained it. */
897 if (srcoff)
899 start_sequence ();
900 emit_insn (gen_add3_insn (dest, src, srcoff));
901 new_insn = get_insns ();
902 end_sequence ();
904 else
905 new_insn = gen_move_insn (dest, src);
906 info.first = new_insn;
907 info.fixed_regs_live = insn_info->fixed_regs_live;
908 info.failure = false;
909 for (cur = new_insn; cur; cur = NEXT_INSN (cur))
911 info.current = cur;
912 note_stores (PATTERN (cur), note_add_store, &info);
915 /* If a failure was flagged above, return 1 so that for_each_inc_dec will
916 return it immediately, communicating the failure to its caller. */
917 if (info.failure)
918 return 1;
920 emit_insn_before (new_insn, insn);
922 return -1;
925 /* Before we delete INSN_INFO->INSN, make sure that the auto inc/dec, if it
926 is there, is split into a separate insn.
927 Return true on success (or if there was nothing to do), false on failure. */
929 static bool
930 check_for_inc_dec_1 (insn_info_t insn_info)
932 rtx insn = insn_info->insn;
933 rtx note = find_reg_note (insn, REG_INC, NULL_RTX);
934 if (note)
935 return for_each_inc_dec (&insn, emit_inc_dec_insn_before, insn_info) == 0;
936 return true;
940 /* Entry point for postreload. If you work on reload_cse, or you need this
941 anywhere else, consider if you can provide register liveness information
942 and add a parameter to this function so that it can be passed down in
943 insn_info.fixed_regs_live. */
944 bool
945 check_for_inc_dec (rtx insn)
947 struct insn_info insn_info;
948 rtx note;
950 insn_info.insn = insn;
951 insn_info.fixed_regs_live = NULL;
952 note = find_reg_note (insn, REG_INC, NULL_RTX);
953 if (note)
954 return for_each_inc_dec (&insn, emit_inc_dec_insn_before, &insn_info) == 0;
955 return true;
958 /* Delete the insn and free all of the fields inside INSN_INFO. */
960 static void
961 delete_dead_store_insn (insn_info_t insn_info)
963 read_info_t read_info;
965 if (!dbg_cnt (dse))
966 return;
968 if (!check_for_inc_dec_1 (insn_info))
969 return;
970 if (dump_file)
972 fprintf (dump_file, "Locally deleting insn %d ",
973 INSN_UID (insn_info->insn));
974 if (insn_info->store_rec->alias_set)
975 fprintf (dump_file, "alias set %d\n",
976 (int) insn_info->store_rec->alias_set);
977 else
978 fprintf (dump_file, "\n");
981 free_store_info (insn_info);
982 read_info = insn_info->read_rec;
984 while (read_info)
986 read_info_t next = read_info->next;
987 pool_free (read_info_pool, read_info);
988 read_info = next;
990 insn_info->read_rec = NULL;
992 delete_insn (insn_info->insn);
993 locally_deleted++;
994 insn_info->insn = NULL;
996 insn_info->wild_read = false;
999 /* Check if EXPR can possibly escape the current function scope. */
1000 static bool
1001 can_escape (tree expr)
1003 tree base;
1004 if (!expr)
1005 return true;
1006 base = get_base_address (expr);
1007 if (DECL_P (base)
1008 && !may_be_aliased (base))
1009 return false;
1010 return true;
1013 /* Set the store* bitmaps offset_map_size* fields in GROUP based on
1014 OFFSET and WIDTH. */
1016 static void
1017 set_usage_bits (group_info_t group, HOST_WIDE_INT offset, HOST_WIDE_INT width,
1018 tree expr)
1020 HOST_WIDE_INT i;
1021 bool expr_escapes = can_escape (expr);
1022 if (offset > -MAX_OFFSET && offset + width < MAX_OFFSET)
1023 for (i=offset; i<offset+width; i++)
1025 bitmap store1;
1026 bitmap store2;
1027 bitmap escaped;
1028 int ai;
1029 if (i < 0)
1031 store1 = group->store1_n;
1032 store2 = group->store2_n;
1033 escaped = group->escaped_n;
1034 ai = -i;
1036 else
1038 store1 = group->store1_p;
1039 store2 = group->store2_p;
1040 escaped = group->escaped_p;
1041 ai = i;
1044 if (!bitmap_set_bit (store1, ai))
1045 bitmap_set_bit (store2, ai);
1046 else
1048 if (i < 0)
1050 if (group->offset_map_size_n < ai)
1051 group->offset_map_size_n = ai;
1053 else
1055 if (group->offset_map_size_p < ai)
1056 group->offset_map_size_p = ai;
1059 if (expr_escapes)
1060 bitmap_set_bit (escaped, ai);
1064 static void
1065 reset_active_stores (void)
1067 active_local_stores = NULL;
1068 active_local_stores_len = 0;
1071 /* Free all READ_REC of the LAST_INSN of BB_INFO. */
1073 static void
1074 free_read_records (bb_info_t bb_info)
1076 insn_info_t insn_info = bb_info->last_insn;
1077 read_info_t *ptr = &insn_info->read_rec;
1078 while (*ptr)
1080 read_info_t next = (*ptr)->next;
1081 if ((*ptr)->alias_set == 0)
1083 pool_free (read_info_pool, *ptr);
1084 *ptr = next;
1086 else
1087 ptr = &(*ptr)->next;
1091 /* Set the BB_INFO so that the last insn is marked as a wild read. */
1093 static void
1094 add_wild_read (bb_info_t bb_info)
1096 insn_info_t insn_info = bb_info->last_insn;
1097 insn_info->wild_read = true;
1098 free_read_records (bb_info);
1099 reset_active_stores ();
1102 /* Set the BB_INFO so that the last insn is marked as a wild read of
1103 non-frame locations. */
1105 static void
1106 add_non_frame_wild_read (bb_info_t bb_info)
1108 insn_info_t insn_info = bb_info->last_insn;
1109 insn_info->non_frame_wild_read = true;
1110 free_read_records (bb_info);
1111 reset_active_stores ();
1114 /* Return true if X is a constant or one of the registers that behave
1115 as a constant over the life of a function. This is equivalent to
1116 !rtx_varies_p for memory addresses. */
1118 static bool
1119 const_or_frame_p (rtx x)
1121 switch (GET_CODE (x))
1123 case CONST:
1124 case CONST_INT:
1125 case CONST_DOUBLE:
1126 case CONST_VECTOR:
1127 case SYMBOL_REF:
1128 case LABEL_REF:
1129 return true;
1131 case REG:
1132 /* Note that we have to test for the actual rtx used for the frame
1133 and arg pointers and not just the register number in case we have
1134 eliminated the frame and/or arg pointer and are using it
1135 for pseudos. */
1136 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
1137 /* The arg pointer varies if it is not a fixed register. */
1138 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
1139 || x == pic_offset_table_rtx)
1140 return true;
1141 return false;
1143 default:
1144 return false;
1148 /* Take all reasonable action to put the address of MEM into the form
1149 that we can do analysis on.
1151 The gold standard is to get the address into the form: address +
1152 OFFSET where address is something that rtx_varies_p considers a
1153 constant. When we can get the address in this form, we can do
1154 global analysis on it. Note that for constant bases, address is
1155 not actually returned, only the group_id. The address can be
1156 obtained from that.
1158 If that fails, we try cselib to get a value we can at least use
1159 locally. If that fails we return false.
1161 The GROUP_ID is set to -1 for cselib bases and the index of the
1162 group for non_varying bases.
1164 FOR_READ is true if this is a mem read and false if not. */
1166 static bool
1167 canon_address (rtx mem,
1168 alias_set_type *alias_set_out,
1169 int *group_id,
1170 HOST_WIDE_INT *offset,
1171 cselib_val **base)
1173 enum machine_mode address_mode
1174 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (mem));
1175 rtx mem_address = XEXP (mem, 0);
1176 rtx expanded_address, address;
1177 int expanded;
1179 /* Make sure that cselib is has initialized all of the operands of
1180 the address before asking it to do the subst. */
1182 if (clear_alias_sets)
1184 /* If this is a spill, do not do any further processing. */
1185 alias_set_type alias_set = MEM_ALIAS_SET (mem);
1186 if (dump_file)
1187 fprintf (dump_file, "found alias set %d\n", (int) alias_set);
1188 if (bitmap_bit_p (clear_alias_sets, alias_set))
1190 struct clear_alias_mode_holder *entry
1191 = clear_alias_set_lookup (alias_set);
1193 /* If the modes do not match, we cannot process this set. */
1194 if (entry->mode != GET_MODE (mem))
1196 if (dump_file)
1197 fprintf (dump_file,
1198 "disqualifying alias set %d, (%s) != (%s)\n",
1199 (int) alias_set, GET_MODE_NAME (entry->mode),
1200 GET_MODE_NAME (GET_MODE (mem)));
1202 bitmap_set_bit (disqualified_clear_alias_sets, alias_set);
1203 return false;
1206 *alias_set_out = alias_set;
1207 *group_id = clear_alias_group->id;
1208 return true;
1212 *alias_set_out = 0;
1214 cselib_lookup (mem_address, address_mode, 1, GET_MODE (mem));
1216 if (dump_file)
1218 fprintf (dump_file, " mem: ");
1219 print_inline_rtx (dump_file, mem_address, 0);
1220 fprintf (dump_file, "\n");
1223 /* First see if just canon_rtx (mem_address) is const or frame,
1224 if not, try cselib_expand_value_rtx and call canon_rtx on that. */
1225 address = NULL_RTX;
1226 for (expanded = 0; expanded < 2; expanded++)
1228 if (expanded)
1230 /* Use cselib to replace all of the reg references with the full
1231 expression. This will take care of the case where we have
1233 r_x = base + offset;
1234 val = *r_x;
1236 by making it into
1238 val = *(base + offset); */
1240 expanded_address = cselib_expand_value_rtx (mem_address,
1241 scratch, 5);
1243 /* If this fails, just go with the address from first
1244 iteration. */
1245 if (!expanded_address)
1246 break;
1248 else
1249 expanded_address = mem_address;
1251 /* Split the address into canonical BASE + OFFSET terms. */
1252 address = canon_rtx (expanded_address);
1254 *offset = 0;
1256 if (dump_file)
1258 if (expanded)
1260 fprintf (dump_file, "\n after cselib_expand address: ");
1261 print_inline_rtx (dump_file, expanded_address, 0);
1262 fprintf (dump_file, "\n");
1265 fprintf (dump_file, "\n after canon_rtx address: ");
1266 print_inline_rtx (dump_file, address, 0);
1267 fprintf (dump_file, "\n");
1270 if (GET_CODE (address) == CONST)
1271 address = XEXP (address, 0);
1273 if (GET_CODE (address) == PLUS
1274 && CONST_INT_P (XEXP (address, 1)))
1276 *offset = INTVAL (XEXP (address, 1));
1277 address = XEXP (address, 0);
1280 if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (mem))
1281 && const_or_frame_p (address))
1283 group_info_t group = get_group_info (address);
1285 if (dump_file)
1286 fprintf (dump_file, " gid=%d offset=%d \n",
1287 group->id, (int)*offset);
1288 *base = NULL;
1289 *group_id = group->id;
1290 return true;
1294 *base = cselib_lookup (address, address_mode, true, GET_MODE (mem));
1295 *group_id = -1;
1297 if (*base == NULL)
1299 if (dump_file)
1300 fprintf (dump_file, " no cselib val - should be a wild read.\n");
1301 return false;
1303 if (dump_file)
1304 fprintf (dump_file, " varying cselib base=%u:%u offset = %d\n",
1305 (*base)->uid, (*base)->hash, (int)*offset);
1306 return true;
1310 /* Clear the rhs field from the active_local_stores array. */
1312 static void
1313 clear_rhs_from_active_local_stores (void)
1315 insn_info_t ptr = active_local_stores;
1317 while (ptr)
1319 store_info_t store_info = ptr->store_rec;
1320 /* Skip the clobbers. */
1321 while (!store_info->is_set)
1322 store_info = store_info->next;
1324 store_info->rhs = NULL;
1325 store_info->const_rhs = NULL;
1327 ptr = ptr->next_local_store;
1332 /* Mark byte POS bytes from the beginning of store S_INFO as unneeded. */
1334 static inline void
1335 set_position_unneeded (store_info_t s_info, int pos)
1337 if (__builtin_expect (s_info->is_large, false))
1339 if (bitmap_set_bit (s_info->positions_needed.large.bmap, pos))
1340 s_info->positions_needed.large.count++;
1342 else
1343 s_info->positions_needed.small_bitmask
1344 &= ~(((unsigned HOST_WIDE_INT) 1) << pos);
1347 /* Mark the whole store S_INFO as unneeded. */
1349 static inline void
1350 set_all_positions_unneeded (store_info_t s_info)
1352 if (__builtin_expect (s_info->is_large, false))
1354 int pos, end = s_info->end - s_info->begin;
1355 for (pos = 0; pos < end; pos++)
1356 bitmap_set_bit (s_info->positions_needed.large.bmap, pos);
1357 s_info->positions_needed.large.count = end;
1359 else
1360 s_info->positions_needed.small_bitmask = (unsigned HOST_WIDE_INT) 0;
1363 /* Return TRUE if any bytes from S_INFO store are needed. */
1365 static inline bool
1366 any_positions_needed_p (store_info_t s_info)
1368 if (__builtin_expect (s_info->is_large, false))
1369 return (s_info->positions_needed.large.count
1370 < s_info->end - s_info->begin);
1371 else
1372 return (s_info->positions_needed.small_bitmask
1373 != (unsigned HOST_WIDE_INT) 0);
1376 /* Return TRUE if all bytes START through START+WIDTH-1 from S_INFO
1377 store are needed. */
1379 static inline bool
1380 all_positions_needed_p (store_info_t s_info, int start, int width)
1382 if (__builtin_expect (s_info->is_large, false))
1384 int end = start + width;
1385 while (start < end)
1386 if (bitmap_bit_p (s_info->positions_needed.large.bmap, start++))
1387 return false;
1388 return true;
1390 else
1392 unsigned HOST_WIDE_INT mask = lowpart_bitmask (width) << start;
1393 return (s_info->positions_needed.small_bitmask & mask) == mask;
1398 static rtx get_stored_val (store_info_t, enum machine_mode, HOST_WIDE_INT,
1399 HOST_WIDE_INT, basic_block, bool);
1402 /* BODY is an instruction pattern that belongs to INSN. Return 1 if
1403 there is a candidate store, after adding it to the appropriate
1404 local store group if so. */
1406 static int
1407 record_store (rtx body, bb_info_t bb_info)
1409 rtx mem, rhs, const_rhs, mem_addr;
1410 HOST_WIDE_INT offset = 0;
1411 HOST_WIDE_INT width = 0;
1412 alias_set_type spill_alias_set;
1413 insn_info_t insn_info = bb_info->last_insn;
1414 store_info_t store_info = NULL;
1415 int group_id;
1416 cselib_val *base = NULL;
1417 insn_info_t ptr, last, redundant_reason;
1418 bool store_is_unused;
1420 if (GET_CODE (body) != SET && GET_CODE (body) != CLOBBER)
1421 return 0;
1423 mem = SET_DEST (body);
1425 /* If this is not used, then this cannot be used to keep the insn
1426 from being deleted. On the other hand, it does provide something
1427 that can be used to prove that another store is dead. */
1428 store_is_unused
1429 = (find_reg_note (insn_info->insn, REG_UNUSED, mem) != NULL);
1431 /* Check whether that value is a suitable memory location. */
1432 if (!MEM_P (mem))
1434 /* If the set or clobber is unused, then it does not effect our
1435 ability to get rid of the entire insn. */
1436 if (!store_is_unused)
1437 insn_info->cannot_delete = true;
1438 return 0;
1441 /* At this point we know mem is a mem. */
1442 if (GET_MODE (mem) == BLKmode)
1444 if (GET_CODE (XEXP (mem, 0)) == SCRATCH)
1446 if (dump_file)
1447 fprintf (dump_file, " adding wild read for (clobber (mem:BLK (scratch))\n");
1448 add_wild_read (bb_info);
1449 insn_info->cannot_delete = true;
1450 return 0;
1452 /* Handle (set (mem:BLK (addr) [... S36 ...]) (const_int 0))
1453 as memset (addr, 0, 36); */
1454 else if (!MEM_SIZE_KNOWN_P (mem)
1455 || MEM_SIZE (mem) <= 0
1456 || MEM_SIZE (mem) > MAX_OFFSET
1457 || GET_CODE (body) != SET
1458 || !CONST_INT_P (SET_SRC (body)))
1460 if (!store_is_unused)
1462 /* If the set or clobber is unused, then it does not effect our
1463 ability to get rid of the entire insn. */
1464 insn_info->cannot_delete = true;
1465 clear_rhs_from_active_local_stores ();
1467 return 0;
1471 /* We can still process a volatile mem, we just cannot delete it. */
1472 if (MEM_VOLATILE_P (mem))
1473 insn_info->cannot_delete = true;
1475 if (!canon_address (mem, &spill_alias_set, &group_id, &offset, &base))
1477 clear_rhs_from_active_local_stores ();
1478 return 0;
1481 if (GET_MODE (mem) == BLKmode)
1482 width = MEM_SIZE (mem);
1483 else
1485 width = GET_MODE_SIZE (GET_MODE (mem));
1486 gcc_assert ((unsigned) width <= HOST_BITS_PER_WIDE_INT);
1489 if (spill_alias_set)
1491 bitmap store1 = clear_alias_group->store1_p;
1492 bitmap store2 = clear_alias_group->store2_p;
1494 gcc_assert (GET_MODE (mem) != BLKmode);
1496 if (!bitmap_set_bit (store1, spill_alias_set))
1497 bitmap_set_bit (store2, spill_alias_set);
1499 if (clear_alias_group->offset_map_size_p < spill_alias_set)
1500 clear_alias_group->offset_map_size_p = spill_alias_set;
1502 store_info = (store_info_t) pool_alloc (rtx_store_info_pool);
1504 if (dump_file)
1505 fprintf (dump_file, " processing spill store %d(%s)\n",
1506 (int) spill_alias_set, GET_MODE_NAME (GET_MODE (mem)));
1508 else if (group_id >= 0)
1510 /* In the restrictive case where the base is a constant or the
1511 frame pointer we can do global analysis. */
1513 group_info_t group
1514 = VEC_index (group_info_t, rtx_group_vec, group_id);
1515 tree expr = MEM_EXPR (mem);
1517 store_info = (store_info_t) pool_alloc (rtx_store_info_pool);
1518 set_usage_bits (group, offset, width, expr);
1520 if (dump_file)
1521 fprintf (dump_file, " processing const base store gid=%d[%d..%d)\n",
1522 group_id, (int)offset, (int)(offset+width));
1524 else
1526 rtx base_term = find_base_term (XEXP (mem, 0));
1527 if (!base_term
1528 || (GET_CODE (base_term) == ADDRESS
1529 && GET_MODE (base_term) == Pmode
1530 && XEXP (base_term, 0) == stack_pointer_rtx))
1531 insn_info->stack_pointer_based = true;
1532 insn_info->contains_cselib_groups = true;
1534 store_info = (store_info_t) pool_alloc (cse_store_info_pool);
1535 group_id = -1;
1537 if (dump_file)
1538 fprintf (dump_file, " processing cselib store [%d..%d)\n",
1539 (int)offset, (int)(offset+width));
1542 const_rhs = rhs = NULL_RTX;
1543 if (GET_CODE (body) == SET
1544 /* No place to keep the value after ra. */
1545 && !reload_completed
1546 && (REG_P (SET_SRC (body))
1547 || GET_CODE (SET_SRC (body)) == SUBREG
1548 || CONSTANT_P (SET_SRC (body)))
1549 && !MEM_VOLATILE_P (mem)
1550 /* Sometimes the store and reload is used for truncation and
1551 rounding. */
1552 && !(FLOAT_MODE_P (GET_MODE (mem)) && (flag_float_store)))
1554 rhs = SET_SRC (body);
1555 if (CONSTANT_P (rhs))
1556 const_rhs = rhs;
1557 else if (body == PATTERN (insn_info->insn))
1559 rtx tem = find_reg_note (insn_info->insn, REG_EQUAL, NULL_RTX);
1560 if (tem && CONSTANT_P (XEXP (tem, 0)))
1561 const_rhs = XEXP (tem, 0);
1563 if (const_rhs == NULL_RTX && REG_P (rhs))
1565 rtx tem = cselib_expand_value_rtx (rhs, scratch, 5);
1567 if (tem && CONSTANT_P (tem))
1568 const_rhs = tem;
1572 /* Check to see if this stores causes some other stores to be
1573 dead. */
1574 ptr = active_local_stores;
1575 last = NULL;
1576 redundant_reason = NULL;
1577 mem = canon_rtx (mem);
1578 /* For alias_set != 0 canon_true_dependence should be never called. */
1579 if (spill_alias_set)
1580 mem_addr = NULL_RTX;
1581 else
1583 if (group_id < 0)
1584 mem_addr = base->val_rtx;
1585 else
1587 group_info_t group
1588 = VEC_index (group_info_t, rtx_group_vec, group_id);
1589 mem_addr = group->canon_base_addr;
1591 if (offset)
1592 mem_addr = plus_constant (mem_addr, offset);
1595 while (ptr)
1597 insn_info_t next = ptr->next_local_store;
1598 store_info_t s_info = ptr->store_rec;
1599 bool del = true;
1601 /* Skip the clobbers. We delete the active insn if this insn
1602 shadows the set. To have been put on the active list, it
1603 has exactly on set. */
1604 while (!s_info->is_set)
1605 s_info = s_info->next;
1607 if (s_info->alias_set != spill_alias_set)
1608 del = false;
1609 else if (s_info->alias_set)
1611 struct clear_alias_mode_holder *entry
1612 = clear_alias_set_lookup (s_info->alias_set);
1613 /* Generally, spills cannot be processed if and of the
1614 references to the slot have a different mode. But if
1615 we are in the same block and mode is exactly the same
1616 between this store and one before in the same block,
1617 we can still delete it. */
1618 if ((GET_MODE (mem) == GET_MODE (s_info->mem))
1619 && (GET_MODE (mem) == entry->mode))
1621 del = true;
1622 set_all_positions_unneeded (s_info);
1624 if (dump_file)
1625 fprintf (dump_file, " trying spill store in insn=%d alias_set=%d\n",
1626 INSN_UID (ptr->insn), (int) s_info->alias_set);
1628 else if ((s_info->group_id == group_id)
1629 && (s_info->cse_base == base))
1631 HOST_WIDE_INT i;
1632 if (dump_file)
1633 fprintf (dump_file, " trying store in insn=%d gid=%d[%d..%d)\n",
1634 INSN_UID (ptr->insn), s_info->group_id,
1635 (int)s_info->begin, (int)s_info->end);
1637 /* Even if PTR won't be eliminated as unneeded, if both
1638 PTR and this insn store the same constant value, we might
1639 eliminate this insn instead. */
1640 if (s_info->const_rhs
1641 && const_rhs
1642 && offset >= s_info->begin
1643 && offset + width <= s_info->end
1644 && all_positions_needed_p (s_info, offset - s_info->begin,
1645 width))
1647 if (GET_MODE (mem) == BLKmode)
1649 if (GET_MODE (s_info->mem) == BLKmode
1650 && s_info->const_rhs == const_rhs)
1651 redundant_reason = ptr;
1653 else if (s_info->const_rhs == const0_rtx
1654 && const_rhs == const0_rtx)
1655 redundant_reason = ptr;
1656 else
1658 rtx val;
1659 start_sequence ();
1660 val = get_stored_val (s_info, GET_MODE (mem),
1661 offset, offset + width,
1662 BLOCK_FOR_INSN (insn_info->insn),
1663 true);
1664 if (get_insns () != NULL)
1665 val = NULL_RTX;
1666 end_sequence ();
1667 if (val && rtx_equal_p (val, const_rhs))
1668 redundant_reason = ptr;
1672 for (i = MAX (offset, s_info->begin);
1673 i < offset + width && i < s_info->end;
1674 i++)
1675 set_position_unneeded (s_info, i - s_info->begin);
1677 else if (s_info->rhs)
1678 /* Need to see if it is possible for this store to overwrite
1679 the value of store_info. If it is, set the rhs to NULL to
1680 keep it from being used to remove a load. */
1682 if (canon_true_dependence (s_info->mem,
1683 GET_MODE (s_info->mem),
1684 s_info->mem_addr,
1685 mem, mem_addr, rtx_varies_p))
1687 s_info->rhs = NULL;
1688 s_info->const_rhs = NULL;
1692 /* An insn can be deleted if every position of every one of
1693 its s_infos is zero. */
1694 if (any_positions_needed_p (s_info))
1695 del = false;
1697 if (del)
1699 insn_info_t insn_to_delete = ptr;
1701 active_local_stores_len--;
1702 if (last)
1703 last->next_local_store = ptr->next_local_store;
1704 else
1705 active_local_stores = ptr->next_local_store;
1707 if (!insn_to_delete->cannot_delete)
1708 delete_dead_store_insn (insn_to_delete);
1710 else
1711 last = ptr;
1713 ptr = next;
1716 /* Finish filling in the store_info. */
1717 store_info->next = insn_info->store_rec;
1718 insn_info->store_rec = store_info;
1719 store_info->mem = mem;
1720 store_info->alias_set = spill_alias_set;
1721 store_info->mem_addr = mem_addr;
1722 store_info->cse_base = base;
1723 if (width > HOST_BITS_PER_WIDE_INT)
1725 store_info->is_large = true;
1726 store_info->positions_needed.large.count = 0;
1727 store_info->positions_needed.large.bmap = BITMAP_ALLOC (NULL);
1729 else
1731 store_info->is_large = false;
1732 store_info->positions_needed.small_bitmask = lowpart_bitmask (width);
1734 store_info->group_id = group_id;
1735 store_info->begin = offset;
1736 store_info->end = offset + width;
1737 store_info->is_set = GET_CODE (body) == SET;
1738 store_info->rhs = rhs;
1739 store_info->const_rhs = const_rhs;
1740 store_info->redundant_reason = redundant_reason;
1742 /* If this is a clobber, we return 0. We will only be able to
1743 delete this insn if there is only one store USED store, but we
1744 can use the clobber to delete other stores earlier. */
1745 return store_info->is_set ? 1 : 0;
1749 static void
1750 dump_insn_info (const char * start, insn_info_t insn_info)
1752 fprintf (dump_file, "%s insn=%d %s\n", start,
1753 INSN_UID (insn_info->insn),
1754 insn_info->store_rec ? "has store" : "naked");
1758 /* If the modes are different and the value's source and target do not
1759 line up, we need to extract the value from lower part of the rhs of
1760 the store, shift it, and then put it into a form that can be shoved
1761 into the read_insn. This function generates a right SHIFT of a
1762 value that is at least ACCESS_SIZE bytes wide of READ_MODE. The
1763 shift sequence is returned or NULL if we failed to find a
1764 shift. */
1766 static rtx
1767 find_shift_sequence (int access_size,
1768 store_info_t store_info,
1769 enum machine_mode read_mode,
1770 int shift, bool speed, bool require_cst)
1772 enum machine_mode store_mode = GET_MODE (store_info->mem);
1773 enum machine_mode new_mode;
1774 rtx read_reg = NULL;
1776 /* Some machines like the x86 have shift insns for each size of
1777 operand. Other machines like the ppc or the ia-64 may only have
1778 shift insns that shift values within 32 or 64 bit registers.
1779 This loop tries to find the smallest shift insn that will right
1780 justify the value we want to read but is available in one insn on
1781 the machine. */
1783 for (new_mode = smallest_mode_for_size (access_size * BITS_PER_UNIT,
1784 MODE_INT);
1785 GET_MODE_BITSIZE (new_mode) <= BITS_PER_WORD;
1786 new_mode = GET_MODE_WIDER_MODE (new_mode))
1788 rtx target, new_reg, shift_seq, insn, new_lhs;
1789 int cost;
1791 /* If a constant was stored into memory, try to simplify it here,
1792 otherwise the cost of the shift might preclude this optimization
1793 e.g. at -Os, even when no actual shift will be needed. */
1794 if (store_info->const_rhs)
1796 unsigned int byte = subreg_lowpart_offset (new_mode, store_mode);
1797 rtx ret = simplify_subreg (new_mode, store_info->const_rhs,
1798 store_mode, byte);
1799 if (ret && CONSTANT_P (ret))
1801 ret = simplify_const_binary_operation (LSHIFTRT, new_mode,
1802 ret, GEN_INT (shift));
1803 if (ret && CONSTANT_P (ret))
1805 byte = subreg_lowpart_offset (read_mode, new_mode);
1806 ret = simplify_subreg (read_mode, ret, new_mode, byte);
1807 if (ret && CONSTANT_P (ret)
1808 && set_src_cost (ret, speed) <= COSTS_N_INSNS (1))
1809 return ret;
1814 if (require_cst)
1815 return NULL_RTX;
1817 /* Try a wider mode if truncating the store mode to NEW_MODE
1818 requires a real instruction. */
1819 if (GET_MODE_BITSIZE (new_mode) < GET_MODE_BITSIZE (store_mode)
1820 && !TRULY_NOOP_TRUNCATION_MODES_P (new_mode, store_mode))
1821 continue;
1823 /* Also try a wider mode if the necessary punning is either not
1824 desirable or not possible. */
1825 if (!CONSTANT_P (store_info->rhs)
1826 && !MODES_TIEABLE_P (new_mode, store_mode))
1827 continue;
1829 new_reg = gen_reg_rtx (new_mode);
1831 start_sequence ();
1833 /* In theory we could also check for an ashr. Ian Taylor knows
1834 of one dsp where the cost of these two was not the same. But
1835 this really is a rare case anyway. */
1836 target = expand_binop (new_mode, lshr_optab, new_reg,
1837 GEN_INT (shift), new_reg, 1, OPTAB_DIRECT);
1839 shift_seq = get_insns ();
1840 end_sequence ();
1842 if (target != new_reg || shift_seq == NULL)
1843 continue;
1845 cost = 0;
1846 for (insn = shift_seq; insn != NULL_RTX; insn = NEXT_INSN (insn))
1847 if (INSN_P (insn))
1848 cost += insn_rtx_cost (PATTERN (insn), speed);
1850 /* The computation up to here is essentially independent
1851 of the arguments and could be precomputed. It may
1852 not be worth doing so. We could precompute if
1853 worthwhile or at least cache the results. The result
1854 technically depends on both SHIFT and ACCESS_SIZE,
1855 but in practice the answer will depend only on ACCESS_SIZE. */
1857 if (cost > COSTS_N_INSNS (1))
1858 continue;
1860 new_lhs = extract_low_bits (new_mode, store_mode,
1861 copy_rtx (store_info->rhs));
1862 if (new_lhs == NULL_RTX)
1863 continue;
1865 /* We found an acceptable shift. Generate a move to
1866 take the value from the store and put it into the
1867 shift pseudo, then shift it, then generate another
1868 move to put in into the target of the read. */
1869 emit_move_insn (new_reg, new_lhs);
1870 emit_insn (shift_seq);
1871 read_reg = extract_low_bits (read_mode, new_mode, new_reg);
1872 break;
1875 return read_reg;
1879 /* Call back for note_stores to find the hard regs set or clobbered by
1880 insn. Data is a bitmap of the hardregs set so far. */
1882 static void
1883 look_for_hardregs (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
1885 bitmap regs_set = (bitmap) data;
1887 if (REG_P (x)
1888 && HARD_REGISTER_P (x))
1890 unsigned int regno = REGNO (x);
1891 bitmap_set_range (regs_set, regno,
1892 hard_regno_nregs[regno][GET_MODE (x)]);
1896 /* Helper function for replace_read and record_store.
1897 Attempt to return a value stored in STORE_INFO, from READ_BEGIN
1898 to one before READ_END bytes read in READ_MODE. Return NULL
1899 if not successful. If REQUIRE_CST is true, return always constant. */
1901 static rtx
1902 get_stored_val (store_info_t store_info, enum machine_mode read_mode,
1903 HOST_WIDE_INT read_begin, HOST_WIDE_INT read_end,
1904 basic_block bb, bool require_cst)
1906 enum machine_mode store_mode = GET_MODE (store_info->mem);
1907 int shift;
1908 int access_size; /* In bytes. */
1909 rtx read_reg;
1911 /* To get here the read is within the boundaries of the write so
1912 shift will never be negative. Start out with the shift being in
1913 bytes. */
1914 if (store_mode == BLKmode)
1915 shift = 0;
1916 else if (BYTES_BIG_ENDIAN)
1917 shift = store_info->end - read_end;
1918 else
1919 shift = read_begin - store_info->begin;
1921 access_size = shift + GET_MODE_SIZE (read_mode);
1923 /* From now on it is bits. */
1924 shift *= BITS_PER_UNIT;
1926 if (shift)
1927 read_reg = find_shift_sequence (access_size, store_info, read_mode, shift,
1928 optimize_bb_for_speed_p (bb),
1929 require_cst);
1930 else if (store_mode == BLKmode)
1932 /* The store is a memset (addr, const_val, const_size). */
1933 gcc_assert (CONST_INT_P (store_info->rhs));
1934 store_mode = int_mode_for_mode (read_mode);
1935 if (store_mode == BLKmode)
1936 read_reg = NULL_RTX;
1937 else if (store_info->rhs == const0_rtx)
1938 read_reg = extract_low_bits (read_mode, store_mode, const0_rtx);
1939 else if (GET_MODE_BITSIZE (store_mode) > HOST_BITS_PER_WIDE_INT
1940 || BITS_PER_UNIT >= HOST_BITS_PER_WIDE_INT)
1941 read_reg = NULL_RTX;
1942 else
1944 unsigned HOST_WIDE_INT c
1945 = INTVAL (store_info->rhs)
1946 & (((HOST_WIDE_INT) 1 << BITS_PER_UNIT) - 1);
1947 int shift = BITS_PER_UNIT;
1948 while (shift < HOST_BITS_PER_WIDE_INT)
1950 c |= (c << shift);
1951 shift <<= 1;
1953 read_reg = gen_int_mode (c, store_mode);
1954 read_reg = extract_low_bits (read_mode, store_mode, read_reg);
1957 else if (store_info->const_rhs
1958 && (require_cst
1959 || GET_MODE_CLASS (read_mode) != GET_MODE_CLASS (store_mode)))
1960 read_reg = extract_low_bits (read_mode, store_mode,
1961 copy_rtx (store_info->const_rhs));
1962 else
1963 read_reg = extract_low_bits (read_mode, store_mode,
1964 copy_rtx (store_info->rhs));
1965 if (require_cst && read_reg && !CONSTANT_P (read_reg))
1966 read_reg = NULL_RTX;
1967 return read_reg;
1970 /* Take a sequence of:
1971 A <- r1
1973 ... <- A
1975 and change it into
1976 r2 <- r1
1977 A <- r1
1979 ... <- r2
1983 r3 <- extract (r1)
1984 r3 <- r3 >> shift
1985 r2 <- extract (r3)
1986 ... <- r2
1990 r2 <- extract (r1)
1991 ... <- r2
1993 Depending on the alignment and the mode of the store and
1994 subsequent load.
1997 The STORE_INFO and STORE_INSN are for the store and READ_INFO
1998 and READ_INSN are for the read. Return true if the replacement
1999 went ok. */
2001 static bool
2002 replace_read (store_info_t store_info, insn_info_t store_insn,
2003 read_info_t read_info, insn_info_t read_insn, rtx *loc,
2004 bitmap regs_live)
2006 enum machine_mode store_mode = GET_MODE (store_info->mem);
2007 enum machine_mode read_mode = GET_MODE (read_info->mem);
2008 rtx insns, this_insn, read_reg;
2009 basic_block bb;
2011 if (!dbg_cnt (dse))
2012 return false;
2014 /* Create a sequence of instructions to set up the read register.
2015 This sequence goes immediately before the store and its result
2016 is read by the load.
2018 We need to keep this in perspective. We are replacing a read
2019 with a sequence of insns, but the read will almost certainly be
2020 in cache, so it is not going to be an expensive one. Thus, we
2021 are not willing to do a multi insn shift or worse a subroutine
2022 call to get rid of the read. */
2023 if (dump_file)
2024 fprintf (dump_file, "trying to replace %smode load in insn %d"
2025 " from %smode store in insn %d\n",
2026 GET_MODE_NAME (read_mode), INSN_UID (read_insn->insn),
2027 GET_MODE_NAME (store_mode), INSN_UID (store_insn->insn));
2028 start_sequence ();
2029 bb = BLOCK_FOR_INSN (read_insn->insn);
2030 read_reg = get_stored_val (store_info,
2031 read_mode, read_info->begin, read_info->end,
2032 bb, false);
2033 if (read_reg == NULL_RTX)
2035 end_sequence ();
2036 if (dump_file)
2037 fprintf (dump_file, " -- could not extract bits of stored value\n");
2038 return false;
2040 /* Force the value into a new register so that it won't be clobbered
2041 between the store and the load. */
2042 read_reg = copy_to_mode_reg (read_mode, read_reg);
2043 insns = get_insns ();
2044 end_sequence ();
2046 if (insns != NULL_RTX)
2048 /* Now we have to scan the set of new instructions to see if the
2049 sequence contains and sets of hardregs that happened to be
2050 live at this point. For instance, this can happen if one of
2051 the insns sets the CC and the CC happened to be live at that
2052 point. This does occasionally happen, see PR 37922. */
2053 bitmap regs_set = BITMAP_ALLOC (NULL);
2055 for (this_insn = insns; this_insn != NULL_RTX; this_insn = NEXT_INSN (this_insn))
2056 note_stores (PATTERN (this_insn), look_for_hardregs, regs_set);
2058 bitmap_and_into (regs_set, regs_live);
2059 if (!bitmap_empty_p (regs_set))
2061 if (dump_file)
2063 fprintf (dump_file,
2064 "abandoning replacement because sequence clobbers live hardregs:");
2065 df_print_regset (dump_file, regs_set);
2068 BITMAP_FREE (regs_set);
2069 return false;
2071 BITMAP_FREE (regs_set);
2074 if (validate_change (read_insn->insn, loc, read_reg, 0))
2076 deferred_change_t deferred_change =
2077 (deferred_change_t) pool_alloc (deferred_change_pool);
2079 /* Insert this right before the store insn where it will be safe
2080 from later insns that might change it before the read. */
2081 emit_insn_before (insns, store_insn->insn);
2083 /* And now for the kludge part: cselib croaks if you just
2084 return at this point. There are two reasons for this:
2086 1) Cselib has an idea of how many pseudos there are and
2087 that does not include the new ones we just added.
2089 2) Cselib does not know about the move insn we added
2090 above the store_info, and there is no way to tell it
2091 about it, because it has "moved on".
2093 Problem (1) is fixable with a certain amount of engineering.
2094 Problem (2) is requires starting the bb from scratch. This
2095 could be expensive.
2097 So we are just going to have to lie. The move/extraction
2098 insns are not really an issue, cselib did not see them. But
2099 the use of the new pseudo read_insn is a real problem because
2100 cselib has not scanned this insn. The way that we solve this
2101 problem is that we are just going to put the mem back for now
2102 and when we are finished with the block, we undo this. We
2103 keep a table of mems to get rid of. At the end of the basic
2104 block we can put them back. */
2106 *loc = read_info->mem;
2107 deferred_change->next = deferred_change_list;
2108 deferred_change_list = deferred_change;
2109 deferred_change->loc = loc;
2110 deferred_change->reg = read_reg;
2112 /* Get rid of the read_info, from the point of view of the
2113 rest of dse, play like this read never happened. */
2114 read_insn->read_rec = read_info->next;
2115 pool_free (read_info_pool, read_info);
2116 if (dump_file)
2118 fprintf (dump_file, " -- replaced the loaded MEM with ");
2119 print_simple_rtl (dump_file, read_reg);
2120 fprintf (dump_file, "\n");
2122 return true;
2124 else
2126 if (dump_file)
2128 fprintf (dump_file, " -- replacing the loaded MEM with ");
2129 print_simple_rtl (dump_file, read_reg);
2130 fprintf (dump_file, " led to an invalid instruction\n");
2132 return false;
2136 /* A for_each_rtx callback in which DATA is the bb_info. Check to see
2137 if LOC is a mem and if it is look at the address and kill any
2138 appropriate stores that may be active. */
2140 static int
2141 check_mem_read_rtx (rtx *loc, void *data)
2143 rtx mem = *loc, mem_addr;
2144 bb_info_t bb_info;
2145 insn_info_t insn_info;
2146 HOST_WIDE_INT offset = 0;
2147 HOST_WIDE_INT width = 0;
2148 alias_set_type spill_alias_set = 0;
2149 cselib_val *base = NULL;
2150 int group_id;
2151 read_info_t read_info;
2153 if (!mem || !MEM_P (mem))
2154 return 0;
2156 bb_info = (bb_info_t) data;
2157 insn_info = bb_info->last_insn;
2159 if ((MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2160 || (MEM_VOLATILE_P (mem)))
2162 if (dump_file)
2163 fprintf (dump_file, " adding wild read, volatile or barrier.\n");
2164 add_wild_read (bb_info);
2165 insn_info->cannot_delete = true;
2166 return 0;
2169 /* If it is reading readonly mem, then there can be no conflict with
2170 another write. */
2171 if (MEM_READONLY_P (mem))
2172 return 0;
2174 if (!canon_address (mem, &spill_alias_set, &group_id, &offset, &base))
2176 if (dump_file)
2177 fprintf (dump_file, " adding wild read, canon_address failure.\n");
2178 add_wild_read (bb_info);
2179 return 0;
2182 if (GET_MODE (mem) == BLKmode)
2183 width = -1;
2184 else
2185 width = GET_MODE_SIZE (GET_MODE (mem));
2187 read_info = (read_info_t) pool_alloc (read_info_pool);
2188 read_info->group_id = group_id;
2189 read_info->mem = mem;
2190 read_info->alias_set = spill_alias_set;
2191 read_info->begin = offset;
2192 read_info->end = offset + width;
2193 read_info->next = insn_info->read_rec;
2194 insn_info->read_rec = read_info;
2195 /* For alias_set != 0 canon_true_dependence should be never called. */
2196 if (spill_alias_set)
2197 mem_addr = NULL_RTX;
2198 else
2200 if (group_id < 0)
2201 mem_addr = base->val_rtx;
2202 else
2204 group_info_t group
2205 = VEC_index (group_info_t, rtx_group_vec, group_id);
2206 mem_addr = group->canon_base_addr;
2208 if (offset)
2209 mem_addr = plus_constant (mem_addr, offset);
2212 /* We ignore the clobbers in store_info. The is mildly aggressive,
2213 but there really should not be a clobber followed by a read. */
2215 if (spill_alias_set)
2217 insn_info_t i_ptr = active_local_stores;
2218 insn_info_t last = NULL;
2220 if (dump_file)
2221 fprintf (dump_file, " processing spill load %d\n",
2222 (int) spill_alias_set);
2224 while (i_ptr)
2226 store_info_t store_info = i_ptr->store_rec;
2228 /* Skip the clobbers. */
2229 while (!store_info->is_set)
2230 store_info = store_info->next;
2232 if (store_info->alias_set == spill_alias_set)
2234 if (dump_file)
2235 dump_insn_info ("removing from active", i_ptr);
2237 active_local_stores_len--;
2238 if (last)
2239 last->next_local_store = i_ptr->next_local_store;
2240 else
2241 active_local_stores = i_ptr->next_local_store;
2243 else
2244 last = i_ptr;
2245 i_ptr = i_ptr->next_local_store;
2248 else if (group_id >= 0)
2250 /* This is the restricted case where the base is a constant or
2251 the frame pointer and offset is a constant. */
2252 insn_info_t i_ptr = active_local_stores;
2253 insn_info_t last = NULL;
2255 if (dump_file)
2257 if (width == -1)
2258 fprintf (dump_file, " processing const load gid=%d[BLK]\n",
2259 group_id);
2260 else
2261 fprintf (dump_file, " processing const load gid=%d[%d..%d)\n",
2262 group_id, (int)offset, (int)(offset+width));
2265 while (i_ptr)
2267 bool remove = false;
2268 store_info_t store_info = i_ptr->store_rec;
2270 /* Skip the clobbers. */
2271 while (!store_info->is_set)
2272 store_info = store_info->next;
2274 /* There are three cases here. */
2275 if (store_info->group_id < 0)
2276 /* We have a cselib store followed by a read from a
2277 const base. */
2278 remove
2279 = canon_true_dependence (store_info->mem,
2280 GET_MODE (store_info->mem),
2281 store_info->mem_addr,
2282 mem, mem_addr, rtx_varies_p);
2284 else if (group_id == store_info->group_id)
2286 /* This is a block mode load. We may get lucky and
2287 canon_true_dependence may save the day. */
2288 if (width == -1)
2289 remove
2290 = canon_true_dependence (store_info->mem,
2291 GET_MODE (store_info->mem),
2292 store_info->mem_addr,
2293 mem, mem_addr, rtx_varies_p);
2295 /* If this read is just reading back something that we just
2296 stored, rewrite the read. */
2297 else
2299 if (store_info->rhs
2300 && offset >= store_info->begin
2301 && offset + width <= store_info->end
2302 && all_positions_needed_p (store_info,
2303 offset - store_info->begin,
2304 width)
2305 && replace_read (store_info, i_ptr, read_info,
2306 insn_info, loc, bb_info->regs_live))
2307 return 0;
2309 /* The bases are the same, just see if the offsets
2310 overlap. */
2311 if ((offset < store_info->end)
2312 && (offset + width > store_info->begin))
2313 remove = true;
2317 /* else
2318 The else case that is missing here is that the
2319 bases are constant but different. There is nothing
2320 to do here because there is no overlap. */
2322 if (remove)
2324 if (dump_file)
2325 dump_insn_info ("removing from active", i_ptr);
2327 active_local_stores_len--;
2328 if (last)
2329 last->next_local_store = i_ptr->next_local_store;
2330 else
2331 active_local_stores = i_ptr->next_local_store;
2333 else
2334 last = i_ptr;
2335 i_ptr = i_ptr->next_local_store;
2338 else
2340 insn_info_t i_ptr = active_local_stores;
2341 insn_info_t last = NULL;
2342 if (dump_file)
2344 fprintf (dump_file, " processing cselib load mem:");
2345 print_inline_rtx (dump_file, mem, 0);
2346 fprintf (dump_file, "\n");
2349 while (i_ptr)
2351 bool remove = false;
2352 store_info_t store_info = i_ptr->store_rec;
2354 if (dump_file)
2355 fprintf (dump_file, " processing cselib load against insn %d\n",
2356 INSN_UID (i_ptr->insn));
2358 /* Skip the clobbers. */
2359 while (!store_info->is_set)
2360 store_info = store_info->next;
2362 /* If this read is just reading back something that we just
2363 stored, rewrite the read. */
2364 if (store_info->rhs
2365 && store_info->group_id == -1
2366 && store_info->cse_base == base
2367 && width != -1
2368 && offset >= store_info->begin
2369 && offset + width <= store_info->end
2370 && all_positions_needed_p (store_info,
2371 offset - store_info->begin, width)
2372 && replace_read (store_info, i_ptr, read_info, insn_info, loc,
2373 bb_info->regs_live))
2374 return 0;
2376 if (!store_info->alias_set)
2377 remove = canon_true_dependence (store_info->mem,
2378 GET_MODE (store_info->mem),
2379 store_info->mem_addr,
2380 mem, mem_addr, rtx_varies_p);
2382 if (remove)
2384 if (dump_file)
2385 dump_insn_info ("removing from active", i_ptr);
2387 active_local_stores_len--;
2388 if (last)
2389 last->next_local_store = i_ptr->next_local_store;
2390 else
2391 active_local_stores = i_ptr->next_local_store;
2393 else
2394 last = i_ptr;
2395 i_ptr = i_ptr->next_local_store;
2398 return 0;
2401 /* A for_each_rtx callback in which DATA points the INSN_INFO for
2402 as check_mem_read_rtx. Nullify the pointer if i_m_r_m_r returns
2403 true for any part of *LOC. */
2405 static void
2406 check_mem_read_use (rtx *loc, void *data)
2408 for_each_rtx (loc, check_mem_read_rtx, data);
2412 /* Get arguments passed to CALL_INSN. Return TRUE if successful.
2413 So far it only handles arguments passed in registers. */
2415 static bool
2416 get_call_args (rtx call_insn, tree fn, rtx *args, int nargs)
2418 CUMULATIVE_ARGS args_so_far_v;
2419 cumulative_args_t args_so_far;
2420 tree arg;
2421 int idx;
2423 INIT_CUMULATIVE_ARGS (args_so_far_v, TREE_TYPE (fn), NULL_RTX, 0, 3);
2424 args_so_far = pack_cumulative_args (&args_so_far_v);
2426 arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
2427 for (idx = 0;
2428 arg != void_list_node && idx < nargs;
2429 arg = TREE_CHAIN (arg), idx++)
2431 enum machine_mode mode = TYPE_MODE (TREE_VALUE (arg));
2432 rtx reg, link, tmp;
2433 reg = targetm.calls.function_arg (args_so_far, mode, NULL_TREE, true);
2434 if (!reg || !REG_P (reg) || GET_MODE (reg) != mode
2435 || GET_MODE_CLASS (mode) != MODE_INT)
2436 return false;
2438 for (link = CALL_INSN_FUNCTION_USAGE (call_insn);
2439 link;
2440 link = XEXP (link, 1))
2441 if (GET_CODE (XEXP (link, 0)) == USE)
2443 args[idx] = XEXP (XEXP (link, 0), 0);
2444 if (REG_P (args[idx])
2445 && REGNO (args[idx]) == REGNO (reg)
2446 && (GET_MODE (args[idx]) == mode
2447 || (GET_MODE_CLASS (GET_MODE (args[idx])) == MODE_INT
2448 && (GET_MODE_SIZE (GET_MODE (args[idx]))
2449 <= UNITS_PER_WORD)
2450 && (GET_MODE_SIZE (GET_MODE (args[idx]))
2451 > GET_MODE_SIZE (mode)))))
2452 break;
2454 if (!link)
2455 return false;
2457 tmp = cselib_expand_value_rtx (args[idx], scratch, 5);
2458 if (GET_MODE (args[idx]) != mode)
2460 if (!tmp || !CONST_INT_P (tmp))
2461 return false;
2462 tmp = gen_int_mode (INTVAL (tmp), mode);
2464 if (tmp)
2465 args[idx] = tmp;
2467 targetm.calls.function_arg_advance (args_so_far, mode, NULL_TREE, true);
2469 if (arg != void_list_node || idx != nargs)
2470 return false;
2471 return true;
2474 /* Return a bitmap of the fixed registers contained in IN. */
2476 static bitmap
2477 copy_fixed_regs (const_bitmap in)
2479 bitmap ret;
2481 ret = ALLOC_REG_SET (NULL);
2482 bitmap_and (ret, in, fixed_reg_set_regset);
2483 return ret;
2486 /* Apply record_store to all candidate stores in INSN. Mark INSN
2487 if some part of it is not a candidate store and assigns to a
2488 non-register target. */
2490 static void
2491 scan_insn (bb_info_t bb_info, rtx insn)
2493 rtx body;
2494 insn_info_t insn_info = (insn_info_t) pool_alloc (insn_info_pool);
2495 int mems_found = 0;
2496 memset (insn_info, 0, sizeof (struct insn_info));
2498 if (dump_file)
2499 fprintf (dump_file, "\n**scanning insn=%d\n",
2500 INSN_UID (insn));
2502 insn_info->prev_insn = bb_info->last_insn;
2503 insn_info->insn = insn;
2504 bb_info->last_insn = insn_info;
2506 if (DEBUG_INSN_P (insn))
2508 insn_info->cannot_delete = true;
2509 return;
2512 /* Cselib clears the table for this case, so we have to essentially
2513 do the same. */
2514 if (NONJUMP_INSN_P (insn)
2515 && GET_CODE (PATTERN (insn)) == ASM_OPERANDS
2516 && MEM_VOLATILE_P (PATTERN (insn)))
2518 add_wild_read (bb_info);
2519 insn_info->cannot_delete = true;
2520 return;
2523 /* Look at all of the uses in the insn. */
2524 note_uses (&PATTERN (insn), check_mem_read_use, bb_info);
2526 if (CALL_P (insn))
2528 bool const_call;
2529 tree memset_call = NULL_TREE;
2531 insn_info->cannot_delete = true;
2533 /* Const functions cannot do anything bad i.e. read memory,
2534 however, they can read their parameters which may have
2535 been pushed onto the stack.
2536 memset and bzero don't read memory either. */
2537 const_call = RTL_CONST_CALL_P (insn);
2538 if (!const_call)
2540 rtx call = PATTERN (insn);
2541 if (GET_CODE (call) == PARALLEL)
2542 call = XVECEXP (call, 0, 0);
2543 if (GET_CODE (call) == SET)
2544 call = SET_SRC (call);
2545 if (GET_CODE (call) == CALL
2546 && MEM_P (XEXP (call, 0))
2547 && GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF)
2549 rtx symbol = XEXP (XEXP (call, 0), 0);
2550 if (SYMBOL_REF_DECL (symbol)
2551 && TREE_CODE (SYMBOL_REF_DECL (symbol)) == FUNCTION_DECL)
2553 if ((DECL_BUILT_IN_CLASS (SYMBOL_REF_DECL (symbol))
2554 == BUILT_IN_NORMAL
2555 && (DECL_FUNCTION_CODE (SYMBOL_REF_DECL (symbol))
2556 == BUILT_IN_MEMSET))
2557 || SYMBOL_REF_DECL (symbol) == block_clear_fn)
2558 memset_call = SYMBOL_REF_DECL (symbol);
2562 if (const_call || memset_call)
2564 insn_info_t i_ptr = active_local_stores;
2565 insn_info_t last = NULL;
2567 if (dump_file)
2568 fprintf (dump_file, "%s call %d\n",
2569 const_call ? "const" : "memset", INSN_UID (insn));
2571 /* See the head comment of the frame_read field. */
2572 if (reload_completed)
2573 insn_info->frame_read = true;
2575 /* Loop over the active stores and remove those which are
2576 killed by the const function call. */
2577 while (i_ptr)
2579 bool remove_store = false;
2581 /* The stack pointer based stores are always killed. */
2582 if (i_ptr->stack_pointer_based)
2583 remove_store = true;
2585 /* If the frame is read, the frame related stores are killed. */
2586 else if (insn_info->frame_read)
2588 store_info_t store_info = i_ptr->store_rec;
2590 /* Skip the clobbers. */
2591 while (!store_info->is_set)
2592 store_info = store_info->next;
2594 if (store_info->group_id >= 0
2595 && VEC_index (group_info_t, rtx_group_vec,
2596 store_info->group_id)->frame_related)
2597 remove_store = true;
2600 if (remove_store)
2602 if (dump_file)
2603 dump_insn_info ("removing from active", i_ptr);
2605 active_local_stores_len--;
2606 if (last)
2607 last->next_local_store = i_ptr->next_local_store;
2608 else
2609 active_local_stores = i_ptr->next_local_store;
2611 else
2612 last = i_ptr;
2614 i_ptr = i_ptr->next_local_store;
2617 if (memset_call)
2619 rtx args[3];
2620 if (get_call_args (insn, memset_call, args, 3)
2621 && CONST_INT_P (args[1])
2622 && CONST_INT_P (args[2])
2623 && INTVAL (args[2]) > 0)
2625 rtx mem = gen_rtx_MEM (BLKmode, args[0]);
2626 set_mem_size (mem, INTVAL (args[2]));
2627 body = gen_rtx_SET (VOIDmode, mem, args[1]);
2628 mems_found += record_store (body, bb_info);
2629 if (dump_file)
2630 fprintf (dump_file, "handling memset as BLKmode store\n");
2631 if (mems_found == 1)
2633 if (active_local_stores_len++
2634 >= PARAM_VALUE (PARAM_MAX_DSE_ACTIVE_LOCAL_STORES))
2636 active_local_stores_len = 1;
2637 active_local_stores = NULL;
2639 insn_info->fixed_regs_live
2640 = copy_fixed_regs (bb_info->regs_live);
2641 insn_info->next_local_store = active_local_stores;
2642 active_local_stores = insn_info;
2648 else
2649 /* Every other call, including pure functions, may read any memory
2650 that is not relative to the frame. */
2651 add_non_frame_wild_read (bb_info);
2653 return;
2656 /* Assuming that there are sets in these insns, we cannot delete
2657 them. */
2658 if ((GET_CODE (PATTERN (insn)) == CLOBBER)
2659 || volatile_refs_p (PATTERN (insn))
2660 || insn_could_throw_p (insn)
2661 || (RTX_FRAME_RELATED_P (insn))
2662 || find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX))
2663 insn_info->cannot_delete = true;
2665 body = PATTERN (insn);
2666 if (GET_CODE (body) == PARALLEL)
2668 int i;
2669 for (i = 0; i < XVECLEN (body, 0); i++)
2670 mems_found += record_store (XVECEXP (body, 0, i), bb_info);
2672 else
2673 mems_found += record_store (body, bb_info);
2675 if (dump_file)
2676 fprintf (dump_file, "mems_found = %d, cannot_delete = %s\n",
2677 mems_found, insn_info->cannot_delete ? "true" : "false");
2679 /* If we found some sets of mems, add it into the active_local_stores so
2680 that it can be locally deleted if found dead or used for
2681 replace_read and redundant constant store elimination. Otherwise mark
2682 it as cannot delete. This simplifies the processing later. */
2683 if (mems_found == 1)
2685 if (active_local_stores_len++
2686 >= PARAM_VALUE (PARAM_MAX_DSE_ACTIVE_LOCAL_STORES))
2688 active_local_stores_len = 1;
2689 active_local_stores = NULL;
2691 insn_info->fixed_regs_live = copy_fixed_regs (bb_info->regs_live);
2692 insn_info->next_local_store = active_local_stores;
2693 active_local_stores = insn_info;
2695 else
2696 insn_info->cannot_delete = true;
2700 /* Remove BASE from the set of active_local_stores. This is a
2701 callback from cselib that is used to get rid of the stores in
2702 active_local_stores. */
2704 static void
2705 remove_useless_values (cselib_val *base)
2707 insn_info_t insn_info = active_local_stores;
2708 insn_info_t last = NULL;
2710 while (insn_info)
2712 store_info_t store_info = insn_info->store_rec;
2713 bool del = false;
2715 /* If ANY of the store_infos match the cselib group that is
2716 being deleted, then the insn can not be deleted. */
2717 while (store_info)
2719 if ((store_info->group_id == -1)
2720 && (store_info->cse_base == base))
2722 del = true;
2723 break;
2725 store_info = store_info->next;
2728 if (del)
2730 active_local_stores_len--;
2731 if (last)
2732 last->next_local_store = insn_info->next_local_store;
2733 else
2734 active_local_stores = insn_info->next_local_store;
2735 free_store_info (insn_info);
2737 else
2738 last = insn_info;
2740 insn_info = insn_info->next_local_store;
2745 /* Do all of step 1. */
2747 static void
2748 dse_step1 (void)
2750 basic_block bb;
2751 bitmap regs_live = BITMAP_ALLOC (NULL);
2753 cselib_init (0);
2754 all_blocks = BITMAP_ALLOC (NULL);
2755 bitmap_set_bit (all_blocks, ENTRY_BLOCK);
2756 bitmap_set_bit (all_blocks, EXIT_BLOCK);
2758 FOR_ALL_BB (bb)
2760 insn_info_t ptr;
2761 bb_info_t bb_info = (bb_info_t) pool_alloc (bb_info_pool);
2763 memset (bb_info, 0, sizeof (struct bb_info));
2764 bitmap_set_bit (all_blocks, bb->index);
2765 bb_info->regs_live = regs_live;
2767 bitmap_copy (regs_live, DF_LR_IN (bb));
2768 df_simulate_initialize_forwards (bb, regs_live);
2770 bb_table[bb->index] = bb_info;
2771 cselib_discard_hook = remove_useless_values;
2773 if (bb->index >= NUM_FIXED_BLOCKS)
2775 rtx insn;
2777 cse_store_info_pool
2778 = create_alloc_pool ("cse_store_info_pool",
2779 sizeof (struct store_info), 100);
2780 active_local_stores = NULL;
2781 active_local_stores_len = 0;
2782 cselib_clear_table ();
2784 /* Scan the insns. */
2785 FOR_BB_INSNS (bb, insn)
2787 if (INSN_P (insn))
2788 scan_insn (bb_info, insn);
2789 cselib_process_insn (insn);
2790 if (INSN_P (insn))
2791 df_simulate_one_insn_forwards (bb, insn, regs_live);
2794 /* This is something of a hack, because the global algorithm
2795 is supposed to take care of the case where stores go dead
2796 at the end of the function. However, the global
2797 algorithm must take a more conservative view of block
2798 mode reads than the local alg does. So to get the case
2799 where you have a store to the frame followed by a non
2800 overlapping block more read, we look at the active local
2801 stores at the end of the function and delete all of the
2802 frame and spill based ones. */
2803 if (stores_off_frame_dead_at_return
2804 && (EDGE_COUNT (bb->succs) == 0
2805 || (single_succ_p (bb)
2806 && single_succ (bb) == EXIT_BLOCK_PTR
2807 && ! crtl->calls_eh_return)))
2809 insn_info_t i_ptr = active_local_stores;
2810 while (i_ptr)
2812 store_info_t store_info = i_ptr->store_rec;
2814 /* Skip the clobbers. */
2815 while (!store_info->is_set)
2816 store_info = store_info->next;
2817 if (store_info->alias_set && !i_ptr->cannot_delete)
2818 delete_dead_store_insn (i_ptr);
2819 else
2820 if (store_info->group_id >= 0)
2822 group_info_t group
2823 = VEC_index (group_info_t, rtx_group_vec, store_info->group_id);
2824 if (group->frame_related && !i_ptr->cannot_delete)
2825 delete_dead_store_insn (i_ptr);
2828 i_ptr = i_ptr->next_local_store;
2832 /* Get rid of the loads that were discovered in
2833 replace_read. Cselib is finished with this block. */
2834 while (deferred_change_list)
2836 deferred_change_t next = deferred_change_list->next;
2838 /* There is no reason to validate this change. That was
2839 done earlier. */
2840 *deferred_change_list->loc = deferred_change_list->reg;
2841 pool_free (deferred_change_pool, deferred_change_list);
2842 deferred_change_list = next;
2845 /* Get rid of all of the cselib based store_infos in this
2846 block and mark the containing insns as not being
2847 deletable. */
2848 ptr = bb_info->last_insn;
2849 while (ptr)
2851 if (ptr->contains_cselib_groups)
2853 store_info_t s_info = ptr->store_rec;
2854 while (s_info && !s_info->is_set)
2855 s_info = s_info->next;
2856 if (s_info
2857 && s_info->redundant_reason
2858 && s_info->redundant_reason->insn
2859 && !ptr->cannot_delete)
2861 if (dump_file)
2862 fprintf (dump_file, "Locally deleting insn %d "
2863 "because insn %d stores the "
2864 "same value and couldn't be "
2865 "eliminated\n",
2866 INSN_UID (ptr->insn),
2867 INSN_UID (s_info->redundant_reason->insn));
2868 delete_dead_store_insn (ptr);
2870 if (s_info)
2871 s_info->redundant_reason = NULL;
2872 free_store_info (ptr);
2874 else
2876 store_info_t s_info;
2878 /* Free at least positions_needed bitmaps. */
2879 for (s_info = ptr->store_rec; s_info; s_info = s_info->next)
2880 if (s_info->is_large)
2882 BITMAP_FREE (s_info->positions_needed.large.bmap);
2883 s_info->is_large = false;
2886 ptr = ptr->prev_insn;
2889 free_alloc_pool (cse_store_info_pool);
2891 bb_info->regs_live = NULL;
2894 BITMAP_FREE (regs_live);
2895 cselib_finish ();
2896 htab_empty (rtx_group_table);
2900 /*----------------------------------------------------------------------------
2901 Second step.
2903 Assign each byte position in the stores that we are going to
2904 analyze globally to a position in the bitmaps. Returns true if
2905 there are any bit positions assigned.
2906 ----------------------------------------------------------------------------*/
2908 static void
2909 dse_step2_init (void)
2911 unsigned int i;
2912 group_info_t group;
2914 FOR_EACH_VEC_ELT (group_info_t, rtx_group_vec, i, group)
2916 /* For all non stack related bases, we only consider a store to
2917 be deletable if there are two or more stores for that
2918 position. This is because it takes one store to make the
2919 other store redundant. However, for the stores that are
2920 stack related, we consider them if there is only one store
2921 for the position. We do this because the stack related
2922 stores can be deleted if their is no read between them and
2923 the end of the function.
2925 To make this work in the current framework, we take the stack
2926 related bases add all of the bits from store1 into store2.
2927 This has the effect of making the eligible even if there is
2928 only one store. */
2930 if (stores_off_frame_dead_at_return && group->frame_related)
2932 bitmap_ior_into (group->store2_n, group->store1_n);
2933 bitmap_ior_into (group->store2_p, group->store1_p);
2934 if (dump_file)
2935 fprintf (dump_file, "group %d is frame related ", i);
2938 group->offset_map_size_n++;
2939 group->offset_map_n = XNEWVEC (int, group->offset_map_size_n);
2940 group->offset_map_size_p++;
2941 group->offset_map_p = XNEWVEC (int, group->offset_map_size_p);
2942 group->process_globally = false;
2943 if (dump_file)
2945 fprintf (dump_file, "group %d(%d+%d): ", i,
2946 (int)bitmap_count_bits (group->store2_n),
2947 (int)bitmap_count_bits (group->store2_p));
2948 bitmap_print (dump_file, group->store2_n, "n ", " ");
2949 bitmap_print (dump_file, group->store2_p, "p ", "\n");
2955 /* Init the offset tables for the normal case. */
2957 static bool
2958 dse_step2_nospill (void)
2960 unsigned int i;
2961 group_info_t group;
2962 /* Position 0 is unused because 0 is used in the maps to mean
2963 unused. */
2964 current_position = 1;
2965 FOR_EACH_VEC_ELT (group_info_t, rtx_group_vec, i, group)
2967 bitmap_iterator bi;
2968 unsigned int j;
2970 if (group == clear_alias_group)
2971 continue;
2973 memset (group->offset_map_n, 0, sizeof(int) * group->offset_map_size_n);
2974 memset (group->offset_map_p, 0, sizeof(int) * group->offset_map_size_p);
2975 bitmap_clear (group->group_kill);
2977 EXECUTE_IF_SET_IN_BITMAP (group->store2_n, 0, j, bi)
2979 bitmap_set_bit (group->group_kill, current_position);
2980 if (bitmap_bit_p (group->escaped_n, j))
2981 bitmap_set_bit (kill_on_calls, current_position);
2982 group->offset_map_n[j] = current_position++;
2983 group->process_globally = true;
2985 EXECUTE_IF_SET_IN_BITMAP (group->store2_p, 0, j, bi)
2987 bitmap_set_bit (group->group_kill, current_position);
2988 if (bitmap_bit_p (group->escaped_p, j))
2989 bitmap_set_bit (kill_on_calls, current_position);
2990 group->offset_map_p[j] = current_position++;
2991 group->process_globally = true;
2994 return current_position != 1;
2998 /* Init the offset tables for the spill case. */
3000 static bool
3001 dse_step2_spill (void)
3003 unsigned int j;
3004 group_info_t group = clear_alias_group;
3005 bitmap_iterator bi;
3007 /* Position 0 is unused because 0 is used in the maps to mean
3008 unused. */
3009 current_position = 1;
3011 if (dump_file)
3013 bitmap_print (dump_file, clear_alias_sets,
3014 "clear alias sets ", "\n");
3015 bitmap_print (dump_file, disqualified_clear_alias_sets,
3016 "disqualified clear alias sets ", "\n");
3019 memset (group->offset_map_n, 0, sizeof(int) * group->offset_map_size_n);
3020 memset (group->offset_map_p, 0, sizeof(int) * group->offset_map_size_p);
3021 bitmap_clear (group->group_kill);
3023 /* Remove the disqualified positions from the store2_p set. */
3024 bitmap_and_compl_into (group->store2_p, disqualified_clear_alias_sets);
3026 /* We do not need to process the store2_n set because
3027 alias_sets are always positive. */
3028 EXECUTE_IF_SET_IN_BITMAP (group->store2_p, 0, j, bi)
3030 bitmap_set_bit (group->group_kill, current_position);
3031 group->offset_map_p[j] = current_position++;
3032 group->process_globally = true;
3035 return current_position != 1;
3040 /*----------------------------------------------------------------------------
3041 Third step.
3043 Build the bit vectors for the transfer functions.
3044 ----------------------------------------------------------------------------*/
3047 /* Note that this is NOT a general purpose function. Any mem that has
3048 an alias set registered here expected to be COMPLETELY unaliased:
3049 i.e it's addresses are not and need not be examined.
3051 It is known that all references to this address will have this
3052 alias set and there are NO other references to this address in the
3053 function.
3055 Currently the only place that is known to be clean enough to use
3056 this interface is the code that assigns the spill locations.
3058 All of the mems that have alias_sets registered are subjected to a
3059 very powerful form of dse where function calls, volatile reads and
3060 writes, and reads from random location are not taken into account.
3062 It is also assumed that these locations go dead when the function
3063 returns. This assumption could be relaxed if there were found to
3064 be places that this assumption was not correct.
3066 The MODE is passed in and saved. The mode of each load or store to
3067 a mem with ALIAS_SET is checked against MEM. If the size of that
3068 load or store is different from MODE, processing is halted on this
3069 alias set. For the vast majority of aliases sets, all of the loads
3070 and stores will use the same mode. But vectors are treated
3071 differently: the alias set is established for the entire vector,
3072 but reload will insert loads and stores for individual elements and
3073 we do not necessarily have the information to track those separate
3074 elements. So when we see a mode mismatch, we just bail. */
3077 void
3078 dse_record_singleton_alias_set (alias_set_type alias_set,
3079 enum machine_mode mode)
3081 struct clear_alias_mode_holder tmp_holder;
3082 struct clear_alias_mode_holder *entry;
3083 void **slot;
3085 /* If we are not going to run dse, we need to return now or there
3086 will be problems with allocating the bitmaps. */
3087 if ((!gate_dse()) || !alias_set)
3088 return;
3090 if (!clear_alias_sets)
3092 clear_alias_sets = BITMAP_ALLOC (NULL);
3093 disqualified_clear_alias_sets = BITMAP_ALLOC (NULL);
3094 clear_alias_mode_table = htab_create (11, clear_alias_mode_hash,
3095 clear_alias_mode_eq, NULL);
3096 clear_alias_mode_pool = create_alloc_pool ("clear_alias_mode_pool",
3097 sizeof (struct clear_alias_mode_holder), 100);
3100 bitmap_set_bit (clear_alias_sets, alias_set);
3102 tmp_holder.alias_set = alias_set;
3104 slot = htab_find_slot (clear_alias_mode_table, &tmp_holder, INSERT);
3105 gcc_assert (*slot == NULL);
3107 *slot = entry =
3108 (struct clear_alias_mode_holder *) pool_alloc (clear_alias_mode_pool);
3109 entry->alias_set = alias_set;
3110 entry->mode = mode;
3114 /* Remove ALIAS_SET from the sets of stack slots being considered. */
3116 void
3117 dse_invalidate_singleton_alias_set (alias_set_type alias_set)
3119 if ((!gate_dse()) || !alias_set)
3120 return;
3122 bitmap_clear_bit (clear_alias_sets, alias_set);
3126 /* Look up the bitmap index for OFFSET in GROUP_INFO. If it is not
3127 there, return 0. */
3129 static int
3130 get_bitmap_index (group_info_t group_info, HOST_WIDE_INT offset)
3132 if (offset < 0)
3134 HOST_WIDE_INT offset_p = -offset;
3135 if (offset_p >= group_info->offset_map_size_n)
3136 return 0;
3137 return group_info->offset_map_n[offset_p];
3139 else
3141 if (offset >= group_info->offset_map_size_p)
3142 return 0;
3143 return group_info->offset_map_p[offset];
3148 /* Process the STORE_INFOs into the bitmaps into GEN and KILL. KILL
3149 may be NULL. */
3151 static void
3152 scan_stores_nospill (store_info_t store_info, bitmap gen, bitmap kill)
3154 while (store_info)
3156 HOST_WIDE_INT i;
3157 group_info_t group_info
3158 = VEC_index (group_info_t, rtx_group_vec, store_info->group_id);
3159 if (group_info->process_globally)
3160 for (i = store_info->begin; i < store_info->end; i++)
3162 int index = get_bitmap_index (group_info, i);
3163 if (index != 0)
3165 bitmap_set_bit (gen, index);
3166 if (kill)
3167 bitmap_clear_bit (kill, index);
3170 store_info = store_info->next;
3175 /* Process the STORE_INFOs into the bitmaps into GEN and KILL. KILL
3176 may be NULL. */
3178 static void
3179 scan_stores_spill (store_info_t store_info, bitmap gen, bitmap kill)
3181 while (store_info)
3183 if (store_info->alias_set)
3185 int index = get_bitmap_index (clear_alias_group,
3186 store_info->alias_set);
3187 if (index != 0)
3189 bitmap_set_bit (gen, index);
3190 if (kill)
3191 bitmap_clear_bit (kill, index);
3194 store_info = store_info->next;
3199 /* Process the READ_INFOs into the bitmaps into GEN and KILL. KILL
3200 may be NULL. */
3202 static void
3203 scan_reads_nospill (insn_info_t insn_info, bitmap gen, bitmap kill)
3205 read_info_t read_info = insn_info->read_rec;
3206 int i;
3207 group_info_t group;
3209 /* If this insn reads the frame, kill all the frame related stores. */
3210 if (insn_info->frame_read)
3212 FOR_EACH_VEC_ELT (group_info_t, rtx_group_vec, i, group)
3213 if (group->process_globally && group->frame_related)
3215 if (kill)
3216 bitmap_ior_into (kill, group->group_kill);
3217 bitmap_and_compl_into (gen, group->group_kill);
3220 if (insn_info->non_frame_wild_read)
3222 /* Kill all non-frame related stores. Kill all stores of variables that
3223 escape. */
3224 if (kill)
3225 bitmap_ior_into (kill, kill_on_calls);
3226 bitmap_and_compl_into (gen, kill_on_calls);
3227 FOR_EACH_VEC_ELT (group_info_t, rtx_group_vec, i, group)
3228 if (group->process_globally && !group->frame_related)
3230 if (kill)
3231 bitmap_ior_into (kill, group->group_kill);
3232 bitmap_and_compl_into (gen, group->group_kill);
3235 while (read_info)
3237 FOR_EACH_VEC_ELT (group_info_t, rtx_group_vec, i, group)
3239 if (group->process_globally)
3241 if (i == read_info->group_id)
3243 if (read_info->begin > read_info->end)
3245 /* Begin > end for block mode reads. */
3246 if (kill)
3247 bitmap_ior_into (kill, group->group_kill);
3248 bitmap_and_compl_into (gen, group->group_kill);
3250 else
3252 /* The groups are the same, just process the
3253 offsets. */
3254 HOST_WIDE_INT j;
3255 for (j = read_info->begin; j < read_info->end; j++)
3257 int index = get_bitmap_index (group, j);
3258 if (index != 0)
3260 if (kill)
3261 bitmap_set_bit (kill, index);
3262 bitmap_clear_bit (gen, index);
3267 else
3269 /* The groups are different, if the alias sets
3270 conflict, clear the entire group. We only need
3271 to apply this test if the read_info is a cselib
3272 read. Anything with a constant base cannot alias
3273 something else with a different constant
3274 base. */
3275 if ((read_info->group_id < 0)
3276 && canon_true_dependence (group->base_mem,
3277 GET_MODE (group->base_mem),
3278 group->canon_base_addr,
3279 read_info->mem, NULL_RTX,
3280 rtx_varies_p))
3282 if (kill)
3283 bitmap_ior_into (kill, group->group_kill);
3284 bitmap_and_compl_into (gen, group->group_kill);
3290 read_info = read_info->next;
3294 /* Process the READ_INFOs into the bitmaps into GEN and KILL. KILL
3295 may be NULL. */
3297 static void
3298 scan_reads_spill (read_info_t read_info, bitmap gen, bitmap kill)
3300 while (read_info)
3302 if (read_info->alias_set)
3304 int index = get_bitmap_index (clear_alias_group,
3305 read_info->alias_set);
3306 if (index != 0)
3308 if (kill)
3309 bitmap_set_bit (kill, index);
3310 bitmap_clear_bit (gen, index);
3314 read_info = read_info->next;
3319 /* Return the insn in BB_INFO before the first wild read or if there
3320 are no wild reads in the block, return the last insn. */
3322 static insn_info_t
3323 find_insn_before_first_wild_read (bb_info_t bb_info)
3325 insn_info_t insn_info = bb_info->last_insn;
3326 insn_info_t last_wild_read = NULL;
3328 while (insn_info)
3330 if (insn_info->wild_read)
3332 last_wild_read = insn_info->prev_insn;
3333 /* Block starts with wild read. */
3334 if (!last_wild_read)
3335 return NULL;
3338 insn_info = insn_info->prev_insn;
3341 if (last_wild_read)
3342 return last_wild_read;
3343 else
3344 return bb_info->last_insn;
3348 /* Scan the insns in BB_INFO starting at PTR and going to the top of
3349 the block in order to build the gen and kill sets for the block.
3350 We start at ptr which may be the last insn in the block or may be
3351 the first insn with a wild read. In the latter case we are able to
3352 skip the rest of the block because it just does not matter:
3353 anything that happens is hidden by the wild read. */
3355 static void
3356 dse_step3_scan (bool for_spills, basic_block bb)
3358 bb_info_t bb_info = bb_table[bb->index];
3359 insn_info_t insn_info;
3361 if (for_spills)
3362 /* There are no wild reads in the spill case. */
3363 insn_info = bb_info->last_insn;
3364 else
3365 insn_info = find_insn_before_first_wild_read (bb_info);
3367 /* In the spill case or in the no_spill case if there is no wild
3368 read in the block, we will need a kill set. */
3369 if (insn_info == bb_info->last_insn)
3371 if (bb_info->kill)
3372 bitmap_clear (bb_info->kill);
3373 else
3374 bb_info->kill = BITMAP_ALLOC (NULL);
3376 else
3377 if (bb_info->kill)
3378 BITMAP_FREE (bb_info->kill);
3380 while (insn_info)
3382 /* There may have been code deleted by the dce pass run before
3383 this phase. */
3384 if (insn_info->insn && INSN_P (insn_info->insn))
3386 /* Process the read(s) last. */
3387 if (for_spills)
3389 scan_stores_spill (insn_info->store_rec, bb_info->gen, bb_info->kill);
3390 scan_reads_spill (insn_info->read_rec, bb_info->gen, bb_info->kill);
3392 else
3394 scan_stores_nospill (insn_info->store_rec, bb_info->gen, bb_info->kill);
3395 scan_reads_nospill (insn_info, bb_info->gen, bb_info->kill);
3399 insn_info = insn_info->prev_insn;
3404 /* Set the gen set of the exit block, and also any block with no
3405 successors that does not have a wild read. */
3407 static void
3408 dse_step3_exit_block_scan (bb_info_t bb_info)
3410 /* The gen set is all 0's for the exit block except for the
3411 frame_pointer_group. */
3413 if (stores_off_frame_dead_at_return)
3415 unsigned int i;
3416 group_info_t group;
3418 FOR_EACH_VEC_ELT (group_info_t, rtx_group_vec, i, group)
3420 if (group->process_globally && group->frame_related)
3421 bitmap_ior_into (bb_info->gen, group->group_kill);
3427 /* Find all of the blocks that are not backwards reachable from the
3428 exit block or any block with no successors (BB). These are the
3429 infinite loops or infinite self loops. These blocks will still
3430 have their bits set in UNREACHABLE_BLOCKS. */
3432 static void
3433 mark_reachable_blocks (sbitmap unreachable_blocks, basic_block bb)
3435 edge e;
3436 edge_iterator ei;
3438 if (TEST_BIT (unreachable_blocks, bb->index))
3440 RESET_BIT (unreachable_blocks, bb->index);
3441 FOR_EACH_EDGE (e, ei, bb->preds)
3443 mark_reachable_blocks (unreachable_blocks, e->src);
3448 /* Build the transfer functions for the function. */
3450 static void
3451 dse_step3 (bool for_spills)
3453 basic_block bb;
3454 sbitmap unreachable_blocks = sbitmap_alloc (last_basic_block);
3455 sbitmap_iterator sbi;
3456 bitmap all_ones = NULL;
3457 unsigned int i;
3459 sbitmap_ones (unreachable_blocks);
3461 FOR_ALL_BB (bb)
3463 bb_info_t bb_info = bb_table[bb->index];
3464 if (bb_info->gen)
3465 bitmap_clear (bb_info->gen);
3466 else
3467 bb_info->gen = BITMAP_ALLOC (NULL);
3469 if (bb->index == ENTRY_BLOCK)
3471 else if (bb->index == EXIT_BLOCK)
3472 dse_step3_exit_block_scan (bb_info);
3473 else
3474 dse_step3_scan (for_spills, bb);
3475 if (EDGE_COUNT (bb->succs) == 0)
3476 mark_reachable_blocks (unreachable_blocks, bb);
3478 /* If this is the second time dataflow is run, delete the old
3479 sets. */
3480 if (bb_info->in)
3481 BITMAP_FREE (bb_info->in);
3482 if (bb_info->out)
3483 BITMAP_FREE (bb_info->out);
3486 /* For any block in an infinite loop, we must initialize the out set
3487 to all ones. This could be expensive, but almost never occurs in
3488 practice. However, it is common in regression tests. */
3489 EXECUTE_IF_SET_IN_SBITMAP (unreachable_blocks, 0, i, sbi)
3491 if (bitmap_bit_p (all_blocks, i))
3493 bb_info_t bb_info = bb_table[i];
3494 if (!all_ones)
3496 unsigned int j;
3497 group_info_t group;
3499 all_ones = BITMAP_ALLOC (NULL);
3500 FOR_EACH_VEC_ELT (group_info_t, rtx_group_vec, j, group)
3501 bitmap_ior_into (all_ones, group->group_kill);
3503 if (!bb_info->out)
3505 bb_info->out = BITMAP_ALLOC (NULL);
3506 bitmap_copy (bb_info->out, all_ones);
3511 if (all_ones)
3512 BITMAP_FREE (all_ones);
3513 sbitmap_free (unreachable_blocks);
3518 /*----------------------------------------------------------------------------
3519 Fourth step.
3521 Solve the bitvector equations.
3522 ----------------------------------------------------------------------------*/
3525 /* Confluence function for blocks with no successors. Create an out
3526 set from the gen set of the exit block. This block logically has
3527 the exit block as a successor. */
3531 static void
3532 dse_confluence_0 (basic_block bb)
3534 bb_info_t bb_info = bb_table[bb->index];
3536 if (bb->index == EXIT_BLOCK)
3537 return;
3539 if (!bb_info->out)
3541 bb_info->out = BITMAP_ALLOC (NULL);
3542 bitmap_copy (bb_info->out, bb_table[EXIT_BLOCK]->gen);
3546 /* Propagate the information from the in set of the dest of E to the
3547 out set of the src of E. If the various in or out sets are not
3548 there, that means they are all ones. */
3550 static bool
3551 dse_confluence_n (edge e)
3553 bb_info_t src_info = bb_table[e->src->index];
3554 bb_info_t dest_info = bb_table[e->dest->index];
3556 if (dest_info->in)
3558 if (src_info->out)
3559 bitmap_and_into (src_info->out, dest_info->in);
3560 else
3562 src_info->out = BITMAP_ALLOC (NULL);
3563 bitmap_copy (src_info->out, dest_info->in);
3566 return true;
3570 /* Propagate the info from the out to the in set of BB_INDEX's basic
3571 block. There are three cases:
3573 1) The block has no kill set. In this case the kill set is all
3574 ones. It does not matter what the out set of the block is, none of
3575 the info can reach the top. The only thing that reaches the top is
3576 the gen set and we just copy the set.
3578 2) There is a kill set but no out set and bb has successors. In
3579 this case we just return. Eventually an out set will be created and
3580 it is better to wait than to create a set of ones.
3582 3) There is both a kill and out set. We apply the obvious transfer
3583 function.
3586 static bool
3587 dse_transfer_function (int bb_index)
3589 bb_info_t bb_info = bb_table[bb_index];
3591 if (bb_info->kill)
3593 if (bb_info->out)
3595 /* Case 3 above. */
3596 if (bb_info->in)
3597 return bitmap_ior_and_compl (bb_info->in, bb_info->gen,
3598 bb_info->out, bb_info->kill);
3599 else
3601 bb_info->in = BITMAP_ALLOC (NULL);
3602 bitmap_ior_and_compl (bb_info->in, bb_info->gen,
3603 bb_info->out, bb_info->kill);
3604 return true;
3607 else
3608 /* Case 2 above. */
3609 return false;
3611 else
3613 /* Case 1 above. If there is already an in set, nothing
3614 happens. */
3615 if (bb_info->in)
3616 return false;
3617 else
3619 bb_info->in = BITMAP_ALLOC (NULL);
3620 bitmap_copy (bb_info->in, bb_info->gen);
3621 return true;
3626 /* Solve the dataflow equations. */
3628 static void
3629 dse_step4 (void)
3631 df_simple_dataflow (DF_BACKWARD, NULL, dse_confluence_0,
3632 dse_confluence_n, dse_transfer_function,
3633 all_blocks, df_get_postorder (DF_BACKWARD),
3634 df_get_n_blocks (DF_BACKWARD));
3635 if (dump_file)
3637 basic_block bb;
3639 fprintf (dump_file, "\n\n*** Global dataflow info after analysis.\n");
3640 FOR_ALL_BB (bb)
3642 bb_info_t bb_info = bb_table[bb->index];
3644 df_print_bb_index (bb, dump_file);
3645 if (bb_info->in)
3646 bitmap_print (dump_file, bb_info->in, " in: ", "\n");
3647 else
3648 fprintf (dump_file, " in: *MISSING*\n");
3649 if (bb_info->gen)
3650 bitmap_print (dump_file, bb_info->gen, " gen: ", "\n");
3651 else
3652 fprintf (dump_file, " gen: *MISSING*\n");
3653 if (bb_info->kill)
3654 bitmap_print (dump_file, bb_info->kill, " kill: ", "\n");
3655 else
3656 fprintf (dump_file, " kill: *MISSING*\n");
3657 if (bb_info->out)
3658 bitmap_print (dump_file, bb_info->out, " out: ", "\n");
3659 else
3660 fprintf (dump_file, " out: *MISSING*\n\n");
3667 /*----------------------------------------------------------------------------
3668 Fifth step.
3670 Delete the stores that can only be deleted using the global information.
3671 ----------------------------------------------------------------------------*/
3674 static void
3675 dse_step5_nospill (void)
3677 basic_block bb;
3678 FOR_EACH_BB (bb)
3680 bb_info_t bb_info = bb_table[bb->index];
3681 insn_info_t insn_info = bb_info->last_insn;
3682 bitmap v = bb_info->out;
3684 while (insn_info)
3686 bool deleted = false;
3687 if (dump_file && insn_info->insn)
3689 fprintf (dump_file, "starting to process insn %d\n",
3690 INSN_UID (insn_info->insn));
3691 bitmap_print (dump_file, v, " v: ", "\n");
3694 /* There may have been code deleted by the dce pass run before
3695 this phase. */
3696 if (insn_info->insn
3697 && INSN_P (insn_info->insn)
3698 && (!insn_info->cannot_delete)
3699 && (!bitmap_empty_p (v)))
3701 store_info_t store_info = insn_info->store_rec;
3703 /* Try to delete the current insn. */
3704 deleted = true;
3706 /* Skip the clobbers. */
3707 while (!store_info->is_set)
3708 store_info = store_info->next;
3710 if (store_info->alias_set)
3711 deleted = false;
3712 else
3714 HOST_WIDE_INT i;
3715 group_info_t group_info
3716 = VEC_index (group_info_t, rtx_group_vec, store_info->group_id);
3718 for (i = store_info->begin; i < store_info->end; i++)
3720 int index = get_bitmap_index (group_info, i);
3722 if (dump_file)
3723 fprintf (dump_file, "i = %d, index = %d\n", (int)i, index);
3724 if (index == 0 || !bitmap_bit_p (v, index))
3726 if (dump_file)
3727 fprintf (dump_file, "failing at i = %d\n", (int)i);
3728 deleted = false;
3729 break;
3733 if (deleted)
3735 if (dbg_cnt (dse)
3736 && check_for_inc_dec_1 (insn_info))
3738 delete_insn (insn_info->insn);
3739 insn_info->insn = NULL;
3740 globally_deleted++;
3744 /* We do want to process the local info if the insn was
3745 deleted. For instance, if the insn did a wild read, we
3746 no longer need to trash the info. */
3747 if (insn_info->insn
3748 && INSN_P (insn_info->insn)
3749 && (!deleted))
3751 scan_stores_nospill (insn_info->store_rec, v, NULL);
3752 if (insn_info->wild_read)
3754 if (dump_file)
3755 fprintf (dump_file, "wild read\n");
3756 bitmap_clear (v);
3758 else if (insn_info->read_rec
3759 || insn_info->non_frame_wild_read)
3761 if (dump_file && !insn_info->non_frame_wild_read)
3762 fprintf (dump_file, "regular read\n");
3763 else if (dump_file)
3764 fprintf (dump_file, "non-frame wild read\n");
3765 scan_reads_nospill (insn_info, v, NULL);
3769 insn_info = insn_info->prev_insn;
3775 static void
3776 dse_step5_spill (void)
3778 basic_block bb;
3779 FOR_EACH_BB (bb)
3781 bb_info_t bb_info = bb_table[bb->index];
3782 insn_info_t insn_info = bb_info->last_insn;
3783 bitmap v = bb_info->out;
3785 while (insn_info)
3787 bool deleted = false;
3788 /* There may have been code deleted by the dce pass run before
3789 this phase. */
3790 if (insn_info->insn
3791 && INSN_P (insn_info->insn)
3792 && (!insn_info->cannot_delete)
3793 && (!bitmap_empty_p (v)))
3795 /* Try to delete the current insn. */
3796 store_info_t store_info = insn_info->store_rec;
3797 deleted = true;
3799 while (store_info)
3801 if (store_info->alias_set)
3803 int index = get_bitmap_index (clear_alias_group,
3804 store_info->alias_set);
3805 if (index == 0 || !bitmap_bit_p (v, index))
3807 deleted = false;
3808 break;
3811 else
3812 deleted = false;
3813 store_info = store_info->next;
3815 if (deleted && dbg_cnt (dse)
3816 && check_for_inc_dec_1 (insn_info))
3818 if (dump_file)
3819 fprintf (dump_file, "Spill deleting insn %d\n",
3820 INSN_UID (insn_info->insn));
3821 delete_insn (insn_info->insn);
3822 spill_deleted++;
3823 insn_info->insn = NULL;
3827 if (insn_info->insn
3828 && INSN_P (insn_info->insn)
3829 && (!deleted))
3831 scan_stores_spill (insn_info->store_rec, v, NULL);
3832 scan_reads_spill (insn_info->read_rec, v, NULL);
3835 insn_info = insn_info->prev_insn;
3842 /*----------------------------------------------------------------------------
3843 Sixth step.
3845 Delete stores made redundant by earlier stores (which store the same
3846 value) that couldn't be eliminated.
3847 ----------------------------------------------------------------------------*/
3849 static void
3850 dse_step6 (void)
3852 basic_block bb;
3854 FOR_ALL_BB (bb)
3856 bb_info_t bb_info = bb_table[bb->index];
3857 insn_info_t insn_info = bb_info->last_insn;
3859 while (insn_info)
3861 /* There may have been code deleted by the dce pass run before
3862 this phase. */
3863 if (insn_info->insn
3864 && INSN_P (insn_info->insn)
3865 && !insn_info->cannot_delete)
3867 store_info_t s_info = insn_info->store_rec;
3869 while (s_info && !s_info->is_set)
3870 s_info = s_info->next;
3871 if (s_info
3872 && s_info->redundant_reason
3873 && s_info->redundant_reason->insn
3874 && INSN_P (s_info->redundant_reason->insn))
3876 rtx rinsn = s_info->redundant_reason->insn;
3877 if (dump_file)
3878 fprintf (dump_file, "Locally deleting insn %d "
3879 "because insn %d stores the "
3880 "same value and couldn't be "
3881 "eliminated\n",
3882 INSN_UID (insn_info->insn),
3883 INSN_UID (rinsn));
3884 delete_dead_store_insn (insn_info);
3887 insn_info = insn_info->prev_insn;
3892 /*----------------------------------------------------------------------------
3893 Seventh step.
3895 Destroy everything left standing.
3896 ----------------------------------------------------------------------------*/
3898 static void
3899 dse_step7 (bool global_done)
3901 unsigned int i;
3902 group_info_t group;
3903 basic_block bb;
3905 FOR_EACH_VEC_ELT (group_info_t, rtx_group_vec, i, group)
3907 free (group->offset_map_n);
3908 free (group->offset_map_p);
3909 BITMAP_FREE (group->store1_n);
3910 BITMAP_FREE (group->store1_p);
3911 BITMAP_FREE (group->store2_n);
3912 BITMAP_FREE (group->store2_p);
3913 BITMAP_FREE (group->escaped_n);
3914 BITMAP_FREE (group->escaped_p);
3915 BITMAP_FREE (group->group_kill);
3918 if (global_done)
3919 FOR_ALL_BB (bb)
3921 bb_info_t bb_info = bb_table[bb->index];
3922 BITMAP_FREE (bb_info->gen);
3923 if (bb_info->kill)
3924 BITMAP_FREE (bb_info->kill);
3925 if (bb_info->in)
3926 BITMAP_FREE (bb_info->in);
3927 if (bb_info->out)
3928 BITMAP_FREE (bb_info->out);
3931 if (clear_alias_sets)
3933 BITMAP_FREE (clear_alias_sets);
3934 BITMAP_FREE (disqualified_clear_alias_sets);
3935 free_alloc_pool (clear_alias_mode_pool);
3936 htab_delete (clear_alias_mode_table);
3939 end_alias_analysis ();
3940 free (bb_table);
3941 htab_delete (rtx_group_table);
3942 VEC_free (group_info_t, heap, rtx_group_vec);
3943 BITMAP_FREE (all_blocks);
3944 BITMAP_FREE (scratch);
3945 BITMAP_FREE (kill_on_calls);
3947 free_alloc_pool (rtx_store_info_pool);
3948 free_alloc_pool (read_info_pool);
3949 free_alloc_pool (insn_info_pool);
3950 free_alloc_pool (bb_info_pool);
3951 free_alloc_pool (rtx_group_info_pool);
3952 free_alloc_pool (deferred_change_pool);
3956 /* -------------------------------------------------------------------------
3958 ------------------------------------------------------------------------- */
3960 /* Callback for running pass_rtl_dse. */
3962 static unsigned int
3963 rest_of_handle_dse (void)
3965 bool did_global = false;
3967 df_set_flags (DF_DEFER_INSN_RESCAN);
3969 /* Need the notes since we must track live hardregs in the forwards
3970 direction. */
3971 df_note_add_problem ();
3972 df_analyze ();
3974 dse_step0 ();
3975 dse_step1 ();
3976 dse_step2_init ();
3977 if (dse_step2_nospill ())
3979 df_set_flags (DF_LR_RUN_DCE);
3980 df_analyze ();
3981 did_global = true;
3982 if (dump_file)
3983 fprintf (dump_file, "doing global processing\n");
3984 dse_step3 (false);
3985 dse_step4 ();
3986 dse_step5_nospill ();
3989 /* For the instance of dse that runs after reload, we make a special
3990 pass to process the spills. These are special in that they are
3991 totally transparent, i.e, there is no aliasing issues that need
3992 to be considered. This means that the wild reads that kill
3993 everything else do not apply here. */
3994 if (clear_alias_sets && dse_step2_spill ())
3996 if (!did_global)
3998 df_set_flags (DF_LR_RUN_DCE);
3999 df_analyze ();
4001 did_global = true;
4002 if (dump_file)
4003 fprintf (dump_file, "doing global spill processing\n");
4004 dse_step3 (true);
4005 dse_step4 ();
4006 dse_step5_spill ();
4009 dse_step6 ();
4010 dse_step7 (did_global);
4012 if (dump_file)
4013 fprintf (dump_file, "dse: local deletions = %d, global deletions = %d, spill deletions = %d\n",
4014 locally_deleted, globally_deleted, spill_deleted);
4015 return 0;
4018 static bool
4019 gate_dse (void)
4021 return gate_dse1 () || gate_dse2 ();
4024 static bool
4025 gate_dse1 (void)
4027 return optimize > 0 && flag_dse
4028 && dbg_cnt (dse1);
4031 static bool
4032 gate_dse2 (void)
4034 return optimize > 0 && flag_dse
4035 && dbg_cnt (dse2);
4038 struct rtl_opt_pass pass_rtl_dse1 =
4041 RTL_PASS,
4042 "dse1", /* name */
4043 gate_dse1, /* gate */
4044 rest_of_handle_dse, /* execute */
4045 NULL, /* sub */
4046 NULL, /* next */
4047 0, /* static_pass_number */
4048 TV_DSE1, /* tv_id */
4049 0, /* properties_required */
4050 0, /* properties_provided */
4051 0, /* properties_destroyed */
4052 0, /* todo_flags_start */
4053 TODO_df_finish | TODO_verify_rtl_sharing |
4054 TODO_ggc_collect /* todo_flags_finish */
4058 struct rtl_opt_pass pass_rtl_dse2 =
4061 RTL_PASS,
4062 "dse2", /* name */
4063 gate_dse2, /* gate */
4064 rest_of_handle_dse, /* execute */
4065 NULL, /* sub */
4066 NULL, /* next */
4067 0, /* static_pass_number */
4068 TV_DSE2, /* tv_id */
4069 0, /* properties_required */
4070 0, /* properties_provided */
4071 0, /* properties_destroyed */
4072 0, /* todo_flags_start */
4073 TODO_df_finish | TODO_verify_rtl_sharing |
4074 TODO_ggc_collect /* todo_flags_finish */