1 /* Global constant/copy propagation for RTL.
2 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
3 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
25 #include "diagnostic-core.h"
32 #include "hard-reg-set.h"
34 #include "insn-config.h"
36 #include "basic-block.h"
46 #include "tree-pass.h"
53 /* An obstack for our working variables. */
54 static struct obstack cprop_obstack
;
56 /* Occurrence of an expression.
57 There is one per basic block. If a pattern appears more than once the
58 last appearance is used. */
62 /* Next occurrence of this expression. */
64 /* The insn that computes the expression. */
68 typedef struct occr
*occr_t
;
70 DEF_VEC_ALLOC_P (occr_t
, heap
);
72 /* Hash table entry for assignment expressions. */
76 /* The expression (DEST := SRC). */
80 /* Index in the available expression bitmaps. */
82 /* Next entry with the same hash. */
83 struct expr
*next_same_hash
;
84 /* List of available occurrence in basic blocks in the function.
85 An "available occurrence" is one that is the last occurrence in the
86 basic block and whose operands are not modified by following statements
87 in the basic block [including this insn]. */
88 struct occr
*avail_occr
;
91 /* Hash table for copy propagation expressions.
92 Each hash table is an array of buckets.
93 ??? It is known that if it were an array of entries, structure elements
94 `next_same_hash' and `bitmap_index' wouldn't be necessary. However, it is
95 not clear whether in the final analysis a sufficient amount of memory would
96 be saved as the size of the available expression bitmaps would be larger
97 [one could build a mapping table without holes afterwards though].
98 Someday I'll perform the computation and figure it out. */
103 This is an array of `set_hash_table_size' elements. */
106 /* Size of the hash table, in elements. */
109 /* Number of hash table elements. */
110 unsigned int n_elems
;
113 /* Copy propagation hash table. */
114 static struct hash_table_d set_hash_table
;
116 /* Array of implicit set patterns indexed by basic block index. */
117 static rtx
*implicit_sets
;
119 /* Array of indexes of expressions for implicit set patterns indexed by basic
120 block index. In other words, implicit_set_indexes[i] is the bitmap_index
121 of the expression whose RTX is implicit_sets[i]. */
122 static int *implicit_set_indexes
;
124 /* Bitmap containing one bit for each register in the program.
125 Used when performing GCSE to track which registers have been set since
126 the start or end of the basic block while traversing that block. */
127 static regset reg_set_bitmap
;
129 /* Various variables for statistics gathering. */
131 /* Memory used in a pass.
132 This isn't intended to be absolutely precise. Its intent is only
133 to keep an eye on memory usage. */
134 static int bytes_used
;
136 /* Number of local constants propagated. */
137 static int local_const_prop_count
;
138 /* Number of local copies propagated. */
139 static int local_copy_prop_count
;
140 /* Number of global constants propagated. */
141 static int global_const_prop_count
;
142 /* Number of global copies propagated. */
143 static int global_copy_prop_count
;
145 #define GOBNEW(T) ((T *) cprop_alloc (sizeof (T)))
146 #define GOBNEWVAR(T, S) ((T *) cprop_alloc ((S)))
148 /* Cover function to obstack_alloc. */
151 cprop_alloc (unsigned long size
)
154 return obstack_alloc (&cprop_obstack
, size
);
157 /* Return nonzero if register X is unchanged from INSN to the end
158 of INSN's basic block. */
161 reg_available_p (const_rtx x
, const_rtx insn ATTRIBUTE_UNUSED
)
163 return ! REGNO_REG_SET_P (reg_set_bitmap
, REGNO (x
));
166 /* Hash a set of register REGNO.
168 Sets are hashed on the register that is set. This simplifies the PRE copy
171 ??? May need to make things more elaborate. Later, as necessary. */
174 hash_set (int regno
, int hash_table_size
)
179 return hash
% hash_table_size
;
182 /* Insert assignment DEST:=SET from INSN in the hash table.
183 DEST is a register and SET is a register or a suitable constant.
184 If the assignment is already present in the table, record it as
185 the last occurrence in INSN's basic block.
186 IMPLICIT is true if it's an implicit set, false otherwise. */
189 insert_set_in_table (rtx dest
, rtx src
, rtx insn
, struct hash_table_d
*table
,
194 struct expr
*cur_expr
, *last_expr
= NULL
;
195 struct occr
*cur_occr
;
197 hash
= hash_set (REGNO (dest
), table
->size
);
199 for (cur_expr
= table
->table
[hash
]; cur_expr
;
200 cur_expr
= cur_expr
->next_same_hash
)
202 if (dest
== cur_expr
->dest
203 && src
== cur_expr
->src
)
208 last_expr
= cur_expr
;
213 cur_expr
= GOBNEW (struct expr
);
214 bytes_used
+= sizeof (struct expr
);
215 if (table
->table
[hash
] == NULL
)
216 /* This is the first pattern that hashed to this index. */
217 table
->table
[hash
] = cur_expr
;
219 /* Add EXPR to end of this hash chain. */
220 last_expr
->next_same_hash
= cur_expr
;
222 /* Set the fields of the expr element.
223 We must copy X because it can be modified when copy propagation is
224 performed on its operands. */
225 cur_expr
->dest
= copy_rtx (dest
);
226 cur_expr
->src
= copy_rtx (src
);
227 cur_expr
->bitmap_index
= table
->n_elems
++;
228 cur_expr
->next_same_hash
= NULL
;
229 cur_expr
->avail_occr
= NULL
;
232 /* Now record the occurrence. */
233 cur_occr
= cur_expr
->avail_occr
;
236 && BLOCK_FOR_INSN (cur_occr
->insn
) == BLOCK_FOR_INSN (insn
))
238 /* Found another instance of the expression in the same basic block.
239 Prefer this occurrence to the currently recorded one. We want
240 the last one in the block and the block is scanned from start
242 cur_occr
->insn
= insn
;
246 /* First occurrence of this expression in this basic block. */
247 cur_occr
= GOBNEW (struct occr
);
248 bytes_used
+= sizeof (struct occr
);
249 cur_occr
->insn
= insn
;
250 cur_occr
->next
= cur_expr
->avail_occr
;
251 cur_expr
->avail_occr
= cur_occr
;
254 /* Record bitmap_index of the implicit set in implicit_set_indexes. */
256 implicit_set_indexes
[BLOCK_FOR_INSN(insn
)->index
] = cur_expr
->bitmap_index
;
259 /* Determine whether the rtx X should be treated as a constant for CPROP.
260 Since X might be inserted more than once we have to take care that it
264 cprop_constant_p (const_rtx x
)
266 return CONSTANT_P (x
) && (GET_CODE (x
) != CONST
|| shared_const_p (x
));
269 /* Scan SET present in INSN and add an entry to the hash TABLE.
270 IMPLICIT is true if it's an implicit set, false otherwise. */
273 hash_scan_set (rtx set
, rtx insn
, struct hash_table_d
*table
, bool implicit
)
275 rtx src
= SET_SRC (set
);
276 rtx dest
= SET_DEST (set
);
279 && ! HARD_REGISTER_P (dest
)
280 && reg_available_p (dest
, insn
)
281 && can_copy_p (GET_MODE (dest
)))
283 /* See if a REG_EQUAL note shows this equivalent to a simpler expression.
285 This allows us to do a single CPROP pass and still eliminate
286 redundant constants, addresses or other expressions that are
287 constructed with multiple instructions.
289 However, keep the original SRC if INSN is a simple reg-reg move. In
290 In this case, there will almost always be a REG_EQUAL note on the
291 insn that sets SRC. By recording the REG_EQUAL value here as SRC
292 for INSN, we miss copy propagation opportunities.
294 Note that this does not impede profitable constant propagations. We
295 "look through" reg-reg sets in lookup_set. */
296 rtx note
= find_reg_equal_equiv_note (insn
);
298 && REG_NOTE_KIND (note
) == REG_EQUAL
300 && cprop_constant_p (XEXP (note
, 0)))
301 src
= XEXP (note
, 0), set
= gen_rtx_SET (VOIDmode
, dest
, src
);
303 /* Record sets for constant/copy propagation. */
306 && ! HARD_REGISTER_P (src
)
307 && reg_available_p (src
, insn
))
308 || cprop_constant_p (src
))
309 insert_set_in_table (dest
, src
, insn
, table
, implicit
);
313 /* Process INSN and add hash table entries as appropriate. */
316 hash_scan_insn (rtx insn
, struct hash_table_d
*table
)
318 rtx pat
= PATTERN (insn
);
321 /* Pick out the sets of INSN and for other forms of instructions record
322 what's been modified. */
324 if (GET_CODE (pat
) == SET
)
325 hash_scan_set (pat
, insn
, table
, false);
326 else if (GET_CODE (pat
) == PARALLEL
)
327 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
329 rtx x
= XVECEXP (pat
, 0, i
);
331 if (GET_CODE (x
) == SET
)
332 hash_scan_set (x
, insn
, table
, false);
336 /* Dump the hash table TABLE to file FILE under the name NAME. */
339 dump_hash_table (FILE *file
, const char *name
, struct hash_table_d
*table
)
342 /* Flattened out table, so it's printed in proper order. */
343 struct expr
**flat_table
;
344 unsigned int *hash_val
;
347 flat_table
= XCNEWVEC (struct expr
*, table
->n_elems
);
348 hash_val
= XNEWVEC (unsigned int, table
->n_elems
);
350 for (i
= 0; i
< (int) table
->size
; i
++)
351 for (expr
= table
->table
[i
]; expr
!= NULL
; expr
= expr
->next_same_hash
)
353 flat_table
[expr
->bitmap_index
] = expr
;
354 hash_val
[expr
->bitmap_index
] = i
;
357 fprintf (file
, "%s hash table (%d buckets, %d entries)\n",
358 name
, table
->size
, table
->n_elems
);
360 for (i
= 0; i
< (int) table
->n_elems
; i
++)
361 if (flat_table
[i
] != 0)
363 expr
= flat_table
[i
];
364 fprintf (file
, "Index %d (hash value %d)\n ",
365 expr
->bitmap_index
, hash_val
[i
]);
366 print_rtl (file
, expr
->dest
);
367 fprintf (file
, " := ");
368 print_rtl (file
, expr
->src
);
369 fprintf (file
, "\n");
372 fprintf (file
, "\n");
378 /* Record as unavailable all registers that are DEF operands of INSN. */
381 make_set_regs_unavailable (rtx insn
)
383 struct df_insn_info
*insn_info
= DF_INSN_INFO_GET (insn
);
386 for (def_rec
= DF_INSN_INFO_DEFS (insn_info
); *def_rec
; def_rec
++)
387 SET_REGNO_REG_SET (reg_set_bitmap
, DF_REF_REGNO (*def_rec
));
390 /* Top level function to create an assignment hash table.
392 Assignment entries are placed in the hash table if
393 - they are of the form (set (pseudo-reg) src),
394 - src is something we want to perform const/copy propagation on,
395 - none of the operands or target are subsequently modified in the block
397 Currently src must be a pseudo-reg or a const_int.
399 TABLE is the table computed. */
402 compute_hash_table_work (struct hash_table_d
*table
)
406 /* Allocate vars to track sets of regs. */
407 reg_set_bitmap
= ALLOC_REG_SET (NULL
);
413 /* Reset tables used to keep track of what's not yet invalid [since
414 the end of the block]. */
415 CLEAR_REG_SET (reg_set_bitmap
);
417 /* Go over all insns from the last to the first. This is convenient
418 for tracking available registers, i.e. not set between INSN and
419 the end of the basic block BB. */
420 FOR_BB_INSNS_REVERSE (bb
, insn
)
422 /* Only real insns are interesting. */
423 if (!NONDEBUG_INSN_P (insn
))
426 /* Record interesting sets from INSN in the hash table. */
427 hash_scan_insn (insn
, table
);
429 /* Any registers set in INSN will make SETs above it not AVAIL. */
430 make_set_regs_unavailable (insn
);
433 /* Insert implicit sets in the hash table, pretending they appear as
434 insns at the head of the basic block. */
435 if (implicit_sets
[bb
->index
] != NULL_RTX
)
436 hash_scan_set (implicit_sets
[bb
->index
], BB_HEAD (bb
), table
, true);
439 FREE_REG_SET (reg_set_bitmap
);
442 /* Allocate space for the set/expr hash TABLE.
443 It is used to determine the number of buckets to use. */
446 alloc_hash_table (struct hash_table_d
*table
)
450 n
= get_max_insn_count ();
453 if (table
->size
< 11)
456 /* Attempt to maintain efficient use of hash table.
457 Making it an odd number is simplest for now.
458 ??? Later take some measurements. */
460 n
= table
->size
* sizeof (struct expr
*);
461 table
->table
= XNEWVAR (struct expr
*, n
);
464 /* Free things allocated by alloc_hash_table. */
467 free_hash_table (struct hash_table_d
*table
)
472 /* Compute the hash TABLE for doing copy/const propagation or
473 expression hash table. */
476 compute_hash_table (struct hash_table_d
*table
)
478 /* Initialize count of number of entries in hash table. */
480 memset (table
->table
, 0, table
->size
* sizeof (struct expr
*));
482 compute_hash_table_work (table
);
485 /* Expression tracking support. */
487 /* Lookup REGNO in the set TABLE. The result is a pointer to the
488 table entry, or NULL if not found. */
491 lookup_set (unsigned int regno
, struct hash_table_d
*table
)
493 unsigned int hash
= hash_set (regno
, table
->size
);
496 expr
= table
->table
[hash
];
498 while (expr
&& REGNO (expr
->dest
) != regno
)
499 expr
= expr
->next_same_hash
;
504 /* Return the next entry for REGNO in list EXPR. */
507 next_set (unsigned int regno
, struct expr
*expr
)
510 expr
= expr
->next_same_hash
;
511 while (expr
&& REGNO (expr
->dest
) != regno
);
516 /* Reset tables used to keep track of what's still available [since the
517 start of the block]. */
520 reset_opr_set_tables (void)
522 /* Maintain a bitmap of which regs have been set since beginning of
524 CLEAR_REG_SET (reg_set_bitmap
);
527 /* Return nonzero if the register X has not been set yet [since the
528 start of the basic block containing INSN]. */
531 reg_not_set_p (const_rtx x
, const_rtx insn ATTRIBUTE_UNUSED
)
533 return ! REGNO_REG_SET_P (reg_set_bitmap
, REGNO (x
));
536 /* Record things set by INSN.
537 This data is used by reg_not_set_p. */
540 mark_oprs_set (rtx insn
)
542 struct df_insn_info
*insn_info
= DF_INSN_INFO_GET (insn
);
545 for (def_rec
= DF_INSN_INFO_DEFS (insn_info
); *def_rec
; def_rec
++)
546 SET_REGNO_REG_SET (reg_set_bitmap
, DF_REF_REGNO (*def_rec
));
549 /* Compute copy/constant propagation working variables. */
551 /* Local properties of assignments. */
552 static sbitmap
*cprop_avloc
;
553 static sbitmap
*cprop_kill
;
555 /* Global properties of assignments (computed from the local properties). */
556 static sbitmap
*cprop_avin
;
557 static sbitmap
*cprop_avout
;
559 /* Allocate vars used for copy/const propagation. N_BLOCKS is the number of
560 basic blocks. N_SETS is the number of sets. */
563 alloc_cprop_mem (int n_blocks
, int n_sets
)
565 cprop_avloc
= sbitmap_vector_alloc (n_blocks
, n_sets
);
566 cprop_kill
= sbitmap_vector_alloc (n_blocks
, n_sets
);
568 cprop_avin
= sbitmap_vector_alloc (n_blocks
, n_sets
);
569 cprop_avout
= sbitmap_vector_alloc (n_blocks
, n_sets
);
572 /* Free vars used by copy/const propagation. */
575 free_cprop_mem (void)
577 sbitmap_vector_free (cprop_avloc
);
578 sbitmap_vector_free (cprop_kill
);
579 sbitmap_vector_free (cprop_avin
);
580 sbitmap_vector_free (cprop_avout
);
583 /* Compute the local properties of each recorded expression.
585 Local properties are those that are defined by the block, irrespective of
588 An expression is killed in a block if its operands, either DEST or SRC, are
589 modified in the block.
591 An expression is computed (locally available) in a block if it is computed
592 at least once and expression would contain the same value if the
593 computation was moved to the end of the block.
595 KILL and COMP are destination sbitmaps for recording local properties. */
598 compute_local_properties (sbitmap
*kill
, sbitmap
*comp
,
599 struct hash_table_d
*table
)
603 /* Initialize the bitmaps that were passed in. */
604 sbitmap_vector_zero (kill
, last_basic_block
);
605 sbitmap_vector_zero (comp
, last_basic_block
);
607 for (i
= 0; i
< table
->size
; i
++)
611 for (expr
= table
->table
[i
]; expr
!= NULL
; expr
= expr
->next_same_hash
)
613 int indx
= expr
->bitmap_index
;
617 /* For each definition of the destination pseudo-reg, the expression
618 is killed in the block where the definition is. */
619 for (def
= DF_REG_DEF_CHAIN (REGNO (expr
->dest
));
620 def
; def
= DF_REF_NEXT_REG (def
))
621 SET_BIT (kill
[DF_REF_BB (def
)->index
], indx
);
623 /* If the source is a pseudo-reg, for each definition of the source,
624 the expression is killed in the block where the definition is. */
625 if (REG_P (expr
->src
))
626 for (def
= DF_REG_DEF_CHAIN (REGNO (expr
->src
));
627 def
; def
= DF_REF_NEXT_REG (def
))
628 SET_BIT (kill
[DF_REF_BB (def
)->index
], indx
);
630 /* The occurrences recorded in avail_occr are exactly those that
631 are locally available in the block where they are. */
632 for (occr
= expr
->avail_occr
; occr
!= NULL
; occr
= occr
->next
)
634 SET_BIT (comp
[BLOCK_FOR_INSN (occr
->insn
)->index
], indx
);
640 /* Hash table support. */
642 /* Top level routine to do the dataflow analysis needed by copy/const
646 compute_cprop_data (void)
650 compute_local_properties (cprop_kill
, cprop_avloc
, &set_hash_table
);
651 compute_available (cprop_avloc
, cprop_kill
, cprop_avout
, cprop_avin
);
653 /* Merge implicit sets into CPROP_AVIN. They are always available at the
654 entry of their basic block. We need to do this because 1) implicit sets
655 aren't recorded for the local pass so they cannot be propagated within
656 their basic block by this pass and 2) the global pass would otherwise
657 propagate them only in the successors of their basic block. */
660 int index
= implicit_set_indexes
[bb
->index
];
662 SET_BIT (cprop_avin
[bb
->index
], index
);
666 /* Copy/constant propagation. */
668 /* Maximum number of register uses in an insn that we handle. */
671 /* Table of uses (registers, both hard and pseudo) found in an insn.
672 Allocated statically to avoid alloc/free complexity and overhead. */
673 static rtx reg_use_table
[MAX_USES
];
675 /* Index into `reg_use_table' while building it. */
676 static unsigned reg_use_count
;
678 /* Set up a list of register numbers used in INSN. The found uses are stored
679 in `reg_use_table'. `reg_use_count' is initialized to zero before entry,
680 and contains the number of uses in the table upon exit.
682 ??? If a register appears multiple times we will record it multiple times.
683 This doesn't hurt anything but it will slow things down. */
686 find_used_regs (rtx
*xptr
, void *data ATTRIBUTE_UNUSED
)
693 /* repeat is used to turn tail-recursion into iteration since GCC
694 can't do it when there's no return value. */
702 if (reg_use_count
== MAX_USES
)
705 reg_use_table
[reg_use_count
] = x
;
709 /* Recursively scan the operands of this expression. */
711 for (i
= GET_RTX_LENGTH (code
) - 1, fmt
= GET_RTX_FORMAT (code
); i
>= 0; i
--)
715 /* If we are about to do the last recursive call
716 needed at this level, change it into iteration.
717 This function is called enough to be worth it. */
724 find_used_regs (&XEXP (x
, i
), data
);
726 else if (fmt
[i
] == 'E')
727 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
728 find_used_regs (&XVECEXP (x
, i
, j
), data
);
732 /* Try to replace all uses of FROM in INSN with TO.
733 Return nonzero if successful. */
736 try_replace_reg (rtx from
, rtx to
, rtx insn
)
738 rtx note
= find_reg_equal_equiv_note (insn
);
741 rtx set
= single_set (insn
);
743 /* Usually we substitute easy stuff, so we won't copy everything.
744 We however need to take care to not duplicate non-trivial CONST
748 validate_replace_src_group (from
, to
, insn
);
749 if (num_changes_pending () && apply_change_group ())
752 /* Try to simplify SET_SRC if we have substituted a constant. */
753 if (success
&& set
&& CONSTANT_P (to
))
755 src
= simplify_rtx (SET_SRC (set
));
758 validate_change (insn
, &SET_SRC (set
), src
, 0);
761 /* If there is already a REG_EQUAL note, update the expression in it
762 with our replacement. */
763 if (note
!= 0 && REG_NOTE_KIND (note
) == REG_EQUAL
)
764 set_unique_reg_note (insn
, REG_EQUAL
,
765 simplify_replace_rtx (XEXP (note
, 0), from
, to
));
766 if (!success
&& set
&& reg_mentioned_p (from
, SET_SRC (set
)))
768 /* If above failed and this is a single set, try to simplify the source
769 of the set given our substitution. We could perhaps try this for
770 multiple SETs, but it probably won't buy us anything. */
771 src
= simplify_replace_rtx (SET_SRC (set
), from
, to
);
773 if (!rtx_equal_p (src
, SET_SRC (set
))
774 && validate_change (insn
, &SET_SRC (set
), src
, 0))
777 /* If we've failed perform the replacement, have a single SET to
778 a REG destination and don't yet have a note, add a REG_EQUAL note
779 to not lose information. */
780 if (!success
&& note
== 0 && set
!= 0 && REG_P (SET_DEST (set
)))
781 note
= set_unique_reg_note (insn
, REG_EQUAL
, copy_rtx (src
));
784 if (set
&& MEM_P (SET_DEST (set
)) && reg_mentioned_p (from
, SET_DEST (set
)))
786 /* Registers can also appear as uses in SET_DEST if it is a MEM.
787 We could perhaps try this for multiple SETs, but it probably
788 won't buy us anything. */
789 rtx dest
= simplify_replace_rtx (SET_DEST (set
), from
, to
);
791 if (!rtx_equal_p (dest
, SET_DEST (set
))
792 && validate_change (insn
, &SET_DEST (set
), dest
, 0))
796 /* REG_EQUAL may get simplified into register.
797 We don't allow that. Remove that note. This code ought
798 not to happen, because previous code ought to synthesize
799 reg-reg move, but be on the safe side. */
800 if (note
&& REG_NOTE_KIND (note
) == REG_EQUAL
&& REG_P (XEXP (note
, 0)))
801 remove_note (insn
, note
);
806 /* Find a set of REGNOs that are available on entry to INSN's block. Return
807 NULL no such set is found. */
810 find_avail_set (int regno
, rtx insn
)
812 /* SET1 contains the last set found that can be returned to the caller for
813 use in a substitution. */
814 struct expr
*set1
= 0;
816 /* Loops are not possible here. To get a loop we would need two sets
817 available at the start of the block containing INSN. i.e. we would
818 need two sets like this available at the start of the block:
820 (set (reg X) (reg Y))
821 (set (reg Y) (reg X))
823 This can not happen since the set of (reg Y) would have killed the
824 set of (reg X) making it unavailable at the start of this block. */
828 struct expr
*set
= lookup_set (regno
, &set_hash_table
);
830 /* Find a set that is available at the start of the block
831 which contains INSN. */
834 if (TEST_BIT (cprop_avin
[BLOCK_FOR_INSN (insn
)->index
],
837 set
= next_set (regno
, set
);
840 /* If no available set was found we've reached the end of the
841 (possibly empty) copy chain. */
847 /* We know the set is available.
848 Now check that SRC is locally anticipatable (i.e. none of the
849 source operands have changed since the start of the block).
851 If the source operand changed, we may still use it for the next
852 iteration of this loop, but we may not use it for substitutions. */
854 if (cprop_constant_p (src
) || reg_not_set_p (src
, insn
))
857 /* If the source of the set is anything except a register, then
858 we have reached the end of the copy chain. */
862 /* Follow the copy chain, i.e. start another iteration of the loop
863 and see if we have an available copy into SRC. */
867 /* SET1 holds the last set that was available and anticipatable at
872 /* Subroutine of cprop_insn that tries to propagate constants into
873 JUMP_INSNS. JUMP must be a conditional jump. If SETCC is non-NULL
874 it is the instruction that immediately precedes JUMP, and must be a
875 single SET of a register. FROM is what we will try to replace,
876 SRC is the constant we will try to substitute for it. Return nonzero
877 if a change was made. */
880 cprop_jump (basic_block bb
, rtx setcc
, rtx jump
, rtx from
, rtx src
)
882 rtx new_rtx
, set_src
, note_src
;
883 rtx set
= pc_set (jump
);
884 rtx note
= find_reg_equal_equiv_note (jump
);
888 note_src
= XEXP (note
, 0);
889 if (GET_CODE (note_src
) == EXPR_LIST
)
892 else note_src
= NULL_RTX
;
894 /* Prefer REG_EQUAL notes except those containing EXPR_LISTs. */
895 set_src
= note_src
? note_src
: SET_SRC (set
);
897 /* First substitute the SETCC condition into the JUMP instruction,
898 then substitute that given values into this expanded JUMP. */
899 if (setcc
!= NULL_RTX
900 && !modified_between_p (from
, setcc
, jump
)
901 && !modified_between_p (src
, setcc
, jump
))
904 rtx setcc_set
= single_set (setcc
);
905 rtx setcc_note
= find_reg_equal_equiv_note (setcc
);
906 setcc_src
= (setcc_note
&& GET_CODE (XEXP (setcc_note
, 0)) != EXPR_LIST
)
907 ? XEXP (setcc_note
, 0) : SET_SRC (setcc_set
);
908 set_src
= simplify_replace_rtx (set_src
, SET_DEST (setcc_set
),
914 new_rtx
= simplify_replace_rtx (set_src
, from
, src
);
916 /* If no simplification can be made, then try the next register. */
917 if (rtx_equal_p (new_rtx
, SET_SRC (set
)))
920 /* If this is now a no-op delete it, otherwise this must be a valid insn. */
921 if (new_rtx
== pc_rtx
)
925 /* Ensure the value computed inside the jump insn to be equivalent
926 to one computed by setcc. */
927 if (setcc
&& modified_in_p (new_rtx
, setcc
))
929 if (! validate_unshare_change (jump
, &SET_SRC (set
), new_rtx
, 0))
931 /* When (some) constants are not valid in a comparison, and there
932 are two registers to be replaced by constants before the entire
933 comparison can be folded into a constant, we need to keep
934 intermediate information in REG_EQUAL notes. For targets with
935 separate compare insns, such notes are added by try_replace_reg.
936 When we have a combined compare-and-branch instruction, however,
937 we need to attach a note to the branch itself to make this
938 optimization work. */
940 if (!rtx_equal_p (new_rtx
, note_src
))
941 set_unique_reg_note (jump
, REG_EQUAL
, copy_rtx (new_rtx
));
945 /* Remove REG_EQUAL note after simplification. */
947 remove_note (jump
, note
);
951 /* Delete the cc0 setter. */
952 if (setcc
!= NULL
&& CC0_P (SET_DEST (single_set (setcc
))))
956 global_const_prop_count
++;
957 if (dump_file
!= NULL
)
960 "GLOBAL CONST-PROP: Replacing reg %d in jump_insn %d with"
961 "constant ", REGNO (from
), INSN_UID (jump
));
962 print_rtl (dump_file
, src
);
963 fprintf (dump_file
, "\n");
965 purge_dead_edges (bb
);
967 /* If a conditional jump has been changed into unconditional jump, remove
968 the jump and make the edge fallthru - this is always called in
970 if (new_rtx
!= pc_rtx
&& simplejump_p (jump
))
975 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
976 if (e
->dest
!= EXIT_BLOCK_PTR
977 && BB_HEAD (e
->dest
) == JUMP_LABEL (jump
))
979 e
->flags
|= EDGE_FALLTHRU
;
988 /* Subroutine of cprop_insn that tries to propagate constants. FROM is what
989 we will try to replace, SRC is the constant we will try to substitute for
990 it and INSN is the instruction where this will be happening. */
993 constprop_register (rtx from
, rtx src
, rtx insn
)
997 /* Check for reg or cc0 setting instructions followed by
998 conditional branch instructions first. */
999 if ((sset
= single_set (insn
)) != NULL
1001 && any_condjump_p (NEXT_INSN (insn
)) && onlyjump_p (NEXT_INSN (insn
)))
1003 rtx dest
= SET_DEST (sset
);
1004 if ((REG_P (dest
) || CC0_P (dest
))
1005 && cprop_jump (BLOCK_FOR_INSN (insn
), insn
, NEXT_INSN (insn
),
1010 /* Handle normal insns next. */
1011 if (NONJUMP_INSN_P (insn
) && try_replace_reg (from
, src
, insn
))
1014 /* Try to propagate a CONST_INT into a conditional jump.
1015 We're pretty specific about what we will handle in this
1016 code, we can extend this as necessary over time.
1018 Right now the insn in question must look like
1019 (set (pc) (if_then_else ...)) */
1020 else if (any_condjump_p (insn
) && onlyjump_p (insn
))
1021 return cprop_jump (BLOCK_FOR_INSN (insn
), NULL
, insn
, from
, src
);
1025 /* Perform constant and copy propagation on INSN.
1026 Return nonzero if a change was made. */
1029 cprop_insn (rtx insn
)
1032 int changed
= 0, changed_this_round
;
1036 changed_this_round
= 0;
1038 note_uses (&PATTERN (insn
), find_used_regs
, NULL
);
1040 /* We may win even when propagating constants into notes. */
1041 note
= find_reg_equal_equiv_note (insn
);
1043 find_used_regs (&XEXP (note
, 0), NULL
);
1045 for (i
= 0; i
< reg_use_count
; i
++)
1047 rtx reg_used
= reg_use_table
[i
];
1048 unsigned int regno
= REGNO (reg_used
);
1052 /* If the register has already been set in this block, there's
1053 nothing we can do. */
1054 if (! reg_not_set_p (reg_used
, insn
))
1057 /* Find an assignment that sets reg_used and is available
1058 at the start of the block. */
1059 set
= find_avail_set (regno
, insn
);
1065 /* Constant propagation. */
1066 if (cprop_constant_p (src
))
1068 if (constprop_register (reg_used
, src
, insn
))
1070 changed_this_round
= changed
= 1;
1071 global_const_prop_count
++;
1072 if (dump_file
!= NULL
)
1075 "GLOBAL CONST-PROP: Replacing reg %d in ", regno
);
1076 fprintf (dump_file
, "insn %d with constant ",
1078 print_rtl (dump_file
, src
);
1079 fprintf (dump_file
, "\n");
1081 if (INSN_DELETED_P (insn
))
1085 else if (REG_P (src
)
1086 && REGNO (src
) >= FIRST_PSEUDO_REGISTER
1087 && REGNO (src
) != regno
)
1089 if (try_replace_reg (reg_used
, src
, insn
))
1091 changed_this_round
= changed
= 1;
1092 global_copy_prop_count
++;
1093 if (dump_file
!= NULL
)
1096 "GLOBAL COPY-PROP: Replacing reg %d in insn %d",
1097 regno
, INSN_UID (insn
));
1098 fprintf (dump_file
, " with reg %d\n", REGNO (src
));
1101 /* The original insn setting reg_used may or may not now be
1102 deletable. We leave the deletion to DCE. */
1103 /* FIXME: If it turns out that the insn isn't deletable,
1104 then we may have unnecessarily extended register lifetimes
1105 and made things worse. */
1109 /* If try_replace_reg simplified the insn, the regs found
1110 by find_used_regs may not be valid anymore. Start over. */
1111 if (changed_this_round
)
1115 if (changed
&& DEBUG_INSN_P (insn
))
1121 /* Like find_used_regs, but avoid recording uses that appear in
1122 input-output contexts such as zero_extract or pre_dec. This
1123 restricts the cases we consider to those for which local cprop
1124 can legitimately make replacements. */
1127 local_cprop_find_used_regs (rtx
*xptr
, void *data
)
1134 switch (GET_CODE (x
))
1138 case STRICT_LOW_PART
:
1147 /* Can only legitimately appear this early in the context of
1148 stack pushes for function arguments, but handle all of the
1149 codes nonetheless. */
1153 /* Setting a subreg of a register larger than word_mode leaves
1154 the non-written words unchanged. */
1155 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x
))) > BITS_PER_WORD
)
1163 find_used_regs (xptr
, data
);
1166 /* Try to perform local const/copy propagation on X in INSN. */
1169 do_local_cprop (rtx x
, rtx insn
)
1171 rtx newreg
= NULL
, newcnst
= NULL
;
1173 /* Rule out USE instructions and ASM statements as we don't want to
1174 change the hard registers mentioned. */
1176 && (REGNO (x
) >= FIRST_PSEUDO_REGISTER
1177 || (GET_CODE (PATTERN (insn
)) != USE
1178 && asm_noperands (PATTERN (insn
)) < 0)))
1180 cselib_val
*val
= cselib_lookup (x
, GET_MODE (x
), 0, VOIDmode
);
1181 struct elt_loc_list
*l
;
1185 for (l
= val
->locs
; l
; l
= l
->next
)
1187 rtx this_rtx
= l
->loc
;
1190 if (cprop_constant_p (this_rtx
))
1192 if (REG_P (this_rtx
) && REGNO (this_rtx
) >= FIRST_PSEUDO_REGISTER
1193 /* Don't copy propagate if it has attached REG_EQUIV note.
1194 At this point this only function parameters should have
1195 REG_EQUIV notes and if the argument slot is used somewhere
1196 explicitly, it means address of parameter has been taken,
1197 so we should not extend the lifetime of the pseudo. */
1198 && (!(note
= find_reg_note (l
->setting_insn
, REG_EQUIV
, NULL_RTX
))
1199 || ! MEM_P (XEXP (note
, 0))))
1202 if (newcnst
&& constprop_register (x
, newcnst
, insn
))
1204 if (dump_file
!= NULL
)
1206 fprintf (dump_file
, "LOCAL CONST-PROP: Replacing reg %d in ",
1208 fprintf (dump_file
, "insn %d with constant ",
1210 print_rtl (dump_file
, newcnst
);
1211 fprintf (dump_file
, "\n");
1213 local_const_prop_count
++;
1216 else if (newreg
&& newreg
!= x
&& try_replace_reg (x
, newreg
, insn
))
1218 if (dump_file
!= NULL
)
1221 "LOCAL COPY-PROP: Replacing reg %d in insn %d",
1222 REGNO (x
), INSN_UID (insn
));
1223 fprintf (dump_file
, " with reg %d\n", REGNO (newreg
));
1225 local_copy_prop_count
++;
1232 /* Do local const/copy propagation (i.e. within each basic block). */
1235 local_cprop_pass (void)
1239 bool changed
= false;
1245 FOR_BB_INSNS (bb
, insn
)
1249 rtx note
= find_reg_equal_equiv_note (insn
);
1253 note_uses (&PATTERN (insn
), local_cprop_find_used_regs
,
1256 local_cprop_find_used_regs (&XEXP (note
, 0), NULL
);
1258 for (i
= 0; i
< reg_use_count
; i
++)
1260 if (do_local_cprop (reg_use_table
[i
], insn
))
1262 if (!DEBUG_INSN_P (insn
))
1267 if (INSN_DELETED_P (insn
))
1270 while (i
< reg_use_count
);
1272 cselib_process_insn (insn
);
1275 /* Forget everything at the end of a basic block. */
1276 cselib_clear_table ();
1284 /* Similar to get_condition, only the resulting condition must be
1285 valid at JUMP, instead of at EARLIEST.
1287 This differs from noce_get_condition in ifcvt.c in that we prefer not to
1288 settle for the condition variable in the jump instruction being integral.
1289 We prefer to be able to record the value of a user variable, rather than
1290 the value of a temporary used in a condition. This could be solved by
1291 recording the value of *every* register scanned by canonicalize_condition,
1292 but this would require some code reorganization. */
1295 fis_get_condition (rtx jump
)
1297 return get_condition (jump
, NULL
, false, true);
1300 /* Check the comparison COND to see if we can safely form an implicit
1304 implicit_set_cond_p (const_rtx cond
)
1306 enum machine_mode mode
;
1309 /* COND must be either an EQ or NE comparison. */
1310 if (GET_CODE (cond
) != EQ
&& GET_CODE (cond
) != NE
)
1313 /* The first operand of COND must be a pseudo-reg. */
1314 if (! REG_P (XEXP (cond
, 0))
1315 || HARD_REGISTER_P (XEXP (cond
, 0)))
1318 /* The second operand of COND must be a suitable constant. */
1319 mode
= GET_MODE (XEXP (cond
, 0));
1320 cst
= XEXP (cond
, 1);
1322 /* We can't perform this optimization if either operand might be or might
1323 contain a signed zero. */
1324 if (HONOR_SIGNED_ZEROS (mode
))
1326 /* It is sufficient to check if CST is or contains a zero. We must
1327 handle float, complex, and vector. If any subpart is a zero, then
1328 the optimization can't be performed. */
1329 /* ??? The complex and vector checks are not implemented yet. We just
1330 always return zero for them. */
1331 if (GET_CODE (cst
) == CONST_DOUBLE
)
1334 REAL_VALUE_FROM_CONST_DOUBLE (d
, cst
);
1335 if (REAL_VALUES_EQUAL (d
, dconst0
))
1342 return cprop_constant_p (cst
);
1345 /* Find the implicit sets of a function. An "implicit set" is a constraint
1346 on the value of a variable, implied by a conditional jump. For example,
1347 following "if (x == 2)", the then branch may be optimized as though the
1348 conditional performed an "explicit set", in this example, "x = 2". This
1349 function records the set patterns that are implicit at the start of each
1352 If an implicit set is found but the set is implicit on a critical edge,
1353 this critical edge is split.
1355 Return true if the CFG was modified, false otherwise. */
1358 find_implicit_sets (void)
1360 basic_block bb
, dest
;
1362 unsigned int count
= 0;
1363 bool edges_split
= false;
1364 size_t implicit_sets_size
= last_basic_block
+ 10;
1366 implicit_sets
= XCNEWVEC (rtx
, implicit_sets_size
);
1370 /* Check for more than one successor. */
1371 if (EDGE_COUNT (bb
->succs
) <= 1)
1374 cond
= fis_get_condition (BB_END (bb
));
1376 /* If no condition is found or if it isn't of a suitable form,
1378 if (! cond
|| ! implicit_set_cond_p (cond
))
1381 dest
= GET_CODE (cond
) == EQ
1382 ? BRANCH_EDGE (bb
)->dest
: FALLTHRU_EDGE (bb
)->dest
;
1384 /* If DEST doesn't go anywhere, ignore it. */
1385 if (! dest
|| dest
== EXIT_BLOCK_PTR
)
1388 /* We have found a suitable implicit set. Try to record it now as
1389 a SET in DEST. If DEST has more than one predecessor, the edge
1390 between BB and DEST is a critical edge and we must split it,
1391 because we can only record one implicit set per DEST basic block. */
1392 if (! single_pred_p (dest
))
1394 dest
= split_edge (find_edge (bb
, dest
));
1398 if (implicit_sets_size
<= (size_t) dest
->index
)
1400 size_t old_implicit_sets_size
= implicit_sets_size
;
1401 implicit_sets_size
*= 2;
1402 implicit_sets
= XRESIZEVEC (rtx
, implicit_sets
, implicit_sets_size
);
1403 memset (implicit_sets
+ old_implicit_sets_size
, 0,
1404 (implicit_sets_size
- old_implicit_sets_size
) * sizeof (rtx
));
1407 new_rtx
= gen_rtx_SET (VOIDmode
, XEXP (cond
, 0),
1409 implicit_sets
[dest
->index
] = new_rtx
;
1412 fprintf(dump_file
, "Implicit set of reg %d in ",
1413 REGNO (XEXP (cond
, 0)));
1414 fprintf(dump_file
, "basic block %d\n", dest
->index
);
1420 fprintf (dump_file
, "Found %d implicit sets\n", count
);
1422 /* Confess our sins. */
1426 /* Bypass conditional jumps. */
1428 /* The value of last_basic_block at the beginning of the jump_bypass
1429 pass. The use of redirect_edge_and_branch_force may introduce new
1430 basic blocks, but the data flow analysis is only valid for basic
1431 block indices less than bypass_last_basic_block. */
1433 static int bypass_last_basic_block
;
1435 /* Find a set of REGNO to a constant that is available at the end of basic
1436 block BB. Return NULL if no such set is found. Based heavily upon
1439 static struct expr
*
1440 find_bypass_set (int regno
, int bb
)
1442 struct expr
*result
= 0;
1447 struct expr
*set
= lookup_set (regno
, &set_hash_table
);
1451 if (TEST_BIT (cprop_avout
[bb
], set
->bitmap_index
))
1453 set
= next_set (regno
, set
);
1460 if (cprop_constant_p (src
))
1466 regno
= REGNO (src
);
1471 /* Subroutine of bypass_block that checks whether a pseudo is killed by
1472 any of the instructions inserted on an edge. Jump bypassing places
1473 condition code setters on CFG edges using insert_insn_on_edge. This
1474 function is required to check that our data flow analysis is still
1475 valid prior to commit_edge_insertions. */
1478 reg_killed_on_edge (const_rtx reg
, const_edge e
)
1482 for (insn
= e
->insns
.r
; insn
; insn
= NEXT_INSN (insn
))
1483 if (INSN_P (insn
) && reg_set_p (reg
, insn
))
1489 /* Subroutine of bypass_conditional_jumps that attempts to bypass the given
1490 basic block BB which has more than one predecessor. If not NULL, SETCC
1491 is the first instruction of BB, which is immediately followed by JUMP_INSN
1492 JUMP. Otherwise, SETCC is NULL, and JUMP is the first insn of BB.
1493 Returns nonzero if a change was made.
1495 During the jump bypassing pass, we may place copies of SETCC instructions
1496 on CFG edges. The following routine must be careful to pay attention to
1497 these inserted insns when performing its transformations. */
1500 bypass_block (basic_block bb
, rtx setcc
, rtx jump
)
1505 int may_be_loop_header
;
1510 insn
= (setcc
!= NULL
) ? setcc
: jump
;
1512 /* Determine set of register uses in INSN. */
1514 note_uses (&PATTERN (insn
), find_used_regs
, NULL
);
1515 note
= find_reg_equal_equiv_note (insn
);
1517 find_used_regs (&XEXP (note
, 0), NULL
);
1519 may_be_loop_header
= false;
1520 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
1521 if (e
->flags
& EDGE_DFS_BACK
)
1523 may_be_loop_header
= true;
1528 for (ei
= ei_start (bb
->preds
); (e
= ei_safe_edge (ei
)); )
1532 if (e
->flags
& EDGE_COMPLEX
)
1538 /* We can't redirect edges from new basic blocks. */
1539 if (e
->src
->index
>= bypass_last_basic_block
)
1545 /* The irreducible loops created by redirecting of edges entering the
1546 loop from outside would decrease effectiveness of some of the
1547 following optimizations, so prevent this. */
1548 if (may_be_loop_header
1549 && !(e
->flags
& EDGE_DFS_BACK
))
1555 for (i
= 0; i
< reg_use_count
; i
++)
1557 rtx reg_used
= reg_use_table
[i
];
1558 unsigned int regno
= REGNO (reg_used
);
1559 basic_block dest
, old_dest
;
1563 set
= find_bypass_set (regno
, e
->src
->index
);
1568 /* Check the data flow is valid after edge insertions. */
1569 if (e
->insns
.r
&& reg_killed_on_edge (reg_used
, e
))
1572 src
= SET_SRC (pc_set (jump
));
1575 src
= simplify_replace_rtx (src
,
1576 SET_DEST (PATTERN (setcc
)),
1577 SET_SRC (PATTERN (setcc
)));
1579 new_rtx
= simplify_replace_rtx (src
, reg_used
, set
->src
);
1581 /* Jump bypassing may have already placed instructions on
1582 edges of the CFG. We can't bypass an outgoing edge that
1583 has instructions associated with it, as these insns won't
1584 get executed if the incoming edge is redirected. */
1585 if (new_rtx
== pc_rtx
)
1587 edest
= FALLTHRU_EDGE (bb
);
1588 dest
= edest
->insns
.r
? NULL
: edest
->dest
;
1590 else if (GET_CODE (new_rtx
) == LABEL_REF
)
1592 dest
= BLOCK_FOR_INSN (XEXP (new_rtx
, 0));
1593 /* Don't bypass edges containing instructions. */
1594 edest
= find_edge (bb
, dest
);
1595 if (edest
&& edest
->insns
.r
)
1601 /* Avoid unification of the edge with other edges from original
1602 branch. We would end up emitting the instruction on "both"
1604 if (dest
&& setcc
&& !CC0_P (SET_DEST (PATTERN (setcc
)))
1605 && find_edge (e
->src
, dest
))
1611 && dest
!= EXIT_BLOCK_PTR
)
1613 redirect_edge_and_branch_force (e
, dest
);
1615 /* Copy the register setter to the redirected edge.
1616 Don't copy CC0 setters, as CC0 is dead after jump. */
1619 rtx pat
= PATTERN (setcc
);
1620 if (!CC0_P (SET_DEST (pat
)))
1621 insert_insn_on_edge (copy_insn (pat
), e
);
1624 if (dump_file
!= NULL
)
1626 fprintf (dump_file
, "JUMP-BYPASS: Proved reg %d "
1627 "in jump_insn %d equals constant ",
1628 regno
, INSN_UID (jump
));
1629 print_rtl (dump_file
, set
->src
);
1630 fprintf (dump_file
, "\nBypass edge from %d->%d to %d\n",
1631 e
->src
->index
, old_dest
->index
, dest
->index
);
1644 /* Find basic blocks with more than one predecessor that only contain a
1645 single conditional jump. If the result of the comparison is known at
1646 compile-time from any incoming edge, redirect that edge to the
1647 appropriate target. Return nonzero if a change was made.
1649 This function is now mis-named, because we also handle indirect jumps. */
1652 bypass_conditional_jumps (void)
1660 /* Note we start at block 1. */
1661 if (ENTRY_BLOCK_PTR
->next_bb
== EXIT_BLOCK_PTR
)
1664 bypass_last_basic_block
= last_basic_block
;
1665 mark_dfs_back_edges ();
1668 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
->next_bb
->next_bb
,
1669 EXIT_BLOCK_PTR
, next_bb
)
1671 /* Check for more than one predecessor. */
1672 if (!single_pred_p (bb
))
1675 FOR_BB_INSNS (bb
, insn
)
1676 if (DEBUG_INSN_P (insn
))
1678 else if (NONJUMP_INSN_P (insn
))
1682 if (GET_CODE (PATTERN (insn
)) != SET
)
1685 dest
= SET_DEST (PATTERN (insn
));
1686 if (REG_P (dest
) || CC0_P (dest
))
1691 else if (JUMP_P (insn
))
1693 if ((any_condjump_p (insn
) || computed_jump_p (insn
))
1694 && onlyjump_p (insn
))
1695 changed
|= bypass_block (bb
, setcc
, insn
);
1698 else if (INSN_P (insn
))
1703 /* If we bypassed any register setting insns, we inserted a
1704 copy on the redirected edge. These need to be committed. */
1706 commit_edge_insertions ();
1711 /* Return true if the graph is too expensive to optimize. PASS is the
1712 optimization about to be performed. */
1715 is_too_expensive (const char *pass
)
1717 /* Trying to perform global optimizations on flow graphs which have
1718 a high connectivity will take a long time and is unlikely to be
1719 particularly useful.
1721 In normal circumstances a cfg should have about twice as many
1722 edges as blocks. But we do not want to punish small functions
1723 which have a couple switch statements. Rather than simply
1724 threshold the number of blocks, uses something with a more
1725 graceful degradation. */
1726 if (n_edges
> 20000 + n_basic_blocks
* 4)
1728 warning (OPT_Wdisabled_optimization
,
1729 "%s: %d basic blocks and %d edges/basic block",
1730 pass
, n_basic_blocks
, n_edges
/ n_basic_blocks
);
1735 /* If allocating memory for the cprop bitmap would take up too much
1736 storage it's better just to disable the optimization. */
1738 * SBITMAP_SET_SIZE (max_reg_num ())
1739 * sizeof (SBITMAP_ELT_TYPE
)) > MAX_GCSE_MEMORY
)
1741 warning (OPT_Wdisabled_optimization
,
1742 "%s: %d basic blocks and %d registers",
1743 pass
, n_basic_blocks
, max_reg_num ());
1751 /* Main function for the CPROP pass. */
1754 one_cprop_pass (void)
1759 /* Return if there's nothing to do, or it is too expensive. */
1760 if (n_basic_blocks
<= NUM_FIXED_BLOCKS
+ 1
1761 || is_too_expensive (_ ("const/copy propagation disabled")))
1764 global_const_prop_count
= local_const_prop_count
= 0;
1765 global_copy_prop_count
= local_copy_prop_count
= 0;
1768 gcc_obstack_init (&cprop_obstack
);
1770 /* Do a local const/copy propagation pass first. The global pass
1771 only handles global opportunities.
1772 If the local pass changes something, remove any unreachable blocks
1773 because the CPROP global dataflow analysis may get into infinite
1774 loops for CFGs with unreachable blocks.
1776 FIXME: This local pass should not be necessary after CSE (but for
1777 some reason it still is). It is also (proven) not necessary
1778 to run the local pass right after FWPWOP.
1780 FIXME: The global analysis would not get into infinite loops if it
1781 would use the DF solver (via df_simple_dataflow) instead of
1782 the solver implemented in this file. */
1783 changed
|= local_cprop_pass ();
1785 delete_unreachable_blocks ();
1787 /* Determine implicit sets. This may change the CFG (split critical
1788 edges if that exposes an implicit set).
1789 Note that find_implicit_sets() does not rely on up-to-date DF caches
1790 so that we do not have to re-run df_analyze() even if local CPROP
1792 ??? This could run earlier so that any uncovered implicit sets
1793 sets could be exploited in local_cprop_pass() also. Later. */
1794 changed
|= find_implicit_sets ();
1796 /* If local_cprop_pass() or find_implicit_sets() changed something,
1797 run df_analyze() to bring all insn caches up-to-date, and to take
1798 new basic blocks from edge splitting on the DF radar.
1799 NB: This also runs the fast DCE pass, because execute_rtl_cprop
1800 sets DF_LR_RUN_DCE. */
1804 /* Initialize implicit_set_indexes array. */
1805 implicit_set_indexes
= XNEWVEC (int, last_basic_block
);
1806 for (i
= 0; i
< last_basic_block
; i
++)
1807 implicit_set_indexes
[i
] = -1;
1809 alloc_hash_table (&set_hash_table
);
1810 compute_hash_table (&set_hash_table
);
1812 /* Free implicit_sets before peak usage. */
1813 free (implicit_sets
);
1814 implicit_sets
= NULL
;
1817 dump_hash_table (dump_file
, "SET", &set_hash_table
);
1818 if (set_hash_table
.n_elems
> 0)
1823 alloc_cprop_mem (last_basic_block
, set_hash_table
.n_elems
);
1824 compute_cprop_data ();
1826 free (implicit_set_indexes
);
1827 implicit_set_indexes
= NULL
;
1829 /* Allocate vars to track sets of regs. */
1830 reg_set_bitmap
= ALLOC_REG_SET (NULL
);
1832 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
->next_bb
->next_bb
, EXIT_BLOCK_PTR
,
1835 /* Reset tables used to keep track of what's still valid [since
1836 the start of the block]. */
1837 reset_opr_set_tables ();
1839 FOR_BB_INSNS (bb
, insn
)
1842 changed
|= cprop_insn (insn
);
1844 /* Keep track of everything modified by this insn. */
1845 /* ??? Need to be careful w.r.t. mods done to INSN.
1846 Don't call mark_oprs_set if we turned the
1847 insn into a NOTE, or deleted the insn. */
1848 if (! NOTE_P (insn
) && ! INSN_DELETED_P (insn
))
1849 mark_oprs_set (insn
);
1853 changed
|= bypass_conditional_jumps ();
1855 FREE_REG_SET (reg_set_bitmap
);
1860 free (implicit_set_indexes
);
1861 implicit_set_indexes
= NULL
;
1864 free_hash_table (&set_hash_table
);
1865 obstack_free (&cprop_obstack
, NULL
);
1869 fprintf (dump_file
, "CPROP of %s, %d basic blocks, %d bytes needed, ",
1870 current_function_name (), n_basic_blocks
, bytes_used
);
1871 fprintf (dump_file
, "%d local const props, %d local copy props, ",
1872 local_const_prop_count
, local_copy_prop_count
);
1873 fprintf (dump_file
, "%d global const props, %d global copy props\n\n",
1874 global_const_prop_count
, global_copy_prop_count
);
1880 /* All the passes implemented in this file. Each pass has its
1881 own gate and execute function, and at the end of the file a
1882 pass definition for passes.c.
1884 We do not construct an accurate cfg in functions which call
1885 setjmp, so none of these passes runs if the function calls
1887 FIXME: Should just handle setjmp via REG_SETJMP notes. */
1890 gate_rtl_cprop (void)
1892 return optimize
> 0 && flag_gcse
1893 && !cfun
->calls_setjmp
1898 execute_rtl_cprop (void)
1901 delete_unreachable_blocks ();
1902 df_set_flags (DF_LR_RUN_DCE
);
1904 changed
= one_cprop_pass ();
1905 flag_rerun_cse_after_global_opts
|= changed
;
1911 struct rtl_opt_pass pass_rtl_cprop
=
1916 gate_rtl_cprop
, /* gate */
1917 execute_rtl_cprop
, /* execute */
1920 0, /* static_pass_number */
1921 TV_CPROP
, /* tv_id */
1922 PROP_cfglayout
, /* properties_required */
1923 0, /* properties_provided */
1924 0, /* properties_destroyed */
1925 0, /* todo_flags_start */
1926 TODO_df_finish
| TODO_verify_rtl_sharing
|
1927 TODO_verify_flow
| TODO_ggc_collect
/* todo_flags_finish */