Make more use of paradoxical_subreg_p
[official-gcc.git] / gcc / rtl.h
bloba2c339e7e2d5471a10910c77acaceeb3dc966aaf
1 /* Register Transfer Language (RTL) definitions for GCC
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #ifndef GCC_RTL_H
21 #define GCC_RTL_H
23 /* This file is occasionally included by generator files which expect
24 machmode.h and other files to exist and would not normally have been
25 included by coretypes.h. */
26 #ifdef GENERATOR_FILE
27 #include "real.h"
28 #include "fixed-value.h"
29 #include "statistics.h"
30 #include "vec.h"
31 #include "hash-table.h"
32 #include "hash-set.h"
33 #include "input.h"
34 #include "is-a.h"
35 #endif /* GENERATOR_FILE */
37 #include "hard-reg-set.h"
39 /* Value used by some passes to "recognize" noop moves as valid
40 instructions. */
41 #define NOOP_MOVE_INSN_CODE INT_MAX
43 /* Register Transfer Language EXPRESSIONS CODES */
45 #define RTX_CODE enum rtx_code
46 enum rtx_code {
48 #define DEF_RTL_EXPR(ENUM, NAME, FORMAT, CLASS) ENUM ,
49 #include "rtl.def" /* rtl expressions are documented here */
50 #undef DEF_RTL_EXPR
52 LAST_AND_UNUSED_RTX_CODE}; /* A convenient way to get a value for
53 NUM_RTX_CODE.
54 Assumes default enum value assignment. */
56 /* The cast here, saves many elsewhere. */
57 #define NUM_RTX_CODE ((int) LAST_AND_UNUSED_RTX_CODE)
59 /* Similar, but since generator files get more entries... */
60 #ifdef GENERATOR_FILE
61 # define NON_GENERATOR_NUM_RTX_CODE ((int) MATCH_OPERAND)
62 #endif
64 /* Register Transfer Language EXPRESSIONS CODE CLASSES */
66 enum rtx_class {
67 /* We check bit 0-1 of some rtx class codes in the predicates below. */
69 /* Bit 0 = comparison if 0, arithmetic is 1
70 Bit 1 = 1 if commutative. */
71 RTX_COMPARE, /* 0 */
72 RTX_COMM_COMPARE,
73 RTX_BIN_ARITH,
74 RTX_COMM_ARITH,
76 /* Must follow the four preceding values. */
77 RTX_UNARY, /* 4 */
79 RTX_EXTRA,
80 RTX_MATCH,
81 RTX_INSN,
83 /* Bit 0 = 1 if constant. */
84 RTX_OBJ, /* 8 */
85 RTX_CONST_OBJ,
87 RTX_TERNARY,
88 RTX_BITFIELD_OPS,
89 RTX_AUTOINC
92 #define RTX_OBJ_MASK (~1)
93 #define RTX_OBJ_RESULT (RTX_OBJ & RTX_OBJ_MASK)
94 #define RTX_COMPARE_MASK (~1)
95 #define RTX_COMPARE_RESULT (RTX_COMPARE & RTX_COMPARE_MASK)
96 #define RTX_ARITHMETIC_MASK (~1)
97 #define RTX_ARITHMETIC_RESULT (RTX_COMM_ARITH & RTX_ARITHMETIC_MASK)
98 #define RTX_BINARY_MASK (~3)
99 #define RTX_BINARY_RESULT (RTX_COMPARE & RTX_BINARY_MASK)
100 #define RTX_COMMUTATIVE_MASK (~2)
101 #define RTX_COMMUTATIVE_RESULT (RTX_COMM_COMPARE & RTX_COMMUTATIVE_MASK)
102 #define RTX_NON_COMMUTATIVE_RESULT (RTX_COMPARE & RTX_COMMUTATIVE_MASK)
104 extern const unsigned char rtx_length[NUM_RTX_CODE];
105 #define GET_RTX_LENGTH(CODE) (rtx_length[(int) (CODE)])
107 extern const char * const rtx_name[NUM_RTX_CODE];
108 #define GET_RTX_NAME(CODE) (rtx_name[(int) (CODE)])
110 extern const char * const rtx_format[NUM_RTX_CODE];
111 #define GET_RTX_FORMAT(CODE) (rtx_format[(int) (CODE)])
113 extern const enum rtx_class rtx_class[NUM_RTX_CODE];
114 #define GET_RTX_CLASS(CODE) (rtx_class[(int) (CODE)])
116 /* True if CODE is part of the insn chain (i.e. has INSN_UID, PREV_INSN
117 and NEXT_INSN fields). */
118 #define INSN_CHAIN_CODE_P(CODE) IN_RANGE (CODE, DEBUG_INSN, NOTE)
120 extern const unsigned char rtx_code_size[NUM_RTX_CODE];
121 extern const unsigned char rtx_next[NUM_RTX_CODE];
123 /* The flags and bitfields of an ADDR_DIFF_VEC. BASE is the base label
124 relative to which the offsets are calculated, as explained in rtl.def. */
125 struct addr_diff_vec_flags
127 /* Set at the start of shorten_branches - ONLY WHEN OPTIMIZING - : */
128 unsigned min_align: 8;
129 /* Flags: */
130 unsigned base_after_vec: 1; /* BASE is after the ADDR_DIFF_VEC. */
131 unsigned min_after_vec: 1; /* minimum address target label is
132 after the ADDR_DIFF_VEC. */
133 unsigned max_after_vec: 1; /* maximum address target label is
134 after the ADDR_DIFF_VEC. */
135 unsigned min_after_base: 1; /* minimum address target label is
136 after BASE. */
137 unsigned max_after_base: 1; /* maximum address target label is
138 after BASE. */
139 /* Set by the actual branch shortening process - ONLY WHEN OPTIMIZING - : */
140 unsigned offset_unsigned: 1; /* offsets have to be treated as unsigned. */
141 unsigned : 2;
142 unsigned scale : 8;
145 /* Structure used to describe the attributes of a MEM. These are hashed
146 so MEMs that the same attributes share a data structure. This means
147 they cannot be modified in place. */
148 struct GTY(()) mem_attrs
150 /* The expression that the MEM accesses, or null if not known.
151 This expression might be larger than the memory reference itself.
152 (In other words, the MEM might access only part of the object.) */
153 tree expr;
155 /* The offset of the memory reference from the start of EXPR.
156 Only valid if OFFSET_KNOWN_P. */
157 HOST_WIDE_INT offset;
159 /* The size of the memory reference in bytes. Only valid if
160 SIZE_KNOWN_P. */
161 HOST_WIDE_INT size;
163 /* The alias set of the memory reference. */
164 alias_set_type alias;
166 /* The alignment of the reference in bits. Always a multiple of
167 BITS_PER_UNIT. Note that EXPR may have a stricter alignment
168 than the memory reference itself. */
169 unsigned int align;
171 /* The address space that the memory reference uses. */
172 unsigned char addrspace;
174 /* True if OFFSET is known. */
175 bool offset_known_p;
177 /* True if SIZE is known. */
178 bool size_known_p;
181 /* Structure used to describe the attributes of a REG in similar way as
182 mem_attrs does for MEM above. Note that the OFFSET field is calculated
183 in the same way as for mem_attrs, rather than in the same way as a
184 SUBREG_BYTE. For example, if a big-endian target stores a byte
185 object in the low part of a 4-byte register, the OFFSET field
186 will be -3 rather than 0. */
188 struct GTY((for_user)) reg_attrs {
189 tree decl; /* decl corresponding to REG. */
190 HOST_WIDE_INT offset; /* Offset from start of DECL. */
193 /* Common union for an element of an rtx. */
195 union rtunion
197 int rt_int;
198 unsigned int rt_uint;
199 const char *rt_str;
200 rtx rt_rtx;
201 rtvec rt_rtvec;
202 machine_mode rt_type;
203 addr_diff_vec_flags rt_addr_diff_vec_flags;
204 struct cselib_val *rt_cselib;
205 tree rt_tree;
206 basic_block rt_bb;
207 mem_attrs *rt_mem;
208 struct constant_descriptor_rtx *rt_constant;
209 struct dw_cfi_node *rt_cfi;
212 /* Describes the properties of a REG. */
213 struct GTY(()) reg_info {
214 /* The value of REGNO. */
215 unsigned int regno;
217 /* The value of REG_NREGS. */
218 unsigned int nregs : 8;
219 unsigned int unused : 24;
221 /* The value of REG_ATTRS. */
222 reg_attrs *attrs;
225 /* This structure remembers the position of a SYMBOL_REF within an
226 object_block structure. A SYMBOL_REF only provides this information
227 if SYMBOL_REF_HAS_BLOCK_INFO_P is true. */
228 struct GTY(()) block_symbol {
229 /* The usual SYMBOL_REF fields. */
230 rtunion GTY ((skip)) fld[2];
232 /* The block that contains this object. */
233 struct object_block *block;
235 /* The offset of this object from the start of its block. It is negative
236 if the symbol has not yet been assigned an offset. */
237 HOST_WIDE_INT offset;
240 /* Describes a group of objects that are to be placed together in such
241 a way that their relative positions are known. */
242 struct GTY((for_user)) object_block {
243 /* The section in which these objects should be placed. */
244 section *sect;
246 /* The alignment of the first object, measured in bits. */
247 unsigned int alignment;
249 /* The total size of the objects, measured in bytes. */
250 HOST_WIDE_INT size;
252 /* The SYMBOL_REFs for each object. The vector is sorted in
253 order of increasing offset and the following conditions will
254 hold for each element X:
256 SYMBOL_REF_HAS_BLOCK_INFO_P (X)
257 !SYMBOL_REF_ANCHOR_P (X)
258 SYMBOL_REF_BLOCK (X) == [address of this structure]
259 SYMBOL_REF_BLOCK_OFFSET (X) >= 0. */
260 vec<rtx, va_gc> *objects;
262 /* All the anchor SYMBOL_REFs used to address these objects, sorted
263 in order of increasing offset, and then increasing TLS model.
264 The following conditions will hold for each element X in this vector:
266 SYMBOL_REF_HAS_BLOCK_INFO_P (X)
267 SYMBOL_REF_ANCHOR_P (X)
268 SYMBOL_REF_BLOCK (X) == [address of this structure]
269 SYMBOL_REF_BLOCK_OFFSET (X) >= 0. */
270 vec<rtx, va_gc> *anchors;
273 struct GTY((variable_size)) hwivec_def {
274 HOST_WIDE_INT elem[1];
277 /* Number of elements of the HWIVEC if RTX is a CONST_WIDE_INT. */
278 #define CWI_GET_NUM_ELEM(RTX) \
279 ((int)RTL_FLAG_CHECK1("CWI_GET_NUM_ELEM", (RTX), CONST_WIDE_INT)->u2.num_elem)
280 #define CWI_PUT_NUM_ELEM(RTX, NUM) \
281 (RTL_FLAG_CHECK1("CWI_PUT_NUM_ELEM", (RTX), CONST_WIDE_INT)->u2.num_elem = (NUM))
283 /* RTL expression ("rtx"). */
285 /* The GTY "desc" and "tag" options below are a kludge: we need a desc
286 field for gengtype to recognize that inheritance is occurring,
287 so that all subclasses are redirected to the traversal hook for the
288 base class.
289 However, all of the fields are in the base class, and special-casing
290 is at work. Hence we use desc and tag of 0, generating a switch
291 statement of the form:
292 switch (0)
294 case 0: // all the work happens here
296 in order to work with the existing special-casing in gengtype. */
298 struct GTY((desc("0"), tag("0"),
299 chain_next ("RTX_NEXT (&%h)"),
300 chain_prev ("RTX_PREV (&%h)"))) rtx_def {
301 /* The kind of expression this is. */
302 ENUM_BITFIELD(rtx_code) code: 16;
304 /* The kind of value the expression has. */
305 ENUM_BITFIELD(machine_mode) mode : 8;
307 /* 1 in a MEM if we should keep the alias set for this mem unchanged
308 when we access a component.
309 1 in a JUMP_INSN if it is a crossing jump.
310 1 in a CALL_INSN if it is a sibling call.
311 1 in a SET that is for a return.
312 In a CODE_LABEL, part of the two-bit alternate entry field.
313 1 in a CONCAT is VAL_EXPR_IS_COPIED in var-tracking.c.
314 1 in a VALUE is SP_BASED_VALUE_P in cselib.c.
315 1 in a SUBREG generated by LRA for reload insns.
316 1 in a REG if this is a static chain register.
317 1 in a CALL for calls instrumented by Pointer Bounds Checker.
318 Dumped as "/j" in RTL dumps. */
319 unsigned int jump : 1;
320 /* In a CODE_LABEL, part of the two-bit alternate entry field.
321 1 in a MEM if it cannot trap.
322 1 in a CALL_INSN logically equivalent to
323 ECF_LOOPING_CONST_OR_PURE and DECL_LOOPING_CONST_OR_PURE_P.
324 Dumped as "/c" in RTL dumps. */
325 unsigned int call : 1;
326 /* 1 in a REG, MEM, or CONCAT if the value is set at most once, anywhere.
327 1 in a SUBREG used for SUBREG_PROMOTED_UNSIGNED_P.
328 1 in a SYMBOL_REF if it addresses something in the per-function
329 constants pool.
330 1 in a CALL_INSN logically equivalent to ECF_CONST and TREE_READONLY.
331 1 in a NOTE, or EXPR_LIST for a const call.
332 1 in a JUMP_INSN of an annulling branch.
333 1 in a CONCAT is VAL_EXPR_IS_CLOBBERED in var-tracking.c.
334 1 in a preserved VALUE is PRESERVED_VALUE_P in cselib.c.
335 1 in a clobber temporarily created for LRA.
336 Dumped as "/u" in RTL dumps. */
337 unsigned int unchanging : 1;
338 /* 1 in a MEM or ASM_OPERANDS expression if the memory reference is volatile.
339 1 in an INSN, CALL_INSN, JUMP_INSN, CODE_LABEL, BARRIER, or NOTE
340 if it has been deleted.
341 1 in a REG expression if corresponds to a variable declared by the user,
342 0 for an internally generated temporary.
343 1 in a SUBREG used for SUBREG_PROMOTED_UNSIGNED_P.
344 1 in a LABEL_REF, REG_LABEL_TARGET or REG_LABEL_OPERAND note for a
345 non-local label.
346 In a SYMBOL_REF, this flag is used for machine-specific purposes.
347 In a PREFETCH, this flag indicates that it should be considered a
348 scheduling barrier.
349 1 in a CONCAT is VAL_NEEDS_RESOLUTION in var-tracking.c.
350 Dumped as "/v" in RTL dumps. */
351 unsigned int volatil : 1;
352 /* 1 in a REG if the register is used only in exit code a loop.
353 1 in a SUBREG expression if was generated from a variable with a
354 promoted mode.
355 1 in a CODE_LABEL if the label is used for nonlocal gotos
356 and must not be deleted even if its count is zero.
357 1 in an INSN, JUMP_INSN or CALL_INSN if this insn must be scheduled
358 together with the preceding insn. Valid only within sched.
359 1 in an INSN, JUMP_INSN, or CALL_INSN if insn is in a delay slot and
360 from the target of a branch. Valid from reorg until end of compilation;
361 cleared before used.
363 The name of the field is historical. It used to be used in MEMs
364 to record whether the MEM accessed part of a structure.
365 Dumped as "/s" in RTL dumps. */
366 unsigned int in_struct : 1;
367 /* At the end of RTL generation, 1 if this rtx is used. This is used for
368 copying shared structure. See `unshare_all_rtl'.
369 In a REG, this is not needed for that purpose, and used instead
370 in `leaf_renumber_regs_insn'.
371 1 in a SYMBOL_REF, means that emit_library_call
372 has used it as the function.
373 1 in a CONCAT is VAL_HOLDS_TRACK_EXPR in var-tracking.c.
374 1 in a VALUE or DEBUG_EXPR is VALUE_RECURSED_INTO in var-tracking.c. */
375 unsigned int used : 1;
376 /* 1 in an INSN or a SET if this rtx is related to the call frame,
377 either changing how we compute the frame address or saving and
378 restoring registers in the prologue and epilogue.
379 1 in a REG or MEM if it is a pointer.
380 1 in a SYMBOL_REF if it addresses something in the per-function
381 constant string pool.
382 1 in a VALUE is VALUE_CHANGED in var-tracking.c.
383 Dumped as "/f" in RTL dumps. */
384 unsigned frame_related : 1;
385 /* 1 in a REG or PARALLEL that is the current function's return value.
386 1 in a SYMBOL_REF for a weak symbol.
387 1 in a CALL_INSN logically equivalent to ECF_PURE and DECL_PURE_P.
388 1 in a CONCAT is VAL_EXPR_HAS_REVERSE in var-tracking.c.
389 1 in a VALUE or DEBUG_EXPR is NO_LOC_P in var-tracking.c.
390 Dumped as "/i" in RTL dumps. */
391 unsigned return_val : 1;
393 union {
394 /* The final union field is aligned to 64 bits on LP64 hosts,
395 giving a 32-bit gap after the fields above. We optimize the
396 layout for that case and use the gap for extra code-specific
397 information. */
399 /* The ORIGINAL_REGNO of a REG. */
400 unsigned int original_regno;
402 /* The INSN_UID of an RTX_INSN-class code. */
403 int insn_uid;
405 /* The SYMBOL_REF_FLAGS of a SYMBOL_REF. */
406 unsigned int symbol_ref_flags;
408 /* The PAT_VAR_LOCATION_STATUS of a VAR_LOCATION. */
409 enum var_init_status var_location_status;
411 /* In a CONST_WIDE_INT (aka hwivec_def), this is the number of
412 HOST_WIDE_INTs in the hwivec_def. */
413 unsigned int num_elem;
414 } GTY ((skip)) u2;
416 /* The first element of the operands of this rtx.
417 The number of operands and their types are controlled
418 by the `code' field, according to rtl.def. */
419 union u {
420 rtunion fld[1];
421 HOST_WIDE_INT hwint[1];
422 struct reg_info reg;
423 struct block_symbol block_sym;
424 struct real_value rv;
425 struct fixed_value fv;
426 struct hwivec_def hwiv;
427 } GTY ((special ("rtx_def"), desc ("GET_CODE (&%0)"))) u;
430 /* A node for constructing singly-linked lists of rtx. */
432 class GTY(()) rtx_expr_list : public rtx_def
434 /* No extra fields, but adds invariant: (GET_CODE (X) == EXPR_LIST). */
436 public:
437 /* Get next in list. */
438 rtx_expr_list *next () const;
440 /* Get at the underlying rtx. */
441 rtx element () const;
444 template <>
445 template <>
446 inline bool
447 is_a_helper <rtx_expr_list *>::test (rtx rt)
449 return rt->code == EXPR_LIST;
452 class GTY(()) rtx_insn_list : public rtx_def
454 /* No extra fields, but adds invariant: (GET_CODE (X) == INSN_LIST).
456 This is an instance of:
458 DEF_RTL_EXPR(INSN_LIST, "insn_list", "ue", RTX_EXTRA)
460 i.e. a node for constructing singly-linked lists of rtx_insn *, where
461 the list is "external" to the insn (as opposed to the doubly-linked
462 list embedded within rtx_insn itself). */
464 public:
465 /* Get next in list. */
466 rtx_insn_list *next () const;
468 /* Get at the underlying instruction. */
469 rtx_insn *insn () const;
473 template <>
474 template <>
475 inline bool
476 is_a_helper <rtx_insn_list *>::test (rtx rt)
478 return rt->code == INSN_LIST;
481 /* A node with invariant GET_CODE (X) == SEQUENCE i.e. a vector of rtx,
482 typically (but not always) of rtx_insn *, used in the late passes. */
484 class GTY(()) rtx_sequence : public rtx_def
486 /* No extra fields, but adds invariant: (GET_CODE (X) == SEQUENCE). */
488 public:
489 /* Get number of elements in sequence. */
490 int len () const;
492 /* Get i-th element of the sequence. */
493 rtx element (int index) const;
495 /* Get i-th element of the sequence, with a checked cast to
496 rtx_insn *. */
497 rtx_insn *insn (int index) const;
500 template <>
501 template <>
502 inline bool
503 is_a_helper <rtx_sequence *>::test (rtx rt)
505 return rt->code == SEQUENCE;
508 template <>
509 template <>
510 inline bool
511 is_a_helper <const rtx_sequence *>::test (const_rtx rt)
513 return rt->code == SEQUENCE;
516 class GTY(()) rtx_insn : public rtx_def
518 public:
519 /* No extra fields, but adds the invariant:
521 (INSN_P (X)
522 || NOTE_P (X)
523 || JUMP_TABLE_DATA_P (X)
524 || BARRIER_P (X)
525 || LABEL_P (X))
527 i.e. that we must be able to use the following:
528 INSN_UID ()
529 NEXT_INSN ()
530 PREV_INSN ()
531 i.e. we have an rtx that has an INSN_UID field and can be part of
532 a linked list of insns.
535 /* Returns true if this insn has been deleted. */
537 bool deleted () const { return volatil; }
539 /* Mark this insn as deleted. */
541 void set_deleted () { volatil = true; }
543 /* Mark this insn as not deleted. */
545 void set_undeleted () { volatil = false; }
548 /* Subclasses of rtx_insn. */
550 class GTY(()) rtx_debug_insn : public rtx_insn
552 /* No extra fields, but adds the invariant:
553 DEBUG_INSN_P (X) aka (GET_CODE (X) == DEBUG_INSN)
554 i.e. an annotation for tracking variable assignments.
556 This is an instance of:
557 DEF_RTL_EXPR(DEBUG_INSN, "debug_insn", "uuBeiie", RTX_INSN)
558 from rtl.def. */
561 class GTY(()) rtx_nonjump_insn : public rtx_insn
563 /* No extra fields, but adds the invariant:
564 NONJUMP_INSN_P (X) aka (GET_CODE (X) == INSN)
565 i.e an instruction that cannot jump.
567 This is an instance of:
568 DEF_RTL_EXPR(INSN, "insn", "uuBeiie", RTX_INSN)
569 from rtl.def. */
572 class GTY(()) rtx_jump_insn : public rtx_insn
574 public:
575 /* No extra fields, but adds the invariant:
576 JUMP_P (X) aka (GET_CODE (X) == JUMP_INSN)
577 i.e. an instruction that can possibly jump.
579 This is an instance of:
580 DEF_RTL_EXPR(JUMP_INSN, "jump_insn", "uuBeiie0", RTX_INSN)
581 from rtl.def. */
583 /* Returns jump target of this instruction. The returned value is not
584 necessarily a code label: it may also be a RETURN or SIMPLE_RETURN
585 expression. Also, when the code label is marked "deleted", it is
586 replaced by a NOTE. In some cases the value is NULL_RTX. */
588 inline rtx jump_label () const;
590 /* Returns jump target cast to rtx_code_label *. */
592 inline rtx_code_label *jump_target () const;
594 /* Set jump target. */
596 inline void set_jump_target (rtx_code_label *);
599 class GTY(()) rtx_call_insn : public rtx_insn
601 /* No extra fields, but adds the invariant:
602 CALL_P (X) aka (GET_CODE (X) == CALL_INSN)
603 i.e. an instruction that can possibly call a subroutine
604 but which will not change which instruction comes next
605 in the current function.
607 This is an instance of:
608 DEF_RTL_EXPR(CALL_INSN, "call_insn", "uuBeiiee", RTX_INSN)
609 from rtl.def. */
612 class GTY(()) rtx_jump_table_data : public rtx_insn
614 /* No extra fields, but adds the invariant:
615 JUMP_TABLE_DATA_P (X) aka (GET_CODE (INSN) == JUMP_TABLE_DATA)
616 i.e. a data for a jump table, considered an instruction for
617 historical reasons.
619 This is an instance of:
620 DEF_RTL_EXPR(JUMP_TABLE_DATA, "jump_table_data", "uuBe0000", RTX_INSN)
621 from rtl.def. */
623 public:
625 /* This can be either:
627 (a) a table of absolute jumps, in which case PATTERN (this) is an
628 ADDR_VEC with arg 0 a vector of labels, or
630 (b) a table of relative jumps (e.g. for -fPIC), in which case
631 PATTERN (this) is an ADDR_DIFF_VEC, with arg 0 a LABEL_REF and
632 arg 1 the vector of labels.
634 This method gets the underlying vec. */
636 inline rtvec get_labels () const;
639 class GTY(()) rtx_barrier : public rtx_insn
641 /* No extra fields, but adds the invariant:
642 BARRIER_P (X) aka (GET_CODE (X) == BARRIER)
643 i.e. a marker that indicates that control will not flow through.
645 This is an instance of:
646 DEF_RTL_EXPR(BARRIER, "barrier", "uu00000", RTX_EXTRA)
647 from rtl.def. */
650 class GTY(()) rtx_code_label : public rtx_insn
652 /* No extra fields, but adds the invariant:
653 LABEL_P (X) aka (GET_CODE (X) == CODE_LABEL)
654 i.e. a label in the assembler.
656 This is an instance of:
657 DEF_RTL_EXPR(CODE_LABEL, "code_label", "uuB00is", RTX_EXTRA)
658 from rtl.def. */
661 class GTY(()) rtx_note : public rtx_insn
663 /* No extra fields, but adds the invariant:
664 NOTE_P(X) aka (GET_CODE (X) == NOTE)
665 i.e. a note about the corresponding source code.
667 This is an instance of:
668 DEF_RTL_EXPR(NOTE, "note", "uuB0ni", RTX_EXTRA)
669 from rtl.def. */
672 /* The size in bytes of an rtx header (code, mode and flags). */
673 #define RTX_HDR_SIZE offsetof (struct rtx_def, u)
675 /* The size in bytes of an rtx with code CODE. */
676 #define RTX_CODE_SIZE(CODE) rtx_code_size[CODE]
678 #define NULL_RTX (rtx) 0
680 /* The "next" and "previous" RTX, relative to this one. */
682 #define RTX_NEXT(X) (rtx_next[GET_CODE (X)] == 0 ? NULL \
683 : *(rtx *)(((char *)X) + rtx_next[GET_CODE (X)]))
685 /* FIXME: the "NEXT_INSN (PREV_INSN (X)) == X" condition shouldn't be needed.
687 #define RTX_PREV(X) ((INSN_P (X) \
688 || NOTE_P (X) \
689 || JUMP_TABLE_DATA_P (X) \
690 || BARRIER_P (X) \
691 || LABEL_P (X)) \
692 && PREV_INSN (as_a <rtx_insn *> (X)) != NULL \
693 && NEXT_INSN (PREV_INSN (as_a <rtx_insn *> (X))) == X \
694 ? PREV_INSN (as_a <rtx_insn *> (X)) : NULL)
696 /* Define macros to access the `code' field of the rtx. */
698 #define GET_CODE(RTX) ((enum rtx_code) (RTX)->code)
699 #define PUT_CODE(RTX, CODE) ((RTX)->code = (CODE))
701 #define GET_MODE(RTX) ((machine_mode) (RTX)->mode)
702 #define PUT_MODE_RAW(RTX, MODE) ((RTX)->mode = (MODE))
704 /* RTL vector. These appear inside RTX's when there is a need
705 for a variable number of things. The principle use is inside
706 PARALLEL expressions. */
708 struct GTY(()) rtvec_def {
709 int num_elem; /* number of elements */
710 rtx GTY ((length ("%h.num_elem"))) elem[1];
713 #define NULL_RTVEC (rtvec) 0
715 #define GET_NUM_ELEM(RTVEC) ((RTVEC)->num_elem)
716 #define PUT_NUM_ELEM(RTVEC, NUM) ((RTVEC)->num_elem = (NUM))
718 /* Predicate yielding nonzero iff X is an rtx for a register. */
719 #define REG_P(X) (GET_CODE (X) == REG)
721 /* Predicate yielding nonzero iff X is an rtx for a memory location. */
722 #define MEM_P(X) (GET_CODE (X) == MEM)
724 #if TARGET_SUPPORTS_WIDE_INT
726 /* Match CONST_*s that can represent compile-time constant integers. */
727 #define CASE_CONST_SCALAR_INT \
728 case CONST_INT: \
729 case CONST_WIDE_INT
731 /* Match CONST_*s for which pointer equality corresponds to value
732 equality. */
733 #define CASE_CONST_UNIQUE \
734 case CONST_INT: \
735 case CONST_WIDE_INT: \
736 case CONST_DOUBLE: \
737 case CONST_FIXED
739 /* Match all CONST_* rtxes. */
740 #define CASE_CONST_ANY \
741 case CONST_INT: \
742 case CONST_WIDE_INT: \
743 case CONST_DOUBLE: \
744 case CONST_FIXED: \
745 case CONST_VECTOR
747 #else
749 /* Match CONST_*s that can represent compile-time constant integers. */
750 #define CASE_CONST_SCALAR_INT \
751 case CONST_INT: \
752 case CONST_DOUBLE
754 /* Match CONST_*s for which pointer equality corresponds to value
755 equality. */
756 #define CASE_CONST_UNIQUE \
757 case CONST_INT: \
758 case CONST_DOUBLE: \
759 case CONST_FIXED
761 /* Match all CONST_* rtxes. */
762 #define CASE_CONST_ANY \
763 case CONST_INT: \
764 case CONST_DOUBLE: \
765 case CONST_FIXED: \
766 case CONST_VECTOR
767 #endif
769 /* Predicate yielding nonzero iff X is an rtx for a constant integer. */
770 #define CONST_INT_P(X) (GET_CODE (X) == CONST_INT)
772 /* Predicate yielding nonzero iff X is an rtx for a constant integer. */
773 #define CONST_WIDE_INT_P(X) (GET_CODE (X) == CONST_WIDE_INT)
775 /* Predicate yielding nonzero iff X is an rtx for a constant fixed-point. */
776 #define CONST_FIXED_P(X) (GET_CODE (X) == CONST_FIXED)
778 /* Predicate yielding true iff X is an rtx for a double-int
779 or floating point constant. */
780 #define CONST_DOUBLE_P(X) (GET_CODE (X) == CONST_DOUBLE)
782 /* Predicate yielding true iff X is an rtx for a double-int. */
783 #define CONST_DOUBLE_AS_INT_P(X) \
784 (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) == VOIDmode)
786 /* Predicate yielding true iff X is an rtx for a integer const. */
787 #if TARGET_SUPPORTS_WIDE_INT
788 #define CONST_SCALAR_INT_P(X) \
789 (CONST_INT_P (X) || CONST_WIDE_INT_P (X))
790 #else
791 #define CONST_SCALAR_INT_P(X) \
792 (CONST_INT_P (X) || CONST_DOUBLE_AS_INT_P (X))
793 #endif
795 /* Predicate yielding true iff X is an rtx for a double-int. */
796 #define CONST_DOUBLE_AS_FLOAT_P(X) \
797 (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) != VOIDmode)
799 /* Predicate yielding nonzero iff X is a label insn. */
800 #define LABEL_P(X) (GET_CODE (X) == CODE_LABEL)
802 /* Predicate yielding nonzero iff X is a jump insn. */
803 #define JUMP_P(X) (GET_CODE (X) == JUMP_INSN)
805 /* Predicate yielding nonzero iff X is a call insn. */
806 #define CALL_P(X) (GET_CODE (X) == CALL_INSN)
808 /* Predicate yielding nonzero iff X is an insn that cannot jump. */
809 #define NONJUMP_INSN_P(X) (GET_CODE (X) == INSN)
811 /* Predicate yielding nonzero iff X is a debug note/insn. */
812 #define DEBUG_INSN_P(X) (GET_CODE (X) == DEBUG_INSN)
814 /* Predicate yielding nonzero iff X is an insn that is not a debug insn. */
815 #define NONDEBUG_INSN_P(X) (INSN_P (X) && !DEBUG_INSN_P (X))
817 /* Nonzero if DEBUG_INSN_P may possibly hold. */
818 #define MAY_HAVE_DEBUG_INSNS (flag_var_tracking_assignments)
820 /* Predicate yielding nonzero iff X is a real insn. */
821 #define INSN_P(X) \
822 (NONJUMP_INSN_P (X) || DEBUG_INSN_P (X) || JUMP_P (X) || CALL_P (X))
824 /* Predicate yielding nonzero iff X is a note insn. */
825 #define NOTE_P(X) (GET_CODE (X) == NOTE)
827 /* Predicate yielding nonzero iff X is a barrier insn. */
828 #define BARRIER_P(X) (GET_CODE (X) == BARRIER)
830 /* Predicate yielding nonzero iff X is a data for a jump table. */
831 #define JUMP_TABLE_DATA_P(INSN) (GET_CODE (INSN) == JUMP_TABLE_DATA)
833 /* Predicate yielding nonzero iff RTX is a subreg. */
834 #define SUBREG_P(RTX) (GET_CODE (RTX) == SUBREG)
836 /* Predicate yielding true iff RTX is a symbol ref. */
837 #define SYMBOL_REF_P(RTX) (GET_CODE (RTX) == SYMBOL_REF)
839 template <>
840 template <>
841 inline bool
842 is_a_helper <rtx_insn *>::test (rtx rt)
844 return (INSN_P (rt)
845 || NOTE_P (rt)
846 || JUMP_TABLE_DATA_P (rt)
847 || BARRIER_P (rt)
848 || LABEL_P (rt));
851 template <>
852 template <>
853 inline bool
854 is_a_helper <const rtx_insn *>::test (const_rtx rt)
856 return (INSN_P (rt)
857 || NOTE_P (rt)
858 || JUMP_TABLE_DATA_P (rt)
859 || BARRIER_P (rt)
860 || LABEL_P (rt));
863 template <>
864 template <>
865 inline bool
866 is_a_helper <rtx_debug_insn *>::test (rtx rt)
868 return DEBUG_INSN_P (rt);
871 template <>
872 template <>
873 inline bool
874 is_a_helper <rtx_nonjump_insn *>::test (rtx rt)
876 return NONJUMP_INSN_P (rt);
879 template <>
880 template <>
881 inline bool
882 is_a_helper <rtx_jump_insn *>::test (rtx rt)
884 return JUMP_P (rt);
887 template <>
888 template <>
889 inline bool
890 is_a_helper <rtx_jump_insn *>::test (rtx_insn *insn)
892 return JUMP_P (insn);
895 template <>
896 template <>
897 inline bool
898 is_a_helper <rtx_call_insn *>::test (rtx rt)
900 return CALL_P (rt);
903 template <>
904 template <>
905 inline bool
906 is_a_helper <rtx_call_insn *>::test (rtx_insn *insn)
908 return CALL_P (insn);
911 template <>
912 template <>
913 inline bool
914 is_a_helper <rtx_jump_table_data *>::test (rtx rt)
916 return JUMP_TABLE_DATA_P (rt);
919 template <>
920 template <>
921 inline bool
922 is_a_helper <rtx_jump_table_data *>::test (rtx_insn *insn)
924 return JUMP_TABLE_DATA_P (insn);
927 template <>
928 template <>
929 inline bool
930 is_a_helper <rtx_barrier *>::test (rtx rt)
932 return BARRIER_P (rt);
935 template <>
936 template <>
937 inline bool
938 is_a_helper <rtx_code_label *>::test (rtx rt)
940 return LABEL_P (rt);
943 template <>
944 template <>
945 inline bool
946 is_a_helper <rtx_code_label *>::test (rtx_insn *insn)
948 return LABEL_P (insn);
951 template <>
952 template <>
953 inline bool
954 is_a_helper <rtx_note *>::test (rtx rt)
956 return NOTE_P (rt);
959 template <>
960 template <>
961 inline bool
962 is_a_helper <rtx_note *>::test (rtx_insn *insn)
964 return NOTE_P (insn);
967 /* Predicate yielding nonzero iff X is a return or simple_return. */
968 #define ANY_RETURN_P(X) \
969 (GET_CODE (X) == RETURN || GET_CODE (X) == SIMPLE_RETURN)
971 /* 1 if X is a unary operator. */
973 #define UNARY_P(X) \
974 (GET_RTX_CLASS (GET_CODE (X)) == RTX_UNARY)
976 /* 1 if X is a binary operator. */
978 #define BINARY_P(X) \
979 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_BINARY_MASK) == RTX_BINARY_RESULT)
981 /* 1 if X is an arithmetic operator. */
983 #define ARITHMETIC_P(X) \
984 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_ARITHMETIC_MASK) \
985 == RTX_ARITHMETIC_RESULT)
987 /* 1 if X is an arithmetic operator. */
989 #define COMMUTATIVE_ARITH_P(X) \
990 (GET_RTX_CLASS (GET_CODE (X)) == RTX_COMM_ARITH)
992 /* 1 if X is a commutative arithmetic operator or a comparison operator.
993 These two are sometimes selected together because it is possible to
994 swap the two operands. */
996 #define SWAPPABLE_OPERANDS_P(X) \
997 ((1 << GET_RTX_CLASS (GET_CODE (X))) \
998 & ((1 << RTX_COMM_ARITH) | (1 << RTX_COMM_COMPARE) \
999 | (1 << RTX_COMPARE)))
1001 /* 1 if X is a non-commutative operator. */
1003 #define NON_COMMUTATIVE_P(X) \
1004 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMMUTATIVE_MASK) \
1005 == RTX_NON_COMMUTATIVE_RESULT)
1007 /* 1 if X is a commutative operator on integers. */
1009 #define COMMUTATIVE_P(X) \
1010 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMMUTATIVE_MASK) \
1011 == RTX_COMMUTATIVE_RESULT)
1013 /* 1 if X is a relational operator. */
1015 #define COMPARISON_P(X) \
1016 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMPARE_MASK) == RTX_COMPARE_RESULT)
1018 /* 1 if X is a constant value that is an integer. */
1020 #define CONSTANT_P(X) \
1021 (GET_RTX_CLASS (GET_CODE (X)) == RTX_CONST_OBJ)
1023 /* 1 if X can be used to represent an object. */
1024 #define OBJECT_P(X) \
1025 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_OBJ_MASK) == RTX_OBJ_RESULT)
1027 /* General accessor macros for accessing the fields of an rtx. */
1029 #if defined ENABLE_RTL_CHECKING && (GCC_VERSION >= 2007)
1030 /* The bit with a star outside the statement expr and an & inside is
1031 so that N can be evaluated only once. */
1032 #define RTL_CHECK1(RTX, N, C1) __extension__ \
1033 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1034 const enum rtx_code _code = GET_CODE (_rtx); \
1035 if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \
1036 rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \
1037 __FUNCTION__); \
1038 if (GET_RTX_FORMAT (_code)[_n] != C1) \
1039 rtl_check_failed_type1 (_rtx, _n, C1, __FILE__, __LINE__, \
1040 __FUNCTION__); \
1041 &_rtx->u.fld[_n]; }))
1043 #define RTL_CHECK2(RTX, N, C1, C2) __extension__ \
1044 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1045 const enum rtx_code _code = GET_CODE (_rtx); \
1046 if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \
1047 rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \
1048 __FUNCTION__); \
1049 if (GET_RTX_FORMAT (_code)[_n] != C1 \
1050 && GET_RTX_FORMAT (_code)[_n] != C2) \
1051 rtl_check_failed_type2 (_rtx, _n, C1, C2, __FILE__, __LINE__, \
1052 __FUNCTION__); \
1053 &_rtx->u.fld[_n]; }))
1055 #define RTL_CHECKC1(RTX, N, C) __extension__ \
1056 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1057 if (GET_CODE (_rtx) != (C)) \
1058 rtl_check_failed_code1 (_rtx, (C), __FILE__, __LINE__, \
1059 __FUNCTION__); \
1060 &_rtx->u.fld[_n]; }))
1062 #define RTL_CHECKC2(RTX, N, C1, C2) __extension__ \
1063 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1064 const enum rtx_code _code = GET_CODE (_rtx); \
1065 if (_code != (C1) && _code != (C2)) \
1066 rtl_check_failed_code2 (_rtx, (C1), (C2), __FILE__, __LINE__, \
1067 __FUNCTION__); \
1068 &_rtx->u.fld[_n]; }))
1070 #define RTVEC_ELT(RTVEC, I) __extension__ \
1071 (*({ __typeof (RTVEC) const _rtvec = (RTVEC); const int _i = (I); \
1072 if (_i < 0 || _i >= GET_NUM_ELEM (_rtvec)) \
1073 rtvec_check_failed_bounds (_rtvec, _i, __FILE__, __LINE__, \
1074 __FUNCTION__); \
1075 &_rtvec->elem[_i]; }))
1077 #define XWINT(RTX, N) __extension__ \
1078 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1079 const enum rtx_code _code = GET_CODE (_rtx); \
1080 if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \
1081 rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \
1082 __FUNCTION__); \
1083 if (GET_RTX_FORMAT (_code)[_n] != 'w') \
1084 rtl_check_failed_type1 (_rtx, _n, 'w', __FILE__, __LINE__, \
1085 __FUNCTION__); \
1086 &_rtx->u.hwint[_n]; }))
1088 #define CWI_ELT(RTX, I) __extension__ \
1089 (*({ __typeof (RTX) const _cwi = (RTX); \
1090 int _max = CWI_GET_NUM_ELEM (_cwi); \
1091 const int _i = (I); \
1092 if (_i < 0 || _i >= _max) \
1093 cwi_check_failed_bounds (_cwi, _i, __FILE__, __LINE__, \
1094 __FUNCTION__); \
1095 &_cwi->u.hwiv.elem[_i]; }))
1097 #define XCWINT(RTX, N, C) __extension__ \
1098 (*({ __typeof (RTX) const _rtx = (RTX); \
1099 if (GET_CODE (_rtx) != (C)) \
1100 rtl_check_failed_code1 (_rtx, (C), __FILE__, __LINE__, \
1101 __FUNCTION__); \
1102 &_rtx->u.hwint[N]; }))
1104 #define XCMWINT(RTX, N, C, M) __extension__ \
1105 (*({ __typeof (RTX) const _rtx = (RTX); \
1106 if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) != (M)) \
1107 rtl_check_failed_code_mode (_rtx, (C), (M), false, __FILE__, \
1108 __LINE__, __FUNCTION__); \
1109 &_rtx->u.hwint[N]; }))
1111 #define XCNMPRV(RTX, C, M) __extension__ \
1112 ({ __typeof (RTX) const _rtx = (RTX); \
1113 if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) == (M)) \
1114 rtl_check_failed_code_mode (_rtx, (C), (M), true, __FILE__, \
1115 __LINE__, __FUNCTION__); \
1116 &_rtx->u.rv; })
1118 #define XCNMPFV(RTX, C, M) __extension__ \
1119 ({ __typeof (RTX) const _rtx = (RTX); \
1120 if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) == (M)) \
1121 rtl_check_failed_code_mode (_rtx, (C), (M), true, __FILE__, \
1122 __LINE__, __FUNCTION__); \
1123 &_rtx->u.fv; })
1125 #define REG_CHECK(RTX) __extension__ \
1126 ({ __typeof (RTX) const _rtx = (RTX); \
1127 if (GET_CODE (_rtx) != REG) \
1128 rtl_check_failed_code1 (_rtx, REG, __FILE__, __LINE__, \
1129 __FUNCTION__); \
1130 &_rtx->u.reg; })
1132 #define BLOCK_SYMBOL_CHECK(RTX) __extension__ \
1133 ({ __typeof (RTX) const _symbol = (RTX); \
1134 const unsigned int flags = SYMBOL_REF_FLAGS (_symbol); \
1135 if ((flags & SYMBOL_FLAG_HAS_BLOCK_INFO) == 0) \
1136 rtl_check_failed_block_symbol (__FILE__, __LINE__, \
1137 __FUNCTION__); \
1138 &_symbol->u.block_sym; })
1140 #define HWIVEC_CHECK(RTX,C) __extension__ \
1141 ({ __typeof (RTX) const _symbol = (RTX); \
1142 RTL_CHECKC1 (_symbol, 0, C); \
1143 &_symbol->u.hwiv; })
1145 extern void rtl_check_failed_bounds (const_rtx, int, const char *, int,
1146 const char *)
1147 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1148 extern void rtl_check_failed_type1 (const_rtx, int, int, const char *, int,
1149 const char *)
1150 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1151 extern void rtl_check_failed_type2 (const_rtx, int, int, int, const char *,
1152 int, const char *)
1153 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1154 extern void rtl_check_failed_code1 (const_rtx, enum rtx_code, const char *,
1155 int, const char *)
1156 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1157 extern void rtl_check_failed_code2 (const_rtx, enum rtx_code, enum rtx_code,
1158 const char *, int, const char *)
1159 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1160 extern void rtl_check_failed_code_mode (const_rtx, enum rtx_code, machine_mode,
1161 bool, const char *, int, const char *)
1162 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1163 extern void rtl_check_failed_block_symbol (const char *, int, const char *)
1164 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1165 extern void cwi_check_failed_bounds (const_rtx, int, const char *, int,
1166 const char *)
1167 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1168 extern void rtvec_check_failed_bounds (const_rtvec, int, const char *, int,
1169 const char *)
1170 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1172 #else /* not ENABLE_RTL_CHECKING */
1174 #define RTL_CHECK1(RTX, N, C1) ((RTX)->u.fld[N])
1175 #define RTL_CHECK2(RTX, N, C1, C2) ((RTX)->u.fld[N])
1176 #define RTL_CHECKC1(RTX, N, C) ((RTX)->u.fld[N])
1177 #define RTL_CHECKC2(RTX, N, C1, C2) ((RTX)->u.fld[N])
1178 #define RTVEC_ELT(RTVEC, I) ((RTVEC)->elem[I])
1179 #define XWINT(RTX, N) ((RTX)->u.hwint[N])
1180 #define CWI_ELT(RTX, I) ((RTX)->u.hwiv.elem[I])
1181 #define XCWINT(RTX, N, C) ((RTX)->u.hwint[N])
1182 #define XCMWINT(RTX, N, C, M) ((RTX)->u.hwint[N])
1183 #define XCNMWINT(RTX, N, C, M) ((RTX)->u.hwint[N])
1184 #define XCNMPRV(RTX, C, M) (&(RTX)->u.rv)
1185 #define XCNMPFV(RTX, C, M) (&(RTX)->u.fv)
1186 #define REG_CHECK(RTX) (&(RTX)->u.reg)
1187 #define BLOCK_SYMBOL_CHECK(RTX) (&(RTX)->u.block_sym)
1188 #define HWIVEC_CHECK(RTX,C) (&(RTX)->u.hwiv)
1190 #endif
1192 /* General accessor macros for accessing the flags of an rtx. */
1194 /* Access an individual rtx flag, with no checking of any kind. */
1195 #define RTX_FLAG(RTX, FLAG) ((RTX)->FLAG)
1197 #if defined ENABLE_RTL_FLAG_CHECKING && (GCC_VERSION >= 2007)
1198 #define RTL_FLAG_CHECK1(NAME, RTX, C1) __extension__ \
1199 ({ __typeof (RTX) const _rtx = (RTX); \
1200 if (GET_CODE (_rtx) != C1) \
1201 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1202 __FUNCTION__); \
1203 _rtx; })
1205 #define RTL_FLAG_CHECK2(NAME, RTX, C1, C2) __extension__ \
1206 ({ __typeof (RTX) const _rtx = (RTX); \
1207 if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2) \
1208 rtl_check_failed_flag (NAME,_rtx, __FILE__, __LINE__, \
1209 __FUNCTION__); \
1210 _rtx; })
1212 #define RTL_FLAG_CHECK3(NAME, RTX, C1, C2, C3) __extension__ \
1213 ({ __typeof (RTX) const _rtx = (RTX); \
1214 if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2 \
1215 && GET_CODE (_rtx) != C3) \
1216 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1217 __FUNCTION__); \
1218 _rtx; })
1220 #define RTL_FLAG_CHECK4(NAME, RTX, C1, C2, C3, C4) __extension__ \
1221 ({ __typeof (RTX) const _rtx = (RTX); \
1222 if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2 \
1223 && GET_CODE (_rtx) != C3 && GET_CODE(_rtx) != C4) \
1224 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1225 __FUNCTION__); \
1226 _rtx; })
1228 #define RTL_FLAG_CHECK5(NAME, RTX, C1, C2, C3, C4, C5) __extension__ \
1229 ({ __typeof (RTX) const _rtx = (RTX); \
1230 if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \
1231 && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \
1232 && GET_CODE (_rtx) != C5) \
1233 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1234 __FUNCTION__); \
1235 _rtx; })
1237 #define RTL_FLAG_CHECK6(NAME, RTX, C1, C2, C3, C4, C5, C6) \
1238 __extension__ \
1239 ({ __typeof (RTX) const _rtx = (RTX); \
1240 if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \
1241 && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \
1242 && GET_CODE (_rtx) != C5 && GET_CODE (_rtx) != C6) \
1243 rtl_check_failed_flag (NAME,_rtx, __FILE__, __LINE__, \
1244 __FUNCTION__); \
1245 _rtx; })
1247 #define RTL_FLAG_CHECK7(NAME, RTX, C1, C2, C3, C4, C5, C6, C7) \
1248 __extension__ \
1249 ({ __typeof (RTX) const _rtx = (RTX); \
1250 if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \
1251 && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \
1252 && GET_CODE (_rtx) != C5 && GET_CODE (_rtx) != C6 \
1253 && GET_CODE (_rtx) != C7) \
1254 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1255 __FUNCTION__); \
1256 _rtx; })
1258 #define RTL_INSN_CHAIN_FLAG_CHECK(NAME, RTX) \
1259 __extension__ \
1260 ({ __typeof (RTX) const _rtx = (RTX); \
1261 if (!INSN_CHAIN_CODE_P (GET_CODE (_rtx))) \
1262 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1263 __FUNCTION__); \
1264 _rtx; })
1266 extern void rtl_check_failed_flag (const char *, const_rtx, const char *,
1267 int, const char *)
1268 ATTRIBUTE_NORETURN ATTRIBUTE_COLD
1271 #else /* not ENABLE_RTL_FLAG_CHECKING */
1273 #define RTL_FLAG_CHECK1(NAME, RTX, C1) (RTX)
1274 #define RTL_FLAG_CHECK2(NAME, RTX, C1, C2) (RTX)
1275 #define RTL_FLAG_CHECK3(NAME, RTX, C1, C2, C3) (RTX)
1276 #define RTL_FLAG_CHECK4(NAME, RTX, C1, C2, C3, C4) (RTX)
1277 #define RTL_FLAG_CHECK5(NAME, RTX, C1, C2, C3, C4, C5) (RTX)
1278 #define RTL_FLAG_CHECK6(NAME, RTX, C1, C2, C3, C4, C5, C6) (RTX)
1279 #define RTL_FLAG_CHECK7(NAME, RTX, C1, C2, C3, C4, C5, C6, C7) (RTX)
1280 #define RTL_INSN_CHAIN_FLAG_CHECK(NAME, RTX) (RTX)
1281 #endif
1283 #define XINT(RTX, N) (RTL_CHECK2 (RTX, N, 'i', 'n').rt_int)
1284 #define XUINT(RTX, N) (RTL_CHECK2 (RTX, N, 'i', 'n').rt_uint)
1285 #define XSTR(RTX, N) (RTL_CHECK2 (RTX, N, 's', 'S').rt_str)
1286 #define XEXP(RTX, N) (RTL_CHECK2 (RTX, N, 'e', 'u').rt_rtx)
1287 #define XVEC(RTX, N) (RTL_CHECK2 (RTX, N, 'E', 'V').rt_rtvec)
1288 #define XMODE(RTX, N) (RTL_CHECK1 (RTX, N, 'M').rt_type)
1289 #define XTREE(RTX, N) (RTL_CHECK1 (RTX, N, 't').rt_tree)
1290 #define XBBDEF(RTX, N) (RTL_CHECK1 (RTX, N, 'B').rt_bb)
1291 #define XTMPL(RTX, N) (RTL_CHECK1 (RTX, N, 'T').rt_str)
1292 #define XCFI(RTX, N) (RTL_CHECK1 (RTX, N, 'C').rt_cfi)
1294 #define XVECEXP(RTX, N, M) RTVEC_ELT (XVEC (RTX, N), M)
1295 #define XVECLEN(RTX, N) GET_NUM_ELEM (XVEC (RTX, N))
1297 /* These are like XINT, etc. except that they expect a '0' field instead
1298 of the normal type code. */
1300 #define X0INT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_int)
1301 #define X0UINT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_uint)
1302 #define X0STR(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_str)
1303 #define X0EXP(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_rtx)
1304 #define X0VEC(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_rtvec)
1305 #define X0MODE(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_type)
1306 #define X0TREE(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_tree)
1307 #define X0BBDEF(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_bb)
1308 #define X0ADVFLAGS(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_addr_diff_vec_flags)
1309 #define X0CSELIB(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_cselib)
1310 #define X0MEMATTR(RTX, N) (RTL_CHECKC1 (RTX, N, MEM).rt_mem)
1311 #define X0CONSTANT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_constant)
1313 /* Access a '0' field with any type. */
1314 #define X0ANY(RTX, N) RTL_CHECK1 (RTX, N, '0')
1316 #define XCINT(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_int)
1317 #define XCUINT(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_uint)
1318 #define XCSTR(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_str)
1319 #define XCEXP(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_rtx)
1320 #define XCVEC(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_rtvec)
1321 #define XCMODE(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_type)
1322 #define XCTREE(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_tree)
1323 #define XCBBDEF(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_bb)
1324 #define XCCFI(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_cfi)
1325 #define XCCSELIB(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_cselib)
1327 #define XCVECEXP(RTX, N, M, C) RTVEC_ELT (XCVEC (RTX, N, C), M)
1328 #define XCVECLEN(RTX, N, C) GET_NUM_ELEM (XCVEC (RTX, N, C))
1330 #define XC2EXP(RTX, N, C1, C2) (RTL_CHECKC2 (RTX, N, C1, C2).rt_rtx)
1333 /* Methods of rtx_expr_list. */
1335 inline rtx_expr_list *rtx_expr_list::next () const
1337 rtx tmp = XEXP (this, 1);
1338 return safe_as_a <rtx_expr_list *> (tmp);
1341 inline rtx rtx_expr_list::element () const
1343 return XEXP (this, 0);
1346 /* Methods of rtx_insn_list. */
1348 inline rtx_insn_list *rtx_insn_list::next () const
1350 rtx tmp = XEXP (this, 1);
1351 return safe_as_a <rtx_insn_list *> (tmp);
1354 inline rtx_insn *rtx_insn_list::insn () const
1356 rtx tmp = XEXP (this, 0);
1357 return safe_as_a <rtx_insn *> (tmp);
1360 /* Methods of rtx_sequence. */
1362 inline int rtx_sequence::len () const
1364 return XVECLEN (this, 0);
1367 inline rtx rtx_sequence::element (int index) const
1369 return XVECEXP (this, 0, index);
1372 inline rtx_insn *rtx_sequence::insn (int index) const
1374 return as_a <rtx_insn *> (XVECEXP (this, 0, index));
1377 /* ACCESS MACROS for particular fields of insns. */
1379 /* Holds a unique number for each insn.
1380 These are not necessarily sequentially increasing. */
1381 inline int INSN_UID (const_rtx insn)
1383 return RTL_INSN_CHAIN_FLAG_CHECK ("INSN_UID",
1384 (insn))->u2.insn_uid;
1386 inline int& INSN_UID (rtx insn)
1388 return RTL_INSN_CHAIN_FLAG_CHECK ("INSN_UID",
1389 (insn))->u2.insn_uid;
1392 /* Chain insns together in sequence. */
1394 /* For now these are split in two: an rvalue form:
1395 PREV_INSN/NEXT_INSN
1396 and an lvalue form:
1397 SET_NEXT_INSN/SET_PREV_INSN. */
1399 inline rtx_insn *PREV_INSN (const rtx_insn *insn)
1401 rtx prev = XEXP (insn, 0);
1402 return safe_as_a <rtx_insn *> (prev);
1405 inline rtx& SET_PREV_INSN (rtx_insn *insn)
1407 return XEXP (insn, 0);
1410 inline rtx_insn *NEXT_INSN (const rtx_insn *insn)
1412 rtx next = XEXP (insn, 1);
1413 return safe_as_a <rtx_insn *> (next);
1416 inline rtx& SET_NEXT_INSN (rtx_insn *insn)
1418 return XEXP (insn, 1);
1421 inline basic_block BLOCK_FOR_INSN (const_rtx insn)
1423 return XBBDEF (insn, 2);
1426 inline basic_block& BLOCK_FOR_INSN (rtx insn)
1428 return XBBDEF (insn, 2);
1431 inline void set_block_for_insn (rtx_insn *insn, basic_block bb)
1433 BLOCK_FOR_INSN (insn) = bb;
1436 /* The body of an insn. */
1437 inline rtx PATTERN (const_rtx insn)
1439 return XEXP (insn, 3);
1442 inline rtx& PATTERN (rtx insn)
1444 return XEXP (insn, 3);
1447 inline unsigned int INSN_LOCATION (const rtx_insn *insn)
1449 return XUINT (insn, 4);
1452 inline unsigned int& INSN_LOCATION (rtx_insn *insn)
1454 return XUINT (insn, 4);
1457 inline bool INSN_HAS_LOCATION (const rtx_insn *insn)
1459 return LOCATION_LOCUS (INSN_LOCATION (insn)) != UNKNOWN_LOCATION;
1462 /* LOCATION of an RTX if relevant. */
1463 #define RTL_LOCATION(X) (INSN_P (X) ? \
1464 INSN_LOCATION (as_a <rtx_insn *> (X)) \
1465 : UNKNOWN_LOCATION)
1467 /* Code number of instruction, from when it was recognized.
1468 -1 means this instruction has not been recognized yet. */
1469 #define INSN_CODE(INSN) XINT (INSN, 5)
1471 inline rtvec rtx_jump_table_data::get_labels () const
1473 rtx pat = PATTERN (this);
1474 if (GET_CODE (pat) == ADDR_VEC)
1475 return XVEC (pat, 0);
1476 else
1477 return XVEC (pat, 1); /* presumably an ADDR_DIFF_VEC */
1480 #define RTX_FRAME_RELATED_P(RTX) \
1481 (RTL_FLAG_CHECK6 ("RTX_FRAME_RELATED_P", (RTX), DEBUG_INSN, INSN, \
1482 CALL_INSN, JUMP_INSN, BARRIER, SET)->frame_related)
1484 /* 1 if JUMP RTX is a crossing jump. */
1485 #define CROSSING_JUMP_P(RTX) \
1486 (RTL_FLAG_CHECK1 ("CROSSING_JUMP_P", (RTX), JUMP_INSN)->jump)
1488 /* 1 if RTX is a call to a const function. Built from ECF_CONST and
1489 TREE_READONLY. */
1490 #define RTL_CONST_CALL_P(RTX) \
1491 (RTL_FLAG_CHECK1 ("RTL_CONST_CALL_P", (RTX), CALL_INSN)->unchanging)
1493 /* 1 if RTX is a call to a pure function. Built from ECF_PURE and
1494 DECL_PURE_P. */
1495 #define RTL_PURE_CALL_P(RTX) \
1496 (RTL_FLAG_CHECK1 ("RTL_PURE_CALL_P", (RTX), CALL_INSN)->return_val)
1498 /* 1 if RTX is a call to a const or pure function. */
1499 #define RTL_CONST_OR_PURE_CALL_P(RTX) \
1500 (RTL_CONST_CALL_P (RTX) || RTL_PURE_CALL_P (RTX))
1502 /* 1 if RTX is a call to a looping const or pure function. Built from
1503 ECF_LOOPING_CONST_OR_PURE and DECL_LOOPING_CONST_OR_PURE_P. */
1504 #define RTL_LOOPING_CONST_OR_PURE_CALL_P(RTX) \
1505 (RTL_FLAG_CHECK1 ("CONST_OR_PURE_CALL_P", (RTX), CALL_INSN)->call)
1507 /* 1 if RTX is a call_insn for a sibling call. */
1508 #define SIBLING_CALL_P(RTX) \
1509 (RTL_FLAG_CHECK1 ("SIBLING_CALL_P", (RTX), CALL_INSN)->jump)
1511 /* 1 if RTX is a jump_insn, call_insn, or insn that is an annulling branch. */
1512 #define INSN_ANNULLED_BRANCH_P(RTX) \
1513 (RTL_FLAG_CHECK1 ("INSN_ANNULLED_BRANCH_P", (RTX), JUMP_INSN)->unchanging)
1515 /* 1 if RTX is an insn in a delay slot and is from the target of the branch.
1516 If the branch insn has INSN_ANNULLED_BRANCH_P set, this insn should only be
1517 executed if the branch is taken. For annulled branches with this bit
1518 clear, the insn should be executed only if the branch is not taken. */
1519 #define INSN_FROM_TARGET_P(RTX) \
1520 (RTL_FLAG_CHECK3 ("INSN_FROM_TARGET_P", (RTX), INSN, JUMP_INSN, \
1521 CALL_INSN)->in_struct)
1523 /* In an ADDR_DIFF_VEC, the flags for RTX for use by branch shortening.
1524 See the comments for ADDR_DIFF_VEC in rtl.def. */
1525 #define ADDR_DIFF_VEC_FLAGS(RTX) X0ADVFLAGS (RTX, 4)
1527 /* In a VALUE, the value cselib has assigned to RTX.
1528 This is a "struct cselib_val", see cselib.h. */
1529 #define CSELIB_VAL_PTR(RTX) X0CSELIB (RTX, 0)
1531 /* Holds a list of notes on what this insn does to various REGs.
1532 It is a chain of EXPR_LIST rtx's, where the second operand is the
1533 chain pointer and the first operand is the REG being described.
1534 The mode field of the EXPR_LIST contains not a real machine mode
1535 but a value from enum reg_note. */
1536 #define REG_NOTES(INSN) XEXP(INSN, 6)
1538 /* In an ENTRY_VALUE this is the DECL_INCOMING_RTL of the argument in
1539 question. */
1540 #define ENTRY_VALUE_EXP(RTX) (RTL_CHECKC1 (RTX, 0, ENTRY_VALUE).rt_rtx)
1542 enum reg_note
1544 #define DEF_REG_NOTE(NAME) NAME,
1545 #include "reg-notes.def"
1546 #undef DEF_REG_NOTE
1547 REG_NOTE_MAX
1550 /* Define macros to extract and insert the reg-note kind in an EXPR_LIST. */
1551 #define REG_NOTE_KIND(LINK) ((enum reg_note) GET_MODE (LINK))
1552 #define PUT_REG_NOTE_KIND(LINK, KIND) \
1553 PUT_MODE_RAW (LINK, (machine_mode) (KIND))
1555 /* Names for REG_NOTE's in EXPR_LIST insn's. */
1557 extern const char * const reg_note_name[];
1558 #define GET_REG_NOTE_NAME(MODE) (reg_note_name[(int) (MODE)])
1560 /* This field is only present on CALL_INSNs. It holds a chain of EXPR_LIST of
1561 USE and CLOBBER expressions.
1562 USE expressions list the registers filled with arguments that
1563 are passed to the function.
1564 CLOBBER expressions document the registers explicitly clobbered
1565 by this CALL_INSN.
1566 Pseudo registers can not be mentioned in this list. */
1567 #define CALL_INSN_FUNCTION_USAGE(INSN) XEXP(INSN, 7)
1569 /* The label-number of a code-label. The assembler label
1570 is made from `L' and the label-number printed in decimal.
1571 Label numbers are unique in a compilation. */
1572 #define CODE_LABEL_NUMBER(INSN) XINT (INSN, 5)
1574 /* In a NOTE that is a line number, this is a string for the file name that the
1575 line is in. We use the same field to record block numbers temporarily in
1576 NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes. (We avoid lots of casts
1577 between ints and pointers if we use a different macro for the block number.)
1580 /* Opaque data. */
1581 #define NOTE_DATA(INSN) RTL_CHECKC1 (INSN, 3, NOTE)
1582 #define NOTE_DELETED_LABEL_NAME(INSN) XCSTR (INSN, 3, NOTE)
1583 #define SET_INSN_DELETED(INSN) set_insn_deleted (INSN);
1584 #define NOTE_BLOCK(INSN) XCTREE (INSN, 3, NOTE)
1585 #define NOTE_EH_HANDLER(INSN) XCINT (INSN, 3, NOTE)
1586 #define NOTE_BASIC_BLOCK(INSN) XCBBDEF (INSN, 3, NOTE)
1587 #define NOTE_VAR_LOCATION(INSN) XCEXP (INSN, 3, NOTE)
1588 #define NOTE_CFI(INSN) XCCFI (INSN, 3, NOTE)
1589 #define NOTE_LABEL_NUMBER(INSN) XCINT (INSN, 3, NOTE)
1591 /* In a NOTE that is a line number, this is the line number.
1592 Other kinds of NOTEs are identified by negative numbers here. */
1593 #define NOTE_KIND(INSN) XCINT (INSN, 4, NOTE)
1595 /* Nonzero if INSN is a note marking the beginning of a basic block. */
1596 #define NOTE_INSN_BASIC_BLOCK_P(INSN) \
1597 (NOTE_P (INSN) && NOTE_KIND (INSN) == NOTE_INSN_BASIC_BLOCK)
1599 /* Variable declaration and the location of a variable. */
1600 #define PAT_VAR_LOCATION_DECL(PAT) (XCTREE ((PAT), 0, VAR_LOCATION))
1601 #define PAT_VAR_LOCATION_LOC(PAT) (XCEXP ((PAT), 1, VAR_LOCATION))
1603 /* Initialization status of the variable in the location. Status
1604 can be unknown, uninitialized or initialized. See enumeration
1605 type below. */
1606 #define PAT_VAR_LOCATION_STATUS(PAT) \
1607 (RTL_FLAG_CHECK1 ("PAT_VAR_LOCATION_STATUS", PAT, VAR_LOCATION) \
1608 ->u2.var_location_status)
1610 /* Accessors for a NOTE_INSN_VAR_LOCATION. */
1611 #define NOTE_VAR_LOCATION_DECL(NOTE) \
1612 PAT_VAR_LOCATION_DECL (NOTE_VAR_LOCATION (NOTE))
1613 #define NOTE_VAR_LOCATION_LOC(NOTE) \
1614 PAT_VAR_LOCATION_LOC (NOTE_VAR_LOCATION (NOTE))
1615 #define NOTE_VAR_LOCATION_STATUS(NOTE) \
1616 PAT_VAR_LOCATION_STATUS (NOTE_VAR_LOCATION (NOTE))
1618 /* The VAR_LOCATION rtx in a DEBUG_INSN. */
1619 #define INSN_VAR_LOCATION(INSN) PATTERN (INSN)
1621 /* Accessors for a tree-expanded var location debug insn. */
1622 #define INSN_VAR_LOCATION_DECL(INSN) \
1623 PAT_VAR_LOCATION_DECL (INSN_VAR_LOCATION (INSN))
1624 #define INSN_VAR_LOCATION_LOC(INSN) \
1625 PAT_VAR_LOCATION_LOC (INSN_VAR_LOCATION (INSN))
1626 #define INSN_VAR_LOCATION_STATUS(INSN) \
1627 PAT_VAR_LOCATION_STATUS (INSN_VAR_LOCATION (INSN))
1629 /* Expand to the RTL that denotes an unknown variable location in a
1630 DEBUG_INSN. */
1631 #define gen_rtx_UNKNOWN_VAR_LOC() (gen_rtx_CLOBBER (VOIDmode, const0_rtx))
1633 /* Determine whether X is such an unknown location. */
1634 #define VAR_LOC_UNKNOWN_P(X) \
1635 (GET_CODE (X) == CLOBBER && XEXP ((X), 0) == const0_rtx)
1637 /* 1 if RTX is emitted after a call, but it should take effect before
1638 the call returns. */
1639 #define NOTE_DURING_CALL_P(RTX) \
1640 (RTL_FLAG_CHECK1 ("NOTE_VAR_LOCATION_DURING_CALL_P", (RTX), NOTE)->call)
1642 /* DEBUG_EXPR_DECL corresponding to a DEBUG_EXPR RTX. */
1643 #define DEBUG_EXPR_TREE_DECL(RTX) XCTREE (RTX, 0, DEBUG_EXPR)
1645 /* VAR_DECL/PARM_DECL DEBUG_IMPLICIT_PTR takes address of. */
1646 #define DEBUG_IMPLICIT_PTR_DECL(RTX) XCTREE (RTX, 0, DEBUG_IMPLICIT_PTR)
1648 /* PARM_DECL DEBUG_PARAMETER_REF references. */
1649 #define DEBUG_PARAMETER_REF_DECL(RTX) XCTREE (RTX, 0, DEBUG_PARAMETER_REF)
1651 /* Codes that appear in the NOTE_KIND field for kinds of notes
1652 that are not line numbers. These codes are all negative.
1654 Notice that we do not try to use zero here for any of
1655 the special note codes because sometimes the source line
1656 actually can be zero! This happens (for example) when we
1657 are generating code for the per-translation-unit constructor
1658 and destructor routines for some C++ translation unit. */
1660 enum insn_note
1662 #define DEF_INSN_NOTE(NAME) NAME,
1663 #include "insn-notes.def"
1664 #undef DEF_INSN_NOTE
1666 NOTE_INSN_MAX
1669 /* Names for NOTE insn's other than line numbers. */
1671 extern const char * const note_insn_name[NOTE_INSN_MAX];
1672 #define GET_NOTE_INSN_NAME(NOTE_CODE) \
1673 (note_insn_name[(NOTE_CODE)])
1675 /* The name of a label, in case it corresponds to an explicit label
1676 in the input source code. */
1677 #define LABEL_NAME(RTX) XCSTR (RTX, 6, CODE_LABEL)
1679 /* In jump.c, each label contains a count of the number
1680 of LABEL_REFs that point at it, so unused labels can be deleted. */
1681 #define LABEL_NUSES(RTX) XCINT (RTX, 4, CODE_LABEL)
1683 /* Labels carry a two-bit field composed of the ->jump and ->call
1684 bits. This field indicates whether the label is an alternate
1685 entry point, and if so, what kind. */
1686 enum label_kind
1688 LABEL_NORMAL = 0, /* ordinary label */
1689 LABEL_STATIC_ENTRY, /* alternate entry point, not exported */
1690 LABEL_GLOBAL_ENTRY, /* alternate entry point, exported */
1691 LABEL_WEAK_ENTRY /* alternate entry point, exported as weak symbol */
1694 #if defined ENABLE_RTL_FLAG_CHECKING && (GCC_VERSION > 2007)
1696 /* Retrieve the kind of LABEL. */
1697 #define LABEL_KIND(LABEL) __extension__ \
1698 ({ __typeof (LABEL) const _label = (LABEL); \
1699 if (! LABEL_P (_label)) \
1700 rtl_check_failed_flag ("LABEL_KIND", _label, __FILE__, __LINE__, \
1701 __FUNCTION__); \
1702 (enum label_kind) ((_label->jump << 1) | _label->call); })
1704 /* Set the kind of LABEL. */
1705 #define SET_LABEL_KIND(LABEL, KIND) do { \
1706 __typeof (LABEL) const _label = (LABEL); \
1707 const unsigned int _kind = (KIND); \
1708 if (! LABEL_P (_label)) \
1709 rtl_check_failed_flag ("SET_LABEL_KIND", _label, __FILE__, __LINE__, \
1710 __FUNCTION__); \
1711 _label->jump = ((_kind >> 1) & 1); \
1712 _label->call = (_kind & 1); \
1713 } while (0)
1715 #else
1717 /* Retrieve the kind of LABEL. */
1718 #define LABEL_KIND(LABEL) \
1719 ((enum label_kind) (((LABEL)->jump << 1) | (LABEL)->call))
1721 /* Set the kind of LABEL. */
1722 #define SET_LABEL_KIND(LABEL, KIND) do { \
1723 rtx const _label = (LABEL); \
1724 const unsigned int _kind = (KIND); \
1725 _label->jump = ((_kind >> 1) & 1); \
1726 _label->call = (_kind & 1); \
1727 } while (0)
1729 #endif /* rtl flag checking */
1731 #define LABEL_ALT_ENTRY_P(LABEL) (LABEL_KIND (LABEL) != LABEL_NORMAL)
1733 /* In jump.c, each JUMP_INSN can point to a label that it can jump to,
1734 so that if the JUMP_INSN is deleted, the label's LABEL_NUSES can
1735 be decremented and possibly the label can be deleted. */
1736 #define JUMP_LABEL(INSN) XCEXP (INSN, 7, JUMP_INSN)
1738 inline rtx_insn *JUMP_LABEL_AS_INSN (const rtx_insn *insn)
1740 return safe_as_a <rtx_insn *> (JUMP_LABEL (insn));
1743 /* Methods of rtx_jump_insn. */
1745 inline rtx rtx_jump_insn::jump_label () const
1747 return JUMP_LABEL (this);
1750 inline rtx_code_label *rtx_jump_insn::jump_target () const
1752 return safe_as_a <rtx_code_label *> (JUMP_LABEL (this));
1755 inline void rtx_jump_insn::set_jump_target (rtx_code_label *target)
1757 JUMP_LABEL (this) = target;
1760 /* Once basic blocks are found, each CODE_LABEL starts a chain that
1761 goes through all the LABEL_REFs that jump to that label. The chain
1762 eventually winds up at the CODE_LABEL: it is circular. */
1763 #define LABEL_REFS(LABEL) XCEXP (LABEL, 3, CODE_LABEL)
1765 /* Get the label that a LABEL_REF references. */
1766 static inline rtx_insn *
1767 label_ref_label (const_rtx ref)
1769 return as_a<rtx_insn *> (XCEXP (ref, 0, LABEL_REF));
1772 /* Set the label that LABEL_REF ref refers to. */
1774 static inline void
1775 set_label_ref_label (rtx ref, rtx_insn *label)
1777 XCEXP (ref, 0, LABEL_REF) = label;
1780 /* For a REG rtx, REGNO extracts the register number. REGNO can only
1781 be used on RHS. Use SET_REGNO to change the value. */
1782 #define REGNO(RTX) (rhs_regno(RTX))
1783 #define SET_REGNO(RTX, N) (df_ref_change_reg_with_loc (RTX, N))
1785 /* Return the number of consecutive registers in a REG. This is always
1786 1 for pseudo registers and is determined by HARD_REGNO_NREGS for
1787 hard registers. */
1788 #define REG_NREGS(RTX) (REG_CHECK (RTX)->nregs)
1790 /* ORIGINAL_REGNO holds the number the register originally had; for a
1791 pseudo register turned into a hard reg this will hold the old pseudo
1792 register number. */
1793 #define ORIGINAL_REGNO(RTX) \
1794 (RTL_FLAG_CHECK1 ("ORIGINAL_REGNO", (RTX), REG)->u2.original_regno)
1796 /* Force the REGNO macro to only be used on the lhs. */
1797 static inline unsigned int
1798 rhs_regno (const_rtx x)
1800 return REG_CHECK (x)->regno;
1803 /* Return the final register in REG X plus one. */
1804 static inline unsigned int
1805 END_REGNO (const_rtx x)
1807 return REGNO (x) + REG_NREGS (x);
1810 /* Change the REGNO and REG_NREGS of REG X to the specified values,
1811 bypassing the df machinery. */
1812 static inline void
1813 set_regno_raw (rtx x, unsigned int regno, unsigned int nregs)
1815 reg_info *reg = REG_CHECK (x);
1816 reg->regno = regno;
1817 reg->nregs = nregs;
1820 /* 1 if RTX is a reg or parallel that is the current function's return
1821 value. */
1822 #define REG_FUNCTION_VALUE_P(RTX) \
1823 (RTL_FLAG_CHECK2 ("REG_FUNCTION_VALUE_P", (RTX), REG, PARALLEL)->return_val)
1825 /* 1 if RTX is a reg that corresponds to a variable declared by the user. */
1826 #define REG_USERVAR_P(RTX) \
1827 (RTL_FLAG_CHECK1 ("REG_USERVAR_P", (RTX), REG)->volatil)
1829 /* 1 if RTX is a reg that holds a pointer value. */
1830 #define REG_POINTER(RTX) \
1831 (RTL_FLAG_CHECK1 ("REG_POINTER", (RTX), REG)->frame_related)
1833 /* 1 if RTX is a mem that holds a pointer value. */
1834 #define MEM_POINTER(RTX) \
1835 (RTL_FLAG_CHECK1 ("MEM_POINTER", (RTX), MEM)->frame_related)
1837 /* 1 if the given register REG corresponds to a hard register. */
1838 #define HARD_REGISTER_P(REG) (HARD_REGISTER_NUM_P (REGNO (REG)))
1840 /* 1 if the given register number REG_NO corresponds to a hard register. */
1841 #define HARD_REGISTER_NUM_P(REG_NO) ((REG_NO) < FIRST_PSEUDO_REGISTER)
1843 /* For a CONST_INT rtx, INTVAL extracts the integer. */
1844 #define INTVAL(RTX) XCWINT (RTX, 0, CONST_INT)
1845 #define UINTVAL(RTX) ((unsigned HOST_WIDE_INT) INTVAL (RTX))
1847 /* For a CONST_WIDE_INT, CONST_WIDE_INT_NUNITS is the number of
1848 elements actually needed to represent the constant.
1849 CONST_WIDE_INT_ELT gets one of the elements. 0 is the least
1850 significant HOST_WIDE_INT. */
1851 #define CONST_WIDE_INT_VEC(RTX) HWIVEC_CHECK (RTX, CONST_WIDE_INT)
1852 #define CONST_WIDE_INT_NUNITS(RTX) CWI_GET_NUM_ELEM (RTX)
1853 #define CONST_WIDE_INT_ELT(RTX, N) CWI_ELT (RTX, N)
1855 /* For a CONST_DOUBLE:
1856 #if TARGET_SUPPORTS_WIDE_INT == 0
1857 For a VOIDmode, there are two integers CONST_DOUBLE_LOW is the
1858 low-order word and ..._HIGH the high-order.
1859 #endif
1860 For a float, there is a REAL_VALUE_TYPE structure, and
1861 CONST_DOUBLE_REAL_VALUE(r) is a pointer to it. */
1862 #define CONST_DOUBLE_LOW(r) XCMWINT (r, 0, CONST_DOUBLE, VOIDmode)
1863 #define CONST_DOUBLE_HIGH(r) XCMWINT (r, 1, CONST_DOUBLE, VOIDmode)
1864 #define CONST_DOUBLE_REAL_VALUE(r) \
1865 ((const struct real_value *) XCNMPRV (r, CONST_DOUBLE, VOIDmode))
1867 #define CONST_FIXED_VALUE(r) \
1868 ((const struct fixed_value *) XCNMPFV (r, CONST_FIXED, VOIDmode))
1869 #define CONST_FIXED_VALUE_HIGH(r) \
1870 ((HOST_WIDE_INT) (CONST_FIXED_VALUE (r)->data.high))
1871 #define CONST_FIXED_VALUE_LOW(r) \
1872 ((HOST_WIDE_INT) (CONST_FIXED_VALUE (r)->data.low))
1874 /* For a CONST_VECTOR, return element #n. */
1875 #define CONST_VECTOR_ELT(RTX, N) XCVECEXP (RTX, 0, N, CONST_VECTOR)
1877 /* For a CONST_VECTOR, return the number of elements in a vector. */
1878 #define CONST_VECTOR_NUNITS(RTX) XCVECLEN (RTX, 0, CONST_VECTOR)
1880 /* For a SUBREG rtx, SUBREG_REG extracts the value we want a subreg of.
1881 SUBREG_BYTE extracts the byte-number. */
1883 #define SUBREG_REG(RTX) XCEXP (RTX, 0, SUBREG)
1884 #define SUBREG_BYTE(RTX) XCUINT (RTX, 1, SUBREG)
1886 /* in rtlanal.c */
1887 /* Return the right cost to give to an operation
1888 to make the cost of the corresponding register-to-register instruction
1889 N times that of a fast register-to-register instruction. */
1890 #define COSTS_N_INSNS(N) ((N) * 4)
1892 /* Maximum cost of an rtl expression. This value has the special meaning
1893 not to use an rtx with this cost under any circumstances. */
1894 #define MAX_COST INT_MAX
1896 /* Return true if CODE always has VOIDmode. */
1898 static inline bool
1899 always_void_p (enum rtx_code code)
1901 return code == SET;
1904 /* A structure to hold all available cost information about an rtl
1905 expression. */
1906 struct full_rtx_costs
1908 int speed;
1909 int size;
1912 /* Initialize a full_rtx_costs structure C to the maximum cost. */
1913 static inline void
1914 init_costs_to_max (struct full_rtx_costs *c)
1916 c->speed = MAX_COST;
1917 c->size = MAX_COST;
1920 /* Initialize a full_rtx_costs structure C to zero cost. */
1921 static inline void
1922 init_costs_to_zero (struct full_rtx_costs *c)
1924 c->speed = 0;
1925 c->size = 0;
1928 /* Compare two full_rtx_costs structures A and B, returning true
1929 if A < B when optimizing for speed. */
1930 static inline bool
1931 costs_lt_p (struct full_rtx_costs *a, struct full_rtx_costs *b,
1932 bool speed)
1934 if (speed)
1935 return (a->speed < b->speed
1936 || (a->speed == b->speed && a->size < b->size));
1937 else
1938 return (a->size < b->size
1939 || (a->size == b->size && a->speed < b->speed));
1942 /* Increase both members of the full_rtx_costs structure C by the
1943 cost of N insns. */
1944 static inline void
1945 costs_add_n_insns (struct full_rtx_costs *c, int n)
1947 c->speed += COSTS_N_INSNS (n);
1948 c->size += COSTS_N_INSNS (n);
1951 /* Describes the shape of a subreg:
1953 inner_mode == the mode of the SUBREG_REG
1954 offset == the SUBREG_BYTE
1955 outer_mode == the mode of the SUBREG itself. */
1956 struct subreg_shape {
1957 subreg_shape (machine_mode, unsigned int, machine_mode);
1958 bool operator == (const subreg_shape &) const;
1959 bool operator != (const subreg_shape &) const;
1960 unsigned int unique_id () const;
1962 machine_mode inner_mode;
1963 unsigned int offset;
1964 machine_mode outer_mode;
1967 inline
1968 subreg_shape::subreg_shape (machine_mode inner_mode_in,
1969 unsigned int offset_in,
1970 machine_mode outer_mode_in)
1971 : inner_mode (inner_mode_in), offset (offset_in), outer_mode (outer_mode_in)
1974 inline bool
1975 subreg_shape::operator == (const subreg_shape &other) const
1977 return (inner_mode == other.inner_mode
1978 && offset == other.offset
1979 && outer_mode == other.outer_mode);
1982 inline bool
1983 subreg_shape::operator != (const subreg_shape &other) const
1985 return !operator == (other);
1988 /* Return an integer that uniquely identifies this shape. Structures
1989 like rtx_def assume that a mode can fit in an 8-bit bitfield and no
1990 current mode is anywhere near being 65536 bytes in size, so the
1991 id comfortably fits in an int. */
1993 inline unsigned int
1994 subreg_shape::unique_id () const
1996 STATIC_ASSERT (MAX_MACHINE_MODE <= 256);
1997 return (int) inner_mode + ((int) outer_mode << 8) + (offset << 16);
2000 /* Return the shape of a SUBREG rtx. */
2002 static inline subreg_shape
2003 shape_of_subreg (const_rtx x)
2005 return subreg_shape (GET_MODE (SUBREG_REG (x)),
2006 SUBREG_BYTE (x), GET_MODE (x));
2009 /* Information about an address. This structure is supposed to be able
2010 to represent all supported target addresses. Please extend it if it
2011 is not yet general enough. */
2012 struct address_info {
2013 /* The mode of the value being addressed, or VOIDmode if this is
2014 a load-address operation with no known address mode. */
2015 machine_mode mode;
2017 /* The address space. */
2018 addr_space_t as;
2020 /* True if this is an RTX_AUTOINC address. */
2021 bool autoinc_p;
2023 /* A pointer to the top-level address. */
2024 rtx *outer;
2026 /* A pointer to the inner address, after all address mutations
2027 have been stripped from the top-level address. It can be one
2028 of the following:
2030 - A {PRE,POST}_{INC,DEC} of *BASE. SEGMENT, INDEX and DISP are null.
2032 - A {PRE,POST}_MODIFY of *BASE. In this case either INDEX or DISP
2033 points to the step value, depending on whether the step is variable
2034 or constant respectively. SEGMENT is null.
2036 - A plain sum of the form SEGMENT + BASE + INDEX + DISP,
2037 with null fields evaluating to 0. */
2038 rtx *inner;
2040 /* Components that make up *INNER. Each one may be null or nonnull.
2041 When nonnull, their meanings are as follows:
2043 - *SEGMENT is the "segment" of memory to which the address refers.
2044 This value is entirely target-specific and is only called a "segment"
2045 because that's its most typical use. It contains exactly one UNSPEC,
2046 pointed to by SEGMENT_TERM. The contents of *SEGMENT do not need
2047 reloading.
2049 - *BASE is a variable expression representing a base address.
2050 It contains exactly one REG, SUBREG or MEM, pointed to by BASE_TERM.
2052 - *INDEX is a variable expression representing an index value.
2053 It may be a scaled expression, such as a MULT. It has exactly
2054 one REG, SUBREG or MEM, pointed to by INDEX_TERM.
2056 - *DISP is a constant, possibly mutated. DISP_TERM points to the
2057 unmutated RTX_CONST_OBJ. */
2058 rtx *segment;
2059 rtx *base;
2060 rtx *index;
2061 rtx *disp;
2063 rtx *segment_term;
2064 rtx *base_term;
2065 rtx *index_term;
2066 rtx *disp_term;
2068 /* In a {PRE,POST}_MODIFY address, this points to a second copy
2069 of BASE_TERM, otherwise it is null. */
2070 rtx *base_term2;
2072 /* ADDRESS if this structure describes an address operand, MEM if
2073 it describes a MEM address. */
2074 enum rtx_code addr_outer_code;
2076 /* If BASE is nonnull, this is the code of the rtx that contains it. */
2077 enum rtx_code base_outer_code;
2080 /* This is used to bundle an rtx and a mode together so that the pair
2081 can be used with the wi:: routines. If we ever put modes into rtx
2082 integer constants, this should go away and then just pass an rtx in. */
2083 typedef std::pair <rtx, machine_mode> rtx_mode_t;
2085 namespace wi
2087 template <>
2088 struct int_traits <rtx_mode_t>
2090 static const enum precision_type precision_type = VAR_PRECISION;
2091 static const bool host_dependent_precision = false;
2092 /* This ought to be true, except for the special case that BImode
2093 is canonicalized to STORE_FLAG_VALUE, which might be 1. */
2094 static const bool is_sign_extended = false;
2095 static unsigned int get_precision (const rtx_mode_t &);
2096 static wi::storage_ref decompose (HOST_WIDE_INT *, unsigned int,
2097 const rtx_mode_t &);
2101 inline unsigned int
2102 wi::int_traits <rtx_mode_t>::get_precision (const rtx_mode_t &x)
2104 gcc_checking_assert (x.second != BLKmode && x.second != VOIDmode);
2105 return GET_MODE_PRECISION (x.second);
2108 inline wi::storage_ref
2109 wi::int_traits <rtx_mode_t>::decompose (HOST_WIDE_INT *,
2110 unsigned int precision,
2111 const rtx_mode_t &x)
2113 gcc_checking_assert (precision == get_precision (x));
2114 switch (GET_CODE (x.first))
2116 case CONST_INT:
2117 if (precision < HOST_BITS_PER_WIDE_INT)
2118 /* Nonzero BImodes are stored as STORE_FLAG_VALUE, which on many
2119 targets is 1 rather than -1. */
2120 gcc_checking_assert (INTVAL (x.first)
2121 == sext_hwi (INTVAL (x.first), precision)
2122 || (x.second == BImode && INTVAL (x.first) == 1));
2124 return wi::storage_ref (&INTVAL (x.first), 1, precision);
2126 case CONST_WIDE_INT:
2127 return wi::storage_ref (&CONST_WIDE_INT_ELT (x.first, 0),
2128 CONST_WIDE_INT_NUNITS (x.first), precision);
2130 #if TARGET_SUPPORTS_WIDE_INT == 0
2131 case CONST_DOUBLE:
2132 return wi::storage_ref (&CONST_DOUBLE_LOW (x.first), 2, precision);
2133 #endif
2135 default:
2136 gcc_unreachable ();
2140 namespace wi
2142 hwi_with_prec shwi (HOST_WIDE_INT, machine_mode mode);
2143 wide_int min_value (machine_mode, signop);
2144 wide_int max_value (machine_mode, signop);
2147 inline wi::hwi_with_prec
2148 wi::shwi (HOST_WIDE_INT val, machine_mode mode)
2150 return shwi (val, GET_MODE_PRECISION (mode));
2153 /* Produce the smallest number that is represented in MODE. The precision
2154 is taken from MODE and the sign from SGN. */
2155 inline wide_int
2156 wi::min_value (machine_mode mode, signop sgn)
2158 return min_value (GET_MODE_PRECISION (mode), sgn);
2161 /* Produce the largest number that is represented in MODE. The precision
2162 is taken from MODE and the sign from SGN. */
2163 inline wide_int
2164 wi::max_value (machine_mode mode, signop sgn)
2166 return max_value (GET_MODE_PRECISION (mode), sgn);
2169 extern void init_rtlanal (void);
2170 extern int rtx_cost (rtx, machine_mode, enum rtx_code, int, bool);
2171 extern int address_cost (rtx, machine_mode, addr_space_t, bool);
2172 extern void get_full_rtx_cost (rtx, machine_mode, enum rtx_code, int,
2173 struct full_rtx_costs *);
2174 extern unsigned int subreg_lsb (const_rtx);
2175 extern unsigned int subreg_lsb_1 (machine_mode, machine_mode,
2176 unsigned int);
2177 extern unsigned int subreg_size_offset_from_lsb (unsigned int, unsigned int,
2178 unsigned int);
2180 /* Return the subreg byte offset for a subreg whose outer mode is
2181 OUTER_MODE, whose inner mode is INNER_MODE, and where there are
2182 LSB_SHIFT *bits* between the lsb of the outer value and the lsb of
2183 the inner value. This is the inverse of subreg_lsb_1 (which converts
2184 byte offsets to bit shifts). */
2186 inline unsigned int
2187 subreg_offset_from_lsb (machine_mode outer_mode,
2188 machine_mode inner_mode,
2189 unsigned int lsb_shift)
2191 return subreg_size_offset_from_lsb (GET_MODE_SIZE (outer_mode),
2192 GET_MODE_SIZE (inner_mode), lsb_shift);
2195 extern unsigned int subreg_regno_offset (unsigned int, machine_mode,
2196 unsigned int, machine_mode);
2197 extern bool subreg_offset_representable_p (unsigned int, machine_mode,
2198 unsigned int, machine_mode);
2199 extern unsigned int subreg_regno (const_rtx);
2200 extern int simplify_subreg_regno (unsigned int, machine_mode,
2201 unsigned int, machine_mode);
2202 extern unsigned int subreg_nregs (const_rtx);
2203 extern unsigned int subreg_nregs_with_regno (unsigned int, const_rtx);
2204 extern unsigned HOST_WIDE_INT nonzero_bits (const_rtx, machine_mode);
2205 extern unsigned int num_sign_bit_copies (const_rtx, machine_mode);
2206 extern bool constant_pool_constant_p (rtx);
2207 extern bool truncated_to_mode (machine_mode, const_rtx);
2208 extern int low_bitmask_len (machine_mode, unsigned HOST_WIDE_INT);
2209 extern void split_double (rtx, rtx *, rtx *);
2210 extern rtx *strip_address_mutations (rtx *, enum rtx_code * = 0);
2211 extern void decompose_address (struct address_info *, rtx *,
2212 machine_mode, addr_space_t, enum rtx_code);
2213 extern void decompose_lea_address (struct address_info *, rtx *);
2214 extern void decompose_mem_address (struct address_info *, rtx);
2215 extern void update_address (struct address_info *);
2216 extern HOST_WIDE_INT get_index_scale (const struct address_info *);
2217 extern enum rtx_code get_index_code (const struct address_info *);
2219 /* 1 if RTX is a subreg containing a reg that is already known to be
2220 sign- or zero-extended from the mode of the subreg to the mode of
2221 the reg. SUBREG_PROMOTED_UNSIGNED_P gives the signedness of the
2222 extension.
2224 When used as a LHS, is means that this extension must be done
2225 when assigning to SUBREG_REG. */
2227 #define SUBREG_PROMOTED_VAR_P(RTX) \
2228 (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED", (RTX), SUBREG)->in_struct)
2230 /* Valid for subregs which are SUBREG_PROMOTED_VAR_P(). In that case
2231 this gives the necessary extensions:
2232 0 - signed (SPR_SIGNED)
2233 1 - normal unsigned (SPR_UNSIGNED)
2234 2 - value is both sign and unsign extended for mode
2235 (SPR_SIGNED_AND_UNSIGNED).
2236 -1 - pointer unsigned, which most often can be handled like unsigned
2237 extension, except for generating instructions where we need to
2238 emit special code (ptr_extend insns) on some architectures
2239 (SPR_POINTER). */
2241 const int SRP_POINTER = -1;
2242 const int SRP_SIGNED = 0;
2243 const int SRP_UNSIGNED = 1;
2244 const int SRP_SIGNED_AND_UNSIGNED = 2;
2246 /* Sets promoted mode for SUBREG_PROMOTED_VAR_P(). */
2247 #define SUBREG_PROMOTED_SET(RTX, VAL) \
2248 do { \
2249 rtx const _rtx = RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SET", \
2250 (RTX), SUBREG); \
2251 switch (VAL) \
2253 case SRP_POINTER: \
2254 _rtx->volatil = 0; \
2255 _rtx->unchanging = 0; \
2256 break; \
2257 case SRP_SIGNED: \
2258 _rtx->volatil = 0; \
2259 _rtx->unchanging = 1; \
2260 break; \
2261 case SRP_UNSIGNED: \
2262 _rtx->volatil = 1; \
2263 _rtx->unchanging = 0; \
2264 break; \
2265 case SRP_SIGNED_AND_UNSIGNED: \
2266 _rtx->volatil = 1; \
2267 _rtx->unchanging = 1; \
2268 break; \
2270 } while (0)
2272 /* Gets the value stored in promoted mode for SUBREG_PROMOTED_VAR_P(),
2273 including SRP_SIGNED_AND_UNSIGNED if promoted for
2274 both signed and unsigned. */
2275 #define SUBREG_PROMOTED_GET(RTX) \
2276 (2 * (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_GET", (RTX), SUBREG)->volatil)\
2277 + (RTX)->unchanging - 1)
2279 /* Returns sign of promoted mode for SUBREG_PROMOTED_VAR_P(). */
2280 #define SUBREG_PROMOTED_SIGN(RTX) \
2281 ((RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SIGN", (RTX), SUBREG)->volatil) ? 1\
2282 : (RTX)->unchanging - 1)
2284 /* Predicate to check if RTX of SUBREG_PROMOTED_VAR_P() is promoted
2285 for SIGNED type. */
2286 #define SUBREG_PROMOTED_SIGNED_P(RTX) \
2287 (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SIGNED_P", (RTX), SUBREG)->unchanging)
2289 /* Predicate to check if RTX of SUBREG_PROMOTED_VAR_P() is promoted
2290 for UNSIGNED type. */
2291 #define SUBREG_PROMOTED_UNSIGNED_P(RTX) \
2292 (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_UNSIGNED_P", (RTX), SUBREG)->volatil)
2294 /* Checks if RTX of SUBREG_PROMOTED_VAR_P() is promoted for given SIGN. */
2295 #define SUBREG_CHECK_PROMOTED_SIGN(RTX, SIGN) \
2296 ((SIGN) == SRP_POINTER ? SUBREG_PROMOTED_GET (RTX) == SRP_POINTER \
2297 : (SIGN) == SRP_SIGNED ? SUBREG_PROMOTED_SIGNED_P (RTX) \
2298 : SUBREG_PROMOTED_UNSIGNED_P (RTX))
2300 /* True if the REG is the static chain register for some CALL_INSN. */
2301 #define STATIC_CHAIN_REG_P(RTX) \
2302 (RTL_FLAG_CHECK1 ("STATIC_CHAIN_REG_P", (RTX), REG)->jump)
2304 /* True if the subreg was generated by LRA for reload insns. Such
2305 subregs are valid only during LRA. */
2306 #define LRA_SUBREG_P(RTX) \
2307 (RTL_FLAG_CHECK1 ("LRA_SUBREG_P", (RTX), SUBREG)->jump)
2309 /* True if call is instrumented by Pointer Bounds Checker. */
2310 #define CALL_EXPR_WITH_BOUNDS_P(RTX) \
2311 (RTL_FLAG_CHECK1 ("CALL_EXPR_WITH_BOUNDS_P", (RTX), CALL)->jump)
2313 /* Access various components of an ASM_OPERANDS rtx. */
2315 #define ASM_OPERANDS_TEMPLATE(RTX) XCSTR (RTX, 0, ASM_OPERANDS)
2316 #define ASM_OPERANDS_OUTPUT_CONSTRAINT(RTX) XCSTR (RTX, 1, ASM_OPERANDS)
2317 #define ASM_OPERANDS_OUTPUT_IDX(RTX) XCINT (RTX, 2, ASM_OPERANDS)
2318 #define ASM_OPERANDS_INPUT_VEC(RTX) XCVEC (RTX, 3, ASM_OPERANDS)
2319 #define ASM_OPERANDS_INPUT_CONSTRAINT_VEC(RTX) XCVEC (RTX, 4, ASM_OPERANDS)
2320 #define ASM_OPERANDS_INPUT(RTX, N) XCVECEXP (RTX, 3, N, ASM_OPERANDS)
2321 #define ASM_OPERANDS_INPUT_LENGTH(RTX) XCVECLEN (RTX, 3, ASM_OPERANDS)
2322 #define ASM_OPERANDS_INPUT_CONSTRAINT_EXP(RTX, N) \
2323 XCVECEXP (RTX, 4, N, ASM_OPERANDS)
2324 #define ASM_OPERANDS_INPUT_CONSTRAINT(RTX, N) \
2325 XSTR (XCVECEXP (RTX, 4, N, ASM_OPERANDS), 0)
2326 #define ASM_OPERANDS_INPUT_MODE(RTX, N) \
2327 GET_MODE (XCVECEXP (RTX, 4, N, ASM_OPERANDS))
2328 #define ASM_OPERANDS_LABEL_VEC(RTX) XCVEC (RTX, 5, ASM_OPERANDS)
2329 #define ASM_OPERANDS_LABEL_LENGTH(RTX) XCVECLEN (RTX, 5, ASM_OPERANDS)
2330 #define ASM_OPERANDS_LABEL(RTX, N) XCVECEXP (RTX, 5, N, ASM_OPERANDS)
2331 #define ASM_OPERANDS_SOURCE_LOCATION(RTX) XCUINT (RTX, 6, ASM_OPERANDS)
2332 #define ASM_INPUT_SOURCE_LOCATION(RTX) XCUINT (RTX, 1, ASM_INPUT)
2334 /* 1 if RTX is a mem that is statically allocated in read-only memory. */
2335 #define MEM_READONLY_P(RTX) \
2336 (RTL_FLAG_CHECK1 ("MEM_READONLY_P", (RTX), MEM)->unchanging)
2338 /* 1 if RTX is a mem and we should keep the alias set for this mem
2339 unchanged when we access a component. Set to 1, or example, when we
2340 are already in a non-addressable component of an aggregate. */
2341 #define MEM_KEEP_ALIAS_SET_P(RTX) \
2342 (RTL_FLAG_CHECK1 ("MEM_KEEP_ALIAS_SET_P", (RTX), MEM)->jump)
2344 /* 1 if RTX is a mem or asm_operand for a volatile reference. */
2345 #define MEM_VOLATILE_P(RTX) \
2346 (RTL_FLAG_CHECK3 ("MEM_VOLATILE_P", (RTX), MEM, ASM_OPERANDS, \
2347 ASM_INPUT)->volatil)
2349 /* 1 if RTX is a mem that cannot trap. */
2350 #define MEM_NOTRAP_P(RTX) \
2351 (RTL_FLAG_CHECK1 ("MEM_NOTRAP_P", (RTX), MEM)->call)
2353 /* The memory attribute block. We provide access macros for each value
2354 in the block and provide defaults if none specified. */
2355 #define MEM_ATTRS(RTX) X0MEMATTR (RTX, 1)
2357 /* The register attribute block. We provide access macros for each value
2358 in the block and provide defaults if none specified. */
2359 #define REG_ATTRS(RTX) (REG_CHECK (RTX)->attrs)
2361 #ifndef GENERATOR_FILE
2362 /* For a MEM rtx, the alias set. If 0, this MEM is not in any alias
2363 set, and may alias anything. Otherwise, the MEM can only alias
2364 MEMs in a conflicting alias set. This value is set in a
2365 language-dependent manner in the front-end, and should not be
2366 altered in the back-end. These set numbers are tested with
2367 alias_sets_conflict_p. */
2368 #define MEM_ALIAS_SET(RTX) (get_mem_attrs (RTX)->alias)
2370 /* For a MEM rtx, the decl it is known to refer to, if it is known to
2371 refer to part of a DECL. It may also be a COMPONENT_REF. */
2372 #define MEM_EXPR(RTX) (get_mem_attrs (RTX)->expr)
2374 /* For a MEM rtx, true if its MEM_OFFSET is known. */
2375 #define MEM_OFFSET_KNOWN_P(RTX) (get_mem_attrs (RTX)->offset_known_p)
2377 /* For a MEM rtx, the offset from the start of MEM_EXPR. */
2378 #define MEM_OFFSET(RTX) (get_mem_attrs (RTX)->offset)
2380 /* For a MEM rtx, the address space. */
2381 #define MEM_ADDR_SPACE(RTX) (get_mem_attrs (RTX)->addrspace)
2383 /* For a MEM rtx, true if its MEM_SIZE is known. */
2384 #define MEM_SIZE_KNOWN_P(RTX) (get_mem_attrs (RTX)->size_known_p)
2386 /* For a MEM rtx, the size in bytes of the MEM. */
2387 #define MEM_SIZE(RTX) (get_mem_attrs (RTX)->size)
2389 /* For a MEM rtx, the alignment in bits. We can use the alignment of the
2390 mode as a default when STRICT_ALIGNMENT, but not if not. */
2391 #define MEM_ALIGN(RTX) (get_mem_attrs (RTX)->align)
2392 #else
2393 #define MEM_ADDR_SPACE(RTX) ADDR_SPACE_GENERIC
2394 #endif
2396 /* For a REG rtx, the decl it is known to refer to, if it is known to
2397 refer to part of a DECL. */
2398 #define REG_EXPR(RTX) (REG_ATTRS (RTX) == 0 ? 0 : REG_ATTRS (RTX)->decl)
2400 /* For a REG rtx, the offset from the start of REG_EXPR, if known, as an
2401 HOST_WIDE_INT. */
2402 #define REG_OFFSET(RTX) (REG_ATTRS (RTX) == 0 ? 0 : REG_ATTRS (RTX)->offset)
2404 /* Copy the attributes that apply to memory locations from RHS to LHS. */
2405 #define MEM_COPY_ATTRIBUTES(LHS, RHS) \
2406 (MEM_VOLATILE_P (LHS) = MEM_VOLATILE_P (RHS), \
2407 MEM_NOTRAP_P (LHS) = MEM_NOTRAP_P (RHS), \
2408 MEM_READONLY_P (LHS) = MEM_READONLY_P (RHS), \
2409 MEM_KEEP_ALIAS_SET_P (LHS) = MEM_KEEP_ALIAS_SET_P (RHS), \
2410 MEM_POINTER (LHS) = MEM_POINTER (RHS), \
2411 MEM_ATTRS (LHS) = MEM_ATTRS (RHS))
2413 /* 1 if RTX is a label_ref for a nonlocal label. */
2414 /* Likewise in an expr_list for a REG_LABEL_OPERAND or
2415 REG_LABEL_TARGET note. */
2416 #define LABEL_REF_NONLOCAL_P(RTX) \
2417 (RTL_FLAG_CHECK1 ("LABEL_REF_NONLOCAL_P", (RTX), LABEL_REF)->volatil)
2419 /* 1 if RTX is a code_label that should always be considered to be needed. */
2420 #define LABEL_PRESERVE_P(RTX) \
2421 (RTL_FLAG_CHECK2 ("LABEL_PRESERVE_P", (RTX), CODE_LABEL, NOTE)->in_struct)
2423 /* During sched, 1 if RTX is an insn that must be scheduled together
2424 with the preceding insn. */
2425 #define SCHED_GROUP_P(RTX) \
2426 (RTL_FLAG_CHECK4 ("SCHED_GROUP_P", (RTX), DEBUG_INSN, INSN, \
2427 JUMP_INSN, CALL_INSN)->in_struct)
2429 /* For a SET rtx, SET_DEST is the place that is set
2430 and SET_SRC is the value it is set to. */
2431 #define SET_DEST(RTX) XC2EXP (RTX, 0, SET, CLOBBER)
2432 #define SET_SRC(RTX) XCEXP (RTX, 1, SET)
2433 #define SET_IS_RETURN_P(RTX) \
2434 (RTL_FLAG_CHECK1 ("SET_IS_RETURN_P", (RTX), SET)->jump)
2436 /* For a TRAP_IF rtx, TRAP_CONDITION is an expression. */
2437 #define TRAP_CONDITION(RTX) XCEXP (RTX, 0, TRAP_IF)
2438 #define TRAP_CODE(RTX) XCEXP (RTX, 1, TRAP_IF)
2440 /* For a COND_EXEC rtx, COND_EXEC_TEST is the condition to base
2441 conditionally executing the code on, COND_EXEC_CODE is the code
2442 to execute if the condition is true. */
2443 #define COND_EXEC_TEST(RTX) XCEXP (RTX, 0, COND_EXEC)
2444 #define COND_EXEC_CODE(RTX) XCEXP (RTX, 1, COND_EXEC)
2446 /* 1 if RTX is a symbol_ref that addresses this function's rtl
2447 constants pool. */
2448 #define CONSTANT_POOL_ADDRESS_P(RTX) \
2449 (RTL_FLAG_CHECK1 ("CONSTANT_POOL_ADDRESS_P", (RTX), SYMBOL_REF)->unchanging)
2451 /* 1 if RTX is a symbol_ref that addresses a value in the file's
2452 tree constant pool. This information is private to varasm.c. */
2453 #define TREE_CONSTANT_POOL_ADDRESS_P(RTX) \
2454 (RTL_FLAG_CHECK1 ("TREE_CONSTANT_POOL_ADDRESS_P", \
2455 (RTX), SYMBOL_REF)->frame_related)
2457 /* Used if RTX is a symbol_ref, for machine-specific purposes. */
2458 #define SYMBOL_REF_FLAG(RTX) \
2459 (RTL_FLAG_CHECK1 ("SYMBOL_REF_FLAG", (RTX), SYMBOL_REF)->volatil)
2461 /* 1 if RTX is a symbol_ref that has been the library function in
2462 emit_library_call. */
2463 #define SYMBOL_REF_USED(RTX) \
2464 (RTL_FLAG_CHECK1 ("SYMBOL_REF_USED", (RTX), SYMBOL_REF)->used)
2466 /* 1 if RTX is a symbol_ref for a weak symbol. */
2467 #define SYMBOL_REF_WEAK(RTX) \
2468 (RTL_FLAG_CHECK1 ("SYMBOL_REF_WEAK", (RTX), SYMBOL_REF)->return_val)
2470 /* A pointer attached to the SYMBOL_REF; either SYMBOL_REF_DECL or
2471 SYMBOL_REF_CONSTANT. */
2472 #define SYMBOL_REF_DATA(RTX) X0ANY ((RTX), 1)
2474 /* Set RTX's SYMBOL_REF_DECL to DECL. RTX must not be a constant
2475 pool symbol. */
2476 #define SET_SYMBOL_REF_DECL(RTX, DECL) \
2477 (gcc_assert (!CONSTANT_POOL_ADDRESS_P (RTX)), X0TREE ((RTX), 1) = (DECL))
2479 /* The tree (decl or constant) associated with the symbol, or null. */
2480 #define SYMBOL_REF_DECL(RTX) \
2481 (CONSTANT_POOL_ADDRESS_P (RTX) ? NULL : X0TREE ((RTX), 1))
2483 /* Set RTX's SYMBOL_REF_CONSTANT to C. RTX must be a constant pool symbol. */
2484 #define SET_SYMBOL_REF_CONSTANT(RTX, C) \
2485 (gcc_assert (CONSTANT_POOL_ADDRESS_P (RTX)), X0CONSTANT ((RTX), 1) = (C))
2487 /* The rtx constant pool entry for a symbol, or null. */
2488 #define SYMBOL_REF_CONSTANT(RTX) \
2489 (CONSTANT_POOL_ADDRESS_P (RTX) ? X0CONSTANT ((RTX), 1) : NULL)
2491 /* A set of flags on a symbol_ref that are, in some respects, redundant with
2492 information derivable from the tree decl associated with this symbol.
2493 Except that we build a *lot* of SYMBOL_REFs that aren't associated with a
2494 decl. In some cases this is a bug. But beyond that, it's nice to cache
2495 this information to avoid recomputing it. Finally, this allows space for
2496 the target to store more than one bit of information, as with
2497 SYMBOL_REF_FLAG. */
2498 #define SYMBOL_REF_FLAGS(RTX) \
2499 (RTL_FLAG_CHECK1 ("SYMBOL_REF_FLAGS", (RTX), SYMBOL_REF) \
2500 ->u2.symbol_ref_flags)
2502 /* These flags are common enough to be defined for all targets. They
2503 are computed by the default version of targetm.encode_section_info. */
2505 /* Set if this symbol is a function. */
2506 #define SYMBOL_FLAG_FUNCTION (1 << 0)
2507 #define SYMBOL_REF_FUNCTION_P(RTX) \
2508 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_FUNCTION) != 0)
2509 /* Set if targetm.binds_local_p is true. */
2510 #define SYMBOL_FLAG_LOCAL (1 << 1)
2511 #define SYMBOL_REF_LOCAL_P(RTX) \
2512 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_LOCAL) != 0)
2513 /* Set if targetm.in_small_data_p is true. */
2514 #define SYMBOL_FLAG_SMALL (1 << 2)
2515 #define SYMBOL_REF_SMALL_P(RTX) \
2516 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_SMALL) != 0)
2517 /* The three-bit field at [5:3] is true for TLS variables; use
2518 SYMBOL_REF_TLS_MODEL to extract the field as an enum tls_model. */
2519 #define SYMBOL_FLAG_TLS_SHIFT 3
2520 #define SYMBOL_REF_TLS_MODEL(RTX) \
2521 ((enum tls_model) ((SYMBOL_REF_FLAGS (RTX) >> SYMBOL_FLAG_TLS_SHIFT) & 7))
2522 /* Set if this symbol is not defined in this translation unit. */
2523 #define SYMBOL_FLAG_EXTERNAL (1 << 6)
2524 #define SYMBOL_REF_EXTERNAL_P(RTX) \
2525 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_EXTERNAL) != 0)
2526 /* Set if this symbol has a block_symbol structure associated with it. */
2527 #define SYMBOL_FLAG_HAS_BLOCK_INFO (1 << 7)
2528 #define SYMBOL_REF_HAS_BLOCK_INFO_P(RTX) \
2529 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_HAS_BLOCK_INFO) != 0)
2530 /* Set if this symbol is a section anchor. SYMBOL_REF_ANCHOR_P implies
2531 SYMBOL_REF_HAS_BLOCK_INFO_P. */
2532 #define SYMBOL_FLAG_ANCHOR (1 << 8)
2533 #define SYMBOL_REF_ANCHOR_P(RTX) \
2534 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_ANCHOR) != 0)
2536 /* Subsequent bits are available for the target to use. */
2537 #define SYMBOL_FLAG_MACH_DEP_SHIFT 9
2538 #define SYMBOL_FLAG_MACH_DEP (1 << SYMBOL_FLAG_MACH_DEP_SHIFT)
2540 /* If SYMBOL_REF_HAS_BLOCK_INFO_P (RTX), this is the object_block
2541 structure to which the symbol belongs, or NULL if it has not been
2542 assigned a block. */
2543 #define SYMBOL_REF_BLOCK(RTX) (BLOCK_SYMBOL_CHECK (RTX)->block)
2545 /* If SYMBOL_REF_HAS_BLOCK_INFO_P (RTX), this is the offset of RTX from
2546 the first object in SYMBOL_REF_BLOCK (RTX). The value is negative if
2547 RTX has not yet been assigned to a block, or it has not been given an
2548 offset within that block. */
2549 #define SYMBOL_REF_BLOCK_OFFSET(RTX) (BLOCK_SYMBOL_CHECK (RTX)->offset)
2551 /* True if RTX is flagged to be a scheduling barrier. */
2552 #define PREFETCH_SCHEDULE_BARRIER_P(RTX) \
2553 (RTL_FLAG_CHECK1 ("PREFETCH_SCHEDULE_BARRIER_P", (RTX), PREFETCH)->volatil)
2555 /* Indicate whether the machine has any sort of auto increment addressing.
2556 If not, we can avoid checking for REG_INC notes. */
2558 #if (defined (HAVE_PRE_INCREMENT) || defined (HAVE_PRE_DECREMENT) \
2559 || defined (HAVE_POST_INCREMENT) || defined (HAVE_POST_DECREMENT) \
2560 || defined (HAVE_PRE_MODIFY_DISP) || defined (HAVE_POST_MODIFY_DISP) \
2561 || defined (HAVE_PRE_MODIFY_REG) || defined (HAVE_POST_MODIFY_REG))
2562 #define AUTO_INC_DEC 1
2563 #else
2564 #define AUTO_INC_DEC 0
2565 #endif
2567 /* Define a macro to look for REG_INC notes,
2568 but save time on machines where they never exist. */
2570 #if AUTO_INC_DEC
2571 #define FIND_REG_INC_NOTE(INSN, REG) \
2572 ((REG) != NULL_RTX && REG_P ((REG)) \
2573 ? find_regno_note ((INSN), REG_INC, REGNO (REG)) \
2574 : find_reg_note ((INSN), REG_INC, (REG)))
2575 #else
2576 #define FIND_REG_INC_NOTE(INSN, REG) 0
2577 #endif
2579 #ifndef HAVE_PRE_INCREMENT
2580 #define HAVE_PRE_INCREMENT 0
2581 #endif
2583 #ifndef HAVE_PRE_DECREMENT
2584 #define HAVE_PRE_DECREMENT 0
2585 #endif
2587 #ifndef HAVE_POST_INCREMENT
2588 #define HAVE_POST_INCREMENT 0
2589 #endif
2591 #ifndef HAVE_POST_DECREMENT
2592 #define HAVE_POST_DECREMENT 0
2593 #endif
2595 #ifndef HAVE_POST_MODIFY_DISP
2596 #define HAVE_POST_MODIFY_DISP 0
2597 #endif
2599 #ifndef HAVE_POST_MODIFY_REG
2600 #define HAVE_POST_MODIFY_REG 0
2601 #endif
2603 #ifndef HAVE_PRE_MODIFY_DISP
2604 #define HAVE_PRE_MODIFY_DISP 0
2605 #endif
2607 #ifndef HAVE_PRE_MODIFY_REG
2608 #define HAVE_PRE_MODIFY_REG 0
2609 #endif
2612 /* Some architectures do not have complete pre/post increment/decrement
2613 instruction sets, or only move some modes efficiently. These macros
2614 allow us to tune autoincrement generation. */
2616 #ifndef USE_LOAD_POST_INCREMENT
2617 #define USE_LOAD_POST_INCREMENT(MODE) HAVE_POST_INCREMENT
2618 #endif
2620 #ifndef USE_LOAD_POST_DECREMENT
2621 #define USE_LOAD_POST_DECREMENT(MODE) HAVE_POST_DECREMENT
2622 #endif
2624 #ifndef USE_LOAD_PRE_INCREMENT
2625 #define USE_LOAD_PRE_INCREMENT(MODE) HAVE_PRE_INCREMENT
2626 #endif
2628 #ifndef USE_LOAD_PRE_DECREMENT
2629 #define USE_LOAD_PRE_DECREMENT(MODE) HAVE_PRE_DECREMENT
2630 #endif
2632 #ifndef USE_STORE_POST_INCREMENT
2633 #define USE_STORE_POST_INCREMENT(MODE) HAVE_POST_INCREMENT
2634 #endif
2636 #ifndef USE_STORE_POST_DECREMENT
2637 #define USE_STORE_POST_DECREMENT(MODE) HAVE_POST_DECREMENT
2638 #endif
2640 #ifndef USE_STORE_PRE_INCREMENT
2641 #define USE_STORE_PRE_INCREMENT(MODE) HAVE_PRE_INCREMENT
2642 #endif
2644 #ifndef USE_STORE_PRE_DECREMENT
2645 #define USE_STORE_PRE_DECREMENT(MODE) HAVE_PRE_DECREMENT
2646 #endif
2648 /* Nonzero when we are generating CONCATs. */
2649 extern int generating_concat_p;
2651 /* Nonzero when we are expanding trees to RTL. */
2652 extern int currently_expanding_to_rtl;
2654 /* Generally useful functions. */
2656 #ifndef GENERATOR_FILE
2657 /* Return the cost of SET X. SPEED_P is true if optimizing for speed
2658 rather than size. */
2660 static inline int
2661 set_rtx_cost (rtx x, bool speed_p)
2663 return rtx_cost (x, VOIDmode, INSN, 4, speed_p);
2666 /* Like set_rtx_cost, but return both the speed and size costs in C. */
2668 static inline void
2669 get_full_set_rtx_cost (rtx x, struct full_rtx_costs *c)
2671 get_full_rtx_cost (x, VOIDmode, INSN, 4, c);
2674 /* Return the cost of moving X into a register, relative to the cost
2675 of a register move. SPEED_P is true if optimizing for speed rather
2676 than size. */
2678 static inline int
2679 set_src_cost (rtx x, machine_mode mode, bool speed_p)
2681 return rtx_cost (x, mode, SET, 1, speed_p);
2684 /* Like set_src_cost, but return both the speed and size costs in C. */
2686 static inline void
2687 get_full_set_src_cost (rtx x, machine_mode mode, struct full_rtx_costs *c)
2689 get_full_rtx_cost (x, mode, SET, 1, c);
2691 #endif
2693 /* A convenience macro to validate the arguments of a zero_extract
2694 expression. It determines whether SIZE lies inclusively within
2695 [1, RANGE], POS lies inclusively within between [0, RANGE - 1]
2696 and the sum lies inclusively within [1, RANGE]. RANGE must be
2697 >= 1, but SIZE and POS may be negative. */
2698 #define EXTRACT_ARGS_IN_RANGE(SIZE, POS, RANGE) \
2699 (IN_RANGE ((POS), 0, (unsigned HOST_WIDE_INT) (RANGE) - 1) \
2700 && IN_RANGE ((SIZE), 1, (unsigned HOST_WIDE_INT) (RANGE) \
2701 - (unsigned HOST_WIDE_INT)(POS)))
2703 /* In explow.c */
2704 extern HOST_WIDE_INT trunc_int_for_mode (HOST_WIDE_INT, machine_mode);
2705 extern rtx plus_constant (machine_mode, rtx, HOST_WIDE_INT, bool = false);
2707 /* In rtl.c */
2708 extern rtx rtx_alloc (RTX_CODE CXX_MEM_STAT_INFO);
2709 extern rtx rtx_alloc_stat_v (RTX_CODE MEM_STAT_DECL, int);
2710 #define rtx_alloc_v(c, SZ) rtx_alloc_stat_v (c MEM_STAT_INFO, SZ)
2711 #define const_wide_int_alloc(NWORDS) \
2712 rtx_alloc_v (CONST_WIDE_INT, \
2713 (sizeof (struct hwivec_def) \
2714 + ((NWORDS)-1) * sizeof (HOST_WIDE_INT))) \
2716 extern rtvec rtvec_alloc (int);
2717 extern rtvec shallow_copy_rtvec (rtvec);
2718 extern bool shared_const_p (const_rtx);
2719 extern rtx copy_rtx (rtx);
2720 extern enum rtx_code classify_insn (rtx);
2721 extern void dump_rtx_statistics (void);
2723 /* In emit-rtl.c */
2724 extern rtx copy_rtx_if_shared (rtx);
2726 /* In rtl.c */
2727 extern unsigned int rtx_size (const_rtx);
2728 extern rtx shallow_copy_rtx (const_rtx CXX_MEM_STAT_INFO);
2729 extern int rtx_equal_p (const_rtx, const_rtx);
2730 extern bool rtvec_all_equal_p (const_rtvec);
2732 /* Return true if X is a vector constant with a duplicated element value. */
2734 inline bool
2735 const_vec_duplicate_p (const_rtx x)
2737 return GET_CODE (x) == CONST_VECTOR && rtvec_all_equal_p (XVEC (x, 0));
2740 /* Return true if X is a vector constant with a duplicated element value.
2741 Store the duplicated element in *ELT if so. */
2743 template <typename T>
2744 inline bool
2745 const_vec_duplicate_p (T x, T *elt)
2747 if (const_vec_duplicate_p (x))
2749 *elt = CONST_VECTOR_ELT (x, 0);
2750 return true;
2752 return false;
2755 /* If X is a vector constant with a duplicated element value, return that
2756 element value, otherwise return X. */
2758 template <typename T>
2759 inline T
2760 unwrap_const_vec_duplicate (T x)
2762 if (const_vec_duplicate_p (x))
2763 x = CONST_VECTOR_ELT (x, 0);
2764 return x;
2767 /* In emit-rtl.c */
2768 extern rtvec gen_rtvec_v (int, rtx *);
2769 extern rtvec gen_rtvec_v (int, rtx_insn **);
2770 extern rtx gen_reg_rtx (machine_mode);
2771 extern rtx gen_rtx_REG_offset (rtx, machine_mode, unsigned int, int);
2772 extern rtx gen_reg_rtx_offset (rtx, machine_mode, int);
2773 extern rtx gen_reg_rtx_and_attrs (rtx);
2774 extern rtx_code_label *gen_label_rtx (void);
2775 extern rtx gen_lowpart_common (machine_mode, rtx);
2777 /* In cse.c */
2778 extern rtx gen_lowpart_if_possible (machine_mode, rtx);
2780 /* In emit-rtl.c */
2781 extern rtx gen_highpart (machine_mode, rtx);
2782 extern rtx gen_highpart_mode (machine_mode, machine_mode, rtx);
2783 extern rtx operand_subword (rtx, unsigned int, int, machine_mode);
2785 /* In emit-rtl.c */
2786 extern rtx operand_subword_force (rtx, unsigned int, machine_mode);
2787 extern int subreg_lowpart_p (const_rtx);
2788 extern unsigned int subreg_size_lowpart_offset (unsigned int, unsigned int);
2790 /* Return true if a subreg with the given outer and inner modes is
2791 paradoxical. */
2793 inline bool
2794 paradoxical_subreg_p (machine_mode outermode, machine_mode innermode)
2796 return GET_MODE_PRECISION (outermode) > GET_MODE_PRECISION (innermode);
2799 /* Return true if X is a paradoxical subreg, false otherwise. */
2801 inline bool
2802 paradoxical_subreg_p (const_rtx x)
2804 if (GET_CODE (x) != SUBREG)
2805 return false;
2806 return paradoxical_subreg_p (GET_MODE (x), GET_MODE (SUBREG_REG (x)));
2809 /* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
2811 inline unsigned int
2812 subreg_lowpart_offset (machine_mode outermode, machine_mode innermode)
2814 return subreg_size_lowpart_offset (GET_MODE_SIZE (outermode),
2815 GET_MODE_SIZE (innermode));
2818 extern unsigned int subreg_size_highpart_offset (unsigned int, unsigned int);
2820 /* Return the SUBREG_BYTE for an OUTERMODE highpart of an INNERMODE value. */
2822 inline unsigned int
2823 subreg_highpart_offset (machine_mode outermode, machine_mode innermode)
2825 return subreg_size_highpart_offset (GET_MODE_SIZE (outermode),
2826 GET_MODE_SIZE (innermode));
2829 extern int byte_lowpart_offset (machine_mode, machine_mode);
2830 extern rtx make_safe_from (rtx, rtx);
2831 extern rtx convert_memory_address_addr_space_1 (machine_mode, rtx,
2832 addr_space_t, bool, bool);
2833 extern rtx convert_memory_address_addr_space (machine_mode, rtx,
2834 addr_space_t);
2835 #define convert_memory_address(to_mode,x) \
2836 convert_memory_address_addr_space ((to_mode), (x), ADDR_SPACE_GENERIC)
2837 extern const char *get_insn_name (int);
2838 extern rtx_insn *get_last_insn_anywhere (void);
2839 extern rtx_insn *get_first_nonnote_insn (void);
2840 extern rtx_insn *get_last_nonnote_insn (void);
2841 extern void start_sequence (void);
2842 extern void push_to_sequence (rtx_insn *);
2843 extern void push_to_sequence2 (rtx_insn *, rtx_insn *);
2844 extern void end_sequence (void);
2845 #if TARGET_SUPPORTS_WIDE_INT == 0
2846 extern double_int rtx_to_double_int (const_rtx);
2847 #endif
2848 extern void cwi_output_hex (FILE *, const_rtx);
2849 #ifndef GENERATOR_FILE
2850 extern rtx immed_wide_int_const (const wide_int_ref &, machine_mode);
2851 #endif
2852 #if TARGET_SUPPORTS_WIDE_INT == 0
2853 extern rtx immed_double_const (HOST_WIDE_INT, HOST_WIDE_INT,
2854 machine_mode);
2855 #endif
2857 /* In varasm.c */
2858 extern rtx force_const_mem (machine_mode, rtx);
2860 /* In varasm.c */
2862 struct function;
2863 extern rtx get_pool_constant (const_rtx);
2864 extern rtx get_pool_constant_mark (rtx, bool *);
2865 extern machine_mode get_pool_mode (const_rtx);
2866 extern rtx simplify_subtraction (rtx);
2867 extern void decide_function_section (tree);
2869 /* In emit-rtl.c */
2870 extern rtx_insn *emit_insn_before (rtx, rtx);
2871 extern rtx_insn *emit_insn_before_noloc (rtx, rtx_insn *, basic_block);
2872 extern rtx_insn *emit_insn_before_setloc (rtx, rtx_insn *, int);
2873 extern rtx_jump_insn *emit_jump_insn_before (rtx, rtx);
2874 extern rtx_jump_insn *emit_jump_insn_before_noloc (rtx, rtx_insn *);
2875 extern rtx_jump_insn *emit_jump_insn_before_setloc (rtx, rtx_insn *, int);
2876 extern rtx_insn *emit_call_insn_before (rtx, rtx_insn *);
2877 extern rtx_insn *emit_call_insn_before_noloc (rtx, rtx_insn *);
2878 extern rtx_insn *emit_call_insn_before_setloc (rtx, rtx_insn *, int);
2879 extern rtx_insn *emit_debug_insn_before (rtx, rtx_insn *);
2880 extern rtx_insn *emit_debug_insn_before_noloc (rtx, rtx);
2881 extern rtx_insn *emit_debug_insn_before_setloc (rtx, rtx, int);
2882 extern rtx_barrier *emit_barrier_before (rtx);
2883 extern rtx_code_label *emit_label_before (rtx, rtx_insn *);
2884 extern rtx_note *emit_note_before (enum insn_note, rtx_insn *);
2885 extern rtx_insn *emit_insn_after (rtx, rtx);
2886 extern rtx_insn *emit_insn_after_noloc (rtx, rtx, basic_block);
2887 extern rtx_insn *emit_insn_after_setloc (rtx, rtx, int);
2888 extern rtx_jump_insn *emit_jump_insn_after (rtx, rtx);
2889 extern rtx_jump_insn *emit_jump_insn_after_noloc (rtx, rtx);
2890 extern rtx_jump_insn *emit_jump_insn_after_setloc (rtx, rtx, int);
2891 extern rtx_insn *emit_call_insn_after (rtx, rtx);
2892 extern rtx_insn *emit_call_insn_after_noloc (rtx, rtx);
2893 extern rtx_insn *emit_call_insn_after_setloc (rtx, rtx, int);
2894 extern rtx_insn *emit_debug_insn_after (rtx, rtx);
2895 extern rtx_insn *emit_debug_insn_after_noloc (rtx, rtx);
2896 extern rtx_insn *emit_debug_insn_after_setloc (rtx, rtx, int);
2897 extern rtx_barrier *emit_barrier_after (rtx);
2898 extern rtx_insn *emit_label_after (rtx, rtx_insn *);
2899 extern rtx_note *emit_note_after (enum insn_note, rtx_insn *);
2900 extern rtx_insn *emit_insn (rtx);
2901 extern rtx_insn *emit_debug_insn (rtx);
2902 extern rtx_insn *emit_jump_insn (rtx);
2903 extern rtx_insn *emit_call_insn (rtx);
2904 extern rtx_code_label *emit_label (rtx);
2905 extern rtx_jump_table_data *emit_jump_table_data (rtx);
2906 extern rtx_barrier *emit_barrier (void);
2907 extern rtx_note *emit_note (enum insn_note);
2908 extern rtx_note *emit_note_copy (rtx_note *);
2909 extern rtx_insn *gen_clobber (rtx);
2910 extern rtx_insn *emit_clobber (rtx);
2911 extern rtx_insn *gen_use (rtx);
2912 extern rtx_insn *emit_use (rtx);
2913 extern rtx_insn *make_insn_raw (rtx);
2914 extern void add_function_usage_to (rtx, rtx);
2915 extern rtx_call_insn *last_call_insn (void);
2916 extern rtx_insn *previous_insn (rtx_insn *);
2917 extern rtx_insn *next_insn (rtx_insn *);
2918 extern rtx_insn *prev_nonnote_insn (rtx_insn *);
2919 extern rtx_insn *prev_nonnote_insn_bb (rtx_insn *);
2920 extern rtx_insn *next_nonnote_insn (rtx_insn *);
2921 extern rtx_insn *next_nonnote_insn_bb (rtx_insn *);
2922 extern rtx_insn *prev_nondebug_insn (rtx_insn *);
2923 extern rtx_insn *next_nondebug_insn (rtx_insn *);
2924 extern rtx_insn *prev_nonnote_nondebug_insn (rtx_insn *);
2925 extern rtx_insn *next_nonnote_nondebug_insn (rtx_insn *);
2926 extern rtx_insn *prev_real_insn (rtx_insn *);
2927 extern rtx_insn *next_real_insn (rtx);
2928 extern rtx_insn *prev_active_insn (rtx_insn *);
2929 extern rtx_insn *next_active_insn (rtx_insn *);
2930 extern int active_insn_p (const rtx_insn *);
2931 extern rtx_insn *next_cc0_user (rtx_insn *);
2932 extern rtx_insn *prev_cc0_setter (rtx_insn *);
2934 /* In emit-rtl.c */
2935 extern int insn_line (const rtx_insn *);
2936 extern const char * insn_file (const rtx_insn *);
2937 extern tree insn_scope (const rtx_insn *);
2938 extern expanded_location insn_location (const rtx_insn *);
2939 extern location_t prologue_location, epilogue_location;
2941 /* In jump.c */
2942 extern enum rtx_code reverse_condition (enum rtx_code);
2943 extern enum rtx_code reverse_condition_maybe_unordered (enum rtx_code);
2944 extern enum rtx_code swap_condition (enum rtx_code);
2945 extern enum rtx_code unsigned_condition (enum rtx_code);
2946 extern enum rtx_code signed_condition (enum rtx_code);
2947 extern void mark_jump_label (rtx, rtx_insn *, int);
2949 /* In jump.c */
2950 extern rtx_insn *delete_related_insns (rtx);
2952 /* In recog.c */
2953 extern rtx *find_constant_term_loc (rtx *);
2955 /* In emit-rtl.c */
2956 extern rtx_insn *try_split (rtx, rtx_insn *, int);
2958 /* In insn-recog.c (generated by genrecog). */
2959 extern rtx_insn *split_insns (rtx, rtx_insn *);
2961 /* In simplify-rtx.c */
2962 extern rtx simplify_const_unary_operation (enum rtx_code, machine_mode,
2963 rtx, machine_mode);
2964 extern rtx simplify_unary_operation (enum rtx_code, machine_mode, rtx,
2965 machine_mode);
2966 extern rtx simplify_const_binary_operation (enum rtx_code, machine_mode,
2967 rtx, rtx);
2968 extern rtx simplify_binary_operation (enum rtx_code, machine_mode, rtx,
2969 rtx);
2970 extern rtx simplify_ternary_operation (enum rtx_code, machine_mode,
2971 machine_mode, rtx, rtx, rtx);
2972 extern rtx simplify_const_relational_operation (enum rtx_code,
2973 machine_mode, rtx, rtx);
2974 extern rtx simplify_relational_operation (enum rtx_code, machine_mode,
2975 machine_mode, rtx, rtx);
2976 extern rtx simplify_gen_binary (enum rtx_code, machine_mode, rtx, rtx);
2977 extern rtx simplify_gen_unary (enum rtx_code, machine_mode, rtx,
2978 machine_mode);
2979 extern rtx simplify_gen_ternary (enum rtx_code, machine_mode,
2980 machine_mode, rtx, rtx, rtx);
2981 extern rtx simplify_gen_relational (enum rtx_code, machine_mode,
2982 machine_mode, rtx, rtx);
2983 extern rtx simplify_subreg (machine_mode, rtx, machine_mode,
2984 unsigned int);
2985 extern rtx simplify_gen_subreg (machine_mode, rtx, machine_mode,
2986 unsigned int);
2987 extern rtx lowpart_subreg (machine_mode, rtx, machine_mode);
2988 extern rtx simplify_replace_fn_rtx (rtx, const_rtx,
2989 rtx (*fn) (rtx, const_rtx, void *), void *);
2990 extern rtx simplify_replace_rtx (rtx, const_rtx, rtx);
2991 extern rtx simplify_rtx (const_rtx);
2992 extern rtx avoid_constant_pool_reference (rtx);
2993 extern rtx delegitimize_mem_from_attrs (rtx);
2994 extern bool mode_signbit_p (machine_mode, const_rtx);
2995 extern bool val_signbit_p (machine_mode, unsigned HOST_WIDE_INT);
2996 extern bool val_signbit_known_set_p (machine_mode,
2997 unsigned HOST_WIDE_INT);
2998 extern bool val_signbit_known_clear_p (machine_mode,
2999 unsigned HOST_WIDE_INT);
3001 /* In reginfo.c */
3002 extern machine_mode choose_hard_reg_mode (unsigned int, unsigned int,
3003 bool);
3004 extern const HARD_REG_SET &simplifiable_subregs (const subreg_shape &);
3006 /* In emit-rtl.c */
3007 extern rtx set_for_reg_notes (rtx);
3008 extern rtx set_unique_reg_note (rtx, enum reg_note, rtx);
3009 extern rtx set_dst_reg_note (rtx, enum reg_note, rtx, rtx);
3010 extern void set_insn_deleted (rtx);
3012 /* Functions in rtlanal.c */
3014 extern rtx single_set_2 (const rtx_insn *, const_rtx);
3015 extern bool contains_symbol_ref_p (const_rtx);
3016 extern bool contains_symbolic_reference_p (const_rtx);
3018 /* Handle the cheap and common cases inline for performance. */
3020 inline rtx single_set (const rtx_insn *insn)
3022 if (!INSN_P (insn))
3023 return NULL_RTX;
3025 if (GET_CODE (PATTERN (insn)) == SET)
3026 return PATTERN (insn);
3028 /* Defer to the more expensive case. */
3029 return single_set_2 (insn, PATTERN (insn));
3032 extern machine_mode get_address_mode (rtx mem);
3033 extern int rtx_addr_can_trap_p (const_rtx);
3034 extern bool nonzero_address_p (const_rtx);
3035 extern int rtx_unstable_p (const_rtx);
3036 extern bool rtx_varies_p (const_rtx, bool);
3037 extern bool rtx_addr_varies_p (const_rtx, bool);
3038 extern rtx get_call_rtx_from (rtx);
3039 extern HOST_WIDE_INT get_integer_term (const_rtx);
3040 extern rtx get_related_value (const_rtx);
3041 extern bool offset_within_block_p (const_rtx, HOST_WIDE_INT);
3042 extern void split_const (rtx, rtx *, rtx *);
3043 extern bool unsigned_reg_p (rtx);
3044 extern int reg_mentioned_p (const_rtx, const_rtx);
3045 extern int count_occurrences (const_rtx, const_rtx, int);
3046 extern int reg_referenced_p (const_rtx, const_rtx);
3047 extern int reg_used_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
3048 extern int reg_set_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
3049 extern int commutative_operand_precedence (rtx);
3050 extern bool swap_commutative_operands_p (rtx, rtx);
3051 extern int modified_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
3052 extern int no_labels_between_p (const rtx_insn *, const rtx_insn *);
3053 extern int modified_in_p (const_rtx, const_rtx);
3054 extern int reg_set_p (const_rtx, const_rtx);
3055 extern int multiple_sets (const_rtx);
3056 extern int set_noop_p (const_rtx);
3057 extern int noop_move_p (const rtx_insn *);
3058 extern bool refers_to_regno_p (unsigned int, unsigned int, const_rtx, rtx *);
3059 extern int reg_overlap_mentioned_p (const_rtx, const_rtx);
3060 extern const_rtx set_of (const_rtx, const_rtx);
3061 extern void record_hard_reg_sets (rtx, const_rtx, void *);
3062 extern void record_hard_reg_uses (rtx *, void *);
3063 extern void find_all_hard_regs (const_rtx, HARD_REG_SET *);
3064 extern void find_all_hard_reg_sets (const rtx_insn *, HARD_REG_SET *, bool);
3065 extern void note_stores (const_rtx, void (*) (rtx, const_rtx, void *), void *);
3066 extern void note_uses (rtx *, void (*) (rtx *, void *), void *);
3067 extern int dead_or_set_p (const rtx_insn *, const_rtx);
3068 extern int dead_or_set_regno_p (const rtx_insn *, unsigned int);
3069 extern rtx find_reg_note (const_rtx, enum reg_note, const_rtx);
3070 extern rtx find_regno_note (const_rtx, enum reg_note, unsigned int);
3071 extern rtx find_reg_equal_equiv_note (const_rtx);
3072 extern rtx find_constant_src (const rtx_insn *);
3073 extern int find_reg_fusage (const_rtx, enum rtx_code, const_rtx);
3074 extern int find_regno_fusage (const_rtx, enum rtx_code, unsigned int);
3075 extern rtx alloc_reg_note (enum reg_note, rtx, rtx);
3076 extern void add_reg_note (rtx, enum reg_note, rtx);
3077 extern void add_int_reg_note (rtx_insn *, enum reg_note, int);
3078 extern void add_shallow_copy_of_reg_note (rtx_insn *, rtx);
3079 extern rtx duplicate_reg_note (rtx);
3080 extern void remove_note (rtx_insn *, const_rtx);
3081 extern bool remove_reg_equal_equiv_notes (rtx_insn *);
3082 extern void remove_reg_equal_equiv_notes_for_regno (unsigned int);
3083 extern int side_effects_p (const_rtx);
3084 extern int volatile_refs_p (const_rtx);
3085 extern int volatile_insn_p (const_rtx);
3086 extern int may_trap_p_1 (const_rtx, unsigned);
3087 extern int may_trap_p (const_rtx);
3088 extern int may_trap_or_fault_p (const_rtx);
3089 extern bool can_throw_internal (const_rtx);
3090 extern bool can_throw_external (const_rtx);
3091 extern bool insn_could_throw_p (const_rtx);
3092 extern bool insn_nothrow_p (const_rtx);
3093 extern bool can_nonlocal_goto (const rtx_insn *);
3094 extern void copy_reg_eh_region_note_forward (rtx, rtx_insn *, rtx);
3095 extern void copy_reg_eh_region_note_backward (rtx, rtx_insn *, rtx);
3096 extern int inequality_comparisons_p (const_rtx);
3097 extern rtx replace_rtx (rtx, rtx, rtx, bool = false);
3098 extern void replace_label (rtx *, rtx, rtx, bool);
3099 extern void replace_label_in_insn (rtx_insn *, rtx_insn *, rtx_insn *, bool);
3100 extern bool rtx_referenced_p (const_rtx, const_rtx);
3101 extern bool tablejump_p (const rtx_insn *, rtx_insn **, rtx_jump_table_data **);
3102 extern int computed_jump_p (const rtx_insn *);
3103 extern bool tls_referenced_p (const_rtx);
3104 extern bool contains_mem_rtx_p (rtx x);
3106 /* Overload for refers_to_regno_p for checking a single register. */
3107 inline bool
3108 refers_to_regno_p (unsigned int regnum, const_rtx x, rtx* loc = NULL)
3110 return refers_to_regno_p (regnum, regnum + 1, x, loc);
3113 /* Callback for for_each_inc_dec, to process the autoinc operation OP
3114 within MEM that sets DEST to SRC + SRCOFF, or SRC if SRCOFF is
3115 NULL. The callback is passed the same opaque ARG passed to
3116 for_each_inc_dec. Return zero to continue looking for other
3117 autoinc operations or any other value to interrupt the traversal and
3118 return that value to the caller of for_each_inc_dec. */
3119 typedef int (*for_each_inc_dec_fn) (rtx mem, rtx op, rtx dest, rtx src,
3120 rtx srcoff, void *arg);
3121 extern int for_each_inc_dec (rtx, for_each_inc_dec_fn, void *arg);
3123 typedef int (*rtx_equal_p_callback_function) (const_rtx *, const_rtx *,
3124 rtx *, rtx *);
3125 extern int rtx_equal_p_cb (const_rtx, const_rtx,
3126 rtx_equal_p_callback_function);
3128 typedef int (*hash_rtx_callback_function) (const_rtx, machine_mode, rtx *,
3129 machine_mode *);
3130 extern unsigned hash_rtx_cb (const_rtx, machine_mode, int *, int *,
3131 bool, hash_rtx_callback_function);
3133 extern rtx regno_use_in (unsigned int, rtx);
3134 extern int auto_inc_p (const_rtx);
3135 extern bool in_insn_list_p (const rtx_insn_list *, const rtx_insn *);
3136 extern void remove_node_from_expr_list (const_rtx, rtx_expr_list **);
3137 extern void remove_node_from_insn_list (const rtx_insn *, rtx_insn_list **);
3138 extern int loc_mentioned_in_p (rtx *, const_rtx);
3139 extern rtx_insn *find_first_parameter_load (rtx_insn *, rtx_insn *);
3140 extern bool keep_with_call_p (const rtx_insn *);
3141 extern bool label_is_jump_target_p (const_rtx, const rtx_insn *);
3142 extern int insn_rtx_cost (rtx, bool);
3143 extern unsigned seq_cost (const rtx_insn *, bool);
3145 /* Given an insn and condition, return a canonical description of
3146 the test being made. */
3147 extern rtx canonicalize_condition (rtx_insn *, rtx, int, rtx_insn **, rtx,
3148 int, int);
3150 /* Given a JUMP_INSN, return a canonical description of the test
3151 being made. */
3152 extern rtx get_condition (rtx_insn *, rtx_insn **, int, int);
3154 /* Information about a subreg of a hard register. */
3155 struct subreg_info
3157 /* Offset of first hard register involved in the subreg. */
3158 int offset;
3159 /* Number of hard registers involved in the subreg. In the case of
3160 a paradoxical subreg, this is the number of registers that would
3161 be modified by writing to the subreg; some of them may be don't-care
3162 when reading from the subreg. */
3163 int nregs;
3164 /* Whether this subreg can be represented as a hard reg with the new
3165 mode (by adding OFFSET to the original hard register). */
3166 bool representable_p;
3169 extern void subreg_get_info (unsigned int, machine_mode,
3170 unsigned int, machine_mode,
3171 struct subreg_info *);
3173 /* lists.c */
3175 extern void free_EXPR_LIST_list (rtx_expr_list **);
3176 extern void free_INSN_LIST_list (rtx_insn_list **);
3177 extern void free_EXPR_LIST_node (rtx);
3178 extern void free_INSN_LIST_node (rtx);
3179 extern rtx_insn_list *alloc_INSN_LIST (rtx, rtx);
3180 extern rtx_insn_list *copy_INSN_LIST (rtx_insn_list *);
3181 extern rtx_insn_list *concat_INSN_LIST (rtx_insn_list *, rtx_insn_list *);
3182 extern rtx_expr_list *alloc_EXPR_LIST (int, rtx, rtx);
3183 extern void remove_free_INSN_LIST_elem (rtx_insn *, rtx_insn_list **);
3184 extern rtx remove_list_elem (rtx, rtx *);
3185 extern rtx_insn *remove_free_INSN_LIST_node (rtx_insn_list **);
3186 extern rtx remove_free_EXPR_LIST_node (rtx_expr_list **);
3189 /* reginfo.c */
3191 /* Resize reg info. */
3192 extern bool resize_reg_info (void);
3193 /* Free up register info memory. */
3194 extern void free_reg_info (void);
3195 extern void init_subregs_of_mode (void);
3196 extern void finish_subregs_of_mode (void);
3198 /* recog.c */
3199 extern rtx extract_asm_operands (rtx);
3200 extern int asm_noperands (const_rtx);
3201 extern const char *decode_asm_operands (rtx, rtx *, rtx **, const char **,
3202 machine_mode *, location_t *);
3203 extern void get_referenced_operands (const char *, bool *, unsigned int);
3205 extern enum reg_class reg_preferred_class (int);
3206 extern enum reg_class reg_alternate_class (int);
3207 extern enum reg_class reg_allocno_class (int);
3208 extern void setup_reg_classes (int, enum reg_class, enum reg_class,
3209 enum reg_class);
3211 extern void split_all_insns (void);
3212 extern unsigned int split_all_insns_noflow (void);
3214 #define MAX_SAVED_CONST_INT 64
3215 extern GTY(()) rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
3217 #define const0_rtx (const_int_rtx[MAX_SAVED_CONST_INT])
3218 #define const1_rtx (const_int_rtx[MAX_SAVED_CONST_INT+1])
3219 #define const2_rtx (const_int_rtx[MAX_SAVED_CONST_INT+2])
3220 #define constm1_rtx (const_int_rtx[MAX_SAVED_CONST_INT-1])
3221 extern GTY(()) rtx const_true_rtx;
3223 extern GTY(()) rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE];
3225 /* Returns a constant 0 rtx in mode MODE. Integer modes are treated the
3226 same as VOIDmode. */
3228 #define CONST0_RTX(MODE) (const_tiny_rtx[0][(int) (MODE)])
3230 /* Likewise, for the constants 1 and 2 and -1. */
3232 #define CONST1_RTX(MODE) (const_tiny_rtx[1][(int) (MODE)])
3233 #define CONST2_RTX(MODE) (const_tiny_rtx[2][(int) (MODE)])
3234 #define CONSTM1_RTX(MODE) (const_tiny_rtx[3][(int) (MODE)])
3236 extern GTY(()) rtx pc_rtx;
3237 extern GTY(()) rtx cc0_rtx;
3238 extern GTY(()) rtx ret_rtx;
3239 extern GTY(()) rtx simple_return_rtx;
3240 extern GTY(()) rtx_insn *invalid_insn_rtx;
3242 /* If HARD_FRAME_POINTER_REGNUM is defined, then a special dummy reg
3243 is used to represent the frame pointer. This is because the
3244 hard frame pointer and the automatic variables are separated by an amount
3245 that cannot be determined until after register allocation. We can assume
3246 that in this case ELIMINABLE_REGS will be defined, one action of which
3247 will be to eliminate FRAME_POINTER_REGNUM into HARD_FRAME_POINTER_REGNUM. */
3248 #ifndef HARD_FRAME_POINTER_REGNUM
3249 #define HARD_FRAME_POINTER_REGNUM FRAME_POINTER_REGNUM
3250 #endif
3252 #ifndef HARD_FRAME_POINTER_IS_FRAME_POINTER
3253 #define HARD_FRAME_POINTER_IS_FRAME_POINTER \
3254 (HARD_FRAME_POINTER_REGNUM == FRAME_POINTER_REGNUM)
3255 #endif
3257 #ifndef HARD_FRAME_POINTER_IS_ARG_POINTER
3258 #define HARD_FRAME_POINTER_IS_ARG_POINTER \
3259 (HARD_FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM)
3260 #endif
3262 /* Index labels for global_rtl. */
3263 enum global_rtl_index
3265 GR_STACK_POINTER,
3266 GR_FRAME_POINTER,
3267 /* For register elimination to work properly these hard_frame_pointer_rtx,
3268 frame_pointer_rtx, and arg_pointer_rtx must be the same if they refer to
3269 the same register. */
3270 #if FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM
3271 GR_ARG_POINTER = GR_FRAME_POINTER,
3272 #endif
3273 #if HARD_FRAME_POINTER_IS_FRAME_POINTER
3274 GR_HARD_FRAME_POINTER = GR_FRAME_POINTER,
3275 #else
3276 GR_HARD_FRAME_POINTER,
3277 #endif
3278 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3279 #if HARD_FRAME_POINTER_IS_ARG_POINTER
3280 GR_ARG_POINTER = GR_HARD_FRAME_POINTER,
3281 #else
3282 GR_ARG_POINTER,
3283 #endif
3284 #endif
3285 GR_VIRTUAL_INCOMING_ARGS,
3286 GR_VIRTUAL_STACK_ARGS,
3287 GR_VIRTUAL_STACK_DYNAMIC,
3288 GR_VIRTUAL_OUTGOING_ARGS,
3289 GR_VIRTUAL_CFA,
3290 GR_VIRTUAL_PREFERRED_STACK_BOUNDARY,
3292 GR_MAX
3295 /* Target-dependent globals. */
3296 struct GTY(()) target_rtl {
3297 /* All references to the hard registers in global_rtl_index go through
3298 these unique rtl objects. On machines where the frame-pointer and
3299 arg-pointer are the same register, they use the same unique object.
3301 After register allocation, other rtl objects which used to be pseudo-regs
3302 may be clobbered to refer to the frame-pointer register.
3303 But references that were originally to the frame-pointer can be
3304 distinguished from the others because they contain frame_pointer_rtx.
3306 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
3307 tricky: until register elimination has taken place hard_frame_pointer_rtx
3308 should be used if it is being set, and frame_pointer_rtx otherwise. After
3309 register elimination hard_frame_pointer_rtx should always be used.
3310 On machines where the two registers are same (most) then these are the
3311 same. */
3312 rtx x_global_rtl[GR_MAX];
3314 /* A unique representation of (REG:Pmode PIC_OFFSET_TABLE_REGNUM). */
3315 rtx x_pic_offset_table_rtx;
3317 /* A unique representation of (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM).
3318 This is used to implement __builtin_return_address for some machines;
3319 see for instance the MIPS port. */
3320 rtx x_return_address_pointer_rtx;
3322 /* Commonly used RTL for hard registers. These objects are not
3323 necessarily unique, so we allocate them separately from global_rtl.
3324 They are initialized once per compilation unit, then copied into
3325 regno_reg_rtx at the beginning of each function. */
3326 rtx x_initial_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
3328 /* A sample (mem:M stack_pointer_rtx) rtx for each mode M. */
3329 rtx x_top_of_stack[MAX_MACHINE_MODE];
3331 /* Static hunks of RTL used by the aliasing code; these are treated
3332 as persistent to avoid unnecessary RTL allocations. */
3333 rtx x_static_reg_base_value[FIRST_PSEUDO_REGISTER];
3335 /* The default memory attributes for each mode. */
3336 struct mem_attrs *x_mode_mem_attrs[(int) MAX_MACHINE_MODE];
3338 /* Track if RTL has been initialized. */
3339 bool target_specific_initialized;
3342 extern GTY(()) struct target_rtl default_target_rtl;
3343 #if SWITCHABLE_TARGET
3344 extern struct target_rtl *this_target_rtl;
3345 #else
3346 #define this_target_rtl (&default_target_rtl)
3347 #endif
3349 #define global_rtl \
3350 (this_target_rtl->x_global_rtl)
3351 #define pic_offset_table_rtx \
3352 (this_target_rtl->x_pic_offset_table_rtx)
3353 #define return_address_pointer_rtx \
3354 (this_target_rtl->x_return_address_pointer_rtx)
3355 #define top_of_stack \
3356 (this_target_rtl->x_top_of_stack)
3357 #define mode_mem_attrs \
3358 (this_target_rtl->x_mode_mem_attrs)
3360 /* All references to certain hard regs, except those created
3361 by allocating pseudo regs into them (when that's possible),
3362 go through these unique rtx objects. */
3363 #define stack_pointer_rtx (global_rtl[GR_STACK_POINTER])
3364 #define frame_pointer_rtx (global_rtl[GR_FRAME_POINTER])
3365 #define hard_frame_pointer_rtx (global_rtl[GR_HARD_FRAME_POINTER])
3366 #define arg_pointer_rtx (global_rtl[GR_ARG_POINTER])
3368 #ifndef GENERATOR_FILE
3369 /* Return the attributes of a MEM rtx. */
3370 static inline const struct mem_attrs *
3371 get_mem_attrs (const_rtx x)
3373 struct mem_attrs *attrs;
3375 attrs = MEM_ATTRS (x);
3376 if (!attrs)
3377 attrs = mode_mem_attrs[(int) GET_MODE (x)];
3378 return attrs;
3380 #endif
3382 /* Include the RTL generation functions. */
3384 #ifndef GENERATOR_FILE
3385 #include "genrtl.h"
3386 #undef gen_rtx_ASM_INPUT
3387 #define gen_rtx_ASM_INPUT(MODE, ARG0) \
3388 gen_rtx_fmt_si (ASM_INPUT, (MODE), (ARG0), 0)
3389 #define gen_rtx_ASM_INPUT_loc(MODE, ARG0, LOC) \
3390 gen_rtx_fmt_si (ASM_INPUT, (MODE), (ARG0), (LOC))
3391 #endif
3393 /* There are some RTL codes that require special attention; the
3394 generation functions included above do the raw handling. If you
3395 add to this list, modify special_rtx in gengenrtl.c as well. */
3397 extern rtx_expr_list *gen_rtx_EXPR_LIST (machine_mode, rtx, rtx);
3398 extern rtx_insn_list *gen_rtx_INSN_LIST (machine_mode, rtx, rtx);
3399 extern rtx_insn *
3400 gen_rtx_INSN (machine_mode mode, rtx_insn *prev_insn, rtx_insn *next_insn,
3401 basic_block bb, rtx pattern, int location, int code,
3402 rtx reg_notes);
3403 extern rtx gen_rtx_CONST_INT (machine_mode, HOST_WIDE_INT);
3404 extern rtx gen_rtx_CONST_VECTOR (machine_mode, rtvec);
3405 extern void set_mode_and_regno (rtx, machine_mode, unsigned int);
3406 extern rtx gen_raw_REG (machine_mode, unsigned int);
3407 extern rtx gen_rtx_REG (machine_mode, unsigned int);
3408 extern rtx gen_rtx_SUBREG (machine_mode, rtx, int);
3409 extern rtx gen_rtx_MEM (machine_mode, rtx);
3410 extern rtx gen_rtx_VAR_LOCATION (machine_mode, tree, rtx,
3411 enum var_init_status);
3413 #ifdef GENERATOR_FILE
3414 #define PUT_MODE(RTX, MODE) PUT_MODE_RAW (RTX, MODE)
3415 #else
3416 static inline void
3417 PUT_MODE (rtx x, machine_mode mode)
3419 if (REG_P (x))
3420 set_mode_and_regno (x, mode, REGNO (x));
3421 else
3422 PUT_MODE_RAW (x, mode);
3424 #endif
3426 #define GEN_INT(N) gen_rtx_CONST_INT (VOIDmode, (N))
3428 /* Virtual registers are used during RTL generation to refer to locations into
3429 the stack frame when the actual location isn't known until RTL generation
3430 is complete. The routine instantiate_virtual_regs replaces these with
3431 the proper value, which is normally {frame,arg,stack}_pointer_rtx plus
3432 a constant. */
3434 #define FIRST_VIRTUAL_REGISTER (FIRST_PSEUDO_REGISTER)
3436 /* This points to the first word of the incoming arguments passed on the stack,
3437 either by the caller or by the callee when pretending it was passed by the
3438 caller. */
3440 #define virtual_incoming_args_rtx (global_rtl[GR_VIRTUAL_INCOMING_ARGS])
3442 #define VIRTUAL_INCOMING_ARGS_REGNUM (FIRST_VIRTUAL_REGISTER)
3444 /* If FRAME_GROWS_DOWNWARD, this points to immediately above the first
3445 variable on the stack. Otherwise, it points to the first variable on
3446 the stack. */
3448 #define virtual_stack_vars_rtx (global_rtl[GR_VIRTUAL_STACK_ARGS])
3450 #define VIRTUAL_STACK_VARS_REGNUM ((FIRST_VIRTUAL_REGISTER) + 1)
3452 /* This points to the location of dynamically-allocated memory on the stack
3453 immediately after the stack pointer has been adjusted by the amount
3454 desired. */
3456 #define virtual_stack_dynamic_rtx (global_rtl[GR_VIRTUAL_STACK_DYNAMIC])
3458 #define VIRTUAL_STACK_DYNAMIC_REGNUM ((FIRST_VIRTUAL_REGISTER) + 2)
3460 /* This points to the location in the stack at which outgoing arguments should
3461 be written when the stack is pre-pushed (arguments pushed using push
3462 insns always use sp). */
3464 #define virtual_outgoing_args_rtx (global_rtl[GR_VIRTUAL_OUTGOING_ARGS])
3466 #define VIRTUAL_OUTGOING_ARGS_REGNUM ((FIRST_VIRTUAL_REGISTER) + 3)
3468 /* This points to the Canonical Frame Address of the function. This
3469 should correspond to the CFA produced by INCOMING_FRAME_SP_OFFSET,
3470 but is calculated relative to the arg pointer for simplicity; the
3471 frame pointer nor stack pointer are necessarily fixed relative to
3472 the CFA until after reload. */
3474 #define virtual_cfa_rtx (global_rtl[GR_VIRTUAL_CFA])
3476 #define VIRTUAL_CFA_REGNUM ((FIRST_VIRTUAL_REGISTER) + 4)
3478 #define LAST_VIRTUAL_POINTER_REGISTER ((FIRST_VIRTUAL_REGISTER) + 4)
3480 /* This is replaced by crtl->preferred_stack_boundary / BITS_PER_UNIT
3481 when finalized. */
3483 #define virtual_preferred_stack_boundary_rtx \
3484 (global_rtl[GR_VIRTUAL_PREFERRED_STACK_BOUNDARY])
3486 #define VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM \
3487 ((FIRST_VIRTUAL_REGISTER) + 5)
3489 #define LAST_VIRTUAL_REGISTER ((FIRST_VIRTUAL_REGISTER) + 5)
3491 /* Nonzero if REGNUM is a pointer into the stack frame. */
3492 #define REGNO_PTR_FRAME_P(REGNUM) \
3493 ((REGNUM) == STACK_POINTER_REGNUM \
3494 || (REGNUM) == FRAME_POINTER_REGNUM \
3495 || (REGNUM) == HARD_FRAME_POINTER_REGNUM \
3496 || (REGNUM) == ARG_POINTER_REGNUM \
3497 || ((REGNUM) >= FIRST_VIRTUAL_REGISTER \
3498 && (REGNUM) <= LAST_VIRTUAL_POINTER_REGISTER))
3500 /* REGNUM never really appearing in the INSN stream. */
3501 #define INVALID_REGNUM (~(unsigned int) 0)
3503 /* REGNUM for which no debug information can be generated. */
3504 #define IGNORED_DWARF_REGNUM (INVALID_REGNUM - 1)
3506 extern rtx output_constant_def (tree, int);
3507 extern rtx lookup_constant_def (tree);
3509 /* Nonzero after end of reload pass.
3510 Set to 1 or 0 by reload1.c. */
3512 extern int reload_completed;
3514 /* Nonzero after thread_prologue_and_epilogue_insns has run. */
3515 extern int epilogue_completed;
3517 /* Set to 1 while reload_as_needed is operating.
3518 Required by some machines to handle any generated moves differently. */
3520 extern int reload_in_progress;
3522 /* Set to 1 while in lra. */
3523 extern int lra_in_progress;
3525 /* This macro indicates whether you may create a new
3526 pseudo-register. */
3528 #define can_create_pseudo_p() (!reload_in_progress && !reload_completed)
3530 #ifdef STACK_REGS
3531 /* Nonzero after end of regstack pass.
3532 Set to 1 or 0 by reg-stack.c. */
3533 extern int regstack_completed;
3534 #endif
3536 /* If this is nonzero, we do not bother generating VOLATILE
3537 around volatile memory references, and we are willing to
3538 output indirect addresses. If cse is to follow, we reject
3539 indirect addresses so a useful potential cse is generated;
3540 if it is used only once, instruction combination will produce
3541 the same indirect address eventually. */
3542 extern int cse_not_expected;
3544 /* Translates rtx code to tree code, for those codes needed by
3545 real_arithmetic. The function returns an int because the caller may not
3546 know what `enum tree_code' means. */
3548 extern int rtx_to_tree_code (enum rtx_code);
3550 /* In cse.c */
3551 extern int delete_trivially_dead_insns (rtx_insn *, int);
3552 extern int exp_equiv_p (const_rtx, const_rtx, int, bool);
3553 extern unsigned hash_rtx (const_rtx x, machine_mode, int *, int *, bool);
3555 /* In dse.c */
3556 extern bool check_for_inc_dec (rtx_insn *insn);
3558 /* In jump.c */
3559 extern int comparison_dominates_p (enum rtx_code, enum rtx_code);
3560 extern bool jump_to_label_p (const rtx_insn *);
3561 extern int condjump_p (const rtx_insn *);
3562 extern int any_condjump_p (const rtx_insn *);
3563 extern int any_uncondjump_p (const rtx_insn *);
3564 extern rtx pc_set (const rtx_insn *);
3565 extern rtx condjump_label (const rtx_insn *);
3566 extern int simplejump_p (const rtx_insn *);
3567 extern int returnjump_p (const rtx_insn *);
3568 extern int eh_returnjump_p (rtx_insn *);
3569 extern int onlyjump_p (const rtx_insn *);
3570 extern int only_sets_cc0_p (const_rtx);
3571 extern int sets_cc0_p (const_rtx);
3572 extern int invert_jump_1 (rtx_jump_insn *, rtx);
3573 extern int invert_jump (rtx_jump_insn *, rtx, int);
3574 extern int rtx_renumbered_equal_p (const_rtx, const_rtx);
3575 extern int true_regnum (const_rtx);
3576 extern unsigned int reg_or_subregno (const_rtx);
3577 extern int redirect_jump_1 (rtx_insn *, rtx);
3578 extern void redirect_jump_2 (rtx_jump_insn *, rtx, rtx, int, int);
3579 extern int redirect_jump (rtx_jump_insn *, rtx, int);
3580 extern void rebuild_jump_labels (rtx_insn *);
3581 extern void rebuild_jump_labels_chain (rtx_insn *);
3582 extern rtx reversed_comparison (const_rtx, machine_mode);
3583 extern enum rtx_code reversed_comparison_code (const_rtx, const rtx_insn *);
3584 extern enum rtx_code reversed_comparison_code_parts (enum rtx_code, const_rtx,
3585 const_rtx, const rtx_insn *);
3586 extern void delete_for_peephole (rtx_insn *, rtx_insn *);
3587 extern int condjump_in_parallel_p (const rtx_insn *);
3589 /* In emit-rtl.c. */
3590 extern int max_reg_num (void);
3591 extern int max_label_num (void);
3592 extern int get_first_label_num (void);
3593 extern void maybe_set_first_label_num (rtx_code_label *);
3594 extern void delete_insns_since (rtx_insn *);
3595 extern void mark_reg_pointer (rtx, int);
3596 extern void mark_user_reg (rtx);
3597 extern void reset_used_flags (rtx);
3598 extern void set_used_flags (rtx);
3599 extern void reorder_insns (rtx_insn *, rtx_insn *, rtx_insn *);
3600 extern void reorder_insns_nobb (rtx_insn *, rtx_insn *, rtx_insn *);
3601 extern int get_max_insn_count (void);
3602 extern int in_sequence_p (void);
3603 extern void init_emit (void);
3604 extern void init_emit_regs (void);
3605 extern void init_derived_machine_modes (void);
3606 extern void init_emit_once (void);
3607 extern void push_topmost_sequence (void);
3608 extern void pop_topmost_sequence (void);
3609 extern void set_new_first_and_last_insn (rtx_insn *, rtx_insn *);
3610 extern unsigned int unshare_all_rtl (void);
3611 extern void unshare_all_rtl_again (rtx_insn *);
3612 extern void unshare_all_rtl_in_chain (rtx_insn *);
3613 extern void verify_rtl_sharing (void);
3614 extern void add_insn (rtx_insn *);
3615 extern void add_insn_before (rtx, rtx, basic_block);
3616 extern void add_insn_after (rtx, rtx, basic_block);
3617 extern void remove_insn (rtx);
3618 extern rtx_insn *emit (rtx, bool = true);
3619 extern void emit_insn_at_entry (rtx);
3620 extern rtx gen_lowpart_SUBREG (machine_mode, rtx);
3621 extern rtx gen_const_mem (machine_mode, rtx);
3622 extern rtx gen_frame_mem (machine_mode, rtx);
3623 extern rtx gen_tmp_stack_mem (machine_mode, rtx);
3624 extern bool validate_subreg (machine_mode, machine_mode,
3625 const_rtx, unsigned int);
3627 /* In combine.c */
3628 extern unsigned int extended_count (const_rtx, machine_mode, int);
3629 extern rtx remove_death (unsigned int, rtx_insn *);
3630 extern void dump_combine_stats (FILE *);
3631 extern void dump_combine_total_stats (FILE *);
3632 extern rtx make_compound_operation (rtx, enum rtx_code);
3634 /* In sched-rgn.c. */
3635 extern void schedule_insns (void);
3637 /* In sched-ebb.c. */
3638 extern void schedule_ebbs (void);
3640 /* In sel-sched-dump.c. */
3641 extern void sel_sched_fix_param (const char *param, const char *val);
3643 /* In print-rtl.c */
3644 extern const char *print_rtx_head;
3645 extern void debug (const rtx_def &ref);
3646 extern void debug (const rtx_def *ptr);
3647 extern void debug_rtx (const_rtx);
3648 extern void debug_rtx_list (const rtx_insn *, int);
3649 extern void debug_rtx_range (const rtx_insn *, const rtx_insn *);
3650 extern const rtx_insn *debug_rtx_find (const rtx_insn *, int);
3651 extern void print_mem_expr (FILE *, const_tree);
3652 extern void print_rtl (FILE *, const_rtx);
3653 extern void print_simple_rtl (FILE *, const_rtx);
3654 extern int print_rtl_single (FILE *, const_rtx);
3655 extern int print_rtl_single_with_indent (FILE *, const_rtx, int);
3656 extern void print_inline_rtx (FILE *, const_rtx, int);
3658 /* In stmt.c */
3659 extern void expand_null_return (void);
3660 extern void expand_naked_return (void);
3661 extern void emit_jump (rtx);
3663 /* In expr.c */
3664 extern rtx move_by_pieces (rtx, rtx, unsigned HOST_WIDE_INT,
3665 unsigned int, int);
3666 extern HOST_WIDE_INT find_args_size_adjust (rtx_insn *);
3667 extern int fixup_args_size_notes (rtx_insn *, rtx_insn *, int);
3669 /* In expmed.c */
3670 extern void init_expmed (void);
3671 extern void expand_inc (rtx, rtx);
3672 extern void expand_dec (rtx, rtx);
3674 /* In lower-subreg.c */
3675 extern void init_lower_subreg (void);
3677 /* In gcse.c */
3678 extern bool can_copy_p (machine_mode);
3679 extern bool can_assign_to_reg_without_clobbers_p (rtx, machine_mode);
3680 extern rtx fis_get_condition (rtx_insn *);
3682 /* In ira.c */
3683 extern HARD_REG_SET eliminable_regset;
3684 extern void mark_elimination (int, int);
3686 /* In reginfo.c */
3687 extern int reg_classes_intersect_p (reg_class_t, reg_class_t);
3688 extern int reg_class_subset_p (reg_class_t, reg_class_t);
3689 extern void globalize_reg (tree, int);
3690 extern void init_reg_modes_target (void);
3691 extern void init_regs (void);
3692 extern void reinit_regs (void);
3693 extern void init_fake_stack_mems (void);
3694 extern void save_register_info (void);
3695 extern void init_reg_sets (void);
3696 extern void regclass (rtx, int);
3697 extern void reg_scan (rtx_insn *, unsigned int);
3698 extern void fix_register (const char *, int, int);
3699 extern const HARD_REG_SET *valid_mode_changes_for_regno (unsigned int);
3701 /* In reload1.c */
3702 extern int function_invariant_p (const_rtx);
3704 /* In calls.c */
3705 enum libcall_type
3707 LCT_NORMAL = 0,
3708 LCT_CONST = 1,
3709 LCT_PURE = 2,
3710 LCT_NORETURN = 3,
3711 LCT_THROW = 4,
3712 LCT_RETURNS_TWICE = 5
3715 extern void emit_library_call (rtx, enum libcall_type, machine_mode, int,
3716 ...);
3717 extern rtx emit_library_call_value (rtx, rtx, enum libcall_type,
3718 machine_mode, int, ...);
3720 /* In varasm.c */
3721 extern void init_varasm_once (void);
3723 extern rtx make_debug_expr_from_rtl (const_rtx);
3725 /* In read-rtl.c */
3726 #ifdef GENERATOR_FILE
3727 extern bool read_rtx (const char *, vec<rtx> *);
3728 #endif
3730 /* In alias.c */
3731 extern rtx canon_rtx (rtx);
3732 extern int true_dependence (const_rtx, machine_mode, const_rtx);
3733 extern rtx get_addr (rtx);
3734 extern int canon_true_dependence (const_rtx, machine_mode, rtx,
3735 const_rtx, rtx);
3736 extern int read_dependence (const_rtx, const_rtx);
3737 extern int anti_dependence (const_rtx, const_rtx);
3738 extern int canon_anti_dependence (const_rtx, bool,
3739 const_rtx, machine_mode, rtx);
3740 extern int output_dependence (const_rtx, const_rtx);
3741 extern int canon_output_dependence (const_rtx, bool,
3742 const_rtx, machine_mode, rtx);
3743 extern int may_alias_p (const_rtx, const_rtx);
3744 extern void init_alias_target (void);
3745 extern void init_alias_analysis (void);
3746 extern void end_alias_analysis (void);
3747 extern void vt_equate_reg_base_value (const_rtx, const_rtx);
3748 extern bool memory_modified_in_insn_p (const_rtx, const_rtx);
3749 extern bool may_be_sp_based_p (rtx);
3750 extern rtx gen_hard_reg_clobber (machine_mode, unsigned int);
3751 extern rtx get_reg_known_value (unsigned int);
3752 extern bool get_reg_known_equiv_p (unsigned int);
3753 extern rtx get_reg_base_value (unsigned int);
3755 #ifdef STACK_REGS
3756 extern int stack_regs_mentioned (const_rtx insn);
3757 #endif
3759 /* In toplev.c */
3760 extern GTY(()) rtx stack_limit_rtx;
3762 /* In var-tracking.c */
3763 extern unsigned int variable_tracking_main (void);
3765 /* In stor-layout.c. */
3766 extern void get_mode_bounds (machine_mode, int, machine_mode,
3767 rtx *, rtx *);
3769 /* In loop-iv.c */
3770 extern rtx canon_condition (rtx);
3771 extern void simplify_using_condition (rtx, rtx *, bitmap);
3773 /* In final.c */
3774 extern unsigned int compute_alignments (void);
3775 extern void update_alignments (vec<rtx> &);
3776 extern int asm_str_count (const char *templ);
3778 struct rtl_hooks
3780 rtx (*gen_lowpart) (machine_mode, rtx);
3781 rtx (*gen_lowpart_no_emit) (machine_mode, rtx);
3782 rtx (*reg_nonzero_bits) (const_rtx, machine_mode, const_rtx, machine_mode,
3783 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT *);
3784 rtx (*reg_num_sign_bit_copies) (const_rtx, machine_mode, const_rtx, machine_mode,
3785 unsigned int, unsigned int *);
3786 bool (*reg_truncated_to_mode) (machine_mode, const_rtx);
3788 /* Whenever you add entries here, make sure you adjust rtlhooks-def.h. */
3791 /* Each pass can provide its own. */
3792 extern struct rtl_hooks rtl_hooks;
3794 /* ... but then it has to restore these. */
3795 extern const struct rtl_hooks general_rtl_hooks;
3797 /* Keep this for the nonce. */
3798 #define gen_lowpart rtl_hooks.gen_lowpart
3800 extern void insn_locations_init (void);
3801 extern void insn_locations_finalize (void);
3802 extern void set_curr_insn_location (location_t);
3803 extern location_t curr_insn_location (void);
3805 /* rtl-error.c */
3806 extern void _fatal_insn_not_found (const_rtx, const char *, int, const char *)
3807 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
3808 extern void _fatal_insn (const char *, const_rtx, const char *, int, const char *)
3809 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
3811 #define fatal_insn(msgid, insn) \
3812 _fatal_insn (msgid, insn, __FILE__, __LINE__, __FUNCTION__)
3813 #define fatal_insn_not_found(insn) \
3814 _fatal_insn_not_found (insn, __FILE__, __LINE__, __FUNCTION__)
3816 /* reginfo.c */
3817 extern tree GTY(()) global_regs_decl[FIRST_PSEUDO_REGISTER];
3819 /* Information about the function that is propagated by the RTL backend.
3820 Available only for functions that has been already assembled. */
3822 struct GTY(()) cgraph_rtl_info {
3823 unsigned int preferred_incoming_stack_boundary;
3825 /* Call unsaved hard registers really used by the corresponding
3826 function (including ones used by functions called by the
3827 function). */
3828 HARD_REG_SET function_used_regs;
3829 /* Set if function_used_regs is valid. */
3830 unsigned function_used_regs_valid: 1;
3833 /* If loads from memories of mode MODE always sign or zero extend,
3834 return SIGN_EXTEND or ZERO_EXTEND as appropriate. Return UNKNOWN
3835 otherwise. */
3837 inline rtx_code
3838 load_extend_op (machine_mode mode)
3840 if (SCALAR_INT_MODE_P (mode)
3841 && GET_MODE_PRECISION (mode) < BITS_PER_WORD)
3842 return LOAD_EXTEND_OP (mode);
3843 return UNKNOWN;
3846 /* gtype-desc.c. */
3847 extern void gt_ggc_mx (rtx &);
3848 extern void gt_pch_nx (rtx &);
3849 extern void gt_pch_nx (rtx &, gt_pointer_operator, void *);
3851 #endif /* ! GCC_RTL_H */