1 // Copyright 2019 The Go Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
7 // The page allocator manages mapped pages (defined by pageSize, NOT
8 // physPageSize) for allocation and re-use. It is embedded into mheap.
10 // Pages are managed using a bitmap that is sharded into chunks.
11 // In the bitmap, 1 means in-use, and 0 means free. The bitmap spans the
12 // process's address space. Chunks are managed in a sparse-array-style structure
13 // similar to mheap.arenas, since the bitmap may be large on some systems.
15 // The bitmap is efficiently searched by using a radix tree in combination
16 // with fast bit-wise intrinsics. Allocation is performed using an address-ordered
17 // first-fit approach.
19 // Each entry in the radix tree is a summary that describes three properties of
20 // a particular region of the address space: the number of contiguous free pages
21 // at the start and end of the region it represents, and the maximum number of
22 // contiguous free pages found anywhere in that region.
24 // Each level of the radix tree is stored as one contiguous array, which represents
25 // a different granularity of subdivision of the processes' address space. Thus, this
26 // radix tree is actually implicit in these large arrays, as opposed to having explicit
27 // dynamically-allocated pointer-based node structures. Naturally, these arrays may be
28 // quite large for system with large address spaces, so in these cases they are mapped
29 // into memory as needed. The leaf summaries of the tree correspond to a bitmap chunk.
31 // The root level (referred to as L0 and index 0 in pageAlloc.summary) has each
32 // summary represent the largest section of address space (16 GiB on 64-bit systems),
33 // with each subsequent level representing successively smaller subsections until we
34 // reach the finest granularity at the leaves, a chunk.
36 // More specifically, each summary in each level (except for leaf summaries)
37 // represents some number of entries in the following level. For example, each
38 // summary in the root level may represent a 16 GiB region of address space,
39 // and in the next level there could be 8 corresponding entries which represent 2
40 // GiB subsections of that 16 GiB region, each of which could correspond to 8
41 // entries in the next level which each represent 256 MiB regions, and so on.
43 // Thus, this design only scales to heaps so large, but can always be extended to
44 // larger heaps by simply adding levels to the radix tree, which mostly costs
45 // additional virtual address space. The choice of managing large arrays also means
46 // that a large amount of virtual address space may be reserved by the runtime.
51 "runtime/internal/atomic"
56 // The size of a bitmap chunk, i.e. the amount of bits (that is, pages) to consider
57 // in the bitmap at once.
58 pallocChunkPages
= 1 << logPallocChunkPages
59 pallocChunkBytes
= pallocChunkPages
* pageSize
60 logPallocChunkPages
= 9
61 logPallocChunkBytes
= logPallocChunkPages
+ pageShift
63 // The number of radix bits for each level.
65 // The value of 3 is chosen such that the block of summaries we need to scan at
66 // each level fits in 64 bytes (2^3 summaries * 8 bytes per summary), which is
67 // close to the L1 cache line width on many systems. Also, a value of 3 fits 4 tree
68 // levels perfectly into the 21-bit pallocBits summary field at the root level.
70 // The following equation explains how each of the constants relate:
71 // summaryL0Bits + (summaryLevels-1)*summaryLevelBits + logPallocChunkBytes = heapAddrBits
73 // summaryLevels is an architecture-dependent value defined in mpagealloc_*.go.
75 summaryL0Bits
= heapAddrBits
- logPallocChunkBytes
- (summaryLevels
-1)*summaryLevelBits
77 // pallocChunksL2Bits is the number of bits of the chunk index number
78 // covered by the second level of the chunks map.
80 // See (*pageAlloc).chunks for more details. Update the documentation
81 // there should this change.
82 pallocChunksL2Bits
= heapAddrBits
- logPallocChunkBytes
- pallocChunksL1Bits
83 pallocChunksL1Shift
= pallocChunksL2Bits
86 // Maximum searchAddr value, which indicates that the heap has no free space.
88 // We alias maxOffAddr just to make it clear that this is the maximum address
89 // for the page allocator's search space. See maxOffAddr for details.
90 func maxSearchAddr() offAddr
{
94 // Global chunk index.
96 // Represents an index into the leaf level of the radix tree.
97 // Similar to arenaIndex, except instead of arenas, it divides the address
101 // chunkIndex returns the global index of the palloc chunk containing the
103 func chunkIndex(p
uintptr) chunkIdx
{
104 return chunkIdx((p
- arenaBaseOffset
) / pallocChunkBytes
)
107 // chunkIndex returns the base address of the palloc chunk at index ci.
108 func chunkBase(ci chunkIdx
) uintptr {
109 return uintptr(ci
)*pallocChunkBytes
+ arenaBaseOffset
112 // chunkPageIndex computes the index of the page that contains p,
113 // relative to the chunk which contains p.
114 func chunkPageIndex(p
uintptr) uint {
115 return uint(p
% pallocChunkBytes
/ pageSize
)
118 // l1 returns the index into the first level of (*pageAlloc).chunks.
119 func (i chunkIdx
) l1() uint {
120 if pallocChunksL1Bits
== 0 {
121 // Let the compiler optimize this away if there's no
125 return uint(i
) >> pallocChunksL1Shift
129 // l2 returns the index into the second level of (*pageAlloc).chunks.
130 func (i chunkIdx
) l2() uint {
131 if pallocChunksL1Bits
== 0 {
134 return uint(i
) & (1<<pallocChunksL2Bits
- 1)
138 // offAddrToLevelIndex converts an address in the offset address space
139 // to the index into summary[level] containing addr.
140 func offAddrToLevelIndex(level
int, addr offAddr
) int {
141 return int((addr
.a
- arenaBaseOffset
) >> levelShift
[level
])
144 // levelIndexToOffAddr converts an index into summary[level] into
145 // the corresponding address in the offset address space.
146 func levelIndexToOffAddr(level
, idx
int) offAddr
{
147 return offAddr
{(uintptr(idx
) << levelShift
[level
]) + arenaBaseOffset
}
150 // addrsToSummaryRange converts base and limit pointers into a range
151 // of entries for the given summary level.
153 // The returned range is inclusive on the lower bound and exclusive on
155 func addrsToSummaryRange(level
int, base
, limit
uintptr) (lo
int, hi
int) {
156 // This is slightly more nuanced than just a shift for the exclusive
157 // upper-bound. Note that the exclusive upper bound may be within a
158 // summary at this level, meaning if we just do the obvious computation
159 // hi will end up being an inclusive upper bound. Unfortunately, just
160 // adding 1 to that is too broad since we might be on the very edge
161 // of a summary's max page count boundary for this level
162 // (1 << levelLogPages[level]). So, make limit an inclusive upper bound
163 // then shift, then add 1, so we get an exclusive upper bound at the end.
164 lo
= int((base
- arenaBaseOffset
) >> levelShift
[level
])
165 hi
= int(((limit
-1)-arenaBaseOffset
)>>levelShift
[level
]) + 1
169 // blockAlignSummaryRange aligns indices into the given level to that
170 // level's block width (1 << levelBits[level]). It assumes lo is inclusive
171 // and hi is exclusive, and so aligns them down and up respectively.
172 func blockAlignSummaryRange(level
int, lo
, hi
int) (int, int) {
173 e
:= uintptr(1) << levelBits
[level
]
174 return int(alignDown(uintptr(lo
), e
)), int(alignUp(uintptr(hi
), e
))
177 type pageAlloc
struct {
178 // Radix tree of summaries.
180 // Each slice's cap represents the whole memory reservation.
181 // Each slice's len reflects the allocator's maximum known
182 // mapped heap address for that level.
184 // The backing store of each summary level is reserved in init
185 // and may or may not be committed in grow (small address spaces
186 // may commit all the memory in init).
188 // The purpose of keeping len <= cap is to enforce bounds checks
189 // on the top end of the slice so that instead of an unknown
190 // runtime segmentation fault, we get a much friendlier out-of-bounds
193 // To iterate over a summary level, use inUse to determine which ranges
194 // are currently available. Otherwise one might try to access
195 // memory which is only Reserved which may result in a hard fault.
197 // We may still get segmentation faults < len since some of that
198 // memory may not be committed yet.
199 summary
[summaryLevels
][]pallocSum
201 // chunks is a slice of bitmap chunks.
203 // The total size of chunks is quite large on most 64-bit platforms
204 // (O(GiB) or more) if flattened, so rather than making one large mapping
205 // (which has problems on some platforms, even when PROT_NONE) we use a
206 // two-level sparse array approach similar to the arena index in mheap.
208 // To find the chunk containing a memory address `a`, do:
209 // chunkOf(chunkIndex(a))
211 // Below is a table describing the configuration for chunks for various
212 // heapAddrBits supported by the runtime.
214 // heapAddrBits | L1 Bits | L2 Bits | L2 Entry Size
215 // ------------------------------------------------
216 // 32 | 0 | 10 | 128 KiB
217 // 33 (iOS) | 0 | 11 | 256 KiB
218 // 48 | 13 | 13 | 1 MiB
220 // There's no reason to use the L1 part of chunks on 32-bit, the
221 // address space is small so the L2 is small. For platforms with a
222 // 48-bit address space, we pick the L1 such that the L2 is 1 MiB
223 // in size, which is a good balance between low granularity without
224 // making the impact on BSS too high (note the L1 is stored directly
227 // To iterate over the bitmap, use inUse to determine which ranges
228 // are currently available. Otherwise one might iterate over unused
231 // Protected by mheapLock.
233 // TODO(mknyszek): Consider changing the definition of the bitmap
234 // such that 1 means free and 0 means in-use so that summaries and
235 // the bitmaps align better on zero-values.
236 chunks
[1 << pallocChunksL1Bits
]*[1 << pallocChunksL2Bits
]pallocData
238 // The address to start an allocation search with. It must never
239 // point to any memory that is not contained in inUse, i.e.
240 // inUse.contains(searchAddr.addr()) must always be true. The one
241 // exception to this rule is that it may take on the value of
242 // maxOffAddr to indicate that the heap is exhausted.
244 // We guarantee that all valid heap addresses below this value
245 // are allocated and not worth searching.
248 // start and end represent the chunk indices
249 // which pageAlloc knows about. It assumes
250 // chunks in the range [start, end) are
251 // currently ready to use.
254 // inUse is a slice of ranges of address space which are
255 // known by the page allocator to be currently in-use (passed
258 // This field is currently unused on 32-bit architectures but
259 // is harmless to track. We care much more about having a
260 // contiguous heap in these cases and take additional measures
261 // to ensure that, so in nearly all cases this should have just
264 // All access is protected by the mheapLock.
267 // scav stores the scavenger state.
271 // inUse is a slice of ranges of address space which have not
272 // yet been looked at by the scavenger.
274 // Protected by lock.
277 // gen is the scavenge generation number.
279 // Protected by lock.
282 // reservationBytes is how large of a reservation should be made
283 // in bytes of address space for each scavenge iteration.
285 // Protected by lock.
286 reservationBytes
uintptr
288 // released is the amount of memory released this generation.
290 // Updated atomically.
293 // scavLWM is the lowest (offset) address that the scavenger reached this
294 // scavenge generation.
296 // Protected by lock.
299 // freeHWM is the highest (offset) address of a page that was freed to
300 // the page allocator this scavenge generation.
302 // Protected by mheapLock.
306 // mheap_.lock. This level of indirection makes it possible
307 // to test pageAlloc indepedently of the runtime allocator.
310 // sysStat is the runtime memstat to update when new system
311 // memory is committed by the pageAlloc for allocation metadata.
314 // Whether or not this struct is being used in tests.
318 func (p
*pageAlloc
) init(mheapLock
*mutex
, sysStat
*sysMemStat
) {
319 if levelLogPages
[0] > logMaxPackedValue
{
320 // We can't represent 1<<levelLogPages[0] pages, the maximum number
321 // of pages we need to represent at the root level, in a summary, which
322 // is a big problem. Throw.
323 print("runtime: root level max pages = ", 1<<levelLogPages
[0], "\n")
324 print("runtime: summary max pages = ", maxPackedValue
, "\n")
325 throw("root level max pages doesn't fit in summary")
329 // Initialize p.inUse.
330 p
.inUse
.init(sysStat
)
332 // System-dependent initialization.
335 // Start with the searchAddr in a state indicating there's no free memory.
336 p
.searchAddr
= maxSearchAddr()
338 // Set the mheapLock.
339 p
.mheapLock
= mheapLock
341 // Initialize scavenge tracking state.
342 p
.scav
.scavLWM
= maxSearchAddr()
345 // tryChunkOf returns the bitmap data for the given chunk.
347 // Returns nil if the chunk data has not been mapped.
348 func (p
*pageAlloc
) tryChunkOf(ci chunkIdx
) *pallocData
{
349 l2
:= p
.chunks
[ci
.l1()]
356 // chunkOf returns the chunk at the given chunk index.
358 // The chunk index must be valid or this method may throw.
359 func (p
*pageAlloc
) chunkOf(ci chunkIdx
) *pallocData
{
360 return &p
.chunks
[ci
.l1()][ci
.l2()]
363 // grow sets up the metadata for the address range [base, base+size).
364 // It may allocate metadata, in which case *p.sysStat will be updated.
366 // p.mheapLock must be held.
367 func (p
*pageAlloc
) grow(base
, size
uintptr) {
368 assertLockHeld(p
.mheapLock
)
370 // Round up to chunks, since we can't deal with increments smaller
371 // than chunks. Also, sysGrow expects aligned values.
372 limit
:= alignUp(base
+size
, pallocChunkBytes
)
373 base
= alignDown(base
, pallocChunkBytes
)
375 // Grow the summary levels in a system-dependent manner.
376 // We just update a bunch of additional metadata here.
377 p
.sysGrow(base
, limit
)
379 // Update p.start and p.end.
380 // If no growth happened yet, start == 0. This is generally
381 // safe since the zero page is unmapped.
382 firstGrowth
:= p
.start
== 0
383 start
, end
:= chunkIndex(base
), chunkIndex(limit
)
384 if firstGrowth || start
< p
.start
{
390 // Note that [base, limit) will never overlap with any existing
391 // range inUse because grow only ever adds never-used memory
392 // regions to the page allocator.
393 p
.inUse
.add(makeAddrRange(base
, limit
))
395 // A grow operation is a lot like a free operation, so if our
396 // chunk ends up below p.searchAddr, update p.searchAddr to the
397 // new address, just like in free.
398 if b
:= (offAddr
{base
}); b
.lessThan(p
.searchAddr
) {
402 // Add entries into chunks, which is sparse, if needed. Then,
403 // initialize the bitmap.
405 // Newly-grown memory is always considered scavenged.
406 // Set all the bits in the scavenged bitmaps high.
407 for c
:= chunkIndex(base
); c
< chunkIndex(limit
); c
++ {
408 if p
.chunks
[c
.l1()] == nil {
409 // Create the necessary l2 entry.
411 // Store it atomically to avoid races with readers which
412 // don't acquire the heap lock.
413 r
:= sysAlloc(unsafe
.Sizeof(*p
.chunks
[0]), p
.sysStat
)
415 throw("pageAlloc: out of memory")
417 atomic
.StorepNoWB(unsafe
.Pointer(&p
.chunks
[c
.l1()]), r
)
419 p
.chunkOf(c
).scavenged
.setRange(0, pallocChunkPages
)
422 // Update summaries accordingly. The grow acts like a free, so
423 // we need to ensure this newly-free memory is visible in the
425 p
.update(base
, size
/pageSize
, true, false)
428 // update updates heap metadata. It must be called each time the bitmap
431 // If contig is true, update does some optimizations assuming that there was
432 // a contiguous allocation or free between addr and addr+npages. alloc indicates
433 // whether the operation performed was an allocation or a free.
435 // p.mheapLock must be held.
436 func (p
*pageAlloc
) update(base
, npages
uintptr, contig
, alloc
bool) {
437 assertLockHeld(p
.mheapLock
)
439 // base, limit, start, and end are inclusive.
440 limit
:= base
+ npages
*pageSize
- 1
441 sc
, ec
:= chunkIndex(base
), chunkIndex(limit
)
443 // Handle updating the lowest level first.
445 // Fast path: the allocation doesn't span more than one chunk,
446 // so update this one and if the summary didn't change, return.
447 x
:= p
.summary
[len(p
.summary
)-1][sc
]
448 y
:= p
.chunkOf(sc
).summarize()
452 p
.summary
[len(p
.summary
)-1][sc
] = y
454 // Slow contiguous path: the allocation spans more than one chunk
455 // and at least one summary is guaranteed to change.
456 summary
:= p
.summary
[len(p
.summary
)-1]
458 // Update the summary for chunk sc.
459 summary
[sc
] = p
.chunkOf(sc
).summarize()
461 // Update the summaries for chunks in between, which are
462 // either totally allocated or freed.
463 whole
:= p
.summary
[len(p
.summary
)-1][sc
+1 : ec
]
465 // Should optimize into a memclr.
466 for i
:= range whole
{
470 for i
:= range whole
{
471 whole
[i
] = freeChunkSum
475 // Update the summary for chunk ec.
476 summary
[ec
] = p
.chunkOf(ec
).summarize()
478 // Slow general path: the allocation spans more than one chunk
479 // and at least one summary is guaranteed to change.
481 // We can't assume a contiguous allocation happened, so walk over
482 // every chunk in the range and manually recompute the summary.
483 summary
:= p
.summary
[len(p
.summary
)-1]
484 for c
:= sc
; c
<= ec
; c
++ {
485 summary
[c
] = p
.chunkOf(c
).summarize()
489 // Walk up the radix tree and update the summaries appropriately.
491 for l
:= len(p
.summary
) - 2; l
>= 0 && changed
; l
-- {
492 // Update summaries at level l from summaries at level l+1.
495 // "Constants" for the previous level which we
496 // need to compute the summary from that level.
497 logEntriesPerBlock
:= levelBits
[l
+1]
498 logMaxPages
:= levelLogPages
[l
+1]
500 // lo and hi describe all the parts of the level we need to look at.
501 lo
, hi
:= addrsToSummaryRange(l
, base
, limit
+1)
503 // Iterate over each block, updating the corresponding summary in the less-granular level.
504 for i
:= lo
; i
< hi
; i
++ {
505 children
:= p
.summary
[l
+1][i
<<logEntriesPerBlock
: (i
+1)<<logEntriesPerBlock
]
506 sum
:= mergeSummaries(children
, logMaxPages
)
507 old
:= p
.summary
[l
][i
]
510 p
.summary
[l
][i
] = sum
516 // allocRange marks the range of memory [base, base+npages*pageSize) as
517 // allocated. It also updates the summaries to reflect the newly-updated
520 // Returns the amount of scavenged memory in bytes present in the
523 // p.mheapLock must be held.
524 func (p
*pageAlloc
) allocRange(base
, npages
uintptr) uintptr {
525 assertLockHeld(p
.mheapLock
)
527 limit
:= base
+ npages
*pageSize
- 1
528 sc
, ec
:= chunkIndex(base
), chunkIndex(limit
)
529 si
, ei
:= chunkPageIndex(base
), chunkPageIndex(limit
)
533 // The range doesn't cross any chunk boundaries.
534 chunk
:= p
.chunkOf(sc
)
535 scav
+= chunk
.scavenged
.popcntRange(si
, ei
+1-si
)
536 chunk
.allocRange(si
, ei
+1-si
)
538 // The range crosses at least one chunk boundary.
539 chunk
:= p
.chunkOf(sc
)
540 scav
+= chunk
.scavenged
.popcntRange(si
, pallocChunkPages
-si
)
541 chunk
.allocRange(si
, pallocChunkPages
-si
)
542 for c
:= sc
+ 1; c
< ec
; c
++ {
543 chunk
:= p
.chunkOf(c
)
544 scav
+= chunk
.scavenged
.popcntRange(0, pallocChunkPages
)
547 chunk
= p
.chunkOf(ec
)
548 scav
+= chunk
.scavenged
.popcntRange(0, ei
+1)
549 chunk
.allocRange(0, ei
+1)
551 p
.update(base
, npages
, true, true)
552 return uintptr(scav
) * pageSize
555 // findMappedAddr returns the smallest mapped offAddr that is
556 // >= addr. That is, if addr refers to mapped memory, then it is
557 // returned. If addr is higher than any mapped region, then
558 // it returns maxOffAddr.
560 // p.mheapLock must be held.
561 func (p
*pageAlloc
) findMappedAddr(addr offAddr
) offAddr
{
562 assertLockHeld(p
.mheapLock
)
564 // If we're not in a test, validate first by checking mheap_.arenas.
565 // This is a fast path which is only safe to use outside of testing.
566 ai
:= arenaIndex(addr
.addr())
567 if p
.test || mheap_
.arenas
[ai
.l1()] == nil || mheap_
.arenas
[ai
.l1()][ai
.l2()] == nil {
568 vAddr
, ok
:= p
.inUse
.findAddrGreaterEqual(addr
.addr())
570 return offAddr
{vAddr
}
572 // The candidate search address is greater than any
573 // known address, which means we definitely have no
581 // find searches for the first (address-ordered) contiguous free region of
582 // npages in size and returns a base address for that region.
584 // It uses p.searchAddr to prune its search and assumes that no palloc chunks
585 // below chunkIndex(p.searchAddr) contain any free memory at all.
587 // find also computes and returns a candidate p.searchAddr, which may or
588 // may not prune more of the address space than p.searchAddr already does.
589 // This candidate is always a valid p.searchAddr.
591 // find represents the slow path and the full radix tree search.
593 // Returns a base address of 0 on failure, in which case the candidate
594 // searchAddr returned is invalid and must be ignored.
596 // p.mheapLock must be held.
597 func (p
*pageAlloc
) find(npages
uintptr) (uintptr, offAddr
) {
598 assertLockHeld(p
.mheapLock
)
602 // This algorithm walks each level l of the radix tree from the root level
603 // to the leaf level. It iterates over at most 1 << levelBits[l] of entries
604 // in a given level in the radix tree, and uses the summary information to
606 // 1) That a given subtree contains a large enough contiguous region, at
607 // which point it continues iterating on the next level, or
608 // 2) That there are enough contiguous boundary-crossing bits to satisfy
609 // the allocation, at which point it knows exactly where to start
612 // i tracks the index into the current level l's structure for the
613 // contiguous 1 << levelBits[l] entries we're actually interested in.
615 // NOTE: Technically this search could allocate a region which crosses
616 // the arenaBaseOffset boundary, which when arenaBaseOffset != 0, is
617 // a discontinuity. However, the only way this could happen is if the
618 // page at the zero address is mapped, and this is impossible on
619 // every system we support where arenaBaseOffset != 0. So, the
620 // discontinuity is already encoded in the fact that the OS will never
621 // map the zero page for us, and this function doesn't try to handle
622 // this case in any way.
624 // i is the beginning of the block of entries we're searching at the
628 // firstFree is the region of address space that we are certain to
629 // find the first free page in the heap. base and bound are the inclusive
630 // bounds of this window, and both are addresses in the linearized, contiguous
631 // view of the address space (with arenaBaseOffset pre-added). At each level,
632 // this window is narrowed as we find the memory region containing the
633 // first free page of memory. To begin with, the range reflects the
634 // full process address space.
636 // firstFree is updated by calling foundFree each time free space in the
637 // heap is discovered.
639 // At the end of the search, base.addr() is the best new
640 // searchAddr we could deduce in this search.
641 firstFree
:= struct {
647 // foundFree takes the given address range [addr, addr+size) and
648 // updates firstFree if it is a narrower range. The input range must
649 // either be fully contained within firstFree or not overlap with it
652 // This way, we'll record the first summary we find with any free
653 // pages on the root level and narrow that down if we descend into
654 // that summary. But as soon as we need to iterate beyond that summary
655 // in a level to find a large enough range, we'll stop narrowing.
656 foundFree
:= func(addr offAddr
, size
uintptr) {
657 if firstFree
.base
.lessEqual(addr
) && addr
.add(size
-1).lessEqual(firstFree
.bound
) {
658 // This range fits within the current firstFree window, so narrow
659 // down the firstFree window to the base and bound of this range.
660 firstFree
.base
= addr
661 firstFree
.bound
= addr
.add(size
- 1)
662 } else if !(addr
.add(size
-1).lessThan(firstFree
.base
) || firstFree
.bound
.lessThan(addr
)) {
663 // This range only partially overlaps with the firstFree range,
665 print("runtime: addr = ", hex(addr
.addr()), ", size = ", size
, "\n")
666 print("runtime: base = ", hex(firstFree
.base
.addr()), ", bound = ", hex(firstFree
.bound
.addr()), "\n")
667 throw("range partially overlaps")
671 // lastSum is the summary which we saw on the previous level that made us
672 // move on to the next level. Used to print additional information in the
673 // case of a catastrophic failure.
674 // lastSumIdx is that summary's index in the previous level.
675 lastSum
:= packPallocSum(0, 0, 0)
679 for l
:= 0; l
< len(p
.summary
); l
++ {
680 // For the root level, entriesPerBlock is the whole level.
681 entriesPerBlock
:= 1 << levelBits
[l
]
682 logMaxPages
:= levelLogPages
[l
]
684 // We've moved into a new level, so let's update i to our new
685 // starting index. This is a no-op for level 0.
688 // Slice out the block of entries we care about.
689 entries
:= p
.summary
[l
][i
: i
+entriesPerBlock
]
691 // Determine j0, the first index we should start iterating from.
692 // The searchAddr may help us eliminate iterations if we followed the
693 // searchAddr on the previous level or we're on the root leve, in which
694 // case the searchAddr should be the same as i after levelShift.
696 if searchIdx
:= offAddrToLevelIndex(l
, p
.searchAddr
); searchIdx
&^(entriesPerBlock
-1) == i
{
697 j0
= searchIdx
& (entriesPerBlock
- 1)
700 // Run over the level entries looking for
701 // a contiguous run of at least npages either
702 // within an entry or across entries.
704 // base contains the page index (relative to
705 // the first entry's first page) of the currently
706 // considered run of consecutive pages.
708 // size contains the size of the currently considered
709 // run of consecutive pages.
711 for j
:= j0
; j
< len(entries
); j
++ {
714 // A full entry means we broke any streak and
715 // that we should skip it altogether.
720 // We've encountered a non-zero summary which means
721 // free memory, so update firstFree.
722 foundFree(levelIndexToOffAddr(l
, i
+j
), (uintptr(1)<<logMaxPages
)*pageSize
)
725 if size
+s
>= uint(npages
) {
726 // If size == 0 we don't have a run yet,
727 // which means base isn't valid. So, set
728 // base to the first page in this block.
730 base
= uint(j
) << logMaxPages
732 // We hit npages; we're done!
736 if sum
.max() >= uint(npages
) {
737 // The entry itself contains npages contiguous
738 // free pages, so continue on the next level
745 if size
== 0 || s
< 1<<logMaxPages
{
746 // We either don't have a current run started, or this entry
747 // isn't totally free (meaning we can't continue the current
748 // one), so try to begin a new run by setting size and base
751 base
= uint(j
+1)<<logMaxPages
- size
754 // The entry is completely free, so continue the run.
755 size
+= 1 << logMaxPages
757 if size
>= uint(npages
) {
758 // We found a sufficiently large run of free pages straddling
759 // some boundary, so compute the address and return it.
760 addr
:= levelIndexToOffAddr(l
, i
).add(uintptr(base
) * pageSize
).addr()
761 return addr
, p
.findMappedAddr(firstFree
.base
)
764 // We're at level zero, so that means we've exhausted our search.
765 return 0, maxSearchAddr()
768 // We're not at level zero, and we exhausted the level we were looking in.
769 // This means that either our calculations were wrong or the level above
770 // lied to us. In either case, dump some useful state and throw.
771 print("runtime: summary[", l
-1, "][", lastSumIdx
, "] = ", lastSum
.start(), ", ", lastSum
.max(), ", ", lastSum
.end(), "\n")
772 print("runtime: level = ", l
, ", npages = ", npages
, ", j0 = ", j0
, "\n")
773 print("runtime: p.searchAddr = ", hex(p
.searchAddr
.addr()), ", i = ", i
, "\n")
774 print("runtime: levelShift[level] = ", levelShift
[l
], ", levelBits[level] = ", levelBits
[l
], "\n")
775 for j
:= 0; j
< len(entries
); j
++ {
777 print("runtime: summary[", l
, "][", i
+j
, "] = (", sum
.start(), ", ", sum
.max(), ", ", sum
.end(), ")\n")
779 throw("bad summary data")
782 // Since we've gotten to this point, that means we haven't found a
783 // sufficiently-sized free region straddling some boundary (chunk or larger).
784 // This means the last summary we inspected must have had a large enough "max"
785 // value, so look inside the chunk to find a suitable run.
787 // After iterating over all levels, i must contain a chunk index which
788 // is what the final level represents.
790 j
, searchIdx
:= p
.chunkOf(ci
).find(npages
, 0)
792 // We couldn't find any space in this chunk despite the summaries telling
793 // us it should be there. There's likely a bug, so dump some state and throw.
794 sum
:= p
.summary
[len(p
.summary
)-1][i
]
795 print("runtime: summary[", len(p
.summary
)-1, "][", i
, "] = (", sum
.start(), ", ", sum
.max(), ", ", sum
.end(), ")\n")
796 print("runtime: npages = ", npages
, "\n")
797 throw("bad summary data")
800 // Compute the address at which the free space starts.
801 addr
:= chunkBase(ci
) + uintptr(j
)*pageSize
803 // Since we actually searched the chunk, we may have
804 // found an even narrower free window.
805 searchAddr
:= chunkBase(ci
) + uintptr(searchIdx
)*pageSize
806 foundFree(offAddr
{searchAddr
}, chunkBase(ci
+1)-searchAddr
)
807 return addr
, p
.findMappedAddr(firstFree
.base
)
810 // alloc allocates npages worth of memory from the page heap, returning the base
811 // address for the allocation and the amount of scavenged memory in bytes
812 // contained in the region [base address, base address + npages*pageSize).
814 // Returns a 0 base address on failure, in which case other returned values
815 // should be ignored.
817 // p.mheapLock must be held.
819 // Must run on the system stack because p.mheapLock must be held.
822 func (p
*pageAlloc
) alloc(npages
uintptr) (addr
uintptr, scav
uintptr) {
823 assertLockHeld(p
.mheapLock
)
825 // If the searchAddr refers to a region which has a higher address than
826 // any known chunk, then we know we're out of memory.
827 if chunkIndex(p
.searchAddr
.addr()) >= p
.end
{
831 // If npages has a chance of fitting in the chunk where the searchAddr is,
832 // search it directly.
833 searchAddr
:= minOffAddr
834 if pallocChunkPages
-chunkPageIndex(p
.searchAddr
.addr()) >= uint(npages
) {
835 // npages is guaranteed to be no greater than pallocChunkPages here.
836 i
:= chunkIndex(p
.searchAddr
.addr())
837 if max
:= p
.summary
[len(p
.summary
)-1][i
].max(); max
>= uint(npages
) {
838 j
, searchIdx
:= p
.chunkOf(i
).find(npages
, chunkPageIndex(p
.searchAddr
.addr()))
840 print("runtime: max = ", max
, ", npages = ", npages
, "\n")
841 print("runtime: searchIdx = ", chunkPageIndex(p
.searchAddr
.addr()), ", p.searchAddr = ", hex(p
.searchAddr
.addr()), "\n")
842 throw("bad summary data")
844 addr
= chunkBase(i
) + uintptr(j
)*pageSize
845 searchAddr
= offAddr
{chunkBase(i
) + uintptr(searchIdx
)*pageSize
}
849 // We failed to use a searchAddr for one reason or another, so try
851 addr
, searchAddr
= p
.find(npages
)
854 // We failed to find a single free page, the smallest unit
855 // of allocation. This means we know the heap is completely
856 // exhausted. Otherwise, the heap still might have free
857 // space in it, just not enough contiguous space to
858 // accommodate npages.
859 p
.searchAddr
= maxSearchAddr()
864 // Go ahead and actually mark the bits now that we have an address.
865 scav
= p
.allocRange(addr
, npages
)
867 // If we found a higher searchAddr, we know that all the
868 // heap memory before that searchAddr in an offset address space is
869 // allocated, so bump p.searchAddr up to the new one.
870 if p
.searchAddr
.lessThan(searchAddr
) {
871 p
.searchAddr
= searchAddr
876 // free returns npages worth of memory starting at base back to the page heap.
878 // p.mheapLock must be held.
880 // Must run on the system stack because p.mheapLock must be held.
883 func (p
*pageAlloc
) free(base
, npages
uintptr, scavenged
bool) {
884 assertLockHeld(p
.mheapLock
)
886 // If we're freeing pages below the p.searchAddr, update searchAddr.
887 if b
:= (offAddr
{base
}); b
.lessThan(p
.searchAddr
) {
890 limit
:= base
+ npages
*pageSize
- 1
892 // Update the free high watermark for the scavenger.
893 if offLimit
:= (offAddr
{limit
}); p
.scav
.freeHWM
.lessThan(offLimit
) {
894 p
.scav
.freeHWM
= offLimit
898 // Fast path: we're clearing a single bit, and we know exactly
899 // where it is, so mark it directly.
900 i
:= chunkIndex(base
)
901 p
.chunkOf(i
).free1(chunkPageIndex(base
))
903 // Slow path: we're clearing more bits so we may need to iterate.
904 sc
, ec
:= chunkIndex(base
), chunkIndex(limit
)
905 si
, ei
:= chunkPageIndex(base
), chunkPageIndex(limit
)
908 // The range doesn't cross any chunk boundaries.
909 p
.chunkOf(sc
).free(si
, ei
+1-si
)
911 // The range crosses at least one chunk boundary.
912 p
.chunkOf(sc
).free(si
, pallocChunkPages
-si
)
913 for c
:= sc
+ 1; c
< ec
; c
++ {
914 p
.chunkOf(c
).freeAll()
916 p
.chunkOf(ec
).free(0, ei
+1)
919 p
.update(base
, npages
, true, false)
923 pallocSumBytes
= unsafe
.Sizeof(pallocSum(0))
925 // maxPackedValue is the maximum value that any of the three fields in
926 // the pallocSum may take on.
927 maxPackedValue
= 1 << logMaxPackedValue
928 logMaxPackedValue
= logPallocChunkPages
+ (summaryLevels
-1)*summaryLevelBits
930 freeChunkSum
= pallocSum(uint64(pallocChunkPages
) |
931 uint64(pallocChunkPages
<<logMaxPackedValue
) |
932 uint64(pallocChunkPages
<<(2*logMaxPackedValue
)))
935 // pallocSum is a packed summary type which packs three numbers: start, max,
936 // and end into a single 8-byte value. Each of these values are a summary of
937 // a bitmap and are thus counts, each of which may have a maximum value of
938 // 2^21 - 1, or all three may be equal to 2^21. The latter case is represented
939 // by just setting the 64th bit.
940 type pallocSum
uint64
942 // packPallocSum takes a start, max, and end value and produces a pallocSum.
943 func packPallocSum(start
, max
, end
uint) pallocSum
{
944 if max
== maxPackedValue
{
945 return pallocSum(uint64(1 << 63))
947 return pallocSum((uint64(start
) & (maxPackedValue
- 1)) |
948 ((uint64(max
) & (maxPackedValue
- 1)) << logMaxPackedValue
) |
949 ((uint64(end
) & (maxPackedValue
- 1)) << (2 * logMaxPackedValue
)))
952 // start extracts the start value from a packed sum.
953 func (p pallocSum
) start() uint {
954 if uint64(p
)&uint64(1<<63) != 0 {
955 return maxPackedValue
957 return uint(uint64(p
) & (maxPackedValue
- 1))
960 // max extracts the max value from a packed sum.
961 func (p pallocSum
) max() uint {
962 if uint64(p
)&uint64(1<<63) != 0 {
963 return maxPackedValue
965 return uint((uint64(p
) >> logMaxPackedValue
) & (maxPackedValue
- 1))
968 // end extracts the end value from a packed sum.
969 func (p pallocSum
) end() uint {
970 if uint64(p
)&uint64(1<<63) != 0 {
971 return maxPackedValue
973 return uint((uint64(p
) >> (2 * logMaxPackedValue
)) & (maxPackedValue
- 1))
976 // unpack unpacks all three values from the summary.
977 func (p pallocSum
) unpack() (uint, uint, uint) {
978 if uint64(p
)&uint64(1<<63) != 0 {
979 return maxPackedValue
, maxPackedValue
, maxPackedValue
981 return uint(uint64(p
) & (maxPackedValue
- 1)),
982 uint((uint64(p
) >> logMaxPackedValue
) & (maxPackedValue
- 1)),
983 uint((uint64(p
) >> (2 * logMaxPackedValue
)) & (maxPackedValue
- 1))
986 // mergeSummaries merges consecutive summaries which may each represent at
987 // most 1 << logMaxPagesPerSum pages each together into one.
988 func mergeSummaries(sums
[]pallocSum
, logMaxPagesPerSum
uint) pallocSum
{
989 // Merge the summaries in sums into one.
991 // We do this by keeping a running summary representing the merged
992 // summaries of sums[:i] in start, max, and end.
993 start
, max
, end
:= sums
[0].unpack()
994 for i
:= 1; i
< len(sums
); i
++ {
996 si
, mi
, ei
:= sums
[i
].unpack()
998 // Merge in sums[i].start only if the running summary is
999 // completely free, otherwise this summary's start
1000 // plays no role in the combined sum.
1001 if start
== uint(i
)<<logMaxPagesPerSum
{
1005 // Recompute the max value of the running sum by looking
1006 // across the boundary between the running sum and sums[i]
1007 // and at the max sums[i], taking the greatest of those two
1008 // and the max of the running sum.
1016 // Merge in end by checking if this new summary is totally
1017 // free. If it is, then we want to extend the running sum's
1018 // end by the new summary. If not, then we have some alloc'd
1019 // pages in there and we just want to take the end value in
1021 if ei
== 1<<logMaxPagesPerSum
{
1022 end
+= 1 << logMaxPagesPerSum
1027 return packPallocSum(start
, max
, end
)